
Oracle® Coherence
Developer’s Guide for Oracle Coherence

Release 3.4

E13818-01

November 2008

 Oracle Coherence Developer's Guide for Oracle Coherence, Release 3.4

E13818-01

Copyright © 2008, Oracle and/or its affiliates. All rights reserved.

Primary Author: Thomas Pfaeffle

Contributing Author: Noah Arliss, Jason Howes, Mark Falco, Alex Gleyzer, Gene Gleyzer, David Leibs,
Andy Nguyen, Brian Oliver, Patrick Peralta, Cameron Purdy, Jonathan Purdy, Everet Williams, Tom
Beerbower, John Speidel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. xvii

Audience.. xvii
Documentation Accessibility .. xvii
Related Documents ... xviii
Conventions ... xviii

Part I Coherence Features

1 Create and Use Coherence Caches

Creating a Cache in Your Application .. 1-1
Configuring the Caches... 1-2
Cache Configuration Descriptor Location... 1-5
Putting It all Together: Your First Coherence Cache Example... 1-5
Setting Up Your Test Environment ... 1-5
Modifying the Cache Configuration .. 1-9

2 Implement Transactions, Locks, and Concurrency

Concurrency Options... 2-1
Explicit Locking .. 2-1
Transactions ... 2-2
Container Integration .. 2-4

JCA ... 2-4
XA... 2-6

Entry Processors.. 2-6
Data Source Integration .. 2-8

3 Perform Continuous Query

Uses of Continuous Query Caching ... 3-1
The Coherence Continuous Query Cache ... 3-2
Constructing a Continuous Query Cache .. 3-2

Cleaning up the resources associated with a ContinuousQueryCache 3-3
Caching only keys, or caching both keys and values.. 3-3

CacheValues Property and Event Listeners ... 3-3
Listening to the ContinuousQueryCache .. 3-3

iv

Achieving a Stable Materialized View.. 3-4
Support for Synchronous and Asynchronous Listeners .. 3-5

Making the ContinuousQueryCache Read-Only .. 3-5

4 Managing Map Operations with Triggers

A Map Trigger Example .. 4-2

5 Data Affinity

Specifying Affinity .. 5-1
Specifying Data Affinity with a KeyAssociation... 5-2
Specifying Data Affinity with a KeyAssociator... 5-2
Example of Using Affinity.. 5-3

6 Query the Cache

Query Functionality ... 6-1
Simple Queries ... 6-1

Querying Partitioned Caches ... 6-3
Querying Near Caches .. 6-3

Query Concepts .. 6-3
Queries Involving Multi-Value Attributes.. 6-4
ChainedExtractor .. 6-5

7 Security Framework

Transport Layer Security ... 7-1
Access Controller.. 7-1
Proof of Identity ... 7-2
Proof of Trustworthiness... 7-3
Default Access Controller implementation .. 7-3
Working in applications with installed security manager .. 7-5

8 Network Filters

Compression Filters ... 8-1
Encryption Filters ... 8-1

Symmetric Encryption Filter .. 8-1
Symmetric Encryption Filter Parameters.. 8-2
PKCS Encryption Filter ... 8-2
PKCS Encryption Filter Parameters .. 8-3

Configuring Filters... 8-4
Creating a Custom Filter ... 8-5

9 Priority Tasks

Priority Tasks — Timeouts.. 9-1
Configuring Execution Timeouts... 9-1
Execution Timeout Parameters .. 9-1
Command Line Options.. 9-3

v

Priority Task Execution — Custom Objects .. 9-3
APIs for Creating Priority Task Objects.. 9-3
Errors Thrown by Task Timeouts .. 9-4

10 Integrate CacheFactory with Spring

11 Specifying a Custom Eviction Policy

12 Serialization Paged Cache

Understanding Serialization Paged Cache... 12-1
Configuring Serialization Paged Cache.. 12-1
Optimizing a Partitioned Cache Service... 12-2
Configuring for High Availability ... 12-2
Configuring Load Balancing and Failover ... 12-2
Supporting Huge Caches ... 12-2

13 Pre-Loading the Cache

Performing Bulk Loading and Processing.. 13-1
Bulk Writing to a Cache .. 13-1
Efficient processing of filter results .. 13-2
A Bulk Loading and Processing Example ... 13-4

Performing Distributed Bulk Loading.. 13-9
A Distributed Bulk Loading Example.. 13-9
Running a Distributed Bulk Loading Example .. 13-11

Building the Sample Application .. 13-11
Running the Sample Application .. 13-11

14 Constraints on Re-entrant Calls

Re-entrancy, Services, and Service Threads ... 14-1
Parent-Child Object Relationships.. 14-1
Avoiding Deadlock ... 14-2

Re-entrancy and Listeners ... 14-2

Part II Testing and Tuning

15 Evaluating Performance and Scalability

Measuring Latency and Throughput... 15-1
Demonstrating Scalability... 15-1
Tuning Your Environment ... 15-2
Measurements on a Large Cluster.. 15-2

16 Performing a Multicast Connectivity Test

Running the Multicast Test Utility .. 16-1
Sample Commands ... 16-1

vi

Multicast Test Example .. 16-2
Troubleshooting Multicast Communications .. 16-3

17 Performing a Datagram Test for Network Performance

Running the Datagram Test Utility.. 17-1
Sample Commands for a Listener and a Publisher .. 17-2

Datagram Test Example.. 17-2
Reporting .. 17-3

Publisher Statistics .. 17-3
Listener Statistics... 17-4

Throttling .. 17-5
Bidirectional Testing.. 17-5
Distributed Testing .. 17-5

18 Configuring and Using Coherence*Extend

General Instructions ... 18-1
Configuring and Using Coherence*Extend-JMS .. 18-2

Client-side Cache Configuration Descriptor... 18-2
Cluster-side Cache Configuration Descriptor... 18-4
Configuring your JMS Provider.. 18-5
Launching an Extend-JMS DefaultCacheServer Process... 18-7
Launching an Extend-JMS Client Application.. 18-8

Configuring and Using Coherence*Extend-TCP .. 18-8
Client-side Cache Configuration Descriptor... 18-8
Cluster-side Cache (a.k.a Coherence Extend Proxy) Configuration Descriptor 18-10
Launching an Extend-TCP DefaultCacheServer Process .. 18-11
Launching an Extend-TCP Client Application ... 18-12

Sample Coherence*Extend Client Application ... 18-12
Coherence*Extend InvocationService .. 18-13

Advanced Configuration ... 18-13
Network Filters.. 18-13
Connection Error Detection and Failover.. 18-15
Read-only NamedCache Access ... 18-15
Client-side NamedCache Locking .. 18-16
Disabling Proxied Services .. 18-16

19 High Resolution Timesource (Linux)

20 Performance Tuning

Operating System Tuning .. 20-1
Socket Buffer Sizes .. 20-1
High Resolution timesource (Linux) .. 20-2
Datagram size (Microsoft Windows) ... 20-3
Thread Scheduling (Microsoft Windows) ... 20-3
Swapping.. 20-4

Network Tuning... 20-4

vii

Network Interface Settings .. 20-4
Bus Considerations ... 20-5
Network Infrastructure Settings ... 20-5
Ethernet Flow-Control.. 20-5
Path MTU ... 20-6

JVM Tuning .. 20-6
Server Mode ... 20-6
Sizing the Heap ... 20-6
GC Monitoring & Tuning... 20-7

Coherence Network Tuning .. 20-7
Validation ... 20-7

21 Setting Single Server Mode

Setting Single Server Mode in the Operation Configuration Descriptor 21-1
Setting Single Server Mode on the Command Line... 21-2

Part III Managing and Monitoring Oracle Coherence

22 How to Manage Coherence Using JMX

Add JMX libraries to the Coherence classpath ... 22-1
Configure the Coherence Management Framework ... 22-2
Access Coherence MBeans ... 22-2
Using Coherence MBeanConnector to Access MBeans ... 22-5
Configuring Management Refresh Methodology .. 22-5

23 JMX Reporter

Basic Configuration .. 23-1
Administration... 23-1
Data Analysis ... 23-3
Advanced Configuration ... 23-4

Creating Custom Reports... 23-4
Running Reporter in a Distributed Configuration... 23-4

24 How to Create a Custom Report

Configuring a Report File .. 24-1
file-name Element ... 24-1

file-name Macros.. 24-1
file-name Macro Examples ... 24-2

Specifying Data Columns.. 24-2
How to Include an Attribute ... 24-2
How to Include Part of the Key... 24-3
How to Include Information from Composite Attributes... 24-3
How to Include Information from Multiple MBeans... 24-3
Including Multiple MBean Information Example.. 24-3
How to Use Report Macros.. 24-4

viii

How to Include Constant Values.. 24-5
Including Queries in a Report .. 24-5
Using Filters to Construct Reports ... 24-6
Using Functions to Construct a Report ... 24-9

Function Examples.. 24-9
Using Aggregates to Construct a Report... 24-10

Aggregate Examples ... 24-11
Constructing Delta Functions ... 24-11

Delta Function Examples ... 24-12

25 How to Modify Report Batch

Report Batch Deployment Descriptor ... 25-1
Document Location... 25-1
Document Root.. 25-1
System Properties.. 25-1
Document Format ... 25-2

Report Batch Element Index.. 25-3
frequency .. 25-4
location.. 25-5
init-param... 25-6
init-params ... 25-7
output-directory .. 25-8
param-name ... 25-9
param-type ... 25-10
param-value ... 25-11
report-config .. 25-12
report-group... 25-13
report-list .. 25-14

26 Analyzing Reporter Content

Network Health ... 26-1
Network Health Detail ... 26-1
Memory Status ... 26-2
Cache Size ... 26-3
Service Report .. 26-4
Node List ... 26-5
Proxy Report ... 26-5

27 How to Run a Report on Demand

How to Run ReportControl MBean at Node Startup ... 27-2
How to Configure the ReportControl MBean ... 27-2

28 Configuring Custom MBeans

Creating an MBean XML Configuration File .. 28-1
Configuring Standard MBeans ... 28-1
Configuring MXBeans ... 28-1

ix

Configuring JMX MBeans ... 28-2
Enabling a Custom MBean Configuration File .. 28-3

Setting a System Property .. 28-3
Adding a Custom MBean Configuration File to the Class Path... 28-3

29 How to Manage Custom MBeans Within the Cluster

Custom MBean Configuration.. 29-1
How to Add a Standard MBean to Coherence ... 29-1
How to Programatically Add a Standard MBean to Coherence .. 29-1
How to Add a the Results of a JMX Query to Coherence ... 29-2

A Production Checklist

Network... A-2
Hardware... A-4
Operating System .. A-7
JVM .. A-8
Java Security Manager.. A-9
Application Instrumentation .. A-10
Coherence Editions and Modes ... A-10

Ensuring that RTC nodes don't use Coherence TCMP.. A-11
Coherence Operational Configuration.. A-11
Coherence Cache Configuration .. A-12
Large Cluster Configuration ... A-14
Death Detection ... A-14
tangosol-license.xml Deprecated.. A-15

B Types of Caches in Coherence

Replicated Cache ... B-1
Optimistic Cache ... B-1
Distributed (Partitioned) Cache ... B-1
Near Cache .. B-1
Summary of Cache Types .. B-1

C Cache Semantics

D Cache Configuration Elements

Cache Configuration Deployment Descriptor... D-1
Document Location... D-1
Document Root.. D-1
Document Format ... D-1
Command Line Override ... D-1
Examples .. D-2

Element Index .. D-3
acceptor-config .. D-5
address-provider ... D-7

x

async-store-manager... D-8
backup-storage .. D-10
bdb-store-manager.. D-12
bundle-config... D-13
cache-config.. D-14
cache-mapping .. D-15
cache-service-proxy .. D-16
cachestore-scheme... D-17
caching-scheme-mapping .. D-18
caching-schemes.. D-19
class-scheme... D-23
custom-store-manager.. D-24
disk-scheme.. D-25
distributed-scheme.. D-26
external-scheme... D-32
initiator-config ... D-35
init-param... D-36
init-params ... D-38
invocation-scheme .. D-39
invocation-service-proxy.. D-41
jms-acceptor ... D-42
jms-initiator .. D-43
key-associator .. D-44
key-partitioning... D-45
lh-file-manager .. D-46
listener... D-47
local-scheme... D-48
near-scheme ... D-51
nio-file-manager .. D-54
nio-memory-manager... D-55
operation-bundling ... D-57
optimistic-scheme ... D-58
outgoing-message-handler .. D-60
overflow-scheme ... D-62
paged-external-scheme... D-65
partition-listener.. D-68
proxy-config... D-69
proxy-scheme... D-70
read-write-backing-map-scheme .. D-71
remote-cache-scheme.. D-75
remote-invocation-scheme... D-76
replicated-scheme.. D-77
tcp-acceptor .. D-79
tcp-initiator... D-81
version-persistent-scheme ... D-84
version-transient-scheme ... D-85
versioned-backing-map-scheme ... D-86

xi

versioned-near-scheme... D-89

E Cache Configuration Parameter Macros

F Sample Cache Configurations

Local Caches (accessible from a single JVM) .. F-2
In-memory Cache.. F-2
NIO In-memory Cache ... F-2
Size Limited In-memory Cache... F-2
In-memory Cache with Expiring Entries ... F-2
Cache on Disk .. F-3
Size Limited Cache on Disk ... F-3
Persistent Cache on Disk.. F-3
In-memory Cache with Disk Based Overflow .. F-4
Cache of a Database .. F-4

Clustered Caches (accessible from multiple JVMs) .. F-5
Replicated Cache ... F-5
Replicated Cache with Overflow .. F-5
Partitioned Cache .. F-6
Partitioned Cache with Overflow... F-6
Partitioned Cache of a Database ... F-6
Partitioned Cache with a Serializer .. F-7
Local Cache of a Partitioned Cache (Near cache)... F-7

G Sample CacheStores

Sample CacheStore ... G-1
Sample Controllable CacheStore ... G-6

H Operational Configuration Elements

Operational Configuration Deployment Descriptors .. H-1
Document Location... H-1
Document Root.. H-1
Document Format ... H-1
Operational Override File (tangosol-coherence-override.xml) ... H-2
Command Line Override ... H-2

Element Index .. H-3
access-controller .. H-5
authorized-hosts.. H-6
burst-mode ... H-7
callback-handler .. H-8
cluster-config ... H-9
coherence .. H-10
configurable-cache-factory-config .. H-11
filters.. H-12
flow-control.. H-13
host-range... H-14

xii

incoming-message-handler.. H-15
init-param... H-16
init-params ... H-17
license-config ... H-18
logging-config.. H-19
management-config .. H-23
member-identity.. H-24
multicast-listener ... H-26
notification-queueing.. H-28
outgoing-message-handler .. H-29
outstanding-packets.. H-31
packet-buffer .. H-32
packet-bundling .. H-33
packet-pool... H-34
packet-delivery .. H-35
packet-publisher.. H-36
packet-size .. H-38
packet-speaker ... H-39
pause-detection.. H-40
security-config ... H-41
services.. H-42
shutdown-listener ... H-44
socket-address ... H-45
tcp-ring-listener ... H-46
traffic-jam ... H-47
unicast-listener... H-48
volume-threshold.. H-50
well-known-addresses.. H-51

Element Attributes .. H-53

I Initialization Parameter Settings

DistributedCache Service Parameters ... I-3
ReplicatedCache Service Parameters... I-7
InvocationService Parameters... I-8
ProxyService Parameters .. I-9
Compression Filter Parameters... I-10

J POF User Type Configuration Elements

POF User Type Deployment Descriptor .. J-1
Document Location.. J-1
Document Root... J-1
Document Format .. J-1
Command Line Override .. J-2

Element Index ... J-3
allow-interfaces .. J-4
allow-subclasses ... J-5
class-name ... J-6

xiii

include ... J-7
init-param.. J-8
init-params .. J-9
param-type .. J-10
param-value .. J-11
pof-config .. J-12
serializer .. J-13
type-id.. J-14
user-type.. J-15
user-type-list ... J-16

K MBean Configuration Elements

MBeans in the Coherence Deployment Descriptor .. K-1
Document Root.. K-1
Document Format ... K-1

MBean Configuration Element Index ... K-2
extend-lifecycle .. K-3
enabled.. K-4
mbean.. K-5
mbean-accessor.. K-6
mbean-class .. K-7
mbean-factory .. K-8
mbean-name... K-9
mbean-query .. K-10
mbeans .. K-11

L Command Line Overrides

Override Example... L-1
Preconfigured Override Values ... L-2

M Platform-Specific Deployment Considerations

Deploying to AIX .. M-1
Socket Buffers sizes and JVMs .. M-1
Multicast and IPv6 .. M-1
Unique Multicast Addresses and Ports ... M-2

Deploying to BEA JRockit JVMs.. M-2
JRockit and the Native Posix Thread Library (NPTL) ... M-2
AtomicLong ... M-2

Deploying to Cisco Switches .. M-2
Buffer Space and Packet Pauses ... M-2
Multicast Connectivity on Large Networks .. M-2
Multicast Outages ... M-3

Deploying to Foundry Switches... M-4
Multicast Connectivity ... M-4

Deploying to IBM BladeCenters .. M-4
MAC Address Uniformity and Load Balancing... M-5

xiv

Deploying to IBM JVMs .. M-5
UDP Socket Buffer Sizes... M-5

Deploying to Linux ... M-5
Native POSIX Thread Library (NPTL) .. M-5
TSC High Resolution Timesource .. M-6

Deploying to OS X .. M-6
Multicast and IPv6 .. M-6
Unique Multicast Addresses and Ports ... M-6
Socket Buffer Sizing .. M-6

Deploying to Solaris ... M-7
Solaris 10 (x86 and SPARC) ... M-7
Solaris 10 Networking .. M-7

Deploying to Sun JVMs ... M-7
Heap Sizes .. M-7
AtomicLong ... M-7

Deploying to Virtual Machines .. M-8
Supported Deployment.. M-8
Multicast Connectivity ... M-8
Performance ... M-8
Fault Tolerance .. M-8

Deploying to Windows .. M-8
Performance Tuning ... M-8
Personal Firewalls ... M-8

Deploying to z OS ... M-9
EBCDIC... M-9
Multicast ... M-9

N Best Practices for Coherence Extend

Run Proxy Servers with Local Storage Disabled .. N-1
Do Not Run a Near Cache on a Proxy Server... N-2
Configure Heap NIO Space to be Equal to the Max Heap Size ... N-2
Set Worker Thread Pool Sizes According to the Needs of the Application................................. N-2
Be Careful When Making InvocationService Calls .. N-2
Be Careful When Placing Collection Classes in the Cache ... N-3
Run Multiple Proxies Instead of Increasing Thread Pool Size .. N-3
Configure POF Serializers for Cache Servers .. N-4
Use Node Locking Instead of Thread Locking .. N-4

O Scaling Out Your Data Grid Aggregations Linearly

The Data .. O-1
Configure a Partitioned Cache.. O-3
Add an Index to the Price Property .. O-4
Code to perform a Parallel Aggregation ... O-4
The Testing Environment and Process .. O-4

Performing a "Test Run"... O-4
This "Test Suite" (and Subsequent Results) Includes Data from Four "Test Runs": O-5
JDK Version.. O-5

xv

The Results ... O-5
Conclusion .. O-7

xvi

List of Figures

1–1 Interacting with the Cache through a Browser... 1-9
1–2 Running SimpleCacheExplorer.jsp with a Distributed Cache .. 1-11
1–3 Running SimpleCacheExplorer.jsp with an Eviction Policy ... 1-13
15–1 Coherence Throughput versus Number of Machines .. 15-2
15–2 Coherence Latency versus Number of Machines.. 15-3
22–1 Viewing the HttpAdapter Web Application in a Browser .. 22-3
22–2 Using the JConsole Utility to Display and Manipulate Coherence MBeans................... 22-4
23–1 Reporter Attributes in JConsole... 23-2
23–2 Reporter Operations in JConsole ... 23-3
27–1 Reporter Operations in JConsole ... 27-1
28–1 MBean Query Displayed in the JConsole ... 28-3
29–1 JMX Query Run in JConsole... 29-2
O–1 Average Aggregation Time .. O-6
O–2 Aggregation Scale-Out .. O-7

xvii

Preface

Oracle Coherence is a JCache-compliant in-memory caching and data management
solution for clustered J2EE applications and application servers. Coherence makes
sharing and managing data in a cluster as simple as on a single server. It accomplishes
this by coordinating updates to the data using clusterwide concurrency control,
replicating and distributing data modifications across the cluster using the highest
performing clustered protocol available, and delivering notifications of data
modifications to any servers that request them. Developers can easily take advantage
of Coherence features using the standard Java collections API to access and modify
data, and use the standard JavaBean event model to receive data change notifications.
Functionality such as HTTP Session Management is available out-of-the-box for
applications deployed to WebLogic, WebSphere, Tomcat, Jetty and other Servlet 2.2, 2.3
and 2.3 compliant application servers.

Audience
This document is targeted at software developers and architects. It provides detailed
technical information on creating and using the Coherence cache and for writing and
deploying Java applications that interact with it.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xviii

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
To reach AT&T Customer Assistants, dial 711 or 1.800.855.2880. An AT&T Customer
Assistant will relay information between the customer and Oracle Support Services at
1.800.223.1711. Complete instructions for using the AT&T relay services are available at
http://www.consumer.att.com/relay/tty/standard2.html. After the
AT&T Customer Assistant contacts Oracle Support Services, an Oracle Support
Services engineer will handle technical issues and provide customer support according
to the Oracle service request process.

Related Documents
For more information, see the following documents in the Oracle Coherence Release
3.4 documentation set:

■ User's Guide for Oracle Coherence

■ Getting Started with Oracle Coherence

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I Coherence Features

This section contains the following chapters:

■ Chapter 1, "Create and Use Coherence Caches"

■ Chapter 2, "Implement Transactions, Locks, and Concurrency"

■ Chapter 3, "Perform Continuous Query"

■ Chapter 4, "Managing Map Operations with Triggers"

■ Chapter 5, "Data Affinity"

■ Chapter 6, "Query the Cache"

■ Chapter 7, "Security Framework"

■ Chapter 8, "Network Filters"

■ Chapter 9, "Priority Tasks"

■ Chapter 10, "Integrate CacheFactory with Spring"

■ Chapter 11, "Specifying a Custom Eviction Policy"

■ Chapter 12, "Serialization Paged Cache"

■ Chapter 13, "Pre-Loading the Cache"

■ Chapter 14, "Constraints on Re-entrant Calls"

1

Create and Use Coherence Caches 1-1

1Create and Use Coherence Caches

The simplest and most flexible way to create caches in Coherence is to use the cache
configuration descriptor to define attributes and names for your application's or
cluster's caches, and to instantiate the caches in your application code referring to
them by name that matches the names or patterns as defined in the descriptor.

This approach to configuring and using Coherence caches has several very important
benefits. It separates the cache initialization and access logic for the cache in your
application from its attributes and characteristics. This way your code is written in a
way that is independent of the cache type that will be used in your application
deployment and changing the characteristics of each cache (such as Rich Text cache
type, cache eviction policy, and cache type-specific attributes, and so on) can be done
without making any changes to the code whatsoever. It enables you to create multiple
configurations for the same set of named caches and to instruct your application to use
the appropriate configuration at deployment time by specifying the descriptor to use
in the java command line when the node JVM is started.

Creating a Cache in Your Application
To instantiate a cache in your application code, you need to:

1. Make sure that coherence.jar is in your classpath.

2. Use CacheFactory.getCache() to access the cache in your code.

Your code will look similar to the following:

import com.tangosol.net.CacheFactory;
import com.tangosol.net.NamedCache;

...

NamedCache cache = CacheFactory.getCache("VirtualCache");

Now you can retrieve and store objects in the cache, using the NamedCache API,
which extends the standard java.util.Map interface, adding several additional
capabilities that provide concurrency control (ConcurrentMap interface), ability to
listen for cache changes (ObservableMap interface) and ability to query the cache
(QueryMap interface).

Example 1–1 illustrates typical cache operations in a Java program.

Example 1–1 Typical Cache Operations in a Java Program

...
// simple retrieve and update cycle
String key = "key";

Configuring the Caches

1-2 Oracle Coherence Developer's Guide for Oracle Coherence

// retrieve the object
MyValue value = (MyValue) cache.get(key);

// Use and modify the object
// ...

// put the new value back
cache.put(key, value);
...

Configuring the Caches
The cache attributes and settings are defined in the cache configuration descriptor.
Cache attributes determine the cache type (what means and resources the cache will
use for storing, distributing and synchronizing the cached data) and cache policies
(what happens to the objects in the cache based on cache size, object longevity and
other parameters).

The structure of the cache configuration descriptor (described in detail by the
cache-config.dtd included in the coherence.jar) consists of two primary
sections: caching-schemes section and caching-scheme-mapping section.

The caching-schemes section is where the attributes of a cache or a set of caches get
defined. The caching schemes can be of several types, each with its own set of
attributes. The caching schemes can be defined completely from scratch, or can
incorporate attributes of other existing caching schemes, referring to them by their
scheme-names (using a scheme-ref element) and optionally overriding some of
their attributes to create new caching schemes. This flexibility enables you to create
caching scheme structures that are easy to maintain, foster reuse and are very flexible.

The caching-scheme-mapping section is where the specific cache name or a
naming pattern is attached to the cache scheme that defines the cache configuration to
use for the cache that matches the name or the naming pattern. So if we would like to
define the cache descriptor for the cache we mentioned in the previous section
(VirtualCache), it may look something like the following:

Example 1–2 Sample Cache Configuration File

<?xml version="1.0"?>
<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <!--
 Caches with any name will be created as default replicated.
 -->
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>default-replicated</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <!--
 Default Replicated caching scheme.
 -->
 <replicated-scheme>
 <scheme-name>default-replicated</scheme-name>

Configuring the Caches

Create and Use Coherence Caches 1-3

 <service-name>ReplicatedCache</service-name>
 <backing-map-scheme>
 <class-scheme>
 <scheme-ref>default-backing-map</scheme-ref>
 </class-scheme>
 </backing-map-scheme>
 </replicated-scheme>

 <!--
 Default backing map scheme definition used by all
 The caches that do not require any eviction policies
 -->
 <class-scheme>
 <scheme-name>default-backing-map</scheme-name>
 <class-name>com.tangosol.util.SafeHashMap</class-name>
 </class-scheme>

 </caching-schemes>
</cache-config>

The above cache configuration descriptor specifies that all caches will be created
(including our VirtualCache cache) using the default-replicated caching scheme. It
defines the default-replicated caching scheme as a replicated-scheme, using a service
named ReplicatedCache and using the backing map named default-backing-map,
which is defined as a class com.tangosol.util.SafeHashMap (the default backing
map storage that Coherence uses when no eviction policies are required).

Then, at a later point, let's say we decide that, since the number of entries that our
cache is holding is too large and updates to the objects too frequent to use a replicated
cache, we want our VirtualCache cache to become a distributed cache instead (while
keeping all other caches replicated). To accommodate these new circumstances, we can
change the cache configuration by adding the following cache-scheme definition for
the distributed cache to the caching-schemes section:

Example 1–3 cache-scheme Definition for a Distributed Cache

<!--
Default Distributed caching scheme.
-->
<distributed-scheme>
 <scheme-name>default-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <class-scheme>
 <scheme-ref>default-backing-map</scheme-ref>
 </class-scheme>
 </backing-map-scheme>
</distributed-scheme>

Then mapping the VirtualCache cache to it in the caching-schemes-mapping
section:

Example 1–4 Mapping to a Distributed Cache

<cache-mapping>
 <cache-name>VirtualCache</cache-name>
 <scheme-name>default-distributed</scheme-name>
</cache-mapping>

The resulting cache definition descriptor will look similar to Example 1–5:

Configuring the Caches

1-4 Oracle Coherence Developer's Guide for Oracle Coherence

Example 1–5 Configuration for a Distributed Cache

<?xml version="1.0"?>
<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <!--
 Caches with any name will be created as default replicated.
 -->
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>default-replicated</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>VirtualCache</cache-name>
 <scheme-name>default-distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <!--
 Default Replicated caching scheme.
 -->
 <replicated-scheme>
 <scheme-name>default-replicated</scheme-name>
 <service-name>ReplicatedCache</service-name>

 <backing-map-scheme>
 <class-scheme>
 <scheme-ref>default-backing-map</scheme-ref>
 </class-scheme>
 </backing-map-scheme>
 </replicated-scheme>

 <!--
 Default Distributed caching scheme.
 -->
 <distributed-scheme>
 <scheme-name>default-distributed</scheme-name>
 <service-name>DistributedCache</service-name>

 <backing-map-scheme>
 <class-scheme>
 <scheme-ref>default-backing-map</scheme-ref>
 </class-scheme>
 </backing-map-scheme>
 </distributed-scheme>

 <!--
 Default backing map scheme definition used by all
 The caches that do not require any eviction policies
 -->
 <class-scheme>
 <scheme-name>default-backing-map</scheme-name>

 <class-name>com.tangosol.util.SafeHashMap</class-name>
 </class-scheme>

 </caching-schemes>
</cache-config>

Setting Up Your Test Environment

Create and Use Coherence Caches 1-5

When we revise and deploy the descriptor and restart the cluster, the VirtualCache
cache will be a distributed cache instead of replicated, all without any changes to the
code we wrote.

Cache Configuration Descriptor Location
A few words about how to instruct Coherence where to find the cache configuration
descriptor. Without specifying anything in the Java command line, Coherence will
attempt to use the cache configuration descriptor named
coherence-cache-config.xml that it finds in the classpath. Since Coherence ships
with this file packaged into the coherence.jar, unless you place another file with the
same name in the classpath location preceding coherence.jar, that is the one that
Coherence will use. You can tell Coherence to use a different default descriptor by
using the -Dtangosol.coherence.cacheconfig java command line property as
follows:

java -Dtangosol.coherence.cacheconfig=/cfg/my-config.xml AppServer

The above command instructs Coherence to use my-config.xml file in /cfg
directory as the default cache configuration descriptor. As you can see, this capability
can give you the flexibility to modify the cache configurations of your applications
without making any changes to the application code and by simply specifying
different cache configuration descriptors at application deployment or start-up.

Putting It all Together: Your First Coherence Cache Example
Let's try walking through creating a working example cache using the caches and the
cache configuration descriptor we described in the previous section. The easiest way to
initially do that is to use the Coherence command line application. A couple of general
comments regarding this example before we get started:

■ In the examples we refer to the 'nodes' or 'JVMs'. We make no assumption
regarding where they will run - you can run all of them on the same machine
multiple machines or a combination of multiple nodes per machine and multiple
machines. To see the clustered cache in action you will need at least 2 nodes to see
the JVMs sharing data (all the following examples were captured with 2 JVMs on a
single machine).

■ This example uses Windows conventions and commands but it will work equally
well in any of the UNIX environments (with the appropriate adjustments for the
UNIX commands and conventions) and we encourage you to try it on multiple
machines with different operating systems, as this is the way Coherence is
designed to function: on multiple platforms simultaneously.

Setting Up Your Test Environment
To set up the test environment, you will need install Coherence by unzipping the
software distribution in the desired location on one or more machines.

The coherence/examples directory contains the following examples that will be
used in this exercise:

■ examples/config/explore-config.xml

is the configuration descriptor used by the test environment example.

Setting Up Your Test Environment

1-6 Oracle Coherence Developer's Guide for Oracle Coherence

■ examples/java/com/tangosol/examples/explore/SimpleCacheExplorer
.java

is the Java class that demonstrates how you can access the cache from a command
line.

To deploy and run it, you need to execute the following Java command line (from the
coherence directory):

■ In Windows:

java -cp ./lib/coherence.jar;./examples/java
 -Dtangosol.coherence.cacheconfig=./examples/config/explore-config.xml
 com.tangosol.examples.explore.SimpleCacheExplorer

■ In UNIX:

java -cp ./lib/coherence.jar:./examples/java
 -Dtangosol.coherence.cacheconfig=./examples/config/explore-config.xml
 com.tangosol.examples.explore.SimpleCacheExplorer

You should see something like the following when you bring it up:

Example 1–6 Output from Starting a Coherence Server

D:\coherence>java -cp ./lib/coherence.jar;./examples/java
-Dtangosol.coherence.cacheconfig=./examples/config/explore-config.xml
com.tangosol.examples.explore.SimpleCacheExplorer
2008-09-15 16:54:18.745 Oracle Coherence 3.4/405(thread=main, member=n/a): Loaded
operational configuration from
resource "jar:file:/D:/coherence/lib/coherence.jar!/tangosol-coherence.xml"
2008-09-15 16:54:18.745 Oracle Coherence 3.4/405 (thread=main, member=n/a): Loaded
operational overrides from
resource
"jar:file:/D:/coherence/lib/coherence.jar!/tangosol-coherence-override-dev.xml"
2008-09-15 16:54:18.745 Oracle Coherence 3.4/405 (thread=main, member=n/a):
Optional configuration override
"/tangosol-coherence-override.xml" is not specified
2008-09-15 16:54:18.755 Oracle Coherence 3.4/405 (thread=main, member=n/a):
Optional configuration override
"/custom-mbeans.xml" is not specified

Oracle Coherence Version 3.4/405
Grid Edition: Development mode
Copyright (c) 2000-2008 Oracle. All rights reserved.

2008-09-15 16:54:18.945 Oracle Coherence GE 3.4/405(thread=main, member=n/a):
Loaded cache configuration from
file "D:\coherence\examples\config\explore-config.xml"
2008-09-15 16:54:19.716 Oracle Coherence GE 3.4/405(thread=Cluster, member=n/a):
Service Cluster joined the
cluster with senior service member n/a
2008-09-15 16:54:22.921 Oracle Coherence GE 3.4/405(thread=Cluster, member=n/a):
Created a new cluster
"cluster:0x19DB" with Member(Id=1, Timestamp=2008-09-15 16:54:19.396,
Address=xxx.xxx.xxx.xxx:8088, MachineId=6522,
Location=site:mydomain.com,machine:mycomputer,process:3500,
Role=TangosolSimpleCacheExplorer, Edition=Grid Edition, Mode=Development,
CpuCount=1, SocketCount=1) UID=0x0A8F9C7A0000011BE70BDE04197A1F98
2008-09-15 16:54:23.001 Oracle Coherence GE 3.4/405(thread=ReplicatedCache,
member=1): Service ReplicatedCache
joined the cluster with senior service member 1

Setting Up Your Test Environment

Create and Use Coherence Caches 1-7

Command:

Type Help to view the SimpleCacheExplorer command line options. You may
need to press Enter to display the Command: prompt.

Example 1–7 Output from the help Command

Command: help

clear
get
keys
info
put
quit
remove

Command:

Type info to display configuration and member information (please note that in the
following example there are 2 cluster members active):

Example 1–8 Output from the info Command

Command: info

>> VirtualCache cache is using a cache-scheme named 'default-replicated' defined
as:
<replicated-scheme>
 <scheme-name>default-replicated</scheme-name>
 <service-name>ReplicatedCache</service-name>
 <backing-map-scheme>
 <class-scheme>
 <scheme-ref>default-backing-map</scheme-ref>
 </class-scheme>
 </backing-map-scheme>
</replicated-scheme>

>> The following member nodes are currently active:
Member(Id=1, Timestamp=2008-09-15 16:54:19.396, Address=xxx.xxx.xxx.xxx:8088,
MachineId=6522, Location=site:mydomain.com,machine:
mycomputer,process:3500, Role=TangosolSimpleCacheExplorer) <-- this node
Member(Id=2, Timestamp=2008-09-15 17:19:56.096, Address=xxx.xxx.xxx.xxx:8089,
MachineId=6522, Location=site:mydomain.com,machine:
mycomputer,process:3892, Role=TangosolSimpleCacheExplorer)

Command:

You can also put a value into the cache:

Example 1–9 Putting a Value into the Cache

Command: put 1 One

>> Put Complete

Command:

And retrieve a value from the cache:

Setting Up Your Test Environment

1-8 Oracle Coherence Developer's Guide for Oracle Coherence

Example 1–10 Retrieving a Value from the Cache

Command: get 1

>> Value is One

Command:

Try these commands from multiple sessions and see the results. The
examples/jsp/explore/SimpleCacheExplorer.jsp is the JSP file that can be
used with your favorite application server:

■ To deploy and run it, you will need to deploy the JSP to the default web
applications directory of your application server (along with the contents of the
examples/jsp/images directory), modify the server start-up script to make
sure that the classpath includes coherence.jar, and specify the location of the
cache configuration file on the Java command line using the
-Dtangosol.coherence.cacheconfig option (for example,
-Dtangosol.coherence.cacheconfig=$COHERENCE_
HOME/examples/config/explore-config.xml).

■ You can then start one or more instances of the application server (on different
machines or different ports) and access the SimpleCacheExplorer.jsp from
the browser. You should see something like the following when you bring it up:

Modifying the Cache Configuration

Create and Use Coherence Caches 1-9

Figure 1–1 Interacting with the Cache through a Browser

This figure is described in the text.

As with the command line application try adding, updating, and removing entries
from multiple instances of the application server. Also please notice the information
about the cache configuration and cluster membership at the bottom of the page. As
cluster members are added and removed, this information will change.

Modifying the Cache Configuration
When you are comfortable with the test setup, let's change the cache configuration and
test our changes, using this simple test harness. Please remember that after each cache
configuration change all the cluster members need to be shut down and then restarted
(whether you are using application server instances or just plain java JVMs). All our
tests are configured to use
coherence/examples/config/explore-config.xml, so this is the file that
must be edited to make cache configuration changes. Let's make the first change we
described previously, changing the VirtualCache to be a distributed cache by
adding the following (bolded) sections:

Modifying the Cache Configuration

1-10 Oracle Coherence Developer's Guide for Oracle Coherence

Example 1–11 Specifying a Distributed Cache in the cache-config File

<?xml version="1.0"?> <!DOCTYPE cache-config SYSTEM "cache-config.dtd">
<cache-config> <caching-scheme-mapping> <!-- Caches with any name will be created
as default replicated. --> <cache-mapping> <cache-name>*</cache-name>
<scheme-name>default-replicated</scheme-name>
 </cache-mapping>
<cache-mapping><cache-name>VirtualCache</cache-name><scheme-name>default-distribut
ed</scheme-name></cache-mapping></caching-scheme-mapping>

<caching-schemes> <!-- Default Replicated caching scheme. --> <replicated-scheme>
<scheme-name>default-replicated</scheme-name>
<service-name>ReplicatedCache</service-name>

<backing-map-scheme> <class-scheme> <scheme-ref>default-backing-map</scheme-ref>
</class-scheme> </backing-map-scheme> </replicated-scheme>

<!--Default Distributed caching scheme.-->
<distributed-scheme> <scheme-name>default-distributed</scheme-name>
<service-name>DistributedCache</service-name>

<backing-map-scheme><class-scheme><scheme-ref>default-backing-map</scheme-ref></cl
ass-scheme></backing-map-scheme></distributed-scheme>
<!-- Default backing map scheme definition used by all The caches that do not
require any eviction policies --> <class-scheme>
<scheme-name>default-backing-map</scheme-name>
<class-name>com.tangosol.util.SafeHashMap</class-name> </class-scheme>
</caching-schemes> </cache-config>

After the changes are saved, the test instances are restarted and you have had a chance
to do some test data entry to see how the cache behaves, you should see the following
in the cache configuration section of the tests:

■ SimpleCacheExplorer.java:

Example 1–12 Running SimpleCacheExplorer.java with a Distributed Cache

Command: info

>> VirtualCache cache is using a cache-scheme named 'default-distributed' defined
as:
<distributed-scheme>
 <scheme-name>default-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <class-scheme>
 <scheme-ref>default-backing-map</scheme-ref>
 </class-scheme>
 </backing-map-scheme>
</distributed-scheme>

>> The following member nodes are currently active:
Member(Id=1, Timestamp=2008-09-15 17:53:22.701, Address=xxx.xxx.xxx.xxx:8088,
MachineId=6522, Location=site:mydomain.com,
machine:mycomputer,process:3156, Role=TangosolSimpleCacheExplorer) <-- this node
Member(Id=2, Timestamp=2008-09-15 17:54:37.619, Address=xxx.xxx.xxx.xxx:8089,
MachineId=6522, Location=site:mydomain.com,
machine:mycomputer,process:916, Role=TangosolSimpleCacheExplorer)

Command:

Modifying the Cache Configuration

Create and Use Coherence Caches 1-11

■ SimpleCacheExplorer.jsp:

Figure 1–2 Running SimpleCacheExplorer.jsp with a Distributed Cache

This figure is described in the text.

As you can see, our VirtualCache cache is now distributed according to the cache
configuration descriptor.

Now let's add an eviction policy for our default distributed cache, limiting its size to 5
entries (per node) and setting the entry expiry to 60 seconds with an LRU eviction
policy. To do that we need to make the following (bolded) changes to our descriptor:

Example 1–13 Adding an Eviction Policy to a cache-config File

<?xml version="1.0"?> <!DOCTYPE cache-config SYSTEM "cache-config.dtd">
<cache-config> <caching-scheme-mapping> <!-- Caches with any name will be created
as default replicated. --> <cache-mapping> <cache-name>*</cache-name>
<scheme-name>default-replicated</scheme-name> </cache-mapping> <cache-mapping>
<cache-name>VirtualCache</cache-name>
<scheme-name>default-distributed</scheme-name> </cache-mapping>
</caching-scheme-mapping> <caching-schemes> <!-- Default Replicated caching

Modifying the Cache Configuration

1-12 Oracle Coherence Developer's Guide for Oracle Coherence

scheme. --> <replicated-scheme> <scheme-name>default-replicated</scheme-name>
<service-name>ReplicatedCache</service-name> <backing-map-scheme> <class-scheme>
<scheme-ref>default-backing-map</scheme-ref> </class-scheme> </backing-map-scheme>
</replicated-scheme> <!-- Default Distributed caching scheme. -->
<distributed-scheme> <scheme-name>default-distributed</scheme-name>
<service-name>DistributedCache</service-name>
<backing-map-scheme><local-scheme><scheme-ref>default-eviction</scheme-ref><evicti
on-policy>LRU</eviction-policy><high-units>5</high-units><expiry-delay>60</expiry-
delay></local-scheme></backing-map-scheme> </distributed-scheme> <!-- Default
backing map scheme definition used by all The caches that do not require any
eviction policies --> <class-scheme>
<scheme-name>default-backing-map</scheme-name>
<class-name>com.tangosol.util.SafeHashMap</class-name> </class-scheme><!--Default
eviction policy
scheme.--><local-scheme><scheme-name>default-eviction</scheme-name><eviction-polic
y>HYBRID</eviction-policy><high-units>0</high-units><expiry-delay>3600</expiry-del
ay></local-scheme></caching-schemes> </cache-config>

Note that we defined a general purpose local-scheme 'default-eviction' (with no size
limit, 5 minute expiry and a HYBRID eviction policy) and then used it by reference
(using scheme-ref) for our default-distributed scheme definition, overriding it's
configuration settings to match our requirements.

After the changes are saved, the test instances are restarted and you have had a chance
to do some test data entry to see how the cache behaves, you should see the following
in the cache configuration section of the tests:

■ SimpleCacheExplorer.java:

Example 1–14 Running SimpleCacheExplorer.java with an Eviction Policy

Command: info

>> VirtualCache cache is using a cache-scheme named 'default-distributed' defined
as:
<distributed-scheme>
 <scheme-name>default-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>default-eviction</scheme-ref>
 <eviction-policy>LRU</eviction-policy>
 <high-units>5</high-units>
 <expiry-delay>60</expiry-delay>
 </local-scheme>
 </backing-map-scheme>
</distributed-scheme>

>> The following member nodes are currently active:
Member(Id=1, Timestamp=2008-09-15 18:10:23.148, Address=xxx.xxx.xxx.xxx:8088,
MachineId=6522, Location=site:mydomain.com,
machine:mycomputer,process:2960, Role=TangosolSimpleCacheExplorer) <-- this node
Member(Id=2, Timestamp=2008-09-15 18:10:35.957, Address=xxx.xxx.xxx.xxx:8089,
MachineId=6522, Location=site:mydomain.com,
machine:mycomputer,process:3348, Role=TangosolSimpleCacheExplorer)

Command:

■ SimpleCacheExplorer.jsp:

Modifying the Cache Configuration

Create and Use Coherence Caches 1-13

Figure 1–3 Running SimpleCacheExplorer.jsp with an Eviction Policy

This figure is described in the text.

Try doing some puts and gets, carefully noting the time you last updated the specific
entries. You should see that the number of entries does not exceed 5 entries per node
(so if you have 2 nodes running the number of entries should not exceed 10, for 3
nodes - 15, and so on) and entries either expire after they have not been updated for 60
seconds, or when you add the 6th entry (with the least recently touched entries being
'evicted' from the cache first. (Hint: use the keys command in the
SimpleCacheExplorer.java to see the list of keys in the cache.)

These examples show you the general approach to modifying the cache configurations
without making any code changes (as you no doubt noticed we did not touch our test
application's code). Please refer to the cache-config.dtd, which can be found in
the coherence.jar for full details on the available cache configuration descriptor
settings and the explanation of their meaning and possible settings.

Modifying the Cache Configuration

1-14 Oracle Coherence Developer's Guide for Oracle Coherence

2

Implement Transactions, Locks, and Concurrency 2-1

2Implement Transactions, Locks, and
Concurrency

Coherence provides several different options to support locking, transactions, and
concurrent access to data.

Concurrency Options
Coherence provides several options for managing concurrent access to data.

Explicit Locking
The standard NamedCache interface extends the ConcurrentMap interface which
includes basic locking methods. Locking operations are applied at the entry level by
requesting a lock against a specific key in a NamedCache:

Example 2–1 Applying Locking Operations on a Cache

...
NamedCache cache = CacheFactory.getCache("dist-cache");
Object key = "example_key";
cache.lock(key, -1);
try

Table 2–1 Coherence Concurrent Access Options

Option Name Description

Explicit Locking The ConcurrentMap interface (part of the NamedCache
interface) supports explicit locking operations. Many developers
find this simple locking API to be the most natural approach.

Transactions The TransactionMap API builds on top of the explicit locking
operations to support ACID-style transactions.

Container Integration For transaction management in a Java EE container, Coherence
provides a JCA resource adaptor to allow transactions to be
managed by using JTA. Although Coherence does not currently
support XA transactions, it can participate in XA transactions as
the last resource.

Entry Processors Coherence also supports a lock-free programming model
through the EntryProcessor API. For many transaction types,
this minimizes contention and latency and improves system
throughput, without compromising the fault-tolerance of data
operations.

Data Source Integration Guidelines on maintaining caches with local (non XA) data
resources.

Transactions

2-2 Oracle Coherence Developer's Guide for Oracle Coherence

 {
 Object value = cache.get(key);
 // application logic
 cache.put(key, value);
 }
finally
 {
 // Always unlock in a "finally" block
 // to ensure that uncaught exceptions
 // don't leave data locked
 cache.unlock(key);
 }
...

Coherence lock functionality is similar to the Java synchronized keyword and the
C# lock keyword: locks only block locks. Threads must cooperatively coordinate
access to data through appropriate use of locking. If a thread has locked the key to an
item, another thread can read the item without locking.

Locks are unaffected by server failure (and will failover to a backup server.) Locks are
immediately released when the lock owner (client) fails.

Locking behavior varies depending on the timeout requested and the type of cache. A
timeout of -1 will block indefinitely until a lock can be obtained, 0 will return
immediately, and a value greater than 0 will wait the specified number of milliseconds
before timing out. The boolean return value should be examined to ensure the caller
has actually obtained the lock. See ConcurrentMap.lock() for more details. Note that if
a timeout value is not passed to lock() the default is 0. With replicated caches, the
entire cache can be locked by using ConcurrentMap.LOCK_ALL as the key, although
this is usually not recommended. This operation is not supported with partitioned
caches.

In both replicated and partitioned caches, gets are permitted on keys that are locked.
In a replicated cache, puts are blocked, but they are not blocked in a partitioned cache.
When a lock is in place, it is the responsibility of the caller (either in the same thread or
the same cluster node, depending on the lease-granularity configuration) to
release the lock. This is why locks should always be released with a finally clause (or
equivalent). If this is not done, unhandled exceptions may leave locks in place
indefinitely. For more information on lease-granularity configuration, see
"DistributedCache Service Parameters".

Transactions
A TransactionMap can be used to update multiple items in a Coherence cache in a
transaction. To perform transactions with a TransactionMap, the Java Transaction
API (JTA) libraries must be present in the classpath. TransactionMaps are created
using the CacheFactory:

NamedCache cache = CacheFactory.getCache("dist-cache");
TransactionMap tmap = CacheFactory.getLocalTransaction(cache);

Before using a TransactionMap, concurrency and isolation levels should be set to
the desired level. For most short lived, highly concurrent transactions, a concurrency
level of CONCUR_PESSIMISTIC and an isolation level of TRANSACTION_
REPEATABLE_GET is necessary. For most long lived transactions that don't occur as
often, CONCUR_OPTIMISTIC and TRANSACTION_REPEATABLE_GET are good
defaults. The combination of concurrency level CONCUR_PESSIMISTIC and isolation
level TRANSACTION_SERIALIZABLE will lock the entire cache. As mentioned

Transactions

Implement Transactions, Locks, and Concurrency 2-3

previously, partitioned caches do not allow the entire cache to be locked, thus this
mode will not work for partitioned caches. (In general, this level of isolation is not
required for reliable transaction processing.) Queries against caches (calling
keySet(Filter)) or entrySet(Filter)) are always performed with READ_
COMMITTED isolation. For more information about concurrency and isolation levels,
see the TransactionMap API.

Here is how to set the isolation and concurrency levels:

tmap.setTransactionIsolation(TransactionMap.TRANSACTION_REPEATABLE_GET);
tmap.setConcurrency(TransactionMap.CONCUR_PESSIMISTIC);

Now the TransactionMap can be used to update the cache in a transaction:

Example 2–2 Updating the Cache in a Transaction

import com.tangosol.net.CacheFactory;
import com.tangosol.net.NamedCache;

import com.tangosol.util.Base;
import com.tangosol.util.TransactionMap;

import java.util.Collection;
import java.util.Collections;

public class TxMapSample
 extends Base
 {
 public static void main(String[] args)
 {
 // populate the cache
 NamedCache cache = CacheFactory.getCache("dist-cache");

 String key1 = "key1";
 String key2 = "key2";

 cache.put(key1, new Integer(1));
 cache.put(key2, new Integer(1));

 out("Initial value for key 1: " + cache.get(key1));
 out("Initial value for key 2: " + cache.get(key2));

 // create one TransactionMap per NamedCache
 TransactionMap mapTx = CacheFactory.getLocalTransaction(cache);
 mapTx.setTransactionIsolation(TransactionMap.TRANSACTION_REPEATABLE_GET);
 mapTx.setConcurrency(TransactionMap.CONCUR_PESSIMISTIC);

 // gather the cache(s) into a Collection
 Collection txnCollection = Collections.singleton(mapTx);
 boolean fTxSucceeded = false;

 try
 {
 // start the transaction
 mapTx.begin();

 int i1 = ((Integer)mapTx.get(key1)).intValue();
 mapTx.put(key1, new Integer(++i1));

 int i2 = ((Integer)mapTx.get(key2)).intValue();

Container Integration

2-4 Oracle Coherence Developer's Guide for Oracle Coherence

 mapTx.put(key2, new Integer(++i2));

 // commit the changes
 fTxSucceeded = CacheFactory.commitTransactionCollection(txnCollection,
1);
 }

 catch (Throwable t)
 {
 // rollback
 CacheFactory.rollbackTransactionCollection(txnCollection);
 }

 int v1 = ((Integer) cache.get(key1)).intValue();
 int v2 = ((Integer) cache.get(key2)).intValue();

 out("Transaction " + (fTxSucceeded ? "succeeded" : "did not succeed"));

 out("Updated value for key 1: " + v1);
 out("Updated value for key 2: " + v2);

 azzert(v1 == 2, "Expected value for key1 == 2");
 azzert(v2 == 2, "Expected value for key2 == 2");
 }
 }

The CacheFactory API provides helper methods for committing and rolling back a
collection of TransactionMap instances. The commit method uses a conventional
two-phase commit (2PC) protocol. However, as with any 2PC implementation, if one
of the resources fails to commit during the second phase ("commit"), the transaction
may end up partially committed. Unlike traditional 2PC implementations, Coherence
can guarantee that a given server will not enter an "in doubt" state during the commit
phase, but other failures are possible (for example, write-through caching can cause
persistent failures). Additionally, as the transaction log is stored only on the client, a
client-side failure during the "commit" phase might result in a partial commit. As the
"commit" phase is nonblocking (any required locks are acquired before the start of the
"commit" phase), the "commit" phase is much shorter (usually no more than a few
milliseconds) than the "prepare" phase and thus the exposure, while nonzero, is
minimal for typical workloads.

MapListeners registered with caches that participate in a transaction will receive a
MapEvent as each item is committed. There are no guarantees that events will be fired
in the order that they appear in the transaction. Additionally, if the transaction updates
an item multiple times, only one event will be dispatched, reflecting the final state of
the item.

Container Integration

JCA
Coherence ships with a JCA 1.0 compliant resource adaptor that can be used to
manage transactions in a Java EE container. It is packaged in a resource adaptor
archive (RAR) file that can be deployed to any Java EE container compatible with JCA
1.0. When deployed, JTA can be used to execute the transaction:

Container Integration

Implement Transactions, Locks, and Concurrency 2-5

Example 2–3 Configuration for a JCA Container

String key = "key";
Context ctx = new InitialContext();
UserTransaction tx = null;
try
 {
 // the transaction manager from container
 tx = (UserTransaction) ctx.lookup("java:comp/UserTransaction");
 tx.begin();

 // the try-catch-finally block below is the block of code
 // that could be on an EJB and therefore automatically within
 // a transactional context
 CacheAdapter adapter = null;
 try
 {
 adapter = new CacheAdapter(ctx, "tangosol.coherenceTx",
 CacheAdapter.CONCUR_OPTIMISTIC,
 CacheAdapter.TRANSACTION_GET_COMMITTED, 0);

 NamedCache cache = adapter.getNamedCache("dist-test",
 getClass().getClassLoader());

 int n = ((Integer)cache.get(key)).intValue();
 cache.put(key, new Integer(++n));
 }
 catch (Throwable t)
 {
 String sMsg = "Failed to connect: " + t;
 System.err.println(sMsg);
 t.printStackTrace(System.err);
 }
 finally
 {
 try
 {
 adapter.close();
 }
 catch (Throwable ex)
 {
 System.err.println("SHOULD NOT HAPPEN: " + ex);
 }
 }
 }
finally
 {
 try
 {
 tx.commit();
 }
 catch (Throwable t)
 {
 String sMsg = "Failed to commit: " + t;
 System.err.println(sMsg);
 }
 }

Entry Processors

2-6 Oracle Coherence Developer's Guide for Oracle Coherence

XA
Coherence can participate in an XA transaction as the last resource. This feature is
supported by most transaction managers and is known by various names, such as
"Last Resource Commit" or "Last Participant." In this scenario, the completion of a
transaction would involve the following steps:

■ prepare is called on all XA resources

■ commit is called on the Coherence transaction

■ if the commit is successful, commit is called on the other XA participants in the
transaction.

Refer to your transaction manager's documentation on XA last resource configuration
for further details on this technique.

Entry Processors
The InvocableMap superinterface of NamedCache allows for concurrent lock-free
execution of processing code within a cache. This processing is performed by an
EntryProcessor. In exchange for reduced flexibility compared to the more general
purpose TransactionMap and ConcurrentMap explicit locking APIs,
EntryProcessors provide the highest levels of efficiency without compromising
data reliability.

Since EntryProcessors perform an implicit low level lock on the entries they are
processing, the end user can place processing code in an EntryProcessor without
having to worry about concurrency control. Note that this is not the same as the
explicit lock(key) functionality provided by ConcurrentMap!

In a replicated cache or a partitioned cache running under Caching Edition, execution
will happen locally on the initiating client. In partitioned caches running under
Enterprise Edition or greater, the execution occurs on the node that is responsible for
primary storage of the data.

InvocableMap provides three methods of starting EntryProcessors:

■ Invoke an EntryProcessor on a specific key. Note that the key need not exist in
the cache to invoke an EntryProcessor on it.

■ Invoke an EntryProcessor on a collection of keys.

■ Invoke an EntryProcessor on a Filter. In this case, the Filter will be
executed against the cache entries. Each entry that matches the Filter criteria
will have the EntryProcessor executed against it. For more information on
Filters, see Chapter 6, "Query the Cache".

In partitioned caches running under Enterprise Edition or greater, EntryProcessors
will be executed in parallel across the cluster (on the nodes that own the individual
entries.) This provides a significant advantage over having a client lock all affected
keys, pull all required data from the cache, process the data, place the data back in the
cache, and unlock the keys. The processing occurs in parallel across multiple machines
(as opposed to serially on one machine) and the network overhead of obtaining and
releasing locks is eliminated.

Here is a sample of high level concurrency control. Code that will require network
access is commented:

Example 2–4 Concurrency Control without Using EntryProcessors

final NamedCache cache = CacheFactory.getCache("dist-test");

Entry Processors

Implement Transactions, Locks, and Concurrency 2-7

final String key = "key";

cache.put(key, new Integer(1));

// begin processing

// *requires network access*
if (cache.lock(key, 0))
 {
 try
 {
 // *requires network access*
 Integer i = (Integer) cache.get(key);
 // *requires network access*
 cache.put(key, new Integer(i.intValue() + 1));
 }
 finally
 {
 // *requires network access*
 cache.unlock(key);
 }
 }

// end processing

The following is an equivalent technique using an Entry Processor. Again, network
access is commented:

Example 2–5 Concurrency Control Using EntryProcessors

final NamedCache cache = CacheFactory.getCache("dist-test");
final String key = "key";

cache.put(key, new Integer(1));

// begin processing

// *requires network access*
cache.invoke(key, new MyCounterProcessor());

// end processing

...

public static class MyCounterProcessor
 extends AbstractProcessor
 {
 // this is executed on the node that owns the data,
 // no network access required
 public Object process(InvocableMap.Entry entry)
 {
 Integer i = (Integer) entry.getValue();
 entry.setValue(new Integer(i.intValue() + 1));
 return null;
 }
 }

Data Source Integration

2-8 Oracle Coherence Developer's Guide for Oracle Coherence

EntryProcessors are individually executed atomically, however multiple
EntryProcessor invocations by using InvocableMap.invokeAll() will not be
executed as one atomic unit. As soon as an individual EntryProcessor has
completed, any updates made to the cache will be immediately visible while the other
EntryProcessors are executing. Furthermore, an uncaught exception in an
EntryProcessor will not prevent the others from executing. Should the primary
node for an entry fail while executing an EntryProcessor, the backup node will
perform the execution instead. However if the node fails after the completion of an
EntryProcessor, the EntryProcessor will not be invoked on the backup.

Note that in general, EntryProcessors should be short lived. Applications with
longer running EntryProcessors should increase the size of the distributed service
thread pool so that other operations performed by the distributed service are not
blocked by the long running EntryProcessor. For more information on the
distributed service thread pool, see "DistributedCache Service Parameters".

Coherence includes several EntryProcessor implementations for common use
cases. Further details on these EntryProcessors, along with additional information
on parallel data processing, can be found in "Provide a Data Grid".

Data Source Integration
When using write-behind and write-through to a database in a Coherence cache,
transactional behavior must be taken into account. With write-through enabled, the
put will succeed if the item is successfully stored in the database. Otherwise, the
exception that occurred in the CacheStore will be rethrown to the client. (Note: to
enable this behavior, set <rollback-cachestore-failures> to true. See
"read-write-backing-map-scheme" on page D-71 for more details.) This only applies
when updating one cache item at a time; if two cache items are updated at a time then
each CacheStore operation will be a distinct database transaction. This limitation
will be addressed in a future release of Coherence.

Write-behind caching provides much higher throughput and performance. However,
writes to the database are performed after the cache has been updated. Therefore care
must be taken to ensure that writes to the database will not fail. Write-behind should
only be used in applications where:

■ data constraints will be managed by the application, not the database

■ no other application will update the database

See "Read-Through, Write-Through, Write-Behind Caching and Refresh-Ahead" for more
information on cache stores.

If multiple updates to cache entries must be persisted to the database in a transaction,
it may be more suitable to implement a cache-aside pattern where the client is
responsible for updating the database and the cache. Note that a CacheLoader may
still be used to load cache misses from the data source.

3

Perform Continuous Query 3-1

3Perform Continuous Query

While it is possible to obtain a point in time query result from a Coherence cache to,
and it is possible to receive events that would change the result of that query,
Coherence provides a feature that combines a query result with a continuous stream of
related events to maintain an up-to-date query result in a real-time fashion. This
capability is called Continuous Query, because it has the same effect as if the desired
query had zero latency and the query were being executed several times every
millisecond! For more information on point in time query results and events, see
Chapter 6, "Query the Cache" and "Deliver Events for Changes as they Occur".

Coherence implements the Continuous Query functionality by materializing the
results of the query into a Continuous Query Cache, and then keeping that cache
up-to-date in real-time using event listeners on the query. In other words, a Coherence
Continuous Query is a cached query result that never gets out-of-date.

Uses of Continuous Query Caching
There are several different general use categories for Continuous Query Caching:

■ It is an ideal building block for Complex Event Processing (CEP) systems and
event correlation engines.

■ It is ideal for situations in which an application repeats a particular query, and
would benefit from always having instant access to the up-to-date result of that
query.

■ A Continuous Query Cache is analogous to a materialized view, and is useful for
accessing and manipulating the results of a query using the standard
NamedCache API, and receiving an ongoing stream of events related to that query.

■ A Continuous Query Cache can be used in a manner similar to a Near Cache,
because it maintains an up-to-date set of data locally where it is being used, for
example on a particular server node or on a client desktop; note that a Near Cache
is invalidation-based, but the Continuous Query Cache actually maintains its data
in an up-to-date manner.

An example use case is a trading system desktop, in which a trader's open orders and
all related information must be maintained in an up-to-date manner at all times. By
combining the Coherence*Extend functionality with Continuous Query Caching, an
application can support literally tens of thousands of concurrent users.

The Coherence Continuous Query Cache

3-2 Oracle Coherence Developer's Guide for Oracle Coherence

The Coherence Continuous Query Cache
The Coherence implementation of Continuous Query is found in the
com.tangosol.net.cache.ContinuousQueryCache class. This class, like all
Coherence caches, implements the standard NamedCache interface, which includes
the following capabilities:

■ Cache access and manipulation using the Map interface: NamedCache extends the
standard Map interface from the Java Collections Framework, which is the same
interface implemented by the JDK's HashMap and Hashtable classes.

■ Events for all objects modifications that occur within the cache: NamedCache
extends the ObservableMap interface.

■ Identity-based clusterwide locking of objects in the cache: NamedCache extends
the ConcurrentMap interface.

■ Querying the objects in the cache: NamedCache extends the QueryMap interface.

■ Distributed Parallel Processing and Aggregation of objects in the cache:
NamedCache extends the InvocableMap interface.

Since the ContinuousQueryCache implements the NamedCache interface, which is
the same API provided by all Coherence caches, it is extremely simple to use, and it
can be easily substituted for another cache when its functionality is called for.

Constructing a Continuous Query Cache
There are two items that define a Continuous Query Cache:

1. The underlying cache that it is based on;

2. A query of that underlying cache that produces the sub-set that the Continuous
Query Cache will cache.

The underlying cache is any Coherence cache, including another Continuous Query
Cache. A cache is usually obtained from a CacheFactory, which allows the
developer to simply specify the name of the cache and have it automatically
configured based on the application's cache configuration information; for example:

NamedCache cache = CacheFactory.getCache("orders");

See Appendix D, "Cache Configuration Elements" for more information on specifying
cache configuration information.

The query is the same type of query that would be used to; for example:

Example 3–1 A Query for a Continuous Query Cache

Filter filter = new AndFilter(new EqualsFilter("getTrader", traderid),
 new EqualsFilter("getStatus", Status.OPEN));

See Chapter 6, "Query the Cache" for more information on queries.

Note: Continuous Query Caches are useful in almost every type of
application, including both client-based and server-based
applications, because they provide the ability to very easily and
efficiently maintain an up-to-date local copy of a specified sub-set of a
much larger and potentially distributed cached data set.

Listening to the ContinuousQueryCache

Perform Continuous Query 3-3

Normally, to query a cache, one of the methods from the QueryMap is used; for
examples, to obtain a snap-shot of all open trades for this trader:

Example 3–2 Getting Data for the Continuous Query Cache

Set setOpenTrades = cache.entrySet(filter);

Similarly, the Continuous Query Cache is constructed from those same two pieces:

Example 3–3 Constructing the Continuous Query Cache

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);

Cleaning up the resources associated with a ContinuousQueryCache
A Continuous Query Cache places one or more event listeners on its underlying cache.
If the Continuous Query Cache is used for the duration of the application, then the
resources will be cleaned up when the node is shut down or otherwise stops.
However, if the Continuous Query Cache is only used for a period, then when the
application is done using it, the application must call the release() method on the
ContinuousQueryCache.

Caching only keys, or caching both keys and values
When constructing a Continuous Query Cache, it is possible to specify that the cache
should only keep track of the keys that result from the query, and obtain the values
from the underlying cache only when they are asked for. This feature may be useful
for creating a Continuous Query Cache that represents a very large query result set, or
if the values are never or rarely requested. To specify that only the keys should be
cached, use the constructor that allows the CacheValues property to be configured;
for example:

Example 3–4 A Constructor that Allows the CacheValues Property

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter,
false);

If necessary, the CacheValues property can also be modified after the cache has been
instantiated; for example:

Example 3–5 Setting the CacheValues Property

cacheOpenTrades.setCacheValues(true);

CacheValues Property and Event Listeners
If the Continuous Query Cache has any standard (non-lite) event listeners, or if any of
the event listeners are filtered, then the CacheValues property will automatically be
set to true, because the Continuous Query Cache uses the locally cached values to filter
events and to supply the old and new values for the events that it raises.

Listening to the ContinuousQueryCache
Since the Continuous Query Cache is itself observable, it is possible for the client to
place one or more event listeners onto it. For example:

Listening to the ContinuousQueryCache

3-4 Oracle Coherence Developer's Guide for Oracle Coherence

Example 3–6 Adding a Listener to a Continuous Query Cache

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
cacheOpenTrades.addMapListener(listener);

Assuming some processing has to occur against every item that is already in the cache
and every item added to the cache, there are two approaches. First, the processing
could occur then a listener could be added to handle any later additions:

Example 3–7 Processing Continuous Query Cache Entries and Adding a Listener

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
for (Iterator iter = cacheOpenTrades.entrySet().iterator(); iter.hasNext();)
 {
 Map.Entry entry = (Map.Entry) iter.next();
 // .. process the cache entry
 }
cacheOpenTrades.addMapListener(listener);

However, that code is incorrect because it allows events that occur in the split second
after the iteration and before the listener is added to be missed! The alternative is to
add a listener first, so no events are missed, and then do the processing:

Example 3–8 Adding a Listener Before Processing Continuous Query Cache Entries

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
cacheOpenTrades.addMapListener(listener);
for (Iterator iter = cacheOpenTrades.entrySet().iterator(); iter.hasNext();)
 {
 Map.Entry entry = (Map.Entry) iter.next();
 // .. process the cache entry
 }

However, it is possible that the same entry will show up in both an event an in the
Iterator, and the events can be asynchronous, so the sequence of operations cannot
be guaranteed.

The solution is to provide the listener during construction, and it will receive one
event for each item that is in the Continuous Query Cache, whether it was there to
begin with (because it was in the query) or if it got added during or after the
construction of the cache:

Example 3–9 Providing a Listener When Constructing the Continuous Query Cache

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter,
listener);

Achieving a Stable Materialized View
The ContinuousQueryCache implementation faced the same challenge: How to
assemble an exact point-in-time snapshot of an underlying cache while receiving a
stream of modification events from that same cache. The solution has several parts. First,
Coherence supports an option for synchronous events, which provides a set of
ordering guarantees. See "Deliver Events for Changes as they Occur" for more
information on this option.

Secondly, the ContinuousQueryCache has a two-phase implementation of its initial
population that allows it to first query the underlying cache and then subsequently
resolve all of the events that came in during the first phase. Since achieving these
guarantees of data visibility without any missing or repeated events is fairly complex,

Making the ContinuousQueryCache Read-Only

Perform Continuous Query 3-5

the ContinuousQueryCache allows a developer to pass a listener during
construction, thus avoiding exposing these same complexities to the application
developer.

Support for Synchronous and Asynchronous Listeners
By default, listeners to the ContinuousQueryCache will have their events delivered
asynchronously. However, the ContinuousQueryCache does respect the option for
synchronous events as provided by the SynchronousListener interface. See
"Deliver Events for Changes as they Occur" for more information on this option.

Making the ContinuousQueryCache Read-Only
The ContinuousQueryCache can be made into a read-only cache; for example:

Example 3–10 Making the Continuous Query Cache Read-Only

cacheOpenTrades.setReadOnly(true);

A read-only ContinuousQueryCache will not allow objects to be added to, changed
in, removed from or locked in the cache.

When a ContinuousQueryCache has been set to read-only, it cannot be changed
back to read/write.

Making the ContinuousQueryCache Read-Only

3-6 Oracle Coherence Developer's Guide for Oracle Coherence

4

Managing Map Operations with Triggers 4-1

4Managing Map Operations with Triggers

Map triggers supplement the standard capabilities of Oracle Coherence to provide a
highly customized cache management system. For example, map triggers can be used
to prevent invalid transactions, enforce complex security authorizations or complex
business rules, provide transparent event logging and auditing, and gather statistics
on data modifications. Other possible use for triggers include restricting operations
against a cache to those issued during application re-deployment time.

For example, assume that you have code that is working with a NamedCache, and you
want to change an entry's behavior or contents before the entry is inserted into the
map. The addition of a map trigger will allow you to make this change, without
having to modify all the exiting code.

Map triggers could also be used as part of an upgrade process. The addition of a map
trigger could prompt inserts to be diverted from one cache into another.

A map trigger in the Oracle Coherence cache is somewhat similar to a trigger that
might be applied to a database. It is a functional agent represented by the
MapTrigger interface that will be run in response to a pending change (or removal)
of the corresponding map entry. The pending change is represented by the
MapTrigger.Entry interface. This interface inherits from the
InvocableMap.Entry interface, so it provides methods to retrieve, update, and
remove values in the underlying map.

The MapTrigger interface contains the process method that is used to validate, reject,
or modify the pending change in the map. This method is called before an operation
that intends to change the underlying map content is committed. An implementation
of this method can evaluate the pending change by analyzing the original and the new
value and produce any of the following results:

■ override the requested change with a different value

■ undo the pending change by resetting the original value

■ remove the entry from the underlying map

■ reject the pending change by throwing a RuntimeException

■ do nothing, and allow the pending change to be committed

MapTrigger functionality is typically added as part of an application start-up
process. It can be added programmatically as described in the MapTrigger API, or it
can be configured using the class-factory mechanism in the
coherence-cache-config.xml configuration file. In this case, a MapTrigger will
be registered during the very first CacheFactory.getCache(...) call for the
corresponding cache. Example 4–1 assumes that the createMapTrigger method
would return a new MapTriggerListener(new MyCustomTrigger());:

A Map Trigger Example

4-2 Oracle Coherence Developer's Guide for Oracle Coherence

Example 4–1 Creating a MapTriggerListener in the coherence-cache-config.xml File

<cache-config>
 ...
 <distributed-scheme>
 ...
 <listener>
 <class-scheme>
 <class-factory-name>package.MyFactory</class-factory-name>
 <method-name>createTriggerListener</method-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </listener>
 <distributed-scheme>
 ...
</cache-config>

In addition to the MapTrigger.Entry and MapTrigger interfaces, Oracle
Coherence provides the FilterTrigger and MapTriggerListener classes. The
FilterTrigger is a generic MapTrigger implementation that will perform a
predefined action if a pending change is rejected by the associated Filter. The
FilterTrigger can either reject the pending operation, ignore the change and
restore the entry's original value, or remove the entry itself from the underlying map.

The MapTriggerListener is a special purpose MapListener implementation that
is used to register a MapTrigger with a corresponding NamedCache. In Example 4–2,
MapTriggerListener is used to register the PersonMapTrigger with the People
named cache.

Example 4–2 A MapTriggerListener Registering a MapTrigger with a Named Cache

NamedCache person = CacheFactory.getCache("People");
MapTrigger trigger = new PersonMapTrigger();
person.addMapListener(new MapTriggerListener(trigger));

These API reside in the com.tangosol.util package. For more information on
these API, see the Javadoc pages for MapTrigger, MapTrigger.Entry,
FilterTrigger, and MapTriggerListener.

A Map Trigger Example
The code in Example 4–3 illustrates a map trigger and how it can be called. In the
PersonMapTrigger class in Example 4–3, the process method is implemented to
modify an entry before it is placed in the map. In this case, the last name attribute of a
Person object is converted to upper case characters. The object is then returned to the
entry.

Example 4–3 A MapTrigger Class

...

public class PersonMapTrigger implements MapTrigger
 {
 public PersonMapTrigger()

A Map Trigger Example

Managing Map Operations with Triggers 4-3

 {
 }

 public void process(MapTrigger.Entry entry)
 {
 Person person = (Person) entry.getValue();
 String sName = person.getLastName();
 String sNameUC = sName.toUpperCase();

 if (!sNameUC.equals(sName))
 {
 person.setLastName(sNameUC);

 System.out.println("Changed last name of [" + sName + "] to [" +
person.getLastName() + "]");

 entry.setValue(person);
 }
 }

 // ---- hashCode() and equals() must be implemented

 public boolean equals(Object o)
 {
 return o != null && o.getClass() == this.getClass();
 }
 public int hashCode()
 {
 return getClass().getName().hashCode();
 }
 }

The MapTrigger in Example 4–4, calls the PersonMapTrigger. The new
MapTriggerListener passes the PersonMapTrigger to the People
NamedCache.

Example 4–4 Calling a MapTrigger and Passing it to a Named Cache

...

public class MyFactory
 {
 /**
 * Instantiate a MapTriggerListener for a given NamedCache
 */
 public static MapTriggerListener createTriggerListener(String sCacheName)
 {
 MapTrigger trigger;
 if ("People".equals(sCacheName))
 {
 trigger = new PersonMapTrigger();
 }
 else
 {
 throw IllegalArgumentException("Unknown cache name " + sCacheName);
 }

 System.out.println("Creating MapTrigger for cache " + sCacheName);

 return new MapTriggerListener(trigger);

A Map Trigger Example

4-4 Oracle Coherence Developer's Guide for Oracle Coherence

 }

 public static void main(String[] args)
 {
 NamedCache cache = CacheFactory.getCache("People");
 cache.addMapListener(createTriggerListener("People"));

 System.out.println("Installed MapTrigger into cache People");
 }
 }

5

Data Affinity 5-1

5Data Affinity

Data affinity describes the concept of ensuring that a group of related cache entries is
contained within a single cache partition. This ensures that all relevant data is
managed on a single primary cache node (without compromising fault-tolerance).

Affinity may span multiple caches (if they are managed by the same cache service,
which will generally be the case). For example, in a master-detail pattern such as an
"Order-LineItem", the Order object may be co-located with the entire collection of
LineItem objects that are associated with it.

The benefit is two-fold. First, only a single cache node is required to manage queries
and transactions against a set of related items. Second, all concurrency operations can
be managed locally, avoiding the need for clustered synchronization.

Several standard Coherence operations can benefit from affinity, including cache
queries, InvocableMap operations and the getAll, putAll, and removeAll
methods.

Specifying Affinity
Affinity is specified in terms of a relationship to a partitioned key. In the
Order-LineItem example above, the Order objects would be partitioned normally,
and the LineItem objects would be associated with the appropriate Order object.

The association does not need to be directly tied to the actual parent key - it only must
be a functional mapping of the parent key. It could be a single field of the parent key
(even if it is non-unique), or an integer hash of the parent key. All that matters is that
all child keys return the same associated key; it does not matter whether the associated
key is an actual key (it is simply a "group id"). This fact may help minimize the size
impact on the child key classes that don't already contain the parent key information
(as it is derived data, the size of the data may be decided explicitly, and it also will not
affect the behavior of the key). Note that making the association too general (having
too many keys associated with the same "group id") can cause a "lumpy" distribution
(if all child keys return the same association key regardless of what the parent key is,
the child keys will all be assigned to a single partition, and will not be spread across
the cluster).

There are two ways to ensure that a set of cache entries are co-located. Note that
association is based on the cache key, not the value (otherwise updating a cache entry

Note: Data affinity is specified in terms of entry keys (not values). As
a result, the association information must be present in the key class.
Similarly, the association logic applies to the key class, not the value
class.

Specifying Data Affinity with a KeyAssociation

5-2 Oracle Coherence Developer's Guide for Oracle Coherence

could cause it to change partitions). Also, note that while the Order will be co-located
with the child LineItems, Coherence does not currently support composite
operations that span multiple caches (for example, updating the Order and the
collection of LineItems within a single invocation request
com.tangosol.util.InvocableMap.EntryProcessor).

Specifying Data Affinity with a KeyAssociation
For application-defined keys, the class (of the cache key) may implement
com.tangosol.net.cache.KeyAssociation as follows:

Example 5–1 Creating a Key Association

import com.tangosol.net.cache.KeyAssociation;

public class LineItemId implements KeyAssociation
 {
 // {...}

 public Object getAssociatedKey()
 {
 return getOrderId();
 }

 // {...}
 }

Specifying Data Affinity with a KeyAssociator
Applications may also provide a custom KeyAssociator:

Example 5–2 A Custom KeyAssociator

import com.tangosol.net.partition.KeyAssociator;

public class LineItemAssociator implements KeyAssociator
 {
 public Object getAssociatedKey(Object oKey)
 {
 if (oKey instanceof LineItemId)
 {
 return ((LineItemId) oKey).getOrderId();
 }
 else if (oKey instanceof OrderId)
 {
 return oKey;
 }
 else
 {
 return null;
 }
 }

 public void init(PartitionedService service)
 {
 }
 }

Example of Using Affinity

Data Affinity 5-3

The key associator may be configured for a NamedCache in the associated
<distributed-scheme> element:

Example 5–3 Configuring a Key Associator

<distributed-scheme>
 <!-- ... -->
 <key-associator>
 <class-name>LineItemAssociator</class-name>
 </key-associator>
</distributed-scheme>

Example of Using Affinity
Example 5–4 illustrates how to use affinity to create a more efficient query
(NamedCache.entrySet(Filter)) and cache access
(NamedCache.getAll(Collection)).

Example 5–4 Using Affinity for a More Efficient Query

OrderId orderId = new OrderId(1234);

// this Filter will be applied to all LineItem objects to fetch those
// for which getOrderId() returns the specified order identifier
// "select * from LineItem where OrderId = :orderId"Filter filterEq = new
EqualsFilter("getOrderId", orderId);

// this Filter will direct the query to the cluster node that currently owns
// the Order object with the given identifier
Filter filterAsc = new KeyAssociatedFilter(filterEq, orderId);

// run the optimized query to get the ChildKey objects
Set setLineItemKeys = cacheLineItems.keySet(filterAsc);

// get all the Child objects immediately
Set setLineItems = cacheLineItems.getAll(setLineItemKeys);

// Or remove all immediately
cacheLineItems.keySet().removeAll(setLineItemKeys);

Example of Using Affinity

5-4 Oracle Coherence Developer's Guide for Oracle Coherence

6

Query the Cache 6-1

6Query the Cache

Coherence can perform queries and indexes against currently cached data that meets a
given set of criteria. Queries and indexes can be simple, employing filters packaged
with Coherence, or they can be run against multi-value attributes such as collections
and arrays.

