
BEAWebLogic
Server®

Developing Security
Providers for WebLogic
Server

Version 9.0
Revised: July 22, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Developing Security Providers for WebLogic Server iii

Contents

About This Document
Audience for This Guide . xix

Prerequisites for This Guide . xix

Product Documentation on the dev2dev Web Site. xix

Related Information .xx

Contact Us! .xx

Documentation Conventions . xxi

1. Introduction to Developing Security Providers for WebLogic
Server

Audience for This Guide . 1-1

Prerequisites for This Guide . 1-1

Overview of the Development Process . 1-2

Designing the Custom Security Provider . 1-2

Creating Runtime Classes for the Custom Security Provider by Implementing SSPIs . .
1-3

Generating an MBean Type to Configure and Manage the Custom Security Provider . .
1-4

Writing Console Extensions . 1-5

Configuring the Custom Security Provider . 1-6

Providing Management Mechanisms for Security Policies, Security Roles, and
Credential Maps. 1-6

New and Changed Features in This Release . 1-7

iv Developing Security Providers for WebLogic Server

Support for Certificate Lookup and Validation . 1-7

Servlet Authentication Filters . 1-7

Versionable Applications . 1-7

Challenge Identity Assertion . 1-8

Auditing enhancements . 1-8

The ApplicationInfo Interface . 1-8

New V2 Providers . 1-8

New Provider Interfaces. 1-9

Additional Context Handler Support . 1-9

2. Design Considerations
General Architecture of a Security Provider . 2-1

Security Services Provider Interfaces (SSPIs) . 2-2

Understand an Important Restriction . 2-3

Understand the Purpose of the “Provider” SSPIs . 2-3

Determine Which “Provider” Interface You Will Implement 2-4

The DeployableAuthorizationProviderV2 SSPI . 2-5

The DeployableRoleProviderV2 SSPI . 2-5

The DeployableCredentialProvider SSPI . 2-6

Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes . 2-6

SSPI Quick Reference . 2-8

Security Service Provider Interface (SSPI) MBeans. 2-9

Understand Why You Need an MBean Type . 2-10

Determine Which SSPI MBeans to Extend and Implement 2-10

Understand the Basic Elements of an MBean Definition File (MDF). 2-11

Throwing Exceptions from MBean Operations . 2-13

Specifying Non-Clear Text Values for MBean Attributes 2-13

Developing Security Providers for WebLogic Server v

Understand the SSPI MBean Hierarchy and How It Affects the Administration Console
2-14

Understand What the WebLogic MBeanMaker Provides . 2-16

About the MBean Information File . 2-17

SSPI MBean Quick Reference . 2-18

Security Data Migration . 2-20

Migration Concepts . 2-21

Formats . 2-21

Constraints. 2-21

Migration Files . 2-22

Adding Migration Support to Your Custom Security Providers 2-22

Administration Console Support for Security Data Migration. 2-24

Management Utilities Available to Developers of Security Providers 2-25

Security Providers and WebLogic Resources . 2-26

The Architecture of WebLogic Resources . 2-27

Types of WebLogic Resources . 2-28

WebLogic Resource Identifiers . 2-28

The toString() Method. 2-29

Resource IDs and the getID() Method . 2-29

Creating Default Groups for WebLogic Resources . 2-30

Creating Default Security Roles for WebLogic Resources 2-30

Creating Default Security Policies for WebLogic Resources. 2-31

Looking Up WebLogic Resources in a Security Provider’s Runtime Class 2-32

Single-Parent Resource Hierarchies . 2-34

Pattern Matching for URL Resources . 2-35

ContextHandlers and WebLogic Resources . 2-36

Initialization of the Security Provider Database . 2-37

Best Practice: Create a Simple Database If None Exists . 2-38

vi Developing Security Providers for WebLogic Server

Best Practice: Configure an Existing Database . 2-38

Best Practice: Delegate Database Initialization . 2-40

Differences In Attribute Validators. 2-41

Differences In Attribute Validators for Custom Validators.. 2-42

3. Authentication Providers
Authentication Concepts . 3-2

Users and Groups, Principals and Subjects . 3-2

Providing Initial Users and Groups . 3-3

LoginModules . 3-4

The LoginModule Interface . 3-4

LoginModules and Multipart Authentication . 3-5

Java Authentication and Authorization Service (JAAS) . 3-6

How JAAS Works With the WebLogic Security Framework. 3-7

Example: Standalone T3 Application . 3-8

The Authentication Process. 3-10

Do You Need to Develop a Custom Authentication Provider? 3-11

How to Develop a Custom Authentication Provider. 3-12

Create Runtime Classes Using the Appropriate SSPIs . 3-12

Implement the AuthenticationProviderV2 SSPI. 3-13

Implement the JAAS LoginModule Interface . 3-15

Throwing Custom Exceptions from LoginModules . 3-16

Example: Creating the Runtime Classes for the Sample Authentication Provider. .
3-17

Generate an MBean Type Using the WebLogic MBeanMaker 3-24

Create an MBean Definition File (MDF) . 3-25

Use the WebLogic MBeanMaker to Generate the MBean Type 3-26

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 3-30

Developing Security Providers for WebLogic Server vii

Install the MBean Type Into the WebLogic Server Environment 3-31

Configure the Custom Authentication Provider Using the Administration Console 3-31

Managing User Lockouts . 3-32

Specifying the Order of Authentication Providers . 3-33

4. Identity Assertion Providers
Identity Assertion Concepts. 4-1

Identity Assertion Providers and LoginModules . 4-2

Identity Assertion and Tokens . 4-3

How to Create New Token Types . 4-3

How to Make New Token Types Available for Identity Assertion Provider
Configurations . 4-4

Passing Tokens for Perimeter Authentication . 4-6

Common Secure Interoperability Version 2 (CSIv2) . 4-6

The Identity Assertion Process . 4-7

Do You Need to Develop a Custom Identity Assertion Provider? 4-8

How to Develop a Custom Identity Assertion Provider . 4-10

Create Runtime Classes Using the Appropriate SSPIs. 4-10

Implement the AuthenticationProviderV2 SSPI . 4-11

Implement the IdentityAsserterV2 SSPI . 4-12

Example: Creating the Runtime Class for the Sample Identity Assertion Provider .
4-13

Generate an MBean Type Using the WebLogic MBeanMaker 4-17

Create an MBean Definition File (MDF) . 4-18

Use the WebLogic MBeanMaker to Generate the MBean Type. 4-18

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 4-22

Install the MBean Type Into the WebLogic Server Environment 4-23

viii Developing Security Providers for WebLogic Server

Configure the Custom Identity Assertion Provider Using the Administration Console .
4-24

Challenge Identity Assertion . 4-24

Challenge/Response Limitations in the Java Servlet API 2.3 Environment. . . 4-25

Filters and The Role of the weblogic.security.services.Authentication Class . 4-25

How to Develop a Challenge Identity Asserter . 4-26

Implement the ChallengeIdentityAsserterV2 Interface 4-26

Implement the ProviderChallengeContext Interface . 4-27

Invoke the weblogic.security.services Challenge Identity Methods 4-27

Invoke the weblogic.security.services AppChallengeContext Methods. 4-28

Implementing Challenge Identity Assertion from a Filter 4-28

5. Principal Validation Providers
Principal Validation Concepts. 5-1

Principal Validation and Principal Types . 5-2

How Principal Validation Providers Differ From Other Types of Security Providers 5-2

Security Exceptions Resulting from Invalid Principals . 5-2

The Principal Validation Process . 5-3

Do You Need to Develop a Custom Principal Validation Provider? 5-4

How to Use the WebLogic Principal Validation Provider . 5-4

How to Develop a Custom Principal Validation Provider . 5-5

Implement the PrincipalValidator SSPI . 5-5

6. Authorization Providers
Authorization Concepts. 6-1

Access Decisions . 6-2

Using the Java Authorization Contract for Containers . 6-2

The Authorization Process . 6-2

Do You Need to Develop a Custom Authorization Provider? . 6-5

Developing Security Providers for WebLogic Server ix

Does Your Custom Authorization Provider Need to Support Application Versioning? .
6-5

How to Develop a Custom Authorization Provider. 6-5

Create Runtime Classes Using the Appropriate SSPIs. 6-6

Implement the AuthorizationProvider SSPI . 6-6

Implement the DeployableAuthorizationProviderV2 SSPI 6-7

Implement the AccessDecision SSPI . 6-9

Example: Creating the Runtime Class for the Sample Authorization Provider 6-11

Generate an MBean Type Using the WebLogic MBeanMaker 6-17

Create an MBean Definition File (MDF) . 6-18

Use the WebLogic MBeanMaker to Generate the MBean Type. 6-18

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 6-22

Install the MBean Type Into the WebLogic Server Environment 6-23

Configure the Custom Authorization Provider Using the Administration Console. 6-24

Managing Authorization Providers and Deployment Descriptors 6-24

Enabling Security Policy Deployment . 6-26

Provide a Mechanism for Security Policy Management . 6-26

Option 1: Develop a Stand-Alone Tool for Security Policy Management 6-27

Option 2: Integrate an Existing Security Policy Management Tool into the
Administration Console . 6-27

7. Adjudication Providers
The Adjudication Process . 7-1

Do You Need to Develop a Custom Adjudication Provider? . 7-1

How to Develop a Custom Adjudication Provider . 7-3

Create Runtime Classes Using the Appropriate SSPIs. 7-3

Implement the AdjudicationProviderV2 SSPI . 7-3

Implement the AdjudicatorV2 SSPI . 7-4

x Developing Security Providers for WebLogic Server

Generate an MBean Type Using the WebLogic MBeanMaker 7-4

Create an MBean Definition File (MDF) . 7-5

Use the WebLogic MBeanMaker to Generate the MBean Type 7-5

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 7-8

Install the MBean Type Into the WebLogic Server Environment. 7-9

Configure the Custom Adjudication Provider Using the Administration Console . 7-10

8. Role Mapping Providers
Role Mapping Concepts . 8-1

Security Roles . 8-2

Dynamic Security Role Computation . 8-2

The Role Mapping Process . 8-3

Do You Need to Develop a Custom Role Mapping Provider? . 8-6

Does Your Custom Role Mapping Provider Need to Support Application Versioning? .
8-6

How to Develop a Custom Role Mapping Provider . 8-6

Create Runtime Classes Using the Appropriate SSPIs . 8-6

Implement the RoleProvider SSPI . 8-7

Implement the DeployableRoleProviderV2 SSPI. 8-8

Implement the RoleMapper SSPI . 8-9

Implement the SecurityRole Interface . 8-11

Example: Creating the Runtime Class for the Sample Role Mapping Provider 8-12

Generate an MBean Type Using the WebLogic MBeanMaker 8-20

Create an MBean Definition File (MDF) . 8-21

Use the WebLogic MBeanMaker to Generate the MBean Type 8-21

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 8-24

Install the MBean Type Into the WebLogic Server Environment. 8-25

Configure the Custom Role Mapping Provider Using the Administration Console 8-26

Developing Security Providers for WebLogic Server xi

Managing Role Mapping Providers and Deployment Descriptors 8-27

Enabling Security Role Deployment. 8-28

Provide a Mechanism for Security Role Management. 8-29

Option 1: Develop a Stand-Alone Tool for Security Role Management 8-29

Option 2: Integrate an Existing Security Role Management Tool into the
Administration Console . 8-29

9. Auditing Providers
Auditing Concepts . 9-1

Audit Channels . 9-2

Auditing Events From Custom Security Providers . 9-2

The Auditing Process. 9-2

Implementing the ContextHandler MBean . 9-5

ContextHandlerMBean Methods . 9-5

Example: Implementing the ContextHandlerMBean . 9-6

Do You Need to Develop a Custom Auditing Provider? . 9-7

How to Develop a Custom Auditing Provider. 9-8

Create Runtime Classes Using the Appropriate SSPIs. 9-9

Implement the AuditProvider SSPI. 9-9

Implement the AuditChannel SSPI . 9-10

Example: Creating the Runtime Class for the Sample Auditing Provider 9-10

Generate an MBean Type Using the WebLogic MBeanMaker 9-13

Create an MBean Definition File (MDF) . 9-13

Use the WebLogic MBeanMaker to Generate the MBean Type. 9-14

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 9-17

Install the MBean Type Into the WebLogic Server Environment 9-18

Configure the Custom Auditing Provider Using the Administration Console. 9-18

Configuring Audit Severity. 9-19

xii Developing Security Providers for WebLogic Server

10.Credential Mapping Providers
Credential Mapping Concepts . 10-1

The Credential Mapping Process . 10-2

Do You Need to Develop a Custom Credential Mapping Provider? 10-3

Does Your Custom Credential Mapping Provider Need to Support Application
Versioning? . 10-4

How to Develop a Custom Credential Mapping Provider . 10-4

Create Runtime Classes Using the Appropriate SSPIs . 10-5

Implement the CredentialProviderV2 SSPI . 10-5

Implement the DeployableCredentialProvider SSPI . 10-6

Implement the CredentialMapperV2 SSPI . 10-6

Generate an MBean Type Using the WebLogic MBeanMaker 10-8

Create an MBean Definition File (MDF) . 10-9

Use the WebLogic MBeanMaker to Generate the MBean Type 10-10

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 10-14

Install the MBean Type Into the WebLogic Server Environment. 10-15

Configure the Custom Credential Mapping Provider Using the Administration Console
10-15

Managing Credential Mapping Providers, Resource Adapters, and Deployment
Descriptors. 10-16

Enabling Deployable Credential Mappings . 10-18

Provide a Mechanism for Credential Map Management . 10-18

Option 1: Develop a Stand-Alone Tool for Credential Map Management . . . 10-19

Option 2: Integrate an Existing Credential Map Management Tool into the
Administration Console . 10-19

11.Auditing Events From Custom Security Providers
Security Services and the Auditor Service . 11-1

Developing Security Providers for WebLogic Server xiii

How to Audit From a Custom Security Provider . 11-3

Create an Audit Event . 11-3

Implement the AuditEvent SSPI . 11-3

Implement an Audit Event Convenience Interface . 11-4

Audit Severity . 11-7

Audit Context . 11-8

Example: Implementation of the AuditRoleEvent Interface. 11-8

Obtain and Use the Auditor Service to Write Audit Events. 11-10

Example: Obtaining and Using the Auditor Service to Write Role Audit Events . .
11-11

Auditing Management Operations from a Provider’s MBean 11-12

Example: Auditing Management Operations from a Provider’s MBean 11-13

Best Practice: Posting Audit Events from a Provider's MBean 11-16

12.Servlet Authentication Filters
Authentication Filter Concepts . 12-1

Why Filters are Needed . 12-2

Servlet Authentication Filter Design Considerations . 12-2

How Filters Are Invoked . 12-3

Do Not Call Servlet Authentication Filters From Authentication Providers 12-4

Example of a Provider that Implements a Filter . 12-5

How to Develop a Custom Servlet Authentication Filter . 12-6

Create Runtime Classes Using the Appropriate SSPIs. 12-6

Implement the Servlet Authentication Filter SSPI . 12-6

Implement the Filter Interface Methods . 12-7

Implementing Challenge Identity Assertion from a Filter . 12-8

Generate an MBean Type Using the WebLogic MBeanMaker 12-9

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 12-10

xiv Developing Security Providers for WebLogic Server

Configure the Authentication Provider Using Administration Console 12-10

13.Versionable Application Providers
Versionable Application Concepts . 13-1

The Versionable Application Process . 13-2

Do You Need to Develop a Custom Versionable Application Provider? 13-2

How to Develop a Custom VersionableApplication Provider . 13-3

Create Runtime Classes Using the Appropriate SSPIs . 13-3

 Implement the VersionableApplication SSPI . 13-3

Example: Creating the Runtime Class for the Sample VersionableApplication
Provider . 13-4

Generate an MBean Type Using the WebLogic MBeanMaker 13-5

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 13-6

Configure the Custom Versionable Application Provider Using the Administration
Console . 13-7

14.CertPath Providers
Certificate Lookup and Validation Concepts . 14-1

The Certificate Lookup and Validation Process. 14-2

Do You Need to Implement Separate CertPath Validators and Builders? 14-3

CertPath Provider SPI MBeans . 14-4

WebLogic CertPath Validator SSPI . 14-6

WebLogic CertPath Builder SSPI . 14-6

Relationship Between the WebLogic Server CertPath SSPI and the JDK SPI 14-6

Do You Need to Develop a Custom CertPath Provider? . 14-8

How to Develop a Custom CertPath Provider . 14-9

Create Runtime Classes Using the Appropriate SSPIs . 14-9

Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces . .
14-10

Developing Security Providers for WebLogic Server xv

Implement the CertPath Provider SSPI. 14-10

Implement the JDK Security Provider SPI . 14-13

Use the CertPathBuilderParametersSpi SSPI in Your CertPathBuilderSpi
Implementation . 14-14

Use the CertPathValidatorParametersSpi SSPI in Your CertPathValidatorSpi
Implementation . 14-16

Returning the Builder or Validator Results . 14-17

Example: Creating the Sample Cert Path Provider . 14-17

Generate an MBean Type Using the WebLogic MBeanMaker 14-24

Create an MBean Definition File (MDF) . 14-24

Use the WebLogic MBeanMaker to Generate the MBean Type. 14-25

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 14-29

Install the MBean Type Into the WebLogic Server Environment 14-30

Configure the Custom CertPath Provider Using the Administration Console 14-31

A. MBean Definition File (MDF) Element Syntax
The MBeanType (Root) Element .A-1

The MBeanAttribute Subelement .A-4

The MBeanConstructor Subelement .A-10

The MBeanOperation Subelement .A-10

MBean Operation Exceptions .A-16

Examples: Well-Formed and Valid MBean Definition Files (MDFs) A-16

xvi Developing Security Providers for WebLogic Server

Developing Security Providers for WebLogic Server xvii

About This Document

This document provides security vendors and application developers with the information needed
to develop new security providers for use with the BEA WebLogic Server.

The document is organized as follows:

Chapter 1, “Introduction to Developing Security Providers for WebLogic Server,” which
prepares you to learn more about developing security providers for use with WebLogic
Server. It specifies the audience and prerequisites for this guide, and provides an overview
of the development process.

Chapter 2, “Design Considerations,” which explains the general architecture of a security
provider and provides background information you should understand about implementing
SSPIs and generating MBean types. This section also includes information about using
optional management utilities and discusses how security providers interact with WebLogic
resources. Lastly, this section suggests ways in which your custom security providers
might work with databases that contain information security providers require.

Chapter 3, “Authentication Providers,” which explains the authentication process (for
simple logins) and provides instructions about how to implement each type of security
service provider interface (SSPI) associated with custom Authentication providers. This
topic also includes a discussion about JAAS LoginModules.

Chapter 4, “Identity Assertion Providers,” which explains the authentication process (for
perimeter authentication using tokens) and provides instructions about how to implement
each type of security service provider interface (SSPI) associated with custom Identity
Assertion providers.

About Th is Document

xviii Developing Security Providers for WebLogic Server

Chapter 5, “Principal Validation Providers,” which explains how Principal Validation
providers assist Authentication providers by signing and verifying the authenticity of
principals stored in a subject, and provides instructions about how to develop custom
Principal Validation providers.

Chapter 6, “Authorization Providers,” which explains the authorization process and
provides instructions about how to implement each type of security service provider
interface (SSPI) associated with custom Authorization providers.

Chapter 7, “Adjudication Providers,” which explains the adjudication process and provides
instructions about how to implement each type of security service provider interface (SSPI)
associated with custom Adjudication providers.

Chapter 8, “Role Mapping Providers,” which explains the role mapping process and
provides instructions about how to implement each type of security service provider
interface (SSPI) associated with custom Role Mapping providers.

