
Oracle® Coherence
User’s Guide for Oracle Coherence

Release 3.4

E12192-01

November 2008

Oracle Coherence User's Guide for Oracle Coherence, Release 3.4

E12192-01

Copyright © 2008, Oracle and/or its affiliates. All rights reserved.

Primary Author: Thomas Pfaeffle

Contributing Author: Noah Arliss, Jason Howes, Mark Falco, Alex Gleyzer, Gene Gleyzer, David Leibs,
Andy Nguyen, Brian Oliver, Patrick Peralta, Cameron Purdy, Jonathan Purdy, Everet Williams, Tom
Beerbower, John Speidel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

v

Contents

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Related Documents ... xiv
Conventions ... xiv

Part I Coherence for C++

1 Requirements, Installation, and Deployment for Coherence for C++

Package Requirements .. 1-1
Supported Environments.. 1-1
Installing Coherence for C++... 1-2
Building Coherence-Based Applications... 1-2

Compiler Settings... 1-2
Coherence Header Files... 1-2
Linking... 1-3
Runtime Library and Search Path ... 1-3

Deploying Coherence for C++ ... 1-4

2 Understanding the Coherence C++ Object Model

Using the Object Model .. 2-1
Coherence Namespaces... 2-1
Understanding the Base Object .. 2-1
Automatically Managed Memory ... 2-2

Referencing Managed Objects... 2-2
Using handles .. 2-2
Managed Object Instantiation ... 2-3

Managed Strings... 2-3
String Instantiation ... 2-3
Auto-Boxed Strings... 2-4

Type Safe Casting... 2-4
Down Casting .. 2-4

Managed Arrays... 2-5
Collection Classes... 2-5
Managed Exceptions.. 2-6

vi

Object Immutability ... 2-6
Integrating Existing Classes into the Object Model ... 2-7

Writing New Managed Classes.. 2-7
Specification-Based Managed Class Definition .. 2-7
Equality, Hashing, Cloning, Immutability, and Serialization ... 2-11
Threading ... 2-11
Weak References ... 2-12
Virtual Constructors ... 2-14
Advanced Handle Types.. 2-14
Thread Safety ... 2-14
Synchronization and Notification... 2-15
Thread Safe Handles... 2-15

Diagnostics and Troubleshooting ... 2-17
Thread Dumps... 2-17
Memory Leak Detection... 2-18
Memory Corruption Detection ... 2-18

3 Building Integration Objects for C++ Clients

Serialization Options... 3-1
Managed<T> (Free-Function Serialization) .. 3-2
PortableObject (Self-Serialization) .. 3-4
PofSerializer (External Serialization) .. 3-6

POF Registration .. 3-8
Need for Java Classes .. 3-9
Performance... 3-9

4 Configuration and Usage for C++ Clients

General Instructions .. 4-1
Implementing the C++ Application ... 4-1
Compiling and Linking the Application .. 4-2
Configure Paths .. 4-3
Configure Coherence*Extend .. 4-3

Configure Coherence*Extend in the Cluster .. 4-3
Configuring Coherence*Extend on the Client ... 4-4
Connection Error Detection and Failover... 4-5

Configuring and Using the Coherence for C++ Client Library .. 4-6
Setting the Configuration File Location with an Environment Variable 4-6
Setting the Configuration File Location Programmatically .. 4-6

Operational Configuration File (tangosol-coherence-override.xml) ... 4-7
Configuring a Logger .. 4-8
Launching a Coherence DefaultCacheServer Proxy.. 4-9

5 Understanding the Coherence for C++ API

CacheFactory ... 5-1
NamedCache ... 5-1
QueryMap .. 5-2

vii

ObservableMap .. 5-2
InvocableMap ... 5-3
Filter ... 5-3
Value Extractors .. 5-4
Entry Processors.. 5-5
Entry Aggregators... 5-5

6 Sample Applications for C++ Clients

Prerequisites for Building and Running the Sample Applications ... 6-1
Starting a Coherence Proxy Service and Cache Server .. 6-2
Building the Sample Applications.. 6-2
Starting a Sample Application... 6-2
Running the console Example ... 6-2
Running the hellogrid Example .. 6-4
Running the contacts Example .. 6-5

7 Configuring a Local Cache for C++ Clients

Configuring the Local Cache.. 7-1
Obtaining a Local Cache Reference for C++ Clients... 7-2
Cleaning Up Resources Associated with a LocalCache .. 7-3

8 Configuring a Near Cache for C++ Clients

Configuring the Near Cache .. 8-1
Obtaining a Near Cache Reference with C++... 8-2
Cleaning up Resources Associated with a Near Cache... 8-2

9 Perform Continuous Query for C++ Clients

Uses of Continuous Query Caching ... 9-1
The Coherence Continuous Query Cache ... 9-2
Defining a Continuous Query Cache ... 9-2
Cleaning up Resources Associated with a Continuous Query Cache ... 9-3
Caching Only Keys, or Caching Both Keys and Values.. 9-3

CacheValues Property and Event Listeners ... 9-3
Using ReflectionExtractor with Continuous Query Caches .. 9-3

Listening to the Continuous Query Cache .. 9-4
Avoiding Unexpected Results.. 9-4
Achieving a Stable Materialized View.. 9-5
Support for Synchronous and Asynchronous Listeners .. 9-5

Making the Continuous Query Cache Read-Only .. 9-5

10 Query the Cache for C++ Clients

Query Functionality .. 10-1
Simple Queries .. 10-1

Querying Partitioned Caches .. 10-3
Querying Near Caches ... 10-3

viii

Query Concepts ... 10-3
Queries Involving Multi-Value Attributes... 10-4
ChainedExtractor ... 10-5

11 Remote Invocation Service for C++ Clients

Configuring and Using the Remote Invocation Service.. 11-1
Registering Invocable Implementation Classes.. 11-2

12 Deliver Events for Changes as they Occur (C++)

Listener Interface and Event Object .. 12-1
Caches and Classes that Support Events .. 12-4
Signing Up for all Events... 12-5
MultiplexingMapListener ... 12-7
Configuring a MapListener for a Cache ... 12-7
Signing Up for Events on Specific Identities .. 12-7
Filtering Events .. 12-8
"Lite" Events ... 12-9
Advanced: Listening to Queries .. 12-10
Advanced: Synthetic Events .. 12-11
Advanced: Backing Map Events ... 12-12
Advanced: Synchronous Event Listeners ... 12-13
Summary ... 12-13

Part II Coherence for .NET

13 Requirements, Installation and Deployment for Coherence for .NET

Package Requirements ... 13-1
Installation.. 13-1
Deployment .. 13-1

14 Configuration and Usage for .NET Clients

General Instructions ... 14-1
Configuring Coherence*Extend ... 14-1

Configuring Coherence*Extend in the Cluster ... 14-1
Configuring Coherence*Extend on the Client .. 14-2
Connection Error Detection and Failover.. 14-3

15 Building Integratable Objects for .NET Clients

Configuring a POF Context ... 15-1
Creating an IPortableObject Implementation (.NET) .. 15-1
Creating a PortableObject Implementation (Java).. 15-2
Registering Custom Types on the .NET Client... 15-3
Registering Custom Types in the Cluster.. 15-5
Evolvable Portable User Types ... 15-5
Making Types Portable Without Modification ... 15-8

ix

Configuring and Using the Coherence for .NET Client Library.. 15-11
CacheFactory.. 15-12
IConfigurableCacheFactory... 15-13
DefaultConfigurableCacheFactory ... 15-14
Logger ... 15-14
Using the Common.Logging Library ... 15-15
INamedCache .. 15-16
IQueryCache .. 15-16
IObservableCache ... 15-17
IInvocableCache .. 15-18
Filters... 15-19
Extractors.. 15-19
Processors ... 15-20
Aggregators.. 15-21

Launching a Coherence DefaultCacheServer Process.. 15-21

16 Configuring a Local Cache for .NET Clients

Configuring the Local Cache... 16-1
Obtaining a Local Cache Reference for .NET Clients .. 16-2
Cleaning Up Resources Associated with a LocalCache ... 16-3

17 Configuring a Near Cache for .NET Clients

Configuring the Near Cache ... 17-1
Obtaining a Near Cache Reference with .NET .. 17-2
Cleaning up Resources Associated with a NearCache... 17-2

18 Continuous Query Cache for .NET Clients

Uses of Continuous Query Caching .. 18-1
The Continuous Query Cache... 18-2
Constructing a Continuous Query Cache ... 18-2
Cleaning up Resources Associated with a ContinuousQueryCache .. 18-3
Semi- and Fully-Materialized Views... 18-3
Listening to a Continuous Query Cache... 18-4

Achieving a Stable Materialized View... 18-4
Support for Synchronous and Asynchronous Listeners ... 18-5

Making a Continuous Query Cache Read-Only ... 18-5

19 Remote Invocation Service for .NET Clients

Configuring and Using the Remote Invocation Service.. 19-1

x

20 Special Considerations—Windows Forms Applications for .NET Clients

21 Special Considerations—Web Applications for .NET Clients

22 Network Filters for .NET Clients

Custom Filters .. 22-1
Configuring Filters.. 22-1

23 Sample Windows Forms Application for .NET Clients

General Instructions ... 23-1
Create a Windows Application Project ... 23-1
Add a Reference to the Coherence for .NET Library.. 23-3
Create an App.config File .. 23-4
Create Coherence for .NET Configuration Files ... 23-5
Create and Design the Application.. 23-6
Implement the Application ... 23-7

24 Sample Web Application for .NET Clients

General Instructions ... 24-1
Create an ASP.NET Project .. 24-1
Add a Reference to the Coherence for .NET Library.. 24-1
Configure the Web.config File .. 24-2
Create Coherence for .NET Configuration Files ... 24-3
Create the Web Form... 24-4
Implement the Web Application .. 24-11

Global.asax File.. 24-11
Business Object Definition ... 24-11
Service Layer Implementation .. 24-12
Code-behind the ASP.NET Page... 24-13

Part III Integration with WebLogic Server

25 Caching HTTP Sessions for WebLogic

Requirements ... 25-1
Install Coherence*Web on WebLogic 10.X ... 25-1
Configure WebLogic ... 25-1
Create the Counter Web Application... 25-3
Modify the Counter Web Application to use Coherence*Web .. 25-4
Deploy the Application.. 25-4
Verify the Example .. 25-5
Summary ... 25-6

Part IV Integration with TopLink Essentials

xi

26 Configuring Coherence for TopLink Essentials

Coherence and TopLink Essentials .. 26-1
Limitations ... 26-1
Conventions ... 26-1

Using the Coherence TopLinkCacheStore.. 26-2
Mapping the Persistent Classes .. 26-2
Configuring TopLink Essentials ... 26-2

Configuration with JPA Mappings ... 26-2
Configuration with TopLink Mappings ... 26-3

Configuring Coherence .. 26-3

27 Configuring Coherence for JPA

Limitations.. 27-1
Obtaining a JPA Implementation... 27-1
Conventions.. 27-1
Using the Coherence JpaCacheStore ... 27-2

Mapping the Persistent Classes .. 27-2
Configuring JPA .. 27-2
Configuring Coherence .. 27-3

Part V Integration with Hibernate

28 Using Coherence as the Hibernate L2 Cache

Hibernate and Caching .. 28-1
Configuration and Tuning ... 28-1
Specifying a Coherence Cache Topology.. 28-2
Cache Concurrency Strategies .. 28-2
Query Cache ... 28-3
Fault-Tolerance... 28-3
Deployment .. 28-3

29 Using Hibernate as a CacheStore for Coherence

Using the Coherence HibernateCacheStore ... 29-1
Configuring a HibernateCacheStore .. 29-1
Configuration Requirements ... 29-4
JDBC Isolation Level ... 29-4
Fault-Tolerance.. 29-4
Extending HibernateCacheStore... 29-4

Creating a Hibernate CacheStore ... 29-4
Re-entrant Calls ... 29-5

Fully Cached DataSets.. 29-5
Distributed Queries... 29-5
Detached Processing... 29-5

xii

A Sample C++ Applications

Sample Code for the console Example .. A-1
Sample Code for the contacts Example ... A-6

ContactInfo.hpp... A-6
ContactInfo.cpp ... A-9
PortableContactInfo.hpp.. A-10
PortableContactInfo.cpp .. A-11
contacts.cpp.. A-12

Sample Code for the hellogrid Example... A-15
Basic Cache Access.. A-16
STL-like Map Adapter .. A-16
InvocableMap Aggregation ... A-17
Query the Cache .. A-17
Continuous Query Cache... A-17
InvocableMap Invoke All... A-17

xiii

Preface

Oracle Coherence is a JCache-compliant in-memory caching and data management
solution for clustered J2EE applications and application servers. Coherence makes
sharing and managing data in a cluster as simple as on a single server. It accomplishes
this by coordinating updates to the data using clusterwide concurrency control,
replicating and distributing data modifications across the cluster using the highest
performing clustered protocol available, and delivering notifications of data
modifications to any servers that request them. Developers can easily take advantage
of Coherence features using the standard Java collections API to access and modify
data, and use the standard JavaBean event model to receive data change notifications.
Functionality such as HTTP Session Management is available out-of-the-box for
applications deployed to WebLogic, WebSphere, Tomcat, Jetty and other Servlet 2.2, 2.3
and 2.3 compliant application servers.

Audience
This document is targeted at software developers and architects. It provides detailed
technical information for writing and deploying C++ and .NET applications that
interact with the Coherence cache. It also provides information on integrating
Coherence with the Web Logic Server (WLS), TopLink Essentials, and Hibernate.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xiv

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
To reach AT&T Customer Assistants, dial 711 or 1.800.855.2880. An AT&T Customer
Assistant will relay information between the customer and Oracle Support Services at
1.800.223.1711. Complete instructions for using the AT&T relay services are available at
http://www.consumer.att.com/relay/tty/standard2.html. After the
AT&T Customer Assistant contacts Oracle Support Services, an Oracle Support
Services engineer will handle technical issues and provide customer support according
to the Oracle service request process.

Related Documents
For more information, see the following documents in the Oracle Coherence
documentation set:

■ Getting Started with Oracle Coherence

■ Developer's Guide for Oracle Coherence

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I Coherence for C++

Coherence for C++ allows C++ applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster.
Typical uses of Coherence for C++ include desktop and web applications that require
access to Coherence caches.

Coherence for C++ consists of a native C++ library that connects to a
Coherence*Extend clustered service instance running within the Coherence cluster
using a high performance TCP/IP-based communication layer. This library sends all
client requests to the Coherence*Extend clustered service which, in turn, responds to
client requests by delegating to an actual Coherence clustered service (for example, a
partitioned or replicated cache service).

A NamedCache instance is retrieved by using the CacheFactory::getCache(...)
API call. Once it is obtained, a client accesses the NamedCache in the same way as it
would if it were part of the Coherence cluster. The fact that NamedCache operations
are being sent to a remote cluster node (over TCP/IP) is completely transparent to the
client application.

Coherence for C++ contains the following chapters:

■ Chapter 1, "Requirements, Installation, and Deployment for Coherence for C++"

■ Chapter 2, "Understanding the Coherence C++ Object Model"

■ Chapter 3, "Building Integration Objects for C++ Clients"

■ Chapter 4, "Configuration and Usage for C++ Clients"

■ Chapter 5, "Understanding the Coherence for C++ API"

■ Chapter 6, "Sample Applications for C++ Clients"

■ Chapter 7, "Configuring a Local Cache for C++ Clients"

■ Chapter 8, "Configuring a Near Cache for C++ Clients"

■ Chapter 9, "Perform Continuous Query for C++ Clients"

■ Chapter 10, "Query the Cache for C++ Clients"

■ Chapter 11, "Remote Invocation Service for C++ Clients"

■ Chapter 12, "Deliver Events for Changes as they Occur (C++)"

Note: The C++ client follows the interface and concepts of the Java
client, and users familiar with Coherence for Java should find
migrating to Coherence for C++ straight forward.

1

Requirements, Installation, and Deployment for Coherence for C++ 1-1

1Requirements, Installation, and Deployment
for Coherence for C++

After installing Coherence for C++ and setting up the environment, you can try
running the sample applications.

Package Requirements
The following are required to use Coherence for C++:

■ Coherence Data Grid Edition 3.4 (or later)

■ C++ development environment

Supported Environments
The current release of Coherence for C++ is supported on the platforms and operating
systems listed in Table 1–1:

Notes:

1. Including Windows 32b XP, Vista, 2000, 2003, and 2008.

2. Including Windows 64b XP, Vista, 2003, and 2008.

3. Specifically MSVC 2005 SP1 (14.00.5+), and MSVC 2008 and express versions are
supported.

4. Specifically GCC 3.4.6-4 and above, and GCC 4.x versions are supported.

Table 1–1 Platform and Operating System Support for Coherence for C++

Operating System Compiler Architecture

Microsoft Windows 2000+ (see note 1) MSVC 2005 SP1+ (see note 3) x86

Microsoft Windows Server 2003+ (see
note 2)

MSVC 2005 SP1+ (see note 3) x64

Linux GCC 3.4+ (see Note 4) x86

Linux GCC 3.4+ (see Note 4) x64

Apple OS X 10.4+ GCC 3.4+ (see Note 4) x86

Installing Coherence for C++

1-2 Oracle Coherence User's Guide for Oracle Coherence

Installing Coherence for C++
1. Download the Coherence for C++ package for your target environment.

2. Extract the archive.

3. Download the most recent patch for your target environment.

4. Extract the patch archive, and copy contents over the installation directory

Building Coherence-Based Applications
■ Compiler Settings

■ Coherence Header Files

■ Linking

■ Runtime Library and Search Path

Compiler Settings
When integrating Coherence for C++ into your application's build process, it is
important that certain compiler and linker settings be enabled. Some settings are
optional, but still highly recommended.

MSVC (Visual Studio)

g++

Coherence Header Files
Coherence ships with a set of header files which your application will need to compile
code which uses the Coherence API. The header files are available under the

Note: When deploying on Microsoft Windows, just as with any
MSVC-based application, the Visual Studio 2005 SP1 C++
redistributable runtime libraries are required.

Table 1–2 Compiler Settings for MSVC (Visual Studio)

Setting Build Type Required? Description

/EHsc All Yes Enables C++ exception support

/GR All Yes Enables C++ RTTI

/O2 Release No Enables speed optimizations

/MD Release Yes Link against multi-threaded DLLs

/MDd Debug Yes Link against multi-threaded debug
DLLs

Table 1–3 Compiler Settings for g++

Setting Build Type Required Description

-O3 Release No Enables speed optimizations

Building Coherence-Based Applications

Requirements, Installation, and Deployment for Coherence for C++ 1-3

installation's include directory. This include directory must be part of your
compiler’s include search path.

Linking
Coherence for C++ ships with both a debug and release version of the Coherence
library. It is recommended that when compiling your application in debug mode that
you also link against the Coherence debug library, by linking against
coherence-debug rather then coherence. These libraries are located in the
installation's lib directory. During linking this directory will need to be part of your
linker’s library path.

Runtime Library and Search Path
During execution of a Coherence enabled application the Coherence for C++ shared
library must be available from your application's library search path. This is achieved
by adding the directory which contains the shared library to an operating system
dependent environment variable. The installation includes libraries in its lib
subdirectory.

For example, to set the PATH environment variable on Windows execute:

c:\coherence\coherence-cpp\examples> set
PATH=%PATH%;c:\coherence\coherence-cpp\lib

As with the Java version of Coherence, the C++ version supports a concept of System
Properties to override configuration defaults. System Properties in C++ are set by
using standard OS environment variables, and use the same names as their Java
counterparts. The tangosol.coherence.cacheconfig system property can be used to
specify the location of the cache configuration file. You may also set the configuration
location programatically (CacheFactory::configure()) from application code,
the examples however do not do this.

Table 1–4 Names of Linking Libraries for Release and Debug Versions

Operating System Release Library Debug Library

Windows coherence.lib coherence-debug.lib

Linux libcoherence.so libcoherence-debug.so

Apple OS X libcoherence.dylib libcoherence-debug.dylib

Table 1–5 Name of the Coherence for C++ Library and Environment Variables

Operating System Environment Variable

Windows PATH

Linux LD_LIBRARY_PATH

Apple (Mac) OS X DYLD_LIBRARY_PATH

Table 1–6 Cache Configuration System Property Value for Various Operating Systems

Operating System System Property

Windows tangosol.coherence.cacheconfig

Linux TangosolCoherenceCacheConfig

Solaris TangosolCoherenceCacheConfig

Deploying Coherence for C++

1-4 Oracle Coherence User's Guide for Oracle Coherence

For example, to set the configuration location on Windows execute:

c:\coherence\coherence-cpp\examples> set
tangosol.coherence.cacheconfig=config\extend-cache-config.xml

Deploying Coherence for C++
Coherence for C++ requires no specialized deployment configuration. Simply link
your application with the Coherence library and follow the configuration instructions.
See the sample applications for examples of build scripts and configuration.

Apple (Mac) OS X TangosolCoherenceCacheConfig

Note: Some OS shells, such as the UNIX bash shell, do not support
environment variables which include the '.' character. In this case, you
may specify the name in camel case, where the first letter, and every
letter following a '.' is capitalized. That is,
"tangosol.coherence.cacheconfig" becomes
"TangosolCoherenceCacheConfig".

Note: When deploying to Microsoft Windows the Visual Studio 2005
SP1 C++ runtime libraries are required. To build the samples a version
of Visual Studio 2005 SP1 or higher is required.

Table 1–6 (Cont.) Cache Configuration System Property Value for Various Operating

Operating System System Property

2

Understanding the Coherence C++ Object Model 2-1

2Understanding the Coherence C++ Object
Model

The Coherence Extend C++ API contains a C++ object model. You should become
familiar with this object model if you want to implement the Coherence API. This
section contains the following information:

Using the Object Model
The following section contains general information for writing code which uses the
object model.

Coherence Namespaces
This coherence namespace contains the following general purpose namespaces:

■ coherence::lang—the essential classes that make up the object model

■ coherence::util—utility code, including collections

■ coherence::net—network and cache

■ coherence::stl—C++ Standard Template Library integration

■ coherence::io—serialization

Although each class is defined within its own header file, you can use
namespace-wide header files to facilitate the inclusion of related classes. We
recommend including, at a minimum, coherence/lang.ns in code that uses this
object model.

Understanding the Base Object
The coherence::lang::Object class is the root of the class hierarchy. This class
provides the common interface for abstractly working with Coherence class instances.
Object is an instantiable class that provides default implementations for the following
functions.

■ equals

■ hashCode

■ clone (optional)

■ toStream (that is, writing an Object to an std::ostream)

See coherence::lang::Object in the C++ API for more information.

Using the Object Model

2-2 Oracle Coherence User's Guide for Oracle Coherence

Automatically Managed Memory
In addition to its public interface, the Object class provides several features used
internally. Of these features, the reference counter is perhaps the most important. It
provides automatic memory management for the object. This automatic management
eliminates many of the problems associated with object reference validity and object
deletion responsibility. This management reduces the potential of programming errors
which may lead to memory leaks or corruption. This results in a stable platform for
building complex systems.

The reference count, and other object "life-cycle" information, operates in an efficient
and thread-safe manner by using lock-free atomic compare-and-set operations. This
allows objects to be safely shared between threads without the risk of corrupting the
count or of the object being unexpectedly deleted due to the action of another thread.

Referencing Managed Objects
To track the number of references to a specific object, there must be a level of
cooperation between pointer assignments and a memory manager (in this case the
object). Essentially the memory manager must be informed each time a pointer is set to
reference a managed object. Using regular C++ pointers, the task of informing the
memory manager would be left up to the programmer as part of each pointer
assignment. In addition to being quite burdensome, the effects of forgetting to inform
the memory manager would lead to memory leaks or corruption. For this reason the
task of informing the memory manager is removed from the application developer,
and placed on the object model, though the use of smart pointers. Smart pointers offer a
syntax similar to normal C++ pointers, but they do the bookkeeping automatically.

The Coherence C++ object model contains a variety of smart pointer types, the most
prominent being:

■ View—A smart pointer that can call only const methods on the referenced object

■ Handle—A smart pointer that can call both const and non-const methods on
the referenced object.

■ Holder—A special type of handle that enables you to reference an object as either
const or non-const. The holder remembers how the object was initially
assigned, and returns only a compatible form.

Other specialized smart pointers are described later in this section, but the View,
Handle, and Holder smart pointers will be used most commonly.

Using handles
By convention each managed class will have these nested-types corresponding to these
handles. For instance the managed coherence::lang::String class defines
String::Handle, String::View, String::Holder.

Assignment of handles Assignment of handles follows normal inheritance assignment
rules. That is, a Handle may be assigned to a View, but a View may not be assigned to
a Handle, just like a const pointer cannot be assigned to a non-const pointer.

Note: In this documentation, the term handle (with a lowercase "h")
refers to the various object model smart pointers. The term Handle
(with an uppercase "H") refers to the specific Handle smart pointer.

Using the Object Model

Understanding the Coherence C++ Object Model 2-3

Dereferencing handles When dereferencing a handle that references NULL, the system
will throw a coherence::lang::NullPointerException instead of triggering a
traditional segmentation fault.

For example, this code would throw a NullPointerException if hs == NULL:

String::Handle hs = getStringFromElsewhere();
cout << "length is " << hs->length() << end1;

Managed Object Instantiation
All managed objects are heap allocated. The reference count—not the
stack—determines when an object can be deleted. To prevent against accidental
stack-based allocations, all constructors are marked protected, and public factory
methods are used to instantiate objects.

The factory method is named create and there is one create method for each
constructor. The create method returns a Handle rather than a raw pointer. For
example, the following code will create a new instance of a string:

String::Handle hs = String::create("hello world");

By comparison, these examples are incorrect and will not compile:

String str("hello world);
String* ps = new String("hello world);

Managed Strings
All objects within the model, including strings, are managed and extend from Object.
Instead of using char* or std::string, the object model uses its own managed
coherence::lang::String class. The String class supports ASCII and the full
Unicode BML character set.

String Instantiation
String objects can easily be constructed from char* or std::string strings, as
shown in these examples:

Example 2–1 Examples of Constructing String Objects

const char* pcstr = "hello world";
std:string stdstr(pcstr);
String::Handle hs = String::create(pcstr);
String::Handle hs2 = String::create(stdstr);

The managed string is a copy of the supplied string and contains no references or
pointers to the original. You can convert back, from a managed String to any other
string type, by using getCString() method. This returns a pointer to the original
const char*. Strings can also be created using the standard C++ << operator, when
coupled with the COH_TO_STRING macro.

Example 2–2 Constructing String Objects with the "<<" Operator

String::Handle hs = COH_TO_STRING("hello " << getName() << " it is currently " <<
getTime());

Using the Object Model

2-4 Oracle Coherence User's Guide for Oracle Coherence

Auto-Boxed Strings
To facilitate the use of quoted string literals, the String::Handle and
String::View support auto-boxing from const char*, and const std::string.
This enables you to write the code shown in the prior samples as:

Example 2–3 Autoboxing Examples

String::Handle hs = "hello world";
String::Handle hs2 = stdstr;

Auto-boxing is also available for other types. See coherence::lang::BoxHandle
for details.

Type Safe Casting
Handles are type safe, in the following example, the compiler will not allow you to
assign an Object::Handle to a String::Handle, because not all Objects are
Strings.

Object::Handle ho = getObjectFromSomewhere();
String::Handel hs = ho; // will not compile

However, this example will compile, as all Strings are Objects.

Example 2–4 Type Safe Casting Examples

String::Handle hs = String::create("hello world");
Object::Handle ho = hs; // will compile

Down Casting
For situations in which you want to down-cast to a derived Object type, you must
perform a dynamic cast using the C++ RTTI (runtime type information) check and
ensure that the cast is valid. The Object model provides helper functions to ease the
syntax.

■ cast<H>(o)—attempt to transform the supplied handle o to type H, throwing an
ClassCastException on failure

■ instanceof<H>(o)—test if a cast of o to H is allowable, returning true for
success, or false for failure

These functions are similar to the standard C++ dynamic_cast<T>, but do not
require access to the raw pointer.

The following example shows how to down cast a Object::Handle to a
String::Handle:

Example 2–5 Down Casting Examples

Object::Handle ho = getObjectFromSomewhere();
String::Handle hs = cast<String::Handle>(ho);

The cast<H> function will throw a coherence::lang::ClassCastException if
the supplied object was not of the expected type. The instanceof<H> function can
be used to test if an Object is of a particular type without risking an exception being
thrown. Such checks or generally only needed for places where the actual type is in
doubt.

Using the Object Model

Understanding the Coherence C++ Object Model 2-5

Example 2–6 Object Type Checking with the instanceof<H> Function

Object::Handle ho = getObjectFromSomewhere();

if (instanceof<String::Handle>(ho))
 {
 String::Handle hs = cast<String::Handle>(ho);
 }
else if (instanceof<Integer32::Handle>(ho))
 {
 Integer32::Handle hn = cast<Integer32::Handle>(ho);
 }
else
 {
 ...
 }

Managed Arrays
Managed arrays are provided by using the coherence::lang::Array<T> template
class. In addition to being managed and adding safe and automatic memory
management, this class includes the overall length of the array, and bounds checked
indexing.

You can index an array by using its Handle's subscript operator, as shown in this
example:

Example 2–7 Indexing an Array

Array<int32_t>::Handle harr = Array<int32_t>::create(10);

int32_t nTotal = 0;
for (size32_t i = 0, c = harr->length; i < c; ++i)
 {
 nTotal += harr[i];
 }

The object model supports arrays of C++ primitives and managed Objects. Arrays of
derived Object types are not supported, only arrays of Object, casting must be
employed to retrieve the derived handle type. Arrays of Objects are technically
Array<MemberHolder<Object> >, and typedef'd to ObjectArray for easier
readability.

Collection Classes
The coherence::util* namespace includes several collection classes and interfaces
that may be useful in your application. These include:

■ coherence::util::Collection —interface

■ coherence::util::List—interface

■ coherence::util::Set—interface

■ coherence::util::Queue—interface

■ coherence::util::Map—interface

■ coherence::util::LinkedList—implementation

■ coherence::util::HashSet—implementation

■ coherence::util::DualQueue—implementation

Using the Object Model

2-6 Oracle Coherence User's Guide for Oracle Coherence

■ coherence::util::HashSet—implementation

■ coherence::util::SafeHashMap—implementation

■ coherence::util::WeakHashMap—implementation

■ coherence::util::IdentityHashMap—implementation

These classes also appear as part of the Coherence Extend API.

Similar to ObjectArray, Collections contain Object::Holders, allowing them
to store any managed object instance type.

Example 2–8 Storing Managed Object Instances

Map::Handle hMap = HashSet::create();
String::View vKey = "hello world";

hMap->put(vKey, Integer32::create(123));

Integer32::Handle hValue = cast<Integer32::Handle>(hMap->get(vKey));

Managed Exceptions
In the object model, exceptions are also managed objects. This enables you to hold
onto caught exceptions as a local variable or data member without the risk of object
slicing.

All Coherence exceptions are defined by using a throwable_spec and derive from
the coherence::lang::Exception class, which derives from Object. Managed
exceptions are not explicitly thrown by using the standard C++ throw statement, but
rather by using a COH_THROW macro. This macro will set stack information, and then
call the exception's raise method, which ultimately calls throw. The resulting thrown
object may be caught an the corresponding exceptions View type, or an inherited
View type. Additionally these managed exceptions may be caught as standard const
std::exception classes. The following example shows a try/catch block with
managed exceptions:

Example 2–9 A Try/Catch Block with Managed Exceptions

try
 {
 Object::Handle h = NULL;
 h->hashCode(); // trigger an exception
 }
catch (NullPointerException::View e)
 {
 cerr << "caught" << e <<endl;
 COH_THROW(e); // rethrow
 }

Object Immutability
In C++ the information of how an object was declared (such as const) is not available
from a pointer or reference to an object. For instance a pointer of type const Foo*,
only indicates that the user of that pointer cannot change the objects state. It does not

Note: This exception could also have been caught as
Exception::View or const std::exception&.

Writing New Managed Classes

Understanding the Coherence C++ Object Model 2-7

indicate if the referenced object was actually declared const, and is guaranteed not to
change. The object model adds a runtime immutability feature to allow the
identification of objects which can no longer change state.

The Object class maintains two reference counters: one for Handles and one for
Views. If an object is referenced only from Views, then it is by definition immutable, as
Views cannot change the state, and Handles cannot be obtained from Views. The
isImmutable() method (included in the Object class) can test for this condition.
The method is virtual, allowing subclasses to alter the definition of immutable. For
example, String contains no non-const methods, and therefore has an isImmutable()
method that always returns true.

Note that once immutable, an object cannot revert to being mutable. You cannot cast
away const-ness to turn a Handle into a View as this would violate the proved
immutability.

Immutability is important with respect to caching. The Coherence NearCache and
ContinuouQueryCache can take advantage of the immutability to determine if a
direct reference of an object can be stored in the cache, or if a copy must be created.
Additionally, knowing that an object cannot change allows safe multi-threaded
interaction without synchronization.

Integrating Existing Classes into the Object Model
Frequently there will be the need to integrate existing classes into the object model. A
typical example would be the need to store a data-object into a Coherence cache,
which only supports storage of managed objects. As it would not be reasonable to
require that pre-existing classes be modified to extend from
coherence::lang::Object, the object model provides an adapter which will
automatically convert a non-managed plain old C++ class instance into a managed
class instance at runtime.

This is accomplished by using the coherence::lang::Managed<T> template class.
This template class extends from Object and from the supplied template parameter
type T, effectively producing a new class which is both an Object and a T. The new
class can be initialized from a T, and converted back to a T. The result is an easy to use,
yet very powerful bridge between managed and non-managed code.

See the API doc for coherence::lang::Managed for details and examples.

Writing New Managed Classes
The following section provides information necessary to write new managed classes,
that is, classes which extend from Object. The creation of new managed classes is
required when you are creating new EventListeners, EntryProcessors, or
Filter types. They are not required when you are working with existing C++ data
objects or making use of the Coherence C++ API. See the previous section for details
on integration non-managed classes into the object model.

Specification-Based Managed Class Definition
Specification-based definitions, or "specs" enables you to quickly define managed
classes in C++.

Specification-based definitions are helpful when you are writing your own
implementation of managed objects.

There are various forms of specs used to create different class types:

Writing New Managed Classes

2-8 Oracle Coherence User's Guide for Oracle Coherence

■ class_spec—standard instantiatable class definitions

■ cloneable_spec—cloneable class definitions

■ abstract_spec—non-instantiatable class definitions, with zero or more pure
virtual methods

■ interface_spec—for defining interfaces (pure virtual, multiply inheritable
classes)

■ throwable_spec—managed classes capable of being thrown as exceptions

Specs automatically define these features on the class being spec'd:

■ Handles, Views, Holders

■ static create() methods which delegate to protected constructors

■ virtual clone() method delegating to the copy constructor

■ virtual sizeOf() method based on ::sizeof()

■ super typedef for referencing the class from which the defined class derives

■ inheritance from coherence::lang::Object, when no parent class is specified
by using extends<>

To define a class using specs, the class publicly inherits from one of the above specs.
Each of these specs are parametrized templates. The parameters are as follows:

■ The name of the class being defined.

■ The class to publicly inherit from, specified by using an extends<> statement,
defaults to extends<Object>

■ This element is not supplied in interface_spec

■ Except in the case of extends<Object>, the parent class is not derived from
virtually

■ A list of interfaces implemented by the class, specified by using an
implements<> statement

■ All interfaces are derived from using public virtual inheritance

Note that the extends<> parameter is note used in defining interfaces.

Example 2–10 illustrates using interface_spec to define a Comparable interface:

Example 2–10 An Interface Defined by interface_spec

class Comparable
 : public interface_spec<Comparable>
 {
 public:
 virtual int32_t compareTo(Object::View v) const = 0;
 };

Example 2–11 illustrates using interface_spec to define a derived interface
Number:

Example 2–11 A Derived Interface Defined by interface_spec

class Number
 : public interface_spec<Number,
 implements<Comparable> >
 {

Writing New Managed Classes

Understanding the Coherence C++ Object Model 2-9

 public:
 virtual int32_t getValue() const = 0;
 };

Next a cloneable_spec is used to produce an implementation. This is illustrated in
in Example 2–12.

Example 2–12 An Implementation Defined by cloneable_spec

class Integer
 : public cloneable_spec<Integer,
 extends<Object>,
 implements<Number> >
 {
 friend class factory<Integer>;

 protected:
 Integer(int32_t n)
 : super(), m_n(n)
 {
 }

 Integer(const Integer& that)
 : super(that), m_n(that.m_n)
 {
 }

 public:
 virtual int32_t getValue() const
 {
 return m_n;
 }

 virtual int32_t compareTo(Object::View v) const
 {
 return getValue() - cast<Integer::View>(v)->getValue();
 }

 virtual void toStream(std::ostream& out) const
 {
 out << getValue();
 }

 private:
 int32_t m_n;
 };

The class definition in Example 2–12 is the equivalent the non-spec based definitions
in Example 2–13.

Example 2–13 Defining a Class Without the use of specs

class Integer
 : public virtual Object, public virtual Number

Note: To support the auto-generated create methods, instantiatable
classes must declare the coherence::lang::factory<> template
as a friend. By convention this is the first statement within the class
body.

Writing New Managed Classes

2-10 Oracle Coherence User's Guide for Oracle Coherence

 {
 public:
 typedef TypedHandle<const Integer> View; // was auto-generated
 typedef TypedHandle<Integer> Handle; // was auto-generated
 typedef TypedHolder<Integer> Holder; // was auto-generated
 typedef super Object; // was auto-generated

 // was auto-generated
 static Integer::Handle create(const int32_t& n)
 {
 return new Integer(n);
 }

 protected:
 Integer(int32_t n)
 : super(), m_n(n)
 {
 }

 Integer(const Integer& that)
 : super(that), m_n(that.n)
 {
 }

 public:
 virtual int32_t getValue() const
 {
 return m_n;
 }

 virtual int32_t compareTo(Object::View v) const
 {
 return getValue() - cast<Integer::View>(v)->getValue();
 }

 virtual void toStream(std::ostream& out) const
 {
 out << getValue();
 }

 // was auto-generated
 virtual Object::Handle clone() const
 {
 return new Integer(*this);
 }

 // was auto-generated
 virtual size32_t sizeOf() const
 {
 return ::sizeof(Integer);
 }

 private:
 int32_t m_n;
 };

Example 2–14 illustrates using the spec'd class:

Writing New Managed Classes

Understanding the Coherence C++ Object Model 2-11

Example 2–14 Using specs to Define a Class

Integer::Handle hNum1 = Integer::create(123);
Integer::Handle hNum2 = Integer::create(456);

if (hNum1->compareTo(hNum2) > 0)
 {
 std::cout << hNum1 << " is greater then " << hNum2 << std::endl;
 }

Equality, Hashing, Cloning, Immutability, and Serialization
What do all these concepts have in common? They all identify the state of an object,
and as such will generally have similar implementation concerns. Simply put all data
members referenced in one of these methods, will likely need to be referenced in all of
the methods. Conversely any data members which are not referenced by one, should
likely not be referenced by any of these methods. Consider the simple case of a
HashSet::Entry, which contains the well known key and value data members.
Certainly these are to be considered in the equals method, and would likely be tested
for equality by using a call to their own equals method, rather than through reference
equality. Now what if this Entry also contains as part of the implementation of the
HashSet a handle to the next Entry within the HashSet's bucket, and perhaps also
contains a handle back to the HashSet itself. Should these be considered in equals as
well? Likely not, it would seem reasonable that comparing two entries consisting of
equal keys and values, from two maps should be considered equal. Following this line
of thought the hashCode method on Entry would completely ignore data members
except for key and value, and the Entry's hashCode would be computed using the
results of its key and value hashCode, rather then using their identity hashCode. that
is, a deep equality check in equals implies a deep hash in hashCode. Moving onto
clone it can be seen that in cloning an Entry, we would not want to clone all its data
member, but only the key and value. Obviously cloning the parent Map as part of clone
the Entry would make no sense, and a similar argument can be made for cloning the
handle to the next Entry. This line of thinking can be extended to the isImmutable
method, and to serialization as well. While it is certainly not hard and fast rule it is
worth considering this approach when implementing any of these methods.

Threading
The object model includes managed threads, which allows for easy creation of
platform independent, multi-threaded, applications. The threading abstraction
includes support for creating, interrupting, and joining threads. Thread local storage is
available from the coherence::lang::ThreadLocal class. Thread dumps are also
available for diagnostic and troubleshooting purposes. The managed threads are
ultimately wrappers around the system's native thread type, such as POSIX or
Windows Threads. This threading abstraction is used internally by Coherence, but is
available for the application, if necessary.

Example 2–15 illustrates how to create a new Runnable instance and spawn a thread:

Example 2–15 Creating a Runnable Instance and Spawning a Thread

class HelloRunner
 : public class_spec<HelloRunner,
 extends<Object>,
 implements<Runnable> >
 {
 friend class factory<HelloRunner>;

Writing New Managed Classes

2-12 Oracle Coherence User's Guide for Oracle Coherence

 protected:
 HelloRunner(int cReps)
 : super(), m_cReps(cReps)
 {
 }

 public:
 virtual void run()
 {
 for (int i = 0; i < m_Reps; ++i)
 {
 Thread::sleep(1000);
 std::cout << "hello world" << std::endl;
 }
 }

 protected:
 int m_cReps;
 };

...

Thread::Handle hThread = Thread::create(HelloRunner::create(10));
hThread->start();
hThread->join();

Refer to coherence::lang::Thread and coherence::lang::Runnable for
more information.

Weak References
The primary functional limitation of a reference counting scheme is automatic cleanup
of cyclical object graphs. Consider the simple bi-directional relationship illustrated in
Figure 2–1.

Figure 2–1 A Bi-Directional Relationship

This figure is described in the text.

In this picture, both A and B have a reference count of one, which keeps them active.
What they don't realize is that they are the only things keeping each other active, and
that no external references to them exist. Reference counting alone in unable to handle
these self sustaining graphs, and memory would be leaked.

The provided mechanism for dealing with graphs is weak references. A weak
reference is one which will reference an object, but not prevent it from being deleted.
As illustrated in Figure 2–2, the A->B->A issue could be resolved by changing it to the
following.

Writing New Managed Classes

Understanding the Coherence C++ Object Model 2-13

Figure 2–2 Establishing a Weak Reference

This figure is described in the text.

Where A now has a weak reference to B. If B were to reach a point where it was only
referenced weakly, it would clear all weak references to itself and then be deleted. In
this simple example that would also trigger the deletion of A, as B had held the only
reference to A.