Query Functionality
Coherence provides the ability to search for cache entries that meet a given set of
criteria. The result set may be sorted if desired. Queries are evaluated with Read
Committed isolation.

It should be noted that queries apply only to currently cached data (and will not use
the CacheLoader interface to retrieve additional data that may satisfy the query).
Thus, the dataset should be loaded entirely into cache before queries are performed. In
cases where the dataset is too large to fit into available memory, it may be possible to
restrict the cache contents along a specific dimension (for example, "date") and
manually switch between cache queries and database queries based on the structure of
the query. For maintainability, this is usually best implemented inside a cache-aware
data access object (DAO).

Indexing requires the ability to extract attributes on each Partitioned cache node; in the
case of dedicated CacheServer instances, this implies (usually) that application
classes must be installed in the CacheServer classpath.

For Local and Replicated caches, queries are evaluated locally against unindexed data.
For Partitioned caches, queries are performed in parallel across the cluster, using
indexes if available. Coherence includes a Cost-Based Optimizer (CBO). Access to
unindexed attributes requires object deserialization (though indexing on other
attributes can reduce the number of objects that must be evaluated).

Simple Queries
Querying cache content is very simple:

Example 6–1 Querying the Cache with a Filter

Filter filter = new GreaterEqualsFilter("getAge", 18);

for (Iterator iter = cache.entrySet(filter).iterator(); iter.hasNext();)
 {
 Map.Entry entry = (Map.Entry) iter.next();
 Integer key = (Integer) entry.getKey();
 Person person = (Person) entry.getValue();
 System.out.println("key=" + key + " person=" + person);

Simple Queries

6-2 Oracle Coherence Developer's Guide for Oracle Coherence

 }

Coherence provides a wide range of filters in the com.tangosol.util.filter
package.

A LimitFilter may be used to limit the amount of data sent to the client, and also to
provide "paging" for users. This is illustrated in Example 6–2:

Example 6–2 Using LimitFilter Class to Limit the Amount of Data Sent to the Client

int pageSize = 25;
Filter filter = new GreaterEqualsFilter("getAge", 18);

// get entries 1-25
Filter limitFilter = new LimitFilter(filter, pageSize);
Set entries = cache.entrySet(limitFilter);

// get entries 26-50
limitFilter.nextPage();
entries = cache.entrySet(limitFilter);

Any queryable attribute may be indexed with the addIndex method of the QueryMap
class. This is illustrated in Example 6–3:

Example 6–3 Indexing a Queryable Attribute

// addIndex(ValueExtractor extractor, boolean fOrdered, Comparator comparator)
cache.addIndex(extractor, true, null);

The fOrdered argument specifies whether the index structure is sorted. Sorted
indexes are useful for range queries, including "select all entries that fall between two
dates" and "select all employees whose family name begins with 'S'". For "equality"
queries, an unordered index may be used, which may have better efficiency in terms of
space and time.

The comparator argument can be used to provide a custom
java.util.Comparator for ordering the index.

This method is only intended as a hint to the cache implementation, and as such it
may be ignored by the cache if indexes are not supported or if the desired index (or a
similar index) already exists. It is expected that an application will call this method to
suggest an index even if the index may already exist, just so that the application is
certain that index has been suggested. For example in a distributed environment, each
server will likely suggest the same set of indexes when it starts, and there is no
downside to the application blindly requesting those indexes regardless of whether
another server has already requested the same indexes.

Indexes are a feature of Coherence Enterprise Edition or higher. This method will have
no effect when using Coherence Standard Edition.

Note that queries can be combined by Coherence if necessary, and also that Coherence
includes a cost-based optimizer (CBO) to prioritize the usage of indexes. To take
advantage of an index, queries must use extractors that are equal
((Object.equals()) to the one used in the query.

A list of applied indexes can be retrieved from the StorageManagerMBean by using
JMX. For more information, see Chapter 22, "How to Manage Coherence Using JMX".

Query Concepts

Query the Cache 6-3

Querying Partitioned Caches
The Partitioned Cache implements this method using the Parallel Query feature,
which is only available in Coherence Enterprise Edition or higher. When working with
a Partitioned Cache in Coherence Standard Edition, this method will retrieve the data
set to the client for processing.

Querying Near Caches
Although queries can be executed through a near cache, the query will not use the
front portion of a near cache. If using a near cache with queries, the best approach is to
use the sequence in Example 6–4:

Example 6–4 Querying the Near Cache

Set setKeys = cache.keySet(filter);
Map mapResult = cache.getAll(setKeys);

Query Concepts
This section goes into more detail on the design of the query interface, building up
from the core components.

The concept of querying is based on the ValueExtractor interface. A value extractor
is used to extract an attribute from a given object for querying (and similarly,
indexing). Most developers will need only the ReflectionExtractor
implementation of this interface. The ReflectionExtractor uses reflection to extract an
attribute from a value object by referring to a method name, typically a "getter"
method like getName().

ValueExtractor extractor = new ReflectionExtractor("getName");

Any "void argument" method can be used, including Object methods like
toString() (useful for prototyping/debugging). Indexes may be either traditional
"field indexes" (indexing fields of objects) or "functional indexes" (indexing "virtual"
object attributes). For example, if a class has field accessors getFirstName and
getLastName, the class may define a function getFullName which concatenates
those names, and this function may be indexed.

To query a cache that contains objects with getName attributes, a Filter must be
used. A filter has a single method which determines whether a given object meets a
criterion.

Example 6–5 Equality Filter

Filter filter = new EqualsFilter(extractor, "Bob Smith");

Note that the filters also have convenience constructors that accept a method name
and internally construct a ReflectionExtractor:

Example 6–6 Filter that Constructs a ReflectionExtractor

Filter filter = new EqualsFilter("getName", "Bob Smith");

Example 6–7 illustrates a routine to select the entries of a cache that satisfy a particular
filter:

Queries Involving Multi-Value Attributes

6-4 Oracle Coherence Developer's Guide for Oracle Coherence

Example 6–7 Selecting Cache Entries that Satisfy a Filter

for (Iterator iter = cache.entrySet(filter).iterator(); iter.hasNext();)
 {
 Map.Entry entry = (Map.Entry)iter.next();
 Integer key = (Integer)entry.getKey();
 Person person = (Person)entry.getValue();
 System.out.println("key=" + key + " person=" + person);
 }

Example 6–8 illustrates using a filter to select and sort cache entries:

Example 6–8 Selecting and Sorting Cache Entries that Satisfy a Filter

// entrySet(Filter filter, Comparator comparator)
Iterator iter = cache.entrySet(filter, null).iterator();

The additional null argument specifies that the result set should be sorted using the
"natural ordering" of Comparable objects within the cache. The client may explicitly
specify the ordering of the result set by providing an implementation of Comparator.
Note that sorting places significant restrictions on the optimizations that Coherence
can apply, as sorting requires that the entire result set be available before sorting.

Example 6–9 illustrates using the keySet form of the queries, combined with
getAll(). This technique may provide more control over memory usage:

Example 6–9 Using a keySet Query Format

// keySet(Filter filter)
Set setKeys = cache.keySet(filter);
Set setPageKeys = new HashSet();
int PAGE_SIZE = 100;
for (Iterator iter = setKeys.iterator(); iter.hasNext();)
 {
 setPageKeys.add(iter.next());
 if (setKeyPage.size() == PAGE_SIZE || !iter.hasNext())
 {
 // get a block of values
 Map mapResult = cache.getAll(setPageKeys);

 // process the block
 // ...

 setPageKeys.clear();
 }
 }

Queries Involving Multi-Value Attributes
Coherence supports indexing and querying of multi-value attributes including
collections and arrays. When an object is indexed, Coherence will verify if it is a
multi-value type, and will then index it as a collection rather than a singleton. The
ContainsAllFilter, ContainsAnyFilter and ContainsFilter are used to
query against these collections.

Example 6–10 Querying on Multi-Value Attributes

Set searchTerms = new HashSet();
searchTerms.add("java");
searchTerms.add("clustering");

ChainedExtractor

Query the Cache 6-5

searchTerms.add("books");

// The cache contains instances of a class "Document" which has a method
// "getWords" which returns a Collection<String> containing the set of
// words that appear in the document.
Filter filter = new ContainsAllFilter("getWords", searchTerms);

Set entrySet = cache.entrySet(filter);

// iterate through the search results
// ...

ChainedExtractor
The ChainedExtractor implementation allows chained invocation of
zero-argument (accessor) methods. In Example 6–11, the extractor will first use
reflection to call getName() on each cached Person object, and then use reflection to
call length() on the returned String.

Example 6–11 Chaining Invocation Methods

ValueExtractor extractor = new ChainedExtractor("getName.length");

This extractor could be passed into a query, allowing queries (for example) to select all
people with names not exceeding 10 letters. Method invocations may be chained
indefinitely, for example getName.trim.length.

ChainedExtractor

6-6 Oracle Coherence Developer's Guide for Oracle Coherence

7

Security Framework 7-1

7Security Framework

This chapter describes the following security features:

■ Transport Layer Security

■ Access Controller

■ Proof of Identity

■ Proof of Trustworthiness

■ Default Access Controller implementation

■ Working in applications with installed security manager

Transport Layer Security
For information on transport layer security, see "Encryption Filters" on page 8-1.

Access Controller
Security Framework in Coherence is based on a concept of Clustered Access
Controller, which can be turned on (activated) by a configurable parameter or
command line attribute.

The Access Controller manages access to the "clustered resources", such as clustered
services and caches and controls operations that include (but not limited to) the
following:

■ creating a new clustered cache or service;

■ joining an existing clustered cache or service;

■ destroying an existing clustered cache.

The Access Controller serves three purposes:

■ grant or deny access to a protected clustered resource based on the caller's
permissions

■ encrypt outgoing communications based on the caller's private credentials

■ decrypt incoming communications based on the caller's public credentials

Coherence uses a local LoginModule (see JAAS Reference Guide for details) to
authenticate the caller and an Access Controller on one or more cluster nodes to verify
the caller's access rights.

Proof of Identity

7-2 Oracle Coherence Developer's Guide for Oracle Coherence

The Access Controller is a pluggable component that could be declared in the
Coherence deployment descriptior, tangosol-coherence.xml. The specified class
should implement the com.tangosol.net.security.AccessController interface.

Coherence provides a default Access Controller implementation that is based on the
Key Management infrastructure that is shipped as a standard part of Sun's JDK.

Each clustered service in Coherence maintains a concept of a "senior" service member
(cluster node), which serves as a controlling agent for a particular service. While the
senior member does not have to consult anyone when accessing a clustered resource,
any junior node willing to join that service has to request and receive a confirmation
from the senior member, which in turn notifies all other cluster nodes about the joining
node.

Since Coherence is a system providing distributed data management and computing,
the security subsystem is designed to operate in a partially hostile environment. We
assume that when there is data shared between two cluster nodes either node could be
a malicious one - lacking sufficient credentials to join a clustered service or obtain
access to a clustered resource.

Let's call a cluster node that may try to gain unauthorized access to clustered resources
by using nonstandard means as a "malicious" node. The means of such an access could
vary. They could range from attempts to get protected or private class data using
reflection, replacing classes in the distribution (coherence.jar or other application
binaries), modifying classes on-the-fly using custom ClassLoader(s) and so on.
Alternatively, a cluster node that never attempts to gain unauthorized access to
clustered resources by using nonstandard means will be called a "trusted" node. It's
important to note that even a trusted node may attempt to gain access to resources
without having sufficient rights, but it does so in a standard way by using the exposed
standard API.

File system mechanisms (the same that is used to protect the integrity of the Java
runtime libraries) and standard Java security policy could be used to resolve an issue
of guarantying the trustworthiness of a given single node. In a case of inter-node
communications there are two dangers that we have to consider:

■ A malicious node surpasses the local access check and attempts to join a clustered
service or gain access to a clustered resource controlled by a trusted node;

■ A malicious node creates a clustered service or clustered resource becoming its
controller.

To prevent either of these two scenarios from occurring Coherence uses two-ways
encryption algorithm: all client requests must be accompanied by the proof of identity
and all service responses must be accompanied by the proof of trustworthiness.

Proof of Identity
In a case of an active Access Controller the client code could use the following
construct to authenticate the caller and perform necessary actions:

import com.tangosol.net.security.Security;
import java.security.PrivilegedAction;
import javax.security.auth.Subject;

...

Subject subject = Security.login(sName, acPassword);
PrivilegedAction action = new PrivilegedAction()
 {

Default Access Controller implementation

Security Framework 7-3

 public Object run()
 {
 // all processing here is taking place with access
 // rights assigned to the corresponding Subject
 ...
 }
 };
Security.runAs(subject, action);

During the "login" call Coherence uses JAAS that runs on the caller's node to
authenticate the caller. In a case of successful authentication, it uses the local Access
Controller to:

1. Determine whether the local caller has sufficient rights to access the protected
clustered resource (local access check);

2. Encrypt the outgoing communications regarding the access to the resource with
the caller's private credentials retrieved during the authentication phase;

3. Decrypt the result of the remote check using the requester's public credentials;

4. In the case that access is granted verify whether the responder had sufficient rights
to do so.

Step 2 (above) serves a role of the proof of identity for the responder preventing a
malicious node pretending to pass the local access check phase.

There are two alternative ways to provide the client authentication information. First,
a reference to a CallbackHandler could be passed instead of the user name and
password. Second, a previously authenticated Subject could be used, which could
become handy when Coherence is used by a Java EE application that could retrieve an
authenticated Subject from the application container.

If a caller's request comes without any authentication context, Coherence will
instantiate and call a CallbackHandler implementation declared in the Coherence
operational descriptor to retrieve the appropriate credentials. However that "lazy"
approach is much less efficient, since without externally defined call scope, every
access to a protected clustered resource will force repetitive authentication calls.

Proof of Trustworthiness
Every clustered resource in Coherence is created by an explicit API call. A senior
service member retains the private credentials that are presented during that call as a
proof of trustworthiness. When the senior service member receives an access request
to a protected clustered resource, it use the local Access Controller to:

1. Decrypt the incoming communication using the remote caller's public credentials;

2. Determine whether the remote caller has sufficient rights to access the protected
clustered resource (remote access check);

3. Encrypt the response of access check using the private credentials of the service.

Since the requester will accept the response as valid only after decrypting it, step 3) in
this cycle serves a role of the proof of trustworthiness for the requester preventing a
malicious node pretending to be a valid service senior.

Default Access Controller implementation
Coherence ships with an Access Controller implementation that uses a standard Java
KeyStore. The implementation class is com.tangosol.net.security.DefaultController and

Default Access Controller implementation

7-4 Oracle Coherence Developer's Guide for Oracle Coherence

the corresponding part of the Coherence operational descriptor used to configure the
default implementation is:

<security-config>
 <enabled system-property="tangosol.coherence.security">true</enabled>
 <login-module-name>Coherence</login-module-name>
 <access-controller>
 <class-name>com.tangosol.net.security.DefaultContoller</class-name>
 <init-params>
 <init-param id="1">
 <param-type>java.io.File</param-type>
 <param-value>./keystore.jks</param-value>
 </init-param>
 <init-param id="2">
 <param-type>java.io.File</param-type>
 <param-value>./permissions.xml</param-value>
 </init-param>
 </init-params>
 </access-controller>
 <callback-handler>
 <class-name/>
 </callback-handler>
</security-config>

The login-module-name element serves as the application name in a login
configuration file (see JAAS Reference Guide1 for complete details). Coherence is
shipped with a Java keystore (JKS) based login module that is contained in the
coherence-login.jar, which depends only on standard Java runtime classes and could
be placed in the JRE's lib/ext (standard extension) directory. The corresponding login
module declaration would look like:

// LoginModule Configuration for Oracle Coherence(TM)
Coherence {
 com.tangosol.security.KeystoreLogin required
 keyStorePath="${user.dir}${/}keystore.jks";
};

The access-controller element defines the AccessController implementation that takes
two parameters to instantiate.

■ The first parameter is a path to the same keystore that will be used by both
controller and login module.

■ The second parameter is a path to the access permission file (see discussion
below).

The callback-handler is an optional element that defines a custom implementation of
the javax.security.auth.callback.CallbackHandler interface that would be instantiated and
used by Coherence to authenticate the client when all other means are exhausted.

Two more steps have to be performed, To make the default Access Controller
implementation usable in your application, you must perform two additional steps:

1. Create a keystore with necessary principals.

2. Create the permissions file that would declare the access right for the
corresponding principals.

Consider the following example that creates three principals: admin to be used by the
Java Security framework; manager and worker to be used by Coherence:

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias admin
-keypass password -dname CN=Administrator,O=MyCompany,L=MyCity,ST=MyState

Working in applications with installed security manager

Security Framework 7-5

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias manager
-keypass password -dname CN=Manager,OU=MyUnit

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias worker
-keypass password -dname CN=Worker,OU=MyUnit

Consider the following example that assigns all rights to the Manager principal, only
join rights to the Worker principal for caches that have names prefixed by common
and all rights to the Worker principal for the invocation service named invocation:

<?xml version='1.0'?>
<permissions>
 <grant>
 <principal>
 <class>javax.security.auth.x500.X500Principal</class>
 <name>CN=Manager,OU=MyUnit</name>
 </principal>

 <permission>
 <target>*</target>
 <action>all</action>
 </permission>
 </grant>

 <grant>
 <principal>
 <class>javax.security.auth.x500.X500Principal</class>
 <name>CN=Worker,OU=MyUnit</name>
 </principal>

 <permission>
 <target>cache=common*</target>
 <action>join</action>
 </permission>
 <permission>
 <target>service=invocation</target>
 <action>all</action>
 </permission>
 </grant>
</permissions>

Working in applications with installed security manager
1. The policy file format is fully described in Java SE Security Guide. Example:

grant codeBase "file:${coherence.home}/lib/coherence.jar"
 {
 permission java.security.AllPermission;
 };

The minimum set of privileges required for Coherence to function are specified in
the security.policy file which is included as part of the Coherence installation. This
file can be found in coherence/lib/security/security.policy.

2. The binaries could be signed using the JDK jarsigner tool, for example:

jarsigner -keystore ./keystore.jks -storepass password coherence.jar admin

and then additionally protected in the policy file:

Working in applications with installed security manager

7-6 Oracle Coherence Developer's Guide for Oracle Coherence

grant SignedBy "admin" codeBase "file:${coherence.home}/lib/coherence.jar"
 {
 permission java.security.AllPermission;
 };

3. All relevant files such as policy format, coherence binaries, and permissions
should be protected by operating system mechanisms to prevent malicious
modifications.

8

Network Filters 8-1

8Network Filters

A filter is a mechanism for plugging into the low-level TCMP stream protocol. Every
message that is sent across the network by Coherence is streamed through this
protocol. Coherence supports custom filters. By writing a filter, the contents of the
network traffic can be modified. The most common examples of modification are
encryption and compression.

Compression Filters
The compression filter is based on the java.util.zip package and compresses
message contents thus reducing the network load. This is useful when there is ample
CPU available but insufficient network bandwidth. See "Configuring Filters" on
page 8-4 for information on enabling this filter.

Encryption Filters
Coherence ships with two JCA based encryption filters which can be used to protect
the clustered communications for privacy and authenticity.

Symmetric Encryption Filter
This filter uses symmetric encryption to protect cluster communications. The
encryption key is generated from a shared password known to all cluster members.
This filter is suitable for small deployments or where the maintenance and protection
of a shared password is feasible.

To enable this filter, specify which services will have their traffic encrypted by using
this filter, or to enable it for all cluster traffic you may simply specify it as a filter for
the <outgoing-message-handler> element.

Example 8–1 Enabling a Filter for all Network Traffic

<outgoing-message-handler>
 <use-filters>
 <filter-name>symmetric-encryption</filter-name>
 </use-filters>
</outgoing-message-handler>

The shared password may either be specified in the <filters> section of the
operational configuration file, or by using the
tangosol.coherence.security.password system property. See "Symmetric
Encryption Filter Parameters" on page 8-2 for additional configuration options.

Encryption Filters

8-2 Oracle Coherence Developer's Guide for Oracle Coherence

Symmetric Encryption Filter Parameters
The symmetric encryption filter supports the parameters listed in Table 8–1. See the
com.tangosol.net.security.PasswordBasedEncryptionFilter Javadoc for
additional configuration details.

PKCS Encryption Filter
This filter uses public key cryptography (asymmetric encryption) to protect the cluster
join protocol, and then switches over to much faster symmetric encryption for service
level data transfers. Unlike the symmetric encryption filter, there is no persisted shared
secret. The symmetric encryption key is randomly generated by the cluster's senior
member, and is securely transfer to authenticated cluster members as part of the
cluster join protocol. This encryption filter is suitable for deployments where
maintenance of a shared secret is not feasible.

In the default setup each cluster node must be configured with a Java Keystore from
which it may retrieve its identity Certificate and associated private key, and a set of
trusted Certificates for other cluster members. You can construct this keystore as
follows:

Create a Java Keystore and the local cluster member's password protected certificate
and private key.

keytool -genkey -alias local -keypass secret -keyalg rsa -storepass secret
-keystore ./keystore.jks

Export this public certificate for inclusion in all cluster members keystores.

keytool -export -alias local -keypass secret -storepass secret -keystore
./keystore.jks -rfc -file local.cert

Import the Certificates of other trusted cluster members. Each certificate must be
stored under a unique but otherwise unimportant alias.

keytool -import -alias remote_1 -storepass secret -keystore ./keystore.jks -file
local_1.cert
keytool -import -alias remote_2 -storepass secret -keystore ./keystore.jks -file

Table 8–1 Symmetric Encryption Filter Parameters

Parameter Name Value Description

algorithm Specifies the mechanism to use in deriving a secret key from the
above material. Default value is PBEWithMD5AndDES.

iterations Specifies the iteration count to use in deriving the key. Default
value is 32.

password Specifies the raw material used to generate the secret key.
Preconfigured is
tangosol.coherence.security.password. See
"Preconfigured Override Values" on page L-2

salt Specifies the salt to use in deriving the key. Default value is
nosecret.

Note: This filter requires the JVM be configured with a JCA public
key cryptography provider implementation such as Bouncy Castle,
which supports asymmetric block ciphers. See the JCA documentation
for details on installing and configuring JCA providers.

Encryption Filters

Network Filters 8-3

local_2.cert
keytool -import -alias remote_3 -storepass secret -keystore ./keystore.jks -file
local_3.cert

At this point you will have one keystore per cluster node, each containing a single
private key plus a full set of trusted public certificates. If new nodes are to be added to
the cluster the keystores of all existing nodes must be updated with the new node's
certificate.

Then configure the cluster to encrypt all traffic using this filter by specifying it in the
<outgoing-message-handler>.

<outgoing-message-handler>
 <use-filters>
 <filter-name>pkcs-encryption</filter-name>
 </use-filters>
</outgoing-message-handler>

The keystore and alias password can be specified either in the <filters> section of the
operational configuration file, or by using the
tangosol.coherence.security.password system property. See "PKCS
Encryption Filter Parameters" for additional configuration options.

Note unlike the Symmetric Encryption Filter, this filter is not currently supported by
Coherence*Extend, or on a service by service level.

PKCS Encryption Filter Parameters
The PKCS encryption filter supports the following parameters, see "Encryption Filters"
on page 8-1 section for examples, or the
com.tangosol.net.security.ClusterEncryptionFilter Javadoc for
additional configuration details.

Note: You may also choose to supply custom key and trust
management logic to eliminate the need for a full keystore per node.
See the implementation's documentation for details on customization.

Table 8–2 PKCS Encryption Filter Parameters

Parameter Name Description

asymmetricFilterClassName Specifies the asymmetric filter implementation. Default value is
com.tangosol.net.security.AsymmetricEncryptionF
ilter.

keyAlias Specifies the alias to use in reading the key from the keystore.

keyPassword Specifies the password to use in reading the key. Preconfigured
value is tangosol.coherence.security.password. See
"Preconfigured Override Values" on page L-2.

store Specifies the path to the KeyStore Default value is .keystore.

sharedKeySize Specifies the size of shared key. Default value is 112.

sharedKeyType Specifies the type of shared key. Default value is DESede.

storePassword Specifies the password to use to access the store If unspecified
value of keyPassword parameter will be used.

storeType Specifies the type of KeyStore. Default value is JKS.

Configuring Filters

8-4 Oracle Coherence Developer's Guide for Oracle Coherence

Configuring Filters
There are two steps to configuring a filter.

1. Declare the filter in the <filters> XML element of the
tangosol-coherence.xml file:

Example 8–2 Declaring a Filter in the tangosol-coherence.xml File

<filter>
 <filter-name>gzip</filter-name>
 <filter-class>com.tangosol.net.CompressionFilter</filter-class>
 <init-params>
 <init-param>
 <param-name>strategy</param-name>
 <param-value>gzip</param-value>
 </init-param>
 </init-params>
</filter>

For more information on the structure of the <filters> XML element of the
tangosol-coherence.xml file, see the documentation in the coherence.dtd
file, which is also located inside coherence.jar.

2. The second step is to attach the filter to one or more specific services, or to make
the filter global (for all services). To specify the filter for a specific service, for
example the ReplicatedCache service, add a <filter-name> element to the
<use-filters> element of the service declaration in the
tangosol-coherence.xml file:

Example 8–3 Attaching the Filter to a Service

<service>
 <service-type>ReplicatedCache</service-type>
 <service-component>ReplicatedCache</service-component>
 <use-filters>
 <filter-name>gzip</filter-name>
 </use-filters>
 <init-params>
 ...
 </init-params>
</service>

To add the filter to all services, do the same under the <outgoing-message-handler>
XML element instead of under a <service> XML element:

Example 8–4 Adding the Filter to All Services

<outgoing-message-handler>
 <use-daemon>false</use-daemon>
 <use-filters>
 <filter-name>gzip</filter-name>
 </use-filters>
</outgoing-message-handler>

transformation Specifies the transformation to use. Default value is
RSA/NONE/PKCS1Padding.

Table 8–2 (Cont.) PKCS Encryption Filter Parameters

Parameter Name Description

Creating a Custom Filter

Network Filters 8-5

Creating a Custom Filter
To create a new filter, create a Java class that implements the
com.tangosol.io.WrapperStreamFactory interface and optionally implements
the com.tangosol.run.xml.XmlConfigurable interface. The
WrapperStreamFactory interface provides the stream to be wrapped ("filtered") on
input (received message) or output (sending message) and expects a stream back that
wraps the original stream. These methods are called for each incoming and outgoing
message.

If the filter class implements the XmlConfigurable interface, then Coherence will
configure the filter after instantiating it. Example 8–5 illustrates a filter declaration in
the tangosol-coherence.xml file. If the filter is associated with a service type,
every time a new service is started of that type, Coherence will instantiate the
CompressionFilter class and will hold it with the service until the service stops. If
the filter is associated with all outgoing messages, Coherence will instantiate the filter
on startup and will hold it until the cluster stops.

Example 8–5 Configuration for a Custom Filter

<filter>
 <filter-name>my-gzip-filter</filter-name>
 <filter-class>com.tangosol.net.CompressionFilter</filter-class>
 <init-params>
 <init-param>
 <param-name>strategy</param-name>
 <param-value>gzip</param-value>
 </init-param>
 <init-param>
 <param-name>buffer-length</param-name>
 <param-value>1024</param-value>
 </init-param>
 </init-params>
</filter>

After instantiating the filter, Coherence will call the setConfig method (if the filter
implements XmlConfigurable) with the following XML element:

Example 8–6 Configuring a setConfig Call for a Filter

<config>
 <strategy>gzip</strategy>
 <buffer-length>1024</buffer-length>
</config>

Note: Filters should be used in an all-or-nothing manner: If one
cluster member is using a filter and other is not, the messaging
protocol will fail. You should stop the entire cluster before configuring
filters.

Creating a Custom Filter

8-6 Oracle Coherence Developer's Guide for Oracle Coherence

9

Priority Tasks 9-1

9Priority Tasks

Coherence Priority Tasks provide applications that have critical response time
requirements better control of the execution of processes within Coherence. Execution
and request timeouts can be configured to limit wait time for long running threads. In
addition, a custom task API allows applications to control queue processing. Note that
these features should be used with extreme caution because they can dramatically
effect performance and throughput of the data grid.

Priority Tasks — Timeouts
Care should be taken when configuring Coherence Task Execution timeouts, especially
for Coherence applications that pre-date this feature and thus do not handle timeout
exceptions. If a write-through in a CacheStore is blocked (for example, if a database
query is hung) and exceeds the configured timeout value, the Coherence Task
Manager will attempt to interrupt the execution of the thread and an exception will be
thrown. In a similar fashion, queries or aggregations that exceed configured timeouts
will be interrupted and an exception will be thrown. Applications that use this feature
should make sure that they handle these exceptions correctly to ensure system
integrity. Since this configuration is performed on a service by service basis, changing
these settings on existing caches/services not designed with this feature in mind
should be done with great care.

Configuring Execution Timeouts
When configuring Execution Timeouts these values need to be considered:
request-timeout, task-timeout, and the task-hung-threshold (see "Execution Timeout
Parameters"). The request-timeout is the amount of time the client will wait a request
to return. The task-timeout is the amount of time that the server will allow the thread
to execute before interrupting execution. The task-hung-threshold is the amount of
time that a thread can execute before the server reports the thread as "hung." "Hung"
threads are for reporting purposes only. These timeout settings are in milliseconds and
are configured in the coherence-cache-config.xml or by using command line
parameters.

Execution Timeout Parameters
Table 9–1 describes the execution timeout parameters.

Priority Tasks — Timeouts

9-2 Oracle Coherence Developer's Guide for Oracle Coherence

To set the distributed cache thread count to 7 with a task time out of 5000 milliseconds
and a task hung threshold of 10000 milliseconds, the following would need to be
added to the coherence-cache-config.xml for the node.

Example 9–1 Sample Task Time and Task Hung Configuration

<caching-schemes>
 <distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <thread-count>7</thread-count>
 <task-timeout>5000ms</task-timeout>
 <task-hung-threshold>10000ms</task-hung-threshold>
 </distributed-scheme>
</caching-schemes>

Setting the client request timeout to 15 milliseconds

Example 9–2 Sample Client Request Timeout Configuration

<distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <request-timeout>15000ms</request-timeout>
 </distributed-scheme>

Table 9–1 Execution Timeout Parameters

Parameter Name Description

<task-hung-threshold> Specifies the amount of time in milliseconds that a task can
execute before it is considered "hung". Note: A posted task that
has not yet started is never considered as hung. This attribute is
applied only if the Thread pool is used (the thread-count
value is positive).

<task-timeout> Specifies the default timeout value for tasks that can be
timed-out (for example, implement the PriorityTask
interface), but don't explicitly specify the task execution timeout
value. The task execution time is measured on the server side
and does not include the time spent waiting in a service backlog
queue before being started. This attribute is applied only if the
thread pool is used (the thread-count value is positive)

<request-timeout> Specifies the default timeout value for requests that can time-out
(for example, implement the PriorityTask interface), but
don't explicitly specify the request timeout value. The request
time is measured on the client side as the time elapsed from the
moment a request is sent for execution to the corresponding
server node(s) and includes the following:

1. The time it takes to deliver the request to an executing node
(server).

2. The interval between the time the task is received and
placed into a service queue until the execution starts.

3. The task execution time.

4. The time it takes to deliver a result back to the client.

Note: The request-timeout should always be longer than the
thread-hung-threshold or the task-timeout.

Priority Task Execution — Custom Objects

Priority Tasks 9-3

Command Line Options
The command line options can be used to set the service type default (such as
distributed cache, invocation, proxy, and so on) for the node. Table 9–2 describes the
options.

Priority Task Execution — Custom Objects
The PriorityTask interface enables you to control the ordering in which a service
schedules tasks for execution using a thread pool and hold their execution time to a
specified limit. Instances of PriorityTask typically also implement either the
Invocable or Runnable interface. Priority Task Execution is only relevant when a
task back log exists.

The API defines the following ways to schedule tasks for execution

■ SCHEDULE_STANDARD—a task will be scheduled for execution in a natural (based
on the request arrival time) order

■ SCHEDULE_FIRST—a task will be scheduled in front of any equal or lower
scheduling priority tasks and executed as soon as any of worker threads become
available

■ SCHEDULE_IMMEDIATE—a task will be immediately executed by any idle worker
thread; if all of them are active, a new thread will be created to execute this task

APIs for Creating Priority Task Objects
Coherence provides the following classes to help create priority task objects:

Table 9–2 Command Line Options for Setting Service Type

Option Description

tangosol.coherence.replicated.
request.timeout

The default client request timeout for the
Replicated cache service

tangosol.coherence.optimistic.
request.timeout

The default client request timeout for the
Optimistic cache service

tangosol.coherence.distributed.
request.timeout

The default client request timeout for
distributed cache services

tangosol.coherence.distributed.task.
timeout

The default server execution timeout for
distributed cache services

tangosol.coherence.distributed.task.
hung

The default time before a thread is reported
as hung by distributed cache services

tangosol.coherence.invocation.
request.timeout

The default client request timeout for
invocation services

tangosol.coherence.invocation.task.
hung

The default time before a thread is reported
as hung by invocation services

tangosol.coherence.invocation.task.
timeout

The default server execution timeout
invocation services

tangosol.coherence.proxy.request.
timeout

The default client request timeout for proxy
services

tangosol.coherence.proxy.task.
timeout

The default server execution timeout proxy
services

tangosol.coherence.proxy.task.hung The default time before a thread is reported
as hung by proxy services

Priority Task Execution — Custom Objects

9-4 Oracle Coherence Developer's Guide for Oracle Coherence

■ PriorityProcessor can be extended to create a custom entry processor.

■ PriorityFilter can be extended to create a custom priority filter.

■ PriorityAggregator can be extended to create a custom aggregation.

■ PriorityTask can be extended to create an priority invocation class.

After extending each of these classes the developer will need to implement several
methods. The return values for getRequestTimeoutMillis,
getExecutionTimeoutMillis, and getSchedulingPriority should be stored
on a class-by-class basis in your application configuration parameters. These methods
are described in Table 9–3.

Errors Thrown by Task Timeouts
When a task timeout occurs the node will get a RequestTimeoutException.
Example 9–3 illustrates an exception that may be thrown.

Table 9–3 Methods to Support Task Timeout

Method Description

public long
getRequestTimeoutMillis()

Obtains the maximum amount of time a calling thread is
willing to wait for a result of the request execution. The
request time is measured on the client side as the time
elapsed from the moment a request is sent for execution
to the corresponding server node(s) and includes: the
time it takes to deliver the request to the executing
node(s); the interval between the time the task is
received and placed into a service queue until the
execution starts; the task execution time; the time it
takes to deliver a result back to the client. The value of
TIMEOUT_DEFAULT indicates a default timeout value
configured for the corresponding service; the value of
TIMEOUT_NONE indicates that the client thread is
willing to wait indefinitely until the task execution
completes or is canceled by the service due to a task
execution timeout specified by the
getExecutionTimeoutMillis() value.

public long
getExecutionTimeoutMillis()

Obtains the maximum amount of time this task is
allowed to run before the corresponding service will
attempt to stop it. The value of TIMEOUT_DEFAULT
indicates a default timeout value configured for the
corresponding service; the value of TIMEOUT_NONE
indicates that this task can execute indefinitely. If, by the
time the specified amount of time passed, the task has
not finished, the service will attempt to stop the
execution by using the Thread.interrupt() method.
In the case that interrupting the thread does not result in
the task's termination, the runCanceled method will
be called.

public int
getSchedulingPriority()

Obtains this task's scheduling priority. Valid values are
SCHEDULE_STANDARD, SCHEDULE_FIRST, SCHEDULE_
IMMEDIATE

public void
runCanceled(boolean
fAbandoned)

This method will be called if and only if all attempts to
interrupt this task were unsuccessful in stopping the
execution or if the execution was canceled before it had
a chance to run at all. Since this method is usually called
on a service thread, implementors must exercise extreme
caution since any delay introduced by the
implementation will cause a delay of the corresponding
service.

Priority Task Execution — Custom Objects

Priority Tasks 9-5

Example 9–3 Exception Thrown by a TaskTimeout

com.tangosol.net.RequestTimeoutException: Request timed out after 4015 millis
 at com.tangosol.coherence.component.util.daemon.queueProcessor.Service.
checkRequestTimeout(Service.CDB:8)
 at com.tangosol.coherence.component.util.daemon.queueProcessor.Service.
poll(Service.CDB:52)
 at com.tangosol.coherence.component.util.daemon.queueProcessor.Service.
poll(Service.CDB:18)
 at com.tangosol.coherence.component.util.daemon.queueProcessor.service.
InvocationService.query(InvocationService.CDB:17)
 at com.tangosol.coherence.component.util.safeService.
SafeInvocationService.query(SafeInvocationService.CDB:1)

Priority Task Execution — Custom Objects

9-6 Oracle Coherence Developer's Guide for Oracle Coherence

10

Integrate CacheFactory with Spring 10-1

10Integrate CacheFactory with Spring

The CacheFactory static factory methods allow you to access all Coherence caches
and services. These methods, (such as getCache), delegate to a
ConfigurableCacheFactory interface, which is pluggable by using
CacheFactory.setConfigurableCacheFactory or the operational override file
(tangosol-coherence-override.xml).

In the Coherence cache configuration file, (coherence-cache-config.xml) hooks
are provided for end users to provide their own implementations of Coherence
interfaces, such as CacheStore and MapListener. This is configured by using the
class-scheme element. Coherence can instantiate these classes in two ways: it can
create a new instance by using the new operator, or it can invoke a user-provided
factory method.

For some applications, it may be useful for Coherence to retrieve objects configured in
a class-scheme from a Spring BeanFactory instead of creating its own instance. This
is especially true for cache servers configured with CacheStore objects running in a
standalone JVM, as these CacheStore objects typically need to be configured with
data sources, connection pools, and so on. Spring is well known for its ability to
provide easy configuration of data sources for plain Java objects.

SpringAwareCacheFactory is a custom ConfigurableCacheFactory which has
the ability to delegate class-scheme bean instantiations to a Spring BeanFactory. It has
two modes of operation:

■ It can instantiate its own ApplicationContext with a provided configuration
file. This is useful for cache servers that require beans from a Spring container.

■ A BeanFactory can be provided to it at runtime. This is useful for Coherence
applications running in a container that already has an existing BeanFactory.

To configure Coherence to use the SpringAwareCacheFactory, the following XML
code should be placed in the operational override file
(tangosol-coherence-override.xml):

Example 10–1 Configuring the Cache to use SpringAwareCacheFactory in the Override
File

<configurable-cache-factory-config>
 <class-name system-property="tangosol.coherence.cachefactory">
 com.tangosol.coherence.spring.SpringAwareCacheFactory
 </class-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value system-property="tangosol.coherence.cacheconfig">
 coherence-cache-config.xml

10-2 Oracle Coherence Developer's Guide for Oracle Coherence

 </param-value>
 </init-param>
 <init-param id="1">
 <param-type>java.lang.String</param-type>
 <param-value system-property="tangosol.coherence.springconfig">
 application-context.xml
 </param-value>
 </init-param>
 </init-params>
</configurable-cache-factory-config>

This will, by default, use coherence-cache-config.xml as the cache
configuration file and application-context.xml as the Spring configuration file.

As an alternative to using the configuration file, the SpringAwareCacheFactory
can be configured programmatically as illustrated inExample 10–2:

Example 10–2 Configuring a SpringAwareCacheFactory Programmatically

BeanFactory bf = ...
SpringAwareCacheFactory scf = new SpringAwareCacheFactory();

scf.setBeanFactory(bf);
CacheFactory.setConfigurableCacheFactory(scf);

Since the SpringAwareCacheFactory is BeanFactoryAware, it can also be
defined in an application context:

Example 10–3 Defining a SpringAwareCacheFactory in an Application Context

<bean id="cacheFactory"
 class="com.tangosol.coherence.spring.SpringAwareCacheFactory">
</bean>

Taking this a step further, the Coherence CacheFactory can be configured inside of
the application context:

Example 10–4 Configuring a CacheFactory in an Application Context

<bean class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">
 <property name="targetClass" value="com.tangosol.net.CacheFactory"/>
 <property name="targetMethod" value="setConfigurableCacheFactory"/>
 <property name="arguments" ref="cacheFactory"/>
</bean>

The application context may have a CacheStore configured as in Example 10–5. Note
that the EntityCacheStore is scoped as prototype. This is done because Coherence
will manage the lifecycle of the bean when it is retrieved from Spring, just as if
Coherence had instantiated the object using new.

Example 10–5 Configuring a CacheStore in an Application Context

<bean id="dataSource" class="...">
...
</bean>

<bean id="sessionFactory" class="...">
 <property name="dataSource" ref="dataSource"/>
 ...
</bean>

Integrate CacheFactory with Spring 10-3

<bean id="entityCacheStore"
 class="com.company.app.EntityCacheStore"
 scope="prototype">
 <property name="sessionFactory" ref="sessionFactory" />
</bean>

Coherence can use the entityCacheStore bean as illustrated in Example 10–6. By
using the init-param element, setter injection can be used to set properties on the
bean retrieved from Spring. In the above example, the bean will have the method
setEntityName invoked with the cache name before it is used by Coherence.

Example 10–6 Configuring Setter Injection to Set Properties on the Bean

<?xml version="1.0"?>

<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>com.company.app.domain.*</cache-name>
 <scheme-name>distributed-domain</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed-domain</scheme-name>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme />
 </internal-cache-scheme>
 <cachestore-scheme>
 <class-scheme>
 <class-name>spring-bean:entityCacheStore</class-name>
 <init-params>
 <init-param>
 <param-name>setEntityName</param-name>
 <param-value>{cache-name}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 <write-delay>5s</write-delay>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

Example 10–7 lists the source for SpringAwareCacheFactory. It requires Coherence
3.4.x and Spring 2.x.

Example 10–7 SpringAwareCacheFactory.java

/*
* SpringAwareCacheFactory.java

10-4 Oracle Coherence Developer's Guide for Oracle Coherence

*
* Copyright 2001-2007 by Oracle. All rights reserved.
*
* Oracle is a registered trademarks of Oracle Corporation and/or its affiliates.
*
* This software is the confidential and proprietary information of
* Oracle Corporation. You shall not disclose such confidential and
* proprietary information and shall use it only in accordance with the
* terms of the license agreement you entered into with Oracle.
*
* This notice may not be removed or altered.
*/
package com.tangosol.coherence.spring;

import com.tangosol.net.BackingMapManagerContext;
import com.tangosol.net.DefaultConfigurableCacheFactory;
import com.tangosol.run.xml.SimpleElement;
import com.tangosol.run.xml.XmlElement;
import com.tangosol.run.xml.XmlHelper;

import com.tangosol.util.ClassHelper;

import java.util.Iterator;

import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.BeanFactoryAware;

import org.springframework.context.support.AbstractApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import org.springframework.context.support.FileSystemXmlApplicationContext;

/**
* SpringAwareCacheFactory provides a facility to access caches declared
* in a "cache-config.dtd" compliant configuration file, similar to its super
* class {@link DefaultConfigurableCacheFactory}. In addition, this factory
* provides the ability to reference beans in a Spring application context
* by using the use of a class-scheme element.
*
* <p>This factory can be configured to start its own Spring application
* context from which to retrieve these beans. This can be useful for standalone
* JVMs such as cache servers. It can also be configured at runtime with a
* preconfigured Spring bean factory. This can be useful for Coherence
* applications running in an environment that is itself responsible for starting
* the Spring bean factory, such as a web container.
*
* @see #instantiateAny(CacheInfo, XmlElement,
 BackingMapManagerContext, ClassLoader)
*
* @author pperalta Jun 14, 2007
*/
public class SpringAwareCacheFactory
 extends DefaultConfigurableCacheFactory
 implements BeanFactoryAware
 {
 // ----- constructors ---

 /**
 * Construct a default DefaultConfigurableCacheFactory using the
 * default configuration file name.
 */

Integrate CacheFactory with Spring 10-5

 public SpringAwareCacheFactory()
 {
 super();
 }

 /**
 * Construct a SpringAwareCacheFactory using the specified path to
 * a "cache-config.dtd" compliant configuration file or resource. This
 * will also create a Spring ApplicationContext based on the supplied
 * path to a Spring compliant configuration file or resource.
 *
 * @param sCacheConfig location of a cache configuration
 * @param sAppContext location of a Spring application context
 */
 public SpringAwareCacheFactory(String sCacheConfig, String sAppContext)
 {
 super(sCacheConfig);

 azzert(sAppContext != null && sAppContext.length() > 0,
 "Application context location required");

 m_beanFactory = sCacheConfig.startsWith("file:") ? (BeanFactory)
 new FileSystemXmlApplicationContext(sCacheConfig) :
 new ClassPathXmlApplicationContext(sAppContext);

 // register a shutdown hook so the bean factory cleans up
 // upon JVM exit
 ((AbstractApplicationContext) m_beanFactory).registerShutdownHook();
 }

 /**
 * Construct a SpringAwareCacheFactory using the specified path to
 * a "cache-config.dtd" compliant configuration file or resource and
 * the supplied Spring BeanFactory.
 *
 * @param sPath the configuration resource name or file path
 * @param beanFactory Spring BeanFactory used to load Spring beans
 */
 public SpringAwareCacheFactory(String sPath, BeanFactory beanFactory)
 {
 super(sPath);

 m_beanFactory = beanFactory;
 }

 // ----- extended methods ---

 /**
 * Create an Object using the "class-scheme" element.
 * <p/>
 * In addition to the functionality provided by the super class,
 * this will retreive an object from the configured Spring BeanFactory
 * for class names that use the following format:
 * <pre>
 * <class-name>spring-bean:sampleCacheStore</class-name>
 * </pre>
 *
 * Parameters may be passed to these beans by using setter injection as well:
 * <pre>
 * <init-params>

10-6 Oracle Coherence Developer's Guide for Oracle Coherence

 * <init-param>
 * <param-name>setEntityName</param-name>
 * <param-value>{cache-name}</param-value>
 * </init-param>
 * </init-params>
 * </pre>
 *
 * Note that Coherence will manage the lifecycle of the instantiated Spring
 * bean, therefore any beans that are retreived using this method should be
 * scoped as a prototype in the Spring configuration file, for example:
 * <pre>
 * <bean id="sampleCacheStore"
 * class="com.company.SampleCacheStore"
 * scope="prototype"/>
 * </pre>
 *
 * @param info the cache info
 * @param xmlClass "class-scheme" element.
 * @param context BackingMapManagerContext to be used
 * @param loader the ClassLoader to instantiate necessary classes
 *
 * @return a newly instantiated Object
 *
 * @see DefaultConfigurableCacheFactory#instantiateAny(
 * CacheInfo, XmlElement, BackingMapManagerContext, ClassLoader)
 */
 protected Object instantiateAny(CacheInfo info, XmlElement xmlClass,
 BackingMapManagerContext context, ClassLoader loader)
 {
 if (translateSchemeType(xmlClass.getName()) != SCHEME_CLASS)
 {
 throw new IllegalArgumentException(
 "Invalid class definition: " + xmlClass);
 }

 String sClass = xmlClass.getSafeElement("class-name").getString();

 if (sClass.startsWith(SPRING_BEAN_PREFIX))
 {
 String sBeanName = sClass.substring(SPRING_BEAN_PREFIX.length());

 azzert(sBeanName != null && sBeanName.length() > 0,
 "Bean name required");

 XmlElement xmlParams = xmlClass.getElement("init-params");
 XmlElement xmlConfig = null;
 if (xmlParams != null)
 {
 xmlConfig = new SimpleElement("config");
 XmlHelper.transformInitParams(xmlConfig, xmlParams);
 }

 Object oBean = getBeanFactory().getBean(sBeanName);
 if (xmlConfig != null)
 {
 for (Iterator iter = xmlConfig.getElementList().iterator();
iter.hasNext();)
 {
 XmlElement xmlElement = (XmlElement) iter.next();

Integrate CacheFactory with Spring 10-7

 String sMethod = xmlElement.getName();
 String sParam = xmlElement.getString();
 try
 {
 ClassHelper.invoke(oBean, sMethod, new Object[]{sParam});
 }
 catch (Exception e)
 {
 ensureRuntimeException(e,"Could not invoke " + sMethod +
 "(" + sParam + ") on bean " + oBean);
 }
 }
 }
 return oBean;
 }
 else
 {
 return super.instantiateAny(info, xmlClass, context, loader);
 }
 }

 /**
 * Get the Spring BeanFactory used by this CacheFactory
 * @return the Spring {@link BeanFactory} used by this CacheFactory
 */
 public BeanFactory getBeanFactory()
 {
 azzert(m_beanFactory != null, "Spring BeanFactory == null");
 return m_beanFactory;
 }

 /**
 * Set the Spring BeanFactory used by this CacheFactory
 * @param beanFactory the Spring {@link BeanFactory} used by this CacheFactory
 */
 public void setBeanFactory(BeanFactory beanFactory)
 {
 m_beanFactory = beanFactory;
 }

 // ----- data fields --

 /**
 * Spring BeanFactory used by this CacheFactory
 */
 private BeanFactory m_beanFactory;

 /**
 * Prefix used in cache configuration "class-name" element to indicate
 * this bean is in Spring
 */
 private static final String SPRING_BEAN_PREFIX = "spring-bean:";
 }

10-8 Oracle Coherence Developer's Guide for Oracle Coherence

11

Specifying a Custom Eviction Policy 11-1

11Specifying a Custom Eviction Policy

The LocalCache class is used for size-limited caches. It is used both for caching
on-heap objects (as in a local cache or the front portion of a near cache) and as the
backing map for a partitioned cache. Applications can provide custom eviction
policies for use with a LocalCache.

Note that Coherence's default eviction policy is very effective for most workloads; the
majority of applications will not need to provide a custom policy. Generally, it is best
to restrict the use of eviction policies to scenarios where the evicted data is present in a
backing system (that is, the back portion of a near cache or a database). Eviction
should be treated as a physical operation (freeing memory) and not a logical operation
(deleting an entity).

Example 11–1 shows the implementation of a simple custom eviction policy:

Example 11–1 Implementing a Custom Eviction Policy

import com.tangosol.net.cache.CacheEvent;
import com.tangosol.net.cache.LocalCache;
import com.tangosol.net.cache.OldCache;
import com.tangosol.util.AbstractMapListener;
import com.tangosol.util.MapEvent;

import java.util.Iterator;

public class MyEvictionPolicy extends AbstractMapListener implements
OldCache.EvictionPolicy
 {
 LocalCache m_cache = null;

 public void entryInserted(MapEvent evt)
 {
 System.out.println("entryInserted:" + isSynthetic(evt) + evt);
 if (m_cache == null)
 {
 m_cache = (LocalCache) evt.getMap();
 }
 }

 public void entryUpdated(MapEvent evt)
 {
 System.out.println("entryUpdated:" + isSynthetic(evt) + evt);
 }

 public void entryDeleted(MapEvent evt)
 {
 System.out.println("entryDeleted:" + isSynthetic(evt) + evt);

11-2 Oracle Coherence Developer's Guide for Oracle Coherence

 }

 String isSynthetic(MapEvent evt)
 {
 // synthetic events are caused by internal processing - eviction or
loading
 return ((CacheEvent) evt).isSynthetic() ? " SYNTHETIC " : " ";
 }

 public void entryTouched(OldCache.Entry entry)
 {
 System.out.println("entryTouched:" + entry.getKey());
 }

 public void requestEviction(int cMaximum)
 {
 int cCurrent = m_cache.getUnits();
 System.out.println("requestEviction: current:" + cCurrent + " to:" +
cMaximum);

 //
 // ... eviction policy calculations ...
 //
 for (Iterator iter = m_cache.entrySet().iterator(); iter.hasNext();)
 {
 OldCache.Entry entry = (OldCache.Entry) iter.next();
 if (m_cache.getUnits() > cMaximum)
 {
 m_cache.evict(entry.getKey());
 }
 else
 {
 break;
 }
 }
 }

 public MyEvictionPolicy()
 {
 }

 }

Example 11–2 illustrates a Coherence cache configuration file
(coherence-cache-config.xml) with an eviction policy:

Example 11–2 Custom Eviction Policy in a coherence-cache-config.xml File

<?xml version="1.0"?>

<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>test</cache-name>
 <scheme-name>example-near</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

Specifying a Custom Eviction Policy 11-3

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>

 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>example-backing-map</scheme-ref>
 </local-scheme>
 </backing-map-scheme>

 <autostart>true</autostart>
 </distributed-scheme>

 <near-scheme>
 <scheme-name>example-near</scheme-name>

 <front-scheme>
 <local-scheme>
 <eviction-policy>
 <class-scheme>
 <class-name>MyEvictionPolicy</class-name>
 </class-scheme>
 </eviction-policy>
 <high-units>10</high-units>
 </local-scheme>
 </front-scheme>

 <back-scheme>
 <distributed-scheme>
 <scheme-ref>example-distributed</scheme-ref>
 </distributed-scheme>
 </back-scheme>

 <invalidation-strategy>all</invalidation-strategy>
 <autostart>true</autostart>
 </near-scheme>

 <local-scheme>
 <scheme-name>example-backing-map</scheme-name>
 <eviction-policy>HYBRID</eviction-policy>
 <high-units>{back-size-limit 0}</high-units>
 <expiry-delay>{back-expiry 1h}</expiry-delay>
 <flush-delay>1m</flush-delay>
 <cachestore-scheme></cachestore-scheme>
 </local-scheme>
 </caching-schemes>
</cache-config>

11-4 Oracle Coherence Developer's Guide for Oracle Coherence

12

Serialization Paged Cache 12-1

12Serialization Paged Cache

Oracle Coherence provides explicit support for efficient caching of huge amounts of
automatically-expiring data using potentially high-latency storage mechanisms such
as disk files. The benefits include supporting much larger data sets than can be
managed in memory, while retaining an efficient expiry mechanism for timing out the
management (and automatically freeing the resources related to the management) of
that data. Optimal usage scenarios include the ability to store many large objects, XML
documents or content that will be rarely accessed, or whose accesses will tolerate a
higher latency if the cached data has been paged to disk.

Understanding Serialization Paged Cache
This feature is known as a Serialization Paged Cache:

■ Serialization implies that objects stored in the cache are serialized and stored in a
Binary Store; refer to the existing features Serialization Map and Serialization Cache.

■ Paged implies that the objects stored in the cache are segmented for efficiency of
management; in this case, the pages represent periods of time such that the cache
could be divided into pages of one hour each.

■ Cache implies that there can be limits specified to the size of the cache; in this case,
the limit is the maximum number of concurrent pages that the cache will manage
before expiring pages, starting with the oldest page.

The result is a feature that organizes data in the cache based on the time that the data
was placed in the cache, and then is capable of efficiently expiring that data from the
cache, an entire page at a time, and typically without having to reload any data from
disk.

Configuring Serialization Paged Cache
The primary configuration for the Serialization Paged Cache is composed of two
parameters: The number of pages that the cache will manage, and the length of time
represented by each page. For example, to cache data for one day, the cache can be
configured as 24 pages of one hour each, or 96 pages of 15 minutes each, and so on.

Each page of data in the cache is managed by a separate Binary Store. The cache
requires a Binary Store Manager, which provides the means to create and destroy these
Binary Stores. Coherence provides Binary Store Managers for all of the built-in Binary
Store implementations, including disk (referred to as "LH") and the various NIO
implementations.

Optimizing a Partitioned Cache Service

12-2 Oracle Coherence Developer's Guide for Oracle Coherence

Optimizing a Partitioned Cache Service
Coherence provides an optimization for the partitioned cache service, since - when it is
used to back a partitioned cache—the data being stored in any of the Serialization
Maps and Caches is entirely binary in form. This is called the Binary Map
optimization, and when it is enabled, it gives the Serialization Map, the Serialization
Cache and the Serialization Paged Cache permission to assume that all data being
stored in the cache is binary. The result of this optimization is a lower CPU and
memory utilization, and also slightly higher performance.

Configuring for High Availability
Explicit support is also provided in the Serialization Paged Cache for the
high-availability features of the partitioned cache service, by providing a configuration
that can be used for the primary storage of the data and a configuration that is
optimized for the backup storage of the data. The configuration for the backup storage
is known as a passive model, because it does not actively expire data from its storage,
but rather reflects the expiration that is occurring on the primary cache storage. When
using the high-availability data feature (a backup count of one or greater; the default is
one) for a partitioned cache service, and using the Serialization Paged Cache as the
backing storage for the service, we strongly suggest that you also use the Serialization
Paged Cache as the backup store, and configure the backup with the passive option.

Configuring Load Balancing and Failover
When used with the distributed cache service, special considerations should be made
for load balancing and failover purposes. The partition-count parameter of the
distributed cache service should be set higher than normal if the amount of cache data
is very large or huge; that will break up the overall cache into smaller chunks for
load-balancing and recovery processing due to failover. For example, if the cache is
expected to be one terabyte in size, twenty thousand partitions will break the cache up
into units averaging about 50MB in size. If a unit (the size of a partition) is too large, it
will cause an out-of-memory condition when load-balancing the cache. (Remember to
make sure that the partition count is a prime number; see
http://primes.utm.edu/lists/small/ for lists of prime numbers that you can use.)

Supporting Huge Caches
To support huge caches (for example, terabytes) of expiring data, the expiration
processing is performed concurrently on a daemon thread with no interruption to the
cache processing. The result is that many thousands or millions of objects can exist in a
single cache page, and they can be expired asynchronously, thus avoiding any
interruption of service. The daemon thread is an option that is enabled by default, but
it can be disabled.

When the cache is used for large amounts of data, the pages will typically be
disk-backed. Since the cache eventually expires each page, thus releasing the disk
resources, the cache uses a virtual erase optimization by default. This means that data
that is explicitly removed or expired from the cache is not actually removed from the
underlying Binary Store, but when a page (a Binary Store) is completely emptied, it
will be erased in its entirety. This reduces I/O by a considerable margin, particularly
during expiry processing and during operations such as load-balancing that have to
redistribute large amounts of data within the cluster. The cost of this optimization is
that the disk files (if a disk-based Binary Store option is used) will tend to be larger
than the data that they are managing would otherwise imply; since disk space is

Supporting Huge Caches

Serialization Paged Cache 12-3

considered to be inexpensive compared to other factors such as response times, the
virtual erase optimization is enabled by default, but it can be disabled. Note that the
disk space is typically allocated locally to each server, and thus a terabyte cache
partitioned over one hundred servers would only use about 20GB of disk space per
server (10GB for the primary store and 10GB for the backup store, assuming one level
of backup.)

Supporting Huge Caches

12-4 Oracle Coherence Developer's Guide for Oracle Coherence

13

Pre-Loading the Cache 13-1

13Pre-Loading the Cache

This section describes different patterns you can use to pre-load the cache. The
patterns include bulk loading and distributed loading.

Performing Bulk Loading and Processing
Example 13–5, PagedQuery.java, demonstrates techniques for efficiently bulk
loading and processing items in a Coherence Cache.

Bulk Writing to a Cache
A common scenario when using Coherence is to pre-populate a cache before the
application uses it. A simple way to do this is illustrated by the Java code in
Example 13–1:

Example 13–1 Pre-Loading a Cache

public static void bulkLoad(NamedCache cache, Connection conn)
 {
 Statement s;
 ResultSet rs;

 try
 {
 s = conn.createStatement();
 rs = s.executeQuery("select key, value from table");
 while (rs.next())
 {
 Integer key = new Integer(rs.getInt(1));
 String value = rs.getString(2);
 cache.put(key, value);
 }
 ...
 }
 catch (SQLException e)
 {...}
 }

This technique works, but each call to put may result in network traffic, especially for
partitioned and replicated caches. Additionally, each call to put will return the object it
just replaced in the cache (per the java.util.Map interface) which will add
more unnecessary overhead. Loading the cache can be made much more efficient by
using the ConcurrentMap.putAll method instead. This is illustrated in
Example 13–2:

Performing Bulk Loading and Processing

13-2 Oracle Coherence Developer's Guide for Oracle Coherence

Example 13–2 Pre-Loading a Cache Using ConcurrentMap.putAll

public static void bulkLoad(NamedCache cache, Connection conn)
 {
 Statement s;
 ResultSet rs;
 Map buffer = new HashMap();

 try
 {
 int count = 0;
 s = conn.createStatement();
 rs = s.executeQuery("select key, value from table");
 while (rs.next())
 {
 Integer key = new Integer(rs.getInt(1));
 String value = rs.getString(2);
 buffer.put(key, value);

 // this loads 1000 items at a time into the cache
 if ((count++ % 1000) == 0)
 {
 cache.putAll(buffer);
 buffer.clear();
 }
 }
 if (!buffer.isEmpty())
 {
 cache.putAll(buffer);
 }
 ...
 }
 catch (SQLException e)
 {...}
 }

Efficient processing of filter results
Coherence provides the ability to query caches based on criteria by using the Filter
API. Here is an example (given entries with integers as keys and strings as values):

Example 13–3 Using a Filter to Query a Cache

NamedCache c = CacheFactory.getCache("test");

// Search for entries that start with 'c'
Filter query = new LikeFilter(IdentityExtractor.INSTANCE, "c%", '\\', true);

// Perform query, return all entries that match
Set results = c.entrySet(query);
for (Iterator i = results.iterator(); i.hasNext();)
 {
 Map.Entry e = (Map.Entry) i.next();
 out("key: "+e.getKey() + ", value: "+e.getValue());
 }

This example works for small data sets, but it may encounter problems, such as
running out of heap space, if the data set is too large. Example 13–4 illustrates a
pattern to process query results in batches to avoid this problem:

Performing Bulk Loading and Processing

Pre-Loading the Cache 13-3

Example 13–4 Processing Query Results in Batches

public static void performQuery()
 {
 NamedCache c = CacheFactory.getCache("test");

 // Search for entries that start with 'c'
 Filter query = new LikeFilter(IdentityExtractor.INSTANCE, "c%", '\\', true);

 // Perform query, return keys of entries that match
 Set keys = c.keySet(query);

 // The amount of objects to process at a time
 final int BUFFER_SIZE = 100;

 // Object buffer
 Set buffer = new HashSet(BUFFER_SIZE);

 for (Iterator i = keys.iterator(); i.hasNext();)
 {
 buffer.add(i.next());

 if (buffer.size() >= BUFFER_SIZE)
 {
 // Bulk load BUFFER_SIZE number of objects from cache
 Map entries = c.getAll(buffer);

 // Process each entry
 process(entries);

 // Done processing these keys, clear buffer
 buffer.clear();
 }
 }
 // Handle the last partial chunk (if any)
 if (!buffer.isEmpty())
 {
 process(c.getAll(buffer));
 }
 }

public static void process(Map map)
 {
 for (Iterator ie = map.entrySet().iterator(); ie.hasNext();)
 {

 Map.Entry e = (Map.Entry) ie.next();
 out("key: "+e.getKey() + ", value: "+e.getValue());
 }
 }

In this example, all keys for entries that match the filter are returned, but only
BUFFER_SIZE (in this case, 100) entries are retrieved from the cache at a time.

Note that LimitFilter can be used to process results in parts, similar to the example
above. However LimitFilter is meant for scenarios where the results will be paged,
such as in a user interface. It is not an efficient means to process all data in a query
result.

Performing Bulk Loading and Processing

13-4 Oracle Coherence Developer's Guide for Oracle Coherence

A Bulk Loading and Processing Example
Example 13–5 illustrates PagedQuery.java, a sample program that demonstrates the
concepts described in the previous section.

To run the example, follow these steps:

1. Save the following Java file as com/tangosol/examples/PagedQuery.java

2. Point the classpath to the Coherence libraries and the current directory

3. Compile and run the example

Example 13–5 A Sample Bulk Loading Program

package com.tangosol.examples;

import com.tangosol.net.CacheFactory;
import com.tangosol.net.NamedCache;
import com.tangosol.net.cache.NearCache;
import com.tangosol.util.Base;
import com.tangosol.util.Filter;
import com.tangosol.util.filter.LikeFilter;

import java.io.Serializable;

import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Random;
import java.util.Set;
import java.util.HashSet;

/**
* This sample application demonstrates the following:
*
*
* Obtaining a back cache from a near cache for populating a cache.
* Since the near cache holds a limited subset of the data in a cache it is
* more efficient to bulk load data directly into the back cache instead of
* the near cache.
*
*
* Populating a cache in bulk using <tt>putAll</tt>.
* This is more efficient than <tt>put</tt> for a large amount of entries.
*
*
* Executing a filter against a cache and processing the results in bulk.
* This sample issues a query against the cache using a filter. The result is
* a set of keys that represent the query results. Instead of iterating
* through the keys and loading each item individually with a <tt>get</tt>,
* this sample loads entries from the cache in bulk using <tt>getAll</tt> which
* is more efficient.
*
*
* @author cp
*/
public class PagedQuery
 extends Base
 {
 /**

Performing Bulk Loading and Processing

Pre-Loading the Cache 13-5

 * Command line execution entry point.
 */
 public static void main(String[] asArg)
 {
 NamedCache cacheContacts = CacheFactory.getCache("contacts",
 Contact.class.getClassLoader());

 populateCache(cacheContacts);

 executeFilter(cacheContacts);

 CacheFactory.shutdown();
 }

 // ----- populate the cache ---

 /**
 * Populate the cache with test data. This example shows how to populate
 * the cache a chunk at a time using {@link NamedCache#putAll} which is more
 * efficient than {@link NamedCache#put}.
 *
 * @param cacheDirect the cache to populate. Note that this should not
 * be a near cache since that will thrash the cache
 * if the load size exceeds the near cache max size.
 */
 public static void populateCache(NamedCache cacheDirect)
 {
 if (cacheDirect.isEmpty())
 {
 Map mapBuffer = new HashMap();
 for (int i = 0; i < 100000; ++i)
 {
 // make up some fake data
 Contact contact = new Contact();
 contact.setName(getRandomName() + ' ' + getRandomName());
 contact.setPhone(getRandomPhone());
 mapBuffer.put(new Integer(i), contact);

 // this loads 1000 items at a time into the cache
 if ((i % 1000) == 0)
 {
 out("Adding "+mapBuffer.size()+" entries to cache");
 cacheDirect.putAll(mapBuffer);
 mapBuffer.clear();
 }
 }
 if (!mapBuffer.isEmpty())
 {
 cacheDirect.putAll(mapBuffer);
 }
 }
 }

 /**
 * Creates a random name.
 *
 * @return a random string between 4 to 11 chars long
 */
 public static String getRandomName()
 {

Performing Bulk Loading and Processing

13-6 Oracle Coherence Developer's Guide for Oracle Coherence

 Random rnd = getRandom();
 int cch = 4 + rnd.nextInt(7);
 char[] ach = new char[cch];
 ach[0] = (char) ('A' + rnd.nextInt(26));
 for (int of = 1; of < cch; ++of)
 {
 ach[of] = (char) ('a' + rnd.nextInt(26));
 }
 return new String(ach);
 }

 /**
 * Creates a random phone number
 *
 * @return a random string of integers 10 chars long
 */
 public static String getRandomPhone()
 {
 Random rnd = getRandom();
 return "("
 + toDecString(100 + rnd.nextInt(900), 3)
 + ") "
 + toDecString(100 + rnd.nextInt(900), 3)
 + "-"
 + toDecString(10000, 4);
 }

 // ----- process the cache --

 /**
 * Query the cache and process the results in batches. This example
 * shows how to load a chunk at a time using {@link NamedCache#getAll}
 * which is more efficient than {@link NamedCache#get}.
 *
 * @param cacheDirect the cache to issue the query against
 */
 private static void executeFilter(NamedCache cacheDirect)
 {
 Filter query = new LikeFilter("getName", "C%");

 // Let's say we want to process 100 entries at a time
 final int CHUNK_COUNT = 100;

 // Start by querying for all the keys that match
 Set setKeys = cacheDirect.keySet(query);

 // Create a collection to hold the "current" chunk of keys
 Set setBuffer = new HashSet();

 // Iterate through the keys
 for (Iterator iter = setKeys.iterator(); iter.hasNext();)
 {
 // Collect the keys into the current chunk
 setBuffer.add(iter.next());

 // handle the current chunk when it gets big enough
 if (setBuffer.size() >= CHUNK_COUNT)
 {
 // Instead of retrieving each object with a get,
 // retrieve a chunk of objects at a time with a getAll.

Performing Bulk Loading and Processing

Pre-Loading the Cache 13-7

 processContacts(cacheDirect.getAll(setBuffer));
 setBuffer.clear();
 }
 }

 // Handle the last partial chunk (if any)
 if (!setBuffer.isEmpty())
 {
 processContacts(cacheDirect.getAll(setBuffer));
 }
 }

 /**
 * Process the map of contacts. In a real application some sort of
 * processing for each map entry would occur. In this example each
 * entry is logged to output.
 *
 * @param map the map of contacts to be processed
 */
 public static void processContacts(Map map)
 {
 out("processing chunk of " + map.size() + " contacts:");
 for (Iterator iter = map.entrySet().iterator(); iter.hasNext();)
 {
 Map.Entry entry = (Map.Entry) iter.next();
 out(" [" + entry.getKey() + "]=" + entry.getValue());
 }
 }

 // ----- inner classes --

 /**
 * Sample object used to populate cache
 */
 public static class Contact
 extends Base
 implements Serializable
 {
 public Contact() {}

 public String getName()
 {
 return m_sName;
 }
 public void setName(String sName)
 {
 m_sName = sName;
 }

 public String getPhone()
 {
 return m_sPhone;
 }
 public void setPhone(String sPhone)
 {
 m_sPhone = sPhone;
 }

 public String toString()
 {

Performing Bulk Loading and Processing

13-8 Oracle Coherence Developer's Guide for Oracle Coherence

 return "Contact{"
 + "Name=" + getName()
 + ", Phone=" + getPhone()
 + "}";
 }

 public boolean equals(Object o)
 {
 if (o instanceof Contact)
 {
 Contact that = (Contact) o;
 return equals(this.getName(), that.getName())
 && equals(this.getPhone(), that.getPhone());
 }
 return false;
 }

 public int hashCode()
 {
 int result;
 result = (m_sName != null ? m_sName.hashCode() : 0);
 result = 31 * result + (m_sPhone != null ? m_sPhone.hashCode() : 0);
 return result;
 }

 private String m_sName;
 private String m_sPhone;
 }
 }

Example 13–6 illustrates the terminal output from Coherence when you compile and
run the example:

Example 13–6 Terminal Output from the Bulk Loading Program

$ export COHERENCE_HOME=[**Coherence install directory**]

$ export CLASSPATH=$COHERENCE_HOME/lib/coherence.jar:.

$ javac com/tangosol/examples/PagedQuery.java

$ java com.tangosol.examples.PagedQuery

2008-09-15 12:19:44.156 Oracle Coherence 3.4/405 <Info> (thread=main, member=n/a):
Loaded operational configuration from
 resource "jar:file:/C:/coherence/lib/coherence.jar!/tangosol-coherence.xml"
2008-09-15 12:19:44.171 Oracle Coherence 3.4/405 <Info> (thread=main, member=n/a):
Loaded operational overrides from
resource
"jar:file:/C:/coherence/lib/coherence.jar!/tangosol-coherence-override-dev.xml"
2008-09-15 12:19:44.171 Oracle Coherence 3.4/405 <D5> (thread=main, member=n/a):
Optional configuration override
"/tangosol-coherence-override.xml" is not specified

Oracle Coherence Version 3.4/405
 Grid Edition: Development mode
Copyright (c) 2000-2008 Oracle. All rights reserved.

2008-09-15 12:19:44.812 Oracle Coherence GE 3.4/405 <D5> (thread=Cluster,
member=n/a): Service Cluster joined the cluster

Performing Distributed Bulk Loading

Pre-Loading the Cache 13-9

with senior service member n/a
2008-09-15 12:19:48.062 Oracle Coherence GE 3.4/405 <Info> (thread=Cluster,
member=n/a): Created a new cluster with
Member(Id=1, Timestamp=2008-09-15 12:19:44.609, Address=xxx.xxx.x.xxx:8088,
MachineId=26828, Edition=Grid Edition,
Mode=Development, CpuCount=2, SocketCount=1)
UID=0xC0A800CC00000112B9BC9B6168CC1F98
Adding 1024 entries to cache
Adding 1024 entries to cache

...repeated many times...

Adding 1024 entries to cache
Adding 1024 entries to cache
Adding 1024 entries to cache
processing chunk of 100 contacts:
 [25827]=Contact{Name=Cgkyleass Kmknztk, Phone=(285) 452-0000}
 [4847]=Contact{Name=Cyedlujlc Ruexrtgla, Phone=(255) 296-0000}
...repeated many times
 [33516]=Contact{Name=Cjfwlxa Wsfhrj, Phone=(683) 968-0000}
 [71832]=Contact{Name=Clfsyk Dwncpr, Phone=(551) 957-0000}
processing chunk of 100 contacts:
 [38789]=Contact{Name=Cezmcxaokf Kwztt, Phone=(725) 575-0000}
 [87654]=Contact{Name=Cuxcwtkl Tqxmw, Phone=(244) 521-0000}
...repeated many times
 [96164]=Contact{Name=Cfpmbvq Qaxty, Phone=(596) 381-0000}
 [29502]=Contact{Name=Cofcdfgzp Nczpdg, Phone=(563) 983-0000}
...
processing chunk of 80 contacts:
 [49179]=Contact{Name=Czbjokh Nrinuphmsv, Phone=(140) 353-0000}
 [84463]=Contact{Name=Cyidbd Rnria, Phone=(571) 681-0000}
...
 [2530]=Contact{Name=Ciazkpbos Awndvrvcd, Phone=(676) 700-0000}
 [9371]=Contact{Name=Cpqo Rmdw, Phone=(977) 729-0000}

Performing Distributed Bulk Loading
When pre-populating a Coherence partitioned cache with a large data set, it may be
more efficient to distribute the work to Coherence cluster members. Distributed
loading will allow for higher data throughput rates to the cache by leveraging the
aggregate network bandwidth and CPU power of the cluster. When performing a
distributed load, the application will need to decide on the following:

■ which cluster members will perform the load

■ how to divide the data set among the members

The application should consider the load that will be placed on the underlying data
source (such as a database or file system) when selecting members and dividing work.
For example, a single database can easily be overwhelmed if too many members
execute queries concurrently.

A Distributed Bulk Loading Example
This section outlines the general steps to perform a simple distributed load. The
example assumes that the data is stored in files and will be distributed to all
storage-enabled members of a cluster.

Performing Distributed Bulk Loading

13-10 Oracle Coherence Developer's Guide for Oracle Coherence

1. Retrieve the set of storage-enabled members. For example, the following method
uses the getStorageEnabledMembers method to retrieve the storage-enabled
members of a distributed cache.

Example 13–7 Retrieving Storage-Enabled Members of the Cache

protected Set getStorageMembers(NamedCache cache)
 {
 return ((DistributedCacheService) cache.getCacheService())
 .getStorageEnabledMembers();
 }

2. Divide the work among the storage enabled cluster members. For example, the
following routine returns a map, keyed by member, containing a list of files
assigned to that member.

Example 13–8 Routine to Get a List of Files Assigned to a Cache Member

protected Map<Member, List<String>> divideWork(Set members, List<String>
fileNames)
 {
 Iterator i = members.iterator();
 Map<Member, List<String>> mapWork = new HashMap(members.size());
 for (String sFileName : fileNames)
 {
 Member member = (Member) i.next();
 List<String> memberFileNames = mapWork.get(member);
 if (memberFileNames == null)
 {
 memberFileNames = new ArrayList();
 mapWork.put(member, memberFileNames);
 }
 memberFileNames.add(sFileName);

 // recycle through the members
 if (!i.hasNext())
 {
 i = members.iterator();
 }
 }
 return mapWork;
 }

3. Launch a task that will perform the load on each member. For example, use
Coherence's InvocationService to launch the task. In this case, the
implementation of LoaderInvocable will need to iterate through
memberFileNames and process each file, loading its contents into the cache. The
cache operations normally performed on the client will need to be executed
through the LoaderInvocable.

Example 13–9 Class to Load Each Member of the Cache

public void load()
 {
 NamedCache cache = getCache();

 Set members = getStorageMembers(cache);

 List<String> fileNames = getFileNames();

Performing Distributed Bulk Loading

Pre-Loading the Cache 13-11

 Map<Member, List<String>> mapWork = divideWork(members, fileNames);

 InvocationService service = (InvocationService)
 CacheFactory.getService("InvocationService");

 for (Map.Entry<Member, List<String>> entry : mapWork.entrySet())
 {
 Member member = entry.getKey();
 List<String> memberFileNames = entry.getValue();

 LoaderInvocable task = new LoaderInvocable(memberFileNames,
cache.getCacheName());
 service.execute(task, Collections.singleton(member), this);
 }
 }

Running a Distributed Bulk Loading Example
The examples in the previous section are taken from DistributedLoader.java,
which is included in the attached zip file,
coherence-example-distributedload.zip. This sample application uses the
InvocationService to distribute the task of loading data into a cache. Each
storage-enabled member of the cluster will be responsible for loading a portion of the
data. The data in this example will come from several CSV files and the unit of work is
one file. All storage-enabled nodes must have access to all of the data files.

To build and run the example, you must have the following software installed:

■ J2SE SDK 1.4 or later

■ Apache Ant

■ Oracle Coherence

Building the Sample Application
1. Extract the contents of coherence-example-distributedload.zip into

your file system.

2. Update the bin\set-env.cmd file to reflect your system environment.

3. Open a command prompt and execute the following command in the bin directory
to build the samples:

C:\distributedLoad\bin\ant.cmd build

After running the samples, you can completely remove all build artifacts from
your file system by running the clean command:

C:\distributedLoad\bin\ant.cmd clean

Running the Sample Application
1. Start multiple cache servers (from the bin directory):

C:\distributedLoad\bin\server.cmd

2. Run the client loader (from the bin directory):

C:\distributedLoad\bin\load.cmd

Performing Distributed Bulk Loading

13-12 Oracle Coherence Developer's Guide for Oracle Coherence

After entering load.cmd on the command line, you will messages indicating that the
various members are joining the services. Then you will see messages that indicate
that the date is being distributed among the members. In this example, four cache
servers were started.

