‘.."‘

o 7
2 bea
L/

BEAWebLogic
Servere

Developing Applications
with WebLogic Server

Version 9.1
Revised: October 6, 2006

Copyright

Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks

Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA MessageQ,
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA
WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA
WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Server Process Edition, BEA
WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA
SOA Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Contents

Overview of WebLogic Server Application Development

Document Scope and AUdIienCe.ot v it e 1-2
WebLogic Server and the J2EE Platform 1-2
Overview of J2EE Applications and Modules., 1-3
Web Application Modules. 1-3
SeTVICTS . . . ot 1-4
JavaServer Pages. 1-4
More Information on Web Application Modules 1-4
Enterprise JavaBean Modules 1-4
EIB OVeIVIEW . . . oottt e e e e 1-4
EJBs and WebLogic Server 1-5
Connector Modules 1-5
Enterprise Applicationst 1-6
WebLogic Web SeIVICESottt e e e e 1-7
IMS and IDBC Modules 1-8
WebLogic Diagnostic Framework Modules 1-8
XML Deployment DesCriptors.o vvu ettt et e e e 1-9
Automatically Generating Deployment Descriptors. 1-12
EIBGeN . .ot 1-12
Java-based Command-line Utilities. 1-12

Developing Applications with WebLogic Server v

vi

Deployment Plans i 1-14

Development SOftware it 1-15
Apache ANt. it 1-15
Source Code Editoror IDE. 1-16
Database System and JDBC Driver, 1-16
WEeb BrOWSET. . . . oot 1-17
Third-Party Software i 1-17

Using Ant Tasks to Configure and Use a WebLogic Server
Domain

Overview of Configuring and Starting Domains Using Ant Tasks 2-2
Starting Servers and Creating Domains Using the wlserver Ant Task............... 2-2
Basic Steps for Using wilservert 2-3
Sample build.xml Files forwlserver 2-3
wlserver Ant Task Reference. i i 2-4
Configuring a WebLogic Server Domain Using the wlconfig Ant Task 2-9
What the wiconfig Ant Task Does.t 2-9
Basic Steps for Usingwlconfig i 2-10
Sample build.xml Files forwlconfig 2-11
Complete Example e 2-11

Query and Delete Example. i 2-14
Example of Setting Multiple Attribute Values 2-14
wlconfig Ant Task Reference. i 2-14
Main Attributes. 2-15

Nested Elements e 2-16

Using the libclasspath Ant Task i 2-22
libclasspath Task Definition. i, 2-22
libclasspath Ant Task Reference 2-22

Developing Applications with WebLogic Server

Main libclasspath Attributes oo 2-22
Nested libclasspath Elements iiiiinaon... 2-24
Example libclasspath Ant Task i, 2-24

Creating a Split Development Directory Environment

Overview of the Split Development Directory Environment 3-2
Source and Build Directories oottt 3-2
Deploying from a Split Development Directory 3-3
Split Development Directory Ant Tasks., 3-5

Using the Split Development Directory Structure: Main Steps. 3-5

Organizing J2EE Components in a Split Development Directory 3-6
Source Directory OVEIVIEWottt et ettt e e e e 3-7
Enterprise Application Configuration, 3-9
Web Applicationsottt 3-9
EIBs oo 3-11

Important Notes Regarding EJB Descriptors 3-11

Organizing Shared Classes in a Split Development Directory 3-12
Shared Utility Classes.o vt ittt e et 3-12
Third-Party Libraries 3-13
Class Loading for Shared Classesc.uiiniiiniinnninnenn.. 3-13

Generating a Basic build.xml File Using weblogic.BuildXMLGen 3-13

Developing Multiple-EAR Projects Using the Split Development Directory. 3-15
Organizing Libraries and Classes Shared by Multiple EARs 3-16
Linking Multiple build.xml Files i 3-17

Best Practices for Developing WebLogic Server Applications. 3-17

Building Applications in a Split Development Directory

Compiling Applications Using wlcompile 4-1

Developing Applications with WebLogic Server vii

viii

Using includes and excludes Properties., 4-2

wlcompile Ant Task Attributes i 4-2
Nested Javac OPtONSo v et ettt e e et 4-3
Setting the Classpath for Compiling Code. 4-3
Library Element for wlcompile and wlappe 4-3
Building Modules and Applications Using wlappe.ccvviiinnnn. .. 4-4
wlappc Ant Task Atributesttt 4-4
wlappc Ant Task Syntax.t 4-6
Syntax Differences between appc and wlappe. 4-7
weblogic.appc Reference. 4-7
weblogic.appe SYNtaxot 4-7
weblogic.appC OPLONS . . . oottt e e 4-7

Deploying and Packaging from a Split Development Directory

Deploying Applications Using wildeploy o ... 5-2
Packaging Applications Using wlpackage 5-2
Archive versus Exploded Archive Directory. 5-2
wlpackage Ant Task Example i i 5-3
wlpackage Ant Task Attribute Reference 5-3

Understanding WebLogic Server Application Classloading

Java Classloader OVerviewttt e e 6-2
Java Classloader Hierarchy 6-2
Loading a Classottt 6-2
prefer-web-inf-classes Element 6-3
Changing Classes in a Running Program. 6-4

WebLogic Server Application Classloader Overview 6-4
Application Classloading. 6-4

Developing Applications with WebLogic Server

Application Classloader Hierarchy. 6-5

Custom Module Classloader Hierarchies. 6-7
Declaring the Classloader Hierarchy. 6-8
User-Defined Classloader Restrictions oot 6-10

Individual EJB Classloader for Implementation Classes. 6-12

Application Classloading and Pass-by-Value or Reference................... 6-14

Resolving Class References Between Modules and Applications 6-15

About Resource Adapter Classesottt 6-15

Packaging Shared Utility Classes., 6-16

Manifest Class-Path 6-16

Sharing Applications and Modules By Using J2EE Libraries. 6-17
Adding JARs to the System Classpath i, 6-17

Developing Applications for Production Redeployment

What is Production Redeployment? i, 7-2
Supported and Unsupported Application Types, 7-2
Programming Requirements and Conventionsc.c.oouiiunenn.... 7-2
Applications Should Be Self-Contained. 7-2
Versioned Applications Access the Current Version JNDI Tree by Default 7-3
Security Providers Must Be Compatible 7-3
Applications Must Specify a Version Identifier............... 7-3
Applications Can Access Name and Identifier. 7-4
Client Applications Use Same Version when Possible. 7-4
Assigning an Application Version.ttt 7-4
Application Version CONVENtions.ovuttnnin e, 7-5
Upgrading Applications to Use Production Redeployment. 7-5
Accessing Version Information. 7-6

Developing Applications with WebLogic Server ix

Creating Shared J2EE Libraries and Optional Packages

Overview of Shared J2EE Libraries and Optional Packages 8-2
Optional Packagest 8-3
Versioning Support for Libraries i 8-3
Shared J2EE Libraries and Optional Packages Compared 8-4
Additional Information 8-5

Creating Shared J2EE Librariesttt 8-5
Assembling Shared J2EE Library Files. o it 8-6
Assembling Optional Package Class Files., 8-7
Editing Manifest Attributes for Shared J2EE Libraries....................... 8-7
Packaging Shared J2EE Libraries for Distribution and Deployment 8-10

Referencing Shared J2EE Libraries in an Enterprise Application 8-11
URIs for Shared J2EE Libraries Deployed As a Standalone Module 8-14

Referencing Optional Packages from a J2EE Application or Module 8-14

Using weblogic.appmerge to Merge Libraries 8-16
Using weblogic.appmerge fromthe CLI 8-17
Using weblogic.appmerge asan Ant Task. 8-17

Integrating Shared J2EE Libraries with the Split Development Directory Environment 8-18

Deploying Shared J2EE Libraries and Dependent Applications 8-18

Web Application Shared J2EE Library Information. 8-19

Accessing Registered Shared J2EE Library Information with LibraryRuntimeMBean. 8-19

Order of Precedence of Modules When Referencing Shared J2EE Libraries. 8-20

Best Practices for Using Shared J2EE Libraries., 8-21

Programming Application Lifecycle Events

Understanding Application Lifecycle Events 9-2
Registering Events in weblogic-application.xml 9-3
Programming Basic Lifecycle Listener Functionality 9-3

Developing Applications with WebLogic Server

Examples of Configuring Lifecycle Events with and without the URI Parameter 9-5

Understanding Application Lifecycle Event Behavior During Re-deployment 9-7

Programming Context Propagation

Understanding Context Propagation it 10-1
Programming Context Propagation: Main Steps. 10-3
Programming Context PropagationinaClient........... 10-3
Programming Context Propagation in an Application. 10-5

Programming JavaMail with WebLogic Server

Overview of Using JavaMail with WebLogic Server Applications 11-2
Understanding JavaMail Configuration Files 11-2
Configuring JavaMail for WebLogic Server. 11-3
Sending Messages with JavaMail 11-3
Reading Messages with JavaMail 11-4

Threading and Clustering Topics

Using Threads in WebLogic Server, 12-2
Using the Work Manager API for Lower-Level Threading 12-3
Programming Applications for WebLogic Server Clusters. 12-3

Enterprise Application Deployment Descriptor Elements

weblogic-application.xml Deployment Descriptor Elements A-1
weblogic-application A-2

B D A-10

MAX-CACKE-SIZE . . .« vttt e A-14

XML Lo e A-15

jdbe-connection-pool. A-17

SECULIEY .+ v vttt ettt e e e e e e e e e e A-32

Developing Applications with WebLogic Server Xi

Xii

ApPliCAtiON-PAraAM\ oottt e A-32

classloader-structure A-33
LISEENET. . . oottt A-33
SEATEUD .« o e et et A-34
ShUtdOWI. . . . oo A-34
WOTK-MANAGET . . . o\ ot ottt et e A-35
SESSION-AESCIIPIOT . . . o\ ot ettt et e e e e et A-37
ATy . oo A-40
weblogic-application.xml Schema A-41
application.xml Schema A-41

wldeploy Ant Task Reference

Overview of the wideploy Ant Task. B-1
Basic Steps for Using wideploy B-2
Sample build.xml Files for wideploy B-2
wldeploy Ant Task Attribute Reference, B-4
Main Attributes B-4
Nested <files> Child Element B-12

Spring Applications Reference

About Spring on WebLogic Server.t C-1

Redesigning a J2EE-Based Application to a Spring-Based Application C-2

Configure Spring Inversion of Control C-2

Enable the Spring Web Services Client Service C-3

Make JMS Services Available to the Application at Runtime. C-4
Configure JMX: Expose the WebLogic Server Runtime MBean Server Connection to

S I .« ottt C-5

Configure Spring JDBC to Communicate With the Connection Pool............ C-6

Use the Spring Transaction Abstraction Layer for Transaction Management. C-7

Developing Applications with WebLogic Server

Make Use of WebLogic Server Clustering., C-9

Clustered Spring Remoting.oo i, C-9

Spring Extension to the WebLogic Administration Console C-10
Installing the Spring Extension to the WebLogic Administration Console C-10
Exposing Spring Beans Through the WebLogic Administration Console. C-10
Support for Spring on WebLogic Server., C-10

Developing Applications with WebLogic Server Xiii

Xiv Developing Applications with WebLogic Server

Overview of WebLogic Server
Application Development

GHAPTERo

The following sections provide an overview of WebLogic Server® applications and basic

concepts.
e “Document Scope and Audience” on page 1-2
e “Overview of J2EE Applications and Modules” on page 1-3
e “Web Application Modules” on page 1-3
e “Enterprise JavaBean Modules” on page 1-4
e “Connector Modules” on page 1-5
e “Enterprise Applications” on page 1-6
e “WebLogic Web Services” on page 1-7
e “JMS and JDBC Modules” on page 1-8
e “WebLogic Diagnostic Framework Modules” on page 1-8
e “XML Deployment Descriptors” on page 1-9
e “Deployment Plans” on page 1-14

e “Development Software” on page 1-15

Developing Applications with WebLogic Server 1-1

Overview of WebLogic Server Application Development

Document Scope and Audience

This document is written for application developers who want to build WebLogic Server
e-commerce applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented programming
techniques, and the Java programming language.

WebLogic Server applications are created by Java programmers, Web designers, and application
assemblers. Programmers and designers create modules that implement the business and
presentation logic for the application. Application assemblers assemble the modules into
applications that are ready to deploy on WebLogic Server.

WebLogic Server and the J2EE Platform

1-2

WebLogic Server implements Java 2 Platform, Enterprise Edition (J2EE) version 1.4
technologies. J2EE is the standard platform for developing multi-tier Enterprise applications
based on the Java programming language. The technologies that make up J2EE were developed
collaboratively by Sun Microsystems and other software vendors, including BEA Systems.

WebLogic Server J2EE applications are based on standardized, modular components. WebLogic
Server provides a complete set of services for those modules and handles many details of
application behavior automatically, without requiring programming.

J2EE defines module behaviors and packaging in a generic, portable way, postponing run-time
configuration until the module is actually deployed on an application server.

J2EE includes deployment specifications for Web applications, EJB modules, Web Services,
Enterprise applications, client applications, and connectors. J2EE does not specify how an
application is deployed on the target server—only how a standard module or application is
packaged.

For each module type, the specifications define the files required and their location in the
directory structure.