Weak references allow for construction of more complicated structures then this. But it
becomes necessary to adopt a convention for which references are weak and which are
strong. Consider a tree illustrated in Figure 2–3. The tree consists of nodes A, B, C; and
two external references to the tree X, and Y.

Figure 2–3 Weak and Strong References to a Tree

This figure is described in the text.

In this tree parent (A) use strong references to children (B, C), and children use weak
references to their parent. With the picture as it is, reference Y could navigate the entire
tree, starting at child B, and moving up to A, and then down to C. But what if
reference X were to be reset to NULL? This would leave A only being weakly
referenced and it would clear all weak references to itself, and be deleted. In deleting
itself there would no longer be any references to C, which would also be deleted. At
this point reference Y, without having taken any action would now refer to the
situation illustrated in Figure 2–4.

Figure 2–4 Artifacts after Deleting the Weak References

This figure is described in the text.

This is not necessarily a problem, just a possibility which must be considered when
using weak references. To work around this issue, the holder of Y would also likely
need to maintain a reference to A to ensure the tree did not dissolve away
unexpectedly.

Writing New Managed Classes

2-14 Oracle Coherence User's Guide for Oracle Coherence

See the Javadoc for coherence::lang::WeakReference, WeakHandle, and
WeakView for usage details.

Virtual Constructors
As is typical in C++, referencing an object under construction can be dangerous.
Specifically references to this are to be avoided within a constructor, as the object
initialization has not yet completed. For managed objects, creating a handle to this
from the constructor will in most cases cause the object to be destructed before it ever
finishes being created. To address this, the object model includes support for virtual
constructors. The virtual constructor onInit is defined by Object and can be
overridden on derived classes. This method is called automatically by the object model
just after construction completes, and just before the new object is returned from its
static create method. Within the onInit method it is safe to reference this, to call
virtual functions, and to hand out references to the new object to other class instances.
Any derived implementation of onInit must include a call to super::onInit() to
allow the parent class to also initialize itself.

Advanced Handle Types
In addition to the Handle and View smart pointers (discussed previously), the object
model contains several other specialized variants that can be used. For the most part
use of these specialized smart pointers is limited to writing new managed classes, and
they will not show up in normal application code.

Thread Safety
Although the object model includes a thread-safe reference count, this does not
provide automatic thread safety for the state of derived classes. As is typical it is up to
each individual class implementation to choose to provide for higher level of thread
safety. Regardless of the presence or lack of higher level thread-safety, the reference
count remains thread-safe.

Table 2–1 Advanced Handle Types Supported by Coherence for C++

Type Thread-safe? View Notes

coherence:lang:TypedHandle<T> No Conditional
on T

The implementation of Handle and View

coherence:lang:BoxHandle<T> No Conditional
on T

Allows automatic creating of managed
objects from primitive types.

coherence:lang:TypedHolder<T> No May May act as a Handle or a View. Basic types
stored in collections

coherence:lang:Immutable<T> No Yes Ensures const-ness of referring object.

coherence:lang:WeakHandle<T> Yes No Does not prevent destruction of referring
object.

coherence:lang:WeakView<T> Yes Yes Does not prevent destruction of referring
object.

coherence:lang:MemberHandle<T> Yes No Transfers const-ness of enclosing object.

coherence:lang:MemberView<T> Yes Yes Thread-safe View.

coherence:lang:MemberHolder<T> Yes May May act a thread-safe Handle or View.

Writing New Managed Classes

Understanding the Coherence C++ Object Model 2-15

Synchronization and Notification
Every Object in the object model can be a point of synchronization and notification.
To synchronize an object and acquire its internal monitor, use a COH_SYNCHRONIZED
macro code block, as shown in Example 2–16:

Example 2–16 A Sample COH_SYNCHRONIZED Macro Code Block

SomeClass::Handle h = getObjectFromSomewhere();

COH_SYNCHRONIZED (h)
 {
 // monitor of Object referenced by h has been acquired

 if (h->checkSomeState())
 {
 h->actOnThatState();
 }
 } // monitor is automatically released

The COH_SYNCHRONIZED block performs the monitor acquisition and release. You can
safely exit the block with return, throw, COH_THROW, break, continue, and goto
statements.

The Object class includes wait(), wait(timed), notify(), and notifyAll()
methods for notification purposes. To call these methods, the caller must have
acquired the objects's monitor. Refer to coherence::lang::Object for details.

Read-write locks are also provided see coherence::util::ThreadGate for details.

Thread Safe Handles
The Handle, View, and Holder inner types defined on managed classes are not
thread-safe. That is it is not safe without some form of synchronization to have
multiple threads use the same handle if any of them may change the handle to
reference another object. There is an important distinction here, we are discussing the
thread-safety of the handle, not the object referenced by the handle.

This lack of thread-safety is an performance optimization and assumes that the vast
majority of handles are stack allocated. Stack allocated handles, with very few
provisos are by their very nature thread-safe. The provisos are that it is not a static or
global variable, and that references to the handle are not shared with other threads.

There are then two types of code which must account for thread-safety of handles.

■ Managed class implementations. It should be assumed that any instance of a
managed class may be shared by multiple threads. Though this may not be strictly
true, if a handle to the object is supplied to code outside of your control (for
instance put into a cache), there is no guarantee that the object will not made be
visible to other threads.

■ Non-managed multi-threaded application code.

There are optimizations in place for the first case, namely the special thread-safe
handle types:

■ coherence::lang::MemberHandle<T>—thread-safe version of T::Handle

■ coherence::lang::MemberView<T>—thread-safe version of T::View

■ coherence::lang::MemberHolder<T>—thread-safe version of T::Holder

■ coherence::lang::WeakHandle<T>—thread-safe weak handle to T

Writing New Managed Classes

2-16 Oracle Coherence User's Guide for Oracle Coherence

■ coherence::lang::WeakView<T>—thread-safe weak view to T

These handle types may be read and written from multiple thread without the need
for additional synchronization. They are primarily intended for use as the
data-members of other managed classes, and they make use of their parent's internal
atomic state to provide thread-safety. When using these handle types it is
recommended that they be read into a normal stack-based handle if they will be
accessed more then once within a code block. This assignment to a normal stack-based
handle is thread-safe, and once completed allows for essentially free dereferencing of
the stack-based handle. Note that when initializing thread-safe handles a reference to
the parent class must be supplied as the first parameter, this reference can be obtained
by calling self() on the parent object.

Example 2–17 illustrates a trivial example of such a usage:

Example 2–17 Thread-safe Handle

class Employee
 : public class_spec<Employee>
 {
 friend class factory<Employee>;

 protected:
 Employee(String::View vsName, int32_t nId)
 : super(), m_vsName(self(), vsName), m_nId(nId)
 {
 }

 public:
 String::View getName() const
 {
 return m_vsName; // read is automatically thread-safe
 }

 void setName(String::View vsName)
 {
 m_vsName = vsName; // write is automatically thread-safe
 }

 int32_t getId() const
 {
 return m_nId;
 }

 private:
 MemberView<String> m_vsName;
 const int32_t m_nId;
 };

The same basic technique can be applied to non-managed classes as well. This is made
possible, by using the defined synchronization point as the "parent" for the thread-safe
handles. With this approach you must ensure that the "parent" m_hMutex Object
outlives the thread-safe handle m_vsName. This is easily accomplished by declaring
them as data-members of the same class, and declaring the "parent" before the handle.
This is illustrated in Example 2–18:

Example 2–18 Thread-safe Handle as a Non-Managed Class

class Employee
 {

Diagnostics and Troubleshooting

Understanding the Coherence C++ Object Model 2-17

 public:
 Employee(String::View vsName, int32_t nId)
 : m_hMutex(Object::create()), m_vsName(*m_hMutex, vsName), m_nId(nId)
 {
 }

 public:
 String::View getName() const
 {
 return m_vsName;
 }

 void setName(String::View vsName)
 {
 m_vsName = vsName;
 }

 int32_t getId() const
 {
 return m_nId;
 }

 private:
 const Object::Handle m_hMutex;
 MemberView<String> m_vsName;
 const int32_t m_nId;
 };

Diagnostics and Troubleshooting
This section provides information which can aid in diagnosing issues in applications
which make use of the object mode.

Thread Dumps
Thread dumps are available for diagnostic and troubleshooting purposes. These
thread dumps also include the stack trace. You can generate a thread dump by
performing a CTRL+BREAK (Windows) or a CTRL+BACKSLASH (UNIX). Example 2–19
illustrates a sample thread dump:

Example 2–19 Sample Thread Dump

Thread dump Oracle Coherence for C++ v3.4b397 (Pre-release) (Apple Mac OS X x86
debug) pid=0xf853; spanning 190ms

"main" tid=0x101790 runnable: <native>
 at coherence::lang::Object::wait(long long) const
 at coherence::lang::Thread::dumpStacks(std::ostream&, long long)
 at main
 at start

"coherence::util::logging::Logger" tid=0x127eb0 runnable: Daemon{State=DAEMON_
RUNNING, Notification=false,
StartTimeStamp=1216390067197, WaitTime=0,
ThreadName=coherence::util::logging::Logger}
 at coherence::lang::Object::wait(long long) const
 at coherence::component::util::Daemon::onWait()
 at coherence::component::util::Daemon::run()
 at coherence::lang::Thread::run()

Diagnostics and Troubleshooting

2-18 Oracle Coherence User's Guide for Oracle Coherence

Memory Leak Detection
While the managed object model reference counting helps to prevent memory leaks
they are still possible. The most common way in which they are triggered is through
cyclical object graphs. The object model includes heap analysis support to help
identify if leaks are occurring, by tracking the number of live objects in the system.
Comparing this value over time provides a simple means of detecting if the object
count is consistently increasing, and thereby likely leaking. Once a probable leak has
been detected, the heap analyzer can help track it down as well, by provided statistics
on what types of objects appeared to have leaked.

Coherence provides a pluggable coherence::lang::HeapAnalyzer interface. The
HeapAnalyzer implementation can be specified by using the
tangosol.coherence.heap.analyzer system property. The property can be set
to one of the following values:

■ none—No heap analysis will be performed.

■ object—The coherence::lang::ObjectCountHeapAnalyzer will be used.
It provides simple heap analysis based solely on the count of the number of live
objects in the system. This is the default analyzer.

■ class—The coherence::lang::ClassBasedHeapAnalyzer will be used. It
provides heap analysis at the class level, that is it tracks the number of live
instances of each class, and the associated byte level usage.

■ custom—Lets you define your own analysis routines. You specify the name of a
class registered with the SystemClassLoader.

Heap information is returned when you perform a CTRL+BREAK (Windows) or
CTRL+BACKSLASH (UNIX). The following is an example of heap analysis information
is returned by the class based analyzer:

Example 2–20 Data Returned by a Heap Analyzer

Space Count Class
44 B 1 coherence::lang::Integer32
70 B 1 coherence::lang::String
132 B 1 coherence::util::SafeHashMap::Entry

Total: 246 B, 3 objects, 3 classes

The above example was the heap analysis delta resulting from the insertion of a new
entry into a Map.

Memory Corruption Detection
For all that the object model does to prevent memory corruption, it will typically be
used along side non-managed code which could cause corruption. To combat this, the
object model includes memory corruption detection support. When enabled, the object
model's memory allocator will pad the beginning and end of each object allocation by
a configurable number of pad bytes. This padding is encoded with a pattern which can
later be validated to ensure that the pad has not been touched. If memory corruption
occurs, and hits one of the pads, subsequent validations will detect the corruption.
Validation is performed when the object is destroyed.

The debug version of the Coherence C++ API has padding enabled by default, using a
pad size of 2*(word size), on each side of an object allocation. In a 32-bit build, this
adds 16 bytes per object. Increasing the size of the padding will increase the chances of
corruption hitting a pad, and thus the chance of detecting corruption.

Diagnostics and Troubleshooting

Understanding the Coherence C++ Object Model 2-19

The size of the pad can be configured by using the tangosol.coherence.heap.padding
system property, which can be set to the number of bytes for the pre/post pad. Setting
this system property to a non-zero value will enable the feature, and is available even
in release builds.

Example 2–21 illustrates the results from an instance of memory corruption detection:

Example 2–21 Results from a Memory Corruption Run

Error during ~MemberHolder: coherence::lang::IllegalStateException: memory
corruption detected in 5B post-padding at offset 4 of memory allocated at 0x132095

Diagnostics and Troubleshooting

2-20 Oracle Coherence User's Guide for Oracle Coherence

3

Building Integration Objects for C++ Clients 3-1

3Building Integration Objects for C++ Clients

Enabling C++ clients to successfully store C++ based objects within a Coherence
cluster relies on a platform-independent serialization format known as POF (Portable
Object Format). POF allows value objects to be encoded into a binary stream in such a
way that the platform and language origin of the object is irrelevant.

While the Coherence C++ API includes several POF serializable classes, custom data
types require serialization support.

Serialization Options
While the Coherence C++ API offers a single serialization format (POF), it offers a
variety of APIs for making a class serializable. Ultimately whichever approach is used,
the same binary POF format is produced. The following approaches are available for
making a class serializable:

■ Use the Managed<T> adapter template, and add external free-function serializers.
See "Managed<T> (Free-Function Serialization)" on page 3-2 for more information.

■ Modify the data object to extend Object, and implement the PortableObject
interface, to allow for object to self-serialize. See "PortableObject
(Self-Serialization)" on page 3-4 for more information.

■ Modify the data object to extend Object, and produce a PofSerializer class to
perform external serialization. See "PofSerializer (External Serialization)" on
page 3-6 for more information.

Table 3–1 lists some of the requirements and limitations of each approach.

Note: This document assumes familiarity with the Coherence C++
Object Model, including advanced concepts such as
specification-based class definitions. For more information on these
topics, see Chapter 2, "Understanding the Coherence C++ Object
Model."

Table 3–1 Requirements and Limitations of Serialization Options

Approach
Requires derivation
from Object

Supports const
data-members

External serialization
routine

Requires zero-arg
constructor

Managed<T> No Yes Yes Yes

PortableObject Yes No No Yes

PofSerializer Yes Yes Yes No

Serialization Options

3-2 Oracle Coherence User's Guide for Oracle Coherence

All of these approaches share certain similarities:

■ you must implement serialization routines that will allow the data items to be
encoded to POF

■ the data object's fields are identified by using numeric indices

■ the data object class and serialization mechanism must be registered with
Coherence

■ data objects used as cache keys, must support equality comparisons, and hashing

Managed<T> (Free-Function Serialization)
For most pre-existing data object classes, the use of Managed<T> offers the easiest
means of integrating with Coherence for C++.

For a non-managed class to be compatible with Managed<T> it must have the
following characteristics:

■ zero parameter constructor (public or protected): CustomType::CustomType()

■ copy constructor (public or protected): CustomType::CustomType(const
CustomType&)

■ equality comparison operator: bool operator==(const CustomType&, const
CustomType&)

■ std::ostream output function: std::ostream&
operator<<(std::ostream&, const CustomType&)

■ hash function: size_t hash_value(const CustomType&)

The following example presents a simple Address class, which has no direct
knowledge of Coherence, but is suitable for use with the Managed<T> template.

Example 3–1 A Non-Managed Class

class Address
 {
 public:
 Address(const std::string& sCity, const std::String& sState, int nZip)
 : m_sCity(sCity), m_sState(sState), m_nZip(nZip) {}

 Address(const Address& that) // required by Managed<T>
 : m_sCity(that.m_sCity), m_sState(that.m_sState), m_nZip(that.m_nZip) {}

 protected:
 Address() // required by Managed<T>
 : m_nZip(0) {}

 public:
 std::string getCity() const {return m_sCity;}
 std::string getState() const {return m_sState;}
 int getZip() const {return m_nZip;}

 private:
 const std::string m_sCity;
 const std::string m_sState;

Note: In the interest of brevity, example class definitions are in-lined
within the declaration.

Serialization Options

Building Integration Objects for C++ Clients 3-3

 const int m_nZip;
 };

bool operator==(const Address& addra, const Address& addrb) // required by
Managed<T>
 {
 return addra.getZip() == addrb.getZip() &&
 addra.getState() == addrb.getState() &&
 addra.getCity() == addrb.getCity();
 }

std::ostream& operator<<(std::ostream& out, const Address& addr) // required by
Managed<T>
 {
 out << addr.getCity() << ", " << addr.getState() << " " << addr.getZip();
 return out;
 }

size_t hash_value(const Address& addr) // required by Managed<T>
 {
 return (size_t) addr.getZip();
 }

When combined with Managed<T>, this simple class definition becomes a true
"managed object", and is usable by the Coherence C++ API. This definition has yet to
address serialization. Serialization support is added Example 3–2:

Example 3–2 Managed Class using Serialization

#include "coherence/io/pof/SystemPofContext.hpp"

#include "Address.hpp"

using namespace coherence::io::pof;

COH_REGISTER_MANAGED_CLASS(1234, Address); // type ID registration—this must
 // appear in the .cpp not the .hpp

template<> void serialize<Address>(PofWriter::Handle hOut, const Address& addr)
 {
 hOut->writeString(0, addr.getCity());
 hOut->writeString(1, addr.getState());
 hOut->writeInt32 (2, addr.getZip());
 }

template<> Address deserialize<Address>(PofReader::Handle hIn)
 {
 std::string sCity = hIn->readString(0);
 std::string sState = hIn->readString(1);
 int nZip = hIn->readInt32 (2);
 return Address(sCity, sState, nZip);
 }

Note: The serialization routines must have knowledge of Coherence.
They do not, however, need to be part of the class definition file. They
can be placed in an independent source file, and if they are linked into
the final application, they will take effect.

Serialization Options

3-4 Oracle Coherence User's Guide for Oracle Coherence

With the above pieces in place, Example 3–3 illustrates instances of the Address class
wrapped by using Managed<T> as Managed<Address>, and supplied to the
Coherence APIs:

Example 3–3 Instances of a Class Wrapped with Managed<T>

// construct the non-managed version as usual
Address office("Redwood Shores", "CA", 94065);

// the managed version can be initialized from the non-managed version
// the result is a new object, which does not reference the original
Managed<Address>::View vOffice = Managed<Address>::create(office);
String::View vKey = "Oracle";

// the managed version is suitable for use with caches
hCache->put(vKey, vAddr);
vOffice = cast<Managed<Address>::View>(hCache->get(vKey));

// the non-managed class's public methods/fields remain accessible
assert(vOffice->getCity() == office.getCity());
assert(vOffice->getState() == office.getState());
assert(vOffice->getZip() == office.getZip());

// conversion back to the non-managed type may be performed using the
// non-managed class's copy constructor.
Address officeOut = *vOffice;

PortableObject (Self-Serialization)
The PortableObject interface is supported by the Java, .NET, and C++ versions of
Coherence. It is an interface similar in concept to java.io.Externalizable, which
allows an object to control how it is serialized. Any class which extends from
coherence::lang::Object is free to implement the
coherence::io::pof::PortableObject interface to add serialization support.
Note that the class must extend from Object, which then dictates its life cycle.

In Example 3–4, we can re-write the above Address example as a managed class, and
implement the PortableObject interface. In doing so, we are choosing to fully
embrace the Coherence object model as part of the definition of the class, for instance
using coherence::lang::String rather then std::string for data members.

Example 3–4 A Managed Class that Implements PortableObject

#include "coherence/lang.ns"

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"

#include "coherence/io/pof/SystemPofContext.hpp"

using namespace coherence::lang;

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;

class Address
 : public cloneable_spec<Address,
 extends<Object>,
 implements<PortableObject> >

Serialization Options

Building Integration Objects for C++ Clients 3-5

 {
 friend class factory<Address>;

 protected: // constructors
 Address(String::View vsCity, String::View vsState, int32_t nZip)
 : m_vsCity(self(), vsCity), m_vsState(self(), vsState), m_nZip(nZip) {}

 Address(const Address& that)
 : super(that), m_vsCity(self(), that.m_vsCity), m_sState(self(), that.m_
vsState), m_nZip(that.m_nZip) {}

 Address() // required by PortableObject
 : m_nZip(0) {}

 public: // Address interface virtual String::View getCity() const {return
m_vsCity;}
 virtual String::View getState() const {return m_vsState;}
 virtual int32_t getZip() const {return m_nZip;}

 public: // PortableObject interface virtual void
writeExternal(PofWriter::Handle hOut) const
 {
 hOut->writeString(0, getCity());
 hOut->writeString(1, getState());
 hOut->writeInt32 (2, getZip());
 }

 virtual void readExternal(PofReader::Handle hIn)
 {
 m_vsCity = hIn->readString(0);
 m_vsState = hIn->readString(1);
 m_nZip = hIn->readInt32 (2);
 }

 public: // Objectinterface virtual bool equals(Object::View that) const
 {
 if (instanceof<Address::View>(that))
 {
 Address::View vThat = cast<Address::View>(that);

 return getZip() == vThat->getZip() &&
 Object::equals(getState(), vThat->getState()) &&
 Object::equals(getCity(), vThat->getCity());
 }

 return false;
 }

 virtual size32_t hashCode() const
 {
 return (size32_t) m_nZip;
 }

 virtual void toStream(std::ostream& out) const
 {
 out << getCity() << ", " << getState() << " " << getZip();
 }

 private:
 MemberView<String> m_vsCity;

Serialization Options

3-6 Oracle Coherence User's Guide for Oracle Coherence

 MemberView<String> m_vsState;
 int32_t m_nZip;
 };
COH_REGISTER_PORTABLE_CLASS(1234, Address); // type ID registration—this must
 // appear in the .cpp not the .hpp

Example 3–5 illustrates a managed variant of the Address that does not require the
use of the Managed<T> adapter and can be used directly with the Coherence API:

Example 3–5 A Managed Class without Managed<T>

Address::View vAddr = Address::create("Redwood Shores", "CA", 94065);
String::View vKey = "Oracle";

hCache->put(vKey, vAddr);
Address::View vOffice = cast<Address::View>(hCache->get(vKey));

Serialization by using PortableObject is a good choice when the application has
already decided to make use of the Coherence object model for representing its data
objects. One drawback to PortableObject is that it does not easily support const data
members, as the readExternal method is called after construction, and must assign
these values.

PofSerializer (External Serialization)
The third serialization option is also the lowest level one. PofSerializers are
classes that provide the serialization logic for other classes. For example, we will write
an example AddressSerializer which can serialize a non-PortableObject
version of the above managed Address class. Under the covers the prior two
approaches were delegating through PofSerializers, they were just being created
automatically rather then explicitly. In most cases, it will not be necessary to use this
approach, as either the Managed<T> or PortableObject approaches will suffice.
This approach is primarily of interest when you have a managed object with const
data members. Consider Example 3–6, a non-PortableObject version of a managed
Address.

Example 3–6 A non-PortableObject Version of a Managed Class

#include "coherence/lang.ns"

using namespace coherence::lang;

class Address
 : public cloneable_spec<Address> // extends<Object> is implied
 {
 friend class factory<Address>;

 protected: // constructors
 Address(String::View vsCity, String::View vsState, int32_t nZip)
 : m_vsCity(vsCity), m_vsState(vsState), m_nZip(nZip) {}

 Address(const Address& that)
 : super(that), m_vsCity(that.m_vsCity), m_sState(that.m_vsState), m_
nZip(that.m_nZip) {}

 public: // Address interface virtual String::View getCity() const {return
m_vsCity;}
 virtual String::View getState() const {return m_vsState;}

Serialization Options

Building Integration Objects for C++ Clients 3-7

 virtual int32_t getZip() const {return m_nZip;}

 public: // Objectinterface virtual bool equals(Object::View that) const
 {
 if (instanceof<Address::View>(that))
 {
 Address::View vThat = cast<Address::View>(that);

 return getZip() == vThat->getZip() &&
 Object::equals(getState(), vThat->getState()) &&
 Object::equals(getCity(), vThat->getCity());
 }

 return false;
 }

 virtual size32_t hashCode() const
 {
 return (size32_t) m_nZip;
 }

 virtual void toStream(std::ostream& out) const
 {
 out << getCity() << ", " << getState() << " " << getZip();
 }

 private:
 const String::View m_vsCity;
 const String::View m_vsState;
 const int32_t m_nZip;
 };

Note that this version uses const data members, which makes it not well-suited for
PortableObject. Example 3–7 illustrates an external class, AddressSerializer,
which will be registered as being responsible for serialization of Address instances.

Example 3–7 An External Class Responsible for Serialization

#include "coherence/lang.ns"

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"
#include "coherence/io/pof/SystemPofContext.hpp"

#include "Address.hpp"

using namespace coherence::lang;

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;

class AddressSerializer
 : public class_spec<AddressSerializer,
 extends<Object>,
 implements<PofSerializer> >
 {
 friend class factory<AddressSerializer>;

 protected:

POF Registration

3-8 Oracle Coherence User's Guide for Oracle Coherence

 AddressSerializer();

 public: // PofSerializer interface virtual void serialize(PofWriter::Handle
hOut, Object::View v) const
 {
 Address::View vAddr = cast<Address::View>(v);
 hOut->writeString(0, vAddr->getCity());
 hOut->writeString(1, vAddr->getState());
 hOut->writeInt32 (2, vAddr->getZip());
 hOut->writeRemainder(NULL);
 }

 virtual Object::Holder deserialize(PofReader::Handle hIn) const
 {
 String::View vsCity = hIn->readString(0);
 String::View vsState = hIn->readString(1);
 int32_t nZip = hIn->readInt32 (2);
 hIn->readRemainder();

 return Address::create(vsCity, vsState, nZip);
 }
 };
COH_REGISTER_POF_SERIALIZER(1234, TypedBarrenClass<Address>::create(),
AddressSerializer::create()); // This must appear in the .cpp not the .hpp

Usage of the Address remains unchanged:

Address::View vAddr = Address::create("Redwood Shores", "CA", 94065);
String::View vKey = "Oracle";

hCache->put(vKey, vAddr);
Address::View vOffice = cast<Address::View>(hCache->get(vKey));

POF Registration
In addition to being made serializable, each class must also be associated with numeric
type IDs. These IDs are well-known across the cluster. Within the cluster, the
ID-to-class mapping is configured by using POF user type configuration elements;
within C++, the mapping is embedded within the class definition in the form of an ID
registration, which is placed within the class's .cpp source file.

The registration technique differs slightly with each serialization approach:

■ COH_REGISTER_MANAGED_CLASS(ID, TYPE)—for use with Managed<T>

■ COH_REGISTER_PORTABLE_CLASS(ID, TYPE)—for use with
PortableObject

■ COH_REGISTER_POF_SERIALIZER(ID, CLASS, SERIALIZER)—for use with
PofSerializer

Examples of these registrations can be found in above examples.

Note: Registrations must appear only in the implementation (.cpp)
files.

Performance

Building Integration Objects for C++ Clients 3-9

Need for Java Classes
After completing any of the above approaches your data object will be ready to be
stored within the Coherence cluster. This will allow you to perform get and put based
operations with your objects. If however you want to make use of more advanced
features of Coherence, such as queries, or entry processors you will need to write some
Java code. For these advanced features to work the Coherence Java based cache servers
need to be able to interact with your data object, rather then simply holding onto a
serialized representation of it. To interact with it, and access its properties, a Java
version must be made available to the cache servers. The approach to making the Java
version serializable over POF is quite similar to the above examples, see
com.tangosol.io.pof.PortableObject, and
com.tangosol.io.pof.PofSerializer for details, either of which is compatible
with all three of the C++ based approaches.

Performance
Both Managed<T> and PortableObject behind the scenes use a PofSerializer
to perform serialization. Each of these approaches also adds some of its own overhead,
for instance the Managed<T> approach involves the creation of a temporary version of
non-managed form of the data object during deserialization. In the case of
PortableObject the lack of support for const data members can have a cost as it
avoids optimizations which would have been allowed for const data members. Overall
the performance differences may be negligible, but if seeking to achieve the maximum
possible performance, direct utilization of PofSerializer may be worth
consideration.

Performance

3-10 Oracle Coherence User's Guide for Oracle Coherence

4

Configuration and Usage for C++ Clients 4-1

4Configuration and Usage for C++ Clients

This section provides general instructions for setting up Coherence for C++,
integrating Coherence*Extend, and configuring the logger.

General Instructions
Configuring and using Coherence for C++ requires five basic steps:

1. Implement the C++ Application using the Coherence for C++ API. See Chapter 5,
"Understanding the Coherence for C++ API." for more information on the API.

2. Compile and Link the application.

3. Configure paths.

4. Configure Coherence*Extend on both the client and on one or more JVMs within
the cluster.

5. Configure a POF context on the client and on all of the JVMs within the cluster
that run the Coherence*Extend clustered service.

6. Make sure the Coherence cluster is up and running.

7. Launch the C++ client application.

The following sections describe each of these steps in detail.

Implementing the C++ Application
Coherence for C++ provides an API that allows C++ applications to access Coherence
clustered services, including data, data events, and data processing from outside the
Coherence cluster.

Coherence for C++ API consists of:

■ a set of C++ public header files

■ version of static libraries build by all supported C++ compilers

■ several samples

The library allows C++ applications to connect to a Coherence*Extend clustered
service instance running within the Coherence cluster using a high performance
TCP/IP-based communication layer. The library sends all client requests to the
Coherence*Extend clustered service which, in turn, responds to client requests by
delegating to an actual Coherence clustered service (for example, a Partitioned or
Replicated cache service).

Compiling and Linking the Application

4-2 Oracle Coherence User's Guide for Oracle Coherence

Chapter 5, "Understanding the Coherence for C++ API", provides an overview of the
key classes in the API. For a detailed description of the classes, see the API itself which
is included in the doc directory of the Coherence for C++ distribution.

Compiling and Linking the Application
The platforms on which you can compile applications that employ Coherence for C++
are listed in the Supported Platforms and Operating Systems topic.

For example, the following build.cmd file for the Windows 32-bit platform builds,
compiles, and links the files for the Coherence for C++ demo. The variables in the file
have the following meanings:

■ OPT and LOPT point to compiler options

■ INC points to the Coherence for C++ API files in the include directory

■ SRC points to the C++ header and code files in the common directory

■ OUT points to the file that the compiler/linker should generate when it is finished
compiling the code

■ LIBPATH points to the library directory

■ LIBS points to the Coherence for C++ shared library file

After setting these environment variables, the file compiles the C++ code and header
files, the API files and the OPT files, links the LOPT, the Coherence for C++ shared
library, the generated object files, and the OUT files. It finishes by deleting the object
files. A sample run of the build.cmd file is illustrated in Example 4–1.

Example 4–1 Sample Run of the build.cmd File

@echo off
setlocal

set EXAMPLE=%1%

if "%EXAMPLE%"=="" (
 echo You must supply the name of an example to build.
 goto exit
)

set OPT=/c /nologo /EHsc /Zi /RTC1 /MD /GR /DWIN32
set LOPT=/NOLOGO /SUBSYSTEM:CONSOLE /INCREMENTAL:NO
set INC=/I%EXAMPLE% /Icommon /I..\include
set SRC=%EXAMPLE%*.cpp common*.cpp
set OUT=%EXAMPLE%\%EXAMPLE%.exe
set LIBPATH=..\lib
set LIBS=%LIBPATH%\coherence.lib

echo building %OUT% ...
cl %OPT% %INC% %SRC%
link %LOPT% %LIBS% *.obj /OUT:%OUT%

del *.obj

echo To run this example execute 'run %EXAMPLE%'

:exit

Configure Coherence*Extend

Configuration and Usage for C++ Clients 4-3

Configure Paths
Set up the configuration path to the Coherence for C++ library. This involves setting an
environment variable to point to the library. The name of the environment variable
and the file name of the library will be different depending on your platform
environment. For a list of the environment variables and library names for each
platform, see "Setting Environment Variables for Compiling and Linking".

Configure Coherence*Extend
To configure Coherence*Extend, add the appropriate configuration elements to both
the cluster and client-side cache configuration descriptors. The cluster-side cache
configuration elements instruct a Coherence DefaultCacheServer to start a
Coherence*Extend clustered service that will listen for incoming TCP/IP requests from
Coherence*Extend clients. The client-side cache configuration elements are used by the
client library connect to the cluster. The configuration specifies the IP address and port
of one or more servers in the cluster that run the Coherence*Extend clustered service
so that it can connect to the cluster. It also contains various connection-related
parameters, such as connection and request timeouts.

Configure Coherence*Extend in the Cluster
For a Coherence*Extend client to connect to a Coherence cluster, one or more
DefaultCacheServer JVMs within the cluster must run a TCP/IP Coherence*Extend
clustered service. To configure a DefaultCacheServer to run this service, a
proxy-scheme element with a child tcp-acceptor element must be added to the cache
configuration descriptor used by the DefaultCacheServer.

For example, the cache configuration descriptor in Example 4–2 defines two clustered
services, one that allows remote Coherence*Extend clients to connect to the Coherence
cluster over TCP/IP and a standard Partitioned cache service. Since this descriptor is
used by a DefaultCacheServer, it is important that the autostart configuration
element for each service is set to true so that clustered services are automatically
restarted upon termination. The proxy-scheme element has a tcp-acceptor child
element which includes all TCP/IP-specific information needed to accept client
connection requests over TCP/IP. The acceptor-config has also been configured to
use a ConfigurablePofContext for its serializer. The C++ Extend client requires
the use of POF for serialization.

See Chapter 3, "Building Integration Objects for C++ Clients" for more information on
serialization and PIF/POF.

The Coherence*Extend clustered service configured below will listen for incoming
requests on the localhost address and port 9099. When, for example, a client
attempts to connect to a Coherence cache called dist-extend, the Coherence*Extend
clustered service will proxy subsequent requests to the NamedCache with the same
name which, in this example, will be a Partitioned cache.

Example 4–2 Cache Configuration for Two Clustered Services

<?xml version="1.0"?>
<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-*</cache-name>
 <scheme-name>dist-default</scheme-name>

Configure Coherence*Extend

4-4 Oracle Coherence User's Guide for Oracle Coherence

 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>dist-default</scheme-name>
 <lease-granularity>member</lease-granularity>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <thread-count>5</thread-count>
 <acceptor-config>
 <tcp-acceptor>
 <local-address>
 <address>localhost</address>
 <port>9099</port>
 </local-address>
 </tcp-acceptor>
 <serializer>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 </serializer>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

Configuring Coherence*Extend on the Client
The key element within the Coherence*Extend client configuration is cache-config.
This element contains the path to a cache configuration descriptor which contains the
cache configuration. This cache configuration descriptor is used by the
DefaultConfigurableCacheFactory.

A Coherence*Extend client uses the information within an initiator-config cache
configuration descriptor element to connect to and communicate with a
Coherence*Extend clustered service running within a Coherence cluster.

For example, the cache configuration descriptor in Example 4–3 defines a caching
scheme that connects to a remote Coherence cluster. The remote-cache-scheme
element has a tcp-initiator child element which includes all TCP/IP-specific
information needed to connect the client with the Coherence*Extend clustered service
running within the remote Coherence cluster.

When the client application retrieves a named cache with CacheFactory using, for
example, the name dist-extend, the Coherence*Extend client will connect to the
Coherence cluster by using TCP/IP (using the address localhost and port 9099)
and return a NamedCache implementation that routes requests to the NamedCache
with the same name running within the remote cluster. Note that the
remote-addresses configuration element can contain multiple socket-address
child elements. The Coherence*Extend client will attempt to connect to the addresses
in a random order, until either the list is exhausted or a TCP/IP connection is
established.

Configure Coherence*Extend

Configuration and Usage for C++ Clients 4-5

Example 4–3 A Caching Scheme that Connects to a Remote Coherence Cluster

<?xml version="1.0"?>
<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>local-*</cache-name>
 <scheme-name>local-example</scheme-name>
 </cache-mapping>

 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>extend-dist</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <local-scheme>
 <scheme-name>local-example</scheme-name>
 </local-scheme>

 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address
system-property="tangosol.coherence.proxy.address">localhost</address>
 <port system-property="tangosol.coherence.proxy.port">9099</port>
 </socket-address>
 </remote-addresses>
 <connect-timeout>10s</connect-timeout>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

Connection Error Detection and Failover
When a Coherence*Extend client service detects that the connection between the client
and cluster has been severed (for example, due to a network, software, or hardware
failure), the Coherence*Extend client service implementation (that is, CacheService
or InvocationService) will raise a MemberEventType.Left event (by using the
MemberEventHandler delegate) and the service will be stopped. If the client
application attempts to subsequently use the service, the service will automatically
restart itself and attempt to reconnect to the cluster. If the connection is successful, the
service will raise a MemberEventType.Joined event; otherwise, a fatal exception will be
thrown to the client application.

A Coherence*Extend service has several mechanisms for detecting dropped
connections. Some mechanisms are inherit to the underlying protocol (such as TCP/IP
in Extend-TCP), whereas others are implemented by the service itself. The latter

Configuring and Using the Coherence for C++ Client Library

4-6 Oracle Coherence User's Guide for Oracle Coherence

mechanisms are configured by using the outgoing-message-handler
configuration element.

The primary configurable mechanism used by a Coherence*Extend client service to
detect dropped connections is a request timeout. When the service sends a request to
the remote cluster and does not receive a response within the request timeout interval
(see <request-timeout>), the service assumes that the connection has been
dropped. The Coherence*Extend client and clustered services can also be configured to
send a periodic heartbeat over the connection (see <heartbeat-interval> and
<heartbeat-timeout>). If the service does not receive a response within the
configured heartbeat timeout interval, the service assumes that the connection has
been dropped.

Configuring and Using the Coherence for C++ Client Library
To use the Coherence for C++ library in your C++ applications, you must link
Coherence for C++ library with your application and provide a Coherence for C++
cache configuration and its location.

The location of the cache configuration file can be set by an environment variable
specified in the sample application section or programmatically.

Setting the Configuration File Location with an Environment Variable
As described in "Runtime Library and Search Path" on page 1-3, the
tangosol.coherence.cacheconfig system property can be used to specify the
location of the cache configuration file. To set the configuration location on Windows
execute:

c:\coherence_cpp\examples> set
tangosol.coherence.cacheconfig=config\extend-cache-config.xml

Setting the Configuration File Location Programmatically
You can set the location programmatically by using either
DefaultConfigurableCacheFactory::create or
CacheFactory::configure (using the CacheFactory::loadXmlFile helper
method, if needed).

Example 4–4 Setting the Configuration File Location

static Handle coherence::net::DefaultConfigurableCacheFactory::create
(String::View vsFile = String::NULL_STRING)

The create method of the DefaultConfigurableCacheFactory class creates a
new Coherence cache factory. The vsFile parameter specifies the name and
location of the Coherence configuration file to load.

Example 4–5 Creating a Coherence Cache Factory

static void coherence::net::CacheFactory::configure (XmlElement::View vXmlCache,
XmlElement::View vXmlCoherence = NULL)

The configure method configures the CacheFactory and local member. The
vXmlCache parameter specifies an XML element corresponding to a
cache-config.dtd and vXmlCoherence specifies an XML element corresponding
to coherence.dtd.

Operational Configuration File (tangosol-coherence-override.xml)

Configuration and Usage for C++ Clients 4-7

Example 4–6 Configuring a CacheFactory and a Local Member

static XmlElement::Handle coherence::net::CacheFactory::loadXmlFile (String::View
vsFile)

The loadXmlFile method reads an XmlElement from the named file. This method
does not configure the CacheFactory, but it can be used to obtain a configuration
which can be supplied to the configure method. The parameter vsFile specifies
the name of the file to read from.

The C++ code in Example 4–7 uses the CacheFactory::configure method to set
the location of the cache configuration files for the server/cluster
(coherence-extend-config.xml) and for the C++ client
(tangosol-operation-config.xml).

Example 4–7 Setting the Cache Configuration File Location for the Server/Cluster

...
// Configure the cache
CacheFactory::configure(CacheFactory::loadXmlFile(String::create("C:\coherence-ext
end-config.xml")),

CacheFactory::loadXmlFile(String::create("C:\tangosol-operation-config.xml")));
...

Operational Configuration File (tangosol-coherence-override.xml)
The operational configuration override file (called
tangosol-coherence-override.xml by default), controls the operational and
runtime settings used by Oracle Coherence to create, configure and maintain its
clustering, communication, and data management services. As with the Java client use
of this file is optional for the C++ client.

In the case of a C++ client, the file can be used to specify or override general
operations settings for a Coherence application that are not specifically related to
caching. For a C++ client, the key elements are for logging, the Coherence product
edition, and the location and role assignment of particular cluster members.

The operational configuration can be configured either programmatically or in the
tangosol-coherence-override.xml file. To configure the operational
configuration programmatically, specify an XML file that follows the coherence.dtd
and contains at least one of the following elements in the vXmlCoherence parameter
of the CacheFactory::configure method
(coherence::net::CacheFactory::configure (View vXmlCache, View
vXmlCoherence)).

■ license-config—The license-config element contains subelements that
allow you to configure the edition and operational mode for Coherence. The
edition-name subelement specifies the product edition (such as Grid Edition,
Enterprise Edition, Real Time Client, and so on) that the member will use. This
allows multiple product editions to be used within the same cluster, with each
member specifying the edition that it will be using. Only the RTC (real time client)
and DC (data client) values are recognized for the Coherence for C++ client. The
license-config is an optional subelement of the coherence element, and
defaults to RTC.

■ logging-config— The logging-config element contains subelements that
allow you to configure how messages will be logged for your system. This element
enables you to specify destination of the log messages, the severity level for logged

Configuring a Logger

4-8 Oracle Coherence User's Guide for Oracle Coherence

messages, and the log message format. The logging-config is a required
subelement of the coherence element. For more information on logging, see
"Configuring a Logger" on page 4-8.

■ member-identity—The member-identity element specifies detailed identity
information that is useful for defining the location and role of the cluster member.
You can use this element to specify the name of the cluster, rack, site, machine,
role, and so on, to which the member belongs. The member-identity is an
optional subelement of the cluster-config element. Example 4–8 illustrates the
contents of a sample tangosol-coherence.xml file.

Example 4–8 Sample Operational Configuration

<?xml version='1.0'?>

<coherence>
 <cluster-config>
 <member-identity>
 <site-name>extend site</site-name>
 <rack-name>rack 1</rack-name>
 <machine-name>machine 1</machine-name>
 </member-identity>
 </cluster-config>

 <logging-config>
 <destination>stderr</destination>
 <severity-level>5</severity-level>
 <message-format>(thread={thread}): {text}</message-format>
 <character-limit>8192</character-limit>
 </logging-config>

 <license-config>
 <edition-name>RTC</edition-name>
 <license-mode>production</license-mode>
 </license-config>
</coherence>

Operational Configuration Elements provides more detailed information on the
operational configuration file and the elements that it can define.

Configuring a Logger
The Logger is configured using the logging-config element in the operational
configuration file. The element provides the following attributes that can record
detailed information about logged errors.