Chapter 9, “Auditing Providers,” which explains the auditing process and provides
instructions about how to implement each type of security service provider interface (SSPI)
associated with custom Auditing providers. This topic also includes information about how
to audit from other types of security providers.

Chapter 10, “Credential Mapping Providers,” which explains the credential mapping
process and provides instructions about how to implement each type of security service
provider interface (SSPI) associated with custom Credential Mapping providers.

Chapter 11, “Auditing Events From Custom Security Providers,” which explains how to
add auditing capabilities to the custom security providers you develop.

Chapter 12, “Servlet Authentication Filters,” which explains the Servlet authentication
filter process and provides instructions about how to implement each type of security
service provider interface (SSPI) associated with Servlet authentication filters.

Chapter 13, “Versionable Application Providers,” which explains the concept of
versionable applications and provides instructions about how to implement each type of
security service provider interface (SSPI) associated with custom Versionable Application
providers.

Chapter 14, “CertPath Providers,” which explains the certificate lookup and validation
process and provides instructions about how to implement each type of security service
provider interface (SSPI) associated with custom CertPath provider.

Appendix A, “MBean Definition File (MDF) Element Syntax,” which describes all the
elements and attributes that are available for use in a valid MDF. An MDF is an XML file

Audience fo r Th i s Gu ide

Developing Security Providers for WebLogic Server xix

used to generate the MBean types, which enable the management of your custom security
providers.

Audience for This Guide
Developing Security Providers for WebLogic Server is written for independent software vendors
(ISVs) who want to write their own security providers for use with WebLogic Server. It is
assumed that most ISVs reading this documentation are sophisticated application developers who
have a solid understanding of security concepts, and that no basic security concepts require
explanation. It is also assumed that security vendors and application developers are familiar with
BEA WebLogic Server and with Java (including Java Management eXtensions (JMX)).

Prerequisites for This Guide
Prior to reading this guide, you should review the following sections in Understanding WebLogic
Security:

“Security Providers”

“WebLogic Security Framework”

Additionally, WebLogic Server security includes many unique terms and concepts that you need
to understand. These terms and concepts—which you will encounter throughout the WebLogic
Server security documentation—are defined in the “Terminology” and the “Security
Fundamentals” sections of Understanding WebLogic Security, respectively.

Product Documentation on the dev2dev Web Site
BEA product documentation, along with other information about BEA software, is available
from the BEA dev2dev Web site:
http://dev2dev.bea.com

To view the documentation for a particular product, select that product from the list on the
dev2dev page; the home page for the specified product is displayed. From the menu on the left
side of the screen, select Documentation for the appropriate release. The home page for the
complete documentation set for the product and release you have selected is displayed.

http://e-docs.bea.com/wls/docs90/secintro/realm_chap.html#ream_chap_06
http://e-docs.bea.com/wls/docs90/secintro/archtect.html#archtect_0101
http://e-docs.bea.com/wls/docs90/secintro/terms.html
http://e-docs.bea.com/wls/docs90/secintro/concepts.html
http://e-docs.bea.com/wls/docs90/secintro/concepts.html
http://dev2dev.bea.com

About Th is Document

xx Developing Security Providers for WebLogic Server

Related Information
The BEA corporate Web site provides all documentation for WebLogic Server. Other WebLogic
Server documents that may be of interest to security vendors and application developers working
with security providers are:

Understanding WebLogic Security

Securing WebLogic Server

Programming WebLogic Security

Securing WebLogic Resources

Securing a Production Environment

Additional resources include:

The Security FAQ

JavaDocs for WebLogic Classes

Contact Us!
Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using, as well as
the title and document date of your documentation. If you have any questions about this version
of BEA WebLogic Server, or if you have problems installing and running BEA WebLogic
Server, contact BEA Customer Support through BEA WebSupport at http://www.bea.com. You
can also contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

http://e-docs.bea.com/wls/docs90/secintro/index.html
http://e-docs.bea.com/wls/docs90/secmanage/index.html
http://e-docs.bea.com/wls/docs90/security/index.html
http://e-docs.bea.com/wls/docs90/secwlres/index.html
http://e-docs.bea.com/wls/docs90/lockdown/index.html
http://e-docs.bea.com/wls/docs90/faq/security.html
http://e-docs.bea.com/wls/docs90/javadocs/index.html
mailto:docsupport@bea.com
http://www.bea.com

Documentat ion Convent i ons

Developing Security Providers for WebLogic Server xxi

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates user input, as shown in the following examples:
• Filenames: config.xml
• Pathnames: BEAHOME/config/examples
• Commands: java -Dbea.home=BEA_HOME
• Code: public TextMsg createTextMsg(

Indicates computer output, such as error messages, as shown in the following example:
Exception occurred during event
dispatching:java.lang.ArrayIndexOutOfBoundsException: No such
child: 0

monospace
boldface
text

Identifies significant words in code.

Example:
void commit ()

monospace
italic
text

Identifies variables in code.

Example:
String expr

{} Indicates a set of choices in a syntax line. The braces themselves should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should never be typed.

Example:
java utils.MulticastTest -n name [-p portnumber]

| Separates mutually exclusive choices in a syntax line. The symbol itself should never be typed.

Example:
java weblogic.deploy [list|deploy|update]

About Th is Document

xxii Developing Security Providers for WebLogic Server

... Indicates one of the following in a command line:
• That an argument can be repeated several times in a command line
• That the statement omits additional optional arguments
• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:
buildobjclient [-v] [-o name] [-f "file1.cpp file2.cpp
file3.cpp . . ."

.

.

.

Indicates the omission of items from a code example or from a syntax line. The vertical ellipsis
itself should never be typed.

Convention Item

Developing Security Providers for WebLogic Server 1-1

C H A P T E R 1

Introduction to Developing Security
Providers for WebLogic Server

The following sections prepare you to learn more about developing security providers:

“Audience for This Guide” on page 1-1

“Prerequisites for This Guide” on page 1-1

“Overview of the Development Process” on page 1-2

“New and Changed Features in This Release” on page 1-7

Audience for This Guide
Developing Security Providers for WebLogic Server is designed for independent software
vendors (ISVs) who want to write their own security providers for use with WebLogic Server. It
is assumed that most ISVs reading this documentation are sophisticated application developers
who have a solid understanding of security concepts, and that no basic security concepts require
explanation. It is also assumed that security vendors and application developers are familiar with
BEA WebLogic Server and with Java (including Java Management eXtensions (JMX)).

Prerequisites for This Guide
Prior to reading this guide, you should review the following sections in Understanding WebLogic
Security:

“Security Providers”

“WebLogic Security Framework”

http://e-docs.bea.com/wls/docs90/secintro/realm_chap.html#ream_chap_06
http://e-docs.bea.com/wls/docs90/secintro/archtect.html#archtect_0101

In t roduct ion to Deve lop ing Secur i t y P rov ide rs f o r WebLogic Se rver

1-2 Developing Security Providers for WebLogic Server

Additionally, WebLogic Server security includes many unique terms and concepts that you need
to understand. These terms and concepts—which you will encounter throughout the WebLogic
Server security documentation—are defined in the “Terminology” and the “Security
Fundamentals” sections of Understanding WebLogic Security, respectively.

Overview of the Development Process
This section is a high-level overview of the process for developing new security providers, so you
know what to expect. Details for each step are discussed later in this guide.

The main steps for developing a custom security provider are:

“Designing the Custom Security Provider” on page 1-2

“Creating Runtime Classes for the Custom Security Provider by Implementing SSPIs” on
page 1-3

“Generating an MBean Type to Configure and Manage the Custom Security Provider” on
page 1-4

“Writing Console Extensions” on page 1-5

“Configuring the Custom Security Provider” on page 1-6

“Providing Management Mechanisms for Security Policies, Security Roles, and Credential
Maps” on page 1-6

Designing the Custom Security Provider
The design process includes the following steps:

1. Review the descriptions of the WebLogic security providers to determine whether you need
to create a custom security provider.

Descriptions of the WebLogic security providers are available under “The WebLogic
Security Providers” in Understanding WebLogic Security and in later sections of this guide
under the “Do You Need to Create a Custom <Provider_Type> Provider?” headings.

2. Determine which type of custom security provider you want to create.

The type may be Authentication, Identity Assertion, Principal Validation, Authorization,
Adjudication, Role Mapping, Auditing, Credential Mapping, Versionable Application, or
CertPath, as described in “Types of Security Providers” in Understanding WebLogic

http://e-docs.bea.com/wls/docs90/secintro/terms.html
http://e-docs.bea.com/wls/docs90/secintro/concepts.html
http://e-docs.bea.com/wls/docs90/secintro/concepts.html
http://e-docs.bea.com/wls/docs90/secintro/archtect.html#archtect_0111
http://e-docs.bea.com/wls/docs90/secintro/archtect.html#archtect_0111
http://e-docs.bea.com/wls/docs90/secintro/realm_chap.html#ream_chap_0605

Overv i ew o f the Deve lopment P rocess

Developing Security Providers for WebLogic Server 1-3

Security. Your custom security provider can augment or replace the WebLogic security
providers that are already supplied with WebLogic Server.

3. Identify which security service provider interfaces (SSPIs) you must implement to create
the runtime classes for your custom security provider, based on the type of security provider
you want to create.

The SSPIs for the different security provider types are described in “Security Services
Provider Interfaces (SSPIs)” on page 2-2 and summarized in “SSPI Quick Reference” on
page 2-8.

4. Decide whether you will implement the SSPIs in one or two runtime classes.

These options are discussed in “Understand the SSPI Hierarchy and Determine Whether
You Will Create One or Two Runtime Classes” on page 2-6.

5. Identify which required SSPI MBeans you must extend to generate an MBean type through
which your custom security provider can be managed. If you want to provide additional
management functionality for your custom security provider (such as handling of users,
groups, security roles, and security policies), you also need to identify which optional SSPI
MBeans to implement.

The SSPI MBeans are described in “Security Service Provider Interface (SSPI) MBeans”
on page 2-9 and summarized in “SSPI MBean Quick Reference” on page 2-18.

6. Determine how you will initialize the database that your custom security provider requires.
You can have your custom security provider create a simple database, or configure your
custom security provider to use an existing, fully-populated database.

These two database initialization options are explained in “Initialization of the Security
Provider Database” on page 2-37.

7. Identify any database “seeding” that your custom security provider will need to do as part of
its interaction with security policies on WebLogic resources. This seeding may involve
creating default groups, security roles, or security policies.

For more information, see “Security Providers and WebLogic Resources” on page 2-26.

Creating Runtime Classes for the Custom Security Provider by
Implementing SSPIs
In one or two runtime classes, implement the SSPIs you have identified by providing
implementations for each of their methods. The methods should contain the specific algorithms

In t roduct ion to Deve lop ing Secur i t y P rov ide rs f o r WebLogic Se rver

1-4 Developing Security Providers for WebLogic Server

for the security services offered by the custom security provider. The content of these methods
describe how the service should behave.

Procedures for this task are dependent on the type of security provider you want to create, and are
provided under the “Create Runtime Classes Using the Appropriate SSPIs” heading in the
sections that discuss each security provider in detail.

Generating an MBean Type to Configure and Manage the
Custom Security Provider
Generating an MBean type includes the following steps:

1. Create an MBean Definition File (MDF) for the custom security provider that extends the
required SSPI MBean, implements any optional SSPI MBeans, and adds any custom
attributes and operations that will be required to configure and manage the custom security
provider.

Information about MDFs is available in “Understand the Basic Elements of an MBean
Definition File (MDF)” on page 2-11, and procedures for this task are provided under the
“Create an MBean Definition File (MDF)” heading in the sections that discuss each
security provider in detail.

2. Run the MDF through the WebLogic MBeanMaker to generate intermediate files (including
the MBean interface, MBean implementation, and MBean information files) for the custom
security provider’s MBean type.

Information about the WebLogic MBeanMaker and how it uses the MDF to generate Java
files is provided in “Understand What the WebLogic MBeanMaker Provides” on
page 2-16, and procedures for this task are provided under the “Use the WebLogic
MBeanMaker to Generate the MBean Type” heading in the sections that discuss each
security provider in detail.

3. Edit the MBean implementation file to supply content for any methods inherited from
implementing optional SSPI MBeans, as well as content for the method stubs generated as a
result of custom attributes and operations added to the MDF.

4. Run the modified intermediate files (for the MBean type) and the runtime classes for your
custom security provider through the WebLogic MBeanMaker to generate a JAR file, called
an MBean JAR File (MJF).

Procedures for this task are provided under the “Use the WebLogic MBeanMaker to Create
the MBean JAR File (MJF)” heading in the sections that discuss each security provider in
detail.

Overv i ew o f the Deve lopment P rocess

Developing Security Providers for WebLogic Server 1-5

5. Install the MBean JAR File (MJF) into the WebLogic Server environment.

Procedures for this task are provided under the “Install the MBean Type into the WebLogic
Server Environment” heading in the sections that discuss each security provider in detail.

Writing Console Extensions
Console extensions allow you to add JavaServer Pages (JSPs) to the WebLogic Server
Administration Console to support additional management and configuration of custom security
providers. Console extensions allow you to include Administration Console support where that
support does not yet exist, as well as to customize administrative interactions as you see fit.

To get complete configuration and management support through the WebLogic Server
Administration Console for a custom security provider, you need to write a console extension
when:

You decide not to implement an optional SSPI MBean when you generate an MBean type
for your custom security provider, but still want to configure and manage your custom
security provider via the Administration Console. (That is, you do not want to use the
WebLogic Server Command-Line Interface instead.)

Generating an MBean type (as described in “Generating an MBean Type to Configure and
Manage the Custom Security Provider” on page 1-4) is the BEA-recommended way for
configuring and managing custom security providers. However, you may want to configure
and manage your custom security provider completely through a console extension that
you write.

You implement optional SSPI MBeans for custom security providers that are not custom
Authentication providers.

When you implement optional SSPI MBeans to develop a custom Authentication provider,
you automatically receive support in the Administration Console for the MBean type's
attributes (inherited from the optional SSPI MBean). Other types of custom security
providers, such as custom Authorization providers, do not receive this support.

You add a custom attribute that cannot be represented as a simple data type to your
MBean Definition File (MDF), which is used to generate the custom security provider’s
MBean type.

The Details tab for a custom security provider will automatically display custom attributes,
but only if they are represented as a simple data type, such as a string, MBean, boolean or
integer value. If you have custom attributes that are represented as atypical data types (for
example, an image of a fingerprint), the Administration Console cannot visualize the
custom attribute without customization.

In t roduct ion to Deve lop ing Secur i t y P rov ide rs f o r WebLogic Se rver

1-6 Developing Security Providers for WebLogic Server

You add a custom operation to your MBean Definition File (MDF), which is used to
generate the custom security provider’s MBean type.

Because of the potential variety involved with custom operations, the Administration
Console does not know how to automatically display or process them. Examples of custom
operations might be a microphone for a voice print, or import/export buttons. The
Administration Console cannot visualize and process these operations without
customization.

Some other (optional) reasons for extending the Administration Console include:

Corporate branding—when, for example, you want your organization’s logo or look and
feel on the pages used to configure and manage a custom security provider.

Consolidation—when, for example, you want all the fields used to configure and manage a
custom security provider on one page, rather than in separate tabs or locations.

For more information about console extensions, see Extending the Administration Console.

Configuring the Custom Security Provider
Note: The configuration process can be completed by the same person who developed the

custom security provider, or by a designated administrator.

The configuration process consists of using the WebLogic Server Administration Console to
supply the custom security provider with configuration information. If you generated an MBean
type for managing the custom security provider, “configuring” the custom security provider in
the Administration Console also means that you are creating a specific instance of the MBean
type.

For more information about configuring security providers using the Administration Console, see
Securing WebLogic Server.

Providing Management Mechanisms for Security
Policies, Security Roles, and Credential Maps

Certain types of security providers need to provide administrators with a way to manage the
security data associated with them. For example, an Authorization provider needs to supply
administrators with a way to manage security policies. Similarly, a Role Mapping provider needs
to supply administrators with a way to manage security roles, and a Credential Mapping provider
needs to supply administrators with a way to manage credential maps.

http://e-docs.bea.com/wls/docs90/console_ext/index.html
http://e-docs.bea.com/wls/docs90/secmanage/index.html

New and Changed Features in Th is Re l ease

Developing Security Providers for WebLogic Server 1-7

For the WebLogic Authorization, Role Mapping, and Credential Mapping providers, there are
already management mechanisms available for administrators in the WebLogic Server
Administration Console. However, do you not inherit these mechanisms when you develop a
custom version of one of these security providers; you need to provide your own mechanisms to
manage security policies, security roles, and credential maps. These mechanisms must read and
write the appropriate security data to and from the custom security provider’s database, but may
or may not be integrated with the Administration Console.

For more information, refer to one of the following sections:

“Provide a Mechanism for Security Policy Management” on page 6-26 (for custom
Authorization providers)

“Provide a Mechanism for Security Role Management” on page 8-29 (for custom Role
Mapping providers)

“Provide a Mechanism for Credential Map Management” on page 10-18 (for custom
Credential Mapping providers)

New and Changed Features in This Release
The following features have been added to the WebLogic Security Service in this release.

Support for Certificate Lookup and Validation
The WebLogic Security service provides a framework that finds and validates X509 certificate
chains for inbound 2-way SSL, outbound SSL, application code, and WebLogic Web services.
The Certificate Lookup and Validation (CLV) framework is a new security plug-in framework
that finds and validates certificate chains. The framework extends and completes the JDK
CertPath functionality, and allows you to create a custom CertPath provider.

Servlet Authentication Filters
Servlet authentication filters are a new provider type that perform pre and post processing for
identity assertion and authentication functions. Filters provide the ability to encapsulate recurring
tasks in reusable units and can be used to transform the response from a servlet or JSP page.

Versionable Applications
The Versionable Application provider SSPI enables all security providers that support
application versioning to be notified when versions are created and deleted. It also enables all

In t roduct ion to Deve lop ing Secur i t y P rov ide rs f o r WebLogic Se rver

1-8 Developing Security Providers for WebLogic Server

security providers that support application versioning to be notified when non-versioned
applications are removed

Challenge Identity Assertion
The Challenge Identity Asserter interface supports challenge response schemes in which multiple
challenges, responses messages, and state are required. The Challenge Identity Asserter interface
allows Identity Assertion providers to support authentication protocols such as Microsoft's
Windows NT Challenge/Response (NTLM), Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO), and other challenge/response authentication mechanisms.

The weblogic.security.services.Authentication class has been extended to allow multiple
challenge/response identity assertion from a servlet authentication filter. The new methods and
interface provide a wrapper for the ChallengeIdentityAsserterV2 and ProviderChallengeContext
interfaces so that you can invoke them from a servlet authentication filter.

Auditing enhancements
Auditors can now implement the AuditorMBean and the mixin interface ContextHandlerMBean.
The ContextHandlerMBean provides a set of attributes for ContextHandler support. You use this
interface to manage audit providers that support context handler entries in a standard way. An
Auditor provider MBean can optionally implement the ContextHandlerMBean MBean. The
Auditor provider can then use the MBean to determine the supported and active ContextHandler
entries.

The ApplicationInfo Interface
The ApplicationInfo interface passes data about an application deployment to a security provider.
You can use this data to uniquely identity the application. The Security Framework implements
the ApplicationInfo interface for your convenience. You do not need to implement any methods
for this interface. The DeployableAuthorizationProviderV2 and DeployableRoleProviderV2
interfaces use ApplicationInfo.

