
BEAWebLogic 
Server®

Programming WebLogic 
Deployment

Version 9.1
Revised: December 19, 2005







Copyright
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is 
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected 
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine 
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA 
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING 
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR 
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY 
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN 
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.BEA, BEA JRockit, BEA WebLogic Portal, BEA 
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and 
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform, 
BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA Builder, 
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA MessageQ, 
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA 
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic 
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA 
WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA 
WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Server Process Edition, BEA 
WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are 
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA 
SOA Self Assessment are service marks of BEA Systems, Inc. 

All other names and marks are property of their respective owners.



Programming WebLogic Deployment v

Contents

1. Introduction and Roadmap
Document Scope and Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

Guide to This Document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Related Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Samples for the Deployment API Developer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Release-Specific WebLogic Deployment API Information. . . . . . . . . . . . . . . . . . . . . . . . 1-4

Summary of WebLogic Deployment API Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

Unsupported WebLogic Deployment API Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

2. Understanding the WebLogic Deployment API
Overview of the Deployment API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

Phases of Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

J2EE Deployment API Compliance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

The SPI Package  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

weblogic.deploy.api.spi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

weblogic.deploy.api.spi.factories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Module Targeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Support for Querying WebLogic Target Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Server Staging Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

DConfigBean Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

The Model Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

weblogic.deploy.api.model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6



vi Programming WebLogic Deployment

Accessing Deployment Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

The Shared Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

weblogic.deploy.api.shared  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Command Types for Deploy and Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

Support for Module Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

Support for all WebLogic Server Target Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

The Tools Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

weblogic.deploy.api.tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

SessionHelper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9

Deployment Plan Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

3. Configuring Applications for Deployment
Configuring an Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

The WebLogic Server SessionHelper Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Session Cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Overview of the Configuration Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Types of Configuration Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

DDBeans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

Representing J2EE and WebLogic Server Configuration Information  . . . . . . . . . . . 3-5

The Relationship Between J2EE and WebLogic Server Descriptors . . . . . . . . . . . . . 3-6

DConfigBeans  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

Application Evaluation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8

Types of Deployment Managers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

Using SessionHelper to Obtain a Deployment Manager . . . . . . . . . . . . . . . . . . . . . 3-12

Creating a Deployable Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12

Using SessionHelper to obtain a Deployable Object . . . . . . . . . . . . . . . . . . . . . . . . 3-13

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13

Performing Front-End Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13



Programming WebLogic Deployment vii

Deployment Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14

Validating a Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19

Customizing Deployment Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19

Targets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24

Application Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24

Deployment Preparation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25

4. Performing Deployment Operations
Application Deployment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

Deployment Factories  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

DeploymentManager Behaviors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

Server Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

Deployment Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

DeploymentOptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5

Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5

Application Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Application Deploy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

Application Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

Undeployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

Production Redeployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

Retirement Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

Module Targeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

Version Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9

Administration (Test) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9

Progress Reporting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9

Module Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12

Target Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12



viii Programming WebLogic Deployment

TargetModuleID Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13

WebLogic Server TargetModuleID Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13

Extended Module Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16



Programming WebLogic Deployment 1-1

C H A P T E R 1

Introduction and Roadmap

The following sections describe the contents and organization of this guide – 
Programming WebLogic Deployment:

“Document Scope and Audience” on page 1-1

“Guide to This Document” on page 1-2

“Related Documentation” on page 1-3

“Samples for the Deployment API Developer” on page 1-3

“Release-Specific WebLogic Deployment API Information” on page 1-4

“Summary of WebLogic Deployment API Features” on page 1-4

“Unsupported WebLogic Deployment API Features” on page 1-4

Document Scope and Audience
This document is a resource for software developers who want to understand the packages of the 
WebLogic Deployment API. This API adheres to the API specifications described in the J2EE 
Deployment API standard (JSR-88) and extends the interfaces provided by that standard. To use 
the information here, it is essential that you understand the J2EE Deployment API standard 
(JSR-88) and how its interfaces are extended.

The WebLogic Server already contains a packaged deployment tool, WebLogic.Deployer, that 
provides deployment services for the WebLogic Server. Any deployment operation that can be 
implemented using the WebLogic Deployment API is implemented, either in part or in full, by 

http://java.sun.com/j2ee/tools/deployment/index.jsp
http://java.sun.com/j2ee/tools/deployment/index.jsp
http://java.sun.com/j2ee/tools/deployment/index.jsp


I n t roduc t i on  and Roadmap

1-2 Programming WebLogic Deployment

Deployer. Deployer is the recommended deployment tool for the WebLogic Server 
Environment (see Deploying Applications to the WebLogic Server for information on how to use 
Deployer and the WebLogic Server Administration Console). Therefore, implementations of the 
Deployment API only apply to a few use cases, which include:

The developer wishes to use their own model implementation (see the definition of a 
model in the J2EE Deployment API standard) and want to interface with the WebLogic 
Service Provider Interface (SPI, see the J2EE Deployment API standard). In this case, the 
WebLogic Deployment API deployment factory (see “Application Evaluation” on 
page 3-8) is used to obtain a WebLogicDeploymentManager, which extends 
javax.enterprise.deploy.spi.DeploymentManager for use with the WebLogic SPI.

The developer wishes to use an interface of their own design instead of the WebLogic 
Server Administration Console and/or Deployer. In this case, you may implement some or 
all “Phases of Deployment” on page 2-2 using the WebLogic Deployment API classes and 
interfaces.

This document also contains useful information for system architects who are evaluating 
WebLogic Server or considering the use of the WebLogic Deployment API for a particular 
deployment strategy.

The document is relevant to the design, development, test, and pre-production phases of a 
software project. It does not directly address production phase administration, monitoring, or 
tuning application performance with the WebLogic Deployment API. The deployment API 
includes utilities to make software updates during production but it mirrors the functionality of 
the deployment tools already available. For links to the WebLogic Server® documentation and 
resources for other production topics, see “Related Documentation” on page 1-3.

It is assumed that the reader is familiar with J2EE concepts, the J2EE Deployment API standard 
(JSR-88), the Java programming language, Enterprise Java Beans (EJBs), and Web technologies. 
It emphasizes the value-added features and how to manage application deployment with the 
WebLogic Deployment API. 

Guide to This Document
This document is organized as follows:

This chapter, Introduction and Roadmap, describes the audience and scope of this guide 
and summarizes the features of the WebLogic Deployment API.

Chapter 2, Understanding the WebLogic Deployment API, describes the packages, 
interfaces, and classes of the API, including extensions to the J2EE Deployment API 

http://e-docs.bea.com/wls/docs91/deployment/index.html
https://jsecom16d.sun.com/ECom/EComActionServlet/DownloadPage:~:com.sun.sunit.sdlc.content.DownloadPageInfo;jsessionid=23ED24B363F622F0286EC2141FEFE6FB;jsessionid=23ED24B363F622F0286EC2141FEFE6FB
http://java.sun.com/j2ee/tools/deployment/index.jsp
http://java.sun.com/j2ee/1.4/docs/api/javax/enterprise/deploy/spi/DeploymentManager.html
https://jsecom16d.sun.com/ECom/EComActionServlet/DownloadPage:~:com.sun.sunit.sdlc.content.DownloadPageInfo;jsessionid=23ED24B363F622F0286EC2141FEFE6FB;jsessionid=23ED24B363F622F0286EC2141FEFE6FB
http://java.sun.com/j2ee/tools/deployment/index.jsp


Rel at ed  Documenta t i on

Programming WebLogic Deployment 1-3

standard (JSR-88), utilities, helper classes, and new concepts for WebLogic Server 
deployment.

Chapter 3, Configuring Applications for Deployment, contains instructions on how to 
configure every aspect of deployment programmatically.

Chapter 4, Performing Deployment Operations, completes the discussion of the 
deployment API with the deployment life cycle and controls for a deployed application.

Related Documentation
This document contains WebLogic Deployment API-specific design and development 
information. For comprehensive guidelines for developing, deploying, and monitoring 
WebLogic Server applications, see the following documents:

Deploying Applications to WebLogic Server is a guide to using the deployment tool 
packaged with weblogic server. Developers who are new to deployment to the WebLogic 
Server should read this document first, before reading the Deployment API developers 
guide, to understand what is involved in deployment - configuration, deployment, and the 
deployment life cycle.

Developing WebLogic Server Applications is a guide to developing WebLogic Server 
components (such as Web applications and EJBs) and applications.

Developing Web Applications for WebLogic Server is a guide to developing Web 
applications, including servlets and JSPs, that are deployed and run on WebLogic Server.

Programming WebLogic Enterprise Java Beans is a guide to developing EJBs that are 
deployed and run on WebLogic Server.

Programming WebLogic XML is a guide to designing and developing applications that 
include XML processing.

Overview of WebLogic Server System Administration provides an overview of 
administering WebLogic Server and its deployed applications.

Samples for the Deployment API Developer
API examples are available for download at http://dev2dev.bea.com. These examples are 
distributed as zipped files that you can unzip into an existing WebLogic Server samples directory 
structure. 

http://java.sun.com/j2ee/tools/deployment/index.jsp
http://e-docs.bea.com/wls/docs91/deployment/index.html
http://e-docs.bea.com/wls/docs91/programming/index.html
http://e-docs.bea.com/wls/docs91/webapp/index.html
http://e-docs.bea.com/wls/docs91/ejb/index.html
http://e-docs.bea.com/wls/docs91/xml/index.html
http://e-docs.bea.com/wls/docs91/intro/overview.html
http://dev2dev.bea.com/


I n t roduc t i on  and Roadmap

1-4 Programming WebLogic Deployment

You build and run the downloadable examples in the same manner as you would an installed 
WebLogic Server example. See the download pages of individual examples for more 
information.

Release-Specific WebLogic Deployment API Information
For release-specific information, see the following documents:

The What’s New in WebLogic Server section in the WebLogic Server Release Notes lists 
new, changed, and deprecated features. If you are not familiar with the new features 
provided in version 9.0 of WebLogic Server, see the What’s New in WebLogic Server 9.0 
section of the WebLogic Server Release Notes.

WebLogic Server Known and Resolved Issues lists known problems by general release and 
service pack, for all WebLogic Server APIs, including the WebLogic Deployment API. 

Summary of WebLogic Deployment API Features
The WebLogic Deployment API provides extensions the J2EE Deployment API standard 
(JSR-88). See the J2EE Deployment API standard (JSR-88) on the Sun Microsystems Java 
support site.

Unsupported WebLogic Deployment API Features
The Deployment API does not support an automated fallback procedure for a failed application 
update. The policy and procedures for this behavior must be defined and configured by the 
developers and administrators because fallbacks are not trivial operations. 

http://e-docs.bea.com/wls/docs91/notes/new.html
http://e-docs.bea.com/wls/docs90/notes/new.html
http://e-docs.bea.com/wls/docs91/issues/index.html
http://java.sun.com/j2ee/tools/deployment/index.jsp


Programming WebLogic Deployment 2-1

C H A P T E R 2

Understanding the WebLogic 
Deployment API

The following sections describe the structure and functionality of the WebLogic Deployment 
API:

“Overview of the Deployment API” on page 2-1

“J2EE Deployment API Compliance” on page 2-2

“The SPI Package” on page 2-3

“The Model Package” on page 2-6

“The Shared Package” on page 2-7

“The Tools Package” on page 2-8

Overview of the Deployment API
The WebLogic Deployment API implements and extends the J2EE Deployment API standard 
(JSR-88) interfaces to provide specific deployment functionality for WebLogic Server 
applications. This document and the WebLogic Deployment API JavaDocs are intended to be 
used by developers and Independent Software Vendors (ISVs) who want to perform deployment 
operations programmatically for the WebLogic Server.

Note: WebLogic Server 9.0 deprecates the use of the weblogic.management.deploy API 
used in earlier releases.

http://java.sun.com/j2ee/tools/deployment/index.jsp
http://e-docs.bea.com/wls/docs91/javadocs/stndex.html


Unders tandi ng  the  WebLog ic  Dep loyment  AP I

2-2 Programming WebLogic Deployment

Phases of Deployment
The functionality described here is in support of a deployer tool's ability to effectively configure 
and deploy applications. The deployment process has the following phases, which a tool may 
implement and all of which are optional:

1) Application evaluation - this phases inspects and evaluates the application files to determine 
the structure of the application and content of the standard descriptors embedded in it.