■ destination—determines the type of LogOutput used by the Logger. Valid
values are:

■ stderr for Console.Error

■ stdout for Console.Out

■ file path if messages should be directed to a file

■ severity-level—determines the log level that a message must meet or exceed
to be logged.

■ message-format—determines the log message format.

Launching a Coherence DefaultCacheServer Proxy

Configuration and Usage for C++ Clients 4-9

■ character-limit—determines the maximum number of characters that the
logger daemon will process from the message queue before discarding all
remaining messages in the queue. Example 4–9 illustrates an operational
configuration that contains a logging configuration. For more information on
operational configuration, see "Operational Configuration File
(tangosol-coherence-override.xml)" on page 4-7.

Example 4–9 Operational Configuration File that Includes a Logger

<coherence>
 <logging-config>
 <destination>stderr</destination>
 <severity-level>5</severity-level>
 <message-format>(thread={thread}): {text}</message-format>
 <character-limit>8192</character-limit>
 </logging-config>
</coherence>

Launching a Coherence DefaultCacheServer Proxy
To start a DefaultCacheServer that uses the cluster-side Coherence cache
configuration described earlier to allow Coherence for C++ clients to connect to the
Coherence cluster by using TCP/IP, you need to do the following:

1. Change the current directory to the Oracle Coherence library directory
(%COHERENCE_HOME%\lib on Windows and $COHERENCE_HOME/lib on UNIX).

2. Make sure that the paths are configured so that the Java command will run.

3. Start the DefaultCacheServer using the command line below:

Example 4–10 Sample Command to Start the DefaultCacheServer

java -cp coherence.jar -Dtangosol.coherence.cacheconfig=file://<path to the
server-side cache configuration descriptor>
 com.tangosol.net.DefaultCacheServer

Launching a Coherence DefaultCacheServer Proxy

4-10 Oracle Coherence User's Guide for Oracle Coherence

5

Understanding the Coherence for C++ API 5-1

5Understanding the Coherence for C++ API

The Coherence for C++ API allows C++ applications to access Coherence clustered
services, including data, data events, and data processing from outside the Coherence
cluster.

Documentation of the Coherence for C++ API is available in two locations. The online
API documentation and also in the doc directory of the Coherence for C++
distribution.

CacheFactory
CacheFactory provides several static methods for retrieving and releasing
NamedCache instances:

■ NamedCache::Handle getCache(String::View vsName)—retrieves a
NamedCache implementation that corresponds to the NamedCache with the
specified name running within the remote Coherence cluster.

■ void releaseCache(NamedCache::Handle hCache)—releases all local
resources associated with the specified instance of the cache. After a cache is
released, it can no longer be used. The content of the cache, however, is not
affected.

■ void destroyCache(NamedCache::Handle hCache)—destroys the
specified cache across the Coherence cluster.

NamedCache
A NamedCache is a map of resources shared among members of a cluster. The
NamedCache provides several methods used to retrieve the name of the cache and the
service, and to release or destroy the cache:

■ String::View getCacheName()—returns the name of the cache as a String.

■ CacheService::Handle getCacheService()—returns a handle to the
CacheService that this NamedCache is a part of.

■ bool isActive()—specifies whether this NamedCache is active.

■ void release()—releases the local resources associated with this instance of
the NamedCache. The cache is no longer usable, but the cache contents are not
affected.

■ void destroy()—releases and destroys this instance of the NamedCache.

NamedCache interface also extends the following interfaces: QueryMap,
InvocableMap, ConcurrentMap, CacheMap and ObservableMap.

QueryMap

5-2 Oracle Coherence User's Guide for Oracle Coherence

QueryMap
A QueryMap can be thought of as an extension of the Map class with additional query
features. These features allow the ability to query a cache using various filters. Filters
are described in "Filter" on page 5-3.

■ Set::View keySet(Filter::View vFilter)—returns a set of the keys
contained in this map for entries that satisfy the criteria expressed by the filter.

■ Set::View entrySet(Filter::View vFilter)—returns a set of the entries
contained in this map that satisfy the criteria expressed by the filter. Each element
in the returned set is a Map::Entry object.

■ Set::View entrySet(Filter::View vFilter, Comparator::View
vComparator)—returns a set of the entries contained in this map that satisfy the
criteria expressed by the filter. Each element in the returned set is a Map::Entry
object. This version of entrySet further guarantees that its iterator will traverse
the set in ascending order based on the entry values which are sorted by the
specified Comparator or according to the natural ordering.

Additionally, the QueryMap class includes the ability to add and remove indexes.
Indexes are used to correlate values stored in the cache to their corresponding keys
and can dramatically increase the performance of the keySet and entrySet
methods.

■ void addIndex(ValueExtractor::View vExtractor, boolean_t
fOrdered, Comparator::View vComparator)—adds an index to this
QueryMap. This enables you to correlate values stored in this indexed Map (or
attributes of those values) to the corresponding keys in the indexed Map and
increase the performance of keySet and entrySet methods.

■ void removeIndex(ValueExtractor::View vExtractor)—removes an
index from this QueryMap.

See "Query the Cache for C++ Clients" for a more in depth look at queries. See also the
C++ examples in "Simple Queries" on page 10-1

ObservableMap
An ObservableMap provides an application with the ability to listen for cache
changes. Applications that implement ObservableMap can add key and filter
listeners to receive events from any cache, regardless of whether that cache is local,
partitioned, near, replicated, using read-through, write-through, write-behind,
overflow, disk storage, and so on. ObservableMap also provides methods to remove
these listeners.

■ void addKeyListener(MapListener::Handle hListener,
Object::View vKey, bool fLite)—adds a map listener for a specific key.

■ void removeKeyListener(MapListener::Handle hListener,
Object::View vKey)—removes a map listener that previously signed up for
events about a specific key.

■ void addFilterListener(MapListener::Handle hListener,
Filter::View vFilter = NULL, bool fLite = false)—adds a map
listener that receives events based on a filter evaluation.

■ void removeFilterListener(MapListener::Handle hListener,
Filter::View vFilter = NULL)—removes a map listener that previously
signed up for events based on a filter evaluation.

Filter

Understanding the Coherence for C++ API 5-3

See the C++ examples in "Signing Up for all Events" on page 12-5.

InvocableMap
An InvocableMap is a cache against which both entry-targeted processing and
aggregating operations can be invoked. The operations against the cache contents are
executed by (and thus within the localized context of) a cache. This is particularly
efficient in a distributed environment because it localizes processing: the processing of
the cache contents are moved to the location at which the entries-to-be-processed are
being managed. For more information abuot processors and aggregators, see "Entry
Processors" on page 5-5 and "Entry Aggregators" on page 5-5.

■ Object::Holder invoke(Object::View vKey,
EntryProcessor::Handle hAgent)—invokes the passed processor
(EntryProcessor) against the entry (Entry) specified by the passed key,
returning the result of the invocation.

■ Map::View invokeAll(Collection::View vCollKeys,
EntryProcessor::Handle hAgent)—invokes the passed processor
(EntryProcessor) against the entries (Entry objects) specified by the passed
keys, returning the result of the invocation for each.

■ Map::View invokeAll(Filter::View vFilter,
EntryProcessor::Handle hAgent)—invokes the passed processor
(EntryProcessor) against the entries (Entry objects) that are selected by the
given filter, returning the result of the invocation for each.

■ Object::Holder aggregate(Collection::View vCollKeys,
EntryAggregator::Handle hAgent)—performs an aggregating operation
against the entries specified by the passed keys.

■ Object::Holder aggregate(Filter::View vFilter,
EntryAggregator::Handle hAgent)—performs an aggregating operation
against the entries that are selected by the given filter.

See the C++ examples in "InvocableMap Aggregation" on page A-17 and
"InvocableMap Invoke All" on page A-17.

Filter
Filter provides the ability to filter results and only return objects that meet a given set
of criteria. All filters must implement Filter. Filters are commonly used with the
QueryMap API to query the cache for entries that meet a given criteria. See also
"QueryMap" on page 5-2.

■ bool evaluate(Object::View v)—applies a test to the specified object and
returns true if the test passes, false otherwise.

Coherence for C++ includes many concrete Filter implementations in the
coherence::util::filter namespace. Below are several commonly used filters:

■ EqualsFilter is used to test for equality. To create an EqualsFilter to test
that an object equals 5:

Example 5–1 Using the EqualsFilter Method

EqualsFilter::View vEqualsFilter =
EqualsFilter::create(IdentityExtractor::getInstance(), Integer32::valueOf(5));

Value Extractors

5-4 Oracle Coherence User's Guide for Oracle Coherence

■ GreaterEqualsFilter is used to test a "Greater or Equals" condition. To create
a GreaterEqualsFilter that tests that an objects value is >= 55:

Example 5–2 Using the GreaterEqualsFilter Method

GreaterEqualsFilter::View vGreaterEqualsFilter =
GreaterEqualsFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf(55));

■ LikeFilter is used for pattern matching. To create a LikeFilter that tests that
the string representation of an object begins with "Belg":

Example 5–3 Using the LikeFilter Method

LikeFilter::View vLikeFilter =
LikeFilter::create(IdentityExtractor::getInstance(), "Belg%");

Some filters can be used to combine two filters to create a compound condition.

■ AndFilter is used to combine two filters to create an "AND" condition. To create
an AndFilter that tests that an objects value is greater than 10 and less than 20:

Example 5–4 Using the AndFilter Method

AndFilter::View vAndFilter = AndFilter::create(
 GreaterFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf(10)),
 LessFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf(20)));

■ OrFilter is used to combine two filters to create an "OR" condition. To create an
OrFilter that tests that an object’s value is less than 10 or greater than 20:

Example 5–5 Using the OrFilter Method

OrFilter::View vOrFilter = OrFilter::create(
 LessFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf(10)),
 GreaterFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf(20)));

Value Extractors
An Extractor is used to extract values from an object and to provide an identity for the
extraction. All extractors must implement ValueExtractor.

■ Object::Holder extract(Object::Holder ohTarget)—extracts the
value from the passed object.

■ bool equals(Object::View v)—compares the ValueExtractor with
another object to determine equality. Two ValueExtractor objects, ve1 and ve2
are considered equal if and only if ve1->extract(v) equals
ve2->extract(v) for all values of v.

Note: All concrete extractor implementations must also explicitly
implement the hashCode and equals functions in a way that is
based solely on the object's serializable state.

Entry Aggregators

Understanding the Coherence for C++ API 5-5

■ size32_t hashCode()—determine a hash value for the ValueExtractor
object according to the general Object#hashCode() contract.

Coherence for C++ includes the following extractors:

■ ChainedExtractor—is a composite ValueExtractor implementation based
on an array of extractors. The extractors in the array are applied sequentially
left-to-right, so a result of a previous extractor serves as a target object for a next
one.

■ ComparisonValueExtractor—returns a result of comparison between two
values extracted from the same target.

■ IdentityExtractor—is a trivial implementation that does not actually extract
anything from the passed value, but returns the value itself.

■ KeyExtractor—is a special purpose implementation that serves as an indicator
that a query should be run against the key objects rather than the values.

■ MultiExtractor—is a composite ValueExtractor implementation based on an
array of extractors. All extractors in the array are applied to the same target object
and the result of the extraction is a List of extracted values.

■ ReflectionExtractor—extracts a value from a specified object property.

See the C++ examples in "Query Concepts" on page 10-3.

Entry Processors
An EntryProcessor is an invokable agent that operates against the entry objects
within a cache. All entry processors must implement EntryProcessor.

■ Object::Holder process(InvocableMap::Entry::Handle
hEntry)—process the specified entry.

■ Map::View processAll(Set::View vSetEntries)—process a collection of
entries.

Coherence for C++ includes several EntryProcessor implementations in the
coherence::util::processor namespace.

See the C++ example in "Sample Code for the hellogrid Example" on page A-15.

Entry Aggregators
An EntryAggregator represents processing that can be directed to occur against
some subset of the entries in an InvocableMap, resulting in an aggregated result.
Common examples of aggregation include functions such as minimum, maximum,
sum, and average. However, the concept of aggregation applies to any process that
must evaluate a group of entries to come up with a single answer. Aggregation is
explicitly capable of being run in parallel, for example in a distributed environment.

All aggregators must implement the EntryAggregator interface:

■ Object::Holder aggregate(Collection::View vCollKeys)—
processes a collection of entries to produce an aggregate result.

Coherence for C++ includes several EntryAggregator implementations in the
coherence::util::aggregator namespace.

Entry Aggregators

5-6 Oracle Coherence User's Guide for Oracle Coherence

Note: Like cached value objects, all custom Filter,
ValueExtractor, EntryProcessor, and EntryAggregator
implementation classes must be correctly registered in the POF
context of the C++ application and cluster-side node to which the
client is connected. As such, corresponding Java implementations of
the custom C++ types must be created, compiled, and deployed on the
cluster-side node. Note that the actual execution of the these custom
types is performed by the Java implementation and not the C++
implementation. See Chapter 3, "Building Integration Objects for C++
Clients," for additional details.

6

Sample Applications for C++ Clients 6-1

6Sample Applications for C++ Clients

The instructions and command line examples assume that you have extracted the Java
Coherence 3.4 archive and the C++ Coherence 3.4 archive onto your file system:

■ the Java Coherence 3.4 archive was extracted into the top-level of your file system.
For example, it would appear as C:\coherence on Windows.

■ the C++ Coherence 3.4 archive was extracted into the Java Coherence 3.4 root
directory. The root directory for the C++ version is coherence-cpp. Thus, on
Windows it would appear in the file system as C:\coherence\coherence-cpp.

See Chapter 1, "Requirements, Installation, and Deployment for Coherence for C++"
for more information on installing Coherence for C++.

Coherence for C++ provides the following sample applications in the
coherence-cpp/examples directory of the installed product:

■ console—A command line application that enables you to interact with the
cache using simple commands.

■ hellogrid—An example of basic cache access.

■ contacts—An example of how to store pre-existing (that is, non-Coherence) C++
classes in the grid.

Prerequisites for Building and Running the Sample Applications
The requirements for running a sample include:

■ The Coherence C++ shared library, found under the platform specific
coherence-cpp/lib directory of the installation.

■ A Coherence extend cache configuration file, found under the
coherence-cpp/examples/config directory.

■ A running Coherence 3.4 Proxy Service and Cache Server; these are Java
components.

Note: Coherence C++ does not have any local dependencies on the
Java installation. While this section assumes that you have installed
both the Java and C++ versions of Coherence on the machine that will
be used to run the examples, installation of the Java version is
optional. If the Java version is not installed, the Cache Server will need
to be running on a remote machine and the Java console example will
not be available.

Starting a Coherence Proxy Service and Cache Server

6-2 Oracle Coherence User's Guide for Oracle Coherence

Starting a Coherence Proxy Service and Cache Server
A sample command to start the proxy service and cache server is listed below. You
must be sure to point the proxy at the server cache configuration file, such as
extend-server-config.xml provided in the config directory. For example, on
Windows execute:

Example 6–1 Sample Command to Start the Proxy Service and the Cache Server

c:\coherence\lib> java
-Dtangosol.coherence.cacheconfig=c:\coherence\coherence-cpp\examples\config\extend
-server-config.xml -cp coherence.jar "com.tangosol.net.DefaultCacheServer"

Building the Sample Applications
The Coherence for C++ distribution includes platform specific build scripts. Each
script takes a single command line parameter, which is the name of the sample to
build. For example, to build the console example on Windows, open a new command
prompt window and execute:

c:\coherence\coherence-cpp\examples> build console

The sample executable will be created within the particular examples subdirectory,
that is:

c:\coherence\coherence-cpp\examples\console\console.exe

Starting a Sample Application
Now that configuration has been specified and the proxy/cache server has been
started, you can start the client. For example, to run the console example on Windows,
run the following command from the examples directory:

c:\coherence\coherence-cpp\examples> run console

The Coherence logging for the application will be directed to console.log in the
examples directory.

Running the console Example
The console example enables you to enter data into the cache through a C++ console,
then read it out through a Java console. Once you start the console example (by
running run console), you will be provided with the familiar Map(?): prompt from
the console. The C++ console supports a subset of the commands available from Java,
enter help to get the list. The caches you can interact with are defined within the
extend-cache-config.xml configuration file, but basically all you need to worry
about is that local-* caches will be local only, and dist-* caches will be remote

Note: For the contacts example you will also need to use the
additional POF configuration and custom classes included in the
examples/java/ContactCache directory.

Note: On UNIX platforms you may need to mark the build script as
executable first chmod +x build from the examples directory.

Running the console Example

Sample Applications for C++ Clients 6-3

and use PIF/POF, and near-* will pull remote data into an in-process coherent near
cache.

1. Enter cache dist-hello to connect to the cache. Enter the commands illustrated
in the following example to enter data into the cache and display it.

Map(?): cache dist-hello

Map(dist-hello): put hello world
NULL

Map(dist-hello): get hello
world

Map(dist-hello): size
1

Map(dist-hello): put from C++
NULL

Map(dist-hello): list
from = C++
hello = world

Map(dist-hello):

2. Launch a Java console to interact with the C++ console. Note that in the startup
command, the Java client application must point to the same cache configuration
as the C++ client. For example, on Windows, open a new command prompt
window and execute the following command. (Note, the command is broken into
two lines for formatting purposes).

c:\coherence\lib> java -Dtangosol.coherence.cacheconfig=
 c:\coherence\coherence-cpp\examples\config\extend-cache-config.xml -jar
coherence.jar

3. Use the same console syntax that you used in the C++ console to access the cache.
For example, on Windows, open a new command prompt window and execute the
commands illustrated in the following figure:

Map(?): cache dist-hello
2008-04-25 09:01:02.207 Oracle Coherence GE 3.4/396 Alpha <D5>
(thread=DistributedCache, member=3): Service
DistributedCache joined the cluster with senior service member 1
2008-04-25 09:01:02.239 Oracle Coherence GE 3.4/396 Alpha <D5>
(thread=DistributedCache, member=3): Service
DistributedCache: received ServiceConfigSync containing 259 entries
<distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <lease-granularity>member</lease-granularity>
 <backing-map-scheme>
 <local-scheme//>
 </backing-map-scheme>
 <autostart>true

4. Now that you've run the example, you are encouraged to have a look at the code.
See "Sample Code for the console Example" on page A-1. Each sample has a
corresponding directory under examples which contains its sample specific

Running the hellogrid Example

6-4 Oracle Coherence User's Guide for Oracle Coherence

source. There is also a common directory which contains source used in all
samples.

Running the hellogrid Example
The hellogrid example exercises the cache by entering various types of data into the
cache and reading them out, printing cache contents, querying the cache, and so on.
Follow these steps to build and run the hellogrid example:

1. Stop any instance of the proxy and cache server that may be currently running.

2. Start a new instance of the proxy and cache server.

3. Build the hellogrid example. For example, on Windows, open a new command
prompt window and invoke the build file.

C:\coherence\coherence-cpp\examples>build hellogrid
building hellogrid\hellogrid.exe ...
hellogrid.cpp
ContactInfo.cpp
PortableContactInfo.cpp
StreamParser.cpp
Generating Code...
C:\coherence\coherence-cpp\examples>

4. Run the hellogrid example. The window will display output similar to the
following:

C:\coherence\coherence-cpp\examples>run hellogrid
retrieved cache "dist-hello" containing 0 entries
 put: hello = grid
 get: hello = grid
 get: dummy = NULL
entire cache contents:
 34567 = 8.9
 23456 = 7.8
 12345 = 6.7
 hello = grid
updated cache contents:
 34567 = 8.9
 23456 = 7.8
 12345 = 6.7
 45678 = 9.1
filtered cache contents by coherence::util::filter::GreaterFilter:
(IdentityExtr
actor, 7)
 34567 = 8.9
 23456 = 7.8
 45678 = 9.1
minimum: 6.7
increment results by 6.7
 34567 = 15.6
 23456 = 14.5
 12345 = 13.4
 45678 = 15.8

C:\coherence\coherence-cpp\examples>

5. Now that you've run the example, you are encouraged to have a look at the code.
See "Sample Code for the hellogrid Example" on page A-15. Each sample has a
corresponding directory under examples which contains its sample specific

Running the contacts Example

Sample Applications for C++ Clients 6-5

source. There is also a common directory which contains source used in all
samples.

Running the contacts Example
The contact example enables you to enter names and addresses into the cache, then
query to display the entries. The following commands can be run from the example:

■ help—returns a list of commands that the example can run

■ bye—stops the example and returns you to the command prompt

■ create—responds with prompts for a person's contact information: name, street
address, city, state, zip code

■ find—prompts you for a name. The example will return the contact information
associated with the name.

Follow these steps to build and run the contacts example:

1. Stop any instance of the proxy and cache server that may be currently running.

2. Start a new instance of the proxy and cache server.

3. Build the contacts example. For example, on Windows, open a new command
prompt window and invoke the build file.

C:\coherence\coherence-cpp\examples>build contacts
building contacts\contacts.exe ...
contacts.cpp
ContactInfo.cpp
PortableContactInfo.cpp
StreamParser.cpp
Generating Code...
C:\coherence\coherence-cpp\examples>

4. Run the contacts example. The window will display output similar to the
following:

C:\coherence\coherence-cpp\examples>run contacts
contacts> help
commands are:
bye
create
find <street | city | state | zip | all>
contacts>

5. Exercise the example by entering the commands help, create, find, and bye.

contacts> help
commands are:
bye
create
find <street | city | state | zip | all>

contacts> create
Name: Tom
Street: Oracle Parkway
City: Redwood Shores
State: California
Zip: 94065
storing: ContactInfo(Name=Tom, Street=Oracle Parkway, City=Redwood Shores,
State

Running the contacts Example

6-6 Oracle Coherence User's Guide for Oracle Coherence

=California, Zip=94065)

contacts> find
Name: Tom
ContactInfo(Name=Tom, Street=Oracle Parkway, City=Redwood Shores,
State=California, Zip=94065)

contacts> bye

C:\coherence\coherence-cpp\examples>

6. Now that you've run the example, you are encouraged to have a look at the code.
See "Sample Code for the contacts Example" on page A-6. Each sample has a
corresponding directory under examples which contains its sample specific
source. There is also a common directory which contains source used in all
samples.

7

Configuring a Local Cache for C++ Clients 7-1

7Configuring a Local Cache for C++ Clients

A Local Cache is a cache that is local to (completely contained within) a particular C++
application. There are several attributes of the Local Cache that are particularly
interesting:

■ The local cache implements the same interfaces that the remote caches implement,
meaning that there is no programming difference between using a local and a
remote cache.

■ The Local Cache can be size-limited. This means that the Local Cache can restrict
the number of entries that it caches, and automatically evict entries when the cache
becomes full. Furthermore, both the sizing of entries and the eviction policies are
customizable, for example allowing the cache to be size-limited based on the
memory used by the cached entries. The default eviction policy uses a
combination of Most Frequently Used (MFU) and Most Recently Used (MRU)
information, scaled on a logarithmic curve, to determine what cache items to evict.
This algorithm is the best general-purpose eviction algorithm because it works
well for short duration and long duration caches, and it balances frequency versus
recentness to avoid cache thrashing. The pure LRU and pure LFU algorithms are
also supported, and the ability to plug in custom eviction policies.

■ The Local Cache supports automatic expiration of cached entries, meaning that
each cache entry can be assigned a time-to-live value in the cache. Furthermore,
the entire cache can be configured to flush itself on a periodic basis or at a preset
time.

■ The Local Cache is thread safe and highly concurrent.

■ The Local Cache provides cache "get" statistics. It maintains hit and miss statistics.
These runtime statistics can be used to accurately project the effectiveness of the
cache, and adjust its size-limiting and auto-expiring settings accordingly while the
cache is running.

For additional information, see "Local Cache" in "Getting Started with Oracle Coherence".

Configuring the Local Cache
The key element for configuring the Local Cache is <local-scheme>. Local caches
are generally nested within other cache schemes, for instance as the front-tier of a
near-scheme. Thus, this element can appear as a subelement of any of these elements
in the coherence-cache-config file: <caching-schemes>,
<distributed-scheme>, <replicated-scheme>, <optimistic-scheme>,
<near-scheme>, <versioned-near-scheme>, <overflow-scheme>,
<read-write-backing-map-scheme>, and
<versioned-backing-map-scheme>.

Obtaining a Local Cache Reference for C++ Clients

7-2 Oracle Coherence User's Guide for Oracle Coherence

The <local-scheme> provides several optional subelements that let you define the
characteristics of the cache. For example, the <low-units> and <high-units>
subelements allow you to limit the cache in terms of size. Once the cache reaches its
maximum allowable size it prunes itself back to a specified smaller size, choosing
which entries to evict according to a specified eviction-policy (<eviction-policy>).
The entries and size limitations are measured in terms of units as calculated by the
scheme's unit-calculator (<unit-calculator>).

You can also limit the cache in terms of time. The <expiry-delay> subelement
specifies the amount of time from last update that entries will be kept by the cache
before being marked as expired. Any attempt to read an expired entry will result in a
reloading of the entry from the configured cache store (<cachestore-scheme>).
Expired values are periodically discarded from the cache based on the flush-delay.

If a <cache-store-scheme> is not specified, then the cached data will only reside in
memory, and only reflect operations performed on the cache itself. See
<local-scheme> for a complete description of all of the available subelements.

The XML code in Example 7–1 illustrates the configuration of a Local Cache. See
"Sample Cache Configurations" for additional examples.

Example 7–1 Local Cache Configuration

<?xml version="1.0"?>

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example-local-cache</cache-name>
 <scheme-name>example-local</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <local-scheme>
 <scheme-name>example-local</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>32000</high-units>
 <low-units>10</low-units>
 <unit-calculator>FIXED</unit-calculator>
 <expiry-delay>10ms</expiry-delay>
 <flush-delay>1000ms</flush-delay>
 <cachestore-scheme>
 <class-scheme>
 <class-name>ExampleCacheStore</class-name>
 </class-scheme>
 </cachestore-scheme>
 <pre-load>true</pre-load>
 </local-scheme>
 </caching-schemes>
</cache-config>

Obtaining a Local Cache Reference for C++ Clients
A reference to a configured Local Cache can be obtained by name by using the
CacheFactory class:

NamedCache::Handle hCache = CacheFactory::GetCache("example-local-cache");

Cleaning Up Resources Associated with a LocalCache

Configuring a Local Cache for C++ Clients 7-3

Cleaning Up Resources Associated with a LocalCache
Instances of all NamedCache implementations, including LocalCache, should be
explicitly released by calling the NamedCache::Release() method when they are
no longer needed, to free up any resources they might hold.

If the particular NamedCache is used for the duration of the application, then the
resources will be cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its Release()
method when it has finished using it.

Cleaning Up Resources Associated with a LocalCache

7-4 Oracle Coherence User's Guide for Oracle Coherence

8

Configuring a Near Cache for C++ Clients 8-1

8Configuring a Near Cache for C++ Clients

This section describes the Near Cache as it pertains to Coherence for C++ clients. For a
complete discussion of the concepts behind a Near Cache, its configuration, and ways
to keep it synchronized with the back tier see "Near Cache" in "Getting Started with
Oracle Coherence".

In Coherence for C++, the Near Cache is a coherence::net::NamedCache
implementation that wraps the front cache and the back cache using a
read-through/write-through approach. If the back cache implements the
ObservableCache interface, then the Near Cache can use either the listen None,
Present, All, or Auto strategy to invalidate any front cache entries that might have
been changed in the back cache.

A typical Near Cache is configured to use a local cache (thread safe, highly concurrent,
size-limited and/or auto-expiring local cache) as the front cache and a remote cache as
a back cache. A Near Cache is configured by using the near-scheme which has two
child elements: a front-scheme for configuring a local (front) cache and a back-scheme
for defining a remote (back) cache.

Configuring the Near Cache
A Near Cache is configured by using the <near-scheme> element in the
coherence-cache-config file. This element has two required subelements:
front-scheme for configuring a local (front-tier) cache and a back-scheme for
defining a remote (back-tier) cache. While a local cache (<local-scheme>) is a
typical choice for the front-tier, you can also use non-JVM heap based caches,
(<external-scheme> or <paged-external-scheme>) or schemes based on Java
objects (<class-scheme>).

The remote or back-tier cache is described by the <back-scheme> element. A
back-tier cache can be either a distributed cache (<distributed-scheme>) or a
remote cache (<remote-cache-scheme>). The <remote-cache-scheme> element
enables you to use a clustered cache from outside the current cluster.

Optional subelements of <near-scheme> include <invalidation-strategy> for
specifying how the front-tier and back-tier objects will be kept synchronized and
<listener> for specifying a listener which will be notified of events occurring on the
cache.

For an example configuration, see "Sample Near Cache Configuration". The elements in
the file are described in the <near-scheme> topic.

Obtaining a Near Cache Reference with C++

8-2 Oracle Coherence User's Guide for Oracle Coherence

Obtaining a Near Cache Reference with C++
A reference to a configured Near Cache can be obtained by name by using the
coherence::net::CacheFactory class:

Example 8–1 Reference to a Configured Near Cache

NamedCache::Handle hCache = CacheFactory::getCache("example-near-cache");

Cleaning up Resources Associated with a Near Cache
Instances of all NamedCache implementations, including NearCache, should be
explicitly released by calling the NamedCache::release() method when they are
no longer needed, to free up any resources they might hold.

If the particular NamedCache is used for the duration of the application, then the
resources will be cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its release()
method when finished using it.

9

Perform Continuous Query for C++ Clients 9-1

9Perform Continuous Query for C++ Clients

While Coherence provides the ability to obtain a point in time query result from a
Coherence cache and the ability to receive events that would change the result of that
query, it also provides a feature that combines a query result with a continuous stream
of related events to maintain an up-to-date query result in a real-time fashion. This
capability is called Continuous Query because it has the same effect as if the desired
query had zero latency and the query were being executed several times every
millisecond!

A continuous query cache is similar to a materialized view in the Oracle database. A
materialized view copies data queried from the database tables into the view. If there
are any changes to the data in the database, then the data in the view is automatically
updated. This enables you to see changes to the result set. In continuous query, a local
copy of the cache is created on the client. Filters allow you to limit the size and content
of the cache. Combined with an event listener, the cache can be updated in real time.

For example, assume that you want to monitor, in real time, all sales orders for several
customers. To do this, you can create a continuous query cache and set up an event
listener that will listen for any events pertaining to the customers. Coherence will
query for all of the data objects on the grid that pertain to a particular customer and
copy them to a local cache. The event listener on the query will listen for any inserts,
updates, or deletes that take place on the grid for the customer. When an event occurs,
the local copy of the customer data is updated.

Uses of Continuous Query Caching
There are several different general use categories for Continuous Query Caching:

■ It is an ideal building block for Complex Event Processing (CEP) systems and
event correlation engines.

■ It is ideal for situations in which an application repeats a particular query and
would benefit from always having instant access to the up-to-date result of that
query.

■ A Continuous Query Cache is analogous to a materialized view and is useful for
accessing and manipulating the results of a query using the standard
NamedCache API, and receiving an ongoing stream of events related to that query.

■ A Continuous Query Cache can be used in a manner similar to a Near Cache
because it maintains an up-to-date set of data locally where it is being used, for
example, on a particular server node or on a client. Note that while a Near Cache
is invalidation-based, a Continuous Query Cache actually maintains its data in an
up-to-date manner.

The Coherence Continuous Query Cache

9-2 Oracle Coherence User's Guide for Oracle Coherence

By combining the Coherence*Extend functionality with Continuous Query Caching,
an application can support literally tens of thousands of concurrent users.

The Coherence Continuous Query Cache
The Coherence implementation of Continuous Query is found in the
ContinuousQueryCache class. This class, like all Coherence caches, implements the
standard NamedCache interface, which includes the following capabilities:

■ Cache access and manipulation using the Map interface: NamedCache extends the
Map interface, which is based on the Map interface from the Java Collections
Framework.

■ Events for all object modifications that occur within the cache: NamedCache
extends the ObservableMap interface.

■ Identity-based clusterwide locking of objects in the cache: NamedCache extends
the ConcurrentMap interface.

■ Querying the objects in the cache: NamedCache extends the QueryMap interface.

■ Distributed Parallel Processing and Aggregation of objects in the cache:
NamedCache extends the InvocableMap interface.

Since the ContinuousQueryCache implements the NamedCache interface, which is
the same API provided by all Coherence caches, it is extremely simple to use, and it
can be easily substituted for another cache when its functionality is called for.

Defining a Continuous Query Cache
There are two features that define a Continuous Query Cache:

■ The underlying cache that the Continuous Query is based on.

■ A query of the underlying cache that produces the sub-set that the Continuous
Query Cache will cache.

The underlying cache can be any Coherence cache, including another Continuous
Query Cache. The most straight-forward way of obtaining a cache is by using the
CacheFactory class. This class enables you to create a cache simply by specifying its
name. It will be created automatically and its configuration will be based on the
application's cache configuration elements. For example, the following line of code
creates a cache named orders:

NamedCache::Handle hCache = CacheFactory::getCache("orders");

The query is the same type of query that would be used to query any other cache.
Example 9–1 illustrates how you can use code filters to find a given trader with a
given order status:

Example 9–1 Using Filters for Querying

ValueExtractor::Handle hTraderExtractor =
ReflectionExtractor::create("getTrader");

Note: Continuous Query Caches are useful in almost every type of
application, including both client-based and server-based
applications, because they provide the ability to very easily and
efficiently maintain an up-to-date local copy of a specified sub-set of a
much larger and potentially distributed cached data set.

Caching Only Keys, or Caching Both Keys and Values

Perform Continuous Query for C++ Clients 9-3

ValueExtractor::Handle hStatusExtractor =
ReflectionExtractor::create("getStatus");

Filter::Handle hFilter = AndFilter::create(EqualsFilter::create(hTraderExtractor,
vTraderId),
 EqualsFilter::create(hStatusExtractor, vStatus));

Normally, to query a cache, you could use one of the methods from the QueryMap
class. For example, to obtain a snap-shot of all open trades for this trader:

Set::View vSetOpenTrades = hCache->entrySet(hFilter);

In contrast, the Continuous Query Cache is constructed from the
ContinuousQueryCache::create method, passing the cache and the filter:

ContinuousQueryCache::Handle hCacheOpenTrades =
ContinuousQueryCache::create(hCache, hFilter);

Cleaning up Resources Associated with a Continuous Query Cache
A Continuous Query Cache places one or more event listeners on its underlying cache.
If the Continuous Query Cache is used for the duration of the application, then the
resources will be cleaned up when the node is shut down or otherwise stops.
However, if the Continuous Query Cache is only used for a period, then the
application must call the release() method on the Continuous Query Cache when it is
done using it.

Caching Only Keys, or Caching Both Keys and Values
When constructing a Continuous Query Cache, you can specify that the cache should
only keep track of the keys that result from the query and obtain the values from the
underlying cache only when they are asked for. This feature may be useful for creating
a Continuous Query Cache that represents a very large query result set or if the values
are never or rarely requested. To specify that only the keys should be cached, pass false
when creating the ContinuousQueryCache; for example:

ContinuousQueryCache::Handle hCacheOpenTrades =
 ContinuousQueryCache::create(hCache, hFilter, false);

If necessary, the CacheValues property can be modified after the cache has been
instantiated; for example:

hCacheOpenTrades->setCacheValues(true);

CacheValues Property and Event Listeners
If the Continuous Query Cache has any standard (non-lite) event listeners, or if any of
the event listeners are filtered, then the CacheValues property will automatically be set
to true. This is because the Continuous Query Cache uses the locally cached values to
filter events and to supply the old and new values for the events that it raises.

Using ReflectionExtractor with Continuous Query Caches
When the Continuous Query Cache is configured to cache values, the use of the
ReflectionExtractor is not supported. This is because the
ReflectionExtractor does not support reflection in C++. In this case, you must
provide a custom extractor. When the Continuous Query Cache is not caching values
locally, the ReflectionExtractor can be used since it does not perform the

Listening to the Continuous Query Cache

9-4 Oracle Coherence User's Guide for Oracle Coherence

extraction on the client but instead passes the necessary extraction information to the
cluster to perform the query.

Listening to the Continuous Query Cache
Since the Continuous Query Cache is itself observable, it is possible for the client to
place one or more event listeners onto it. For example:

Example 9–2 Placing a Listener into a Continuous Query Cache

ContinuousQueryCache::Handle hCacheOpenTrades =
ContinuousQueryCache::create(hCache, hFilter);
hCacheOpenTrades->addFilterListener(hListener);

If your application has to perform some processing against every item that is already
in the cache and every item added to the cache, then provide the listener during
construction. The resulting cache will receive one event for each item that is in the
Continuous Query Cache, whether it was there to begin with (because it was in the
query) or if it got added during or after the construction of the cache. One form of the
factory create method of ContinuousQueryCache enables you to specify a cache, a
filter, and a listener:

Example 9–3 Creating a Continuous Query Cache with a Filter and a Listener

ContinuousQueryCache::Handle hCacheOpenTrades = ContinuousQueryCache::create(
 hRemoteCache, hFilter, true, hListener);

Avoiding Unexpected Results
There are two alternate approaches to processing the items in the Continuous Query
Cache, both of which could yield unexpected and unwanted results. First, if you
perform the processing and then add the listener to handle any later additions, then
events that occur in the split second after the iteration and before the listener is added
will be missed! This is illustrated in Example 9–4:

Example 9–4 Processing the Data, then Adding the Listener

ContinuousQueryCache::Handle hCacheOpenTrades =
ContinuousQueryCache::create(hCache, hFilter);

for (Iterator::Handle hIter = hCacheOpenTrades->entrySet()->iterator();
hIter->hasNext();)
 {
 Map::Entry::View vEntry = cast<Map::Entry::View>(hIter->next());
 // .. process the cache entry
 }
hCacheOpenTrades->addFilterListener(hListener);

The second approach is to add a listener first, so that no events are missed, and then
do the processing. In this case, it is possible that the same entry will show up in both
an event and in the Iterator. The events can be asynchronous, so the sequence of
operations cannot be guaranteed.

Example 9–5 Adding the Listener, then Processing the Data

ContinuousQueryCache::Handle hCacheOpenTrades =
 ContinuousQueryCache::create(hRemoteCache, hFilter);

Making the Continuous Query Cache Read-Only

Perform Continuous Query for C++ Clients 9-5

hCacheOpenTrades->addFilterListener(hListener);
for (Iterator::Handle hIter = hCacheOpenTrades->entrySet()->iterator();
hIter->hasNext();)
 {
 Map::Entry::View vEntry = cast<Map::Entry::View>(hIter->next());
 // .. process the cache entry
 }

Achieving a Stable Materialized View
The Continuous Query Cache implementation faced the same challenge: How to
assemble an exact point-in-time snapshot of an underlying cache while receiving a
stream of modification events from that same cache. The solution has several parts. First,
Coherence supports an option for synchronous events, which provides a set of
ordering guarantees. Secondly, the Continuous Query Cache has a two-phase
implementation of its initial population that allows it to first query the underlying
cache and then subsequently resolve all of the events that came in during the first
phase. Since achieving these guarantees of data visibility without any missing or
repeated events is fairly complex, the ContinuousQueryCache allows a developer to
pass a listener during construction, thus avoiding exposing these same complexities to
the application developer.

Support for Synchronous and Asynchronous Listeners
By default, listeners to the Continuous Query Cache will have their events delivered
asynchronously. However, the ContinuousQueryCache implementation does
respect the option for synchronous events as provided by the
SynchronousListener interface.

Making the Continuous Query Cache Read-Only
The Continuous Query Cache can be made into a read-only cache by using the boolean
setReadOnly method on the ContinuousQueryCache class; for example:

hCacheOpenTrades->setReadOnly(true);

A read-only Continuous Query Cache will not allow objects to be added to, changed
in, removed from or locked in the cache.

Once a Continuous Query Cache has been set to read-only, it cannot be changed back
to read/write.

Making the Continuous Query Cache Read-Only

9-6 Oracle Coherence User's Guide for Oracle Coherence

10

Query the Cache for C++ Clients 10-1

10Query the Cache for C++ Clients

Coherence can perform queries and indexes against currently cached data that meets a
given set of criteria. Queries and indexes can be simple, employing filters packaged
with Coherence, or they can be run against multi-value attributes such as collections
and arrays.

Query Functionality
Coherence provides the ability to search for cache entries that meet a given set of
criteria. The result set may be sorted if desired. Queries are evaluated with Read
Committed isolation.

It should be noted that queries apply only to currently cached data (and will not use
the CacheLoader interface to retrieve additional data that may satisfy the query).
Thus, the dataset should be loaded entirely into cache before queries are performed. In
cases where the dataset is too large to fit into available memory, it may be possible to
restrict the cache contents along a specific dimension (for example, "date") and
manually switch between cache queries and database queries based on the structure of
the query. For maintainability, this is usually best implemented inside a cache-aware
data access object (DAO).

Indexing requires the ability to extract attributes on each Partitioned cache node; in the
case of dedicated CacheServer instances, this implies (usually) that application
classes must be installed in the CacheServer classpath.

For Local and Replicated caches, queries are evaluated locally against unindexed data.
For Partitioned caches, queries are performed in parallel across the cluster, using
indexes if available. Coherence includes a Cost-Based Optimizer (CBO). Access to
unindexed attributes requires object deserialization (though indexing on other
attributes can reduce the number of objects that must be evaluated).

Simple Queries
Querying cache content is very simple, as Example 10–1 illustrates:

Example 10–1 Querying Cache Content

ValueExtractor::Handle hExtractor = ReflectionExtractor::create("getAge");
Filter::View vFilter = GreaterEqualsFilter::create(hExtractor,
Integer32::valueOf(18));

for (Iterator::Handle hIter = hCache->entrySet(vFilter)->iterator();
hIter->hasNext();)
 {
 Map::Entry::Handle hEntry = cast<Map::Entry::Handle>(hIter->next());

Simple Queries

10-2 Oracle Coherence User's Guide for Oracle Coherence

 Integer32::View vKey = cast<Integer32::View>(hEntry->getKey());
 Person::Handle hPerson = cast<Person::Handle>(hEntry->getValue());
 std::cout << "key=" << vKey << " person=" << hPerson;
 }

Coherence provides a wide range of filters in the coherence::util::Filter
package. A LimitFilter may be used to limit the amount of data sent to the client,
and also to provide "paging" for users:

Example 10–2 Using the LimitFilter Method

int32_t nPageSize = 25;
ValueExtractor::Handle hExtractor = ReflectionExtractor::create("getAge");
Filter::View vFilter = GreaterEqualsFilter::create(hExtractor,
Integer32::valueOf(18));

// get entries 1-25
LimitFilter::Handle hLimitFilter = LimitFilter::create(vFilter, nPageSize);
Set::View vEntries = hCache->entrySet(hLimitFilter);

// get entries 26-50
hLimitFilter->nextPage();
vEntries = hCache->entrySet(hLimitFilter);

Any queryable attribute may be indexed with the addIndex method of the QueryMap
class:

Example 10–3 Indexing a Queryable Attribute

// addIndex(ValueExtractor::View vExtractor, boolean_t fOrdered, Comparator::View
vComparator)
hCache->addIndex(hExtractor, true, NULL);

The fOrdered argument specifies whether the index structure is sorted. Sorted
indexes are useful for range queries, including "select all entries that fall between two
dates" and "select all employees whose family name begins with 'S'". For "equality"
queries, an unordered index may be used, which may have better efficiency in terms of
space and time.