New V2 Providers
The following providers are new in this release of WebLogic Server:

AdjudicationProviderV2

AdjudicatorV2

AuditAtnEventV2

New and Changed Features in Th is Re l ease

Developing Security Providers for WebLogic Server 1-9

AuthenticationProviderV2

CertPathProvider

ChallengeIdentityAsserterV2

CredentialMapperV2

CredentialProviderV2

DeployableAuthorizationProviderV2

DeployableRoleProviderV2

IdentityAsserterV2

VersionableApplicationProvider

New Provider Interfaces
ApplicationInfo

ServletAuthenticationFilter

CertPathBuilderParameters

CertPathValidatorParameters

ChallengeIdentityAsserterV2

AppChallengeContext

Additional Context Handler Support
A context handler contains additional context and container-specific information from the
resource container, and provides that information to the security provider making the access or
role mapping decision. Context handler support is now available for the following methods:

AdjudicatorV2.adjudicate()

ChallengeIdentityAsserterV2

LoginModule.login()

IdentityAsserterV2.assertIdentity()

CredentialMapperV2.getCredentials()

In t roduct ion to Deve lop ing Secur i t y P rov ide rs f o r WebLogic Se rver

1-10 Developing Security Providers for WebLogic Server

Developing Security Providers for WebLogic Server 2-1

C H A P T E R 2

Design Considerations

Careful planning of development activities can greatly reduce the time and effort you spend
developing custom security providers. The following sections describe security provider
concepts and functionality in more detail to help you get started:

“General Architecture of a Security Provider” on page 2-1

“Security Services Provider Interfaces (SSPIs)” on page 2-2

“Security Service Provider Interface (SSPI) MBeans” on page 2-9

“Security Data Migration” on page 2-20

“Management Utilities Available to Developers of Security Providers” on page 2-25

“Security Providers and WebLogic Resources” on page 2-26

“Initialization of the Security Provider Database” on page 2-37

“Differences In Attribute Validators” on page 2-41

General Architecture of a Security Provider
Although there are different types of security providers you can create (see “Types of Security
Providers” in Understanding WebLogic Security), all security providers follow the same general
architecture. Figure 2-1 illustrates the general architecture of a security provider, and an
explanation follows.

http://e-docs.bea.com/wls/docs90/secintro/realm_chap.html#ream_chap_0605
http://e-docs.bea.com/wls/docs90/secintro/realm_chap.html#ream_chap_0605

Des ign Cons ide ra t i ons

2-2 Developing Security Providers for WebLogic Server

Figure 2-1 Security Provider Architecture

Note: The SSPIs and the runtime classes (that is, implementations) you will create using the
SSPIs are shown on the left side of Figure 2-1 and are .java files.

Like the other files on the right side of Figure 2-1, MyFooMBean begins as a .xml file, in
which you will extend (and optionally implement) SSPI MBeans. When this MBean
Definition File (MDF) is run through the WebLogic MBeanMaker utility, the utility
generates the .java files for the MBean type, as described in “Generating an MBean
Type to Configure and Manage the Custom Security Provider” on page 1-4.

Figure 2-1 shows the relationship between a single runtime class (MyFooProviderImpl) and an
MBean type (MyFooMBean) you create when developing a custom security provider. The process
begins when a WebLogic Server instance starts, and the WebLogic Security Framework:

1. Locates the MBean type associated with the security provider in the security realm.

2. Obtains the name of the security provider’s runtime class (the one that implements the
“Provider” SSPI, if there are two runtime classes) from the MBean type.

3. Passes in the appropriate MBean instance, which the security provider uses to initialize
(read configuration data).

Therefore, both the runtime class (or classes) and the MBean type form what is called the
“security provider.”

Security Services Provider Interfaces (SSPIs)
As described in “Overview of the Development Process” on page 1-2, you develop a custom
security provider by first implementing a number of security services provider interfaces (SSPIs)
to create runtime classes. This section helps you:

Secur i t y Se rv i ces P rov ide r In te r faces (SSP Is)

Developing Security Providers for WebLogic Server 2-3

“Understand an Important Restriction” on page 2-3

“Understand the Purpose of the “Provider” SSPIs” on page 2-3

“Determine Which “Provider” Interface You Will Implement” on page 2-4

“Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes” on page 2-6

Additionally, this section provides an SSPI Quick Reference that indicates which SSPIs can be
implemented for each type of security provider.

Understand an Important Restriction
A custom security provider's runtime class implementation must not contain any code that
requires a security check to be performed by the WebLogic Security Framework. Doing so causes
infinite recursion, because the security providers are the components of the WebLogic Security
Framework that actually perform the security checks and grant access to WebLogic resources.

Understand the Purpose of the “Provider” SSPIs
Each SSPI that ends in the suffix "Provider" (for example, CredentialProvider) exposes the
services of a security provider to the WebLogic Security Framework. This allows the security
provider to be manipulated (initialized, started, stopped, and so on).

Figure 2-2 “Provider” SSPIs

Des ign Cons ide ra t i ons

2-4 Developing Security Providers for WebLogic Server

As shown in Figure 2-2, the SSPIs exposing security services to the WebLogic Security
Framework are provided by WebLogic Server, and all extend the SecurityProvider interface,
which includes the following methods:

initialize
public void initialize(ProviderMBean providerMBean, SecurityServices
securityServices)

The initialize method takes as an argument a ProviderMBean, which can be
narrowed to the security provider’s associated MBean instance. The MBean instance is
created from the MBean type you generate, and contains configuration data that allows
the custom security provider to be managed in the WebLogic Server environment. If this
configuration data is available, the initialize method should be used to extract it.

The securityServices argument is an object from which the custom security provider
can obtain and use the Auditor Service. For more information about the Auditor Service
and auditing, see Chapter 9, “Auditing Providers” and Chapter 11, “Auditing Events
From Custom Security Providers.”

getDescription
public String getDescription()

This method returns a brief textual description of the custom security provider.

shutdown
public void shutdown()

This method shuts down the custom security provider.

Because they extend SecurityProvider, a runtime class that implements any SSPI ending in
"Provider" must provide implementations for these inherited methods.

Determine Which “Provider” Interface You Will Implement
Implementations of SSPIs that begin with the prefix "Deployable" and end with the suffix
“Provider” (for example, DeployableRoleProviderV2) expose the services of a custom
security provider into the WebLogic Security Framework as explained in “Understand the
Purpose of the “Provider” SSPIs” on page 2-3. However, implementations of these SSPIs also
perform additional tasks. These SSPIs also provide support for security in deployment
descriptors, including the servlet deployment descriptors (web.xml, weblogic.xml), the EJB
deployment descriptors (ejb-jar.xml, weblogic-ejb.jar.xml) and the EAR deployment
descriptors (application.xml, weblogic-application.xml).

Secur i t y Se rv i ces P rov ide r In te r faces (SSP Is)

Developing Security Providers for WebLogic Server 2-5

Authorization providers, Role Mapping providers, and Credential Mapping providers have
deployable versions of their “Provider” SSPIs.

Note: If your security provider database (which stores security policies, security roles, and
credentials) is read-only, you can implement the non-deployable version of the SSPI for
your Authorization, Role Mapping, and Credential Mapping security providers.
However, you will still need to configure deployable versions of these security provider
that do handle deployment.

The DeployableAuthorizationProviderV2 SSPI
An Authorization provider that supports deploying security policies on behalf of Web application
or Enterprise JavaBean (EJB) deployments needs to implement the
DeployableAuthorizationProviderV2 SSPI instead of the AuthorizationProvider SSPI.
(However, because the DeployableAuthorizationProviderV2 SSPI extends the
AuthorizationProvider SSPI, you actually will need to implement the methods from both
SSPIs.) This is because Web application and EJB deployment activities require the Authorization
provider to perform additional tasks, such as creating and removing security policies. In a security
realm, at least one Authorization provider must support the
DeployableAuthorizationProviderV2 SSPI, or else it will be impossible to deploy Web
applications and EJBs.

Note: For more information about security policies, see “Security Policies” in Securing
WebLogic Resources.

The DeployableRoleProviderV2 SSPI
A Role Mapping provider that supports deploying security roles on behalf of Web application or
Enterprise JavaBean (EJB) deployments needs to implement the DeployableRoleProviderV2
SSPI instead of the RoleProvider SSPI. (However, because the DeployableRoleProviderV2
SSPI extends the RoleProvider SSPI, you will actually need to implement the methods from
both SSPIs.) This is because Web application and EJB deployment activities require the Role
Mapping provider to perform additional tasks, such as creating and removing security roles. In a
security realm, at least one Role Mapping provider must support this SSPI, or else it will be
impossible to deploy Web applications and EJBs.

Note: For more information about security roles, see “Users, Groups, and Security Roles” in
Securing WebLogic Resources.

http://e-docs.bea.com/wls/docs90/secwlres/sec_poly.html
http://e-docs.bea.com/wls/docs90/secwlres/secroles.html

Des ign Cons ide ra t i ons

2-6 Developing Security Providers for WebLogic Server

The DeployableCredentialProvider SSPI
Note: The DeployableCredentialProvider interface is deprecated in this release of WebLogic

Server.

A Credential Mapping provider that supports deploying security policies on behalf of Resource
Adapter (RA) deployments needs to implement the DeployableCredentialProvider SSPI
instead of the CredentialProvider SSPI. (However, because the
DeployableCredentialProvider SSPI extends the CredentialProvider SSPI, you will
actually need to implement the methods from both SSPIs.) This is because Resource Adapter
deployment activities require the Credential Mapping provider to perform additional tasks, such
as creating and removing credentials and mappings. In a security realm, at least one Credential
Mapping provider must support this SSPI, or else it will be impossible to deploy Resource
Adapters.

Notes: For more information about credentials, see “Credential Mapping Concepts” on
page 10-1. For more information about security policies, see “Security Policies” in
Securing WebLogic Resources.

Understand the SSPI Hierarchy and Determine Whether You
Will Create One or Two Runtime Classes
Figure 2-3 uses a Credential Mapping provider to illustrate the inheritance hierarchy that is
common to all SSPIs, and shows how a runtime class you supply can implement those interfaces.
In this example, BEA supplies the SecurityProvider interface, and the
CredentialProviderV2 and CredentialMapperV2 SSPIs. Figure 2-3 shows a single runtime
class called MyCredentialMapperProviderImpl that implements the
CredentialProviderV2 and CredentialMapperV2 SSPIs.

http://e-docs.bea.com/wls/docs90/secwlres/sec_poly.html

Secur i t y Se rv i ces P rov ide r In te r faces (SSP Is)

Developing Security Providers for WebLogic Server 2-7

Figure 2-3 Credential Mapping SSPIs and a Single Runtime Class

However, Figure 2-3 illustrates only one way you can implement SSPIs: by creating a single
runtime class. If you prefer, you can have two runtime classes (as shown in Figure 2-4): one for
the implementation of the SSPI ending in “Provider” (for example, CredentialProviderV2),
and one for the implementation of the other SSPI (for example, the CredentialMapperV2 SSPI).

When there are separate runtime classes, the class that implements the SSPI ending in “Provider”
acts as a factory for generating the runtime class that implements the other SSPI. For example, in
Figure 2-4, MyCredentialMapperProviderImpl acts as a factory for generating
MyCredentialMapperImpl.

Des ign Cons ide ra t i ons

2-8 Developing Security Providers for WebLogic Server

Figure 2-4 Credential Mapping SSPIs and Two Runtime Classes

Note: If you decide to have two runtime implementation classes, you need to remember to
include both runtime implementation classes in the MBean JAR File (MJF) when you
generate the security provider’s MBean type. For more information, see “Generating an
MBean Type to Configure and Manage the Custom Security Provider” on page 1-4.

SSPI Quick Reference
Table 2-1 maps the types of security providers (and their components) with the SSPIs and other
interfaces you use to develop them.

Table 2-1 Security Providers, Their Components, and Corresponding SSPIs

Type/Component SSPIs/Interfaces

Authentication provider AuthenticationProviderV2

LoginModule (JAAS) LoginModule

Secur i t y Se rv ice Prov ide r In te r face (SSP I) MBeans

Developing Security Providers for WebLogic Server 2-9

Note: The SSPIs you use to create runtime classes for custom security providers are located in
the weblogic.security.spi package. For more information about this package, see
the WebLogic Server API Reference Javadoc.

Security Service Provider Interface (SSPI) MBeans
As described in “Overview of the Development Process” on page 1-2, the second step in
developing a custom security provider is generating an MBean type for the custom security
provider. This section helps you:

Identity Assertion provider AuthenticationProviderV2

Identity Asserter IdentityAsserterV2

Principal Validation provider PrincipalValidator

Authorization AuthorizationProvider

DeployableAuthorizationProviderV2

Access Decision AccessDecision

Adjudication provider AdjudicationProviderV2

Adjudicator AdjudicatorV2

Role Mapping provider RoleProvider

DeployableRoleProviderV2

Role Mapper RoleMapper

Auditing provider AuditProvider

Audit Channel AuditChannel

Credential Mapping provider CredentialProviderV2

Credential Mapper CredentialMapperV2

Cert Path Provider CertPathProvider

Versionable Application Provider VersionableApplicationProvider

Table 2-1 Security Providers, Their Components, and Corresponding SSPIs

Type/Component SSPIs/Interfaces

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/package-summary.html

Des ign Cons ide ra t i ons

2-10 Developing Security Providers for WebLogic Server

Understand Why You Need an MBean Type

Determine Which SSPI MBeans to Extend and Implement

Understand the Basic Elements of an MBean Definition File (MDF)

Understand the SSPI MBean Hierarchy and How It Affects the Administration Console

Understand What the WebLogic MBeanMaker Provides

Additionally, this section provides an SSPI MBean Quick Reference that indicates which
required SSPI MBeans must be extended and which optional SSPI MBeans can be implemented
for each type of security provider.

Understand Why You Need an MBean Type
In addition to creating runtime classes for a custom security provider, you must also generate an
MBean type. The term MBean is short for managed bean, a Java object that represents a Java
Management eXtensions (JMX) manageable resource.

Note: JMX is a specification created by Sun Microsystems that defines a standard management
architecture, APIs, and management services. For more information, see the Java
Management Extensions White Paper.

An MBean type is a factory for instances of MBeans, the latter of which you or an administrator
can create using the WebLogic Server Administration Console. Once they are created, you can
configure and manage the custom security provider using the MBean instance, through the
Administration Console.

Note: All MBean instances are aware of their parent type, so if you modify the configuration
of an MBean type, all instances that you or an administrator may have created using the
Administration Console will also update their configurations. (For more information, see
“Understand the SSPI MBean Hierarchy and How It Affects the Administration
Console” on page 2-14.)

Determine Which SSPI MBeans to Extend and Implement
You use MBean interfaces called SSPI MBeans to create MBean types. There are two types of
SSPI MBeans you can use to create an MBean type for a custom security provider:

Required SSPI MBeans, which you must extend because they define the basic methods
that allow a security provider to be configured and managed within the WebLogic Server
environment.

http://java.sun.com/products/JavaManagement/wp/
http://java.sun.com/products/JavaManagement/wp/

Secur i t y Se rv ice Prov ide r In te r face (SSP I) MBeans

Developing Security Providers for WebLogic Server 2-11

Optional SSPI MBeans, which you can implement because they define additional
methods for managing security providers. Different types of security providers are able to
use different optional SSPI MBeans.

For more information, see “SSPI MBean Quick Reference” on page 2-18.

Understand the Basic Elements of an MBean Definition File
(MDF)
An MBean Definition File (MDF) is an XML file used by the WebLogic MBeanMaker utility
to generate the Java files that comprise an MBean type. All MDFs must extend a required SSPI
MBean that is specific to the type of the security provider you have created, and can implement
optional SSPI MBeans.

Listing 2-1 shows a sample MBean Definition File (MDF), and an explanation of its content
follows. (Specifically, it is the MDF used to generate an MBean type for the WebLogic
Credential Mapping provider. Note that the DeployableCredentialProvider interface is
deprecated in this release of WebLogic Server.)

Note: A complete reference of MDF element syntax is available in Appendix A, “MBean
Definition File (MDF) Element Syntax.”

Listing 2-1 DefaultCredentialMapper.xml

<?xml version="1.0" ?>

<!DOCTYPE MBeanType SYSTEM "commo.dtd">

<MBeanType

Name = "DefaultCredentialMapper"

DisplayName = "DefaultCredentialMapper"

Package = "weblogic.security.providers.credentials"

Extends = "weblogic.management.security.credentials.

DeployableCredentialMapper"

Implements = "weblogic.management.security.credentials.

UserPasswordCredentialMapEditor,

weblogic.management.security.credentials.UserPasswordCredentialMapExtended

Reader,

weblogic.management.security.ApplicationVersioner,

weblogic.management.security.Import,

weblogic.management.security.Export"

Des ign Cons ide ra t i ons

2-12 Developing Security Providers for WebLogic Server

PersistPolicy = "OnUpdate"

Description = "This MBean represents configuration attributes for the

WebLogic Credential Mapping provider.<p>"

>

<MBeanAttribute

Name = "ProviderClassName"

Type = "java.lang.String"

Writeable = "false"

Default = ""weblogic.security.providers.credentials.

DefaultCredentialMapperProviderImpl""

Description = "The name of the Java class that loads the WebLogic Credential

Mapping provider."

/>

<MBeanAttribute

Name = "Description"

Type = "java.lang.String"

Writeable = "false"

Default = ""Provider that performs Default Credential Mapping""

Description = "A short description of the WebLogic Credential Mapping

provider."

/>

<MBeanAttribute

Name = "Version"

Type = "java.lang.String"

Writeable = "false"

Default = ""1.0""

Description = "The version of the WebLogic Credential Mapping provider."

/>

:

:

</MBeanType>

The bold attributes in the <MBeanType> tag show that this MDF is named
DefaultCredentialMapper and that it extends the required SSPI MBean called

Secur i t y Se rv ice Prov ide r In te r face (SSP I) MBeans

Developing Security Providers for WebLogic Server 2-13

DeployableCredentialMapper. It also includes additional management capabilities by
implementing the UserPasswordCredentialMapEditor optional SSPI MBean.

The ProviderClassName, Description, and Version attributes defined in the
<MBeanAttribute> tags are required in any MDF used to generate MBean types for security
providers because they define the security provider’s basic configuration methods, and are
inherited from the base required SSPI MBean called Provider (see Figure 2-5). The
ProviderClassName attribute is especially important. The value for the ProviderClassName
attribute is the Java filename of the security provider’s runtime class (that is, the implementation
of the appropriate SSPI ending in “Provider”). The example runtime class shown in Listing 2-1
is DefaultCredentialMapperProviderImpl.java.

While not shown in Listing 2-1, you can include additional attributes and operations in an MDF
using the <MBeanAttribute> and <MBeanOperation> tags. Most custom attributes will
automatically appear in the Provider Specific tab for your custom security provider in the
WebLogic Server Administration Console. To display custom operations, however, you need to
write a console extension. (See “Writing Console Extensions” on page 1-5.)

Note: The Sample Auditing provider (available under "Code Samples: WebLogic Server" on
the dev2dev Web site) provides an example of adding a custom attribute.

Throwing Exceptions from MBean Operations
Your custom provider MBeans must throw only JDK exception types or
weblogic.management.utils exception types. Otherwise, JMX clients may not include the
code necessary to receive your exceptions.

For typed exceptions, you must throw only the exact types from the throw clause of your
MBean’s method, as opposed to deriving and throwing your own exception type from that
type.

For nested exceptions, you must throw only JDK exception types or
weblogic.management.utils exceptions.

For runtime exceptions, you must throw or pass through only JDK exceptions.

Specifying Non-Clear Text Values for MBean Attributes
As described in Table A-2, you can use the Encrypted attribute to specify that the value of an
MBean attribute should not be displayed as clear text. For example, you encrypt the value of the
MBean attribute when getting input for a password. The following code fragment shows an
example of using the Encrypted attribute:

http://dev2dev.bea.com/code/wls.jsp

Des ign Cons ide ra t i ons

2-14 Developing Security Providers for WebLogic Server

<MBeanAttribute

Name = "PrivatePassPhrase"

Type = "java.lang.String"

Encrypted = "true"

Default = """"

Description = "The Keystore password."