2) Front-end configuration - this phase establishes configuration information based on 
information embedded within the application. This information may be in the form of WebLogic 
Server descriptors, defaults, and user provided deployment plans.

3) Deployment configuration - this phase involves a conversation with the user to establish 
desired configuration and tuning for the specific deployment. This phase resolves previously 
unresolved elements and allows for overriding existing configuration and/or establishment of 
environment specific information.

4) Deployment preparation - this phase generates the final deployment plan and performs some 
level of client-side validation of the application.

5) Application deployment - this phases handles the distribution of the application and plan to 
the admin server for server-side processing and application startup.

The implementations of these phases are described in the Configuring Applications for 
Deployment and Performing Deployment Operations chapters that follow this chapter. This 
chapter introduces the packages necessary to perform these operations and general information 
about each of them.

J2EE Deployment API Compliance
The WebLogic Deployment API classes and interfaces extend and implement the J2EE 
Deployment API standard (JSR-88) interfaces, which are described in the 
javax.enterprise.deploy sub-packages (model, shared, and spi). In addition, the WebLogic 
Deployment API provides a Tools package with helper classes to perform common deployment 
tasks easily. 

WebLogic supports the “Product Provider” role described in the J2EE Deployment API standard 
(JSR-88) and thus provides utilities specific to the WebLogic Server environment in addition to 
extensible components for any J2EE network client. These extended features include:

http://java.sun.com/j2ee/tools/deployment/index.jsp
http://java.sun.com/j2ee/tools/deployment/index.jsp
http://java.sun.com/j2ee/1.4/docs/api/overview-summary.html
http://java.sun.com/j2ee/tools/deployment/index.jsp


The  SP I  Package

Programming WebLogic Deployment 2-3

Support for WebLogic features (enables you to add optional information which only makes 
sense to WebLogic server. For example, starting in Admin mode, redeploying with 
versioning, etcetera)

Finer grain control (module level targeting – not part of J2EE Deployment API)

Support of WebLogic module extensions (JMS, JDBC, Interception, Application Specific 
Configuration[Custom/Config modules]) these are not required by J2EE Deployment API, 
it is extended for additional configuration.

Remote Operation

Additional Operations

–  The ‘Deploy’ verb: combines ‘distribute’ and ‘start’

–  Partial Redeployment: redeployment/removal of parts of an application

–  Configuration update: redeployment of a new deployment with only dynamic 
configuration changes

The SPI Package
As a J2EE product provider, BEA extends the javax SPI package to control how configuration 
and deployment is done to the WebLogic Server specifically. The core interface for this package 
is the DeploymentManager, from which all other deployment activities can be initiated, 
monitored, and controlled.

The WebLogicDeploymentManager interface provides WebLogic Server extensions to the 
javax.enterprise.deploy.spi.DeploymentManager interface. A 
WebLogicDeploymentManager object is a stateless interface for the Weblogic Server 
deployment framework. It provides basic deployment features as well as extended WebLogic 
Server deployment features such as production redeployment and partial deployment for modules 
in an Enterprise Application. You generally acquire a WebLogicDeploymentManager object 
using SessionHelper.getDeploymentManager method from the SessionHelper helper 
class from the Tools package. This and other ways to obtain a WebLogicDeploymentManager 
are described in the discussion on “Application Evaluation” on page 3-8.

weblogic.deploy.api.spi
The weblogic.deploy.api.spi package provides the interfaces required to configure and 
deploy applications for deployment to WebLogic Server targets. This package enables a 



Unders tandi ng  the  WebLog ic  Dep loyment  AP I

2-4 Programming WebLogic Deployment

deployment tool to represent the WebLogic Server-specific deployment configuration for an 
Enterprise Application or standalone module.

weblogic.deploy.api.spi includes the WebLogicDeploymentManager interface, as noted 
above. Deployment tools use this deployment manager to perform all deployment-related 
operations such as distributing, starting, and stopping applications in WebLogic Server. The 
WebLogicDeploymentManager provides important extensions to the J2EE 
DeploymentManager interface to support features such as module-level targeting for Enterprise 
Application modules, production redeployment, application versioning, application staging 
modes, and constraints on Administrative access to deployed applications.

The WebLogicDeploymentConfiguration and WebLogicDConfigBean classes in the spi 
package represent the deployment and configuration descriptors (WebLogic Server deployment 
descriptors) for an application. A WebLogicDeploymentConfiguration object is a wrapper for 
a deployment plan. A WebLogicDConfigBean encapsulates the properties in Weblogic 
deployment descriptors.

weblogic.deploy.api.spi.factories
This package contains only one interface - WebLogicDeploymentFactory. This is a WebLogic 
extension to javax.enterprise.deploy.spi.factories.DeploymentFactory. Use this 
factory interface to select and allocate DeploymentManager objects that have different 
characteristics. The WebLogicDeploymentManager characteristics are defined by public fields 
in the WebLogicDeploymentFactory.

Module Targeting
Module targeting is deploying specific modules in an application to different targets (as opposed 
to only deploying all modules to the same set of targets as specified by jsr88). The tools provided 
in support for module targeting are the 
WebLogicDeploymentManager.createTargetModuleID methods. Using 
TargetModuleID’s is described in the discussion on “Target Objects” on page 4-12.

The WebLogicTargetModuleID class contains the WebLogic Server extensions to the 
javax.enterprise.deploy.spi.TargetModuleID interface. The 
WebLogicTargetModuleIDs in this class have a close relationship to the configured 
TargetInfoMBeans (AppDeploymentMBean and SubDeploymentMBean). The 
TargetModuleID's provide more detailed descriptions of the application modules and their 
relationship to targets than those in MBeans.



The  SP I  Package

Programming WebLogic Deployment 2-5

Support for Querying WebLogic Target Types
For WebLogic Server, the WebLogicTarget class provides a direct interface for maintaining the 
target types available to WebLogic Server. Target accessor methods are described in Table 2-1.

Table 2-1  Target Accessor Methods

Server Staging Modes
The staging mode of an application affects its deployment behavior. The application’s staging 
behavior is set using DeploymentOptions.setStageMode(string) and the following values 
yielding the following results:

STAGE - Force copying of files to target servers.

NO_STAGE - Inhibit copying of files to target servers.

EXTERNAL_STAGE - files are to be staged manually.

DConfigBean Validation
The property setters in a DConfigBean will reject attempts to set invalid values. This includes 
property type validation such as attempting to set an integer property to a non-numeric value. 
Some properties will also do more semantic validation, such as ensuring a maximum value is not 
smaller than its associated minimum value.

Method Description

boolean 
isCluster()

Indicates whether this target represents a cluster target.

boolean 
isJMSServer()

Indicates whether this target represents a JMS server target. 

boolean 
isSAFAgent()

Indicates whether this target represents a SAF agent target.

boolean isServer() Indicates whether this target represents a server target.

boolean 
isVirtualHost()

Indicates whether this target represents a virtual host target.



Unders tandi ng  the  WebLog ic  Dep loyment  AP I

2-6 Programming WebLogic Deployment

The Model Package
These classes are the WebLogic Server extensions to and implementations of the 
javax.enterprise.deploy.model interfaces. The model interfaces describes the standard 
elements, such as deployment descriptors, of a J2EE application.

weblogic.deploy.api.model
This package contains the interfaces used to represent the J2EE configuration of a deployable 
object. A deployable object is a deployment container for an Enterprise Application or standalone 
module. 

The WebLogic Server implementation of the javax.enterprise.deploy.model interfaces 
enable you to work with applications that are stored in a WebLogic Server application installation 
directory, a formal directory structure used for managing application deployment files, 
deployments, and external WebLogic Deployment descriptors generated during the configuration 
process. See Preparing Applications and Modules for Deployment for more information about the 
layout of an application installation directory. It supports any J2EE application, with extensions 
to support applications residing in an application installation directory.

Note: weblogic.deploy.api.model does not support dynamic changes to J2EE deployment 
descriptor elements during configuration and therefore does not support registration and 
removal of Xpath listeners. DDBean.addXPathListener and removeXPathListener 
are not supported.

The WebLogicDeployableObject class and WebLogicDDBean interface in the 
weblogic.deploy.api.model package represent the standard deployment descriptors in an 
application.

Accessing Deployment Descriptors
J2EE Deployment API dictates that J2EE deployment descriptors be accessed through a 
DeployableObject. A DeployableObject represents a module in an application. Elements in 
the descriptors are represented by DDBeans, one for each element in a deployment descriptor. The 
root element of a descriptor is represented by a DDBeanRoot object. All of these interfaces are 
implemented in corresponding interfaces and classes in this package.

The WebLogicDeployableObject class, which is the weblogic server implementation of 
DeployableObject, provides the createDeployableObject methods, which create the 
WebLogicDeployableObjects and WebLogicDDBeans for the application's deployment 
descriptors. Basic configuration tasks are accomplished by associating these WebLogicDDBeans 

http://java.sun.com/j2ee/1.4/docs/api/javax/enterprise/deploy/model/package-summary.html
http://e-docs.bea.com/wls/docs91/deployment/deployunits.html
http://java.sun.com/j2ee/1.4/docs/api/javax/enterprise/deploy/model/DeployableObject.html
http://java.sun.com/j2ee/1.4/docs/api/javax/enterprise/deploy/model/DeployableObject.html


The  Shared  Package

Programming WebLogic Deployment 2-7

with WebLogicDConfigBeans, which represent the server configuration properties required for 
deploying the application on a WebLogic Server. These are discussed in the “Overview of the 
Configuration Process” on page 3-3.

Unlike DConfigbeans, which contain configuration information specifically for a server 
environment (in this case WebLogic server), the DDBean objects take in the general deployment 
descriptor elements for the application. For example, if you were deploying a Web application, 
the deployment descriptors that would end up in WebLogicDDBeans come from 
WEB-INF/web.xml file in the .war archive. The information for the WebLogicDConfigBeans 
would come from WEB-INF/weblogic.xml in the .war archive based on the 
WebLogicDDBeans. Though they serve the same fundamental purpose of holding configuration 
information, they are logically separate as DDBeans describe the application while the 
DConfigBeans configure the application for a specific environment.

Both of these objects are generated during the initiation of a configuration session. The 
WebLogicDeployableObject, WebLogicDDBeans, and WebLogicDConfigBeans are all 
instantiated and manipulated in a configuration session. The possible operations that can occur 
during a Configuration Session are described in “Configuring an Application” on page 3-1.

The Shared Package
The WebLogic Deployment API extends the weblogic.deploy.api.shared interfaces and 
provides the types listed below for complete server operability.

weblogic.deploy.api.shared
The weblogic.deploy.api.shared package provides classes that represent the WebLogic 
Server-specific deployment commands, module types, and target types as classes. These objects 
can be shared by model and SPI package members. 

The definitions of the standard javax.enterprise.deploy.shared classes ModuleType and 
CommandType are extended in this package to include more specific information that the 
WebLogic Server can use. The additions provided by the extensions are as follows:

Module types (JMS, JDBC, Interception, Submodules, Diagnostics, WSEE, Custom)

Commands (deploy, update)

The WebLogicTargetType class, which is not required by the J2EE Deployment API standard 
(JSR-88), enumerates the different types of deployment targets supported by WebLogic Server. 
This class does not extend a javax deployment class. It defines the following target types (server, 

http://e-docs.bea.com/wls/docs91/javadocs/weblogic/deploy/api/shared/package-summary.html
http://e-docs.bea.com/wls/docs91/javadocs/weblogic/deploy/api/shared/package-summary.html
http://java.sun.com/j2ee/tools/deployment/index.jsp


Unders tandi ng  the  WebLog ic  Dep loyment  AP I

2-8 Programming WebLogic Deployment

cluster, virtual hosts, JMS servers). See “Target Objects” on page 4-12 for more information on 
targets.

Command Types for Deploy and Update
The deploy and update command types were added to the required command types defined in the 
javax.enterprise.spi.shared package. These commands are therefore available to a 
WebLogicDeploymentManager.