Note: Because J2EE is backward compatible, you can still run J2EE 1.4 applications on
WebLogic Server versions 8.1 and later.

Java is platform independent, so you can edit and compile code on any platform, and test your
applications on development WebLogic Servers running on other platforms. For example, it is
common to develop WebLogic Server applications on a PC running Windows or Linux,
regardless of the platform where the application is ultimately deployed.

Developing Applications with WebLogic Server

http://java.sun.com/j2ee/1.4/docs/index.html

Overview of J2EE Applications and Modules

For more information, refer to the J2EE 1.4 specification at:
http://java.sun.com/j2ee/download.html#platformspec.

Overview of J2EE Applications and Modules

A BEA WebLogic Server™ J2EE application consists of one of the following modules or
applications running on WebLogic Server:

e Web application modules—HTML pages, servlets, JavaServer Pages, and related files. See
“Web Application Modules” on page 1-3.

e Enterprise Java Beans (EJB) modules—entity beans, session beans, and message-driven
beans. See “Enterprise JavaBean Modules” on page 1-4.

e Connector modules—resource adapters. See “Connector Modules” on page 1-5.

e Enterprise applications—Web application modules, EJB modules, resource adapters and
Web Services packaged into an application. See “Enterprise Applications” on page 1-6.

e Web Services—See “WebLogic Web Services” on page 1-7.

A WebLogic application can also include the following WebLogic-specific modules:
e JDBC and JMS modules—See “JMS and JDBC Modules” on page 1-8.
e WebLogic Diagnostic FrameWork (WLDF) modules—See “WebLogic Diagnostic

Framework Modules” on page 1-8.

Web Application Modules

A Web application on WebLogic Server includes the following files:
e At least one servlet or JSP, along with any helper classes.

e A web.xml deployment descriptor, a J2EE standard XML document that describes the
contents of a WAR file.

e Optionally, a weblogic.xml deployment descriptor, an XML document containing
WebLogic Server-specific elements for Web applications.

e A Web application can also include HTML and XML pages with supporting files such as
images and multimedia files.

Developing Applications with WebLogic Server 1-3

http://java.sun.com/j2ee/download.html#platformspec

Overview of WebLogic Server Application Development

Servlets

Servlets are Java classes that execute in WebLogic Server, accept a request from a client, process
it, and optionally return a response to the client. An HttpServlet is most often used to generate
dynamic Web pages in response to Web browser requests.

JavaServer Pages

JavaServer Pages (JSPs) are Web pages coded with an extended HTML that makes it possible to
embed Java code in a Web page. JSPs can call custom Java classes, known as tag libraries, using
HTML-like tags. The appc compiler compiles JSPs and translates them into servlets. WebLogic
Server automatically compiles JSPs if the servlet class file is not present or is older than the JSP
source file. See “Building Modules and Applications Using wlappc” on page 4-4.

You can also precompile JSPs and package the servlet class in a Web Application (WAR) file to
avoid compiling in the server. Servlets and JSPs may require additional helper classes that must
also be deployed with the Web application.

More Information on Web Application Modules

See:
e “Organizing J2EE Components in a Split Development Directory” on page 3-6.
e Developing Web Applications, Servlets, and JSPs for WebLogic Server

e Programming JSP Tag Extensions

Enterprise JavaBean Modules

14

Enterprise JavaBeans (EJBs) beans are server-side Java modules that implement a business task
or entity and are written according to the EJB specification. There are three types of EJBs: session
beans, entity beans, and message-driven beans.

EJB Overview

Session beans execute a particular business task on behalf of a single client during a single
session. Session beans can be stateful or stateless, but are not persistent; when a client finishes
with a session bean, the bean goes away.

Entity beans represent business objects in a data store, usually a relational database system.
Persistence—loading and saving data—can be bean-managed or container-managed. More than

Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs91/webapp/index.html
http://e-docs.bea.com/wls/docs91/taglib/index.html

Connector Modules

just an in-memory representation of a data object, entity beans have methods that model the
behaviors of the business objects they represent. Entity beans can be accessed concurrently by
multiple clients and they are persistent by definition.

The container creates an instance of the message-driven bean or it assigns one from a pool to
process the message. When the message is received in the JMS Destination, the message-driven
bean assigns an instance of itself from a pool to process the message. Message-driven beans are
not associated with any client. They simply handle messages as they arrive.

EJBs and WebLogic Server

J2EE cleanly separates the development and deployment roles to ensure that modules are portable
between EJB servers that support the EJB specification. Deploying an EJB in WebLogic Server
requires running the WebLogic Server appc compiler to generate classes that enforce the EJB
security, transaction, and life cycle policies. See “Building Modules and Applications Using
wlappc” on page 4-4.

The J2EE-specified deployment descriptor, ejb-jar.xml, describes the enterprise beans
packaged in an EJB application. It defines the beans’ types, names, and the names of their home
and remote interfaces and implementation classes. The ejb-jar.xml deployment descriptor
defines security roles for the beans, and transactional behaviors for the beans’ methods.

Additional deployment descriptors provide WebLogic-specific deployment information. A
weblogic-cmp-rdbms-jar.xml deployment descriptor unique to container-managed entity
beans maps a bean to tables in a database. The weblogic-ejb-jar.xml deployment descriptor
supplies additional information specific to the WebLogic Server environment, such as JNDI bind
names, clustering, and cache configuration.

For more information on Enterprise JavaBeans, see Programming WebLogic Enterprise
JavaBeans.

Connector Modules

Connectors (also known as resource adapters) contain the Java, and if necessary, the native
modules required to interact with an Enterprise Information System (EIS). A resource adapter
deployed to the WebLogic Server environment enables J2EE applications to access a remote EIS.
WebLogic Server application developers can use HTTP servlets, JavaServer Pages (JSPs),
Enterprise Java Beans (EJBs), and other APIs to develop integrated applications that use the EIS
data and business logic.

Developing Applications with WebLogic Server 1-5

http://e-docs.bea.com/wls/docs91/ejb/index.html

Overview of WebLogic Server Application Development

To deploy a resource adapter to WebLogic Server, you must first create and configure WebLogic
Server-specific deployment descriptor, weblogic-ra.xml file, and add this to the deployment
directory. Resource adapters can be deployed to WebLogic Server as stand-alone modules or as
part of an Enterprise application. See “Enterprise Applications” on page 1-6.

For more information on connectors, see Programming WebLogic Resource Adapters.

Enterprise Applications

1-6

An Enterprise application consists of one or more Web application modules, EJB modules, and
resource adapters. It might also include a client application. An Enterprise application is defined
by an application.xml file, which is the standard J2EE deployment descriptor for Enterprise
applications. If the application includes WebLogic Server-specific extensions, the application is
further defined by a weblogic-application.xml file. Enterprise Applications that include a
client module will also have a client-application.xml deployment descriptor and a
WebLogic run-time client application deployment descriptor. See Appendix A, “Enterprise
Application Deployment Descriptor Elements.”

For both production and development purposes, BEA recommends that you package and deploy
even stand-alone Web applications, EJBs, and resource adapters as part of an Enterprise
application. Doing so allows you to take advantage of BEA's new split development directory
structure, which greatly facilities application development. See Chapter 3, “Creating a Split
Development Directory Environment.”

An Enterprise application consists of Web application modules, EJB modules, and resource
adapters. It can be packaged as follows:

e For development purposes, BEA recommends the WebLogic split development directory
structure. Rather than having a single archived EAR file or an exploded EAR directory
structure, the split development directory has two parallel directories that separate source
files and output files. This directory structure is optimized for development on a single
WebLogic Server instance. See Chapter 3, “Creating a Split Development Directory
Environment.” BEA provides the wlpackage Ant task, which allows you to create an
EAR without having to use the JAR utility; this is exclusively for the split development
directory structure. See “Packaging Applications Using wlpackage” on page 5-2.

e For development purposes, BEA further recommends that you package stand-alone Web
applications and Enterprise JavaBeans (EJBs) as part of an Enterprise application, so that
you can take advantage of the split development directory structure. See “Organizing J2EE
Components in a Split Development Directory” on page 3-6.

Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs91/resadapter/index.html

WebLogic Web Services

e For production purposes, BEA recommends the exploded (unarchived) directory format.
This format enables you to update files without having to redeploy the application. To
update an archived file, you must unarchive the file, update it, then rearchive and redeploy
1it.

e You can choose to package your application as a JAR archived file using the jar utility
with an . ear extension. Archived files are easier to distribute and take up less space. An
EAR file contains all of the JAR, WAR, and RAR module archive files for an application

and an XML descriptor that describes the bundled modules. See “Packaging Applications
Using wlpackage” on page 5-2.

The META-INF/application.xml deployment descriptor contains an element for each Web
application, EJB, and connector module, as well as additional elements to describe security roles
and application resources such as databases. See Appendix A, “Enterprise Application
Deployment Descriptor Elements.”

WebLogic Web Services

Web services can be shared by and used as modules of distributed Web-based applications. They
commonly interface with existing back-end applications, such as customer relationship
management systems, order-processing systems, and so on. Web services can reside on different
computers and can be implemented by vastly different technologies, but they are packaged and
transported using standard Web protocols, such as HTTP, thus making them easily accessible by
any user on the Web. See Programming Web Services for WebLogic Server.

A Web service consists of the following modules:

e A Web Service implementation hosted by a server on the Web. WebLogic Web Services
are hosted by WebLogic Server. A Web Service module may include either Java classes or
EJBs that implement the Web Service. Web Services are packaged either as Web
Application archives (WARs) or EJB modules (JARs) depending on the implementation.
See Programming Web Services for WebLogic Server for more information.

e A standard for transmitting data and Web service invocation calls between the Web service
and the user of the Web service. WebLogic Web Services use Simple Object Access
Protocol (SOAP) 1.1 as the message format and HTTP as the connection protocol.

e A standard for describing the Web service to clients so they can invoke it. WebLogic Web
Services use Web Services Description Language (WSDL) 1.1, an XML-based
specification, to describe themselves.

e A standard for clients to invoke Web services (JAX-RPC).

Developing Applications with WebLogic Server 1-1

http://e-docs.bea.com/wls/docs91/webserv/index.html
http://e-docs.bea.com/wls/docs91/webserv/index.html

Overview of WebLogic Server Application Development

e A standard for finding and registering the Web service (UDDI).

JMS and JDBC Modules

As of WebLogic Server 9.0, JMS and JDBC configurations are stored as modules, defined by an
XML file that conforms to the weblogic-jmsmd.xsd and weblogic-jdbe.xsd schema,
respectively. These modules are similar to standard J2EE modules. An administrator can create
and manage JMS and JDBC modules as global system resources, as modules packaged with a
J2EE application (as a packaged resource), or as standalone modules that can be made globally
available. With modular deployment of JMS and JDBC resources, you can migrate your
application and the required JMS or JDBC configuration from environment to environment, such
as from a testing environment to a production environment, without opening an enterprise
application file (such as an EAR file) or a JMS or JDBC standalone module, and without
extensive manual JMS or JDBC reconfiguration.

Application developers create application modules in an enterprise-level IDE or another
development tool that supports editing of XML files, then package the JIMS or JDBC modules
with an application and pass the application to a WebLogic Administrator to deploy.

For more information, see:
e Configuring JMS Application Modules for Deployment

e Configuring JDBC Application Modules for Deployment

WebLogic Diagnostic Framework Modules

1-8

The WebLogic Diagnostic Framework (WLDF) provides features for generating, gathering,
analyzing, and persisting diagnostic data from BEA WebLogic Server instances and from
applications deployed to server instances. For server-scoped diagnostics, some WLDF features
are configured as part of the configuration for the domain. Other features are configured as
system resource descriptors that can be targeted to servers (or clusters). For application-scoped
diagnostics, diagnostic features are configured as resource descriptors for the application.

Application-scoped instrumentation is configured and deployed as a diagnostic module, which is
similar to a diagnostic system module. However, an application module is configured in an XML
configuration file named weblogic-diagnostics.xml which is packaged with the application
archive.

For detailed instructions for configuring instrumentation for applications, see Configuring
Application-Scoped Instrumentation.

Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs91/jms_admin/deployjms.html
http://e-docs.bea.com/wls/docs91/jdbc_admin/packagedjdbc.html
http://e-docs.bea.com/wls/docs91/wldf_configuring/config_instrumentation.html#app-scoped
http://e-docs.bea.com/wls/docs91/wldf_configuring/config_instrumentation.html#app-scoped

XML Deployment Descriptors

XML Deployment Descriptors

A deployment configuration refers to the process of defining the deployment descriptor values
required to deploy an Enterprise application to a particular WebLogic Server domain. The
deployment configuration for an application or module is stored in three types of XML document:
J2EE deployment descriptors, WebLogic Server descriptors, and WebLogic Server deployment
plans. This section describes the J2EE and WebLogic-specific deployment descriptors. See
“Deployment Plans” on page 1-14 for information on deployment plans.

Modules and applications have deployment descriptors—XML documents—that describe the
contents of the directory or JAR file. Deployment descriptors are text documents formatted with
XML tags. The J2EE specifications define standard, portable deployment descriptors for J2EE
modules and applications. BEA defines additional WebLogic-specific deployment descriptors
for deploying a module or application in the WebLogic Server environment.