Example 13–10 Server Response from the Sample Distributed Loading Application

...
 Member(Id=1, Timestamp=2008-09-15 16:49:04.359, Address=ip_address:8088, Mac
hineId=49690, Location=site:us.oracle.com,machine:machine_name,process:21952, Rol
e=CoherenceServer)
 Member(Id=2, Timestamp=2008-09-15 16:49:50.25, Address=ip_address:8089, Mach
ineId=49690, Location=site:us.oracle.com,machine:machine_name,process:16604, Role
=CoherenceServer)
 Member(Id=3, Timestamp=2008-09-15 16:49:54.937, Address=ip_address:8090, Mac
hineId=49690, Location=site:us.oracle.com,machine:machine_name,process:7344, Role
=CoherenceServer)
 Member(Id=4, Timestamp=2008-09-15 16:49:58.734, Address=ip_address:8091, Mac
hineId=49690, Location=site:us.oracle.com,machine:machine_name,process:19052, Role
=CoherenceServer)
)
2008-09-15 16:51:00.593/4.890 Oracle Coherence GE 3.4/405 <D5>
(thread=main, member=5): Loading stock file names from '..\data'
2008-09-15 16:51:00.593/4.890 Oracle Coherence GE 3.4/405 <D5>
(thread=main, member=5): Files to load: [..\data\AAPL.CSV, ..\data\BT.CSV, ..
\data\DELL.CSV, ..\data\GOOG.CSV, ..\data\HPQ.CSV, ..\data\JAVA.CSV, ..\data\MSF
T.CSV, ..\data\ORCL.CSV, ..\data\YHOO.CSV]
2008-09-15 16:51:00.593/4.890 Oracle Coherence GE 3.4/405 <D5>
(thread=main, member=5): Invoking load on member(Id=2) for files [..\data\BT.
CSV, ..\data\JAVA.CSV]
2008-09-15 16:51:00.640/4.937 Oracle Coherence GE 3.4/405 <D5>
(thread=main, member=5): Invoking load on member(Id=3) for files [..\data\DEL
L.CSV, ..\data\MSFT.CSV]
2008-09-15 16:51:00.750/5.047 Oracle Coherence GE 3.4/405 <D5>
(thread=main, member=5): Invoking load on member(Id=4) for files [..\data\GOO
G.CSV, ..\data\ORCL.CSV]
2008-09-15 16:51:00.781/5.078 Oracle Coherence GE 3.4/405 <D5>
(thread=main, member=5): Invoking load on member(Id=1) for files [..\data\AAP
L.CSV, ..\data\HPQ.CSV, ..\data\YHOO.CSV]
2008-09-15 16:51:27.500/31.797 Oracle Coherence GE 3.4/405 <D5>
(thread=Invocation:InvocationService, member=5): Finished loading on member:
 Member(Id=4, Timestamp=2008-09-15 16:49:58.734, Address=ip_address:8091, Mach
ineId=49690, Location=site:us.oracle.com,machine:machine_name,process:19052, Role
=CoherenceServer)
2008-09-15 16:51:31.640/35.937 Oracle Coherence GE 3.4/405 <D5>
(thread=Invocation:InvocationService, member=5): Finished loading on member:
 Member(Id=2, Timestamp=2008-09-15 16:49:50.25, Address=ip_address:8089, Machi
neId=49690, Location=site:us.oracle.com,machine:machine_name,process:16604, Role=
CoherenceServer)
2008-09-15 16:51:32.812/37.109 Oracle Coherence GE 3.4/405 <D5>
(thread=Invocation:InvocationService, member=5): Finished loading on member:
 Member(Id=3, Timestamp=2008-09-15 16:49:54.937, Address=ip_address:8090, Mach
ineId=49690, Location=site:us.oracle.com,machine:machine_name,process:7344, Role=
CoherenceServer)
2008-09-15 16:51:37.750/42.047 Oracle Coherence GE 3.4/405 <D5>
(thread=Invocation:InvocationService, member=5): Finished loading on member:
 Member(Id=1, Timestamp=2008-09-15 16:49:04.359, Address=ip_address:8088, Mach
ineId=49690, Location=site:us.oracle.com,machine:machine_name,process:21952, Role
=CoherenceServer)
2008-09-15 16:51:37.796/42.093 Oracle Coherence GE 3.4/405 <D5>

Performing Distributed Bulk Loading

Pre-Loading the Cache 13-13

(thread=main, member=5): Load finished in 37.20 secs
2008-09-15 16:51:37.812/42.109 Oracle Coherence GE 3.4/405 <D5> (thread=main,
member=5): Final cache size: 47131

C:\distributedload\bin>

Performing Distributed Bulk Loading

13-14 Oracle Coherence Developer's Guide for Oracle Coherence

14

Constraints on Re-entrant Calls 14-1

14Constraints on Re-entrant Calls

Coherence is architected as a collection of services. Each Coherence service consists of
the Coherence code that implements the service, along with an associated
configuration. The service runs on an allocated pool of threads with associated queues
that receive requests and return responses.

Coherence does not support re-entrant calls. A "re-entrant service call" occurs when a
service thread, in the act of processing a request, makes a request to that same service.
As all requests to a service are delivered by using the inbound queue, and Coherence
uses a thread-per-request model, this means that each reentrant request would
consume an additional thread (the calling thread would block while awaiting a
response). Note that this is distinct from the similar-sounding concept of recursion.

Re-entrancy, Services, and Service Threads
A service is defined as a unique combination of a service name and a service type
(such as Invocation, Replicated, or Distributed). For example, you can call from a
distributed service Dist-Customers into a distributed service named
Dist-Inventory, or from a distributed service named Dist-Customers into a
replicated service named Repl-Catalog. Service names are configured in the cache
configuration file using the <service-name> element.

Parent-Child Object Relationships
In the current implementation of Coherence, it is irrelevant whether the "call" is local
or remote. This complicates the use of key association to support the efficient assembly
of parent-child relationships. If you use key association to co-locate a Parent object
with all of its Child objects, then you cannot send an EntryProcessor to the parent
object and have that EntryProcessor "grab" the (local) Child objects. This is true
even though the Child objects are already in-process.

To access both a parent object and its child objects, you can do any of the following:

■ Embed the child objects within the parent object (using an "aggregate" pattern) or,

■ Use direct access to the server-side backing map (which requires advanced
knowledge to do safely), or

■ Run the logic on another service (for example, Invocation targeted by using
PartitionedService.getKeyOwner), and have that service access the data by
using NamedCache interfaces, or

■ Place the child objects on another service which would allow reentrant calls (but
incur network access since there is no affinity between partitions in different cache
services).

Re-entrancy and Listeners

14-2 Oracle Coherence Developer's Guide for Oracle Coherence

Using the aggregate pattern is probably the best solution for most use cases. However,
if this is impractical (due to size restrictions, for example), and there is a need to access
both the parent and child objects without using a client/server model, the Invocation
service approach is probably the best compromise for most use cases.

Avoiding Deadlock
Even when re-entrancy is allowed, one should be very careful to avoid saturating the
thread pool and causing catastrophic deadlock. For example, if service A calls service
B, and service B calls service A, there is a possibility that a sufficient number of
concurrent calls could fill one of the thread pools, which would cause a form of
deadlock. As with traditional locking, using ordered access (for example, service A can
call service B, but not vice versa) can help.

So:

■ Service A calling into service A is never allowed

■ Service A calling into service B, and service B calling back into service A is
technically allowed but is deadlock-prone and should be avoided if at all possible.

■ Service A calling into service B, and service B calling into service C, and
service C calling back into service A is similarly restricted

■ Service A calling into service B is allowed

■ Service A calling into service B, and service B calling into service C, and
service A calling into service C is similarly allowed

A service thread is defined as any thread involved in fulfilling a Coherence API
request. Service threads may invoke any of the following entities:

■ Map Listeners

■ Membership Listeners

■ Network Filters

■ Custom Serialization/Deserialization such as ExternalizableLite
implementations

■ Backing Map Listeners

■ CacheLoader/CacheStore Modules

■ Query logic such as Aggregators, Filters, ValueExtractors and
Comparators

■ Entry Processors

■ Triggers

■ InvocationService Invocables

These entities should never make re-entrant calls back into their own services.

Re-entrancy and Listeners
Membership listeners can be used to observe the active set of members participating in
the cluster or a specific service. Membership listener threading can be complex; thus,
re-entrant calls from a member listener to any Coherence service should be avoided.

Part II
Part II Testing and Tuning

This section contains the following chapters:

■ Chapter 15, "Evaluating Performance and Scalability"

■ Chapter 16, "Performing a Multicast Connectivity Test"

■ Chapter 17, "Performing a Datagram Test for Network Performance"

■ Chapter 18, "Configuring and Using Coherence*Extend"

■ Chapter 19, "High Resolution Timesource (Linux)"

■ Chapter 20, "Performance Tuning"

■ Chapter 21, "Setting Single Server Mode"

15

Evaluating Performance and Scalability 15-1

15Evaluating Performance and Scalability

The Coherence distributed caches will often be evaluated with respect to pre-existing
local caches. The local caches generally take the form of in-processes hash maps. While
Coherence does include facilities for in-process non-clustered caches, direct
performance comparison between local caches and a distributed cache not realistic. By
the very nature of being out of process, the distributed cache must perform
serialization and network transfers. For this cost you gain cluster wide coherency of
the cache data, and data and query scalability beyond what a single JVM or machine is
capable of providing. This does not mean that you cannot achieve impressive
performance using a distributed cache, but it must be evaluated in the correct context.

Measuring Latency and Throughput
When evaluating performance you try to establish two things, latency, and
throughput. A simple performance analysis test may simply try performing a series of
timed cache accesses in a tight loop. While these tests may accurately measure latency,
to measure maximum throughput on a distributed cache a test must make use of
multiple threads concurrently accessing the cache, and potentially multiple test clients.
In a single threaded test the client thread will naturally spend the majority of the time
simply waiting on the network. By running multiple clients/threads, you can more
efficiently make use of your available processing power by issuing several requests in
parallel. The use of batching operations can also be used to increase the data density of
each operation. As you add threads, you should see that the throughput continues to
increase until you've maxxed-out the CPU or network, while the overall latency
remains constant for the same period.

Demonstrating Scalability
To show true linear scalability as you increase cluster size, you need to be prepared to
be add hardware, and not simply JVMs to the cluster. Adding JVMs to a single
machine will scale only up to the point where the CPU or network are fully used.

Plan on testing with clusters with more then just two cache servers (storage enabled
nodes). The jump from one to two cache servers will not show the same scalability as
from two to four. The reason for this is because by default Coherence will maintain one
backup copy of each piece of data written into the cache. The process of maintaining
backups only begins when there are two storage-enabled nodes in the cluster (there
must be a place to put the backup). Thus when you move from a one to two, the
amount of work involved in a mutating operation such as cache.put actually doubles,
but beyond that the amount of work stays fixed, and will be evenly distributed across
the nodes.

Tuning Your Environment

15-2 Oracle Coherence Developer's Guide for Oracle Coherence

Tuning Your Environment
To get the most out of your cluster it is important that you've tuned of your
environment and JVMs. Chapter 20, "Performance Tuning,", provides good start to
getting the most out of your environment. For example, Coherence includes a registry
script for Windows (optimize.reg), which will adjust a few critical settings and
allow Windows to achieve much higher data rates.

Measurements on a Large Cluster
The following graphs show the results of scaling out a cluster in an environment of 100
machines. In this particular environment, Coherence was able to scale to the limits of
the network's switching infrastructure. Namely, there were 8 sets of ~12 machines,
each set having a 4Gbs link to a central switch. Thus for this test Coherence's network
throughput scales up to ~32 machines at which point it has maxxed-out the available
bandwidth, beyond that it continues to scale in total data capacity.

Figure 15–1 Coherence Throughput versus Number of Machines

This figure is described in he text.

Measurements on a Large Cluster

Evaluating Performance and Scalability 15-3

Figure 15–2 Coherence Latency versus Number of Machines

This figure is described in the text.

Latency for 10MB operations (~300ms) is not included in the graph for display
reasons, as the payload is 1000x the next payload size.

Measurements on a Large Cluster

15-4 Oracle Coherence Developer's Guide for Oracle Coherence

16

Performing a Multicast Connectivity Test 16-1

16Performing a Multicast Connectivity Test

Included with Coherence is a Multicast Test utility, which helps you determine if
multicast is enabled between two or more computers. This is a connectivity test, not a
load test, each instance will by default only transmit a single multicast packet once
every two seconds. For network load testing, see Chapter 17, "Performing a Datagram
Test for Network Performance."

Running the Multicast Test Utility
The Multicast Test utility supports a large number of configuration options, though
only a few are required for basic operation. To run the Multicast Test utility use the
following syntax from the command line:

java com.tangosol.net.MulticastTest <command value> <command value> ...

Table 16–1 describes the available command line options for the Multicast Test utility.

Sample Commands
java com.tangosol.net.MulticastTest -group 237.0.0.1:9000

For ease of use, multicast-test.sh and multicast-test.cmd scripts are
provided in the Coherence bin directory, and can be used to execute this test.

Note: before Coherence 3.1 the following syntax was used, and scripts were not
provided:

java com.tangosol.net.MulticastTest <ip-addr> <multicast-addr> <port> <ttl>
<delay-secs>

Table 16–1 Command Line Options for the Multicast Test Utility

Command
Required/
Optional Description Default

-local Optional The address of the NIC to transmit on, specified as an IP address localhost

-group Optional The multicast address to use, specified as IP:port. 237.0.0.1:9000

-ttl Optional The time to live for multicast packets. 4

-delay Optional The delay between transmitting packets, specified in seconds. 2

-display Optional The number of bytes to display from unexpected packets. 0

Multicast Test Example

16-2 Oracle Coherence Developer's Guide for Oracle Coherence

Multicast Test Example
Presume that you want to test if you can use multicast address 237.0.0.1, port 9000 (the
test's defaults) to send messages between two servers: Server A with IP address
195.0.0.1 and Server B with IP address 195.0.0.2.

Starting with Server A, let's determine if it has multicast address 237.0.0.1 port 9000
available for 195.0.0.1 by first checking the machine or interface by itself as follows:

From a command prompt, enter the following command:

Example 16–1 Command to Determine a Multicast Address

multicast-test.sh -ttl 0

After pressing ENTER, you should see the Multicast Test utility display how it is
sending sequential multicast packets and receiving them. Example 16–2 illustrates
sample output.

Example 16–2 Sequential Multicast Packets Sent by the Multicast Test Utility

Starting test on ip=servera/195.0.0.1, group=/237.0.0.1:9000,ttl=0
Configuring multicast socket...
Starting listener...
Tue Mar 17 15:59:51 EST 2008: Sent packet 1.
Tue Mar 17 15:59:51 EST 2008: Received test packet 1 from self.
Tue Mar 17 15:59:53 EST 2008: Sent packet 2.
Tue Mar 17 15:59:53 EST 2008: Received test packet 2 from self.
...

When you have seen several these packets sent and received successfully, you can
press CTRL-C to stop further testing.

If you do not see something similar to the above, then multicast is not working. Also,
please note that we specified a TTL of 0 to prevent the multicast packets from leaving
Server A.

You can repeat the same test on Server B to assure that it too has the multicast
enabled for it's port combination.

Now to test multicast communications between Server A and Server B. For this
test we will use a nonzero TTL which will allow the packets to leave their respective
servers. By default the test will use a TTL of 4, if you believe that there may be more
network hops required to route packets between Server A and Server B, you may
specify a higher TTL value.

Start the test on Server A and Server B by entering the following command into
the command windows and pressing ENTER:

multicast-test.sh

You should see something like the following on Server A:

Example 16–3 Sample Multicast Test Results from Server A

Starting test on ip=servera/195.0.0.1, group=/237.0.0.1:9000, ttl=4
Configuring multicast socket...
Starting listener...
Tue Mar 17 16:11:03 EST 2008: Sent packet 1.
Tue Mar 17 16:11:03 EST 2008: Received test packet 1 from self.
Tue Mar 17 16:11:05 EST 2008: Sent packet 2.
Tue Mar 17 16:11:05 EST 2008: Received test packet 2 from self.

Troubleshooting Multicast Communications

Performing a Multicast Connectivity Test 16-3

Tue Mar 17 16:11:07 EST 2008: Sent packet 3.
Tue Mar 17 16:11:07 EST 2008: Received test packet 3 from self.
Tue Mar 17 16:11:09 EST 2008: Sent packet 4.
Tue Mar 17 16:11:09 EST 2008: Received test packet 4 from self.
Tue Mar 17 16:11:10 EST 2008: Received test packet 1 from ip=serverb/195.0.0.2,
group=/237.0.0.1:9000, ttl=4.
Tue Mar 17 16:11:11 EST 2008: Sent packet 5.
Tue Mar 17 16:11:11 EST 2008: Received test packet 5 from self.
Tue Mar 17 16:11:12 EST 2008: Received test packet 2 from ip=serverb/195.0.0.2,
group=/237.0.0.1:9000, ttl=4.
Tue Mar 17 16:11:13 EST 2008: Sent packet 6.
Tue Mar 17 16:11:13 EST 2008: Received test packet 6 from self.
Tue Mar 17 16:11:14 EST 2008: Received test packet 3 from ip=serverb/195.0.0.2,
group=/237.0.0.1:9000, ttl=4.
Tue Mar 17 16:11:15 EST 2008: Sent packet 7.
Tue Mar 17 16:11:15 EST 2008: Received test packet 7 from self.
...

and something like the following on Server B:

Example 16–4 Sample Multicast Test Results on Server B

Starting test on ip=serverb/195.0.0.2, group=/237.0.0.1:9000, ttl=4
Configuring multicast socket...
Starting listener...
Tue Mar 17 16:11:10 EST 2008: Sent packet 1.
Tue Mar 17 16:11:10 EST 2008: Received test packet 1 from self.
Tue Mar 17 16:11:11 EST 2008: Received test packet 5 from ip=servera/195.0.0.1,
group=/237.0.0.1:9000, ttl=4.
Tue Mar 17 16:11:12 EST 2008: Sent packet 2.
Tue Mar 17 16:11:12 EST 2008: Received test packet 2 from self.
Tue Mar 17 16:11:13 EST 2008: Received test packet 6 from ip=servera/195.0.0.1,
group=/237.0.0.1:9000, ttl=4.
Tue Mar 17 16:11:14 EST 2008: Sent packet 3.
Tue Mar 17 16:11:14 EST 2008: Received test packet 3 from self.
Tue Mar 17 16:11:15 EST 2008: Received test packet 7 from ip=falco/192.168.0.204,
group=/237.0.0.1:9000, ttl=4.
...

You can see that both Server A and Server B are issuing multicast packets and
seeing their own and each other's packets. This indicates that multicast is functioning
properly between these servers using the default multicast address and port.

Note: Server A sees only its own packets 1-4 until we start Server B and it receives
packet 1 from Server B.

Troubleshooting Multicast Communications
If you are unable to establish bidirectional multicast communication please try the
following:

■ Firewalls—If any of the machines running the multicast test employ firewalls, the
firewall may be blocking the traffic. Consult your OS/firewall documentation for
details on allowing multicast traffic.

■ Switches—Ensure that your switches are configured to forward multicast traffic.

■ IPv6—On OSs which support IPv6 Java may be attempting to route the Multicast
traffic over IPv6 rather then IPv4. Try specifying the following Java system
property to force IPv4 networking java.net.preferIPv4Stack=true.

Troubleshooting Multicast Communications

16-4 Oracle Coherence Developer's Guide for Oracle Coherence

■ Received ???—If the test reports receiving "???" this is an indication that it is
receiving multicast packets which did not originate from an instance of the
Multicast test. This will occur if you run the test with the same multicast address
as a running Coherence cluster, or any other multicast application.

■ Multiple NICs—If your machines have multiple network interfaces you may try
specifying an explicit interface by using the -local test parameter. For instance
if Server A has two interfaces with IP addresses 195.0.0.1 and 195.0.100.1,
including -local 195.0.0.1 on the test command line would ensure that the
multicast packets used the first interface. You may also need to explicitly set your
machines routing table to forward multicast traffic through the desired network
interface. This can be done by issuing the command in Example 16–5:

Example 16–5 Command to Set Machine Routing Table

route add -net 224.0.0.0 netmask 240.0.0.0 dev eth1

Where eth1 is the device which will be designated to transmit multicast traffic.

■ AIX—On AIX systems you may run into the following multicast issues:

■ IPv6—In addition to specifying java.net.preferIPv4Stack=true you
may need to configure the OS to perform IPv4 name resolution by adding
hosts=local,bind4 to your /etc/netsvc.conf file.

■ Virtual IP (VIPA)—AIX does not support multicast with VIPA. If using VIPA
either bind multicast to a non-VIPA device, or run Coherence with multicast
disabled. See "well-known-addresses" on page H-51 for details.

■ MTU—Configure the MTU for the multicast device to 1500 bytes.

■ Cisco Switches—See "Deploying to Cisco Switches" on page M-2 for the list of
known issues.

■ Foundry Switches—See "Deploying to Foundry Switches" on page M-4 for the list
of known issues.

If multicast is not functioning properly, you will need to consult with your network
administrator or sysadmin to determine the cause and to correct the situation.

17

Performing a Datagram Test for Network Performance 17-1

17Performing a Datagram Test for Network
Performance

Included with Coherence is a Datagram Test utility which can be used to test and tune
network performance between two or more machines. The Datagram test operates in
one of three modes, either as a packet publisher, a packet listener, or both. When run a
publisher will transmit UDP packets to the listener who will measure the throughput,
success rate, and other statistics.

To achieve maximum performance it is suggested that you tune your environment
based on the results of these tests. See Chapter 20, "Performance Tuning" for more
information.

Running the Datagram Test Utility
The Datagram test supports a large number of configuration options, though only a
few are required for basic operation. To run the Datagram Test utility use the following
syntax from the command line:

java com.tangosol.net.DatagramTest <command value ...> <addr:port ...>

Table 17–1 describes the available command line options for the Datagram Test utility.

Table 17–1 Command Line Options for the Datagram Test Utility

Command
Required/
Optional Applicability Description Default

-local Optional Both The local address to bind to, specified as
addr:port

localhost:9999

-packetSize Optional Both The size of packet to work with, specified in
bytes.

1468

-processBytes Optional Both The number of bytes (in multiples of 4) of each
packet to process.

4

-rxBufferSize Optional Listener The size of the receive buffer, specified in
packets.

1428

-txBufferSize Optional Publisher The size of the transmit buffer, specified in
packets.

16

-txRate Optional Publisher The rate at which to transmit data, specified in
megabytes.

unlimited

-txIterations Optional Publisher Specifies the number of packets to publish before
exiting.

unlimited

-txDurationMs Optional Publisher Specifies how long to publish before exiting. unlimited

Datagram Test Example

17-2 Oracle Coherence Developer's Guide for Oracle Coherence

Sample Commands for a Listener and a Publisher
The following command line is for a listener:

java -server com.tangosol.net.DatagramTest -local box1:9999 -packetSize 1468

The following command line is for a publisher:

java -server com.tangosol.net.DatagramTest -local box2:9999 -packetSize 1468
box1:9999

For ease of use, datagram-test.sh and datagram-test.cmd scripts are provided
in the Coherence bin directory, and can be used to execute this test.

Datagram Test Example
Presume that you want to test network performance between two servers— Server A
with IP address 1{{95.0.0.1}} and Server B with IP address 195.0.0.2. One
server will act as a packet publisher and the other as a packet listener, the publisher
will transmit packets as fast as possible and the listener will measure and report
performance statistics. First start the listener on Server A.

Example 17–1 Command to Start a Listener

datagram-test.sh

After pressing ENTER, you should see the Datagram Test utility showing you that it is
ready to receive packets.

Example 17–2 Output from Starting a Listener

starting listener: at /195.0.0.1:9999
packet size: 1468 bytes
buffer size: 1428 packets
 report on: 100000 packets, 139 MBs
 process: 4 bytes/packet
 log: null
 log on: 139 MBs

As you can see by default the test will try to allocate a network receive buffer large
enough to hold 1428 packets, or about 2 MB. If it is unable to allocate this buffer it will

-reportInterval Optional Both The interval at which to output a report,
specified in packets.

100000

-tickInterval Optional Both The interval at which to output tick marks. 1000

-log Optional Listener The name of a file to save a tabular report of
measured performance.

none

-logInterval Optional Listener The interval at which to output a measurement
to the log.

100000

-polite Optional Publisher Switch indicating if the publisher should wait for
the listener to be contacted before publishing.

off

arguments Optional Publisher Space separated list of addresses to publish to,
specified as addr:port.

none

Table 17–1 (Cont.) Command Line Options for the Datagram Test Utility

Command
Required/
Optional Applicability Description Default

Reporting

Performing a Datagram Test for Network Performance 17-3

report an error and exit. You can either decrease the requested buffer size using the
-rxBufferSize parameter or increase your operating system network buffer
settings. For best performance it is recommended that you increase the operating
system buffers. See the following forum post for details on tuning your operating
system for Coherence.

When the listener process is running you may start the publisher on Server B,
directing it to publish to Server A.

Example 17–3 Command to Start a Publisher

datagram-test.sh servera

After pressing ENTER, you should see the new Datagram test instance on Server B
start both a listener and a publisher. Note in this configuration Server B listener will
not be used. The output illustrates in Example 17–4 should appear in the Server B
command window.

Example 17–4 Datagram Test—Starting a Listener and a Publisher on a Server

starting listener: at /195.0.0.2:9999
packet size: 1468 bytes
buffer size: 1428 packets
 report on: 100000 packets, 139 MBs
 process: 4 bytes/packet
 log: null
 log on: 139 MBs

starting publisher: at /195.0.0.2:9999 sending to servera/195.0.0.1:9999
packet size: 1468 bytes
buffer size: 16 packets
 report on: 100000 packets, 139 MBs
 process: 4 bytes/packet
 peers: 1
 rate: no limit

no packet burst limit
oooooooooOoooooooooOoooooooooOoooooooooOoooooooooOoooooooooOoooooooooOoooooooooO

The series of o and O tick marks appear as data is (O)utput on the network. Each o
represents 1000 packets, with O indicators at every 10,000 packets.

On Server A you should see a corresponding set of i and I tick marks, representing
network (I)nput. This indicates that the two test instances are communicating.

Reporting
Periodically, each side of the test (publisher and listener) will report performance
statistics.

Publisher Statistics
The publisher simply reports the rate at which it is publishing data on the network. A
typical report is as follows:

Example 17–5 Sample Publisher Report

Tx summary 1 peers:
 life: 97 MB/sec, 69642 packets/sec

Reporting

17-4 Oracle Coherence Developer's Guide for Oracle Coherence

 now: 98 MB/sec, 69735 packets/sec

The report includes both the current transmit rate (since last report) and the lifetime
transmit rate.

Listener Statistics
Table 17–2 describes the statistics that can be reported by the listener.

As with the publisher both current and lifetime statistics are report. Example 17–6
displays a typical report:

Example 17–6 Sample Lifetime Statistics

Lifetime:
Rx from publisher: /195.0.0.2:9999
 elapsed: 8770ms
 packet size: 1468
 throughput: 96 MB/sec
 68415 packets/sec
 received: 600000 of 611400
 missing: 11400
 success rate: 0.9813543
 out of order: 2
 avg offset: 1

Now:
Rx from publisher: /195.0.0.2:9999
 elapsed: 1431ms
 packet size: 1468
 throughput: 98 MB/sec
 69881 packets/sec
 received: 100000 of 100000
 missing: 0
 success rate: 1.0
 out of order: 0
 avg offset: 0

The primary items of interest are the throughput and success rate. The goal is to find
the highest throughput while maintaining a success rate as close to 1.0 as possible. On
a 100 Mb network setup you should be able to achieve rates of around 10 MB/sec. On

Table 17–2 Listener Statistics

Element Description

Elapsed The time interval that the report covers.

Packet size The received packet size.

Throughput The rate at which packets are being received.

Received The number of packets received.

Missing The number of packets which were detected as lost.

Success rate The percentage of received packets out of the total packets sent.

Out of order The number of packets which arrived out of order.

Average offset An indicator of how out of order packets are.

Reporting

Performing a Datagram Test for Network Performance 17-5

a 1 Gb network you should be able to achieve rates of around 100 MB/sec. Achieving
these rates will likely require some tuning (see below).

Throttling
The publishing side of the test may be throttled to a specific data rate expressed in
megabytes per second, by including the -txRate M parameter when M represents the
maximum MB/sec the test should put on the network.

Bidirectional Testing
You may also run the test in a bidirectional mode where both servers act as publishers
and listeners. To do this simply restart test instances, supplying the instance on
Server A with Server B's address, by running the command in Example 17–7 on
Server A.

Example 17–7 Running Datagram Test in Bi-Directional Mode

datagram-test.sh -polite serverb

And then run the same command as before on Server B. The -polite parameter
instructs this test instance to not start publishing until it is starts to receive data.

Distributed Testing
You may also use more then two machines in testing, for instance you can setup two
publishers to target a single listener. This style testing is far more realistic then simple
one-to-one testing, and may identify bottlenecks in your network which you were not
otherwise aware of.

Assuming you intend to construct a cluster consisting of four machines, you can run
the datagram test among all of them as follows:

On Servera:

datagramtest.sh -txRate 100 -polite serverb serverc serverd

On Serverb:

datagramtest.sh -txRate 100 -polite servera serverc serverd

On Serverc:

datagramtest.sh -txRate 100 -polite servera serverb serverd

On Serverd:

datagramtest.sh -txRate 100 servera serverb serverc

This test sequence will cause all nodes to send a total of 100MB per second to all other
nodes (that is, 33MB/node/sec). On a fully switched network 1GbE network this
should be achievable without packet loss.

To simplify the execution of the test all nodes can be started with an identical target
list, they will obviously transmit to themselves as well, but this loopback data can
easily be factored out. It is important to start all but the last node using the -polite
switch, as this will cause all other nodes to delay testing until the final node is started.

Reporting

17-6 Oracle Coherence Developer's Guide for Oracle Coherence

18

Configuring and Using Coherence*Extend 18-1

18Configuring and Using Coherence*Extend

Coherence*Extend extends the reach of the core Coherence TCMP cluster to a wider
range of consumers, including desktops, remote servers and machines located across
WAN connections. Typical uses of Coherence*Extend include providing desktop
applications with access to Coherence caches (including support for Near Cache and
continuous query) and Coherence cluster "bridges" that link together multiple
Coherence clusters connected by using a high-latency, unreliable WAN.

Coherence*Extend consists of two basic components: a client and a Coherence*Extend
clustered service hosted by one or more DefaultCacheServer processes. The
adapter library includes implementations of both the CacheService and
InvocationService interfaces that route all requests to a Coherence*Extend
clustered service instance running within the Coherence cluster. The
Coherence*Extend clustered service in turn responds to client requests by delegating
to an actual Coherence clustered service (for example, a Partitioned or Replicated
cache service). The client adapter library and Coherence*Extend clustered service use a
low-level messaging protocol to communicate with each other. Coherence*Extend
includes the following transport bindings for this protocol:

■ Extend-JMS—uses your existing JMS infrastructure as the means to connect to the
cluster

■ Extend-TCP—uses a high performance, scalable TCP/IP-based communication
layer to connect to the cluster

The choice of a transport binding is configuration-driven and is completely
transparent to the client application that uses Coherence*Extend. A Coherence*Extend
service is retrieved like a Coherence clustered service: by using the CacheFactory
class. When obtained, a client uses the Coherence*Extend service in the same way as it
would if it were part of the Coherence cluster. The fact that operations are being sent to
a remote cluster node (over either JMS or TCP) is transparent to the client application.

General Instructions
Configuring and using Coherence*Extend requires four basic steps:

1. Create a client-side Coherence cache configuration descriptor that includes one or
more <remote-cache-scheme> and <remote-invocation-scheme> configuration
elements

2. Create a cluster-side Coherence cache configuration descriptor that includes one or
more <proxy-scheme> configuration elements

3. Launch one or more DefaultCacheServer processes

Configuring and Using Coherence*Extend-JMS

18-2 Oracle Coherence Developer's Guide for Oracle Coherence

4. Create a client application that uses one or more Coherence*Extend services. See
"Sample Coherence*Extend Client Application" on page 18-12.

5. Launch the client application

The following sections describe each of these steps in detail for the Extend-JMS and
Extend-TCP transport bindings.

■ Configuring and Using Coherence*Extend-JMS

■ Configuring and Using Coherence*Extend-TCP

Configuring and Using Coherence*Extend-JMS

Client-side Cache Configuration Descriptor
A Coherence*Extend client that uses the Extend-JMS transport binding must define a
Coherence cache configuration descriptor which includes a
<remote-cache-scheme> and/or <remote-invocation-scheme> element with
a child <jms-initiator> element containing various JMS-specific configuration
information. Example 18–1 illustrates a sample descriptor.

Example 18–1 Client-Side Cache Configuration Descriptor for Extend-JMS

<?xml version="1.0"?>
<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>extend-dist</scheme-name>
 </cache-mapping>

 <cache-mapping>
 <cache-name>dist-extend-near</cache-name>
 <scheme-name>extend-near</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <near-scheme>
 <scheme-name>extend-near</scheme-name>
 <front-scheme>
 <local-scheme>
 <high-units>1000</high-units>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <remote-cache-scheme>
 <scheme-ref>extend-dist</scheme-ref>
 </remote-cache-scheme>
 </back-scheme>
 <invalidation-strategy>all</invalidation-strategy>
 </near-scheme>

 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>

Configuring and Using Coherence*Extend-JMS

Configuring and Using Coherence*Extend 18-3

 <service-name>ExtendJmsCacheService</service-name>
 <initiator-config>
 <jms-initiator>

<queue-connection-factory-name>jms/coherence/ConnectionFactory</queue-connection-f
actory-name>
 <queue-name>jms/coherence/Queue</queue-name>
 <connect-timeout>10s</connect-timeout>
 </jms-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>

 <remote-cache-scheme>
 <scheme-name>extend-invocation</scheme-name>
 <service-name>ExtendJmsInvocationService</service-name>
 <initiator-config>
 <jms-initiator>

<queue-connection-factory-name>jms/coherence/ConnectionFactory</queue-connection-f
actory-name>
 <queue-name>jms/coherence/Queue</queue-name>
 <connect-timeout>10s</connect-timeout>
 </jms-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

This cache configuration descriptor defines two caching schemes, one that uses
Extend-JMS to connect to a remote Coherence cluster (<remote-cache-scheme>)
and one that maintains an in-process size-limited near cache of remote Coherence
caches (again, accessed by Extend-JMS). Additionally, the cache configuration
descriptor defines a <remote-invocation-scheme> that allows the client
application to execute tasks within the remote Coherence cluster. Both the
<remote-cache-scheme> and <remote-invocation-scheme> elements have a
<jms-initiator> child element which includes all JMS-specific information needed
to connect the client with the Coherence*Extend clustered service running within the
remote Coherence cluster.

When the client application retrieves a NamedCache by using the CacheFactory
using, for example, the name dist-extend, the Coherence*Extend adapter library
will connect to the Coherence cluster by using a JMS Queue (retrieved by JNDI using
the name jms/coherence/Queue") and return a NamedCache implementation that
routes requests to the NamedCache with the same name running within the remote
cluster. Likewise, when the client application retrieves a InvocationService by calling
CacheFactory.getConfigurableCacheFactory().ensureService("Extend
JmsInvocationService"), the Coherence*Extend adapter library will connect to
the Coherence cluster by using the same JMS Queue and return an InvocationService
implementation that executes synchronous Invocable tasks within the remote clustered
JVM to which the client is connected.

Configuring and Using Coherence*Extend-JMS

18-4 Oracle Coherence Developer's Guide for Oracle Coherence

Cluster-side Cache Configuration Descriptor
For a Coherence*Extend-JMS client to connect to a Coherence cluster, one or more
DefaultCacheServer processes must be running that use a Coherence cache
configuration descriptor. This desciptor must include a <proxy-scheme> element
with a child <jms-acceptor> element containing various JMS-specific configuration
information. Example 18–2 illustrates a sample descriptor.

Example 18–2 Cluster-Side Cache Configuration Descriptor for Extend-JMS

<?xml version="1.0"?>
<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-*</cache-name>
 <scheme-name>dist-default</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>dist-default</scheme-name>
 <lease-granularity>member</lease-granularity>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <proxy-scheme>
 <service-name>ExtendJmsProxyService</service-name>
 <acceptor-config>
 <jms-acceptor>

<queue-connection-factory-name>jms/coherence/ConnectionFactory</queue-connection-f
actory-name>
 <queue-name>jms/coherence/Queue</queue-name>
 </jms-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

This cache configuration descriptor defines two clustered services: one that uses
Extend-JMS to allow remote Extend-JMS clients to connect to the Coherence cluster
and a standard Partitioned cache service. Since this descriptor is used by a
DefaultCacheServer it is important that the <autostart> configuration element
for each service is set to true so that clustered services are automatically restarted
upon termination. The <proxy-scheme> element has a <jms-acceptor> child
element which includes all JMS-specific information needed to accept client connection
requests over JMS.

The Coherence*Extend clustered service will listen to a JMS Queue (retrieved by JNDI
using the name jms/coherence/Queue) for connection requests. When, for
example, a client attempts to connect to a Coherence NamedCache called
dist-extend, the Coherence*Extend clustered service will proxy subsequent
requests to the NamedCache with the same name which, in this case, will be a

Configuring and Using Coherence*Extend-JMS

Configuring and Using Coherence*Extend 18-5

Partitioned cache. Note that Extend-JMS client connection requests will be load
balanced across all DefaultCacheServer processes that run a Coherence*Extend
clustered service with the same configuration.

Configuring your JMS Provider
Coherence*Extend-JMS uses JNDI to obtain references to all JMS resources. To specify
the JNDI properties that Coherence*Extend-JMS uses to create a JNDI
InitialContext, create a file called jndi.properties that contains your JMS
provider's configuration properties and add the directory that contains the file to both
the client application and DefaultCacheServer classpaths.

For example, if you are using WebLogic Server as your JMS provider, your
jndi.properties file would look like Example 18–3:

Example 18–3 jndi.properties Values for a WebLogic Server Acting as a JMS Provider

java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.provider.url=t3://localhost:7001
java.naming.security.principal=system
java.naming.security.credentials=weblogic

Additionally, Coherence*Extend-JMS uses a JMS Queue to connect Extend-JMS clients
to a Coherence*Extend clustered service instance. Therefore, you must deploy an
appropriately configured JMS QueueConnectionFactory and Queue and register
them under the JNDI names specified in the <jms-initiator> and
<jms-acceptor> configuration elements.

For example, if you are using WebLogic Server, you can use the Ant script in
Example 18–4 to create and deploy these JMS resources:

Example 18–4 Ant Script to Create JMS Resources and Deploy on a WebLogic Server

<!-- -->
<!-- Ant build script for configuring a WebLogic Server domain with the -->
<!-- necessary JMS resources required by Coherence*Extend-JMS -->
<!-- -->
<!-- -->
<!-- Usage: -->
<!-- -->
<!-- 1) Create the WLS domain: -->
<!-- prompt> ant create.domain -->
<!-- -->
<!-- 2) Start the WLS instance: -->
<!-- prompt> domain/startmydomain.cmd|sh -->
<!-- -->
<!-- -->
<project name="extend-jms-wls" default="create.domain" basedir=".">

 <!-- -->
 <!-- Project properties -->
 <!-- -->

 <property name="weblogic.home" value="c:/opt/bea/weblogic8.1.5"/>
 <property name="weblogic.jar"
value="${weblogic.home}/server/lib/weblogic.jar"/>
 <property name="server.user" value="system"/>
 <property name="server.password" value="weblogic"/>
 <property name="domain.dir" value="domain"/>
 <property name="domain.name" value="mydomain"/>

Configuring and Using Coherence*Extend-JMS

18-6 Oracle Coherence Developer's Guide for Oracle Coherence

 <property name="server.name" value="myserver"/>
 <property name="realm.name" value="myrealm"/>
 <property name="server.host" value="localhost"/>
 <property name="server.port" value="7001"/>
 <property name="admin.url" value="t3://${server.host}:${server.port}"/>

 <!-- -->
 <!-- Project paths -->
 <!-- -->

 <path id="project.classpath">
 <pathelement location="${weblogic.jar}"/>
 </path>

 <!-- -->
 <!-- Project task definitions -->
 <!-- -->

 <taskdef name="wlserver"
 classname="weblogic.ant.taskdefs.management.WLServer"
 classpathref="project.classpath"/>
 <taskdef name="wlconfig"
 classname="weblogic.ant.taskdefs.management.WLConfig"
 classpathref="project.classpath"/>

 <!-- -->
 <!-- Project targets -->
 <!-- -->

 <target name="clean" description="Remove all build artifacts.">
 <delete dir="${domain.dir}"/>
 </target>

 <target name="create.domain"
 description="Create a WLS domain for use with Coherence*Extend-JMS.">
 <delete dir="${domain.dir}"/>
 <mkdir dir="${domain.dir}"/>

 <wlserver weblogicHome="${weblogic.home}"
 dir="${domain.dir}"
 classpathref="project.classpath"
 host="${server.host}"
 port="${server.port}"
 servername="${server.name}"
 domainname="${domain.name}"
 generateConfig="true"
 username="${server.user}"
 password="${server.password}"
 action="start"/>

 <antcall target="config.domain"/>
 </target>

 <target name="config.domain"
 description="Configure a WLS domain for use with Coherence*Extend-JMS.">
 <wlconfig url="${admin.url}"
 username="${server.user}"
 password="${server.password}">
 <query domain="${domain.name}"
 type="Server"

Configuring and Using Coherence*Extend-JMS

Configuring and Using Coherence*Extend 18-7

 name="${server.name}"
 property="server"/>

 <!-- Create a JMS template -->
 <create type="JMSTemplate" name="CoherenceTemplate" property="template"/>

 <!-- Add a JMS server and queue for the application -->
 <create type="JMSServer" name="MyJMSServer">
 <set attribute="Targets" value="${server}"/>
 <create type="JMSQueue" name="CoherenceQueue">
 <set attribute="JNDIName" value="jms/coherence/Queue"/>
 </create>
 <set attribute="TemporaryTemplate" value="${template}"/>
 </create>

 <!-- Create a JMS connection factory -->
 <create type="JMSConnectionFactory" name="CoherenceConnectionFactory">
 <set attribute="JNDIName"
 value="jms/coherence/ConnectionFactory"/>
 <set attribute="Targets" value="${server}"/>
 </create>
 </wlconfig>
 </target>
</project>

Launching an Extend-JMS DefaultCacheServer Process
To start a DefaultCacheServer that uses the cluster-side Coherence cache
configuration described earlier to allow Extend-JMS clients to connect to the
Coherence cluster by using JMS, you need to do the following:

■ Change the current directory to the Coherence library directory (%COHERENCE_
HOME%\lib on Windows and $COHERENCE_HOME/lib on UNIX).

■ Make sure that the paths are configured so that the Java command will run.

■ Start the DefaultCacheServer command line application with the directory
that contains your jndi.properties file and your JMS provider's libraries on
the classpath and the -Dtangosol.coherence.cacheconfig system property
set to the location of the cluster-side Coherence cache configuration descriptor
described earlier.

For example, if you are using WebLogic server as your JMS provider, run the following
command on Windows (note that it is broken up into multiple lines here only for
formatting purposes; this is a single command typed on one line):

Example 18–5 Windows Command to Start the Default Cache Server for the Cluster-Side

java -cp coherence.jar;<directory containing jndi.properties>;<WebLogic
home>\server\lib\wljmsclient.jar
 -Dtangosol.coherence.cacheconfig=file://<path to the server-side cache
configuration descriptor>
 com.tangosol.net.DefaultCacheServer

On UNIX:

Example 18–6 UNIX Command to Start the Default Cache Server for the Cluster-Side

java -cp coherence.jar:<directory containing jndi.properties>:<WebLogic
home>/server/lib/wljmsclient.jar

Configuring and Using Coherence*Extend-TCP

18-8 Oracle Coherence Developer's Guide for Oracle Coherence

 -Dtangosol.coherence.cacheconfig=file://<path to the server-side cache
configuration descriptor>
 com.tangosol.net.DefaultCacheServer

Launching an Extend-JMS Client Application
To start a client application that uses Extend-JMS to connect to a remote Coherence
cluster by using JMS, you need to do the following:

■ Change the current directory to the Coherence library directory (%COHERENCE_
HOME%\lib on Windows and $COHERENCE_HOME/lib on UNIX).

■ Make sure that the paths are configured so that the Java command will run.

■ Start your client application with the directory that contains your
jndi.properties file and your JMS provider's libraries on the classpath and the
-Dtangosol.coherence.cacheconfig system property set to the location of
the client-side Coherence cache configuration descriptor described earlier.

For example, if you are using WebLogic server as your JMS provider, you would run
the following command on Windows (note that it is broken up into multiple lines here
only for formatting purposes; this is a single command typed on one line):

Example 18–7 Windows Command to Start the Client Application

java -cp coherence.jar;<directory containing jndi.properties>;<WebLogic
home>\server\lib\wljmsclient.jar
 -Dtangosol.coherence.cacheconfig=file://<path to the client-side cache
configuration descriptor>
 <client application Class name>

On UNIX:

Example 18–8 UNIX Command to Start the Client Application

java -cp coherence.jar:<directory containing jndi.properties>:<WebLogic
home>/server/lib/wljmsclient.jar
 -Dtangosol.coherence.cacheconfig=file://<path to the client-side cache
configuration descriptor>
 <client application Class name>

Configuring and Using Coherence*Extend-TCP

Client-side Cache Configuration Descriptor
A Coherence*Extend client that uses the Extend-TCP transport binding must define a
Coherence cache configuration descriptor which includes a
<remote-cache-scheme> and/or <remote-invocation-scheme> element with
a child <tcp-initiator> element containing various TCP/IP-specific configuration
information. Example 18–9 illustrates a sample descriptor.

Example 18–9 Coherence*Extend Client Descriptor that uses Extend-TCP

<?xml version="1.0"?>
<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>

Configuring and Using Coherence*Extend-TCP

Configuring and Using Coherence*Extend 18-9

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>extend-dist</scheme-name>
 </cache-mapping>

 <cache-mapping>
 <cache-name>dist-extend-near</cache-name>
 <scheme-name>extend-near</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <near-scheme>
 <scheme-name>extend-near</scheme-name>
 <front-scheme>
 <local-scheme>
 <high-units>1000</high-units>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <remote-cache-scheme>
 <scheme-ref>extend-dist</scheme-ref>
 </remote-cache-scheme>
 </back-scheme>
 <invalidation-strategy>all</invalidation-strategy>
 </near-scheme>

 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 <connect-timeout>10s</connect-timeout>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>

 <remote-invocation-scheme>
 <scheme-name>extend-invocation</scheme-name>
 <service-name>ExtendTcpInvocationService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 <connect-timeout>10s</connect-timeout>
 </tcp-initiator>

Configuring and Using Coherence*Extend-TCP

18-10 Oracle Coherence Developer's Guide for Oracle Coherence

 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-invocation-scheme>
 </caching-schemes>
</cache-config>

This cache configuration descriptor defines two caching schemes, one that uses
Extend-TCP to connect to a remote Coherence cluster (<remote-cache-scheme>)
and one that maintains an in-process size-limited near cache of remote Coherence
caches (again, accessed by using Extend-TCP). Additionally, the cache configuration
descriptor defines a <remote-invocation-scheme> that allows the client
application to execute tasks within the remote Coherence cluster. Both the
<remote-cache-scheme> and <remote-invocation-scheme> elements have a
<tcp-initiator> child element which includes all TCP/IP-specific information
needed to connect the client with the Coherence*Extend clustered service running
within the remote Coherence cluster.

When the client application retrieves a NamedCache by using the CacheFactory
using, for example, the name dist-extend, the Coherence*Extend adapter library
will connect to the Coherence cluster by using TCP/IP (using the address localhost
and port 9099) and return a NamedCache implementation that routes requests to the
NamedCache with the same name running within the remote cluster. Likewise, when
the client application retrieves a InvocationService by calling
CacheFactory.getConfigurableCacheFactory().ensureService("Extend
TcpInvocationService"), the Coherence*Extend adapter library will connect to
the Coherence cluster by using TCP/IP (again, using the address localhost and
port 9099) and return an InvocationService implementation that executes
synchronous Invocable tasks within the remote clustered JVM to which the client is
connected.

Note that the <remote-addresses> configuration element can contain multiple
<socket-address> child elements. The Coherence*Extend adapter library will
attempt to connect to the addresses in a random order, until either the list is exhausted
or a TCP/IP connection is established.

Cluster-side Cache (a.k.a Coherence Extend Proxy) Configuration Descriptor
For a Coherence*Extend-TCP client to connect to a Coherence cluster, one or more
DefaultCacheServer processes must be running that use a Coherence cache
configuration descriptor. This descriptor must include a <proxy-scheme> element
with a child <tcp-acceptor> element containing various TCP/IP-specific
configuration information. Example 18–10 illustrates a sample descriptor.

Example 18–10 Cluster-Side Cache Configuration Descriptor for Extend-TCP

<?xml version="1.0"?>
<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-*</cache-name>
 <scheme-name>dist-default</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

Configuring and Using Coherence*Extend-TCP

Configuring and Using Coherence*Extend 18-11

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>dist-default</scheme-name>
 <lease-granularity>member</lease-granularity>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <thread-count>5</thread-count>
 <acceptor-config>
 <tcp-acceptor>
 <local-address>
 <address>localhost</address>
 <port>9099</port>
 </local-address>
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

This cache configuration descriptor defines two clustered services, one that uses
Extend-TCP to allow remote Extend-TCP clients to connect to the Coherence cluster
and a standard Partitioned cache service. Since this descriptor is used by a
DefaultCacheServer it is important that the <autostart> configuration element
for each service is set to true so that clustered services are automatically restarted upon
termination. The <proxy-scheme> element has a <tcp-acceptor> child element
which includes all TCP/IP-specific information needed to accept client connection
requests over TCP/IP.

The Coherence*Extend clustered service will listen to a TCP/IP ServerSocket (bound
to address localhost and port 9099) for connection requests. When, for example, a
client attempts to connect to a Coherence NamedCache called
dist-extend-direct, the Coherence*Extend clustered service will proxy
subsequent requests to the NamedCache with the same name which, in this case, will be
a Partitioned cache.

Launching an Extend-TCP DefaultCacheServer Process
To start a DefaultCacheServer that uses the cluster-side Coherence cache
configuration described earlier to allow Extend-TCP clients to connect to the
Coherence cluster by using TCP/IP, you need to do the following:

■ Change the current directory to the Coherence library directory (%COHERENCE_
HOME%\lib on Windows and $COHERENCE_HOME/lib on UNIX)

■ Make sure that the paths are configured so that the Java command will run

■ Start the DefaultCacheServer command line application with the
-Dtangosol.coherence.cacheconfig system property set to the location of
the cluster-side Coherence cache configuration descriptor described earlier

For example (note that the following command is broken up into multiple lines here
only for formatting purposes; this is a single command typed on one line):

Sample Coherence*Extend Client Application

18-12 Oracle Coherence Developer's Guide for Oracle Coherence

java -cp coherence.jar:<classpath to client application>
 -Dtangosol.coherence.cacheconfig=file://<path to the server-side cache
configuration descriptor>
 com.tangosol.net.DefaultCacheServer

Launching an Extend-TCP Client Application
To start a client application that uses Extend-TCP to connect to a remote Coherence
cluster by using TCP/IP, you need to do the following:

■ Change the current directory to the Coherence library directory (%COHERENCE_
HOME%\lib on Windows and $COHERENCE_HOME/lib on UNIX)

■ Make sure that the paths are configured so that the Java command will run

■ Start your client application with the -Dtangosol.coherence.cacheconfig
system property set to the location of the client-side Coherence cache
configuration descriptor described earlier

For example (note that the command in Example 18–11 is broken up into multiple lines
here only for formatting purposes; this is a single command typed on one line):

Example 18–11 Command to Start a Client Application that Uses Extend-TCP

java -cp coherence.jar:<classpath to client application>
 -Dtangosol.coherence.cacheconfig=file://<path to the client-side cache
configuration descriptor>
 <client application Class name>

Sample Coherence*Extend Client Application
Example 18–12 demonstrates how to retrieve and use a Coherence*Extend
CacheService and InvocationService. This example increments an Integer
value in a remote Partitioned cache and then retrieves the value by executing an
Invocable on the clustered JVM to which the client is attached:

Example 18–12 Sample Coherence*Extend Application

public static void main(String[] asArg)
 throws Throwable
 {
 NamedCache cache = CacheFactory.getCache("dist-extend");
 Integer IValue = (Integer) cache.get("key");
 if (IValue == null)
 {
 IValue = new Integer(1);
 }
 else
 {
 IValue = new Integer(IValue.intValue() + 1);
 }
 cache.put("key", IValue);

 InvocationService service = (InvocationService)
 CacheFactory.getConfigurableCacheFactory()
 .ensureService("ExtendTcpInvocationService");

 Map map = service.query(new AbstractInvocable()
 {
 public void run()

Advanced Configuration

Configuring and Using Coherence*Extend 18-13

 {
 setResult(CacheFactory.getCache("dist-extend").get("key"));
 }
 }, null);

 Integer IValue = (Integer) map.get(service.getCluster().getLocalMember());
 }

Note that this example could also be run on a Coherence node (that is, within the
cluster) verbatim. The fact that operations are being sent to a remote cluster node (over
either JMS or TCP) is completely transparent to the client application.

Coherence*Extend InvocationService
Since, by definition, a Coherence*Extend client has no direct knowledge of the cluster
and the members running within the cluster, the Coherence*Extend
InvocationService only allows Invocable tasks to be executed on the JVM to
which the client is connected. Therefore, you should always pass a null member set to
the query() method. As a consequence of this, the single result of the execution will
be keyed by the local Member, which will be null if the client is not part of the cluster.
This Member can be retrieved by calling
service.getCluster().getLocalMember(). Additionally, the
Coherence*Extend InvocationService only supports synchronous task execution
(that is, the execute() method is not supported).

Advanced Configuration

Network Filters
Like Coherence clustered services, Coherence*Extend services support pluggable
network filters. Filters can be used to modify the contents of network traffic before it is
placed "on the wire". Most standard Coherence network filters are supported,
including the compression and symmetric encryption filters. For more information on
configuring filters, see Chapter 8, "Network Filters."

To use network filters with Coherence*Extend, a <use-filters> element must be
added to the <initiator-config> element in the client-side cache configuration
descriptor and to the <acceptor-config> element in the cluster-side cache
configuration descriptor.

For example, to encrypt network traffic exchanged between a Coherence*Extend client
and the clustered service to which it is connected, configure the client-side
<remote-cache-scheme> and <remote-invocation-scheme> elements as
illustrated in Example 18–13 (assuming the symmetric encryption filter has been
named symmetric-encryption):

Example 18–13 Client-Side Configuration to Encrypt Network Traffic

<remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>

Advanced Configuration

18-14 Oracle Coherence Developer's Guide for Oracle Coherence

 <port>9099</port>
 </socket-address>
 </remote-addresses>
 <connect-timeout>10s</connect-timeout>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 <use-filters>
 <filter-name>symmetric-encryption</filter-name>
 </use-filters>
 </initiator-config>
</remote-cache-scheme>

<remote-invocation-scheme>
 <scheme-name>extend-invocation</scheme-name>
 <service-name>ExtendTcpInvocationService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 <connect-timeout>10s</connect-timeout>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 <use-filters>
 <filter-name>symmetric-encryption</filter-name>
 </use-filters>
 </initiator-config>
</remote-invocation-scheme>

Example 18–14 illustrates the configuration for the cluster-side <proxy-scheme>
element:

Example 18–14 Cluster-Side Proxy Scheme Configuration

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <thread-count>5</thread-count>
 <acceptor-config>
 <tcp-acceptor>
 <local-address>
 <address>localhost</address>
 <port>9099</port>
 </local-address>
 </tcp-acceptor>
 <use-filters>
 <filter-name>symmetric-encryption</filter-name>
 </use-filters>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Advanced Configuration

Configuring and Using Coherence*Extend 18-15

Connection Error Detection and Failover
When a Coherence*Extend service detects that the connection between the client and
cluster has been severed (for example, due to a network, software, or hardware
failure), the Coherence*Extend client service implementation (that is, CacheService
or InvocationService) will dispatch a MemberEvent.MEMBER_LEFT event to all
registered MemberListeners and the service will be stopped. If the client application
attempts to subsequently use the service, the service will automatically restart itself
and attempt to reconnect to the cluster. If the connection is successful, the service will
dispatch a MemberEvent.MEMBER_JOINED event; otherwise, a fatal exception will be
thrown to the client application.

A Coherence*Extend service has several mechanisms for detecting dropped
connections. Some are inherent to the underlying protocol (that is, a
javax.jms.ExceptionListener in Extend-JMS and TCP/IP in Extend-TCP),
whereas others are implemented by the service itself. The latter mechanisms are
configured by using the <outgoing-message-handler> configuration element.

The primary configurable mechanism used by a Coherence*Extend client service to
detect dropped connections is a request timeout. When the service sends a request to
the remote cluster and does not receive a response within the request timeout interval
(see the <request-timeout> subelement of <outgoing-message-handler>), the
service assumes that the connection has been dropped. The Coherence*Extend client
and clustered services can also be configured to send a periodic heartbeat over the
connection (see <heartbeat-interval> and <heartbeat-timeout> subelements
of <outgoing-message-handler>). If the service does not receive a response within the
configured heartbeat timeout interval, the service assumes that the connection has
been dropped.

Read-only NamedCache Access
By default, the Coherence*Extend clustered service allows both read and write access
to proxied NamedCache instances. To prohibit Coherence*Extend clients from
modifying cached content, use the <cache-service-proxy> child configuration
element. Example 18–15 illustrates a sample configuration.

Example 18–15 Client-Side Configuration to Allow Read-only Access to the Cache

<proxy-scheme>
 ...

 <proxy-config>

Note: The contents of the <use-filters> element must be the
same in the client and cluster-side cache configuration descriptors.

Notes:

■ You should always enable heartbeats when using a connectionless
transport, as is the case with Extend-JMS.

■ If you do not specify a <request-timeout/>, a
Coherence*Extend service will use an infinite request timeout. In
general, this is not a recommended configuration, as it could
result in an unresponsive application. For most use cases, you
should specify a reasonable finite request timeout.

Advanced Configuration

18-16 Oracle Coherence Developer's Guide for Oracle Coherence

 <cache-service-proxy>
 <read-only>true</read-only>
 </cache-service-proxy>
 </proxy-config>

 <autostart>true</autostart>
</proxy-scheme>

Client-side NamedCache Locking
By default, the Coherence*Extend clustered service disallows Coherence*Extend
clients from acquiring NamedCache locks. To enable client-side locking, use the
<cache-service-proxy> child configuration element. For example:

Example 18–16 Client Configuration to Allow NamedCache Locking

<proxy-scheme>
 ...

 <proxy-config>
 <cache-service-proxy>
 <lock-enabled>true</lock-enabled>
 </cache-service-proxy>
 </proxy-config>

 <autostart>true</autostart>
</proxy-scheme>

If you enable client-side locking and your client application uses the
NamedCache.lock() and unlock() methods, it is important that you specify the
member-based (rather than thread-based) locking strategy for any Partitioned or
Replicated cache services defined in your cluster-side Coherence cache configuration
descriptor. Because the Coherence*Extend clustered service uses a pool of threads to
execute client requests concurrently, it cannot guarantee that the same thread will
execute subsequent requests from the same Coherence*Extend client.

To specify the member-based locking strategy for a Partitioned or Replicated cache
service, use the <lease-granularity> configuration element. Example 18–17
illustrates a sample configuration.

Example 18–17 Client Configuration to Allow Locking for Partitioned or Replicated
Caches

<distributed-scheme>
 <scheme-name>dist-default</scheme-name>
 <lease-granularity>member</lease-granularity>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

Disabling Proxied Services
By default, the Coherence*Extend clustered service exposes two proxied services to
clients: a CacheService proxy and an InvocationService proxy. In some cases, it
may be desirable to disable one of the two proxies. This is possible by using the
<enabled> configuration element in each of the corresponding proxy configuration
sections. For example, to disable the InvocationService proxy so that remote clients

Advanced Configuration

Configuring and Using Coherence*Extend 18-17

cannot execute Invocable objects within the cluster, you'd configure the
Coherence*Extend clustered service as illustrated in Example 18–18:

Example 18–18 Client Configuration to Disable Proxy Service

<proxy-scheme>
 ...

 <proxy-config>
 <invocation-service-proxy>
 <enabled>false</enabled>
 </invocation-service-proxy>
 </proxy-config>

 <autostart>true</autostart>
</proxy-scheme>

Likewise, to prevent remote clients from accessing caches in the cluster, you would use
a configuration similar to the one illustrated in Example 18–19:

Example 18–19 Client Configuration to Prevent Cache Access

<proxy-scheme>
 ...

 <proxy-config>
 <cache-service-proxy>
 <enabled>false</enabled>
 </cache-service-proxy>
 </proxy-config>

 <autostart>true</autostart>
</proxy-scheme>

Advanced Configuration

18-18 Oracle Coherence Developer's Guide for Oracle Coherence

19

High Resolution Timesource (Linux) 19-1

19High Resolution Timesource (Linux)

Linux has several high resolution timesources to choose from, the fastest TSC (Time
Stamp Counter) unfortunately is not always reliable. Linux chooses TSC by default,
and during boot checks for inconsistencies, if found it switches to a slower safe
timesource. The slower time sources can be 10 to 30 times more expensive to query
then the TSC timesource, and may have a measurable impact on Coherence
performance. Note that Coherence and the underlying JVM are not aware of the
timesource which the operating system is using. It is suggested that you check your
system logs (/var/log/dmesg) to verify that the following is not present.

kernel: Losing too many ticks!
kernel: TSC cannot be used as a timesource.
kernel: Possible reasons for this are:
kernel: You're running with Speedstep,
kernel: You don't have DMA enabled for your hard disk (see hdparm),
kernel: Incorrect TSC synchronization on an SMP system (see dmesg).
kernel: Falling back to a sane timesource now.

As the log messages suggest, this can be caused by a variable rate CPU (SpeedStep),
having DMA disabled, or incorrect TSC synchronization on multi CPU machines. If
present it is suggested that you work with your system administrator to identify the
cause and allow the TSC timesource to be used.

19-2 Oracle Coherence Developer's Guide for Oracle Coherence

20

Performance Tuning 20-1

20Performance Tuning

To achieve maximum performance with Coherence it is suggested that you test and
tune your operating environment. Testing is covered in Chapter 17, "Performing a
Datagram Test for Network Performance."

Tuning recommendations are available for:

■ Operating System Tuning

■ Network Tuning

■ JVM Tuning

■ Coherence Network Tuning

Operating System Tuning
■ Socket Buffer Sizes

■ High Resolution timesource (Linux)

■ Datagram size (Microsoft Windows)

■ Thread Scheduling (Microsoft Windows)

■ Swapping

Socket Buffer Sizes
To help minimization of packet loss, the operating system socket buffers need to be
large enough to handle the incoming network traffic while your Java application is
paused during garbage collection. By default Coherence will attempt to allocate a
socket buffer of 2MB. If your operating system is not configured to allow for large
buffers Coherence will use smaller buffers. Most versions of UNIX have a very low
default buffer limit, which should be increased to at least 2MB.

Starting with Coherence 3.1 you will receive the following warning if the operating
system failed to allocate the full size buffer.

Example 20–1 Message Indicating OS Failed to Allocate the Full Buffer Size

UnicastUdpSocket failed to set receive buffer size to 1428 packets (2096304
bytes); actual size is 89 packets (131071 bytes). Consult your OS documentation
regarding increasing the maximum socket buffer size. Proceeding with the actual
value may cause sub-optimal performance.

Though it is safe to operate with the smaller buffers it is recommended that you
configure your operating system to allow for larger buffers.

Operating System Tuning

20-2 Oracle Coherence Developer's Guide for Oracle Coherence

On Linux execute (as root):

sysctl -w net.core.rmem_max=2096304
sysctl -w net.core.wmem_max=2096304

On Solaris execute (as root):

ndd -set /dev/udp udp_max_buf 2096304

On AIX execute (as root):

no -o rfc1323=1
no -o sb_max=4194304

On Windows:

Windows does not impose a buffer size restriction by default.

Other:

For information on increasing the buffer sizes for other operating systems please refer
to your operating system's documentation.

You may configure Coherence to request alternate sized buffers for packet publishers
and unicast listeners by using the
coherence/cluster-config/packet-publisher/packet-buffer/maximum
-packets and
coherence/cluster-config/unicast-listener/packet-buffer/maximum
-packets elements. For more information, see "packet-buffer" on page H-32.

High Resolution timesource (Linux)
Linux has several high resolution timesources to choose from, the fastest TSC (Time
Stamp Counter) unfortunately is not always reliable. Linux chooses TSC by default,
and during boot checks for inconsistencies, if found it switches to a slower safe
timesource. The slower time sources can be 10 to 30 times more expensive to query
then the TSC timesource, and may have a measurable impact on Coherence
performance. Note that Coherence and the underlying JVM are not aware of the
timesource which the operating system is using. It is suggested that you check your
system logs (/var/log/dmesg) to verify that the following is not present.
Example 20–2 illustrates a sample timesource log.

Example 20–2 Log Message from a Linux Timesource

kernel: Losing too many ticks!
kernel: TSC cannot be used as a timesource.
kernel: Possible reasons for this are:
kernel: You're running with Speedstep,
kernel: You don't have DMA enabled for your hard disk (see hdparm),
kernel: Incorrect TSC synchronization on an SMP system (see dmesg).
kernel: Falling back to a sane timesource now.

Note: Note that AIX only supports specifying buffer sizes of 1MB,
4MB, and 8MB. Additionally there is an issue with IBM's 1.4.2, and 1.5
JVMs which may prevent them from allocating socket buffers larger
then 64K. This issue has been addressed in IBM's 1.4.2 SR7 SDK and
1.5 SR3 SDK.

Operating System Tuning

Performance Tuning 20-3

As the log messages suggest, this can be caused by a variable rate CPU (SpeedStep),
having DMA disabled, or incorrect TSC synchronization on multi CPU machines. If
present it is suggested that you work with your system administrator to identify the
cause and allow the TSC timesource to be used.

Datagram size (Microsoft Windows)
Microsoft Windows supports a fast I/O path which is used when sending "small"
datagrams. The default setting for what is considered a small datagram is 1024 bytes;
increasing this value to match your network MTU (normally 1500) can significantly
improve network performance.

To adjust this parameter:

1. Run Registry Editor (regedit)

2. Locate the following registry key
HKLM\System\CurrentControlSet\Services\AFD\Parameters

3. Add the following new DWORD value Name: FastSendDatagramThreshold
Value: 1500 (decimal)

4. Reboot

For more details on this parameter see Appendix C of
http://technet.microsoft.com/en-us/library/bb726981.aspx

Thread Scheduling (Microsoft Windows)
Windows (including NT, 2000 and XP) is optimized for desktop application usage. If
you run two console ("DOS box") windows, the one that has the focus can use almost
100% of the CPU, even if other processes have high-priority threads in a running state.
To correct this imbalance, you must configure the Windows thread scheduling to
less-heavily favor foreground applications.

1. Open the Control Panel.

2. Open System.

3. Select the Advanced tab.

4. Under Performance select Settings.

5. Select the Advanced tab.

6. Under Processor scheduling, choose Background services.

Note: Included in Coherence 3.1 and above is an optimize.reg
script which will perform this change for you, it can be found in the
coherence/bin directory of your installation. After running the
script you must reboot your computer for the changes to take effect.

Note: Coherence includes an optimize.reg script which will
perform this change for you, it can be found in the coherence/bin
directory of your installation.

Network Tuning

20-4 Oracle Coherence Developer's Guide for Oracle Coherence

Swapping
Ensure that you have sufficient memory such that you are not making active use of
swap space on your machines. You may monitor the swap rate using tools such as
vmstat and top. If you find that you are actively moving through swap space this
will likely have a significant impact on Coherence's performance. Often this will
manifest itself as Coherence nodes being removed from the cluster due to long periods
of unresponsiveness caused by them having been "swapped out".

Network Tuning
■ Network Interface Settings

■ Bus Considerations

■ Network Infrastructure Settings

■ Ethernet Flow-Control

■ Path MTU

Network Interface Settings
Verify that your Network card (NIC) is configured to operate at it's maximum link
speed and at full duplex. The process for doing this varies between operating systems.

On Linux execute (as root):

ethtool eth0

See the man page on ethtool for further details and for information on adjust the
interface settings.

On Solaris execute (as root):

kstat ce:0 | grep link_

This will display the link settings for interface 0. Items of interest are link_duplex
(2 = full), and link_speed which is reported in Mbps.

On Windows:

1. Open the Control Panel.

2. Open Network Connections.

3. Open the Properties dialog for desired network adapter.

4. Select Configure.

5. Select the Advanced tab.

6. Locate the driver specific property for Speed & Duplex.

7. Set it to either auto or to a specific speed and duplex setting.

Note: If running on Solaris 10, please review Sun issues 102712 and
102741 which relate to packet corruption and multicast
disconnections. These will most often manifest as either
EOFExceptions, "Large gap" warnings while reading packet data, or
frequent packet timeouts. It is highly recommend that the patches for
both issues be applied when using Coherence on Solaris 10 systems.

Network Tuning

Performance Tuning 20-5

Bus Considerations
For 1Gb and faster PCI network cards the system's bus speed may be the limiting
factor for network performance. PCI and PCI-X busses are half-duplex, and all devices
will run at the speed of the slowest device on the bus. Standard PCI buses have a
maximum throughput of approximately 1Gb/sec and thus are not capable of fully
using a full-duplex 1Gb NIC. PCI-X has a much higher maximum throughput
(1GB/sec), but can be hobbled by a single slow device on the bus. If you find that you
are not able to achieve satisfactory bidirectional data rates it is suggested that you
evaluate your machine's bus configuration. For instance simply relocating the NIC to a
private bus may improve performance.

Network Infrastructure Settings
If you experience frequent multi-second communication pauses across multiple cluster
nodes you may need to increase your switch's buffer space. These communication
pauses can be identified by a series of Coherence log messages identifying
communication delays with multiple nodes which are not attributable to local or
remote GCs.

Example 20–3 Message Indicating a Communication Delay

Experienced a 4172 ms communication delay (probable remote GC) with Member(Id=7,
Timestamp=2006-10-20 12:15:47.511, Address=192.168.0.10:8089, MachineId=13838);
320 packets rescheduled, PauseRate=0.31, Threshold=512

Some switches such as the Cisco 6500 series support configuration the amount of
buffer space available to each Ethernet port or ASIC. In high load applications it may
be necessary to increase the default buffer space. On Cisco this can be accomplished by
executing:

fabric buffer-reserve high

See Cisco's documentation for additional details on this setting.

Ethernet Flow-Control
Full duplex Ethernet includes a flow-control feature which allows the receiving end of
a point to point link to slow down the transmitting end. This is implemented by the
receiving end sending an Ethernet PAUSE frame to the transmitting end, the
transmitting end will then halt transmissions for the interval specified by the PAUSE
frame. Note that this pause blocks all traffic from the transmitting side, even traffic
destined for machines which are not overloaded. This can induce a head of line
blocking condition, where one overloaded machine on a switch effectively slows down
all other machines. Most switch vendors will recommend that Ethernet flow-control be
disabled for inter switch links, and at most be used on ports which are directly
connected to machines. Even in this setup head of line blocking can still occur, and
thus it is advisable to disable Ethernet flow-control all together. Higher level protocols
such as TCP/IP and Coherence TCMP include their own flow-control mechanisms
which are not subject to head of line blocking, and also negate the need for the lower
level flow-control.

For more details on this subject see
http://www.networkworld.com/netresources/0913flow2.html.

JVM Tuning

20-6 Oracle Coherence Developer's Guide for Oracle Coherence

Path MTU
By default Coherence assumes a 1500 byte network MTU, and uses a default packet
size of 1468 based on this assumption. Having a packet size which does not fill the
MTU will result is an under used network. If your equipment uses a different MTU,
then configure Coherence by specifying a packet size which is 32 bytes smaller then
the network path's minimal MTU. The packet size may be specified in
coherence/cluster-config/packet-publisher/packet-size/maximum-l
ength and preferred-length configuration elements. For more information on
these elements, see "packet-size" on page H-38.

If you are unsure of your equpiment's MTU along the full path between nodes you can
use either the standard ping or traceroute utility to determine it. To do this, execute a
series of ping or traceroute operations between the two machines. With each attempt
you will specify a different packet size, starting from a high value and progressively
moving downward until the packets start to make it through without fragmentation.
You will need to specify a particular packet size, and to not fragment the packets.

On Linux execute:

ping -c 3 -M do -s 1468 serverb

On Solaris execute:

traceroute -F serverb 1468

On Windows execute:

ping -n 3 -f -l 1468 serverb

On other operating systems: Consult the documentation for the ping or traceroute
command to see how to disable fragmentation, and specify the packet size.

If you receive a message stating that packets must be fragmented then the specified
size is larger then the path's MTU. Decrease the packet size until you find the point at
which packets can be transmitted without fragmentation. If you find that you need to
use packets smaller then 1468 you may want to contact your network administrator to
get the MTU increased to at least 1500.

JVM Tuning
■ Server Mode

■ Sizing the Heap

■ GC Monitoring & Tuning

Server Mode
It is recommended that you run all your Coherence JVMs in server mode, by
specifying the -server on the JVM command line. This allows for several
performance optimizations for long running applications.

Sizing the Heap
It is generally recommended that heap sizes be kept at 1GB or below as larger heaps
will have a more significant impact on garbage collection times. On 1.5 and higher
JVMs larger heaps are reasonable, but will likely require additional GC tuning. For
more information, see "Heap Size Considerations".

Coherence Network Tuning

Performance Tuning 20-7

Running with a fixed sized heap will save your JVM from having to grow the heap on
demand and will result in improved performance. To specify a fixed size heap use the
-Xms and -Xmx JVM options, setting them to the same value. For example:

java -server -Xms1024m -Xmx1024m ...

Note that the JVM process will consume more system memory then the specified heap
size, for instance a 1GB JVM will consume 1.3GB of memory. This should be taken into
consideration when determining the maximum number of JVMs which you will run
on a machine. The actual allocated size can be monitored with tools such as top. See
"Heap Size Considerations" for additional details on heap size considerations.

GC Monitoring & Tuning
Frequent garbage collection pauses which are in the range of 100ms or more are likely
to have a noticeable impact on network performance. During these pauses a Java
application is unable to send or receive packets, and in the case of receiving, the
operating system buffered packets may be discarded and need to be retransmitted.

Specify -verbose:gc or -Xloggc: on the JVM command line to monitor the
frequency and duration of garbage collection pauses.

See http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html for
details on GC tuning.

Starting with Coherence 3.2 log messages will be generated when one cluster node
detects that another cluster node has been unresponsive for a period, generally
indicating that a target cluster node was in a GC cycle.

Example 20–4 Message Indicating Target Cluster Node is in Garbage Collection Mode

Experienced a 4172 ms communication delay (probable remote GC) with Member(Id=7,
Timestamp=2006-10-20 12:15:47.511, Address=192.168.0.10:8089, MachineId=13838);
320 packets rescheduled, PauseRate=0.31, Threshold=512

PauseRate indicates the percentage of time for which the node has been considered
unresponsive since the stats were last reset. Nodes reported as unresponsive for more
then a few percent of their lifetime may be worth investigating for GC tuning.

Coherence Network Tuning
Coherence includes configuration elements for throttling the amount of traffic it will
place on the network; see the documentation for <traffic-jam>, <flow-control>
and <burst-mode>, these settings are used to control the rate of packet flow within
and between cluster nodes.

Validation
To determine how these settings are affecting performance you need to check if you're
cluster nodes are experiencing packet loss and/or packet duplication. This can be
obtained by looking at the following JMX stats on various cluster nodes:

■ ClusterNodeMBean.PublisherSuccessRate—If less then 1.0, packets are
being detected as lost and being resent. Rates below 0.98 may warrant
investigation and tuning.

■ ClusterNodeMBean.ReceiverSuccessRate—If less then 1.0, the same packet
is being received multiple times (duplicates), likely due to the publisher being
overly aggressive in declaring packets as lost.

Coherence Network Tuning

20-8 Oracle Coherence Developer's Guide for Oracle Coherence

■ ClusterNodeMBean.WeakestChannel—Identifies the remote cluster node
which the current node is having most difficulty communicating with.

For information on using JMX to monitor Coherence see Chapter 22, "How to Manage
Coherence Using JMX."

21

Setting Single Server Mode 21-1

21Setting Single Server Mode

If you want to perform unit testing or quick restarts, you might find it more
convenient to avoid the network and run in single-server mode. To constrain
Coherence to run on a single server, set the multicast packet time-to-live to 0, and set
the unicast IP address to an address that is not currently being used; for example:
127.0.0.1.

You can configure these properties either by declaring system properties on the
command line or by editing the values in the operational configuration descriptor,
tangosol-coherence.xml file.

Setting Single Server Mode in the Operation Configuration Descriptor
In the tangosol-coherence.xml file, the multicast packet time to live value is
defined by the <time-to-live> subelement of the <multicast-listener>
element. The <time-to-live> value determines the maximum number of "hops" a
packet may traverse between network segments. Setting this subelement to 0 keeps
the packets from leaving the originating machine.

The unicast IP address is defined by the <address> subelement of the
<unicast-listener> element. This subelement specifies the IP address that a
Socket will listen or publish on. Setting this subelement to an IP address that is never
used will prevent Coherence from joining the network.

The following XML code fragment illustrates a single server mode configuration in the
tangosol-coherence.xml file.

Example 21–1 Single Server Mode Configuration

<coherence>
 <cluster-config>
 ...
 <multicast-listener>
 <time-to-live>0<\time-to-live>
 ...
 <mulitcast-listener>
 ...
 <unicast-listener>
 <address>127.0.0.1<\address>
 ...
 <\unicast-listener>
 ...
 <\cluster-config>
<\coherence>

Setting Single Server Mode on the Command Line

21-2 Oracle Coherence Developer's Guide for Oracle Coherence

Setting Single Server Mode on the Command Line
Coherence defines system properties that allow you to set the multicast packet
time-to-live and the unicast IP address for single server mode on the command line.
This feature is useful when you need to change the settings for a single JVM, or if you
want to start an application with settings that differ from those in the descriptor files.

The following system properties can be used to define single server mode.

■ tangosol.coherence.ttl—Multicast packet time to live. Set to "0" to keep the
packets from leaving the originating machine.

■ tangosol.coherence.localhost—Unicast IP address. Set to an address that
is not currently being used; for example: 127.0.0.1.

The sample command line in Example 21–2 illustrates starting coherence in single
server mode:

Example 21–2 Command to Start Coherence in Single Server Mode

java -Dtangosol.coherence.localhost=127.0.0.1 -Dtangosol.coherence.ttl=0 -jar
coherence.jar

See Appendix L, "Command Line Overrides" for more information on system
properties defined by Coherence.

Part III
Part III Managing and Monitoring Oracle

Coherence

This section contains the following chapters:

■ Chapter 22, "How to Manage Coherence Using JMX"

■ Chapter 23, "JMX Reporter"

■ Chapter 24, "How to Create a Custom Report"

■ Chapter 25, "How to Modify Report Batch"

■ Chapter 26, "Analyzing Reporter Content"

■ Chapter 27, "How to Run a Report on Demand"

■ Chapter 28, "Configuring Custom MBeans"

■ Chapter 29, "How to Manage Custom MBeans Within the Cluster"

22

How to Manage Coherence Using JMX 22-1

22How to Manage Coherence Using JMX

Coherence includes facilities for managing and monitoring Coherence resources by
using the Java Management Extensions (JMX) API. JMX is a Java standard for
managing and monitoring Java applications and services. It defines a management
architecture, design patterns, APIs, and services for building general solutions to
manage Java-enabled resources. This section assumes familiarity with JMX
terminology. If you are new to JMX, you should start is with this article: "Getting
Started with Java Management Extensions (JMX): Developing Management and Monitoring
Solutions".

