0?7,

r
P i’
L/

BEAWebLogic
Servere

Understanding WebLogic
Security

Version 9.1
Revised: December 15, 2005



Copyright

Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks

Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA Aqualogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA Aqualogic Service Registry, BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA MessageQ,
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA
WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA
WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Server Process Edition, BEA
WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA
SOA Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.



Contents

Introduction and Roadmap
Document SCOPE . . ..ottt e
Document Audience. . . ... ..ot
Guide to thisDocument . . . ... ... e
Related Information . .. ... ...

Security Samples and Tutorials . . ... ... .

Security Examples in the WebLogic Server Distribution. . ....................

Additional Examples Available for Download. .............................

2. Overview of the WebLogic Security Service

Introduction to the WebLogic Security Service. .. ..........c. ...
Features of the WebLogic Security Service. ......... ... ..o ..
Balancing Ease of Use and Customizability ........... .. .. .. . .. oo,

New and Changed Features in ThisRelease ... .......... ... .. .. ... .. ... ...

XACML 2.0 Authorization and Role Mapping Providers Are Now Supported . . ..
SAML New Features . ........ ...ttt
Provider and Services Configuration. . ............. .. ... oo,
Enhanced Key Management .. .......... ...t ennenen ..
Enhanced Trust Management . ..............c.iuiinininnuneneneen...
Destination Site Verification . ........... ... .. .. .. i i
Query Parameter/Form Variable Support ............ .. .. ... .. ... ...

Conditional Deployment of SAML Applications . .......................

Understanding WebLogic Security



3. Security Fundamentals

AUditing. . ..o 3-1
AUthentiCation. . . . ...ttt e 3-2
Subjects and Principals . ........ .. .. . 3-2
Java Authentication and Authorization Service JAAS) ...................... 3-4
JAAS LoginModules . ......... .. 3-4

JAAS Control Flags . .. ... ... e 3-4
CallbackHandlers. . . . ...ttt e 3-5
Mutual Authentication . . .. ...ttt e e 3-6
Identity Assertion Providers and LoginModules. ........................ ... 3-6
Identity Assertionand Tokens .. ......... ... .. . . i 3-6
Challenge Identity ASSErtion . .. ..........c. oottt 3-7
Servlet Authentication Filters .. .. ... ... ... . . 3-7
Types of Authentication. . ... ... . i 3-8
Username/Password Authentication. . .......... ... ... . . i, 3-9
Certificate Authentication. . .. ...... ... .. i, 3-9

Digest Authentication. ... ............ i 3-9
Perimeter Authentication .. ............. .ottt 3-10

Security Assertion Markup Language (SAML) . ....... ... ... .. .. .. .. ... ... 3-11
Single Sign-On (SSO) . ... oo 3-13
Web Browsers and HTTP Clients viaSAML . ... ... ... ... ... .. . oL 3-13
Desktop CLients . . ... e 3-14
AUthOTIZAtioN. . . . ..o e 3-15
WebLogic Resources . ....... ... 3-15
Security Policies. . .. ... ... ... 3-16
ContextHandlers. . . ... . 3-17
ACCesS DECISIONS . . . oottt 3-17

iv Understanding WebLogic Security



Adjudication. . . ... ... 3-18

Identity and Trust. . . ... ..o 3-18
Private Keys . . . ... o 3-18
Digital Certificates . ... ... ..ot e 3-19
Certificate Authorities ............. . i i 3-19
Certificate Lookup and Validation .. ............. .. .. ... 3-20

Secure Sockets Layer (SSL) .. ..ot e 3-21
SSLFeatures. . . .. ...ttt 3-22
SSL TUNnEeling . ... oottt e e e e 3-23
One-way/Two-way SSL Authentication. . ......... ... ... .. ..., 3-24
Host Name Verification ............ .. .. .. 3-25
Trust Managers. . . ... ove ittt e e e e 3-25
Asymmetric Key Algorithms . ........ ... .. . 3-26
Symmetric Key Algorithms . ....... ... .. i 3-26
Message Digest Algorithms . . ... .. 3-27
Cipher SUItes . . ... 3-27

Firewalls ... ... o 3-28
Connection Filters . ...... ... .. i 3-29
Perimeter Authentication ... .............. .ttt 3-29

J2EE and WebLogic Security . .. ... ..ot e 3-29
J2SE 5.0 Security Packages . . .. ... 3-30

The Java Secure Socket Extension JSSE) . . .......... ... ... ... ... .... 3-30
Java Authentication and Authorization Services JAAS)................. 3-30
The Java Security Manager. . ....... ..ot 3-31
Java Cryptography Architecture and Java Cryptography Extensions (JCE). . . 3-31
Java Authorization Contract for Containers JACC) .................... 3-32
Common Secure Interoperability Version 2 (CSIV2)............ .. ... .. ... .. 3-32

Understanding WebLogic Security



4. Security Realms

Introduction to Security Realms . . ..... ... .. . .. . L L 4-1
U SrS .ttt 4-2
GIOUPS .« .ottt 4-3
Security Roles . .. ... 4-3
Security POlicies . . ... ... 4-3
Security Providers. .. ... .. 4-4
Security Provider Databases ............... .. .. .. . i 4-4
What Is a Security Provider Database?. .. ........... ... ... ... ... .... 4-4
Security Realms and Security Provider Databases. ...................... 4-5
Embedded LDAP Server .......... ... . i 4-6