Support for Module Types
Supported module types include JMS, JDBC, Interception, WSEE, Config, and WLDF. These 

are defined in the weblogic.deploy.api.shared.WebLogicModuleType class as fields.

Support for all WebLogic Server Target Types
Targets, which were not implemented in the J2EE Deployment API specification, are 
implemented in the WebLogic Deployment API. The valid target values are:

Cluster

JMS Server

SAF (Software Agent Framework) Agent

Server

Virtual Host

These are enumerated field values in the 

weblogic.deploy.api.shared.WebLogicTargetType class.

The Tools Package
Use the tools in this package to perform common deployment tool tasks with a minimum of 
number of controls and explicit object manipulations. This includes controlling, 
WebLogicDeploymentManagers, WebLogicDeployableObjects and generating deployment 
plans.

weblogic.deploy.api.tools
The weblogic.deploy.api.tools package provides convenience classes that can help you:



The  Too ls  Package

Programming WebLogic Deployment 2-9

Obtain a WebLogicDeploymentManager

Populate a configuration for an application

Create a new or updated deployment plan

The classes in the tools package are not extensions of the J2EE Deployment API standard 
(JSR-88) interfaces. They provide easy access to deployment operations provided by the 
WebLogic Deployment API.

SessionHelper
Although configuration sessions can be controlled from a WebLogicDeploymentManager 
directly, SessionHelper has simplified methods for this. These methods include:

getDeplymentManager, getDisconnectedDeploymentManager, 
getRemoteDeploymentManager: Accessing a WebLogicDeploymentManager

setApplication, setApplicationRoot, setPlan - identify the application and 
deployment plan to use in the session

initializeConfiguration, inspect: Initializing a configuration session

savePlan: Saving a deployment 

getdefaultJMSTargetModuleIDs, getJMSDescriptor: JMS Submodule targeting

getApplication, getDescriptorURIs, getModuleInfo, etcetera: Application 
inspection - this provides information about the application components.

If your tools code directly to WebLogic Server’s J2EE Deployment API implementation, you 
should always use SessionHelper.

As noted in the discussion of The SPI Package, SessionHelper can obtain a 
WebLogicDeploymentManager automatically with one method call. To do this effectively, it 
must be able to locate the application. The SessionHelper views an application and deployment 
plan artifacts using an “install root” abstraction, which ideally is the actual organization of the 
application. The install root appears as follows:

install-root (eg myapp) 

-- app 

----- archive (eg myapp.ear) 

-- plan

----- deployment plan (eg plan.xml) 

http://java.sun.com/j2ee/tools/deployment/index.jsp


Unders tandi ng  the  WebLog ic  Dep loyment  AP I

2-10 Programming WebLogic Deployment

----- external descriptors (eg META-INF/weblogic-application.xml...) 

There is no requirement that the above structure be used for applications, although it is a preferred 
approach as it serves to keep the application and its configuration artifacts under a common root, 
thus providing SessionHelper with a format it can interpret.

SessionHelper.getModuleInfo() returns an object that is useful for understanding the 
structure of an application without having to work directly with DDBeans and 
DeployableObjects. It provides such information as

    Names and types of modules and submodules in the application

    Names of web services provided by the application

    Context roots for web applications

    Names of enterprise beans in an EJB

Internally, the deployment descriptors are represented as descriptor bean trees, trees of typed Java 
Bean objects that represent the individual descriptor elements. These bean tress are easier to work 
with than the more generic DDBean and DConfigBean objects. The descriptor bean trees for each 
module are directly accessible from the associated WebLogicDDBeanRoot and 
WebLogicDConfigBeanRoot objects for each module via their getDescriptorBean methods. 
Modifying the bean trees obtained from a WebLogicDConfigBean has the same effect as 
modifying the associated DConfigBean, and therefore the application's deployment plan.

Deployment Plan Creation
weblogic.PlanGenerator creates a deployment plan template based on the standard and 
WebLogic Server descriptors included in an application. The resulting plan will describe the 
application structure, identify all deployment descriptors and will export a subset of the 
application's configurable properties. Exporting a property exposes it to tools like the WebLogic 
Server console which can use the plan to assist the administrator in providing appropriate values 
for those properties. By default, the PlanGenerator tool only exports application dependencies; 
those properties required for a successful deployment. This behavior can be overridden with one 
of the following options: 

Dependencies: Export resources referenced by the application (this is the default)

Declarations: Export resources defined by the application

Configurables: Export non-resource oriented configurable properties 



The  Too ls  Package

Programming WebLogic Deployment 2-11

Dynamics: Export properties that may be changed in a running application 

All: Export all changeable properties 

None: Export no properties



Unders tandi ng  the  WebLog ic  Dep loyment  AP I

2-12 Programming WebLogic Deployment



Programming WebLogic Deployment 3-1

C H A P T E R 3

Configuring Applications for 
Deployment

The term configuration refers to the process of preparing an application or deployable resource 
for deployment to WebLogic Server. The J2EE Deployment API standard (JSR-88) differentiates 
between a configuration session and deployment. They are distinguished as follows:

Application Configuration involves: Generation of WebLogic descriptors, which go into a 
Deployment Plan

Deployment tasks are: Distributing, Starting, Stopping, Redeploying, Undeploying

The following sections describe how to configure an application for deployment using the 
WebLogic Deployment API:

“Configuring an Application” on page 3-1

“Overview of the Configuration Process” on page 3-3

“Application Evaluation” on page 3-8

“Performing Front-End Configuration” on page 3-13

“Customizing Deployment Configuration” on page 3-19

“Deployment Preparation” on page 3-25

Configuring an Application
Taking a look once again at the deployment phases, those phases that are covered by 
configuration are the first four:



Conf i gu r i ng  Appl ica t ions  fo r  Depl oyment

3-2 Programming WebLogic Deployment

1. Application evaluation - this phase inspects and evaluates the application files to determine 
the structure of the application and content of the standard descriptors embedded in it.

– Initialize a deployment session by obtaining a WebLogicDeploymentManager. See 
“Application Evaluation” on page 3-8.

– Create a WebLogicJ2eeApplicationObject or WebLogicDeployableObject to 
represent the J2EE Configuration of an Enterprise Application (EAR) or standalone 
module (WAR, EAR, RAR, or CAR). If it is an EAR, there will be child objects 
generated. This is the deployable object as described in the J2EE Deployment API 
standard (JSR-88). See “Creating a Deployable Object” on page 3-12.

2. Front-end configuration - this phase establishes configuration information based on 
information embedded within the application. This information may be in the form of 
WebLogic Server descriptors, defaults, and user provided deployment plans.

– Create a WebLogicDeploymentConfiguration object to represent the WebLogic 
Server configuration of an Application. This begins a process that result in a 
Deployment Plan for this deployment of this object. See “Deployment Configuration” 
on page 3-14.

– Restore existing WebLogic Server configuration values from an existing deployment 
plan, if available. See “Performing Front-End Configuration” on page 3-13.

3. Customizing deployment configuration - this phase involves a conversation with the user to 
establish desired configuration and tuning for the specific deployment. This phase resolves 
previously unresolved elements and allows for overriding existing configuration and/or 
establishment of environment specific information.

Modify individual WebLogic Server configuration values based on user inputs and the 
selected WebLogic Server targets. See “Customizing Deployment Configuration” on 
page 3-19.

4. Deployment preparation - this phase generates the final deployment plan and performs 
some level of client-side validation of the application.

Save the modified WebLogic Server configuration information to a new deployment plan 
or to variable definitions in an existing Deployment Plan. 

5. Application deployment - this phase handles the distribution of the application and plan to 
the administration server for server-side processing and application startup.

Within the first four phases, a deployment configuration tool performs several steps. Each step of 
each phase is described in detail below. But before embarking upon coding these tasks, it is 
necessary to take note of the tools WebLogic provides to handle configuration information.



Overv iew o f  t he  Conf igu ra t i on  Pr ocess

Programming WebLogic Deployment 3-3

The WebLogic Server SessionHelper Class
SessionHelper simplifies the most common operational patterns such as accessing a 
DeploymentManager, Initializing a configuration session, saving deployment plans, JMS 
Submodule targeting, and Inspecting applications.

Tools that code directly to WebLogic J2EE Deployment API implementations are encouraged to 
use SessionHelper and each of the sections that follow, a subsection devoted to   
SessionHelper will appear so that you can use it in your implementation. Also see the Javadocs 
for more information about SessionHelper.

Session Cleanup
Temporary files are created during a configuration session. Archives get exploded into the temp 
area. They can be removed only after session is complete. There is no standard api defined to 
close out a session. There are close() methods to WebLogicDeployableObject and 
WebLogicDeploymentConfiguration. SessionHelper.close() cleans everything up after 
that. It is up to the tool programmer to use these methods or the temp directories may fill up over 
time.

Overview of the Configuration Process
One of the tasks handled by deployer tools is configuring an application for a successful 
deployment. Most configuration information for an application is provided in its deployment 
descriptors. The supported descriptors are listed below. Certain elements in these descriptors 
refer to external objects and/or must be handled in server-specific ways. Different server vendors 
manage this in different ways. WebLogic Server uses descriptor extensions for this purpose. 
These are the WebLogic Server specific deployment descriptors. The mapping between standard 
descriptors and WebLogic Server descriptors is managed via DDBeans and DConfigBeans, 
which are described in this document.

Types of Configuration Information
The primary configuration information for an application falls into two distinct but related 
categories:

J2EE Configuration

WebLogic Server Configuration

http://e-docs.bea.com/wls/docs91/javadocs/weblogic/deploy/api/tools/SessionHelper.html


Conf i gu r i ng  Appl ica t ions  fo r  Depl oyment

3-4 Programming WebLogic Deployment

J2EE Configuration
The J2EE configuration for an application defines the basic semantics and runtime behavior of 
the application, as well as the external resources that are required for the application to function. 
This configuration information is stored in the standard J2EE deployment descriptor files 
associated with the application, as listed in Table 3-1.

Table 3-1  Standard J2EE Deployment Descriptors

Complete and valid J2EE deployment descriptors are a required input to any application 
configuration session.

Because the J2EE configuration controls the fundamental behavior of an application, the J2EE 
descriptors are typically defined only during the application development phase, and are not 
modified when the application is later deployed to a different environment. For example, when 
you deploy an application to a testing or production domain, the application’s behavior (and 
therefore its J2EE configuration) should remain the same as when application was deployed in 
the development domain. See “Performing Front-End Configuration” on page 3-13 for more 
information.

DDBeans
DDBeans are described by the javax.enterprise.deploy.model package. These objects 
provide a generic interface to elements in standard deployment descriptors, but can also be used 
as an XPath based mechanism to access arbitrary XML files that follow the basic form of the 
standard descriptors. Examples of such files would be WebLogic Server descriptors and Web 
Services descriptors.

Application or Standalone 
Module

J2EE Descriptor

Enterprise Application META-INF/application.xml

Web Application WEB-INF/web.xml

Enterprise JavaBean META-INF/ejb.xml

Resource Adapter META-INF/ra.xml

Client Application 
Archive

META-INF/application-clie
nt.xml



Overv iew o f  t he  Conf igu ra t i on  Pr ocess

Programming WebLogic Deployment 3-5

The DDBean representation of a descriptor is a tree of DDBeans, with a specialized DDBean, a 
DDBeanRoot, at the root of the tree. DDBeans provide accessors for the element name, id attribute, 
root, and text of the descriptor element they represent.

The DDBeans for an application are populated by the model plug-in, the tool provider 
implementation of javax.enterprise.deploy.model. An application is represented by the 
DeployableObject interface. The WebLogic Server implementation of this interface is a public 
class, weblogic.deploy.api.model.WebLogicDeployableObject. A WebLogic Server based 
deployer tool acquires an instance of WebLogicDeployableObject object for an application via 
the createDeployableObject factory methods. This results in the DDBean tree for the 
application being created and populated by the elements in the J2EE descriptors embedded in the 
application. If the application is an EAR, multiple WebLogicDeployableObject objects are 
created. The root WebLogicDeployableObject, extended as 
WebLogicJ2eeApplicationObject, would represent the EAR module, with its child 
WebLogicDeployableObject instances being the modules contained within the application. 
These would be WARs, EJBs, RARs and CARs.