To manage Coherence using JMX:

■ Add JMX libraries to the Coherence classpath (if necessary)

■ Configure the Coherence Management Framework

■ Access Coherence MBeans to view and manipulate them using a JMX client of
your choice

Add JMX libraries to the Coherence classpath
To manage a Coherence cluster using JMX, ensure that you have the necessary JMX 1.0
or later classes (javax.management.*) in the classpath of at least one Coherence cluster
node, known as an MBeanServer host. The cluster nodes that are not MBeanServer
hosts will be managed by the MBeanServer host(s) by using the Coherence Invocation
service.

All compliant Java SE 5.0 JREs and Java EE application servers supply a JMX 1.0 or
later implementation; therefore, if the MBeanServer host node is running within a Java
SE 5.0 JVM or Java EE application server, no additional actions are necessary. For
standalone applications running within a pre-Java SE 5.0 JVM, you can download the
necessary JMX libraries from the JMX download Web site and add them to the
classpath.

Note: JMX support:

Coherence Enterprise Edition and higher support clustered JMX,
allowing access to JMX statistics for the entire cluster from any
member. Coherence Standard Edition provides only local JMX
information.

Configure the Coherence Management Framework

22-2 Oracle Coherence Developer's Guide for Oracle Coherence

Configure the Coherence Management Framework
In most cases, you can enable JMX management simply by setting the
tangosol.coherence.management Java system property on all Coherence cluster
nodes that are acting as MBeanServer hosts and the
tangosol.coherence.management.remote Java system property on all cluster
nodes:

-Dtangosol.coherence.management=all

-Dtangosol.coherence.management.remote=true

The use of dedicated JMX cluster members is a common pattern. This approach avoids
loading JMX software into every single cluster member, while still providing
fault-tolerance should a single JMX member run into issues.

In general, the Coherence Management Framework is configured by the
management-configuration operational configuration element in the Coherence
Operational Configuration deployment descriptor (tangosol-coherence.xml).
The following subelements control the behavior of the Management Framework:

For additional information on each of these attributes, see Appendix H, "Operational
Configuration Elements."

Access Coherence MBeans
After configuring the Coherence Management Framework and launching one or more
Coherence cluster nodes (at least one being an MBeanServer host) you can view and
manipulate the Coherence MBeans registered by all cluster nodes using standard JMX
API calls. See the Javadoc for the com.tangosol.net.management.Registry
class for details on the various MBean types registered by Coherence clustered
services.

Coherence ships with two examples that demonstrate accessing Coherence MBeans by
using JMX. The first uses the HttpAdapter, shipped as part of the JMX reference
implementation (jmxtools.jar). To run the example on a pre-Java SE 5.0 JVM, start
the Coherence command line application using the following command on Windows
(note that it is broken up into multiple lines here only for formatting purposes; this is a
single command entered on one line):

java -cp jmxri.jar;jmxtools.jar;coherence.jar

Table 22–1 Elements that Control the Behavior of the Management Framework

Element Description

allow-remote-management Specifies whether this cluster node will register its MBeans in a
remote MBeanServer(s).

domain-name Specifies the name of the JMX domain used to register MBeans
exposed by the Coherence Management Framework.

managed-nodes Specifies whether a cluster node's JVM has an in-process
MBeanServer and if so, whether the node allows management
of other nodes' managed objects. Valid values are none,
local-only, remote-only and all. For example, if a node has an
in-process MBeanServer and you would like this node to
manage other nodes' MBeans, then set this attribute to all.

read-only Specifies whether the MBeans exposed by this cluster node
allow operations that modify run-time attributes.

Access Coherence MBeans

How to Manage Coherence Using JMX 22-3

 -Dtangosol.coherence.management=all
 -Dtangosol.coherence.management.remote=true
 com.tangosol.net.CacheFactory

On UNIX:

java -cp jmxri.jar:jmxtools.jar:coherence.jar
 -Dtangosol.coherence.management=all
 -Dtangosol.coherence.management.remote=true
 com.tangosol.net.CacheFactory

When the Coherence command line application has started, enter jmx 8082 and press
return. This starts the HttpAdapter on http://localhost:8082 in the cluster
node's JVM and makes the cluster node an MBeanServer host. You can now use the
HttpAdapter Web application to view and manipulate Coherence MBeans registered
by all cluster nodes:

Figure 22–1 Viewing the HttpAdapter Web Application in a Browser

This figure is described in the text.

Access Coherence MBeans

22-4 Oracle Coherence Developer's Guide for Oracle Coherence

Alternatively, you can run this example with the Sun Java SE 5.0 JVM and use the
JConsole utility included with the Sun Java SE 5.0 JDK to view and manipulate
Coherence MBeans. To do so, start the Coherence command line application using the
following command (note that it is broken up into multiple lines here only for
formatting purposes; this is a single command entered on one line):

java -Dcom.sun.management.jmxremote
 -Dtangosol.coherence.management=all
 -Dtangosol.coherence.management.remote=true
 -jar coherence.jar

When the Coherence command line application has started, launch the JConsole utility
(located in the bin directory of the Sun Java SE 5.0 JDK distribution) and open a new
connection to the JVM running the Coherence command line application:

Figure 22–2 Using the JConsole Utility to Display and Manipulate Coherence MBeans

This figure is described in the text.

The second example is a JSP page (JmxCacheExplorer.jsp) that displays basic
information on each running Coherence cache using JMX API calls. You can find this

Configuring Management Refresh Methodology

How to Manage Coherence Using JMX 22-5

example in the examples/jsp/explore directory under the root of your Coherence
installation.

Additional JMX examples may be found on the Coherence Forums.

Using Coherence MBeanConnector to Access MBeans
Coherence ships with a program to launch a cluster node as a dedicated MBeanServer
host. This program provides access to Coherence MBeans by using the JMX Remote
API using RMI or the HTTP server provided by Sun's JMX RI. The RMI and HTTP
ports are user-configurable, allowing for access through a firewall. The server is
started using the following command (note that it is broken up into multiple lines here
only for formatting purposes; this is a single command entered on one line):

java -Dtangosol.coherence.management=all
 -cp coherence.jar com.tangosol.net.management.MBeanConnector [-http -rmi]

To allow access by using JMX RMI, include the -rmi flag. To allow access by using
HTTP and a web browser, include the -http flag. Both flags may be included; however
at least one must present for the node to start.

Table 22–2 describes optional properties that can be used for JMX RMI configuration:

Table 22–3 describes optional properties that can be used for HTTP configuration.
(NOTE: This flag requires Sun's JMX RI in the classpath):

To connect by using JConsole with default settings use the following command:

jconsole service:jmx:rmi://localhost:3000/jndi/rmi://localhost:9000/server

To connect by using HTTP with default settings use the following URL:

http://localhost:8888

Configuring Management Refresh Methodology
The current release of Coherence offers several ways to reduce the latency of
management information. Refresh policy was introduced in Coherence 3.3 to allow for
optimization of the retrieval of information from remotely managed nodes. Two new

Table 22–2 Optional Properties that can be used for JMX RMI Configuration

Property Description

tangosol.coherence.management.
remote.host

The host that the JMX server will bind to. Default is
localhost. (NOTE: on Redhat Linux this may have to be
changed to the host name or IP address)

tangosol.coherence.management.
remote.registryport

The port used for the JMX RMI registry. Default is 9000.

tangosol.coherence.management.
remote.connectionport

The port used for the JMX RMI connection. Default is
3000.

Table 22–3 Optional Properties that can be used for Http Configuration

Property Description

tangosol.coherence.manage
ment.remote.httpport

The port used for the HTTP connection. Default is 8888.

Configuring Management Refresh Methodology

22-6 Oracle Coherence Developer's Guide for Oracle Coherence

settings were added to help integrators and administrators configure the refresh
policy.

The tangosol.coherence.management.refresh.expiry property specifies the
minimum time interval between the remote retrieval of management information from
remote nodes.

-Dtangosol.coherence.management.refresh.expiry

The value of this element must be in the following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.

The tangosol.coherence.management.refresh.policy property defines the
refresh policy for the MBean.

-Dtangosol.coherence.management.refresh.policy

Table 22–4 describes valid values for this property.

Table 22–4 Values for the tangosol.coherence.management.refresh.policy Property

Setting Description

refresh-ahead MBeans are refreshed before they are requested based on prior
usage patterns after the expiry delay has passed. This setting can
reduce latency of the management information with a minor
increase in network consumption. This setting is best when
MBeans are accessed in a repetitive/programmatic pattern.

refresh-behind Each MBean will be refreshed after the data is accessed. This
method ensures optimal response time. However, the
information returned will be offset by the last refresh time.

refresh-expired (default) This setting has the same functionality as in pre-3.4 Coherence
releases. Each MBean will be refreshed from the remote node
when it is accessed and the expiry delay has passed from the last
refresh. This setting is best used when MBeans are accessed in a
random pattern.

23

JMX Reporter 23-1

23JMX Reporter

Coherence 3.4 provides a JMX reporting capability (the Reporter). The Reporter
provides out-of-the-box reports that help administrators and developers manage
capacity and trouble shoot problems.

Basic Configuration
Enabling the Reporter with basic content requires setting the system properties:

Example 23–1 illustrates the properties on the "management" node.

Example 23–1 System Properties for Reporter on the "Management" Node

-Dtangosol.coherence.management.report.autostart=true
-Dtangosol.coherence.management=all
-Dcom.sun.management.jmxremote

Example 23–2 illustrates the properties on the "managed" node.

Example 23–2 System Properties for Reporter on the "Managed" Node

-Dtangosol.coherence.management.remote=true

Basic configuration will create a single Reporter node that will log the JMX statistics
for all nodes in the cluster. The log files will be placed in the working directory of the
application.

Administration
The JMX Reporter is managed through an MBean under the Coherence Domain. The
Reporter MBean provides information related to the status and performance of the
Reporter. The MBean also provides the capability to start and stop the service and run
a report on demand.

Figure 23–1 illustrates the attributes available to the Reporter MBean. The JConsole is
being used to view the MBean.

Note: Plan for archiving and removing. Due to the volume of the
information created by the Reporter, you must have a plan for
archiving and/or removing the results BEFORE starting the Reporter.

Administration

23-2 Oracle Coherence Developer's Guide for Oracle Coherence

Figure 23–1 Reporter Attributes in JConsole

This figure is described in the text.

Figure 23–2 illustrates the operations available to the Reporter MBean. For a full
description of the Reporter Attributes see the Reporter section of the javadoc.

Data Analysis

JMX Reporter 23-3

Figure 23–2 Reporter Operations in JConsole

This figure is described in the text.

Data Analysis
Seven files are created each hour by the Reporter. Each file is prefixed with the date
and hour the report was executed in a YYYYMMDDHH format. This allows for easy
location and purging of unwanted information. The files generated are described in
Table 23–1:

Table 23–1 File Names Generated by Reporter

File Name Description

YYYYMMDDHH-memory-status.txt Contains memory and garbage collection
information about each node.

YYYYMMDDHH-network-health.txt Contains the publisher success rates and
receiver success rates for the entire grid

YYYYMMDDHH-network-health-detail.txt Contains the publisher success rates and
receiver success rates for each node

YYYYMMDDHH-node.txt Contains the list of nodes that were
members of the grid

YYYYMMDDHH-service.txt Contains Request and Task information
for each service.

YYYYMMDDHH-proxy.txt Contains utilization information about
each proxy node in the grid

Advanced Configuration

23-4 Oracle Coherence Developer's Guide for Oracle Coherence

See Chapter 26, "Analyzing Reporter Content" for a complete description of the data
contained in each file.

Advanced Configuration

Creating Custom Reports
1. Create the custom report configuration file. See Chapter 24, "How to Create a

Custom Report."

2. Update report batch to execute the report. See Chapter 25, "How to Modify Report
Batch."

3. Run on demand. See Chapter 27, "How to Run a Report on Demand."

Running Reporter in a Distributed Configuration
A distributed configuration is only recommended in situations where grid stability is
an issue. In this configuration, the distributed reporters will run independently, and
the execution times will not align. Therefore, grid level analysis is extremely difficult
but node level analysis during periods when nodes may be leaving or joining the grid
will still be available.

When running in distributed mode, each node logs local JMX statistics while allowing
for centralized management of the Reporters. To enable this configuration set the
following system properties

On the "managing" node:

Example 23–3 System Properties for Reporter in Distributed Mode on the "Managing"
Node

-Dtangosol.coherence.management.report.autostart=false
-Dtangosol.coherence.management.report.distributed=true
-Dtangosol.coherence.management=all
-Dcom.sun.management.jmxremote

On the "managed" node:

Example 23–4 System Properties for Reporter in Distributed Mode on the "Managed"
Node

-Dtangosol.coherence.management.report.autostart=true
-Dtangosol.coherence.management.report.distributed=true
-Dtangosol.coherence.management=local-only
-Dtangosol.coherence.management.remote=true

YYYYMMDDHH-cache-usage.txt Contains cache utilization (put, get, and
so on) statistic for each cache

Table 23–1 (Cont.) File Names Generated by Reporter

File Name Description

24

How to Create a Custom Report 24-1

24How to Create a Custom Report

The Coherence reporting feature provides a capable query definition that allows for
any information residing in the Coherence JMX data source to be logged to a text file.
After a custom report has been created, it can be included in a report batch and
executed on a specified time interval by the ReportControl MBean. For a complete
description of the report configuration XML file see the report-config.dtd which
is packaged in the coherence.jar file.

Configuring a Report File
To correctly generate the report file, several elements must be configured. These
elements are described in Table 24–1.

file-name Element
The value of this element will have the output path from the <report-path>
element pre-pended to it and the report will be generated in this location. If the
Coherence node cannot access this path, then the file will not be created.

file-name Macros
There are pre-defined macros that you can use with the file-name element. These
macros can add a node name, a batch number, or a date to the generated file name.

Table 24–1 Elements to Configure an Output File

Element
Optional/
Requited Description

<file-name> Required The file name to create or update when the report is
executed. For more information, see "file-name Element".

<delim> Optional The column delimiter for the report. Valid values are
{tab}, {space} or a printable character. The default
value is {tab}. If a string longer than one character is
entered, the first character in the string is used.

<hide-headers> Optional A boolean element to determine if the headers are to be
included in the report. If true, the column headers and
the report description are not included in the file. The
default value is false.

Specifying Data Columns

24-2 Oracle Coherence Developer's Guide for Oracle Coherence

file-name Macro Examples
The following example will create a file 20090101_network_status.txt on
January 1, 2009. The filename will change with the system time on the node executing
the report.

<file-name>{{date}}_network_status.txt</file-name>

The following example will create a file 00012_network_status.txt when the
report is executed on node 12. Note that due to the volatile nature of the Node Id, long
term storage in this manner is not recommended.

<file-name>{node}_network_status.txt</file-name>

The following example will create a file 0000000021_network_status.txt on the
21st execution of the report. Note that due to the volatile nature of the batch, long term
storage in this manner is not recommended.

<file-name>{batch}_network_status.txt</file-name>

Specifying Data Columns
Data columns can be sourced from JMX Attributes, ObjectName key part, JMX
composite attributes, JMX joined attributes, Report macros, and Report Constants.

How to Include an Attribute
To include data from MBeans returned from the query-pattern, the report must have a
column with an attribute source. This is the most common item that will be included
in the report.

Example 24–1 illustrates how to include the RoleName attribute from the query
pattern Coherence:type=Node,*.

Example 24–1 Including an Attribute Obtained from a Query Pattern

<column id = "RoleName">
 <type>attribute</type>
 <name>RoleName</name>
 <header>Role Name</header>
</column>

Table 24–2 Macros that can be Used with the file-name Element

Macro Description

batch Will include a batch Identifier into the filename of the report. If
the information is kept for a short amount of time or is
frequently uploaded into and RDBMS.

date Will include the date (with the format YYYYMMDD), into the file
name of the report. This is used mostly when the data will only
be kept for a certain period and then will be discarded.

node Will include the node ID into the file name string. This
configuration setting is helpful when many nodes are executing
the same report and the output files will be integrated for the
analysis.

Specifying Data Columns

How to Create a Custom Report 24-3

How to Include Part of the Key
A value that is present in an ObjectName key can be obtained from the
ObjectNames returned from the query-pattern. This value can subsequently be
included in the report.

Example 24–2 illustrates how to include the nodeId key part from the query pattern
Coherence:type=Node,*.

Example 24–2 Including Part of an ObjectName Key in a Report

<column id ="NodeId">
 <type>key</type>
 <name>nodeId</name>
 <header>Node Id</header>
</column>

How to Include Information from Composite Attributes
JMX composite values can be used to include part of a composite data attribute in a
report.

Example 24–9 illustrates how to include the startTime of the LastGCInfo attribute
from the query pattern java.lang:type=GarbageCollector,*.

Example 24–3 Including Information from a Composite Attribute in a Report

<column id="LastGCStart">
 <type>attribute</type>
 <name>LastGcInfo/startTime</name>
 <header>Last GC Start Time</header>
</column>

How to Include Information from Multiple MBeans
A JMX join attribute is required when a report requires information from multiple
MBeans. The major considerations when creating a join is to determine both the
primary query, the join query and the foreign key. The primary query should be the
query that returns the appropriate number of rows for the report. The join query
pattern must reference a single MBean and can not contain a wild card (*). The foreign
key is determined by what attributes from the primary query that are required to
complete the join query string.

The reporter feature that enables joins between MBeans is a column substitution
macro. The column substitution allows for the resulting value from a column to be
included as part of a string. A column substitution macro is a column ID attribute
surrounded by curly braces "{}". The reporter does not check for cyclical references
and will fail during execution if a cycle is configured.

Including Multiple MBean Information Example
You can draw information from more than one MBean and include it in a report. This
requires a join between the MBeans.

Note: The major limitation of join attributes is that the result of the
join must have only one value.

Specifying Data Columns

24-4 Oracle Coherence Developer's Guide for Oracle Coherence

For example, if a report requires the TotalGets from the Cache MBean
(Coherence:type=cache,*) and RoleName from the Node MBean
(Coherence:type=Node,*), then a join attribute must be used.

Since a greater number of MBeans will come from the Cache MBean,
Coherence:type=Cache,* would be the primary query and the RoleName would
be the join attribute. The foreign key for this join is the nodeId key part from the
Cache MBean and it must be included in the report. The configuration for this
scenario is illustrated in Example 24–4.

Example 24–4 Including Information from Multiple MBeans in a Report

<column id="RoleName">
 <type>attribute</type>
 <name>RoleName</name>
 <header>Role Name</header>
 <query>
 <pattern>Coherence:type=Node,nodeId={NodeFK}</pattern>
 </query>
</column>

<column id ="NodeFK">
 <type>key</type>
 <name>nodeId</name>
 <header>Node Id</header>
</column>

How to Use Report Macros
There are three report macros that can be included in a report:

■ Report Time (report-time)—is the time and date that the report was executed.
This information is useful for time series analysis.

■ Report Batch/Count (report-count)—is a long identifier that can be used to
correlate information from different reports executed at the same time.

■ Reporting Node (report-node)—is used when integrating information from the
same report executed on different nodes or excluding the executing node
information from the report.

To include the execution time into the report:

Example 24–5 Including Execution Time in a Report

<column id ="ReportTime">
 <type>global</type>
 <name>{report-time}</name>
 <header>Report Time</header>
</column>

To include the Report Batch/Count:

Example 24–6 Including the Report Batch/Count in a Report

<column id="ReportBatch">
 <type>global</type>
 <name>{report-count}</name>
 <header>batch</header>
</column>

Including Queries in a Report

How to Create a Custom Report 24-5

To include the execution node:

Example 24–7 Including the Execution Node

<column id="ReportNode">
 <type>global</type>
 <name>{report-node}</name>
 <header>ExecNode</header>
 <hidden>true</hidden>
</column>

How to Include Constant Values
Report constants can be used to either static values or report parameters. These
constants can be either double or string values. Often, these are used in filters to limit
the results to a particular data set or in calculations.

Example 24–8 illustrates how to include a constant double of 1.0 in a report:

Example 24–8 Including a Constant Numeric Value in a Report

<column id ="One">
 <type>constant</type>
 <header>Constant1</header>
 <data-type>double</data-type>
 <value>1.0</value>
 <hidden>true</hidden>
</column>

Example 24–9 illustrates how to include the constant string dist-Employee in a
report:

Example 24–9 Including a Constant String in a Report

<column id ="EmployeeCacheName">
 <type>constant</type>
 <header>Employee Cache Name</header>
 <data-type>string</data-type>
 <value>dist-Employee</value>
 <hidden>true</hidden>
</column>

Including Queries in a Report
The query is the foundation of the information included in a report. Each query
includes a query pattern, column references, and an optional filter reference. The
query pattern is a string that is a JMX ObjectName query string. This string can
return one or more MBeans. The column references must be defined in the
<columns> section of the report definition file. The filter reference must be defined in
the <filters> section of the report section.

Example 24–10 illustrates how to include the list all the Node IDs and RoleNames in
the cluster where the RoleName equals CoherenceServer.

Example 24–10 Including a List of the Cluster’s NodeIDs and RoleNames in a Report

<filters>
 <filter id="equalsRef">
 <type>equals</type>
 <params>

Using Filters to Construct Reports

24-6 Oracle Coherence Developer's Guide for Oracle Coherence

 <column-ref>RoleRef</column-ref>
 <column-ref>StringRef</column-ref>
 </params>
 </filter>
</filters>

<query>
 <pattern>Coherence:type=Node,*</pattern>
 <filter-ref>equalsRef</filter-ref>
</query>

<row>
 <column id ="NodeRef">
 <type>key</type>
 <name>nodeId</name>
 <header>Node Id</header>
 </column>

 <column id ="RoleRef">
 <name>RoleName</name>
 <header>Role</header>
 </column>

 <column id = "StringRef">
 <type>constant</type>
 <name>ConstString</name>
 <data-type>string</data-type>
 <value>CoherenceServer</value>
 <hidden>true</hidden>
 </column>

</row>

Using Filters to Construct Reports
Filters limit the data returned in the Report. Filters are either comparison filters or
composite filters. Comparison Filters evaluate the results of two columns while
composite filters evaluate the boolean results from one or two filters. Comparison
filters are equals, greater, and less.

Composite Filter types are and, or, and not. Each composite filter evaluates the filter
parameters first to last and apply standard boolean logic. Composite filter evaluation
uses standard short circuit logic. Cyclic references checks are not performed during
execution. If a cyclic reference occurs, it will create a runtime error.

Example 24–11 illustrates how to define an equals filter where RoleRef and
StringRef are defined columns.

Example 24–11 Using an Equals Filter for a Report

<filters>
 <filter id="equals">
 <type>equals</type>
 <params>
 <column-ref>RoleRef</column-ref>
 <column-ref>StringRef</column-ref>
 </params>
 </filter>
</filters>

Using Filters to Construct Reports

How to Create a Custom Report 24-7

Example 24–12 illustrates how to define a filter where the number of PacketsResent
are greater than PacketsSent (assuming PacketsResent and PacketsSent are
valid column references).

Example 24–12 Defining a "Greater Than" Filter for a Report

<filters>
 <filter id="greaterRef">
 <type>greater</type>
 <params>
 <column-ref>PacketsResent</column-ref>
 <column-ref>PacketsSent</column-ref>
 </params>
 </filter>
</filters>

Example 24–13 illustrates how to define an filter where the number of
PacketsResent are less than PacketsSent (assuming PacketsResent and
PacketsSent are valid column references).

Example 24–13 Defining a "Less Than" Filter for a Report

<filters>
 <filter id="greaterRef">
 <type>less</type>
 <params>
 <column-ref>PacketsResent</column-ref>
 <column-ref>PacketsSent</column-ref>
 </params>
 </filter>
</filters>

Example 24–14 illustrates how to define an and filter (assuming all column-ref
values are valid).

Example 24–14 Defining an "And" Filter for a Report

<filters>
 <filter id="equalsRef">
 <type>equals</type>
 <params>
 <column-ref>RoleRef</column-ref>
 <column-ref>StringRef</column-ref>
 </params>
 </filter>

 <filter id="greaterRef">
 <type>greater</type>
 <params>
 <column-ref>PacketsResent</column-ref>
 <column-ref>PacketsSent</column-ref>
 </params>
 </filter>

 <filter>
 <type>and</type>
 <params>
 <filter-ref>greaterRef</filter-ref>
 <filter-ref>equalsRef</filter-ref>
 <params>

Using Filters to Construct Reports

24-8 Oracle Coherence Developer's Guide for Oracle Coherence

 </filter>
</filters>

Example 24–15 illustrates how to define an or filter (assuming all column-ref values
are valid).

Example 24–15 Defining an "Or" Filter for a Report

<filters>
 <filter id="equalsRef">
 <type>equals</type>
 <params>
 <column-ref>RoleRef</column-ref>
 <column-ref>StringRef</column-ref>
 </params>
 </filter>

 <filter id="greaterRef">
 <type>greater</type>
 <params>
 <column-ref>PacketsResent</column-ref>
 <column-ref>PacketsSent</column-ref>
 </params>
 </filter>

 <filter>
 <type>or</type>
 <params>
 <filter-ref>greaterRef</filter-ref>
 <filter-ref>equalsRef</filter-ref>
 <params>
 </filter>
</filters>

Example 24–16 illustrates how to define a not equals filter, where RoleRef and
StringRef are defined columns.

Example 24–16 Defining a "Not Equals" Filter for a Report

<filters>
 <filter id="equals">
 <type>equals</type>
 <params>
 <column-ref>RoleRef</column-ref>
 <column-ref>StringRef</column-ref>
 </params>
 </filter>

 <filter id = "Not">
 <type>not</type>
 <params>
 <filter-ref>equals</filter-ref>
 </params>
 </filter>
</filters>

Using Functions to Construct a Report

How to Create a Custom Report 24-9

Using Functions to Construct a Report
Reporter functions allow mathematical calculations to be performed on data elements
within the same row of the report. The supported functions are Add, Subtract,
Multiply, and Divide. Function columns can then be included as parameters into
other function columns.

Function Examples
Example 24–17 illustrates how to add columns (Attribute1 and Attribute2) and
place the results into a third column (Addition).

Example 24–17 Adding Column Values and Including Results in a Different Column

<column id="AttributeID1">
 <name>Attribute1</name>
</column>

<column id="AttributeID2">
 <name>Attribute2</name>
</column>

<column id="Addition">
 <type>function</type>
 <name>Add2Columns</name>
 <header>Adding Columns</header>
 <function-name>add</function-name>
 <params>
 <column-ref>AttributeID1</column-ref>
 <column-ref>AttributeID2</column-ref>
 </params>
</column>

Example 24–18 illustrates how to subtract one column value (Attribute2) from
another (Attribute1) and place the results into a third column (Subtraction).

Example 24–18 Subtracting Column Values and Including Results in a Different Column

<column id="AttributeID1">
 <name>Attribute1</name>
</column>

<column id="AttributeID2">
 <name>Attribute2</name>
</column>

<column id="Subtraction">
 <type>function</type>
 <name>Subtract2Columns</name>
 <header>Difference</header>
 <function-name>subtract</function-name>
 <params>

 <column-ref>AttributeID1</column-ref>
 <column-ref>AttributeID2</column-ref>
 </params>
</column>

Example 24–19 illustrates how to multiply column values (Attribute1 and
Attribute2) place the results into a third column (Multiplication).

Using Aggregates to Construct a Report

24-10 Oracle Coherence Developer's Guide for Oracle Coherence

Example 24–19 Multiplying Column Values and Including Results in a Different Column

<column id="AttributeID1">
 <name>Attribute1</name>
</column>

<column id="AttributeID2">
 <name>Attribute2</name>
</column>

<column id="Multiplication">
 <type>function</type>
 <name>Multiply2Columns</name>
 <header>Multiply Columns</header>
 <function-name>multiply</function-name>
 <params>
 <column-ref>AttributeID1</column-ref>
 <column-ref>AttributeID2</column-ref>
 </params>
</column>

Example 24–20 illustrates how to divide one column (Attribute1) by another
(Attribute2) into a third column (Division). The result of all division is a Double
data type.

Example 24–20 Dividing Column Values and Including Results in a Different Column

<column id="AttributeID1">
 <name>Attribute1</name>
</column>

<column id="AttributeID2">
 <name>Attribute2</name>
</column>

<column id="Division">
 <type>function</type>
 <name>Dividing2Columns</name>
 <header>Division</header>
 <function-name>Divide</function-name>
 <params>
 <column-ref>AttributeID1</column-ref>
 <column-ref>AttributeID2</column-ref>
 </params>
</column>

Using Aggregates to Construct a Report
Reporter aggregates allow for multiple rows to be aggregated into a single value or
row. Table 24–3 describes the available aggregate types.

Table 24–3 Reporter Aggregate Types

Type Description

avg Calculate the mean value for all values in the column.

max Return the maximum value for all values in the column.

min Return the minimum value for all values in the column.

sum Add all the values from a column.

Constructing Delta Functions

How to Create a Custom Report 24-11

Aggregate Examples
Sum the values in the size column

Example 24–21 Adding the Values in a Column

<column id ="SumRef">
 <type>function</type>
 <function-name>sum</function-name>
 <column-ref>size</column-ref>>
 <header>Sum</header>
</column>

Average the values in the size column

Example 24–22 Calculating the Average of Values in a Column

<column id ="AverageRef">
 <type>function</type>
 <header>Average</header>
 <function-name>avg</function-name>
 <column-ref>size</column-ref>>
</column>

Find the maximum the value in the size column

Example 24–23 Finding the Maximum Value in a Column

<column id ="MaximumRef">
 <type>function</type>
 <header>Maximum</header>
 <function-name>max</function-name>
 <column-ref>size</column-ref>>
</column>

Find the minimum the value in the size column

Example 24–24 Finding the Minimum Value in a Column

<column id ="MinimumRef">
 <type>function</type>
 <header>Minimum</header>
 <function-name>min</function-name>
 <column-ref>size</column-ref>>
</column>

Constructing Delta Functions
Many numeric attributes in the Coherence report are cumulative. These values are
reset only when the resetStatistics operation is executed on the MBean. To
determine the state of the system without resetting the statistics, the Reporter uses a
delta function. The delta function subtracts the prior value of a column from the
current value of a column and returns the difference.

The prior values for a report are stored in a map on the Reporter client. This map is
keyed by the "delta key". By default, the delta key is the MBean name for the attribute.
However, when one-to-one relationship does not exist between the MBean and the
rows in the report, or the MBean name is subject to change between executions of the
report, the delta key will be calculated using the columns provided in the <params>
section.

Constructing Delta Functions

24-12 Oracle Coherence Developer's Guide for Oracle Coherence

Delta Function Examples
Example 24–25 illustrates how to include a delta calculation of an attribute. (Assume
PacketsSent is a defined column)

Example 24–25 Delta Calculation for an Attribute

<column id="DeltaPacketsSent">
 <type>function</type>
 <name>PacketsSent</name>
 <header>Delta Sent</header>
 <function-name>delta</function-name>
 <column-ref>PacketsSent</column-ref>
</column>

Example 24–26 illustrates how to include a delta calculation of an attribute with an
alternate delta key. (Assume PacketsSent, NodeID and TimeStamp are defined
columns)

Example 24–26 Delta Calculation for an Attribute with an Alternate Delta Key

<column id="DeltaPacketsSent">
 <type>function</type>
 <name>PacketsSent</name>
 <header>Delta Sent</header>
 <function-name>delta</function-name>
 <column-ref>PacketsSent</column-ref>
 <params>
 <column-ref>NodeID</column-ref>
 <column-ref>TimeStamp</column-ref>
 </params>
</column>

Note: Accuracy of Delta Functions: delta functions are only correct
when the report is running as part of a report batch.

25

How to Modify Report Batch 25-1

25How to Modify Report Batch

Configuring a report batch is one of the steps in creating a custom report. You typically
configure it after creating report configuration files. This configuration file determines
what reports the reporter executes, how often the reports get executed, and where the
reports are saved. If a single report can be used with different parameters, these
parameters are also configured in the report batch. For more information on report
configuration files, see Chapter 24, "How to Create a Custom Report".

Report Batch Deployment Descriptor
Use the report batch deployment descriptor to specify the various options for creating
custom reports.

Document Location
The name and location of the descriptor defaults to report-group.xml. The default
descriptor (packaged in coherence.jar) will be used unless a custom file is found in
the application's classpath.

Document Root
The root element of the POF user type descriptor is report-group. This is where you
may begin specifying the format of the custom report.

System Properties
Table 25–1 describes the system properties that can be used to control report batch
from the command line.

Report Batch Deployment Descriptor

25-2 Oracle Coherence Developer's Guide for Oracle Coherence

Document Format
The report batch descriptor should begin with the following DOCTYPE declaration:

<!DOCTYPE report-group SYSTEM "report-group.dtd">

Example 25–1 illustrates the nesting of elements in a report batch document.

Example 25–1 Format of a Report Batch Configuration File (report-group.xml)

<report group>
 <frequency/>
 <output-directory/>
 <report-list>
 <location/>
 <report-config>
 <init-params>
 <init-param>
 </init-param>
 <report-config/>
<report-group>

Table 25–1 System Properties for Controlling Report Batch

Property Default Description

tangosol.coherence.management.
report.configuration

reports/report-group.xml The XML file containing the
Reporter configuration settings,
such as the list of reports, the
report frequency, and so on.

tangosol.coherence.management.
report.autostart

false Flag to automatically start the
reporter when the node is started.

tangosol.coherence.management.
report.distributed

false Determines if the reporter is
running in a central model
(false) or on every node in the
cluster (true).

Report Batch Element Index

How to Modify Report Batch 25-3

Report Batch Element Index

Table 25–2 describes the relationship between the report batch elements.

Table 25–2 Report Batch Elements

Element Used in:

frequency report-group

location report-list

init-param init-params

init-params report-config

output-directory report-group

param-name init-param

param-type init-param

param-value init-param

report-config report-group

report-group root element

report-list report-group

frequency

25-4 Oracle Coherence Developer's Guide for Oracle Coherence

frequency

Used in: report-group

Description
Required. A string containing the number of seconds, minutes between each execution
of the report batch. 10s will run the report ever 10 seconds. 5m will run the report
every 5 minutes. Selecting an appropriate frequency is critical. If the frequency is too
short, the reporter can generate a large amount of data and consume significant disk
space. If the frequency is too long, the information will not be useful. It is
recommended that a process for purging and archiving historical information is in
place before configuring the reporter.

Report Batch Element Index

How to Modify Report Batch 25-5

location

Used in: report-list

Description
Required. The path to the report configuration file. For more information on this file,
see Chapter 24, "How to Create a Custom Report".

init-param

25-6 Oracle Coherence Developer's Guide for Oracle Coherence

init-param

Used in: init-params

Description
The init-param element contains an initialization parameter for a report. The
parameter consists of either a parameter name or type, and its value.

Report Batch Element Index

How to Modify Report Batch 25-7

init-params

Used in: report-config

Description
Optional. The init-params element contains a list of initialization parameters.

output-directory

25-8 Oracle Coherence Developer's Guide for Oracle Coherence

output-directory

Used in: report-group

Description
Optional. The directory path to prepend to the output file names from the report
configuration files. The username which the node is executing must have read write
access to this path.

Report Batch Element Index

How to Modify Report Batch 25-9

param-name

Used in: init-param

Description
The param-name element specifies the name of the initialization parameter.

param-type

25-10 Oracle Coherence Developer's Guide for Oracle Coherence

param-type

Used in: init-param

Description
The param-type element specifies the Java type of the initialization parameter.
Supported types are:

■ string—indicates that the value is a java.lang.String

■ long—indicates that the value is a java.lang.Long

■ double—indicates that the value is a java.lang.Double

Report Batch Element Index

How to Modify Report Batch 25-11

param-value

Used in: init-param

Description
The param-value element specifies a value of the initialization parameter. The value
is in a format specific to the type of the parameter.

report-config

25-12 Oracle Coherence Developer's Guide for Oracle Coherence

report-config

Used in: report-group

Description
The report-config contains the configuration file name and the initialization
parameters for the report.

Report Batch Element Index

How to Modify Report Batch 25-13

report-group

Used in: root element

Description
Describes the report list, the frequency, the report parameters, and the output directory
for the batch.

report-list

25-14 Oracle Coherence Developer's Guide for Oracle Coherence

report-list

Used in: report-group

Description
Required. The list of reports to include in the batch. This element contains the
<report-config> subelement.

26

Analyzing Reporter Content 26-1

26Analyzing Reporter Content

Coherence provides out of the box information that helps administrators and
developers better analyze usage and configuration issues that may occur.

Network Health
The Network Health report contains the primary aggregates for determining the
health of the network communications. The network health file is a tab delimited file
that is prefixed with the date in YYYYMMDD format and post fixed with
-network-health.txt. For example 20090131-network-health.txt would be
created on January 1, 2009. Table 26–1 describes the content of the Network Health
report.

Network Health Detail
The Network Health report supporting node level details for determining the health of
the network communications. The network health detail file is a tab delimited file that
is prefixed with the date in YYYYMMDD format and post fixed with
-network-health-detail.txt. For example 20090131-network-health.txt

Table 26–1 Contents of the Network Health Report

Column Type Description

Batch Counter Long A sequential counter to help integrate information
between related files. This value does reset when the
reporter restarts and is not consistent across nodes.
However, it is helpful when trying to integrate files.

Report Time Date The system time when the report executed.

Min Node Rx Success Double The minimum receiver success rate for a node in the
cluster. If this value is considerably less (10%) than the
Grid Rx Success rate. Further analysis using the
Network Health Detail should be done.

Grid Rx Success Double The receiver success rate for the grid as a whole. If this
value is below 90%. Further analysis of the network
health detail should be done.

Min Node Tx Success Double The minimum publisher success rate for a node in the
cluster. If this value is considerably less (10%) than the
Grid Rx Success rate. Further analysis using the
Network Health Detail should be done.

Grid TX Success Double The publisher success rate for the grid as a whole. If this
value is below 90%. Further analysis of the network
health detail should be done.

Memory Status

26-2 Oracle Coherence Developer's Guide for Oracle Coherence

would be created on January 1, 2009. Table 26–2 describes the content of the Network
Health Detail report.

Memory Status
The Memory Status report must be run as part of a report batch. The values are helpful
in understanding memory consumption on each node and across the grid. For data to
be included nodes must be configured to publish platform MBean information. The
memory status file is a tab delimited file that is prefixed with the date in YYYYMMDD
format and post fixed with -memory-status.txt. For example

Table 26–2 Contents of the Network Health Detail Report

Column Data Type Description

Batch Counter Long A sequential counter to help integrate information
between related files. This value does reset when the
reporter restarts and is not consistent across nodes.
However, it is helpful when trying to integrate files.

Report Time Date The system time when the report executed.

Node Id Long The node for the network statistics.

Tx Success Double The publisher success rate for the node. If this value is
within 2%-3% of the "Min Node Tx Success" and more
than 10% less than the "Grid Tx Success" for the batch
in the Network Health File, the corresponding node
may be having difficulty communicating with the
cluster. Constrained CPU, constrained network
bandwidth or high network latency could cause this
to occur.

RX Success Double The receiver success rate for the node. If this value is
within 2%-3% of the "Min Node Rx Success" and more
than 10% less than the "Grid Tx Success" for the batch
in the Network Health File, the corresponding node
may be having difficulty communicating with the
cluster. Constrained CPU, constrained network
bandwidth or high network latency could cause this
to occur.

PacketsSent Double The total number of network packets sent by the
node.

Current Packets Sent Long The number of packets sent by the node since the
prior execution of the report.

PacketsResent Long The total number of network packets resent by the
node. Packets will be resent when the receiver of the
packet receives and invalid packet or when an
acknowledge packet is not sent within the appropriate
amount of time.

Current Packet Resent Long The number of network packets resent by the node
since the prior execution of the report.

PacketsRepeated Long The total number of packets received more than once.

Current Packets
Repeated

Long The number of packets received since the last
execution of the report.

PacketsReceived Long The total number of packets received by the node.

Current Packets
Received

Long The total number of packets received by the node
since the last execution of the report.

Cache Size

Analyzing Reporter Content 26-3

20090131-memory-status.txt would be created on January 1, 2009. Table 26–3
describes the content of the Memory Status report.

Cache Size
The cache size report can be executed either on demand or it can be added as part of
the report batch and the Caches should have the <unit-calculator> subelement of
<local-scheme> set to BINARY. The cache size file is a tab delimited file that is prefixed
with the date in YYYYMMDD format and post fixed with -cache-size.txt. For
example 20090131-cache-size.txt would be created on January 1, 2009.
Table 26–4 describes the content of the Cache Size report.

Table 26–3 Contents of the Memory Status Report

Column Data Type Description

Batch Counter Long A sequential counter to help integrate information
between related files. This value does reset when the
reporter restarts and is not consistent across nodes.
However, it is helpful when trying to integrate files.

Report Time Date The system time when the report executed.

Node Id Long The node for the memory statistics.

Gc Name String The name of the Garbage Collector information.

CollectionCount Long The number of garbage collections that have
happened since the virtual machine started.

Delta Collection Count Long The number of garbage collections that have occurred
since the last execution of the report.

CollectTime Long The number of milliseconds the JVM has spent on
garbage collection since the start of the JVM.

Delta Collect Time Long The number of milliseconds the JVM has spent on
garbage collection since the last execution of the
report.

Last GC Start Time Long The start time of the last Garbage Collection.

Last GC Stop Time Long The stop time of the last garbage collection.

Heap Committed Long The number of heap bytes committed at the time of
report.

Heap Init Long The number of heap bytes initialized at the time of the
report.

Heap Max Long The Maximum number of bytes used by the JVM since
the start of the JVM.

Heap Used Long The bytes used by the JVM at the time of the report.

Table 26–4 Contents of the Cache Size Report

Column Data Type Description

Batch Counter Long A sequential counter to help integrate information
between related files. This value does reset when the
reporter restarts and is not consistent across nodes.
However, it is helpful when trying to integrate files.

Report Time Date The system time when the report executed.

Cache Name String The name of the cache.

Service Report

26-4 Oracle Coherence Developer's Guide for Oracle Coherence

Service Report
The service report provides information to the requests processed, request failures,
and request backlog, tasks processed, task failures and task backlog. Request Count
and Task Count are useful to determine performance and throughput of the service.
RequestPendingCount and Task Backlog are useful in determining capacity issues or
blocked processes. Task Hung Count, Task Timeout Count, Thread Abandoned Count,
Request Timeout Count are the number of unsuccessful executions that have occurred
in the system. Table 26–5 describes the contents of the Service report.

MemoryMB Double The MB consumed by the objects in the cache. This does
not include indexes or over head.

Avg Object Size Double The Average memory consumed by each object.

Cache Size Double The number of objects in the cache.

Memory Bytes Double The number of bytes consumed by the objects in the
cache. This does not include indexes or over head.

Table 26–5 Contents of the Service Report

Column Data Type Description

Batch Counter Long A sequential counter to help integrate information
between related files. This value does reset when the
reporter restarts and is not consistent across nodes.
However, it is helpful when trying to integrate files.

Report Time Date The system time when the report executed.

Service String The service name.

Node Id String The numeric node identifier.

Refresh Time Date The system time when the service information was
updated from a remote node.

Request Count Long The number of requests since the last report
execution.

RequestPendingCount Long The number of pending requests at the time of the
report.

RequestPendingDuration Long The duration for the pending requests at the time of
the report.

Request Timeout Count Long The number of request timeouts since the last report
execution.

Task Count Long The number of tasks executed since the last report
execution.

Task Backlog Long The task backlog at the time of the report execution.

Task Timeout Count Long The number of task timeouts since the last report
execution.

Task Hung Count Long The number of tasks that hung since the last report
execution.

Thread Abandoned Count Long The number of threads abandoned since the last
report execution.

Table 26–4 (Cont.) Contents of the Cache Size Report

Column Data Type Description

Proxy Report

Analyzing Reporter Content 26-5

Node List
Due to the transient nature of the node identifier (nodeId), the reporter logs out a list
of nodes and the user defined <member-identity> information. The node list file is a
tab delimited file that is prefixed with the date in YYYYMMDD format and post fixed
with -nodes.txt. For example 20090131-nodes.txt would be created on January
1, 2009. Table 26–6 describes the content of the Node List report.

Proxy Report
The proxy file provides information about proxy servers and the information being
transferred to clients. The Proxy file is a tab delimited file that is prefixed with the date
in YYYYMMDD format and post fixed with -report-proxy.txt. For example
20090131-report-proxy.txt would be created on January 1, 2009. Table 26–7
describes the content of the Proxy report.

Table 26–6 Contents of the Node List Report

Column Data Type Description

Batch Counter Long A sequential counter to help integrate information
between related files. This value does reset when the
reporter restarts and is not consistent across nodes.
However, it is helpful when trying to integrate files.

Report Time Date The system time when the report executed.

Node Id String The numeric node identifier.

UnicastAddress String The Unicast address for the node.

MemberName String The member name for the node.

ProcessName String The process name for the node.

RoleName String The role name for the node.

MachineName String The machine name for the node.

RackName String The rack name for the node.

SiteName String The site name for the node.

Refresh Time Date/Time The time which the information was refreshed from a
remote node. If the time is not the same as the refresh
time on other rows in the batch, the node did not
respond in a timely matter. This is often caused by a
node preforming a garbage collection. Any information
regarding a node with an "old" refresh date is
questionable.

Table 26–7 Contents of the Proxy Report

Column Type Description

Batch Counter Long A sequential counter to help integrate information
between related files. This value does reset when the
reporter restarts and is not consistent across nodes.
However, it is helpful when trying to integrate files.

Report Time Date The system time when the report executed.

Node Id String The numeric node identifier.

Service Name String The name of the proxy service.

HostIp String The IP Address and Port of the proxy service.

Proxy Report

26-6 Oracle Coherence Developer's Guide for Oracle Coherence

ConnectionCount Long The current number of connections to the proxy
service.

OutgoingByteBacklog Long The number of bytes queued to be sent by the proxy
service.

OutgoingMessageBacklog Long The number of messages queued by the proxy
service.

Bytes Sent Long The number of bytes sent by the proxy service since
the last execution of the report.

Bytes Received Long The number of bytes received by the proxy service
since the last execution of the report.

Messages Sent Long The number of messages sent by the proxy service
since the last execution of the report.

Messages Received Long The number of messages received by the proxy
service since the last execution of the report.

Table 26–7 (Cont.) Contents of the Proxy Report

Column Type Description

27

How to Run a Report on Demand 27-1

27How to Run a Report on Demand

A report can be run on demand by using either JConsole or the JMX HTTP Adapter.
The Reporter MBean operations contain a runReport(String sReportPath)
method. The report path can either be a resource in coherence.jar or a file URL.

Figure 27–1 illustrates the reporter operations in JConsole.

Figure 27–1 Reporter Operations in JConsole

This figure is described in the text.

How to Run ReportControl MBean at Node Startup

27-2 Oracle Coherence Developer's Guide for Oracle Coherence

How to Run ReportControl MBean at Node Startup
When set to true, the tangosol.coherence.management.report.autostart
system property allows the ReportControl MBean to start execution when then
node is started. This property must be used with the
tangosol.coherence.management.report.group system property and the
configuration of the custom MBean XML file.

In Example 27–1, the tangosol.coherence.management.report.autostart
system property is set to true.

Example 27–1 tangosol.coherence.management.report.autostart System Property

-Dtangosol.coherence.management.report.autostart=true

How to Configure the ReportControl MBean
The report group system property,
tangosol.coherence.management.report.group configures the
ReportControl MBean with the specified configuration file. This property must be
used in correlation with the
tangosol.coherence.management.report.autostart property and the
configuration of the custom MBean XML file.

In Example 27–2, the tangosol.coherence.management.report.group
property points to the custom MBean XML file report-batch.xml.

Example 27–2 tangosol.coherence.management.report.group System Property

-Dtangosol.coherence.management.report.group=./report-batch.xml

28

Configuring Custom MBeans 28-1

28Configuring Custom MBeans

This chater provides information on configuring standard, MX, and JMX MBeans.

Creating an MBean XML Configuration File
Custom MBeans are configured in an XML configuration file. The elements in the file
describe the MBean type, MBean implementation, and the target MBean ObjectName.
The current release of Coherence supports these types of custom MBeans.

■ Standard MBeans

■ MXBeans

■ JMX MBeans

See Appendix K, "MBean Configuration Elements" for a complete descriptions of the
elements used in this chapter.

Configuring Standard MBeans
The configuration in Example 28–1 will create a
Coherence:type=Query,nodeId=<nodeId> using the standard MBean
com.oracle.customMBeans.Query class for the node. This example specifies an
MBean class (mbean-class), an MBean name (mbean-name), and whether it is
registered (enabled) in the instance.

Example 28–1 Using an MBean to Create a Query Node

<mbeans>
 <mbean id="100">
 <mbean-class>com.oracle.customMBeans.Query</mbean-class>
 <mbean-name>type=Query</mbean-name>
 <enabled>true</enabled>
 </mbean>
</mbeans>

Configuring MXBeans
The configuration in Example 28–2 will execute the standard Java method
getMemoryMXBean in the java.lang.management.ManagementFactory class
and use the result to create a
Coherence:type=java,SubSystem=Memory,nodeId=<nodeId> for the node.
The example specifies an MBean factory (mbean-factory), an accessor method name
on the factory (mbean-accessor), an MBean name (mbean-name), and whether it is
registered (enabled) in the instance.

Creating an MBean XML Configuration File

28-2 Oracle Coherence Developer's Guide for Oracle Coherence

Example 28–2 Getting an MBean for the Memory System of a Java Virtual Machine

<mbeans>
 <mbean id="2">
 <mbean-factory>java.lang.management.ManagementFactory</mbean-factory>
 <mbean-accessor>getMemoryMXBean</mbean-accessor>
 <mbean-name>type=java,SubSystem=Memory</mbean-name>
 <enabled>true</enabled>
 </mbean>
</mbeans>

Configuring JMX MBeans
JMX MBeans are MBeans that exist in a local MBean server that need to be added to
the Coherence Management structure. This allows consolidation of MBeanServer
information into a single source. The configuration in Example 28–3 executes the JMX
query, java.lang:*, on the node's local MBean server and uses the results to create
corresponding MBeans on the centralized Coherence MBean server. The example
specifies a JMX MBean query(mbean-query), an MBean name (mbean-name), and
whether it is registered(enabled) in the instance.

Example 28–3 Executing a JMX Query and Creating an MBean on the MBean Server

<mbeans>
 <mbean id="1">
 <mbean-query>java.lang:*</mbean-query>
 <mbean-name>type=Platform</mbean-name>
 <enabled>true</enabled>
 </mbean>
<mbeans>

Figure 28–1 illustrates the results on the query in JConsole.

Enabling a Custom MBean Configuration File

Configuring Custom MBeans 28-3

Figure 28–1 MBean Query Displayed in the JConsole

This figure is described in the text.

Enabling a Custom MBean Configuration File
You can enable the custom MBean configuration file by setting a system property or by
including a specially named file in the class path.

Setting a System Property
Coherence provides the following system property to specify the name and location of
a custom MBean configuration file. Setting this system property will cause the
Coherence node to load the MBeans defined in the file represented by filename.

Example 28–4 System Property to Load an MBean

-Dtangosol.coherence.mbeans=<filename>

Adding a Custom MBean Configuration File to the Class Path
By convention, Coherence recognizes the configuration file named
custom-mbeans.xml as containing a custom MBean configuration. If you name your
custom MBean configuration file custom-mbeans.xml and include it in the class
path, then the Coherence node will load the configured MBeans.

Enabling a Custom MBean Configuration File

28-4 Oracle Coherence Developer's Guide for Oracle Coherence

29

How to Manage Custom MBeans Within the Cluster 29-1

29How to Manage Custom MBeans Within the
Cluster

In addition to managing Coherence with JMX, Coherence provides the ability to
manage and monitor "custom MBeans" (that is, application-level MBeans) within the
Coherence JMX Management and Monitoring framework. This enables you to manage
or monitor any application-level MBean from any JVM, node, or end-point within the
cluster.

In addition to the standard Coherence managed object types, any dynamic or standard
MBean type may be registered using the com.tangosol.net.management.Registry
interface.

Custom MBean Configuration
Coherence 3.4 can be configured to load platform and standard MBeans on connection
to the cluster. This allows administrators and support personnel to update and view
system and application information from all nodes in a cluster from a single location.
This feature also eliminates the need for JMX programs to connect to multiple sources
to gather information.

How to Add a Standard MBean to Coherence
The following instructions describe how to add a standard MBean to Coherence:

1. Create a standard MBean.

2. Add a standard MBean Class or JAR to the Coherence classpath (including central
management node).

3. Create a custom MBean XML configuration file (see "Creating an MBean XML
Configuration File" on page 28-1).

4. Modify node startup scripts to reference custom-mbean.xml (see "Enabling a
Custom MBean Configuration File" on page 28-3.

How to Programatically Add a Standard MBean to Coherence
Example 29–1 illustrates sample code that programmatically adds a standard MBean
to Coherence.

Example 29–1 Adding a Standard MBean to Coherence Programatically

Registry registry = CacheFactory.ensureCluster().getManagement();
Custom bean = new Custom();
String sName = registry.ensureGlobalName("type=Custom");

Custom MBean Configuration

29-2 Oracle Coherence Developer's Guide for Oracle Coherence

registry.register(sName, bean);

How to Add a the Results of a JMX Query to Coherence
The following instructions describe how to add the results of a JMX query to
Coherence.

1. Create a custom MBean XML file (see "Creating an MBean XML Configuration
File" on page 28-1).

2. Configure node startup script to include JMX MBean Server

3. Configure a node startup script to reference custom-mbean.xml (see "Enabling a
Custom MBean Configuration File" on page 28-3).

Figure 29–1 illustrates an example of running a JMX Query in JConsole.

Figure 29–1 JMX Query Run in JConsole

This figure is described in the text.

A

Production Checklist A-1

AProduction Checklist

Coherence tends to be so simple to use in development that developers do not take the
necessary planning steps and precautions when moving an application using
Coherence into production. This article is intended to accomplish the following:

■ Create a healthy appreciation for the complexities of deploying production
software, particularly large-scale infrastructure software and enterprise
applications;

■ Enumerate areas that require planning when deploying Coherence;

■ Define why production awareness should exist for each of those areas;

■ Suggest or require specific approaches and solutions for each of those areas; and

■ Provide a check-list to minimize risk when deploying to production.

Deployment recommendations are available for:

■ Network

■ Hardware

■ Operating System

■ JVM

■ Java Security Manager

■ Application Instrumentation

■ Coherence Editions and Modes

■ Coherence Operational Configuration

■ Coherence Cache Configuration

■ Large Cluster Configuration

■ Death Detection

Note: Deploying Coherence in a production environment is very
different from using Coherence in a development environment.

Development environments do not reflect the challenges of a
production environment.

Network

A-2 Oracle Coherence Developer's Guide for Oracle Coherence

Network

During development, a Coherence-enabled application on a developer's local
machine can accidentally form a cluster with the application running on other
developers' machines.
Developers often use and test Coherence locally on their workstations. There are
several ways in which they may accomplish this, including:

■ Setting the multicast TTL to zero,

■ Using a "loopback", or

■ By each developer using a different multi-cast address and port from all other
developers.

If one of these approaches is not used, then multiple developers on the same network
will find that Coherence has clustered across different developers' locally running
instances of the application; in fact, this happens relatively often and causes confusion
when it is not understood by the developers.

Setting the TTL to zero on the command line is very simple: Add the following to the
JVM startup parameters:

-Dtangosol.coherence.ttl=0

Starting with Coherence version 3.2, setting the TTL to zero for all developers is also
very simple. Edit the tangosol-coherence-override-dev.xml in the
coherence.jar file, changing the TTL setting as follows:

<time-to-live system-property="tangosol.coherence.ttl">0</time-to-live>

On some UNIX operating systems, including some versions of Linux and Mac OS X,
setting the TTL to zero may not be enough to isolate a cluster to a single machine. To
be safe, assign a different cluster name for each developer, for example using the
developer's email address as the cluster name. If the cluster communication does go
across the network to other developer machines, then the different cluster name will
cause an error on the node that is attempting to start up.

To ensure that the clusters are completely isolated, select a different multicast IP
address and port for each developer. In some organizations, a simple approach is to
use the developer's phone extension number as part of the multicast address and as
the port number (or some part of it). For information on configuring the multicast IP
address and port, see "multicast-listener" on page H-26.

During development, clustered functionality is often not being tested.
After the POC or prototype stage is complete, and until load testing begins, it is not
out of the ordinary for the application to be developed and tested by engineers in a
non-clustered form. This is dangerous, as testing primarily in the non-clustered
configuration can hide problems with the application architecture and implementation
that will show up later in staging, or even production.

Make sure that the application is being tested in a clustered configuration as
development proceeds. There are several ways for clustered testing to be a natural part
of the development process; for example:

■ Developers can test with a locally clustered configuration (at least two instances
running on their own machine). This works well with the TTL=0 setting, since
clustering on a single machine works with the TTL=0 setting.

Network

Production Checklist A-3

■ Unit and regression tests can be introduced that run in a test environment that is
clustered. This may help automate certain types of clustered testing that an
individual developer would not always remember (or have the time) to do.

What is the type and speed of the production network?
Most production networks are based on gigabit Ethernet, with a few still built on
slower 100Mb Ethernet or faster ten-gigabit Ethernet. It is important to understand the
topology of the production network, and what the full set of devices that will connect
all of the servers that will be running Coherence. For example, if there are ten different
switches being used to connect the servers, are they all the same type (make and
model) of switch? Are they all the same speed? Do the servers support the network
speeds that are available?

In general, all servers should share a reliable, fully switched network. This generally
implies sharing a single switch (ideally, two parallel switches and two network cards
per server for availability). There are two primary reasons for this. The first is that
using more than one switch almost always results in a reduction in effective network
capacity. The second is that multi-switch environments are more likely to have
network "partitioning" events where a partial network failure will result in two or
more disconnected sets of servers. While partitioning events are rare, Coherence cache
servers ideally should share a common switch.

To demonstrate the impact of multiple switches on bandwidth, consider several
servers plugged into a single switch. As additional servers are added, each server
receives dedicated bandwidth from the switch backplane. For example, on a fully
switched gigabit backplane, each server receives a gigabit of inbound bandwidth and a
gigabit of outbound bandwidth for a total of 2Gbps "full duplex" bandwidth. Four
servers would have an aggregate of 8Gbps bandwidth. Eight servers would have an
aggregate of 16Gbps. And so on up to the limit of the switch (in practice, usually in the
range of 160-192Gbps for a gigabit switch). However, consider the case of two switches
connected by a 4Gbps (8Gbps full duplex) link. In this case, as servers are added to
each switch, they will have full "mesh" bandwidth up to a limit of four servers on each
switch (e.g all four servers on one switch can communicate at full speed with the four
servers on the other switch). However, adding additional servers will potentially
create a bottleneck on the inter-switch link. For example, if five servers on one switch
send data to five servers on the other switch at 1Gbps per server, then the combined
5Gbps will be restricted by the 4Gbps link. Note that the actual limit may be much
higher depending on the traffic-per-server and also the portion of traffic that actually
needs to move across the link. Also note that other factors such as network protocol
overhead and uneven traffic patterns may make the usable limit much lower from an
application perspective.

Avoid mixing and matching network speeds: Make sure that all servers can and do
connect to the network at the same speed, and that all of the switches and routers
between those servers run at that same speed or faster.

Oracle strongly suggests GigE or faster: Gigabit Ethernet is supported by most servers
built since 2004, and Gigabit switches are economical, available and widely deployed.

Before deploying an application, you must run the Datagram Test to test the actual
network speed and determine its capability for pushing large amounts of data.
Furthermore, the Datagram test must be run with an increasing ratio of publishers to
consumers, since a network that appears fine with a single publisher and a single
consumer may completely fall apart as the number of publishers increases, such as
occurs with the default configuration of Cisco 6500 series switches. See "Deploying to
Cisco Switches" on page M-2 for more information.

Hardware

A-4 Oracle Coherence Developer's Guide for Oracle Coherence

Will the production deployment use multicast?
The term "multicast" refers to the ability to send a packet of information from one
server and to have that packet delivered in parallel by the network to many servers.
Coherence supports both multicast and multicast-free clustering. Oracle suggests the
use of multicast when possible because it is an efficient option for many servers to
communicate. However, there are several common reasons why multicast cannot be
used:

■ Some organizations disallow the use of multicast.

■ Multicast cannot operate over certain types of network equipment; for example,
many WAN routers disallow or do not support multicast traffic.

■ Multicast is occasionally unavailable for technical reasons; for example, some
switches do not support multicast traffic.

First determine if multicast will be used. In other words, determine if the desired
deployment configuration is to use multicast.

Before deploying an application that will use multicast, you must run the Multicast
Test to verify that multicast is working and to determine the correct (the minimum)
TTL value for the production environment. See Chapter 16, "Performing a Multicast
Connectivity Test" for more information.

Applications that cannot use multicast for deployment must use the WKA
configuration. See "well-known-addresses" on page H-51 and "Network Protocols" for
more information.

Are your network devices configured optimally?
If the above datagram and/or multicast tests have failed or returned poor results, it is
possible that there are configuration problems with the network devices in use. Even if
the tests passed without incident and the results were perfect, it is still possible that
there are lurking issues with the configuration of the network devices.

Review the suggestions in "Network Tuning" on page 20-4.

How will the cluster handle a sustained network outage?
The Coherence cluster protocol is capable of detecting and handling a wide variety of
connectivity failures. The clustered services are able to identify the connectivity issue,
and force the offending cluster node to leave and re-join the cluster. In this way the
cluster ensures a consistent shared state among its members.

See "Death Detection" on page A-14 for more details. See also:

■ "Deploying to Cisco Switches" on page M-2

■ "Deploying to Foundry Switches" on page M-4

Hardware

During development, developers can form unrealistic performance expectations.
Most developers have relatively fast workstations. Combined with test cases that are
typically non-clustered and tend to represent single-user access (that is, only the
developer), the application may seem extraordinarily responsive.

Include as a requirement that realistic load tests be built that can be run with
simulated concurrent user load.

Test routinely in a clustered configuration with simulated concurrent user load.

Hardware

Production Checklist A-5

During development, developer productivity can be adversely affected by
inadequate hardware resources, and certain types of quality can also be affected
negatively.
Coherence is compatible with all common workstation hardware. Most developers use
PC or Apple hardware, including notebooks, desktops and workstations.

Developer systems should have a significant amount of RAM to run a modern IDE,
debugger, application server, database and at least two cluster instances. Memory
utilization varies widely, but to ensure productivity, the suggested minimum memory
configuration for developer systems is 2GB. Desktop systems and workstations can
often be configured with 4GB for minimal additional cost.

Developer systems should have two CPU cores or more. Although this will have the
likely side-effect of making developers happier, the actual purpose is to increase the
quality of code related to multi-threading, since many bugs related to concurrent
execution of multiple threads will only show up on multi-CPU systems (systems that
contain multiple processor sockets and/or CPU cores).

What are the supported and suggested server hardware platforms for deploying
Coherence on?
The short answer is that Oracle works to support the hardware that the customer has
standardized on or otherwise selected for production deployment.

■ Oracle has customers running on virtually all major server hardware platforms.
The majority of customers use "commodity x86" servers, with a significant number
deploying Sun Sparc (including Niagra) and IBM Power servers.

■ Oracle continually tests Coherence on "commodity x86" servers, both Intel and
AMD.

■ Intel, Apple and IBM provide hardware, tuning assistance and testing support to
Oracle.

■ Oracle conducts internal Coherence certification on all IBM server platforms at
least once a year.

■ Oracle and Azul test Coherence regularly on Azul appliances, including the
newly-announced 48-core "Vega 2" chip.

If the server hardware purchase is still in the future, the following are suggested for
Coherence (as of December 2006):

The most cost-effective server hardware platform is "commodity x86", either Intel or
AMD, with one to two processor sockets and two to four CPU cores per processor
socket. If selecting an AMD Opteron system, it is strongly recommended that it be a
two processor socket system, since memory capacity is usually halved in a single
socket system. Intel "Woodcrest" and "Clovertown" Xeons are strongly recommended
over the previous Intel Xeon CPUs due to significantly improved 64-bit support, much
lower power consumption, much lower heat emission and far better performance.
These new Xeons are currently the fastest commodity x86 CPUs, and can support a
large memory capacity per server regardless of the processor socket count by using
fully buffered memory called "FB-DIMMs".

It is strongly recommended that servers be configured with a minimum of 4GB of
RAM. For applications that plan to store massive amounts of data in memory - tens or
hundreds of gigabytes, or more - it is recommended to evaluate the cost-effectiveness
of 16GB or even 32GB of RAM per server. As of December, 2006, commodity x86 server
RAM is readily available in a density of 2GB per DIMM, with higher densities
available from only a few vendors and carrying a large price premium; this means that
a server with 8 memory slots will only support 16GB in a cost-effective manner. Also

Hardware

A-6 Oracle Coherence Developer's Guide for Oracle Coherence

note that a server with a very large amount of RAM will likely need to run more
Coherence nodes (JVMs) per server to use that much memory, so having a larger
number of CPU cores will help. Applications that are "data heavy" will require a
higher ratio of RAM to CPU, while applications that are "processing heavy" will
require a lower ratio. For example, it may be sufficient to have two dual-core Xeon
CPUs in a 32GB server running 15 Coherence "Cache Server" nodes performing mostly
identity-based operations (cache accesses and updates), but if an application makes
frequent use of Coherence features such as indexing, parallel queries, entry processors
and parallel aggregation, then it will be more effective to have two quad-core Xeon
CPUs in a 16GB server - a 4:1 increase in the CPU:RAM ratio.

A minimum of 1000Mbps for networking (for example, Gigabit Ethernet or better) is
strongly recommended. NICs should be on a high bandwidth bus such as PCI-X or
PCIe, and not on standard PCI. In the case of PCI-X having the NIC on an isolated or
otherwise lightly loaded 133MHz bus may significantly improve performance.

How many servers are optimal?
Coherence is primarily a scale-out technology. While Coherence can effectively
scale-up on large servers by using multiple JVMs per server, the natural mode of
operation is to span several small servers (for example, 2-socket or 4-socket
commodity servers). Specifically, failover and failback are more efficient in larger
configurations. And the impact of a server failure is lessened. As a rule of thumb, a
cluster should contain at least four physical servers. In most WAN configurations, each
data center will have independent clusters (usually interconnected by Extend-TCP).
This will increase the total number of discrete servers (four servers per data center,
multiplied by the number of data centers).

Coherence is quite often deployed on smaller clusters (one, two or three physical
servers) but this practice has increased risk if a server failure occurs under heavy load.
As discussed in the network section of this document, Coherence clusters are ideally
confined to a single switch (for example, fewer than 96 physical servers). In some use
cases, applications that are compute-bound or memory-bound applications (as
opposed to network-bound) may run acceptably on larger clusters.

Also note that given the choice between a few large JVMs and a lot of small JVMs, the
latter may be the better option. There are several production environments of
Coherence that span hundreds of JVMs. Some care is required to properly prepare for
clusters of this size, but smaller clusters of dozens of JVMs are readily achieved. Please
note that disabling UDP multicast (by using WKA) or running on slower networks (for
example, 100Mbps Ethernet) will reduce network efficiency and make scaling more
difficult.

Does it matter how JVMs are distributed among servers?
The following rules should be followed in determining how many servers are required
for reliable high availability configuration and how to configure the number of
storage-enabled JVMs.

1. There must be more than two servers. A grid with only two servers stops being
machine-safe as soon as several JVMs on one server is not the same as the number
of JVMs on the other server, so even if we start with two servers with equal
number of JVMs, losing one JVM will force the grid out of machine-safe state. Four
or more machines present the most stable topology, but deploying on just three
servers would work if the other rules are adhered to.

2. For a server that has the largest number of JVMs in the cluster, that number of
JVMs must not exceed the total number of JVMs on all the other servers in the
cluster.

Operating System

Production Checklist A-7

3. A server with the smallest number of JVMs should run at least half the number of
JVMs as a server with the largest number of JVMs; this rule is particularly
important for smaller clusters.

4. The margin of safety improves as the number of JVMs tends toward equality on all
machines in the cluster; this is more of a "rule of thumb" than the preceding "hard"
rules.

See also:

■ "Deploying to IBM BladeCenters" on page M-4

■ "Deploying to Virtual Machines" on page M-8

Operating System

During development, developers typically use a different operating system than the
one that the application will be deployed to.
The top three operating systems for application development using Coherence are, in
this order: Windows 2000/XP (~85%), Mac OS X (~10%) and Linux (~5%). The top four
operating systems for production deployment are, in this order: Linux, Solaris, AIX
and Windows. Thus, it is relatively unlikely that the development and deployment
operating system will be the same.

Make sure that regular testing is occurring on the target operating system.

What are the supported and suggested server operating systems for deploying
Coherence on?
Oracle tests on and supports various Linux distributions (including customers that
have custom Linux builds), Sun Solaris, IBM AIX, Windows Vista/2003/2000/XP,
Apple Mac OS X, OS/400 and z/OS. Additionally, Oracle supports customers running
HP-UX and various BSD UNIX distributions.

If the server operating system decision is still in the future, the following are suggested
for Coherence (as of December 2006):

For commodity x86 servers, Linux distributions based on the Linux 2.6 kernel are
recommended. While it is expected that most 2.6-based Linux distributions will
provide a good environment for running Coherence, the following are recommended
by Oracle: RedHat Enterprise Linux (version 4 or later) and Suse Linux Enterprise
(version 10 or later). Oracle also routinely tests using distributions such as RedHat
Fedora Core 5 and even Knoppix "Live CD".

Review and follow the instructions in Appendix M, "Platform-Specific Deployment
Considerations" for the operating system that Coherence will be deployed on.

Avoid using virtual memory (paging to disk).
In a Coherence-based application, primary data management responsibilities (for
example, Dedicated Cache Servers) are hosted by Java-based processes. Modern Java
distributions do not work well with virtual memory. In particular, garbage collection
(GC) operations may slow down by several orders of magnitude if memory is paged to
disk. With modern commodity hardware and a modern JVM, a Java process with a
reasonable heap size (512MB-2GB) will typically perform a full garbage collection in a
few seconds if all of the process memory is in RAM. However, this may grow to many
minutes if the JVM is partially resident on disk. During garbage collection, the node
will appear unresponsive for an extended period, and the choice for the rest of the
cluster is to either wait for the node (blocking a portion of application activity for a

JVM

A-8 Oracle Coherence Developer's Guide for Oracle Coherence

corresponding amount of time), or to mark the unresponsive node as "failed" and
perform failover processing. Neither of these is a good option, and so it is important to
avoid excessive pauses due to garbage collection. JVMs should be pinned into physical
RAM, or at least configured so that the JVM will not be paged to disk.

Note that periodic processes (such as daily backup programs) may cause memory
usage spikes that could cause Coherence JVMs to be paged to disk.

See also:

■ "Deploying to AIX" on page M-1

■ "Deploying to Linux" on page M-5

■ "Deploying to OS X" on page M-6

■ "Deploying to Solaris" on page M-7

■ "Deploying to Windows" on page M-8

■ "Deploying to z OS" on page M-9

JVM
During development, developers typically use the latest Sun JVM or a direct
derivative such as the Mac OS X JVM.

The main issues related to using a different JVM in production are:

■ Command line differences, which may expose problems in shell scripts and batch
files;

■ Logging and monitoring differences, which may mean that tools used to analyze
logs and monitor live JVMs during development testing may not be available in
production;

■ Significant differences in optimal GC configuration and approaches to GC tuning;

■ Differing behaviors in thread scheduling, garbage collection behavior and
performance, and the performance of running code.

Make sure that regular testing is occurring on the JVM that will be used in production.

Which JVM configuration options should be used?
JVM configuration options vary over versions and between vendors, but the following
are generally suggested:

■ Using the -server option will result in substantially better performance.

■ Using identical heap size values for both -Xms and -Xmx will yield substantially
better performance, and "fail fast" memory allocation.

■ For naive tuning, a heap size of 512MB is a good compromise that balances
per-JVM overhead and garbage collection performance.

■ Larger heap sizes are allowed and commonly used, but may require tuning to
keep garbage collection pauses manageable.

What are the supported and suggested JVMs for deploying Coherence on?
In terms of Oracle Coherence versions:

■ Coherence 3.x versions are supported on the Sun JDK versions 1.4 and 1.5, and
JVMs corresponding to those versions of the Sun JDK. Starting with Coherence 3.4
the 1.6 JVMs are also supported.

Java Security Manager

Production Checklist A-9

■ Coherence version 2.x (currently at the 2.5.1 release level) is supported on the Sun
JDK versions 1.2, 1.3, 1.4 and 1.5, and JVMs corresponding to those versions of the
Sun JDK.

Often the choice of JVM is dictated by other software. For example:

■ IBM only supports IBM WebSphere running on IBM JVMs. Most of the time, this is
the IBM "Sovereign" or "J9" JVM, but when WebSphere runs on Sun Solaris/Sparc,
IBM builds a JVM using the Sun JVM source code instead of its own.

■ BEA WebLogic typically includes a JVM which is intended to be used with it. On
some platforms, this is the BEA WebLogic JRockit JVM.

■ Apple Mac OS X, HP-UX, IBM AIX and other operating systems only have one
JVM vendor (Apple, HP and IBM respectively).

■ Certain software libraries and frameworks have minimum Java version
requirements because they take advantage of relatively new Java features.

On commodity x86 servers running Linux or Windows, the Sun JVM is recommended.
Generally speaking, the recent update versions are recommended. For example:

■ Oracle recommends testing and deploying using the latest supported Sun JVM
based on your platform and Coherence version.

Basically, at some point before going to production, a JVM vendor and version should
be selected and well tested, and absent any flaws appearing during testing and staging
with that JVM, that should be the JVM that is used when going to production. For
applications requiring continuous availability, a long-duration application load test
(for example, at least two weeks) should be run with that JVM before signing off on it.

Review and follow the instructions in Appendix M, "Platform-Specific Deployment
Considerations" for the JVM that Coherence will be deployed on.

Must all nodes run the same JVM vendor and version?
No. Coherence is pure Java software and can run in clusters composed of any
combination of JVM vendors and versions, and Oracle tests such configurations.

Note that it is possible for different JVMs to have slightly different serialization formats
for Java objects, meaning that it is possible for an incompatibility to exist when objects
are serialized by one JVM, passed over the wire, and a different JVM (vendor and/or
version) attempts to deserialize it. Fortunately, the Java serialization format has been
very stable for several years, so this type of issue is extremely unlikely. However, it is
highly recommended to test mixed configurations for consistent serialization before
deploying in a production environment.

See also:

■ "Deploying to BEA JRockit JVMs" on page M-2

■ "Deploying to IBM JVMs" on page M-5

■ "Deploying to Sun JVMs" on page M-7

Java Security Manager
The minimum set of privileges required for Coherence to function are specified in the
security.policy file which is included as part of the Coherence installation. This file can
be found in coherence/lib/security/security.policy. If using the Java
Security Manager these privileges must be granted in order for Coherence to function
properly.

Application Instrumentation

A-10 Oracle Coherence Developer's Guide for Oracle Coherence

Application Instrumentation

Be cautious when using instrumented management and monitoring solutions.
Some Java-based management and monitoring solutions use instrumentation (for
example, bytecode-manipulation and ClassLoader substitution). While there are no
known open issues with the latest versions of the primary vendors, Oracle has
observed issues in the past.

Coherence Editions and Modes

During development, use the development mode.
The Coherence download includes a fully functional Coherence product supporting all
editions and modes. The default configuration is for Grid Edition in Development
mode.

Coherence may be configured to operate in either development or production mode.
These modes do not limit access to features, but instead alter some default
configuration settings. For instance, development mode allows for faster cluster
startup to ease the development process.

It is recommended to use the development mode for all pre-production activities, such
as development and testing. This is an important safety feature, because Coherence
automatically prevents these nodes from joining a production cluster. The production
mode must be explicitly specified when using Coherence in a production
environment.

Coherence may be configured to support a limited feature set, based on the customer
license agreement.

Only the edition and the number of licensed CPUs specified within the customer
license agreement can be used in a production environment.

When operating outside of the production environment it is allowable to run any
Coherence edition. However, it is recommended that only the edition specified within
the customer license agreement be used. This will protect the application from
unknowingly making use of unlicensed features.

All nodes within a cluster must use the same license edition and mode.

Starting with Oracle Coherence 3.4, customer-specific license keys are no longer
part of product deployment.
Be sure to obtain enough licenses for the all the cluster members in the production
environment. The servers hardware configuration (number or type of processor
sockets, processor packages or CPU cores) may be verified using ProcessorInfo
utility included with Coherence.

Example A–1 Verifying Hardware Configuration

java -cp tangosol.jar com.tangosol.license.ProcessorInfo

If the result of the ProcessorInfo program differs from the licensed configuration,
send the program's output and the actual configuration to the "support" email address
at Oracle.

Coherence Operational Configuration

Production Checklist A-11

How are the edition and mode configured?
There is a <license-config> configuration section in tangosol-coherence.xml
(located in coherence.jar) for edition and mode related information.

Example A–2 Sample Coherence License Configuration

<license-config>
 <edition-name system-property="tangosol.coherence.edition">GE</edition-name>
 <license-mode system-property="tangosol.coherence.mode">dev</license-mode>
 </license-config>

In addition to preventing mixed mode clustering, the license-mode also dictates the
operational override file which will be used. When in dev mode the
tangosol-coherence-override-dev.xml file will be used, whereas the
tangosol-coherence-override-prod.xml file will be used when the prod
mode is specified. As the mode controls which override file is used, the
<license-mode> configuration element is only usable in the base
tangosol-coherence.xml file and not within the override files.

These elements are defined by the corresponding coherence.dtd in
coherence.jar. It is possible to specify this edition on the command line using the
command line override:

-Dtangosol.coherence.edition=RTC

Valid values are listed in Table A–1:

■ Note: clusters running different editions may connect by using Coherence*Extend
as a Data Client.

For more information on overrides, see Appendix L, "Command Line Overrides".

Ensuring that RTC nodes don't use Coherence TCMP
The RTC nodes can connect to clusters using either Coherence TCMP or Coherence
Extend. If the intention is to connect over Extend it is advisable to disable TCMP on
that node to ensure that it only connects by using Extend. TCMP may be disabled
using the system property tangosol.coherence.tcmp.enabled. See the
<enabled> subelement of "packet-publisher" on page H-36.

Coherence Operational Configuration
Operational configuration relates to the configuration of Coherence at the cluster level
including such things as:

■ Cluster and member descriptors

Table A–1 Valid tangosol.coherence.edition Values

Value Coherence Edition Compatible Editions

GE Grid Edition RTC, DC

EE Enterprise Edition DC

SE Standard Edition DC

RTC Real-Time Client GE

DC Data Client GE, EE, SE

Coherence Cache Configuration

A-12 Oracle Coherence Developer's Guide for Oracle Coherence

■ Network settings

■ Security

■ Membership restrictions

■ Access Control

■ Encryption

The operational aspects are normally configured by using the
tangosol-coherence-override.xml file. See "Operational Configuration
Deployment Descriptors" on page H-1 for more information on this file.