Types of Security Providers. . .......... ... .. . . 4-6
Authentication Providers .......... .. .. .. . . 4-7

Identity Assertion Providers.......... ... ... .. .. . i 4-8
Principal Validation Providers .......... ... ... .. ... .. .. . .. ... 4-9
Authorization Providers . ........ ... . .. 4-10
Adjudication Providers. ........... . . 4-10

Role Mapping Providers. .. ... 4-11
Auditing Providers . . ... 4-12
Credential Mapping Providers ......... ... .. ... ... .. . . ... 4-12
Certificate Lookup and Validation Providers . . ........................ 4-13
Keystore Providers . . ........ .. . 4-13

Realm Adapter Providers . ......... ... .. .. . . 4-13

Security Provider Summary .. ......... ... .. L L 4-14

Security Providers and Security Realms .. ...... ... .. . ... .. ... ... .. 4-15

5. WebLogic Security Service Architecture
WebLogic Security Framework . ...... ... .. . . . 5-1

vi Understanding WebLogic Security



The Authentication Process . . ... e 5-3

The Identity Assertion Process. . .......... ... i 5-4
The Principal Validation Process .. ......... ... .. .. . .. ... . . ... 5-4
The Authorization Process . .. ... e 5-5
The Adjudication Process. ... ...t 5-6
The Role Mapping Process. . . ...t e 5-7
The Auditing Process . . .. ... v it e e 5-8
The Credential Mapping Process . . ...t 5-9
The Certificate Lookup and Validation Process. .. ........ ... ... .. ... .... 5-9
Single Sign-On with the WebLogic Security Framework. .. .................. ... 5-10
WebLogic Server Acting a SAML Source Site . .......... ... ... 5-11
POST Profile. . . ... 5-11

Artifact Profile. . . ... .. 5-12
Weblogic Server Acting as SAML Destination Site . ....................... 5-12
POST Profile. . . ... 5-13

Artifact Profile. . . ... .. 5-13

Desktop SSO Process. . .. ov v 5-14
SAML Token Profile Support in WebLogic Web Services ...................... 5-16
Sender-Vouches ASSEItionS . ... ......ouuiiniiniin it 5-16
Holder-of-Key ASSEertion . ... ... .....o.uenin it 5-17
The Security Service Provider Interfaces (SSPIs). . .......... ... .. . . ... 5-18
Weblogic Security Providers. . ........ ... i 5-19
WebLogic Authentication Provider .. ....... ... .. .. . .. .. . . ... 5-21
Alternative Authentication Providers. ........ ... ... ... .. ... ... .. ... .. 5-21
WebLogic Identity Assertion Provider. .. ...... .. ... . .. . i . 5-22
SAML Identity Assertion Provider ........... ... . .. .. . . .. 5-23
Negotiate Identity Assertion Provider ... ........ .. ... .. .. . .. . . ... 5-23
WebLogic Principal Validation Provider . .......... ... .. .. ... .. .. ... 5-24

Understanding WebLogic Security vii



WebLogic Authorization Provider. . ........ ... .. .. ... .. .. .. 5-24

WebLogic Adjudication Provider .. ........ .. ... .. .. . . . . .. 5-25
WebLogic Role Mapping Provider . .......... ... .. .. .. .. ... .. ..... 5-26
WebLogic Auditing Provider. .. ......... ... .. . . .. . 5-26
WebLogic Credential Mapping Provider. ......... ... .. .. . .. .. .. ..... 5-27
SAML Credential Mapping Provider. . . ........ .. .. ... .. i i 5-27
PKI Credential Mapping Provider. ......... ... .. . . .. . . 5-27
WebLogic CertPath Provider. ........ ... . 5-28
Certificate Registry . ... ...t e 5-28
Versionable Application Provider .. ........ .. ... .. ... . . . 5-28
WebLogic Keystore Provider. .. ....... ... i 5-29
WebLogic Realm Adapter Providers .. ........ ... . i, 5-29

6. Terminology

viii

Understanding WebLogic Security



Introduction and Roadmap

The following sections describe the contents and organization of this guide—Understanding
WebLogic Security.

“Document Scope” on page 1-1
“Document Audience” on page 1-1
“Guide to this Document” on page 1-2
“Related Information” on page 1-3

“Security Samples and Tutorials” on page 1-4

Document Scope

While other security documents in the BEA WebLogic Server™ documentation set guide users
through specific tasks—such as programming WebLogic® security, developing a custom
security provider, or managing the WebLogic Security Service—this guide is intended for all
users of the WebLogic Security Service. Thus, this document is the starting point for
understanding the WebLogic Security Service.

Note: The WebLogic® Security Service involves many unique terms. Before reading this

manual, familiarize yourself with the terms in Chapter 6, “Terminology.”

Document Audience

This document is intended for the following audiences:

Understanding WebLogic Security 1-1



Introduction and Roadmap

e Application Architects—Architects who, in addition to setting security goals and designing

the overall security architecture for their organizations, evaluate WebLogic Server security
features and determine how to best implement them. Application Architects have in-depth
knowledge of Java programming, Java security, and network security, as well as knowledge
of security systems and leading-edge, security technologies and tools.