Representing J2EE and WebLogic Server Configuration 
Information
Both the J2EE deployment descriptors and any available WebLogic Server descriptors are used 
as inputs to the application configuration process. You use the deployment API to represent both 
the J2EE configuration and WebLogic Server configuration as Java objects. 

The J2EE configuration for an application is obtained by creating either a 
WebLogicJ2eeApplicationObject for an EAR, or a WeblogicDeployableObject for a 
standalone module. (A WebLogicJ2eeApplicationObject contains multiple 
DeployableObject instances to represent individual modules included in the EAR.) 

Each WebLogicJ2eeApplicationObject or WeblogicDeployableObject contains a 
DDBeanRoot to represent a corresponding J2EE deployment descriptor file. J2EE descriptor 
properties for EARs and modules are represented by one or more DDBean objects that reside 
beneath the DDBeanRoot. DDBean components provide standard getter methods to access 
individual deployment descriptor properties, values, and nested descriptor elements.



Conf i gu r i ng  Appl ica t ions  fo r  Depl oyment

3-6 Programming WebLogic Deployment

The Relationship Between J2EE and WebLogic Server 
Descriptors
J2EE descriptors and WebLogic Server descriptors are directly related in the configuration of 
external resources. A J2EE descriptor defines the types of resources that the application requires 
to function, but it does not identify the actual resource names to use. The WebLogic Server 
descriptor binds the resource definition in the J2EE descriptor name to the name of an actual 
resource in the target domain.

The process of binding external resources is a required part of the configuration process. Binding 
resources to the target domain ensures that the application can locate resources and successfully 
deploy.

J2EE descriptors and WebLogic Server descriptors are also indirectly related in the configuration 
of tuning parameters for WebLogic Server. Although no elements in the standard J2EE 
descriptors require tuning parameters to be set in WebLogic Server, the presence of individual 
descriptor files indicates which tuning parameters are of interest during the configuration of an 
application. For example, although the ejb.xml descriptor does not contain elements related to 
tuning the WebLogic Server EJB container, the presence of an ejb.xml file in the J2EE 
configuration indicates that tuning properties can be configured before deployment.

WebLogic Server Configuration
The WebLogic Server descriptors provide for enhanced features, resolution of external resources, 
and tuning associated with application semantics. Applications may or may not have these 
descriptors embedded in the application. The WebLogic Server configuration for an application:

Binds external resource names to resource definitions in the J2EE deployment descriptor so 
that the application can function in a given WebLogic Server domain

Defines tuning parameters for the application containers

Provides enhanced features for J2EE applications and standalone modules

The attributes and values of a WebLogic Server configuration are stored in the WebLogic Server 
deployment descriptor files, as shown in Table 3-2.



Overv iew o f  t he  Conf igu ra t i on  Pr ocess

Programming WebLogic Deployment 3-7

Table 3-2  WebLogic Server Deployment Descriptors

Because different WebLogic Server domains provide different types of external resources and 
different levels of service for the application, the WebLogic Server configuration for an 
application typically changes when the application is deployed to a new environment. For 
example, a production staging domain might use a different database vendor and provide more 
usable memory than a development domain. Therefore, when moving the application from 
development to the staging domain, the application’s WebLogic Server descriptor values need to 
be updated in order to make use of the new database connection and available memory.

The primary job of a deployment configuration tool is to ensure that an application’s WebLogic 
Server configuration is valid for the selected WebLogic targets.

DConfigBeans
DConfigBeans (config beans) are the objects used to convey server configuration requirements 
to a deployer tool, and are also the primary source of information used to create deployment 
plans. Config beans are Java Beans and can be introspected for their properties. They also provide 
basic property editing capabilities.

DConfigBeans are created from information in embedded WebLogic Server descriptors, 
deployment plans, and input from an IDE style deployer tool.

Application or Standalone 
Module

WebLogic Server 
Descriptor

Enterprise Application META-INF/weblogic-
application.xml

Web Application WEB-INF/weblogic.x
ml

Enterprise JavaBean META-INF/weblogic-
ejb-jar.xml

Resource Adapter META-INF/weblogic-
ra.xml

Client Archive META-INF/weblogic-
appclient.xml



Conf i gu r i ng  Appl ica t ions  fo r  Depl oyment

3-8 Programming WebLogic Deployment

A DConfigBean is potentially created for every weblogic Descriptor element that is associated 
with a dependency of the application. Descriptors are entities that describe resources that are 
available to the application, represented by a JNDI name provided by the server.

Descriptors are parsed into memory as a typed bean tree while setting up a configuration session. 
The DConfigBean implementation classes delegate to the WebLogic Server descriptor beans. 
Only beans with dependency properties (e.g. resource references) will have a DConfigBean. The 
root of descriptor always has a DConfigBeanRoot. 

Bean Property accessors return a child DConfigBean for elements that require configuration or 
a descriptor bean for those that do not. Property accessors return data from the descriptor beans.

Modifications to bean properties result in plan overrides. Plan overrides for existing descriptors 
are handled via variable assignments. If the application does not come with the relevant 
WebLogic Server descriptors, they will be automatically created and placed in an external plan 
directory. For external deployment descriptors, the change is made directly to the descriptor. 
Embedded descriptors are never modified on disk.

Application Evaluation
The Application Evaluation phase consists of the following possible deployment operations:

Initialize a deployment session by obtaining a WebLogicDeploymentManager.

Create a WebLogicJ2eeApplicationObject or WebLogicDeployableObject to 
represent the J2EE Configuration of an Enterprise Application (EAR) or standalone 
module (WAR, EAR, RAR, or CAR). If it is an EAR, there will be child objects generated. 
This is the deployable object as described in the J2EE Deployment API standard (JSR-88)

A deployment manager provides an interface to the WebLogic Server deployment infrastructure. 
To initialize a deployment session for a deployment tool, you create a new deployment manager.

The deployment manager is implemented using the factory pattern. You first obtain a deployment 
factory class by specifying its name, 
weblogic.deployer.spi.factories.internal.DeploymentFactoryImpl, and then 
register the factory class with a 
javax.enterprise.deploy.spi.DeploymentFactoryManager instance. For instance:

Class WlsFactoryClass = 
Class.forname(“weblogic.deployer.spi.factories.internal.DeploymentFactoryImpl”
);
DeploymentFactory myDeploymentFactory = (DeploymentFactory) 
WlsFactoryClass.newInstance();



App l i cat i on  Eval uat i on

Programming WebLogic Deployment 3-9

DeploymentFactoryManager.getInstance().registerDeploymentFactory(myDeploymentF
actory);

After you have registered the deployment factory, you can use it with a specific URI to obtain a 
deployment manager that has the functionality you require. This requires you to choose a type of 
deployment manager.

Types of Deployment Managers
WebLogic Server provides a single implementation for 
javax.enterprise.deploy.spi.DeploymentManager that behaves differently depending on 
the URI you specify when instantiating the class from a factory. WebLogic Server provides two 
basic types of deployment manager:

A disconnected deployment manager has no connection to a WebLogic Server instance. 
You can use a disconnected deployment manager to configure an application on a remote 
client machine, but you cannot use it to perform deployment operations. (For example, you 
cannot use a disconnected deployment manager to distribute an application.)

A connected deployment manager has a connection to the Administration Server for the 
WebLogic Server domain, and can be used both to configure and deploy applications. 

A connected deployment manager can be further classified as being either local to the 
Administration Server, or running on a remote machine that is connected to the Administration 
Server. The local or remote classification determines whether file references are treated as being 
local or remote to the Administration Server. 

Table 3-3 summarizes each basic type of deployment manager.

Table 3-3  WebLogic Server Deployment Manager Usage

Deployment Manager 
Connectivity

Type Usage Notes

Disconnected n/a Configuration tools 
only

Cannot perform deployment operations



Conf i gu r i ng  Appl ica t ions  fo r  Depl oyment

3-10 Programming WebLogic Deployment

Connected and Disconnected Deployment Manager URIs
All DeploymentManager's obtained from WebLogicDeploymentFactory support the 
WebLogic Server extensions. You obtain a specific type of deployment manager by calling the 
correct method on the deployment factory instance and supplying a string constant defined in 
weblogic.deployer.spi.factories.WebLogicDeploymentFactory that describes the 
type of deployment manager you want to obtain. Connected deployment managers require that 
you pass a valid server URI and credentials to the method in order to obtain a connection to the 
Administration Server.

Table 3-4 summarizes the method signatures and constants used to obtain the different types of 
deployment manager.

Connected Local Configuration and 
deployment tools local 
to the Administration 
Server

All files are assumed to be local to the 
Administration Server machine

Remote Configuration and 
Deployment for Tools 
on a remote machine 
(not on the 
Administration 
Server)

Distribution and Deployment 
operations cause local files to be 
uploaded to the Administration Server

Deployment Manager 
Connectivity

Type Usage Notes



App l i cat i on  Eval uat i on

Programming WebLogic Deployment 3-11

Table 3-4  URIs for Obtaining a WebLogic Server Deployment Manager

The sample code in Listing 3-1 shows how to obtain a disconnected deployment manager.

Listing 3-1   Obtaining a Disconnected Deployment Manager

Class WlsFactoryClass = 
Class.forname(“weblogic.deployer.spi.factories.internal.DeploymentFactoryImpl”
);
DeploymentFactory myDeploymentFactory = (DeploymentFactory) 
WlsFactoryClass.newInstance();
DeploymentFactoryManager.getInstance().registerDeploymentFactory(myDeploymentF
actory);
WebLogicDeploymentManager myDisconnectedManager = 
(WebLogicDeploymentManager)myDeploymentFactory.getDisconnectedDeploymentManage
r(WebLogicDeploymentFactory.LOCAL_DM_URI);

Type of 
Deployment 
Manager

Method Argument

disconnected getDisconnectedDeplo
ymentManager()

String value of 
WebLogicDeploymentFactory.LOCAL_DM_UR
I

connected, 
local

getDeploymentManager
()

URI consisting of:

• WebLogicDeploymentFactory.LOCAL_DM_U
RI

• Administration Server host name

• Administration Server port

• Administrator username

• Administrator password

connected, 
remote

getDeploymentManager
()

URI consisting of:

• WebLogicDeploymentFactory.REMOTE_DM_
URI

• Administration Server host name

• Administration Server port

• Administrator username

• Administrator password



Conf i gu r i ng  Appl ica t ions  fo r  Depl oyment

3-12 Programming WebLogic Deployment

The deployment factory contains a helper method, createUri() to help you form the URI 
argument for creating connected deployment managers. For example, to create a disconnected, 
remote deployment manager, replace the final line of code with:

(WebLogicDeploymentManager)myDeploymentFactory.getDeploymentManager(myDeployme
ntFactory.createUri(WebLogicDeploymentFactory.REMOTE_DM_URI, “localhost”, 
“7001”, “weblogic”, “weblogic”));

Using SessionHelper to Obtain a Deployment Manager
The SessionHelper helper class provides several convenience methods to help you easily 
obtain a deployment manager without manually creating and registering the deployment 
factories, as in Listing 3-1. The SessionHelper code required to obtain a disconnected 
deployment manager consists of a single line:

DeploymentManager myDisconnectedManager = 
SessionHelper.getDisconnectedDeploymentManager();

Likewise, you can use the SessionHelper to obtain a connected deployment manager, as shown 
below:

DeploymentManager myConnectedManager = 
SessionHelper.getDeploymentManager(“adminhost”, “7001”, “weblogic”, 
“weblogic”));

This method assumes a remote connection to an admin server (adminhost). See the Javadocs for 
more information about SessionHelper.