The contents of this file will likely differ between development and production. It is
recommended that these variants be maintained independently due to the significant
differences between these environments. The production operational configuration file
should not be the responsibility of the application developers, instead it should fall
under the jurisdiction of the systems administrators who are far more familiar with the
workings of the production systems.

All cluster nodes should use the same operational configuration descriptor. A
centralized configuration file may be maintained and accessed by specifying the file's
location as a URL using the tangosol.coherence.override system property. Any node
specific values may be specified by using system properties. See Appendix L,
"Command Line Overrides" for more information on the properties.

The override file should contain only the subset of configuration elements which you
want to customize. This will not only make your configuration more readable, but will
allow you to take advantage of updated defaults in future Coherence releases. All
override elements should be copied exactly from the original tangosol-coherence.xml,
including the id attribute of the element.

Member descriptors may be used to provide detailed identity information that is
useful for defining the location and role of the cluster member. Specifying these items
will aid in the management of large clusters by making it easier to identify the role of a
remote nodes if issues arise.

Coherence Cache Configuration
Cache configuration relates to the configuration of Coherence at a per-cache level
including such things as:

■ Cache topology (<distributed-scheme>, <replicated-scheme>,
<near-scheme>, and so on)

■ Cache capacities (see <high-units> subelement of <local-scheme>)

■ Cache redundancy level (<backup-count> subelement of
<distributed-scheme>)

The cache configuration aspects are normally configured by using the
coherence-cache-config.xml file. See "Cache Configuration Deployment
Descriptor" on page D-1 for more information this file.

The default coherence-cache-config.xml file included within coherence.jar
is intended only as an example and is not suitable for production use. It is suggested
that you produce your own cache configuration file with definitions tailored to your
application needs.

Coherence Cache Configuration

Production Checklist A-13

All cluster nodes should use the same cache configuration descriptor. A centralized
configuration file may be maintained and accessed by specifying the file's location as a
URL using the tangosol.coherence.cacheconfig system property.

Choose the cache topology which is most appropriate for each cache's usage scenario.

It is important to size limit your caches based on the allocated JVM heap size. Even if
you never expect to fully load the cache, having the limits in place will help protect
your application from OutOfMemoryExceptions if your expectations are later
negated.

For a 1GB heap that at most ¾ of the heap be allocated for cache storage. With the
default one level of data redundancy this implies a per server cache limit of 375MB for
primary data, and 375MB for backup data. The amount of memory allocated to cache
storage should fit within the tenured heap space for the JVM. See Sun's GC tuning
guide for details.

It is important to note that when multiple cache schemes are defined for the same
cache service name the first to be loaded will dictate the service level parameters.
Specifically the <partition-count>, <backup-count>, and <thread-count>
subelements of <distributed-scheme> are shared by all caches of the same
service.

For multiple caches which use the same cache service it is recommended that the
service related elements be defined only once, and that they be inherited by the
various cache-schemes which will use them.

If you want different values for these items on a cache by cache basis then multiple
services may be configured.

For partitioned caches Coherence will evenly distribute the storage responsibilities to
all cache servers, regardless of their cache configuration or heap size. For this reason it
is recommended that all cache server processes be configured with the same heap size.
For machines with additional resources multiple cache servers may be used to
effectively make use of the machine's resources.

To ensure even storage responsibility across a partitioned cache the
<partition-count> subelement of <distributed-scheme>, should be set to a
prime number which is at least the square of the number of cache servers which will
be used.

For caches which are backed by a cache store it is recommended that the parent service
be configured with a thread pool as requests to the cache store may block on I/O. The
pool is enabled by using the <thread-count> subelement of
<distributed-scheme> element. For non-CacheStore-based caches more threads
are unlikely to improve performance and should left disabled.

Unless explicitly specified all cluster nodes will be storage enabled, that is, will act as
cache servers. It is important to control which nodes in your production environment
will be storage enabled and storage disabled. The
tangosol.coherence.distributed.localstorage system property may be
used to control this, setting it to either true or false. Generally, only dedicated cache
servers, all other cluster nodes should be configured as storage disabled. This is
especially important for short lived processes which may join the cluster perform
some work, and exit the cluster, having these nodes as storage disable will introduce
unneeded re-partitioning. See the <local-storage> subelement of
<distributed-scheme> for more information about the system property.

Large Cluster Configuration

A-14 Oracle Coherence Developer's Guide for Oracle Coherence

Large Cluster Configuration

Are there special considerations for large clusters?
■ The general recommendation for the <partition-count> subelement of

<distributed-scheme> is to be a prime number close to the square of the
number of storage enabled nodes. While is a good suggestion for small to medium
sized clusters, for large clusters it can add too much overhead. For clusters
exceeding 128 storage enabled JVMs, the partition count should be fixed, at
roughly 16,381.

■ Coherence clusters which consist of over 400 TCMP nodes need to increase the
default maximum packet size Coherence will use. The default of 1468 should be
increased relative to the size of the cluster, that is, a 600 node cluster would need
the maximum packet size increased by 50%. The maximum packet size is
configured as part of the coherence operational configuration file, see "packet-size"
on page H-38 for details on changing this setting.

■ For large clusters which have hundreds of JVMs it is also recommended that
<multicast-listener> be enabled, as it will allow for more efficient cluster wide
transmissions. These cluster wide transmissions are rare, but when they do occur
multicast can provide noticeable benefits in large clusters.

Death Detection
The Coherence death detection algorithms are based on sustained loss of connectivity
between two or more cluster nodes. When a node identifies that it has lost connectivity
with any other node it will consult with other cluster nodes to determine what action
should be taken.

In attempting to consult with others, the node may find that it cannot communicate
with any other nodes, and will assume that it has been disconnected from the cluster.
Such a condition could be triggered by physically unplugging a node's network
adapter. In such an event the isolated node will restart it's clustered services and
attempt to rejoin the cluster.

If connectivity with other cluster nodes remains unavailable, the node may
(depending on well known address configuration) form a new isolated cluster, or
continue searching for the larger cluster. In either case when connectivity is restored
the previously isolated cluster nodes will rejoin the running cluster. As part of
rejoining the cluster, the nodes former cluster state is discarded, including any cache
data it may have held, as the remainder of the cluster had already taken on ownership
of that data (restoring from backups).

Without connectivity it is obviously not possible for a node to identify the state of
other nodes. This means that from the point of view of a single node, local network
adapter failure and network wide switch failure look identical, and are thus handled
in the same way, as described above. The important difference is that in the case of a
switch failure all nodes are attempting to re-join the cluster, which is the equivalent of
a full cluster restart, and all prior state and data is dropped.

Obviously dropping all data is not desirable, and thus if you want to avoid this as part
of a sustained switch failure you must take additional precautions. Options include:

■ Extend allowable outage duration: The maximum time a node(s) may be
unresponsive before being removed from the cluster is configured by using the
<timeout-milliseconds> subelement of <packet-delivery>, and defaults
to one minute for production configurations. Increasing this value will allow the
cluster to wait longer for connectivity to return. The downside of increasing this

tangosol-license.xml Deprecated

Production Checklist A-15

value it may also take longer to handle the case where just a single node has lost
connectivity.

■ Persist data to external storage: By using aRead Write Backing Map, the cluster
persists data to external storage, and can retrieve it after a cluster restart. So long
as write-behind is disabled (the <write-delay> subelement of
<read-write-backing-map-scheme>) no data would be lost in the event of a
switch failure. The downside here is that synchronously writing through to
external storage increases the latency of cache update operations, and the external
storage may become a bottleneck.

■ Delay node restart: The cluster death detection action can be reconfigured to delay
the node restart until connectivity is restored. By delaying the restart until
connectivity is restored an isolated node is allowed to continue running with
whatever data it had available at the time of disconnect. When connectivity is
restored the nodes will detect each other and form a new cluster. In forming a new
cluster all but the most senior node will be required to restart. This results in
behavior which is nearly identical to the default behavior because the majority of
the nodes will restart, and drop their data. It may be beneficial for cases in which
replicated caches are in use as the senior most node's copy of the data will survive
the restart. To enable the delayed restart the
tangosol.coherence.departure.threshold system property must be set
to a value that is greater then the size of the cluster.

■ Add network level fault tolerance: Adding a redundant layer to the cluster's
network infrastructure allows for individual pieces of networking equipment to
fail without disrupting connectivity. This is commonly achieved by using at least
two network adapters per machine, and having each adapter connected to a
separate switch. This is not a feature of Coherence but rather of the underlying
operating system or network driver. The only change to Coherence is that it
should be configured to bind to the virtual rather then physical network adapter.
This form of network redundancy goes by different names depending on the
operating system, see Linux bonding, Solaris trunking and Windows teaming for
further details.

tangosol-license.xml Deprecated
As of Coherence 3.4, the tangosol-license.xml file is no longer used.

Note: When running on Microsoft Windows it is also necessary to
ensure the Windows does not disable the network adapter when it is
disconnected. To do this add the following Windows registry
DWORD, setting it to 1:HKEY_LOCAL_
MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
\DisableDHCPMediaSenseNote that despite the name this setting
affects static IPs as well.

tangosol-license.xml Deprecated

A-16 Oracle Coherence Developer's Guide for Oracle Coherence

B

Types of Caches in Coherence B-1

BTypes of Caches in Coherence

This appendix provides an overview of the types of caches offered by Coherence.

Replicated Cache
In a replicated cache service, data is fully replicated to every member in the cluster.
Offers the fastest read performance. Clustered, fault-tolerant cache with linear
performance scalability for reads, but poor scalability for writes (as writes must be
processed by every member in the cluster). Because data is replicated to all machines,
adding servers does not increase aggregate cache capacity.

Optimistic Cache
Optimistic Cache is a clustered cache implementation similar to the Replicated Cache
implementation, but without any concurrency control. This implementation has the
highest possible throughput. It also allows to use an alternative underlying store for
the cached data (for example, a MRU/MFU-based cache). However, if two cluster
members are independently pruning or purging the underlying local stores, it is
possible that a cluster member may have a different store content than that held by
another cluster member.

Distributed (Partitioned) Cache
A distributed, or partitioned cache is clustered, fault-tolerant, and has linear
scalability. Data is partitioned among all the machines of the cluster. For
fault-tolerance, partitioned caches can be configured to keep each piece of data on one,
two or more unique machines within a cluster.

Near Cache
A near cache is a hybrid cache; it fronts a fault-tolerant, scalable partitioned cache with
a local cache. Near cache invalidates front cache entries, using configurable
invalidation strategy, and provides excellent performance and synchronization. Near
cache backed by a partitioned cache offers zero-millisecond local access for repeat data
access, while enabling concurrency and ensuring coherency and fail-over, effectively
combining the best attributes of replicated and partitioned caches.

Summary of Cache Types
Numerical Terms:

Summary of Cache Types

B-2 Oracle Coherence Developer's Guide for Oracle Coherence

■ JVMs = number of JVMs

■ DataSize = total size of cached data (measured without redundancy)

■ Redundancy = number of copies of data maintained

■ LocalCache = size of local cache (for near caches)

Notes:
1. As a rough estimate, with 100mbit Ethernet, network reads typically require

~20ms for a 100KB object. With gigabit Ethernet, network reads for 1KB objects are
typically sub-millisecond.

2. Requires UDP multicast or a few UDP unicast operations, depending on JVM
count.

3. Requires a few UDP unicast operations, depending on level of redundancy.

4. Partitioned caches can be configured with as many levels of backup as desired, or
zero if desired. Most installations use one backup copy (two copies total)

5. Limited by local CPU/memory performance, with negligible processing required
(typically sub-millisecond performance).

6. Listener-based Near caches are coherent; expiry-based near caches are partially
coherent for non-transactional reads and coherent for transactional access.

Table B–1 Summary of Cache Types and Characteristics

Replicated
Cache

Optimistic
Cache

Partitioned
Cache

Near Cache
backed by
partitioned cache

LocalCache
not clustered

Topology Replicated Replicated Partitioned
Cache

Local Caches +
Partitioned Cache

Local Cache

Read
Performance

Instant 5 Instant 5 Locally cached:
instant 5
Remote:
network speed
1

Locally cached:
instant 5 Remote:
network speed 1

Instant 5

Fault
Tolerance

Extremely High Extremely High Configurable 4
Zero to
Extremely
High

Configurable 4
Zero to Extremely
High

Zero

Write
Performance

Fast 2 Fast 2 Extremely fast
3

Extremely fast 3 Instant 5

Memory
Usage (Per
JVM)

DataSize DataSize DataSize/JVMs
x Redundancy

LocalCache +
[DataSize / JVMs]

DataSize

Coherency fully coherent fully coherent fully coherent fully coherent 6 n/a

Memory
Usage (Total)

JVMs x DataSize JVMs x DataSize Redundancy x
DataSize

[Redundancy x
DataSize] + [JVMs
x LocalCache]

n/a

Locking fully transactional none fully
transactional

fully transactional fully
transactional

Typical Uses Metadata n/a (see Near
Cache)

Read-write
caches

Read-heavy caches
w/ access affinity

Local data

C

Cache Semantics C-1

CCache Semantics

Use Coherence caches to cache value objects. These objects may represent data from
any source, either internal (such as session data, transient data, and so on) or external
(such as a database, mainframe, and so on).

Objects placed in the cache must be serializable. The simplest approach to doing this is
to implement java.io.Serializable. For higher performance, Coherence also
supports the java.io.Externalizable and (even faster)
com.tangosol.io.ExternalizableLite interfaces. The primary difference
between Externalizable and ExternalizableLite is the I/O stream used. In
most cases, porting from one to the other is simple.

Any objects that implement com.tangosol.run.xml.XmlBean will automatically
support ExternalizableLite. For more details, see the API Javadoc for XmlBean.

Note: Remember, when serializing an object, Java serialization
automatically crawls every visible object (by using object references,
including collections like Map and List). As a result, cached objects
should not refer to their parent objects directly (holding onto an
identifying value like an integer is OK).

Objects that implement their own serialization routines are not
affected.

C-2 Oracle Coherence Developer's Guide for Oracle Coherence

D

Cache Configuration Elements D-1

DCache Configuration Elements

This appendix provides a listing of the elements that can be used in a cache
configuration. In addition, it describes the deployment descriptor file in which they
appear.

Cache Configuration Deployment Descriptor
Use the cache configuration deployment descriptor to specify the various types of
caches which can be used within a cluster. For information on configuring cluster
communication and services see Appendix H, "Operational Configuration Elements."

Document Location
The name and location of the descriptor is specified in the operational deployment
descriptor and defaults to coherence-cache-config.xml. The default
configuration descriptor (packaged in coherence.jar) will be used unless a custom
one is found within the application's classpath. It is recommended that all nodes
within a cluster use identical cache configuration descriptors.

Document Root
The root element of the configuration descriptor is <cache-config>. This is where
you may begin configuring your caches.

Document Format
The Cache Configuration descriptor should begin with the following DOCTYPE
declaration:

<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

Command Line Override
Oracle Coherence provides a powerful command line override feature which allows
any element defined in this descriptor to be overridden from the Java command line if

Note: When deploying Coherence into environments where the
default character set is EBCDIC rather than ASCII, make sure that this
descriptor file is in ASCII format and is deployed into its runtime
environment in the binary format.

Cache Configuration Deployment Descriptor

D-2 Oracle Coherence Developer's Guide for Oracle Coherence

it has a system-property attribute defined in the descriptor. For more information on
this feature, see Appendix L, "Command Line Overrides".

Examples
See Appendix F, "Sample Cache Configurations" for usage examples.

Element Index

Cache Configuration Elements D-3

Element Index

The following table lists all non-terminal elements which may be used from within a
cache configuration.

Table D–1 Cache Configuration Elements

Element Used In:

acceptor-config proxy-scheme

async-store-manager external-scheme, paged-external-scheme

authorized-hosts tcp-acceptor

backup-storage distributed-scheme

bdb-store-manager external-scheme, paged-external-scheme, async-
store-manager

cache-config root element

cache-mapping caching-scheme-mapping

cache-service-proxy proxy-config

caching-scheme-
mapping

cache-config

caching-schemes cache-config

class-scheme caching-schemes, local-scheme, distributed-scheme,
replicated-scheme, optimistic-scheme, near-scheme,
overflow-scheme, read-write-backing-map-scheme,
cachestore-scheme, listener

cachestore-scheme local-scheme, read-write-backing-map-scheme

custom-store-manager external-scheme, paged-external-scheme, async-
store-manager

disk-scheme caching-schemes

distributed-scheme caching-schemes, near-scheme, overflow-scheme

external-scheme caching-schemes, distributed-scheme, replicated-
scheme, optimistic-scheme, near-scheme, overflow-
scheme, read-write-backing-map-scheme

init-param init-params

init-params class-scheme

initiator-config remote-cache-scheme, remote-invocation-scheme

invocation-scheme caching-schemes

jms-acceptor acceptor-config

jms-initiator initiator-config

key-associator distributed-scheme

key-partitioning distributed-scheme

lh-file-manager external-scheme, paged-external-scheme, async-
store-manager

Element Index

D-4 Oracle Coherence Developer's Guide for Oracle Coherence

listener disk-scheme, local-scheme, external-scheme, paged-
external-scheme, distributed-scheme, replicated-
scheme, optimistic-scheme, near-scheme, overflow-
scheme, read-write-backing-map-scheme

local-scheme caching-schemes, distributed-scheme, replicated-
scheme, optimistic-scheme, near-scheme, overflow-
scheme, read-write-backing-map-scheme

near-scheme caching-schemes

nio-file-manager external-scheme, paged-external-scheme, async-
store-manager

nio-memory-manager external-scheme, paged-external-scheme, async-
store-manager

operation-bundling cachestore-scheme, distributed-scheme, remote-
cache-scheme

optimistic-scheme caching-schemes, near-scheme, overflow-scheme

outgoing-message-
handler

acceptor-config, initiator-config

overflow-scheme caching-schemes, distributed-scheme, replicated-
scheme, optimistic-scheme, read-write-backing-map-
scheme

paged-external-scheme caching-schemes, distributed-scheme, replicated-
scheme, optimistic-scheme, near-scheme, overflow-
scheme, read-write-backing-map-scheme

proxy-config proxy-scheme

proxy-scheme caching-schemes

read-write-backing-
map-scheme

caching-schemes, distributed-scheme, replicated-
scheme, optimistic-scheme

remote-cache-scheme cachestore-scheme, caching-schemes, near-scheme

remote-invocation-
scheme

caching-schemes

replicated-scheme caching-schemes, near-scheme, overflow-scheme

tcp-acceptor acceptor-config

tcp-initiator initiator-config

Table D–1 (Cont.) Cache Configuration Elements

Element Used In:

Element Index

Cache Configuration Elements D-5

acceptor-config

Used in: proxy-scheme

Description
The acceptor-config element specifies the configuration information for a
protocol-specific connection acceptor. The connection acceptor is used by a proxy
service to enable Coherence*Extend clients to connect to the cluster and use the
services offered by the cluster without having to join the cluster.

The acceptor-config element must contain exactly one protocol-specific
connection acceptor configuration element (either jms-acceptor or tcp-acceptor).

Elements
Table D–2 describes the elements you can define within the acceptor-config
element.

Table D–2 acceptor-config Subelements

Element
Required/
Optional Description

<connection-limit> Optional The maximum number of simultaneous connections allowed
by this connection acceptor. Valid values are positive integers
and zero. A value of zero implies no limit. Default value is
zero.

<jms-acceptor> Optional Specifies the configuration info for a connection acceptor that
enables Coherence*Extend clients to connect to the cluster over
JMS.

<outgoing-message-handler> Optional Specifies the configuration info used by the connection
acceptor to detect dropped client-to-cluster connections.

acceptor-config

D-6 Oracle Coherence Developer's Guide for Oracle Coherence

<serializer> Optional Specifies the class configuration info for a com.tangosol.
io.Serializer implementation used by the connection
acceptor to serialize and deserialize user types. For example,
the following configures a ConfigurablePofContext that
uses the my-pof-types.xml POF type configuration file to
deserialize user types to and from a POF stream:

<serializer>
 <class-name>com.tangosol.io.pof.
ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>my-pof-types.xml</param-value>
 </init-param>
 </init-params>
</serializer>

<tcp-acceptor> Optional Specifies the configuration info for a connection acceptor that
enables Coherence*Extend clients to connect to the cluster over
TCP/IP.

<use-filters> Optional Contains the list of <filters> names to be used by this
connection acceptor.For example, specifying use-filter as
follows will activate gzip compression for all network
messages, which can help substantially with WAN and low-
bandwidth networks.

<use-filters>
 <filter-name>gzip</filter-name>
</use-filters>

Table D–2 (Cont.) acceptor-config Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-7

address-provider

Used in: tcp-initiator

Description
Contains the configuration info for an address factory that implements the com.
tangosol.net.AddressProvider interface.

Elements
Table D–3 describes the subelements you can define within the address-provider
element.

Table D–3 address-provider Subelements

Element
Required/
Optional Description

<class-factory-name> Optional Specifies a fully specified name of a Java class that will be used as a
factory for object instantiation.

<class-name> Required The name of a class that implements the com.tangosol.net.
AddressProvider interface.

<init-params> Optional Specifies initialization parameters which are accessible by
implementations which support the com.tangosol.run.xml.
XmlConfigurable interface, or which include a public constructor
with a matching signature.

<method-name> Optional Specifies the name of a static factory method on the factory class
which will perform object instantiation.

async-store-manager

D-8 Oracle Coherence Developer's Guide for Oracle Coherence

async-store-manager

Used in: external-scheme, paged-external-scheme.

Description
The async-store-manager element adds asynchronous write capabilities to other
store manager implementations. Supported store managers include:

■ custom-store-manager—allows definition of custom implementations of store
managers

■ bdb-store-manager—uses Berkeley Database JE to implement an on disk cache

■ lh-file-manager—uses a Coherence LH on disk database cache

■ nio-file-manager—uses NIO to implement memory-mapped file based cache

■ nio-memory-manager—uses NIO to implement an off JVM heap, in-memory
cache

Implementation
This store manager is implemented by the com.tangosol.io.
AsyncBinaryStoreManager class.

Elements
Table D–4 describes the subelements you can define within the async-store-
manager element.

Table D–4 async-store-manager Subelements

Element
Required/
Optional Description

<async-limit> Optional Specifies the maximum number of bytes that will be queued to
be written asynchronously. Setting the value to zero does not
disable the asynchronous writes; instead, it indicates that the
implementation default for the maximum number of bytes are
necessary.The value of this element must be in the following
format:

[\d]+[[.][\d]+]?[K|k|M|m]?[B|b]?

where the first non-digit (from left to right) indicates the factor
with which the preceding decimal value should be multiplied:

■ K (kilo, 210)

■ M (mega, 220)

If the value does not contain a factor, a factor of one is assumed.
Valid values are any positive memory sizes and zero. Default
value is 4MB.

<bdb-store-manager> Optional Configures the external cache to use Berkeley Database JE on
disk databases for cache storage.

<class-name> Optional Specifies a custom implementation of the async-store-
manager. Any custom implementation must extend the com.
tangosol.io.AsyncBinaryStoreManager class and declare
the exact same set of public constructors.

<custom-store-manager> Optional Configures the external cache to use a custom storage manager
implementation.

Element Index

Cache Configuration Elements D-9

<init-params> Optional Specifies initialization parameters, for use in custom async-store-
manager implementations which implement the com.
tangosol.run.xml.XmlConfigurable interface.

<lh-file-manager> Optional Configures the external cache to use a Coherence LH on disk
database for cache storage.

<nio-file-manager> Optional Configures the external cache to use a memory-mapped file for
cache storage.

<nio-memory-manager> Optional Configures the external cache to use an off JVM heap, memory
region for cache storage.

Table D–4 (Cont.) async-store-manager Subelements

Element
Required/
Optional Description

backup-storage

D-10 Oracle Coherence Developer's Guide for Oracle Coherence

backup-storage

Used in: distributed-scheme.

Description
The backup-storage element specifies the type and configuration of backup storage
for a partitioned cache.

Elements
The following table describes the elements you can define within the backup-
storage element.

Table D–5 backup-storage Subelements

Element
Required/
Optional Description

<class-name> Optional Only applicable with the custom type. Specifies a class name for the
custom storage implementation. If the class implements com.
tangosol.run.xml.XmlConfigurable interface then upon
construction, the setConfig method is called passing the entire
backup-storage element. Default value is the backup-
storage/class-name value specified in the tangosol-coherence.
xml descriptor. See "DistributedCache Service Parameters" on page I-3
for more information.

<directory> Optional Only applicable with the file-mapped type. Specifies the path name for
the directory that the disk persistence manager (com.tangosol.util.
nio.MappedBufferManager) will use as "root" to store files in. If not
specified or specifies a non-existent directory, a temporary file in the
default location is used. Default value is the backup-
storage/directory value specified in the tangosol-coherence.
xml descriptor. See "DistributedCache Service Parameters" on page I-3
for more information.

<initial-size> Optional Only applicable with the off-heap and file-mapped types.Specifies the
initial buffer size in bytes.The value of this element must be in the
following format:

[\d]+[[.][\d]]?[K|k|M|m|G|g]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of mega is assumed. Legal
values are positive integers between 1 and Integer.MAX_VALUE - 1023
(that is, 2,147,482,624 bytes). Default value is the backup-
storage/initial-size value specified in the tangosol-
coherence.xml descriptor. See "DistributedCache Service Parameters"
on page I-3 for more information.

Element Index

Cache Configuration Elements D-11

<maximum-size> Optional Only applicable with the off-heap and file-mapped types. Specifies the
initial buffer size in bytes.The value of this element must be in the
following format:

[\d]+[[.][\d]]?[K|k|M|m|G|g]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of mega is assumed. Legal
values are positive integers between 1 and Integer.MAX_VALUE - 1023
(that is, 2,147,482,624 bytes). Default value is the backup-
storage/maximum-size value specified in the tangosol-
coherence.xml descriptor. See "DistributedCache Service Parameters"
on page I-3 for more information.

<scheme-name> Optional Only applicable with the scheme type. Specifies a scheme name for the
ConfigurableCacheFactory. Default value is the backup-
storage/scheme-name value specified in the tangosol-
coherence.xml descriptor. See "DistributedCache Service Parameters"
on page I-3 for more information.

<type> Required Specifies the type of the storage used to hold the backup data. Legal
values are:

■ on-heap—The corresponding implementations class is java.
util.HashMap.

■ off-heap—The corresponding implementations class is com.
tangosol.io.nio.BinaryMap using the com.tangosol.io.
nio.DirectBufferManager.

■ file-mapped—The corresponding implementations class is com.
tangosol.io.nio.BinaryMap using the com.tangosol.io.
nio.MappedBufferManager.

■ custom—The corresponding implementations class is the class
specified by the class-name element.

■ scheme—The corresponding implementations class is specified as a
caching-scheme by the scheme-name element.

Default value is the value specified in the tangosol-coherence.xml
descriptor. For more information, see the <backup-storage/type>
parameter in "DistributedCache Service Parameters" on page I-3.

Table D–5 (Cont.) backup-storage Subelements

Element
Required/
Optional Description

bdb-store-manager

D-12 Oracle Coherence Developer's Guide for Oracle Coherence

bdb-store-manager

Used in: external-scheme, paged-external-scheme, async-store-manager.

Description
The BDB store manager is used to define external caches which will use Berkeley
Database JE on disk embedded databases for storage. See the examples of Berkeley-
based store configurations in "Persistent Cache on Disk" on page F-3 and "In-memory
Cache with Disk Based Overflow" on page F-4.

Implementation
This store manager is implemented by the com.tangosol.io.bdb.
BerkeleyDBBinaryStoreManager class, and produces BinaryStore objects
implemented by the com.tangosol.io.bdb.BerkeleyDBBinaryStore class.

Elements
Table D–6 describes the elements you can define within the bdb-store-manager
element.

Note: Berkeley Database JE Java class libraries are required to use a
bdb-store-manager, see the Berkeley Database JE product page for
additional information.

Table D–6 bdb-store-manager Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies a custom implementation of the Berkeley Database
BinaryStoreManager. Any custom implementation must extend the com.
tangosol.io.bdb.BerkeleyDBBinaryStoreManager class and declare
the exact same set of public constructors.

<directory> Optional Specifies the path name to the root directory where the Berkeley Database JE
store manager will store files. If not specified or specified with a non-existent
directory, a temporary directory in the default location will be used.

<init-params> Optional Specifies additional Berkeley DB configuration settings. See Berkeley DB
Configuration. Also used to specify initialization parameters, for use in
custom implementations which implement the com.tangosol.run.xml.
XmlConfigurable interface.

<store-name> Optional Specifies the name for a database table that the Berkeley Database JE store
manager will use to store data in. Specifying this parameter will cause the
bdb-store-manager to use non-temporary (persistent) database instances.
This is intended only for local caches that are backed by a cache loader from
a non-temporary store, so that the local cache can be pre-populated from the
disk on startup. When specified, it is recommended that it use the {cache-
name} macro. Normally this parameter should be left unspecified, indicating
that temporary storage is to be used. See Appendix E, "Cache Configuration
Parameter Macros" for more information on the {cache-name} macro.

Element Index

Cache Configuration Elements D-13

bundle-config

Used in: operation-bundling.

Description
The bundle-config element specifies the bundling strategy configuration for one or
more bundle-able operations.

Elements
Table D–7 describes the subelements you can define within the bundle-config
element.

Table D–7 bundle-config Subelements

Element
Required/
Optional Description

<auto-adjust> Optional Specifies whether the auto adjustment of the preferred-size value
(based on the run-time statistics) is allowed.

Valid values are true or false. Default value is false.

<delay-millis> Optional Specifies the maximum amount of time in milliseconds that
individual execution requests are allowed to be deferred for a
purpose of "bundling" them together and passing into a
corresponding bulk operation. If the preferred-size threshold is
reached before the specified delay, the bundle is processed
immediately.

Valid values are positive numbers. Default value is 1.

<operation-name> Required Specifies the operation name for which calls performed
concurrently on multiple threads will be "bundled" into a
functionally analogous "bulk" operation that takes a collection of
arguments instead of a single one.

Valid values depend on the bundle configuration context. For the
<cachestore-scheme> the valid operations are:

■ load"

■ store

■ erase

For the <distributed-scheme> and <remote-cache-
scheme> the valid operations are:

■ get

■ put

■ remove

In all cases there is a pseudo operation named all, referring to all
valid operations. Default value is all.

<preferred-size> Optional Specifies the bundle size threshold. When a bundle size reaches
this value, the corresponding "bulk" operation will be invoked
immediately. This value is measured in context-specific units.

Valid values are zero (disabled bundling) or positive values.
Default value is zero.

<thread-threshold> Optional Specifies the minimum number of threads that must be
concurrently executing individual (non-bundled) requests for the
bundler to switch from a pass-through to a bundling mode.

Valid values are positive numbers. Default value is 4.

cache-config

D-14 Oracle Coherence Developer's Guide for Oracle Coherence

cache-config

Root Element

Description
The cache-config element is the root element of the cache configuration descriptor,
coherence-cache-config.xml. For more information on this document, see
"Cache Configuration Deployment Descriptor" on page D-1.

At a high level, a cache configuration consists of cache schemes and cache scheme
mappings. Cache schemes describe a type of cache, for instance a database backed,
distributed cache. Cache mappings define what scheme to use for a given cache name.

Elements
Table D–8 describes the subelements you can define within the cache-config
element.

Table D–8 cache-config Subelements

Element
Required/
Optional Description

<caching-scheme-
mapping>

Required Specifies the caching-scheme that will be used for caches, based on
the cache's name.

<caching-schemes> Required Defines the available caching-schemes for use in the cluster.

Element Index

Cache Configuration Elements D-15

cache-mapping

Used in: caching-scheme-mapping

Description
Each cache-mapping element specifies the caching-schemes which are to be used for
a given cache name or pattern.

Elements
Table D–9 describes the subelements you can define within the cache-mapping
element.

Table D–9 cache-mapping Subelements

Element
Required/
Optional Description

<cache-name> Required Specifies a cache name or name pattern. The name is unique within a cache
factory.The following cache name patterns are supported:

■ exact match, for example, MyCache

■ prefix match, for example, My* that matches to any cache name starting
with My

■ any match "*", that matches to any cache name

The patterns get matched in the order of specificity (more specific definition
is selected whenever possible). For example, if both MyCache and My*
mappings are specified, the scheme from the MyCache mapping will be
used to configure a cache named MyCache.

<scheme-name> Required Contains the caching scheme name. The name is unique within a
configuration file. Caching schemes are configured in the caching-schemes
element.

<init-params> Optional Allows specifying replaceable cache scheme parameters. During cache
scheme parsing, any occurrence of any replaceable parameter in format
param-name is replaced with the corresponding parameter value. Consider
the following cache mapping example:

<cache-mapping>
 <cache-name>My*</cache-name>
 <scheme-name>my-scheme</scheme-name>
 <init-params>
 <init-param>
 <param-name>cache-loader</param-name>
 <param-value>com.acme.MyCacheLoader</param-value>
 </init-param>
 <init-param>
 <param-name>size-limit</param-name>
 <param-value>1000</param-value>
 </init-param>
 </init-params>
</cache-mapping>

For any cache name match My*, any occurrence of the literal cache-
loader in any part of the corresponding cache-scheme element will be
replaced with the string com.acme.MyCacheLoader and any occurrence
of the literal size-limit will be replaced with the value of 1000. Since
Coherence 3.0

cache-service-proxy

D-16 Oracle Coherence Developer's Guide for Oracle Coherence

cache-service-proxy

Used in: proxy-config

Description
The cache-service-proxy element contains the configuration info for a cache
service proxy managed by a proxy service.

Elements
Table D–10 describes the elements you can define within the cache-service-proxy
element.

Table D–10 cache-service-proxy Subelements

Element
Required/
Optional Description

<enabled> Optional Specifies whether the cache service proxy is enabled. If disabled, clients will
not be able to access any proxied caches. Legal values are true or false.
Default value is true.

<lock-enabled> Optional Specifies whether lock requests from remote clients are permitted on a
proxied cache. Legal values are true or false. Default value is false.

<read-only> Optional Specifies whether requests from remote clients that update a cache are
prohibited on a proxied cache. Legal values are true or false. Default value
is false.

Element Index

Cache Configuration Elements D-17

cachestore-scheme

Used in: local-scheme, read-write-backing-map-scheme, versioned-backing-map-
scheme.

Description
Cache store schemes define a mechanism for connecting a cache to a back-end data
store. The cache store scheme may use any class implementing either the com.
tangosol.net.cache.CacheStore or com.tangosol.net.cache.
CacheLoader interfaces, where the former offers read-write capabilities, where the
latter is read-only. Custom implementations of these interfaces may be produced to
connect Coherence to various data stores. See "Cache of a Database" on page F-4 for an
example of using a cachestore-scheme.

Elements
Table D–11 describes the elements you can define within the cachestore-scheme
element.

Table D–11 cachestore-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Scheme
Inheritance" on page D-19.

<class-scheme> Optional Specifies the implementation of the cache store. The specified class must
implement one of the following two interfaces.

■ com.tangosol.net.cache.CacheStore—for read-write
support

■ com.tangosol.net.cache.CacheLoader—for read-only
support

<remote-cache-scheme> Optional Configures the cachestore-scheme to use Coherence*Extend as its cache
store implementation.

<operation-bundling> Optional Specifies the configuration info for a bundling strategy.

caching-scheme-mapping

D-18 Oracle Coherence Developer's Guide for Oracle Coherence

caching-scheme-mapping

Used in: cache-config

Description
Defines mappings between cache names, or name patterns, and caching-schemes. For
instance you may define that caches whose names start with accounts- will use a
distributed (distributed-scheme) caching scheme, while caches starting with the name
rates- will use a replicated-scheme caching scheme.

Elements
Table D–12 describes the subelement you can define within the caching-scheme-
mapping element.

Table D–12 caching-scheme-mapping Subelement

Element
Required/
Optional Description

<cache-mapping> Optional Contains a single binding between a cache name and the caching scheme this
cache will use.

Element Index

Cache Configuration Elements D-19

caching-schemes

Used in: cache-config

Description
The caching-schemes element defines a series of cache scheme elements. Each
cache scheme defines a type of cache, for instance a database backed partitioned cache,
or a local cache with an LRU eviction policy. Scheme types are bound to actual caches
using caching-scheme-mappings.

Scheme Types and Names
Each of the cache scheme element types is used to describe a different type of cache,
for instance distributed, versus replicated. Multiple instances of the same type may be
defined so long as each has a unique scheme-name.

Example D–1 illustrates the configuration of two different distributed schemes

Example D–1 Configuring Two Different Distributed Schemes

<distributed-scheme>
 <scheme-name>DistributedInMemoryCache</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
</distributed-scheme>

<distributed-scheme>
 <scheme-name>DistributedOnDiskCache</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <external-scheme>
 <nio-file-manager>
 <initial-size>8MB</initial-size>
 <maximum-size>512MB</maximum-size>
 <directory></directory>
 </nio-file-manager>
 </external-scheme>
 </backing-map-scheme>
</distributed-scheme>

Nested Schemes
Some caching scheme types contain nested scheme definitions. For instance in the
above example the distributed schemes include a nested scheme definition describing
their backing map.

Scheme Inheritance
Caching schemes can be defined by specifying all the elements required for a given
scheme type, or by inheriting from another named scheme of the same type, and
selectively overriding specific values. Scheme inheritance is accomplished by
including a <scheme-ref> element in the inheriting scheme containing the scheme-
name of the scheme to inherit from.

caching-schemes

D-20 Oracle Coherence Developer's Guide for Oracle Coherence

For example, the two configurations in Example D–2 will produce equivalent
DistributedInMemoryCache scheme definitions:

Example D–2 Configuring Equivalent Scheme Definitions

<distributed-scheme>
 <scheme-name>DistributedInMemoryCache</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme>
 <eviction-policy>LRU</eviction-policy>
 <high-units>1000</high-units>
 <expiry-delay>1h</expiry-delay>
 </local-scheme>
 </backing-map-scheme>
</distributed-scheme>

<distributed-scheme>
 <scheme-name>DistributedInMemoryCache</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>LocalSizeLimited</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
</distributed-scheme>

<local-scheme>
 <scheme-name>LocalSizeLimited</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>1000</high-units>
 <expiry-delay>1h</expiry-delay>
</local-scheme>

Note that while the first is somewhat more compact, the second offers the ability to
easily reuse the LocalSizeLimited scheme within multiple schemes. Example D–3
demonstrates multiple schemes reusing the same LocalSizeLimited base
definition, but the second imposes a different expiry-delay.

Example D–3 Multiple Schemes Reusing the Same Base Definition

<distributed-scheme>
 <scheme-name>DistributedInMemoryCache</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>LocalSizeLimited</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
</distributed-scheme>

<replicated-scheme>
 <scheme-name>ReplicatedInMemoryCache</scheme-name>
 <service-name>ReplicatedCache</service-name>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>LocalSizeLimited</scheme-ref>
 <expiry-delay>10m</expiry-delay>
 </local-scheme>
 </backing-map-scheme>

Element Index

Cache Configuration Elements D-21

</replicated-scheme>

<local-scheme>
 <scheme-name>LocalSizeLimited</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>1000</high-units>
 <expiry-delay>1h</expiry-delay>
</local-scheme>

Elements
Table D–13 describes the different types of schemes you can define within the
caching-schemes element.

Table D–13 caching-schemes Subelements

Element
Required/
Optional Description

<local-scheme> Optional Defines a cache scheme which provides on-heap cache
storage.

<external-scheme> Optional Defines a cache scheme which provides off-heap cache
storage, for instance on disk.

<paged-external-scheme> Optional Defines a cache scheme which provides off-heap cache
storage, that is size-limited by using time based
paging.

<distributed-scheme> Optional Defines a cache scheme where storage of cache entries
is partitioned across the cluster nodes.

<replicated-scheme> Optional Defines a cache scheme where each cache entry is
stored on all cluster nodes.

<optimistic-scheme> Optional Defines a replicated cache scheme which uses
optimistic rather then pessimistic locking.

<near-scheme> Optional Defines a two tier cache scheme which consists of a
fast local front-tier cache of a much larger back-tier
cache.

<versioned-near-scheme> Optional Defines a near-scheme which uses object versioning to
ensure coherence between the front and back tiers.

<overflow-scheme> Optional Defines a two tier cache scheme where entries evicted
from a size-limited front-tier overflow and are stored
in a much larger back-tier cache.

<invocation-scheme> Optional Defines an invocation service which can be used for
performing custom operations in parallel across cluster
nodes.

<read-write-backing-map-scheme> Optional Defines a backing map scheme which provides a cache
of a persistent store.

<versioned-backing-map-scheme> Optional Defines a backing map scheme which uses object
versioning to determine what updates need to be
written to the persistent store.

caching-schemes

D-22 Oracle Coherence Developer's Guide for Oracle Coherence

<remote-cache-scheme> Optional Defines a cache scheme that enables caches to be
accessed from outside a Coherence cluster by using
Coherence*Extend.

<class-scheme> Optional Defines a cache scheme using a custom cache
implementation. Any custom implementation must
implement the java.util.Map interface, and include
a zero-parameter public constructor. Additionally if
the contents of the Map can be modified by anything
other than the CacheService itself (for example, if
the Map automatically expires its entries periodically or
size-limits its contents), then the returned object must
implement the com.tangosol.util.
ObservableMap interface.

<disk-scheme> Optional Note: As of Coherence 3.0, the disk-scheme
configuration element has been deprecated and
replaced by the external-scheme and paged-external-
scheme configuration elements.

Table D–13 (Cont.) caching-schemes Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-23

class-scheme

Used in: caching-schemes, local-scheme, distributed-scheme,
replicated-scheme, optimistic-scheme, near-scheme, versioned-near-
scheme, overflow-scheme, read-write-backing-map-scheme, versioned-
backing-map-scheme, cachestore-scheme, listener

Description
Class schemes provide a mechanism for instantiating an arbitrary Java object for use
by other schemes. The scheme which contains this element will dictate what class or
interface(s) must be extended. See "Cache of a Database" on page F-4 for an example of
using a class-scheme.

The class-scheme may be configured to either instantiate objects directly by using
their class-name, or indirectly by using a class-factory-name and method-
name. The class-scheme must be configured with either a class-name or class-
factory-name and method-name.

Elements
Table D–14 describes the elements you can define within the class-scheme element.

Table D–14 class-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Scheme
Inheritance" on page D-19 for more information.

<class-name> Optional Contains a fully specified Java class name to instantiate. This class must
extend an appropriate implementation class as dictated by the containing
scheme and must declare the exact same set of public constructors as the
superclass.

<class-factory-
name>

Optional Specifies a fully specified name of a Java class that will be used as a factory
for object instantiation.

<method-name> Optional Specifies the name of a static factory method on the factory class which will
perform object instantiation.

<init-params> Optional Specifies initialization parameters which are accessible by implementations
which support the com.tangosol.run.xml.XmlConfigurable
interface, or which include a public constructor with a matching signature.

custom-store-manager

D-24 Oracle Coherence Developer's Guide for Oracle Coherence

custom-store-manager

Used in: external-scheme, paged-external-scheme, async-store-manager.

Description
Used to create and configure custom implementations of a store manager for use in
external caches.

Elements
Table D–15 describes the elements you can define within the custom-store-
manager element.

Table D–15 custom-store-manager Subelements

Element
Required/
Optional Description

<class-name> Required Specifies the implementation of the store manager. The specified class must
implement the com.tangosol.io.BinaryStoreManager interface.

<init-params> Optional Specifies initialization parameters, for use in custom store manager
implementations which implement the com.tangosol.run.xml.
XmlConfigurable interface.

Element Index

Cache Configuration Elements D-25

disk-scheme

Note: As of Coherence 3.0, the disk-scheme configuration element
has been deprecated and replaced with by the <external-scheme> and
<paged-external-scheme> configuration elements.

distributed-scheme

D-26 Oracle Coherence Developer's Guide for Oracle Coherence

distributed-scheme

Used in: caching-schemes, near-scheme, versioned-near-scheme,
overflow-scheme, versioned-backing-map-scheme

Description
The distributed-scheme defines caches where the storage for entries is partitioned
across cluster nodes. See "Partitioned Cache Service" for a more detailed description of
partitioned caches. See "Partitioned Cache" on page F-6 examples of various
distributed-scheme configurations.

Clustered Concurrency Control
Partitioned caches support cluster wide key-based locking so that data can be
modified in a cluster without encountering the classic missing update problem. Note
that any operation made without holding an explicit lock is still atomic but there is no
guarantee that the value stored in the cache does not change between atomic
operations.

Cache Clients
The partitioned cache service supports the concept of cluster nodes which do not
contribute to the overall storage of the cluster. Nodes which are not storage enabled
(see <local-storage> subelement) are considered "cache clients".

Cache Partitions
The cache entries are evenly segmented into several logical partitions (see
<partition-count> subelement), and each storage enabled (see <local-
storage> subelement) cluster node running the specified partitioned service (see
<service-name> subelement) will be responsible for maintain a fair-share of these
partitions.

Key Association
By default the specific set of entries assigned to each partition is transparent to the
application. In some cases it may be advantageous to keep certain related entries
within the same cluster node. A key-associator (see <key-associator> subelement)
may be used to indicate related entries, the partitioned cache service will ensure that
associated entries reside on the same partition, and thus on the same cluster node.
Alternatively, key association may be specified from within the application code by
using keys which implement the com.tangosol.net.cache.KeyAssociation
interface.

Cache Storage (Backing Map)
Storage for the cache is specified by using the backing-map-scheme (see <backing-
map-scheme> subelement). For instance a partitioned cache which uses a local-
scheme for its backing map will result in cache entries being stored in-memory on the
storage enabled cluster nodes.

Failover
For the purposes of failover a configurable number of backups (see <backup-count>
subelement) of the cache may be maintained in backup-storage (see <backup-
storage> subelement) across the cluster nodes. Each backup is also divided into

Element Index

Cache Configuration Elements D-27

partitions, and when possible a backup partition will not reside on the same physical
machine as the primary partition. If a cluster node abruptly leaves the cluster,
responsibility for its partitions will automatically be reassigned to the existing
backups, and new backups of those partitions will be created (on remote nodes) to
maintain the configured backup count.

Partition Redistribution
When a node joins or leaves the cluster, a background redistribution of partitions
occurs to ensure that all cluster nodes manage a fair-share of the total number of
partitions. The amount of bandwidth consumed by the background transfer of
partitions is governed by the transfer-threshold (see <transfer-threshold>
subelement).

Elements
Table D–16 describes the elements you can define within the distributed-scheme
element.

Table D–16 distributed-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See
"Scheme Inheritance" on page D-19 for more information.

<service-name> Optional Specifies the name of the service which will manage caches
created from this scheme. Services are configured in the
<services> element in the tangosol-coherence.xml
descriptor. See Appendix H, "Operational Configuration
Elements" for more information.

<serializer> Optional Specifies the class configuration info for a com.tangosol.io.
Serializer implementation used by the Partitioned service to
serialize and deserialize user types.

For example, the following configures a
ConfigurablePofContext that uses the default coherence-
pof-config.xml configuration file to write objects to and read
from a stream:

<serializer>
 <class-name>com.tangosol.io.pof.
ConfigurablePofContext</class-name>
</serializer>

<listener> Optional Specifies an implementation of a com.tangosol.
MapListener which will be notified of events occurring on the
cache.

distributed-scheme

D-28 Oracle Coherence Developer's Guide for Oracle Coherence

<backing-map-scheme> Optional Specifies what type of cache will be used within the cache server
to store the entries. Legal values are:

■ class-scheme

■ external-scheme

■ local-scheme

■ paged-external-scheme

■ overflow-scheme

■ read-write-backing-map-scheme

■ versioned-backing-map-scheme

When using an overflow-based backing map it is important that
the corresponding backup-storage be configured for overflow
(potentially using the same scheme as the backing-map). See
"Partitioned Cache with Overflow" on page F-6 for an example
configuration.

<partition-count> Optional Specifies the number of partitions that a partitioned cache will
be "chopped up" into. Each node running the partitioned cache
service that has the local-storage (<local-storage>
subelement) option set to true will manage a "fair" (balanced)
number of partitions. The number of partitions should be larger
than the square of the number of cluster members to achieve a
good balance, and it is suggested that the number be prime.
Good defaults include 257 and 1021 and prime numbers in-
between, depending on the expected cluster size. For large
clusters it is recommended that the partition count not exceeded
16,381, regardless of the number of storage enabled members. A
list of first 1,000 primes can be found at http://www.utm.
edu/research/primes/lists/small/1000.txt. Legal
values are prime numbers. Default value is the partition-
count value specified in the tangosol-coherence.xml
descriptor. See the partition-count parameter
"DistributedCache Service Parameters" on page I-3 for more
information.

<key-associator> Optional Specifies a class that will be responsible for providing
associations between keys and allowing associated keys to
reside on the same partition. This implementation must have a
zero-parameter public constructor.

<key-partitioning> Optional Specifies a class that implements the com.tangosol.net.
partition.KeyPartitioningStrategy interface, which
will be responsible for assigning keys to partitions. This
implementation must have a zero-parameter public constructor.
If unspecified, the default key partitioning algorithm will be
used, which ensures that keys are evenly segmented across
partitions.

<partition-listener> Optional Specifies a class that implements the com.tangosol.net.
partition.PartitionListener interface.

Table D–16 (Cont.) distributed-scheme Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-29

<backup-count> Optional Specifies the number of members of the partitioned cache
service that hold the backup data for each unit of storage in the
cache. Value of 0 means that in the case of abnormal termination,
some portion of the data in the cache will be lost. Value of N
means that if up to N cluster nodes terminate immediately, the
cache data will be preserved. To maintain the partitioned cache
of size M, the total memory usage in the cluster does not depend
on the number of cluster nodes and will be in the order of
M*(N+1). Recommended values are 0, 1 or 2. Default value is the
backup-count value specified in the tangosol-coherence.
xml descriptor. See the backup-count parameter in value
specified in the tangosol-coherence.xml descriptor. See
"DistributedCache Service Parameters" on page I-3 for more
information.

<backup-count-after-
writebehind>

Optional Specifies the number of members of the partitioned cache
service that will hold the backup data for each unit of storage in
the cache that does not require write-behind, that is, data that is
not vulnerable to being lost even if the entire cluster were shut
down. Specifically, if a unit of storage is marked as requiring
write-behind, then it will be backed up on the number of
members specified by the <backup-count> subelement, and if
the unit of storage is not marked as requiring write-behind, then
it will be backed up by the number of members specified by the
<backup-count-after-writebehind> element.

This value should be set to 0 or this setting should not be
specified at all. The rationale is that since this data is being
backed up to another data store, no in-memory backup is
required, other than the data temporarily queued on the write-
behind queue to be written. (Note that the setting also applies to
write-through data, or any data that can be re-loaded from
another data store by a CacheLoader or CacheStore.) The
value of 0 means that when write-behind has occurred, the
backup copies of that data will be discarded. However, until
write-behind occurs, the data will be backed up in accordance
with the <backup-count> setting.

Recommended value is 0 or this element should be omitted
altogether.

<backup-storage> Optional Specifies the type and configuration for the partitioned cache
backup storage.

<thread-count> Optional Specifies the number of daemon threads used by the partitioned
cache service. If zero, all relevant tasks are performed on the
service thread. Legal values are positive integers or zero. Default
value is the thread-count value specified in the tangosol-
coherence.xml descriptor. See the lthread-count
parameter in "DistributedCache Service Parameters" on page I-3
for more information.

Table D–16 (Cont.) distributed-scheme Subelements

Element
Required/
Optional Description

distributed-scheme

D-30 Oracle Coherence Developer's Guide for Oracle Coherence

<lease-granularity> Optional Specifies the lease ownership granularity. Available since release
2.3.Legal values are:

■ thread

■ member

A value of thread means that locks are held by a thread that
obtained them and can only be released by that thread. A value
of member means that locks are held by a cluster node and any
thread running on the cluster node that obtained the lock can
release it. Default value is the lease-granularity value
specified in the tangosol-coherence.xml descriptor. See the
lease-granularity parameter in "DistributedCache Service
Parameters" on page I-3 for more information.

<transfer-threshold> Optional Specifies the threshold for the primary buckets distribution in
kilo-bytes. When a new node joins the partitioned cache service
or when a member of the service leaves, the remaining nodes
perform a task of bucket ownership re-distribution. During this
process, the existing data gets re-balanced along with the
ownership information. This parameter indicates a preferred
message size for data transfer communications. Setting this
value lower will make the distribution process take longer, but
will reduce network bandwidth utilization during this activity.
Legal values are integers greater then zero. Default value is the
transfer-threshold value specified in the tangosol-
coherence.xml descriptor. See the transfer-threshold
parameter in "DistributedCache Service Parameters" on page I-3
for more information.

<local-storage> Optional Specifies whether a cluster node will contribute storage to the
cluster, that is, maintain partitions. When disabled the node is
considered a cache client.

Normally this value should be left unspecified within the
configuration file, and instead set on a per-process basis using
the tangosol.coherence.distributed.localstorage system property.
This allows cache clients and servers to use the same
configuration descriptor.

Legal values are true or false. Default value is the local-
storage value specified in the tangosol-coherence.xml
descriptor. See the local-storage parameter in
"DistributedCache Service Parameters" on page I-3 for more
information.

<autostart> Optional The autostart element is intended to be used by cache servers
(that is, com.tangosol.net.DefaultCacheServer). It
specifies whether the cache services associated with this cache
scheme should be automatically started at a cluster node. Legal
values are true or false. Default value is false.

<task-hung-threshold> Optional Specifies the amount of time in milliseconds that a task can
execute before it is considered "hung". Note: a posted task that
has not yet started is never considered as hung. This attribute is
applied only if the Thread pool is used (the thread-count
value is positive). Legal values are positive integers or zero
(indicating no default timeout). Default value is the task-
hung-threshold value specified in the tangosol-
coherence.xml descriptor. See the task-hung-threshold
parameter in "DistributedCache Service Parameters" on page I-3
for more information.

Table D–16 (Cont.) distributed-scheme Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-31

<task-timeout> Optional Specifies the timeout value in milliseconds for requests
executing on the service worker threads. This attribute is applied
only if the thread pool is used (the thread-count value is
positive). Legal values are positive integers or zero (indicating
no default timeout). Default value is the value specified in the
tangosol-coherence.xml descriptor. See the task-
timeout parameter in "DistributedCache Service Parameters"
on page I-3.

<request-timeout> Optional Specifies the maximum amount of time a client will wait for a
response before abandoning the original request. The request
time is measured on the client side as the time elapsed from the
moment a request is sent for execution to the corresponding
server node(s) and includes the following:

■ the time it takes to deliver the request to an executing node
(server)

■ the interval between the time the task is received and placed
into a service queue until the execution starts

■ the task execution time

■ the time it takes to deliver a result back to the client

Legal values are positive integers or zero (indicating no default
timeout). Default value is the value specified in the tangosol-
coherence.xml descriptor. See the request-timeout
parameter in "DistributedCache Service Parameters" on page I-3
for more information.

<operation-bundling> Optional Specifies the configuration info for a bundling strategy.

Table D–16 (Cont.) distributed-scheme Subelements

Element
Required/
Optional Description

external-scheme

D-32 Oracle Coherence Developer's Guide for Oracle Coherence

external-scheme

Used in: caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme, near-scheme, versioned-near-scheme, overflow-
scheme, read-write-backing-map-scheme, versioned-backing-map-
scheme

Description
External schemes define caches which are not JVM heap based, allowing for greater
storage capacity. See "Local Caches (accessible from a single JVM)" on page F-2 for
examples of various external cache configurations.

Implementation
This scheme is implemented by:

■ com.tangosol.net.cache.SerializationMap—for unlimited size caches

■ com.tangosol.net.cache.SerializationCache—for size limited caches

The implementation type is chosen based on the following rule:

■ if the <high-units> subelement is specified and not zero then
SerializationCache is used;

■ otherwise SerializationMap is used.

Pluggable Storage Manager
External schemes use a pluggable store manager to store and retrieve binary key value
pairs. Supported store managers include:

■ a wrapper providing asynchronous write capabilities for of other store manager
implementations

■ allows definition of custom implementations of store managers

■ uses Berkeley Database JE to implement an on disk cache

■ uses a Coherence LH on disk database cache

■ uses NIO to implement memory-mapped file based cache

■ uses NIO to implement an off JVM heap, in-memory cache

Size Limited Cache
The cache may be configured as size-limited, which means that when it reaches its
maximum allowable size (that is, the <high-units> subelement) it prunes itself.

Entry Expiration
External schemes support automatic expiration of entries based on the age of the
value, as configured by the <expiry-delay> subelement.

Note: Eviction against disk-based caches can be expensive, consider
using a paged-external-scheme for such cases.

Element Index

Cache Configuration Elements D-33

Persistence (long-term storage)
External caches are generally used for temporary storage of large data sets, for
example as the back-tier of an overflow-scheme. Certain implementations do
however support persistence for non-clustered caches, see the <store-name>
subelement of bdb-store-manager and the <manager-filename> subelement of
lh-file-manager for details. Clustered persistence should be configured by using a
read-write-backing-map-scheme on a distributed-scheme.

Elements
Table D–17 describes the elements you can define within the external-scheme
element.

Table D–17 external-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See
"Scheme Inheritance" on page D-19 for more information

<class-name> Optional Specifies a custom implementation of the external cache. Any
custom implementation must extend one of the following
classes:

■ com.tangosol.net.cache.
SerializationCache—for size limited caches

■ com.tangosol.net.cache.SerializationMap—for
unlimited size caches

■ com.tangosol.net.cache.
SimpleSerializationMap—for unlimited size caches

and declare the exact same set of public constructors as the
superclass.

<init-params> Optional Specifies initialization parameters, for use in custom external
cache implementations which implement the com.tangosol.
run.xml.XmlConfigurable interface.

<listener> Optional Specifies an implementation of a com.tangosol.util.
MapListener which will be notified of events occurring on the
cache.

<high-units> Optional Used to limit the size of the cache. Contains the maximum
number of units that can be placed in the cache before pruning
occurs. An entry is the unit of measurement. When this limit is
exceeded, the cache will begin the pruning process, evicting the
least recently used entries until the number of units is brought
below this limit. The scheme's class-name element may be
used to provide custom extensions to SerializationCache,
which implement alternative eviction policies. Legal values are
positive integers or zero. Zero implies no limit. Default value is
zero.

external-scheme

D-34 Oracle Coherence Developer's Guide for Oracle Coherence

<expiry-delay> Optional Specifies the amount of time from last update that entries will be
kept by the cache before being expired. Entries that are expired
will not be accessible and will be evicted.The value of this
element must be in the following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of
time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of seconds is assumed.
A value of zero implies no expiry. Default value is zero.

<async-store-manager> Optional Configures the external cache to use an asynchronous storage
manager wrapper for any other storage manager. See "Pluggable
Storage Manager" on page D-32

<custom-store-
manager>

Optional Configures the external cache to use a custom storage manager
implementation.

<bdb-store-manager> Optional Configures the external cache to use Berkeley Database JE on
disk databases for cache storage.

<lh-file-manager> Optional Configures the external cache to use a Coherence LH on disk
database for cache storage.

<nio-file-manager> Optional Configures the external cache to use a memory-mapped file for
cache storage.

<nio-memory-manager> Optional Configures the external cache to use an off JVM heap, memory
region for cache storage.

Table D–17 (Cont.) external-scheme Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-35

initiator-config

Used in: remote-cache-scheme, remote-invocation-scheme.

Description
The initiator-config element specifies the configuration info for a protocol-
specific connection initiator. A connection initiator allows a Coherence*Extend client to
connect to a cluster (by using a connection acceptor) and use the clustered services
offered by the cluster without having to first join the cluster.

The initiator-config element must contain exactly one protocol-specific
connection initiator configuration element (either jms-initiator or tcp-
initiator).

Elements
Table D–18 describes the elements you can define within the initiator-config
element.

Table D–18 initiator-config Subelements

Element
Required/
Optional Description

<jms-initiator> Optional Specifies the configuration info for a connection initiator that
connects to the cluster over JMS.

<outgoing-message-handler> Optional Specifies the configuration info used by the connection
initiator to detect dropped client-to-cluster connections.

<serializer> Optional Specifies the class configuration info for a Serializer
implementation used by the connection initiator to serialize
and deserialize user types. For example, the following
configures a ConfigurablePofContext that uses the my-
pof-types.xml POF type configuration file to deserialize
user types to and from a POF stream:

<serializer>
 <class-name>com.tangosol.io.pof.
ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>my-pof-types.xml</param-value>
 </init-param>
 </init-params>
</serializer>

<tcp-initiator> Optional Specifies the configuration info for a connection initiator that
connects to the cluster over TCP/IP.

<use-filters> Optional Contains the list of <filters> names to be used by this
connection initiator. In the following example, specifying
use-filter will activate gzip compression for all network
messages, which can help substantially with WAN and low-
bandwidth networks.

<use-filters>
 <filter-name>gzip</filter-name>
</use-filters>

init-param

D-36 Oracle Coherence Developer's Guide for Oracle Coherence

init-param

Used in: init-params.

Defines an individual initialization parameter.

Elements
Table D–19 describes the elements you can define within the init-param element.

Element Index

Cache Configuration Elements D-37

Table D–19 init-param Subelements

Element
Required/
Optional Description

<param-name> Optional Contains the name of the initialization parameter. For example:

<class-name>com.mycompany.cache.CustomCacheLoader</class-name>
<init-params>
 <init-param>
 <param-name>sTableName</param-name>
 <param-value>EmployeeTable</param-value>
 </init-param>
 <init-param>
 <param-name>iMaxSize</param-name>
 <param-value>2000</param-value>
 </init-param>
</init-params>

<param-type> Optional Contains the Java type of the initialization parameter.The following standard
types are supported:

■ java.lang.String (a.k.a. string)

■ java.lang.Boolean (a.k.a. boolean)

■ java.lang.Integer (a.k.a. int)

■ java.lang.Long (a.k.a. long)

■ java.lang.Double (a.k.a. double)

■ java.math.BigDecimal

■ java.io.File

■ java.sql.Date

■ java.sql.Time

■ java.sql.Timestamp

For example:

<class-name>com.mycompany.cache.CustomCacheLoader</class-name>
<init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>EmployeeTable</param-value>
 </init-param>
 <init-param>
 <param-type>int</param-type>
 <param-value>2000</param-value>
 </init-param>
</init-params>

Please refer to the list of available Appendix E, "Cache Configuration
Parameter Macros".

<param-value> Optional Contains the value of the initialization parameter. The value is in the format
specific to the Java type of the parameter. See Appendix E, "Cache
Configuration Parameter Macros" for the list of available macros.

init-params

D-38 Oracle Coherence Developer's Guide for Oracle Coherence

init-params

Used in: class-scheme, cache-mapping.

Description
Defines a series of initialization parameters as name-value pairs. See "Cache of a
Database" on page F-4 for an example of using init-params.

Elements
Table D–20 describes the elements you can define within the init-params element.

Table D–20 init-params Subelements

Element
Required/
Optional Description

<init-param> Optional Defines an individual initialization parameter.

Element Index

Cache Configuration Elements D-39

invocation-scheme

Used in: caching-schemes.

Description
Defines an Invocation Service. The invocation service may be used to perform custom
operations in parallel on any number of cluster nodes. See the com.tangosol.net.
InvocationService API for additional details.

Elements
The following table describes the elements you can define within the invocation-
scheme element.

Table D–21 invocation-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from from. See "Scheme
Inheritance" on page D-19 for more information.

<service-name> Optional Specifies the name of the service which will manage invocations from this
scheme.

<serializer> Optional Specifies the class configuration info for a com.tangosol.io.Serializer
implementation used by the Invocation service to serialize and deserialize
user types. For example, the following configures a
ConfigurablePofContext that uses the default coherence-pof-
types.xml configuration file to write objects to and read from a stream:

<serializer>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-
name>
</serializer>

Services are configured from within the <services> element in the
tangosol-coherence.xml descriptor. See Appendix H, "Operational
Configuration Elements" for more information.

<thread-count> Optional Specifies the number of daemon threads used by the invocation service. If
zero, all relevant tasks are performed on the service thread. Legal values are
positive integers or zero. Default value is the thread-count value specified
in the tangosol-coherence.xml descriptor. See the thread-count
parameter in "InvocationService Parameters" on page I-8.

<autostart> Optional The autostart element is intended to be used by cache servers (that is,
com.tangosol.net.DefaultCacheServer). It specifies whether this
service should be automatically started at a cluster node. Legal values are
true or false. Default value is false.

invocation-scheme

D-40 Oracle Coherence Developer's Guide for Oracle Coherence

<task-hung-
threshold>

Optional Specifies the amount of time in milliseconds that a task can execute before it
is considered "hung". Note: a posted task that has not yet started is never
considered as hung. This attribute is applied only if the Thread pool is used
(the thread-count value is positive). Legal values are positive integers or
zero (indicating no default timeout). Default value is the task-hung-
threshold value specified in the tangosol-coherence.xml descriptor.
See the task-hung-threshold parameter in "InvocationService
Parameters" on page I-8.

<task-timeout> Optional Specifies the default timeout value in milliseconds for tasks that can be
timed-out (for example, implement the com.tangosol.net.
PriorityTask interface), but don't explicitly specify the task execution
timeout value. The task execution time is measured on the server side and
does not include the time spent waiting in a service backlog queue before
being started. This attribute is applied only if the thread pool is used (the
thread-count value is positive). Legal values are positive integers or zero
(indicating no default timeout). Default value is the task-timeout value
specified in the tangosol-coherence.xml descriptor. See the task-
timeout parameter in "InvocationService Parameters" on page I-8.

<request-timeout> Optional Specifies the default timeout value in milliseconds for requests that can time-
out (for example, implement the com.tangosol.net.PriorityTask
interface), but don't explicitly specify the request timeout value. The request
time is measured on the client side as the time elapsed from the moment a
request is sent for execution to the corresponding server node(s) and includes
the following:

(1) the time it takes to deliver the request to an executing node (server); (2)
the interval between the time the task is received and placed into a service
queue until the execution starts; (3) the task execution time; (4) the time it
takes to deliver a result back to the client.

Legal values are positive integers or zero (indicating no default timeout).
Default value is the request-timeout value specified in the tangosol-
coherence.xml descriptor. See the request-timeout parameter in
"InvocationService Parameters" on page I-8.

Table D–21 (Cont.) invocation-scheme Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-41

invocation-service-proxy

Used in: proxy-config

Description
The invocation-service-proxy element contains the configuration info for an
invocation service proxy managed by a proxy service.

Elements
Table D–22 describes the elements you can define within the invocation-service-
proxy element.

Table D–22 invocation-service-proxy Subelement

Element
Required/
Optional Description

<enabled> Optional Specifies whether the invocation service proxy is enabled. If disabled, clients will
not be able to execute Invocable objects on the proxy service JVM. Legal values are
true or false. Default value is true.

jms-acceptor

D-42 Oracle Coherence Developer's Guide for Oracle Coherence

jms-acceptor

Used in: acceptor-config.

Description
The jms-acceptor element specifies the configuration info for a connection acceptor
that accepts connections from Coherence*Extend clients over JMS. For additional
details and example configurations see Chapter 18, "Configuring and Using
Coherence*Extend."

Elements
Table D–23 describes the elements you can define within the jms-acceptor element.

Table D–23 jms-acceptor Subelements

Element
Required/
Optional Description

<queue-connection-factory-name> Required Specifies the JNDI name of the JMS
QueueConnectionFactory used by the
connection acceptor.

<queue-name> Required Specifies the JNDI name of the JMS Queue used by
the connection acceptor.

Element Index

Cache Configuration Elements D-43

jms-initiator

Used in: initiator-config.

Description
The jms-initiator element specifies the configuration info for a connection
initiator that enables Coherence*Extend clients to connect to a remote cluster by using
JMS. For additional details and example configurations see Chapter 18, "Configuring
and Using Coherence*Extend."

Elements
The following table describes the elements you can define within the jms-initiator
element.

Table D–24 jms-initiator Subelements

Element
Required/
Optional Description

<queue-connection-factory-name> Required Specifies the JNDI name of the JMS
QueueConnectionFactory used by the
connection initiator.

<queue-name> Required Specifies the JNDI name of the JMS Queue used by
the connection initiator.

<connect-timeout> Optional Specifies the maximum amount of time to wait
while establishing a connection with a connection
acceptor. The value of this element must be in the
following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right)
indicate the unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of
milliseconds is assumed. Default value is an
infinite timeout.

key-associator

D-44 Oracle Coherence Developer's Guide for Oracle Coherence

key-associator

Used in: distributed-scheme

Description
Specifies an implementation of a com.tangosol.net.partition.
KeyAssociator which will be used to determine associations between keys,
allowing related keys to reside on the same partition.

Alternatively the cache's keys may manage the association by implementing the com.
tangosol.net.cache.KeyAssociation interface.

Elements
Table D–25 describes the elements you can define within the key-associator element.

Table D–25 key-associator Subelements

Element
Required/
Optional Description

<class-name> Required The name of a class that implements the com.tangosol.net.partition.
KeyAssociator interface. This implementation must have a zero-parameter
public constructor. Default value is the value of the key-associator/class-
name parameter specified in the tangosol.coherence.xml descriptor. See
"DistributedCache Service Parameters" on page I-3 for more information.

Element Index

Cache Configuration Elements D-45

key-partitioning

Used in: distributed-scheme

Description
Specifies an implementation of a com.tangosol.net.partition.
KeyPartitioningStrategy which will be used to determine the partition in which
a key will reside.

Elements
Table D–26 describes the elements you can define within the key-partitioning element.

Table D–26 key-partitioning Subelements

Element
Required/Optiona
l Description

<class-name> Required The name of a class that implements the com.tangosol.net.
partition.KeyPartitioningStrategy interface. This
implementation must have a zero-parameter public constructor. Default
value is the value of the key-partitioning/class-name parameter
specified in the tangosol-coherence.xml descriptor. See
"DistributedCache Service Parameters" on page I-3 for more information.

lh-file-manager

D-46 Oracle Coherence Developer's Guide for Oracle Coherence

lh-file-manager

Used in: external-scheme, paged-external-scheme, async-store-manager.

Description
Configures a store manager which will use a Coherence LH on disk embedded
database for storage. See "Persistent Cache on Disk" on page F-3 and "In-memory
Cache with Disk Based Overflow" on page F-4 for examples of LH-based store
configurations.

Implementation
Implemented by the com.tangosol.io.lh.LHBinaryStoreManager class. The
BinaryStore objects created by this class are instances of javadoc:com.tangosol.
io.lh.LHBinaryStore.

Elements
Table D–27 describes the elements you can define within the lh-file-manager
element.

Table D–27 lh-file-manager Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies a custom implementation of the LH BinaryStoreManager. Any
custom implementation must extend the com.tangosol.io.lh.
LHBinaryStoreManager class and declare the exact same set of public
constructors.

<init-params> Optional Specifies initialization parameters, for use in custom LH file manager
implementations which implement the com.tangosol.run.xml.
XmlConfigurable interface.

<directory> Optional Specifies the path name for the root directory that the LH file manager will use
to store files in. If not specified or specifies a non-existent directory, a temporary
file in the default location will be used.

<file-name> Optional Specifies the name for a non-temporary (persistent) file that the LH file manager
will use to store data in. Specifying this parameter will cause the lh-file-
manager to use non-temporary database instances. Use this parameter only for
local caches that are backed by a cache loader from a non-temporary file: this
allows the local cache to be pre-populated from the disk file on startup. When
specified it is recommended that it use the {cache-name} macro described in
Appendix E, "Cache Configuration Parameter Macros" macro. Normally this
parameter should be left unspecified, indicating that temporary storage is to be
used.

Element Index

Cache Configuration Elements D-47

listener

Used in: local-scheme, external-scheme, paged-external-scheme,
distributed-scheme, replicated-scheme, optimistic-scheme, near-
scheme, versioned-near-scheme, overflow-scheme, read-write-backing-
map-scheme, versioned-backing-map-scheme.

Description
The Listener element specifies an implementation of a com.tangosol.util.
MapListener which will be notified of events occurring on a cache.

Elements
The following table describes the elements you can define within the listener element.

Table D–28 listener Subelement

Element
Required/
Optional Description

<class-scheme> Required Specifies the full class name of the listener implementation to use. The
specified class must implement the com.tangosol.util.MapListener
interface.

local-scheme

D-48 Oracle Coherence Developer's Guide for Oracle Coherence

local-scheme

Used in: caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme, near-scheme, versioned-near-scheme, overflow-
scheme, read-write-backing-map-scheme, versioned-backing-map-
scheme

Description
Local cache schemes define in-memory "local" caches. Local caches are generally
nested within other cache schemes, for instance as the front-tier of a near-scheme. See
"Local Cache of a Partitioned Cache (Near cache)" on page F-7 for examples of various
local cache configurations.

Implementation
Local caches are implemented by the com.tangosol.net.cache.LocalCache
class.

Cache of an External Store
A local cache may be backed by an external cache store (see "cachestore-scheme" on
page D-17). Cache misses will read-through to the back end store to retrieve the data.
If a writable store is provided, cache writes will propagate to the cache store as well.
For optimizing read/write access against a cache store, see the "read-write-backing-
map-scheme" on page D-71.

Size Limited Cache
The cache may be configured as size-limited, which means that when it reaches its
maximum allowable size (see <allowable-size> subelement) it prunes itself back
to a specified smaller size (see <low-units> subelement), choosing which entries to
evict according to its eviction-policy (see <eviction-policy> subelement). The
entries and size limitations are measured in terms of units as calculated by the
scheme's unit-calculator (see <unit-calculator> subelement).

Entry Expiration
The local cache supports automatic expiration of entries based on the age of the value,
as configured by the expiry-delay (see <expiry-delay> subelement).

Elements
Table D–29 describes the elements you can define within the local-scheme element.

Table D–29 local-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Scheme
Inheritance" on page D-19 for more information.

<service-name> Optional Specifies the name of the service which will manage caches created from
this scheme. Services are configured from within the <services>
element in the tangosol-coherence.xml descriptor. See Appendix H,
"Operational Configuration Elements" for more information.

Element Index

Cache Configuration Elements D-49

<class-name> Optional Specifies a custom implementation of the local cache. Any custom
implementation must extend the com.tangosol.net.cache.
LocalCache class and declare the exact same set of public constructors.

<init-params> Optional Specifies initialization parameters, for use in custom local cache
implementations which implement the com.tangosol.run.xml.
XmlConfigurable interface.

<listener> Optional Specifies an implementation of a com.tangosol.util.MapListener
which will be notified of events occurring on the cache.

<cachestore-scheme> Optional Specifies the store which is being cached. If unspecified the cached data
will only reside in memory, and only reflect operations performed on the
cache itself.

<eviction-policy> Optional Specifies the type of eviction policy to use.Legal values are:

■ LRU - Least Recently Used eviction policy chooses which entries to
evict based on how recently they were last accessed, evicting those
that were not accessed the for the longest period first.

■ LFU - Least Frequently Used eviction policy chooses which entries to
evict based on how often they are being accessed, evicting those that
are accessed least frequently first.

■ HYBRID - Hybrid eviction policy chooses which entries to evict based
the combination (weighted score) of how often and recently they
were accessed, evicting those that are accessed least frequently and
were not accessed for the longest period first.

■ <class-scheme> - A custom eviction policy, specified as a class-
scheme. The class specified within this scheme must implement the
com/tangosol/net/cache/OldCache.EvictionPolicy
interface.

Default value is HYBRID.

<high-units> Optional Used to limit the size of the cache. Contains the maximum number of
units that can be placed in the cache before pruning occurs. An entry is
the unit of measurement, unless it is overridden by an alternate unit-
calculator (see <unit-calculator> subelement). When this limit is
exceeded, the cache will begin the pruning process, evicting entries
according to the eviction policy until the low-units (see <low-units>
subelement) size is reached. Legal values are positive integers or zero.
Zero implies no limit. Default value is 0.

<low-units> Optional Contains the number of units that the cache will be pruned down to when
pruning takes place. An entry is the unit of measurement, unless it is
overridden by an alternate unit-calculator (see <unit-calculator>
subelement). When pruning occurs entries will continue to be evicted
according to the eviction policy until this size. Legal values are positive
integers or zero. Zero implies the default. Default value is 75% of the
high-units setting (that is, for a high-units setting of 1000 the default low-
units will be 750).

Table D–29 (Cont.) local-scheme Subelements

Element
Required/
Optional Description

local-scheme

D-50 Oracle Coherence Developer's Guide for Oracle Coherence

<unit-calculator> Optional Specifies the type of unit calculator to use. A unit calculator is used to
determine the cost (in "units") of a given object.Legal values are:

■ FIXED - A unit calculator that assigns an equal weight of 1 to all
cached objects.

■ BINARY - A unit calculator that assigns an object a weight equal to
the number of bytes of memory required to cache the object. This
requires that the objects are com.tangosol.util.Binary
instances, as in a Partitioned cache. See com.tangosol.net.
cache.BinaryMemoryCalculator for additional details.

■ <class-scheme> - A custom unit calculator, specified as a class-
scheme. The class specified within this scheme must implement the
com/tangosol/net/cache/OldCache.UnitCalculator
interface.

Default value is FIXED.

<expiry-delay> Optional Specifies the amount of time from last update that entries will be kept by
the cache before being marked as expired. Any attempt to read an expired
entry will result in a reloading of the entry from the configured cache
store (see <cachestore-scheme>. Expired values are periodically
discarded from the cache based on the flush-delay (see <flush-delay>
subelement). The value of this element must be in the following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of seconds is assumed. A value
of zero implies no expiry. Default value is zero.

<flush-delay> Optional Specifies the time interval between periodic cache flushes, which will
discard expired entries from the cache, thus freeing resources.The value
of this element must be in the following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of seconds is assumed. If
<expiry-delay> is enabled, the default flush-delay is 1m, otherwise a
default of zero is used and automatic flushes are disabled.

Table D–29 (Cont.) local-scheme Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-51

near-scheme

Used in: caching-schemes.

Description
The near-scheme defines a two-tier cache consisting of a front-tier (see <front-
scheme> subelement) which caches a subset of a back-tier cache (see <back-
scheme> subelement). The front-tier is generally a fast, size limited cache, while the
back-tier is slower, but much higher capacity. A typical deployment might use a local-
scheme for the front-tier, and a distributed-scheme for the back-tier. The result is that a
portion of a large partitioned cache will be cached locally in-memory allowing for very
fast read access. See Appendix B, "Types of Caches in Coherence," for a more detailed
description of near caches, and "Local Cache of a Partitioned Cache (Near cache)" on
page F-7 for an example of near cache configurations.

Implementation
The near scheme is implemented by the com.tangosol.net.cache.NearCache
class.

Front-tier Invalidation
Specifying an invalidation-strategy (see <invalidation-strategy> subelement)
defines a strategy that is used to keep the front tier of the near cache in sync with the
back tier. Depending on that strategy a near cache is configured to listen to certain
events occurring on the back tier and automatically update (or invalidate) the front
portion of the near cache.

Elements
Table D–30 describes the elements you can define within the near-scheme element.

Table D–30 near-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See
"Scheme Inheritance" on page D-19 for more information

<class-name> Optional Specifies a custom implementation of the near cache. Any
custom implementation must extend the com.tangosol.net.
cache.NearCache class and declare the exact same set of
public constructors.