Security Developers—Developers who focus on defining the system architecture and
infrastructure for security products that integrate into WebLogic Server and on developing
custom security providers for use with WebLogic Server. They work with Application
Architects to ensure that the security architecture is implemented according to design and
that no security holes are introduced, and work with Server Administrators to ensure that
security is properly configured. Security Developers have a solid understanding of security
concepts, including authentication, authorization, auditing (AAA), in-depth knowledge of
Java (including Java Management eXtensions (JMX), and working knowledge of
WebLogic Server and security provider functionality.

Application Developers—Developers who are Java programmers that focus on developing
client applications, adding security to Web applications and Enterprise JavaBeans (EJBs),
and working with other engineering, quality assurance (QA), and database teams to
implement security features. Application Developers have in-depth/working knowledge of
Java (including J2EE components such as servlets/JSPs and JSEE) and Java security.

Server Administrators—Administrators work closely with Application Architects to design
a security scheme for the server and the applications running on the server, to identify
potential security risks, and to propose configurations that prevent security problems.
Related responsibilities may include maintaining critical production systems, configuring
and managing security realms, implementing authentication and authorization schemes for
server and application resources, upgrading security features, and maintaining security
provider databases. Server Administrators have in-depth knowledge of the Java security
architecture, including Web services, Web application and EJB security, Public Key
security, SSL, and Security Assertion Markup Language (SAML).

Application Administrators—Administrators who work with Server Administrators to
implement and maintain security configurations and authentication and authorization
schemes, and to set up and maintain access to deployed application resources in defined
security realms. Application Administrators have general knowledge of security concepts
and the Java Security architecture. They understand Java, XML, deployment descriptors,
and can identify security events in server and audit logs.

Guide to this Document

1-2

This document is organized as follows:

Understanding WebLogic Security



Related Information

e Chapter 2, “Overview of the WebLogic Security Service” introduces the WebLogic
Security Service, describes the audiences of this document, lists its key features, and gives
a brief list what has changed in this release.

e Chapter 3, “Security Fundamentals” describes security concepts as they relate to BEA
WebLogic Server™ security. This section includes discussions of auditing, authentication,
authorization, Secure Sockets Layer (SSL), firewalls, and the relationship between J2EE
and WebLogic security.

e Chapter 4, “Security Realms,” describes security realms, which are used to protect
WebLogic resources.

e Chapter 5, “WebLogic Security Service Architecture,” describes the WebLogic Server
Security architecture. This section includes discussions of the WebLogic Security
Framework, the Security Service Provider Interfaces (SSPIs), and the WebLogic security
providers that are included as part of the product.

e Chapter 6, “Terminology,” defines key terms that you will encounter throughout the
WebLogic Server security documentation.

Related Information

The following BEA WebLogic Server documents contain information that is relevant to the
WebLogic Security Service:

o Securing WebLogic Server—This document explains how to configure security for
WebLogic Server and how to use Compatibility security.

e Developing Security Providers for WebLogic Server—This document provides security
vendors and application developers with the information needed to develop custom security
providers that can be used with WebLogic Server.

e Securing a Production Environment—This document highlights essential security measures
for you to consider before you deploy WebLogic Server into a production environment.

o Securing WebLogic Resources—This document introduces the various types of WebLogic
resources, and provides information that allows you to secure these resources using
WebLogic Server. The current version of this document primarily focuses on securing URL
(Web) and Enterprise JavaBean (EJB) resources.

e WebLogic Server 9.1 Upgrade Guide—This document provides procedures and other
information you need to upgrade 6.x and earlier versions of WebLogic Server to WebLogic
Server 9.1. It also provides information about moving applications from a 6.x or earlier

Understanding WebLogic Security 1-3


http://e-docs.bea.com/wls/docs91/secmanage/index.html
http://e-docs.bea.com/wls/docs91/dvspisec/index.html
http://e-docs.bea.com/wls/docs91/lockdown/index.html
http://e-docs.bea.com/wls/docs91/secwlres/index.html
http://e-docs.bea.com/wls/docs91/../../common/docs91/upgrade/index.html

Introduction and Roadmap

version of WebLogic Server to 9.1. For specific information on upgrading WebLogic
Server security, see S ecurity in the WebLogic Server 9.1 Upgrade Guide.

e Javadocs for WebLogic Classes—This document provides reference documentation for the
WebLogic security packages that are provided with and supported by this release of
WebLogic Server.

Security Samples and Tutorials

1-4

In addition to the documents listed in Related Information, BEA Systems provides a variety of
code samples for developers.

Security Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in
WLI_HOME\samples\server\examples\src\examples\security, where wI_HOME is the
top-level directory of your WebLogic Server installation. You can start the examples server, and
obtain information about the samples and how to run them from the WebLogic Server Start menu.

The following examples illustrate WebLogic security features:
e Java Authentication and Authorization Service

e Outbound and Two-way SSL

Additional Examples Available for Download

Additional API examples are available for download at http://dev2dev.bea.com. These examples
are distributed as . zip files that you can unzip into an existing WebLogic Server samples
directory structure.

You build and run the downloadable examples in the same manner as you would an installed
WebLogic Server example. See the download pages of individual examples for more
information.