Table 1-1 lists the types of modules and applications and their J2EE-standard and
WebLogic-specific deployment descriptors.

Table 1-1 J2EE and WebLogic Deployment Descriptors

Module or Scope Deployment Descriptors
Application
Web Application J2EE web . xml

See the Sun Microsystems Servlet 2.4 Schema.

WebLogic weblogic.xml
Schema: http://www.bea.com/ns/weblogic/90/weblogic-web-app.xsd

See “weblogic.xml Deployment Descriptor Elements” in Developing
Web Applications for WebLogic Server for more information.

Developing Applications with WebLogic Server 1-9

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd
http://www.bea.com/ns/weblogic/90/weblogic-web-app.xsd
http://e-docs.bea.com/wls/docs91/webapp/weblogic_xml.html
http://e-docs.bea.com/wls/docs91/webapp/index.html
http://e-docs.bea.com/wls/docs91/webapp/index.html

Overview of WebLogic Server Application Development

Table 1-1 J2EE and WebLogic Deployment Descriptors

Module or
Application

Scope

Deployment Descriptors

Enterprise Bean J2EE

ejb-jar.xml

See the Sun Microsystems EJB 2.1 Schema.

WebLogic

weblogic-ejb-jar.xml
Schema: http://www.bea.com/ns/weblogic/90/weblogic-ejb-jar.xsd

See “The weblogic-ejb-jar.xml Deployment Descriptor” in
Programming WebLogic Enterprise JavaBeans.
weblogic-cmp-rdbms-jar.xml

Schema:

http://www.bea.com/ns/weblogic/90/weblogic-rdbms20-persistence.
xsd

See “The weblogic-cmp-rdbms-jar.xml Deployment Descriptor” in
Programming WebLogic Enterprise JavaBeans.

Web Services J2EE

webservices.xml

See the Sun Microsystems Web Services 1.1 Schema.

WebLogic

weblogic-webservices.xml
Schema: http://www.bea.com/ns/weblogic/90/weblogic-wsee.xsd

See “WebLogic Web Service Deployment Descriptor Element
Reference” in Programming Web Services for WebLogic Server.

Resource Adapter J2EE

ra.xml

See the Sun Microsystems Connector 1.5 Schema.

WebLogic

weblogic-ra.xml
Schema: http://www.bea.com/ns/weblogic/90/weblogic-ra.xsd

See “weblogic-ra.xml Schema” in Programming WebLogic Resource
Adapters.

1-10

Developing Applications with WebLogic Server

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd
http://e-docs.bea.com/wls/docs91/ejb/DDreference-ejb-jar.html
http://www.bea.com/ns/weblogic/90/weblogic-ejb-jar.xsd
http://e-docs.bea.com/wls/docs91/ejb/DDreference-ejb-jar.html
http://www.bea.com/ns/weblogic/90/weblogic-rdbms20-persistence.xsd
http://e-docs.bea.com/wls/docs91/ejb/DDreference-cmp-jar.html
http://java.sun.com/xml/ns/j2ee/j2ee_web_services_1_1.xsd
http://www.bea.com/ns/weblogic/90/weblogic-wsee.xsd
http://e-docs.bea.com/wls/docs91/webserv/index.html
http://e-docs.bea.com/wls/docs91/webserv/index.html
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd
http://www.bea.com/ns/weblogic/90/weblogic-ra.xsd
http://e-docs.bea.com/wls/docs91/resadapter/weblogic_ra_xml.html
http://e-docs.bea.com/wls/docs91/resadapter/index.html
http://e-docs.bea.com/wls/docs91/resadapter/index.html

XML Deployment Descriptors

Table 1-1 J2EE and WebLogic Deployment Descriptors

Module or Scope
Application

Deployment Descriptors

Enterprise Application J2EE

application.xml

See the Sun Microsystems Application 1.4 Schema.

WebLogic weblogic-application.xml
Schema:
http://www.bea.com/ns/weblogic/90/weblogic-application.xsd
See “weblogic-application.xml Deployment Descriptor Elements” on
page A-1.
Client Application J2EE application-client.xml
See the Sun Microsystems Application Client 1.4 Schema.
WebLogic weblogic-appclient.xml
Schema: http://www.bea.com/ns/weblogic/90/weblogic-appclient.xsd
See Programming Stand-alone Clients.
IJMS Module WebLogic FileName-jms.xml, where FileName can be anything you want.
Schema: http://www.bea.com/ns/weblogic/90/weblogic-jmsmd.xsd
JDBC Module WebLogic FileName-jdbc.xml, where FileName can be anything you
want.
Schema: http://www.bea.com/ns/weblogic/90/weblogic-jdbe.xsd
WLDF Module WebLogic weblogic-diagnostics.xml

Schema: http://www.bea.com/ns/weblogic/90/diagnostics.xsd

Note: The XML Schemas for the WebLogic deployment descriptors listed in the preceding
table include elements from the weblogic-j2ee.xsd Schema, which describes common
elements shared among all WebLogic-specific deployment descriptors.

When you package a module or application, you create a directory to hold the deployment
descriptors—WEB-INF or META- INF—and then create the XML deployment descriptors in that

directory.

Developing Applications with WebLogic Server 1-1

http://java.sun.com/xml/ns/j2ee/application_1_4.xsd
http://www.bea.com/ns/weblogic/90/weblogic-application.xsd
http://java.sun.com/xml/ns/j2ee/application-client_1_4.xsd
http://www.bea.com/ns/weblogic/90/weblogic-appclient.xsd
http://e-docs.bea.com/wls/docs91/client/index.html
http://www.bea.com/ns/weblogic/90/weblogic-jmsmd.xsd
http://www.bea.com/ns/weblogic/90/weblogic-jdbc.xsd
http://www.bea.com/ns/weblogic/90/diagnostics.xsd
http://www.bea.com/ns/weblogic/90/weblogic-j2ee.xsd

Overview of WebLogic Server Application Development

1-12

Automatically Generating Deployment Descriptors

WebLogic Server provides a variety of tools for automatically generating deployment
descriptors. These are discussed in the sections that follow.

EJBGen

EJBGen is an Enterprise JavaBeans 2.0 code generator or command-line tool that uses Javadoc
markup to generate EJB deployment descriptor files. You annotate your Bean class file with
Javadoc tags and then use EJBGen to generate the Remote and Home classes and the deployment
descriptor files for an EJB application, reducing to a single file you need to edit and maintain your
EJB . java and descriptor files. See “EJBGen Reference” in Programming WebLogic Enterprise
JavaBeans.

Java-hased Command-line Utilities

WebLogic Server includes a set of Java-based command-line utilities that automatically generate
both standard J2EE and WebLogic-specific deployment descriptors for Web applications and
Enterprise Applications.

These command-line utilities examine the classes you have assembled in a staging directory and
build the appropriate deployment descriptors based on the servlet classes, and so on. These
utilities include:

® java weblogic.marathon.ddinit.EARInit—automatically generates the deployment
descriptors for Enterprise applications.

® java weblogic.marathon.ddinit.WebInit—automatically generates the deployment
descriptors for Web applications.
For an example of DDInit, assume that you have created a directory called c: \stage that
contains the JSP files and other objects that make up a Web application but you have not yet
created the web.xm1 and weblogic.xml deployment descriptors. To automatically generate
them, execute the following command:

prompt> java weblogic.marathon.ddInit.WebInit c:\stage

The utility generates the web.xm1 and weblogic.xml deployment descriptors and places them
in the weB-INF directory, which bDInit will create if it does not already exist.

Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs91/ejb/EJBGen_reference.html

XML Deployment Descriptors

Upgrading Deployment Descriptors From Previous Releases of
J2EE and WebLogic Server

So that your applications can take advantage of the features in the current J2EE specification and
release of WebLogic Server, BEA recommends that you always upgrade deployment descriptors
when you migrate applications to a new release of WebLogic Server.

To upgrade the deployment descriptors in your J2EE applications and modules, first use the
weblogic.DDConverter tool to generate the upgraded descriptors into a temporary directory.
Once you have inspected the upgraded deployment descriptors to ensure that they are correct,
repackage your J2EE module archive or exploded directory with the new deployment descriptor
files.

Invoke weblogic.DDConverter with the following command:

prompt> java weblogic.DDConverter [options] archive_file_or_directory

where archive_file or_directory refers to the archive file (EAR, WAR, JAR, or RAR) or
exploded directory of your Enterprise application, Web application, EJB, or resource adapter.

The following table describes the weblogic.DDConverter command options.

Table 1-2 weblogic.DpConverter Command Options

Option Description

-d <dir> Specifies the directory to which
descriptors are written.

-help Prints the standard usage message.

-quiet Turns off output messages except error
messages.

-verbose Turns on additional output used for
debugging.

The following example shows how to use the weblogic.DDConverter command to generate
upgraded deployment descriptors for the my . ear Enterprise application into the subdirectory
tempdir in the current directory:

prompt> java weblogic.DDConverter -d tempdir my.ear

Developing Applications with WebLogic Server 1-13

Overview of WebLogic Server Application Development

Deployment Plans

A deployment plan is an XML document that defines an application’s WebLogic Server
deployment configuration for a specific WebLogic Server environment. A deployment plan
resides outside of an application’s archive file, and can apply changes to deployment properties
stored in the application’s existing WebLogic Server deployment descriptors. Administrators use
deployment plans to easily change an application’s WebLogic Server configuration for a specific
environment without modifying existing J2EE or WebLogic-specific deployment descriptors.
Multiple deployment plans can be used to reconfigure a single application for deployment to
multiple, differing WebLogic Server environments.

After programmers have finished programming an application, they export its deployment
configuration to create a custom deployment plan that administrators later use for deploying the
application into new WebLogic Server environments. Programmers distribute both the
application deployment files and the custom deployment plan to deployers (for example, testing,
staging, or production administrators) who use the deployment plan as a blueprint for configuring
the application for their environment.

BEA WebLogic Server provides the following tools to help programmers export an application’s
deployment configuration:

® weblogic.PlanGenerator creates a template deployment plan with null variables for
selected categories of WebLogic Server deployment descriptors. This tool is recommended
if you are beginning the export process and you want to create a template deployment plan
with null variables for an entire class of deployment descriptors.

e The Administration Console updates or creates new deployment plans as necessary when
you change configuration properties for an installed application. You can use the
Administration Console to generate a new deployment plan or to add or override variables
in an existing plan. The Administration Console provides greater flexibility than
weblogic.PlanGenerator, because it allows you to interactively add or edit individual
deployment descriptor properties in the plan, rather than export entire categories of
descriptor properties.

For complete and detailed information about creating and using deployment plans, see:
e Understanding WebLogic Server Deployment
e Exporting an Application for Deployment to New Environments

e Deployment Plan Reference and Schema

1-14 Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs91/deployment/understanding.html
http://e-docs.bea.com/wls/docs91/deployment/export.html
http://e-docs.bea.com/wls/docs91/deployment/plan.html

Development Software

Development Software

This section reviews required and optional tools for developing WebLogic Server applications.

Apache Ant

The preferred BEA method for building applications with WebLogic Server is Apache Ant. Ant
is a Java-based build tool. One of the benefits of Ant is that is it is extended with Java classes,
rather than shell-based commands. BEA provides numerous Ant extension classes to help you
compile, build, deploy, and package applications using the WebLogic Server split development
directory environment.

Another benefit is that Ant is a cross-platform tool. Developers write Ant build scripts in
eXtensible Markup Language (XML). XML tags define the targets to build, dependencies among
targets, and tasks to execute in order to build the targets. Ant libraries are bundled with WebLogic
Server to make it easier for our customers to build Java applications out of the box.

To use Ant, you must first set your environment by executing either the setExamplesEnv.cmd
(Windows) or setExamplesEnv.sh (UNIX) commands located in the
WL_SERVER\samples\domains\wl_server directory, where wL_SERVER is your WebLogic
Server installation directory.

For a complete explanation of ant capabilities, see:
http://jakarta.apache.org/ant/manual/index.html

Note: The Apache Jakarta Web site publishes online documentation for only the most current
version of Ant, which might be different from the version of Ant that is bundled with
WebLogic Server. Use the following command, after setting your WebLogic
environment, to determine the version of Ant bundled with WebLogic Server:

prompt> ant -version

To view the documentation for a specific version of Ant, such as the version included
with WebLogic Server, download the Ant zip file from
http://archive.apache.org/dist/ant/binaries/ and extract the documentation.

For more information on using Ant to compile your cross-platform scripts or using cross-platform
scripts to create XML scripts that can be processed by Ant, refer to any of the WebLogic Server
examples, such as
WL_HOME/samples/server/examples/src/examples/ejb20/basic/beanManaged/build
.xml.

Also refer to the following WebLogic Server documentation on building examples using Ant:

WL_HOME/samples/server/examples/src/examples/examples.html.

Developing Applications with WebLogic Server 1-15

http://jakarta.apache.org/ant/manual/index.html
http://archive.apache.org/dist/ant/binaries/

Overview of WebLogic Server Application Development

1-16

Using A Third-Party Version of Ant

You can use your own version of Ant if the one bundled with WebLogic Server is not adequate
for your purposes. To determine the version of Ant that is bundled with WebLogic Server, run
the following command after setting your WebLogic environment:

prompt> ant -version

If you plan to use a different version of Ant, you can replace the appropriate JAR file in the
WL_HOME\server\lib\ant directory with an updated version of the file (where wL_HOME refers
to the main WebLogic installation directory, such as c: \bea\weblogic90) or add the new file
to the front of your CLASSPATH.