<init-params> Optional Specifies initialization parameters for custom near cache
implementations which implement the com.tangosol.run.
xml.XmlConfigurable interface.

<listener> Optional Specifies an implementation of a com.tangosol.util.
MapListener which will be notified of events occurring on the
cache.

near-scheme

D-52 Oracle Coherence Developer's Guide for Oracle Coherence

<front-scheme> Required Specifies the cache-scheme to use in creating the front-tier
cache.Legal values are:

■ local-scheme

■ external-scheme

■ paged-external-scheme

■ class-scheme

The eviction policy of the front-scheme defines which entries will
be cached locally. For example:

<front-scheme>
 <local-scheme>
 <eviction-policy>HYBRID</eviction-policy>
 <high-units>1000</high-units>
 </local-scheme>
</front-scheme>

Table D–30 (Cont.) near-scheme Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-53

<back-scheme> Required Specifies the cache-scheme to use in creating the back-tier
cache. Legal values are:

■ distributed-scheme

■ replicated-scheme

■ optimistic-scheme

■ local-scheme

■ external-scheme

■ paged-external-scheme

■ class-scheme

■ remote-cache-scheme

For example:

<back-scheme>
 <distributed-scheme>
 <scheme-ref>default-distributed</scheme-ref>
 </distributed-scheme>
</back-scheme>

<invalidation-strategy> Optional Specifies the strategy used keep the front-tier in-sync with the
back-tier. Please see com.tangosol.net.cache.NearCache
for more details.Legal values are:

■ none - instructs the cache not to listen for invalidation
events at all. This is the best choice for raw performance and
scalability when business requirements permit the use of
data which might not be absolutely current. Freshness of
data can be guaranteed by use of a sufficiently brief eviction
policy. The worst case performance is identical to a standard
Distributed cache.

■ present - instructs the near cache to listen to the back map
events related only to the items currently present in the front
map. This strategy works best when cluster nodes have
sticky data access patterns (for example, HTTP session
management with a sticky load balancer).

■ all - instructs the near cache to listen to all back map
events. This strategy is optimal for read-heavy access
patterns where there is significant overlap between the front
caches on each cluster member.

■ auto - instructs the near cache to switch between present
and all strategies automatically based on the cache statistics.

Default value is auto.

<autostart> Optional The autostart element is intended to be used by cache servers
(that is, com.tangosol.net.DefaultCacheServer). It
specifies whether the cache services associated with this cache
scheme should be automatically started at a cluster node. Legal
values are true or false. Default value is false.

Table D–30 (Cont.) near-scheme Subelements

Element
Required/
Optional Description

nio-file-manager

D-54 Oracle Coherence Developer's Guide for Oracle Coherence

nio-file-manager

Used in: external-scheme, paged-external-scheme, async-store-manager.

Description
Configures an external store which uses memory-mapped file for storage.

Implementation
This store manager is implemented by the com.tangosol.io.nio.
MappedStoreManager class. The BinaryStore objects created by this class are
instances of the com.tangosol.io.nio.BinaryMapStore.

Elements
Table D–31 describes the elements you can define within the nio-file-manager
element.

Table D–31 nio-file-manager Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies a custom implementation of the local cache. Any custom
implementation must extend the com.tangosol.io.nio.MappedStoreManager
class and declare the exact same set of public constructors.

<init-params> Optional Specifies initialization parameters, for use in custom nio-file-manager
implementations which implement the com.tangosol.run.xml.
XmlConfigurable interface.

<initial-size> Optional Specifies the initial buffer size in megabytes.The value of this element must be
in the following format:

[\d]+[[.][\d]+]?[K|k|M|m|G|g]?[B|b]?

where the first non-digit (from left to right) indicates the factor with which the
preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of mega is assumed. Legal values
are positive integers between 1 and Integer.MAX_VALUE - 1023 (that is,
2,147,482,624 bytes). Default value is 1MB.

<maximum-size> Optional Specifies the maximum buffer size in bytes.The value of this element must be in
the following format:

[\d]+[[.][\d]+]?[K|k|M|m|G|g]?[B|b]?

where the first non-digit (from left to right) indicates the factor with which the
preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of mega is assumed. Legal values
are positive integers between 1 and Integer.MAX_VALUE - 1023 (that is,
2,147,482,624 bytes). Default value is 1024MB.

<directory> Optional Specifies the path name for the root directory that the manager will use to store
files in. If not specified or specifies a non-existent directory, a temporary file in
the default location will be used.

Element Index

Cache Configuration Elements D-55

nio-memory-manager

Used in: external-scheme, paged-external-scheme, async-store-manager.

Description
Configures a store-manager which uses an off JVM heap, memory region for storage,
which means that it does not affect the Java heap size and the related JVM garbage-
collection performance that can be responsible for application pauses. See "NIO In-
memory Cache" on page F-2 for an example of an NIO cache configuration.

Implementation
Implemented by the com.tangosol.io.nio.DirectStoreManager class. The
BinaryStore objects created by this class are instances of the com.tangosol.io.
nio.BinaryMapStore.

Elements
Table D–32 describes the elements you can define within the nio-memory-manager
element.

Note: Some JVMs (starting with 1.4) require the use of a command
line parameter if the total NIO buffers will be greater than 64MB. For
example: -XX:MaxDirectMemorySize=512M

Table D–32 nio-memory-manager Subelements

Element
Required/
Optional Description

<class-name> Optional Specifies a custom implementation of the local cache. Any custom
implementation must extend the com.tangosol.io.nio.
DirectStoreManager class and declare the exact same set of public
constructors.

nio-memory-manager

D-56 Oracle Coherence Developer's Guide for Oracle Coherence

<init-params> Optional Specifies initialization parameters, for use in custom nio-memory-manager
implementations which implement the com.tangosol.run.xml.
XmlConfigurable interface.

<initial-size> Optional Specifies the initial buffer size in bytes. The value of this element must be in
the following format:

[\d]+[[.][\d]+]?[K|k|M|m|G|g]?[B|b]?

where the first non-digit (from left to right) indicates the factor with which
the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of mega is assumed. Legal
values are positive integers between 1 and Integer.MAX_VALUE - 1023
(that is, 2,147,482,624 bytes). Default value is 1MB.

<maximum-size> Optional Specifies the maximum buffer size in bytes. The value of this element must
be in the following format:

[\d]+[[.][\d]+]?[K|k|M|m|G|g]?[B|b]?

where the first non-digit (from left to right) indicates the factor with which
the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of mega is assumed. Legal
values are positive integers between 1 and Integer.MAX_VALUE - 1023
(that is, 2,147,482,624 bytes). Default value is 1024MB.

Table D–32 (Cont.) nio-memory-manager Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-57

operation-bundling

Used in: cachestore-scheme, distributed-scheme, remote-cache-scheme.

Description
The operation-bundling element specifies the configuration info for a particular
bundling strategy.

Bundling is a process of coalescing multiple individual operations into "bundles". It
could be beneficial when

■ there is a continuous stream of operations on multiple threads in parallel;

■ individual operations have relatively high latency (network or database-related);
and

■ there are functionally analogous "bulk" operations that take a collection of
arguments instead of a single one without causing the latency to grow linearly (as
a function of the collection size).

See com.tangosol.net.cache.AbstractBundler for additional implementation
details.

Elements
Table D–33 describes the subelement for the operation-bundling element.

Note: As with any bundling algorithm, there is a natural trade-off
between the resource utilization and average request latency.
Depending on a particular application usage pattern, enabling this
feature may either help or hurt the overall application performance.

Table D–33 operation-bundling Subelement

Element
Required/
Optional Description

 <bundle-config> Required Describes one or more bundle-able operations.

optimistic-scheme

D-58 Oracle Coherence Developer's Guide for Oracle Coherence

optimistic-scheme

Used in: caching-schemes, near-scheme, versioned-near-scheme, overflow-scheme

The optimistic scheme defines a cache which fully replicates all of its data to all cluster
nodes that run the service (see <service-name> subelement). See Appendix B,
"Types of Caches in Coherence" for a more detailed description of optimistic caches.

Optimistic Locking
Unlike the replicated-scheme and distributed-scheme caches, optimistic caches do not
support concurrency control (locking). Individual operations against entries are atomic
but there is no guarantee that the value stored in the cache does not change between
atomic operations. The lack of concurrency control allows optimistic caches to support
very fast write operations.

Cache Storage (Backing Map)
Storage for the cache is specified by using the backing-map-scheme (see <backing-
map-scheme> subelement). For instance an optimistic cache which uses a local-
scheme for its backing map will result in cache entries being stored in-memory.

Elements
Table D–34 describes the elements you can define within the optimistic-scheme
element.

Table D–34 optimistic-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Scheme
Inheritance" on page D-19 for more information.

<service-name> Optional Specifies the name of the service which will manage caches created from
this scheme. Services are configured from within the <services>
parameter in tangosol-coherence.xml. See Appendix H,
"Operational Configuration Elements" for more information.

Element Index

Cache Configuration Elements D-59

<listener> Optional Specifies an implementation of a com.tangosol.util.MapListener
which will be notified of events occurring on the cache.

<backing-map-
scheme>

Optional Specifies what type of cache will be used within the cache server to store
the entries.Legal values are:

■ local-scheme

■ external-scheme

■ paged-external-scheme

■ overflow-scheme

■ class-scheme

To ensure cache coherence, the backing-map of an optimistic cache must
not use a read-through pattern to load cache entries. Either use a cache-
aside pattern from outside the cache service, or switch to the
distributed-scheme, which supports read-through clustered
caching.

<autostart> Optional The autostart element is intended to be used by cache servers (that is,
com.tangosol.net.DefaultCacheServer). It specifies whether the
cache services associated with this cache scheme should be automatically
started at a cluster node. Legal values are true or false. Default value
is false.

Table D–34 (Cont.) optimistic-scheme Subelements

Element
Required/
Optional Description

outgoing-message-handler

D-60 Oracle Coherence Developer's Guide for Oracle Coherence

outgoing-message-handler

Used in: acceptor-config, initiator-config.

Description
The outgoing-message-handler specifies the configuration info used to detect
dropped client-to-cluster connections. For connection initiators and acceptors that use
connectionless protocols (for example, JMS), this information is necessary to
proactively detect and release resources allocated to dropped connections. Connection-
oriented initiators and acceptors can also use this information as an additional
mechanism to detect dropped connections.

Elements
Table D–35 describes the elements you can define within the outgoing-message-
handler element.

Element Index

Cache Configuration Elements D-61

Table D–35 outgoing-message-handler Subelements

Element
Required/
Optional Description

<heartbeat-interval> Optional Specifies the interval between ping requests. A ping request is
used to ensure the integrity of a connection.The value of this
element must be in the following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of
time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is
assumed. A value of zero disables ping requests. The default
value is zero.

<heartbeat-timeout> Optional Specifies the maximum amount of time to wait for a response to
a ping request before declaring the underlying connection
unusable.The value of this element must be in the following
format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of
time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is
assumed. The default value is the value of the request-
timeout element.

<request-timeout> Optional Specifies the maximum amount of time to wait for a response
message before declaring the underlying connection unusable.
The value of this element must be in the following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of
time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is
assumed. The default value is an infinite timeout.

overflow-scheme

D-62 Oracle Coherence Developer's Guide for Oracle Coherence

overflow-scheme

Used in: caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme, read-write-backing-map-scheme, versioned-
backing-map-scheme.

Description
The overflow-scheme defines a two-tier cache consisting of a fast, size limited front-
tier, and slower but much higher capacity back-tier cache. When the size limited front
fills up, evicted entries are transparently moved to the back. In the event of a cache
miss, entries may move from the back to the front. A typical deployment might use a
local-scheme for the front-tier, and a external-scheme for the back-tier, allowing for fast
local caches with capacities larger the JVM heap would allow. In such a deployment
the local-scheme element’s high-units and eviction-policy will control the
transfer (eviction) of entries from the front to back caches.

Implementation
Implemented by either com.tangosol.net.cache.OverflowMap or com.
tangosol.net.cache.SimpleOverflowMap, see expiry-enabled for details.

Entry Expiration
Overflow supports automatic expiration of entries based on the age of the value, as
configured by the expiry-delay (see <expiry-delay> subelement).

Elements
Table D–36 describes the elements you can define within the overflow-scheme
element.

Note: Relying on overflow for normal cache storage is not
recommended. It should only be used to help avoid eviction-related
data loss in the case where the storage requirements temporarily
exceed the configured capacity. In general, the overflow's on disk
storage should remain empty.

Table D–36 overflow-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Scheme
Inheritance" on page D-19 for more information.

<class-name> Optional Specifies a custom implementation of the overflow cache. Any custom
implementation must extend either the com.tangosol.net.cache.
OverflowMap or com.tangosol.net.cache.SimpleOverflowMap
class, and declare the exact same set of public constructors.

<init-params> Optional Specifies initialization parameters, for use in custom overflow cache
implementations which implement the com.tangosol.run.xml.
XmlConfigurable interface.

<listener> Optional Specifies an implementation of a com.tangosol.util.MapListener
which will be notified of events occurring on the cache.

Element Index

Cache Configuration Elements D-63

<front-scheme> Required Specifies the cache-scheme to use in creating the front-tier cache.
Legal values are:

■ local-scheme

■ external-scheme

■ paged-external-scheme

■ class-scheme

The eviction policy of the front-scheme defines which entries which
items are in the front versus back tiers. For example:

<front-scheme>
 <local-scheme>
 <eviction-policy>HYBRID</eviction-policy>
 <high-units>1000</high-units>
 </local-scheme>
</front-scheme>

<back-scheme> Required Specifies the cache-scheme to use in creating the back-tier cache.Legal
values are:

■ local-scheme

■ external-scheme

■ paged-external-scheme

■ class-scheme

For Example:

<back-scheme>
 <external-scheme>
 <lh-file-manager/>
 </external-scheme>
</back-scheme>

<miss-cache-scheme> Optional Specifies a cache-scheme for maintaining information on cache misses.
For caches which are not expiry-enabled (see <expiry-enabled>
subelement), the miss-cache is used track keys which resulted in both a
front and back tier cache miss. The knowledge that a key is not in either
tier allows some operations to perform faster, as they can avoid
querying the potentially slow back-tier. A size limited scheme may be
used to control how many misses are tracked. If unspecified no cache-
miss data will be maintained. Legal values are:

■ local-scheme

Table D–36 (Cont.) overflow-scheme Subelements

Element
Required/
Optional Description

overflow-scheme

D-64 Oracle Coherence Developer's Guide for Oracle Coherence

<expiry-enabled> Optional Turns on support for automatically-expiring data, as provided by the
com.tangosol.net.cache.CacheMap API. When enabled the
overflow-scheme will be implemented using com.tangosol.net.
cache.OverflowMap, rather then com.tangosol.net.cache.
SimpleOverflowMap. Legal values are true or false. Default value
is false.

<expiry-delay> Optional Specifies the amount of time from last update that entries will be kept
by the cache before being expired. Entries that are expired will not be
accessible and will be evicted.The value of this element must be in the
following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of seconds is assumed. A
value of zero implies no expiry. Default value is zero.

<autostart> Optional The autostart element is intended to be used by cache servers (that is,
com.tangosol.net.DefaultCacheServer). It specifies whether
the cache services associated with this cache scheme should be
automatically started at a cluster node. Legal values are true or false.
Default value is false.

Table D–36 (Cont.) overflow-scheme Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-65

paged-external-scheme

Used in: caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme, near-scheme, versioned-near-scheme, overflow-
scheme, read-write-backing-map-scheme, versioned-backing-map-
scheme

Description
As with external-scheme, paged-external-schemes define caches which are not
JVM heap based, allowing for greater storage capacity. The paged-external-scheme
optimizes LRU eviction by using a paging approach (see <paging> subelement). See
Chapter 12, "Serialization Paged Cache," for a detailed description of the paged cache
functionality.

Implementation
This scheme is implemented by the com.tangosol.net.cache.
SerializationPagedCache class.

Paging
Cache entries are maintained over a series of pages, where each page is a separate
com.tangosol.io.BinaryStore, obtained from the configured storage manager
(see "Pluggable Storage Manager"). When a page is created it is considered to be the
"current" page, and all write operations are performed against this page. On a
configurable interval (see <page-duration> subelement) the current page is closed
and a new current page is created. Read operations for a given key are performed
against the last page in which the key was stored. When the number of pages exceeds
a configured maximum (see <page-limit> subelement), the oldest page is destroyed
and those items which were not updated since the page was closed are be evicted. For
example configuring a cache with a duration of ten minutes per page, and a maximum
of six pages, will result in entries being cached for at most an hour. Paging improves
performance by avoiding individual delete operations against the storage manager as
cache entries are removed or evicted. Instead the cache simply releases its references to
those entries, and relies on the eventual destruction of an entire page to free the
associated storage of all page entries in a single stroke.

Pluggable Storage Manager
External schemes use a pluggable store manager to create and destroy pages, and to
access entries within those pages. Supported store-managers include:

■ async-store-manager—a wrapper providing asynchronous write capabilities
for of other store-manager implementations

■ custom-store-manager—allows definition of custom implementations of
store-managers

■ bdb-store-manager—uses Berkeley Database JE to implement an on disk cache

■ lh-file-manager—uses a Coherence LH on disk database cache

■ nio-file-manager—uses NIO to implement memory-mapped file based cache

■ nio-memory-manager—uses NIO to implement an off JVM heap, in-memory
cache

paged-external-scheme

D-66 Oracle Coherence Developer's Guide for Oracle Coherence

Persistence (long-term storage)
Paged external caches are used for temporary storage of large data sets, for example as
the back-tier of an overflow-scheme. These caches are not usable as for long-term
storage (persistence), and will not survive beyond the life of the JVM. Clustered
persistence should be configured by using a read-write-backing-map-scheme on a
distributed-scheme. If a non-clustered persistent cache is what is needed, refer to
"Persistence (long-term storage)" on page D-33.

Elements
Table D–37 describes the elements you can define within the paged-external-
scheme element.

Table D–37 paged-external-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Scheme
Inheritance" on page D-19 for more information.

<class-name> Optional Specifies a custom implementation of the external paged cache. Any
custom implementation must extend the com.tangosol.net.cache.
SerializationPagedCache class and declare the exact same set of
public constructors.

<init-params> Optional Specifies initialization parameters, for use in custom external paged
cache implementations which implement the com.tangosol.
run.xml.XmlConfigurable interface.

<listener> Optional Specifies an implementation of a com.tangosol.util.
MapListener which will be notified of events occurring on the
cache.

<page-limit> Required Specifies the maximum number of active pages for the paged cache.
Legal values are positive integers between 2 and 3600.

<page-duration> Optional Specifies the length of time, in seconds, that a page in the paged
cache is current.The value of this element must be in the following
format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of
time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of seconds is assumed.
Legal values are between 5 and 604800 seconds (one week) and zero
(no expiry). Default value is zero

<async-store-manager> Optional Configures the paged external cache to use an asynchronous
storage manager wrapper for any other storage manager. See
"Pluggable Storage Manager" on page D-32 for more information.

<custom-store-manager> Optional Configures the paged external cache to use a custom storage
manager implementation.

Element Index

Cache Configuration Elements D-67

<bdb-store-manager> Optional Configures the paged external cache to use Berkeley Database JE on
disk databases for cache storage.

<lh-file-manager> Optional Configures the paged external cache to use a Coherence LH on disk
database for cache storage.

<nio-file-manager> Optional Configures the paged external cache to use a memory-mapped file
for cache storage.

<nio-memory-manager> Optional Configures the paged external cache to use an off JVM heap,
memory region for cache storage.

Table D–37 (Cont.) paged-external-scheme Subelements

Element
Required/
Optional Description

partition-listener

D-68 Oracle Coherence Developer's Guide for Oracle Coherence

partition-listener

Used in: distributed-scheme

Description
Specifies an implementation of a com.tangosol.net.partition.
PartitionListener interface, which allows receiving partition distribution events.

Elements
Table D–38 describes the elements you can define within the partition-listener
element.

Table D–38 partition-listener Subelements

Element
Required/
Optional Description

<class-name> Required The name of a class that implements the com.tangosol.net.partition.
PartitionListener interface. This implementation must have a zero-
parameter public constructor. Default value is the value specified in the
partition-listener/class-name parameter in the tangosol-
coherence.xml descriptor. See "DistributedCache Service Parameters" on
page I-3 for more information.

Element Index

Cache Configuration Elements D-69

proxy-config

Used in: proxy-scheme.

Description
The proxy-config element specifies the configuration info for the clustered service
proxies managed by a proxy service. A service proxy is an intermediary between a
remote client (connected to the cluster by using a connection acceptor) and a clustered
service used by the remote client.

Elements
Table D–39 describes the elements you can define within the proxy-config element.

Table D–39 proxy-config Subelements

Element
Required/
Optional Description

<cache-service-proxy> Optional Specifies the configuration info for a cache service proxy
managed by the proxy service.

<invocation-service-proxy> Optional Specifies the configuration info for an invocation service
proxy managed by the proxy service.

proxy-scheme

D-70 Oracle Coherence Developer's Guide for Oracle Coherence

proxy-scheme

Used in: caching-schemes.

Description
The proxy-scheme element contains the configuration info for a clustered service
that allows Coherence*Extend clients to connect to the cluster and use clustered
services without having to join the cluster.

Elements
Table D–40 describes the subelements you can define within the proxy-scheme
element.

Table D–40 proxy-scheme Subelements

Element
Required/Opt
ional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Scheme
Inheritance" on page D-19 for more information.

<service-name> Optional Specifies the name of the service.

<serializer> Optional Specifies the class configuration info for a com.tangosol.io.
Serializer implementation used by the Proxy service to serialize and
deserialize user types. For example, the following configures a
ConfigurablePofContext that uses the default coherence-pof-
types.xml configuration file to write objects to and read from a stream:

<serializer>
 <class-name>com.tangosol.io.pof.
ConfigurablePofContext</class-name>
</serializer>

<thread-count> Optional Specifies the number of daemon threads used by the service. If zero, all
relevant tasks are performed on the service thread. Legal values are
positive integers or zero. Default value is the value specified in the
thread-count parameter of the tangosol-coherence.xml
descriptor. See "ProxyService Parameters" on page I-9 for more
information.

<acceptor-config> Required Contains the configuration of the connection acceptor used by the service
to accept connections from Coherence*Extend clients and to allow them
to use the services offered by the cluster without having to join the
cluster.

<proxy-config> Optional Contains the configuration of the clustered service proxies managed by
this service.

<autostart> Optional The autostart element is intended to be used by cache servers (that is,
com.tangosol.net.DefaultCacheServer). It specifies whether this
service should be automatically started at a cluster node. Legal values are
true or false. Default value is false.

Element Index

Cache Configuration Elements D-71

read-write-backing-map-scheme

Used in: caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme.

Description
The read-write-backing-map-scheme defines a backing map which provides a size
limited cache of a persistent store. See "Read-Through, Write-Through, Write-Behind
Caching and Refresh-Ahead" for more details.

Implementation
The read-write-backing-map-scheme is implemented by the com.tangosol.
net.cache.ReadWriteBackingMap class.

Cache of an External Store
A read write backing map maintains a cache backed by an external persistent cache
store (see <cachestore-scheme> subelement), cache misses will read-through to the
back-end store to retrieve the data. If a writable store is provided, cache writes will
propagate to the cache store as well.

Refresh-Ahead Caching
When enabled (see <refreshahead-factor> subelement) the cache will watch for
recently accessed entries which are about to expire, and asynchronously reload them
from the cache store. This insulates the application from potentially slow reads against
the cache store, as items periodically expire.

Write-Behind Caching
When enabled (see <write-delay> subelement) the cache will delay writes to the
back-end cache store. This allows for the writes to be batched (see <write-batch-
factor> subelement) into more efficient update blocks, which occur asynchronously
from the client thread.

Elements
The following table describes the elements you can define within the read-write-
backing-map-scheme element.

Table D–41 read-write-backing-map-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique
within a configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See
"Scheme Inheritance" on page D-19 for more information.

<class-name> Optional Specifies a custom implementation of the read write
backing map. Any custom implementation must extend
the com.tangosol.net.cache.
ReadWriteBackingMap class and declare the exact
same set of public constructors.

read-write-backing-map-scheme

D-72 Oracle Coherence Developer's Guide for Oracle Coherence

<init-params> Optional Specifies initialization parameters, for use in custom read
write backing map implementations which implement
the com.tangosol.run.xml.XmlConfigurable
interface.

<listener> Optional Specifies an implementation of a com.tangosol.util.
MapListener which will be notified of events occurring
on the cache.

<cachestore-scheme> Optional Specifies the store to cache. If unspecified the cached data
will only reside within the internal cache (see
<internal-cache-scheme> subelement), and only
reflect operations performed on the cache itself.

<internal-cache-scheme> Required Specifies a cache-scheme which will be used to cache
entries. Legal values are:

■ local-scheme

■ disk-scheme

■ external-scheme

■ paged-external-scheme

■ overflow-scheme

■ class-scheme

<miss-cache-scheme> Optional Specifies a cache-scheme for maintaining information on
cache misses. The miss-cache is used track keys which
were not found in the cache store. The knowledge that a
key is not in the cache store allows some operations to
perform faster, as they can avoid querying the potentially
slow cache store. A size-limited scheme may be used to
control how many misses are cached. If unspecified no
cache-miss data will be maintained. Legal values are:

■ local-scheme

<read-only> Optional Specifies if the cache is read only. If true the cache will
load data from cachestore for read operations and will
not perform any writing to the cachestore when the cache
is updated. Legal values are true or false. Default
value is false.

Table D–41 (Cont.) read-write-backing-map-scheme Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-73

<write-delay> Optional Specifies the time interval for a write-behind queue to
defer asynchronous writes to the cachestore by.The value
of this element must be in the following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the
unit of time duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of seconds is
assumed. If zero, synchronous writes to the cachestore
(without queuing) will take place, otherwise the writes
will be asynchronous and deferred by specified time
interval after the last update to the value in the cache.
Default is zero.

<write-batch-factor> Optional The write-batch-factor element is used to calculate
the "soft-ripe" time for write-behind queue entries.A
queue entry is considered to be "ripe" for a write
operation if it has been in the write-behind queue for no
less than the write-delay interval. The "soft-ripe" time is
the point in time before the actual ripe time after which
an entry will be included in a batched asynchronous
write operation to the CacheStore (along with all other
ripe and soft-ripe entries). In other words, a soft-ripe
entry is an entry that has been in the write-behind queue
for at least the following duration:

D' = (1.0 - F)*Dwhere:D = write-delay intervalF = write-
batch-factor

Conceptually, the write-behind thread uses the following
logic when performing a batched update:

1. The thread waits for a queued entry to become ripe.

2. When an entry becomes ripe, the thread dequeues all
ripe and soft-ripe entries in the queue.

3. The thread then writes all ripe and soft-ripe entries
either by using store() (if there is only the single
ripe entry) or storeAll() (if there are multiple
ripe/soft-ripe entries).

4. The thread then repeats (1).

This element is only applicable if asynchronous writes
are enabled (that is, the value of the write-delay element
is greater than zero) and the CacheStore implements
the storeAll() method. The value of the element is
expressed as a percentage of the write-delay interval.
Legal values are nonnegative doubles less than or equal
to 1.0. Default is zero.

Table D–41 (Cont.) read-write-backing-map-scheme Subelements

Element
Required/
Optional Description

read-write-backing-map-scheme

D-74 Oracle Coherence Developer's Guide for Oracle Coherence

<write-requeue-threshold> Optional Specifies the maximum size of the write-behind queue for
which failed cachestore write operations are requeued.
The purpose of this setting is to prevent flooding of the
write-behind queue with failed cachestore operations.
This can happened in situations where a large number of
successive write operations fail. If zero, write-behind
requeuing is disabled. Legal values are positive integers
or zero. Default is zero.

<refresh-ahead-factor> Optional The refresh-ahead-factor element is used to calculate the
"soft-expiration" time for cache entries. Soft-expiration is
the point in time before the actual expiration after which
any access request for an entry will schedule an
asynchronous load request for the entry. This attribute is
only applicable if the internal cache is a local-scheme,
configured with the <expiry-delay> subelement. The
value is expressed as a percentage of the internal
LocalCache expiration interval. If zero, refresh-ahead
scheduling will be disabled. If 1.0, then any get operation
will immediately trigger an asynchronous reload. Legal
values are nonnegative doubles less than or equal to 1.0.
Default value is zero.

<rollback-cachestore-failures> Optional Specifies whether exceptions caught during synchronous
cachestore operations are rethrown to the calling thread
(possibly over the network to a remote member). If the
value of this element is false, an exception caught during
a synchronous cachestore operation is logged locally and
the internal cache is updated. If the value is true, the
exception is rethrown to the calling thread and the
internal cache is not changed. If the operation was called
within a transactional context, this would have the effect
of rolling back the current transaction. Legal values are
true or false. Default value is false.

Table D–41 (Cont.) read-write-backing-map-scheme Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-75

remote-cache-scheme

Used in: cachestore-scheme, caching-schemes, near-scheme.

Description
The remote-cache-scheme element contains the configuration info necessary to use
a clustered cache from outside the cluster by using Coherence*Extend.

Elements
The following table describes the elements you can define within the remote-cache-
scheme element.

Table D–42 remote-cache-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Scheme
Inheritance" on page D-19 for more information.

<service-name> Optional Specifies the name of the service which will manage caches created
from this scheme.

<operation-bundling> Optional Specifies the configuration info for a bundling strategy.

<initiator-config> Required Contains the configuration of the connection initiator used by the
service to establish a connection with the cluster.

remote-invocation-scheme

D-76 Oracle Coherence Developer's Guide for Oracle Coherence

remote-invocation-scheme

Used in: caching-schemes

Description
The remote-invocation-scheme element contains the configuration info
necessary to execute tasks within the context of a cluster without having to first join
the cluster. This scheme uses Coherence*Extend to connect to the cluster.

Elements
Table D–43 describes the elements you can define within the remote-invocation-
scheme element.

Table D–43 remote-invocation-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Scheme
Inheritance" on page D-19 for more information.

<service-name> Optional Specifies the name of the service.

<initiator-config> Required Contains the configuration of the connection initiator used by the
service to establish a connection with the cluster.

Element Index

Cache Configuration Elements D-77

replicated-scheme

Used in: caching-schemes, near-scheme, versioned-near-scheme,
overflow-scheme, versioned-backing-map-scheme

Description
The replicated scheme defines caches which fully replicate all their cache entries on
each cluster nodes running the specified service. See "Replicated Cache Service" for a
more detailed description of replicated caches.

Clustered Concurrency Control
Replicated caches support cluster wide key-based locking so that data can be modified
in a cluster without encountering the classic missing update problem. Note that any
operation made without holding an explicit lock is still atomic but there is no
guarantee that the value stored in the cache does not change between atomic
operations.

Cache Storage (Backing Map)
Storage for the cache is specified by using the backing-map scheme (see <backing-
map> subelement). For instance, a replicated cache which uses a local-scheme for
its backing map will result in cache entries being stored in-memory.

Elements
Table D–44 describes the elements you can define within the replicated-scheme
element.

Table D–44 replicated-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique
within a configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See
"Scheme Inheritance" on page D-19 for more information.

<service-name> Optional Specifies the name of the service which will manage caches
created from this scheme. Services are configured from
within the <services> element in the tangosol-
coherence.xml file. See Appendix H, "Operational
Configuration Elements" for more information.

<listener> Optional Specifies an implementation of a com.tangosol.util.
MapListener which will be notified of events occurring
on the cache.

replicated-scheme

D-78 Oracle Coherence Developer's Guide for Oracle Coherence

<backing-map-scheme> Optional Specifies what type of cache will be used within the cache
server to store the entries.Legal values are:

■ local-scheme

■ external-scheme

■ paged-external-scheme

■ overflow-scheme

■ class-scheme

To ensure cache coherence, the backing-map of an
replicated cache must not use a read-through pattern to
load cache entries. Either use a cache-aside pattern from
outside the cache service, or switch to the distributed-
scheme, which supports read-through clustered caching.

<standard-lease-milliseconds> Optional Specifies the duration of the standard lease in milliseconds.
When a lease has aged past this number of milliseconds,
the lock will automatically be released. Set this value to
zero to specify a lease that never expires. The purpose of
this setting is to avoid deadlocks or blocks caused by stuck
threads; the value should be set higher than the longest
expected lock duration (for example, higher than a
transaction timeout). It's also recommended to set this
value higher than packet-delivery/timeout-
milliseconds value. Legal values are from positive long
numbers or zero. Default value is the value specified for
packet-delivery/timeout-milliseconds in the
tangosol-coherence.xml descriptor. See
"ReplicatedCache Service Parameters" on page I-7 for more
information.

<lease-granularity> Optional Specifies the lease ownership granularity. Available since
release 2.3.Legal values are:

■ thread

■ member

A value of thread means that locks are held by a thread that
obtained them and can only be released by that thread. A
value of member means that locks are held by a cluster
node and any thread running on the cluster node that
obtained the lock can release it. Default value is the
lease-granularity value specified in the tangosol-
coherence.xml descriptor. See "ReplicatedCache Service
Parameters" on page I-7 for more information.

<mobile-issues> Optional Specifies whether the lease issues should be transferred to
the most recent lock holders. Legal values are true or false.
Default value is the mobile-issue value specified in the
tangosol-coherence.xml descriptor. See
"ReplicatedCache Service Parameters" on page I-7 for more
information.

<autostart> Optional The autostart element is intended to be used by cache
servers (that is, com.tangosol.net.
DefaultCacheServer). It specifies whether the cache
services associated with this cache scheme should be
automatically started at a cluster node. Legal values are
true or false. Default value is false.

Table D–44 (Cont.) replicated-scheme Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-79

tcp-acceptor

Used in: acceptor-config.

Description
The tcp-initiator element specifies the configuration info for a connection
acceptor that accepts connections from Coherence*Extend clients over TCP/IP. For
additional details and example configurations see Chapter 18, "Configuring and Using
Coherence*Extend."

Elements
Table D–45 describes the elements you can define within the tcp-acceptor element.

Table D–45 tcp-acceptor Subelements

Element
Required/
Optional Description

<local-address> Required Specifies the local address (IP or DNS name) and port that the TCP/IP
ServerSocket opened by the connection acceptor will listen on.For
example, the following will instruct the connection acceptor to bind
the TCP/IP ServerSocket to 192.168.0.2:9099:

<local-address>
 <address>192.168.0.2</address>
 <port>9099</port>
 <reusable>true</reusable>
</local-address>

The <reusable> child element specifies whether a TCP/IP socket
can be bound to an address if a previous connection is in a timeout
state. When a TCP/IP connection is closed the connection may remain
in a timeout state for a period after the connection is closed (typically
known as the TIME_WAIT state or 2MSL wait state). For applications
using a well known socket address or port it may not be possible to
bind a socket to a required address if there is a connection in the
timeout state involving the socket address or port.

<keep-alive-enabled> Optional Indicates whether keep alive (SO_KEEPALIVE) is enabled on a
TCP/IP socket. Valid values are true and false. Keep alive is enabled
by default.

<tcp-delay-enabled> Optional Indicates whether TCP delay (Nagle's algorithm) is enabled on a
TCP/IP socket. Valid values are true and false. TCP delay is
disabled by default.

<receive-buffer-size> Optional Configures the size of the underlying TCP/IP socket network receive
buffer.Increasing the receive buffer size can increase the performance
of network I/O for high-volume connections, while decreasing it can
help reduce the backlog of incoming data.The value of this element
must be in the following format:

[\d]+[[.][\d]+]?[K|k|M|m|G|g]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of one is assumed.
Default value is O/S dependent.

tcp-acceptor

D-80 Oracle Coherence Developer's Guide for Oracle Coherence

<send-buffer-size> Optional Configures the size of the underlying TCP/IP socket network send
buffer.The value of this element must be in the following format:

[\d]+[[.][\d]+]?[K|k|M|m|G|g]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of one is assumed.
Default value is O/S dependent.

<listen-backlog> Optional Configures the size of the TCP/IP server socket backlog queue. Valid
values are positive integers. Default value is O/S dependent.

<linger-timeout> Optional Enables SO_LINGER on a TCP/IP socket with the specified linger
time.The value of this element must be in the following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.
Linger is disabled by default.

<authorized-hosts> Optional A collection of IP addresses of TCP/IP initiator hosts that are allowed
to connect to this TCP/IP acceptor.

Table D–45 (Cont.) tcp-acceptor Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-81

tcp-initiator

Used in: initiator-config.

Description
The tcp-initiator element specifies the configuration info for a connection
initiator that enables Coherence*Extend clients to connect to a remote cluster by using
TCP/IP. For additional details and example configurations see Chapter 18,
"Configuring and Using Coherence*Extend."

Elements
Table D–46 describes the elements you can define within the tcp-initiator
element.

Table D–46 tcp-initiator Subelements

Element
Required/
Optional Description

<local-address> Optional Specifies the local address (IP or DNS name) that the TCP/IP socket
opened by the connection initiator will be bound to. For example, the
following will instruct the connection initiator to bind the TCP/IP socket
to the IP address 192.168.0.1:

<local-address>
 <address>192.168.0.1</address>
</local-address>

<remote-addresses> Required Contains the <socket-address> of one or more TCP/IP connection
acceptors. The TCP/IP connection initiator uses this information to
establish a TCP/IP connection with a remote cluster. The TCP/IP
connection initiator will attempt to connect to the addresses in a random
order, until either the list is exhausted or a TCP/IP connection is
established.For example, the following will instruct the connection
initiator to attempt to connect to 192.168.0.2:9099 and 192.168.0.3:9099 in
a random order:

<remote-addresses>
 <socket-address>
 <address>192.168.0.2</address>
 <port>9099</port>
 </socket-address>
 <socket-address>
 <address>192.168.0.3</address>
 <port>9099</port>
 </socket-address>
</remote-addresses>

Alternatively, the set of remote addresses may be specified using a
<address-provider> element instead of the list of <socket-
address> elements. This approach may be used to implement custom
load balancing algorithms and/or dynamic discovery of TCP/IP
connection acceptors.

<keep-alive-enabled> Optional Indicates whether keep alive (SO_KEEPALIVE) is enabled on a TCP/IP
socket. Valid values are true and false. Keep alive is enabled by
default.

<tcp-delay-enabled> Optional Indicates whether TCP delay (Nagle's algorithm) is enabled on a TCP/IP
socket. Valid values are true and false. TCP delay is disabled by
default.

tcp-initiator

D-82 Oracle Coherence Developer's Guide for Oracle Coherence

<receive-buffer-
size>

Optional Configures the size of the underlying TCP/IP socket network receive
buffer.Increasing the receive buffer size can increase the performance of
network I/O for high-volume connections, while decreasing it can help
reduce the backlog of incoming data.The value of this element must be in
the following format:

[\d]+[[.][\d]+]?[K|k|M|m|G|g]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of one is assumed. Default
value is O/S dependent.

Table D–46 (Cont.) tcp-initiator Subelements

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-83

<send-buffer-size> Optional Configures the size of the underlying TCP/IP socket network send
buffer.The value of this element must be in the following format:

[\d]+[[.][\d]+]?[K|k|M|m|G|g]?[B|b]?

where the first non-digit (from left to right) indicates the factor with
which the preceding decimal value should be multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of one is assumed. Default
value is O/S dependent.

<connect-timeout> Optional Specifies the maximum amount of time to wait while establishing a
connection with a connection acceptor.The value of this element must be
in the following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.
Default value is an infinite timeout.

<linger-timeout> Optional Enables SO_LINGER on a TCP/IP socket with the specified linger time.
The value of this element must be in the following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.
Linger is disabled by default.

Table D–46 (Cont.) tcp-initiator Subelements

Element
Required/
Optional Description

version-persistent-scheme

D-84 Oracle Coherence Developer's Guide for Oracle Coherence

version-persistent-scheme

Used in: versioned-backing-map-scheme.

Description
The version-persistent-scheme defines a cache for storing object versioning
information in a clustered cache. Specifying a size limit on the specified scheme's
backing-map allows control over how many version identifiers are tracked.

Elements
Table D–47 describes the elements you can define within the version-persistent-
scheme element.

Table D–47 persistent-scheme Subelements

Element
Required/
Optional Description

<cache-name-suffix> Optional Specifies the name modifier that is used to create a cache of version
objects associated with a given cache. The value of this element is
appended to the base cache name. Legal value is a string. Default value
is -persist. For example, if the base case is named Sessions and this
name modifier is set to -persist, the associated version cache will be
named Sessions-persist.

<replicated-scheme>
or <distributed-
scheme>

Required Specifies the scheme for the cache used to maintain the versioning
information. Legal values are:

■ replicated-scheme

■ distributed-scheme

Element Index

Cache Configuration Elements D-85

version-transient-scheme

Used in: versioned-near-scheme, versioned-backing-map-scheme.

Description
The version-transient-scheme defines a cache for storing object versioning
information for use in versioned near-caches. Specifying a size limit on the specified
scheme's backing-map allows control over how many version identifiers are tracked.

Elements
The following table describes the elements you can define within the version-
transient-scheme element.

Table D–48 transient-scheme Subelements

Element
Required/
Optional Description

<cache-name-
suffix>

Optional Specifies the name modifier that is used to create a cache of version objects
associated with a given cache. The value of this element is appended to the
base cache name. Legal value is a string. Default value is "-version". For
example, if the base case is named Sessions and this name modifier is set
to -version, the associated version cache will be named Sessions-
version.

<replicated-
scheme> or
<distributed
-scheme>

Required Specifies the scheme for the cache used to maintain the versioning
information. Legal values are:

■ replicated-scheme

■ distributed-scheme

versioned-backing-map-scheme

D-86 Oracle Coherence Developer's Guide for Oracle Coherence

versioned-backing-map-scheme

Used in: caching-schemes, distributed-scheme, replicated-scheme,
optimistic-scheme.

Description
The versioned-backing-map-scheme is an extension of a read-write-
backing-map-scheme, defining a size limited cache of a persistent store. It uses
object versioning to determine what updates need to be written to the persistent store.
See "Versioning" for more information.

Implementation
The versioned-backing-map-scheme scheme is implemented by the com.
tangosol.net.cache.VersionedBackingMap class.

Cache of an External Store
As with the read-write-backing-map-scheme, a versioned backing map
maintains a cache backed by an external persistent cache store (see <cachestore-
scheme> subelement), cache misses will read-through to the back-end store to retrieve
the data. Cache stores may also support updates to the back-end data store.

Refresh-Ahead and Write-Behind Caching
As with the read-write-backing-map-scheme both the refresh-ahead (see
<refresh-ahead> subelement) and write-behind (see <write-behind>
subelement) caching optimizations are supported. See "Read-Through, Write-Through,
Write-Behind Caching and Refresh-Ahead" for more details.

Versioning
For entries whose values implement the com.tangosol.util.Versionable
interface, the versioned backing map will use the version identifier to determine if an
update must be written to the persistent store. The primary benefit of this feature is
that in the event of cluster node failover, the backup node can determine if the most
recent version of an entry has already been written to the persistent store, and if so it
can avoid an extraneous write.

Elements
Table D–49 describes the elements you can define within the versioned-backing-
map-scheme element.

Table D–49 versioned-backing-map-scheme Subelement

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within a
configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See "Scheme
Inheritance" on page D-19 for more information.

<class-name> Optional Specifies a custom implementation of the versioned backing map. Any
custom implementation must extend the com.tangosol.net.cache.
VersionedBackingMap class and declare the exact same set of public
constructors.

Element Index

Cache Configuration Elements D-87

<init-params> Optional Specifies initialization parameters, for use in custom versioned backing
map implementations which implement the com.tangosol.run.xml.
XmlConfigurable interface.

<listener> Optional Specifies an implementation of a com.tangosol.util.MapListener
which will be notified of events occurring on the cache.

<cachestore-
scheme>

Optional Specifies the store to cache. If unspecified the cached data will only reside
within the (see <internal-cache-scheme> subelement), and only
reflect operations performed on the cache itself.

<internal-cache-
scheme>

Required Specifies a cache-scheme which will be used to cache entries. Legal
values are:

■ local-scheme

■ external-scheme

■ paged-external-scheme

■ overflow-scheme

■ class-scheme

<miss-cache-
scheme>

Optional Specifies a cache-scheme for maintaining information on cache misses.
The miss-cache is used track keys which were not found in the cache
store. The knowledge that a key is not in the cache store allows some
operations to perform faster, as they can avoid querying the potentially
slow cache store. A size-limited scheme may be used to control how
many misses are cached. If unspecified no cache-miss data will be
maintained. Legal values are:

■ local-scheme

<read-only> Optional Specifies if the cache is read only. If true the cache will load data from
cachestore for read operations and will not perform any writing to the
cachestore when the cache is updated. Legal values are true or false.
Default value is false.

<write-delay> Optional Specifies the time interval for a write-behind queue to defer
asynchronous writes to the cachestore by.The value of this element must
be in the following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of seconds is assumed. If zero,
synchronous writes to the cachestore (without queuing) will take place,
otherwise the writes will be asynchronous and deferred by the number of
seconds after the last update to the value in the cache. Default is zero.

Table D–49 (Cont.) versioned-backing-map-scheme Subelement

Element
Required/
Optional Description

versioned-backing-map-scheme

D-88 Oracle Coherence Developer's Guide for Oracle Coherence

<write-batch-
factor>

Optional The write-batch-factor element is used to calculate the "soft-ripe" time for
write-behind queue entries. A queue entry is considered to be "ripe" for a
write operation if it has been in the write-behind queue for no less than
the write-delay interval. The "soft-ripe" time is the point in time before
the actual "ripe" time after which an entry will be included in a batched
asynchronous write operation to the CacheStore (along with all other
"ripe" and "soft-ripe" entries). This element is only applicable if
asynchronous writes are enabled (that is, the value of the write-delay
element is greater than zero) and the CacheStore implements the
storeAll() method. The value of the element is expressed as a
percentage of the write-delay interval. For example, if the value is zero,
only "ripe" entries from the write-behind queue will be batched. On the
other hand, if the value is 1.0, all currently queued entries will be batched
and the value of the write-delay element will be effectively ignored.
Legal values are nonnegative doubles less than or equal to 1.0. Default is
zero.

<write-requeue-
threshold>

Optional Specifies the maximum size of the write-behind queue for which failed
cachestore write operations are requeued. The purpose of this setting is
to prevent flooding of the write-behind queue with failed cachestore
operations. This can happened in situations where a large number of
successive write operations fail. If zero, write-behind requeuing is
disabled. Legal values are positive integers or zero. Default is zero.

<refresh-ahead-
factor>

Optional The refresh-ahead-factor element is used to calculate the "soft-
expiration" time for cache entries. Soft-expiration is the point in time
before the actual expiration after which any access request for an entry
will schedule an asynchronous load request for the entry. This attribute is
only applicable if the internal cache (see <internal-cache-scheme>
subelement) is a local-scheme, configured with the <location>
subelement. The value is expressed as a percentage of the internal
LocalCache expiration interval. If zero, refresh-ahead scheduling will
be disabled. If 1.0, then any get operation will immediately trigger an
asynchronous reload. Legal values are nonnegative doubles less than or
equal to 1.0. Default value is zero.

<rollback-
cachestore-
failures>

Optional Specifies whether exceptions caught during synchronous cachestore
operations are rethrown to the calling thread (possibly over the network
to a remote member). If the value of this element is false, an exception
caught during a synchronous cachestore operation is logged locally and
the internal cache is updated. If the value is true, the exception is
rethrown to the calling thread and the internal cache is not changed. If
the operation was called within a transactional context, this would have
the effect of rolling back the current transaction. Legal values are true or
false. Default value is false.

<version-
persistent-
scheme>

Optional Specifies a cache-scheme for tracking the version identifier for entries in
the persistent cachestore (see cachestore-scheme).

<version-
transient-scheme>

Optional Specifies a cache-scheme for tracking the version identifier for entries in
the transient internal cache (see <internal-cache-scheme>
subelement).

<manage-
transient>

Optional Specifies if the backing map is responsible for keeping the transient
version cache up to date. If disabled the backing map manages the
transient version cache only for operations for which no other party is
aware (such as entry expiry). This is used when there is already a
transient version cache of the same name being maintained at a higher
level, for instance within a versioned-near-scheme. Legal values are
true or false. Default value is false.

Table D–49 (Cont.) versioned-backing-map-scheme Subelement

Element
Required/
Optional Description

Element Index

Cache Configuration Elements D-89

versioned-near-scheme

Used in: caching-schemes.

Description
As with the near-scheme, the versioned-near-scheme defines a two tier cache
consisting of a small and fast front-end, and higher-capacity but slower back-end
cache. The front-end (see <front-end> subelement) and back-end (see <back-end>
subelement) are expressed as normal cache-schemes. A typical deployment might use
a local-scheme for the front-end, and a distributed-scheme for the back-end. See
Appendix B, "Types of Caches in Coherence" for a more detailed description of
versioned near caches.

Implementation
The versioned near scheme is implemented by the com.tangosol.net.cache.
VersionedNearCache class.

Versioning
Object versioning is used to ensure coherence between the front and back tiers. See the
<version-transient-scheme> subelement for more information

Elements
Table D–50 describes the elements you can define within the near-scheme element.

Note: As of Coherence release 2.3, it is suggested that a near-scheme
be used instead of versioned-near-scheme. Legacy Coherence
applications use versioned-near-scheme to ensure Coherence
through object versioning. As of Coherence 2.3 the near-scheme
includes a better alternative, in the form of reliable and efficient front
cache invalidation.

Table D–50 near-scheme Subelements

Element
Required/
Optional Description

<scheme-name> Optional Specifies the scheme's name. The name must be unique within
a configuration file.

<scheme-ref> Optional Specifies the name of another scheme to inherit from. See
"Scheme Inheritance" on page D-19 for more information.

<class-name> Optional Specifies a custom implementation of the versioned near
cache. The specified class must extend the com.tangosol.
net.cache.VersionedNearCache class and declare the
exact same set of public constructors.

<init-params> Optional Specifies initialization parameters, for use in custom
versioned near cache implementations which implement the
com.tangosol.run.xml.XmlConfigurable interface.

<listener> Optional Specifies an implementation of a com.tangosol.util.
MapListener which will be notified of events occurring on
the cache.

versioned-near-scheme

D-90 Oracle Coherence Developer's Guide for Oracle Coherence

<front-scheme> Required Specifies the cache-scheme to use in creating the front-tier
cache.Legal values are:

■ local-scheme

■ external-scheme

■ paged-external-scheme

■ class-scheme

For example:

<front-scheme>
 <local-scheme>
 <scheme-ref>default-eviction</scheme-ref>
 </local-scheme>
</front-scheme>

or

<front-scheme>
 <class-scheme>
 <class-name>com.tangosol.util.SafeHashMap</class-
name>
 <init-params></init-params>
 </class-scheme>
</front-scheme>

<back-scheme> Required Specifies the cache-scheme to use in creating the back-tier
cache.Legal values are:

■ distributed-scheme

■ replicated-scheme

■ optimistic-scheme

■ local-scheme

■ external-scheme

■ paged-external-scheme

■ class-scheme

For Example:

<back-scheme>
 <distributed-scheme>
 <scheme-ref>default-distributed</scheme-ref>
 </distributed-scheme>
</back-scheme>

<version-transient-scheme> Optional Specifies a scheme for versioning cache entries, which ensures
coherence between the front and back tiers.

<autostart> Optional The autostart element is intended to be used by cache servers
(that is, com.tangosol.net.DefaultCacheServer). It
specifies whether the cache services associated with this cache
scheme should be automatically started at a cluster node.
Legal values are true or false. Default value is false.

Table D–50 (Cont.) near-scheme Subelements

Element
Required/
Optional Description

E

Cache Configuration Parameter Macros E-1

ECache Configuration Parameter Macros

The Cache Configuration Deployment Descriptor (coherence-cache-config.xml)
supports parameter macros to minimize custom coding and enable specification of
commonly used attributes when configuring class constructor parameters. The macros
should be entered enclosed in curly braces as shown below, without any quotes or
spaces.

Table E–1 describes the parameter macros that may be specified:

Table E–1 Parameter Macros for Cache Configuration

<param-type>
<param-
value> Description

java.lang.String {cache-
name}

Used to pass the current cache name as a constructor parameter For
example:

<class-name>com.mycompany.cache.CustomCacheLoader</class-name>
<init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
</init-params>

java.lang.
ClassLoader

{class-
loader}

Used to pass the current classloader as a constructor parameter. For
example:

<class-name>com.mycompany.cache.CustomCacheLoader</class-name>
<init-params>
 <init-param>
 <param-type>java.lang.ClassLoader</param-type>
 <param-value>{class-loader}</param-value>
 </init-param>
</init-params>

E-2 Oracle Coherence Developer's Guide for Oracle Coherence

com.tangosol.net.
BackingMapManager
Context

{manager-
context}

Used to pass the current BackingMapManagerContext object as a
constructor parameter. For example:

<class-name>com.mycompany.cache.CustomCacheLoader</class-name>
<init-params>
 <init-param>
 <param-type>com.tangosol.net.BackingMapManagerContext
 </param-type>
 <param-value>{manager-context}</param-value>
 </init-param>
</init-params>

{scheme-ref} local-
scheme

Instantiates an object defined by the <class-scheme>, <local-
scheme> or <file-scheme> with the specified <scheme-name>
value and uses it as a constructor parameter. For example:

<class-scheme>
 <scheme-name>dbconnection</scheme-name>
 <class-name>com.mycompany.dbConnection</class-name>
 <init-params>
 <init-param>
 <param-name>driver</param-name>
 <param-type>String</param-type>
 <param-value>org.gjt.mm.mysql.Driver</param-value>
 </init-param>
 <init-param>
 <param-name>url</param-name>
 <param-type>String</param-type>
 <param-value>jdbc:mysql://dbserver:3306/companydb
 </param-value>

 </init-param>
 <init-param>
 <param-name>user</param-name>
 <param-type>String</param-type>
 <param-value>default</param-value>
 </init-param>
 <init-param>
 <param-name>password</param-name>
 <param-type>String</param-type>
 <param-value>default</param-value>
 </init-param>
 </init-params>
</class-scheme>
...
<class-name>com.mycompany.cache.CustomCacheLoader</class-name>
 <init-params>
 <init-param>
 <param-type>{scheme-ref}</param-type>
 <param-value>dbconnection</param-value>
 </init-param>
 </init-params>

Table E–1 (Cont.) Parameter Macros for Cache Configuration

<param-type>
<param-
value> Description

Cache Configuration Parameter Macros E-3

{cache-ref} cache name Used to obtain a NamedCache reference for the specified cache name.
Consider the following configuration example:

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>boston-*</cache-name>
 <scheme-name>wrapper</scheme-name>
 <init-params>
 <init-param>
 <param-name>delegate-cache-name</param-name>
 <param-value>london-*</param-value>
 </init-param>
 </init-params>
 </cache-mapping>
 <cache-mapping>
 <cache-name>london-*</cache-name>
 <scheme-name>partitioned</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <class-scheme>
 <scheme-name>wrapper</scheme-name>
 <class-name>com.tangosol.net.cache.WrapperNamedCache
 </class-name>
 <init-params>
 <init-param>
 <param-type>cache-ref</param-type>
 <param-value>delegate-cache-name</param-value>
 </init-param>
 <init-param>
 <param-type>string</param-type>
 <param-value>cache-name</param-value>
 </init-param>
 </init-params>
 </class-scheme>

 <distributed-scheme>
 <scheme-name>partitioned</scheme-name>
 <service-name>partitioned</service-name>
 <backing-map-scheme>
 <local-scheme>
 <unit-calculator>BINARY</unit-calculator>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

The CacheFactory.getCache("london-test") call would result
in a standard partitioned cache reference. Conversely, the
CacheFactory.getCache("boston-test") call would resolve the
value of the delegate-cache-name parameter to london-test and
would construct an instance of the WrapperNamedCache delegating to
the NamedCache returned by the CacheFactory.
getCache("london-test") call.

Table E–1 (Cont.) Parameter Macros for Cache Configuration

<param-type>
<param-
value> Description

E-4 Oracle Coherence Developer's Guide for Oracle Coherence

F

Sample Cache Configurations F-1

FSample Cache Configurations

This section provides a series of simple cache scheme configurations. The samples
build upon one another and will often use a scheme-ref element to reuse other
samples as nested schemes. See "Scheme Inheritance" on page D-19 for an example of
<scheme-ref>.

Cache schemes are specified in the caching-schemes element of the cache
configuration descriptor coherence-cache-config.xml which is described in
Appendix D, "Cache Configuration Elements". These samples only specify a minimum
number of settings, follow the embedded links to the scheme's documentation to see
the full set of options.

This section describes configurations for the following caching scenarios:

■ Local Caches (accessible from a single JVM)

– In-memory Cache

– NIO In-memory Cache

– Size Limited In-memory Cache

– In-memory Cache with Expiring Entries

– Cache on Disk

– Size Limited Cache on Disk

– Persistent Cache on Disk

– In-memory Cache with Disk Based Overflow

– Cache of a Database

■ Clustered Caches (accessible from multiple JVMs)

– Replicated Cache

– Replicated Cache with Overflow

– Partitioned Cache

– Partitioned Cache with Overflow

– Partitioned Cache of a Database

– Partitioned Cache with a Serializer

– Local Cache of a Partitioned Cache (Near cache)

Local Caches (accessible from a single JVM)

F-2 Oracle Coherence Developer's Guide for Oracle Coherence

Local Caches (accessible from a single JVM)
This section defines a series of local cache schemes. In this context "local" means that
the cache is only directly accessible by a single JVM. Later in this document local
caches will be used as building blocks for clustered caches. See "Clustered Caches
(accessible from multiple JVMs)" on page F-5.

In-memory Cache
Example F–1 uses a local-scheme to define an in-memory cache. The cache will
store as much as the JVM heap will allow.

Example F–1 Configuration for a Local, In-memory Cache

<local-scheme>
 <scheme-name>SampleMemoryScheme</scheme-name>
</local-scheme>

NIO In-memory Cache
Example F–2 uses an external-scheme to define an in-memory cache using an
nio-memory-manager. The advantage of an NIO memory based cache is that it
allows for large in-memory cache storage while not negatively impacting the JVM's
GC times. The size of the cache is limited by the maximum size of the NIO memory
region. See the <maximum-size> subelement of nio-memory-manager.

Example F–2 Configuration for a NIO In-memory Cache

<external-scheme>
 <scheme-name>SampleNioMemoryScheme</scheme-name>
 <nio-memory-manager/>
</external-scheme>

Size Limited In-memory Cache
Adding a <high-units> sub element to <local-scheme> limits the size of the
cache. Here the cache is size limited to one thousand entries. When the limit is
exceeded, the scheme's <eviction-policy> will determine which elements to evict
from the cache.

Example F–3 Configuration for a Size Limited, In-memory, Local Cache

<local-scheme>
 <scheme-name>SampleMemoryLimitedScheme</scheme-name>
 <high-units>1000</high-units>
</local-scheme>

In-memory Cache with Expiring Entries
Adding an <expiry-delay> subelement to <local-scheme> will cause cache
entries to automatically expire if they are not updated for a given time interval. When
expired the cache will invalidate the entry, and remove it from the cache.

Example F–4 Configuration for an In-memory Cache with Expiring Entries

<local-scheme>
 <scheme-name>SampleMemoryExpirationScheme</scheme-name>
 <expiry-delay>5m</expiry-delay>
</local-scheme>

Local Caches (accessible from a single JVM)

Sample Cache Configurations F-3

Cache on Disk
Example F–5 uses an external-scheme to define an on disk cache. The cache will
store as much as the file system will allow.

Example F–5 Configuration to Define a Cache on Disk

<external-scheme>
 <scheme-name>SampleDiskScheme</scheme-name>
 <lh-file-manager/>
</external-scheme>

Size Limited Cache on Disk
Adding a <high-units> sub- element to external-scheme limits the size of the
cache. The cache is size limited to one million entries. When the limit is exceeded, LRU
eviction is used determine which elements to evict from the cache. Refer to "paged-
external-scheme" on page D-65 for an alternate size limited external caching approach.

Example F–6 Configuration for a Size Limited Cache on Disk

<external-scheme>
 <scheme-name>SampleDiskLimitedScheme</scheme-name>
 <lh-file-manager/>
 <high-units>1000000</high-units>
</external-scheme>

Persistent Cache on Disk
Example F–7 uses an external-scheme to implement a cache suitable for use as
long-term storage for a single JVM.

External caches are generally used for temporary storage of large data sets, and are
automatically deleted on JVM shutdown. An external-cache can be used for long term
storage (see "Persistence (long-term storage)" on page D-33) in non-clustered caches
when using either the lh-file-manager or bdb-store-manager storage
managers. For clustered persistence see the "Partitioned Cache of a Database" on
page F-6 sample.

The {cache-name} macro is used to specify the name of the file the data will be
stored in. See Appendix E, "Cache Configuration Parameter Macros" for more
information on this macro.

Example F–7 Configuration for Persistent cache on disk

<external-scheme>
 <scheme-name>SampleDiskPersistentScheme</scheme-name>
 <lh-file-manager>
 <directory>/my/storage/directory</directory>
 <file-name>{cache-name}.store</file-name>
 </lh-file-manager>
</external-scheme>

Example F–8 illustrates using Berkeley DB rather then LH.

Note: This example uses the lh-file-manager for its on disk
storage implementation. See "external-scheme" on page D-32 for
additional external storage options.

Local Caches (accessible from a single JVM)

F-4 Oracle Coherence Developer's Guide for Oracle Coherence

Example F–8 Configuration for Persistent cache on disk with Berkeley DB

<external-scheme>
 <scheme-name>SampleDiskPersistentScheme</scheme-name>
 <bdb-store-manager>
 <directory>/my/storage/directory</directory>
 <store-name>{cache-name}.store</store-name>
 </bdb-store-manager>
</external-scheme>

In-memory Cache with Disk Based Overflow
Example F–9 uses an overflow-scheme to define a size limited in-memory cache,
when the in-memory (<front-scheme>) size limit is reached, a portion of the cache
contents will be moved to the on disk (<back-scheme>). The front-scheme's
<eviction-policy> will determine which elements to move from the front to the
back.

Note that this example reuses the examples in "Size Limited Cache on Disk" and
"Cache on Disk" on page F-3. to implement the front and back of the cache.

Example F–9 Configuration for In-memory Cache with Disk Based Overflow

<overflow-scheme>
 <scheme-name>SampleOverflowScheme</scheme-name>
 <front-scheme>
 <local-scheme>
 <scheme-ref>SampleMemoryLimitedScheme</scheme-ref>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <external-scheme>
 <scheme-ref>SampleDiskScheme</scheme-ref>
 </external-scheme>
 </back-scheme>
</overflow-scheme>

Cache of a Database
Example F–10 uses a read-write-backing-map-scheme to define a cache of a
database. This scheme maintains local cache of a portion of the database contents.
Cache misses will read-through to the database, and cache writes will be written back
to the database.

The cachestore-scheme element is configured with a custom class implementing
either the com.tangosol.net.cache.CacheLoader or com.tangosol.net.
cache.CacheStore interface. This class is responsible for all operations against the
database, such as reading and writing cache entries. See Appendix G, "Sample
CacheStores" implementations for examples of writing a cache store.

The {cache-name} macro is used to inform the cache store implementation of the
name of the cache it will back.See Appendix E, "Cache Configuration Parameter
Macros" for more information on this macro.

Example F–10 Configuration for the Cache of a Database

<read-write-backing-map-scheme>
 <scheme-name>SampleDatabaseScheme</scheme-name>
 <internal-cache-scheme>
 <local-scheme>
 <scheme-ref>SampleMemoryScheme</scheme-ref>

Clustered Caches (accessible from multiple JVMs)

Sample Cache Configurations F-5

 </local-scheme>
 </internal-cache-scheme>
 <cachestore-scheme>
 <class-scheme>
 <class-name>com.tangosol.examples.coherence.DBCacheStore</class-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
</read-write-backing-map-scheme>

Clustered Caches (accessible from multiple JVMs)
This section defines a series of clustered cache examples. Clustered caches are
accessible from multiple JVMs (any cluster node running the same cache service). The
internal cache storage (backing-map) on each cluster node is defined using local caches
(see "Local Caches (accessible from a single JVM)" on page F-2). The cache service
provides the capability to access local caches from other cluster nodes.

Replicated Cache
Example F–11 uses the replicated-scheme element to define a clustered cache in
which a copy of each cache entry will be stored on all cluster nodes.

The sample in "In-memory Cache" on page F-2 is used to define the cache storage on
each cluster node. The size of the cache is only limited by the cluster node with the
smallest JVM heap.

Example F–11 Configuration for a Replicated Cache

<replicated-scheme>
 <scheme-name>SampleReplicatedScheme</scheme-name>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>SampleMemoryScheme</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
</replicated-scheme>

Replicated Cache with Overflow
The backing-map-scheme element could just as easily specify any of the other local
cache samples. For instance, if it had used the "In-memory Cache with Disk Based
Overflow" on page F-4, each cluster node would have a local overflow cache allowing
for much greater storage capacity.

Example F–12 Configuration for a Replicated Cache with Overflow

<replicated-scheme>
 <scheme-name>SampleReplicatedOverflowScheme</scheme-name>
 <backing-map-scheme>
 <overflow-scheme>
 <scheme-ref>SampleOverflowScheme</scheme-ref>
 </overflow-scheme>
 </backing-map-scheme>

Clustered Caches (accessible from multiple JVMs)

F-6 Oracle Coherence Developer's Guide for Oracle Coherence

</replicated-scheme>

Partitioned Cache
Example F–13 uses the distributed-scheme to define a clustered cache in which
cache storage is partitioned across all cluster nodes.

The "In-memory Cache" on page F-2 is used to define the cache storage on each cluster
node. The total storage capacity of the cache is the sum of all storage enabled cluster
nodes running the partitioned cache service. See the <local-storage> subelement
of "distributed-scheme" on page D-26.

Example F–13 Configuration for a Partitioned Cache

<distributed-scheme>
 <scheme-name>SamplePartitionedScheme</scheme-name>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>SampleMemoryScheme</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
</distributed-scheme>

Partitioned Cache with Overflow
The backing-map-scheme element could just as easily specify any of the other local
cache samples. For instance if it had used the "In-memory Cache with Disk Based
Overflow" on page F-4, each storage-enabled cluster node would have a local overflow
cache allowing for much greater storage capacity. Note that the cache's backup storage
also uses the same overflow scheme which allows for backup data to be overflowed to
disk.

Example F–14 Configuration for a Partitioned Cache with Overflow

<distributed-scheme>
 <scheme-name>SamplePartitionedOverflowScheme</scheme-name>
 <backing-map-scheme>
 <overflow-scheme>
 <scheme-ref>SampleOverflowScheme</scheme-ref>
 </overflow-scheme>
 </backing-map-scheme>
 <backup-storage>
 <type>scheme</type>
 <scheme-name>SampleOverflowScheme</scheme-name>
 </backup-storage>
</distributed-scheme>

Partitioned Cache of a Database
Switching the backing-map-scheme element to use a read-write-backing-
map-scheme allows the cache to load and store entries against an external source such
as a database.

Example F–15 reuses the "Cache of a Database" on page F-4 to define the database
access.

Example F–15 Configuration for a Partitioned Cache of a Database

<distributed-scheme>
 <scheme-name>SamplePartitionedDatabaseScheme</scheme-name>

Clustered Caches (accessible from multiple JVMs)

Sample Cache Configurations F-7

 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <scheme-ref>SampleDatabaseScheme</scheme-ref>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
</distributed-scheme>

Partitioned Cache with a Serializer
Example F–16 uses the serializer element in distributed-scheme to define a
serializer that will be used to serialize and deserialize user types. In this case, the
partitioned cache will use POF (ConfigurablePofContext) as its serialization
format. Note that if you use POF and your application uses any custom user type
classes, then you must also define a custom POF configuration for them. See
Appendix J, "POF User Type Configuration Elements" for more information on POF
elements.

Example F–16 Configuration for a Partitioned Cache with a Serializer

<distributed-scheme>
 <scheme-name>SamplePartitionedPofScheme</scheme-name>
 <service-name>PartitionedPofCache</service-name>
 <serializer>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 </serializer>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

Local Cache of a Partitioned Cache (Near cache)
Example F–17 uses the near-scheme to define a local in-memory cache of a subset of
a partitioned cache. The result is that any cluster node accessing the partitioned cache
will maintain a local copy of the elements it frequently accesses. This offers read
performance close to the replicated-scheme-based caches, while offering the high
scalability of a distributed-scheme-based cache.

The "Size Limited In-memory Cache" on page F-2 sample is reused to define the "near"
(<front-scheme>) cache, while the "Partitioned Cache" on page F-6 sample is reused
to define the near-scheme.

Note that the size limited configuration of the front-scheme specifies the limit on how
much of the back-scheme cache is locally cached.

Example F–17 Configuration for a Local Cache of a Partitioned Cache

<near-scheme>
 <scheme-name>SampleNearScheme</scheme-name>
 <front-scheme>
 <local-scheme>
 <scheme-ref>SampleLimitedMemoryScheme</scheme-ref>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <distributed-scheme>
 <scheme-ref>SamplePartitionedScheme</scheme-ref>
 </distributed-scheme>
 </back-scheme>

Clustered Caches (accessible from multiple JVMs)

F-8 Oracle Coherence Developer's Guide for Oracle Coherence

</near-scheme>

G

Sample CacheStores G-1

GSample CacheStores

Cache stores are used by caches to read and write cache entries to external stores such
as a database. The examples on this page illustrate different ways in which you can
interact with a cache store.

Sample CacheStore
This section provides a very basic implementation of the
com.tangosol.net.cache.CacheStore interface. The implementation in
Example G–1 uses a single database connection by using JDBC, and does not use bulk
operations. A complete implementation would use a connection pool, and, if
write-behind is used, implement CacheStore.storeAll() for bulk JDBC inserts
and updates. "Cache of a Database" on page F-4 provides an example of a database
cache configuration.

Example G–1 Implementation of the CacheStore Interface

package com.tangosol.examples.coherence;

import com.tangosol.net.cache.CacheStore;
import com.tangosol.util.Base;

import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import java.util.Collection;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;

/**
* An example implementation of CacheStore

Note: Save processing effort by bulk loading the cache. The
following examples use the put method to write values to the cache
store. Often, performing bulk loads with the putAll method will
result in a savings in processing effort and network traffic. For more
information on bulk loading, see Chapter 13, "Pre-Loading the Cache."

Sample CacheStore

G-2 Oracle Coherence Developer's Guide for Oracle Coherence

* interface.
*
* @author erm 2003.05.01
*/
public class DBCacheStore
 extends Base
 implements CacheStore
 {
 // ----- constructors ---
 /**
 * Constructs DBCacheStore for a given database table.
 *
 * @param sTableName the db table name
 */
 public DBCacheStore(String sTableName)
 {
 m_sTableName = sTableName;
 configureConnection();
 }

 /**
 * Set up the DB connection.
 */
 protected void configureConnection()
 {
 try
 {
 Class.forName("org.gjt.mm.mysql.Driver");
 m_con = DriverManager.getConnection(DB_URL, DB_USERNAME,
DB_PASSWORD);
 m_con.setAutoCommit(true);
 }
 catch (Exception e)
 {
 throw ensureRuntimeException(e, "Connection failed");
 }
 }

 // ---- accessors ---

 /**
 * Obtain the name of the table this CacheStore is persisting to.
 *
 * @return the name of the table this CacheStore is persisting to
 */
 public String getTableName()
 {
 return m_sTableName;
 }

 /**
 * Obtain the connection being used to connect to the database.
 *
 * @return the connection used to connect to the database
 */
 public Connection getConnection()
 {
 return m_con;
 }

Sample CacheStore

Sample CacheStores G-3

 // ----- CacheStore Interface --

 /**
 * Return the value associated with the specified key, or null if the
 * key does not have an associated value in the underlying store.
 *
 * @param oKey key whose associated value is to be returned
 *
 * @return the value associated with the specified key, or
 * <tt>null</tt> if no value is available for that key
 */
 public Object load(Object oKey)
 {
 Object oValue = null;
 Connection con = getConnection();
 String sSQL = "SELECT id, value FROM " + getTableName()
 + " WHERE id = ?";
 try
 {
 PreparedStatement stmt = con.prepareStatement(sSQL);

 stmt.setString(1, String.valueOf(oKey));

 ResultSet rslt = stmt.executeQuery();
 if (rslt.next())
 {
 oValue = rslt.getString(2);
 if (rslt.next())
 {
 throw new SQLException("Not a unique key: " + oKey);
 }
 }
 stmt.close();
 }
 catch (SQLException e)
 {
 throw ensureRuntimeException(e, "Load failed: key=" + oKey);
 }
 return oValue;
 }

 /**
 * Store the specified value under the specific key in the underlying
 * store. This method is intended to support both key/value creation
 * and value update for a specific key.
 *
 * @param oKey key to store the value under
 * @param oValue value to be stored
 *
 * @throws UnsupportedOperationException if this implementation or the
 * underlying store is read-only
 */
 public void store(Object oKey, Object oValue)
 {
 Connection con = getConnection();
 String sTable = getTableName();
 String sSQL;

Sample CacheStore

G-4 Oracle Coherence Developer's Guide for Oracle Coherence

 // the following is very inefficient; it is recommended to use DB
 // specific functionality that is, REPLACE for MySQL or MERGE for Oracle
 if (load(oKey) != null)
 {
 // key exists - update
 sSQL = "UPDATE " + sTable + " SET value = ? where id = ?";
 }
 else
 {
 // new key - insert
 sSQL = "INSERT INTO " + sTable + " (value, id) VALUES (?,?)";
 }
 try
 {
 PreparedStatement stmt = con.prepareStatement(sSQL);
 int i = 0;
 stmt.setString(++i, String.valueOf(oValue));
 stmt.setString(++i, String.valueOf(oKey));
 stmt.executeUpdate();
 stmt.close();
 }
 catch (SQLException e)
 {
 throw ensureRuntimeException(e, "Store failed: key=" + oKey);
 }
 }

 /**
 * Remove the specified key from the underlying store if present.
 *
 * @param oKey key whose mapping is to be removed from the map
 *
 * @throws UnsupportedOperationException if this implementation or the
 * underlying store is read-only
 */
 public void erase(Object oKey)
 {
 Connection con = getConnection();
 String sSQL = "DELETE FROM " + getTableName() + " WHERE id=?";
 try
 {
 PreparedStatement stmt = con.prepareStatement(sSQL);

 stmt.setString(1, String.valueOf(oKey));
 stmt.executeUpdate();
 stmt.close();
 }
 catch (SQLException e)
 {
 throw ensureRuntimeException(e, "Erase failed: key=" + oKey);
 }
 }

 /**
 * Remove the specified keys from the underlying store if present.
 *
 * @param colKeys keys whose mappings are being removed from the cache
 *
 * @throws UnsupportedOperationException if this implementation or the
 * underlying store is read-only

Sample CacheStore

Sample CacheStores G-5

 */
 public void eraseAll(Collection colKeys)
 {
 throw new UnsupportedOperationException();
 }

 /**
 * Return the values associated with each the specified keys in the
 * passed collection. If a key does not have an associated value in
 * the underlying store, then the return map will not have an entry
 * for that key.
 *
 * @param colKeys a collection of keys to load
 *
 * @return a Map of keys to associated values for the specified keys
 */
 public Map loadAll(Collection colKeys)
 {
 throw new UnsupportedOperationException();
 }

 /**
 * Store the specified values under the specified keys in the underlying
 * store. This method is intended to support both key/value creation
 * and value update for the specified keys.
 *
 * @param mapEntries a Map of any number of keys and values to store
 *
 * @throws UnsupportedOperationException if this implementation or the
 * underlying store is read-only
 */
 public void storeAll(Map mapEntries)
 {
 throw new UnsupportedOperationException();
 }

 /**
 * Iterate all keys in the underlying store.
 *
 * @return a read-only iterator of the keys in the underlying store
 */
 public Iterator keys()
 {
 Connection con = getConnection();
 String sSQL = "SELECT id FROM " + getTableName();
 List list = new LinkedList();

 try
 {
 PreparedStatement stmt = con.prepareStatement(sSQL);
 ResultSet rslt = stmt.executeQuery();
 while (rslt.next())
 {
 Object oKey = rslt.getString(1);
 list.add(oKey);
 }
 stmt.close();
 }
 catch (SQLException e)
 {

Sample Controllable CacheStore

G-6 Oracle Coherence Developer's Guide for Oracle Coherence

 throw ensureRuntimeException(e, "Iterator failed");
 }

 return list.iterator();
 }

 // ----- data members ---

 /**
 * The connection.
 */
 protected Connection m_con;

 /**
 * The db table name.
 */
 protected String m_sTableName;

 /**
 * Driver class name.
 */
 private static final String DB_DRIVER = "org.gjt.mm.mysql.Driver";

 /**
 * Connection URL.
 */
 private static final String DB_URL =
"jdbc:mysql://localhost:3306/CacheStore";

 /**
 * User name.
 */
 private static final String DB_USERNAME = "root";

 /**
 * Password.
 */
 private static final String DB_PASSWORD = null;
 }

Sample Controllable CacheStore
This section illustrates the implementation of a controllable cache store. In this
scenario, the application can control when updated values in the cache are written to
the data store. The most common use case for this scenario is during the initial
population of the cache from the data store at startup. At startup, there is no need to
write values in the cache back to the data store. Any attempt to do so would be a waste
of resources.

The Main.java file in Example G–2 illustrates two different approaches to interacting
with a controllable cache store:

■ Use a controllable cache (note that it must be on a different service) to enable or
disable the cache store. This is illustrated by the ControllableCacheStore1
class.

■ Use the CacheStoreAware interface to indicate that objects added to the cache
do not need to be stored. This is illustrated by the ControllableCacheStore2
class.

Sample Controllable CacheStore

Sample CacheStores G-7

Both ControllableCacheStore1 and ControllableCacheStore2 extend the
com.tangosol.net.cache.AbstractCacheStore class. This helper class
provides unoptimized implementations of the storeAll and eraseAll operations.

The CacheStoreAware.java file is an interface which can be used to indicate that
an object added to the cache should not be stored in the database.

See "Cache of a Database" on page F-4 for a sample cache configurations.

Example G–2 provides a listing of the Main.java interface.