Understanding WebLogic Security


http://e-docs.bea.com/wls/docs91/../../common/docs91/upgrade/compat.html#1080245
http://e-docs.bea.com/wls/docs91/../../common/docs91/upgrade/index.html
http://e-docs.bea.com/wls/docs91/javadocs/index.html
http://dev2dev.bea.com/

CHAPTERa

Overview of the WebLogic Security
Service

The following sections introduce the WebLogic Security Service and its features:
e “Introduction to the WebLogic Security Service” on page 2-1
e “Features of the WebLogic Security Service” on page 2-2
e “Balancing Ease of Use and Customizability” on page 2-3

e “New and Changed Features in This Release” on page 2-4

Introduction to the WebLogic Security Service

Deploying, managing, and maintaining security is a huge challenge for an information
technology (IT) organization that is providing new and expanded services to customers using the
Web. To serve a worldwide network of Web-based users, an IT organization must address the
fundamental issues of maintaining the confidentiality, integrity and availability of the system and
its data. Challenges to security involve every component of the system, from the network itself
to the individual client machines. Security across the infrastructure is a complex business that
requires vigilance as well as established and well-communicated security policies and
procedures.

WebLogic Server includes a security architecture that provides a unique and secure foundation
for applications that are available via the Web. By taking advantage of the new security features
in WebLogic Server, enterprises benefit from a comprehensive, flexible security infrastructure
designed to address the security challenges of making applications available on the Web.
WebLogic security can be used standalone to secure WebLogic Server applications or as part of

Understanding WebLogic Security 2-1



Overview of the WebLogic Security Service

an enterprise-wide, security management system that represents a best-in-breed, security
management solution.

Features of the WebLogic Security Service

2-2

The open, flexible security architecture of WebLogic Server delivers advantages to all levels of
users and introduces an advanced security design for application servers. Companies now have a
unique application server security solution that, together with clear and well-documented security
policies and procedures, can assure the confidentiality, integrity and availability of the server and

its data.
The key features of the WebLogic Security Service include:
e A comprehensive and standards-based design.

e End-to-end security for WebLogic Server-hosted applications, from the mainframe to the
Web browser.

e Legacy security schemes that integrate with WebLogic Server security, allowing companies

to leverage existing investments.

e Security tools that are integrated into a flexible, unified system to ease security
management across the enterprise.

e Easy customization of application security to business requirements through mapping of
company business rules to security policies.

e A consistent model for applying security policies to J2EE and application-defined
resources.

e Easy updates to security policies. This release includes usability enhancements to the
process of creating security policies as well as additional expressions that control access to
WebLogic resources.

e Easy adaptability for customized security solutions.

e A modularized architecture, so that security infrastructures can change over time to meet
the requirements of a particular company.

e Support for configuring multiple security providers, as part of a transition scheme or
upgrade path.

e A separation between security details and application infrastructure, making security easier
to deploy, manage, maintain, and modify as requirements change.

Understanding WebLogic Security



Balancing Ease of Use and Customizability

e Default, WebLogic security providers that provide you with a working security scheme out
of the box. This release supports additional authentication stores such as databases, and
Windows NT account information.

e Customization of security schemes using custom security providers

e Unified management of security rules, security policies, and security providers through the
WebLogic Server Administration Console.

Support for standard J2EE security technologies such as the Java Authentication and
Authorization Service (JAAS), Java Secure Sockets Extensions (JSSE), Java Cryptography
Extensions (JCE), and Java Authorization Contract for Containers (JACC).

e A foundation for web services security including support for SAML.

Capabilities which allow WebLogic Server to participate in single sign-on (SSO) with Web
sites, Web applications, and Desktop clients.

A framework for managing public keys which includes certificate lookup, verification,
validation, and revocation as well as a certificate registry.

Improved performance of the Secure Sockets Layer (SSL) protocol and the LDAP
Authentication providers.

Balancing Ease of Use and Customizability

The components and services of the WebLogic Security Service seek to strike a balance between
ease of use, manageability (for end users and administrators), and customizability (for application
developers and security developers). The following paragraphs highlight some examples:

Easy to use: For the end user, the secure WebLogic Server environment requires only a single
sign-on for user authentication (ascertaining the user’s identity). Users do not have to
re-authenticate within the boundaries of the WebLogic Server domain that contains application
resources. Single sign-on allows users to log on to the domain once per session rather than
requiring them to log on to each resource or application separately.

For the developer and the administrator, WebLogic Server provides a new Domain Configuration
Wizard to help with the creation of new domains with an administration server, managed servers,
and optionally, a cluster, or with extending existing domains by adding individual severs. The
Domain Configuration Wizard also automatically generates a config.xml file and start scripts
for the server(s) you choose to add to the new domain.

Manageable: Administrators who configure and deploy applications in the WebLogic Server
environment can use the WebLogic security providers included with the product. These default

Understanding WebLogic Security 2-3



Overview of the WebLogic Security Service

providers support all required security functions, out of the box. An administrator can store
security data in the WebLogic Server-supplied, security store (an embedded, special-purpose,
LDAP directory server) or use an external LDAP server, database, or user source. To simplify the
configuration and management of security in WebLogic Server, a robust, default security
configuration is provided.

Customizable: For application developers, WebLogic Server supports the WebLogic security
API and J2EE security standards such as JAAS, JSS, JCE, and JACC. Using these APIs and
standards, you can create a fine-grained and customized security environment for applications
that connect to WebLogic Server.