Creating a Deployable Object
The second part of Application Evaluation is creating the Deployable Object, a container for the 
application you are intending to deploy. Once you have initialized a configuration session by 
obtaining a WebLogicDeploymentManager, you can create the deployable object in one of two 
ways. The direct approach uses the WebLogicDeployableObject class of the model package. You 
do this as shown below:

WebLogicDeployableObject myDeployableObject = 
WebLogicDeployableObject.createWebLogicDeployableObject(“myAppFileName”);

Once the deployable object is created, a configuration can be created for the applications 
deployment.

http://e-docs.bea.com/wls/docs91/javadocs/weblogic/deploy/api/tools/SessionHelper.html


Per fo rmi ng  F ron t-End  Conf igu ra t i on

Programming WebLogic Deployment 3-13

Using SessionHelper to obtain a Deployable Object
The SessionHelper helper class provides a convenience method to help you easily obtain a 
deployable object. The SessionHelper code required to obtain a deployable object is pretty 
simple:

SessionHelper.setApplicationRoot(root);

WebLogicDeployableObject myDeployableObject = 
SessionHelper.getDeployableObject();

As you can see, there is no application specified in the getDeployableObject() call. 
SessionHelper assumes that the application in the root directory set by 
setApplicationRoot() is the one being used. This is the structure described in the section of 
the previous chapter. Once you have set the application root directory, SessionHelper can 
perform other operations automatically without further complications, such as explicitly naming 
the dispatch file location, the deployment plan location, etcetera.

If this is not the directory structure you are using or if there are several applications in the same 
directory, you may set the application file name using the setApplication method. This is done 
as follows:

SessionHelper.setApplication(AppFileName);

Thus you can continue to use SessionHelper even if you have another directory structure in 
mind. The getDeployableObject method will automatically assume the application you have 
set is being deployed.

Summary
Application Evaluation consists of obtaining a deployment manager and a deployable object 
container for your application. These set the stage for further deployment operations.

Performing Front-End Configuration
The Front-End configuration phase is comprised of two possible logical operations:

Create a WebLogicDeploymentConfiguration object to represent the WebLogic Server 
configuration of an Application. This begins a process that result in a Deployment Plan for 
this deployment of this object.

Restore existing WebLogic Server configuration values from an existing deployment plan, 
if available



Conf i gu r i ng  Appl ica t ions  fo r  Depl oyment

3-14 Programming WebLogic Deployment

A deployment plan is an XML document that contains the environmental configuration for an 
application, referred to as its front-end configuration. It separates the environment specific details 
of an application from the logic of the application. A deployment plan is not required for every 
application. It is required if the application expects specific attributes to be provided by the 
descriptors, as opposed to the generic values generated automatically. You may have a 
deployment plan for each environment in which the application will be deployed.

The deployment plan has several purposes:

It describes the application structure. It will tell you what modules are in the application.

It allows developers and administrators to update the configuration of an application 
without modifying the application archive.

It contains environment specific descriptor override information. By modifying this file, 
you can override environment variables for the application so that it can be used in a 
different environment.

The information in a deployment plan can be loaded into and extracted from a deployment 
configuration. The deployment configuration is the active java object that is used by the 
Deployment Manager to obtain configuration information. The deployment plan exists outside of 
the application so that it can be changed without manipulating the application.

Deployment Configuration
The server configuration for an application is encapsulated in the 
javax.enterprise.deploy.spi.DeploymentConfiguration interface. A 
DeploymentConfiguration can also be viewed as the object representation of a deployment 
plan. A DeploymentConfiguration is associated with a DeployableObject via the 
DeploymentManager.createConfiguration method. Following the creation of the 
DeploymentConfiguration, a DConfigBean tree representing the configurable and tunable 
elements contained in any and all WebLogic Server descriptors is available. If there are no 
WebLogic Server descriptors in the application, then a DConfigBean tree is created using 
available default values. Binding properties that have no defaults will be left unset.

It is the responsibility of the deployer tool to ensure the DConfigBean tree is fully populated 
before using it to distribute an application. The DConfigBeans can be populated from scratch as 
shown in the configuration code below:

public class DeploymentSession {

  DeploymentManager dm;



Per fo rmi ng  F ron t-End  Conf igu ra t i on

Programming WebLogic Deployment 3-15

  DeployableObject dObject = null;

  DeploymentConfiguration dConfig = null;

  Map beanMap = new HashMap();

...

  // Assumes app is a web app.

  public void initializeConfig(File app) throws Throwable {

    /**

     * Init the wrapper for the DDBeans for this module. This example assumes

     * it is using the WLS implementation of the model api.

     */

    dObject= WebLogicDeployableObject.createDeployableObject(app);

    //Get basic configuration for the module

    dConfig = dm.createConfiguration(dObject);

    /**

     * At this point the DeployableObject is populated. Populate the 

     * DeploymentConfigurationbased on its content.

     * We first ask the DeployableObject for its root.

     */

    DDBeanRoot root = dObject.getDDBeanRoot();

    /**

     * The root DDBean is used to start the process of identifying the

     * necessary DConfigBeans for configuring this module.

     */

    System.out.println("Looking up DCB for "+root.getXpath());

    DConfigBeanRoot rootConfig = dConfig.getDConfigBeanRoot(root);

    collectConfigBeans(root, rootConfig);

    /**



Conf i gu r i ng  Appl ica t ions  fo r  Depl oyment

3-16 Programming WebLogic Deployment

     * The DeploymentConfiguration is now initialized, although not necessarily

     * completely setup.

     */

    FileOutputStream fos = new FileOutputStream("test.xml");

    dConfig.save(fos);

  }

  // bean and dcb are a related DDBean and DConfigBean.

 private void collectConfigBeans(DDBean bean, DConfigBean dcb) throws Throwable{

    DConfigBean configBean;

    DDBean[] beans;

    if (dcb == null) return;

    /**

     * Maintain some sort of mapping between DDBeans and DConfigBeans

     * for later processing.

     */

    beanMap.put(bean,dcb);

    /**

     * The config bean advertises xpaths into the web.xml descriptor it

     * needs to know about.

     */

    String[] xpaths = dcb.getXpaths();

    if (xpaths == null) return;

    /**

     * For each xpath get the associated DDBean and collect its associated 

     * DConfigBeans. Continue this recursively until we have all DDBeans and 



Per fo rmi ng  F ron t-End  Conf igu ra t i on

Programming WebLogic Deployment 3-17

     * DConfigBeans collected.

     */

    for (int i=0; i<xpaths.length; i++) {

      beans = bean.getChildBean(xpaths[i]);

      for (int j=0; j<beans.length; j++) {

        /** 

         * Init the DConfigBean associated with each DDBean

         */

        System.out.println("Looking up DCB for "+beans[j].getXpath());

        configBean = dcb.getDConfigBean(beans[j]);

        collectConfigBeans(beans[j], configBean);

      }

    }

This example merely iterates through the DDBean tree, requesting the DConfigBean for each 
DDBean to be instantiated.

DeploymentConfiguration objects may be persisted as deployment plans via 
DeploymentConfiguration.save(). A deployer tool may allow the user to import a saved 
deployment plan into the DeploymentConfiguration object instead of populating it from 
scratch. DeploymentConfiguration.restore() provides this capability. This supports the 
idea of having a repository of deployment plans for an application, with different plans being 
applicable to different environments.

Similarly the DeploymentConfiguration may be pieced together via partial plans, which were 
presumably saved in a repository from a previous configuration session. A partial plan maps to a 
module-root of a DConfigBean tree. DeploymentConfiguration.saveDConfigBean() and 
DeploymentConfiguration.restoreDConfigBean() provides this capability.

Parsing of the WebLogic Server descriptors in an application occurs automatically when a 
DeploymentConfiguration is created. The descriptors ideally conform to the most current 
schema. For older applications that include descriptors based on WebLogic Server 8.1 and earlier 
DTDs, a transformation is performed. Old descriptors are supported but they cannot be modified 
using a deployment plan. Therefore, any DOCTYPE declarations must be converted to name 
space references, and element specific transformations must be performed.



Conf i gu r i ng  Appl ica t ions  fo r  Depl oyment

3-18 Programming WebLogic Deployment

Reading in Information with SessionHelper
SessionHelper.initializeConfiguration will process all standard and WebLogic Server 
descriptors in the application.

Prior to invoking initializeConfiguration, you can specify an existing deployment plan to 
associate with the application using the SessionHelper.setPlan() method. With a plan set, 
you may read in a deployment plan with the DeploymentConfiguration.restore() method, 
in accordance with the J2EE Deployment API standard (JSR-88). In addition, the 
DeploymentConfiguration.initializeConfiguration() method automatically restores 
configuration information once a plan is set.

When initiating a configuration session with the SessionHelper class, you can easily initiate 
and fill a deploymentConfiguration object with deployment plan information as illustrated 
below:

 DeploymentManager dm = SessionHelper.getDisconnectedDeploymentManager();

 SessionHelper helper = SessionHelper.getInstance(dm);

 // specify location of archive

 helper.setApplication(app);

 // specify location of existing deployment plan

 helper.setPlan(plan);

 // initialize the configuration session

 helper.initializeConfiguration(); 

 DeploymentConfiguration dc = helper.getConfiguration();

The above code produces the deployment configuration and its associated 
WebLogicDDBeanTree. At this point, you begin constructing the WebLogicDConfigBean tree as 
usual.

Validating a Configuration
Validation of the configuration occurs mostly during the parsing of the descriptors, which occurs 
when the app's descriptors are processed. Validation consists of ensuring the descriptors are valid 
xml documents and that they abide by their respective schemas.



Customiz ing  Dep loyment  Conf igura t i on

Programming WebLogic Deployment 3-19

Summary
Performing Front-End configuration involves creating a WebLogicDeploymentPlan and 
populating it and its associated bean trees with configuration information from a deployment 
plan. Although a deployment plan is optional, a valid WebLogicDeploymentConfiguration is 
required in order to change configuration values in the deployment configuration (described 
below).

Customizing Deployment Configuration
The Customizing Deployment Configuration phase involves modifying individual WebLogic 
Server configuration values based on user inputs and the selected WebLogic Server targets. The 
configuration at this point is only as good as the descriptors or pre-existing plan associated with 
the application. The DConfigBeans are designed as Java Beans and can be introspected, allowing 
the tool to present their content in some meaningful way. The properties of a DConfigBean are, 
for the most part, those that are configurable. Key properties (those that provide uniqueness) are 
also exposed. Setters are only exposed on those properties that can be safely modified. In general, 
properties that describe application behavior are not modifiable. All properties are typed as 
defined by the descriptor schemas.

The property getters return subordinate DConfigBeans, arrays of DConfigBeans, descriptor 
beans, arrays of descriptor beans, simple values (primitives and java.lang objects), or arrays of 
simple values. Descriptor beans represent descriptor elements that, while modifiable, do not 
require DConfigBean features. e.g. there is no standard descriptor element they are directly 
related to.

Editing a configuration is accomplished by invoking the property setters.

The pure JSR-88 DConfigBean class allows the tool to access beans via the 
getDConfigBean(DDBean) method, or via introspection. The former approach is convenient for 
tools that present the standard descriptor based on the DDBean's in the application's 
DeployableObject, and then provide direct access to each DDBean's configuration (its 
DConfigBean). This provides configuration of the essential resource requirements an application 
may have. The latter approach (introspection) allows a tool to present the application's entire 
configuration, while perhaps highlighting the required resource requirements.

Introspection is, of course, required in both approaches in order to present or modify descriptor 
properties. The difference is in how the tool presents the information: either driven by standard 
descriptor content or WebLogic Server descriptor content.



Conf i gu r i ng  Appl ica t ions  fo r  Depl oyment

3-20 Programming WebLogic Deployment

A system of modifying configuration information would include a user interface to ask for 
changes. A system for obtaining and setting such changes is illustrated in the code sample below:

   // Introspect the DConfigBean tree and ask for input on properties with setters

  private  void processBean(DConfigBean dcb) throws Exception {

    if (dcb instanceof DConfigBeanRoot) {

      System.out.println("Processing configuration for descriptor: 
"+dcb.getDDBean().getRoot().getFilename());

    }

    // get property descriptor for the bean

    BeanInfo info = 
Introspector.getBeanInfo(dcb.getClass(),Introspector.USE_ALL_BEANINFO);

    PropertyDescriptor[] props = info.getPropertyDescriptors();

    String bean = info.getBeanDescriptor().getDisplayName();

    PropertyDescriptor prop;

    for (int i=0;i<props.length;i++) {

      prop = props[i];

      // only allow primitives to be updated

      Method getter = prop.getReadMethod();

      if (isPrimitive(getter.getReturnType())) // see isPrimitive method below

      {

        writeProperty(dcb,prop,bean); //see writeProperty method below

      }

      // recurse on child properties

      Object child = getter.invoke(dcb,new Object[]{});

      if (child == null) continue;

      // traversable if child is a DConfigBean.