/>

Understand the SSPI MBean Hierarchy and How It Affects the
Administration Console
All attributes and operations that are specified in the required SSPI MBeans that your MBean
Definition File (MDF) extends (all the way up to the Provider base SSPI MBean) automatically
appear in a WebLogic Server Administration Console page for the associated security provider.
You use these attributes and operations to configure and manage your custom security providers.

Note: For Authentication security providers only, the attributes and operations that are
specified in the optional SSPI MBeans your MDF implements are also automatically
supported by the Administration Console. For other types of security providers, you must
write a console extension in order to make the attributes and operations inherited from
the optional SSPI MBeans available in the Administration Console. For more
information, see “Writing Console Extensions” on page 1-5.

Figure 2-5 illustrates the SSPI MBean hierarchy for security providers (using the WebLogic
Credential Mapping MDF as an example), and indicates what attributes and operations will
appear in the Administration Console for the WebLogic Credential Mapping provider.

Secur i t y Se rv ice Prov ide r In te r face (SSP I) MBeans

Developing Security Providers for WebLogic Server 2-15

Figure 2-5 SSPI MBean Hierarchy for Credential Mapping Providers

Implementing the hierarchy of SSPI MBeans in the DefaultCredentialMapper MDF (shown
in Figure 2-5) produces the page in the Administration Console that is shown in Figure 2-6. (A
partial listing of the DefaultCredentialMapper MDF is shown in Listing 2-1.)

Figure 2-6 DefaultCredentialMapper Administration Console Page

The Name, Description, and Version fields come from attributes with these names inherited from
the base required SSPI MBean called Provider and specified in the

Des ign Cons ide ra t i ons

2-16 Developing Security Providers for WebLogic Server

DefaultCredentialMapper MDF. Note that the DisplayName attribute in the
DefaultCredentialMapper MDF generates the value for the Name field, and that the
Description and Version attributes generate the values for their respective fields as well. The
Credential Mapping Deployment Enabled field is displayed (on the Provider Specific page)
because of the CredentialMappingDeploymentEnabled attribute in the
DeployableCredentialMapper required SSPI MBean, which the
DefaultCredentialMapper MDF extends. Notice that this Administration Console page does
not display a field for the DefaultCredentialMapper MOTIF’s implementation of the
UserPasswordCredentialMapEditor optional SSPI MBean.

Understand What the WebLogic MBeanMaker Provides
The WebLogic MBeanMaker is a command-line utility that takes an MBean Definition File
(MDF) as input and outputs files for an MBean type. When you run the MDF you created through
the WebLogic MBeanMaker, the following occurs:

Any attributes inherited from required SSPI MBeans—as well as any custom attributes you
added to the MDF—cause the WebLogic MBeanMaker to generate complete getter/setter
methods in the MBean type’s information file. (The MBean information file is not shown
in Figure 2-7.) For more information about the MBean information file, see “About the
MBean Information File” on page 2-17.

Necessary developer action: None. No further work must be done for these methods.

Any operations inherited from optional SSPI MBeans cause the MBean implementation
file to inherit their methods, whose implementations you must supply from scratch.

Necessary developer action: Currently, the WebLogic MBeanMaker does not generate
method stubs for these inherited methods, so you will need to use the Mapping MDF
Operation Declarations to Java Method Signatures Document (available under "Code
Samples: WebLogic Server" on the dev2dev Web site) to supply the appropriate
implementations.

Any custom operations you added to the MDF will cause the WebLogic MBeanMaker to
generate method stubs.

Necessary developer action: You must provide implementations for these methods.
(However, because the WebLogic MBeanMaker generates the stubs, you do not need to
look up the Java method signatures.)

This is illustrated in Figure 2-7.

http://dev2dev.bea.com/code/wls.jsp
http://dev2dev.bea.com/code/wls.jsp

Secur i t y Se rv ice Prov ide r In te r face (SSP I) MBeans

Developing Security Providers for WebLogic Server 2-17

Figure 2-7 What the WebLogic MBeanMaker Provides

About the MBean Information File
The MBean information file contains a compiled definition of the data in the MBean Definition
File in a form that JMX Model MBeans require. The format of this file is a list of attributes,
operations, and notifications, each of which also has a set of descriptor tags that describe that
entity. In addition, the MBean itself also has a set of descriptor tags. An example of this format
is as follows:
MBean + tags

attribute1 + tags, attribute2 + tags ...

operation1 + tags, operation2 + tags ...

notification1 + tags, notification2 + tags ...

If desired, you can access this information at runtime by calling the standard JMX server
getMBeanInfo method to obtain the ModelMBeanInfo.

Note: Be sure to reference the JMX specification to determine how to interpret the returned
structure.

Des ign Cons ide ra t i ons

2-18 Developing Security Providers for WebLogic Server

SSPI MBean Quick Reference
Based on the list of SSPIs you need to implement as part of developing your custom security
provider, locate the required SSPI MBeans you need to extend in Table 2-2. Using Table 2-3
through Table 2-5, locate any optional SSPI MBeans you also want to implement for managing
your security provider.

Note: The required SSPI MBeans shown in Table 2-2 are located in the
weblogic.management.security.<Package_Name> package.

Table 2-2 Required SSPI MBeans

Type Package Name Required SSPI MBean

Authentication provider authentication Authenticator

Identity Assertion provider authentication IdentityAsserter

Authorization provider authorization Authorizer or
DeployableAuthorizer

Adjudication provider authorization Adjudicator

Role Mapping provider authorization RoleMapper or
DeployableRoleMapper

Auditing provider audit Auditor

Credential Mapping provider credentials CredentialMapper or
DeployableCredentialMapper

Cert Path Provider pk CertPathBuilder or CertPathValidator

Table 2-3 Optional Authentication SSPI MBeans

Optional SSPI MBeans Purpose

GroupEditor Create a group. If the group already exists, an
exception is thrown.

GroupMemberLister List a group's members.

GroupReader Read data about groups.

Secur i t y Se rv ice Prov ide r In te r face (SSP I) MBeans

Developing Security Providers for WebLogic Server 2-19

Notes: The optional Authentication SSPI MBeans shown in Table 2-3 are located in the
weblogic.management.security.authentication package. They are also
supported in the WebLogic Server Administration Console.

For an example of how to implement the optional Authentication SSPI MBeans shown
in Table 2-3, review the code for the Manageable Sample Authentication provider
(available under “Code Samples: WebLogic Server" on the dev2dev Web site).

Note: The optional Authorization SSPI MBeans shown in Table 2-4 are located in the
weblogic.management.security.authorization package.

GroupRemover Remove groups.

MemberGroupLister List the groups containing a user or a group.

UserEditor Create, edit and remove users.

UserPasswordEditor Change a user's password.

UserReader Read data about users.

UserRemover Remove users.

Table 2-4 Optional Authorization SSPI MBeans

Optional SSPI MBeans Purpose

PolicyEditor Create, edit and remove security policies.

PolicyLister List data about policies.

PolicyReader Read data about security policies.

RoleEditor Create, edit and remove security roles.

RoleReader Read data about security roles.

RoleLister List data about roles.

Table 2-3 Optional Authentication SSPI MBeans (Continued)

Optional SSPI MBeans Purpose

http://dev2dev.bea.com/code/wls.jsp

Des ign Cons ide ra t i ons

2-20 Developing Security Providers for WebLogic Server

Note: The optional Credential Mapping SSPI MBeans shown in Table 2-5 are located in the
weblogic.management.security.credentials package.

Security Data Migration
Several of the WebLogic security providers have been developed to support security data
migration. This means that administrators can export users and groups (for the WebLogic
Authentication provider), security policies (for the WebLogic Authorization provider), security
roles (for the WebLogic Role Mapping provider), or credential mappings (for the Credential
Mapping provider) from one security realm, and then import them into another security realm.
Administrators can migrate security data for each of these WebLogic security providers
individually, or migrate security data for all the WebLogic security providers at once (that is,
security data for the entire security realm).

The migration of security data may be helpful to administrators when:

Transitioning from development mode to production mode

Proliferating production mode security configurations to security realms in new WebLogic
Server domains

Moving data to a new security realm in the same WebLogic Server domain or in a different
WebLogic Server domain.

Moving from one security realm to a new security realm in the same WebLogic Server
domain, where one or more of the WebLogic security providers will be replaced with
custom security providers. (In this case, administrators need to copy security data for the
security providers that are not being replaced.)

Table 2-5 Optional Credential Mapping SSPI MBeans

Optional SSPI MBeans Purpose

UserPasswordCredentialMapEditor Edit credential maps that map a WebLogic user to a
remote username and password.

UserPasswordCredentialMapExtendedRea
der

Read credential maps that map a WebLogic user to a
remote username and password.

UserPasswordCredentialMapReader Read credential maps that map a WebLogic user to a
remote username and password.

Secur i t y Data Migrat ion

Developing Security Providers for WebLogic Server 2-21

The following sections provide more information about security data migration:

“Migration Concepts” on page 2-21

“Adding Migration Support to Your Custom Security Providers” on page 2-22

“Administration Console Support for Security Data Migration” on page 2-24

Migration Concepts
Before you start to work with security data migration, you need to understand the following
concepts:

“Formats” on page 2-21

“Constraints” on page 2-21

“Migration Files” on page 2-22

Formats
A format is simply a data format that specifies how security data should be exported or imported.
Currently, WebLogic Server does not provide any standard, public formats for developers of
security providers. Therefore, the format you use is entirely up to you. Keep in mind, however,
that for data to be exported from one security provider and later imported to another security
provider, both security providers must understand how to process the same format. Supported
formats are the list of data formats that a given security provider understands how to process.

Notes: Because the data format used for the WebLogic security providers is unpublished, you
cannot currently migrate security data from a WebLogic security provider to a custom
security provider, or visa versa. Additionally, security vendors wanting to exchange
security data with security providers from other vendors will need to collaborate on a
standard format to do so.

Constraints
Constraints are key/value pairs used to specify options to the export or import process.
Constraints allow administrators to control which security data is exported or imported from the
security provider’s database. For example, an administrator may want to export only users (not
groups) from an Authentication provider’s database, or a subset of those users. Supported
constraints are the list of constraints that administrators may specify during the migration
process for a particular security provider. For example, an Authentication provider’s database can
be used to import users and groups, but not security policies.

Des ign Cons ide ra t i ons

2-22 Developing Security Providers for WebLogic Server

Migration Files
Export files are the files to which security data is written (in the specified format) during the
export portion of the migration process. Import files are the files from which security data is read
(also in the specified format) during the import portion of the migration process. Both export and
import files are simply temporary storage locations for security data as it is migrated from one
security provider’s database to another.

Caution: The migration files are not protected unless you take additional measures to protect
them. Because migration files may contain sensitive data, take extra care when
working with them.

Adding Migration Support to Your Custom Security Providers
If you want to develop custom security providers that support security data migration like the
WebLogic security providers do, you need to extend the
weblogic.management.security.ImportMBean and
weblogic.management.security.ExportMBean optional SSPI MBeans in the MBean
Definition File (MDF) that you use to generate MBean types for your custom security providers,
then implement their methods. These optional SSPI MBeans include the attributes and operations
described in Table 2-6 and Table 2-7, respectively.

Table 2-6 Attributes and Operations of the ExportMBean Optional SSPI MBean

Attributes/Operations Description

SupportedExportFormats A list of export data formats that the security provider supports.

SupportedExportConstraints A list of export constraints that the security provider supports.

exportData Exports provider-specific security data in a specified format.

format A parameter on the exportData operation that specifies the
format to use for exporting provider-specific data.

Secur i t y Data Migrat ion

Developing Security Providers for WebLogic Server 2-23

Note: For more information, see the WebLogic Server API Reference Javadoc for the
ExportMBean interface.

filename A parameter on the exportData operation that specifies the full
path to the filename used to export provider-specific data.

Notes: The WebLogic security providers that support security
data migration are implemented in a way that allows you
to specify a relative path (from the directory relative to the
server you are working on). You must specify a directory
that already exists; WebLogic Server will not create one
for you.

constraints A parameter on the exportData operation that specifies the
constraints to be used when exporting provider-specific data.

Table 2-6 Attributes and Operations of the ExportMBean Optional SSPI MBean

Attributes/Operations Description

Table 2-7 Attributes and Operations of the ImportMBean Optional SSPI MBean

Attributes/Operations Description

SupportedImportFormats A list of import data formats that the security provider supports.

SupportedImportConstraints A list of import constraints that the security provider supports.

importData Imports provider-specific data from a specified format.

format A parameter on the importData operation that specifies the
format to use for importing provider-specific data.

filename A parameter on the importData operation that specifies the full
path to the filename used to import provider-specific data.

Notes: The WebLogic security providers that support security
data migration are implemented in a way that allows you
to specify a relative path (from the directory relative to the
server you are working on). You must specify a directory
that already exists; WebLogic Server will not create one
for you.

constraints A parameter on the importData operation that specifies the
constraints to be used when importing provider-specific data.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/management/security/ExportMBean.html

Des ign Cons ide ra t i ons

2-24 Developing Security Providers for WebLogic Server

Note: For more information, see the WebLogic Server API Reference Javadoc for the
ImportMBean interface.

Administration Console Support for Security Data Migration
Unlike other optional SSPI MBeans you may extend in the MDF for your custom security
providers, the attributes and operations inherited from the ExportMBean and ImportMBean
optional SSPI MBeans automatically appear in a WebLogic Server Administration Console page
for the associated security provider, under a Migration tab (see Figure 2-8 for an example). This
allows administrators to export and import security data for each security provider individually.

Notes: If a security provider does not have migration capabilities, the Migration tab for that
security provider will not appear in the Administration Console.

For instructions about how to migrate security data for individual security providers
using the Administration Console, see “Migrating Security Data”.

Figure 2-8 Migration Tab for the WebLogic Authentication Provider

Additionally, if any of the security providers configured in your security realm have migration
capabilities, the Migration tab at the security realm level (see Figure 2-9 for an example) allows
administrators to export or import security data for all the security providers configured in the
security realm at once.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/management/security/ImportMBean.html
http://e-docs.bea.com/wls/docs90/secmanage/security_data_migration.html

Management Ut i l i t i es Ava i lab le to Deve lope rs o f Secur i t y P rov ide rs

Developing Security Providers for WebLogic Server 2-25

Notes: The Migration tab at the security realm level always appears in the Administration
Console, whether or not any security providers with migration capabilities are configured
in the security realm. However, it is only operational if one or more security providers
have migration capabilities.

For instructions about how to migrate security data for all security providers at once, see
“Migrating Security Data” in Securing WebLogic Server.

Figure 2-9 Migration Tab for a Security Realm

Note: Administrators can also use the WebLogic Scripting Tool (WLST) (rather than the
Administration Console) to migrate security data when you extend the ExportMBean and
ImportMBean optional SSPI MBeans. For more information, see WebLogic Scripting
Tool.

As always, if you add additional attributes or operations to your MDF, you must write a console
extension in order to make them available in the Administration Console.

Management Utilities Available to Developers of Security
Providers

The weblogic.management.utils package contains additional management interfaces and
exceptions that developers might find useful, particularly when generating MBean types for their
custom security providers. Implementation of these interfaces and exceptions is not required to
develop a custom security provider (unless you inherit them by implementing optional SSPI
MBeans in your custom security provider’s MDF).

http://e-docs.bea.com/wls/docs90/secmanage/security_data_migration.html
http://e-docs.bea.com/wls/docs90/config_scripting/index.html
http://e-docs.bea.com/wls/docs90/config_scripting/index.html

Des ign Cons ide ra t i ons

2-26 Developing Security Providers for WebLogic Server

Note: The interfaces and classes are located in this package (rather than in
weblogic.management.security) because they are general purpose utilities; in other
words, these utilities can also be used for non-security MBeans. The various types of
MBeans are described in “Overview of WebLogic Server Subsystem MBeans” in
Developing Custom Management Utilities with JMX.

The weblogic.management.utils package contains the following utilities:

Common exceptions.

Interfaces that provide methods for handling large lists of data.

An interface containing configuration attributes that are required to communicate with an
external LDAP server.

Note: The Manageable Sample Authentication Provider, one of the sample security providers
available under "Code Samples: WebLogic Server" on the dev2dev Web site, uses the
weblogic.management.utils package for exceptions as well as to handle lists of data.

For more information, see the WebLogic Server API Reference Javadoc for the
weblogic.management.utils package.

Security Providers and WebLogic Resources
A WebLogic resource is a structured object used to represent an underlying WebLogic Server
entity that can be protected from unauthorized access. Developers of custom Authorization, Role
Mapping, and Credential Mapping providers need to understand how these security providers
interact with WebLogic resources and the security policies used to secure those resources.

Note: Security policies replace the access control lists (ACLs) and permissions that were used
to protect WebLogic resources in previous releases of WebLogic Server.

The following sections provide information about security providers and WebLogic resources:

“The Architecture of WebLogic Resources” on page 2-27

“Types of WebLogic Resources” on page 2-28

“WebLogic Resource Identifiers” on page 2-28

“Creating Default Groups for WebLogic Resources” on page 2-30

“Creating Default Security Roles for WebLogic Resources” on page 2-30

“Creating Default Security Policies for WebLogic Resources” on page 2-31

http://e-docs.bea.com/wls/docs90/jmx/subsystem.html
http://dev2dev.bea.com/code/wls.jsp
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/management/utils/package-summary.html

Secur i t y P rov ide rs and WebLog ic Resources

Developing Security Providers for WebLogic Server 2-27

“Single-Parent Resource Hierarchies” on page 2-34

“ContextHandlers and WebLogic Resources” on page 2-36

Note: For more information, see Securing WebLogic Resources.

The Architecture of WebLogic Resources
The Resource interface, located in the weblogic.security.spi package, provides the
definition for an object that represents a WebLogic resource, which can be protected from
unauthorized access. The ResourceBase class, located in the weblogic.security.service
package, is an abstract base class for more specific WebLogic resource types, and facilitates the
model for extending resources. (See Figure 2-10 and “Types of WebLogic Resources” on
page 2-28 for more information.)

Figure 2-10 Architecture of WebLogic Resources

The ResourceBase class includes the BEA-provided implementations of the getID, getKeys,
getValues, and toString methods. For more information, see the WebLogic Server API
Reference Javadoc for the ResourceBase class.

This architecture allows you to develop security providers without requiring that they be aware
of any particular WebLogic resources. Therefore, when new resource types are added, you should
not need to modify the security providers.

http://e-docs.bea.com/wls/docs90/secwlres/index.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/service/ResourceBase.html

Des ign Cons ide ra t i ons

2-28 Developing Security Providers for WebLogic Server

Types of WebLogic Resources
As shown in Figure 2-10, certain classes in the weblogic.security.service package extend
the ResourceBase class, and therefore provide you with implementations for specific types of
WebLogic resources. WebLogic resource implementations are available for:

Administrative resources

Application resources

COM resources

Control resources

EIS resources

EJB resources

JDBC resources

JMS resources

JNDI resources

Remote resources

Server resources

URL resources

Web Service resources

Work Context resources

Notes: For more information about each of these WebLogic resources, see Securing WebLogic
Resources and the WebLogic Server API Reference Javadoc for the
weblogic.security.service package.