The comparator argument can be used to provide a custom
java.util.Comparator for ordering the index.

Note that queries can be combined by Coherence if necessary, and also that Coherence
includes a cost-based optimizer (CBO) to prioritize the usage of indexes. To take

Note: This method is only intended as a hint to the cache
implementation, and as such it may be ignored by the cache if indexes
are not supported or if the desired index (or a similar index) already
exists. It is expected that an application will call this method to
suggest an index even if the index may already exist, just so that the
application is certain that index has been suggested. For example, in a
distributed environment each server will likely suggest the same set of
indexes when it starts, and there is no downside to the application
blindly requesting those indexes regardless of whether another server
has already requested the same indexes.

Indexes are a feature of Coherence Enterprise Edition or higher. This
method will have no effect when using Coherence Standard Edition.

Query Concepts

Query the Cache for C++ Clients 10-3

advantage of an index, queries must use extractors that are equal
((Object->equals()) to the one used in the query.

Querying Partitioned Caches
When using the Coherence Enterprise Edition or Grid Edition, the Partitioned Cache
implements the QueryMap interface using the Parallel Query feature. When using
Coherence Standard Edition, the Parallel Query feature is not available, resulting in
lower performance for most queries, particularly when querying large data sets.

Querying Near Caches
Although queries can be executed through a near cache, the query will not use the
front portion of a near cache. If using a near cache with queries, the best approach is to
use the following sequence:

Set::View vSetKeys = hCache->keySet(vFilter);
Map::View vMapResult = hCache->getAll(vSetKeys);

Query Concepts
This section goes into more detail on the design of the query interface, building up
from the core components.

The concept of querying is based on the ValueExtractor interface. A value extractor is
used to extract an attribute from a given object for querying (and similarly, indexing).
Most developers will need only the ReflectionExtractor implementation of this
interface. The ReflectionExtractor uses reflection to extract an attribute from a value
object by referring to a method name, typically a "getter" method like getName().

ReflectionExtractor::Handle hExtractor = ReflectionExtractor::create("getName");

Any "void argument" method can be used, including Object methods like
toString() (useful for prototyping/debugging). Indexes may be either traditional
"field indexes" (indexing fields of objects) or "functional indexes" (indexing "virtual"
object attributes). For example, if a class has field accessors getFirstName and
getLastName, the class may define a function getFullName which concatenates
those names, and this function may be indexed.

To query a cache that contains objects with getName attributes, a Filter must be
used. A filter has a single method which determines whether a given object meets a
criterion.

Filter::Handle hEqualsFilter = EqualsFilter::create(hExtractor,
String::create("Bob Smith"));

To select the entries of a cache that satisfy a particular filter:

Example 10–4 Selecting Entries of a Cache that Satisfy a Particular Filter

for (Iterator::Handle hIter = hCache->entrySet(hEqualsFilter)->iterator();
hIter->hasNext();)
 {
 Map::Entry::Handle hEntry = cast<Map::Entry::Handle>(hIter->next());
 Integer32::View vKey = cast<Integer32::View>(hEntry->getKey());
 Person::Handle hPerson = cast<Person::Handle>(hEntry->getValue());
 std::cout << "key=" << vKey << " person=" << hPerson;
 }

Queries Involving Multi-Value Attributes

10-4 Oracle Coherence User's Guide for Oracle Coherence

To select and also sort the entries:

Example 10–5 Selecting and Sorting Entries

// entrySet(Filter::View vFilter, Comparator::View vComparator)
Iterator::Handle hIter = hCache->entrySet(hEqualsFilter, NULL)->iterator();

The additional NULL argument specifies that the result set should be sorted using the
"natural ordering" of Comparable objects within the cache. The client may explicitly
specify the ordering of the result set by providing an implementation of Comparator.
Note that sorting places significant restrictions on the optimizations that Coherence
can apply, as sorting requires that the entire result set be available before sorting.

Using the keySet form of the queries—combined with getAll()—may provide
more control over memory usage:

Example 10–6 Using the keySet Form of a Query

// keySet(Filter::View vFilter)
Set::View vSetKeys = hCache->keySet(vFilter);
Set::Handle hSetPageKeys = HashSet::create();
int32_t PAGE_SIZE = 100;
for (Iterator::Handle hIter = vSetKeys->iterator(); hIter->hasNext();)
 {
 hSetPageKeys->add(hIter->next());
 if (hSetPageKeys->size() == PAGE_SIZE || !hIter->hasNext())
 {
 // get a block of values
 Map::View vMapResult = hCache->getAll(hSetPageKeys);

 // process the block
 // ...

 hSetPageKeys->clear();
 }
 }

Queries Involving Multi-Value Attributes
Coherence supports indexing and querying of multi-value attributes including
collections and arrays. When an object is indexed, Coherence will check to see if it is a
multi-value type, and will then index it as a collection rather than a singleton. The
ContainsAllFilter, ContainsAnyFilter, and ContainsFilter are used to
query against these collections.

Example 10–7 Indexing and Querying Multi-Value Attributes

Set::Handle hSearchTerms = HashSet::create();
hSearchTerms->add(String::create("java"));
hSearchTerms->add(String::create("clustering"));
hSearchTerms->add(String::create("books"));

// The cache contains instances of a class "Document" which has a method
// "getWords" which returns a Collection<String> containing the set of
// words that appear in the document.
ValueExtractor::Handle hExtractor = ReflectionExtractor::create("getWords");
Filter::View vFilter = ContainsAllFilter::create(hExtractor,
hSearchTerms);

ChainedExtractor

Query the Cache for C++ Clients 10-5

Set::View vEntrySet = hCache->entrySet(vFilter);

// iterate through the search results
// ...

ChainedExtractor
The ChainedExtractor implementation allows chained invocation of
zero-argument (accessor) methods. In Example 10–8, the extractor will first use
reflection to call getName() on each cached Person object, and then use reflection to
call length() on the returned String. This extractor could be passed into a query,
allowing queries (for example) to select all people with names not exceeding 10 letters.

Example 10–8 Using a ChainedExtractor Implementation

ChainedExtractor::Handle hExtractor =

ChainedExtractor::create(ChainedExtractor::createExtractors("getName.length"));

 Method invocations may be chained indefinitely, for example:
getName.trim.length.

ChainedExtractor

10-6 Oracle Coherence User's Guide for Oracle Coherence

11

Remote Invocation Service for C++ Clients 11-1

11Remote Invocation Service for C++ Clients

An Invocable can execute any arbitrary action and can use any cluster-side services
(cache services, grid services, and so on) necessary to perform their work. The
Invocable operations can also be stateful, which means that their state is serialized and
transmitted to the grid nodes on which the Invocable is run.

Coherence for C++ provides a Remote Invocation Service which allows the execution
of Invocables within the cluster-side JVM to which the client is connected. In Java,
Invocables are simply runnable application classes that implement the
com.tangosol.net.Invocable interface. To employ an Invocable in Coherence
for C++, you must deploy a compiled Java implementation of the Invocable task on
the cluster-side node, in addition to providing a C++ implementation of Invocable:
coherence::net::Invocable. Since execution is server-side (that is, Java), the
C++ invocable only must be concerned with state; the methods themselves can be
no-ops.

Configuring and Using the Remote Invocation Service
A Remote Invocation Service is configured using the remote-invocation-scheme
element in the cache configuration descriptor. Example 11–1 illustrates a sample
remote invocation scheme configuration.

Example 11–1 Sample Remote Invocation Scheme Configuration

<remote-invocation-scheme>
 <scheme-name>example-invocation</scheme-name>
 <service-name>ExtendTcpInvocationService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>

 <outgoing-message-handler>
 <request-timeout>30s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
</remote-invocation-scheme>

A reference to a configured Remote Invocation Service can then be obtained by name
by using the coherence::net::CacheFactory class:

Registering Invocable Implementation Classes

11-2 Oracle Coherence User's Guide for Oracle Coherence

Example 11–2 Reference to a Remote Invocation Service

InvocationService::Handle hService =
hService::getService("ExtendTcpInvocationService");

To execute an agent on the grid node to which the client is connected requires only
one line of code:

Map::View hResult = hService->query(myTask::create(), NULL);

The Map returned from query is keyed by the member on which the query is run. For
Extend clients, there is no concept of membership, so the result is keyed by the local
member which can be retrieved by calling
CacheFactory::getConfigurableCacheFactory()::GetLocalMember()

Registering Invocable Implementation Classes
Like cached value objects, all Invocable implementation classes must be correctly
registered in the POF context of the C++ application (see the PortableObject
description in "Building Integration Objects for C++ Clients") and cluster-side node to
which the client is connected. As such, a Java implementation of the Invocable task
(a com.tangosol.net.Invocable implementation) must be created, compiled, and
deployed on the cluster-side node.

See "POF Registration" for additional details.

12

Deliver Events for Changes as they Occur (C++) 12-1

12Deliver Events for Changes as they Occur
(C++)

Coherence provides cache events. It is extremely simple to receive the events that you
need, where you need them, regardless of where the changes are actually occurring in
the cluster.

Listener Interface and Event Object
In the event model, there is an EventListener interface that all listeners must extend.
Coherence provides a MapListener interface, which allows application logic to
receive events when data in a Coherence cache is added, modified or removed.
Example 12–1 illustrates a segment of the MapListener API.

Example 12–1 Excerpt from the coherence::util::MapListener Class File

class MapListener
 : public interface_spec<MapListener,
 implements<EventListener> >
 {
 // ----- handle definitions ---

 public:
 /**
 * Handle definition.
 */
 typedef TypedHandle<MapListener> Handle;

 /**
 * View definition.
 */
 typedef TypedHandle<const MapListener> View;

 /**
 * MapEvent View definition.
 */
 typedef TypedHandle<const MapEvent> MapEventView;

 // ----- MapListener interface --

 public:
 /**
 * Invoked when a map entry has been inserted.
 *

Listener Interface and Event Object

12-2 Oracle Coherence User's Guide for Oracle Coherence

 * @param vEvent the MapEvent carrying the insert information
 */
 virtual void entryInserted(MapEventView vEvent) = 0;

 /**
 * Invoked when a map entry has been updated.
 *
 * @param vEvent the MapEvent carrying the update information
 */
 virtual void entryUpdated(MapEventView vEvent) = 0;

 /**
 * Invoked when a map entry has been removed.
 *
 * @param vEvent the MapEvent carrying the delete information
 */
 virtual void entryDeleted(MapEventView vEvent) = 0;
 };

An application object that implements the MapListener interface can sign up for
events from any Coherence cache or class that implements the ObservableMap
interface, simply by passing an instance of the application's MapListener
implementation to one of the addMapListener() methods.

The MapEvent object that is passed to the MapListener carries all of the necessary
information about the event that has occurred, including the source (ObservableMap)
that raised the event, the identity (key) that the event is related to, what the action was
against that identity (insert, update or delete), what the old value was and what the
new value is. Example 12–2 illustrates a segment of the MapEvent API.

Example 12–2 Excerpt from coherence::util::MapEvent

class MapEvent
 : public class_spec<MapEvent,
 extends<EventObject> >
 {
 friend class factory<MapEvent>;

 // ----- MapEvent interface ---

 public:
 /**
 * Return an ObservableMap object on which this event has actually
 * occurred.
 *
 * @return an ObservableMap object
 */
 virtual ObservableMap::Handle getMap() const;

 /**
 * Return this event's id. The event id is one of the ENTRY_*
 * enumerated constants.
 *
 * @return an id
 */
 virtual int32_t getId() const;

 /**
 * Return a key associated with this event.

Listener Interface and Event Object

Deliver Events for Changes as they Occur (C++) 12-3

 *
 * @return a key
 */
 virtual Object::View getKey() const;

 /**
 * Return an old value associated with this event.
 * <p>
 * The old value represents a value deleted from or updated in a map.
 * It is always NULL for "insert" notifications.
 *
 * @return an old value
 */
 virtual Object::View getOldValue() const;

 /**
 * Return a new value associated with this event.
 * <p>
 * The new value represents a new value inserted into or updated in
 * a map. It is always NULL for "delete" notifications.
 *
 * @return a new value
 */
 virtual Object::View getNewValue() const;

 // ----- Objectinterface ---

 public:
 /**
 * {@inheritDoc}
 */
 virtual void toStream(std::ostream& out) const;

 // ----- helper methods ---

 public:
 /**
 * Dispatch this event to the specified listeners collection.
 * <p>
 * This call is equivalent to
 * <pre>
 * dispatch(listeners, true);
 * </pre>
 *
 * @param vListeners the listeners collection
 *
 * @throws ClassCastException if any of the targets is not
 * an instance of MapListener interface
 */
 virtual void dispatch(Listeners::View vListeners) const;

 /**
 * Dispatch this event to the specified listeners collection.
 *
 * @param vListeners the listeners collection
 * @param fStrict if true then any RuntimeException thrown by event
 * handlers stops all further event processing and
 * the exception is re-thrown; if false then all

Caches and Classes that Support Events

12-4 Oracle Coherence User's Guide for Oracle Coherence

 * exceptions are logged and the process continues
 *
 * @throws ClassCastException if any of the targets is not
 * an instance of MapListener interface
 */
 virtual void dispatch(Listeners::View vListeners,
 bool fStrict) const;

 /**
 * Dispatch this event to the specified MapListener.
 *
 * @param hListener the listener
 */
 virtual void dispatch(MapListener::Handle hListener) const;

 /**
 * Get the event's description.
 *
 * @return this event's description
 */
 virtual String::View getDescription() const;

 /**
 * Convert an event ID into a human-readable string.
 *
 * @param nId an event ID, one of the ENTRY_* enumerated values
 *
 * @return a corresponding human-readable string, for example
 * "inserted"
 */
 static String::View getDescription(int32_t nId);

 // ----- constants --

 public:
 /**
 * This event indicates that an entry has been added to the map.
 */
 static const int32_t ENTRY_INSERTED = 1;

 /**
 * This event indicates that an entry has been updated in the map.
 */
 static const int32_t ENTRY_UPDATED = 2;

 /**
 * This event indicates that an entry has been removed from the map.
 */
 static const int32_t ENTRY_DELETED = 3;
 };

Caches and Classes that Support Events
All Coherence caches implement ObservableMap; in fact, the NamedCache interface
that is implemented by all Coherence caches extends the ObservableMap interface.
That means that an application can sign up to receive events from any cache,
regardless of whether that cache is local, partitioned, near, replicated, using
read-through, write-through, write-behind, overflow, disk storage, and so on.

Signing Up for all Events

Deliver Events for Changes as they Occur (C++) 12-5

In addition to the Coherence caches (those objects obtained through a Coherence cache
factory), several other supporting classes in Coherence also implement the
ObservableMap interface:

■ ObservableHashMap

■ LocalCache

■ OverflowMap

■ NearCache

■ ReadWriteBackingMap

■ AbstractSerializationCache, SerializationCache, and
SerializationPagedCache

■ WrapperObservableMap, WrapperConcurrentMap, and
WrapperNamedCache

For a full list of published implementing classes, see the Coherence API for
ObservableMap.

Signing Up for all Events
To sign up for events, simply pass an object that implements the MapListener
interface to one of the addMapListener methods on ObservableMap:

Example 12–3 ObservableMap methods

virtual void addKeyListener(MapListener::Handle hListener, Object::View vKey, bool
fLite) = 0;
virtual void removeKeyListener(MapListener::Handle hListener, Object::View vKey) =
0;
virtual void addFilterListener(MapListener::Handle hListener, Filter::View vFilter
= NULL, bool fLite = false) = 0;
virtual void removeFilterListener(MapListener::Handle hListener, Filter::View
vFilter = NULL) = 0;

Let's create an example MapListener implementation:

Example 12–4 Example MapListener implementation

#include "coherence/util/MapEvent.hpp"
#include "coherence/util/MapListener.hpp"

#include <iostream>

using coherence::util::MapEvent;
using coherence::util::MapListener;
using namespace std;

/**
* A MapListener implementation that prints each event as it receives
* them.
*/

Note: Regardless of the cache topology and the number of servers,
and even if the modifications are being made by other servers, the
events will be delivered to the application's listeners.

Signing Up for all Events

12-6 Oracle Coherence User's Guide for Oracle Coherence

class EventPrinter
 : public class_spec<EventPrinter,
 extends<Object>,
 implements<MapListener> >
 {
 friend class factory<EventPrinter>;

 public:
 virtual void entryInserted(MapEventView vEvent)
 {
 cout << vEvent << endl;
 }

 virtual void entryUpdated(MapEventView vEvent)
 {
 cout << vEvent << endl;
 }

 virtual void entryDeleted(MapEventView vEvent)
 {
 cout << vEvent << endl;
 }
 };

Using this implementation, it is extremely simple to print out all events from any
given cache (since all caches implement the ObservableMap interface):

Example 12–5 Printing Events

NamedCache::Handle hCache;
...
hCache->addFilterListener(EventPrinter::create());

Of course, to be able to later remove the listener, it is necessary to hold on to a
reference to the listener:

Example 12–6 Holding a Reference to a Listener

MapListener::Handle hListener = EventPrinter::create();
hCache->addFilterListener(hListener);
m_hListener = hListener; // store the listener in a member field

Later, to remove the listener:

Example 12–7 Removing a Reference to a Listener

MapListener::Handle hListener = m_hListener;
if (hListener != NULL)
 {
 hCache->removeFilterListener(hListener);
 m_hListener = NULL; // clean up the listener field
 }

Each add*Listener method on the ObservableMap interface has a corresponding
remove*Listener method. To remove a listener, use the remove*Listener
method that corresponds to the add*Listener method that was used to add the
listener.

Signing Up for Events on Specific Identities

Deliver Events for Changes as they Occur (C++) 12-7

MultiplexingMapListener
Another helpful base class for creating a MapListener is the
MultiplexingMapListener, which routes all events to a single method for
handling. Example 12–8 illustrates a simplified version of the EventPrinter
example:

Example 12–8 Using MultiplexingMapListener to Route Events

#include "coherence/util/MultiplexingMapListener.hpp"

#include <iostream>

using coherence::util::MultiplexingMapListener;

class EventPrinter
 : public class_spec<EventPrinter,
 extends<MultiplexingMapListener> >
 {
 public:
 virtual void onMapEvent(MapEventView vEvent)
 {
 std::cout << vEvent << std::endl;
 }
 };

Configuring a MapListener for a Cache
If the listener should always be on a particular cache, then place it into the cache
configuration using the <listener> element and Coherence will automatically add
the listener when it configures the cache.

Signing Up for Events on Specific Identities
Signing up for events that occur against specific identities (keys) is just as simple. The
C++ code in Example 12–9 prints all events that occur against the Integer key 5:

Example 12–9 Printing Events that Occur Against a Specified Integer Key

hCache->addKeyListener(EventPrinter::create(), Integer32::create(5), false);

The code in Example 12–10 would only trigger an event when the Integer key 5 is
inserted or updated:

Example 12–10 Triggering an Event for a Specified Integer Key Value

for (int32_t i = 0; i < 10; ++i)
 {
 Integer32::View vKey = Integer32::create(i);
 Integer32::View vValue = vKey;
 hCache->put(vKey, vValue);
 }

Filtering Events

12-8 Oracle Coherence User's Guide for Oracle Coherence

Filtering Events
Similar to listening to a particular key, it is possible to listen to particular events. In
Example 12–11, a listener is added to the cache with a filter that allows the listener to
only receive delete events.

Example 12–11 Adding a Listener with a Filter that Allows only Deleted Events

// Filters used with partitioned caches must implement
coherence::io::pof::PortableObject

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"
#include "coherence/util/Filter.hpp"
#include "coherence/util/MapEvent.hpp"

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;
using coherence::io::pof::PortableObject;
using coherence::util::Filter;
using coherence::util::MapEvent;

class DeletedFilter
 : public class_spec<DeletedFilter,
 extends<Object>,
 implements<Filter, PortableObject> >
 {
 public:
 // Filter interface virtual bool evaluate(Object::View v) const
 {
 MapEvent::View vEvt = cast<MapEvent::View>(v);
 return MapEvent::ENTRY_DELETED == vEvt->getId();
 }

 // PortableObject interface virtual void
readExternal(PofReader::Handle hIn)
 {
 }

 virtual void writeExternal(PofWriter::Handle hOut) const
 {
 }
 };

hCache->addFilterListener(EventPrinter::create(), DeletedFilter::create(), false);

For example, if the following sequence of calls were made:

Example 12–12 Inserting and Removing Data from the Cache

cache::put(String::create("hello"), String::create("world"));
cache::put(String::create("hello"), String::create("again"));
cache::remove(String::create("hello"));

The result would be:

CacheEvent{LocalCache deleted: key=hello, value=again}

For more information, see "Advanced: Listening to Queries" on page 12-10.

"Lite" Events

Deliver Events for Changes as they Occur (C++) 12-9

Filtering Events Versus Filtering Cached Data
When building a Filter for querying, the object that will be passed to the evaluate
method of the Filter will be a value from the cache, or, if the Filter implements
the EntryFilter interface, the entire Map::Entry from the cache. When building a
Filter for filtering events for a MapListener, the object that will be passed to the
evaluate method of the Filter will always be of type MapEvent.

For more information on how to use a query filter to listen to cache events, see
Advanced: Listening to Queries.

"Lite" Events
By default, Coherence provides both the old and the new value as part of an event.
Consider the following example:

Example 12–13 Inserting, Updating, and Removing a Value

MapListener::Handle hListener = EventPrinter::create();
// add listener with the default"lite" value of
falsehCache->addFilterListener(hListener);

// insert a 1KB value
String::View vKey = String::create("test");
hCache->put(vKey, Array<octet_t>::create(1024));

// update with a 2KB value
hCache->put(vKey, Array<octet_t>::create(2048));

// remove the value
hCache->remove(vKey);

When the above code is run, the insert event carries the new 1KB value, the update
event carries both the old 1KB value and the new 2KB value and the remove event
carries the removed 2KB value.

When an application does not require the old and the new value to be included in the
event, it can indicate that by requesting only "lite" events. When adding a listener, you
can request lite events by using either the addFilterListener or the
addKeyListener method that takes an additional boolean fLite parameter. In the
above example, the only change would be:

Example 12–14 Requesting Only "Lite" Events

cache->addFilterListener(hListener, (Filter::View) NULL, true);

Note: Obviously, a lite event's old value and new value may be
NULL. However, even if you request lite events, the old and the new
value may be included if there is no additional cost to generate and
deliver the event. In other words, requesting that a MapListener
receive lite events is simply a hint to the system that the
MapListener does not need to know the old and new values for the
event.

Advanced: Listening to Queries

12-10 Oracle Coherence User's Guide for Oracle Coherence

Advanced: Listening to Queries
All Coherence caches support querying by any criteria. When an application queries
for data from a cache, the result is a point-in-time snapshot, either as a set of identities
(keySet) or a set of identity/value pairs (entrySet). The mechanism for
determining the contents of the resulting set is referred to as filtering, and it allows an
application developer to construct queries of arbitrary complexity using a rich set of
out-of-the-box filters (for example, equals, less-than, like, between, and so on), or to
provide their own custom filters (for example, XPath).

The same filters that are used to query a cache can be used to listen to events from a
cache. For example, in a trading system it is possible to query for all open Order
objects for a particular trader.

Example 12–15 Filtering for Cache Events

NamedCache::Handle hMapTrades = ...
Filter::Handle hFilter = AndFilter::create(
 EqualsFilter::create(ReflectionExtractor::create("getTrader"), vTraderId),
 EqualsFilter::create(ReflectionExtractor::create("getStatus"),
Status::OPEN));
Set::View vSetOpenTrades = hMapTrades->entrySet(hFilter);

To receive notifications of new trades being opened for that trader, closed by that
trader or reassigned to or from another trader, the application can use the same filter:

Example 12–16 Filtering for Specialized Events

// receive events for all trade IDs that this trader is interested in
hMapTrades->addFilterListener(hListener, MapEventFilter::create(hFilter), true);

The MapEventFilter converts a query filter into an event filter.

Note: Executing Queries in the Cluster: Example 12–15 uses the
coherence::util::extractor::ReflectionExtractor class.
While the C++ client doesn't support reflection, the
ReflectionExtractor can be used for queries which are executed
in the cluster. In this case, the ReflectionExtractor simply passes
the necessary extraction information to the cluster to perform the
query. In cases where the ReflectionExtractor would extract the
data on the client, such as the ContinuousQueryCache when
caching values locally, the use of the ReflectionExtractor is not
supported. For these cases, you must provide a custom extractor.

Advanced: Synthetic Events

Deliver Events for Changes as they Occur (C++) 12-11

The MapEventFilter has several very powerful options, allowing an application
listener to receive only the events that it is specifically interested in. More importantly
for scalability and performance, only the desired events have to be communicated over
the network, and they are communicated only to the servers and clients that have
expressed interest in those specific events. For example:

Example 12–17 Communicating Only Specialized Events over the Network

// receive all events for all trades that this trader is interested in
int32_t nMask = MapEventFilter::E_ALL;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter),
true);

// receive events for all this trader's trades that are closed or
// re-assigned to a different trader
nMask = MapEventFilter::E_UPDATED_LEFT | MapEventFilter::E_DELETED;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter),
true);

// receive events for all trades as they are assigned to this trader
nMask = MapEventFilter::E_INSERTED | MapEventFilter::E_UPDATED_ENTERED;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter),
true);

// receive events only for new trades assigned to this trader
nMask = MapEventFilter::E_INSERTED;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter),
true);

For more information on the various options supported, see the API documentation
for MapEventFilter.

Advanced: Synthetic Events
Events usually reflect the changes being made to a cache. For example, one server is
modifying one entry in a cache while another server is adding several items to a cache
while a third server is removing an item from the same cache, all while fifty threads on
each and every server in the cluster is accessing data from the same cache! All the
modifying actions will produce events that any server within the cluster can choose to
receive. We refer to these actions as client actions, and the events as being dispatched to
clients, even though the "clients" in this case are actually servers. This is a natural

Note: Filtering events versus filtering cached data: When building a
Filter for querying, the object that will be passed to the evaluate
method of the Filter will be a value from the cache, or, if the Filter
implements the EntryFilter interface, the entire Map::Entry from
the cache. When building a Filter for filtering events for a
MapListener, the object that will be passed to the evaluate
method of the Filter will always be of type MapEvent.

The MapEventFilter converts a Filter that is used to do a query
into a Filter that is used to filter events for a MapListener. In
other words, the MapEventFilter is constructed from a Filter
that queries a cache, and the resulting MapEventFilter is a filter
that evaluates MapEvent objects by converting them into the objects
that a query Filter would expect.

Advanced: Backing Map Events

12-12 Oracle Coherence User's Guide for Oracle Coherence

concept in a true peer-to-peer architecture, such as a Coherence cluster: Each and every
peer is both a client and a server, both consuming services from its peers and
providing services to its peers. In a typical Java Enterprise application, a "peer" is an
application server instance that is acting as a container for the application, and the
"client" is that part of the application that is directly accessing and modifying the
caches and listening to events from the caches.

Some events originate from within a cache itself. There are many examples, but the
most common cases are:

■ When entries automatically expire from a cache;

■ When entries are evicted from a cache because the maximum size of the cache has
been reached;

■ When entries are transparently added to a cache as the result of a Read-Through
operation;

■ When entries in a cache are transparently updated as the result of a Read-Ahead
or Refresh-Ahead operation.

Each of these represents a modification, but the modifications represent natural (and
typically automatic) operations from within a cache. These events are referred to as
synthetic events.

When necessary, an application can differentiate between client-induced and synthetic
events simply by asking the event if it is synthetic. This information is carried on a
sub-class of the MapEvent, called CacheEvent. Using the previous EventPrinter
example, it is possible to print only the synthetic events:

Example 12–18 Differentiating Between Client-Induced and Synthetic Events

class EventPrinter
 : public class_spec<EventPrinter,
 extends<MultiplexingMapListener> >
 {
 friend class factory<EventPrinter>;

 public:
 void onMapEvent(MapEvent::View vEvt)
 {
 if (instanceof<CacheEvent::View>(vEvt) &&
 (cast<CacheEvent::View>(vEvt)->isSynthetic()))
 {
 std::cout << vEvt;
 }
 }
 };

For more information on this feature, see the API documentation for CacheEvent.

Advanced: Backing Map Events
While it is possible to listen to events from Coherence caches, each of which presents a
local view of distributed, partitioned, replicated, near-cached, continuously-queried,
read-through/write-through and/or write-behind data, it is also possible to peek
behind the curtains, so to speak.

For some advanced use cases, it may be necessary to peek behind the curtain—or more
correctly, to "listen to" the "map" behind the "service". Replication, partitioning and
other approaches to managing data in a distributed environment are all distribution

Summary

Deliver Events for Changes as they Occur (C++) 12-13

services. The service still has to have something in which to actually manage the data,
and that something is called a "backing map".

Backing maps are configurable. If all the data for a particular cache should be kept in
object form on the heap, then use an unlimited and non-expiring LocalCache (or a
SafeHashMap if statistics are not required). If only a small number of items should be
kept in memory, use a LocalCache. If data are to be read on demand from a database,
then use a ReadWriteBackingMap (which knows how to read and write through an
application's DAO implementation), and in turn give the ReadWriteBackingMap a
backing map such as a SafeHashMap or a LocalCache to store its data in.

Some backing maps are observable. The events coming from these backing maps are
not usually of direct interest to the application. Instead, Coherence translates them into
actions that must be taken (by Coherence) to keep data synchronized and properly
backed up, and it also translates them when appropriate into clustered events that are
delivered throughout the cluster as requested by application listeners. For example, if
a partitioned cache has a LocalCache as its backing map, and the local cache expires
an entry, that event causes Coherence to expire all of the backup copies of that entry.
Furthermore, if any listeners have been registered on the partitioned cache, and if the
event matches their event filter(s), then that event will be delivered to those listeners
on the servers where those listeners were registered.

In some advanced use cases, an application must process events on the server where
the data are being maintained, and it must do so on the structure (backing map) that is
actually managing the data. In these cases, if the backing map is an observable map, a
listener can be configured on the backing map or one can be programmatically added
to the backing map. (If the backing map is not observable, it can be made observable
by wrapping it in an WrapperObservableMap.)

For more information on this feature, see the API documentation for
BackingMapManager.

Advanced: Synchronous Event Listeners
Some events are delivered asynchronously, so that application listeners do not disrupt
the cache services that are generating the events. In some rare scenarios, asynchronous
delivery can cause ambiguity of the ordering of events compared to the results of
ongoing operations. To guarantee that the cache API operations and the events are
ordered as if the local view of the clustered system were single-threaded, a
MapListener must implement the SynchronousListener marker interface.

One example in Coherence itself that uses synchronous listeners is the Near Cache,
which can use events to invalidate locally cached data ("Seppuku").

For more information on this feature, see the API documentation for
SynchronousListener.

Summary
Coherence provides an extremely rich event model for caches, providing the means for
an application to request the specific events it requires, and the means to have those
events delivered only to those parts of the application that require them.

Summary

12-14 Oracle Coherence User's Guide for Oracle Coherence

Part II
Part II Coherence for .NET

Coherence for .NET allows .NET applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster.
Typical uses of Coherence for .NET include desktop and web applications that require
access to Coherence caches.

Coherence for .NET consists of a lightweight .NET library that connects to a
Coherence*Extend clustered service instance running within the Coherence cluster
using a high performance TCP/IP-based communication layer. This library sends all
client requests to the Coherence*Extend clustered service which, in turn, responds to
client requests by delegating to an actual Coherence clustered service (for example, a
Partitioned or Replicated cache service).

An INamedCache instance is retrieved by using the
CacheFactory.GetCache(...) API call. Once it is obtained, a client accesses the
INamedCache in the same way as it would if it were part of the Coherence cluster.
The fact that INamedCache operations are being sent to a remote cluster node (over
TCP/IP) is completely transparent to the client application.

Coherence for .NET contains the following chapters:

■ Chapter 13, "Requirements, Installation and Deployment for Coherence for .NET"

■ Chapter 14, "Configuration and Usage for .NET Clients"

■ Chapter 15, "Building Integratable Objects for .NET Clients"

■ Chapter 16, "Configuring a Local Cache for .NET Clients"

■ Chapter 17, "Configuring a Near Cache for .NET Clients"

■ Chapter 18, "Continuous Query Cache for .NET Clients"

■ Chapter 19, "Remote Invocation Service for .NET Clients"

■ Chapter 20, "Special Considerations—Windows Forms Applications for .NET
Clients"

■ Chapter 21, "Special Considerations—Web Applications for .NET Clients"

■ Chapter 22, "Network Filters for .NET Clients"

■ Chapter 23, "Sample Windows Forms Application for .NET Clients"

■ Chapter 24, "Sample Web Application for .NET Clients"

13

Requirements, Installation and Deployment for Coherence for .NET 13-1

13Requirements, Installation and Deployment
for Coherence for .NET

This chapter describes the requirements for installing and deploying Coherence on the
.NET platform.

Package Requirements
The following are required to use Coherence for .NET:

■ Microsoft.NET 1.1, 2.0, 3.0, or 3.5 Runtime

■ Microsoft.NET 1.1, 2.0, 3.0, or 3.5 SDK

■ Java Standard Edition 1.4.x SDK (or later)

■ Coherence Data Grid Edition 3.4

■ Supported Microsoft Windows operating system (see the system requirements for
the appropriate .NET Runtime above)

In addition to the software listed above, the following is required to build and run the
examples included with Coherence for .NET:

■ Microsoft Visual Studio 2005

Installation
1. Download the Coherence for .NET Windows installer (typically named

coherence-net.msi).

2. Run the installer by double clicking on the installer file.

Deployment
Coherence for .NET requires no specialized deployment configuration. Simply add a
reference to the appropriate Coherence.dll to your Microsoft.NET application. If
you are using .NET 1.1, use the library found in the bin\net\1.1 folder. If you are
using .NET 2.0 or higher, use the library found in the bin\net\2.0 folder.

Deployment

13-2 Oracle Coherence User's Guide for Oracle Coherence

14

Configuration and Usage for .NET Clients 14-1

14Configuration and Usage for .NET Clients

This chapter describes how to configure .NET clients for Coherence*Extend, the POF
context, and the .NET client library.

General Instructions
Configuring and using Coherence for .NET requires five basic steps:

1. Configure Coherence*Extend on both the client and on one or more JVMs within
the cluster.

2. Configure a POF context on the client and on all of the JVMs within the cluster
that run the Coherence*Extend clustered service.

3. Implement the .NET client application using the Coherence for .NET API.

4. Make sure the Coherence cluster is up and running.

5. Launch the .NET client application.

The following sections describe each of these steps in detail.

Configuring Coherence*Extend
To configure Coherence*Extend, you need to add the appropriate configuration
elements to both the cluster and client-side cache configuration descriptors. The
cluster-side cache configuration elements instruct a Coherence
DefaultCacheServer to start a Coherence*Extend clustered service that will listen
for incoming TCP/IP requests from Coherence*Extend clients. The client-side cache
configuration elements are used by the client library to determine the IP address and
port of one or more servers in the cluster that run the Coherence*Extend clustered
service so that it can connect to the cluster. It also contains various connection-related
parameters, such as connection and request timeouts.

Configuring Coherence*Extend in the Cluster
In order for a Coherence*Extend client to connect to a Coherence cluster, one or more
DefaultCacheServer JVMs within the cluster must run a TCP/IP
Coherence*Extend clustered service. To configure a DefaultCacheServer to run
this service, a proxy-scheme element with a child tcp-acceptor element must be
added to the cache configuration descriptor used by the DefaultCacheServer. this
is illustrated in Example 14–1.

Configuring Coherence*Extend

14-2 Oracle Coherence User's Guide for Oracle Coherence

Example 14–1 Configuration of a Default Cache Server for Coherence*Extend

<?xml version="1.0"?>
<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-*</cache-name>
 <scheme-name>dist-default</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>dist-default</scheme-name>
 <lease-granularity>member</lease-granularity>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <thread-count>5</thread-count>
 <acceptor-config>
 <tcp-acceptor>
 <local-address>
 <address>localhost</address>
 <port>9099</port>
 </local-address>
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

This cache configuration descriptor defines two clustered services, one that allows
remote Coherence*Extend clients to connect to the Coherence cluster over TCP/IP and
a standard Partitioned cache service. Since this descriptor is used by a
DefaultCacheServer, it is important that the autostart configuration element for
each service is set to true so that clustered services are automatically restarted upon
termination. The proxy-scheme element has a tcp-acceptor child element which
includes all TCP/IP-specific information needed to accept client connection requests
over TCP/IP.

The Coherence*Extend clustered service configured above will listen for incoming
requests on the localhost address and port 9099. When, for example, a client
attempts to connect to a Coherence cache called dist-extend, the Coherence*Extend
clustered service will proxy subsequent requests to the NamedCache with the same
name which, in this example, will be a Partitioned cache.

Configuring Coherence*Extend on the Client
A Coherence*Extend client uses the information within an initiator-config cache
configuration descriptor element to connect to and communicate with a
Coherence*Extend clustered service running within a Coherence cluster. This is
illustrated in Example 14–2.

Configuring Coherence*Extend

Configuration and Usage for .NET Clients 14-3

Example 14–2 Configuration to Connect to a Remote Coherence Cluster

<?xml version="1.0"?>

<cache-config xmlns="http://schemas.tangosol.com/cache">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>extend-dist</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

This cache configuration descriptor defines a caching scheme that connects to a remote
Coherence cluster. The remote-cache-scheme element has a tcp-initiator
child element which includes all TCP/IP-specific information needed to connect the
client with the Coherence*Extend clustered service running within the remote
Coherence cluster.

When the client application retrieves a named cache with CacheFactory using, for
example, the name dist-extend, the Coherence*Extend client will connect to the
Coherence cluster by using TCP/IP (using the address localhost and port 9099)
and return a INamedCache implementation that routes requests to the NamedCache
with the same name running within the remote cluster. Note that the
remote-addresses configuration element can contain multiple socket-address
child elements. The Coherence*Extend client will attempt to connect to the addresses
in a random order, until either the list is exhausted or a TCP/IP connection is
established.

Connection Error Detection and Failover
When a Coherence*Extend client service detects that the connection between the client
and cluster has been severed (for example, due to a network, software, or hardware
failure), the Coherence*Extend client service implementation (that is, ICacheService
or IInvocationService) will raise a MemberEventType.Left event (by using the
MemberEventHandler delegate) and the service will be stopped. If the client
application attempts to subsequently use the service, the service will automatically
restart itself and attempt to reconnect to the cluster. If the connection is successful, the

Configuring Coherence*Extend

14-4 Oracle Coherence User's Guide for Oracle Coherence

service will raise a MemberEventType.Joined event; otherwise, a fatal exception
will be thrown to the client application.

A Coherence*Extend service has several mechanisms for detecting dropped
connections. Some mechanisms are inherent to the underlying protocol (such as
TCP/IP in Extend-TCP), whereas others are implemented by the service itself. The
latter mechanisms are configured by using the outgoing-message-handler
configuration element.

The primary configurable mechanism used by a Coherence*Extend client service to
detect dropped connections is a request timeout. When the service sends a request to
the remote cluster and does not receive a response within the request timeout interval
(see <request-timeout>), the service assumes that the connection has been
dropped. The Coherence*Extend client and clustered services can also be configured to
send a periodic heartbeat over the connection (see <heartbeat-interval> and
<heartbeat-timeout>). If the service does not receive a response within the
configured heartbeat timeout interval, the service assumes that the connection has
been dropped.

15

Building Integratable Objects for .NET Clients 15-1

15Building Integratable Objects for .NET
Clients

Coherence caches are used to cache value objects. Enabling .NET clients to successfully
communicate with a Coherence JVM requires a platform-independent serialization
format that allows both .NET clients and Coherence JVMs (including
Coherence*Extend Java clients) to properly serialize and deserialize value objects
stored in Coherence caches. The Coherence for .NET client library and
Coherence*Extend clustered service use a serialization format known as Portable
Object Format (POF). POF allows value objects to be encoded into a binary stream in
such a way that the platform and language origin of the object is irrelevant.

Configuring a POF Context
POF supports all common .NET and Java types out-of-the-box. Any custom .NET and
Java class can also be serialized to a POF stream; however, there are additional steps
required to do so:

1. Create a .NET class that implements the IPortableObject interface. (See
"Creating an IPortableObject Implementation (.NET)")

2. Create a matching Java class that implements the PortableObject interface in
the same way. (See "Creating a PortableObject Implementation (Java)")

3. Register your custom .NET class on the client. (See "Registering Custom Types on
the .NET Client")

4. Register your custom Java class on each of the servers running the
Coherence*Extend clustered service. (See "Registering Custom Types in the
Cluster")

Once these steps are complete, you can cache your custom .NET classes in a Coherence
cache in the same way as a built-in data type. Additionally, you will be able to retrieve,
manipulate, and store these types from a Coherence or Coherence*Extend JVM using
the matching Java classes.

Creating an IPortableObject Implementation (.NET)
Each class that implements IPortableObject can self-serialize and deserialize its
state to and from a POF data stream. This is achieved in the ReadExternal
(deserialize) and WriteExternal (serialize) methods. Conceptually, all user types are
composed of zero or more indexed values (properties) which are read from and
written to a POF data stream one by one. The only requirement for a portable class,
other than the need to implement the IPortableObject interface, is that it must

Configuring a POF Context

15-2 Oracle Coherence User's Guide for Oracle Coherence

have a default constructor which will allow the POF deserializer to create an instance
of the class during deserialization.

Example 15–1 illustrates a user-defined portable class:

Example 15–1 A User-Defined Portable Class

public class ContactInfo : IPortableObject
{
 private string name;
 private string street;
 private string city;
 private string state;
 private string zip;
 public ContactInfo()
 {}
 public ContactInfo(string name, string street, string city, string state,
string zip)
 {
 Name = name;
 Street = street;
 City = city;
 State = state;
 Zip = zip;
 }
 public void ReadExternal(IPofReader reader)
 {
 Name = reader.ReadString(0);
 Street = reader.ReadString(1);
 City = reader.ReadString(2);
 State = reader.ReadString(3);
 Zip = reader.ReadString(4);
 }
 public void WriteExternal(IPofWriter writer)
 {
 writer.WriteString(0, Name);
 writer.WriteString(1, Street);
 writer.WriteString(2, City);
 writer.WriteString(3, State);
 writer.WriteString(4, Zip);
 }
 // property definitions ommitted for brevity
}

Creating a PortableObject Implementation (Java)
An implementation of the portable class in Java is very similar to the one in .NET from
the example above:

Example 15–2 illustrates the Java version of the .NET class in Example 15–1.