Example G–2 Main.java - Interacting with a Controllable CacheStore

import com.tangosol.net.CacheFactory;
import com.tangosol.net.NamedCache;
import com.tangosol.net.cache.AbstractCacheStore;
import com.tangosol.util.Base;

import java.io.Serializable;
import java.util.Date;

public class Main extends Base
 {

 /**
 * CacheStore implementation which is controlled by a control cache
 */
 public static class ControllableCacheStore1 extends AbstractCacheStore
 {
 public static final String CONTROL_CACHE = "cachestorecontrol";

 String m_sName;

 public static void enable(String sName)
 {
 CacheFactory.getCache(CONTROL_CACHE).put(sName, Boolean.TRUE);
 }

 public static void disable(String sName)
 {
 CacheFactory.getCache(CONTROL_CACHE).put(sName, Boolean.FALSE);
 }

 public void store(Object oKey, Object oValue)
 {
 Boolean isEnabled = (Boolean) CacheFactory.getCache(CONTROL_
CACHE).get(m_sName);
 if (isEnabled != null && isEnabled.booleanValue())
 {
 log("controllablecachestore1: enabled " + oKey + " = " + oValue);
 }
 else
 {
 log("controllablecachestore1: disabled " + oKey + " = " + oValue);
 }
 }

 public Object load(Object oKey)
 {
 log("controllablecachestore1: load:" + oKey);
 return new MyValue1(oKey);

Sample Controllable CacheStore

G-8 Oracle Coherence Developer's Guide for Oracle Coherence

 }

 public ControllableCacheStore1(String sName)
 {
 m_sName = sName;
 }

 }

 /**
 * CacheStore implementation which is controlled by values
 * implementing the CacheStoreAware interface
 */
 public static class ControllableCacheStore2 extends AbstractCacheStore
 {

 public void store(Object oKey, Object oValue)
 {
 boolean isEnabled = oValue instanceof CacheStoreAware ?
!((CacheStoreAware) oValue).isSkipStore() : true;
 if (isEnabled)
 {
 log("controllablecachestore2: enabled " + oKey + " = " + oValue);
 }
 else
 {
 log("controllablecachestore2: disabled " + oKey + " = " + oValue);
 }
 }

 public Object load(Object oKey)
 {
 log("controllablecachestore2: load:" + oKey);
 return new MyValue2(oKey);
 }

 }

 public static class MyValue1 implements Serializable
 {
 String m_sValue;

 public String getValue()
 {
 return m_sValue;
 }

 public String toString()
 {
 return "MyValue1[" + getValue() + "]";
 }

 public MyValue1(Object obj)
 {
 m_sValue = "value:" + obj;
 }
 }

 public static class MyValue2 extends MyValue1 implements CacheStoreAware
 {

Sample Controllable CacheStore

Sample CacheStores G-9

 boolean m_isSkipStore = false;

 public boolean isSkipStore()
 {
 return m_isSkipStore;
 }

 public void skipStore()
 {
 m_isSkipStore = true;
 }

 public String toString()
 {
 return "MyValue2[" + getValue() + "]";
 }

 public MyValue2(Object obj)
 {
 super(obj);
 }

 }

 public static void main(String[] args)
 {
 try
 {

 // example 1

 NamedCache cache1 = CacheFactory.getCache("cache1");

 // disable cachestore
 ControllableCacheStore1.disable("cache1");
 for(int i = 0; i < 5; i++)
 {
 cache1.put(new Integer(i), new MyValue1(new Date()));
 }

 // enable cachestore
 ControllableCacheStore1.enable("cache1");
 for(int i = 0; i < 5; i++)
 {
 cache1.put(new Integer(i), new MyValue1(new Date()));
 }

 // example 2

 NamedCache cache2 = CacheFactory.getCache("cache2");

 // add some values with cachestore disabled
 for(int i = 0; i < 5; i++)
 {
 MyValue2 value = new MyValue2(new Date());
 value.skipStore();
 cache2.put(new Integer(i), value);
 }

 // add some values with cachestore enabled

Sample Controllable CacheStore

G-10 Oracle Coherence Developer's Guide for Oracle Coherence

 for(int i = 0; i < 5; i++)
 {
 cache2.put(new Integer(i), new MyValue2(new Date()));
 }

 }
 catch(Throwable oops)
 {
 err(oops);
 }
 finally
 {
 CacheFactory.shutdown();
 }
 }

 }

Example G–3 provides a listing of the CacheStoreAware.java interface.

Example G–3 CacheStoreAware.java interface

public interface CacheStoreAware
 {
 public boolean isSkipStore();
 }

H

Operational Configuration Elements H-1

HOperational Configuration Elements

This section describes the elements that control the operational and runtime settings
used by Oracle Coherence. These settings are used to create, configure and maintain
Coherence clustering, communication, and data management services. This section
also describes the deployment descriptor files in which these elements can appear.

Operational Configuration Deployment Descriptors
The elements that control the operational and runtime settings to create and configure
clustering, communication, and data management services can be specified in either of
two deployment descriptors.

The tangosol-coherence.xml descriptor is where you specify the operational and
runtime elements that control clustering, communication, and data management
services. The optional tangosol-coherence-override.xml override file is where
you specify only the subset of the operational descriptor which you want to adjust. See
"Operational Override File (tangosol-coherence-override.xml)" on page H-2 for more
information.

For information on configuring caches see Appendix D, "Cache Configuration
Elements."

Document Location
When deploying Coherence, it is important to make sure that the
tangosol-coherence.xml descriptor is present and situated in the application
classpath (like with any other resource, Coherence will use the first one it finds in the
classpath). By default (as Oracle ships the software) tangosol-coherence.xml is
packaged into in the coherence.jar.

Document Root
The root element of the operational descriptor is <coherence>, this is where you may
begin configuring your cluster and services.

Document Format
Coherence Operational Configuration deployment descriptor should begin with the
following DOCTYPE declaration:

Example H–1 Operational Configuration Deployment Descriptor DOCTYPE Declaration

<!DOCTYPE coherence PUBLIC "-//Oracle, Inc.//DTD Oracle Coherence
3.4//EN""http://www.tangosol.com/dtd/coherence_3_3.dtd">

Operational Configuration Deployment Descriptors

H-2 Oracle Coherence Developer's Guide for Oracle Coherence

Operational Override File (tangosol-coherence-override.xml)
Though it is acceptable to supply an alternate definition of the default
tangosol-coherence.xml file, the preferred approach to operational configuration
is to specify an override file. The override file contains only the subset of the
operational descriptor which you want to adjust. The default name for the override file
is tangosol-coherence-override.xml, and the first instance found in the
classpath will be used. The format of the override file is the same as for the operational
descriptor, except that all elements are optional, any missing element will simply be
loaded from the operational descriptor.

Multiple levels of override files may also be configured, allowing for additional fine
tuning between similar deployment environments such as staging and production. For
example Coherence 3.2 and above use this feature to provide alternate configurations
such as the logging verbosity based on the deployment type (evaluation, development,
production). For more information on logging verbosity, see the <severity-level>
subelement in "logging-config" on page H-19. See also the
tangosol-coherence-override-eval.xml,
tangosol-coherence-override-dev.xml, and
tangosol-coherence-override-prod.xml files, within coherence.jar for the
specific customizations.

Command Line Override
Oracle Coherence provides a very powerful command line override feature which
allows for any element defined in this descriptor to be overridden from the Java
command line if it has a system-property attribute defined in the descriptor. This
feature enables you to use the same operational descriptor (and override file) across all
cluster nodes, and provide per-node customizations as system properties. See
Appendix L, "Command Line Overrides" for more information on this feature.

Note: When deploying Coherence into environments where the
default character set is EBCDIC rather than ASCII, please make sure
that this descriptor file is in ASCII format and is deployed into its
runtime environment in the binary format.

Note: It is recommended that you supply an override file rather then
a custom operational descriptor, thus specifying only the settings you
want to adjust.

Element Index

Operational Configuration Elements H-3

Element Index

Table H–1 lists all non-terminal elements which may be used from within the
operational configuration.

Table H–1 Non-Terminal Operational Configuration Elements

Element Used in:

access-controller security-config

authorized-hosts cluster-config

burst-mode packet-publisher

callback-handler security-config

cluster-config coherence

coherence root element

configurable-cache-factory-config coherence

filters cluster-config

flow-control packet-delivery

host-range authorized-hosts

incoming-message-handler cluster-config

init-param init-params

init-params access-controller, callback-handler,
configurable-cache-factory-config, filters, services

license-config coherence

logging-config coherence

management-config coherence

member-identity cluster-config

multicast-listener cluster-config

notification-queueing packet-publisher

outgoing-message-handler cluster-config

outstanding-packets flow-control

packet-buffer multicast-listener, packet-publisher, unicast-listener

packet-bundling packet-delivery

packet-delivery packet-publisher

packet-pool incoming-message-handler, packet-publisher

packet-publisher cluster-config

packet-size packet-publisher

packet-speaker cluster-config

pause-detection flow-control

security-config coherence

services cluster-config

shutdown-listener cluster-config

Element Index

H-4 Oracle Coherence Developer's Guide for Oracle Coherence

socket-address well-known-addresses

tcp-ring-listener cluster-config

traffic-jam packet-publisher

unicast-listener cluster-config

volume-threshold packet-speaker

well-known-addresses unicast-listener

Table H–1 (Cont.) Non-Terminal Operational Configuration Elements

Element Used in:

Element Index

Operational Configuration Elements H-5

access-controller

Used in: security-config.

Table H–2 describes the subelements you can define within the access-controller
element.

Table H–2 access-controller Subelements

Element
Required/
Optional Description

<class-name> Required Specifies the name of a Java class that implements
com.tangosol.net.security.AccessController interface, which will be
used by the security framework to check access rights for clustered resources and
encrypt/decrypt node-to-node communications regarding those rights. See
Chapter 7, "Security Framework" for more information. Default value is
com.tangosol.net.security.DefaultController.

<init-params> Optional Contains one or more initialization parameter(s) for a class that implements the
AccessController interface.For the default AccessController
implementation the parameters are the paths to the key store file and
permissions description file, specified as follows:

<init-params>
 <init-param id="1">
 <param-type>java.io.File</param-type>
 <param-value
system-property="tangosol.coherence.security.keystore"></param-value>
 </init-param>
 <init-param id="2">
 <param-type>java.io.File</param-type>
 <param-value
system-property="tangosol.coherence.security.permissions"></param-val
ue>
 </init-param>
</init-params>

Preconfigured value based on the default AccessController implementation
and the default parameters as specified above are
tangosol.coherence.security.keystore and
tangosol.coherence.security.permissions. For more information on
preconfigured overrides, see Appendix L, "Command Line Overrides." For more
information on the elements you can define within the init-param element,
see "init-param" on page H-16.

authorized-hosts

H-6 Oracle Coherence Developer's Guide for Oracle Coherence

authorized-hosts

Used in: cluster-config.

Description
If specified, restricts cluster membership to the cluster nodes specified in the collection
of unicast addresses, or address range. The unicast address is the address value from
the authorized cluster nodes' unicast-listener element. Any number of
host-address and host-range elements may be specified.

Elements
Table H–3 describes the subelements you can define within the authorized-hosts
element.

The content override attributes xml-override and id can be optionally used to fully
or partially override the contents of this element with XML document that is external
to the base document. See "Element Attributes" on page H-53.

Table H–3 authorized-hosts Subelements

Element
Required/
Optional Description

<host-address> Optional Specifies an IP address or hostname. If any are specified, only hosts with
specified host-addresses or within the specified host-ranges will be allowed
to join the cluster. The content override attributes id can be optionally
used to fully or partially override the contents of this element with XML
document that is external to the base document.

<host-range> Optional Specifies a range of IP addresses. If any are specified, only hosts with
specified host-addresses or within the specified host-ranges will be allowed
to join the cluster. The content override attributes id can be optionally
used to fully or partially override the contents of this element with XML
document that is external to the base document.

Element Index

Operational Configuration Elements H-7

burst-mode

Used in: packet-publisher.

Description
The burst-mode element is used to control the rate at which packets will transmitted
on the network, by specifying the maximum number of packets to transmit without
pausing. By default this feature is disabled and is typically only needed when
flow-control is disabled, or when operating with heavy loads on a half-duplex
network link. This setting only effects packets which are sent by the
packet-speaker.

Elements
Table H–4 describes the subelements you can define within the burst-mode element.

Table H–4 burst-mode Subelements

Element
Required/
Optional Description

<maximum-packets> Required Specifies the maximum number of packets that the will be sent in a
row without pausing. Zero indicates no limit. By setting this value
relatively low, Coherence is forced to hold back when sending a
large number of packets, which may reduce collisions in some
instances or allow incoming traffic to be more quickly processed.
Default value is 0.

<pause-milliseconds> Required Specifies the minimum number of milliseconds to delay between
long bursts of packets. By increasing this value, Coherence is forced
to hold back when sending a large number of packets, which may
reduce collisions in some instances or allow incoming traffic to be
more quickly processed. Default value is 10.

callback-handler

H-8 Oracle Coherence Developer's Guide for Oracle Coherence

callback-handler

Used in: security-config.

Table H–5 describes the elements you can define within the callback-handler
element.

Table H–5 callback-handler Subelement

Element
Required/
Optional Description

<class-name> Required Specifies the name of a Java class that provides the implementation for the
javax.security.auth.callback.CallbackHandler interface.

<init-params> Optional Contains one or more initialization parameter(s) for a CallbackHandler
implementation. For more information on the elements you can define
within the init-param element, refer to "init-param" on page H-16.

Element Index

Operational Configuration Elements H-9

cluster-config

Used in: <coherence>

Description
Contains the cluster configuration information, including communication and service
parameters.

Elements
Table H–6 describes the subelements you can define within the cluster-config
element.

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Element Attributes" on page H-53 for more information on
this attribute.

Table H–6 cluster-config Subelement

Element
Required/Op
tional Description

<authorized-hosts> Optional Specifies the hosts which are allowed to join the cluster.

<filters> Optional Specifies data transformation filters, which can be used to perform custom
transformations on data being transferred between cluster nodes.

<incoming-message-h
andler>

Required Specifies configuration information for the Incoming message handler,
used for dispatching incoming cluster communications.

<member-identity> Optional Specifies detailed identity information that is useful for defining the
location and role of the cluster member.

<multicast-listener> Required Specifies the configuration information for the Multicast listener, used for
receiving point-to-multipoint network communications.

<outgoing-message-h
andler>

Required Specifies configuration information for the Outgoing message handler,
used for dispatching outgoing cluster communications.

<packet-publisher> Required Specifies configuration information for the Packet publisher, used for
managing network data transmission.

<packet-speaker> Required Specifies configuration information for the Packet speaker, used for
network data transmission.

<services> Required Specifies the declarative data for all available Coherence services.

<shutdown-listener> Required Specifies the action to take upon receiving an external shutdown request.

<tcp-ring-listener> Required Specifies configuration information for the TCP Ring listener, used to death
detection.

<unicast-listener> Required Specifies the configuration information for the Unicast listener, used for
receiving point-to-point network communications.

coherence

H-10 Oracle Coherence Developer's Guide for Oracle Coherence

coherence

root element

Description
The coherence element is the root element of the operational deployment descriptor
tangosol-coherence.xml.

Elements
Table H–7 describes the elements you can define within the coherence element.

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Element Attributes" on page H-53 for more information on
this attribute

Table H–7 coherence Subelements

Element
Required/
Optional Description

<cluster-config> Required Contains the cluster configuration information. This element is where
most communication and service parameters are defined.

<logging-config> Required Contains the configuration information for the logging facility.

<configurable-cache-factory
-config>

Required Contains configuration information for the configurable cache factory.
It controls where, from, and how the cache configuration settings are
loaded.

<management-config> Required Contains the configuration information for the coherence Management
Framework. See Chapter 22, "How to Manage Coherence Using JMX"
for more information.

<security-config> Optional Contains the configuration information for the Coherence Security
Framework.

<license-config> Optional Contains the edition and operational mode configuration.

Element Index

Operational Configuration Elements H-11

configurable-cache-factory-config

Used in: coherence.

Elements
Table H–8 describes the elements you can define within the
configurable-cache-factory-config element.

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Element Attributes" on page H-53 for more information on
this attribute.

Table H–8 configurable-cache-factory-config Subelements

Element
Required/
Optional Description

<class-name> Required Specifies the name of a Java class that provides the cache configuration
factory. Default value is
com.tangosol.net.DefaultConfigurableCacheFactory.

<init-params> Optional Contains one or more initialization parameter(s) for a cache configuration
factory class which implements the
com.tangosol.run.xml.XmlConfigurable interface.For the default
cache configuration factory class (DefaultConfigurableCacheFactory)
the parameters are specified as follows:

<init-param>
 <param-type>java.lang.String</param-type>
 <param-value system-property="tangosol.coherence.cacheconfig">
 coherence-cache-config.xml
 </param-value>
</init-param>

Preconfigured is tangosol.coherence.cacheconfig. Unless an absolute
or relative path is specified, such as with ./path/to/config.xml, the
application's classpath will be used to find the specified descriptor. See
Appendix L, "Command Line Overrides" for more information on overrides.

filters

H-12 Oracle Coherence Developer's Guide for Oracle Coherence

filters

Used in: cluster-config.

Description
Data transformation filters can be used by services to apply a custom
transformation on data being transferred between cluster nodes. This can be used for
instance to compress or encrypt Coherence network traffic. See the <filter-class>
element for more information.

Implementation
Data transformation filters are implementations of the
com.tangosol.util.WrapperStreamFactory interface.

Elements
Table H–9 describes the elements you can define within each filters element.

The content override attributes id and xml-override can be optionally used to fully
or partially override the contents of this element with XML document that is external
to the base document. See "Element Attributes" on page H-53 for more information on
these attributes.

Note: Data transformation filters are not related to
com.tangosol.util.Filter, which is part of the Coherence API
for querying caches.

Table H–9 filters Subelements

Element
Required/
Optional Description

<filter-name> Required Specifies the canonical name of the filter. This name is unique within the
cluster. For example: gzip. The content override attribute id can be
optionally used to fully or partially override the contents of this element with
XML document that is external to the base document.

<filter-class> Required Specifies the class name of the filter implementation. This class must have a
zero-parameter public constructor and must implement the
com.tangosol.util.WrapperStreamFactory interface.

<init-params> Optional Specifies initialization parameters, for configuring filters which implement the
com.tangosol.run.xml.XmlConfigurable interface.For example when
using a com.tangosol.net.CompressionFilter the parameters are
specified as follows:

<init-param>
 <param-name>strategy</param-name>
 <param-value>gzip</param-value>
</init-param>
<init-param>
 <param-name>level</param-name>
 <param-value>default</param-value>
</init-param>

For more information on the parameter values for the standard filters refer to,
refer to Chapter 8, "Network Filters."

Element Index

Operational Configuration Elements H-13

flow-control

Used in: packet-delivery.

Description
The flow-control element contains configuration information related to packet
throttling and remote GC detection.

Remote GC Detection
Remote Pause detection allows Coherence to detect and react to a cluster node
becoming unresponsive (likely due to a long GC). When a node is marked as paused,
packets addressed to it will be sent at a lower rate until the node resumes responding.
This remote GC detection is used to avoid flooding a node while it is incapable of
responding.

Packet Throttling
Flow control allows Coherence to dynamically adjust the rate at which packets are
transmitted to a given cluster node based on point to point transmission statistics.

Elements
Table H–10 describes the elements you can define within the flow-control
subelement.

Table H–10 flow-control Subelements

Element
Required/
Optional Description

<enabled> Optional Specifies if flow control is enabled. Default is true

<pause-detection> Optional Defines the number of packets that will be resent to an
unresponsive cluster node before assuming that the node is
paused.

<outstanding-packets> Optional Defines the number of unconfirmed packets that will be sent to
a cluster node before packets addressed to that node will be
deferred.

host-range

H-14 Oracle Coherence Developer's Guide for Oracle Coherence

host-range

Used in: authorized-hosts.

Description
Specifies a range of unicast addresses of nodes which are allowed to join the cluster.

Elements
Table H–11 describes the elements you can define within each host-range element.

The content override attribute id can be optionally used to fully or partially override
the contents of this element with XML document that is external to the base document.
See "Element Attributes" on page H-53 for more information on this attribute.

Table H–11 host-range Subelements

Element
Required/
Optional Description

<from-address> Required Specifies the starting IP address for a range of host addresses. For example:
198.168.1.1.

<to-address> Required Specifies to-address element specifies the ending IP address (inclusive) for a
range of hosts. For example: 198.168.2.255.

Element Index

Operational Configuration Elements H-15

incoming-message-handler

Used in: cluster-config.

Description
The incoming-message-handler assembles UDP packets into logical messages
and dispatches them to the appropriate Coherence service for processing.

Elements
Table H–12 describes the subelements you can define within the
incoming-message-handler element.

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Element Attributes" on page H-53 for more information on
this attribute.

Table H–12 incoming-message-handler Subelements

Element
Required/
Optional Description

<maximum-time-
variance>

Required Specifies the maximum time variance between sending and
receiving broadcast Messages when trying to determine the
difference between a new cluster Member's system time and the
cluster time. The smaller the variance, the more certain one can be
that the cluster time will be closer between multiple systems
running in the cluster; however, the process of joining the cluster
will be extended until an exchange of Messages can occur within
the specified variance. Normally, a value as small as 20
milliseconds is sufficient, but with heavily loaded clusters and
multiple network hops it is possible that a larger value would be
necessary. Default value is 16.

<use-nack-packets> Required Specifies whether the packet receiver will use negative
acknowledgments (packet requests) to pro-actively respond to
known missing packets. See "notification-queueing" on page H-28
for additional details and configuration. Legal values are true or
false. Default value is true.

<priority> Required Specifies a priority of the incoming message handler execution
thread. Legal values are from 1 to 10. Default value is 7.

<packet-pool> Required Specifies how many incoming packets Coherence will buffer before
blocking.

init-param

H-16 Oracle Coherence Developer's Guide for Oracle Coherence

init-param

Used in: init-params.

Description
Defines an individual initialization parameter.

Elements
Table H–13 describes the elements you can define within the init-param element.

The content override attribute id can be optionally used to fully or partially override
the contents of this element with XML document that is external to the base document.
See "Element Attributes" on page H-53 for more information no this attribute.

Table H–13 init-param Subelement

Element
Required/
Optional Description

<param-name> Optional Specifies the name of the parameter passed to the class. The param-type or
param-name must be specified. For example: thread-count. For more
information on the pre-defined parameter values available for the specific
elements, refer to Appendix I, "Initialization Parameter Settings".

<param-type> Optional Specifies the data type of the parameter passed to the class. The param-type
or param-name must be specified. For example: int

<param-value> Required Specifies the value passed in the parameter. For example: 8. For more
information on the pre-defined parameter values available for the specific
elements, refer to Appendix I, "Initialization Parameter Settings".

Element Index

Operational Configuration Elements H-17

init-params

Used in: filters, services, configurable-cache-factory-config,
access-controller and callback-handler.

Description
Defines a series of initialization parameters.

Elements
Table H–14 describes the elements you can define within the init-params element.

Table H–14 init-params Subelement

Element
Required/
Optional Description

<init-param> Optional Defines an individual initialization parameter.

license-config

H-18 Oracle Coherence Developer's Guide for Oracle Coherence

license-config

Used in: coherence.

Table H–15 describes the elements you can define within the license-config
element.

Table H–15 license-config Subelements

Element
Required/
Optional Description

<edition-name> Optional Specifies the product edition that the member will use. This allows multiple
product editions to be used within the same cluster, with each member
specifying the edition that it will be using. Valid values are: GE (Grid
Edition), EE (Enterprise Edition), SE (Standard Edition), RTC (Real-Time
Client), DC (Data Client). Default value is GE.

<license-mode> Optional Specifies whether the product is being used in an development or
production mode. Valid values are prod (Production), and dev
(Development). Note: This value cannot be overridden in
tangosol-coherence-override.xml. It must be specified in
tangosol-coherence.xml or (preferably) supplied as system property
tangosol.coherence.mode on the Java command line. Default value is
dev.

Element Index

Operational Configuration Elements H-19

logging-config

Used in: coherence.

Elements
The following table describes the elements you can define within the logging-config
element.

logging-config

H-20 Oracle Coherence Developer's Guide for Oracle Coherence

Table H–16 logging-config Subelements

Element
Required/
Optional Description

<destination> Required Specifies the output device used by the logging system. Legal values are:

■ stdout

■ stderr (default)

■ jdk

■ log4 j

■ a file name

If jdk is specified as the destination, Coherence must be run using JDK 1.4
or later; likewise, if log4j is specified, the Log4j libraries must be in the
classpath. In both cases, the appropriate logging configuration mechanism
(system properties, property files, and so on) are necessary to configure the
JDK/Log4j logging libraries. Preconfigured value is
tangosol.coherence.log. See Appendix L, "Command Line
Overrides" for more information.

Element Index

Operational Configuration Elements H-21

<severity-level> Required Specifies which logged messages will be output to the log destination.
Legal values are:

■ 0—only output without a logging severity level specified will be
logged

■ 1—all the above plus errors

■ 2—all the above plus warnings

■ 3—all the above plus informational messages

■ 4-9—all the above plus internal debugging messages (the higher the
number, the more the messages)

■ -1—no messages

Default value is 3. Preconfigured value is
tangosol.coherence.log.level. See Appendix L, "Command Line
Overrides" for more information.

<message-format> Required Specifies how messages that have a logging level specified will be
formatted before passing them to the log destination. The value of the
message-format element is static text with the following replaceable
parameters:

■ {date}—the date/time format (to a millisecond) at which the
message was logged

■ {version}—the Oracle Coherence exact version and build details

■ {level}—the logging severity level of the message

■ {thread}—the thread name that logged the message

■ {member}—the cluster member id (if the cluster is currently running)

■ {location}—the fully qualified cluster member id: cluster-name,
site-name, rack-name, machine-name, process-name and
member-name (if the cluster is currently running)

■ {role}—the specified role of the cluster member

■ {text}—the text of the message

Default value is:

{date} Oracle Coherence {version} <{level}> (thread={thread},
member={member}): {text}

Table H–16 (Cont.) logging-config Subelements

Element
Required/
Optional Description

logging-config

H-22 Oracle Coherence Developer's Guide for Oracle Coherence

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Element Attributes" on page H-53 for more information on
this attribute.

<character-limit> Required Specifies the maximum number of characters that the logger daemon will
process from the message queue before discarding all remaining messages
in the queue. Note that the message that caused the total number of
characters to exceed the maximum will NOT be truncated, and all
messages that are discarded will be summarized by the logging system
with a single log entry detailing the number of messages that were
discarded and their total size. The truncation of the logging is only
temporary, since when the queue is processed (emptied), the logger is reset
so that subsequent messages will be logged.

The purpose of this setting is to avoid a situation where logging can itself
prevent recovery from a failing condition. For example, with tight timings,
logging can actually change the timings, causing more failures and
probably more logging, which becomes a vicious cycle. A limit on the
logging being done at any one point in time is a "pressure valve" that
prevents such a vicious cycle from occurring. Note that logging occurs on a
dedicated low-priority thread to even further reduce its impact on the
critical portions of the system.

Legal values are positive integers or zero. Zero implies no limit.

Default value is 4096. Preconfigured value is
tangosol.coherence.log.limit. For more information, see
Appendix L, "Command Line Overrides."

Table H–16 (Cont.) logging-config Subelements

Element
Required/
Optional Description

Element Index

Operational Configuration Elements H-23

management-config

Used in: coherence.

Elements
Table H–17 describes the elements you can define within the management-config
element.

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Element Attributes" on page H-53 for more information..

Table H–17 management-config Subelements

Element
Optional/
Required Description

<default-domain-name> Required Specifies the name of the JMX domain used to register
MBeans exposed by the Coherence Management
Framework. See Chapter 22, "How to Manage Coherence
Using JMX" for more information.

<managed-nodes> Required Specifies whether a cluster node's JVM has an
[in-process] MBeanServer and if so, whether this node
allows management of other nodes' managed objects.Legal
values are:

■ none—No MBeanServer is instantiated.

■ local-only—Manage only MBeans which are local to
the cluster node (that is, within the same JVM).

■ remote-only—Manage MBeans on other remotely
manageable cluster nodes. See
<allowed-remote-management> subelement.
Requires Coherence Enterprise Edition or higher

■ all—Manage both local and remotely manageable
cluster nodes. See <allowed-remote-management>
subelement. Requires Coherence Enterprise Edition or
higher.

Default value is none. Preconfigured value is
tangosol.coherence.management. See Appendix L,
"Command Line Overrides" for more information.

<allow-remote-management> Required Specifies whether this cluster node exposes its managed
objects to remote MBeanServer(s). Legal values are: true or
false. Default value is false. Preconfigured value is
tangosol.coherence.management.remote. See
Appendix L, "Command Line Overrides" for more
information.

<read-only> Required Specifies whether the managed objects exposed by this
cluster node allow operations that modify run-time
attributes. Legal values are: true or false. Default value is
false. Preconfigured value is
tangosol.coherence.management.readonly. See
Appendix L, "Command Line Overrides"

<service-name> Required Specifies the name of the Invocation Service used for remote
management. This element is used only if
allow-remote-management is set to true.

member-identity

H-24 Oracle Coherence Developer's Guide for Oracle Coherence

member-identity

Used in: cluster-config.

The member-identity element contains detailed identity information that is useful
for defining the location and role of the cluster member.

Elements
Table H–18 describes the elements you can define within the member-identity element.

Table H–18 member-identity Subelements

Element
Required/
Optional Description

<cluster-name> Optional The cluster-name element contains the name of the cluster. To join
the cluster all members must specify the same cluster name. It is
strongly suggested that cluster-name be specified for production
systems, thus preventing accidental cluster discovery among
applications. Preconfigured value is
tangosol.coherence.cluster. See Appendix L, "Command
Line Overrides" for more information.

<site-name> Optional The site-name element contains the name of the geographic site that
the member is hosted at. For WAN clustering, this value identifies the
datacenter within which the member is located, and can be used as
the basis for intelligent routing, load balancing and disaster recovery
planning (that is, the explicit backing up of data on separate
geographic sites). The name is also useful for displaying
management information (for example, JMX) and interpreting log
entries. It is optional to provide a value for this element.
Deployments that spread across more than one geographic site
should specify a site-name value. Preconfigured value is
tangosol.coherence.site. See Appendix L, "Command Line
Overrides" for more information.

<rack-name> Optional The rack-name element contains the name of the location within a
geographic site that the member is hosted at. This is often a cage, rack
or bladeframe identifier, and can be used as the basis for intelligent
routing, load balancing and disaster recovery planning (that is, the
explicit backing up of data on separate bladeframes). The name is
also useful for displaying management information (for example,
JMX) and interpreting log entries. It is optional to provide a value for
this element. Large scale deployments should always specify a
rack-name value. Preconfigured value is
tangosol.coherence.rack. See Appendix L, "Command Line
Overrides" for more information.

<machine-name> Optional The machine-name element contains the name of the physical server
that the member is hosted on. This is often the same name as the
server identifies itself as (for example, its HOSTNAME, or its name as it
appears in a DNS entry). If provided, the machine-name is used as
the basis for creating a machine-id, which in turn is used to guarantee
that data are backed up on different physical machines to prevent
single points of failure (SPOFs). The name is also useful for
displaying management information (for example, JMX) and
interpreting log entries. It is optional to provide a value for this
element. However, it is strongly encouraged that a name always be
provided. Preconfigured value is tangosol.coherence.machine. See
Appendix L, "Command Line Overrides" for more information.

Element Index

Operational Configuration Elements H-25

<process-name> Optional The process-name element contains the name of the process (JVM)
that the member is hosted on. This name makes it possible to easily
differentiate among multiple JVMs running on the same machine.
The name is also useful for displaying management information (for
example, JMX) and interpreting log entries. It is optional to provide a
value for this element. Often, a single member will exist per JVM,
and in that situation this name would be redundant. Preconfigured
value is tangosol.coherence.process. See Appendix L,
"Command Line Overrides" for more information.

<member-name> Optional The member-name element contains the name of the member itself.
This name makes it possible to easily differentiate among members,
such as when multiple members run on the same machine (or even
within the same JVM).The name is also useful for displaying
management information (for example, JMX) and interpreting log
entries. It is optional to provide a value for this element. However, it
is strongly encouraged that a name always be provided.
Preconfigured value is tangosol.coherence.member. see
Appendix L, "Command Line Overrides" for more information.

<role-name> Optional The role-name element contains the name of the member role. This
name allows an application to organize members into specialized
roles, such as cache servers and cache clients. The name is also useful
for displaying management information (for example, JMX) and
interpreting log entries. It is optional to provide a value for this
element. However, it is strongly encouraged that a name always be
provided. Preconfigured value is tangosol.coherence.role. See
Appendix L, "Command Line Overrides" for more information.

<priority> Optional The priority element specifies a priority of the corresponding
member. The priority is used as the basis for determining tie-breakers
between members. If a condition occurs in which one of two
members will be ejected from the cluster, and in the rare case that it is
not possible to objectively determine which of the two is at fault and
should be ejected, then the member with the lower priority will be
ejected. Valid values are from 1 to 10. Preconfigured value is
tangosol.coherence.priority. See Appendix L, "Command
Line Overrides" for more information.

Table H–18 (Cont.) member-identity Subelements

Element
Required/
Optional Description

multicast-listener

H-26 Oracle Coherence Developer's Guide for Oracle Coherence

multicast-listener

Used in: cluster-config.

Description
Specifies the configuration information for the Multicast listener. This element is used
to specify the address (see <address> subelement) and port (see <port> subelement)
that a cluster will use for cluster wide and point-to-multipoint communications. All
nodes in a cluster must use the same multicast address and port, whereas distinct
clusters on the same network should use different multicast addresses.

Multicast-Free Clustering
By default, Coherence uses a multicast protocol to discover other nodes when forming
a cluster. If multicast networking is undesirable, or unavailable in your environment,
the well-known-addresses feature may be used to eliminate the need for multicast
traffic. If you are having difficulties in establishing a cluster by using multicast, see
Chapter 16, "Performing a Multicast Connectivity Test."

Elements
Table H–19 describes the elements you can define within the multicast-listener
element.

Table H–19 multicast-listener Subelements

Element
Required
/Optional Description

<address> Required Specifies the multicast IP address that a Socket will listen or publish on.
Legal values are from 224.0.0.0 to 239.255.255.255. Default value
depends on the release and build level and typically follows the
convention of {build}.{major version}.{minor
version}.{patch}. For example, for Coherence Release 2.2 build
255 it is 225.2.2.0. Preconfigured is
tangosol.coherence.clusteraddress. See Appendix L,
"Command Line Overrides" for more information.

<port> Required Specifies the port that the Socket will listen or publish on. Legal values
are from 1 to 65535. Default value depends on the release and build
level and typically follows the convention of {version}+{{{build}.
For example, for Coherence Release 2.2 build 255 it is 22255.
Preconfigured value is tangosol.coherence.clusterport. See
Appendix L, "Command Line Overrides" for more information.

<time-to-live> Required Specifies the time-to-live setting for the multicast. This determines the
maximum number of "hops" a packet may traverse, where a hop is
measured as a traversal from one network segment to another by using
a router. Legal values are from 0 to 255.

Default value is 4. Preconfigured value is
tangosol.coherence.ttl. See Appendix L, "Command Line
Overrides" for more information.

<packet-buffer> Required Specifies how many incoming packets the operating system will be
requested to buffer.

Element Index

Operational Configuration Elements H-27

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Element Attributes" on page H-53 for more information on
this attribute.

<priority> Required Specifies a priority of the multicast listener execution thread. Legal
values are from 1 to 10. Default value is 8.

<join-timeout-millis
econds>

Required Specifies the number of milliseconds that a new member will wait
without finding any evidence of a cluster before starting its own cluster
and electing itself as the senior cluster member. Legal values are from 1
to 1000000.

Note: For production use, the recommended value is 30000. Default
value is 6000.

<multicast-threshold
-percent>

Required Specifies the threshold percentage value used to determine whether a
packet will be sent by using unicast or multicast. It is a percentage
value and is in the range of 1% to 100%. In a cluster of "n" nodes, a
particular node sending a packet to a set of other (that is, not counting
self) destination nodes of size "d" (in the range of 0 to n-1), the packet
will be sent multicast if and only if the following both hold true:

1. The packet is being sent over the network to more than one other
node, that is, (d > 1).

2. The number of nodes is greater than the threshold, that is, (d >
(n-1) * (threshold/100)).

Setting this value to 1 will allow the implementation to use
multicast for basically all multi-point traffic.

Setting it to 100 will force the implementation to use unicast for all
multi-point traffic except for explicit broadcast traffic (for example,
cluster heartbeat and discovery) because the 100% threshold will
never be exceeded. With the setting of 25 the implementation will
send the packet using unicast if it is destined for less than
one-fourth of all nodes, and send it using multicast if it is destined
for the one-fourth or more of all nodes.

Note: This element is only used if the well-known-addresses
element is empty. Legal values are from 1 to 100. Default value is 25.

Table H–19 (Cont.) multicast-listener Subelements

Element
Required
/Optional Description

notification-queueing

H-28 Oracle Coherence Developer's Guide for Oracle Coherence

notification-queueing

Used in: packet-publisher.

Description
The notification-queueing element is used to specify the timing of notifications
packets sent to other cluster nodes. Notification packets are used to acknowledge the
receipt of packets which require confirmation.

Batched Acknowledgments
Rather then sending an individual ACK for each received packet which requires
confirmation, Coherence will batch a series of acknowledgments for a given sender
into a single ACK. The <ack-delay-milliseconds> specifies the maximum
amount of time that an acknowledgment will be delayed before an ACK notification is
sent. By batching the acknowledgments Coherence avoids wasting network
bandwidth with many small ACK packets.

Negative Acknowledgments
When enabled cluster nodes will use packet ordering to perform early packet loss
detection (see the <use-nack-packets> subelement of
<incoming-message-handler>). This allows Coherence to identify a packet as
likely being lost and retransmit it well before the packets scheduled (see the
<resend-milliseconds> subelement of <packet-delivery>).

Elements
The following table describes the elements you can define within the
notification-queuing element.

Table H–20 notification-queuing Subelements

Element
Required/
Optional Description

<ack-delay-
milliseconds>

Required Specifies the maximum number of milliseconds that the packet publisher
will delay before sending an ACK packet. The ACK packet may be
transmitted earlier if number of batched acknowledgments fills the ACK
packet. This value should be substantially lower then the remote node's
packet-delivery resend timeout, to allow ample time for the ACK to
be received and processed by the remote node before the resend timeout
expires. Default value is 16.

<nack-delay-
milliseconds>

Required Specifies the number of milliseconds that the packet publisher will delay
before sending a NACK packet. Default value is 1.

Element Index

Operational Configuration Elements H-29

outgoing-message-handler

Used in: acceptor-config, initiator-config.

Description
The outgoing-message-handler specifies the configuration info used to detect
dropped client-to-cluster connections. For connection initiators and acceptors that use
connectionless protocols (for example, JMS), this information is necessary to
proactively detect and release resources allocated to dropped connections.
Connection-oriented initiators and acceptors can also use this information as an
additional mechanism to detect dropped connections.

Elements
Table H–21 describes the elements you can define within the
outgoing-message-handler element.

outgoing-message-handler

H-30 Oracle Coherence Developer's Guide for Oracle Coherence

Table H–21 outgoing-message-handler Subelement

Element
Required/
Optional Description

<heartbeat-interval> Optional Specifies the interval between ping requests. A ping request is used to
ensure the integrity of a connection.The value of this element must be
in the following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.
A value of zero disables ping requests. The default value is zero.

<heartbeat-timeout> Optional Specifies the maximum amount of time to wait for a response to a ping
request before declaring the underlying connection unusable.The value
of this element must be in the following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.
The default value is the value of the request-timeout element.

<request-timeout> Optional Specifies the maximum amount of time to wait for a response message
before declaring the underlying connection unusable.The value of this
element must be in the following format:

[\d]+[[.][\d]+]?[MS|ms|S|s|M|m|H|h|D|d]?

where the first non-digits (from left to right) indicate the unit of time
duration:

■ MS or ms (milliseconds)

■ S or s (seconds)

■ M or m (minutes)

■ H or h (hours)

■ D or d (days)

If the value does not contain a unit, a unit of milliseconds is assumed.
The default value is an infinite timeout.

Element Index

Operational Configuration Elements H-31

outstanding-packets

Used in: flow-control.

Description
Defines the number of unconfirmed packets that will be sent to a cluster node before
packets addressed to that node will be deferred. This helps to prevent the sender from
flooding the recipient's network buffers.

Auto Tuning
The value may be specified as either an explicit number by using the
maximum-packets element, or as a range by using both the maximum-packets and
minimum-packets elements. When a range is specified, this setting will be
dynamically adjusted based on network statistics.

Elements
Table H–22 describes the elements you can define within the outstanding-packets
element.

Table H–22 outstanding-packets Subelements

Element
Required/
Optional Description

<maximum-packets> Optional The maximum number of unconfirmed packets that will be sent to a
cluster node before packets addressed to that node will be deferred. It is
recommended that this value not be set below 256. Default is 4096.

<minimum-packets> Optional The lower bound on the range for the number of unconfirmed packets
that will be sent to a cluster node before packets addressed to that node
will be deferred. It is recommended that this value not be set below 16.
Default is 64.

packet-buffer

H-32 Oracle Coherence Developer's Guide for Oracle Coherence

packet-buffer

Used in: unicast-listener, multicast-listener, packet-publisher.

Description
Specifies the size of the operating system buffer for datagram sockets.

Performance Impact
Large inbound buffers help insulate the Coherence network layer from JVM pauses
caused by the Java Garbage Collector. While the JVM is paused, Coherence is unable to
dequeue packets from any inbound socket. If the pause is long enough to cause the
packet buffer to overflow, the packet reception will be delayed as the originating node
will need to detect the packet loss and retransmit the packet(s).

It's just a hint
The operating system will only treat the specified value as a hint, and is not required
to allocate the specified amount. In the event that less space is allocated then requested
Coherence will issue a warning and continue to operate with the constrained buffer,
which may degrade performance. See
http://forums.oracle.com/forums/forum.jspa?forumID=480&start=0
for details on configuring your operating system to allow larger buffers.

Elements
Table H–23 describes the elements you can define within the packet-buffer
element.

Table H–23 packet-buffer Subelements

Element
Required/
Optional Description

<maximum-packets> Required For unicast-listener, multicast-listener and packet-publisher: Specifies the
number of packets of packet-size that the datagram socket will be asked to
size itself to buffer. See SO_SNDBUF and SO_RCVBUF. Actual buffer sizes
may be smaller if the underlying socket implementation cannot support
more than a certain size. Defaults are 32 for publishing, 64 for multicast
listening, and 1428 for unicast listening.

Element Index

Operational Configuration Elements H-33

packet-bundling

Used in: packet-delivery.

Description
The packet-bundling element contains configuration information related to the
bundling of multiple small packets into a single larger packet to reduce the load on the
network switching infrastructure.

Default Configuration
The default packet-bundling settings are minimally aggressive allowing for
bundling to occur without adding a measurable delay. The benefits of more aggressive
bundling will be based on the network infrastructure and the application object's
typical data sizes and access patterns.

Elements
Table H–24 describes the elements you can define within the packet-bundling
element.

Table H–24 packet-bundling Subelements

Element Required/Optional Description

<maximum-deferral-
time>

Optional The maximum amount of time to defer a packet while
waiting for additional packets to bundle. A value of
zero will result in the algorithm not waiting, and only
bundling the readily accessible packets. A value greater
than zero will cause some transmission deferral while
waiting for additional packets to become available. This
value is typically set below 250 microseconds to avoid a
detrimental throughput impact. If the units are not
specified, nanoseconds are assumed.

Default value is 1us (microsecond).

<aggression-factor> Optional Specifies the aggressiveness of the packet deferral
algorithm. Where as the maximum-deferral-time
element defines the upper limit on the deferral time, the
aggression-factor influences the average deferral time.
The higher the aggression value, the longer the
Publisher may wait for additional packets. The factor
may be expressed as a real number, and often times
values between 0.0 and 1.0 will be allow for high packet
utilization while keeping latency to a minimum.

Default value is zero.

packet-pool

H-34 Oracle Coherence Developer's Guide for Oracle Coherence

packet-pool

Used in: incoming-message-handler, packet-publisher.

Description
Specifies the number of packets which Coherence will internally maintain for use in
transmitting and receiving UDP packets. Unlike the packet-buffer these buffers are
managed by Coherence rather then the operating system, and allocated on the JVM's
heap.

Performance Impact
The packet pools are used as a reusable buffer between Coherence network services.
For packet transmission, this defines the maximum number of packets which can be
queued on the packet-speaker before the packet-publisher must block. For
packet reception, this defines the number of packets which can be queued on the
incoming-message-handler before the unicast-listener, and
multicast-listener must block.

Elements
Table H–25 describes the subelements you can define within the packet-pool
element.

Table H–25 packet-pool Subelements

Element
Required/
Optional Description

<maximum-packets> Required The maximum number of reusable packets to be used by the services
responsible for publishing and receiving. The pools are initially small,
and will grow on demand up to the specified limits. Defaults are 2048 for
transmitting and receiving.

Element Index

Operational Configuration Elements H-35

packet-delivery

Used in: packet-publisher.

Description
Specifies timing and transmission rate parameters related to packet delivery.

Death Detection
The <timeout-milliseconds> and <heartbeat-milliseconds> subelements
are used in detecting the death of other cluster nodes.

Elements
Table H–26 describes the elements you can define within the packet-delivery
element.

Table H–26 packet-delivery Subelements

Element
Required/
Optional Description

<resend-milliseconds> Required For packets which require confirmation, specifies the minimum
amount of time in milliseconds to wait for a corresponding ACK
packet, before resending a packet. Default value is 200.

<timeout-milliseconds> Required For packets which require confirmation, specifies the maximum
amount of time, in milliseconds, that a packet will be resent.
After this timeout expires Coherence will make a determination
if the recipient is to be considered "dead". This determination
takes additional data into account, such as if other nodes are still
able to communicate with the recipient. Default value is
60000.Note: For production use, the recommended value is the
greater of 60000 and two times the maximum expected full GC
duration.

<heartbeat-milliseconds> Required Specifies the interval between heartbeats. Each member issues a
unicast heartbeat, and the most senior member issues the cluster
heartbeat, which is a broadcast message. The heartbeat is used
by the tcp-ring-listener as part of fast death detection.
Default value is 1000.

<flow-control> Optional Configures per-node packet throttling and remote GC detection.

<packet-bundling> Optional Configures how aggressively Coherence will attempt to
maximize packet utilization.

packet-publisher

H-36 Oracle Coherence Developer's Guide for Oracle Coherence

packet-publisher

Used in: cluster-config.

Description
Specifies configuration information for the Packet publisher, which manages network
data transmission.

Reliable packet delivery
The Packet publisher is responsible for ensuring that transmitted packets reach the
destination cluster node. The publisher maintains a set of packets which are waiting to
be acknowledged, and if the ACK does not arrive by the packet-delivery resend
timeout, the packet will be retransmitted (see <packet-delivery> subelement). The
recipient node will delay the ACK, to batch a series of ACKs into a single response (see
<notification-queuing> subelement).

Throttling
The rate at which the publisher will accept and transmit packet may be controlled by
using the traffic-jam and flow-control settings. Throttling may be necessary
when dealing with slow networks, or small packet-buffer.

Elements
Table H–27 describes the elements you can define within the packet-publisher
element.

Table H–27 packet-publisher Subelements

Element
Required/
Optional Description

<enabled> Required Specifies if TCMP clustering is enabled. For Coherence editions
which support both Coherence Extend and Coherence TCMP
based clustering, this feature allows TCMP to be disabled to
ensure that a node only connects by using the Extend protocol.
Default value is true. Preconfigured value is
tangosol.coherence.tcmp.enabled. See Appendix L,
"Command Line Overrides" for more information.

<packet-size> Required Specifies the UDP packet sizes to use.

<packet-delivery> Required Specifies timing parameters related to reliable packet delivery.

<notification-queueing> Required Contains the notification queue related configuration info.

<burst-mode> Required Specifies the maximum number of packets the publisher may
transmit without pausing.

<traffic-jam> Required Specifies the maximum number of packets which can be
enqueued on the publisher before client threads block.

<packet-buffer> Required Specifies how many outgoing packets the operating system will
be requested to buffer.

<packet-pool> Required Specifies how many outgoing packets Coherence will buffer
before blocking.

<priority> Required Specifies a priority of the packet publisher execution thread.
Legal values are from 1 to 10. Default value is 6.

Element Index

Operational Configuration Elements H-37

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Element Attributes" on page H-53 for more information.

packet-size

H-38 Oracle Coherence Developer's Guide for Oracle Coherence

packet-size

Used in: packet-publisher.

Description
The packet-size element specifies the maximum and preferred UDP packet sizes (see
the <maximum-length> and <preferred-length> subelements). All cluster nodes
must use identical maximum packet sizes. For optimal network utilization this value
should be 32 bytes less then the network MTU.

Elements
Table H–28 describes the subelements you can define within the packet-size
element.

Note: When specifying a UDP packet size larger then 1024 bytes on
Microsoft Windows a registry setting must be adjusted to allow for
optimal transmission rates. See "Datagram size (Microsoft Windows)"
on page 20-3 for details.

Table H–28 packet-size Subelement

Element
Required/
Optional Description

<maximum-length> Required Specifies the maximum size, in bytes, of the UDP packets that will be sent
and received on the unicast and multicast sockets. This value should be at
least 512; recommended value is 1468 for 100Mb, and 1Gb Ethernet. This
value must be identical on all cluster nodes.

Note: Some network equipment cannot handle packets larger than 1472
bytes (IPv4) or 1468 bytes (IPv6), particularly under heavy load. If you
encounter this situation on your network, this value should be set to 1472
or 1468 respectively. The recommended values is 32 bytes less then the
network MTU setting. Default value is 1468.

<preferred-length> Required Specifies the preferred size, in bytes, of UDP packets that will be sent and
received on the unicast and multicast sockets. This value should be at least
512 and cannot be greater than the maximum-length value; it is
recommended to set the value to the same as the maximum-length value.
Default value is 1468.

Element Index

Operational Configuration Elements H-39

packet-speaker

Used in: cluster-config.

Description
Specifies configuration information for the Packet speaker, used for network data
transmission.

Offloaded Transmission
The Packet speaker is responsible for sending packets on the network. The speaker is
used when the packet-publisher detects that a network send operation is likely to
block. This allows the Packet publisher to avoid blocking on IO and continue to
prepare outgoing packets. The Publisher will dynamically choose whether to use the
speaker as the packet load changes.

Elements
Table H–29 describes the subelements you can define within the packet-speaker
element.

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Element Attributes" on page H-53 for more information on
this attribute.

Table H–29 packet-speaker Subelements

Element
Required/
Optional Description

<volume-threshold> Optional Specifies the packet load which must be present for the speaker to be
activated.

<priority> Required Specifies a priority of the packet speaker execution thread. Legal values
are from 1 to 10. Default value is 8.

pause-detection

H-40 Oracle Coherence Developer's Guide for Oracle Coherence

pause-detection

Used in: flow-control.

Description
Remote Pause detection allows Coherence to detect and react to a cluster node
becoming unresponsive (likely due to a long GC). When a node is marked as paused,
packets addressed to it will be sent at a lower rate until the node resumes responding.
This remote GC detection is used to avoid flooding a node while it is incapable of
responding.

Elements
Table H–30 describes the subelements you can define within the pause-detection
element.

Table H–30 pause-detection Subelements

Element
Required/
Optional Description

<maximum-packets> Optional The maximum number of packets that will be resent to an unresponsive
cluster node before assuming that the node is paused. Specifying a value
of 0 will disable pause detection. Default is 16.

Element Index

Operational Configuration Elements H-41

security-config

Used in: coherence.

Elements
Table H–31 describes the subelements you can define within the security-config
element.

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Element Attributes" on page H-53 for more information.

Table H–31 security-config Subelements

Element
Required/
Optional Description

<enabled> Required Specifies whether the security features are enabled. All other
configuration elements in the security-config group will be
verified for validity and used if and only if the value of this element
is true. Legal values are true or false. Default value is false.
Preconfigured value is tangosol.coherence.security. See
Appendix L, "Command Line Overrides" for more information.

<login-module-name> Required Specifies the name of the JAAS LoginModule that should be used to
authenticate the caller. This name should match a module in a
configuration file will be used by the JAAS (for example specified
by using the -Djava.security.auth.login.config Java
command line attribute). For details please refer to the Sun Login
Module Developer's Guide.

<access-controller> Required Contains the configuration information for the class that
implements
com.tangosol.net.security.AccessController interface,
which will be used by the security framework to check access rights
for clustered resources and encrypt/decrypt node-to-node
communications regarding those rights. See Chapter 7, "Security
Framework" for more information.

<callback-handler> Optional Contains the configuration information for the class that
implements
javax.security.auth.callback.CallbackHandler
interlace which will be called if an attempt is made to access a
protected clustered resource when there is no identity associated
with the caller.

services

H-42 Oracle Coherence Developer's Guide for Oracle Coherence

services

Used in: cluster-config.

Description
Specifies the configuration for Coherence services.

Service Components
The types of services which can be configured includes:

■ ReplicatedCache—A cache service which maintains copies of all cache entries
on all cluster nodes which run the service.

■ ReplicatedCache.Optimistic—A version of the ReplicatedCache which
uses optimistic locking.

■ DistributedCache—A cache service which evenly partitions cache entries
across the cluster nodes which run the service.

■ SimpleCache —A version of the ReplicatedCache which lacks concurrent
control.

■ LocalCache—A cache service for caches where all cache entries reside in a single
cluster node.

■ InvocationService—A service used for performing custom operations on
remote cluster nodes.

Elements
Table H–32 describes the subelements you can define for each services element.

Element Index

Operational Configuration Elements H-43

The content override attributes xml-override and id can be optionally used to fully
or partially override the contents of this element with XML document that is external
to the base document.

Table H–32 services Subelements

Element
Required/
Optional Description

<service-type> Required Specifies the canonical name for a service, allowing the service to
be referenced from the service-name element in cache
configuration caching schemes. See "caching-schemes" on
page D-19 for more information.

<service-component> Required Specifies either the fully qualified class name of the service or the
relocatable component name relative to the base Service
component. Legal values are:

■ ReplicatedCache

■ ReplicatedCache.Optimistic

■ DistributedCache

■ SimpleCache

■ LocalCache

■ InvocationService

<use-filters> Optional Contains the list of filters names to be used by this
service.For example, specify use-filter as follows

<use-filters>
 <filter-name>gzip</filter-name>
</use-filters>

will activate gzip compression for the network messages used
by this service, which can help substantially with WAN and
low-bandwidth networks.

<init-params> Optional Specifies the initialization parameters that are specific to each
service-component. For more service specific parameter
information see:

■ "DistributedCache Service Parameters" on page I-3

■ "ReplicatedCache Service Parameters" on page I-7

■ "InvocationService Parameters" on page I-8

shutdown-listener

H-44 Oracle Coherence Developer's Guide for Oracle Coherence

shutdown-listener

Used in: cluster-config.

Description
Specifies the action a cluster node should take upon receiving an external shutdown
request. External shutdown includes the "kill" command on UNIX and Ctrl-C on
Windows and UNIX.

Elements
Table H–33 describes the elements you can define within the shutdown-listener
element.

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Element Attributes" on page H-53 for more information.

Table H–33 shutdown-listener Subelements

Element
Required/
Optional Description

<enabled> Required Specifies the type of action to take upon an external JVM shutdown. Legal values:

■ none—perform no explicit shutdown actions

■ force—perform "hard-stop" the node by calling Cluster.stop()

■ graceful—perform a "normal" shutdown by calling
Cluster.shutdown()

■ true—same as force

■ false—same as none

Note: For production use, the suggested value is none unless testing has verified
that the behavior on external shutdown is exactly what is desired. Default value is
force. Preconfigured value is tangosol.coherence.shutdownhook. See
Appendix L, "Command Line Overrides" for more information.

Element Index

Operational Configuration Elements H-45

socket-address

Used in: well-known-addresses, tcp-initiator.

Elements
Table H–34 describes the subelements you can define within the socket-address
element.

Table H–34 socket-address Subelements

Element
Required/
Optional Description

<address> Required Specifies the IP address that a Socket will listen or publish on.

Note: The localhost setting may not work on systems that define localhost
as the loopback address; in that case, specify the machine name or the
specific IP address.

<port> Required Specifies the port that the Socket will listen or publish on. Legal values are
from 1 to 65535.

tcp-ring-listener

H-46 Oracle Coherence Developer's Guide for Oracle Coherence

tcp-ring-listener

Used in: cluster-config.

Description
The TCP-ring provides a means for fast death detection of another node within the
cluster. When enabled the cluster nodes form a single "ring" of TCP connections
spanning the entire cluster. A cluster node is able to use the TCP connection to detect
the death of another node within a heartbeat interval (default is one second; see the
<heartbeat-milliseconds> subelement of packet-delivery). If disabled, the
cluster node must rely on detecting that another node has stopped responding to UDP
packets for a considerately longer interval (see the <timeout-milliseconds>
subelement of packet-delivery). When the death has been detected it is
communicated to all other cluster nodes.

Elements
Table H–35 describes the subelements you can define within the
tcp-ring-listener element.

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Element Attributes" on page H-53 for more information on
this attribute.

Table H–35 tcp-ring-listener Subelements

Element
Required/
Optional Description

<enabled> Required Specifies whether the tcp ring listener should be enabled to defect
node failures faster. Legal values are true and false. Default
value is true. Preconfigured value is
tangosol.coherence.tcpring. see Appendix L, "Command
Line Overrides" for more information.

<maximum-socket-closed-
exceptions>

Required Specifies the maximum number of tcp ring listener exceptions
that will be tolerated before a particular member is considered
really gone and is removed from the cluster. This value is used
only if the value of tcp-ring-listener/enabled is true.
Legal values are integers greater than zero. Default value is 2.

<priority> Required Specifies a priority of the tcp ring listener execution thread. Legal
values are from 1 to 10. Default value is 6.

Element Index

Operational Configuration Elements H-47

traffic-jam

Used in: packet-publisher.

Description
The traffic-jam element is used to control the rate at which client threads enqueue
packets for the Packet publisher to transmit on the network. When the limit is
exceeded any client thread will be forced to pause until the number of outstanding
packets drops below the specified limit. To limit the rate at which the Publisher
transmits packets see the flow-control, and burst-mode elements.

Tuning
Specifying a limit which is to low, or a pause which is to long may result in the
publisher transmitting all pending packets, and being left without packets to send. An
ideal value will ensure that the publisher is never left without work to do, but at the
same time prevent the queue from growing uncontrollably. It is therefore
recommended that the pause remain quite short (10ms or under), and that the limit on
the number of packets be kept high (that is, greater than 5000). As of Coherence 3.2 a
warning will be periodically logged if this condition is detected.

Traffic Jam and Flow Control
When flow-control is enabled the traffic-jam operates in a point-to-point
mode, only blocking a send if the recipient has too many packets outstanding. It is
recommended that the traffic-jam/maximum-packets value be greater than the
value (see the <maximum-packets> subelement of outstanding-packets). When
flow-control is disabled, the traffic-jam will take all outstanding packets into
account.

Elements
Table H–36 describes the subelements you can define within the traffic-jam
element.

Table H–36 traffic-jam Subelements

Element
Required/
Optional Description

<maximum-packets> Required Specifies the maximum number of pending packets that the Publisher
will tolerate before determining that it is clogged and must slow down
client requests (requests from local non-system threads). Zero means
no limit. This property prevents most unexpected out-of-memory
conditions by limiting the size of the resend queue. Default value is
8192.

<pause-milliseconds> Required Number of milliseconds that the Publisher will pause a client thread
that is trying to send a message when the Publisher is clogged. The
Publisher will not allow the message to go through until the clog is
gone, and will repeatedly sleep the thread for the duration specified
by this property. Default value is 10.

unicast-listener

H-48 Oracle Coherence Developer's Guide for Oracle Coherence

unicast-listener

Used in: cluster-config.

Description
Specifies the configuration information for the Unicast listener. This element is used to
specify the address and port that a cluster node will bind to, to listen for point-to-point
cluster communications.

Automatic Address Settings
By default Coherence will attempt to obtain the IP to bind to using the
java.net.InetAddress.getLocalHost() call. On machines with multiple IPs or
NICs you may need to explicitly specify the address (see the <address> subelement).
Additionally if the specified port is already in use, Coherence will by default auto
increment the port number until the binding succeeds (see the <port> and <auto>
subelements).

Multicast-Free Clustering
By default Coherence uses a multicast protocol to discover other nodes when forming
a cluster. If multicast networking is undesirable, or unavailable in your environment,
the well-known-addresses feature may be used to eliminate the need for multicast
traffic. If you are having difficulties in establishing a cluster by using multicast, see
Chapter 16, "Performing a Multicast Connectivity Test."

Elements
Table H–37 describes the subelements you can define within the unicast-listener
element.

Table H–37 unicast-listener Subelements

Element
Required/
Optional Description

<well-known-addresses> Optional Contains a list of "well known" addresses (WKA) that are used by
the cluster discovery protocol in place of multicast broadcast.

<machine-id> Required Specifies an identifier that should uniquely identify each server
machine. If not specified, a default value is generated from the
address of the default network interface. The machine id for each
machine in the cluster can be used by cluster services to plan for
failover by making sure that each member is backed up by a
member running on a different machine.

<address> Required Specifies the IP address that a Socket will listen or publish on.Note:
The localhost setting may not work on systems that define localhost
as the loopback address; in that case, specify the machine name or
the specific IP address. Default value is localhost. Preconfigured
is tangosol.coherence.localhost. See Appendix L,
"Command Line Overrides" for more information.

<port> Required Specifies the port that the Socket will listen or publish on. Legal
values are from 1 to 65535. Default value is 8088. Preconfigured
value is tangosol.coherence.localport. See Appendix L,
"Command Line Overrides" for more information.

Element Index

Operational Configuration Elements H-49

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Element Attributes" on page H-53 for more information on
this attribute.

<port-auto-adjust> Required Specifies whether the unicast port will be automatically incremented
if the specified port cannot be bound to because it is already in use.
Legal values are true or false. It is recommended that this value
be configured to false for production environments. Default value is
true. Preconfigured value is
tangosol.coherence.localport.adjust. See Appendix L,
"Command Line Overrides" for more information.

<packet-buffer> Required Specifies how many incoming packets the operating system will be
requested to buffer.

<priority> Required Specifies a priority of the unicast listener execution thread. Legal
values are from 1 to 10. Default value is 8.

<ignore-socket-closed> Optional Specifies whether the unicast listener will ignore socket exceptions
that indicate that a Member is unreachable. Deprecated as of
Coherence 3.2.

<maximum-socket-closed
-exceptions>

Optional Specifies the maximum number of unicast listener exceptions that
will be tolerated before a particular member is considered really
gone and is removed from the cluster. Deprecated as of Coherence
3.2.

Table H–37 (Cont.) unicast-listener Subelements

Element
Required/
Optional Description

volume-threshold

H-50 Oracle Coherence Developer's Guide for Oracle Coherence

volume-threshold

Used in: packet-speaker

Description
Specifies the minimum outgoing packet volume which must exist for the speaker
daemon to be activated.

Performance Impact
When the packet load is relatively low it may be more efficient for the speaker's
operations to be performed on the publisher's thread. When the packet load is high
using the speaker allows the publisher to continue preparing packets while the
speaker transmits them on the network.

Elements
Table H–38 describes the elements you can define within the packet-speaker
element.

Table H–38 packet-speaker Subelements

Element
Required/
Optional Description

<minimum-packets> Required Specifies the minimum number of packets which must be ready to be
sent for the speaker daemon to be activated. A value of 0 will force the
speaker to always be used, while a very high value will cause it to never
be used. If unspecified, it will be set to match the packet-buffer, this
is the default.

Element Index

Operational Configuration Elements H-51

well-known-addresses

Used in: unicast-listener.

Description
By default, Coherence uses a multicast protocol to discover other nodes when forming
a cluster. If multicast networking is undesirable, or unavailable in your environment,
the Well Known Addresses feature may be used to eliminate the need for multicast
traffic. When in use the cluster is configured with a relatively small list of nodes which
are allowed to start the cluster, and which are likely to remain available over the
cluster lifetime. There is no requirement for all WKA nodes to be simultaneously
active at any point in time. This list is used by all other nodes to find their way into the
cluster without the use of multicast, thus at least one well known node must be
running for other nodes to be able to join.

Example
Example H–2 illustrates a configuration for two well-known-addresses with the
default port.

Example H–2 Configuration for Two Well-Known-Addresses

<well-known-addresses>
 <socket-address id="1">
 <address>192.168.0.100</address>
 <port>8088</port>
 </socket-address>
 <socket-address id="2">
 <address>192.168.0.101</address>
 <port>8088</port>
 </socket-address>
</well-known-addresses>

Elements
Table H–39 describes the subelements you can define within the
well-known-addresses element.

Note: This is not a security-related feature, and does not limit the
addresses which are allowed to join the cluster. See the
authorized-hosts element for details on limiting cluster membership.

Use of the Well Known Addresses (WKA) feature is not supported by
Caching Edition. If you are having difficulties in establishing a cluster
by using multicast, see Chapter 16, "Performing a Multicast
Connectivity Test".

well-known-addresses

H-52 Oracle Coherence Developer's Guide for Oracle Coherence

The content override attribute xml-override can be optionally used to fully or
partially override the contents of this element with XML document that is external to
the base document. See "Element Attributes" on page H-53 for more information about
this attribute.

Table H–39 well-known-addresses Subelements

Element
Required/
Optional Description

<socket-address> Required Specifies a list of "well known" addresses (WKA) that are used by the
cluster discovery protocol in place of multicast broadcast. If one or more
WKA is specified, for a member to join the cluster it will either have to be a
WKA or there will have to be at least one WKA member running.
Additionally, all cluster communication will be performed using unicast. If
empty or unspecified multicast communications will be used.
Preconfigured values are tangosol.coherence.wka and
tangosol.coherence.wka.port. See Appendix L, "Command Line
Overrides" for more information.

Element Attributes

Operational Configuration Elements H-53

Element Attributes

The optional id and xml-override attributes can be used to override the contents of
an element. These attributes can appear, either individually or together, within the
following elements:

Table H–40 lists the elements that can use id or xml-override, or both.

Table H–41 describes the functionality of the id and xml-override attributes.

Table H–40 Elements that can use id or xml-override, or Both

authorized-hosts cluster-config coherence configurable-cache-factory-
config

filter-name filters host-range incoming-message-handler

init-param logging-config multicast-listener packet-publisher

services shutdown-listener tcp-ring-listener unicast-listener

Table H–41 id and xml-override Attribute Descriptions

Attribute
Required/
Optional Description

xml-override Optional Allows the content of this element to be fully or partially overridden with XML
documents that are external to the base document. Legal value of this attribute is
the resource name of such an override document that should be accessible using
the ClassLoader.getResourceAsStream(String name) by the classes
contained in coherence.jar library. In general that means that resource name
should be prefixed with '/' and located in the classpath.

The override XML document referred by this attribute does not have to exist.
However, if it does exist then its root element must have the same name as the
element it overrides. In cases where there are multiple elements with the same
name (for example, <services>) the id attribute should be used to identify the
base element that will be overridden and the override element itself. The
elements of the override document that do not have a match in the base
document are just appended to the base.

id Optional Used in conjunction with the xml-override attribute in cases where there are
multiple elements with the same name (for example, <services>) to identify
the base element that will be overridden and the override element itself. The
elements of the override document that do not have a match in the base
document are just appended to the base.

Element Attributes

H-54 Oracle Coherence Developer's Guide for Oracle Coherence

I

Initialization Parameter Settings I-1

IInitialization Parameter Settings

The <init-param> element in the Coherence operational configuration deployment
descriptor defines initialization parameters for a service or filter. The parameters that
appear under init-param will be different, depending on the service or filter you are
working with.

The following sections describe the parameters that can be configured for these
services and filters:

■ DistributedCache Service Parameters

■ ReplicatedCache Service Parameters

■ InvocationService Parameters

■ ProxyService Parameters

■ Compression Filter Parameters

The tables in each section describe the specific <param-name> — <param-value>
pairs that can be configured for various elements. The Parameter Name column refers
to the value of the param-name element and Value Description column refers to the
possible values for the corresponding param-value element.

For example, the sample entry in Table I–1 means that the init-params element may
look like the configuration in Example I–1 or Example I–2.

Example I–1 Sample init-param Configuration

...
<init-params>
 <init-param>
 <param-name>local-storage</param-name>
 <param-value>false</param-value>
 </init-param>
</init-params>
...

or as follows:

Table I–1 Sample Table Entry

Parameter Value Value Description

local-storage Specifies whether this member of the DistributedCache service enables the local
storage. Legal values are true or false. Default value is true. Preconfigured value
is tangosol.coherence.distributed.localstorage. See Appendix L,
"Command Line Overrides" for more information.

I-2 Oracle Coherence Developer's Guide for Oracle Coherence

Example I–2 Another Sample init-param Configuration

...
<init-params>
 <init-param>
 <param-name>local-storage</param-name>
 <param-value>true</param-value>
 </init-param>
</init-params>
...

DistributedCache Service Parameters

Initialization Parameter Settings I-3

DistributedCache Service Parameters

DistributedCache <services> elements support the parameters described in
Table I–2. These settings may also be specified as part of the
<distributed-scheme> element in the Cache Configuration Elements descriptor
coherence-cache-config.xml.

Table I–2 DistributedCache Service Parameters

Parameter Name Value, Description

backup-count Specifies the number of members of the DistributedCache service that hold the
backup data for each unit of storage in the cache. Value of 0 means that in the case of
abnormal termination, some portion of the data in the cache will be lost. Value of N
means that if up to N cluster nodes terminate immediately, the cache data will be
preserved. To maintain the distributed cache of size M, the total memory usage in the
cluster does not depend on the number of cluster nodes and will be in the order of
M*(N+1).

Recommended values are 0, 1 or 2.

Default value is 1.

backup-storage/
class-name

Only applicable with the custom type. Specifies a class name for the custom storage
implementation. If the class implements
com.tangosol.run.xml.XmlConfigurable interface then upon construction the
setConfig method is called passing the entire backup-storage element.

backup-storage/
directory

Only applicable with the file-mapped type. Specifies the path name for the directory
that the disk persistence manager
(com.tangosol.util.nio.MappedBufferManager) will use as "root" to store
files in. If not specified or specifies a non-existent directory, a temporary file in the
default location is used.

Default value is the default temporary directory designated by the Java runtime.

backup-storage/
initial-size

Only applicable with the off-heap and file-mapped types.Specifies the initial buffer
size in bytes.The value of this element must be in the following format:
[\d]+[[.][\d]]?[K|k|M|m|G|g]?[B|b]? where the first non-digit (from left to
right) indicates the factor with which the preceding decimal value should be
multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of mega is assumed.

Legal values are positive integers between 1 and Integer.MAX_VALUE - 1023 (that
is, 2,147,482,624 bytes).

Default value is 1MB.

DistributedCache Service Parameters

I-4 Oracle Coherence Developer's Guide for Oracle Coherence

backup-storage/
maximum-size

Only applicable with the off-heap and file-mapped types.Specifies the maximum
buffer size in bytes.The value of this element must be in the following format:
[\d]+[[.][\d]]?[K|k|M|m|G|g]?[B|b]? where the first non-digit (from left to
right) indicates the factor with which the preceding decimal value should be
multiplied:

■ K or k (kilo, 210)

■ M or m (mega, 220)

■ G or g (giga, 230)

If the value does not contain a factor, a factor of mega is assumed.

Legal values are positive integers between 1 and Integer.MAX_VALUE - 1023 (that
is, 2,147,482,624 bytes).

Default value is 1024MB.

backup-storage/
scheme-name

Only applicable with the scheme type. Specifies a scheme name for the
ConfigurableCacheFactory.

backup-storage/
type

Specifies the type of the storage used to hold the backup data. Legal values are:

■ on-heap—The corresponding implementations class is java.util.HashMap.

■ off-heap—The corresponding implementations class is
com.tangosol.util.nio.BinaryMap using
com.tangosol.util.nio.DirectBufferManager. Only available with JDK
1.4 and later.

■ file-mapped—The corresponding implementations class is
com.tangosol.util.nio.BinaryMap using
com.tangosol.util.nio.MappedBufferManager. Only available with JDK
1.4 and later.

■ custom—The corresponding implementations class is the class specified by the
backup-storage/class element.

■ scheme—The corresponding implementations class is the map returned by the
ConfigurableCacheFactory for the scheme referred to by the
backup-storage/scheme-name element.

Default value is on-heap.

Preconfigured value is tangosol.coherence.distributed.backup. See
Appendix L, "Command Line Overrides" for more information.

key-associator/
class-name

Specifies the name of a class that implements the
com.tangosol.net.partition.KeyAssociator interface. This implementation
must have a zero-parameter public constructor.

key-partitioning/
class-name

Specifies the name of a class that implements the
com.tangosol.net.partition.KeyPartitioningStrategy interface. This
implementation must have a zero-parameter public constructor.

lease-granularity Specifies the lease ownership granularity. Available since release 2.3.Legal values are:

■ thread

■ member

A value of thread means that locks are held by a thread that obtained them and can
only be released by that thread. A value of member means that locks are held by a
cluster node and any thread running on the cluster node that obtained the lock can
release it.

Default value is thread.

Table I–2 (Cont.) DistributedCache Service Parameters

Parameter Name Value, Description

DistributedCache Service Parameters

Initialization Parameter Settings I-5

local-storage Specifies whether this member of the DistributedCache service enables local storage.

Normally this value should be left unspecified within the configuration file, and
instead set on a per-process basis using the
tangosol.coherence.distributed.localstorage system property. This
allows cache clients and servers to use the same configuration descriptor.

Legal values are true or false. Default value is true.

Preconfigured value is tangosol.coherence.distributed.localstorage. See
Appendix L, "Command Line Overrides" for more information.

partition-count Specifies the number of partitions that a distributed cache will be "chopped up" into.
Each member running the distributed cache service that has the local-storage
option set to true will manage a "fair" (balanced) number of partitions. The number
of partitions should be larger than the square of the number of cluster members to
achieve a good balance, and it is suggested that the number be prime. Good defaults
include 257 and 1021 and prime numbers in-between, depending on the expected
cluster size.

A list of first 1,000 primes can be found at
http://www.utm.edu/research/primes/lists/small/1000.txt. Legal values are prime
numbers.

Default value is 257.

partition-listener/
class-name

Specifies the name of a class that implements the
com.tangosol.net.partition.PartitionListener interface. This
implementation must have a zero-parameter public constructor.

request-timeout Specifies the maximum amount of time a client will wait for a response before
abandoning the original request. The request time is measured on the client side as
the time elapsed from the moment a request is sent for execution to the corresponding
server node(s) and includes the following:

■ the time it takes to deliver the request to an executing node (server)

■ the interval between the time the task is received and placed into a service queue
until the execution starts

■ the task execution time

■ the time it takes to deliver a result back to the client

Legal values are positive integers or zero (indicating no default timeout).

standard-lease-
milliseconds

Specifies the duration of the standard lease in milliseconds. When a lease has aged
past this number of milliseconds, the lock will automatically be released. Set this
value to zero to specify a lease that never expires. The purpose of this setting is to
avoid deadlocks or blocks caused by stuck threads; the value should be set higher
than the longest expected lock duration (for example, higher than a transaction
timeout). It's also recommended to set this value higher then
packet-delivery/timeout-milliseconds value.

Legal values are from positive long numbers or zero. Default value is 0.

task-hung-threshold Specifies the amount of time in milliseconds that a task can execute before it is
considered "hung".

Note: a posted task that has not yet started is never considered as hung. This attribute
is applied only if the Thread pool is used (the thread-count value is positive).

Legal values are positive integers or zero (indicating no default timeout).

Table I–2 (Cont.) DistributedCache Service Parameters

Parameter Name Value, Description

DistributedCache Service Parameters

I-6 Oracle Coherence Developer's Guide for Oracle Coherence

task-timeout Specifies the default timeout value in milliseconds for tasks that can be timed-out (for
example, implement the com.tangosol.net.PriorityTask interface), but don't
explicitly specify the task execution timeout value. The task execution time is
measured on the server side and does not include the time spent waiting in a service
backlog queue before being started. This attribute is applied only if the thread pool is
used (the thread-count value is positive).

Legal values are positive integers or zero (indicating no default timeout).

thread-count Specifies the number of daemon threads used by the distributed cache service. If zero,
all relevant tasks are performed on the service thread.

Legal values are from positive integers or zero.

Default value is 0. Preconfigured value is
tangosol.coherence.distributed.threads. See Appendix L, "Command Line
Overrides" for more information.

transfer-threshold Specifies the threshold for the primary buckets distribution in kilobytes. When a new
node joins the distributed cache service or when a member of the service leaves, the
remaining nodes perform a task of bucket ownership re-distribution. During this
process, the existing data gets rebalanced along with the ownership information. This
parameter indicates a preferred message size for data transfer communications.
Setting this value lower will make the distribution process take longer, but will
reduce network bandwidth utilization during this activity.

Legal values are integers greater then zero.

Default value is 512 (0.5MB). Preconfigured value is
tangosol.coherence.distributed.transfer. See Appendix L, "Command
Line Overrides" for more information.

Table I–2 (Cont.) DistributedCache Service Parameters

Parameter Name Value, Description

ReplicatedCache Service Parameters

Initialization Parameter Settings I-7

ReplicatedCache Service Parameters

ReplicatedCache services elements support the parameters described in Table I–3.
These settings may also be specified as part of the replicated-scheme element in
the Cache Configuration Elements descriptor coherence-cache-config.xml.

Table I–3 ReplicatedCache Service Parameters

Parameter Name Value Description

lease-granularity Specifies the lease ownership granularity. Available since release 2.3.Legal values are:

■ thread

■ member

A value of thread means that locks are held by a thread that obtained them and can
only be released by that thread. A value of member means that locks are held by a
cluster node and any thread running on the cluster node that obtained the lock can
release it.

Default value is thread.

mobile-issues Specifies whether lease issues should be transferred to the most recent lock holders.

Legal values are true or false.

Default value is false.

standard-lease-
milliseconds

Specifies the duration of the standard lease in milliseconds. When a lease has aged
past this number of milliseconds, the lock will automatically be released. Set this
value to zero to specify a lease that never expires. The purpose of this setting is to
avoid deadlocks or blocks caused by stuck threads; the value should be set higher
than the longest expected lock duration (for example, higher than a transaction
timeout). It's also recommended to set this value higher then
packet-delivery/timeout-milliseconds value.

Legal values are from positive long numbers or zero.

Default value is 0.

InvocationService Parameters

I-8 Oracle Coherence Developer's Guide for Oracle Coherence

InvocationService Parameters

InvocationService services elements support the following parameters listed in
Table I–4. These settings may also be specified as part of the invocation-scheme
element in the Cache Configuration Elements descriptor
coherence-cache-config.xml.

Table I–4 InvocationService Parameters

Parameter Name Value, Description

request-timeout Specifies the default timeout value in milliseconds for requests that can time-out (for
example, implement the com.tangosol.net.PriorityTask interface), but don't
explicitly specify the request timeout value. The request time is measured on the
client side as the time elapsed from the moment a request is sent for execution to the
corresponding server node(s) and includes the following:

■ the time it takes to deliver the request to an executing node (server)

■ the interval between the time the task is received and placed into a service queue
until the execution starts

■ the task execution time

■ the time it takes to deliver a result back to the client

Legal values are positive integers or zero (indicating no default timeout).

task-hung-threshold Specifies the amount of time in milliseconds that a task can execute before it is
considered "hung". Note: a posted task that has not yet started is never considered as
hung. This attribute is applied only if the Thread pool is used (the thread-count
value is positive).

task-timeout Specifies the default timeout value in milliseconds for tasks that can be timed-out (for
example, implement the com.tangosol.net.PriorityTask interface), but don't
explicitly specify the task execution timeout value. The task execution time is
measured on the server side and does not include the time spent waiting in a service
backlog queue before being started. This attribute is applied only if the thread pool is
used (the thread-count value is positive).