WebLogic Resource Identifiers
Each WebLogic resource (described in “Types of WebLogic Resources” on page 2-28) can
identified in two ways: by its toString() representation or by an ID obtained using the getID()
method.

http://e-docs.bea.com/wls/docs90/secwlres/index.html
http://e-docs.bea.com/wls/docs90/secwlres/index.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/service/package-summary.html

Secur i t y P rov ide rs and WebLog ic Resources

Developing Security Providers for WebLogic Server 2-29

The toString() Method
If you use the toString() method of any WebLogic resource implementation, a description of
the WebLogic resource will be returned in the form of a String. First, the type of the WebLogic
resource is printed in pointy-brackets. Then, each key is printed, in order, along with its value.
The keys are comma-separated. Values that are lists are comma-separated and delineated by open
and close curly braces. Each value is printed as is, except that commas (,), open braces ({), close
braces (}), and back slashes (\) are each escaped with a back slash. For example, the EJB resource:
EJBResource (“myApp”,

“MyJarFile”,
“myEJB”,
“myMethod”,
“Home”,
new String[] {“argumentType1”, “argumentType2”}

);

will produce the following toString output:
type=<ejb>, app=myApp, module=”MyJarFile”, ejb=myEJB, method=”myMethod”,
methodInterface=”Home”, methodParams={argumentType1, argumentType2}

The format of the WebLogic resource description provided by the toString() method is public
(that is, you can construct one without using a Resource object) and is reversible (meaning that
you can convert the String form back to the original WebLogic resource).

Note: Listing 2-2 illustrates how to use the toString() method to identify a WebLogic
resource.

Resource IDs and the getID() Method
The getID() method on each of the defined WebLogic resource types returns a 64-bit hashcode
that can be used to uniquely identify the WebLogic resource in a security provider. The resource
ID can be effectively used for fast runtime caching, using the following algorithm:

1. Obtain a WebLogic resource.

2. Get the resource ID for the WebLogic resource using the getID method.

3. Look up the resource ID in the cache.

4. If the resource ID is found, then return the security policy.

5. If the resource ID is not found, then:

Des ign Cons ide ra t i ons

2-30 Developing Security Providers for WebLogic Server

a. Use the toString() method to look up the WebLogic resource in the security provider
database.

b. Store the resource ID and the security policy in cache.

c. Return the security policy.

Note: Listing 2-3 illustrates how to use the getID() method to identify a WebLogic resource
in Authorization provider, and provides a sample implementation of this algorithm.

Because it is not guaranteed stable across multiple runs, you should not use the resource ID to
store information about the WebLogic resource in a security provider database. Instead, BEA
recommends that you store any resource-to-security policy and resource-to-security role
mappings in their corresponding security provider database using the WebLogic resource’s
toString() method.

Notes: For more information about security provider databases, see “Initialization of the
Security Provider Database” on page 2-37. For more information about the toString
method, see “The toString() Method” on page 2-29.

Creating Default Groups for WebLogic Resources
When writing a runtime class for a custom Authentication provider, there are several default
groups that you are required to create. Table 2-8 provides information to assist you with this task.

Creating Default Security Roles for WebLogic Resources
When writing a runtime class for a custom Role Mapping provider, there are several default
global roles that you are required to create. Table 2-9 provides information to assist you with this
task.

Table 2-8 Default Groups and Group Membership

Group Name Group Membership

Administrators Empty, or an administrative user.

Deployers Empty

Monitors Empty

Operators Empty

Secur i t y P rov ide rs and WebLog ic Resources

Developing Security Providers for WebLogic Server 2-31

Note: For more information about global and scoped security roles, see “Users, Groups, and
Security Roles” in Securing WebLogic Resources.

Creating Default Security Policies for WebLogic Resources
When writing a runtime class for a custom Authorization provider, there are several default
security policies that you are required to create. These default security policies initially protect
the various types of WebLogic resources. Table 2-10 provides information to assist you with this
task.

Table 2-9 Default Global Roles and Group Associations

Global Role Name Group Association

Admin Administrators group

Anonymous weblogic.security.WLSPrincipals.getEveryoneGroupname()
group

Deployer Deployers group

Monitor Monitors group

Operator Operators group

Table 2-10 Default Security Policies for WebLogic Resources

WebLogic Resource Constructor Security Policy

new AdminResource(null, null, null) Admin global role

new AdminResource("Configuration",
null, null)

Admin, Deployer, Monitor, or Operator
global roles

new AdminResource(“FileDownload”,
null, null)

Admin or Deployer global role

new AdminResource(“FileUpload”,
null, null)

Admin or Deployer global role

New AdminResource(“ViewLog”, null,
null)

Admin or Deployer global role

http://e-docs.bea.com/wls/docs90/secwlres/secroles.html
http://e-docs.bea.com/wls/docs90/secwlres/secroles.html

Des ign Cons ide ra t i ons

2-32 Developing Security Providers for WebLogic Server

Note: Application and COM resources should not have default security policies (that is, they
should not grant permission to anyone by default).

Looking Up WebLogic Resources in a Security Provider’s
Runtime Class
Listing 2-2 illustrates how to look up a WebLogic resource in the runtime class of an
Authorization provider. This algorithm assumes that the security provider database for the
Authorization provider contains a mapping of WebLogic resources to security policies. It is not
required that you use the algorithm shown in Listing 2-2, or that you utilize the call to the
getParentResource method. (For more information about the getParentResource method,
see “Single-Parent Resource Hierarchies” on page 2-34.)

new EISResource(null, null, null) weblogic.security.WLSPrincipals.
getEveryoneGroupname() group

new EJBResource(null, null, null,
null, null, null)

weblogic.security.WLSPrincipals.
getEveryoneGroupname() group

new JDBCResource(null, null, null,
null, null)

weblogic.security.WLSPrincipals.
getEveryoneGroupname() group

new JNDIResource(null, null, null) weblogic.security.WLSPrincipals.
getEveryoneGroupname() group

new JMSResource(null, null, null,
null)

weblogic.security.WLSPrincipals.
getEveryoneGroupname() group

new ServerResource(null, null,
null)

Admin or Operator global roles

new URLResource(null, null, null,
null, null)

weblogic.security.WLSPrincipals.
getEveryoneGroupname() group

new WebServiceResource(null, null,
null, null)

weblogic.security.WLSPrincipals.
getEveryoneGroupname() group

Table 2-10 Default Security Policies for WebLogic Resources (Continued)

WebLogic Resource Constructor Security Policy

Secur i t y P rov ide rs and WebLog ic Resources

Developing Security Providers for WebLogic Server 2-33

Listing 2-2 How to Look Up a WebLogic Resource in an Authorization Provider: Using the toString Method

Policy findPolicy(Resource resource) {

Resource myResource = resource;

while (myResource != null) {

String resourceText = myResource.toString();

Policy policy = lookupInDB(resourceText);

if (policy != null) return policy;

myResource = myResource.getParentResource();

}

return null;

}

You can optimize the algorithm for looking up a WebLogic resource by using the getID method
for the resource. (Use of the toString method alone, as shown in Listing 2-2, may impact
performance due to the frequency of string concatenations.) The getID method may be quicker
and more efficient because it is a hash operation that is calculated and cached within the
WebLogic resource itself. Therefore, when the getID method is used, the toString value only
needs to be calculated once per resource (as shown in Listing 2-3).

Listing 2-3 How to Look Up a WebLogic Resource in an Authorization Provider: Using the getID Method

Policy findPolicy(Resource resource) {

Resource myResource = resource;

while (myResource != null) {

long id = myResource.getID();

Policy policy = lookupInCache(id);

if (policy != null) return policy;

String resourceText = myResource.toString();

Policy policy = lookupInDB(resourceText);

if (policy != null) {

addToCache(id, policy);

return policy;

}

myResource = myResource.getParentResource();

Des ign Cons ide ra t i ons

2-34 Developing Security Providers for WebLogic Server

}

return null;

}

Note: The getID method is not guaranteed between service packs or future WebLogic Server
releases. Therefore, you should not store getID values in your security provider
database.

Single-Parent Resource Hierarchies
The level of granularity for WebLogic resources is up to you. For example, you can consider an
entire Web application, a particular Enterprise JavaBean (EJB) within that Web application, or a
single method within that EJB to be a WebLogic resource.

WebLogic resources are arranged in a hierarchical structure ranging from most specific to least
specific. You can use the getParentResource method for each of the WebLogic resource types
if you like, but it is not required.

The WebLogic security providers use the single-parent resource hierarchy as follows: If a
WebLogic security provider attempts to access a specific WebLogic resource and that resource
cannot be located, the WebLogic security provider will call the getParentResource method of
that resource. The parent of the current WebLogic resource is returned, and allows the WebLogic
security provider to move up the resource hierarchy to protect the next (less-specific) resource.
For example, if a caller attempts to access the following URL resource:
type=<url>, application=myApp, contextPath=”/mywebapp”, uri=foo/bar/my.jsp

and that exact URL resource cannot be located, the WebLogic security provider will
progressively attempt to locate and protect the following resources (in order):

type=<url>, application=myApp, contextPath="/mywebapp", uri=/foo/bar/*
type=<url>, application=myApp, contextPath="/mywebapp", uri=/foo/*
type=<url>, application=myApp, contextPath="/mywebapp", uri=*.jsp
type=<url>, application=myApp, contextPath="/mywebapp", uri=/*
type=<url>, application=myApp, contextPath="/mywebapp"
type=<url>, application=myApp
type=<app>, application=myApp
type=<url>

Note: For more information about the getParentResource method, see the WebLogic Server
API Reference Javadoc for any of the predefined WebLogic resource types or the
Resource interface.

http://e-docs.bea.com/wls/docs90/javadocs/index.html
http://e-docs.bea.com/wls/docs90/javadocs/index.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/Resource.html

Secur i t y P rov ide rs and WebLog ic Resources

Developing Security Providers for WebLogic Server 2-35

Pattern Matching for URL Resources
Sections SRV.11.1 and SRV.11.2 of the Java Servlet 2.3 Specification describe the servlet
container's pattern matching rules. These rules are used for URL resources as well. The following
examples illustrate some important concepts with regard to URL resource pattern matching.

Example 1
For the URL resource type=<url>, application=myApp, contextPath=/mywebapp,
uri=/foo/my.jsp, httpMethod=GET, the resource hierarchy used is as follows. (Note lines 3
and 4, which contain URL patterns that may be different from what is expected.)

1. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp,
httpMethod=GET

2. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp

3. type=<url>, application=myApp, contextPath=/mywebapp,
uri=/foo/my.jsp/*, httpMethod=GET

4. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp/*

5. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/*,
httpMethod=GET

6. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/*

7. type=<url>, application=myApp, contextPath=/mywebapp, uri=*.jsp,
httpMethod=GET

8. type=<url>, application=myApp, contextPath=/mywebapp, uri=*.jsp

9. type=<url>, application=myApp, contextPath=/mywebapp, uri=/*,
httpMethod=GET

10.type=<url>, application=myApp, contextPath=/mywebapp, uri=/*

11.type=<url>, application=myApp, contextPath=/mywebapptype=<url>,
application=myApp

12.type=<app>, application=myApp

13.type=<url>

Example 2
For the URL resource type=<url>, application=myApp, contextPath=/mywebapp,
uri=/foo, the resource hierarchy used is as follows. (Note line 2, which contains a URL pattern
that may be different from what is expected.)

1. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo

http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

Des ign Cons ide ra t i ons

2-36 Developing Security Providers for WebLogic Server

2. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/*

3. type=<url>, application=myApp, contextPath=/mywebapp, uri=/*

4. type=<url>, application=myApp, contextPath=/mywebapp

5. type=<url>, application=myApp

6. type=<app>, application=myApp

7. type=<url>

ContextHandlers and WebLogic Resources
A ContextHandler is a high-performing WebLogic class that obtains additional context and
container-specific information from the resource container, and provides that information to
security providers making access or role mapping decisions. The ContextHandler interface
provides a way for an internal WebLogic resource container to pass additional information to a
WebLogic Security Framework call, so that a security provider can obtain contextual information
beyond what is provided by the arguments to a particular method. A ContextHandler is
essentially a name/value list and as such, it requires that a security provider know what names to
look for. (In other words, use of a ContextHandler requires close cooperation between the
WebLogic resource container and the security provider.) Each name/value pair in a
ContextHandler is known as a context element, and is represented by a ContextElement object.

Note: For more information about the ContextHandler interface and ContextElement class,
see the WebLogic Server API Reference Javadoc for the weblogic.security.service
package.

Currently, two types of WebLogic resource containers pass ContextHandlers to the WebLogic
Security Framework: the Servlet and EJB containers. Thus, URL (Web) and EJB resource types
have different context elements whose values you can inspect as part of developing custom
Authorization provider (or custom Role Mapping provider). Table 2-11 and Table 2-12 list each
context element for the URL and EJB resource ContextHandlers.

Table 2-11 ContextHandler for URL (Web) Resources

Context Element Name Context Element Value

HttpServletRequest javax.servlet.http.HttpServletRequest

HttpServletResponse javax.servlet.http.HttpServletResponse

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/service/package-summary.html

In i t ia l i za t i on o f the Secur i t y P rov ide r Database

Developing Security Providers for WebLogic Server 2-37

Listing 2-4 illustrates how you can access HttpServletRequest and HttpServletResponse
context element objects via a URL (Web) resource’s ContextHandler. For example, you might
use this code in the isAccessAllowed() method of your AccessDecision SSPI
implementation. (For more information, see “Implement the AccessDecision SSPI” on page 6-9.)

Listing 2-4 Example: Accessing Context Elements in the URL Resource ContextHandler

static final String SERVLETREQUESTNAME = “HttpServletRequest”;

if (resource instanceof URLResource) {

HttpServletRequest req =

(HttpServletRequest)handler.getValue(SERVLETREQUESTNAME);

}

Note: You might also want to access these context elements in the getRoles() method of the
RoleMapper SSPI implementation or the getContext() method of the AuditContext
interface implementation. (For more information, see “Implement the RoleMapper
SSPI” on page 8-9 and “Audit Context” on page 11-8, respectively.)

Initialization of the Security Provider Database
Note: Prior to reviewing this section, be sure you have read “Security Provider Databases” in

the Understanding WebLogic Security.

At minimum, you must initialize security providers’ databases with the default users, groups,
security policies, security roles, or credentials that your Authentication, Authorization, Role
Mapping, and Credential Mapping providers expect. You will need to initialize a given security
provider’s database before the security provider can be used, and should think about how this will

Table 2-12 ContextHandler for Enterprise JavaBean (EJB) Resources

Context Element Name Context Element Value

Parameter1 Determine the object type and semantics of each parameter
via the <method-param> elements of the ejb-jar.xml
deployment descriptor for the EJB.Parameter2 ...

ParameterN

http://e-docs.bea.com/wls/docs90/secintro/realm_chap.html#ream_chap_0601

Des ign Cons ide ra t i ons

2-38 Developing Security Providers for WebLogic Server

work as you are writing the runtime classes for your custom security providers. The method you
use to initialize a security provider’s database depends upon many factors, including whether or
not an externally administered database will be used to store the user, group, security policy,
security role, or credential information, and whether or not the database already exists or needs
to be created.

The following sections explain some best practices for initializing a security provider database:

Best Practice: Create a Simple Database If None Exists

Best Practice: Configure an Existing Database

Best Practice: Delegate Database Initialization

Best Practice: Create a Simple Database If None Exists
The first time an Authentication, Authorization, Role Mapping, or Credential Mapping provider
is used, it attempts to locate a database with the information it needs to provide its security
service. If the security provider fails to locate the database, you can have it create one and
automatically populate it with the default users, groups, security policies, security roles, and
credentials. This option may be useful for development and testing purposes.

Both the WebLogic security providers and the sample security providers follow this practice. The
WebLogic Authentication, Authorization, Role Mapping, and Credential Mapping providers
store the user, group, security policy, security role, and credential information in the embedded
LDAP server. If you want to use any of these WebLogic security providers, you will need to
follow the “Configuring the Embedded LDAP Server” instructions in Securing WebLogic Server.

Note: The sample security providers, available under "Code Samples: WebLogic Server" on
the dev2dev Web site, simply create and use a properties file as their database. For
example, the sample Authentication provider creates a file called
SampleAuthenticatorDatabase.java that contains the necessary information about
users and groups.

Best Practice: Configure an Existing Database
If you already have a database (such as an external LDAP server), you can populate that database
with the users, groups, security policies, security roles, and credentials that your Authentication,
Authorization, Role Mapping, and Credential Mapping providers require. (Populating an existing
database is accomplished using whatever tools you already have in place for performing these
tasks.)

http://e-docs.bea.com/wls/docs90/secmanage/ldap.html#embedded_ldap
http://dev2dev.bea.com/code/wls.jsp

In i t ia l i za t i on o f the Secur i t y P rov ide r Database

Developing Security Providers for WebLogic Server 2-39

Once your database contains the necessary information, you must configure the security
providers to look in that database. You accomplish this by adding custom attributes in your
security provider’s MBean Definition File (MDF). Some examples of custom attributes are the
database’s host, port, password, and so on. After you run the MDF through the WebLogic
MBeanMaker and complete a few other steps to generate the MBean type for your custom
security provider, you or an administrator use the WebLogic Server Administration Console to
set these attributes to point to the database.

Note: For more information about MDFs, MBean types, and the WebLogic MBeanMaker, see
“Generating an MBean Type to Configure and Manage the Custom Security Provider”
on page 1-4.

As an example, Listing 2-5 shows some custom attributes that are part of the WebLogic LDAP
Authentication provider’s MDF. These attributes enable an administrator to specify information
about the WebLogic LDAP Authentication provider’s database (an external LDAP server), so it
can locate information about users and groups.

Listing 2-5 LDAPAuthenticator.xml

...

<MBeanAttribute
Name = "UserObjectClass"
Type = "java.lang.String"
Default = ""person""
Description = "The LDAP object class that stores users."
/>

<MBeanAttribute
Name = "UserNameAttribute"
Type = "java.lang.String"
Default = ""uid""
Description = "The attribute of an LDAP user object that specifies the name of

the user."
/>

<MBeanAttribute
Name = "UserDynamicGroupDNAttribute"
Type = "java.lang.String"
Description = "The attribute of an LDAP user object that specifies the

distinguished names (DNs) of dynamic groups to which this user belongs.
If such an attribute does not exist, WebLogic Server determines if a
user is a member of a group by evaluating the URLs on the dynamic group.
If a group contains other groups, WebLogic Server evaluates the URLs on

Des ign Cons ide ra t i ons

2-40 Developing Security Providers for WebLogic Server

any of the descendents of the group."
/>

<MBeanAttribute
Name = "UserBaseDN"
Type = "java.lang.String"
Default = ""ou=people, o=example.com""
Description = "The base distinguished name (DN) of the tree in the LDAP
directory

that contains users."
/>

<MBeanAttribute
Name = "UserSearchScope"
Type = "java.lang.String"
Default = ""subtree""
LegalValues = "subtree,onelevel"
Description = "Specifies how deep in the LDAP directory tree to search for
Users.

Valid values are <code>subtree</code>
and <code>onelevel</code>."

/>

...

Best Practice: Delegate Database Initialization
If possible, initialization calls between a security provider and the security provider’s database
should be done by an intermediary class, referred to as a database delegator. The database
delegator should interact with the runtime class and the MBean type for the security provider, as
shown in Figure 2-11.

Di f fe rences In A t t r ibu te Va l idato rs

Developing Security Providers for WebLogic Server 2-41

Figure 2-11 Positioning of the Database Delegator Class

A database delegator is used by the WebLogic Authentication and Credential Mapping providers.
The WebLogic Authentication provider, for example, calls into a database delegator to initialize
the embedded LDAP server with default users and groups, which it requires to provide
authentication services for the default security realm.

Use of a database delegator is suggested as a convenience to application developers and security
vendors who are developing custom security providers, because it hides the security provider’s
database and centralizes calls into the database.

Differences In Attribute Validators
A validator is an interface that is implemented by a class that can validate various types of
expressions. In this release of WebLogic Server, the inheritance rules for security provider
attribute validator methods differ from the rules that existed in 8.1.

In 8.1, a derived MBean had only to customize an attribute validator method in its MBean
implementation file to make it take effect. In 9.0, the derived MBean must also explicitly declare
the attribute validator in its MDF file to make it take effect. Otherwise, the customized method
code is ignored.