Example 15–2 A User-Defined Class in Java

public class ContactInfo implements PortableObject
 {
 private String m_sName;

 private String m_sStreet;
 private String m_sCity;
 private String m_sState;

Configuring a POF Context

Building Integratable Objects for .NET Clients 15-3

 private String m_sZip;
 public ContactInfo()
 {
 }
 public ContactInfo(String sName, String sStreet, String sCity, String sState,
String sZip)
 {
 setName(sName);
 setStreet(sStreet);
 setCity(sCity);
 setState(sState);
 setZip(sZip);
 }
 public void readExternal(PofReader reader)
 throws IOException
 {
 setName(reader.readString(0));
 setStreet(reader.readString(1));
 setCity(reader.readString(2));
 setState(reader.readString(3));
 setZip(reader.readString(4));
 }
 public void writeExternal(PofWriter writer)
 throws IOException
 {
 writer.writeString(0, getName());
 writer.writeString(1, getStreet());
 writer.writeString(2, getCity());
 writer.writeString(3, getState());
 writer.writeString(4, getZip());
 }
 // accessor methods omitted for brevity
}

Registering Custom Types on the .NET Client
Each POF user type is represented within the POF stream as an integer value. As such,
POF requires an external mechanism that allows a user type to be mapped to its
encoded type identifier (and visa versa). This mechanism uses an XML configuration
file to store the mapping information. This is illustrated in Example 15–3. These
elements are described in "POF User Type Configuration Elements .

Example 15–3 Storing Mapping Informaiton in the POF User Type Configuration File

<?xml version="1.0"?>
<pof-config xmlns="http://schemas.tangosol.com/pof">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->

<include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml</include>
 <!-- include all application POF user types -->

 <user-type>

 <type-id>1001</type-id>
 <class-name>My.Example.ContactInfo, MyAssembly</class-name>
 </user-type>
 ...
 </user-type-list>

Configuring a POF Context

15-4 Oracle Coherence User's Guide for Oracle Coherence

</pof-config>

There are few things to note:

■ Type identifiers for your custom types should start from 1001 or higher, as the
numbers below 1000 are reserved for internal use.

■ You need not specify a fully qualified type name within the class-name element.
The type and assembly name is enough.

Once you have configured mappings between type identifiers and your custom types,
you must configure Coherence for .NET to use them by adding a serializer element to
your cache configuration descriptor. Assuming that user type mappings from
Example 15–3 are saved into my-dotnet-pof-config.xml, you need to specify a
serializer element as illustrated in Example 15–4:

Example 15–4 Using a Serializer in the Cache Configuration File

<remote-cache-scheme>
 <scheme-name>extend-direct</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 ...
 <serializer>
 <class-name>Tangosol.IO.Pof.ConfigurablePofContext, Coherence</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>my-dotnet-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </serializer>
 </initiator-config>
</remote-cache-scheme>

The ConfigurablePofContext type will be used for the POF serializer if one is not
explicitly specified. It uses a default configuration file
($AppRoot/coherence-pof-config.xml) if it exists, or a specific file determined
by the contents of the pof-config element in the Coherence for .NET application
configuration file. For example:

Example 15–5 Specifying a POF Configuration File

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section name="coherence" type="Tangosol.Config.CoherenceConfigHandler,
Coherence"/>
 </configSections>
 <coherence>
 <pof-config>my-dotnet-pof-config.xml</pof-config>
 </coherence>
</configuration>

See "Configuring and Using the Coherence for .NET Client Library" for additional
details.

Configuring a POF Context

Building Integratable Objects for .NET Clients 15-5

Registering Custom Types in the Cluster
Each Coherence node running the TCP/IP Coherence*Extend clustered service
requires a similar POF configuration for the custom types to be able to send and
receive objects of these types.

The cluster-side POF configuration file looks similar to the one created on the client.
The only difference is that instead of .NET class names, you must specify the fully
qualified Java class names within the class-name element.

Example 15–6 illustrates a sample cluster-side POF configuration file called
my-java-pof-config.xml:

Example 15–6 Cluster-side POF Configuration File

<?xml version="1.0"?>
<!DOCTYPE pof-config SYSTEM "pof-config.dtd">
<pof-config>
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>example-pof-config.xml</include>
 <!-- include all application POF user types -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>com.mycompany.example.ContactInfo</class-name>
 </user-type>
 ...
 </user-type-list>
</pof-config>

Once your custom types have been added, you must configure the server to use your
POF configuration when serializing objects. This is illustrated in Example 15–7:

Example 15–7 Configuring the Server to Use the POF Configuration

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <acceptor-config>
 ...
 <serializer>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>my-java-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </serializer>
 </acceptor-config>
 ...
</proxy-scheme>

Evolvable Portable User Types
PIF-POF includes native support for both forward- and backward-compatibility of the
serialized form of portable user types. In .NET, this is accomplished by making user
types implement the IEvolvablePortableObject interface instead of the
IPortableObject interface. The IEvolvablePortableObject interface is a
marker interface that extends both the IPortableObject and IEvolvable interfaces.
The IEvolvable interface adds three properties to support type versioning.

Configuring a POF Context

15-6 Oracle Coherence User's Guide for Oracle Coherence

An IEvolvable class has an integer version identifier n, where n >= 0. When the
contents and/or semantics of the serialized form of the IEvolvable class changes,
the version identifier is increased. Two versions identifiers, n1 and n2, indicate the
same version if n1 == n2; the version indicated by n2 is newer than the version
indicated by n1 if n2 > n1.

The IEvolvable interface is designed to support the evolution of types by the
addition of data. Removal of data cannot be safely accomplished if a previous version
of the type exists that relies on that data. Modifications to the structure or semantics of
data from previous versions likewise cannot be safely accomplished if a previous
version of the type exists that relies on the previous structure or semantics of the data.

When an IEvolvable object is deserialized, it retains any unknown data that has
been added to newer versions of the type, and the version identifier for that data
format. When the IEvolvable object is subsequently serialized, it includes both that
version identifier and the unknown future data.

When an IEvolvable object is deserialized from a data stream whose version
identifier indicates an older version, it must default and/or calculate the values for
any data fields and properties that have been added since that older version. When the
IEvolvable object is subsequently serialized, it includes its own version identifier
and all of its data. Note that there will be no unknown future data in this case; future
data can only exist when the version of the data stream is newer than the version of
the IEvolvable type.

Example 15–8 demonstrates how the ContactInfo .NET type can be modified to
support class evolution:

Example 15–8 Modifying a Class to Support Class Evolution

public class ContactInfo : IEvolvablePortableObject
{
 private string name;
 private string street;
 private string city;
 private string state;
 private string zip;
 // IEvolvable members
 private int version;
 private byte[] data;
 public ContactInfo()
 {}
 public ContactInfo(string name, string street, string city, string state,
string zip)
 {
 Name = name;
 Street = street;
 City = city;
 State = state;
 Zip = zip;
 }
 public void ReadExternal(IPofReader reader)
 {
 Name = reader.ReadString(0);
 Street = reader.ReadString(1);
 City = reader.ReadString(2);
 State = reader.ReadString(3);
 Zip = reader.ReadString(4);
 }
 public void WriteExternal(IPofWriter writer)

Configuring a POF Context

Building Integratable Objects for .NET Clients 15-7

 {
 writer.WriteString(0, Name);
 writer.WriteString(1, Street);
 writer.WriteString(2, City);
 writer.WriteString(3, State);
 writer.WriteString(4, Zip);
 }
 public int DataVersion
 {
 get { return version; }
 set { version = value; }
 }
 public byte[] FutureData
 {
 get { return data; }
 set { data = value; }
 }
 public int ImplVersion
 {
 get { return 0; }
 }
 // property definitions ommitted for brevity
}

Likewise, the ContactInfo Java type can also be modified to support class evolution
by implementing the EvolvablePortableObject interface:

Example 15–9 Modifying a Java Type Class to Support Class Evolution

public class ContactInfo
 implements EvolvablePortableObject
 {
 private String m_sName;
 private String m_sStreet;
 private String m_sCity;
 private String m_sState;
 private String m_sZip;

 // Evolvable members
 private int m_nVersion;
 private byte[] m_abData;

 public ContactInfo()
 {}

 public ContactInfo(String sName, String sStreet, String sCity,
 String sState, String sZip)
 {
 setName(sName);
 setStreet(sStreet);
 setCity(sCity);
 setState(sState);
 setZip(sZip);
 }

 public void readExternal(PofReader reader)
 throws IOException
 {
 setName(reader.readString(0));
 setStreet(reader.readString(1));

Configuring a POF Context

15-8 Oracle Coherence User's Guide for Oracle Coherence

 setCity(reader.readString(2));
 setState(reader.readString(3));
 setZip(reader.readString(4));
 }

 public void writeExternal(PofWriter writer)
 throws IOException
 {
 writer.writeString(0, getName());
 writer.writeString(1, getStreet());
 writer.writeString(2, getCity());
 writer.writeString(3, getState());
 writer.writeString(4, getZip());
 }

 public int getDataVersion()
 {
 return m_nVersion;
 }

 public void setDataVersion(int nVersion)
 {
 m_nVersion = nVersion;
 }

 public Binary getFutureData()
 {
 return m_binData;
 }

 public void setFutureData(Binary binFuture)
 {
 m_binData = binFuture;
 }

 public int getImplVersion()
 {
 return 0;
 }

 // accessor methods omitted for brevity
 }

Making Types Portable Without Modification
In some cases, it may be undesirable or impossible to modify an existing user type to
make it portable. In this case, you can externalize the portable serialization of a user
type by creating an implementation of the IPofSerializer in .NET and/or an
implementation of the PofSerializer interface in Java.

Example 15–10 illustrates, an implementation of the IPofSerializer interface for
the ContactInfo type.

Example 15–10 An Implementation of IPofSerializer for the .NET Type

public class ContactInfoSerializer : IPofSerializer
{
 public object Deserialize(IPofReader reader)
 {
 string name = reader.ReadString(0);

Configuring a POF Context

Building Integratable Objects for .NET Clients 15-9

 string street = reader.ReadString(1);
 string city = reader.ReadString(2);
 string state = reader.ReadString(3);
 string zip = reader.ReadString(4);

 ContactInfo info = new ContactInfo(name, street, city, state, zip);
 info.DataVersion = reader.VersionId;
 info.FutureData = reader.ReadRemainder();

 return info;
 }

 public void Serialize(IPofWriter writer, object o)
 {
 ContactInfo info = (ContactInfo) o;

 writer.VersionId = Math.Max(info.DataVersion, info.ImplVersion);
 writer.WriteString(0, info.Name);
 writer.WriteString(1, info.Street);
 writer.WriteString(2, info.City);
 writer.WriteString(3, info.State);
 writer.WriteString(4, info.Zip);
 writer.WriteRemainder(info.FutureData);
 }
}

An implementation of the PofSerializer interface for the ContactInfo Java type
would look similar:

Example 15–11 An Implementation of PofSerializer for the Java Type Class

public class ContactInfoSerializer
 implements PofSerializer
 {
 public Object deserialize(PofReader in)
 throws IOException
 {
 String sName = in.readString(0);
 String sStreet = in.readString(1);
 String sCity = in.readString(2);
 String sState = in.readString(3);
 String sZip = in.readString(4);

 ContactInfo info = new ContactInfo(sName, sStreet, sCity, sState, sZip);
 info.setDataVersion(in.getVersionId());
 info.setFutureData(in.readRemainder());

 return info;
 }

 public void serialize(PofWriter out, Object o)
 throws IOException
 {
 ContactInfo info = (ContactInfo) o;

 out.setVersionId(Math.max(info.getDataVersion(), info.getImplVersion()));
 out.writeString(0, info.getName());
 out.writeString(1, info.getStreet());
 out.writeString(2, info.getCity());
 out.writeString(3, info.getState());

Configuring a POF Context

15-10 Oracle Coherence User's Guide for Oracle Coherence

 out.writeString(4, info.getZip());
 out.writeRemainder(info.getFutureData());
 }
 }

To register the IPofSerializer implementation for the ContactInfo .NET type,
specify the class name of the IPofSerializer within a serializer element under the
user-type element for the ContactInfo user type in the POF configuration file. This
is illustrated in Example 15–12:

Example 15–12 Registering the IPofSerializer Implementation of the .NET Type

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->

<include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml</include>

 <!-- include all application POF user types -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>My.Example.ContactInfo, MyAssembly</class-name>
 <serializer>
 <class-name>My.Example.ContactInfoSerializer, MyAssembly</class-name>
 </serializer>
 </user-type>
 ...
 </user-type-list>
</pof-config>

Similarly, you can register the PofSerializer implementation for the
ContactInfo Java type. This is illustrated in Example 15–13.

Example 15–13 Registering the PofSerializer Implementation of the Java Type

<?xml version="1.0"?>
<!DOCTYPE pof-config SYSTEM "pof-config.dtd">
<pof-config>
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>example-pof-config.xml</include>

 <!-- include all application POF user types -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>com.mycompany.example.ContactInfo</class-name>
 <serializer>
 <class-name>com.mycompany.example.ContactInfoSerializer</class-name>
 </serializer>
 </user-type>
 ...
 </user-type-list>
</pof-config>

Configuring and Using the Coherence for .NET Client Library

Building Integratable Objects for .NET Clients 15-11

Configuring and Using the Coherence for .NET Client Library
To use the Coherence for .NET library in your .NET applications, you must add a
reference to the Coherence.dll library in your project and create the necessary
configuration files.

Creating a reference to the Coherence.dll:

1. In your project go to Project->Add Reference... or right click References in the
Solution Explorer and choose Add Reference...

2. In the Add Reference window that appears, choose the Browse tab and find the
Coherence.dll library on your file system.

Figure 15–1 Add Reference Window

This illustration is described in the text.

3. Click OK.

Next, you must create the necessary configuration files and specify their paths in the
application configuration settings. This is done by adding an application configuration
file to your project (if one was not already created) and adding a Coherence for .NET
configuration section (that is, <coherence/>) to it.

Example 15–14 Sample Application Configuration File

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section name="coherence" type="Tangosol.Config.CoherenceConfigHandler,
Coherence"/>

Configuring and Using the Coherence for .NET Client Library

15-12 Oracle Coherence User's Guide for Oracle Coherence

 </configSections>
 <coherence>
 <cache-factory-config>my-coherence.xml</cache-factory-config>
 <cache-config>my-cache-config.xml</cache-config>
 <pof-config>my-pof-config.xml</pof-config>
 </coherence>
</configuration>

Elements within the Coherence for .NET configuration section are:

■ cache-factory-config—contains the path to a configuration descriptor used
by the CacheFactory to configure the IConfigurableCacheFactory and Logger used
by the CacheFactory.

■ cache-config—contains the path to a cache configuration descriptor which
contains the cache configuration described earlier (see Configuring
Coherence*Extend on the Client). This cache configuration descriptor is used by
the DefaultConfigurableCacheFactory.

■ pof-config—contains the path to the configuration descriptor used by the
ConfigurablePofContext to register custom types used by the application.

Figure 15–2 illustrates what the solution should look like after adding the
configuration files:

Figure 15–2 File System Displaying the Configuration Files

This illustration is described in the text.

CacheFactory
The CacheFactory is the entry point for Coherence for .NET client applications. The
CacheFactory is a factory for INamedCache instances and provides various
methods for logging. If not configured explicitly, it uses the default configuration file

Configuring and Using the Coherence for .NET Client Library

Building Integratable Objects for .NET Clients 15-13

coherence.xml which is an assembly embedded resource. It is possible to override
the default configuration file by adding a cache-factory-config element to the
Coherence for .NET configuration section in the application configuration file and
setting its value to the path of the desired configuration file.

Example 15–15 Configuring a Factory for INamedCache Instances

<?xml version="1.0"?>

<configuration>
 <configSections>
 <section name="coherence" type="Tangosol.Config.CoherenceConfigHandler,
Coherence"/>
 </configSections>
 <coherence>
 <cache-factory-config>my-coherence.xml</cache-factory-config>
 ...
 </coherence>
</configuration>

This file contains the configuration of two components exposed by the
CacheFactory by using static properties:

■ CacheFactory.ConfigurableCacheFactory—the
IConfigurableCacheFactory implementation used by the CacheFactory to
retrieve, release, and destroy INamedCache instances.

■ CacheFactory.Logger—the Logger instance used to log messages and
exceptions.

When you are finished using the CacheFactory (for example, during application
shutdown), the CacheFactory should be shutdown by using the Shutdown()
method. This method terminates all services and the Logger instance.

IConfigurableCacheFactory
The IConfigurableCacheFactory implementation is specified by the contents of
the <configurable-cache-factory-config> element:

■ class-name—specifies the implementation type by it's assembly qualified name.

■ init-params—defines parameters used to instantiate the
IConfigurableCacheFactory. Each parameter is specified by using a
corresponding param-type and param-value child element.

Example 15–16 Configuring a ConfigurableCacheFactory Implementation

<coherence>
 <configurable-cache-factory-config>
 <class-name>Tangosol.Net.DefaultConfigurableCacheFactory,
Coherence</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>simple-cache-config.xml</param-value>
 </init-param>
 </init-params>
 </configurable-cache-factory-config>
</coherence>

Configuring and Using the Coherence for .NET Client Library

15-14 Oracle Coherence User's Guide for Oracle Coherence

If an IConfigurableCacheFactory implementation is not defined in the
configuration, the default implementation is used
(DefaultConfigurableCacheFactory).

DefaultConfigurableCacheFactory
The DefaultConfigurableCacheFactory provides a facility to access caches
declared in the cache configuration descriptor described earlier (see the Client-side
Cache Configuration Descriptor section). The default configuration file used by the
DefaultConfigurableCacheFactory is
$AppRoot/coherence-cache-config.xml, where $AppRoot is the working
directory (in the case of a Windows Forms application) or the root of the application
(in the case of a Web application).

If you want to specify another cache configuration descriptor file, you can do so by
adding a cache-config element to the Coherence for .NET configuration section in
the application configuration file with its value set to the path of the configuration file.

Example 15–17 Specifying a Different Cache Configuration Desriptor File

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section name="coherence" type="Tangosol.Config.CoherenceConfigHandler,
Coherence"/>
 </configSections>
 <coherence>
 <cache-config>my-cache-config.xml</cache-config>
 ...
 </coherence>
</configuration>

Logger
The Logger is configured using the logging-config element:

■ destination—determines the type of LogOutput used by the Logger. Valid
values are:

– common-logger for Common.Logging

– stderr for Console.Error

– stdout for Console.Out

– file path if messages should be directed to a file

■ severity-level—determines the log level that a message must meet or exceed
to be logged.

■ message-format—determines the log message format.

■ character-limit—determines the maximum number of characters that the
logger daemon will process from the message queue before discarding all
remaining messages in the queue.

Example 15–18 Configuring a Logger

<coherence>
 <logging-config>
 <destination>log4net</destination>
 <severity-level>5</severity-level>

Configuring and Using the Coherence for .NET Client Library

Building Integratable Objects for .NET Clients 15-15

 <message-format>(thread={thread}): {text}</message-format>
 <character-limit>8192</character-limit>
 </logging-config>
</coherence>

The CacheFactory provides several static methods for retrieving and releasing
INamedCache instances:

■ GetCache(String cacheName)—retrieves an INamedCache implementation
that corresponds to the NamedCache with the specified cacheName running
within the remote Coherence cluster.

■ ReleaseCache(INamedCache cache)—releases all local resources associated
with the specified instance of the cache. After a cache is release, it can no longer be
used.

■ DestroyCache(INamedCache cache)—destroys the specified cache across the
Coherence cluster.

Methods used to log messages and exceptions are:

■ IsLogEnabled(int level)—determines if the Logger would log a message
with the given severity level.

■ Log(Exception e, int severity)—logs an exception with the specified
severity level.

■ Log(String message, int severity)—logs a text message with the
specified severity level.

■ Log(String message, Exception e, int severity)—logs a text
message and an exception with the specified severity level.

Logging levels are defined by the values of the CacheFactory.LogLevel enum
values (in ascending order):

■ Always

■ Error

■ Warn

■ Info

■ Debug—(default log level)

■ Quiet

■ Max

Using the Common.Logging Library
Common.Logging is an open source library that enables you to plug in various
popular open source logging libraries behind a well-defined set of interfaces. The
libraries currently supported are Log4Net (versions 1.2.9 and 1.2.10) and NLog.
Common.Logging is currently used by the Spring.NET framework and will likely be
used in the future releases of IBatis.NET and NHibernate, so you might want to
consider it if you are using one or more of these frameworks in combination with
Coherence for .NET, as it will allow you to configure logging consistently throughout
the application layers.

Coherence for .NET does not include the Common.Logging library. If you would like
to use the common-logger Logger configuration, you must download the
Common.Logging assembly and include a reference to it in your project. You can

Configuring and Using the Coherence for .NET Client Library

15-16 Oracle Coherence User's Guide for Oracle Coherence

download the Common.Logging assemblies for both .NET 1.1 and 2.0 from the
following location:

http://netcommon.sourceforge.net/

The Coherence for .NET Common.Logging Logger implementation was compiled
against the signed release version of these assemblies.

INamedCache
The INamedCache interface extends IDictionary, so it can be manipulated in ways
similar to a dictionary. Once obtained, INamedCache instances expose several
properties:

■ CacheName—the cache name.

■ Count—the cache size.

■ IsActive—determines if the cache is active (that is, it has not been released or
destroyed).

■ Keys—collection of all keys in the cache mappings.

■ Values—collection of all values in the cache mappings.

The value for the specified key can be retrieved by using cache[key]. Similarly, a
new value can be added, or an old value can be modified by setting this property to
the new value: cache[key] = value.

The collection of cache entries can be accessed by using GetEnumerator() which can
be used to iterate over the mappings in the cache.

The INamedCache interface provides several methods used to manipulate the
contents of the cache:

■ Clear()—removes all the mappings from the cache.

■ Contains(Object key)—determines if the cache has a mapping for the
specified key.

■ GetAll(ICollection keys)—returns all values mapped to the specified keys
collection.

■ Insert(Object key, Object value)—places a new mapping into the
cache. If a mapping for the specified key already exists, its value will be
overwritten by the specified value and the old value will be returned.

■ Insert(Object key, Object value, long millis)—places a new
mapping into the cache, but with an expiry period specified by several
milliseconds.

■ InsertAll(IDictionary dictionary)—copies all the mappings from the
specified dictionary to the cache.

■ Remove(Object key)—Removes the mapping for the specified key if it is
present and returns the value it was mapped to.

INamedCache interface also extends the following three interfaces: IQueryCache,
IObservableCache, and IInvocableCache.

IQueryCache
The IQueryCache interface exposes the ability to query a cache using various filters.

Configuring and Using the Coherence for .NET Client Library

Building Integratable Objects for .NET Clients 15-17

■ GetKeys(IFilter filter)—returns a collection of the keys contained in this
cache for entries that satisfy the criteria expressed by the filter.

■ GetEntries(IFilter filter)—returns a collection of the entries contained
in this cache that satisfy the criteria expressed by the filter.

■ GetEntries(IFilter filter, IComparer comparer)—returns a
collection of the entries contained in this cache that satisfy the criteria expressed
by the filter. It is guaranteed that the enumerator will traverse the collection in the
order of ascending entry values, sorted by the specified comparer or according to
the natural ordering if the "comparer" is null.

Additionally, the IQueryCache interface includes the ability to add and remove
indexes. Indexes are used to correlate values stored in the cache to their corresponding
keys and can dramatically increase the performance of the GetKeys and GetEntries
methods.

■ AddIndex(IValueExtractor extractor, bool isOrdered, IComparer
comparator)—adds an index to this cache that correlates the values extracted by
the given IValueExtractor to the keys to the corresponding entries.
Additionally, the index information can be optionally ordered.

■ RemoveIndex(IValueExtractor extractor)—removes an index from this
cache.

Example 15–19 illustrates code that performs an efficient query of the keys of all
entries that have an age property value greater or equal to 55.

Example 15–19 Querying Keys on a Particular Value

IValueExtractor extractor = new ReflectionExtractor("getAge");

cache.AddIndex(extractor, true, null);
ICollection keys = cache.GetKeys(new GreaterEqualsFilter(extractor, 55));

IObservableCache
IObservableCache interface enables an application to receive events when the
contents of a cache changes. To register interest in change events, an application adds a
Listener implementation to the cache that will receives events that include
information about the event type (inserted, updated, deleted), the key of the modified
entry, and the old and new values of the entry.

■ AddCacheListener(ICacheListener listener)—adds a standard cache
listener that will receive all events (inserts, updates, deletes) emitted from the
cache, including their keys, old, and new values.

■ RemoveCacheListener(ICacheListener listener)—removes a standard
cache listener that was previously registered.

■ AddCacheListener(ICacheListener listener, object key, bool
isLite)—adds a cache listener for a specific key. If isLite is true, the events
may not contain the old and new values.

■ RemoveCacheListener(ICacheListener listener, object
key)—removes a cache listener that was previously registered using the specified
key.

■ AddCacheListener(ICacheListener listener, IFilter filter,
bool isLite)—adds a cache listener that receive events based on a filter
evaluation. If isLite is true, the events may not contain the old and new values.

Configuring and Using the Coherence for .NET Client Library

15-18 Oracle Coherence User's Guide for Oracle Coherence

■ RemoveCacheListener(ICacheListener listener, IFilter
filter)—removes a cache listener that previously registered using the specified
filter.

Listeners registered using the filter-based method will receive all event types
(inserted, updated, and deleted). To further filter the events, wrap the filter in a
CacheEventFilter using a CacheEventMask enumeration value to specify which
type of events should be monitored.

In Example 15–20 a filter evaluates to true if an Employee object is inserted into a
cache with an IsMarried property value set to true.

Example 15–20 Filtering on an Inserted Object

new CacheEventFilter(CacheEventMask.Inserted, new EqualsFilter("IsMarried",
true));

In Example 15–21 a filter evaluates to true if any object is removed from a cache.

Example 15–21 Filtering on Removed Object

new CacheEventFilter(CacheEventMask.Deleted);

In Example 15–22 a filter that evaluates to true if when an Employee object
LastName property is changed from Smith.

Example 15–22 Filtering on a Changed Object

new CacheEventFilter(CacheEventMask.UpdatedLeft, new EqualsFilter("LastName",
"Smith"));

IInvocableCache
An IInvocableCache is a cache against which both entry-targeted processing and
aggregating operations can be invoked. The operations against the cache contents are
executed by (and thus within the localized context of) a cache. This is particularly
useful in a distributed environment, because it enables the processing to be moved to
the location at which the entries-to-be-processed are being managed, thus providing
efficiency by localization of processing.

■ Invoke(object key, IEntryProcessor agent)—invokes the passed
processor against the entry specified by the passed key, returning the result of the
invocation.

■ InvokeAll(ICollection keys, IEntryProcessor agent)—invokes the
passed processor against the entries specified by the passed keys, returning the
result of the invocation for each.

■ InvokeAll(IFilter filter, IEntryProcessor agent)—invokes the
passed processor against the entries that are selected by the given filter, returning
the result of the invocation for each.

■ Aggregate(ICollection keys, IEntryAggregator agent)—performs
an aggregating operation against the entries specified by the passed keys.

■ Aggregate(IFilter filter, IEntryAggregator agent)—performs an
aggregating operation against the entries that are selected by the given filter.

Configuring and Using the Coherence for .NET Client Library

Building Integratable Objects for .NET Clients 15-19

Filters
The IQueryCache interface provides the ability to search for cache entries that meet a
given set of criteria, expressed using a IFilter implementation.

All filters must implement the IFilter interface:

■ Evaluate(object o)—apply a test to the specified object and return true if
the test passes, false otherwise.

Coherence for .NET includes several IFilter implementations in the
Tangosol.Util.Filter namespace.

The code in Example 15–23 retrieves the keys of all entries that have a value equal to 5.

Example 15–23 Retrieving Keys Equal to a Numeric Value

EqualsFilter equalsFilter = new EqualsFilter(IdentityExtractor.Instance, 5);
ICollection keys = cache.GetKeys(equalsFilter);

The code in Example 15–24 retrieves all keys that have a value greater or equal to 55.

Example 15–24 Retrieving Keys Greater Than or Equal To a Numeric Value

GreaterEqualsFilter greaterEquals = new
GreaterEqualsFilter(IdentityExtractor.Instance, 55);
ICollection keys = cache.GetKeys(greaterEquals);

The code in Example 15–25 retrieves all cache entries that have a value that begins
with Belg.

Example 15–25 Retrieving Keys Based on a String Value

LikeFilter likeFilter = new LikeFilter(IdentityExtractor.Instance, "Belg%", '\\',
true);
ICollection entries = cache.GetEntries(likeFilter);

The code in Example 15–26 retrieves all cache entries that have a value that ends with
an (case sensitive) or begins with An (case insensitive).

Example 15–26 Retrieving Keys Based on a Case-Sensitive String Value

OrFilter orFilter = new OrFilter(new LikeFilter(IdentityExtractor.Instance,
"%an", '\\', false), new LikeFilter(IdentityExtractor.Instance, "An%", '\\',
true));
ICollection entries = cache.GetEntries(orFilter);

Extractors
Extractors are used to extract values from an object. All extractors must implement the
IValueExtractor interface:

■ Extract(object target)—extract the value from the passed object.

Coherence for .NET includes the following extractors:

■ IdentityExtractor is a trivial implementation that does not actually extract
anything from the passed value, but returns the value itself.

■ KeyExtractor is a special purpose implementation that serves as an indicator
that a query should be run against the key objects rather than the values.

■ ReflectionExtractor extracts a value from a specified object property.

Configuring and Using the Coherence for .NET Client Library

15-20 Oracle Coherence User's Guide for Oracle Coherence

■ MultiExtractor is composite IValueExtractor implementation based on an
array of extractors. All extractors in the array are applied to the same target object
and the result of the extraction is a IList of extracted values.

■ ChainedExtractor is composite IValueExtractor implementation based on
an array of extractors. The extractors in the array are applied sequentially
left-to-right, so a result of a previous extractor serves as a target object for a next
one.

The code in Example 15–27 retrieves all cache entries with keys greater than 5:

Example 15–27 Retrieving Cache Entries Greater Than a Numeric Value

IValueExtractor extractor = new KeyExtractor(IdentityExtractor.Instance);
IFilter filter = new GreaterFilter(extractor, 5);
ICollection entries = cache.GetEntries(filter);

The code inExample 15–28 retrieves all cache entries with values containing a City
property equal to city1:

Example 15–28 Retrieving Cache Entries Based on a String Value

IValueExtractor extractor = new ReflectionExtractor("City");
IFilter filter = new EqualsFilter(extractor, "city1");
ICollection entries = cache.GetEntries(filter);

Processors
A processor is an invocable agent that operates against the entry objects within a
cache.

All processors must implement the IEntryProcessor interface:

■ Process(IInvocableCacheEntry entry)—process the specified entry.

■ ProcessAll(ICollection entries)—process a collection of entries.

Coherence for .NET includes several IEntryProcessor implementations in the
Tangosol.Util.Processor namespace.

The code in Example 15–29 demonstrates a conditional put. The value mapped to
key1 is set to 680 only if the current mapped value is greater than 600.

Example 15–29 Conditional Put of a Key Value Based on a Numeric Value

IFilter greaterThen600 = new GreaterFilter(IdentityExtractor.Instance,
600);
IEntryProcessor processor = new ConditionalPut(greaterThen600, 680);
cache.Invoke("key1", processor);

The code in Example 15–30 uses the UpdaterProcessor to update the value of the
Degree property on a Temperature object with key BGD to the new value 26.

Example 15–30 Setting a Key Value Based on a Numeric Value

cache.Insert("BGD", new Temperature(25, 'c', 12));
IValueUpdater updater = new ReflectionUpdater("setDegree");
IEntryProcessor processor = new UpdaterProcessor(updater, 26);
object result = cache.Invoke("BGD", processor);

Launching a Coherence DefaultCacheServer Process

Building Integratable Objects for .NET Clients 15-21

Aggregators
An aggregator represents processing that can be directed to occur against some subset
of the entries in an IInvocableCache, resulting in an aggregated result. Common
examples of aggregation include functions such as minimum, maximum, sum and
average. However, the concept of aggregation applies to any process that must
evaluate a group of entries to come up with a single answer. Aggregation is explicitly
capable of being run in parallel, for example in a distributed environment.

All aggregators must implement the IEntryAggregator interface:

■ Aggregate(ICollection entries)—process a collection of entries to
produce an aggregate result.

Coherence for .NET includes several IEntryAggregator implementations in the
Tangosol.Util.Aggregator namespace.

The code in Example 15–31 returns the size of the cache:

Example 15–31 Returning the Size of the Cache

IEntryAggregator aggregator = new Count();
object result = cache.Aggregate(cache.Keys, aggregator);

The code in Example 15–32 returns an IDictionary with keys equal to the unique
values in the cache and values equal to the number of instances of the corresponding
value in the cache:

Example 15–32 Returning an IDictionary

IEntryAggregator aggregator =
GroupAggregator.CreateInstance(IdentityExtractor.Instance, new Count());
object result = cache.Aggregate(cache.Keys, aggregator);

 Like cached value objects, all custom IFilter, IExtractor, IProcessor and
IAggregator implementation classes must be correctly registered in the POF context
of the .NET application and cluster-side node to which the client is connected. As such,
corresponding Java implementations of the custom .NET types must be created,
compiled, and deployed on the cluster-side node. Note that the actual execution of the
these custom types is performed by the Java implementation and not the .NET
implementation.

See "Configuring a POF Context" for additional details.

Launching a Coherence DefaultCacheServer Process
To start a DefaultCacheServer that uses the cluster-side Coherence cache
configuration described earlier to allow Coherence for .NET clients to connect to the
Coherence cluster by using TCP/IP, you need to do the following:

1. Change the current directory to the Oracle Coherence library directory
(%COHERENCE_HOME%\lib on Windows and $COHERENCE_HOME/lib on UNIX).

2. Make sure that the paths are configured so that the Java command will run.

3. Start the DefaultCacheServer command line application with the
-Dtangosol.coherence.cacheconfig system property set to the location of
the cluster-side Coherence cache configuration descriptor described earlier.

Example 15–33 illustrates a sample command line.

Launching a Coherence DefaultCacheServer Process

15-22 Oracle Coherence User's Guide for Oracle Coherence

Example 15–33 Command to Launch a Coherence Default Cache Server

java -cp coherence.jar -Dtangosol.coherence.cacheconfig=file://<path to the
server-side cache configuration descriptor> com.tangosol.net.DefaultCacheServer

16

Configuring a Local Cache for .NET Clients 16-1

16Configuring a Local Cache for .NET Clients

A Local Cache is just that: A cache that is local to (completely contained within) a
particular .NET application. There are several attributes of the Local Cache that are
particularly interesting:

■ The Local Cache implements the same standard cache interfaces that a remote
cache implements (ICache, IObservableCache, IConcurrentCache,
IQueryCache, and IInvocableCache), meaning that there is no programming
difference between using a local and a remote cache.

■ The Local Cache can be size-limited. This means that the Local Cache can restrict
the number of entries that it caches, and automatically evict entries when the cache
becomes full. Furthermore, both the sizing of entries and the eviction policies are
customizable, for example allowing the cache to be size-limited based on the
memory used by the cached entries. The default eviction policy uses a
combination of Most Frequently Used (MFU) and Most Recently Used (MRU)
information, scaled on a logarithmic curve, to determine what cache items to evict.
This algorithm is the best general-purpose eviction algorithm because it works
well for short duration and long duration caches, and it balances frequency versus
recentness to avoid cache thrashing. The pure LRU and pure LFU algorithms are
also supported, and the ability to plug in custom eviction policies.

■ The Local Cache supports automatic expiration of cached entries, meaning that
each cache entry can be assigned a time-to-live value in the cache. Furthermore,
the entire cache can be configured to flush itself on a periodic basis or at a preset
time.

■ The Local Cache is thread safe and highly concurrent.

■ The Local Cache provides cache "get" statistics. It maintains hit and miss statistics.
These runtime statistics can be used to accurately project the effectiveness of the
cache, and adjust its size-limiting and auto-expiring settings accordingly while the
cache is running.

The Coherence for .NET Local Cache functionality is implemented by the
Tangosol.Net.Cache.LocalCache class. As such, it can be programatically
instantiated and configured; however, it is recommended that a LocalCache be
configured by using a cache configuration descriptor, just like any other Coherence for
.NET cache.

Configuring the Local Cache
The key element for configuring the Local Cache is <local-scheme>. Local caches
are generally nested within other cache schemes, for instance as the front-tier of a
near-scheme. Thus, this element can appear as a subelement of any of these elements

Obtaining a Local Cache Reference for .NET Clients

16-2 Oracle Coherence User's Guide for Oracle Coherence

in the coherence-cache-config file: <caching-schemes>,
<distributed-scheme>, <replicated-scheme>, <optimistic-scheme>,
<near-scheme>, <versioned-near-scheme>, <overflow-scheme>,
<read-write-backing-map>, and <versioned-backing-map-scheme>.

The <local-scheme> provides several optional subelements that let you define the
characteristics of the cache. For example, the <low-units> and <high-units>
subelements allow you to limit the cache in terms of size. Once the cache reaches its
maximum allowable size it prunes itself back to a specified smaller size, choosing
which entries to evict according to a specified eviction-policy (<eviction-policy>).
The entries and size limitations are measured in terms of units as calculated by the
scheme's unit-calculator (<unit-calculator>).

You can also limit the cache in terms of time. The <expiry-delay> subelement
specifies the amount of time from last update that entries will be kept by the cache
before being marked as expired. Any attempt to read an expired entry will result in a
reloading of the entry from the configured cache store (<cachestore-scheme>).
Expired values are periodically discarded from the cache based on the flush-delay.

If a <cachestore-scheme> is not specified, then the cached data will only reside in
memory, and only reflect operations performed on the cache itself. See
<local-scheme> for a complete description of all of the available subelements.

Example 16–1 illustrates the configuration of a Local Cache. See "Sample Cache
Configurations" for additional examples.

Example 16–1 Configuring a Local Cache

<?xml version="1.0"?>

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example-local-cache</cache-name>
 <scheme-name>example-local</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <local-scheme>
 <scheme-name>example-local</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>32000</high-units>
 <low-units>10</low-units>
 <unit-calculator>FIXED</unit-calculator>
 <expiry-delay>10ms</expiry-delay>
 <flush-delay>1000ms</flush-delay>
 <cachestore-scheme>
 <class-scheme>
 <class-name>ExampleCacheStore</class-name>
 </class-scheme>
 </cachestore-scheme>
 <pre-load>true</pre-load>
 </local-scheme>
 </caching-schemes>
</cache-config>

Obtaining a Local Cache Reference for .NET Clients
A reference to a configured Local Cache can be obtained by name by using the
CacheFactory class:

Cleaning Up Resources Associated with a LocalCache

Configuring a Local Cache for .NET Clients 16-3

Example 16–2 Obtaining a Reference to a Local Cache

INamedCache cache = CacheFactory.GetCache("example-local-cache");

Cleaning Up Resources Associated with a LocalCache
Instances of all INamedCache implementations, including LocalCache, should be
explicitly released by calling the INamedCache.Release() method when they are
no longer needed, to free up any resources they might hold.

If the particular INamedCache is used for the duration of the application, then the
resources will be cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its Release()
method when finished using it.

Alternatively, you can leverage the fact that INamedCache extends IDisposable
and that all cache implementations delegate a call to IDisposable.Dispose() to
INamedCache.Release(). This means that if you need to obtain and release a cache
instance within a single method, you can do so with a using block:

Example 16–3 Obtaining and Releasing a Reference to a Local Cache

using (INamedCache cache = CacheFactory.GetCache("my-cache"))
{
 // use cache as usual
}

After the using block terminates, IDisposable.Dispose() will be called on the
INamedCache instance, and all resources associated with it will be released.

Cleaning Up Resources Associated with a LocalCache

16-4 Oracle Coherence User's Guide for Oracle Coherence

17

Configuring a Near Cache for .NET Clients 17-1

17Configuring a Near Cache for .NET Clients

In Coherence for .NET, the Near Cache is an INamedCache implementation that
wraps the front cache and the back cache using a read-through/write-through
approach. If the back cache implements the IObservableCache interface, then the
Near Cache can use either the Listen None, Listen Present, Listen All, or
Listen Auto strategy to invalidate any front cache entries that might have been
changed in the back cache

For more information on Near Cache, the Listen* invalidation strategies, and the
read-through/write-through approach, see "Near Cache" in "Getting Started with Oracle
Coherence".

The Tangosol.Net.Cache.NearCache class enables you to programatically
instantiate and configure .NET Near Cache functionality. However, it is recommended
that you use a cache configuration descriptor to configure the NearCache.

A typical Near Cache is configured to use a local cache (thread safe, highly concurrent,
size-limited and/or auto-expiring local cache) as the front cache and a remote cache as
a back cache. A Near Cache is configured by using the near-scheme element which
has two child elements: front-scheme for configuring a local (front) cache and
back-scheme for defining a remote (back) cache.

Configuring the Near Cache
A Near Cache is configured by using the <near-scheme> element in the
coherence-cache-config file. This element has two required subelements:
front-scheme for configuring a local (front-tier) cache and a back-scheme for defining a
remote (back-tier) cache. While a local cache (<local-scheme>) is a typical choice for
the front-tier, you can also use non-JVM heap based caches, (<external-scheme> or
<paged-external-scheme>) or schemes based on Java objects
(<class-scheme>).

The remote or back-tier cache is described by the <back-scheme> element. A
back-tier cache can be either a distributed cache (<distributed-scheme>) or a
remote cache (<remote-cache-scheme>). The <remote-cache-scheme> element
enables you to use a clustered cache from outside the current cluster.

Optional subelements of <near-scheme> include <invalidation-strategy> for
specifying how the front-tier and back-tier objects will be kept synchronized and
<listener> for specifying a listener which will be notified of events occurring on the
cache.

For an example configuration, see "Sample Near Cache Configuration". The elements in
the file are described in the <near-scheme> section.

Obtaining a Near Cache Reference with .NET

17-2 Oracle Coherence User's Guide for Oracle Coherence

Obtaining a Near Cache Reference with .NET
A reference to a configured Near Cache can then be obtained by name by using the
CacheFactory class:

Example 17–1 Obtaining a Reference to a Near Cache

INamedCache cache = CacheFactory.GetCache("example-near-cache");

Cleaning up Resources Associated with a NearCache
Instances of all INamedCache implementations, including NearCache, should be
explicitly released by calling the INamedCache.Release() method when they are
no longer needed, to free up any resources they might hold.