Changing the Ant Heap Size

By default the environment script allocates a heap size of 128 megabytes to Ant. You can increase
or decrease this value for your own projects by setting the -x option in your local ANT_0PTS
environment variable. For example:

prompt> setenv ANT_OPTS=-Xmx128m

If you want to set the heap size permanently, add or update the MEM_ARGS variable in the scripts
that set your environment, start WebLogic Server, and so on, as shown in the following snippet
from a Windows command script that starts a WebLogic Server instance:

set MEM_ARGS=-Xms32m -Xmx200m

See the scripts and commands in wL_HOME/server/bin for examples of using the MEM_ARGS
variable.

Source Code Editor or IDE

You need a text editor to edit Java source files, configuration files, HTML or XML pages, and
JavaServer Pages. An editor that gracefully handles Windows and UNIX line-ending differences
is preferred, but there are no other special requirements for your editor. You can edit HTML or
XML pages and JavaServer Pages with a plain text editor, or use a Web page editor such as
DreamWeaver. For XML pages, you can also use enterprise-level IDE with DTD validation or
another development tool that supports editing of XML files.

Database System and JDBC Driver

Nearly all WebLogic Server applications require a database system. You can use any DBMS that
you can access with a standard JDBC driver, but services such as WebLogic Java Message
Service (JMS) require a supported JDBC driver for Oracle, Sybase, Informix, Microsoft SQL

Developing Applications with WebLogic Server

Development Software

Server, IBM DB2, or PointBase. Refer to Support Configuration to find out about supported
database systems and JDBC drivers.

Weh Browser

Most J2EE applications are designed to be executed by Web browser clients. WebLogic Server
supports the HTTP 1.1 specification and is tested with current versions of the Netscape
Communicator and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions you will
support. In your test plans, include testing plans for each supported version. Be explicit about
version numbers and browser configurations. Will your application support Secure Socket Layers
(SSL) protocol? Test alternative security settings in the browser so that you can tell your users
what choices you support.

If your application uses applets, it is especially important to test browser configurations you want
to support because of differences in the JVMs embedded in various browsers. One solution is to
require users to install the Java plug-in from Sun so that everyone has the same Java run-time
version.

Third-Party Software

You can use third-party software products to enhance your WebLogic Server development
environment. See BEA WebLogic Developer Tools Resources, which provides developer tools
information for products that support the BEA application servers.

To download some of these tools, see BEA WebLogic Server Downloads at

http://commerce.bea.com/downloads/weblogic server tools.Jjsp.

Note: Check with the software vendor to verify software compatibility with your platform and
WebLogic Server version.

Developing Applications with WebLogic Server 1-11

http://e-docs.bea.com/platform/suppconfigs/index.html
http://www.bea.com/products/weblogic/tools.shtml
http://commerce.bea.com/downloads/weblogic_server_tools.jsp

Overview of WebLogic Server Application Development

1-18 Developing Applications with WebLogic Server

CHAPTERa

Using Ant Tasks to Configure and Use a
WebLogic Server Domain

The following sections describe how to start and stop WebLogic Server instances and configure
WebLogic Server domains using WebLogic Ant tasks that you can include in your development
build scripts:

e “Overview of Configuring and Starting Domains Using Ant Tasks” on page 2-2

“Starting Servers and Creating Domains Using the wlserver Ant Task” on page 2-2

“Configuring a WebLogic Server Domain Using the wlconfig Ant Task” on page 2-9

“Using the libclasspath Ant Task” on page 2-22

Developing Applications with WebLogic Server 2-1

Using Ant Tasks to Configure and Use a WebLogic Server Domain

Overview of Configuring and Starting Domains Using Ant Tasks

WebLogic Server provides a pair of Ant tasks to help you perform common configuration tasks
in a development environment. The configuration tasks enable you to start and stop WebLogic
Server instances as well as create and configure WebLogic Server domains.

When combined with other WebLogic Ant tasks, you can create powerful build scripts for
demonstrating or testing your application with custom domains. For example, a single Ant build
script can:

e Compile your application using the wlcompile, wlappc, and Web Services Ant tasks.

Create a new single-server domain and start the Administration Server using the wlserver
Ant task.

Configure the new domain with required application resources using the wlconfig Ant
task.

Deploy the application using the wldeploy Ant task.

e Automatically start a compiled client application to demonstrate or test product features.

The sections that follow describe how to use the configuration Ant tasks, wlserver and
wlconfig.

Starting Servers and Creating Domains Using the wiserver Ant
Task

2-2

The wlserver Ant task enables you to start, reboot, shutdown, or connect to a WebLogic Server
instance. The server instance may already exist in a configured WebLogic Server domain, or you
can create a new single-server domain for development by using the generateconfig=true
attribute.

When you use the wlserver task in an Ant script, the task does not return control until the
specified server is available and listening for connections. If you start up a server instance using
wlserver, the server process automatically terminates after the Ant VM terminates. If you only
connect to a currently-running server using the wlserver task, the server process keeps running
after Ant completes.

The wlserver WebLogic Server Ant task extends the standard java Ant task
(org.apache.tools.ant.taskdefs.Java). This means that all the attributes of the java Ant
task also apply to the wlserver Ant task. For example, you can use the output and error
attributes to specify the name of the files to which output and standard errors of the wlserver

Developing Applications with WebLogic Server

Starting Servers and Creating Domains Using the wiserver Ant Task

Ant task is written, respectively. For full documentation about the attributes of the standard java
Ant task, see Java on the Apache Ant site.

Basic Steps for Using wliserver

To use the wlserver Ant task:

1. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the directory
WL_HOME\server\bin, where WL_HOME is the top-level directory of your WebLogic Server
installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your WebLogic Server
installation.

Note: The wlserver task is predefined in the version of Ant shipped with WebLogic
Server. If you want to use the task with your own Ant installation, add the following
task definition in your build file:

<taskdef name="wlserver"
classname="weblogic.ant.taskdefs.management .WLServer" />

2. Add a call to the wlserver task in the build script to start, shutdown, restart, or connect to a
server. See “wlserver Ant Task Reference” on page 2-4 for information about wlserver
attributes and default behavior.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in the staging
directory, optionally passing the command a target argument:

prompt> ant

Use ant -verbose to obtain more detailed messages from the wlserver task.

Sample build.xml Files for wiserver

The following shows a minimal wlserver target that starts a server in the current directory using
all default values:

<target name="wlserver-default">
<wlserver/>

</target>

This target connects to an existing, running server using the indicated connection parameters and
username/password combination:

Developing Applications with WebLogic Server 2-3

http://ant.apache.org/manual/CoreTasks/java.html
http://ant.apache.org/

Using Ant Tasks to Configure and Use a WebLogic Server Domain

<target name="connect-server">
<wlserver host="127.0.0.1" port="7001" username="weblogic"
password="weblogic" action="connect"/>

</target>
This target starts a WebLogic Server instance configured in the config subdirectory:

<target name="start-server">
<wlserver dir="./config" host="127.0.0.1" port="7001" action="start"/>

</target>

This target creates a new single-server domain in an empty directory, and starts the domain’s
server instance:

<target name="new-server">
<delete dir="./tmp"/>
<mkdir dir="./tmp"/>
<wlserver dir="./tmp" host="127.0.0.1" port="7001"
generateConfig="true" username="weblogic" password="weblogic"
action="start"/>

</target>

wlserver Ant Task Reference

The following table describes the attributes of the wlserver Ant task.

Table 2-1 Attributes of the wiserver Ant Task

Attribute Description Data Required?
Type
policy The path to the security policy file for the WebLogic File No

Server domain. This attribute is used only for starting
server instances.

dir The path that holds the domain configuration (for File No
example, ¢ : \bea\user_projects\mydomain). By
default, wlserver uses the current directory.

beahome The path to the BEA home directory (for example, File No
c:\bea).
weblogichome The path to the WebLogic Server installation directory File No

(for example, c : \bea\weblogic81l).

2-4 Developing Applications with WebLogic Server

Starting Servers and Creating Domains Using the wiserver Ant Task

Table 2-1 Attributes of the wiserver Ant Task

Attribute Description Data Required?
Type
servername The name of the server to start, shutdown, reboot, or String Required
connect to. only when
A WebLogic Server instance is uniquely identified by its shutting
protocol, host, and port values, so if you use this set of dowg the)
attributes to specify the server you want to start, shutdown Administrati
or reboot, you do not need to specify its actual name using on server.
the servername attribute. The only exception is when
you want to shutdown the Administration server; in this
case you must specify this attribute.
The default value for this attribute is myserver.
domainname The name of the WebLogic Server domain in which the String No
server is configured.
adminserverurl The URL to access the Administration Server in the String Required for
domain. This attribute is required if you are starting up a starting
Managed Server in the domain. Managed
Servers.
username The username of an administrator account. If you omit String No
both the username and password attributes,
wlserver attempts to obtain the encrypted username
and password values from the boot . properties file.
See Boot Identity Files in the Managing Server Startup
and Shutdown for more information on
boot.properties.
password The password of an administrator account. If you omit String No
both the username and password attributes,
wlserver attempts to obtain the encrypted username
and password values from the boot . properties file.
See Boot Identity Files in the Managing Server Startup
and Shutdown for more information on
boot .properties.
pkpassword The private key password for decrypting the SSL private String No

key file.

Developing Applications with WebLogic Server 2-5

http://e-docs.bea.com/wls/docs91/server_start/overview.html#BootIdentityFiles
http://e-docs.bea.com/wls/docs91/server_start/index.html
http://e-docs.bea.com/wls/docs91/server_start/index.html
http://e-docs.bea.com/wls/docs91/server_start/overview.html#BootIdentityFiles
http://e-docs.bea.com/wls/docs91/server_start/index.html
http://e-docs.bea.com/wls/docs91/server_start/index.html

Using Ant Tasks to Configure and Use a WebLogic Server Domain

Table 2-1 Attributes of the wiserver Ant Task

Attribute

Description

Data
Type

Required?

timeout

The maximum time, in milliseconds, that wlserver
waits for a server to boot. This also specifies the
maximum amount of time to wait when connecting to a
running server.

The default value for this attribute is 0, which means the
Ant task never times out.

long

No

timeoutSeconds

The maximum time, in seconds, that wl server waits for
a server to boot. This also specifies the maximum amount
of time to wait when connecting to a running server.

The default value for this attribute is 0, which means the
Ant task never times out.

long

productionmodeenable
d

Specifies whether a server instance boots in development
mode or in production mode.

Development mode enables a WebLogic Server instance
to automatically deploy and update applications that are in
the domain_name/autodeploy directory (where
domain_name is the name of a WebLogic Server
domain). In other words, development mode lets you use
auto-deploy. Production mode disables the
auto-deployment feature. See Deploying Applications
and Modules for more information.

Valid values for this attribute are True and False. The
default value is False (which means that by default a
server instance boots in development mode.)

Note: If you boot the server in production mode by
setting this attribute to True, you must reboot
the server to set the mode back to development
mode. Or in other words, you cannot reset the
mode on a running server using other
administrative tools, such as the WebLogic
Server Scripting Tool (WLST).

boolean

host

The DNS name or IP address on which the server instance
is listening.

The default value for this attribute is localhost.

String

2-6 Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs91/deployment/deploy.html
http://e-docs.bea.com/wls/docs91/deployment/deploy.html

Starting Servers and Creating Domains Using the wiserver Ant Task

Table 2-1 Attributes of the wiserver Ant Task

Attribute

Description

Data
Type

Required?

port

The TCP port number on which the server instance is
listening.

The default value for this attribute is 7001.

int

No

generateconfig

Specifies whether or not wlserver creates a new
domain for the specified server.

Valid values for this attribute are true and false. The
default value is false.

boolean

action

Specifies the action wlserver performs: start,
shutdown, reboot, or connect.

The shutdown action can be used with the optional
forceshutdown attribute perform a forced shutdown.

The default value for this attribute is start.

String

failonerror

This is a global attribute used by WebLogic Server Ant
tasks. It specifies whether the task should fail if it
encounters an error during the build.

Valid values for this attribute are true and false. The
default value is false.

Boolean

forceshutdown

This optional attribute is used in conjunction with the
action="shutdown" attribute to perform a forced
shutdown. For example:

<wlserver
host="${wls.host}"
port="${port}"
username="S${wls.username}"
password="${wls.password}"
action="shutdown"
forceshutdown="true" />

Valid values for this attribute are true and false. The
default value is false.

Boolean

protocol

Specifies the protocol that the wl server Ant task uses to

communicate with the WebLogic Server instance.

Valid values are t3, t3s, http, https, and iiop. The
default value is £3.

String

Developing Applications with WebLogic Server 2-1

Using Ant Tasks to Configure and Use a WebLogic Server Domain

Table 2-1 Attributes of the wiserver Ant Task

Attribute

Description

Data
Type

Required?

forcelmplicitUpgrade

Specifies whether the wlserver Ant task, if run against
an 8.1 (or previous) domain, should implicitly upgrade it
to version 9.1.

Valid values are true or false. The default value is
false, which means that the Ant task does not implicitly
upgrade the domain, but rather, will fail with an error
indicating that the domain needs to be upgraded to version
9.1 of WebLogic Server.