For security developers, the WebLogic Server Security Service Provider Interfaces (SSPIs)
support the development of custom security providers for the WebLogic Server environment.

New and Changed Features in This Release

2-4

This section describes features that have been added to the WebLogic Server in this release.

Note: If you are not familiar with the new features provided in version 9.0 of WebLogic Server,
see the What’s New in WebLogic Server 9.0 section of the WebLogic Server Release
Notes, which is available here: What’s New in WebLogic Server 9.0.

XACML 2.0 Authorization and Role Mapping Providers Are Now
Supported

As of version 9.1, WebLogic Server has implementations of a set of authorization and role
mapping providers that support the eXtensible Access Control Markup Language (XACML) 2.0
standard from OASIS. WebLogic Server includes two new security providers, the XACML
Authorization provider and the XACML Role Mapping provider.

These providers can import, export, persist and execute policy expressed using all standard
XACML 2.0 functions, attributes, and schema elements.

New domains created using 9.1 will default to using the XACML authorization and role mapping
providers. Existing domains, upgraded to 9.1, will continue to use the authorization and role
mapping providers currently specified, such as third-party partner providers or the original
WebLogic Server proprietary providers. Customers who want to migrate existing domains from
using WebLogic Server proprietary providers to the XACML providers can do so, including
performing bulk moves of existing policy.

Understanding WebLogic Security


http://bernal.bea.com/stage/wls/docs90/notes/new.html

New and Changed Features in This Release

If you use the WebLogic Server Administration Console to add a new Authorization or Role
Mapping provider, you can add the new provider as a DefaultAuthorizer or DefaultRoleMapper
provider, or as a XACML provider.

Custom XACML providers are not supported in this release.

The XACML 2.0 specification is available at
(http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml).

SAML New Features

This section describes new and changed features for SAML in WebLogic Server 9.1.

Provider and Services Configuration

In WebLogic Server 9.0, all SAML configuration was done by means of configuration attributes
on the SAML provider MBeans. In WebLogic Server 9.1, configuration of the SAML providers
and services has been enhanced as follows:

e New versions of the SAMLCredentialMapper and SAMLIdentity Asserter providers have
been added. The SAML V1 providers are deprecated; you should use the V2 versions of
the SAMLCredentialMapper and SAMLIdentity Asserter providers.

Although the version number of the providers has been incremented to V2, both providers
are SAML 1.1 providers.

e Configuration for SAML partners (asserting and relying parties) has been moved out of the
providers and into a SAML Partner Registry in the embedded LDAP server.

e Configuration for SAML services (SSO protocol responders) has been moved out of the
providers and into a new Federation Services MBean as a child of the Server MBean.

e Several new configuration options have been added, primarily related to configuration of
keys, trusted certificates, and query parameters for use with the SSO profiles.

Enhanced Key Management

In WebLogic Server 9.0, SAML used the server’s SSL server identity credentials (private key and
certificate chain) for signing assertions and SAML protocol elements, and for connecting to
external SAML services when SSL client credentials were required.

In WebLogic Server 9.1, SAML still relies on the server’s keystore and requires that SSL be
configured to use keystores, but it is now possible to configure separate aliases and passphrases

Understanding WebLogic Security 2-5


http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

Overview of the WebLogic Security Service

2-6

for three distinct credentials: an assertion signing key, a protocol signing key, and an SSL client
identity. Each of these credentials defaults to the server’s SSL identity if not specified. These
changes are implemented only in the new versions of the providers.

In addition, the SAML key management code has been enhanced to listen for changes to the
relevant MBeans and respond to keystore/alias configuration changes dynamically.

Enhanced Trust Management

WebLogic Server 9.1 improves trust management by requiring that each partner configuration
specify the aliases of the certificates trusted for particular purposes — assertion signing, SAML
protocol element signing, and SSL client authentication.

As in WebLogic Server 9.0, certificates must be present in the SAML certificate registry to be
trusted. However, registration is a necessary but insufficient condition for trust. Unlike
WebLogic Server 9.0, which trusts any registered certificate for any purpose, WebLogic Server
9.1 trusts only the specific certificate configured, on a per-partner basis, for the particular purpose
at hand.

WebLogic Server 9.1 removes the requirement that signatures include a <ds:keyinfo> element
containing a certificate that can be used to verify the signature. Because the certificate trusted for
a given signature is known through configuration, the SAML runtime does not need <ds:keyinfo>
for signature verification.

Destination Site Verification

During execution of the Browser/Artifact profile, which specifies a method of conveying an SSO
assertion to an ACS service by passing an identifying “artifact” as a query parameter, a
destination site that has received a SAML artifact contacts the source site that issued the artifact
to retrieve the corresponding assertion.

The SAML specification requires the source site to verify that the destination site requesting the
assertion is the site to which the artifact was originally sent.

The WebLogic Server 9.0 Assertion Retrieval Service (ARS) can verify trust in destination sites
when two-way SSL is used, but cannot verify that the destination site requesting an assertion is
the one to which an artifact was sent.

In WebLogic Server 9.1, the ARS supports multiple authentication methods for destination sites
(SSL client certificate, username/password), and verifies that the site requesting an assertion is
the site to which the corresponding artifact was sent.