If the particular INamedCache is used for the duration of the application, then the
resources will be cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its Release()
method when finished using it.

Alternatively, you can leverage the fact that INamedCache extends IDisposable
and that all cache implementations delegate a call to IDisposable.Dispose() to
INamedCache.Release(). This means that if you need to obtain and release a cache
instance within a single method, you can do so with a using block:

Example 17–2 Obtaining and Releasing a Reference to a Near Cache

using (INamedCache cache = CacheFactory.GetCache("my-cache"))
{
 // use cache as usual
}

After the using block terminates, IDisposable.Dispose() will be call on the
INamedCache instance, and all resources associated with it will be released.

18

Continuous Query Cache for .NET Clients 18-1

18Continuous Query Cache for .NET Clients

While it is possible to obtain a point in time query result from a Coherence for .NET
cache, and it is possible to receive events that would change the result of that query,
Coherence for .NET provides a feature that combines a query result with a continuous
stream of related events to maintain an up-to-date query result in a real-time fashion.
This capability is called Continuous Query, because it has the same effect as if the
desired query had zero latency and the query were being executed several times every
millisecond!

Coherence for .NET implements the Continuous Query functionality by materializing
the results of the query into a Continuous Query Cache, and then keeping that cache
up-to-date in real-time using event listeners on the query. In other words, a Coherence
for .NET Continuous Query is a cached query result that never gets out-of-date.

Uses of Continuous Query Caching
There are several different general use categories for Continuous Query Caching:

■ It is an ideal building block for Complex Event Processing (CEP) systems and
event correlation engines.

■ It is ideal for situations in which an application repeats a particular query, and
would benefit from always having instant access to the up-to-date result of that
query.

■ A Continuous Query Cache is analogous to a materialized view, and is useful for
accessing and manipulating the results of a query using the standard
INamedCache API, and receiving an ongoing stream of events related to that
query.

■ A Continuous Query Cache can be used in a manner similar to configuring a near
cache for .NET clients, because it maintains an up-to-date set of data locally where
it is being used, for example on a particular server node or on a client desktop; note
that a Near Cache is invalidation-based, but the Continuous Query Cache actually
maintains its data in an up-to-date manner.

An example use case is a trading system desktop, in which a trader's open orders and
all related information must be maintained in an up-to-date manner at all times. By
combining the Coherence*Extend functionality with Continuous Query Caching, an
application can support literally tens of thousands of concurrent users.

The Continuous Query Cache

18-2 Oracle Coherence User's Guide for Oracle Coherence

The Continuous Query Cache
The Coherence for .NET implementation of Continuous Query is found in the
Tangosol.Net.Cache.ContinuousQueryCache class. This class, like all
Coherence for .NET caches, implements the standard INamedCache interface, which
includes the following capabilities:

■ Cache access and manipulation using the IDictionary interface: INamedCache
extends the standard IDictionary interface from the .NET Collections
Framework, which is the same interface implemented by the .NET Hashtable
class.

■ Events for all objects modifications that occur within the cache: INamedCache
extends the IObservableCache interface.

■ Identity-based clusterwide locking of objects in the cache: INamedCache extends
the IConcurrentCache interface.

■ Querying the objects in the cache: INamedCache extends the IQueryCache
interface.

■ Distributed Parallel Processing and Aggregation of objects in the cache:
INamedCache extends the IInvocableCache interface.

Since the ContinuousQueryCache implements the INamedCache interface, which is
the same API provided by all Coherence for .NET caches, it is extremely simple to use,
and it can be easily substituted for another cache when its functionality is called for.

Constructing a Continuous Query Cache
There are two items that define a Continuous Query Cache:

■ The underlying cache that it is based on;

■ A query of that underlying cache that produces the sub-set that the Continuous
Query Cache will cache.

The underlying cache is any Coherence for .NET cache, including another Continuous
Query Cache. A cache is usually obtained from a CacheFactory, which allows the
developer to simply specify the name of the cache and have it automatically
configured based on the application's cache configuration information; for example:

INamedCache cache = CacheFactory.GetCache("orders");

The query is the same type of query that would be used to query any other cache; for
example:

Filter filter = new AndFilter(new EqualsFilter("getTrader", traderid),
 new EqualsFilter("getStatus", Status.OPEN));

Normally, to query a cache, one of the methods from the IQueryCache is used; for
examples, to obtain a snap-shot of all open trades for this trader:

ICollection setOpenTrades = cache.GetEntries(filter);

Note: Continuous Query Caches are useful in almost every type of
application, including both client-based and server-based
applications, because they provide the ability to very easily and
efficiently maintain an up-to-date local copy of a specified sub-set of a
much larger and potentially distributed cached data set.

Semi- and Fully-Materialized Views

Continuous Query Cache for .NET Clients 18-3

Similarly, the Continuous Query Cache is constructed from those same two pieces:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);

Cleaning up Resources Associated with a ContinuousQueryCache
Instances of all INamedCache implementations, including ContinuousQueryCache,
should be explicitly released by calling the INamedCache.Release() method when
they are no longer needed, to free up any resources they might hold.

If the particular INamedCache is used for the duration of the application, then the
resources will be cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its Release()
method when finished using it.

Alternatively, you can leverage the fact that INamedCache extends IDisposable
and that all cache implementations delegate a call to IDisposable.Dispose() to
INamedCache.Release(). This means that if you need to obtain and release a cache
instance within a single method, you can do so by using a using block:

Example 18–1 Obtaining and Releasing a Reference to a Continuous Query Cache

using (INamedCache cache = CacheFactory.GetCache("my-cache"))
{
 // use cache as usual
}

After the using block terminates, IDisposable.Dispose() will be call on the
INamedCache instance, and all resources associated with it will be released.

Semi- and Fully-Materialized Views
When constructing a Continuous Query Cache, it is possible to specify that the cache
should only keep track of the keys that result from the query, and obtain the values
from the underlying cache only when they are asked for. This feature may be useful
for creating a Continuous Query Cache that represents a very large query result set, or
if the values are never or rarely requested. To specify that only the keys should be
cached, use the constructor that allows the IsCacheValues property to be
configured; for example:

Example 18–2 Caching Only the Keys in a Continuous Query Cache

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter,
false);

If necessary, the IsCacheValues property can also be modified after the cache has
been instantiated; for example:

cacheOpenTrades.IsCacheValues = true;

IsCacheValues Property and Event Listeners
If the Continuous Query Cache has any standard (non-lite) event listeners, or if any of
the event listeners are filtered, then the IsCacheValues property will automatically
be set to true, because the Continuous Query Cache uses the locally cached values to
filter events and to supply the old and new values for the events that it raises.

Listening to a Continuous Query Cache

18-4 Oracle Coherence User's Guide for Oracle Coherence

Listening to a Continuous Query Cache
Since the Continuous Query Cache is itself observable, it is possible for the client to
place one or more event listeners onto it. For example:

Example 18–3 Placing a Listener on a Continuous Query Cache

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
cacheOpenTrades.AddCacheListener(listener);

Assuming some processing has to occur against every item that is already in the cache
and every item added to the cache, there are two approaches. First, the processing
could occur then a listener could be added to handle any later additions:

Example 18–4 Processing Data, then Placing the Listener

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
foreach (ICacheEntry entry in cacheOpenTrades.Entries)
 {
 // .. process the cache entry
 }
cacheOpenTrades.AddCacheListener(listener);

However, that code is incorrect because it allows events that occur in the split second
after the iteration and before the listener is added to be missed! The alternative is to
add a listener first, so no events are missed, and then do the processing:

Example 18–5 Placing the Listener, then Processing Data

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
cacheOpenTrades.AddCacheListener(listener);
foreach (ICacheEntry entry in cacheOpenTrades.Entries)
 {
 // .. process the cache entry
 }

However, it is possible that the same entry will show up in both an event an in the
IEnumerator, and the events can be asynchronous, so the sequence of operations
cannot be guaranteed.

The solution is to provide the listener during construction, and it will receive one
event for each item that is in the Continuous Query Cache, whether it was there to
begin with (because it was in the query) or if it was added during or after the
construction of the cache:

Example 18–6 Providing the Listener During Continuous Query Cache Construction

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter,
listener);

Achieving a Stable Materialized View
The Continuous Query Cache implementation faced the same challenge: How to
assemble an exact point-in-time snapshot of an underlying cache while receiving a
stream of modification events from that same cache. The solution has several parts. First,
Coherence for .NET supports an option for synchronous events, which provides a set
of ordering guarantees. Secondly, the Continuous Query Cache has a two-phase
implementation of its initial population that allows it to first query the underlying
cache and then subsequently resolve all of the events that came in during the first

Making a Continuous Query Cache Read-Only

Continuous Query Cache for .NET Clients 18-5

phase. Since achieving these guarantees of data visibility without any missing or
repeated events is fairly complex, the Continuous Query Cache allows a developer to
pass a listener during construction, thus avoiding exposing these same complexities to
the application developer.

Support for Synchronous and Asynchronous Listeners
By default, listeners to the Continuous Query Cache will have their events delivered
asynchronously. However, the Continuous Query Cache does respect the option for
synchronous events as provided by the
CacheListenerSupport.ISynchronousListener interface.

Making a Continuous Query Cache Read-Only
The Continuous Query Cache can be made into a read-only cache; for example:

Example 18–7 Making a Continuous Query Cache Read-Only

cacheOpenTrades.IsReadOnly = true;

A read-only Continuous Query Cache will not allow objects to be added to, changed
in, removed from or locked in the cache.

Once a Continuous Query Cache has been set to read-only, it cannot be changed back
to read/write.

Making a Continuous Query Cache Read-Only

18-6 Oracle Coherence User's Guide for Oracle Coherence

19

Remote Invocation Service for .NET Clients 19-1

19Remote Invocation Service for .NET Clients

Coherence for .NET provides a Remote Invocation Service which allows execution of
single-pass agents (called IInvocable objects) within the cluster-side JVM to which
the client is connected. Agents are simply runnable application classes that implement
the IInvocable interface. Agents can execute any arbitrary action and can use any
cluster-side services (cache services, grid services, and so on) necessary to perform
their work. The agent operations can also be stateful, which means that their state is
serialized and transmitted to the grid nodes on which the agent is run.

Configuring and Using the Remote Invocation Service
A Remote Invocation Service is configured using the <remote-invocation-scheme>
element in the cache configuration descriptor. For example:

Example 19–1 Configuring a Remote Invocation Service

<remote-invocation-scheme>
 <scheme-name>example-invocation</scheme-name>
 <service-name>ExtendTcpInvocationService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>

 <outgoing-message-handler>
 <request-timeout>30s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
</remote-invocation-scheme>

A reference to a configured Remote Invocation Service can then be obtained by name
by using the CacheFactory class:

Example 19–2 Obtaining a Reference to a Remote Invocation Service

IService service = CacheFactory.GetService("ExtendTcpInvocationService");

To execute an agent on the grid node to which the client is connected requires only one
line of code:

Configuring and Using the Remote Invocation Service

19-2 Oracle Coherence User's Guide for Oracle Coherence

Example 19–3 Executing an Agent on a Grid Node

IDictionary result = service.Query(new MyTask(), null);

The single result of the execution will be keyed by the local Member, which can be
retrieved by calling
CacheFactory.ConfigurableCacheFactory.LocalMember.

Note: Like cached value objects, all IInvocable implementation
classes must be correctly registered in the POF context of the .NET
application and cluster-side node to which the client is connected. As
such, a Java implementation of the IInvocable task (a
com.tangosol.net.Invocable implementation) must be created,
compiled, and deployed on the cluster-side node. Note that the actual
execution of the task is performed by the Java Invocable
implementation and not the .NET IInvocable implementation.

See Chapter 14, "Configuration and Usage for .NET Clients" for
additional details.

20

Special Considerations—Windows Forms Applications for .NET Clients 20-1

20Special Considerations—Windows Forms
Applications for .NET Clients

One of the features of the INamedCache interface is the ability to add cache listeners
that receive events emitted by a cache as its contents change. These events are sent
from the server and dispatched to registered listeners by a background thread.

The .NET Single-Threaded Apartment model prohibits windows form controls created
by one thread from being updated by another thread. If one or more controls should
be updated as a result of an event notification, you must ensure that any event
handling code that must run as a response to a cache event is executed on the UI
thread. The WindowsFormsCacheListener helper class allows end users to ignore
this fact and to handle Coherence cache events (which are always raised by a
background thread) as if they were raised by the UI thread. This class will ensure that
the call is properly marshalled and executed on the UI thread.

Here is the sample of using this class:

Example 20–1 Marshalling and Executing a Call on the UI Thread

public partial class ContactInfoForm : Form
{
 ...
 listener = new WindowsFormsCacheListener(this);
 listener.EntryInserted += new CacheEventHandler(AddRow);
 listener.EntryUpdated += new CacheEventHandler(UpdateRow);
 listener.EntryDeleted += new CacheEventHandler(DeleteRow);
 ...
 cache.AddCacheListener(listener);
 ...
}

The AddRow, UpdateRow and DeleteRow methods are called in response to a cache
event:

Example 20–2 Calling Methods in Response to a Cache Event

private void AddRow(object sender, CacheEventArgs args)
{
...
}

private void UpdateRow(object sender, CacheEventArgs args)
{
...
}

20-2 Oracle Coherence User's Guide for Oracle Coherence

private void DeleteRow(object sender, CacheEventArgs args)
{
...
}

The CacheEventArgs parameter encapsulates the IObservableCache instance that
raised the cache event; the CacheEventType that occurred; and the Key, NewValue
and OldValue of the cached entry.

21

Special Considerations—Web Applications for .NET Clients 21-1

21Special Considerations—Web Applications
for .NET Clients

By default, session-state values and information are stored in memory within the
ASP.NET process. ASP.NET also provides session-state providers that allow you to use
a session-state server that keeps session data in a separate process, or you can persist
session state data to a SQL database. However, with ASP.NET 2.0, you can create
custom session-state providers that allow you to customize how session-state data is
stored in your ASP.NET applications.

Coherence for .NET includes a custom SessionStateStoreProvider
implementation that uses a Coherence cache to store session state. This makes
Coherence for .NET the best solution for any large ASP.NET application running
within a web farm. Other options in this scenario are to use the StateServer, which
introduces a single point of failure for the whole web farm, or to use the
SqlServerStateProvider, which theoretically can be clustered, but is extremely
slow and scales only to a certain point. Also, unlike both StateServer and
SqlServerStateProvider, the CoherenceSessionProvider supports
Session.End event through cache events—only the InProc one supports this, but it
cannot be used in a web farm environment.

The only requirement of the CoherenceSessionStore is that all objects stored in
the session must be serializable (.NET serializable, not POF). This same requirement
applies to both out-of-proc session stores provided by Microsoft, so modifying any
existing ASP.NET 2.0 application that uses StateServer or
SqlServerStateProvider to use the CoherenceSessionStore is as simple as
adding the following to the Web.config file:

Example 21–1 Modifying an ASP.NET Application to use CoherenceSessionStore

<sessionState mode="Custom" customProvider="CoherenceSessionProvider"
timeout="20">
 <providers>
 <add name="CoherenceSessionProvider"
type="Tangosol.Web.CoherenceSessionStore, Coherence"
cacheName="dist-session-cache"/>
 </providers>
</sessionState>

Note that no code changes are required within the application itself.

CoherenceSessionProvider doesn't support calling Session_OnEnd event by
default, so to configure the provider to send this event, the sessionEndEnabled
attribute should be set to true:

21-2 Oracle Coherence User's Guide for Oracle Coherence

Example 21–2 Adding Support for the Session _OnEnd Event

<sessionState mode="Custom" customProvider="CoherenceSessionProvider"
timeout="20">
 <providers>
 <add name="CoherenceSessionProvider" type="Tangosol.Web.CoherenceSessionStore,
Coherence" cacheName="dist-session-cache" sessionEndEnabled="true"/>
 </providers>
</sessionState>

If your Web application uses Coherence for .NET (either directly, by using the
CoherenceSessionProvider, or both), you must remember to call
CacheFactory.shutdown() when your application terminates. To make this easier,
Coherence for .NET includes an HTTP module that will automatically call
CacheFactory.shutdown() when your web application exits. To use the
CoherenceShutdownModule simply include it in your Web.config file, as
illustrated in Example 21–3:

Example 21–3 Adding Support for CoherenceShutdownModule

<httpModules>
 <add name="CoherenceShutdown" type="Tangosol.Web.CoherenceShutdownModule,
Coherence"/>
</httpModules>

22

Network Filters for .NET Clients 22-1

22Network Filters for .NET Clients

A network filter is a mechanism that allows transformation of data sent through
TCP/IP sockets to be performed in a pluggable, layered fashion. Coherence for .NET
supports custom filters, thus enabling users to modify the contents of the network
traffic and is commonly used to add compression and encryption to data.

Custom Filters
To create a new filter, create a .NET class that implements the
Tangosol.IO.IWrapperStreamFactory interface and optionally implements the
Tangosol.Util.IXmlConfigurable interface. The IWrapperStreamFactory
interface defines two methods:

Example 22–1 Methods on the IWrapperStreamFactory Interface

Stream GetInputStream(Stream stream);
Stream GetOutputStream(Stream stream);

that provide the input/output stream to be wrapped ("filtered") (on input—received
message, or output—sending message) and expects a stream back that wraps the
original stream. This method is called for each incoming and outgoing message.

Configuring Filters
There are two steps to configuring a filter. The first is to declare the filter in the
<filters> XML element of the cache factory configuration file. This is illustrated in
Example 22–2:

Example 22–2 Configuring a Filter

<coherence>
 <cluster-config>
 <filters>
 <filter>
 <filter-name>gzip</filter-name>
 <filter-class>Tangosol.Net.CompressionFilter, Coherence</filter-class>
 </filter>
 </filters>
 </cluster-config>
...
</coherence>

Configuring Filters

22-2 Oracle Coherence User's Guide for Oracle Coherence

The second step is to attach the filter to one or more specific services. To specify the
filter for a specific service, for example the ExtendTcpCacheService service, add a
<filter-name> element to the <use-filters> element of the service declaration
in the cache configuration file.

Example 22–3 Attaching a Filter to a Service

<remote-cache-scheme>
 <scheme-name>extend-direct</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 ...
 </tcp-initiator>

 <outgoing-message-handler>
 ...
 </outgoing-message-handler>

 <use-filters>
 <filter-name>gzip</filter-name>
 </use-filters>

 ...
</remote-cache-scheme>

If the filter implements IXmlConfigurable, after instantiating the filter, Coherence
will set the Config property with the following XML element:

Example 22–4 Setting the Config Property for a Filter that Implements IXmlConfigurable

<config>
 <param1>value1</param1>
 <param2>value2</param2>
</config>

Note: GZip compression filter is supported in .NET framework
version 2.0 or higher.

23

Sample Windows Forms Application for .NET Clients 23-1

23Sample Windows Forms Application for
.NET Clients

This is a step-by-step user guide that explains how to create a simple Windows Forms
Application that uses the Coherence for .NET library.

General Instructions
Developing and configuring a Windows Forms Application that uses Coherence for
.NET requires five basic steps:

1. Create a Windows Application Project

2. Add a Reference to the Coherence for .NET Library

3. Create an App.config File

4. Create Coherence for .NET Configuration Files

5. Create and Design the Application

6. Implement the Application

Create a Windows Application Project
To create a new Windows Application, follow these steps:

1. Go to the File->New->Project... tab in Visual Studio 2005.

2. In the New Project window choose the Visual C# project type and Windows
Application template. Enter the name, location (full path where you want to store
your application), and solution for your project.

Figure 23–1 illustrates the New Project window with the name, location, and
solution for the project.

Create a Windows Application Project

23-2 Oracle Coherence User's Guide for Oracle Coherence

Figure 23–1 New Project Window

This figure is described in the text.

3. Click OK.

Visual Studio should have created the following files: Program.cs, Form1.cs
and Form1.Designer.cs. Figure 23–2 illustrates the Solution Explorer with the
created project files

Figure 23–2 Solution Explorer with the Created Project Files

This figure is described in the text.

Add a Reference to the Coherence for .NET Library

Sample Windows Forms Application for .NET Clients 23-3

4. Rename these files if you want.

In this example they have been renamed to ContactCacheClient.cs,
ContactForm.cs, and ContactForm.Designer.cs respectively.

Add a Reference to the Coherence for .NET Library
To use the Coherence for .NET library in your .NET application, you must first add a
reference to the Coherence.dll library.

Adding a reference to the Coherence.dll library:

1. In your project go to Project->Add Reference... or right click References in the
Solution Explorer and choose Add Reference...

2. In the Add Reference window that appears choose the Browse tab and find the
Coherence.dll library on your file system. Figure 23–3 illustrates the .dll files
in the Add Reference window.

Figure 23–3 Add Reference Window

This figure is described in the text.

3. Click OK.

Create an App.config File

23-4 Oracle Coherence User's Guide for Oracle Coherence

Create an App.config File
To correctly configure the Coherence for .NET library, you must create an
App.config XML file that contains the appropriate file names for each configuration
file used by the library.

1. Right-click the project in the Solution Explorer and choose the Add->New Item...
tab.

2. In the Add New Item window select the Application Configuration File.

Figure 23–4 illustrates the contents of the Add New Item window.

Figure 23–4 Add New Item Window

This figure is described in the text.

3. Click OK.

Example 23–1 illustrates a sample valid App.config configuration file.

Example 23–1 Sample App.config File

<?xml version="1.0"?>

<configuration>
 <configSections>
 <section name="coherence" type="Tangosol.Util.CoherenceConfigHandler,
Coherence"/>
 </configSections>
 <coherence>
 <cache-factory-config>coherence.xml</cache-factory-config>
 <cache-config>cache-config.xml</cache-config>
 <pof-config>pof-config.xml</pof-config>

Create Coherence for .NET Configuration Files

Sample Windows Forms Application for .NET Clients 23-5

 </coherence>
</configuration>

In <configSections> you must specify a class that handles access to the Coherence
for .NET configuration section.

Elements within the Coherence for .NET configuration section are:

■ cache-factory-config—contains the path to a configuration descriptor used
by the CacheFactory to configure the (IConfigurableCacheFactory and Logger)
used by the CacheFactory.

■ cache-config—contains the path to a cache configuration descriptor which
contains the cache configuration described earlier (see "Configuring
Coherence*Extend on the Client" on page 14-2). This cache configuration
descriptor is used by the DefaultConfigurableCacheFactory.

■ pof-config—contains the path to a configuration descriptor used by the
ConfigurablePofContext to register custom types used by the application.

Create Coherence for .NET Configuration Files
Example 23–2 illustrates a sample coherence.xml configuration file

Example 23–2 Sample coherence.xml File for .NET

<?xml version="1.0"?>

<coherence xmlns="http://schemas.tangosol.com/coherence">
 <logging-config>
 <destination>ContactCache.log</destination>
 <severity-level>5</severity-level>
 <message-format>{date} <{level}> (thread={thread}):
{text}</message-format>
 <character-limit>8192</character-limit>
 </logging-config>
</coherence>

Example 23–3 illustrates a sample cache-config.xml configuration file.

Example 23–3 Sample cache-config.xml File for .NET

<?xml version="1.0"?>

<cache-config xmlns="http://schemas.tangosol.com/cache">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-contact-cache</cache-name>
 <scheme-name>extend-direct</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-direct</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>

Create and Design the Application

23-6 Oracle Coherence User's Guide for Oracle Coherence

 <port>9099</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>

 <outgoing-message-handler>
 <request-timeout>30s</request-timeout>
 </outgoing-message-handler>

 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

Example 23–4 illustrates a sample pof-config.xml configuration file.

Example 23–4 Sample pof-config.xml File for .NET

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->

<include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml</include>

 <!-- include all application POF user types -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>ContactCache.Windows.ContactInfo,
ContactCacheClient</class-name>
 </user-type>
 </user-type-list>
</pof-config>

Having created these configuration files, everything is now in place to connect to a
Coherence cluster and perform all operations supported by Coherence for .NET.

Create and Design the Application
Next, you must add controls to your Windows form. This example shows you how to
store objects into a INamedCache, read from the cache, query the cache, remove an
item from the cache, and clear the cache. For this we're going to use buttons that will
raise events when clicked, a couple of TextBox components for editing objects, and a
DataGridView for displaying the current contents of a INamedCache. In this
example we're going to work with just a ContactInfo user type, but a similar
approach can be used with any other user defined type.

To add controls in your application follow these steps:

1. Go to View->Toolbox.

2. In the Toolbox window choose the controls you want to use and drag them on the
Windows form.

3. For each control, right-click it, choose Properties tab, and set the necessary
properties.

Figure 23–5 illustrates what the Contact Cache Info application UI should look after
you have finished the previous steps.

Implement the Application

Sample Windows Forms Application for .NET Clients 23-7

Figure 23–5 Contact Cache Client UI

This figure is described in the text.

Implement the Application
The first step in the implementation of the example Windows application is to create a
ContactInfo class that implements the IPortableObject interface.

Example 23–5 Sample Class that Implements IPortableObject

public class ContactInfo : IPortableObject
{
 private string name;
 private string street;
 private string city;
 private string state;
 private string zip;

 public ContactInfo()
 { }

 public ContactInfo(string name, string street, string city, string state,
string zip)
 {
 this.name = name;
 this.street = street;
 this.city = city;
 this.state = state;
 this.zip = zip;
 }

 public void ReadExternal(IPofReader reader)
 {
 name = reader.ReadString(0);
 street = reader.ReadString(1);

Implement the Application

23-8 Oracle Coherence User's Guide for Oracle Coherence

 city = reader.ReadString(2);
 state = reader.ReadString(3);
 zip = reader.ReadString(4);
 }

 public void WriteExternal(IPofWriter writer)
 {
 writer.WriteString(0, name);
 writer.WriteString(1, street);
 writer.WriteString(2, city);
 writer.WriteString(3, state);
 writer.WriteString(4, zip);
 }

 // property definitions omitted for brevity
}

Before the application can start handling events, we must bind the DataGridView
control with a data source object:

1. In the Toolbox window choose the BindingSource object and drag it onto the
form.

2. Set its properties. Enter contactsBindingSource into the Name field and then
set its data source by clicking the arrow button on the right end of the DataSource
field. In the drop down window choose Add Project Data Source... and the Data
Source Configuration Wizard will appear. Chose Object and find the
ContactInfo class in your project.

Implement the Application

Sample Windows Forms Application for .NET Clients 23-9

Figure 23–6 Using Data Source Wizard to Bind a Control to a Data Source

This figure is described in the text.

3. The final step is to bind the DataGridView control to the
contactBindingSource. This is done by simply choosing the
contactsBindingSource in the drop down window in the DataSource field
of the DataGridView properties window. This is illustrated in Figure 23–7.

Implement the Application

23-10 Oracle Coherence User's Guide for Oracle Coherence

Figure 23–7 Choosing a Data Source to Bind to the Control

This figure is described in the text.

Now we have bound contactsBindingSource to our DataGridView control and
all further interaction with the data, including navigating, sorting, filtering, and
updating, is accomplished with calls to the BindingSource component. We also need
IFilter and CacheEventFilter fields to manage filtering and a
WindowsFormsCacheListener field used to ensure that any event handling code
that must run as a response to a cache event is executed on the UI thread. For this to
work, we'll have to delegate methods for each cache event we're handling and then
register a listener with the cache by using the AddCacheListener() method. This is
explained in more details in Chapter 20, "Special Considerations—Windows Forms
Applications for .NET Clients". In the constructor, we will also obtain the
INamedCache that we're using in the application by using the
CacheFactory.GetCache() static method and initialize the ComboBox used for
choosing the search attribute.

Example 23–6 Adding Listeners

/// <summary>
/// Named cache.
/// </summary>
private INamedCache cache;

/// <summary>
/// Listener that allows end users to handle Coherence cache events,

Implement the Application

Sample Windows Forms Application for .NET Clients 23-11

/// which are always raised from a background thread.
/// </summary>
private WindowsFormsCacheListener listener;

/// <summary>
/// Evaluate the specified extracted value.
/// </summary>
private IFilter filter;

/// <summary>
/// Wrapper filter, used by listeners.
/// </summary>
private CacheEventFilter cacheEventFilter;

/// <summary>
/// Search pattern.
/// </summary>
private string pattern;

/// <summary>
/// Default constructor.
/// </summary>
public ContactForm()
{
 listener = new WindowsFormsCacheListener(this);
 listener.EntryInserted += new CacheEventHandler(AddRow);
 listener.EntryUpdated += new CacheEventHandler(UpdateRow);
 listener.EntryDeleted += new CacheEventHandler(DeleteRow);

 cache = CacheFactory.GetCache("dist-contact-cache");
 cache.AddCacheListener(listener);

 InitializeComponent();
 InitializeComboBox();
}

/// <summary>
/// Initialize ComboBox with attribute names.
/// </summary>
/// <remarks>
/// Choosing attribute from the ComboBox allows to search for given
/// pattern in choosen entry attribute inside the named cache.
/// </remarks>
private void InitializeComboBox()
{
 cmbAttribute.Items.Add("Name");
 cmbAttribute.Items.Add("Street");
 cmbAttribute.Items.Add("City");
 cmbAttribute.Items.Add("State");
 cmbAttribute.Items.Add("Zip");

 cmbAttribute.SelectedIndex = 0;
}

As with any other Windows application, most of the remaining implementation has to
do with event handling. Since each component in the Windows form can raise an
event, event handlers must be created to handle each event. Event handlers in Visual
Studio can be added to your application by following these steps:

Implement the Application

23-12 Oracle Coherence User's Guide for Oracle Coherence

1. Right-click the Window component for which you'd like to implement an event
handler and choose Properties.

2. In the upper toolbar of the Properties window, select the lighting button and all
events that the component can raise will be displayed.

Figure 23–8 Properties Window

This figure is described in the text.

3. Choose the event you want to handle and double-click it. Visual Studio will add
the necessary code to your application to enable you to handle the event. Next,
you must implement the empty event handler method.

Example 23–7 illustrates the event code in the sample Windows application:

Example 23–7 Adding Events

/// <summary>
/// Load form event handler.
/// </summary>
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="e">
/// An EventArgs that contains no event data.
/// </param>
private void ContactForm_Load(object sender, EventArgs e)
{
 RefreshContactsGrid(true);
}
/// <summary>
/// Closed form event handler.
/// </summary>
/// <remarks>
/// Removes the event handlers.
/// </remarks>

Implement the Application

Sample Windows Forms Application for .NET Clients 23-13

/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="e">
/// An EventArgs that contains no event data.
/// </param>
private void ContactForm_FormClosed(object sender, FormClosedEventArgs e)
{
 cache.RemoveCacheListener(listener, cacheEventFilter);
}

/// <summary>
/// Enter cell event handler for the addressDataGridView.
/// </summary>
/// <remarks>
/// Refreshes the TextBoxes with data from selected
/// addressDataGridView row.
/// </remarks>
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="e">
/// An EventArgs that contains no event data.
/// </param>
private void addressDataGridView_CellEnter(object sender,
DataGridViewCellEventArgs e)
{
 DataGridViewCellCollection cells = addressDataGridView.CurrentRow.Cells;

 txtName.Text = (string) cells[0].Value;
 txtStreet.Text = (string) cells[1].Value;
 txtCity.Text = (string) cells[2].Value;
 txtState.Text = (string) cells[3].Value;
 txtZip.Text = (string) cells[4].Value;
}

/// <summary>
/// Click event handler for Put button.
/// </summary>
/// <remarks>
/// Stores the <see cref="ContactInfo"/> data entered in
/// TextBoxes into the INamedCache.
/// </remarks>
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="e">
/// An EventArgs that contains no event data.
/// </param>
private void btnPut_Click(object sender, EventArgs e)
{
 String name = txtName.Text;
 ContactInfo contact = new ContactInfo(txtName.Text,
 txtStreet.Text,
 txtCity.Text,
 txtState.Text,
 txtZip.Text);
 cache.Insert(name, contact);
}

Implement the Application

23-14 Oracle Coherence User's Guide for Oracle Coherence

/// <summary>
/// Click event handler for the Remove button.
/// </summary>
/// <remarks>
/// Removes the <see cref="ContactInfo"/> mapped by the current
/// Name TextBox value. If there is no such entry in the
/// INamedCache, a simple warning box is displayed.
/// </remarks>
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="e">
/// An EventArgs that contains no event data.
/// </param>
private void btnRemove_Click(object sender, EventArgs e)
{
 cache.Remove(txtName.Text);
 ResetTextBoxes();
}

/// <summary>
/// Click event handler for the Clear button.
/// </summary>
/// <remarks>
/// Clears the INamedCache.
/// </remarks>
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="e">
/// An EventArgs that contains no event data.
/// </param>
private void btnClear_Click(object sender, EventArgs e)
{
 cache.RemoveCacheListener(listener, cacheEventFilter);
 cache.Clear();
 cache.AddCacheListener(listener, cacheEventFilter, false);

 contactsBindingSource.Clear();
 ResetTextBoxes();
}

/// <summary>
/// Click event handler for Refresh button.
/// </summary>
/// <remarks>
/// Refreshes the addressDataGridView, filtering named cache
/// entries by a given attribute and string pattern. If empty string
/// is provided as a pattern all entries in the named cache will be
/// accounted and displayed.
/// </remarks>
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="e">
/// An EventArgs that contains no event data.
/// </param>
private void btnRefresh_Click(object sender, EventArgs e)
{
 string newPattern = txtPattern.Text;

Implement the Application

Sample Windows Forms Application for .NET Clients 23-15

 string attribute = (string) cmbAttribute.SelectedItem;

 if (!newPattern.Equals(pattern))
 {
 pattern = newPattern;
 cache.RemoveCacheListener(listener, cacheEventFilter);

 if (pattern != String.Empty)
 {
 IValueExtractor extractor = new ReflectionExtractor("get" +
attribute);
 filter = new LikeFilter(extractor, pattern, '\\', false);
 cacheEventFilter = new
CacheEventFilter(CacheEventFilter.CacheEventMask.All
 |
CacheEventFilter.CacheEventMask.UpdatedEntered
 |
CacheEventFilter.CacheEventMask.UpdatedLeft,
 filter);
 }
 else
 {
 filter = null;
 cacheEventFilter = null;
 }
 cache.AddCacheListener(listener, cacheEventFilter, false);
 }
 RefreshContactsGrid(true);
}

/// <summary>
/// Click event handler for SelectIndexChanged event.
/// </summary>
/// <remarks>
/// Resets the pattern string to Refresh button click event
/// handler would work properly.
/// </remarks>
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="e">
/// An EventArgs that contains no event data.
/// </param>
private void cmbAttribute_SelectedIndexChanged(object sender, EventArgs e)
{
 pattern = "";
}

We also have to write cache event handlers, as delegated in the constructor. This is
illustrated in Example 23–8:

Example 23–8 Adding Cache Event Handlers

/// <summary>
/// Event handler for <see cref="ICacheListener.EntryInserted"/>
/// event.
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="args">

Implement the Application

23-16 Oracle Coherence User's Guide for Oracle Coherence

/// An <see cref="CacheEventArgs"/>.
/// </param>
private void AddRow(object sender, CacheEventArgs args)
{
 contactsBindingSource.Add(args.NewValue);
}

/// <summary>
/// Event handler for <see cref="ICacheListener.EntryUpdated"/>
/// event.
/// </summary>
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="args">
/// An <see cref="CacheEventArgs"/>.
/// </param>
public void UpdateRow(object sender, CacheEventArgs args)
{
 int index = contactsBindingSource.IndexOf(args.OldValue);
 if (index < 0)
 {
 // updated entered
 contactsBindingSource.Add(args.NewValue);
 }
 else
 {
 if (SatisfiesFilter(args.NewValue))
 {
 contactsBindingSource[index] = args.NewValue;
 }
 else
 {
 contactsBindingSource.RemoveAt(index);
 }
 }
}

/// <summary>
/// Event handler for <see cref="ICacheListener.EntryDeleted"/>
/// event.
/// </summary>
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="args">
/// An <see cref="CacheEventArgs"/>.
/// </param>
public void DeleteRow(object sender, CacheEventArgs args)
{
 contactsBindingSource.Remove(args.OldValue);
}

Example 23–9 illustrates helper methods used by the event handlers in the previous
example:

Example 23–9 Adding Helper Methods for Event Handlers

/// <summary>
/// Resets all of the text boxes on the form.

Implement the Application

Sample Windows Forms Application for .NET Clients 23-17

/// </summary>
private void ResetTextBoxes()
{
 txtName.Text = "";
 txtStreet.Text = "";
 txtCity.Text = "";
 txtState.Text = "";
 txtZip.Text = "";
}

/// <summary>
/// Initialize ComboBox with attribute names.
/// </summary>
/// <remarks>
/// Choosing attribute from the ComboBox allows to search for given
/// pattern in choosen entry attribute inside the named cache.
/// </remarks>
private void InitializeComboBox()
{
 cmbAttribute.Items.Add("Name");
 cmbAttribute.Items.Add("Street");
 cmbAttribute.Items.Add("City");
 cmbAttribute.Items.Add("State");
 cmbAttribute.Items.Add("Zip");

 cmbAttribute.SelectedIndex = 0;
}

/// <summary>
/// Queries the object with specified filter criteria.
/// </summary>
/// <param name="obj">
/// An object to which the test is applied.
/// </param>
/// <returns>
/// true if the test passes, false otherwise.
/// </returns>
private bool SatisfiesFilter(object obj)
{
 IFilter clientFilter = new LikeFilter(new ReflectionExtractor((string)
cmbAttribute.SelectedItem),
 pattern, '\\', false);
 return clientFilter.Evaluate(obj);
}

/// <summary>
/// Refreshes the contacts table.
/// </summary>
/// <param name="updateContacts">
/// Flag specifying whether to query against cache to get
/// the most recent data or not.
/// </param>
private void RefreshContactsGrid(bool updateContacts)
{
 if (updateContacts)
 {
 RefreshContacts();
 }
 contactsBindingSource.ResetBindings(false);
}

Implement the Application

23-18 Oracle Coherence User's Guide for Oracle Coherence

/// <summary>
/// Refreshes the contacts table with the most recent data within the
/// cache.
/// </summary>
private void RefreshContacts()
{
 contactsBindingSource.Clear();
 ICollection cacheEntries = (filter == null ? cache.Values :
cache.GetEntries(filter));
 foreach (object entry in cacheEntries)
 {
 if (entry is DictionaryEntry)
 {
 contactsBindingSource.Add(((DictionaryEntry) entry).Value);
 }
 else
 {
 contactsBindingSource.Add(entry);
 }
 }
}

24

Sample Web Application for .NET Clients 24-1

24Sample Web Application for .NET Clients

This chapter provides step-by-step instructions to create a simple Windows ASP.NET
Web application that uses the Coherence for .NET library.

General Instructions
Developing and configuring a Windows ASP.NET web application that uses
Coherence for .NET requires six basic steps:

1. Create an ASP.NET Project

2. Add a Reference to the Coherence for .NET Library

3. Configure the Web.config File

4. Create Coherence for .NET Configuration Files

5. Create the Web Form

6. Implement the Web Application.

The following sections describe each of these steps in detail.

Create an ASP.NET Project
To create a new ASP.NET web application, follow these steps:

1. Choose File->New->Web site in Visual Studio 2005.

2. Under the "Templates", select "ASP.NET Web Site".

3. Select the language that you are most familiar with.

4. Select the location (type and full path) where you want to store your application.

Click the OK button to generate a new solution and empty ASP.NET application.

Add a Reference to the Coherence for .NET Library
To use the Coherence for .NET library in your .NET application, you first need to add a
reference to the Coherence.dll library:

1. In your project go to Project->Add Reference... or right click References in the
Solution Explorer and choose Add Reference....

2. In the Add Reference window that appears, choose the Browse tab and find the
Coherence.dll library on your file system.

Configure the Web.config File

24-2 Oracle Coherence User's Guide for Oracle Coherence

Figure 24–1 Coherence.dll File in the Add Reference Window

This figure is described in the text.

3. Click OK.

Configure the Web.config File
To correctly configure the Coherence for .NET library, you must configure the
Web.config XML file with the appropriate file names for each configuration file used
by the Coherence for .NET library. Example 24–2 illustrates a valid Web.config
configuration file:

Example 24–1 Sample Web.config Configuration File

<?xml version="1.0"?>

<configuration>
 <configSections>
 <section name="coherence" type="Tangosol.Util.CoherenceConfigHandler,
Coherence"/>
 </configSections>

 <coherence>
 <cache-factory-config>coherence.xml</cache-factory-config>
 <cache-config>cache-config.xml</cache-config>
 <pof-config>pof-config.xml</pof-config>
 </coherence>

 <system.web>
 <httpModules>

Create Coherence for .NET Configuration Files

Sample Web Application for .NET Clients 24-3

 <add name="CoherenceShutdown" type="Tangosol.Web.CoherenceShutdownModule,
Coherence"/>
 </httpModules>
 <compilation debug="true"/>
 <authentication mode="Windows"/>
 </system.web>
</configuration>

In the <configSections> you must specify a class that handles access to the
Coherence for .NET configuration section.

Elements within the Coherence for .NET configuration section are:

■ cache-factory-config—contains the path to a configuration descriptor used
by the CacheFactory to configure the (IConfigurableCacheFactory and Logger)
used by the CacheFactory.

■ cache-config—contains the path to a cache configuration descriptor which
contains the cache configuration described earlier (see "Configuring
Coherence*Extend on the Client" on page 14-2). This cache configuration
descriptor is used by the DefaultConfigurableCacheFactory.

■ pof-config—contains the path to a configuration descriptor used by the
ConfigurablePofContext to register custom types used by the application.

Create Coherence for .NET Configuration Files
Example 24–2 illustrates a sample coherence.xml configuration file:

Example 24–2 Sample coherence.xml Configuration File

<?xml version="1.0"?>

<coherence xmlns="http://schemas.tangosol.com/coherence">
 <logging-config>
 <destination>stderr</destination>
 <severity-level>5</severity-level>
 <message-format>{date} <{level}> (thread={thread}):
{text}</message-format>
 <character-limit>8192</character-limit>
 </logging-config>
</coherence>

Example 24–3 illustrates a sample cache-config.xml configuration file:

Example 24–3 Sample cache-config.xml Configuration File

<?xml version="1.0"?>

<cache-config xmlns="http://schemas.tangosol.com/cache">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-contact-cache</cache-name>
 <scheme-name>extend-direct</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-direct</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>

Create the Web Form

24-4 Oracle Coherence User's Guide for Oracle Coherence

 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 <connect-timeout>5s</connect-timeout>
 </tcp-initiator>

 <outgoing-message-handler>
 <request-timeout>30s</request-timeout>
 </outgoing-message-handler>

 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

Example 24–4illustrates a sample pof-config.xml configuration file:

Example 24–4 Sample pof-config.xml Configuration File

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->

<include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml</include>

 <!-- include all application POF user types -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>ContactCache.Web.ContactInfo</class-name>
 </user-type>
 </user-type-list>
</pof-config>

Having creating these configuration files, everything is now in place to connect to a
Coherence cluster and perform all operations supported by Coherence for .NET.