For more information about upgrading domains, see
Upgrading WebLogic Application Environments.

Boolean

No.

configFile

Specifies the configuration file for your domain.

The value of this attribute must be a valid XML file that
conforms to the XML schema as defined in the BEA
WebLogic Server 9.1 Domain Configuration Schema
Reference.

The XML file must exist in the Administration Server's
root directory, which is either the current directory or the
directory that you specify with the dir attribute.

If you do not specify this attribute, the default value is
config.xml in the directory specified by the dir
attribute. If you do not specify the dir attribute, then the
default domain directory is the current directory.

String

No.

2-8 Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs91/../../common/docs90/upgrade/index.html
http://e-docs.bea.com/wls/docs91/schemaref/config/index.html
http://e-docs.bea.com/wls/docs91/schemaref/config/index.html
http://e-docs.bea.com/wls/docs91/schemaref/config/index.html

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Table 2-1 Attributes of the wiserver Ant Task

Attribute Description Data
Type

useBootProperties Specifies whether to use the boot . properties file Boolean No
when starting a WebLogic Server instance. If this
attribute is set to true, WebLogic Server uses the
username and encrypted password stored in the
boot.properties file to start rather than any values
set with the username and password attributes.

Required?

Note: The values of the username and password
attributes are still used when shutting down or
rebooting the WebLogic Server instance. The
useBootProperties attribute applies only
when starting the server.

Valid values for this attribute are true and false.
The default value is false.

verbose Specifies that the Ant task output additional information =~ Boolean No
as it is performing its action.

Valid values for this attribute are true and false. The
default value is false.

Configuring a WebLogic Server Domain Using the wiconfig Ant
Task

The following sections describe how to use the wlconfig Ant task to configure a WebLogic
Server domain.

What the wiconfig Ant Task Does

The wlconfig Ant task enables you to configure a WebLogic Server domain by creating,
querying, or modifying configuration MBeans on a running Administration Server instance.
Specifically, wlconfig enables you to:

e Create new MBeans, optionally storing the new MBean Object Names in Ant properties.

e Set attribute values on a named MBean available on the Administration Server.

Developing Applications with WebLogic Server 2-9

Using Ant Tasks to Configure and Use a WebLogic Server Domain

2-10

e Create MBeans and set their attributes in one step by nesting set attribute commands within

create MBean commands.

e Query MBeans, optionally storing the query results in an Ant property reference.
e Query MBeans and set attribute values on all matching results.

e Establish a parent/child relationship among MBeans by nesting create commands within

other create commands.

Warning: The wlconfig Ant task works only against MBeans that are in the compatitibility

MBean server, which has been deprecated as of version 9.0 of WebLogic Server.

In particular, the wlconfig Ant task uses the deprecated BEA proprietary API
weblogic.management .MBeanHome to access WebLogic MBeans, the same as it
did in Version 8.1 of WebLogic Server. The Ant task does not use the standard JIMX
hﬁeﬁhoe(javax.management.MBeanServerConnection)K)dBCOVerBABean&

This means that the only MBeans that you can access using wlconfig are those
listed under the Deprecated MBeans category in the WebLogic Server MBean
Reference.

Basic Steps for Using wiconfig

1.

Set your environment in a command shell. See “Basic Steps for Using wlserver” on page 2-3
for details.

Note: The wlconfig task is predefined in the version of Ant shipped with WebLogic
Server. If you want to use the task with your own Ant installation, add the following
task definition in your build file:

<taskdef name="wlconfig"
classname="weblogic.ant.taskdefs.management .WLConfig" />

wlconfig is commonly used in combination with wlserver to configure a new WebLogic
Server domain created in the context of an Ant task. If you will be using wlconfig to
configure such a domain, first use wlserver attributes to create a new domain and start the
WebLogic Server instance.

Add an initial call to the wlconfig task to connect to the Administration Server for a
domain. For example:

<target name="doconfig”>

<wlconfig url="t3://localhost:7001" username="weblogic"

Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs91/wlsmbeanref/core/index.html
http://e-docs.bea.com/wls/docs91/wlsmbeanref/core/index.html

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

password="weblogic">

</target>
4. Add nested create, delete, get, set, and query elements to configure the domain.

5. Execute the Ant task or tasks specified in the build.xml file by typing ant in the staging
directory, optionally passing the command a target argument:

prompt> ant doconfig

Use ant -verbose to obtain more detailed messages from the wlconfig task.

Sample build.xml Files for wiconfig

The following sections provide sample Ant build scripts for using the wlconfig Ant task.

Complete Example

This example shows a single build.xml file that creates a new domain using wlserver and
performs various domain configuration tasks with wlconfig. The configuration tasks set up
domain resources required by the Avitek Medical Records sample application.

The script starts by creating the new domain:

<target name="medrec.config">
<mkdir dir="config"/>
<wlserver username="a" password="a" servername="MedRecServer"
domainname="medrec" dir="config" host="localhost" port="7000"

generateconfig="true"/>

The script then starts the wlconfig task by accessing the newly-created server:

<wlconfig url="t3://localhost:7000" username="a" password="a">

Within the wlconfig task, the query element runs a query to obtain the Server MBean object
name, and stores this MBean in the $ {medrecserver} Ant property:

<query domain="medrec" type="Server" name="MedRecServer"

property="medrecserver" />

The script the uses a create element to create a new JDBC connection pool in the domain,
storing the object name in the $ {medrecpool} Ant property. Nested set elements in the create
operation set attributes on the newly-created MBean. The new pool is target to the server using
the $ {medrecserver} Ant property set in the query above:

Developing Applications with WebLogic Server 2-11

Using Ant Tasks to Configure and Use a WebLogic Server Domain

<create type="JDBCConnectionPool" name="MedRecPool"

property="medrecpool">

<set attribute="CapacityIncrement" value="1"/>

<set attribute="DriverName"
value="com.pointbase. jdbc.jdbcUniversalDriver" />

<set attribute="InitialCapacity" value="1"/>

<set attribute="MaxCapacity" value="10"/>

<set attribute="Password" value="MedRec"/>

<set attribute="Properties" value="user=MedRec"/>

<set attribute="RefreshMinutes" wvalue="0"/>

<gset attribute="ShrinkPeriodMinutes" value="15"/>

<set attribute="ShrinkingEnabled" value="true"/>

<set attribute="TestConnectionsOnRelease" value="false"/>

<set attribute="TestConnectionsOnReserve" value="false"/>

<set attribute="URL"
value="jdbc:pointbase:server://localhost/demo" />

<set attribute="Targets" value="${medrecserver}"/>

</create>

Next, the script creates a JDBC TX DataSource using the JDBC connection pool created above:

<create type="JDBCTxDataSource" name="Medical Records Tx DataSource">
<set attribute="JNDIName" value="MedRecTxDataSource"/>
<set attribute="PoolName" value="MedRecPool"/>
<set attribute="Targets" value="${medrecserver}"/>

</create>

The script creates a new JMS connection factory using nested set elements:

<create type="JMSConnectionFactory" name="Queue">
<set attribute="JNDIName" value="jms/QueueConnectionFactory"/>
<set attribute="XAServerEnabled" value="true"/>
<set attribute="Targets" value="${medrecserver}"/>

</create>

A new JMS JDBC store is created using the MedRecPool:

<create type="JMSJDBCStore" name="MedRecJDBCStore"
property="medrecjdbcstore">

<set attribute="ConnectionPool" value="${medrecpool}"/>

2-12 Developing Applications with WebLogic Server

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

<set attribute="PrefixName" value="MedRec"/>

</create>

When creating a new JMS server, the script uses a nested create element to create a JMS queue,
which is the child of the JMS server:

<create type="JMSServer" name="MedRecJMSServer">
<set attribute="Store" value="${medrecjdbcstore}"/>
<set attribute="Targets" value="${medrecserver}"/>
<create type="JMSQueue" name="Registration Queue">
<set attribute="JNDIName" value="jms/REGISTRATION_MDB_QUEUE"/>
</create>

</create>

This script creates a new mail session and startup class:

<create type="MailSession" name="Medical Records Mail Session">
<set attribute="JNDIName" value="mail/MedRecMailSession"/>
<set attribute="Properties"
value="mail.user=joe;mail.host=mail.mycompany.com"/>
<set attribute="Targets" value="${medrecserver}"/>

</create>

<create type="StartupClass" name="StartBrowser">
<set attribute="Arguments" value="port=${listenport}"/>
<set attribute="ClassName"
value="com.bea.medrec.startup.StartBrowser" />
<gset attribute="FailureIsFatal" value="false"/>
<set attribute="Notes" value="Automatically starts a browser on

server boot."/>
<set attribute="Targets" value="${medrecserver}"/>
</create>

Finally, the script obtains the webserver MBean and sets the log filename using a nested set
element:

<guery domain="medrec" type="WebServer" name="MedRecServer">
<set attribute="LogFileName" value="logs/access.log"/>
</query>
</wlconfig>

</target>

Developing Applications with WebLogic Server 2-13

Using Ant Tasks to Configure and Use a WebLogic Server Domain

2-14

Query and Delete Example

The query element does not need to specify an MBean name when nested within a query
element:

<target name="queryDelete">
<wlconfig url="${adminurl}" username="${user}" password="${pass}"
failonerror="false">
<query query="${wlsdomain} :Name=MyNewServer2, *"
property="deleteQuery">
<delete/>
</query>
</wlconfig>

</target>

Example of Setting Multiple Attribute Values

The set element allows you to set an attribute value to multiple object names stored in Ant
properties. For example, the following target stores the object names of two servers in separate
Ant properties, then uses those properties to assign both servers to the target attribute of a new
JDBC Connection Pool:

<target name="multipleJDBCTargets">
<wlconfig url="${adminurl}" username="${user}" password="${pass}">
<guery domain="mydomain" type="Server" name="MyServer"
property="myserver"/>
<query domain="mydomain" type="Server" name="OtherServer"
property="otherserver" />
<create type="JDBCConnectionPool" name="sglpool" property="sglpool">

<set attribute="CapacityIncrement" value="1"/>

<set attribute="Targets" value="${myserver};${otherserver}"/>
</create>
</wlconfig>

</target>

wiconfig Ant Task Reference

The following sections describe the attributes and elements that can be used with wlconfig.

Developing Applications with WebLogic Server

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Main Attributes

The following table describes the main attributes of the wlconfig Ant task.

Table 2-2 Main Attributes of the wiconfig Ant Task

Attribute

Description

Data
Type

Required?

url

The URL of the domain’s Administration Server.

String

username

The username of an administrator account.

String

password

The password of an administrator account.

To avoid having the plain text password appear in the
build file or in process utilities such as ps, first store a
valid username and encrypted password in a
configuration file using the WebLogic Scripting Tool
(WLST) storeUserConfig command. Then omit
both the username and password attributes in your
Ant build file. When the attributes are omitted,
wlconfig attempts to login using values obtained from
the default configuration file.

If you want to obtain a username and password from a
non-default configuration file and key file, use the
userconfigfile and userkeyfile attributes with
wlconfig.

See the command reference for storeUserConfig in
the WLST Command and Variable Reference for more
information on storing and encrypting passwords.

String

failonerror

This is a global attribute used by WebLogic Server Ant
tasks. It specifies whether the task should fail if it
encounters an error during the build. This attribute is set
to true by default.

Boolean

No

Developing Applications with WebLogic Server 2-15

http://e-docs.bea.com/wls/docs91/config_scripting/reference.html

Using Ant Tasks to Configure and Use a WebLogic Server Domain

Table 2-2 Main Attributes of the wiconfig Ant Task

Attribute

Description Data
Type

Required?

userconfigfile

Specifies the location of a user configuration file touse File
for obtaining the administrative username and password.

Use this option, instead of the username and

password attributes, in your build file when you do not

want to have the plain text password shown in-line or in
process-level utilities such as ps.

Before specifying the userconfigfile attribute, you
must first generate the file using the WebLogic Scripting
Tool (WLST) storeUserConfig command as
described in the WLST Command and Variable
Reference.

No

userkeyfile

Specifies the location of a user key file to use for File
encrypting and decrypting the username and password
information stored in a user configuration file (the
userconfigfile attribute).

Before specifying the userkeyf ile attribute, you must
first generate the key file using the WebLogic Scripting
Tool (WLST) storeUserConfig command as
described in the WLST Command and Variable
Reference.

2-16

Nested Elements

wlconfig also has several elements that can be nested to specify configuration options:

create
delete
set
get

query

invoke

Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs91/config_scripting/reference.html
http://e-docs.bea.com/wls/docs91/config_scripting/reference.html
http://e-docs.bea.com/wls/docs91/config_scripting/reference.html
http://e-docs.bea.com/wls/docs91/config_scripting/reference.html

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

create

The create element creates a new MBean in the WebLogic Server domain. The wlconfig task

can have any number of create elements.

A create element can have any number of nested set elements, which set attributes on the
newly-created MBean. A create element may also have additional, nested create elements that

create child MBeans.

The create element has the following attributes.

Table 2-3 Attributes of the create Element

Attribute Description Data Required?
Type

name The name of the new MBean object to create. String No
(wlconfig
supplies a
default name
if none is
specified.)

type The MBean type. String Yes

property The name of an optional Ant property that holds String No

the object name of the newly-created MBean.