      Class cc = child.getClass();

      if (!isPrimitive(cc)) {



Customiz ing  Dep loyment  Conf igura t i on

Programming WebLogic Deployment 3-21

        if (cc.isArray()) {

          Object[] cl = (Object[])child;

          for (int j=0;j<cl.length;j++) {

            if (cl[j] instanceof DConfigBean) processBean((DConfigBean) cl[j]);

          }

        } else {

          if (child instanceof DConfigBean) processBean((DConfigBean) child);

        }

      }

    }

  }

   // if the property has a setter then invoke it with user input

  private void writeProperty(DConfigBean dcb, PropertyDescriptor prop, String 
bean)

      throws Exception {

    Method getter = prop.getReadMethod();

    Method setter = prop.getWriteMethod();

    if (setter != null) {

      PropertyEditor pe = 
PropertyEditorManager.findEditor(prop.getPropertyType());

      if (pe == null && String[].class.isAssignableFrom(getter.getReturnType())) 
pe = new StringArrayEditor();  // see StringArrayEditor class below

      if (pe != null) {

        Object oldValue = getter.invoke(dcb,new Object[0]);

        pe.setValue(oldValue);

        String val = getUserInput(bean,prop.getDisplayName(),pe.getAsText());

        // see getUserInput method below

        if (val == null || val.length() == 0) return;



Conf i gu r i ng  Appl ica t ions  fo r  Depl oyment

3-22 Programming WebLogic Deployment

        pe.setAsText(val);

        Object newValue = pe.getValue();

        prop.getWriteMethod().invoke(dcb,new Object[]{newValue});

      }

    }

  }

  private String getUserInput(String element, String property, String curr) {

    try {

      System.out.println("Enter value for "+element+"."+property+". Current value 
is: "+curr);

      return br.readLine();

    } catch (IOException ioe) {

      return null;

    }

  }

  // Primitive means a java primitive or String object here

  private  boolean isPrimitive(Class cc) {

    boolean prim = false;

    if (cc.isPrimitive() || String.class.isAssignableFrom(cc)) prim = true;

    if (!prim) {

      // array of primitives?

      if (cc.isArray()) {

        Class ccc = cc.getComponentType();

        if (ccc.isPrimitive() || String.class.isAssignableFrom(ccc)) prim = true;

      }

    }

    return prim;



Customiz ing  Dep loyment  Conf igura t i on

Programming WebLogic Deployment 3-23

  }

  /**

   * Custom editor for string arrays. Input text is converted into tokens using

   * commas as delimiters

   */

  private class StringArrayEditor extends PropertyEditorSupport {

    String[] curr = null;

    public StringArrayEditor() {super();}

    // comma separated string

    public String getAsText() {

      if (curr == null) return null;

      StringBuffer sb = new StringBuffer();

      for (int i=0;i<curr.length;i++) {

        sb.append(curr[i]);

        sb.append(',');

      }

      if (curr.length > 0) sb.deleteCharAt(sb.length()-1);

      return sb.toString();

    }

    public Object getValue() { return curr; }

    public boolean isPaintable() { return false; }



Conf i gu r i ng  Appl ica t ions  fo r  Depl oyment

3-24 Programming WebLogic Deployment

    public void setAsText(String text) {

      if (text == null) curr = null;

      StringTokenizer st = new StringTokenizer(text,",");

      curr = new String[st.countTokens()];

      for (int i=0;i<curr.length;i++) curr[i] = new String(st.nextToken());

    }

    public void setValue(Object value) {

      if (value == null) {

        curr = null;

      } else {

        String[] v = (String[])value; // let caller handle class cast issues

        curr = new String[v.length];

        for (int i=0;i<v.length;i++) curr[i] = new String(v[i]);

      }

    }

  }

Beyond the mechanics of the rudimentary user interface, any interface that would enable changes 
to the configuration by an administrator or user would use the property setters as shown above. 

Targets
Targets are associated with WebLogic servers, clusters, web servers, virtual hosts and JMS 
servers. This is captured in the weblogic.deploy.api.spi.WebLogicTarget Javadocs.

Application Naming
In WebLogic Server, application names are provided by the deployment tool. Names of modules 
contained within an application are based on the associated archive or root directory name of the 
modules. These names are persisted in the configuration MBeans constructed for the application.

In J2EE deployment there is no mention of the configured name of an application or its 
constituent modules, other than in the TargetModuleID object. Yet TargetModuleIDs exist 

http://e-docs.bea.com/wls/docs91/javadocs/weblogic/deploy/api/spi/WebLogicTarget.html


Deployment  P repara t i on

Programming WebLogic Deployment 3-25

only for applications that have been distributed to a WebLogic Server domain. Hence there is a 
need to represent application and module names in a deployer tool prior to distribution. This 
representation should be consistent with the names assigned by the server when the application 
is finally distributed.

The tool plug-in constructs its view of an application via the DeployableObject and 
J2eeApplicationObject classes. These represent standalone modules and EARs, respectively. 
Each of these has a direct relationship to a DDBeanRoot object. When presented with a 
distribution where the name is not configured, one will be derived for it. If the distribution is a 
File object, the file's name will be used. If the archive is offered as an input stream, a random 
name will be used for the root module.

Deployment Preparation
The deployment preparation phase involves saving the resulting plan from a configuration 
session. It is handled by the DeploymentConfiguration.save() method (another standard 
J2EE Deployment API method). You can use the SessionHelper.savePlan() method to do 
this; it saves new copy of deployment plan along with any external documents in the plan 
directory.

The DeploymentConfiguration.save methods will create an XML file based on the 
deployment plan schema, consisting of a serialization of the current collection of DConfigBeans, 
along with any variable assignments and definitions. The DConfigBean trees are always saved 
as external descriptors. These descriptors will only be saved if they do not already exist in the 
application archive or the external configuration area. i.e., the save operation will not overwrite 
existing descriptors. The DeploymentConfiguration.saveDConfigBean method will, 
however, overwrite files. This is not to say that any changes made to the configuration are lost. 
Rather they are handled using variable assignments.

As noted before, the DeploymentConfiguration.restore methods are used to create config 
beans based on a previously saved deployment plan (see “Performing Front-End Configuration” 
on page 3-13). An entire collection of config beans may be restored or the tool can restore a subset 
of the config beans. e.g., it is possible to save/restore just the config beans for a specific module 
in an application. This allows for a degree of flexibility in configuring an application.



Conf i gu r i ng  Appl ica t ions  fo r  Depl oyment

3-26 Programming WebLogic Deployment



Programming WebLogic Deployment 4-1

C H A P T E R 4

Performing Deployment Operations

The following sections describe how to implement deployment operations for a WebLogic 
deployment API constructed deployment tool.

“Application Deployment” on page 4-1

“Deployment Factories” on page 4-2

“DeploymentManager Behaviors” on page 4-3

“Server Connectivity” on page 4-3

“Deployment Processing” on page 4-4

“Production Redeployment” on page 4-8

“Progress Reporting” on page 4-9

“Module Types” on page 4-12

“Target Objects” on page 4-12

“Examples” on page 4-16

Application Deployment
Up to this point, we have described how to create elaborate configurations but have not touched 
only actually putting those configurations to a practical use. Application Deployment, the fifth 
phase of deployment, uses any information setup by configuration operations to handle the 
distribution of the application and plan to the administration server for server-side processing and 



Per f orming  Deployment  Opera t i ons

4-2 Programming WebLogic Deployment

application startup. This chapter describes all of the necessary components to deploy and control 
an application to the WebLogic Server environment.

Deployment Factories
A deployer tool must allocate a DeploymentManager from a DeploymentFactory, which is 
registered with the DeploymentFactoryManager class, in order to perform deployment 
operations. In addition to configuration (described in “Overview of the Configuration Process” 
on page 3-3), the DeploymentManager is responsible for establishing a connection to a J2EE 
server. The DeploymentManager implementation is accessed via a DeploymentFactory.

A deployer tool is responsible for instantiating and registering any DeploymentFactory objects 
it uses. The WebLogic factory is advertised via the manifest file in the wldeploy.jar archive. 
The manifest contains entries defining the fully-qualified class names of the factories, separated 
by whitespace. For example:

MANIFEST.MF:

    Manifest-version: 1.0

    Implementation-Vendor: BEA Systems

     Implementation-Title: WebLogic Server 9.0 Mon Nov 11 08:16:47 PST 2002 221755      

    Implementation-Version: 9.0.0.0

    J2EE-DeploymentFactory-Implementation-Class: 

    weblogic.deploy.spi.factories.DeploymentFactoryImpl 

A deployer tool can define any mechanism for managing the SPI plug-ins it recognizes. For 
simplicity's sake, assume the tool requires that all SPI plug-ins reside in some fixed location, and 
that they are also in its classpath. Upon startup, the tool would register the plug-ins as shown in 
the example.

The standard DeploymentFactory interface is extended by 
weblogic.deploy.api.WebLogicDeploymentFactory. The additional methods provided in 
the extension are:

String[] getUris(): returns an array of URI's that are recognized by 
getDeploymentManager. The first URI in the array is guaranteed to be the default 
DeploymentManager URI, deployer:WebLogic. Only published URI's are returned in 
this array. 

http://e-docs.bea.com/wls/docs91/javadocs/weblogic/deploy/api/spi/factories/package-summary.html


Dep loymentManager  Behavio rs

Programming WebLogic Deployment 4-3

String createUri(String protocol, String host, String port): returns a 
usable URI based on the arguments.

DeploymentManager Behaviors
Only one DeploymentManager implementation is provided. Depending on the URI specified 
when allocating the DeploymentManager, it will take on the following characteristics:

deployer:WebLogic: The DeploymentManager assumes it is running locally on an 
administration server. Thus any files referenced during the deployment session are assumed 
to be local to the administration server.

deployer:WebLogic.remote: The DeploymentManager will assume it is running 
remotely to the WebLogic administration server, thus any files referenced during the 
deployment session are not assumed to be local to the administration server. i.e. a distribute 
operation will include uploading the application files to the administration server.

deployer:WebLogic.authenticated: This is an internal, unpublished URI, usable by 
applications such as a console servlet that is already authenticated and has access to the 
domain management information. The DeploymentManager will assume it is running 
locally on a WebLogic administration server. Thus any files referenced during the 
deployment session are assumed to be local to the administration server.

Server Connectivity
A deployment tool allocates a DeploymentManager from a registered DeplomentFactory (see 
above). DeploymentManagers can be either connected or disconnected. Connected 
DeploymentManagers imply a connection to a WebLogic administration server. This 
connection is maintained until it is explicitly disconnected or the connection is lost. If the 
connection is lost, the DeploymentManager will revert to a disconnected state.

Explicitly disconnecting a DeploymentManager is accomplished via the 
DeploymentManager.release method. There is no corresponding method for reconnecting the 
DeploymentManager. Instead the deployer tool must allocate a new DeploymentManager. This 
should not affect any configuration information being maintained within the tool through a 
DeploymentConfiguration object.

DeploymentManagers are identified by an opaque URI. All DeploymentManagers for 
WebLogic Server have the URI scheme, deployer:WebLogic<.type>. The 
DeploymentFactory.getDeploymentManager method takes a URI, userid and password as 
arguments. In this case the URI must also include the host and port for the admin server, e.g. 
deployer:WebLogic:localhost:7001. When obtaining a disconnected 



Per f orming  Deployment  Opera t i ons

4-4 Programming WebLogic Deployment

DeploymentManager, only the URI is necessary because no actual connection to a server is 
made. In this case, the URI can simply be deployer:WebLogic, although extending the URI 
with the host and port is allowed.

The userid and password arguments are ignored if the deployer tool uses a pre-authenticated 
DeploymentManager; The factory presumes that the user has already been authenticated.