Create the Web Form
Switch to the Design tab for the Default.aspx page and from the Toolbox pane add
the appropriate controls by dragging and dropping them on the page. You will need
TextBox controls for the Name, Street, City, State, and Zip fields and
corresponding label controls for each. This is illustrated in Figure 24–2.

Create the Web Form

Sample Web Application for .NET Clients 24-5

Figure 24–2 Adding Controls for the .aspx Page

This figure is illustrated in the text.

After placing them on the page, you should change the ID and Text property for each
control. As we won't be using labels in the code, you can leave their ID property
values as generated, and just put appropriate labels in the Text property. You should
name the ID and TextBox controls txtName, txtStreet, and so on. Add one button
and rename its ID to btnSave and Text property to Save. This is illustrated in
Figure 24–3.

Create the Web Form

24-6 Oracle Coherence User's Guide for Oracle Coherence

Figure 24–3 Changing IDs and Properties for Data Controls

This figure is described in the text.

Add one button and rename its ID to btnClear and Text property to Clear. This is
illustrated in Figure 24–4

Create the Web Form

Sample Web Application for .NET Clients 24-7

Figure 24–4 Adding a "Clear" Button to the Application

This figure is described in the text.

Add label and rename its ID to lblTotal. This label will be used to display the
cache size. We have to add a RequiredFieldValidator from the Validation list of
controls on the Toolbox pane and set its properties. This is illustrated in Figure 24–5:

Create the Web Form

24-8 Oracle Coherence User's Guide for Oracle Coherence

Figure 24–5 Adding a Field Validator and Setting its Properties

This figure is described in the text.

Please note that ControlToValidate property is set to the txtName control.

From the Data list of controls on the Toolbox pane, add a GridView control and an
ObjectDataSource (named dsContact). This is illustrated in Figure 24–6.

Create the Web Form

Sample Web Application for .NET Clients 24-9

Figure 24–6 Adding a GridView Control and an ObjectDataSource

This figure is described in the text.

Example 24–5 illustrates code for the GridView control source:

Example 24–5 Code for the GridView Data Control

<asp:GridView ID="gridCache" runat="server" DataSourceID="dsContact"
AutoGenerateColumns="False" Font-Names="Verdana">
 <Columns>
 <asp:TemplateField>
 <ItemStyle Font-Size="Small"/>
 <ItemTemplate>
 <asp:HyperLink Text="[Remove]" ID="HyperLink1" runat="server"
NavigateUrl='<%# "?removeKey=" +
 DataBinder.Eval(Container.DataItem, "Name").ToString() %>'/>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="Name">
 <HeaderStyle BackColor="#DCE7F7"/>
 <ItemTemplate>
 <asp:HyperLink runat="server" NavigateUrl='<%# "?getKey=" +
DataBinder.Eval(Container.DataItem, "Name").ToString() %>'>
 <%# DataBinder.Eval(Container.DataItem, "Name") %>
 </asp:HyperLink>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:BoundField DataField="Street" HeaderText="Street">
 <HeaderStyle BackColor="#DCE7F7"/>
 </asp:BoundField>
 <asp:BoundField DataField="City" HeaderText="City">

Create the Web Form

24-10 Oracle Coherence User's Guide for Oracle Coherence

 <HeaderStyle BackColor="#DCE7F7"/>
 </asp:BoundField>
 <asp:BoundField DataField="State" HeaderText="State">
 <HeaderStyle BackColor="#DCE7F7"/>
 </asp:BoundField>
 <asp:BoundField DataField="Zip" HeaderText="Zip">
 <HeaderStyle BackColor="#DCE7F7"/>
 </asp:BoundField>
 </Columns>
</asp:GridView>

Example 24–6 illustrates the ObjectDataSource code.

Example 24–6 ObjectDataSource Code

<asp:ObjectDataSource ID="dsContact" runat="server" SelectMethod="GetData"
 TypeName="ContactCache.Web.ContactInfoDataSource"
</asp:ObjectDataSource>

Now, let's add a Search pane by dragging and dropping a few labels, one
DropDownList for a filter column, and a TextBox for filter criteria. This is illustrated
in Figure 24–7.

Figure 24–7 Search Pane

This figure is illustrated in the text.

Implement the Web Application

Sample Web Application for .NET Clients 24-11

Implement the Web Application

Global.asax File
Example 24–7 illustrates the Global.asax file which redirects the user to an error
page if an exception occurs. A Coherence for .NET INamedCache instance is retrieved
by using the CacheFactory.GetCache(...) API call. Once it is obtained, it is stored
in the Application state.

Example 24–7 Redirecting a User to an Error Page

<%@ Application Language="C#" %>

<script runat="server">
 void Application_Start(object sender, EventArgs e)
 {
 try
 {
 Application["contactCache"] = CacheFactory.GetCache("dist-contact-cache");
 }
 catch
 {
 }
 }

 void Application_End(object sender, EventArgs e)
 {
 CacheFactory.Log("Application terminated.", CacheFactory.LogLevel.Info);
 INamedCache contactCache = Application["contactCache"] as INamedCache;
 if (contactCache != null)
 {
 contactCache.Release();
 }
 }

 void Application_Error(object sender, EventArgs e)
 {
 Server.Transfer("ConnectionError.html");
 }
</script>

Business Object Definition
Example 24–8 illustrates the definition of the ContactInfo business object.

Example 24–8 Sample Business Object Definition File

public class ContactInfo : IPortableObject
{
 private string name;
 private string street;
 private string city;
 private string state;
 private string zip;

 public ContactInfo()
 { }

Implement the Web Application

24-12 Oracle Coherence User's Guide for Oracle Coherence

 public ContactInfo(string name, string street, string city, string state,
string zip)
 {
 this.name = name;
 this.street = street;
 this.city = city;
 this.state = state;
 this.zip = zip;
 }

 public void ReadExternal(IPofReader reader)
 {
 name = reader.ReadString(0);
 street = reader.ReadString(1);
 city = reader.ReadString(2);
 state = reader.ReadString(3);
 zip = reader.ReadString(4);
 }

 public void WriteExternal(IPofWriter writer)
 {
 writer.WriteString(0, name);
 writer.WriteString(1, street);
 writer.WriteString(2, city);
 writer.WriteString(3, state);
 writer.WriteString(4, zip);
 }
}

Service Layer Implementation
Example 24–9 illustrates a class that will provide data to the data bind control. It must
have a public GetData() method that will return an ICollection of data to the
data bind control:

Example 24–9 Providing Data to the Data Bind Control

public class ContactInfoDataSource
{
 public ICollection Data
 {
 set { m_col = value; }
 }

 public ICollection GetData()
 {
 return m_col;
 }

 public ContactInfoDataSource()
 {}

 public ContactInfoDataSource(ICollection col)
 {
 ArrayList results = new ArrayList();
 if (col is INamedCache)
 {
 INamedCache cache = col as INamedCache;

Implement the Web Application

Sample Web Application for .NET Clients 24-13

 foreach (ContactInfo contactInfo in cache.Values)
 {
 results.Add(contactInfo);
 }
 }
 else if (col is ArrayList)
 {
 foreach (DictionaryEntry entry in col)
 {
 results.Add(entry.Value);
 }
 }
 Data = results;
 }

 private ICollection m_col = null;
}

Code-behind the ASP.NET Page
Add an event handler that creates an inner object that provide data to the data bind
control. This is illustrated in Example 24–10.

Example 24–10 Event Handler to Provide Data to the Data Bind Control

protected void dsContact_ObjectCreating(object sender, ObjectDataSourceEventArgs
e)
{
 ContactInfoDataSource cds = new ContactInfoDataSource(Contacts == null ?
ContactCache : Contacts);
 e.ObjectInstance = cds;
}

The method illustrated in Example 24–11 refreshes the GridView displayed on the
page, refreshes the total label lblTotal, and makes the btnClear and all buttons
visible if there are objects in the cache:

Example 24–11 Method to Refresh the Grid View

private void RefreshDataGridAndRenderPage()
{
 gridCache.DataBind();

 int totalObjects = (Contacts == null ? ContactCache.Count : Contacts.Count);
 lblTotal.Text = "Total objects: " + totalObjects;

 if (ContactCache.Count > 0)
 {
 lblTotal.Visible = btnClear.Visible = true;
 lblSearch.Visible = listColumnNames.Visible = lblFor.Visible =
txtFilterCriteria.Visible = btnSearch.Visible = true;
 }
 else
 {
 lblTotal.Visible = btnClear.Visible = false;
 lblSearch.Visible = listColumnNames.Visible = lblFor.Visible =
txtFilterCriteria.Visible = btnSearch.Visible = false;
 }

 btnClearFilter.Visible = (Contacts != null);

Implement the Web Application

24-14 Oracle Coherence User's Guide for Oracle Coherence

}

The method illustrated in Example 24–12 handles page load events. If there is a
getKey value in the Request, then the value mapped to the specified key in the
cache is retrieved and the appropriate fields populated with its properties. If there is a
removeKey value in the Request, the value mapped to the specified key is removed
from the cache.

Example 24–12 Method to Handle Page Load Events

protected void Page_Load(object sender, EventArgs e)
{
 if (Request["getKey"] != null)
 {
 FindObjectInCache(Request["getKey"]);
 }
 else if (Request["removeKey"] != null)
 {
 CacheFactory.Log("Object with key [" + Request["removeKey"] + "] has been
removed from cache.", CacheFactory.LogLevel.Info);
 ContactCache.Remove(Request["removeKey"]);
 }

 RefreshDataGridAndRenderPage();
 PopulateFilterColumns();
}

The helper method illustrated in Example 24–13 retrieves an ContactInfo object
from the cache by a specified key:

Example 24–13 Retrieving a Business Object from the Cache through a Specified Key

private void FindObjectInCache(object key)
{
 ContactInfo contactInfo = (ContactInfo)ContactCache[key];

 if (contactInfo == null)
 {
 contactInfo = new ContactInfo();
 }

 txtName.Text = key as String;
 txtStreet.Text = contactInfo.Street;
 txtCity.Text = contactInfo.City;
 txtState.Text = contactInfo.State;
 txtZip.Text = contactInfo.Zip;
}

Example 24–14 illustrates an the event handler for the btnSave button:

Example 24–14 Event Handler for a "Save" Button

protected void btnSave_Click(object sender, EventArgs e)
{
 String name = txtName.Text;

 if (name != null && name != "")
 {
 ContactInfo contactInfo = new ContactInfo(name,
 txtStreet.Text,

Implement the Web Application

Sample Web Application for .NET Clients 24-15

 txtCity.Text,
 txtState.Text,
 txtZip.Text);
 ContactCache.Insert(name, contactInfo);

 CacheFactory.Log("Object with key [" + name + "] has been inserted into
cache.", CacheFactory.LogLevel.Info);
 RefreshDataGridAndRenderPage();
 }
}

Example 24–15 illustrates the event handler for the btnClear button:

Example 24–15 Event Handler for a :Clear" Button

protected void btnClear_Click(object sender, EventArgs e)
{
 NameValidator.Enabled = false;

 ContactCache.Clear();
 RefreshDataGridAndRenderPage();

 NameValidator.Enabled = true;
}

Example 24–16 illustrates the event handler for the btnSearch button:

Example 24–16 Event Handler for a "Search" Button

protected void btnSearch_Click(object sender, EventArgs e)
{
 NameValidator.Enabled = false;

 String filterBy = listColumnNames.Items[listColumnNames.SelectedIndex].Text;
 String filterCriteria = txtFilterCriteria.Text.Trim();

 if (filterCriteria != "")
 {
 IValueExtractor extractor = new ReflectionExtractor("get" + filterBy);
 IFilter filter = new LikeFilter(extractor, filterCriteria, '\\', true);

 ICollection results = ContactCache.GetEntries(filter);

 Contacts = results;
 dsContact = new ObjectDataSource();

 RefreshDataGridAndRenderPage();
 }

 NameValidator.Enabled = true;
}

Example 24–17 illustrates the event handler for the btnClearFilter button:

Example 24–17 Event Handler for a "Clear Filter" Button

protected void btnClearFilter_Click(object sender, EventArgs e)
{
 NameValidator.Enabled = false;

 Contacts = null;

Implement the Web Application

24-16 Oracle Coherence User's Guide for Oracle Coherence

 dsContact = new ObjectDataSource();

 RefreshDataGridAndRenderPage();
 NameValidator.Enabled = true;
}

Finally, you should add an ConnectionError.html page to the project with an
appropriate error message in it.

Part III
Part III Integration with WebLogic Server

This section contains the following chapter:

■ Chapter 25, "Caching HTTP Sessions for WebLogic"

25

Caching HTTP Sessions for WebLogic 25-1

25Caching HTTP Sessions for WebLogic

The following example demonstrates how to use Coherence*Web to cache session
information for Web application instances that are deployed across WebLogic
application servers. In particular, this example creates a Web application and deploys
it to two application server instances. The application is a simple counter that stores
the current count as a session attribute. Coherence*Web automatically serializes and
replicates the attribute across both server instances. Lastly, a browser is used to access
each application instance to demonstrate that the same session attribute is used among
the instances.

Requirements
To complete this example the following software must be installed:

■ Oracle Coherence 3.4

■ WebLogic 10.X (This example uses 10.3. WebLogic 8.X and 9.X are also supported.)

Install Coherence*Web on WebLogic 10.X
The Coherence*Web module includes a plug-in installer that supports WebLogic 10.X.
Use the instructions located at the following link to install Coherence*Web to
WebLogic:

Installing Coherence*Web Session Management Module on BEA WebLogic 10.x

Step three of the install procedure is completed later in this example.

Configure WebLogic
This example requires two application server instances:

1. Run the Oracle WebLogic Configuration Wizard (BEA_HOME\wlserver_
10.3\common\bin\config.exe or config.sh). Use the wizard to create a
new WebLogic domain. From the wizard, customize the domain and configure
two managed servers: ServerA using port 8080; and ServerB using port
8081. If you would like to use the WebLogic Node Manager (recommended),
configure a Machine to host the application server instances and assign
application server instances to the Machine. For this example, the Machine name
used is test and the domain name used is test_domain.

2. Before exiting the wizard, click to select the Start Admin Server check box, and
click Done. The configuration wizard automatically starts the administration
server. To manually start the administration server, run BEA_HOME/user_

Configure WebLogic

25-2 Oracle Coherence User's Guide for Oracle Coherence

projects/domains/test_domain/startWebLogic.cmd or
startWebLogic.sh.

3. From a browser, log in to the Oracle WebLogic Server Administration Console
using the following URL:http://hostname:7001/console. The console starts,
and the domain home page displays.

4. From the Domain Structure menu, expand Environment and click Servers. The
Summary of Servers page displays and should be similar to Figure 25–1:

Figure 25–1 Summary of Servers Page

This figure is described in the text.

5. If you are using the Node Manager, start the manager from a command prompt
using BEA_HOME\wlserver_10.3\server\bin\startNodeManager.cmd or
startNodeManager.sh.

6. From the Summary of Servers screen, click the Control tab and start both server
instances. If you are not using the Node Manager, manually start the server
instances from the command line. Change directories to BEA_HOME\user_
projects\domains\test_domain\bin and issue the following commands:

To start the two server instances on Windows:

Create the Counter Web Application

Caching HTTP Sessions for WebLogic 25-3

startManagedWeblogic.cmd ServerA http://localhost:7001
startManagedWeblogic.cmd ServerB http://localhost:7001

To start the two server instances on Linux/UNIX:

./startManagedWeblogic.sh ServerA http://localhost:7001

./startManagedWeblogic.sh ServerB http://localhost:7001

Create the Counter Web Application
The Counter Web application is a simple counter implemented as a JSP. The counter is
stored as an HTTP session attribute and increments each time the page is accessed.

To create the Counter Web application:

1. Create a standard Web application directory as follows:

/
/WEB-INF

2. Copy the following code to a text file:

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 xmlns="http://java.sun.com/xml/ns/j2ee" version="2.5">
 <description>Empty web.xml file for Web Application</description>
</web-app>

3. Save the file as web.xml to the /WEB-INF directory.

4. Copy the following code to a text file:

<h3>
 Counter :
 <%
 Integer counter = new Integer(1);
 HttpSession httpsession = request.getSession(true);
 if (httpsession.isNew()) {
 httpsession.setAttribute("count", counter);
 out.println(counter);
 } else {
 int count = ((Integer)
httpsession.getAttribute("count")).intValue();
 httpsession.setAttribute("count", new Integer(++count));
 out.println(count);
 }
 %>
 </h3>

5. Save the file as counter.jsp in the root of the Web application directory. The
Web application directory should appear as follows:

/
/counter.jsp
/WEB-INF/web.xml

6. ZIP or JAR the Web application directory and save the file as counter.war.

Modify the Counter Web Application to use Coherence*Web

25-4 Oracle Coherence User's Guide for Oracle Coherence

Modify the Counter Web Application to use Coherence*Web
All Web applications that want to take advantage of Coherence*Web must be modified
to include the required Coherence*Web libraries and configuration files. Coherence
includes an installer that automatically adds the necessary files to a Web application.
To run the installer, follow the instructions located at:

General Instructions for Installing Coherence*Web Session Management Module

The installation is a 2-step process:

■ The inspect step—In the inspect step, a coherence-web.xml file is created for
the Counter Web application.

■ The install step—In the install step, the Counter Web application's web.xml is
modified based on the content of the coherence-web.xml. In addition, the
application is modified to include the coherence.jar, coherence-web.jar,
and tangosol.jar; and the session-cache-config.xml configuration file.

The coherence-web.xml file can be edited to change the behavior of the session
cache. For example, the default session model used is the split model. The
coherence-sessioncollection-class parameter can be modified to use a
different session model (that is, monolithic or traditional).

For more information on how a Web application is modified during installation, see
How the Coherence*Web Installer Instruments a Java EE Application.

Deploy the Application
To deploy the application:

1. From a browser, log in to the Oracle WebLogic Server Administration Console
using the following URL:

http://host:7001/console

The console starts and the domain home page displays.

2. From the Domain Structure menu, click deployments. The Summary of
Deployments page displays.

3. Click Install. The Install Application Assistant screen displays.

4. Use the Install Application Assistant to deploy counter.war to both ServerA
and ServerB. The Summary of Deployments page displays after the application
is deployed. Figure 25–2 illustrates the deployments table with the counter Web
application.

Note: Changes to the coherence-web.xml file must be made
before the install step.

Verify the Example

Caching HTTP Sessions for WebLogic 25-5

Figure 25–2 Deployments Window Showing the Deployed Application

This figure is described in the text.

Verify the Example
To verify the example:

1. Open a browser and access the ServerA Counter instance using the following
URL:

http://host:8080/counter/counter.jsp

The counter page displays and the counter is set to 1 as follows:

Figure 25–3 Counter Page with Counter Set to 1

This figure is described in the text.

2. From the same browser (or in a new browser tab), access the ServerB Counter
instance using the following URL:

http://host:8081/counter/counter.jsp

The counter page displays and the counter is incremented to 2 based on the
session data: If you refresh the page, the counter is incremented to 3. Refresh the
instance on ServerA and the counter is at 4.

Summary

25-6 Oracle Coherence User's Guide for Oracle Coherence

Figure 25–4 Counter Page with Counter Set to 4

This figure is described in the text.

Summary
This example demonstrated how Coherence*Web is used to cache session data across
multiple Web application instances deployed to multiple WebLogic server instances.

Part IV
Part IV Integration with TopLink Essentials

This section contains the following chapters:

■ Chapter 26, "Configuring Coherence for TopLink Essentials"

■ Chapter 27, "Configuring Coherence for JPA"

26

Configuring Coherence for TopLink Essentials 26-1

26Configuring Coherence for TopLink
Essentials

Oracle TopLink is often described as one of the most flexible and scalable
object-relational mapping libraries and performs particularly well for read-intensive
applications. A streamlined version called TopLink Essentials became the Reference
Implementation for the Java Persistence API (JPA) 1.0 and was open-sourced and
donated to the Glassfish project at java.net. TopLink Essentials offers all of the essential
functionality for Object-Relational mapping through either JPA or the native TopLink
API, but it also provides several other custom and advanced features for more
sophisticated application usage. To obtain a free download of TopLink Essentials go to
http://www.oracle.com/technology/products/ias/toplink/jpa/index.
html.

Coherence and TopLink Essentials
Coherence ships a CacheStore implementation that uses TopLink Essentials to load
and store objects to the database. This document describes how to configure and use
this CacheStore. Note that although this CacheStore allows the objects to be
mapped as JPA entities, it differs from the JPA CacheStore in that it uses the TopLink
runtime API to load and store the objects.

Limitations
Support is currently limited to TopLink Essentials (not Oracle TopLink). In most cases
the actual Oracle TopLink mappings used by applications will also work in TopLink
Essentials, but the TopLink project mapping files (deployment XML) are not read by
TopLink Essentials. TopLink Essentials will read and process TopLink projects in Java
code, though, and all types of JPA mappings and metadata.

Conventions
This chapter refers to the following Java classes and interfaces:

Example 26–1 TopLink Essentials-related Classes and Interfaces

com.tangosol.coherence.toplink.TopLinkCacheLoader
com.tangosol.coherence.toplink.TopLinkCacheStore

com.tangosol.net.NamedCache (extends java.util.Map)

com.tangosol.net.cache.CacheLoader
com.tangosol.net.cache.CacheStore

Using the Coherence TopLinkCacheStore

26-2 Oracle Coherence User's Guide for Oracle Coherence

oracle.toplink.essentials.sessions.Project
oracle.toplink.essentials.threetier.ServerSession
oracle.toplink.essentials.tools.sessionmanagement.SessionManager

As the CacheStore interface extends CacheLoader, the term "CacheStore" will be
used generically to refer to both interfaces (the appropriate interface being determined
by whether read-only or read-write support is required). Similarly,
"TopLinkCacheStore" will refer to both implementations.

The Coherence cache configuration file is referred to as the
coherence-cache-config.xml (the default name). TopLink Essentials may be
referred to simply as TopLink in this document. The JPA runtime configuration file is
referred to as the persistence.xml and the JPA mapping file is referred to as the
orm.xml (the default name).

Using the Coherence TopLinkCacheStore
The TopLink API provides advanced and flexible queries and many relational
management features, including referential integrity, cascading deletes and child
object fetching. TopLink employs an advanced caching system to properly manage the
entities. In many cases the TopLink cache will short-circuit a database operation to
minimize the operational latency, while in other cases it will simply use its cache to
ensure object identity.

Coherence includes a default entity-based CacheStore implementation,
TopLinkCacheStore (and a corresponding CacheLoader implementation,
TopLinkCacheLoader). Other information may be found in the Javadoc for the
implementing classes.

Mapping the Persistent Classes
The first step in being able to load and store objects through the CacheStore is to
ensure that the classes are mapped to the database. In TopLink Essentials objects may
be mapped using either standard JPA mappings or native TopLink O/R mappings.

JPA mappings are specified either by annotating the entity classes or by adding an
orm.xml or other XML mapping files. See the TopLink JPA documentation for more on
how to map JPA entities.

TopLink mappings may be used instead of, or in addition to JPA mappings. They may
be configured using either a TopLink project class (see the TopLink documentation for
more on how to create a Java project class) or a customization class to amend the
TopLink descriptors for each class and add the mappings (see the TopLink
documentation for more on how to create a customization class and add Java
mappings). While a broader set of mappings is available in TopLink the mappings
may not be portable to other JPA providers.

Configuring TopLink Essentials
The runtime configuration and startup code will be different depending upon whether
JPA mappings or TopLink mappings are used.

Configuration with JPA Mappings
If using JPA mappings then TopLink Essentials is configured using a
persistence.xml file. Within persistence.xml are the properties that dictate
runtime operation. The toplink.session-name property determines the name
given to the TopLink session created to model the persistence unit entity manager

Using the Coherence TopLinkCacheStore

Configuring Coherence for TopLink Essentials 26-3

factory. This property may be set to any non-empty value if it is set. Example 26–2
illustrates a sample persistence.xml showing the toplink.session-name
property setting.

Example 26–2 Sample persistence.xml File for TopLink Essentials

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">

 <persistence-unit name="EmpUnit" transaction-type="RESOURCE_LOCAL">

 <provider>oracle.toplink.essentials.PersistenceProvider</provider>

 <class>com.acme.Employee</class>

 <properties>
 <property name="toplink.jdbc.driver" value="oracle.jdbc.OracleDriver"/>
 <property name="toplink.jdbc.url"
value="jdbc:oracle:thin:@localhost:1521:XE"/>
 <property name="toplink.jdbc.user" value="scott"/>
 <property name="toplink.jdbc.password" value="tiger"/>

 <property name="toplink.session-name" value="EmployeeSession"/>
 </properties>

 </persistence-unit>

</persistence>

The transaction type should be set to RESOURCE_LOCAL and the four JDBC properties
should contain the appropriate values for connecting and logging in to the database
being used. Classes that are mapped using JPA annotations should be listed in
<class> elements.

Configuration with TopLink Mappings
When using a Java project class the class may be created either manually or through a
tool such as the Mapping Workbench. The class need only be compiled and present on
the classpath.

The project class should be instantiated and passed into the session constructor when
creating the session. The session must also be added to the SessionManager.
Example 26–3 illustrates how this might be done.

Example 26–3 Instantiating the Project and Passing to the SessionManager

Project project = new EmployeeMappingProject();
ServerSession session = new ServerSession(project);
SessionManager.getManager().addSession("EmployeeSession", session);

Configuring Coherence
A coherence-cache-config.xml file must be specified to override the default
Coherence settings and define the TopLinkCacheStore caching scheme. The caching
scheme should include a <cachestore-scheme> element that lists the
TopLinkCacheStore class and includes two parameters. The first parameter is the

Using the Coherence TopLinkCacheStore

26-4 Oracle Coherence User's Guide for Oracle Coherence

entity name, or the alias for the entity being stored. When using JPA this is normally
the unqualified name of the entity class, and when mapped using TopLink it is the
alias for the class that is set on the descriptor. In the example cache scheme listed
below we make use of the built-in Coherence macro {cache-name} that translates to
the name of the cache that is constructing and using the cache store. This will work
because a separate cache should be used for each type of persistent object and we will
ensure that the name of each cache will be set to the name of the entity that is being
stored in it.

The second parameter is the name of the session that was indicated by the value of the
session-name property in the persistence.xml if using JPA mappings. It is the
name that was explicitly given to the session if using a TopLink session directly.

The various named caches are then directed to use the TopLink caching scheme. The
following is a sample coherence-cache-config.xml used to define a
NamedCache called "Employee" that caches instances of the Employee class. To
define additional entity caches for more classes then more <cache-mapping>
elements may be added. In Example 26–4 we are assuming the entities are mapped
using JPA mappings.

Example 26–4 Assigning Named Caches to a TopLink Caching Scheme

<cache-config>

 <caching-scheme-mapping>

 <!-- Configure a named cache -->
 <cache-mapping>
 <!-- Set the name of the cache to be the entity name -->
 <cache-name>Employee</cache-name>
 <!-- Configure this cache to use the scheme defined below -->
 <scheme-name>toplink-distributed</scheme-name>
 </cache-mapping>

 </caching-scheme-mapping>

 <caching-schemes>

 <distributed-scheme>

 <scheme-name>toplink-distributed</scheme-name>
 <service-name>TopLinkDistributedCache</service-name>

 <backing-map-scheme>
 <read-write-backing-map-scheme>

 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>

 <!- Define the cache scheme -->
 <cachestore-scheme>
 <class-scheme>
 <class-name>
 com.tangosol.coherence.toplink.TopLinkCacheStore
 </class-name>
 <init-params>
 <!-- This param should be the entity name -->
 <init-param>
 <param-type>java.lang.String</param-type>

Using the Coherence TopLinkCacheStore

Configuring Coherence for TopLink Essentials 26-5

 <param-value>{cache-name}</param-value>
 </init-param>
 <!-- This param should match the value of the session-name
property -->
 <!-- in persistence.xml file if JPA mappings are used, or the name
-->
 <!-- assigned to the TopLink session if TopLink mappings are used
-->
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>EmployeeSession</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>

 <autostart>true</autostart>
 </distributed-scheme>

 </caching-schemes>

</cache-config>

Using the Coherence TopLinkCacheStore

26-6 Oracle Coherence User's Guide for Oracle Coherence

27

Configuring Coherence for JPA 27-1

27Configuring Coherence for JPA

The Java Persistence API (JPA) is the primary standard for Object-Relational mapping
(ORM) and enterprise Java persistence. Several open source and commercial
implementations exist and are being developed.

Coherence ships a CacheStore implementation that uses JPA to load and store
objects to the database. This document describes how to configure and use this
CacheStore.

Limitations
Only resource-local and bootstrapped entity managers are currently supported.
Container-managed entity managers and those that use JTA transactions are not
currently supported.

Obtaining a JPA Implementation
A JPA provider is not shipped with Coherence, but is easy to obtain. Although the JPA
CacheStore will work with any compliant JPA implementation, we recommend using
one of the following:

■ TopLink Essentials is the Reference Implementation for the JPA 1.0 specification. It
is open source and free, available from the Oracle Technology Network (OTN) at
http://otn.oracle.com/jpa.

■ Eclipse JPA will be the Reference Implementation for the forthcoming JPA 2.0
specification. Oracle is leading the open source EclipseLink project that includes
Eclipse JPA. EclipseLink is available from Eclipse at
http://www.eclipse.org/eclipselink.

Conventions
This document refers to the following Java classes and interfaces:

Example 27–1 JPA-related Classes and Interfaces

com.tangosol.coherence.jpa.JpaCacheLoader
com.tangosol.coherence.jpa.JpaCacheStore

com.tangosol.net.NamedCache (extends java.util.Map)

com.tangosol.net.cache.CacheLoader
com.tangosol.net.cache.CacheStore

Using the Coherence JpaCacheStore

27-2 Oracle Coherence User's Guide for Oracle Coherence

As the CacheStore interface extends CacheLoader, the term "CacheStore" will be
used generically to refer to both interfaces (the appropriate interface being determined
by whether read-only or read-write support is required). Similarly, "JpaCacheStore"
will refer to both implementations.

The Coherence cache configuration file is referred to as the
coherence-cache-config.xml (the default name). The JPA persistence
implementation is referred to simply as the JPA provider or JPA vendor. The JPA
runtime configuration file is referred to as the persistence.xml, and the JPA
Object-Relational mapping file is referred to as the orm.xml (the default name).

Using the Coherence JpaCacheStore
The JPA is a standard API for mapping, querying and storing Java objects to a
database. The characteristics of the different JPA implementations may differ, however,
when it comes to caching, threading, and overall performance. TopLink Essentials is a
high-performing JPA implementation that meets the performance needs of most
applications.

Coherence includes a default entity-based CacheStore implementation,
JpaCacheStore (and a corresponding CacheLoader implementation,
JpaCacheLoader). Other information may be found in the Javadoc for the
implementing classes.

Mapping the Persistent Classes
The first step in being able to load and store objects through the CacheStore is to
ensure that the classes are mapped to the database. JPA mappings are standard, and
hence may be specified the same way for any and all JPA providers.

Entities may be mapped either by annotating the entity classes or by adding an
orm.xml or other XML mapping file. See the JPA vendor documentation for more on
how to map JPA entities.

Configuring JPA
A typical JPA configuration involves making changes to the persistence.xml file.
Within the persistence.xml are the properties that dictate runtime operation.
Example 27–2 is a sample persistence.xml showing the typical properties that are
set.

Example 27–2 Sample persistence.xml File for JPA

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">

 <persistence-unit name="EmpUnit" transaction-type="RESOURCE_LOCAL">

 <provider>oracle.toplink.essentials.PersistenceProvider</provider>

 <class>com.acme.Employee</class>

 <properties>
 <property name="toplink.jdbc.driver" value="oracle.jdbc.OracleDriver"/>
 <property name="toplink.jdbc.url"

Using the Coherence JpaCacheStore

Configuring Coherence for JPA 27-3

value="jdbc:oracle:thin:@localhost:1521:XE"/>
 <property name="toplink.jdbc.user" value="scott"/>
 <property name="toplink.jdbc.password" value="tiger"/>
 </properties>

 </persistence-unit>

</persistence>

The transaction type should be set to RESOURCE_LOCAL and the four JDBC properties
should contain the appropriate values for connecting and logging into your database.
Classes that are mapped using JPA annotations should be listed in <class> elements.

Configuring Coherence
A coherence-cache-config.xml must be specified to override the default
Coherence settings and define the JpaCacheStore caching scheme. The caching
scheme should include a <cachestore-scheme> element that lists the
JpaCacheStore class and includes three parameters.

■ The first parameter is the entity name of the entity being stored. Unless it is
explicitly overridden in JPA it will be the unqualified name of the entity class. In
Example 27–3, we make use of the built-in Coherence macro {cache-name} that
translates to the name of the cache that is constructing and using the
CacheStore. This works because a separate cache should be used for each type
of persistent entity and we will ensure that the name of each cache will be set to
the name of the entity that is being stored in it.

■ The second parameter is the fully qualified name of the entity class. If the classes
are all in the same package and use the default JPA entity names then we can once
again use the {cache-name} macro to fill in the part that is variable across the
different entity types. In this way the same caching scheme can be used for all of
the entities that are cached within the same persistence unit.

■ The third parameter is the persistence unit name, which should be the same as the
name specified in the persistence.xml.

The various named caches are then directed to use the JPA caching scheme.
Example 27–3 is a sample coherence-cache-config.xml used to define a
NamedCache called "Employee" that caches instances of the Employee class. To
define additional entity caches for more classes then more <cache-mapping>
elements may be added.

Example 27–3 Assigning Named Caches to a JPA Caching Scheme

<cache-config>

 <caching-scheme-mapping>

 <cache-mapping>
 <!-- Set the name of the cache to be the entity name -->
 <cache-name>Employee</cache-name>
 <!-- Configure this cache to use the scheme defined below -->
 <scheme-name>jpa-distributed</scheme-name>
 </cache-mapping>

 </caching-scheme-mapping>

 <caching-schemes>

Using the Coherence JpaCacheStore

27-4 Oracle Coherence User's Guide for Oracle Coherence

 <distributed-scheme>

 <scheme-name>jpa-distributed</scheme-name>
 <service-name>JpaDistributedCache</service-name>

 <backing-map-scheme>
 <read-write-backing-map-scheme>

 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>

 <!- Define the cache scheme -->
 <cachestore-scheme>
 <class-scheme>
 <class-name>
 com.tangosol.coherence.jpa.JpaCacheStore
 </class-name>
 <init-params>

 <!-- This param is the entity name -->
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>

 <!-- This param is the fully qualified entity class -->
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>com.acme.{cache-name}</param-value>
 </init-param>

 <!-- This param should match the value of the -->
 <!-- persistence unit name in persistence.xml -->
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>EmpUnit</param-value>
 </init-param>

 </init-params>
 </class-scheme>
 </cachestore-scheme>

 </read-write-backing-map-scheme>
 </backing-map-scheme>

 </distributed-scheme>

 </caching-schemes>

</cache-config>

Part V
Part V Integration with Hibernate

This section contains the following chapters:

■ Chapter 28, "Using Coherence as the Hibernate L2 Cache"

■ Chapter 29, "Using Hibernate as a CacheStore for Coherence"

28

Using Coherence as the Hibernate L2 Cache 28-1

28Using Coherence as the Hibernate L2 Cache

Coherence can be used as the L2 cache provider for Hibernate.

Hibernate and Caching
Hibernate supports three primary forms of caching:

■ Session cache

■ L2 cache

■ Query cache

The Session cache is responsible for caching records within a Session (a Hibernate
transaction, potentially spanning multiple database transactions, and typically scoped
on a per-thread basis). As a non-clustered cache (by definition), the Session cache is
managed entirely by Hibernate. The L2 and Query caches span multiple transactions,
and support the use of Coherence as a cache provider. The L2 cache is responsible for
caching records across multiple sessions (for primary key lookups). The query cache
caches the result sets generated by Hibernate queries. Hibernate manages data in an
internal representation in the L2 and Query caches, meaning that these caches are
usable only by Hibernate. For more details, see the Hibernate Reference
Documentation (shipped with Hibernate), specifically the section on the Second Level
Cache.

Configuration and Tuning
To use the Coherence Caching Provider for Hibernate, specify the Coherence provider
class in the hibernate.cache.provider_class property. Typically this is
configured in the default Hibernate configuration file, hibernate.cfg.xml.

Example 28–1 Specifying a Coherence Provider Class

<property name="hibernate.cache.provider_
class">com.tangosol.coherence.hibernate.CoherenceCacheProvider</property>

The file coherence-hibernate.jar (found in the lib/ subdirectory) must be
added to the application classpath.

Hibernate provides the configuration property hibernate.cache.use_minimal_
puts, which optimizes cache access for clustered caches by increasing cache reads and
decreasing cache updates. This is enabled by default by the Coherence Cache Provider.
Setting this property to false may increase overhead for cache management and also
increase the number of transaction rollbacks.

Specifying a Coherence Cache Topology

28-2 Oracle Coherence User's Guide for Oracle Coherence

The Coherence Caching Provider includes a setting for how long a lock acquisition
should be attempted before timing out. This may be specified by the Java property
tangosol.coherence.hibernate.lockattemptmillis. The default is one
minute.

Specifying a Coherence Cache Topology
By default, the Coherence Caching Provider uses a custom cache configuration located
in coherence-hibernate.jar named
config/hibernate-cache-config.xml to define cache mappings for Hibernate
L2 caches. If desired, an alternative cache configuration resource may be specified for
Hibernate L2 caches by using the
tangosol.coherence.hibernate.cacheconfig Java property. It is possible to
configure this property to point to the application's main
coherence-cache-config.xml file if mappings are properly configured. It may be
beneficial to use dedicated cache service(s) to manage Hibernate-specific caches to
ensure that any CacheStore modules don't cause re-entrant calls back into
Coherence-managed Hibernate L2 caches.

With the scheme mapping section of the Coherence cache configuration file, the
hibernate.cache.region_prefix property may be used to specify a cache
topology. For example, if the cache configuration file includes a wildcard mapping for
near-*, and the Hibernate region prefix property is set to near-, then all Hibernate
caches will be named using the near- prefix, and will use the cache scheme mapping
specified for the near-* cache name pattern.

It is possible to specify a cache topology per entity by creating a cache mapping based
on the combined prefix and qualified entity name (for example,
near-com.company.EntityName); or equivalently, by providing an empty prefix
and specifying a cache mapping for each qualified entity name.

Also, L2 caches should be size-limited to avoid excessive memory usage. Query caches
in particular must be size-limited as the Hibernate API does not provide any means of
controlling the query cache other than a complete eviction.

Cache Concurrency Strategies
Hibernate generally emphasizes the use of optimistic concurrency for both cache and
database. With optimistic concurrency in particular, transaction processing depends on
having accurate data available to the application at the beginning of the transaction. If
the data is inaccurate, the commit processing will detect that the transaction was
dependent on incorrect data, and the transaction will fail to commit. While most
optimistic transactions must cope with changes to underlying data by other processes,
the use of caching adds the possibility of the cache itself being stale. Hibernate
provides several cache concurrency strategies to control updates to the L2 cache. While
this is less of an issue for Coherence due to support for clusterwide coherent caches,
appropriate selection of cache concurrency strategy will aid application efficiency.

Note that cache configuration strategies may be specified at the table level. Generally,
the strategy should be specified in the mapping file for the class.

For mixed read-write activity, the read-write strategy is recommended. The
transactional strategy is implemented similarly to the nonstrict-read-write strategy,
and relies on the optimistic concurrency features of Hibernate. Note that
nonstrict-read-write may deliver better performance if its impact on optimistic
concurrency is acceptable.

Deployment

Using Coherence as the Hibernate L2 Cache 28-3

For read-only caching, use the nonstrict-read-write strategy if the underlying database
data may change, but slightly stale data is acceptable. If the underlying database data
never changes, use the read-only strategy.

Query Cache
To cache query results, set the hibernate.cache.use_query_cache property to
"true". Then whenever issuing a cacheable query, use
Query.setCacheable(true) to enable caching of query results. As
org.hibernate.cache.QueryKey instances in Hibernate may not be
binary-comparable (due to non-deterministic serialization of unordered data
members), use a size-limited Local or Replicated cache to store query results (which
will force the use of hashcode()/equals() to compare keys). The default query
cache name is org.hibernate.cache.StandardQueryCache (unless a default
region prefix is provided, in which case [prefix]. will be prepended to the cache
name). Use the cache configuration file to map this cache name to a Local/Replicated
topology, or explicitly provide an appropriately-mapped region name when querying.

Fault-Tolerance
The Hibernate L2 cache protocol supports full fault-tolerance during client or server
failure. With the read-write cache concurrency strategy, Hibernate will lock items out
of the cache at the start of an update transaction, meaning that client-side failures will
simply result in uncached entities and an uncommitted transaction. Server-side
failures are handled transparently by Coherence (dependent on the specified data
backup count).

Deployment
When used with application servers that do not have a unified class loader, the
Coherence Cache Provider must be deployed as part of the application so that it can
use the application-specific class loader (required to serialize-deserialize objects).

Deployment

28-4 Oracle Coherence User's Guide for Oracle Coherence

29

Using Hibernate as a CacheStore for Coherence 29-1

29Using Hibernate as a CacheStore for
Coherence

The functionality in Coherence and Hibernate can be combined in several ways. For
example, Hibernate can be used as a CacheStore for Coherence.

Using the Coherence HibernateCacheStore
Coherence includes a default entity-based CacheStore implementation,
HibernateCacheStore (and a corresponding CacheLoader implementation,
HibernateCacheLoader. More detailed technical information may be found in the
Javadoc for the implementing classes.

Configuring a HibernateCacheStore
The examples below show a simple HibernateCacheStore constructor, accepting
only an entity name. This will configure Hibernate using the default configuration
path, which looks for a hibernate.cfg.xml file in the classpath. There is also the
ability to pass in a resource name or file specification for the hibernate.cfg.xml
file as the second <init-param> (set the <param-type> element to
java.lang.String for a resource name and java.io.File for a file specification).
See HibernateCacheStore for more details.

The following is a simple coherence-cache-config.xml file used to define a
NamedCache called "TableA" which caches instances of a Hibernate entity
(com.company.TableA). To add additional entity caches, add additional
<cache-mapping> elements.