Note: Ifyounesta create element inside of
another create element, you cannot
specify the property attribute for the
nested create element.

Developing Applications with WebLogic Server 2-11

Using Ant Tasks to Configure and Use a WebLogic Server Domain

delete

The delete element removes an existing MBean from the WebLogic Server domain. delete

takes a single attribute:

Table 2-4 Attribute of the delete Element

Attribute Description Data
Type

Required?

mbean The object name of the MBean to String
delete.

Required when the
deleteeclementis a direct
child of the wlconfig
task. Not required when
nested within a query

element.

set

The set element sets MBean attributes on a named MBean, a newly-created MBean, or on
MBeans retrieved as part of a query. You can include the set element as a direct child of the

wlconfig task, or nested within a create or query element.

The set element has the following attributes:

Table 2-5 Attributes of the set Element

Attribute Description Data Required?
Type

attribute The name of the MBean attribute to set. String Yes

value The value to set for the specified MBean attribute. String Yes

You can specify multiple object names (stored in
Ant properties) as a value by delimiting the entire
value list with quotes and separating the object
names with a semicolon. See “Example of Setting
Multiple Attribute Values” on page 2-14.

2-18 Developing Applications with WebLogic Server

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Tahle 2-5 Attributes of the set Element

Attribute Description Data Required?
Type
mbean The object name of the MBean whose values are String Required
being set. This attribute is required only when the only when
set element is included as a direct child of the the set
main wlconfig task; it is not required when the element is a
set element is nested within the context of a direct child
create or query element. of the
wlconfig
task.
domain This attribute specifies the JIMX domain name for ~ String No
Security MBeans and third-party SPI MBeans. It
is not required for administration MBeans, as the
domain corresponds to the WebLogic Server
domain.
Note: You cannot use this attribute if the set
element is nested inside of a create
element.
get

The get element retrieves attribute values from an MBean in the WebLogic Server domain. The
wlconfig task can have any number of get elements.

The get element has the following attributes.

Table 2-6 Attributes of the get Element

Attribute Description Data Required?
Type
attribute The name of the MBean attribute whose value you String Yes

want to retrieve.

Developing Applications with WebLogic Server 2-19

Using Ant Tasks to Configure and Use a WebLogic Server Domain

Table 2-6 Attributes of the get Element

Attribute Description Data Required?
Type
property The name of an Ant property that will hold the String Yes
retrieved MBean attribute value.
mbean The object name of the MBean you want to String Yes
retrieve attribute values from.
query
The query elements finds MBean that match a search pattern.
The query element supports the following nested child elements:
e set—performs set operations on all MBeans in the result set.
e get—performs get operations on all MBeans in the result set.
e create—ecach MBean in the result set is used as a parent of a new MBean.
e delete—performs delete operations on all MBeans in the result set.
e invoke—invokes all matching MBeans in the result set.
wlconfig can have any number of nested query elements.
query has the following attributes:
Table 2-7 Attributes of the query Element
Attribute Description Data Required?
Type
domain The name of the WebLogic Server domain in String No
which to search for MBeans.
type The type of MBean to query. String No
name The name of the MBean to query. String No
pattern A JMX query pattern. String No

2-20 Developing Applications with WebLogic Server

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Table 2-7 Attributes of the query Element

Attribute Description Data Required?
Type
property The name of an optional Ant property that will String No

store the query results.

domain This attribute specifies the JIMX domain name for ~ String No
Security MBeans and third-party SPI MBeans. It
is not required for administration MBeans, as the
domain corresponds to the WebLogic Server
domain.

invoke

The invoke element invokes a management operation for one or more MBeans. For WebLogic
Server MBeans, you usually use this command to invoke operations other than the
getAttribute and setAttribute that most WebLogic Server MBeans provide.

The invoke element has the following attributes.

Table 2-8 Attributes of the invoke Element

Attribute Description Data Required?
Type

mbean The object name of the MBean you want to String You must
invoke. specify either
thembean or
type
attribute of
the invoke
clement.

type The type of MBean to invoke. String You must
specify either
thembean or
type
attribute of
the invoke
element.

Developing Applications with WebLogic Server 2-21

Using Ant Tasks to Configure and Use a WebLogic Server Domain

Tahle 2-8 Attributes of the invoke Element

Attribute Description Data Required?
Type
methodName The method of the MBean to invoke. String Yes
arguments The list of arguments (separated by spaces) to pass ~ String No
to the method specified by the methodName
attribute.

Using the libclasspath Ant Task

2-22

Use the 1ibclasspath Ant task to build applications that use libraries, such as application
libraries and web libraries.

e “libclasspath Task Definition” on page 2-22
e “wlserver Ant Task Reference” on page 2-4

e “Example libclasspath Ant Task™ on page 2-24

libclasspath Task Definition

To use the task with your own Ant installation, add the following task definition in your build file:

<taskdef name="libclasspath" classname="weblogic.ant.taskdefs.build.Lib

ClasspathTask" />

libclasspath Ant Task Reference

The following sections describe the attributes and elements that can be used with the
libclasspath Ant task.

e “Main libclasspath Attributes” on page 2-22

e “Nested libclasspath Elements” on page 2-24

Main libclasspath Attributes

The following table describes the main attributes of the 1ibclasspath Ant task.

Developing Applications with WebLogic Server

Using the libclasspath Ant Task

Table 2-9 Attributes of the libclasspath Ant Task

Attribute Description Required
basedir The root of .ear or .war file to extract One of the two attributes is
from. required.
basewar The name of the .war file to extract from. Ifbaselwa.r s specified,
basedir is ignored and the
library referenced in
basewar is used as the
.war file to extract
classpath or resourcepath
information from.
tmpdir The fully qualified name of the directory to ~ Yes.
be used for extracting libraries.
classpathproperty Contains the classpath for the referenced At least one of the two
libraries. attributes is required.

For example, if basedir points toa .war
file that references web application libraries
in the weblogic.xml file, the
classpathproperty contains the
WEB-INF/classes and WEB-INF/1ib
directories of the web application libraries.

Additionally, if basedir pointsto a .war
file that has .war files under
WEB-INF/bea-ext, the
classpathproperty contains the
WEB-INF/classes and WEB-INF/1lib
directories for the BEA extensions.

resourcepathprope
rty

Contains library resources that are not
classes.

For example, if basedir pointstoa .war
file that has . war files under
WEB-INF/bea-ext,
resourcepathproperty contains the
roots of the exploded extensions.

Developing Applications with WebLogic Server 2-23

Using Ant Tasks to Configure and Use a WebLogic Server Domain

Nested libclasspath Elements

libclasspath also has two elements that can be nested to specify configuration options. At least
one of the elements is required when using the 1ibclasspath Ant task:

librarydir
The following attribute is required when using this element:

dir—Specifies that all files in this directory are registered as available libraries.

library

The following attribute is required when using this element:

file—Register this file as an available library.

Example libclasspath Ant Task

This section provides example code of a libclasspath Ant task:

Listing 2-1 Example libclasspath Ant Task Code

<taskdef name="libclasspath" classname="weblogic.ant.taskdefs.build.Lib
ClasspathTask" />

<!-- Builds classpath based on libraries defined in weblogic-applicatio
n.xml. -->
<target name="init.app.libs">
<libclasspath basedir="S${src.dir}" tmpdir="${tmp.dir}" classpathprop
erty="app.lib.classpath">
<librarydir dir="${weblogic.home}/common/deployable-libraries/"/>
</libclasspath>
<echo message="app.lib.claspath is ${app.lib.classpath}" level="info"/>
</target>

2-24 Developing Applications with WebLogic Server

Using the libclasspath Ant Task

Developing Applications with WebLogic Server 2-25

Using Ant Tasks to Configure and Use a WebLogic Server Domain

2-26 Developing Applications with WebLogic Server

GHAPTERa

Creating a Split Development Directory
Environment

The following sections describe the steps for creating a WebLogic Server split development
directory that you can use to develop a J2EE application or module:

e “Overview of the Split Development Directory Environment” on page 3-2

e “Using the Split Development Directory Structure: Main Steps” on page 3-5

e “Organizing J2EE Components in a Split Development Directory” on page 3-6

e “Organizing Shared Classes in a Split Development Directory” on page 3-12

e “Generating a Basic build.xml File Using weblogic.BuildXMLGen” on page 3-13

e “Developing Multiple-EAR Projects Using the Split Development Directory” on page 3-15

e “Best Practices for Developing WebLogic Server Applications” on page 3-17

Developing Applications with WebLogic Server 3-1

Creating a Split Development Directory Environment

Overview of the Split Development Directory Environment

The WebLogic split development directory environment consists of a directory layout and
associated Ant tasks that help you repeatedly build, change, and deploy J2EE applications.
Compared to other development frameworks, the WebLogic split development directory
provides these benefits:

e Fast development and deployment. By minimizing unnecessary file copying, the split
development directory Ant tasks help you recompile and redeploy applications quickly
without first generating a deployable archive file or exploded archive directory.

e Simplified build scripts. The BEA-provided Ant tasks automatically determine which
J2EE modules and classes you are creating, and build components in the correct order to
support common classpath dependencies. In many cases, your project build script can
simply identify the source and build directories and allow Ant tasks to perform their
default behaviors.

e Easy integration with source control systems. The split development directory provides a
clean separation between source files and generated files. This helps you maintain only
editable files in your source control system. You can also clean the build by deleting the
entire build directory; build files are easily replaced by rebuilding the project.

Source and Build Directories

The source and build directories form the basis of the split development directory environment.
The source directory contains all editable files for your project—Java source files, editable
descriptor files, JSPs, static content, and so forth. You create the source directory for an
application by following the directory structure guidelines described in “Organizing J2EE
Components in a Split Development Directory” on page 3-6.

The top level of the source directory always represents an Enterprise Application (. ear file),
even if you are developing only a single J2EE module. Subdirectories beneath the top level source
directory contain:

e Enterprise Application Modules (EJBs and Web Applications)

Note: The split development directory structure does not provide support for developing
new Resource Adapter components.

e Descriptor files for the Enterprise Application (application.xml and
weblogic-application.xml)

e Utility classes shared by modules of the application (for example, exceptions, constants)

3-2 Developing Applications with WebLogic Server

Overview of the Split Development Directory Environment

e Libraries (compiled. jar files, including third-party libraries) used by modules of the
application

The build directory contents are generated automatically when you run the wlcompile ant task
against a valid source directory. The wlcompile task recognizes EJB, Web Application, and
shared library and class directories in the source directory, and builds those components in an
order that supports common class path requirements. Additional Ant tasks can be used to build
Web Services or generate deployment descriptor files from annotated EJB code.

Figure 3-1 Source and Build Directories

=, sy

Java Sourcs, Compilad
Annatated .EJS

Static HTML and Deployment
Bruphlcs Deacriptors

Editable
Deploymont
Descriptors

Third-Party JAR
Fllax

The build directory contains only those files generated during the build process. The combination
of files in the source and build directories form a deployable J2EE application.

The build and source directory contents can be place in any directory of your choice. However,
for ease of use, the directories are commonly placed in directories named source and build,
within a single project directory (for example, \myproject\build and \myproject\source).

Deploying from a Split Development Directory

All WebLogic Server deployment tools (weblogic.Deployer, wldeploy, and the
Administration Console) support direct deployment from a split development directory. You
specify only the build directory when deploying the application to WebLogic Server.

WebLogic Server attempts to use all classes and resources available in the source directory for
deploying the application. If a required resource is not available in the source directory,

Developing Applications with WebLogic Server 3-3

Creating a Split Development Directory Environment

34

WebLogic Server then looks in the application’s build directory for that resource. For example,
if a deployment descriptor is generated during the build process, rather than stored with source
code as an editable file, WebLogic Server obtains the generated file from the build directory.

WebLogic Server discovers the location of the source directory by examining the

.beabuild. txt file that resides in the top level of the application’s build directory. If you ever
move or modify the source directory location, edit the .beabuild.txt file to identify the new
source directory name.

“Deploying and Packaging from a Split Development Directory” on page 5-1 describes the
wldeploy Ant task that you can use to automate deployment from the split directory
environment.

Figure 3-2 shows a typical deployment process. The process is initiated by specifying the build
directory with a WebLogic Server tool. In the figure, all compiled classes and generated
deployment descriptors are discovered in the build directory, but other application resources
(such as static files and editable deployment descriptors) are missing. WebLogic Server uses the
hidden .beabuild. txt file to locate the application’s source directory, where it finds the
required resources.

Figure 3-2 Split Directory Deployment

-

Sou
Direcion Bulld Diroctory
Jova Source, Campliad
JsPs, . —
Annotated EJB Classea
Static HTML Qeneratad
and Graphios ‘—l Deploymont iffe
Descriptors
Editable
Dop - boabulldtet
Doscriptors
THrdParty JAR I
Flles

Developing Applications with WebLogic Server

Using the Split Development Directory Structure: Main Steps

Split Development Directory Ant Tasks

BEA provides a collection of Ant tasks designed to help you develop applications using the split
development directory environment. Each Ant task uses the source, build, or both directories to
perform common development tasks:

e wlcompile—This Ant task compiles the contents of the source directory into

subdirectories of the build directory. wlcompile compiles Java classes and also processes
annotated . ejb files into deployment descriptors, as described in “Compiling Applications
Using wlcompile” on page 4-1.

wlappc—This Ant task invokes the appc compiler, which generates JSPs and
container-specific EJB classes for deployment. See “Building Modules and Applications
Using wlappc” on page 4-4.

wldeploy—This Ant task deploys any format of J2EE applications (exploded or archived)
to WebLogic Server. To deploy directly from the split development directory environment,
you specify the build directory of your application. See “wldeploy Ant Task Reference” on
page B-1.

wlpackage—This Ant task uses the contents of both the source and build directories to
generate an EAR file or exploded EAR directory that you can give to others for
deployment.