The URI of any DeploymentManager implementation should be accessed using the 
DeploymentFactory.getUris() method. getUris is an extension of DeploymenFactory.

The behavior of the DeploymentManager operations is guided by the URI specified when it is 
allocated from the factory. These behaviors apply to relevant operations supported by the 
DeploymentManager. They include:

File Upload: determines whether files are uploaded to the admin server. This functionality 
is automatically enabled for the remote DeploymentManagers

Authentication Required: 

These behaviors also can be explicitly enabled using the WebLogicDeploymentManager method 
enableFileUploads().

Deployment Processing
Most of the functional components of a DeploymentManager are defined in the J2EE 
Deployment API specification. The specification does not describe a DeploymentManager that 
is sufficient to support the needs of WebLogic Server customers, hence a number of extensions 
were introduced. These are documented in the Javadocs for 
weblogic.deploy.api.spi.WebLogicDeploymentManager. The relationship between the 
SPI operations and WebLogic Server is provided here.

The intent is not to change the programming model defined by the J2EE deployment API 
specification, but rather to extend the DeploymentManager interface (DeploymentManager) 
with the capabilities required and expected by existing WebLogic Server-based deployment 
tools.

The JSR-88 programming model revolves around employing TargetModuleID objects 
(TargetModuleIDs) and ProgressObject objects. In general, the target modules are specified 
by a list of TargetModuleIDs which are roughly equivalent to deployable (root modules) and 
(sub)module level mbeans. The DeploymentManager applies the TargetModuleIDs to its 
deployment operations (start, stop, and so on) and tracks their progress. The deployer tool queries 
progress via a ProgressObject returned for each operation. When the ProgressObject 
indicates the operation is completed or failed, the operation is done.

http://e-docs.bea.com/wls/docs91/javadocs/weblogic/deploy/api/spi/package-summary.html


Dep loyment  P rocessing

Programming WebLogic Deployment 4-5

The following sections describe the different DeploymentManager operations and their 
extensions. Full descriptions are provided in the Javadocs. This section serves as a general 
overview. The extensions cover the following features:

General usability/convenience

Side-by-side version support

module level targeting

partial redeployment

administration (test) mode applications

DeploymentOptions
The WebLogic Server allows for a DeploymentOptions argument 
(weblogic.deploy.api.spi.DeploymentOptions), which supports the overriding of certain 
deployment behaviors. The argument may be null, which provides for standard behaviors. Some 
of the options supported in this release are:

administration (test) mode

Retirement Policy

Staging

See the DeploymentOptions Javadoc for a full list of options.

Distribution
The distribution of new applications results in the application archive and plan being staged on 
all targets, and the application being configured into the domain. Redistribution will honor the 
staging mode already configured for the application.

The standard distribute operations do not allow for version naming, leaving this to be generated 
by the system. WebLogicDeploymentManager extends the standard with a distribute operation 
that allows the user to specify a version name to associate with the new application.

The ProgressObject returned from a distribute provides a list of TargetModuleIDs 
representing the application as it exists on the target servers. The targets used in the distribute are 
any of the supported targets. The TargetModuleID will represent the application's module 
availability on each target.

http://e-docs.bea.com/wls/docs91/javadocs/weblogic/deploy/api/spi/package-summary.html
http://e-docs.bea.com/wls/docs91/javadocs/weblogic/deploy/api/spi/DeploymentOptions.html


Per f orming  Deployment  Opera t i ons

4-6 Programming WebLogic Deployment

For new applications, the resulting TargetModuleIDs represent the top level 
AppDeploymentMBean objects. The TargetModuleIDs will not have child TargetModuleIDs 
based on the modules and submodules in the application, since the underlying MBeans would 
only represent the root module. For pre-existing applications, the TargetModuleIDs are based 
on the DeployableMBeans and any AppDeploymentMBean and SubAppDeploymentMBean in 
the configuration.

When using the distribute(Target[],InputStream,InputStream) method to distribute, 
the archive and plan represented by the input streams will be copied from the streams into a temp 
area prior to deployment. It is not recommended to use this distribute method for performance 
reasons.

Application Start
The standard start operation only supports root modules; implying only entire applications can be 
started. Consider the following configuration.

<AppDeployment Name=”myapp”>

 <SubDeployment Name=”webapp1”, Targets=”serverx”/>

 <SubDeployment Name=”webapp2”, Targets=”serverx”/>

</AppDeployment>

The TargetModuleID returned from getAvailableModules(ModuleType.EAR) would look 
like this:

myapp on serverx (implied)

 webapp1 on serverx

 webapp2 on serverx

So start(tmid) would start webapp1 and webapp2 on serverx.

To just start webapp1, module level control is required. This is achievable as follows by manually 
creating a TargetModuleID hierarchy.

WebLogicTargetModuleID root = 
dm.createTargetModuleID(“myapp”,ModuleType.EAR,getTarget(serverx));

WebLogicTargetModuleID web = 
dm.createTargetModuleID(root,”webapp1”,ModuleType.WAR);

dm.start(new TargetModuleID[]{web}); 



Dep loyment  P rocessing

Programming WebLogic Deployment 4-7

This approach uses the TargetModuleID creation extension to manually create an explicit 
TargetModuleID hierarchy. In this case the created TargetModuleID would look like

myapp on serverx (implied)

 webapp1 on serverx

The start operation does not modify the application configuration. Version support is built into 
the TargetModuleIDs, allowing the user to start a specific version of an application. 
Applications may be started in normal or administration (test) mode.

Application Deploy
The deploy operation combines a distribute and start operation, and is provided as a 
convenience. Web Applications may be deployed in normal or administration (test) mode. 
Application staging can also be specified via the DeploymentOptions argument on deploy. The 
deploy operations use TargetModuleIDs instead of Targets for targeting, thus allowing for 
module level configuration.

The deploy operation may change the application configuration based on the TargetModuleIDs 
provided.

Application Stop
The standard stop operation only supports root modules; implying only entire applications can 
be stopped. See the “Application Start” on page 4-6 discussion for more details on module level 
control.

The stop operation does not modify the application configuration.

Version support is built into the TargetModuleIDs, allowing the user to stop a specific version 
of an application.

Undeployment
The standard undeploy operation removes an application from the configuration, as specified by 
the TargetModuleIDs. Individual modules can be undeployed. The result is that the application 
remains on the target, but certain modules are not actually configured to run on it. See the 
“Application Start” on page 4-6 section for more detail on module level control.

The WebLogicDeploymentManager extends undeploy in support of removing files from a 
distribution. This is a form of in-place redeployment that is only supported in web applications, 
and is intended to allow for removal of static pages and the like.



Per f orming  Deployment  Opera t i ons

4-8 Programming WebLogic Deployment

Version support is built into the TargetModuleIDs, allowing the user to undeploy a specific 
version of an application.

Production Redeployment
Standard redeployment support only applies to entire applications and employs side-by-side 
versioning to ensure uninterrupted session management. The WebLogicDeploymentManager 
extends the redeploy() method as follows:

redeploying individual modules in an application. This implies an in-place redeploy (no 
new version). The version information in the new application must be the same as the old 
application, but with a different value (for example 1.0, 1.1, and so on.). Module targeting 
must be specified.

Specifying a retirement policy for an old application.

Partial redeployment - this involves adding or replacing specific files in an existing 
deployment. This is an in-place redeployment.

Redeploying applications in administration (test) mode.

updating configuration - the redeployment of a deployment plan.

Version support is provided via arguments in the above operations. The version, if relevant, is 
specified in the TargetModuleID.

Retirement Policy
When a new version of an application is redeployed, the old version should eventually be retired 
and undeployed. There are 2 policies for retiring old versions of applications:

   1. (Default) old version is retired when new version is active and old version finishes its in-flight 
operations.

   2. The old version is retired when new version is active, retiring the old after some specified 
time limit of the new version being active.

Note that the old version will not be retired if the new version is in administration (test) mode.

Module Targeting
DeploymentManager's will honor the JSR-88 specification and restrict operations to root 
modules. Module level control is provided by manually constructing a module specific 
TargetModuleID hierarchy via WebLogicDeploymentManager.createTargetModuleID



Progress  Repo r t ing

Programming WebLogic Deployment 4-9

Version Support
Side-by-side versioning is used to provide retirement extensions, as suggested in the JSR-88 
redeployment specification. This ensures that an application can be redeployed with no 
interruption in service to its current clients. Details on deploying side-by-side versions can be 
found in the Redeployment Strategies documentation. Briefly, an archive manifest can specify 
the WebLogic Server application version. The deployment plan also supports a version identifier. 
The combination of these 2 version identifiers is used internally to distinguish between versions 
of applications, and may also be used by developers and administrators to assist in version 
control.

This provides the basis for production redeployment as it is implemented for the WebLogic 
Server Deployment Service. Please refer to the Redeployment Strategies documentation for more 
information.

Administration (Test) Mode
A web application may be started in normal or administration (test) mode. Normal mode indicates 
the web app is fully accessible to clients. Administration (test) mode indicates the application 
only listens for requests via the admin channel. Administration (test) mode is specified via a 
DeploymentOptions argument on the WebLogic Server extensions for start, deploy and 
redeploy. See the DeploymentOptions Javadoc for more information.

Progress Reporting
ProgressObjects are the interface for the deployment state in the SPI. These objects are 
associated with DeploymentTaskRuntimeMBeans. ProgressObjects support the cancel 
operation but not the stop operation.

ProgessObjects are associated with one or more TargetModuleIDs, each of which represents 
an application and its association with a particular target. For any ProgressObject, its 
associated TargetModuleIDs represent the application that is being monitored.

The ProgressObject maintains a live connection with the deployment framework, allowing it 
to provide the tools with up-to-date deployment status. Once this status goes to completed, failed 
or released, the tools should not expect any further changes. Deployment state transitions from 
running to completed or failed only after all TargetModuleIDs involved have completed their 
individual deployments. The resulting state is 'completed' only if all TargetModuleIDs were 
successfully deployed.

http://e-docs.bea.com/wls/docs91/deployment/redeploy.html
http://e-docs.bea.com/wls/docs91/deployment/redeploy.html
http://e-docs.bea.com/wls/docs91/javadocs/weblogic/deploy/api/spi/DeploymentOptions.html


Per f orming  Deployment  Opera t i ons

4-10 Programming WebLogic Deployment

The ‘released’ state means that the DeploymentManager was disconnected during the 
deployment. This may be due to a manual release, a network outage, or similar communication 
failures.

The following code sample shows how a ProgressObject can be used to wait for a deployment 
to complete:

package weblogic.deployer.tools;

import javax.enterprise.deploy.shared.*;

import javax.enterprise.deploy.spi.*;

import javax.enterprise.deploy.spi.status.*;

/**

 * Example of class that waits for the completion of a deployment

 * using ProgressEvent's.

 */

public class ProgressExample implements ProgressListener {

 private boolean failed = false;

 private DeploymentManager dm;

 private TargetModuleID[] tmids;

 public void main(String[] args) {

    // set up DeploymentManager, TargetModuleIDs, etc

    try {

      wait(dm.start(tmids));

} catch (IllegalStateException ise) {

      //... dm not connected

}



Progress  Repo r t ing

Programming WebLogic Deployment 4-11

    if (failed) System.out.println(“oh no!”);

}

 void wait(ProgressObject po) {

    ProgressHandler ph = new ProgressHandler();

    if (!po.getDeploymentStatus().isRunning()) {

      failed = po.getDeploymentStatus().isFailed();

      return;

}

    po.addProgressListener(ph);

    ph.start();

    while (ph.getCompletionState() == null) {

      try {

        ph.join();

} catch (InterruptedException ie) {

        if (!ph.isAlive()) break;

}

}

    StateType s = ph.getCompletionState();

    failed = (s == null ||

              s.getValue() == StateType.FAILED.getValue());

    po.removeProgressListener(ph);

}

 class ProgressHandler extends Thread implements ProgressListener {

    boolean progressDone = false;

    StateType finalState = null;



Per f orming  Deployment  Opera t i ons

4-12 Programming WebLogic Deployment

    public void run(){

      while(!progressDone){

        Thread.currentThread().yield();

}

}

    public void handleProgressEvent(ProgressEvent event){

      DeploymentStatus ds = event.getDeploymentStatus();

      if (ds.getState().getValue() != StateType.RUNNING.getValue()) {

        progressDone = true;

        finalState = ds.getState();

}

}

    public StateType getCompletionState(){

      return finalState;

}

}

}

Module Types
The standard modules types are defined by 
javax.enterprise.deploy.shared.ModuleType. This is extended to support WebLogic 
Server-specific module types: JMS, JDBC, INTERCEPT and CONFIG.