Example 29–1 Sample coherence-cache-config.xml File for Hibernate

<?xml version="1.0"?>

<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>TableA</cache-name>
 <scheme-name>distributed-hibernate</scheme-name>
 <init-params>
 <init-param>
 <param-name>entityname</param-name>
 <param-value>com.company.TableA</param-value>
 </init-param>
 </init-params>

Using the Coherence HibernateCacheStore

29-2 Oracle Coherence User's Guide for Oracle Coherence

 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed-hibernate</scheme-name>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme></local-scheme>
 </internal-cache-scheme>

 <cachestore-scheme>
 <class-scheme>
 <class-name>
 com.tangosol.coherence.hibernate.HibernateCacheStore
 </class-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{entityname}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

It is also possible to use the pre-defined {cache-name} macro to eliminate the need
for the <init-params> portion of the cache mapping. This is illustrated in
Example 29–2:

Example 29–2 Sample coherence-cache-config.xml File that Uses {cache-name} Macro

<?xml version="1.0"?>

<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>TableA</cache-name>
 <scheme-name>distributed-hibernate</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed-hibernate</scheme-name>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme></local-scheme>
 </internal-cache-scheme>

 <cachestore-scheme>
 <class-scheme>

Using the Coherence HibernateCacheStore

Using Hibernate as a CacheStore for Coherence 29-3

 <class-name>
 com.tangosol.coherence.hibernate.HibernateCacheStore
 </class-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>com.company.{cache-name}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

And, if naming conventions allow, the mapping may be completely generalized to
allow a cache mapping for any qualified class name (entity name). This is illustrated in
Example 29–3.

Example 29–3 Sample coherence-cache-config.xml File with Generalized Mappings

<?xml version="1.0"?>

<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>com.company.*</cache-name>
 <scheme-name>distributed-hibernate</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed-hibernate</scheme-name>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme></local-scheme>
 </internal-cache-scheme>

 <cachestore-scheme>
 <class-scheme>
 <class-name>
 com.tangosol.coherence.hibernate.HibernateCacheStore
 </class-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 </distributed-scheme>

Creating a Hibernate CacheStore

29-4 Oracle Coherence User's Guide for Oracle Coherence

 </caching-schemes>
</cache-config>

Configuration Requirements
Hibernate entities accessed by using the HibernateCacheStore module must use
the "assigned" ID generator and also have a defined ID property.

Be sure to disable the hibernate.hbm2ddl.auto property in the
hibernate.cfg.xml used by the HibernateCacheStore, as this may cause
excessive schema updates (and possible lockups).

JDBC Isolation Level
In cases where all access to a database is through Coherence, CacheStore modules
will naturally enforce ANSI-style Repeatable Read isolation as reads and writes are
executed serially on a per-key basis (by using the Partitioned Cache Service).
Increasing database isolation above Repeatable Read will not yield increased isolation
as CacheStore operations may span multiple Partitioned Cache nodes (and thus
multiple database transactions). Using database isolation levels below Repeatable
Read will not result in unexpected anomalies, and may reduce processing load on the
database server.

Fault-Tolerance
For single-cache-entry updates, CacheStore operations are fully fault-tolerant in that
the cache and database are guaranteed to be consistent during any server failure
(including failures during partial updates). While the mechanisms for fault-tolerance
vary, this is true for both write-through and write-behind caches.

Coherence does not support two-phase CacheStore operations across multiple
CacheStore instances. In other words, if two cache entries are updated, triggering
calls to CacheStore modules sitting on separate servers, it is possible for one
database update to succeed and for the other to fail. In this case, it may be preferable
to use a cache-aside architecture (updating the cache and database as two separate
components of a single transaction) with the application server transaction manager.
In many cases it is possible to design the database schema to prevent logical commit
failures (but obviously not server failures). Write-behind caching avoids this issue as
"puts" are not affected by database behavior (and the underlying issues will have been
addressed earlier in the design process).

Extending HibernateCacheStore
In some cases, it may be desired to extend the HibernateCacheStore with
application-specific functionality. The most obvious reason for this is to leverage a
pre-existing programmatically-configured SessionFactory instance.

Creating a Hibernate CacheStore
While the provided HibernateCacheStore module provides a solution for most
entity-based caches, there may be cases where an application-specific CacheStore
module is necessary. For example, providing parameterized queries or including or
post-processing of query results.

Fully Cached DataSets

Using Hibernate as a CacheStore for Coherence 29-5

Re-entrant Calls
In a CacheStore-backed cache implementation, when the application thread accesses
cached data, the cache operations may trigger a call to the associated CacheStore
implementation by using the managing CacheService. The CacheStore must not
call back into the CacheService API. This implies, indirectly, that Hibernate should
not attempt to access cache data. Therefore, all methods in
CacheLoader/CacheStore should be careful to call
Session.setCacheMode(CacheMode.IGNORE) to disable cache access.
Alternatively, the Hibernate configuration may be cloned (either programmatically or
by using hibernate.cfg.xml), with CacheStore implementations using the
version with the cache disabled.

It is important that a CacheStore implementation does not call back into the hosting
cache service. Therefore, in addition to avoiding calls to NamedCache methods, you
should also ensure that Hibernate itself does not use any cache services. To do this, call
Session.setCacheMode(CacheMode.IGNORE) each time a session is used.
Alternatively, the Hibernate configuration may be cloned (either programmatically or
by using hibernate.cfg.xml), with CacheStore implementations using the
version with the cache disabled.

Fully Cached DataSets

Distributed Queries
Distributed queries offer the potential for lower latency, higher throughput and less
database server load compared to executing queries on the database server. For
set-oriented queries, the dataset must be entirely cached to produce correct query
results. More precisely, for a query issued against the cache to produce correct results,
the query must not depend on any uncached data.

This means that you can create hybrid caches. For example, it is possible to combine
two uses of a NamedCache: a fully cached size-limited dataset for querying (for
example, the data for the most recent week), and a partially cached historical dataset
used for singleton reads. This is a good approach to avoid data duplication and
minimize memory usage.

While fully cached datasets are usually bulk-loaded during application startup (or on
a periodic basis), CacheStore integration may be used to ensure that both cache and
database are kept fully synchronized.

Detached Processing
Another reason for using fully-cached datasets is to provide the ability to continue
application processing even if the underlying database goes down. Using write-behind
caching extends this mode of operation to support full read-write applications. With
write-behind, the cache becomes (in effect) the temporary system of record. Should the
database fail, updates will be queued in Coherence until the connection is restored, at
which point all cache changes will be sent to the database.

Fully Cached DataSets

29-6 Oracle Coherence User's Guide for Oracle Coherence

A

Sample C++ Applications A-1

ASample C++ Applications

This appendix provides the sample code for the console, contacts, and
hellogrid C++ examples.

■ Sample Code for the console Example

■ Sample Code for the contacts Example

■ Sample Code for the hellogrid Example

Sample Code for the console Example
Now that you've run the console example, you are encouraged to have a look at the
code. Each sample has a corresponding directory under examples which contains its
sample specific source. There is also a common directory which contains source used
in all samples.

Example A–1 illustrates the source code for the console.cpp command line
application that enables you to interact with the cache using simple commands.

Example A–1 Code for the Console Sample Application

#include "coherence/lang.ns"

#include "coherence/io/pof/SystemPofContext.hpp"
#include "coherence/net/CacheFactory.hpp"
#include "coherence/net/NamedCache.hpp"
#include "coherence/util/Iterator.hpp"
#include "coherence/util/Map.hpp"
#include "coherence/util/Set.hpp"

#include "StreamParser.hpp"

#include <iostream>
#include <sstream>

using namespace coherence::lang;

using coherence::examples::StreamParser;
using coherence::io::pof::SystemPofContext;
using coherence::net::CacheFactory;
using coherence::net::NamedCache;
using coherence::util::Iterator;
using coherence::util::Map;
using coherence::util::Set;

Sample Code for the console Example

A-2 Oracle Coherence User's Guide for Oracle Coherence

/**
* This Coherence for C++ example provides a simple console for playing with
* caches from within C++.
*
* @argc the number of command line arguments (including the process name)
* @argv [cache-name]
*/
int main(int argc, char** argv)
 {
 NamedCache::Handle hCache;

 if (argc > 1)
 {
 // load command line specified cache
 try
 {
 hCache = CacheFactory::getCache(argv[1]);
 }
 catch (const std::exception& e)
 {
 std::cerr << e.what() << std::endl;
 }
 }

 while (true)
 {
 try
 {
 // prompt for input
 std::cout << "\nMap (";
 if (NULL == hCache)
 {
 std::cout << '?';
 }
 else
 {
 std::cout << hCache->getCacheName();
 }
 std::cout << "): " << std::flush;

 char achInput[256];
 std::cin.getline(achInput, 256);

 if (std::cin.fail())
 {
 std::cin.clear();
 continue;
 }

 std::stringstream ssInput(achInput);

 // process input
 String::View vsCmd = cast<String::View>(StreamParser::next(ssInput));

 if (vsCmd->equals("bye"))
 {
 // quit
 try
 {
 CacheFactory::shutdown();

Sample Code for the console Example

Sample C++ Applications A-3

 }
 catch (const std::exception& e)
 {
 std::cerr << e.what() << std::endl;
 return 1;
 }
 return 0;
 }
 else if (vsCmd->equals("cache"))
 {
 // lookup a cache from the CacheFactory
 String::View vsCacheName =
cast<String::View>(StreamParser::next(ssInput));
 hCache = CacheFactory::getCache(vsCacheName);
 }
 else if (vsCmd->equals("classes"))
 {
 // output the SystemClassLoader
 std::cout << SystemClassLoader::getInstance() << std::endl;
 }
 else if (vsCmd->equals("clear"))
 {
 // clear the current cache
 hCache->clear();
 }
 else if (vsCmd->equals("destroy"))
 {
 // destroy the current cache
 CacheFactory::destroyCache(hCache);
 }
 else if (vsCmd->equals("get"))
 {
 // perform a get operation on the current cache
 Object::View vKey = StreamParser::next(ssInput);
 Object::View vValue = hCache->get(vKey);

 // print the current value
 std::cout << vValue << std::endl;
 }
 else if (vsCmd->equals("list"))
 {
 // obtain the entire cache contents
 Set::View vSetEntries = hCache->entrySet();

 // print key value pairs
 for (Iterator::Handle hIter = vSetEntries->iterator();
 hIter->hasNext();)
 {
 Map::Entry::View vEntry =
 cast<Map::Entry::View>(hIter->next());

 std::cout << vEntry->getKey() << " = "
 << vEntry->getValue() << std::endl;
 }
 }
 else if (vsCmd->equals("memory"))
 {
 // print information about allocated objects
 HeapAnalyzer::View vAnalyzer = System::getHeapAnalyzer();

Sample Code for the console Example

A-4 Oracle Coherence User's Guide for Oracle Coherence

 if (NULL == vAnalyzer)
 {
 std::cout << "analysis disabled" << std::endl;
 }
 else if (cast<String::View>(StreamParser::next(ssInput))->
 equals("delta"))
 {
 static HeapAnalyzer::Snapshot::View vMark;

 // compare current against the heap mark
 std::cout << (NULL == vMark
 ? vAnalyzer->capture() : vAnalyzer->delta(vMark))
 << std::endl;

 // reset to mark based on the current heap useage
 vMark = NULL;
 vMark = vAnalyzer->capture();
 }
 else
 {
 // output the current heap useage
 std::cout << vAnalyzer << std::endl;
 }
 }
 else if (vsCmd->equals("pof"))
 {
 // output the SystemPofContext
 std::cout << SystemPofContext::getInstance() << std::endl;
 }
 else if (vsCmd->equals("put"))
 {
 // perform a put operation on the current cache
 Object::View vKey = StreamParser::next(ssInput);
 Object::View vValue = StreamParser::next(ssInput);
 Object::View vPrev = hCache->put(vKey, vValue);

 // print the old value
 std::cout << vPrev << std::endl;
 }
 else if (vsCmd->equals("remove"))
 {
 // perform a remove operation on the current cache
 Object::View vKey = StreamParser::next(ssInput);
 Object::View vPrev = hCache->remove(vKey);

 // print the removed value
 std::cout << vPrev << std::endl;
 }
 else if (vsCmd->equals("release"))
 {
 // release the current cache
 CacheFactory::releaseCache(hCache);
 }
 else if (vsCmd->equals("size"))
 {
 // print the size of the current cache
 size32_t cElements = hCache->size();

 std::cout << cElements << std::endl;
 }

Sample Code for the console Example

Sample C++ Applications A-5

 else if (vsCmd->equals("threads"))
 {
 // print a stack trace for all threads related to coherence
 Thread::dumpStacks(std::cout);
 }
 else if (vsCmd->equals(""))
 {
 continue;
 }
 else if (vsCmd->equals("help"))
 {
 // print help
 std::cout << "The commands are:"
 << std::endl << " bye"
 << std::endl << " cache <name>"
 << std::endl << " classes"
 << std::endl << " clear"
 << std::endl << " destroy"
 << std::endl << " get <key>"
 << std::endl << " help"
 << std::endl << " list"
 << std::endl << " memory [delta]"
 << std::endl << " pof"
 << std::endl << " put <key> <value>"
 << std::endl << " release"
 << std::endl << " remove <key>"
 << std::endl << " size"
 << std::endl << " threads"
 << std::endl;
 }
 else
 {
 std::cout << "Unknown command: \"" << vsCmd << "\"\n"
 << "Entry \"help\" for command list" << std::endl;
 }
 }
 catch (const NullPointerException::Throwable& e)
 {
 if (NULL == hCache)
 {
 std::cerr << "Please specify a cache using the \"cache\" "
 << "command." << std::endl;
 }
 else
 {
 std::cerr << e << std::endl;
 }
 }
 catch (const std::exception& e)
 {
 std::cerr << "Error: " << e.what() << std::endl;
 }
 }
 }

Sample Code for the contacts Example

A-6 Oracle Coherence User's Guide for Oracle Coherence

Sample Code for the contacts Example
Now that you've run the contacts example, you are encouraged to have a look at the
code. Each sample has a corresponding directory under examples which contains its
sample specific source. There is also a common directory which contains source used
in all samples.

Example A–2 illustrates the source code for the contacts example, and demonstrates
how to store pre-existing (that is, non-Coherence) C++ classes in the grid.

ContactInfo.hpp

Example A–2 Header Code for the ContactInfo Sample Application

#ifndef COH_EXAMPLES_CONTACT_INFO_HPP
#define COH_EXAMPLES_CONTACT_INFO_HPP

#include <ostream>
#include <string>

/**
* The ContactInfo class encapsulates common contact information for a person.
*
* This serves as an example data object which does not have direct knowledge
* of Coherence but can be stored in the data grid.
*/
class ContactInfo
 {
 // ----- constructors ---

 public:
 /**
 * Create a new ContactInfo object.
 *
 * @param sName the name of the person
 * @param sStreet the street on which the person lives
 * @param sCity the city where the person lives
 * @param sState the state where the person lives
 * @param sZip the zip code of the city where the person lives
 */
 ContactInfo(const std::string& sName,
 const std::string& sStreet, const std::string& sCity,
 const std::string& sState, const std::string& sZip);

 /**
 * Copy constructor.
 */
 ContactInfo(const ContactInfo& that);

 protected:
 /**
 * Default constructor.
 */
 ContactInfo();

 // ----- accessors --

 public:
 /**

Sample Code for the contacts Example

Sample C++ Applications A-7

 * Determine the name of the person for which this ContactInfo object
 * contains contact information.
 *
 * @return the person's name
 */
 std::string getName() const;

 /**
 * Configure the name of the person for which this ContactInfo object
 * contains contact information.
 *
 * @param sName the person's name
 */
 void setName(const std::string& sName);

 /**
 * Determine the street on which the person lives.
 *
 * @return the street name
 */
 std::string getStreet() const;

 /**
 * Configure the street on which the person lives.
 *
 * @param sStreet the street name
 */
 void setStreet(const std::string& sStreet);

 /**
 * Determine the city in which the person lives.
 *
 * @return the city name
 */
 std::string getCity() const;

 /**
 * Configure the city in which the person lives.
 *
 * @param sCity the city name
 */
 void setCity(const std::string& sCity);

 /**
 * Determine the state in which the person lives.
 *
 * @return the state name
 */
 std::string getState() const;

 /**
 * Configure the state in which the person lives.
 *
 * @param sState the state name
 */
 void setState(const std::string& sState);

 /**
 * Determine the zip code of the city in which the person lives.
 *

Sample Code for the contacts Example

A-8 Oracle Coherence User's Guide for Oracle Coherence

 * @return the zip code
 */
 std::string getZip() const;

 /**
 * Configure the zip code of the city in which the person lives.
 *
 * @param sZip the city's zip code
 */
 void setZip(const std::string& sZip);

 // ----- operators --

 public:
 /**
 * Compare two ContactInfo objects for equality
 *
 * @param that the ContactInfo to compare against
 *
 * @return true if this referenced contact is equal to this contact
 */
 bool operator==(const ContactInfo& that) const;

 // ----- data members ---

 private:
 /**
 * The person's name.
 */
 std::string m_sName;

 /**
 * The street on which the person lives.
 */
 std::string m_sStreet;

 /**
 * The city in which the person lives.
 */
 std::string m_sCity;

 /**
 * The state in which the person lives.
 */
 std::string m_sState;

 /**
 * The zip code of the city in which the person lives.
 */
 std::string m_sZip;
 };

/**
* Output this ContactInfo to the stream
*
* @param out the stream to output to
*
* @return the stream

Sample Code for the contacts Example

Sample C++ Applications A-9

*/
std::ostream& operator<<(std::ostream& out, const ContactInfo& info);

#endif // COH_EXAMPLES_CONTACT_INFO_HPP

ContactInfo.cpp

Example A–3 C++ Code for the ContactInfo Sample Application

#include "ContactInfo.hpp"

// ----- constructors ---

ContactInfo::ContactInfo(const std::string& sName,
 const std::string& sStreet, const std::string& sCity,
 const std::string& sState, const std::string& sZip)
 {
 setName(sName);
 setStreet(sStreet);
 setCity(sCity);
 setState(sState);
 setZip(sZip);
 }

ContactInfo::ContactInfo(const ContactInfo& that)
 {
 setName(that.getName());
 setStreet(that.getStreet());
 setCity(that.getCity());
 setState(that.getState());
 setZip(that.getZip());
 }

ContactInfo::ContactInfo()
 {
 }

// ----- accessors --

std::string ContactInfo::getName() const
 {
 return m_sName;
 }

void ContactInfo::setName(const std::string& sName)
 {
 m_sName = sName;
 }

std::string ContactInfo::getStreet() const
 {
 return m_sStreet;
 }

void ContactInfo::setStreet(const std::string& sStreet)
 {
 m_sStreet = sStreet;
 }

Sample Code for the contacts Example

A-10 Oracle Coherence User's Guide for Oracle Coherence

std::string ContactInfo::getCity() const
 {
 return m_sCity;
 }

void ContactInfo::setCity(const std::string& sCity)
 {
 m_sCity = sCity;
 }

std::string ContactInfo::getState() const
 {
 return m_sState;
 }

void ContactInfo::setState(const std::string& sState)
 {
 m_sState = sState;
 }

std::string ContactInfo::getZip() const
 {
 return m_sZip;
 }

void ContactInfo::setZip(const std::string& sZip)
 {
 m_sZip = sZip;
 }

// ----- operators --

bool ContactInfo::operator==(const ContactInfo& that) const
 {
 return getName() == that.getName() &&
 getStreet() == that.getStreet() &&
 getCity() == that.getCity() &&
 getState() == that.getState() &&
 getZip() == that.getZip();
 }

std::ostream& operator<<(std::ostream& out, const ContactInfo& info)
 {
 out << "ContactInfo("
 << "Name=" << info.getName()
 << ", Street=" << info.getStreet()
 << ", City=" << info.getCity()
 << ", State=" << info.getState()
 << ", Zip=" << info.getZip()
 << ')';
 return out;
 }

PortableContactInfo.hpp

Example A–4 Header Code for the PortableContactInfo Applications

#ifndef COH_EXAMPLES_PORTABLE_CONTACT_INFO_HPP
#define COH_EXAMPLES_PORTABLE_CONTACT_INFO_HPP

Sample Code for the contacts Example

Sample C++ Applications A-11

// This set of functions add support for storing ContactInfo objects in
// Coherence without introducing knowledge of Coherence to the ContactInfo
// class. This portable version of ClassInfo can be referred to as
// Portable<ContactInfo>

#include "ContactInfo.hpp"

#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/Portable.hpp"

/**
* The POF type id for Portable<ContactInfo>
*/
#define POF_CONTACT_INFO_ID 1001

/**
* Serialize a ContactInfo object to a POF stream.
*
* @param info the ContactInfo to seralize
* @param hOut the PofWritter to write to
*/
void serialize(const ContactInfo& info, coherence::io::pof::PofWriter::Handle
hOut);

/**
* Deserialize a ContactInfo object from a POF stream.
*
* @param info the ContactInfo to seralize
* @param hIn the PofReader to read from
*/
void deserialize(ContactInfo& info, coherence::io::pof::PofReader::Handle hIn);

/**
* Return a hashcode code for a ContactInfo object.
*/
coherence::lang::size32_t hash(const ContactInfo& info);

#endif // COH_EXAMPLES_PORTABLE_CONTACT_INFO_HPP

PortableContactInfo.cpp

Example A–5 C++ Code for the PortableContactInfo Application

#include "PortableContactInfo.hpp"

#include "coherence/lang.ns"

#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/Portable.hpp"
#include "coherence/io/pof/SystemPofContext.hpp"

using namespace coherence::lang;

// register Portable<ContactInfo> with the SystemPofContext
COH_REGISTER_PORTABLE_CLASS(POF_CONTACT_INFO_ID,
coherence::io::pof::Portable<ContactInfo>);

Sample Code for the contacts Example

A-12 Oracle Coherence User's Guide for Oracle Coherence

void serialize(const ContactInfo& info, coherence::io::pof::PofWriter::Handle
hOut)
 {
 hOut->writeString(0, info.getName());
 hOut->writeString(1, info.getStreet());
 hOut->writeString(2, info.getCity());
 hOut->writeString(3, info.getState());
 hOut->writeString(4, info.getZip());
 }

void deserialize(ContactInfo& info, coherence::io::pof::PofReader::Handle hIn)
 {
 info.setName (hIn->readString(0));
 info.setStreet(hIn->readString(1));
 info.setCity (hIn->readString(2));
 info.setState (hIn->readString(3));
 info.setZip (hIn->readString(4));
 }

size32_t hash(const ContactInfo& info)
 {
 // ContactInfo is not used as a key, use identity hash
 return size32_t(size_t(&info));
 }

contacts.cpp

Example A–6 Code for the ContactInfo Data Object

#include "coherence/lang.ns"

#include "coherence/io/pof/Portable.hpp"
#include "coherence/net/CacheFactory.hpp"
#include "coherence/net/NamedCache.hpp"

#include "ContactInfo.hpp"
#include "PortableContactInfo.hpp"
#include "StreamParser.hpp"

#include <iostream>
#include <sstream>

using namespace coherence::lang;

using coherence::examples::StreamParser;
using coherence::io::pof::Portable;
using coherence::net::CacheFactory;
using coherence::net::NamedCache;

// ----- prototypes ---

/**
* Create a contact from stdin.
*
* @return the contact
*/
ContactInfo readContact();

/**

Sample Code for the contacts Example

Sample C++ Applications A-13

* This Coherence for C++ example illustrates how to use non-Coherence data
* objects in the grid. This example operates on the ContactInfo class which
* is not Coherence aware.
*
* To run this against a remote cache, the proxy node must have the
* corresponding Java ContactInfo.class in its classpath.
*
* @argc the number of command line arguments (including the process name)
* @argv [cache-name]
*/
int main(int argc, char** argv)
 {
 try
 {
 String::View vsCacheName = argc > 1 ? argv[1] : "dist-contacts";
 NamedCache::Handle hCache = CacheFactory::getCache(vsCacheName);

 while (true)
 {
 // prompt for input
 std::cout << "contacts> " << std::flush;

 char achInput[256];
 std::cin.getline(achInput, 256);
 std::stringstream ssInput(achInput);

 // process input
 String::View vsCmd = cast<String::View>(
 StreamParser::next(ssInput));

 if (vsCmd->equals("bye"))
 {
 // quit
 CacheFactory::shutdown();
 return 0;
 }
 else if (vsCmd->equals("create"))
 {
 ContactInfo ci = readContact();
 std::cout << "storing: " << ci << std::endl;
 hCache->put(String::create(ci.getName().c_str()),
 Portable<ContactInfo>::create(ci));
 }
 else if (vsCmd->equals("find"))
 {
 String::View vsPart = cast<String::View>(
 StreamParser::next(ssInput));

 std::cout << "Name: " << std::flush;
 std::cin.getline(achInput, 256);
 String::View vsName = achInput;

 Portable<ContactInfo>::View vInfo =
 cast<Portable<ContactInfo>::View>(hCache->get(vsName));

 if (NULL == vInfo)
 {
 std::cout << vsName << " not found" << std::endl;
 continue;
 }

Sample Code for the contacts Example

A-14 Oracle Coherence User's Guide for Oracle Coherence

 if (vsPart->equals("all") || vsPart->equals(""))
 {
 std::cout << vInfo << std::endl;
 }
 else if (vsPart->equals("street"))
 {
 std::cout << vInfo->getStreet() << std::endl;
 }
 else if (vsPart->equals("city"))
 {
 std::cout << vInfo->getCity() << std::endl;
 }
 else if (vsPart->equals("state"))
 {
 std::cout << vInfo->getState() << std::endl;
 }
 else if (vsPart->equals("zip"))
 {
 std::cout << vInfo->getZip() << std::endl;
 }
 else
 {
 std::cerr << "find must be followed by, street, city, "
 << "state, or zip" << std::endl;
 }
 }
 else // output help
 {
 std::cout << "commands are:"
 << std::endl << "bye"
 << std::endl << "create"
 << std::endl << "find <street | city | state | zip | all>"
 << std::endl;
 }
 }
 }
 catch (const std::exception& e)
 {
 std::cerr << e.what() << std::endl;
 }
 }

ContactInfo readContact()
 {
 char achInput[256];
 std::cout << "Name: " << std::flush;
 std::cin.getline(achInput, 256);
 std::string sName(achInput);

 std::cout << "Street: " << std::flush;
 std::cin.getline(achInput, 256);
 std::string sStreet(achInput);

 std::cout << "City: " << std::flush;
 std::cin.getline(achInput, 256);
 std::string sCity(achInput);

 std::cout << "State: " << std::flush;
 std::cin.getline(achInput, 256);

Sample Code for the hellogrid Example

Sample C++ Applications A-15

 std::string sState(achInput);

 std::cout << "Zip: " << std::flush;
 std::cin.getline(achInput, 256);
 std::string sZip(achInput);

 return ContactInfo(sName, sStreet, sCity, sState, sZip);
 }

Sample Code for the hellogrid Example
Now that you've run the hellogrid samples, you are encouraged to have a look at the
code. Each sample has a corresponding directory under examples which contains its
sample specific source. There is also a common directory which contains source used
in all samples.

Example A–7 illustrates the source code for the hellogrid.cpp example, and
demonstrates basic cache access.

Example A–7 Code for the HelloGrid Sample Application

#include "coherence/lang.ns"

#include "coherence/net/CacheFactory.hpp"
#include "coherence/net/NamedCache.hpp"
#include "coherence/stl/boxing_map.hpp"
#include "coherence/util/aggregator/ComparableMin.hpp"
#include "coherence/util/extractor/IdentityExtractor.hpp"
#include "coherence/util/filter/GreaterFilter.hpp"
#include "coherence/util/processor/NumberIncrementor.hpp"
#include "coherence/util/Iterator.hpp"
#include "coherence/util/Filter.hpp"
#include "coherence/util/Set.hpp"
#include "coherence/util/ValueExtractor.hpp"
#include "coherence/util/ValueManipulator.hpp"

#include <iostream>

using namespace coherence::lang;

using coherence::net::CacheFactory;
using coherence::net::NamedCache;
using coherence::stl::boxing_map;
using coherence::util::aggregator::ComparableMin;
using coherence::util::extractor::IdentityExtractor;
using coherence::util::filter::GreaterFilter;
using coherence::util::processor::NumberIncrementor;
using coherence::util::Iterator;
using coherence::util::Filter;
using coherence::util::Set;
using coherence::util::ValueExtractor;
using coherence::util::ValueManipulator;

/**
* This example demonstrates the basics of accessing a cache by using the
* Coherence C++ API.
*
* @argc the number of command line arguments (including the process name)

Sample Code for the hellogrid Example

A-16 Oracle Coherence User's Guide for Oracle Coherence

* @argv [cache-name]
*/
int main(int argc, char** argv)
 {
 try
 {

Basic Cache Access
// read optional cache name from command line
 String::View vsCacheName = argc > 1 ? argv[1] : "dist-hello";

 // retrieve the named cache
 NamedCache::Handle hCache = CacheFactory::getCache(vsCacheName);
 std::cout << "retrieved cache \"" << hCache->getCacheName()
 << "\" containing " << hCache->size() << " entries"
 << std::endl;

 // create a key, and value
 String::View vsKey = "hello";
 String::View vsValue = "grid";

 // insert the pair into the cache
 hCache->put(vsKey, vsValue);
 std::cout << "\tput: " << vsKey << " = " << vsValue << std::endl;

 // read back the value, casting to the expected value type
 String::View vsGet = cast<String::View>(hCache->get(vsKey));
 std::cout << "\tget: " << vsKey << " = " << vsGet << std::endl;

 // read a non-existent entry from the cache; result will be NULL
 String::View vsKeyDummy = "dummy";
 Object::View vDummy = hCache->get(vsKeyDummy);
 std::cout << "\tget: " << vsKeyDummy << " = " << vDummy << std::endl;

 // work with non-string data types
 hCache->put(Integer32::valueOf(12345), Float64::valueOf(6.7));
 hCache->put(Integer32::valueOf(23456), Float64::valueOf(7.8));
 hCache->put(Integer32::valueOf(34567), Float64::valueOf(8.9));

 // iterate and print the cache contents, treating contents abstractly
 std::cout << "entire cache contents:" << std::endl;
 for (Iterator::Handle hIter = hCache->entrySet()->iterator();
 hIter->hasNext();)
 {
 Map::Entry::View vEntry = cast<Map::Entry::View>(hIter->next());
 Object::View vKey = vEntry->getKey();
 Object::View vValue = vEntry->getValue();
 std::cout << '\t' << vKey << " = " << vValue << std::endl;
 }

 // remove strings to make the cache contents uniform
 hCache->remove(vsKey);

STL-like Map Adapter
// caches may also be wrapped with an STL-like map adapter
 typedef boxing_map<Integer32, Float64> float_cache;
 float_cache cache(hCache);
 cache[45678] = 9.1;

Sample Code for the hellogrid Example

Sample C++ Applications A-17

 std::cout << "updated cache contents:" << std::endl;
 for (float_cache::iterator i = cache.begin(), e = cache.end(); i != e;
++i)
 {
 std::cout << '\t' << i->first << " = " << i->second << std::endl;
 }

InvocableMap Aggregation
// perform aggregation, and print the results
 ValueExtractor::View vExtractor = IdentityExtractor::getInstance();
 Float64::View vFlMin = cast<Float64::View>(
 hCache->aggregate((Filter::View) NULL,
 ComparableMin::create(vExtractor)));
 std::cout << "minimum: " << vFlMin << std::endl;

Query the Cache
// query the cache, and print the results
 Filter::View vFilter = GreaterFilter::create(vExtractor,
 Float64::valueOf(7.0));
 Set::View vSetResult = hCache->entrySet(vFilter);

 std::cout << "filtered cache contents by " << vFilter << std::endl;
 for (Iterator::Handle hIter = vSetResult->iterator(); hIter->hasNext();)
 {
 Map::Entry::View vEntry = cast<Map::Entry::View>(hIter->next());
 Object::View vKey = vEntry->getKey();
 Object::View vValue = vEntry->getValue();
 std::cout << '\t' << vKey << " = " << vValue << std::endl;
 }

Continuous Query Cache
// present a real-time filtered view of the cache
 NamedCache::Handle hCacheCqc =
 ContinuousQueryCache::create(hCache, vFilter);
 std::cout << "ContinuousQueryCache filtered view: " << std::endl;
 for (Iterator::Handle hIter = hCacheCqc->entrySet()->iterator();
 hIter->hasNext();)
 {
 Map::Entry::View vEntry = cast<Map::Entry::View>(hIter->next());
 Object::View vKey = vEntry->getKey();
 Object::View vValue = vEntry->getValue();
 std::cout << '\t' << vKey << " = " << vValue << std::endl;
 }

 // register MapListener to print changes to stdout
 std::cout << "start listening to events..." << std::endl;
 hCache->addFilterListener(VerboseMapListener::create());

InvocableMap Invoke All
// invoke entry processor on matching cache contents, incrementing each value
 Float64::Handle vFlIncr = Float64::valueOf(1.0);
 std::cout << "increment results by " << vFlIncr << std::endl;
 hCacheCqc->invokeAll((Filter::View) NULL, NumberIncrementor::create(
 (ValueManipulator::View) NULL, vFlIncr, /*fPost*/ true));

Sample Code for the hellogrid Example

A-18 Oracle Coherence User's Guide for Oracle Coherence

 // stop the CQC event queue thread and remove listeners
 hCacheCqc->release();
 // disconnect from the grid
 CacheFactory::shutdown();
 }
 catch (const std::exception& e)
 {
 std::cerr << "error: " << e.what() << std::endl;
 return 1;
 }
 return 0;
 }

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Coherence for C++
	1 Requirements, Installation, and Deployment for Coherence for C++
	Package Requirements
	Supported Environments
	Installing Coherence for C++
	Building Coherence-Based Applications
	Compiler Settings
	Coherence Header Files
	Linking
	Runtime Library and Search Path

	Deploying Coherence for C++

	2 Understanding the Coherence C++ Object Model
	Using the Object Model
	Coherence Namespaces
	Understanding the Base Object
	Automatically Managed Memory
	Referencing Managed Objects
	Using handles
	Assignment of handles
	Dereferencing handles

	Managed Object Instantiation

	Managed Strings
	String Instantiation
	Auto-Boxed Strings

	Type Safe Casting
	Down Casting

	Managed Arrays
	Collection Classes
	Managed Exceptions
	Object Immutability
	Integrating Existing Classes into the Object Model

	Writing New Managed Classes
	Specification-Based Managed Class Definition
	Equality, Hashing, Cloning, Immutability, and Serialization
	Threading
	Weak References
	Virtual Constructors
	Advanced Handle Types
	Thread Safety
	Synchronization and Notification
	Thread Safe Handles

	Diagnostics and Troubleshooting
	Thread Dumps
	Memory Leak Detection
	Memory Corruption Detection

	3 Building Integration Objects for C++ Clients
	Serialization Options
	Managed<T> (Free-Function Serialization)
	PortableObject (Self-Serialization)
	PofSerializer (External Serialization)

	POF Registration
	Need for Java Classes
	Performance

	4 Configuration and Usage for C++ Clients
	General Instructions
	Implementing the C++ Application
	Compiling and Linking the Application
	Configure Paths
	Configure Coherence*Extend
	Configure Coherence*Extend in the Cluster
	Configuring Coherence*Extend on the Client
	Connection Error Detection and Failover

	Configuring and Using the Coherence for C++ Client Library
	Setting the Configuration File Location with an Environment Variable
	Setting the Configuration File Location Programmatically

	Operational Configuration File (tangosol-coherence-override.xml)
	Configuring a Logger
	Launching a Coherence DefaultCacheServer Proxy

	5 Understanding the Coherence for C++ API
	CacheFactory
	NamedCache
	QueryMap
	ObservableMap
	InvocableMap
	Filter
	Value Extractors
	Entry Processors
	Entry Aggregators

	6 Sample Applications for C++ Clients
	Prerequisites for Building and Running the Sample Applications
	Starting a Coherence Proxy Service and Cache Server
	Building the Sample Applications
	Starting a Sample Application
	Running the console Example
	Running the hellogrid Example
	Running the contacts Example

	7 Configuring a Local Cache for C++ Clients
	Configuring the Local Cache
	Obtaining a Local Cache Reference for C++ Clients
	Cleaning Up Resources Associated with a LocalCache

	8 Configuring a Near Cache for C++ Clients
	Configuring the Near Cache
	Obtaining a Near Cache Reference with C++
	Cleaning up Resources Associated with a Near Cache

	9 Perform Continuous Query for C++ Clients
	Uses of Continuous Query Caching
	The Coherence Continuous Query Cache
	Defining a Continuous Query Cache
	Cleaning up Resources Associated with a Continuous Query Cache
	Caching Only Keys, or Caching Both Keys and Values
	CacheValues Property and Event Listeners
	Using ReflectionExtractor with Continuous Query Caches

	Listening to the Continuous Query Cache
	Avoiding Unexpected Results
	Achieving a Stable Materialized View
	Support for Synchronous and Asynchronous Listeners

	Making the Continuous Query Cache Read-Only

	10 Query the Cache for C++ Clients
	Query Functionality
	Simple Queries
	Querying Partitioned Caches
	Querying Near Caches

	Query Concepts
	Queries Involving Multi-Value Attributes
	ChainedExtractor

	11 Remote Invocation Service for C++ Clients
	Configuring and Using the Remote Invocation Service
	Registering Invocable Implementation Classes

	12 Deliver Events for Changes as they Occur (C++)
	Listener Interface and Event Object
	Caches and Classes that Support Events
	Signing Up for all Events
	MultiplexingMapListener
	Configuring a MapListener for a Cache
	Signing Up for Events on Specific Identities
	Filtering Events
	"Lite" Events
	Advanced: Listening to Queries
	Advanced: Synthetic Events
	Advanced: Backing Map Events
	Advanced: Synchronous Event Listeners
	Summary

	Part II Coherence for .NET
	13 Requirements, Installation and Deployment for Coherence for .NET
	Package Requirements
	Installation
	Deployment

	14 Configuration and Usage for .NET Clients
	General Instructions
	Configuring Coherence*Extend
	Configuring Coherence*Extend in the Cluster
	Configuring Coherence*Extend on the Client
	Connection Error Detection and Failover

	15 Building Integratable Objects for .NET Clients
	Configuring a POF Context
	Creating an IPortableObject Implementation (.NET)
	Creating a PortableObject Implementation (Java)
	Registering Custom Types on the .NET Client
	Registering Custom Types in the Cluster
	Evolvable Portable User Types
	Making Types Portable Without Modification

	Configuring and Using the Coherence for .NET Client Library
	CacheFactory
	IConfigurableCacheFactory
	DefaultConfigurableCacheFactory
	Logger
	Using the Common.Logging Library
	INamedCache
	IQueryCache
	IObservableCache
	IInvocableCache
	Filters
	Extractors
	Processors
	Aggregators

	Launching a Coherence DefaultCacheServer Process

	16 Configuring a Local Cache for .NET Clients
	Configuring the Local Cache
	Obtaining a Local Cache Reference for .NET Clients
	Cleaning Up Resources Associated with a LocalCache

	17 Configuring a Near Cache for .NET Clients
	Configuring the Near Cache
	Obtaining a Near Cache Reference with .NET
	Cleaning up Resources Associated with a NearCache

	18 Continuous Query Cache for .NET Clients
	Uses of Continuous Query Caching
	The Continuous Query Cache
	Constructing a Continuous Query Cache
	Cleaning up Resources Associated with a ContinuousQueryCache
	Semi- and Fully-Materialized Views
	Listening to a Continuous Query Cache
	Achieving a Stable Materialized View
	Support for Synchronous and Asynchronous Listeners

	Making a Continuous Query Cache Read-Only

	19 Remote Invocation Service for .NET Clients
	Configuring and Using the Remote Invocation Service

	20 Special Considerations-Windows Forms Applications for .NET Clients
	21 Special Considerations-Web Applications for .NET Clients
	22 Network Filters for .NET Clients
	Custom Filters
	Configuring Filters

	23 Sample Windows Forms Application for .NET Clients
	General Instructions
	Create a Windows Application Project
	Add a Reference to the Coherence for .NET Library
	Create an App.config File
	Create Coherence for .NET Configuration Files
	Create and Design the Application
	Implement the Application

	24 Sample Web Application for .NET Clients
	General Instructions
	Create an ASP.NET Project
	Add a Reference to the Coherence for .NET Library
	Configure the Web.config File
	Create Coherence for .NET Configuration Files
	Create the Web Form
	Implement the Web Application
	Global.asax File
	Business Object Definition
	Service Layer Implementation
	Code-behind the ASP.NET Page

	Part III Integration with WebLogic Server
	25 Caching HTTP Sessions for WebLogic
	Requirements
	Install Coherence*Web on WebLogic 10.X
	Configure WebLogic
	Create the Counter Web Application
	Modify the Counter Web Application to use Coherence*Web
	Deploy the Application
	Verify the Example
	Summary

	Part IV Integration with TopLink Essentials
	26 Configuring Coherence for TopLink Essentials
	Coherence and TopLink Essentials
	Limitations
	Conventions

	Using the Coherence TopLinkCacheStore
	Mapping the Persistent Classes
	Configuring TopLink Essentials
	Configuration with JPA Mappings
	Configuration with TopLink Mappings

	Configuring Coherence

	27 Configuring Coherence for JPA
	Limitations
	Obtaining a JPA Implementation
	Conventions
	Using the Coherence JpaCacheStore
	Mapping the Persistent Classes
	Configuring JPA
	Configuring Coherence

	Part V Integration with Hibernate
	28 Using Coherence as the Hibernate L2 Cache
	Hibernate and Caching
	Configuration and Tuning
	Specifying a Coherence Cache Topology
	Cache Concurrency Strategies
	Query Cache
	Fault-Tolerance
	Deployment

	29 Using Hibernate as a CacheStore for Coherence
	Using the Coherence HibernateCacheStore
	Configuring a HibernateCacheStore
	Configuration Requirements
	JDBC Isolation Level
	Fault-Tolerance
	Extending HibernateCacheStore

	Creating a Hibernate CacheStore
	Re-entrant Calls

	Fully Cached DataSets
	Distributed Queries
	Detached Processing

	A Sample C++ Applications
	Sample Code for the console Example
	Sample Code for the contacts Example
	ContactInfo.hpp
	ContactInfo.cpp
	PortableContactInfo.hpp
	PortableContactInfo.cpp
	contacts.cpp

	Sample Code for the hellogrid Example
	Basic Cache Access
	STL-like Map Adapter
	InvocableMap Aggregation
	Query the Cache
	Continuous Query Cache
	InvocableMap Invoke All