Understanding WebLogic Security



New and Changed Features in This Release

These changes require that a SAMLAssertionStoreV2 assertion store plugin be configured. The
default assertion store plugin supports this feature.

Query Parameter/Form Variable Support

SAML partner configuration in WebLogic Server 9.1 includes the ability to specify parameters
that are appended as query parameters when redirecting, or included as form variables when
POSTing, during execution of the of SSO profiles. In addition, the implementation ensures that
any query parameters/form variables received on a SAML service URL are propagated
end-to-end during execution of the SSO profiles.

One important use of this feature is to include partner IDs as request parameters. (Many SAML
implementations require that a partner ID be specified as a query parameter on an incoming SSO
profile request.) WebLogic Server 9.1 also requires that partner IDs be present, and uses them to
look up partner configuration information.

Conditional Deployment of SAML Applications

WebLogic Server provides several application WAR files that are deployed by default to provide
application contexts for the SAML services. These WAR files contain no displayable files or
executable code; they exist only to provide application contexts and deployment descriptors
appropriate to the SAML services.

In WebLogic Server 9.0, these applications are always deployed on every server. In WebLogic
Server 9.1, the applications are individually deployed only when actually needed; that is, when
one or more SAML services are configured to run in that application context on the server where
the application is deployed.

Understanding WebLogic Security 2-1



Overview of the WebLogic Security Service

2-8 Understanding WebLogic Security



Security Fundamentals

The following sections describe security fundamentals as they relate to security in WebLogic
Server:

“Auditing” on page 3-1

“Authentication” on page 3-2

“Security Assertion Markup Language (SAML)” on page 3-11
“Single Sign-On (SSO)” on page 3-13

“Authorization” on page 3-15

“Identity and Trust” on page 3-18

“Secure Sockets Layer (SSL)” on page 3-21

“Firewalls” on page 3-28

“J2EE and WebLogic Security” on page 3-29

Auditing

Auditing is the process whereby information about operating requests and the outcome of those
requests are collected, stored, and distributed for the purposes of non-repudiation. In other words,
auditing provides an electronic trail of computer activity. In the WebLogic Server security
architecture, an Auditing provider is used to provide auditing services.

Understanding WebLogic Security 3-1



Security Fundamentals

If configured, the WebLogic Security Framework will call through to an Auditing provider before
and after security operations (such as authentication or authorization) have been performed, when
changes to the domain configuration are made, or when management operations on any resources
in the domain are invoked. The decision to audit a particular event is made by the Auditing
provider itself and can be based on specific audit criteria and/or severity levels. The records
containing the audit information may be written to output repositories such as an LDAP server,
database, and a simple file.

Authentication

3-2

Authentication is the mechanism by which callers prove that they are acting on behalf of specific
users or systems. Authentication answers the question, “Who are you?” using credentials such as
username/password combinations.

In WebLogic Server, Authentication providers are used to prove the identity of users or system
processes. Authentication providers also remember, transport, and make identity information
available to various components of a system (via subjects) when needed. During the
authentication process, a Principal Validation provider provides additional security protections
for the principals (users and groups) contained within the subject by signing and verifying the
authenticity of those principals.

The following sections describe authentication concepts and functionality.
e “Subjects and Principals” on page 3-2
e “Java Authentication and Authorization Service (JAAS)” on page 3-4
e “CallbackHandlers” on page 3-5
e “Mutual Authentication” on page 3-6
e “Servlet Authentication Filters” on page 3-7
e “Identity Assertion Providers and LoginModules” on page 3-6
e “Identity Assertion and Tokens” on page 3-6

e “Types of Authentication” on page 3-8

Subjects and Principals

Subjects and principals are closely related.

Understanding WebLogic Security



Authentication

A principal is an identity assigned to a user or group as a result of authentication. Both users and
groups can be used as principals by application servers such as WebLogic Server. The Java
Authentication and Authorization Service (JAAS) requires that subjects be used as containers for
authentication information, including principals.

Figure 3-1 illustrates the relationships among users, groups, principals, and subjects.

Figure 3-1 Relationships Among Users, Groups, Principals and Subjects

Principals

WLSUser
"Smith"

WLSGroup
"Developers"

Subject <

WLSGroup
"Administrators"

MyPrincipal
"foobar"

N

As part of a successful authentication, principals are signed and stored in a subject for future use.
A Principal Validation provider signs principals, and an Authentication provider’s LoginModule
actually stores the principals in the subject. Later, when a caller attempts to access a principal
stored within a subject, a Principal Validation provider verifies that the principal has not been
altered since it was signed, and the principal is returned to the caller (assuming all other security
conditions are met).

Any principal that is going to represent a WebLogic Server user or group needs to implement the
WLSUser and WLSGroup interfaces, which are available in the weblogic.security. spi
package.

Understanding WebLogic Security 3-3



Security Fundamentals

3-4

Java Authentication and Authorization Service (JAAS)

Whether the client is an application, applet, Enterprise JavaBean (EJB), or servlet that requires
authentication, WebLogic Server uses the Java Authentication and Authorization Service (JAAS)
classes to reliably and securely authenticate to the client. JAAS implements a Java version of the
Pluggable Authentication Module (PAM) framework, which permits applications to remain
independent from underlying authentication technologies. Therefore, the PAM framework allows
the use of new or updated authentication technologies without requiring modifications to your
application.