Legal values are positive integers or zero (indicating no default timeout).

thread-count Specifies the number of daemon threads to be used by the invocation service. If zero,
all relevant tasks are performed on the service thread.

Legal values are from positive integers or zero. Preconfigured value is
tangosol.coherence.invocation.threads. See Appendix L, "Command Line
Overrides" for more information.

Default value is 0.

ProxyService Parameters

Initialization Parameter Settings I-9

ProxyService Parameters

ProxyService services elements support the parameters described in Table I–5.
These settings may also be specified as part of the proxy-scheme element in the
Cache Configuration Elements descriptor coherence-cache-config.xml.

Table I–5 ProxyService Parameters

Parameter Name Value Description

thread-count Specifies the number of daemon threads to be used by the proxy service. If zero, all
relevant tasks are performed on the service thread.

Legal values are from positive integers or zero.

Default value is 0.

Compression Filter Parameters

I-10 Oracle Coherence Developer's Guide for Oracle Coherence

Compression Filter Parameters

The compression filters (com.tangosol.net.CompressionFilter), supports
the parameters described in Table I–6 (see java.util.zip.Deflater for details).

Table I–6 Compression Filter Parameters

Parameter Name Value Description

buffer-length Specifies compression buffer length in bytes.

Legal values are positive integers or zero.

Default value is 0.

level Specifies the compression level. Legal values are:

■ default

■ compression

■ speed

■ none

Default value is default.

strategy Specifies the compressions strategy. Legal values are:

■ gzip

■ huffman-only

■ filtered

■ default

Default value is gzip.

J

POF User Type Configuration Elements J-1

JPOF User Type Configuration Elements

This appendix provides a listing of the elements that can be used to specify POF user
types. POF user type configuration elements are defined in the pof-config.dtd file
that can be found in the coherence.jar file.

You can find additional information about the POF user type configuration file in the
Javadoc for the ConfigurablePofContext class.

POF User Type Deployment Descriptor
Use the POF user type deployment descriptor to specify the various user types which
are being passed into the cluster.

Document Location
The name and location of the descriptor defaults to pof-config.xml. The default
POF user type descriptor (packaged in coherence.jar) will be used unless a custom
file is found within the application's classpath. The name and location of the descriptor
can also be configured using system property tangosol.pof.config. It is
recommended that all nodes within a cluster use identical POF user type descriptors.

Document Root
The root element of the POF user type descriptor is pof-config. This is where you
may begin specifying your user types.

Document Format
The POF user type descriptor should begin with the following DOCTYPE declaration:

<!DOCTYPE pof-config SYSTEM "pof-config.dtd">

The format of the document and the nesting of elements is illustrated in Example J–1.

Example J–1 Format of a POF User Type Configuration File (pof-config.xml)

<pof-config>
 <user-type-list>
 ..
 <user-type>
 <type-id>53</type-id>
 <class-name>com.mycompany.data.Trade</class-name>
 <serializer>
 <class-name>com.tangosol.io.pof.PortableObjectSerializer</class-name>
 <init-params>

POF User Type Deployment Descriptor

J-2 Oracle Coherence Developer's Guide for Oracle Coherence

 <init-param>
 <param-type>int</param-type>
 <param-value>{type-id}</param-value>
 </init-param>
 </init-params>
 </serializer>
 </user-type>

 <user-type>
 <type-id>54</type-id>
 <class-name>com.mycompany.data.Position</class-name>
 </user-type>

 ..
 <include>file:/my-pof-config.xml</include>

 ..
 </user-type-list>

 <allow-interfaces>false</allow-interfaces>
 <allow-subclasses>false</allow-subclasses>
 </pof-config>

Command Line Override
Oracle Coherence provides a powerful Command Line Setting Override Feature,
which allows any element defined in this descriptor to be overridden from the Java
command line if it has a system-property attribute defined in the descriptor.

Element Index

POF User Type Configuration Elements J-3

Element Index

Table J–1 lists all elements which may be used from within a POF user type
configuration.

Table J–1 POF Configuration Elements

Element Used In:

<allow-interfaces> <pof-config>

<allow-subclasses> <pof-config>

<class-name> <user-type>, <serializer>

<include> <user-type-list>

<init-param> <init-params>

<init-params> <serializer>

<param-type> <init-param>

<param-value> <init-param>

<pof-config> root element

<serializer> <user-type>

<type-id> <user-type>

<user-type> <user-type-list>

<user-type-list> <pof-config>

allow-interfaces

J-4 Oracle Coherence Developer's Guide for Oracle Coherence

allow-interfaces

Used in: <pof-config>

Description
The allow-interfaces element indicates whether the user-type class-name
can specify Java interface types in addition to Java class types.

Valid values are true or false. Default value is false.

Elements
Terminal element.

Element Index

POF User Type Configuration Elements J-5

allow-subclasses

Used in: <pof-config>

Description
The allow-subclasses element indicates whether the user-type class-name
can specify a Java class type that is abstract, and whether sub-classes of any specified
user-type class-name will be permitted at runtime and automatically mapped to
the specified super-class for purposes of obtaining a serializer.

Valid values are true or false. Default value is false.

Elements
Terminal element.

class-name

J-6 Oracle Coherence Developer's Guide for Oracle Coherence

class-name

Used in: <user-type>, <serializer>

Description
The class-name element specifies the name of a Java class or interface.

Within the user-type element, the class-name element is required, and specifies
the fully qualified name of the Java class or interface that all values of the user type are
type-assignable to.

Within the serializer element, the class-name element is required.

Elements
Terminal element.

Element Index

POF User Type Configuration Elements J-7

include

Used in: <user-type-list>

Description
The include element specifies the location of a pof-config file to load user-type
elements from. The value is a locator string (either a valid path or URL) that identifies
the location of the target pof-config file.

Elements
Terminal element.

init-param

J-8 Oracle Coherence Developer's Guide for Oracle Coherence

init-param

Used in: <init-params>

Description
The init-param element provides a type for a configuration parameter and a
corresponding value to pass as an argument.

Elements
Table J–2 describes the subelements you can define within the init-param element.

Table J–2 init-param Subelements

Element
Required/
Optional Description

<param-type> Required The param-type element specifies the Java type of initialization parameter.
Supported types are:

■ string—indicates that the value is a java.lang.String

■ boolean—indicates that the value is a java.lang.Boolean

■ int—indicates that the value is a java.lang.Integer

■ long—indicates that the value is a java.lang.Long

■ double—indicates that the value is a java.lang.Double

■ decimal—indicates that the value is a java.math.BigDecimal

■ file—indicates that the value is a java.io.File

■ date— indicates that the value is a java.sql.Date

■ time—indicates that the value is a java.sql.Timedatetime

■ datetime—indicates that the value is a java.sql.Timestamp

■ xml—indicates that the value is the entire init-param XmlElement.

The value is converted to the specified type, and the target constructor or
method must have a parameter of that type for the instantiation to succeed.

<param-value> Required The param-value element specifies a value of the initialization parameter.
The value is in a format specific to the type of the parameter. There are four
reserved values that can be specified. Each of these values is replaced at
runtime with a specific runtime value before the constructor is invoked:

■ {type-id}—replaced with the Type ID of the User Type;

■ {class-name}—replaced with the name of the class for the User Type;

■ {class}—replaced with the Class for the User Type;

■ {class-loader}—replaced with the ConfigurablePofContext's
ContextClassLoader.

Element Index

POF User Type Configuration Elements J-9

init-params

Used in: <serializer>

Description
The init-params element contains zero or more arguments (each as an
init-param) that correspond to the parameters of a constructor of the class that is
being configured.

Elements
Table J–3 describes the elements you can define within the init-params element.

Table J–3 init-params Subelements

Element
Required/
Optional Description

<init-param> Required The init-param element provides a type for a configuration parameter and a
corresponding value to pass as an argument.

param-type

J-10 Oracle Coherence Developer's Guide for Oracle Coherence

param-type

Used in: <init-param>

Description
The param-type element specifies the Java type of initialization parameter.

Supported types are:

■ string—indicates that the value is a java.lang.String

■ boolean—indicates that the value is a java.lang.Boolean

■ int—indicates that the value is a java.lang.Integer

■ long—indicates that the value is a java.lang.Long

■ double—indicates that the value is a java.lang.Double

■ decimal—indicates that the value is a java.math.BigDecimal

■ file—indicates that the value is a java.io.File

■ date— indicates that the value is a java.sql.Date

■ time—indicates that the value is a java.sql.Timedatetime

■ datetime—indicates that the value is a java.sql.Timestamp

■ xml—indicates that the value is the entire init-param XmlElement.

The value is converted to the specified type, and the target constructor or method
must have a parameter of that type in order for the instantiation to succeed.

Elements
Terminal element.

Element Index

POF User Type Configuration Elements J-11

param-value

Used in: <init-param>

Description
The param-value element specifies a value of the initialization parameter. The value
is in a format specific to the type of the parameter.

There are four reserved values that can be specified. Each of these values is replaced at
runtime with a specific runtime value before the constructor is invoked:

■ {type-id}—replaced with the Type ID of the User Type;

■ {class-name}—replaced with the name of the class for the User Type;

■ {class}—replaced with the Class for the User Type;

■ {class-loader}—replaced with the ConfigurablePofContext's
ContextClassLoader.

Elements
Terminal element.

pof-config

J-12 Oracle Coherence Developer's Guide for Oracle Coherence

pof-config

root element

Description
The pof-config element is the root element of the POF user type configuration
descriptor.

Elements
Table J–4 describes the elements you can define within the pof-config element.

Table J–4 pof-config Subelements

Element
Required/
Optional Description

<allow-interfaces> Optional The allow-interfaces element indicates whether the user-type
class-name can specify Java interface types in addition to Java class
types. Valid values are true or false. Default value is false.

<allow-subclasses> Optional The allow-subclasses element indicates whether the user-type
class-name can specify a Java class type that is abstract, and
whether sub-classes of any specified user-type class-name will be
permitted at runtime and automatically mapped to the specified
super-class for purposes of obtaining a serializer. Valid values are
true or false. Default value is false.

<user-type-list> Required The user-type-list element contains zero or more user-type
elements. Each POF user type that will be used must be listed in the
user-type-list. The user-type-list element may also contain
zero or more include elements. Each include element is used to add
user-type elements defined in another pof-config file.

Element Index

POF User Type Configuration Elements J-13

serializer

Used in: <user-type>

Description
The serializer element specifies what PofSerializer to use to serialize and
deserialize a specific user type.

A PofSerializer is used to serialize and deserialize user type values to and from a
POF stream. Within the serializer element, the class-name element is required,
and zero or more constructor parameters can be defined within an init-params
element.

If the serializer element is omitted, then the user type is assumed to implement
the PortableObject interface, and the PortableObjectSerializer
implementation is used as the PofSerializer.

If the init-params element is omitted from the serializer element, then the
following four constructors are attempted on the specific PofSerializer
implementation, in this order:

■ (int nTypeId, Class clz, ClassLoader loader)

■ (int nTypeId, Class clz)

■ (int nTypeId)

■ ()

Elements
Table J–5 describes the elements you can define within the serializer element.

Table J–5 serializer Subelements

Element
Required/
Optional Description

<class-name> Required Specifies the name of the serializer.

<init-params> Optional The init-params element contains zero or more arguments (each as an
init-param) that correspond to the parameters of a constructor of the
class that is being configured.

type-id

J-14 Oracle Coherence Developer's Guide for Oracle Coherence

type-id

Used in: <user-type>

Description
The type-id element specifies an integer value (n >= 0) that uniquely identifies the
user type.

If none of the user-type elements contains a type-id element, then the type IDs for
the user types will be based on the order in which they appear in the
user-type-list, with the first user type being assigned the type ID 0, the second
user type being assigned the type ID 1, and so on.

However, it is strongly recommended that user types IDs always be specified, to
support schema versioning and evolution.

Elements
Terminal element.

Note: Reserved IDs: The first 1000 IDs are reserved for Coherence
internal use.

Element Index

POF User Type Configuration Elements J-15

user-type

Used in: <user-type-list>

Description
The user-type element contains the declaration of a POF user type. A POF user type
is a uniquely identifiable, portable, versionable object class that can be communicated
among systems regardless of language, operating system, hardware and location.

Within the user-type element, the type-id element is optional, but its use is
strongly suggested to support schema versioning and evolution.

Within the user-type element, the class-name element is required, and specifies
the fully qualified name of the Java class or interface that all values of the user type are
type-assignable to.

If the serializer element is omitted, then the user type is assumed to implement
the PortableObject interface, and the PortableObjectSerializer
implementation is used as the PofSerializer.

Elements
Table J–6 describes the elements you can define within the user-type element.

Table J–6 user-type Subelements

Element
Required/
Optional Description

<class-name> Required The class-name element specifies the name of a Java class or interface. Within
the user-type element, the class-name element is required, and specifies the
fully qualified name of the Java class or interface that all values of the user type
are type-assignable to. Within the serializer element, the class-name
element is required.

<serializer> Optional The serializer element specifies what PofSerializer to use to serialize
and deserialize a specific user type. A PofSerializer is used to serialize and
deserialize user type values to and from a POF stream. Within the serializer
element, the class-name element is required, and zero or more constructor
parameters can be defined within an init-params element.

If the serializer element is omitted, then the user type is assumed to implement
the PortableObject interface, and the PortableObjectSerializer
implementation is used as the PofSerializer.

If the init-params element is omitted from the serializer element, then
the following four constructors are attempted on the specific PofSerializer
implementation, and in this order:

■ (int nTypeId, Class clz, ClassLoader loader)

■ (int nTypeId, Class clz)

■ (int nTypeId)

■ ()

<type-id> Optional The type-id element specifies an integer value (n >= 0) that uniquely
identifies the user type. If none of the user-type elements contains a type-id
element, then the type IDs for the user types will be based on the order in which
they appear in the user-type-list, with the first user type being assigned
the type ID 0, the second user type being assigned the type ID 1, and so on.
However, it is strongly recommended that user types IDs always be specified, to
support schema versioning and evolution.

user-type-list

J-16 Oracle Coherence Developer's Guide for Oracle Coherence

user-type-list

Used in: <pof-config>

Description
The user-type-list element contains zero or more user-type elements. Each
POF user type that will be used must be listed in the user-type-list.

The user-type-list element may also contain zero or more include elements.
Each include element is used to add user-type elements defined in another
pof-config file.

Elements
The following table describes the elements you can define within the
user-type-list element.

Table J–7 user-type-list Subelements

Element
Required/
Optional Description

<include> Required The include element specifies the location of a pof-config file to load
user-type elements from. The value is a locator string (either a valid path or
URL) that identifies the location of the target pof-config file.

<user-type> Required The user-type element contains the declaration of a POF user type. A POF
user type is a uniquely identifiable, portable, versionable object class that can
be communicated among systems regardless of language, operating system,
hardware and location.

Within the user-type element, the type-id element is optional, but its use is
strongly suggested to support schema versioning and evolution.

Within the user-type element, the class-name element is required, and
specifies the fully qualified name of the Java class or interface that all values of
the user type are type-assignable to.

If the serializer element is omitted, then the user type is assumed to
implement the PortableObject interface, and the
PortableObjectSerializer implementation is used as the
PofSerializer.

K

MBean Configuration Elements K-1

KMBean Configuration Elements

This appendix provides a description of the elements that can be used to configure
MBeans.

MBeans in the Coherence Deployment Descriptor
The MBean configuration elements are defined in the coherence.dtd XML file,
which is packaged in coherence.jar.

Document Root
The root element of the POF user type descriptor is mbeans. This is where you may
begin configuring your MBean.

Document Format
The format and nesting of the MBean configuration elements is illustrated in
Example K–1.

Example K–1 Format and Nesting of MBean Configuration Elements

<mbeans>
 <mbean>
 <mbean-class>
 <mbean-factory>
 <mbean-query>
 <mbean-accessor>
 <mbean-name>
 <enabled>
 <extend-lifecycle>
 </mbean>
</mbeans>

MBean Configuration Element Index

K-2 Oracle Coherence Developer's Guide for Oracle Coherence

MBean Configuration Element Index

Table K–1 MBean Configuration Element Index

Element Used In:

extend-lifecycle mbean

enabled mbean

mbean mbeans

mbean-accessor mbean

mbean-class mbean

mbean-factory mbean

mbean-name mbean

mbean-query mbean

mbeans root element

MBean Configuration Element Index

MBean Configuration Elements K-3

extend-lifecycle

Used in: mbean

Description
Specifies if the MBean should extend beyond the node connection life cycle. If false,
the MBean will be destroyed and re-created when a node is disconnected from the
grid. If true, the MBean will maintain the statistics and values across connections

Example
<extend-lifecycle>true</extend-lifecycle>

enabled

K-4 Oracle Coherence Developer's Guide for Oracle Coherence

enabled

Used in: mbean

Description
The enabled element specifies either true if the MBean should be instantiated or
false if the MBean should be ignored.

Example
<enabled>true</enabled>

MBean Configuration Element Index

MBean Configuration Elements K-5

mbean

Used in: mbeans.

Description
The mbean element contains a list of elements to be instantiated and registered with
the Coherence Management infrastructure.

Elements
Table K–2 describes the subelements you can define within the mbeans element.

Table K–2 Subelements of mbean

Element
Required/
Optional Description

<mbean-class> Optional Specifies the class of the standard MBean to
instantiate.

<mbean-factory> Optional Specifies the class of the factory used to instantiate the
MBean

<mbean-query> Optional Specifies the JMX ObjectName query pattern used to
retrieve the MBeans

<mbean-accessor> Optional Specifies the accessor method on the
<mbean-factory> used to instantiate the MBean.

<mbean-name> Required Specifies the ObjectName prefix for the MBean.

<enabled> Required Specifies if the MBean should be registered on this
instance.

<extend-lifecycle> Optional Specifies if the MBean should extend beyond the node
connection life cycle.

mbean-accessor

K-6 Oracle Coherence Developer's Guide for Oracle Coherence

mbean-accessor

Used in: mbean

Description
The mbean-accessor element contains the accessor method name on the MBean
Factory that instantiates the MXBean. The MBean factory class must be in the class
path to correctly instantiate. The <mbean-accessor> element requires an
mbean-factory element.

Example
<mbean-factory>java.lang.management.ManagementFactory</mbean-factory>
<mbean-accessor>getMemoryMXBean</mbean-accessor>

MBean Configuration Element Index

MBean Configuration Elements K-7

mbean-class

Used in: mbean

Description
The mbean-class element contains the class name of a standard MBean. The MBean
class must be in the class path to correctly instantiate.

Example
<mbean-class>com.oracle.custom.mbeans.query</mbean-class>

mbean-factory

K-8 Oracle Coherence Developer's Guide for Oracle Coherence

mbean-factory

Used in: mbean

Description
The mbean-factory element contains the class name of a MBean factory that
instantiates MXBeans. The MBean factory class must be in the class path to correctly
instantiate. The <mbean-factory> element requires an mbean-accessor element.

Example
<mbean-factory>java.lang.management.ManagementFactory</mbean-factory>
<mbean-accessor>getMemoryMXBean</mbean-accessor>

MBean Configuration Element Index

MBean Configuration Elements K-9

mbean-name

Used in: mbean

Description
The mbean-name element contains the ObjectName prefix for the resulting MBeans.
This ObjectName prefix should be a comma-separated Key=Value pair. The Coherence
MBean naming convention stipulates that the name should begin with a
"type"/"value" pair (that is, type=Platform)

Example
To prefix the custom mbeans with type=Platform:

<mbean-name>type=Platform</mbean-name>

mbean-query

K-10 Oracle Coherence Developer's Guide for Oracle Coherence

mbean-query

Used in: mbean

Description
The mbean-query element contains a JMX ObjectName query pattern. The query
pattern is executed against a local MBean Server and the resulting objects are
registered with the Coherence Management infrastructure. This allows the for a single
point of consolidation of MBeans for the grid.

Example
<mbean-query>java.lang:*</mbean-query>

Will include all the MBeans under the java.lang domain in the Coherence
management infrastructure.

Notes
■ A local MBean Server must be enabled.

MBean Configuration Element Index

MBean Configuration Elements K-11

mbeans

Used in: root element

Description
The mbeans element is the root element of the custom mbean configuration file. It
contains a list of mbean elements to be instantiated and registered with the coherence
management infrastructure.

Elements
Table K–3 describes the elements you can define within the mbeans element.

Table K–3 Subelement of mbeans

Element
Required/
Optional Description

<mbean> Required Specifies the MBean type, implementation, and ObjectName
that will be instantiated and registered with the Coherence
Management service.

mbeans

K-12 Oracle Coherence Developer's Guide for Oracle Coherence

L

Command Line Overrides L-1

LCommand Line Overrides

Both the Coherence Operational Configuration deployment descriptor
tangosol-coherence.xml and the Coherence Cache Configuration deployment
descriptor coherence-cache-config.xml can assign a Java command line option
name to any element defined in the descriptor. Some elements already have these
Command Line Setting Overrides defined. You can create your own or change the
predefined ones.

This feature is useful when you need to change the settings for a single JVM, or to be
able to start different applications with different settings without making them use
different descriptors. The most common application is passing a different multicast
address and/or port to allow different applications to create separate clusters.

To create a Command Line Setting Override, add a system-property attribute,
specifying the string you would like to assign as the name for the java command line
option to the element you want to create an override to. Then, specify it in the Java
command line, prepended with "-D".

Override Example
For example, to create an override for the IP address of the multi-home server to avoid
using the default localhost, and instead specify a specific the IP address of the
interface we want Coherence to use (for instance, 192.168.0.301). We would like to call
this override tangosol.coherence.localhost.

First, add a system-property to the cluster-config, unicast-listener, or
address element:

<address>localhost</address>

which will look as follows with the property we added:

<address system-property="tangosol.coherence.localhost">localhost</address>

Then use it by modifying the Java command line:

java -jar coherence.jar

Specify the IP address, 192.168.0.301 (instead of the default localhost specified
in the configuration) as follows:

java -Dtangosol.coherence.localhost=192.168.0.301 -jar coherence.jar

Preconfigured Override Values

L-2 Oracle Coherence Developer's Guide for Oracle Coherence

Preconfigured Override Values
Table L–1 lists all of the preconfigured override values:

Table L–1 Preconfigured System Property Override Values

Override Option Setting

tangosol.coherence.cacheconfig Cache configuration descriptor filename. See
"configurable-cache-factory-config" on page H-11.

tangosol.coherence.cluster Cluster name. See "member-identity" on page H-24.

tangosol.coherence.clusteraddress Cluster (multicast) IP address. See
<multicast-listener-address> subelement of
"multicast-listener" on page H-26

tangosol.coherence.clusterport Cluster (multicast) IP port. See
<multicast-listener-port> subelement of
"multicast-listener" on page H-26.

tangosol.coherence.distributed.backup Data backup storage location. See
backup-storage/type subelement in
"DistributedCache Service Parameters" on page I-3.

tangosol.coherence.distributed.backupcount Number of data backups. See backup-count
subelement in "DistributedCache Service Parameters"
on page I-3.

tangosol.coherence.distributed.localstorage Local partition management enabled. See
local-storage subelement in "DistributedCache
Service Parameters" on page I-3.

tangosol.coherence.distributed.threads Thread pool size. See thread-count subelement in
"DistributedCache Service Parameters" on page I-3.

tangosol.coherence.distributed.transfer Partition transfer threshold. See
transfer-threshold subelement
in"DistributedCache Service Parameters" on page I-3.

tangosol.coherence.edition Product edition. See "license-config" on page H-18.

tangosol.coherence.invocation.threads Invocation service thread pool size. See
thread-count subelement in "InvocationService
Parameters" on page I-8.

tangosol.coherence.localhost Unicast IP address. See
<unicast-listener-address> subelement in
"unicast-listener" on page H-48.

tangosol.coherence.localport Unicast IP port. See <unicast-listener-port>
subelement in "unicast-listener" on page H-48.

tangosol.coherence.localport.adjust Unicast IP port auto assignment. See
<unicast-listener-auto> subelement in
"unicast-listener" on page H-48.

tangosol.coherence.log Logging destination. See
<logging-config-destination> subelement in
"logging-config" on page H-19.

tangosol.coherence.log.level Logging level. See <logging-config-level>
subelement in "logging-config" on page H-19.

tangosol.coherence.log.limit Log output character limit. See
<logging-config-limit> subelement in
"logging-config" on page H-19.

tangosol.coherence.machine Machine name. See "member-identity" on page H-24.

Preconfigured Override Values

Command Line Overrides L-3

tangosol.coherence.management JMX management mode. See "management-config"
on page H-23.

tangosol.coherence.management.readonly JMX management read-only flag.
"management-config" on page H-23.

tangosol.coherence.management.remote Remote JMX management enabled flag.
See"management-config" on page H-23.

tangosol.coherence.member Member name. See "member-identity" on page H-24.

tangosol.coherence.mode Operational mode. See "license-config" on page H-18.

tangosol.coherence.override Deployment configuration override filename.

tangosol.coherence.priority Priority. See "member-identity" on page H-24.

tangosol.coherence.process Process name"member-identity" on page H-24.

tangosol.coherence.proxy.threads Coherence*Extend service thread pool size. See
thread-count subelement in "ProxyService
Parameters" on page I-9.

tangosol.coherence.rack Rack name. See "member-identity" on page H-24.

tangosol.coherence.role Role name. See "member-identity" on page H-24.

tangosol.coherence.security Cache access security enabled flag. See
"security-config" on page H-41.

tangosol.coherence.security.keystore Security access controller keystore file name. See
"security-config" on page H-41.

tangosol.coherence.security.password Keystore or cluster encryption password. "Encryption
Filters" on page 8-1.

tangosol.coherence.security.permissions Security access controller permissions file name. See
"security-config" on page H-41.

tangosol.coherence.shutdownhook Shutdown listener action. See "shutdown-listener" on
page H-44.

tangosol.coherence.site Site name. See "member-identity" on page H-24.

tangosol.coherence.tcmp.enabled TCMP enabled flag. See
<packet-publisher-enabled> subelement in
"packet-publisher" on page H-36.

tangosol.coherence.tcpring !TCP ring enabled flag. See "tcp-ring-listener" on
page H-46.

tangosol.coherence.ttl Multicast packet time to live (TTL). See
<mulitcast-listener-ttl> subelement in
"multicast-listener" on page H-26.

tangosol.coherence.wka Well known IP address. See "well-known-addresses"
on page H-51.

tangosol.coherence.wka.port Well known IP port. See "well-known-addresses" on
page H-51.

Table L–1 (Cont.) Preconfigured System Property Override Values

Override Option Setting

Preconfigured Override Values

L-4 Oracle Coherence Developer's Guide for Oracle Coherence

M

Platform-Specific Deployment Considerations M-1

MPlatform-Specific Deployment
Considerations

The following sections in this appendix provide information on deploying Coherence
to various platforms.

■ Deploying to AIX

■ Deploying to BEA JRockit JVMs

■ Deploying to Cisco Switches

■ Deploying to Foundry Switches

■ Deploying to IBM BladeCenters

■ Deploying to IBM JVMs

■ Deploying to Linux

■ Deploying to OS X

■ Deploying to Solaris

■ Deploying to Sun JVMs

■ Deploying to Virtual Machines

■ Deploying to Windows

■ Deploying to z OS

Deploying to AIX
When deploying Coherence on AIX please be aware of the following:

Socket Buffers sizes and JVMs
There is an issue with IBM's 1.4.2, and 1.5 JVMs for AIX which may prevent them from
allocating socket buffers larger then 64K (Oracle 2MB). This issue has been addressed
in IBM's 1.4.2 SR7 SDK and 1.5 SR3 SDK. See "Operating System Tuning" on page 20-1.

Multicast and IPv6
AIX 5.2 and above default to running multicast over IPv6 rather then IPv4. If you run
in a mixed IPv6/IPv4 environment you will need to configure your JVMs to explicitly
use IPv4. This can be done by setting the java.net.preferIPv4Stack system
property to true on the Java command line. See the IBM 32-bit SDK for AIX User
Guide for details.

Deploying to BEA JRockit JVMs

M-2 Oracle Coherence Developer's Guide for Oracle Coherence

Unique Multicast Addresses and Ports
On AIX it is suggested that each Coherence cluster use a unique multicast address and
port, as some versions of AIX will not take both into account when delivering packets.
See "multicast-listener" on page H-26 for details on configuring the address.

Deploying to BEA JRockit JVMs
When deploying Coherence on JRockit JVMs please be aware of the following:

JRockit and the Native Posix Thread Library (NPTL)
When running JRockit on Linux, BEA recommends using 2.6 kernels, and ensuring
that the NPTL is enabled. Please see BEA's documentation regarding this issue.

AtomicLong
When available Coherence will make use of the highly concurrent AtomicLong class,
which allows concurrent atomic updates to long values without requiring
synchronization. BEA 1.4 JVMs do not fully support AtomicLong and thus if
Coherence detects that it is being run on a BEA 1.4 JVM it will default to a safe but
slower synchronized implementation, and will output the following log message.

sun.misc.AtomicLong is not supported on this JVM; using a synchronized counter.

Upgrading to JRockit 1.5 will allow the use of the highly concurrent implementation.

Deploying to Cisco Switches
When deploying Coherence with Cisco switches please be aware of the following:

Buffer Space and Packet Pauses
Under heavy UDP packet load some Cisco switches may run out of buffer space and
exhibit frequent multi-second communication pauses. These communication pauses
can be identified by a series of Coherence log messages referencing communication
delays with multiple nodes which cannot be attributed to local or remote GCs.

Experienced a 4172 ms communication delay (probable remote GC) with
Member(Id=7, Timestamp=2008-09-15 12:15:47.511,
Address=xxx.xxx.x.xx:8089, MachineId=13838); 320 packets
rescheduled, PauseRate=0.31, Threshold=512

The Cisco 6500 series support configuration the amount of buffer space available to
each Ethernet port or ASIC. In high load applications it may be necessary to increase
the default buffer space. This can be accomplished by executing:

fabric buffer-reserve high

See Cisco's documentation for additional details on this setting.

Multicast Connectivity on Large Networks
Cisco's default switch configuration does not support proper routing of multicast
packets between switches due to the use of IGMP snooping. See the Cisco's
documentation regarding the issue and solutions.

Deploying to Cisco Switches

Platform-Specific Deployment Considerations M-3

Multicast Outages
Some Cisco switches have shown difficulty in maintaining multicast group
membership resulting in existing multicast group members being silently removed
from the multicast group. This will cause a partial communication disconnect for the
associated Coherence node(s) and they will be forced to leave and rejoin the cluster.
This type of outage can most often be identified by the following Coherence log
messages indicating that a partial communication problem has been detected.

A potential network configuration problem has been detected. A packet has failed to
be delivered (or acknowledged) after 60 seconds, although other packets were
acknowledged by the same cluster member (Member(Id=3, Timestamp=Sat Sept
13 12:02:54 EST 2008, Address=xxx.xxx.x.xxx, Port=8088,
MachineId=48991)) to this member (Member(Id=1, Timestamp=Sat Sept 13
11:51:11 EST 2008, Address=xxx.xxx.x.xxx, Port=8088,
MachineId=49002)) as recently as 5 seconds ago.

To confirm the issue you may run the using the same multicast address and port as the
running cluster. If the issue affects a multicast test node its logs will show that at some
point it will suddenly stop receiving multicast test messages. See Chapter 16,
"Performing a Multicast Connectivity Test".

The following test logs show the issue:

Example M–1 Log for a Multicast Outage

Test Node 192.168.1.100:
Sun Sept 14 16:44:22 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ??? Sun Sept 14 16:44:23 GMT 2008: Received test packet 76 from
ip=/192.168.1.101, group=/224.3.2.0:32367, ttl=4. Sun Sept 14 16:44:23 GMT 2008:
Received 83 bytes from a Coherence cluster node at 182.168.1.100: ??? Sun Sept 14
16:44:23 GMT 2008: Sent packet 85. Sun Sept 14 16:44:23 GMT 2008: Received test
packet 85 from self. Sun Sept 14 16:44:24 GMT 2008: Received 83 bytes from a
Coherence cluster node at 182.168.1.100: ??? Sun Sept 14 16:44:25 GMT 2008:
Received test packet 77 from ip=/192.168.1.101, group=/224.3.2.0:32367, ttl=4. Sun
Sept 14 16:44:25 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ??? Sun Sept 14 16:44:25 GMT 2008: Sent packet 86. Sun Sept 14
16:44:25 GMT 2008: Received test packet 86 from self. Sun Sept 14 16:44:26 GMT
2008: Received 83 bytes from a Coherence cluster node at 182.168.1.100: ??? Sun
Sept 14 16:44:27 GMT 2008: Received test packet 78 from ip=/192.168.1.101,
group=/224.3.2.0:32367, ttl=4. Sun Sept 14 16:44:27 GMT 2008: Received 83 bytes
from a Coherence cluster node at 182.168.1.100: ??? Sun Sept 14 16:44:27 GMT 2008:
Sent packet 87. Sun Sept 14 16:44:27 GMT 2008: Received test packet 87 from self.
Sun Sept 14 16:44:28 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ??? Sun Sept 14 16:44:29 GMT 2008: Received 83 bytes from a
Coherence cluster node at 182.168.1.100: ??? Sun Sept 14 16:44:29 GMT 2008: Sent
packet 88. Sun Sept 14 16:44:29 GMT 2008: Received test packet 88 from self. Sun
Sept 14 16:44:30 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ??? Sun Sept 14 16:44:31 GMT 2008: Received 83 bytes from a
Coherence cluster node at 182.168.1.100: ??? Sun Sept 14 16:44:31 GMT 2008: Sent
packet 89. Sun Sept 14 16:44:31 GMT 2008: Received test packet 89 from self. Sun
Sept 14 16:44:32 GMT 2008: Received 83 bytes from a Coherence cluster node at
182.168.1.100: ??? Sun Sept 14 16:44:33 GMT 2008: Received 83 bytes from a
Coherence cluster node at 182.168.1.100: ???
Test Node 192.168.1.101:
Sun Sept 14 16:44:22 GMT 2008: Sent packet 76.Sun Sept 14 16:44:22 GMT 2008:
Received test packet 76 from self. Sun Sept 14 16:44:22 GMT 2008: Received 83
bytes from a Coherence cluster node at 192.168.1.100: ??? Sun Sept 14 16:44:22 GMT
2008: Received test packet 85 from ip=/192.168.1.100, group=/224.3.2.0:32367,
ttl=4. Sun Sept 14 16:44:23 GMT 2008: Received 83 bytes from a Coherence cluster
node at 192.168.1.100: ??? Sun Sept 14 16:44:24 GMT 2008: Sent packet 77.Sun Sept

Deploying to Foundry Switches

M-4 Oracle Coherence Developer's Guide for Oracle Coherence

14 16:44:24 GMT 2008: Received test packet 77 from self. Sun Sept 14 16:44:24 GMT
2008: Received 83 bytes from a Coherence cluster node at 192.168.1.100: ??? Sun
Sept 14 16:44:24 GMT 2008: Received test packet 86 from ip=/192.168.1.100,
group=/224.3.2.0:32367, ttl=4. Sun Sept 14 16:44:25 GMT 2008: Received 83 bytes
from a Coherence cluster node at 192.168.1.100: ??? Sun Sept 14 16:44:26 GMT 2008:
Sent packet 78.Sun Sept 14 16:44:26 GMT 2008: Received test packet 78 from self.
Sun Sept 14 16:44:26 GMT 2008: Received 83 bytes from a Coherence cluster node at
192.168.1.100: ??? Sun Sept 14 16:44:26 GMT 2008: Received test packet 87 from
ip=/192.168.1.100, group=/224.3.2.0:32367, ttl=4. Sun Sept 14 16:44:27 GMT 2008:
Received 83 bytes from a Coherence cluster node at 192.168.1.100: ??? Sun Sept 14
16:44:28 GMT 2008: Sent packet 79.Sun Sept 14 16:44:28 GMT 2008: Received test
packet 79 from self. Sun Sept 14 16:44:28 GMT 2008: Received 83 bytes from a
Coherence cluster node at 192.168.1.100: ??? Sun Sept 14 16:44:28 GMT 2008:
Received test packet 88 from ip=/192.168.1.100, group=/224.3.2.0:32367, ttl=4. Sun
Sept 14 16:44:29 GMT 2008: Received 83 bytes from a Coherence cluster node at
192.168.1.100: ??? Sun Sept 14 16:44:30 GMT 2008: Sent packet 80.Sun Sept 14
16:44:30 GMT 2008: Received test packet 80 from self. Sun Sept 14 16:44:30 GMT
2008: Received 83 bytes from a Coherence cluster node at 192.168.1.100: ??? Sun
Sept 14 16:44:30 GMT 2008: Received test packet 89 from ip=/192.168.1.100,
group=/224.3.2.0:32367, ttl=4. Sun Sept 14 16:44:31 GMT 2008: Received 83 bytes
from a Coherence cluster node at 192.168.1.100: ??? Sun Sept 14 16:44:32 GMT 2008:
Sent packet 81.Sun Sept 14 16:44:32 GMT 2008: Received test packet 81 from self.
Sun Sept 14 16:44:32 GMT 2008: Received 83 bytes from a Coherence cluster node at
192.168.1.100: ??? Sun Sept 14 16:44:32 GMT 2008: Received test packet 90 from
ip=/192.168.1.100, group=/224.3.2.0:32367, ttl=4. Sun Sept 14 16:44:33 GMT 2008:
Received 83 bytes from a Coherence cluster node at 192.168.1.100: ??? Sun Sept 14
16:44:34 GMT 2008: Sent packet 82.

Note that at 16:44:27 the first test node stops receiving multicast packets from other
machines. The operating system continues to properly forward multicast traffic from
other processes on the same machine, but the test packets (79 and higher) from the
second test node are not received. Also note that both the test packets and the cluster's
multicast traffic generated by the first node do continue to be delivered to the second
node. This indicates that the first node was silently removed from the multicast group.

If you encounter this multicast issue it is suggested that you contact Cisco technical
support, or you may consider changing your configuration to unicast-only by using
the Coherence well-known-addresses feature. See "well-known-addresses" on
page H-51.

Deploying to Foundry Switches
When deploying Coherence with Foundry switches please be aware of the following:

Multicast Connectivity
Foundry switches have shown to exhibit difficulty in handing multicast traffic. When
deploying on with Foundry switches it is recommend that you use the to ensure that
all machines which will be part of the Coherence cluster can communicate over
multicast. See Chapter 16, "Performing a Multicast Connectivity Test".

If you encounter issues with multicast you may consider changing your configuration
to unicast-only by using the well-known-addresses feature. See
"well-known-addresses" on page H-51.

Deploying to IBM BladeCenters
When deploying Coherence on IBM BladeCenters please be aware of the following:

Deploying to Linux

Platform-Specific Deployment Considerations M-5

MAC Address Uniformity and Load Balancing
A typical deployment on a BladeCenter may include blades with two NICs where one
is used for administration purposes and the other for cluster traffic. By default the
MAC addresses assigned to the blades of a BladeCenter are uniform enough that the
first NIC will generally have an even MAC address and the second will have an odd
MAC address. If the BladeCenter's uplink to a central switch also has an even number
of channels then layer 2 (MAC based) load balancing may prevent one set of NICs
from making full use of the available uplink bandwidth as they will all be bound to
either even or odd channels. This issue arises due to the assumption in the switch that
MAC addresses are essentially random, which in BladeCenter's is untrue. Remedies to
this situation include:

■ Use layer 3 (IP based) load balancing, assuming that the IP addresses do not
follow the same even/odd pattern.

■ This setting would need to be applied across all switches carrying cluster
traffic.

■ Randomize the MAC address assignments by swapping them between the first
and second NIC on alternating machines.

■ Linux enables you to change a NIC's MAC address using the ifconfig
command.

■ For other operating systems custom tools may be available to perform the
same task.

Deploying to IBM JVMs
When deploying Coherence on IBM JVMs please be aware of the following:

UDP Socket Buffer Sizes
There is an issue with IBM's 1.4.2, and 1.5 JVMs which may prevent them from
allocating socket buffers larger then 64K (Note that buffers of 2MB are recommended
for Coherence). This issue has been addressed in IBM's 1.4.2 SR7 SDK and 1.5 SR3
SDK. For performance reasons it is suggested that the patch be applied.

Deploying to Linux
When deploying Coherence on Linux please be aware of the following:

Native POSIX Thread Library (NPTL)
Early versions of the NPTL are prone to deadlock, especially when combined with 2.4
Linux Kernels. The kernel version and NPTL version can be obtained by executing the
following commands:

uname -a
getconf GNU_LIBPTHREAD_VERSION

If running on a 2.4 kernel, it is recommended that you avoid using any version of the
NPTL, and revert to using LinuxThreads. This can be done by setting the LD_
ASSUME_KERNEL environment variable before launching Java.

export LD_ASSUME_KERNEL=2.4.19
getconf GNU_LIBPTHREAD_VERSION

Deploying to OS X

M-6 Oracle Coherence Developer's Guide for Oracle Coherence

If running on a 2.6 kernel, it is recommended that you use a 1.0 or higher version of
NPTL. If upgrading the NPTL version is not possible then it is then recommended that
you switch to LinuxThreads.

NPTL related issues are known to occur with Red Hat Linux 9 and Red Hat Enterprise
Linux 3, and are also likely to effect any 2.4 based Linux distribution with a
backported version of the NPTL. See
http://java.sun.com/developer/technicalArticles/JavaTechandLinux
/RedHat for more details on this issue.

TSC High Resolution Timesource
Linux has several high resolution timesources to choose from, the fastest TSC (Time
Stamp Counter) unfortunately is not always reliable. Linux chooses TSC by default,
and during boot checks for inconsistencies, if found it switches to a slower safe
timesource. The slower time sources can be 10 to 30 times more expensive to query
then the TSC timesource, and may have a measurable impact on Coherence
performance. Note that Coherence and the underlying JVM are not aware of the
timesource which the operating system is using. It is suggested that you check your
system logs (/var/log/dmesg) to verify that the following is not present.

kernel: Losing too many ticks!
kernel: TSC cannot be used as a timesource.
kernel: Possible reasons for this are:
kernel: You're running with Speedstep,
kernel: You don't have DMA enabled for your hard disk (see hdparm),
kernel: Incorrect TSC synchronization on an SMP system (see dmesg).
kernel: Falling back to a sane timesource now.

As the log messages suggest, this can be caused by a variable rate CPU (SpeedStep),
having DMA disabled, or incorrect TSC synchronization on multi CPU machines. If
present it is suggested that you work with your system administrator to identify the
cause and allow the TSC timesource to be used.

Deploying to OS X
When deploying Coherence on OS X please be aware of the following:

Multicast and IPv6
OS X defaults to running multicast over IPv6 rather then IPv4. If you run in a mixed
IPv6/IPv4 environment you will need to configure your JVMs to explicitly use IPv4.
This can be done by setting the java.net.preferIPv4Stack system property to true on the
Java command line.

Unique Multicast Addresses and Ports
On OS X it is suggested that each Coherence cluster use a unique multicast address
and port, as some versions of OS X will not take both into account when delivering
packets. See the multicast-listener for details on configuring the address.

Socket Buffer Sizing
Generally Coherence prefers 2MB or higher buffers, but in the case of OS X this may
result in unexpectedly high kernel CPU time, which in turn reduces throughput. For
OS X the suggested buffers size is 768KB, though your own tuning may find a better

Deploying to Sun JVMs

Platform-Specific Deployment Considerations M-7

sweet spot. See "packet-buffer" on page H-32 for details on specifying the amount of
buffer space Coherence will request.

Deploying to Solaris
When deploying Coherence on Solaris please be aware of the following:

Solaris 10 (x86 and SPARC)

Sun Alert 102712:

Possible Data Integrity Issues on Solaris 10 Systems Using the e1000g Driver for the
Intel Gigabit Network Interface Card (NIC)

Sun Alert 102741:

IGMP(1) Packets do not Contain IP Router Alert Option When Sent From Solaris 10
Systems With Patch 118822-21 (SPARC) or 118844-21 (x86/x64) or Later Installed

Solaris 10 Networking
If running on Solaris 10, please review Sun issues 102712 and 102741 which relate to
packet corruption and multicast disconnections. These will most often manifest as
either EOFExceptions, "Large gap" warnings while reading packet data, or frequent
packet timeouts. It is highly recommend that the patches for both issues be applied
when using Coherence on Solaris 10 systems.

Deploying to Sun JVMs
When deploying Coherence on Sun JVMs please be aware of the following:

Heap Sizes
With 1.4 JVMs Coherence recommends keeping heap sizes below 1GB in size per JVM.
Multiple cache servers can be used allow a single machine to achieve higher capacities.
With Sun's 1.5 JVMs, heap sizes beyond 1GB are reasonable, though GC tuning is still
advisable to minimize long GC pauses. See Sun's GC Tuning Guide for tuning details.
It is also advisable to run with fixed sized heaps as this generally lowers GC times.

AtomicLong
When available Coherence will make use of the highly concurrent AtomicLong class,
which allows concurrent atomic updates to long values without requiring
synchronization. Sun 1.4 client JVMs include an implementation which is not stable on
some multiprocessor systems. If Coherence detects that it is being run on a Sun 1.4
client JVM it will default to a safe but slower synchronized implementation, and will
output the following log message.

Note: If running on Solaris 10, please review Sun issues 102712 and
102741 which relate to packet corruption and multicast
disconnections. These will most often manifest as either
EOFExceptions, "Large gap" warnings while reading packet data, or
frequent packet timeouts. It is highly recommend that the patches for
both issues be applied when using Coherence on Solaris 10 systems.

Deploying to Virtual Machines

M-8 Oracle Coherence Developer's Guide for Oracle Coherence

sun.misc.AtomicLong is not supported on this JVM; using a synchronized counter.

It is suggested that you run your 1.4 JVMs in server mode to ensure that the stable and
highly concurrent version can be used. To run the JVM in server mode include the
-server option on the Java command line.

Deploying to Virtual Machines

Supported Deployment
Coherence is supported within virtual machine environments, and there should see no
functional differences between running it there or in a non-virtualized operating
system.

Multicast Connectivity
Using virtualization adds another layer to your network topology, and like all other
layers it must be properly configured to support multicast networking. See
"multicast-listener" on page H-26.

Performance
It is less likely that a process running in a virtualized OS will be able to fully use
gigabit Ethernet. This is not specific to Coherence, and will be visible most network
intensive virtualized applications.

See the following VMWare article covering their network performance as compared to
non-virtualized operating systems.

Fault Tolerance
From a Coherence fault tolerance perspective there is more configuration which needs
to occur to ensure that cache entry backups reside on physically separate hardware.
Manual machine identity must be configured so that Coherence can ensure that
backups are not inadvertently stored on the same physical machine as the primary.
This can be configured by using the machine-id element within the operational
configuration file. See the configuration for "unicast-listener" on page H-48 for details.

Deploying to Windows
When deploying Coherence on Windows please be aware of the following:

Performance Tuning
Out of the box Windows is not optimized for background processes and heavy
network loads. This may be addressed by running the optimize.reg script included in
the Coherence installation's bin directory. See "Operating System Tuning" on
page 20-1 for details on the optimizations which will be performed.

Personal Firewalls
If running a firewall on a machine you may have difficulties in forming a cluster
consisting of multiple computers. This can be resolved by either:

■ Disable the firewall, though this is generally not recommended.

Deploying to z OS

Platform-Specific Deployment Considerations M-9

■ Grant full network access to the Java executable which will run Coherence.

■ Open up individual address and ports for Coherence.

■ By default Coherence will use TCP and UDP ports starting at 8088, subsequent
nodes on the same machine will use increasing port numbers. Coherence may
also communicate over multicast, the default address and port will differ with
based on the release. See "unicast-listener" on page H-48 and
"multicast-listener" on page H-26 for details on address and port
configuration.

Deploying to z OS
When deploying Coherence on z/OS please be aware of the following:

EBCDIC
When deploying Coherence into environments where the default character set is
EBCDIC rather than ASCII, please make sure that Coherence the configuration files
which are loaded from JAR files or off of the classpath are in ASCII format.
Configuration files loaded directly from the file system should be stored in the systems
native format of EBCDIC.

Multicast
Under some circumstances, Coherence cluster nodes that run within the same logical
partition (LPAR) on z/OS on IBM zSeries cannot communicate with each other. (This
problem does not occur on the zSeries when running on Linux.)

The root cause is that z/OS may bind the MulticastSocket that Coherence uses to an
automatically-assigned port, but Coherence requires the use of a specific port in order
for cluster discovery to operate correctly. (Coherence does explicitly initialize the
java.net.MulitcastSocket to use the necessary port, but that information appears to be
ignored on z/OS when there already is an instance of Coherence running within that
same LPAR.)

The solution is to run only one instance of Coherence within a z/OS LPAR; if multiple
instances are required, each instance of Coherence should be run in a separate z/OS
LPAR. Alternatively well known addresses may be used. See "well-known-addresses"
on page H-51 for more information.

Deploying to z OS

M-10 Oracle Coherence Developer's Guide for Oracle Coherence

N

Best Practices for Coherence Extend N-1

NBest Practices for Coherence Extend

Run Proxy Servers with Local Storage Disabled
Each server in a partitioned cache, including the proxy server, can store a portion of
the data. The proxy server has the responsibility of accepting POF formatted data from
the client (either Java, C++, or .NET), deserializing POF data to get the Java objects,
serializing the Java objects, then placing the resulting data in the cluster. These tasks
can be expensive in terms of CPU and memory. You can preserve resources on the
proxy server by disabling its local storage.

There are several ways in which you can disable storage:

Local storage for a proxy server can be enabled or disabled with the
tangosol.coherence.distributed.localstorage Java property. For example:

-Dtangosol.coherence.distributed.localstorage=false

You can also disable storage in the cache configuration file. See the description of the
<local-storage> element in "distributed-scheme" on page D-26.

Storage can also be disabled for the proxy server by modifying the
<local-storage> setting in its tangosol-coherence.xml (or
tangosol-coherence-override.xml) file. Example N–1 illustrates setting
<local-storage> to false in the tangosol-coherence-override.xml) file.

Example N–1 Disabling Storage in tangosol-coherence-override.xml

<!--
Example using tangosol-coherence-override.xml
-->
<coherence>
 <cluster-config>
 <services>
 <!--
 id value must match what's in tangosol-coherence.xml for DistributedCache
service
 -->
 <service id="3">
 <init-params>
 <init-param id="4">
 <param-name>local-storage</param-name>
 <param-value
system-property="tangosol.coherence.distributed.localstorage">false</param-value>
 </init-param>

Do Not Run a Near Cache on a Proxy Server

N-2 Oracle Coherence Developer's Guide for Oracle Coherence

 </init-params>
 </service>
 </services>
 </cluster-config>
</coherence>

Do Not Run a Near Cache on a Proxy Server
By definition, a near cache provides local cache access to recently- and/or often-used
data. If a proxy server is configured with a near cache, it will locally cache data
accessed by its remote clients. It is unlikely that these clients will be consistently
accessing the same subset of data, thus resulting in a low hit ratio on the near cache.
This will result in higher heap usage and more network traffic on the proxy nodes
with little to no benefit. For these reasons, it is recommended that a near cache not be
used on a proxy server. To ensure that the proxy server is not running a near cache,
remove all near schemes from the cache configuration being used for the proxy. See
"Near Cache" for more information.

Configure Heap NIO Space to be Equal to the Max Heap Size
NIO memory is used for the TCP connection into the proxy and for POF serialization
and deserialization. Older Java installations tended to run out of heap memory
because it was configured too low. Newer Java JDKs will configure off heap NIO space
equal to the max heap space. On Sun JVMs, this can also be set manually with this
value:

-XX:MaxDirectMemorySize=512M

Set Worker Thread Pool Sizes According to the Needs of the Application
Client applications can be classified into two general categories: active and passive.

In active applications, the Coherence*Extend client sends many requests, such as put,
get, and so on, to the proxy. These requests are serviced by the proxy service. The
proxy will deserialize POF data put into the cache, and serialize data it returns to the
client. For these tasks, configure a larger number of daemon (worker) threads for the
proxy service.

In passive applications, the client waits on events (such as map listeners) based on
some specified criteria. Events are serviced by the DistributedCache service. This
service uses worker threads to push events to the client. For these tasks, the thread
pool configuration for the DistributedCache service should include a sufficient
number of worker threads.

Note that near caches on extend clients will use map listeners under the covers for the
invalidation strategies of ALL, PRESENT, and AUTO. Applications that are write-heavy
that use near caches will generate many map events.

Be Careful When Making InvocationService Calls
InvocationService allows a member of a service to invoke arbitrary code on any node
in the cluster. On Coherence*Extend however, InvocationService calls are serviced by
the proxy that the client is connected to by default. When sending the call through a
proxy, you cannot choose the particular node on which the code will run.

Run Multiple Proxies Instead of Increasing Thread Pool Size

Best Practices for Coherence Extend N-3

Be Careful When Placing Collection Classes in the Cache
If a Coherence*Extend client puts a collection object, (such as an ArrayList,
HashSet, HashMap, and so on) directly into the cache, it is deserialized as an
immutable array. If you then extract it and cast it to its original type, then a
ClassCastExceptions will be returned. For example, in the following pseudo-code
a new ArrayList class object is created and put into the cache. It is then pulled out of
the cache and cast to its original type. The cast will cause a ClassCastException to
be returned.

Example N–2 Casting an ArrayList Object

...
ArrayList i = new ArrayList ()
 put (....)
 ...
 (ArrayList)get (...)
...

You can avoid receiving this exception by either using the Java interface object (such as
a List, Set, Map, and so on) or by encapsulating the collection object in another
object.

For example, if you assign the ArrayList collection object to the List Java interface,
then you can safely cast the returned data to a List object.

Example N–3 Assigning a ArrayList Collection Object to a List Java Interface

...
List i = new ArrayList()
 put(...)
 ...
 (List)get(...
...

In the following pseudo-code, the ArrayList collection object is embedded in the
Person class. You can get the class object out of the cache, then extract the collection
object.

Example N–4 Embedding an ArrayList Collection Object

class Person {
 ...
 ArrayList i = new ArrayList ()
 ...
}
...
 put (....)
 ...
 (Person)get (...)
...

Run Multiple Proxies Instead of Increasing Thread Pool Size
The proxy performs POF/EL conversions in the service thread. A single proxy
instance can easily bottleneck on a single core due to POF/EL conversions. Running

Configure POF Serializers for Cache Servers

N-4 Oracle Coherence Developer's Guide for Oracle Coherence

multiple proxy instances on the same box (instead of increasing the thread pool size)
helps spread the load across more cores.

Configure POF Serializers for Cache Servers
One of the tasks the proxy server performs is to deserialize POF data into Java objects.
If you run C++ or .NET applications and store data to the cache, then the conversion to
Java objects could be viewed as an unnecessary step. In the current release of
Coherence, you have the option of configuring a POF serializer for cache servers. This
will have the effect of storing POF format data directly in the cache.

This can have the following impact on your applications:

■ .NET or C++ clients that only perform puts or gets will not require a Java version
of the object. Java versions will still be required if deserializing on the server side
(for entry processors, cache stores, and so on).

■ POF serializers remove the requirement to serialize/deserialze on the proxy, thus
reducing their memory and CPU requirements.

Example N–5 illustrates a fragment from example-pof-server.xml, which
configures a POF serializer for the distributed cache. A full POF configuration file
example,is attached to this topic.

Example N–5 Configuring a POFSerializer for a Distributed Cache

...
 <distributed-scheme>
 <scheme-name>dist-default</scheme-name>

 <serializer>

<class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>custom-types-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </serializer>

 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>

 <autostart>true</autostart>
 </distributed-scheme>
...

Use Node Locking Instead of Thread Locking
Coherence*Extend clients can send lock, put, and unlock requests to the cluster. The
proxy holds the locks for the client. The requests for locking and unlocking can be
issued at the thread level or the node level. In thread level locking, a particular thread
instance belonging to the proxy (Thread 1, for example) issues the lock request. If any
other threads (Thread 3, for example) issue an unlock request, they will be ignored. A
successful unlock request can be issued only by the thread that issued the initial lock
request. This can cause application errors since unlock requests will not succeed unless

Use Node Locking Instead of Thread Locking

Best Practices for Coherence Extend N-5

the original thread that issues the lock is also the one that receives the request to
release the lock.

In node level locking, if a particular thread instance belonging to the proxy (Thread 1,
for example) issues the lock request, then any other thread (Thread 3, for example) can
successfully issue an unlock request.

As an alternative to using locks, Coherence recommends that you use the
EntryProcessor API instead. EntryProcessors are described in “Chapter 2,
"Implement Transactions, Locks, and Concurrency."

Use Node Locking Instead of Thread Locking

N-6 Oracle Coherence Developer's Guide for Oracle Coherence

O

Scaling Out Your Data Grid Aggregations Linearly O-1

OScaling Out Your Data Grid Aggregations
Linearly

Coherence provides a data grid by dynamically, transparently, and automatically
partitioning the data set across all storage enabled nodes in a cluster. We have been
doing some scale out testing on our new Dual 2.3GHz PowerPC G5 Xserve cluster and
here is one of the tests that we have performed using the data grid aggregation feature.

The new InvocableMap tightly binds the concepts of a data grid (that is, partitioned
cache) and the processing of the data stored in the grid. When you take the
InvocableMap and combine it with the linear scalability of Coherence itself you get an
extremely powerful solution. The following tests show that you can take an
application that Coherence provides you (the developer, the engineer, the architect,
and so on) the ability to build an application when that can scale out to handle any
SLA requirement, any increase in throughput requirements. For example, the
following test demonstrate Coherence's ability to linearly increase the number of
trades aggregated per second as you increase hardware. That is, if one machine can
aggregate X trades per second, if you add a second machine to the data grid you will
be able to aggregate 2X trades per second, if you add a third machine to the data grid
you will be able to aggregate 3X trades per second and so on.

All of the Data Grid capabilities described below are features of Coherence Enterprise
Edition and higher.

The Data
First, we need some data to aggregate. Example O–1 illustrates a Trade object with a
three properties Id, Price, and Symbol.

Example O–1 Trade Object Defining Three Properties

package com.tangosol.examples.coherence.data;

import com.tangosol.util.Base;
import com.tangosol.util.ExternalizableHelper;
import com.tangosol.io.ExternalizableLite;

import java.io.IOException;
import java.io.NotActiveException;
import java.io.DataInput;
import java.io.DataOutput;

/**

The Data

O-2 Oracle Coherence Developer's Guide for Oracle Coherence

* Example Trade class
*
* @author erm 2005.12.27
*/
public class Trade
 extends Base
 implements ExternalizableLite
 {
 /**
 * Default Constructor
 */
 public Trade()
 {
 }

 public Trade(int iId, double dPrice, String sSymbol)
 {
 setId(iId);
 setPrice(dPrice);
 setSymbol(sSymbol);
 }

 public int getId()
 {
 return m_iId;
 }

 public void setId(int iId)
 {
 m_iId = iId;
 }

 public double getPrice()
 {
 return m_dPrice;
 }

 public void setPrice(double dPrice)
 {
 m_dPrice = dPrice;
 }

 public String getSymbol()
 {
 return m_sSymbol;
 }

 public void setSymbol(String sSymbol)
 {
 m_sSymbol = sSymbol;
 }

 /**
 * Restore the contents of this object by loading the object's state from the
 * passed DataInput object.
 *
 * @param in the DataInput stream to read data from to restore the
 * state of this object
 *
 * @throws IOException if an I/O exception occurs

Configure a Partitioned Cache

Scaling Out Your Data Grid Aggregations Linearly O-3

 * @throws NotActiveException if the object is not in its initial state, and
 * therefore cannot be deserialized into
 */
 public void readExternal(DataInput in)
 throws IOException
 {
 m_iId = ExternalizableHelper.readInt(in);
 m_dPrice = in.readDouble();
 m_sSymbol = ExternalizableHelper.readSafeUTF(in);
 }

 /**
 * Save the contents of this object by storing the object's state into the
 * passed DataOutput object.
 *
 * @param out the DataOutput stream to write the state of this object to
 *
 * @throws IOException if an I/O exception occurs
 */
 public void writeExternal(DataOutput out)
 throws IOException
 {
 ExternalizableHelper.writeInt(out, m_iId);
 out.writeDouble(m_dPrice);
 ExternalizableHelper.writeSafeUTF(out, m_sSymbol);
 }

 private int m_iId;
 private double m_dPrice;
 private String m_sSymbol;
 }

Configure a Partitioned Cache
The cache configuration is easy through the XML Cache Configuration Elements.
Example O–2 defines one wildcard cache-mapping that maps to one
caching-scheme which has unlimited capacity:

Example O–2 Mapping a cache-mapping to a caching-scheme with Unlimited Capacity

<?xml version="1.0"?>

<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>example-distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <!--
 Distributed caching scheme.
 -->
 <distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>

Add an Index to the Price Property

O-4 Oracle Coherence Developer's Guide for Oracle Coherence

 <backing-map-scheme>
 <class-scheme>
 <scheme-ref>unlimited-backing-map</scheme-ref>
 </class-scheme>
 </backing-map-scheme>

 <autostart>true</autostart>
 </distributed-scheme>

 <!--
 Backing map scheme definition used by all the caches that do
 not require any eviction policies
 -->
 <class-scheme>
 <scheme-name>unlimited-backing-map</scheme-name>

 <class-name>com.tangosol.util.SafeHashMap</class-name>
 <init-params></init-params>
 </class-scheme>
 </caching-schemes>
</cache-config>

Add an Index to the Price Property
Example O–3 illustrates the code to add an index to the Price property. Adding an
index to this property increases performance by allowing Coherence to access the
values directly rather than having to deserialize each item to accomplish the
calculation

Example O–3 Adding an Index to the Price Property

ReflectionExtractor extPrice = new ReflectionExtractor("getPrice");
m_cache.addIndex(extPrice, true, null);

In our tests the aggregation speed was increased by more than 2x after an index was
applied.

Code to perform a Parallel Aggregation
Example O–4 illustrates the code to perform a parallel aggregation across all JVMs in
the data grid. The aggregation is initiated and results received by a single client. That
is, a single "low-power" client is able to use the full processing power of the
cluster/data grid in aggregate to perform this aggregation in parallel with just one
line of code.

Example O–4 Perform a Parallel Aggregation Across all JVMs in the Grid

Double DResult;
DResult = (Double) m_cache.aggregate((Filter) null, new DoubleSum("getPrice"));

The Testing Environment and Process

Performing a "Test Run"
A test run does several things:

The Results

Scaling Out Your Data Grid Aggregations Linearly O-5

1. Loads 200,000 trade objects into the data grid.

2. Adds indexes to Price property.

3. Performs a parallel aggregation of all trade objects stored in the data grid. This
aggregation step is done 20 times to obtain an "average run time" to ensure that
the test takes into account garbage collection.

4. Loads 400,000 trade objects into the data grid.

5. Repeats steps 2 and 3.

6. Loads 600,000 trade objects into the data grid.

7. Repeats steps 2 and 3.

8. Loads 800,000 trade objects into the data grid.

9. Repeats steps 2 and 3.

10. Loads 1,000,000 trade objects into the data grid.

11. Repeats steps 2 and 3.

Client Considerations: The test client itself is run on an Intel Core Duo iMac which is
marked as local storage disabled. The command line used to start the client was:

java ... -Dtangosol.coherence.distributed.localstorage=false -Xmx128m -Xms128m
com.tangosol.examples.coherence.invocable.TradeTest

This "Test Suite" (and Subsequent Results) Includes Data from Four "Test Runs":
1. Start 4 JVMs on one Xserve - Perform a "test run"

2. Start 4 JVMs on each of two Xserves - Perform a "test run"

3. Start 4 JVMs on each of three Xserves - Perform a "test run"

4. Start 4 JVMs on each of four Xserves - Perform a "test run"

Server Considerations: In this case a "JVM" refers to a cache server instance (that is, a
data grid node) that is a standalone JVM responsible for managing/storing the data. I
used the DefaultCacheServer helper class to accomplish this.

The command line used to start the server was:

java ... -Xmx384m -Xms384m -server com.tangosol.net.DefaultCacheServer

JDK Version
The JDK used on both the client and the servers was Java 2 Runtime Environment,
Standard Edition (build 1.5.0_05-84)

The Results
As you can see in the following graph the average aggregation time for the
aggregations decreases linearly as more cache servers/machines are added to the data
grid!

Note: The lowest and highest times were not used in the calculations
below resulting in a data set of eighteen results used to create an
average.

The Results

O-6 Oracle Coherence Developer's Guide for Oracle Coherence

Figure O–1 Average Aggregation Time

This figure is described in the text.

Similarly, the following graph illustrates how the aggregations per second scales
linearly as you add more machines! When moving from 1 machine to 2 machines the
trades aggregated per second double, when moving from 2 machines to 4 machines
the trades aggregated per second double again.

Conclusion

Scaling Out Your Data Grid Aggregations Linearly O-7

Figure O–2 Aggregation Scale-Out

This illustrations is described in the text.

Conclusion
Combining the Coherence data grid (that is, partitioned cache) with the InvocableMap
features enables:

■ Applications to scale out data grid calculations linearly;

■ Groups to meet increasingly aggressive SLAs by dynamically/transparently
adding more resources to the data grid. That is, if you need to achieve 1,837,932
trade aggregations per second all that is required is to start 16 more cache servers
across four more machines.

Note: FAILOVER!

The above aggregations will complete successfully and correctly even if
one of the cache servers or and entire machine fails during the
aggregation!

Conclusion

O-8 Oracle Coherence Developer's Guide for Oracle Coherence

	Contents
	List of Figures
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Coherence Features
	1 Create and Use Coherence Caches
	Creating a Cache in Your Application
	Configuring the Caches
	Cache Configuration Descriptor Location
	Putting It all Together: Your First Coherence Cache Example
	Setting Up Your Test Environment
	Modifying the Cache Configuration

	2 Implement Transactions, Locks, and Concurrency
	Concurrency Options
	Explicit Locking
	Transactions
	Container Integration
	JCA
	XA

	Entry Processors
	Data Source Integration

	3 Perform Continuous Query
	Uses of Continuous Query Caching
	The Coherence Continuous Query Cache
	Constructing a Continuous Query Cache
	Cleaning up the resources associated with a ContinuousQueryCache

	Caching only keys, or caching both keys and values
	CacheValues Property and Event Listeners

	Listening to the ContinuousQueryCache
	Achieving a Stable Materialized View
	Support for Synchronous and Asynchronous Listeners

	Making the ContinuousQueryCache Read-Only

	4 Managing Map Operations with Triggers
	A Map Trigger Example

	5 Data Affinity
	Specifying Affinity
	Specifying Data Affinity with a KeyAssociation
	Specifying Data Affinity with a KeyAssociator
	Example of Using Affinity

	6 Query the Cache
	Query Functionality
	Simple Queries
	Querying Partitioned Caches
	Querying Near Caches

	Query Concepts
	Queries Involving Multi-Value Attributes
	ChainedExtractor

	7 Security Framework
	Transport Layer Security
	Access Controller
	Proof of Identity
	Proof of Trustworthiness
	Default Access Controller implementation
	Working in applications with installed security manager

	8 Network Filters
	Compression Filters
	Encryption Filters
	Symmetric Encryption Filter
	Symmetric Encryption Filter Parameters
	PKCS Encryption Filter
	PKCS Encryption Filter Parameters

	Configuring Filters
	Creating a Custom Filter

	9 Priority Tasks
	Priority Tasks - Timeouts
	Configuring Execution Timeouts
	Execution Timeout Parameters
	Command Line Options

	Priority Task Execution - Custom Objects
	APIs for Creating Priority Task Objects
	Errors Thrown by Task Timeouts

	10 Integrate CacheFactory with Spring
	11 Specifying a Custom Eviction Policy
	12 Serialization Paged Cache
	Understanding Serialization Paged Cache
	Configuring Serialization Paged Cache
	Optimizing a Partitioned Cache Service
	Configuring for High Availability
	Configuring Load Balancing and Failover
	Supporting Huge Caches

	13 Pre-Loading the Cache
	Performing Bulk Loading and Processing
	Bulk Writing to a Cache
	Efficient processing of filter results
	A Bulk Loading and Processing Example

	Performing Distributed Bulk Loading
	A Distributed Bulk Loading Example
	Running a Distributed Bulk Loading Example
	Building the Sample Application
	Running the Sample Application

	14 Constraints on Re-entrant Calls
	Re-entrancy, Services, and Service Threads
	Parent-Child Object Relationships
	Avoiding Deadlock

	Re-entrancy and Listeners

	Part II Testing and Tuning
	15 Evaluating Performance and Scalability
	Measuring Latency and Throughput
	Demonstrating Scalability
	Tuning Your Environment
	Measurements on a Large Cluster

	16 Performing a Multicast Connectivity Test
	Running the Multicast Test Utility
	Sample Commands

	Multicast Test Example
	Troubleshooting Multicast Communications

	17 Performing a Datagram Test for Network Performance
	Running the Datagram Test Utility
	Sample Commands for a Listener and a Publisher

	Datagram Test Example
	Reporting
	Publisher Statistics
	Listener Statistics
	Throttling
	Bidirectional Testing
	Distributed Testing

	18 Configuring and Using Coherence*Extend
	General Instructions
	Configuring and Using Coherence*Extend-JMS
	Client-side Cache Configuration Descriptor
	Cluster-side Cache Configuration Descriptor
	Configuring your JMS Provider
	Launching an Extend-JMS DefaultCacheServer Process
	Launching an Extend-JMS Client Application

	Configuring and Using Coherence*Extend-TCP
	Client-side Cache Configuration Descriptor
	Cluster-side Cache (a.k.a Coherence Extend Proxy) Configuration Descriptor
	Launching an Extend-TCP DefaultCacheServer Process
	Launching an Extend-TCP Client Application

	Sample Coherence*Extend Client Application
	Coherence*Extend InvocationService

	Advanced Configuration
	Network Filters
	Connection Error Detection and Failover
	Read-only NamedCache Access
	Client-side NamedCache Locking
	Disabling Proxied Services

	19 High Resolution Timesource (Linux)
	20 Performance Tuning
	Operating System Tuning
	Socket Buffer Sizes
	High Resolution timesource (Linux)
	Datagram size (Microsoft Windows)
	Thread Scheduling (Microsoft Windows)
	Swapping

	Network Tuning
	Network Interface Settings
	Bus Considerations
	Network Infrastructure Settings
	Ethernet Flow-Control
	Path MTU

	JVM Tuning
	Server Mode
	Sizing the Heap
	GC Monitoring & Tuning

	Coherence Network Tuning
	Validation

	21 Setting Single Server Mode
	Setting Single Server Mode in the Operation Configuration Descriptor
	Setting Single Server Mode on the Command Line

	Part III Managing and Monitoring Oracle Coherence
	22 How to Manage Coherence Using JMX
	Add JMX libraries to the Coherence classpath
	Configure the Coherence Management Framework
	Access Coherence MBeans
	Using Coherence MBeanConnector to Access MBeans
	Configuring Management Refresh Methodology

	23 JMX Reporter
	Basic Configuration
	Administration
	Data Analysis
	Advanced Configuration
	Creating Custom Reports
	Running Reporter in a Distributed Configuration

	24 How to Create a Custom Report
	Configuring a Report File
	file-name Element
	file-name Macros
	file-name Macro Examples

	Specifying Data Columns
	How to Include an Attribute
	How to Include Part of the Key
	How to Include Information from Composite Attributes
	How to Include Information from Multiple MBeans
	Including Multiple MBean Information Example
	How to Use Report Macros
	How to Include Constant Values

	Including Queries in a Report
	Using Filters to Construct Reports
	Using Functions to Construct a Report
	Function Examples

	Using Aggregates to Construct a Report
	Aggregate Examples

	Constructing Delta Functions
	Delta Function Examples

	25 How to Modify Report Batch
	Report Batch Deployment Descriptor
	Document Location
	Document Root
	System Properties
	Document Format

	Report Batch Element Index
	frequency
	location
	init-param
	init-params
	output-directory
	param-name
	param-type
	param-value
	report-config
	report-group
	report-list

	26 Analyzing Reporter Content
	Network Health
	Network Health Detail
	Memory Status
	Cache Size
	Service Report
	Node List
	Proxy Report

	27 How to Run a Report on Demand
	How to Run ReportControl MBean at Node Startup
	How to Configure the ReportControl MBean

	28 Configuring Custom MBeans
	Creating an MBean XML Configuration File
	Configuring Standard MBeans
	Configuring MXBeans
	Configuring JMX MBeans

	Enabling a Custom MBean Configuration File
	Setting a System Property
	Adding a Custom MBean Configuration File to the Class Path

	29 How to Manage Custom MBeans Within the Cluster
	Custom MBean Configuration
	How to Add a Standard MBean to Coherence
	How to Programatically Add a Standard MBean to Coherence
	How to Add a the Results of a JMX Query to Coherence

	A Production Checklist
	Network
	Hardware
	Operating System
	JVM
	Java Security Manager
	Application Instrumentation
	Coherence Editions and Modes
	Ensuring that RTC nodes don't use Coherence TCMP

	Coherence Operational Configuration
	Coherence Cache Configuration
	Large Cluster Configuration
	Death Detection
	tangosol-license.xml Deprecated

	B Types of Caches in Coherence
	Replicated Cache
	Optimistic Cache
	Distributed (Partitioned) Cache
	Near Cache
	Summary of Cache Types

	C Cache Semantics
	D Cache Configuration Elements
	Cache Configuration Deployment Descriptor
	Document Location
	Document Root
	Document Format
	Command Line Override
	Examples

	Element Index
	acceptor-config
	address-provider
	async-store-manager
	backup-storage
	bdb-store-manager
	bundle-config
	cache-config
	cache-mapping
	cache-service-proxy
	cachestore-scheme
	caching-scheme-mapping
	caching-schemes
	class-scheme
	custom-store-manager
	disk-scheme
	distributed-scheme
	external-scheme
	initiator-config
	init-param
	init-params
	invocation-scheme
	invocation-service-proxy
	jms-acceptor
	jms-initiator
	key-associator
	key-partitioning
	lh-file-manager
	listener
	local-scheme
	near-scheme
	nio-file-manager
	nio-memory-manager
	operation-bundling
	optimistic-scheme
	outgoing-message-handler
	overflow-scheme
	paged-external-scheme
	partition-listener
	proxy-config
	proxy-scheme
	read-write-backing-map-scheme
	remote-cache-scheme
	remote-invocation-scheme
	replicated-scheme
	tcp-acceptor
	tcp-initiator
	version-persistent-scheme
	version-transient-scheme
	versioned-backing-map-scheme
	versioned-near-scheme

	E Cache Configuration Parameter Macros
	F Sample Cache Configurations
	Local Caches (accessible from a single JVM)
	In-memory Cache
	NIO In-memory Cache
	Size Limited In-memory Cache
	In-memory Cache with Expiring Entries
	Cache on Disk
	Size Limited Cache on Disk
	Persistent Cache on Disk
	In-memory Cache with Disk Based Overflow
	Cache of a Database

	Clustered Caches (accessible from multiple JVMs)
	Replicated Cache
	Replicated Cache with Overflow
	Partitioned Cache
	Partitioned Cache with Overflow
	Partitioned Cache of a Database
	Partitioned Cache with a Serializer
	Local Cache of a Partitioned Cache (Near cache)

	G Sample CacheStores
	Sample CacheStore
	Sample Controllable CacheStore

	H Operational Configuration Elements
	Operational Configuration Deployment Descriptors
	Document Location
	Document Root
	Document Format
	Operational Override File (tangosol-coherence-override.xml)
	Command Line Override

	Element Index
	access-controller
	authorized-hosts
	burst-mode
	callback-handler
	cluster-config
	coherence
	configurable-cache-factory-config
	filters
	flow-control
	host-range
	incoming-message-handler
	init-param
	init-params
	license-config
	logging-config
	management-config
	member-identity
	multicast-listener
	notification-queueing
	outgoing-message-handler
	outstanding-packets
	packet-buffer
	packet-bundling
	packet-pool
	packet-delivery
	packet-publisher
	packet-size
	packet-speaker
	pause-detection
	security-config
	services
	shutdown-listener
	socket-address
	tcp-ring-listener
	traffic-jam
	unicast-listener
	volume-threshold
	well-known-addresses

	Element Attributes

	I Initialization Parameter Settings
	DistributedCache Service Parameters
	ReplicatedCache Service Parameters
	InvocationService Parameters
	ProxyService Parameters
	Compression Filter Parameters

	J POF User Type Configuration Elements
	POF User Type Deployment Descriptor
	Document Location
	Document Root
	Document Format
	Command Line Override

	Element Index
	allow-interfaces
	allow-subclasses
	class-name
	include
	init-param
	init-params
	param-type
	param-value
	pof-config
	serializer
	type-id
	user-type
	user-type-list

	K MBean Configuration Elements
	MBeans in the Coherence Deployment Descriptor
	Document Root
	Document Format

	MBean Configuration Element Index
	extend-lifecycle
	enabled
	mbean
	mbean-accessor
	mbean-class
	mbean-factory
	mbean-name
	mbean-query
	mbeans

	L Command Line Overrides
	Override Example
	Preconfigured Override Values

	M Platform-Specific Deployment Considerations
	Deploying to AIX
	Socket Buffers sizes and JVMs
	Multicast and IPv6
	Unique Multicast Addresses and Ports

	Deploying to BEA JRockit JVMs
	JRockit and the Native Posix Thread Library (NPTL)
	AtomicLong

	Deploying to Cisco Switches
	Buffer Space and Packet Pauses
	Multicast Connectivity on Large Networks
	Multicast Outages

	Deploying to Foundry Switches
	Multicast Connectivity

	Deploying to IBM BladeCenters
	MAC Address Uniformity and Load Balancing

	Deploying to IBM JVMs
	UDP Socket Buffer Sizes

	Deploying to Linux
	Native POSIX Thread Library (NPTL)
	TSC High Resolution Timesource

	Deploying to OS X
	Multicast and IPv6
	Unique Multicast Addresses and Ports
	Socket Buffer Sizing

	Deploying to Solaris
	Solaris 10 (x86 and SPARC)
	Solaris 10 Networking

	Deploying to Sun JVMs
	Heap Sizes
	AtomicLong

	Deploying to Virtual Machines
	Supported Deployment
	Multicast Connectivity
	Performance
	Fault Tolerance

	Deploying to Windows
	Performance Tuning
	Personal Firewalls

	Deploying to z OS
	EBCDIC
	Multicast

	N Best Practices for Coherence Extend
	Run Proxy Servers with Local Storage Disabled
	Do Not Run a Near Cache on a Proxy Server
	Configure Heap NIO Space to be Equal to the Max Heap Size
	Set Worker Thread Pool Sizes According to the Needs of the Application
	Be Careful When Making InvocationService Calls
	Be Careful When Placing Collection Classes in the Cache
	Run Multiple Proxies Instead of Increasing Thread Pool Size
	Configure POF Serializers for Cache Servers
	Use Node Locking Instead of Thread Locking

	O Scaling Out Your Data Grid Aggregations Linearly
	The Data
	Configure a Partitioned Cache
	Add an Index to the Price Property
	Code to perform a Parallel Aggregation
	The Testing Environment and Process
	Performing a "Test Run"
	This "Test Suite" (and Subsequent Results) Includes Data from Four "Test Runs":
	JDK Version

	The Results
	Conclusion