Consider the following example of the base class of all identity assert MBean implementations,
weblogic.management.security.authentication.IdentityAsserterImpl.

IdentityAsserterImpl extends the authentication provider MBean implementation and gives the
authenticator's MBean implementation access to its configuration attributes.

In 8.1, you could do the following:

1. Write an Identity Asserter provider called IdentityAsserter1. In its MDF file, indicate that it
extends weblogic.management.security.authentication.IdentityAsserter.

Des ign Cons ide ra t i ons

2-42 Developing Security Providers for WebLogic Server

2. Use the WebLogic MBeanMaker to generate the MBean type. The implementation file
created by the MBeanMaker, typically named IdentityAsserter1Impl.java, extends
weblogic.management.security.authentication.IdentityAsserterImpl.

Therefore, the MBean inherits the activeTypes attribute, which has an attribute validator
method. The validateActiveTypes(String[] activeTypes) method ensures that activeTypes
includes only supported types).

3. Modify the implementation file and specify a different implementation for the
validateActiveTypes method. For example, it could further restrict the active types or loosen
the rules.

4. In 8.1, IdentityAsserter1's validateActiveTypes implementation is used.

In 9.0, the base IdentityAsserter's validateActiveTypes implementation is used instead.
That is, IdentityAsserter1's validateActiveTypes implementation is silently ignored.

To work around this difference in 9.0, redeclare the attribute validator in IdentityAsserter1's
MDF file in an MBeanOperation subelement.

Differences In Attribute Validators for Custom Validators.
The difference in inheritance rules for security provider attribute validators also applies to
custom validators. You could have a provider declare an attribute with a custom validator. Then
you could derive another provider from that one and write another implementation of the
validator. In 8.1, the derived provider's validator would be used. In 9.0, the base provider's
validator is used instead, and the derived one is silently ignored.

Developing Security Providers for WebLogic Server 3-1

C H A P T E R 3

Authentication Providers

Authentication is the mechanism by which callers prove that they are acting on behalf of specific
users or systems. Authentication answers the question, “Who are you?” using credentials such as
username/password combinations.

In WebLogic Server, Authentication providers are used to prove the identity of users or system
processes. Authentication providers also remember, transport, and make that identity information
available to various components of a system (via subjects) when needed. During the
authentication process, a Principal Validation provider provides additional security protections
for the principals (users and groups) contained within the subject by signing and verifying the
authenticity of those principals. (For more information, see Chapter 5, “Principal Validation
Providers.”)

The following sections describe Authentication provider concepts and functionality, and provide
step-by-step instructions for developing a custom Authentication provider:

“Authentication Concepts” on page 3-2

“The Authentication Process” on page 3-10

“Do You Need to Develop a Custom Authentication Provider?” on page 3-11

“How to Develop a Custom Authentication Provider” on page 3-12

Note: An Identity Assertion provider is a specific form of Authentication provider that allows
users or system processes to assert their identity using tokens. For more information, see
Chapter 4, “Identity Assertion Providers.”

Authent i cat ion P rov ide rs

3-2 Developing Security Providers for WebLogic Server

Authentication Concepts
Before delving into the specifics of developing custom Authentication providers, it is important
to understand the following concepts:

“Users and Groups, Principals and Subjects” on page 3-2

“LoginModules” on page 3-4

“Java Authentication and Authorization Service (JAAS)” on page 3-6

Users and Groups, Principals and Subjects
A user is similar to an operating system user in that it represents a person. A group is a category
of users, classified by common traits such as job title. Categorizing users into groups makes it
easier to control the access permissions for large numbers of users. For more information about
users and groups, see “Users and Groups” in Securing WebLogic Resources.

Both users and groups can be used as principals by application servers like WebLogic Server. A
principal is an identity assigned to a user or group as a result of authentication. The Java
Authentication and Authorization Service (JAAS) requires that subjects be used as containers for
authentication information, including principals. Each principal stored in the same subject
represents a separate aspect of the same user’s identity, much like cards in a person’s wallet. (For
example, an ATM card identifies someone to their bank, while a membership card identifies them
to a professional organization to which they belong.) For more information about JAAS, see
“Java Authentication and Authorization Service (JAAS)” on page 3-6.

Note: Subjects replace WebLogic Server 6.x users.

Figure 3-1 illustrates the relationships among users, groups, principals, and subjects.

http://e-docs.bea.com/wls/docs90/secwlres/secroles.html#1224396

Authent i cat i on Concepts

Developing Security Providers for WebLogic Server 3-3

Figure 3-1 Relationships Among Users, Groups, Principals and Subjects

As part of a successful authentication, principals are signed and stored in a subject for future use.
A Principal Validation provider signs principals, and an Authentication provider’s LoginModule
actually stores the principals in the subject. Later, when a caller attempts to access a principal
stored within a subject, a Principal Validation provider verifies that the principal has not been
altered since it was signed, and the principal is returned to the caller (assuming all other security
conditions are met).

Note: For more information about Principal Validation providers and LoginModules, see
Chapter 5, “Principal Validation Providers” and “LoginModules” on page 3-4,
respectively.

Any principal that is going to represent a WebLogic Server user or group needs to implement the
WLSUser and WLSGroup interfaces, which are available in the weblogic.security.spi
package.

Providing Initial Users and Groups
Authentication providers need a list of users and groups before they can be used to perform
authentication in a running WebLogic Server. Some Authentication providers let the
administrator configure an external database (for example, add the users and groups to an LDAP
server or a DBMS) and then configure the provider to use that database. These providers don't
have to worry about how the users and groups are populated because the administrator does that
first, using the external database's tools.

However, some Authentication providers create and manage their own list of users and groups.
This is the case for the ManageableSampleAuthenticator provider, available under "Code
Samples: WebLogic Server" on the dev2dev Web site. These providers need to worry about how

http://dev2dev.bea.com/code/wls.jsp
http://dev2dev.bea.com/code/wls.jsp

Authent i cat ion P rov ide rs

3-4 Developing Security Providers for WebLogic Server

their initial set of users and groups is populated. One way to handle this is for the provider's
"initialize" method to notice that the users and groups don't exist yet, and then populate the list
with an initial set of users and groups.

Note that some providers have a separate list of users and groups for each security realm, and
therefore need to create an initial set of users and groups the first time the list is used in a new
realm. For example, the ManageableSampleAuthenticator provider creates a separate properties
file of users and groups for each realm. Its initialize method gets the realm name, determines
whether the properties file for that realm exists and, if not, creates one, populating it with its initial
set of users and groups.

LoginModules
A LoginModule is a required component of an Authentication provider, and can be a component
of an Identity Assertion provider if you want to develop a separate LoginModule for perimeter
authentication.

LoginModules are the work-horses of authentication: all LoginModules are responsible for
authenticating users within the security realm and for populating a subject with the necessary
principals (users/groups). LoginModules that are not used for perimeter authentication also verify
the proof material submitted (for example, a user’s password).

Note: For more information about Identity Assertion providers and perimeter authentication,
see Chapter 4, “Identity Assertion Providers.”

If there are multiple Authentication providers configured in a security realm, each of the
Authentication providers’ LoginModules will store principals within the same subject. Therefore,
if a principal that represents a WebLogic Server user (that is, an implementation of the WLSUser
interface) named “Joe” is added to the subject by one Authentication provider’s LoginModule,
any other Authentication provider in the security realm should be referring to the same person
when they encounter “Joe”. In other words, the other Authentication providers’ LoginModules
should not attempt to add another principal to the subject that represents a WebLogic Server user
(for example, named “Joseph”) to refer to the same person. However, it is acceptable for a another
Authentication provider’s LoginModule to add a principal of a type other than WLSUser with the
name “Joseph”.

The LoginModule Interface
LoginModules can be written to handle a variety of authentication mechanisms, including
username/password combinations, smart cards, biometric devices, and so on. You develop
LoginModules by implementing the javax.security.auth.spi.LoginModule interface,

Authent i cat i on Concepts

Developing Security Providers for WebLogic Server 3-5

which is based on the Java Authentication and Authorization Service (JAAS) and uses a subject
as a container for authentication information. The LoginModule interface enables you to plug in
different kinds of authentication technologies for use with a single application, and the WebLogic
Security Framework is designed to support multiple LoginModule implementations for multipart
authentication. You can also have dependencies across LoginModule instances or share
credentials across those instances. However, the relationship between LoginModules and
Authentication providers is one-to-one. In other words, to have a LoginModule that handles
retina scan authentication and a LoginModule that interfaces to a hardware device like a smart
card, you must develop and configure two Authentication providers, each of which include an
implementation of the LoginModule interface. For more information, see “Implement the JAAS
LoginModule Interface” on page 3-15.

Note: You can also obtain LoginModules from third-party security vendors instead of
developing your own.

LoginModules and Multipart Authentication
The way you configure multiple Authentication providers (and thus, multiple LoginModules) can
affect the overall outcome of the authentication process, which is especially important for
multipart authentication. First, because LoginModules are components of Authentication
providers, they are called in the order in which the Authentication providers are configured.
Generally, you configure Authentication providers using the WebLogic Server Administration
Console. (For more information, see “Specifying the Order of Authentication Providers” on
page 3-33.) Second, the way each LoginModule’s control flag is set specifies how a failure during
the authentication process should be handled. Figure 3-2 illustrates a sample flow involving three
different LoginModules (that are part of three Authentication providers), and illustrates what
happens to the subject for different authentication outcomes.

Authent i cat ion P rov ide rs

3-6 Developing Security Providers for WebLogic Server

Figure 3-2 Sample LoginModule Flow

If the control flag for Custom Authentication Provider #1 had been set to Required, the
authentication failure in its User Authentication step would have caused the entire authentication
process to have failed. Also, if the user had not been authenticated by the WebLogic
Authentication provider (or custom Authentication provider #2), the entire authentication process
would have failed. If the authentication process had failed in any of these ways, all three
LoginModules would have been rolled back and the subject would not contain any principals.

Note: For more information about the LoginModule control flag setting and the LoginModule
interface, see the Java Authentication and Authorization Service (JAAS) 1.0
LoginModule Developer’s Guide and the Java 2 Enterprise Edition, v1.4.1 API
Specification Javadoc for the LoginModule interface, respectively.

Java Authentication and Authorization Service (JAAS)
Whether the client is an application, applet, Enterprise JavaBean (EJB), or servlet that requires
authentication, WebLogic Server uses the Java Authentication and Authorization Service (JAAS)
classes to reliably and securely authenticate to the client. JAAS implements a Java version of the
Pluggable Authentication Module (PAM) framework, which permits applications to remain
independent from underlying authentication technologies. Therefore, the PAM framework allows
the use of new or updated authentication technologies without requiring modifications to your
application.

WebLogic Server uses JAAS for remote fat-client authentication, and internally for
authentication. Therefore, only developers of custom Authentication providers and developers of
remote fat client applications need to be involved with JAAS directly. Users of thin clients or

http://java.sun.com/security/jaas/doc/module.html
http://java.sun.com/security/jaas/doc/module.html
http://java.sun.com/j2se/1.4.1/docs/api/javax/security/auth/spi/LoginModule.html

Authent i cat i on Concepts

Developing Security Providers for WebLogic Server 3-7

developers of within-container fat client applications (for example, those calling an Enterprise
JavaBean (EJB) from a servlet) do not require the direct use or knowledge of JAAS.

How JAAS Works With the WebLogic Security Framework
Generically, authentication using the JAAS classes and WebLogic Security Framework is
performed in the following manner:

1. A client-side application obtains authentication information from a user or system process.
The mechanism by which this occurs is different for each type of client.

2. The client-side application can optionally create a CallbackHandler containing the
authentication information.

a. The client-side application passes the CallbackHandler to a local (client-side)
LoginModule using the LoginContext class. (The local LoginModule could be
UsernamePasswordLoginModule, which is provided as part of WebLogic Server.)

b. The local LoginModule passes the CallbackHandler containing the authentication
information to the appropriate WebLogic Server container (for example, RMI, EJB,
servlet, or IIOP).

Note: A CallbackHandler is a highly-flexible JAAS standard that allows a variable
number of arguments to be passed as complex objects to a method. There are three
types of CallbackHandlers: NameCallback, PasswordCallback, and
TextInputCallback, all of which reside in the javax.security.auth.callback
package. The NameCallback and PasswordCallback return the username and
password, respectively. TextInputCallback can be used to access the data users
enter into any additional fields on a login form (that is, fields other than those for
obtaining the username and password). When used, there should be one
TextInputCallback per additional form field, and the prompt string of each
TextInputCallback must match the field name in the form. WebLogic Server only
uses the TextInputCallback for form-based Web application login. For more
information about CallbackHandlers, see the Java 2 Enterprise Edition, v1.4.1 API
Specification Javadoc for the CallbackHandler interface.

For more information about the LoginContext class, see the Java 2 Enterprise
Edition v1.4.1 Specification Javadoc for the LoginContext class.

For more information about the UsernamePasswordLoginModule, see the
WebLogic Server API Reference Javadoc for the UsernamePasswordLoginModule
class.

http://java.sun.com/j2se/1.4/docs/api/javax/security/auth/callback/CallbackHandler.html
http://java.sun.com/security/jaas/apidoc/javax/security/auth/login/LoginContext.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/auth/login/UsernamePasswordLoginModule.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/auth/login/UsernamePasswordLoginModule.html

Authent i cat ion P rov ide rs

3-8 Developing Security Providers for WebLogic Server

If you do not want to use a client-side LoginModule, you can specify the username
and password in other ways: for example, as part of the initial JNDI lookup.

3. The WebLogic Server container calls into the WebLogic Security Framework. If there is a
client-side CallbackHandler containing authentication information, this is passed into the
WebLogic Security Framework.

4. For each of the configured Authentication providers, the WebLogic Security Framework
creates a CallbackHandler using the authentication information that was passed in.
(These are internal CallbackHandlers created on the server-side by the WebLogic
Security Framework, and are not related to the client’s CallbackHandler.)

5. The WebLogic Security Framework calls the LoginModule associated with the
Authentication provider (that is, the LoginModule that is specifically designed to handle the
authentication information).

Note: For more information about LoginModules, see “LoginModules” on page 3-4.

The LoginModule attempts to authenticate the client using the authentication information.

6. If the authentication is successful, the following occurs:

a. Principals (users and groups) are signed by a Principal Validation provider to ensure their
authenticity between programmatic server invocations. For more information about
Principal Validation providers, see Chapter 5, “Principal Validation Providers.”

b. The LoginModule associates the signed principals with a subject, which represents the
user or system process being authenticated. For more information about subjects and
principals, see “Users and Groups, Principals and Subjects” on page 3-2.

Note: For authentication performed entirely on the server-side, the process would begin at step
3, and the WebLogic Server container would call the
weblogic.security.services.authentication.login method prior to step 4.

Example: Standalone T3 Application
Figure 3-3 illustrates how the JAAS classes work with the WebLogic Security Framework for a
standalone, T3 application, and an explanation follows.

Authent i cat i on Concepts

Developing Security Providers for WebLogic Server 3-9

Figure 3-3 Authentication Using JAAS Classes and WebLogic Server

For this example, authentication using the JAAS classes and WebLogic Security Framework is
performed in the following manner:

1. The T3 application obtains authentication information (username, password, and URL) from
a user or system process.

2. The T3 application creates a CallbackHandler containing the authentication information.

a. The T3 application passes the CallbackHandler to the
UsernamePasswordLoginModule using the LoginContext class.

Note: The weblogic.security.auth.login.UsernamePasswordLoginModule
implements the standard JAAS javax.security.auth.spi.LoginModule
interface and uses client-side APIs to authenticate a WebLogic client to a
WebLogic Server instance. It can be used for both T3 and IIOP clients. Callers of
this LoginModule must implement a CallbackHandler to pass the username
(NameCallback), password (PasswordCallback), and a URL (URLCallback).

b. The UsernamePasswordLoginModule passes the CallbackHandler containing the
authentication information (that is, username, password, and URL) to the WebLogic
Server RMI container.

Authent i cat ion P rov ide rs

3-10 Developing Security Providers for WebLogic Server

3. The WebLogic Server RMI container calls into the WebLogic Security Framework. The
client-side CallbackHandler containing authentication information is passed into the
WebLogic Security Framework.

4. For each of the configured Authentication providers, the WebLogic Security Framework
creates a CallbackHandler containing the username, password, and URL that was passed
in. (These are internal CallbackHandlers created on the server-side by the WebLogic
Security Framework, and are not related to the client’s CallbackHandler.)

5. The WebLogic Security Framework calls the LoginModule associated with the
Authentication provider (that is, the LoginModule that is specifically designed to handle the
authentication information).

The LoginModule attempts to authenticate the client using the authentication information.

6. If the authentication is successful, the following occurs:

a. Principals (users and groups) are signed by a Principal Validation provider to ensure their
authenticity between programmatic server invocations.

b. The LoginModule associates the signed principals with a subject, which represents the
user or system being authenticated.

c. The WebLogic Security Framework returns the authentication status to the T3 client
application, and the T3 client application retrieves the authenticated subject from the
WebLogic Security Framework.

The Authentication Process
Figure 3-4 shows a behind-the-scenes look of the authentication process for a fat-client login.
JAAS runs on the server to perform the login. Even in the case of a thin-client login (that is, a
browser client) JAAS is still run on the server.

Do You Need to Deve lop a Custom Authent i cat ion P rov ide r?

Developing Security Providers for WebLogic Server 3-11

Figure 3-4 The Authentication Process

Notes: Only developers of custom Authentication providers will be involved with this JAAS
process directly. The client application could either use JNDI initial context creation or
JAAS to initiate the passing of the username and password.

When a user attempts to log into a system using a username/password combination, WebLogic
Server establishes trust by validating that user’s username and password, and returns a subject
that is populated with principals per JAAS requirements. As Figure 3-4 also shows, this process
requires the use of a LoginModule and a Principal Validation provider, which are discussed in
detail in “LoginModules” on page 3-4 and Chapter 5, “Principal Validation Providers,”
respectively.

After successfully proving a caller’s identity, an authentication context is established, which
allows an identified user or system to be authenticated to other entities. Authentication contexts
may also be delegated to an application component, allowing that component to call another
application component while impersonating the original caller.

Do You Need to Develop a Custom Authentication Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic
Authentication provider.

Note: In conjunction with the WebLogic Authorization provider, the WebLogic Authentication
provider replaces the functionality of the File realm that was available in 6.x releases of
WebLogic Server.

The WebLogic Authentication provider supports delegated username/password authentication,
and utilizes an embedded LDAP server to store user and group information. The WebLogic
Authentication provider allows you to edit, list, and manage users and group membership.

Authent i cat ion P rov ide rs

3-12 Developing Security Providers for WebLogic Server

WebLogic Server also provides the following additional Authentication providers that you can
use instead of or in conjunction with the WebLogic Authentication provider in the default
security realm:

A set of LDAP Authentication providers that access external LDAP stores (Open LDAP,
Netscape iPlanet, Microsoft Active Directory, and Novell NDS).

A set of Database Base Management System (DBMS) authentication providers that access
user, password, group, and group membership information stored in databases for
authentication

A Windows NT Authentication provider that uses Windows NT users and groups for
authentication purposes.

An LDAP X509 Identity Assertion provider.

By default, these additional Authentication providers are available but not configured in the
WebLogic default security realm.

If you want to perform additional authentication tasks, then you need to develop a custom
Authentication provider.

Note: If you want to perform perimeter authentication using a token type that is not supported
out of the box (for example, a new, custom, or third party token type), you might need to
develop a custom Identity Assertion provider. For more information, see Chapter 4,
“Identity Assertion Providers.”