Target Objects
The J2EE Deployment API specification's definition of a target does not include any notion of its 
type. WebLogic Server recognizes types - servers, clusters, JMS servers and virtual hosts - as 
valid targets for deployment. These concepts are introduced into the API via the 
weblogic.deploy.api.spi.WebLogicTarget and 
weblogic.deploy.api.spi.WebLogicTargetType classes. WebLogicTargetType follows 



Target  Ob jec ts

Programming WebLogic Deployment 4-13

the form of the classes in the javax.enterprise.deploy.shared. It enumerates the known 
target types.

WebLogicTarget and WebLogicTargetType are defined in more detail in the Javadocs. 
WebLogicTarget extends javax.enterprise.deploy.spi.Target.

TargetModuleID Objects
The TargetModuleID objects uniquely identify a module and a target it is associated with. 
TargetModuleIDs are the objects that specify where modules are to be started and stopped. The 
object name used to identify the TargetModuleID is of the form:

Application=parent-name,Name=configured-name,Target=target-name,TWebLogicT

argetType=target-type

where

parent-name is the name of the ear this module is part of.

configured-name is the name used in the WebLogic Server configuration for this 
application or module

target-name is the server, cluster or virtual host where there module is targeted

target-type is the description of the target derived from Target.getDescription.

TargetModuleID.toString() will return this object name.

WebLogic Server TargetModuleID Extensions
TargetModuleID is extended by weblogic.deploy.api.spi.WebLogicTargetModuleID. 
This class provides the following additional functionality:

getServers - servers associated with the TargetModuleID's target.

isOnCluster - whether target is a cluster

isOnServer - whether target is a server

isOnHost - whether target is a virtual host

isOnJMSServer - whether target is a JMS server

getVersion - the version name

createTargetModuleID - factory for creating module specific targeting

http://e-docs.bea.com/wls/docs91/javadocs/weblogic/deploy/api/spi/package-summary.html


Per f orming  Deployment  Opera t i ons

4-14 Programming WebLogic Deployment

WebLogicTargetModuleID is defined in more detail in the Javadocs.

The WebLogicDeploymentManager is also extended with convenience methods that simplify 
working with TargetModuleIDs. They are:

filter - returns a list of TargetModuleIDs that match on application, module, and 
version

getModules - creates TargetModuleIDs based on an AppDeploymentMBean

TargetModuleIDs have a hierarchical relationship based on the application upon which they are 
based. The root TargetModuleID of an application represents an EAR module or a standalone 
module. Child TargetModuleIDs are modules that are defined by the root module's descriptor. 
For EARs, these are the modules identified in the application.xml descriptor for the EAR. 
JMS modules have a notion of sub-module, hence any JMS module may have child 
TargetModuleIDs as dictated by the JMS deployment descriptor. These may be children of an 
embedded module or the root module. Therefore, there can be 3 levels of TargetModuleIDs for 
an application.

TargetModuleIDs are generally acquired via some deployment operation, or one of the 
DeploymentManager.get*Modules() methods. These will only provide TargetModuleIDs 
based on existing configuration. In certain scenarios where more specific targeting is desired than 
is currently defined in the configuration, the createTargetModuleID method is provided. This 
method will create a root TargetModuleID that is specific to a module or submodule within the 
application. This TargetModuleID can then be used in any deployment operation. For operations 
that include the application archive (e.g. deploy()), using one of these TargetModuleIDs may 
result in the application being reconfigured. For example, given the following configuration

<AppDeployment Name=”myapp”, Targets=”s1,s2”/>

the application is currently configured for all modules to run on s1 and s2. To provide more 
specific targeting, a deployment tool can do the following:

Target s1 = find(“s1”,dm.getTargets()); 

// find() is not part of this api

WebLogicTargetModuleID root = 
dm.createTargetModuleID(“myapp”,ModuleType.EAR,s1);

WebLogicTargetModuleID web = 
dm.createTargetModuleID(root,”webapp1”,ModuleType.WAR);

dm.deploy(new TargetModuleID[]{web},myapp,myplan,null);

http://e-docs.bea.com/wls/docs91/javadocs/weblogic/deploy/api/spi/package-summary.html


Target  Ob jec ts

Programming WebLogic Deployment 4-15

myapp is reconfigured and webapp is specifically targeted to only run on s1. The new 
configuration is:

<AppDeployment Name=”myapp”, Targets=”s1,s2”>

 <SubDeployment Name=”webapp”, Targets=”s1”/>

</AppDeployment>

Extended Module Support
JSR-88 defines a secondary descriptor as additional descriptors that a module can refer to or make 
use of. These descriptors are linked to the root DConfigBean of a module such that they are 
visible to a java Beans based tool-- they are child properties of a DConfigBeanRoot object. 
Secondary descriptors are automatically included in the configuration process for a module.

Web Services
An EJB or Web App may include a webservers.xml descriptor. If present the module will be 
automatically configured with the WebLogic Server equivalent descriptor for configuring the 
web services. These are treated as secondary descriptors in JSR-88 terminology. The deployment 
plan includes these descriptors as part of the module, not as a separate module.

CMP
CMP support in EJBs is configured via RDBMS descriptors that are identified for CMP beans in 
the weblogic-ejb-jar.xml descriptor. The RDBMS descriptors support CMP11 and CMP20 
currently. Any number of RDBMS descriptors may be included with an EJB module. These 
descriptors must be provided in the application archive or configuration area (approot/plan). They 
are not created by the configuration process, but may be modified as with any other descriptor. 
RDBMS descriptors are treated as secondary descriptors in the deployment plan.

JDBC
JDBC modules are described by a single deployment descriptor. There is no archive involved. If 
the module is part of an EAR, the JDBC descriptors are specified in 
weblogic-application.xml. These are configurable properties. JDBC modules can be 
deployed to WebLogic servers and clusters. Configuration changes to JDBC descriptors are 
handled as overrides to the descriptor.



Per f orming  Deployment  Opera t i ons

4-16 Programming WebLogic Deployment

If the JDBC module is part of an EAR its configuration overrides are treated as with secondary 
descriptors; they are incorporated in the deployment plan as part of the EAR, not as separate 
modules.

JMS
JMS modules are described by a single deployment descriptor. There is no archive involved. If 
part of an EAR the JMS descriptors are specified in weblogic-application.xml. These are 
configurable properties. JMS modules can be deployed to JMS servers. Configuration changes to 
JMS descriptors are handled as overrides to the descriptor. JMS descriptors may identify 
“targetable groups”. These groups are treated as sub-modules during deployment.

If the JMS module is part of an EAR its configuration overrides are treated as with secondary 
descriptors; they are incorporated in the deployment plan as part of the EAR, not as separate 
modules.

INTERCEPT
Intercept modules are described by a single deployment descriptor. There is no archive involved. 
If part of an EAR the Intercept descriptors are specified in weblogic-application.xml. These 
are configurable properties. Intercept modules can be deployed to WebLogic Server servers and 
clusters. Configuration changes to Intercept descriptors are handled as overrides to the descriptor.

If the INTERCEPT module is part of an EAR its configuration overrides are treated as with 
secondary descriptors; they are incorporated in the deployment plan as part of the EAR, not as 
separate modules.

Examples
Consider the deployment of a standalone JMS module, one that employs sub-modules. The 
module is defined by the file, jms.xml, which defines sub-modules, sub1 and sub2. The 
descriptor is fully configured for the environment hence no deployment plan is required, although 
the scenario described here would be the same if there was a deployment plan.

The tool to deploy this module performs the following steps:

// init the jsr88 session. This uses a WLS specific helper class, 

// which does not employ any WLS extensions

DeploymentManager dm = SessionHelper.getDeploymentManager(host,port, 
user,pword);



Examples

Programming WebLogic Deployment 4-17

// get list of all configured targets

// The filter method is where the tool might ask the user to select from the 

// list of all configured targets

Target[] targets = filter(dm.getTargets());

// the module is distributed to the selected targets.

ProgressObject po = dm.distribute(targets,new File(“jms.xml”),plan); 

// when the wait comes back the task is done

waitForCompletion(po);

// It is assumed here that it worked (there is no exception handling)

// the TargetModuleIDs (tmids) returned from the PO correspond to all the

// configured app/module mbeans for each target the app was distributed to. 

// This should include 3 tmids per target: the root module tmid and the 

// submodules' tmids.

TargetModuleID[] tmids = po.getResultTargetModuleIDs();

// then to deploy the whole thing everywhere you would do this

po = dm.start(tmids);

// the result is that all sub-modules would be deployed on all the selected

// targets, since they are implicitly targeted wherever the their parent is

// targeted 

// To get sub-module level deployment you need to use WebLogic Server

// extensions to create TargetModuleIDs that support module level targeting. 

// The following deploys the topic “xyz” on a JMS server



Per f orming  Deployment  Opera t i ons

4-18 Programming WebLogic Deployment

WebLogicTargetModuleID root = 
dm.createTargetModuleID(tmids[i].getModuleID(),tmids[i],jmsServer);

WebLogicTargetModuleID topic = 
dm.createTargetModuleID(root,”xyz”,WebLogicModuleType.JMS);

// now we can take the original list of tmids and let the user select

// specific tmids to deploy

po = dm.start(topic);


	Programming WebLogic Deployment
	Introduction and Roadmap
	Document Scope and Audience
	Guide to This Document
	Related Documentation
	Samples for the Deployment API Developer
	Release-Specific WebLogic Deployment API Information
	Summary of WebLogic Deployment API Features
	Unsupported WebLogic Deployment API Features

	Understanding the WebLogic Deployment API
	Overview of the Deployment API
	Phases of Deployment
	J2EE Deployment API Compliance
	The SPI Package
	weblogic.deploy.api.spi
	weblogic.deploy.api.spi.factories
	Module Targeting
	Support for Querying WebLogic Target Types
	Server Staging Modes
	DConfigBean Validation

	The Model Package
	weblogic.deploy.api.model
	Accessing Deployment Descriptors

	The Shared Package
	weblogic.deploy.api.shared
	Command Types for Deploy and Update
	Support for Module Types
	Support for all WebLogic Server Target Types

	The Tools Package
	weblogic.deploy.api.tools
	SessionHelper
	Deployment Plan Creation


	Configuring Applications for Deployment
	Configuring an Application
	The WebLogic Server SessionHelper Class
	Session Cleanup

	Overview of the Configuration Process
	Types of Configuration Information
	J2EE Configuration

	DDBeans
	Representing J2EE and WebLogic Server Configuration Information
	The Relationship Between J2EE and WebLogic Server Descriptors
	WebLogic Server Configuration

	DConfigBeans

	Application Evaluation
	Types of Deployment Managers
	Connected and Disconnected Deployment Manager URIs

	Using SessionHelper to Obtain a Deployment Manager
	Creating a Deployable Object
	Using SessionHelper to obtain a Deployable Object
	Summary

	Performing Front-End Configuration
	Deployment Configuration
	Reading in Information with SessionHelper

	Validating a Configuration
	Summary

	Customizing Deployment Configuration
	Targets
	Application Naming

	Deployment Preparation

	Performing Deployment Operations
	Application Deployment
	Deployment Factories
	DeploymentManager Behaviors
	Server Connectivity
	Deployment Processing
	DeploymentOptions
	Distribution
	Application Start
	Application Deploy
	Application Stop
	Undeployment

	Production Redeployment
	Retirement Policy
	Module Targeting
	Version Support
	Administration (Test) Mode

	Progress Reporting
	Module Types
	Target Objects
	TargetModuleID Objects
	WebLogic Server TargetModuleID Extensions
	Extended Module Support
	Web Services
	CMP
	JDBC
	JMS
	INTERCEPT


	Examples



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