Using the Split Development Directory Structure: Main Steps

The following steps illustrate how you use the split development directory structure to build and
deploy a WebLogic Server application.

1.

Create the main EAR source directory for your project. When using the split development
directory environment, you must develop Web Applications and EJBs as part of an Enterprise
Application, even if you do not intend to develop multiple J2EE modules. See “Organizing
J2EE Components in a Split Development Directory” on page 3-6.

Add one or more subdirectories to the EAR directory for storing the source for Web
Applications, EJB components, or shared utility classes. See “Organizing J2EE
Components in a Split Development Directory” on page 3-6 and “Organizing Shared
Classes in a Split Development Directory” on page 3-12.

Store all of your editable files (source code, static content, editable deployment descriptors)
for modules in subdirectories of the EAR directory. Add the entire contents of the source
directory to your source control system, if applicable.

Developing Applications with WebLogic Server 3-5

Creating a Split Development Directory Environment

4. Set your WebLogic Server environment by executing either the setWLSEnv.cmd
(Windows) or setWLSEnv.sh (UNIX) script. The scripts are located in the
WL_HOME\server\bin\ directory, where wZ_HOME is the top-level directory in which
WebLogic Server is installed.

5. Use the weblogic.BuildxMLGen utility to generate a default build.xm1l file for use with
your project. Edit the default property values as needed for your environment. See
“Generating a Basic build.xml File Using weblogic.BuildXMLGen” on page 3-13.

6. Use the default targets in the build.xml file to build, deploy, and package your application.
See “Generating a Basic build.xml File Using weblogic.BuildXMLGen” on page 3-13 for a
list of default targets.

Organizing J2EE Components in a Split Development Directory

The split development directory structure requires each project to be staged as a J2EE Enterprise
Application. BEA therefore recommends that you stage even stand-alone Web applications and
EJBs as modules of an Enterprise application, to benefit from the split directory Ant tasks. This
practice also allows you to easily add or remove modules at a later date, because the application
is already organized as an EAR.

Note: If your project requires multiple EARs, see also “Developing Multiple-EAR Projects
Using the Split Development Directory” on page 3-15.

The following sections describe the basic conventions for staging the following module types in
the split development directory structure:

e “Enterprise Application Configuration” on page 3-9
e “Web Applications” on page 3-9

e “EJBs” on page 3-11

e “Shared Utility Classes” on page 3-12

e “Third-Party Libraries” on page 3-13

The directory examples are taken from the splitdir sample application installed in
WL_HOME\samples\server\examples\src\examples\splitdir, where wr_HOME is your
WebLogic Server installation directory.

3-6 Developing Applications with WebLogic Server

Organizing J2EE Components in a Split Development Directory

Source Directory Overview

The following figure summarizes the source directory contents of an Enterprise Application
having a Web Application, EJB, shared utility classes, and third-party libraries. The sections that
follow provide more details about how individual parts of the enterprise source directory are
organized.

Developing Applications with WebLogic Server 3-1

Creating a Split Development Directory Environment

Figure 3-3 Overview of Enterprise Application Source Directory

Sourcs

halloWorkiEar

sl xml

— META-NF

|: appication.xmi
wobloglc-application. o

wab.aml
wobloglc.xml

Bre

Java Source Flles

— siatic directorios)

Static flles*
1 helloEJB

Jave Source Flivs
{In package directorfos}

META-INF

wabloglc-afh-jarxm|
| | applitiis wfjarami*

L ove Source Flies
it package directories)

— APP-NF

L Third-Party JAR Files

3-8 Developing Applications with WebLogic Server

Organizing J2EE Components in a Split Development Directory

Enterprise Application Configuration

The top level source directory for a split development directory project represents an Enterprise
Application. The following figure shows the minimal files and directories required in this

directory.

Figure 3-4 Enterprise Application Source Directory

Source

bulldxmi

META-INF

application.mi
wabloglc-application.xmi

The Enterprise Application directory will also have one or more subdirectories to hold a Web
Application, EJB, utility class, and/or third-party Jar file, as described in the following sections.

Web Applications

Web Applications use the basic source directory layout shown in the figure below.

Developing Applications with WebLogic Server 3-9

Creating a Split Development Directory Environment

Figure 3-5 Web Application Source and Build Directories

Source Eulld
helloWorkdEar heloWorkdEar
|_ helloWebApp |— hellcWebApp
—hellcjup |_
WEB-INF
—{ WEBANF L
clansos
et e
Jp_sorviot
|_ Java Sowrne Fies
(i pacimga dirsctories) JSFs
and Sarvists
[— wabam| ava Claxs Fifas
— woblogic.xml i
r-—-—-— |
-----i state* .
ey
Static Mes*
"Hot used In
hellcWordEar sampls

The key directories and files for the Web Application are:

e hellowebapp\ —The top level of the Web Application module can contain JSP files and
static content such as HTML files and graphics used in the application. You can also store
static files in any named subdirectory of the Web Application (for example,
helloWebApp\graphics Or helloWebApp\ static.)

® helloWebApp\WEB-INF\ —Store the Web Application’s editable deployment descriptor
files (web.xml and weblogic.xml) in the WEB-INF subdirectory.

® helloWebApp\WEB-INF\src —Store Java source files for Servlets in package
subdirectories under WEB-INF\src.

When you build a Web Application, the appc Ant task and jspc compiler compile JSPs into
package subdirectories under helloWebApp\WEB-INF\classes\jsp_servlet in the build
directory. Editable deployment descriptors are not copied during the build process.

3-10 Developing Applications with WebLogic Server

Organizing J2EE Components in a Split Development Directory

EJBs

EJBs use the source directory layout shown in the figure below.

Figure 3-6 EJB Source and Build Directories

Source Eulld
heloWoridEar hellcWordEar
I_ helloEJE I— hellcEJB
I_ Java Sowrne Fies ava Clazs Fifas
t [peckege direciories) fin pacimge directories)
fopo—r—— I
=---i METAMF - META-INF
- |
------ afbejarami* afbjarami
e WERODRC-Gffar X tlogic-cibfaraml
*Nat used in
helloWerldEar aample

The key directories and files for an EJB are:

e helloEJB\ —Store all EJB source files under package directories of the EJB module
directory. The source files can be either . java source files, or annotated . ejb files.

® helloEJB\META-INF\ —Store editable EJB deployment descriptors (ejb-jar.xml and
weblogic-ejb-jar.xml) in the META- INF subdirectory of the EJB module directory. The
helloWorldEar sample does not include a hel1o0EJB\META-INF subdirectory, because its
deployment descriptors files are generated from annotations in the . ejb source files. See
“Important Notes Regarding EJB Descriptors” on page 3-11.

During the build process, EJB classes are compiled into package subdirectories of the hel10EJB
module in the build directory. If you use annotated . ejb source files, the build process also
generates the EJB deployment descriptors and stores them in the hel10EJB\META-INF
subdirectory of the build directory.

Important Notes Regarding EJB Descriptors

EJB deployment descriptors should be included in the source META-INF directory and treated as
source code only if those descriptor files are created from scratch or are edited manually.

Developing Applications with WebLogic Server 3-11

Creating a Split Development Directory Environment

Descriptor files that are generated from annotated . ejb files should appear only in the build
directory, and they can be deleted and regenerated by building the application.

For a given EJB component, the EJB source directory should contain either:

e EJB source code in . java source files and editable deployment descriptors in META-INF
or:
e EJB source code with descriptor annotations in . ejb source files, and no editable
descriptors in META-INF .

In other words, do not provide both annotated . ejb source files and editable descriptor files for
the same EJB component.

Organizing Shared Classes in a Split Development Directory

3-12

The WebLogic split development directory also helps you store shared utility classes and libraries
that are required by modules in your Enterprise Application. The following sections describe the
directory layout and classloading behavior for shared utility classes and third-party JAR files.

Shared Utility Classes

Enterprise Applications frequently use Java utility classes that are shared among application
modules. Java utility classes differ from third-party JARs in that the source files are part of the
application and must be compiled. Java utility classes are typically libraries used by application
modules such as EJBs or Web applications.

Figure 3-7 Java Utility Class Directory

Source Buld
holloWoridEar helloWordEar
|_ applite |— APPINF
Java Sourne Fies I_ Java Class Files
(" paciagn cirectories) {in paciage directories)

Place the source for Java utility classes in a named subdirectory of the top-level Enterprise
Application directory. Beneath the named subdirectory, use standard package subdirectory
conventions.

Developing Applications with WebLogic Server

Generating a Basic build.xml File Using weblogic.BuildXMLGen

During the build process, the wlcompile Ant task invokes the javac compiler and compiles
Java classes into the APP-INF/classes/ directory under the build directory. This ensures that
the classes are available to other modules in the deployed application.

Third-Party Libraries

You can extend an Enterprise Application to use third-party . jar files by placing the files in the
APP-INF\1lib\ directory, as shown below:

Figure 3-8 Third-party Library Directory

Sourca

LT rar
L

I—mmmmu

Third-party JARs are generally not compiled, but may be versioned using the source control
system for your application code. For example, XML parsers, logging implementations, and Web
Application framework JAR files are commonly used in applications and maintained along with
editable source code.

During the build process, third-party JAR files are not copied to the build directory, but remain
in the source directory for deployment.

Class Loading for Shared Classes

The classes and libraries stored under APP-INF/classes and APP-INF/1ib are available to all
modules in the Enterprise Application. The application classloader always attempts to resolve
class requests by first looking in APP-INF/classes, then APP-INF/1ib.

Generating a Basic build.xml File Using weblogic.BuildXMLGen

After you set up your source directory structure, use the weblogic.BuildXMLGen utility to
create a basic build.xml file. weblogic.BuildXMLGen is a convenient utility that
generates an Ant build.xml file for Enterprise applications that are organized in the split

Developing Applications with WebLogic Server 3-13

Creating a Split Development Directory Environment

3-14

development directory structure. The utility analyzes the source directory and creates build and
deploy targets for the Enterprise application as well as individual modules. It also creates targets
to clean the build and generate new deployment descriptors.

The syntax for weblogic.BuildXMLGen is as follows:

java weblogic.BuildXMLGen [options] <source directory>
where options include:

o -help—yprint standard usage message

e -version—print version information

e -projectName <project name>—name of the Ant project

e -d <directory>—directory where build.xml is created. The default is the current
directory.

e -file <build.xml>—name of the generated build file

e -librarydir <directories>——create build targets for shared J2EE libraries in the
comma-separated list of directories. See “Creating Shared J2EE Libraries and Optional
Packages” on page 8-1.

e —username <username>—user name for deploy commands

e -password <password>—user password

After running weblogic .BuildXMLGen, edit the generated build.xm1l file to specify
properties for your development environment. The list of properties you need to edit are shown
in the listing below.

Listing 3-1 build.xml Editable Properties

<!-- BUILD PROPERTIES ADJUST THESE FOR YOUR ENVIRONMENT -->
<property name="tmp.dir" value="/tmp" />
<property name="dist.dir" value="${tmp.dir}/dist"/>
<property name="app.name" value="helloWorldEar" />
<property name="ear" value="${dist.dir}/${app.name}.ear"/>
<property name="ear.exploded" value="${dist.dir}/${app.name}_exploded"/>
<property name="verbose" value="true" />

<property name="user" value="USERNAME" />

Developing Applications with WebLogic Server

Developing Multiple-EAR Projects Using the Split Development Directory

<property name="password" value="PASSWORD" />
<property name="servername" value="myserver" />

<property name="adminurl" value="iiop://localhost:7001" />

In particular, make sure you edit the tmp . dir property to point to the build directory you want
to use. By default, the build.xm1 file builds projects into a subdirectory tmp.dir named after
the application (/tmp/hellowWorldEar in the above listing).

The following listing shows the default main targets created in the build.xm1l file. You can view
these targets at the command prompt by entering the ant -projecthelp command in the EAR
source directory.

Listing 3-2 Default build.xml Targets

appc Runs weblogic.appc on your application

build Compiles helloWorldEar application and runs appc

clean Deletes the build and distribution directories

compile Only compiles helloWorldEar application, no appc
compile.appStartup Compiles just the appStartup module of the application
compile.appUtils Compiles just the appUtils module of the application
compile.build.orig Compiles just the build.orig module of the application
compile.helloEJB Compiles just the helloEJB module of the application
compile.helloWebApp Compiles just the helloWebApp module of the application
compile.javadoc Compiles just the javadoc module of the application
deploy Deploys (and redeploys) the entire helloWorldEar application
descriptors Generates application and module descriptors

ear Package a standard J2EE EAR for distribution
ear.exploded Package a standard exploded J2EE EAR
redeploy.appStartup Redeploys just the appStartup module of the application
redeploy.appUtils Redeploys just the appUtils module of the application
redeploy.build.orig Redeploys just the build.orig module of the application
redeploy.helloEJB Redeploys just the helloEJB module of the application
redeploy.helloWebApp Redeploys just the helloWebApp module of application
redeploy.javadoc Redeploys just the javadoc module of the application
undeploy Undeploys the entire helloWorldEar application

Developing Multiple-EAR Projects Using the Split Development
Directory

The split development directory examples and procedures described previously have dealt with
projects consisting of a single Enterprise Application. Projects that require building multiple
Enterprise Applications simultaneously require slightly different conventions and procedures, as
described in the following sections.