WebLogic Server uses JAAS for remote fat-client authentication, and internally for
authentication. Therefore, only developers of custom Authentication providers and developers of
remote fat client applications need to be involved with JAAS directly. Users of thin clients or
developers of within-container fat client applications (for example, those calling an Enterprise
JavaBean (EJB) from a servlet) do not require the direct use or knowledge of JAAS.

JAAS LoginModules

LoginModules are the work-horses of authentication: all LoginModules are responsible for
authenticating users within the security realm and for populating a subject with the necessary
principals (users/groups). LoginModules that are not used for perimeter authentication also verify
the proof material submitted (for example, a user’s password).

If there are multiple Authentication providers configured in a security realm, each of the
Authentication providers’ LoginModules will store principals within the same subject. Therefore,
if a principal that represents a WebLogic Server user (that is, an implementation of the WLSUser
interface) named “Joe” is added to the subject by one Authentication provider’s LoginModule,
any other Authentication provider in the security realm should be referring to the same person
when they encounter “Joe”. In other words, the other Authentication providers’ LoginModules
should not attempt to add another principal to the subject that represents a WebLogic Server user
(for example, named “Joseph”) to refer to the same person. However, it is acceptable for another
Authentication provider’s LoginModule to add a principal of a type other than WwLSUser with the
name “Joseph”.

JAAS Control Flags

If a security realm has multiple Authentication providers configured, the Control Flag attribute
on the Authenticator provider determines the ordered execution of the Authentication providers.
The values for the Control Flag attribute are as follows:

Understanding WebLogic Security



Authentication

e REQUIRED—This LoginModule must succeed. Even if it fails, authentication proceeds
down the list of LoginModules for the configured Authentication providers. This setting is
the default.

e REQUISITE—This LoginModule must succeed. If other Authentication providers are
configured and this LoginModule succeeds, authentication proceeds down the list of
LoginModules. Otherwise, return control to the application.

e SUFFICIENT—This LoginModule needs not succeed. If it does succeed, return control to
the application. If it fails and other Authentication providers are configured, authentication
proceeds down the LoginModule list.

e OPTIONAL—The user is allowed to pass or fail the authentication test of this
Authentication providers. However, if all Authentication providers configured in a security
realm have the JAAS Control Flag set to OPTIONAL, the user must pass the
authentication test of one of the configured providers.

CallbackHandlers

A callbackHandler is a highly-flexible JAAS standard that allows a variable number of
arguments to be passed as complex objects to a method. There are three types of
CallbackHandlers: NameCallback, PasswordCallback, and TextInputCallback, all of
which are part of the javax.security.auth.callback package. The NameCallback and
PasswordCallback return the username and password, respectively. Text InputCallback can
be used to access the data users enter into any additional fields on a login form (that is, fields other
than those for obtaining the username and password). When used, there should be one
TextInputCallback per additional form field, and the prompt string of each
TextInputCallback must match the field name in the form. WebLogic Server only uses the
TextInputCallback for form-based Web application login.

An application implements a CallbackHandler and passes it to underlying security services so
that they may interact with the application to retrieve specific authentication data, such as
usernames and passwords, or to display certain information, such as error and warning messages.

CallbackHandlers are implemented in an application-dependent fashion. For example,
implementations for an application with a graphical user interface (GUI) may pop up windows to
prompt for requested information or to display error messages. An implementation may also
choose to obtain requested information from an alternate source without asking the user.

Underlying security services make requests for different types of information by passing
individual callbacks to the CallbackHandler. The CallbackHandler implementation
decides how to retrieve and display information depending on the callbacks passed to it. For

Understanding WebLogic Security 3-5



Security Fundamentals

3-6

example, if the underlying service needs a username and password to authenticate a user, it uses
a NameCallback and PasswordCallback. The callbackHandler can then choose to prompt
for a username and password serially, or to prompt for both in a single window.

Mutual Authentication

With mutual authentication, both the client and the server are required to authenticate themselves
to each other. This can be done by means of certificates or other forms of proof material.
WebLogic Server supports two-way SSL authentication, which is a form of mutual
authentication. However, by strict definition, mutual authentication takes place at higher layers
in the protocol stack then does SSL authentication. For more information, see
“One-way/Two-way SSL Authentication” on page 3-24.

|dentity Assertion Providers and LoginModules

When used with a LoginModule, Identity Assertion providers support single sign-on. For
example, an Identity Assertion provider can process a SAML assertion so that users are not asked
to sign on more than once.

The LoginModule that an Identity Assertion provider uses can be:
e Part of a custom Authentication provider you develop.

e Part of the WebLogic Authentication provider that BEA developed and packaged with
WebLogic Server.

e Part of a third-party security vendor’s Authentication provider.

Unlike in a simple authentication situation, the LoginModules that Identity Assertion providers
use do not verify proof material such as usernames and passwords; they simply verify that the
user exists.

|dentity Assertion and Tokens

Identity Assertion providers support user name mappers, which map a valid token to a WebLogic
Server user. You develop Identity Assertion providers to support the specific types of tokens that
you will be using to assert the identities of users or system processes. You can develop an Identity
Assertion provider to support multiple token types, but the WebLogic Server administrator must
configure the Identity Assertion provider so that it validates only one “active” token type. While
you can have multiple Identity Assertion providers in a security realm with the ability to validate
the same token type, only one Identity Assertion provider can actually perform this validation.