Developing Applications with WebLogic Server 3-15

Creating a Split Development Directory Environment

Note: The following sections refer to the MedRec sample application, which consists of three
separate Enterprise Applications as well as shared utility classes, third-party JAR files,
and dedicated client applications. The MedRec source and build directories are installed
under WL_HOME/samples/server/medrec, where wL_HOME is the WebLogic Server
installation directory.

Organizing Libraries and Classes Shared by Multiple EARs

For single EAR projects, the split development directory conventions suggest keeping third-party
JAR files in the APP-INF/1ib directory of the EAR source directory. However, a multiple-EAR
project would require you to maintain a copy of the same third-party JAR files in the
APP-INF/1ib directory of each EAR source directory. This introduces multiple copies of the
source JAR files, increases the possibility of some JAR files being at different versions, and
requires additional space in your source control system.

To address these problems, consider editing your build script to copy third-party JAR files into
the APP-INF/1ib directory of the build directory for each EAR that requires the libraries. This
allows you to maintain a single copy and version of the JAR files in your source control system,
yet it enables each EAR in your project to use the JAR files.

The MedRec sample application installed with WebLogic Server uses this strategy, as shown in
the following figure.

Figure 3-9 Shared JAR Files in MedRec

I— medvecEar I— physiclanEar

U e Tgn

oomumons-"far commons-"_far
sxcsptions. jar sucspions.jar
struis.jar sirutx.jar

utlis jar utli jar

valua jar valua jar

MedRec takes a similar approach to utility classes that are shared by multiple EARs in the project.
Instead of including the source for utility classes within the scope of each ear that needs them,
MedRec keeps the utility class source independent of all EARs. After compiling the utility

3-16 Developing Applications with WebLogic Server

Best Practices for Developing WebLogic Server Applications

classes, the build script archives them and copies the JARs into the build directory under the
APP-INF/LIB subdirectory of each EAR that uses the classes, as shown in figure Figure 3-9.

Linking Multiple build.xml Files

When developing multiple EARSs using the split development directory, each EAR project
generally uses its own build.xml file (perhaps generated by multiple runs of
weblogic.BuildXMLGen.). Applications like MedRec also use a master build.xml file that
calls the subordinate build.xml files for each EAR in the application suite.

Ant provides a core task (named ant) that allows you to execute other project build files within
a master build.xml file. The following line from the MedRec master build file shows its usage:

<ant inheritAll="false" dir="${root}/startupEar" antfile="build.xml"/>

The above task instructs Ant to execute the file named build.xml in the /startupEar
subdirectory. The inheritall parameter instructs Ant to pass only user properties from the
master build file tot the build.xml file in /startupEar.

MedRec uses multiple tasks similar to the above to build the startupEar, medrecEar, and
physicianEar applications, as well as building common utility classes and client applications.

Best Practices for Developing WebLogic Server Applications

BEA recommends the following “best practices” for application development.

e Package applications as part of an Enterprise application. See “Packaging Applications
Using wlpackage” on page 5-2.

e Use the split development directory structure. See “Organizing J2EE Components in a
Split Development Directory” on page 3-6.

e For distribution purposes, package and deploy in archived format. See “Packaging
Applications Using wlpackage” on page 5-2.

o In most other cases, it is more convenient to deploy in exploded format. See “Archive
versus Exploded Archive Directory” on page 5-2.

e Never deploy untested code on a WebLogic Server instance that is serving production
applications. Instead, set up a development WebLogic Server instance on the same
computer on which you edit and compile, or designate a WebLogic Server development
location elsewhere on the network.

Developing Applications with WebLogic Server 3-17

Creating a Split Development Directory Environment

e Even if you do not run a development WebLogic Server instance on your development
computer, you must have access to a WebLogic Server distribution to compile your
programs. To compile any code using WebLogic or J2EE APIs, the Java compiler needs
access to the weblogic. jar file and other JAR files in the distribution directory. Install
WebLogic Server on your development computer to make WebLogic distribution files
available locally.

3-18 Developing Applications with WebLogic Server

CHAPTERo

Building Applications in a Split
Development Directory

The following sections describe the steps for building WebLogic Server J2EE applications using
the WebLogic split development directory environment:

e “Compiling Applications Using wlcompile” on page 4-1

e “Building Modules and Applications Using wlappc” on page 4-4

Compiling Applications Using wicompile

You use the wlcompile Ant task to invoke the javac compiler to compile your application’s
Java components in a split development directory structure. The basic syntax of wlcompile
identifies the source and build directories, as in this command from the helloWorldEar sample:

<wlcompile srcdir="${src.dir}" destdir="${dest.dir}"/>
The following is the order in which events occur using this task:
1. wlcompile compiles the Java components into an output directory:

WL HOME\samples\server\examples\build\helloWorldEar\APP-INF\classes\

where wr,_HoME is the WebLogic Server installation directory.

2. wlcompile builds the EJBs and automatically includes the previously built Java modules
in the compiler's classpath. This allows the EJBs to call the Java modules without requiring
you to manually edit their classpath.

Developing Applications with WebLogic Server 4-1

Building Applications in a Split Development Directory

3. Finally, wlcompile compiles the Java components in the Web application with the EJB and
Java modules in the compiler's classpath. This allows the Web applications to refer to the
EJB and application Java classes without requiring you to manually edit the classpath.

Using includes and excludes Properties

More complex Enterprise applications may have compilation dependencies that are not
automatically handled by the wlcompile task. However, you can use the include and exclude
options to wlcompile to enforce your own dependencies. The includes and excludes
properties accept the names of Enterprise Application modules—the names of subdirectories in
the Enterprise application source directory—to include or exclude them from the compile stage.

The following line from the helloworldEar sample shows the appStartup module being
excluded from compilation:

<wlcompile srcdir="${src.dir}" destdir="S${dest.dir}"

excludes="appStartup"/>
wlcompile Ant Task Attributes
Table 4-1 contains Ant task attributes specific to wlcompile.

Table 4-1 wicompile Ant Task Attributes

Attribute Description

sredir The source directory.

destdir The build/output directory.

classpath Allows you to change the classpath used by wlcompile.
includes Allows you to include specific directories from the build.

excludes Allows you to exclude specific directories from the build.
librarydir Specifies a directory of shared J2EE libraries to add to the

classpath. See “Creating Shared J2EE Libraries and Optional
Packages” on page 8-1.

4-2 Developing Applications with WebLogic Server

Compiling Applications Using wicompile

Nested javac Options

The wlcompile Anttask can accept nested javac options to change the compile-time behavior.
For example, the following wlcompile command ignores deprecation warnings and enables
debugging:
<wlcompile srcdir="${mysrcdir}” destdir="${mybuilddir}”>
<javac deprecation="false” debug="true”
debuglevel="1lines,vars, source” />

</wlcompile>

Setting the Classpath for Compiling Code

Most WebLogic services are based on J2EE standards and are accessed through standard J2EE
packages. The Sun, WebLogic, and other Java classes required to compile programs that use
WebLogic services are packaged in the weblogic.jar file in the 1ib directory of your
WebLogic Server installation. In addition to weblogic. jar, include the following in your
compiler’s CLASSPATH:

e The 1ib\tools.jar file in the JDK directory, or other standard Java classes required by
the Java Development Kit you use.

e The examples.property file for Apache Ant (for examples environment). This file is
discussed in the WebLogic Server documentation on building examples using Ant located
at: samples\server\examples\src\examples\examples.html

e Classes for third-party Java tools or services your programs import.

e Other application classes referenced by the programs you are compiling.

Library Element for wicompile and wlappc

The 1ibrary element is an optional element used to define the name and optional version
information for a module that represents a shared J2EE library required for building an
application, as described in “Creating Shared J2EE Libraries and Optional Packages” on
page 8-1. The 1ibrary element can be used with both wlcompile and wlappc, described in
“Building Modules and Applications Using wlappc” on page 4-4.

The name and version information are specified as attributes to the library element, described in
“Library attributes” on page 4-4

Developing Applications with WebLogic Server 4-3

Building Applications in a Split Development Directory

Table 4-2 Library attributes

Attribute Description

file Required filename of a J2EE library

name The optional name of a required J2EE library.
specificationversion An optional specification version required for the library.
implementationversion An optional implementation version required for the library.

The format choices for both specificationversion and implementationversion are
described in “Referencing Shared J2EE Libraries in an Enterprise Application” on page 8-11.
The following output shows a sample 1ibrary reference:

<library file="c:\mylibs\lib.jar” name="ReqgLib”

specificationversion="90Beta” implementationversion="1.1" />

Building Modules and Applications Using wlappc

44

The weblogic.appc compiler generates JSPs and container-specific EJB classes for
deployment, and validates deployment descriptors for compliance with the current J2EE
specifications. appc performs validation checks between the application-level deployment
descriptors and the individual modules in the application as well as validation checks across the
modules.

wlappc is the Ant task interface to the weblogic.appc compiler. The following section
describe the wlappc options and usage.

Both weblogic.appc and the wlappc Ant task compile modules in the order in which they
appear in the application.xml deployment descriptor file that describes your Enterprise
application.

wlappc Ant Task Attributes

Table 4-3 describes Ant task options specific to wlappc. These options are similar to the
weblogic.appc command-line options, but with a few differences.

Notes: See “weblogic.appc Reference” on page 4-7 for a list of weblogic.appc options.

See also “Library Element for wlcompile and wlappc” on page 4-3.

Developing Applications with WebLogic Server

Building Modules and Applications Using wlappc

Table 4-3 wlappc Ant Task Attributes

Option
print
version

output <file>

forceGeneration

lineNumbers

basicClientJar

idl
idlOverwrite
idlVerbose

idINoValueTypes

idINoAbstractInterfaces

idlFactories
idlVisibroker

1d1Orbix

idDirectory <dir>

idIMethodSignatures <>

iiop

Description
Prints the standard usage message.
Prints appc version information.

Specifies an alternate output archive or directory. If not set, the
output is placed in the source archive or directory.

Forces generation of EJB and JSP classes. Without this flag, the
classes may not be regenerated (if determined to be
unnecessary).

Adds line numbers to generated class files to aid in debugging.

Does not include deployment descriptors in client JARs
generated for EJBs.

Generates IDL for EJB remote interfaces.
Always overwrites existing IDL files.
Displays verbose information for IDL generation.

Does not generate valuetypes and the methods/attributes that
contain them.

Does not generate abstract interfaces and methods/attributes
that contain them.

Generates factory methods for valuetypes.
Generates IDL somewhat compatible with Visibroker 4.5 C++.

Generates IDL somewhat compatible with Orbix 2000 2.0
C++.

Specifies the directory where IDL files will be created (default:
target directory or JAR)

Specifies the method signatures used to trigger IDL code
generation.

Generates CORBA stubs for EJBs.

Developing Applications with WebLogic Server 4-5

Building Applications in a Split Development Directory

iiopDirectory <dir>

keepgenerated

librarydir

compiler <javac>

Specifies the directory where IIOP stub files will be written
(default: target directory or JAR)

Keeps the generated . java files.

Specifies a directory of shared J2EE libraries to add to the
classpath. See “Creating Shared J2EE Libraries and Optional
Packages” on page 8-1.

Selects the Java compiler to use.

debug Compiles debugging information into a class file.
optimize Compiles with optimization on.

nowarn Compiles without warnings.

verbose Compiles with verbose output.

deprecation Warns about deprecated calls.

normi Passes flags through to Symantec's s;j.
runtimeflags Passes flags through to Java runtime

classpath <path> Selects the classpath to use during compilation.
advanced Prints advanced usage options.

wlappc Ant Task Syntax

The basic syntax for using the wlappc Ant task determines the destination source directory
location. This directory contains the files to be compiled by wlappc.

<wlappc source="${dest.dir}” />

The following is an example of a wlappc Ant task command that invokes two options (idl and

idlorverWrite) from Table 4-3.

<wlappc source="${dest.dir}"idl="true" idlOrverWrite="true"

4-6 Developing Applications with WebLogic Server

Building Modules and Applications Using wlappc

Syntax Differences between appc and wlappc

There are some syntax differences between appc and wlappc. For appc, the presence of a flag in
the command is a boolean. For wlappc, the presence of a flag in the command means that the
argument is required.

To illustrate, the following are examples of the same command, the first being an appc command
and the second being a wlappc command:

java weblogic.appc -idl foo.ear

<wlappc source="${dest.dir} idl="true"/>

weblogic.appc Reference

The following sections describe how to use the command-line version of the appc compiler. The
weblogic.appc command-line compiler reports any warnings or errors encountered in the
descriptors and compiles all of the relevant modules into an EAR file, which can be deployed t