Understanding WebLogic Security



Authentication

Note: To use the WebLogic Identity Assertion provider for X.501 and X.509 certificates, you
have the option of using the default user name mapper that is supplied with the WebLogic
Server product (weblogic.security.providers.authentication.
DefaultUserNameMapperImpl) or providing you own implementation of the
weblogic.security.providers.authentication.UserNameMapper interface. For
more information, see Do I Need to Develop a Custom Identity Assertion Provider? in
Developing Security Providers for WebLogic Server.

Challenge Identity Assertion

Challenge identity assertion schemes provide for multiple challenges, responses messages, and
state. A WebLogic Server security realm can include security providers that support
authentication protocols such as Microsoft's Windows NT Challenge/Response (NTLM), Simple
and Protected GSS-API Negotiation Mechanism (SPNEGO), and other challenge/response
authentication mechanisms. WebLogic Server includes a SPNEGO security provider, named the
Negotiate Identity Assertion provider. You can develop and deploy security providers that
implement NTLM or other challenge/response authentication mechanisms. For more
information, see Developing Security Providers for WebLogic Server.

Servlet Authentication Filters

As defined by the Java Servlet API 2.3 specification, filters are objects that can modify a request
or response. Filters are preprocessors of the request before it reaches the servlet, and/or
postprocessors of the response leaving the servlet. Filters provide the ability to encapsulate
recurring tasks in reusable units.

Filters can be used as a substitute for container-based authentication but there are some
drawbacks to this design:

e As specified by the Java Servlet API 2.3 specification, filters are run after authentication
and authorization. If filters are used for authentication, they must also be used for
authorization thereby preventing container-managed authorization from being used. Most
use cases that require extensions to the authentication process in the Servlet container do
not require extensions to the authorization process. Having to implement the authorization
process in a filter is awkward, time consuming, and error-prone.

e J2EE filters are defined per Web application. Code for a filter must reside in the WAR file
for the Web application and the configuration must be defined in the web.xm1 file. An
authentication mechanism is typically determined by the system administrator after an
application is written (not by the programmer who created the WAR file). The mechanism

Understanding WebLogic Security 3-7


http://e-docs.bea.com/wls/docs91/dvspisec/ia.html#ia300
http://e-docs.bea.com/wls/docs91/dvspisec/index.html

Security Fundamentals

3-8

can be changed during the lifetime of an application, and is desired for all (or at least most)
applications in a site.

Servlet Authentication filters are an extension to of the filter object which overcome these
drawbacks allowing filters to replace container-based authentication.

JAAS LoginModules (within a WebLogic Authentication provider) can be used for
customization of the login process. Servlet Authentication filters enable the LoginModule model
allowing the authentication provider to control the actual conversation with the client.
Customizing the location of the user database, the types of proof material required to execute a
login, or the population of the Subject with groups is implemented via a LoginModule. On the
other hand, redirecting to a remote site to execute the login, extracting login information out of
the query string, and negotiating a login mechanism with a browser is implemented via a Servlet
Authentication filter.

Types of Authentication

WebLogic Server users must be authenticated whenever they request access to a protected
WebLogic resource. For this reason, each user is required to provide a credential (for example, a
password) to WebLogic Server. The following types of authentication are supported by the
WebLogic Authentication provider that is included in the WebLogic Server distribution:

e “Username/Password Authentication” on page 3-9
e “Certificate Authentication” on page 3-9
e “Digest Authentication” on page 3-9

e “Perimeter Authentication” on page 3-10

WebLogic Server can use the WebLogic Authentication provider that is provided as part of the
WebLogic Server product or custom security providers to perform the different types of
authentication. For information on the WebLogic Authentication provider and how to configure
authentication, see “The Authentication Process” on page 5-3 and the following sections in
Securing WebLogic Server:

e Configuring Security Providers

e Configuring SSL

Understanding WebLogic Security


http://e-docs.bea.com/wls/docs91/secmanage/providers.html
http://e-docs.bea.com/wls/docs91/secmanage/ssl.html

Authentication

Username/Password Authentication

In username/password authentication, a user ID and password are requested from the user and
sent to WebLogic Server. WebLogic Server checks the information and if it is trustworthy, grants
access to the protected WebLogic resource.

Secure Sockets Layer (SSL), or Hyper-Text Transfer Protocol (HTTPS), can be used to provide
an additional level of security to username/password authentication. Because SSL encrypts the
data transferred between the client and WebLogic Server, the user ID and password of the user
do not flow in the clear. Therefore, WebLogic Server can authenticate the user without
compromising the confidentiality of the user’s ID and password.

Certificate Authentication

When an SSL or HTTPS client request is initiated, WebLogic Server responds by presenting its
digital certificate to the client. The client then verifies the digital certificate and an SSL
connection is established. The digital certificate is issued by an entity (a trusted certificate
authority), which validates the identity of WebLogic Server.

You can also use two-way SSL authentication, a form of mutual authentication. With two-way
SSL authentication, both the client and server must present a certificate before the connection
thread is enabled between the two. See “One-way/Two-way SSL Authentication” on page 3-24.

Note: Two-way SSL authenticatio