How to Develop a Custom Authentication Provider
If the WebLogic Authentication provider does not meet your needs, you can develop a custom
Authentication provider by following these steps:

1. “Create Runtime Classes Using the Appropriate SSPIs” on page 3-12

2. “Generate an MBean Type Using the WebLogic MBeanMaker” on page 3-24

3. “Configure the Custom Authentication Provider Using the Administration Console” on
page 3-31

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

“Understand the Purpose of the “Provider” SSPIs” on page 2-3

How to Deve l op a Custom Authent icat i on P rov ider

Developing Security Providers for WebLogic Server 3-13

“Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes” on page 2-6

When you understand this information and have made your design decisions, create the runtime
classes for your custom Authentication provider by following these steps:

“Implement the AuthenticationProviderV2 SSPI” on page 3-13

“Implement the JAAS LoginModule Interface” on page 3-15

For an example of how to create a runtime class for a custom Authentication provider, see
“Example: Creating the Runtime Classes for the Sample Authentication Provider” on page 3-17.

Implement the AuthenticationProviderV2 SSPI
Note: The AuthenticationProvider SSPI is deprecated in this release of WebLogic Server. Use

the AuthenticationProviderV2 SSPI instead.

To implement the AuthenticationProviderV2 SSPI, provide implementations for the
methods described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3 and the
following methods:

getLoginModuleConfiguration
public AppConfigurationEntry getLoginModuleConfiguration()

The getLoginModuleConfiguration method obtains information about the
Authentication provider’s associated LoginModule, which is returned as an
AppConfigurationEntry. The AppConfigurationEntry is a Java Authentication and
Authorization Service (JAAS) class that contains the classname of the LoginModule; the
LoginModule’s control flag (which was passed in via the Authentication provider’s
associated MBean); and a configuration options map for the LoginModule (which allows
other configuration information to be passed into the LoginModule).

For more information about the AppConfigurationEntry class (located in the
javax.security.auth.login package) and the control flag options for LoginModules,
see the Java 2 Enterprise Edition, v1.4.1 API Specification Javadoc for the
AppConfigurationEntry class and the Configuration class. For more information about
LoginModules, see “LoginModules” on page 3-4. For more information about security
providers and MBeans, see “Understand Why You Need an MBean Type” on page 2-10.

getAssertionModuleConfiguration
public AppConfigurationEntry getAssertionModuleConfiguration()

The getAssertionModuleConfiguration method obtains information about an
Identity Assertion provider’s associated LoginModule, which is returned as an

http://java.sun.com/security/jaas/apidoc/javax/security/auth/login/AppConfigurationEntry.html
http://java.sun.com/security/jaas/apidoc/javax/security/auth/login/Configuration.html

Authent i cat ion P rov ide rs

3-14 Developing Security Providers for WebLogic Server

AppConfigurationEntry. The AppConfigurationEntry is a JAAS class that contains
the classname of the LoginModule; the LoginModule’s control flag (which was passed in
via the Identity Assertion provider’s associated MBean); and a configuration options map
for the LoginModule (which allows other configuration information to be passed into the
LoginModule).

Notes: The implementation of the getAssertionModuleConfiguration method can
be to return null, if you want the Identity Assertion provider to use the same
LoginModule as the Authentication provider.

The assertIdentity() method of an Identity Assertion provider is called every
time identity assertion occurs, but the LoginModules may not be called if the
Subject is cached. The -Dweblogic.security.identityAssertionTTL flag
can be used to affect this behavior (for example, to modify the default TTL of 5
minutes or to disable the cache by setting the flag to -1).

It is the responsibility of the Identity Assertion provider to ensure not just that the
token is valid, but also that the user is still valid (for example, the user has not
been deleted).

To use the EJB <run-as-principal> element with a custom Authentication
provider, use the getAssertionModuleConfiguration() method. This
method performs the identity assertion that validates the principal specified in the
<run-as-principal>element.

getPrincipalValidator
public PrincipalValidator getPrincipalValidator()

The getPrincipalValidator method obtains a reference to the Principal Validation
provider’s runtime class (that is, the PrincipalValidator SSPI implementation). In
most cases, the WebLogic Principal Validation provider can be used (see Listing 3-1 for
an example of how to return the WebLogic Principal Validation provider). For more
information about Principal Validation providers, see Chapter 5, “Principal Validation
Providers.”

getIdentityAsserter
public IdentityAsserterV2 getIdentityAsserter()

The AuthenticationProviderV2 getIdentityAsserter method obtains a reference to
the new Identity Assertion provider’s runtime class (that is, the IdentityAsserterV2
SSPI implementation).

In most cases, the return value for this method will be null (see Listing 3-1 for an
example). For more information about Identity Assertion providers, see Chapter 4,
“Identity Assertion Providers.”

How to Deve l op a Custom Authent icat i on P rov ider

Developing Security Providers for WebLogic Server 3-15

For more information about the AuthenticationProviderV2 SSPI and the methods described
above, see the WebLogic Server API Reference Javadoc.

Implement the JAAS LoginModule Interface
To implement the JAAS javax.security.auth.spi.LoginModule interface, provide
implementations for the following methods:

initialize
public void initialize (Subject subject, CallbackHandler
callbackHandler, Map sharedState, Map options)

The initialize method initializes the LoginModule. It takes as arguments a subject in
which to store the resulting principals, a CallbackHandler that the Authentication
provider will use to call back to the container for authentication information, a map of any
shared state information, and a map of configuration options (that is, any additional
information you want to pass to the LoginModule).

A CallbackHandler is a highly-flexible JAAS standard that allows a variable number of
arguments to be passed as complex objects to a method. For more information about
CallbackHandlers, see the Java 2 Enterprise Edition, v1.4.1 API Specification Javadoc
for the CallbackHandler interface.

login
public boolean login() throws LoginException

The login method attempts to authenticate the user and create principals for the user by
calling back to the container for authentication information. If multiple LoginModules are
configured (as part of multiple Authentication providers), this method is called for each
LoginModule in the order that they are configured. Information about whether the login
was successful (that is, whether principals were created) is stored for each LoginModule.

commit
public boolean commit() throws LoginException

The commit method attempts to add the principals created in the login method to the
subject. This method is also called for each configured LoginModule (as part of the
configured Authentication providers), and executed in order. Information about whether
the commit was successful is stored for each LoginModule.

abort
public boolean abort() throws LoginException

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuthenticationProvider.html
http://java.sun.com/j2se/1.4/docs/api/javax/security/auth/callback/CallbackHandler.html

Authent i cat ion P rov ide rs

3-16 Developing Security Providers for WebLogic Server

The abort method is called for each configured LoginModule (as part of the configured
Authentication providers) if any commits for the LoginModules failed (in other words, the
relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL LoginModules did not
succeed). The abort method will remove that LoginModule’s principals from the subject,
effectively rolling back the actions performed. For more information about the available
control flag settings, see the Java 2 Enterprise Edition, v1.4.1 API Specification Javadoc
for the LoginModule interface.

logout
public boolean logout() throws LoginException

The logout method attempts to log the user out of the system. It also resets the subject so
that its associated principals are no longer stored.

Note: The LoginModule.logout method is never called for the WebLogic
Authentication providers or custom Authentication providers. This is simply
because once the principals are created and placed into a subject, the WebLogic
Security Framework no longer controls the lifecycle of the subject. Therefore, the
developer-written, user code that creates the JAAS LoginContext to login and
obtain the subject should also call the LoginContext.logout method. When the
user code runs in a Java client that uses JAAS directly, that code has the option of
calling the LoginContext.logout method, which clears the subject. When the
user code runs in a servlet, the servlet has the ability to logout a user from a servlet
session, which clears the subject.

For more information about the JAAS LoginModule interface and the methods described above,
see the Java Authentication and Authorization Service (JAAS) 1.0 Developer’s Guide, and the
Java 2 Enterprise Edition, v1.4.1 API Specification Javadoc for the LoginModule interface.

Throwing Custom Exceptions from LoginModules
You may want to throw a custom exception from a LoginModule you write. The custom
exception can then be caught by your application and appropriate action taken. For example, if a
PasswordChangeRequiredException is thrown from your LoginModule, you can catch that
exception within your application, and use it to forward users to a page that allows them to change
their password.

When you throw a custom exception from a LoginModule and want to catch it within your
application, you must ensure that:

1. The application catching the exception is running on the server. (Fat clients cannot catch
custom exceptions.)

http://java.sun.com/j2se/1.4.1/docs/api/javax/security/auth/spi/LoginModule.html
http://java.sun.com/security/jaas/doc/api.html
http://java.sun.com/j2se/1.4.1/docs/api/javax/security/auth/spi/LoginModule.html

How to Deve l op a Custom Authent icat i on P rov ider

Developing Security Providers for WebLogic Server 3-17

2. Your servlet has access to the custom exception class at both compile time and deploy time.
You can do this using either of the following methods, depending on your preference:

– “Method 1: Make Custom Exceptions Available via the System and Compiler
Classpath” on page 3-17

– “Method 2: Make Custom Exceptions Available via the Application Classpath” on
page 3-17

Method 1: Make Custom Exceptions Available via the System and Compiler Classpath

1. Write an exception class that extends LoginException.

2. Use the custom exception class in your classes that implement the LoginModule and
AuthenticationProvider interfaces.

3. Put the custom exception class in both the system and compiler classpath when compiling
the security provider’s runtime class.

4. “Generate an MBean Type Using the WebLogic MBeanMaker.”

Method 2: Make Custom Exceptions Available via the Application Classpath

1. Write an exception class that extends LoginException.

2. Use the custom exception class in your classes that implement the LoginModule and
AuthenticationProvider interfaces.

3. Put the custom exception’s source in the classpath of the application’s build, and include it
in the classpath of the application’s JAR/WAR file.

4. “Generate an MBean Type Using the WebLogic MBeanMaker.”

5. Add the custom exception class to the MJF (MBean JAR File) generated by the WebLogic
MBeanMaker.

6. Include the MJF when compiling your application.

Example: Creating the Runtime Classes for the Sample Authentication
Provider
Listing 3-1 shows the SimpleSampleAuthenticationProviderImpl.java class, which is one
of two runtime classes for the sample Authentication provider. This runtime class includes
implementations for:

Authent i cat ion P rov ide rs

3-18 Developing Security Providers for WebLogic Server

The three methods inherited from the SecurityProvider interface: initialize,
getDescription and shutdown (as described in “Understand the Purpose of the
“Provider” SSPIs” on page 2-3.)

The four methods in the AuthenticationProviderV2 SSPI: the
getLoginModuleConfiguration, getAssertionModuleConfiguration,
getPrincipalValidator, and getIdentityAsserter methods (as described in
“Implement the AuthenticationProviderV2 SSPI” on page 3-13).

Note: The bold face code in Listing 3-1 highlights the class declaration and the method
signatures.

Listing 3-1 SimpleSampleAuthenticationProviderImpl.java

package examples.security.providers.authentication.simple;
import java.util.HashMap;
import javax.security.auth.login.AppConfigurationEntry;
import javax.security.auth.login.AppConfigurationEntry.LoginModuleControlFlag;
import weblogic.management.security.ProviderMBean;
import weblogic.security.provider.PrincipalValidatorImpl;
import weblogic.security.spi.AuthenticationProviderV2;
import weblogic.security.spi.IdentityAsserterV2;
import weblogic.security.spi.PrincipalValidator;
import weblogic.security.spi.SecurityServices;
import weblogic.security.principal.WLSGroupImpl;
import weblogic.security.principal.WLSUserImpl;

public final class SimpleSampleAuthenticationProviderImpl implements
AuthenticationProviderV2
{

private String description;
private SimpleSampleAuthenticatorDatabase database;
private LoginModuleControlFlag controlFlag;

public void initialize(ProviderMBean mbean, SecurityServices services)
{

System.out.println("SimpleSampleAuthenticationProviderImpl.initialize");
SimpleSampleAuthenticatorMBean myMBean =

(SimpleSampleAuthenticatorMBean)mbean;
description = myMBean.getDescription() + "\n" + myMBean.getVersion();
database = new SimpleSampleAuthenticatorDatabase(myMBean);

String flag = myMBean.getControlFlag();
if (flag.equalsIgnoreCase("REQUIRED")) {

controlFlag = LoginModuleControlFlag.REQUIRED;
} else if (flag.equalsIgnoreCase("OPTIONAL")) {

How to Deve l op a Custom Authent icat i on P rov ider

Developing Security Providers for WebLogic Server 3-19

controlFlag = LoginModuleControlFlag.OPTIONAL;
} else if (flag.equalsIgnoreCase("REQUISITE")) {

controlFlag = LoginModuleControlFlag.REQUISITE;
} else if (flag.equalsIgnoreCase("SUFFICIENT")) {

controlFlag = LoginModuleControlFlag.SUFFICIENT;
} else {

throw new IllegalArgumentException("invalid flag value" + flag);
}

}

public String getDescription()
{

return description;
}

public void shutdown()
{

System.out.println("SimpleSampleAuthenticationProviderImpl.shutdown");
}

private AppConfigurationEntry getConfiguration(HashMap options)
{

options.put("database", database);
return new

AppConfigurationEntry(
"examples.security.providers.authentication.Simple.Simple.SampleLogi

nModuleImpl",
controlFlag,
options

);
}

public AppConfigurationEntry getLoginModuleConfiguration()
{

HashMap options = new HashMap();
return getConfiguration(options);

}

public AppConfigurationEntry getAssertionModuleConfiguration()
{

HashMap options = new HashMap();
options.put("IdentityAssertion","true");
return getConfiguration(options);

}

public PrincipalValidator getPrincipalValidator()
{

return new PrincipalValidatorImpl();
}

Authent i cat ion P rov ide rs

3-20 Developing Security Providers for WebLogic Server

public IdentityAsserterV2 getIdentityAsserter()
{

return null;
}

}

Listing 3-2 shows the SampleLoginModuleImpl.java class, which is one of two runtime
classes for the sample Authentication provider. This runtime class implements the JAAS
LoginModule interface (as described in “Implement the JAAS LoginModule Interface” on
page 3-15), and therefore includes implementations for its initialize, login, commit, abort,
and logout methods.

Note: The bold face code in Listing 3-2 highlights the class declaration and the method
signatures.

Listing 3-2 SimpleSampleLoginModuleImpl.java

package examples.security.providers.authentication.simple;

import java.io.IOException;
import java.util.Enumeration;
import java.util.Map;
import java.util.Vector;
import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.UnsupportedCallbackException;
import javax.security.auth.login.LoginException;
import javax.security.auth.login.FailedLoginException;
import javax.security.auth.spi.LoginModule;
import weblogic.management.utils.NotFoundException;
import weblogic.security.spi.WLSGroup;
import weblogic.security.spi.WLSUser;
import weblogic.security.principal.WLSGroupImpl;
import weblogic.security.principal.WLSUserImpl;

final public class SimpleSampleLoginModuleImpl implements LoginModule
{

private Subject subject;
private CallbackHandler callbackHandler;
private SimpleSampleAuthenticatorDatabase database;

How to Deve l op a Custom Authent icat i on P rov ider

Developing Security Providers for WebLogic Server 3-21

// Determine whether this is a login or assert identity
private boolean isIdentityAssertion;

// Authentication status
private boolean loginSucceeded;
private boolean principalsInSubject;
private Vector principalsForSubject = new Vector();

public void initialize(Subject subject, CallbackHandler callbackHandler, Map
sharedState, Map options)
{

// only called (once!) after the constructor and before login

System.out.println("SimpleSampleLoginModuleImpl.initialize");
this.subject = subject;
this.callbackHandler = callbackHandler;

// Check for Identity Assertion option
isIdentityAssertion =

"true".equalsIgnoreCase((String)options.get("IdentityAssertion"));

database = (SimpleSampleAuthenticatorDatabase)options.get("database");
}

public boolean login() throws LoginException
{

// only called (once!) after initialize

System.out.println("SimpleSampleLoginModuleImpl.login");

// loginSucceeded should be false
// principalsInSubject should be false

Callback[] callbacks = getCallbacks();

String userName = getUserName(callbacks);

if (userName.length() > 0) {
if (!database.userExists(userName)) {

throwFailedLoginException("Authentication Failed: User " + userName
+ " doesn't exist.");

}
if (!isIdentityAssertion) {
String passwordWant = null;
try {

passwordWant = database.getUserPassword(userName);
} catch (NotFoundException shouldNotHappen) {}

String passwordHave = getPasswordHave(userName, callbacks);
if (passwordWant == null || !passwordWant.equals(passwordHave)) {

throwFailedLoginException(
"Authentication Failed: User " + userName + " bad password. " +

Authent i cat ion P rov ide rs

3-22 Developing Security Providers for WebLogic Server

"Have " + passwordHave + ". Want " + passwordWant + "."
);

}
}
} else {
// anonymous login - let it through?

System.out.println("\tempty userName");
}

loginSucceeded = true;
principalsForSubject.add(new WLSUserImpl(userName));
addGroupsForSubject(userName);

return loginSucceeded;
}

public boolean commit() throws LoginException
{

// only called (once!) after login

// loginSucceeded should be true or false
// principalsInSubject should be false
// user should be null if !loginSucceeded, null or not-null otherwise
// group should be null if user == null, null or not-null otherwise

System.out.println("SimpleSampleLoginModule.commit");
if (loginSucceeded) {

subject.getPrincipals().addAll(principalsForSubject);
principalsInSubject = true;
return true;

} else {
return false;

}
}

public boolean abort() throws LoginException
{

// The abort method is called to abort the authentication process. This is
// phase 2 of authentication when phase 1 fails. It is called if the
// LoginContext's overall authentication failed.

// loginSucceeded should be true or false
// user should be null if !loginSucceeded, otherwise null or not-null
// group should be null if user == null, otherwise null or not-null
// principalsInSubject should be false if user is null, otherwise

true
// or false

System.out.println("SimpleSampleLoginModule.abort");
if (principalsInSubject) {

How to Deve l op a Custom Authent icat i on P rov ider

Developing Security Providers for WebLogic Server 3-23

subject.getPrincipals().removeAll(principalsForSubject);
principalsInSubject = false;

}

return true;
}

public boolean logout() throws LoginException
{

// should never be called
System.out.println("SimpleSampleLoginModule.logout");
return true;

}

private void throwLoginException(String msg) throws LoginException
{

System.out.println("Throwing LoginException(" + msg + ")");
throw new LoginException(msg);

}

private void throwFailedLoginException(String msg) throws
FailedLoginException

{
System.out.println("Throwing FailedLoginException(" + msg + ")");
throw new FailedLoginException(msg);

}

private Callback[] getCallbacks() throws LoginException
{

if (callbackHandler == null) {
throwLoginException("No CallbackHandler Specified");

}

if (database == null) {
throwLoginException("database not specified");

}

Callback[] callbacks;
if (isIdentityAssertion) {

callbacks = new Callback[1];
} else {

callbacks = new Callback[2];
callbacks[1] = new PasswordCallback("password: ",false);

}
callbacks[0] = new NameCallback("username: ");

try {
callbackHandler.handle(callbacks);

} catch (IOException e) {
throw new LoginException(e.toString());

Authent i cat ion P rov ide rs

3-24 Developing Security Providers for WebLogic Server

} catch (UnsupportedCallbackException e) {
throwLoginException(e.toString() + " " + e.getCallback().toString());

}

return callbacks;
}

private String getUserName(Callback[] callbacks) throws LoginException
{

String userName = ((NameCallback)callbacks[0]).getName();
if (userName == null) {

throwLoginException("Username not supplied.");
}
System.out.println("\tuserName\t= " + userName);
return userName;

}

private void addGroupsForSubject(String userName)
{

for (Enumeration e = database.getUserGroups(userName);
e.hasMoreElements();) {

String groupName = (String)e.nextElement();
System.out.println("\tgroupName\t= " + groupName);
principalsForSubject.add(new WLSGroupImpl(groupName));

}
}

private String getPasswordHave(String userName, Callback[] callbacks) throws
LoginException
{

PasswordCallback passwordCallback = (PasswordCallback)callbacks[1];
char[] password = passwordCallback.getPassword();
passwordCallback.clearPassword();
if (password == null || password.length < 1) {

throwLoginException("Authentication Failed: User " + userName + ".
Password not supplied");

}
String passwd = new String(password);
System.out.println("\tpasswordHave\t= " + passwd);
return passwd;

}

}

Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you should first:

How to Deve l op a Custom Authent icat i on P rov ider

Developing Security Providers for WebLogic Server 3-25

“Understand Why You Need an MBean Type” on page 2-10

“Determine Which SSPI MBeans to Extend and Implement” on page 2-10

“Understand the Basic Elements of an MBean Definition File (MDF)” on page 2-11

“Understand the SSPI MBean Hierarchy and How It Affects the Administration Console”
on page 2-14

“Understand What the WebLogic MBeanMaker Provides” on page 2-16

When you understand this information and have made your design decisions, create the MBean
type for your custom Authentication provider by following these steps:

1. “Create an MBean Definition File (MDF)” on page 3-25

2. “Use the WebLogic MBeanMaker to Generate the MBean Type” on page 3-26

3. “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on page 3-30

4. “Install the MBean Type Into the WebLogic Server Environment” on page 3-31

Notes: Several sample security providers (available under "Code Samples: WebLogic Server"
on the dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a Windows
environment.

Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Authentication provider to a text file.

Note: The MDF for the sample Authentication provider is called
SimpleSampleAuthenticator.xml.

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in your MDF so
that they are appropriate for your custom Authentication provider.

3. Add any custom attributes and operations (that is, additional <MBeanAttribute> and
<MBeanOperation> elements) to your MDF.

4. Save the file.

Note: A complete reference of MDF element syntax is available in Appendix A, “MBean
Definition File (MDF) Element Syntax.”

http://dev2dev.bea.com/code/wls.jsp

Authent i cat ion P rov ide rs

3-26 Developing Security Providers for WebLogic Server

Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic MBeanMaker. The
WebLogic MBeanMaker is currently a command-line utility that takes as its input an MDF, and
outputs some intermediate Java files, including an MBean interface, an MBean implementation,
and an associated MBean information file. Together, these intermediate files form the MBean
type for your custom security provider.

The instructions for generating an MBean type differ based on the design of your custom
Authentication provider. Follow the instructions that are appropriate to your situation:

“No Optional SSPI MBeans and No Custom Operations” on page 3-26

“Optional SSPI MBeans or Custom Operations” on page 3-27

No Optional SSPI MBeans and No Custom Operations
If the MDF for your custom Authentication provider does not implement any optional SSPI
MBeans and does not include any custom operations, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Authentication providers).

How to Deve l op a Custom Authent icat i on P rov ider

Developing Security Providers for WebLogic Server 3-27

3. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 3-30.

Optional SSPI MBeans or Custom Operations
If the MDF for your custom Authentication provider does implement some optional SSPI
MBeans or does include custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Authentication providers).

3. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is named
MBeanNameImpl.java. For example, for the MDF named SampleAuthenticator,
the MBean implementation file to be edited is named
SampleAuthenticatorImpl.java.

b. For each optional SSPI MBean that you implemented in your MDF, copy the method stubs
from the “Mapping MDF Operation Declarations to Java Method Signatures Document”

http://dev2dev.bea.com/code/wls.jsp

Authent i cat ion P rov ide rs

3-28 Developing Security Providers for WebLogic Server

(available on the dev2dev Web site) into the MBean implementation file, and implement
each method. Be sure to also provide implementations for any methods that the optional
SSPI MBean inherits.

4. If you included any custom attributes/operations in your MDF, implement the methods
using the method stubs.

5. Save the file.

6. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 3-30.

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that your current
method implementations are not overwritten by the WebLogic MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Authentication providers).

4. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate and open the MBean implementation file.

How to Deve l op a Custom Authent icat i on P rov ider

Developing Security Providers for WebLogic Server 3-29

The MBean implementation file generated by the WebLogic MBeanMaker is named
<MBeanName>Impl.java. For example, for the MDF named SampleAuthenticator,
the MBean implementation file to be edited is named
SampleAuthenticatorImpl.java.

b. Open your existing MBean implementation file (which you saved to a temporary directory
in step 1).

c. Synchronize the existing MBean implementation file with the MBean implementation file
generated by the WebLogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the method
implementations from your existing MBean implementation file into the
newly-generated MBean implementation file (or, alternatively, adding the new methods
from the newly-generated MBean implementation file to your existing MBean
implementation file), and verifying that any changes to method signatures are reflected
in the version of the MBean implementation file that you are going to use (for methods
that exist in both MBean implementation files).

d. If you modified the MDF to implement optional SSPI MBeans that were not in the original
MDF, copy the method stubs from the “Mapping MDF Operation Declarations to Java
Method Signatures Document” (available on the dev2dev Web site) into the MBean
implementation file, and implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

5. If you modified the MDF to include any custom operations that were not in the original
MDF, implement the methods using the method stubs.

6. Save the version of the MBean implementation file that is complete (that is, has all methods
implemented).

7. Copy this MBean implementation file into the directory where the WebLogic MBeanMaker
placed the intermediate files for the MBean type. You specified this as filesdir in step 3.
(You will be overriding the MBean implementation file generated by the WebLogic
MBeanMaker as a result of step 3.)

8. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 3-30.

About the Generated MBean Interface File
The MBean interface file is the client-side API to the MBean that your runtime class or your
MBean implementation will use to obtain configuration data. It is typically used in the initialize
method as described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3.

http://dev2dev.bea.com/code/wls.jsp
http://dev2dev.bea.com/code/wls.jsp

Authent i cat ion P rov ide rs

3-30 Developing Security Providers for WebLogic Server

Because the WebLogic MBeanMaker generates MBean types from the MDF you created, the
generated MBean interface file will have the name of the MDF, plus the text “MBean” appended
to it. For example, the result of running the SampleAuthenticator MDF through the WebLogic
MBeanMaker will yield an MBean interface file called SampleAuthenticatorMBean.java.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply implementations
for the appropriate methods within it, you need to package the MBean files and the runtime
classes for the custom Authentication provider into an MBean JAR File (MJF). The WebLogic
MBeanMaker also automates this process.

To create an MJF for your custom Authentication provider, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a JAR file
containing the new MBean types, jarfile is the name for the MJF and filesdir is the
location where the WebLogic MBeanMaker looks for the files to JAR into the MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and no
errors occur, an MJF is created with the specified name.

Notes: When you create a JAR file for a custom security provider, a set of XML binding classes
and a schema are also generated. You can choose a namespace to associate with that
schema. Doing so avoids the possibility that your custom classes will conflict with those
provided by BEA. The default for the namespace is vendor. You can change this default
by passing the -targetNameSpace argument to the WebLogicMBeanMaker or the
associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and regenerate it. The
WebLogic MBeanMaker also has a -DIncludeSource option, which controls whether
source files are included into the resulting MJF. Source files include both the generated
source and the MDF itself. The default is false. This option is ignored when -DMJF is
not used.

The resulting MJF can be installed into your WebLogic Server environment, or distributed to
your customers for installation into their WebLogic Server environments.

How to Deve l op a Custom Authent icat i on P rov ider

Developing Security Providers for WebLogic Server 3-31

Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level installation
directory for WebLogic Server. This “deploys” your custom Authentication provider—that is, it
makes the custom Authentication provider manageable from the WebLogic Server
Administration Console.

Note: WL_HOME\server\lib\mbeantypes is the default directory for installing MBean types.
(Beginning with 9.0, security providers can be loaded from
...\domaindir\lib\mbeantypes as well.) However, if you want WebLogic Server to
look for MBean types in additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line flag when starting
your server, where <dir> is a comma-separated list of directory names. When you use
this flag, WebLogic Server will always load MBean types from
WL_HOME\server\lib\mbeantypes first, then will look in the additional directories
and load all valid archives present in those directories (regardless of their extension). For
example, if -Dweblogic.alternateTypesDirectory = dirX,dirY, WebLogic
Server will first load MBean types from WL_HOME\server\lib\mbeantypes, then any
valid archives present in dirX and dirY. If you instruct WebLogic Server to look in
additional directories for MBean types and are using the Java Security Manager, you
must also update the weblogic.policy file to grant appropriate permissions for the
MBean type (and thus, the custom security provider). For more information, see "Using
the Java Security Manager to Protect WebLogic Resources" in Programming WebLogic
Security.

You can create instances of the MBean type by configuring your custom Authentication provider
(see “Configure the Custom Authentication Provider Using the Administration Console” on
page 3-31), and then use those MBean instances from a GUI, from other Java code, or from APIs.
For example, you can use the WebLogic Server Administration Console to get and set attributes
and invoke operations, or you can develop other Java objects that instantiate MBeans and
automatically respond to information that the MBeans supply. We recommend that you back up
these MBean instances.

Configure the Custom Authentication Provider Using the
Administration Console
Configuring a custom Authentication provider means that you are adding the custom
Authentication provider to your security realm, where it can be accessed by applications requiring
authentication services.

http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03
http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03

Authent i cat ion P rov ide rs

3-32 Developing Security Providers for WebLogic Server

Configuring custom security providers is an administrative task, but it is a task that may also be
performed by developers of custom security providers. This section contains information that is
important for the person configuring your custom Authentication providers:

“Managing User Lockouts” on page 3-32

“Specifying the Order of Authentication Providers” on page 3-33

Note: The steps for configuring a custom Authentication provider using the WebLogic Server
Administration Console are described in “Configuring WebLogic Security Providers” in
Securing WebLogic Server.

Managing User Lockouts
As part of using a custom Authentication provider, you need to consider how you will configure
and manage user lockouts. You have two choices for doing this:

“Rely on the Realm-Wide User Lockout Manager” on page 3-32

“Implement Your Own User Lockout Manager” on page 3-33

Rely on the Realm-Wide User Lockout Manager
The WebLogic Security Framework provides a realm-wide User Lockout Manager that works
directly with the WebLogic Security Framework to manage user lockouts.

Note: Both the realm-wide User Lockout Manager and a WebLogic Server 6.1
PasswordPolicyMBean (at the Realm Adapter level) may be active. For more
information, see the WebLogic Server 6.1API Reference Javadoc for the
PasswordPolicyMBean interface.

If you decide to rely on the realm-wide User Lockout Manager, then all you must do to make it
work with your custom Authentication provider is use the WebLogic Server Administration
Console to:

1. Ensure that User Lockout is enabled. (It should be enabled by default.)

2. Modify any parameters for User Lockout (as necessary).

http://e-docs.bea.com/wls/docs90/secmanage/providers.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/PasswordPolicyMBean.html

How to Deve l op a Custom Authent icat i on P rov ider

Developing Security Providers for WebLogic Server 3-33

Notes: Changes to the User Lockout Manager do not take effect until you reboot the server.
Instructions for using the Administration Console to perform these tasks are described in
“Protecting User Accounts” in Securing WebLogic Server.

Implement Your Own User Lockout Manager
If you decide to implement your own User Lockout Manager as part of your custom
Authentication provider, then you must:

1. Disable the realm-wide User Lockout Manager to prevent double lockouts from occurring.
(When you create a new security realm using the WebLogic Server Administration Console,
a User Lockout Manager is always created.) Instructions for performing this task are provided
in “Protecting User Accounts” in Securing WebLogic Server.

2. Because you cannot borrow anything from the WebLogic Security Framework’s realm-wide
implementation, you must also perform the following tasks:

a. Provide the implementation for your User Lockout Manager. Note that there is no security
service provider interface (SSPI) provided for User Lockout Managers.

b. Modify an MBean by which the User Lockout Manager can be managed.

c. Incorporate the User Lockout Manager into the Administration Console using console
extensions. For more information, see Extending the Administration Console.

Specifying the Order of Authentication Providers
As described in “LoginModules and Multipart Authentication” on page 3-5, the order in which
you configure multiple Authentication providers (and thus LoginModules) affects the outcome
of the authentication process.

You can configure Authentication providers in any order. However, if you need to reorder your
configured Authentication providers, follow the steps described in “Changing the Order of
Authentication Providers” in Securing WebLogic Server.

http://e-docs.bea.com/wls/docs90/secmanage/domain.html#1174160
http://e-docs.bea.com/wls/docs90/secmanage/domain.html#1174160
http://e-docs.bea.com/wls/docs90/console_ext/index.html
http://e-docs.bea.com/wls/docs90/secmanage/atn.html#1204261
http://e-docs.bea.com/wls/docs90/secmanage/atn.html#1204261

Authent i cat ion P rov ide rs

3-34 Developing Security Providers for WebLogic Server

Developing Security Providers for WebLogic Server 4-1

C H A P T E R 4

Identity Assertion Providers

An Identity Assertion provider is a specific form of Authentication provider that allows users or
system processes to assert their identity using tokens (in other words, perimeter authentication).
Identity Assertion providers enable perimeter authentication and support single sign-on. You can
use an Identity Assertion provider in place of an Authentication provider if you create a
LoginModule for the Identity Assertion provider, or in addition to an Authentication provider if
you want to use the Authentication provider’s LoginModule.

If you want to allow the Identity Assertion provider to be configured separately from the
Authentication provider, write two providers. If your Identity Assertion provider and
Authentication provider cannot work independently, then write one provider.

The following sections describe Identity Assertion provider concepts and functionality, and
provide step-by-step instructions for developing a custom Identity Assertion provider:

“Identity Assertion Concepts” on page 4-1

“The Identity Assertion Process” on page 4-7

“Do You Need to Develop a Custom Identity Assertion Provider?” on page 4-8

“How to Develop a Custom Identity Assertion Provider” on page 4-10

Identity Assertion Concepts
Before you develop an Identity Assertion provider, you need to understand the following
concepts:

“Identity Assertion Providers and LoginModules” on page 4-2

Ident i t y Asser t i on P rov ide rs

4-2 Developing Security Providers for WebLogic Server

“Identity Assertion and Tokens” on page 4-3

“Passing Tokens for Perimeter Authentication” on page 4-6

“Common Secure Interoperability Version 2 (CSIv2)” on page 4-6

Identity Assertion Providers and LoginModules
When used with a LoginModule, Identity Assertion providers support single sign-on. For
example, an Identity Assertion provider can generate a token from a digital certificate, and that
token can be passed around the system so that users are not asked to sign on more than once.

The LoginModule that an Identity Assertion provider uses can be:

Part of a custom Authentication provider you develop. For more information, see
Chapter 3, “Authentication Providers.”

Part of the WebLogic Authentication provider BEA developed and packaged with
WebLogic Server. For more information, see “Do You Need to Develop a Custom
Authentication Provider?” on page 3-11.

Part of a third-party security vendor’s Authentication provider.

Unlike in a simple authentication situation (described in “The Authentication Process” on
page 3-10), the LoginModules that Identity Assertion providers use do not verify proof material
such as usernames and passwords; they simply verify that the user exists.

The LoginModules in this configuration must:

Populate the Subject with required Principals, such as those of type WLSGroup.

Must trust that the user has submitted sufficient proof to login and not require a password
or some other proof material.

You must implement the
AuthenticationProviderV2.getAssertionModuleConfiguration method in your custom
Authentication provider, as described in “Implement the AuthenticationProviderV2 SSPI” on
page 4-11. This method is called for identity assertion, such as when an X.509 certificate is being
used, and to process the run-as tag in deployment descriptors. Other single signon strategies use
it as well.

Note: For more information about LoginModules, see “LoginModules” on page 3-4.

I den t i t y Asser t ion Concepts

Developing Security Providers for WebLogic Server 4-3

Identity Assertion and Tokens
You develop Identity Assertion providers to support the specific types of tokens that you will be
using to assert the identities of users or system processes. You can develop an Identity Assertion
provider to support multiple token types, but you or an administrator configure the Identity
Assertion provider so that it validates only one “active” token type. While you can have multiple
Identity Assertion providers in a security realm with the ability to validate the same token type,
only one Identity Assertion provider can actually perform this validation.

Note: “Supporting” token types means that the Identity Assertion provider’s runtime class (that
is, the IdentityAsserter SSPI implementation) can validate the token type its
assertIdentity method. For more information, see “Implement the
IdentityAsserterV2 SSPI” on page 4-12.

The following sections will help you work with new token types:

“How to Create New Token Types” on page 4-3

“How to Make New Token Types Available for Identity Assertion Provider
Configurations” on page 4-4

How to Create New Token Types
If you develop a custom Identity Assertion provider, you can also create new token types. A
token type is simply a piece of data represented as a string. The token types you create and use
are completely up to you. The token types currently defined for the WebLogic Identity Assertion
provider include, but are not limited to: X.509, CSI.PrincipalName, CSI.ITTAnonymous,
CSI.X509CertChain, CSI.DistinguishedName, AUTHORIZATION_NEGOTIATE,
SAML.Assertion64, SAML.Assertion.DOM, SAML.Assertion, and
WWW-AUTHENTICATE_NEGOTIATE.

To create new token types, you create a new Java file and declare any new token types as
variables of type String., as shown in Listing 4-1. The
PerimeterIdentityAsserterTokenTypes.java file defines the names of the token types
Test 1, Test 2, and Test 3 as strings.

Listing 4-1 PerimeterIdentityAsserterTokenTypes.java

package sample.security.providers.authentication.perimeterATN;

public class PerimeterIdentityAsserterTokenTypes

{

Ident i t y Asser t i on P rov ide rs

4-4 Developing Security Providers for WebLogic Server

public final static String TEST1_TYPE = “Test 1”;

public final static String TEST2_TYPE = “Test 2”;

public final static String TEST3_TYPE = “Test 3”;

}

Note: If you are defining only one new token type, you can also do it right in the Identity
Assertion provider’s runtime class, as shown in Listing 4-4,
“SampleIdentityAsserterProviderImpl.java,” on page 4-14.

How to Make New Token Types Available for Identity Assertion Provider
Configurations
When you or an administrator configure a custom Identity Assertion provider (see “Configure the
Custom Identity Assertion Provider Using the Administration Console” on page 4-24), the
Supported Types field displays a list of the token types that the Identity Assertion provider
supports. You enter one of the supported types in the Active Types field, as shown in Figure 4-1.

Figure 4-1 Configuring the Sample Identity Assertion Provider

The content for the Supported Types field is obtained from the SupportedTypes attribute of the
MBean Definition File (MDF), which you use to generate your custom Identity Assertion
provider’s MBean type. An example from the sample Identity Assertion provider is shown in
Listing 4-2. (For more information about MDFs and MBean types, see “Generate an MBean Type
Using the WebLogic MBeanMaker” on page 4-17.)

Listing 4-2 SampleIdentityAsserter MDF: SupportedTypes Attribute

<MBeanType>

...

<MBeanAttribute

Name = "SupportedTypes"

I den t i t y Asser t ion Concepts

Developing Security Providers for WebLogic Server 4-5

Type = "java.lang.String[]"

Writeable = "false"

Default = "new String[] {"SamplePerimeterAtnToken"}"

/>

...

</MBeanType>

Similarly, the content for the Active Types field is obtained from the ActiveTypes attribute of
the MBean Definition File (MDF). You or an administrator can default the ActiveTypes
attribute in the MDF so that it does not have to be set manually with the WebLogic Server
Administration Console. An example from the sample Identity Assertion provider is shown in
Listing 4-3.

Listing 4-3 SampleIdentityAsserter MDF: ActiveTypes Attribute with Default

<MBeanAttribute

Name= "ActiveTypes"

Type= "java.lang.String[]"

Default = "new String[] { "SamplePerimeterAtnToken" }"

/>

While defaulting the ActiveTypes attribute is convenient, you should only do this if no other
Identity Assertion provider will ever validate that token type. Otherwise, it would be easy to
configure an invalid security realm (where more than one Identity Assertion provider attempts to
validate the same token type). Best practice dictates that all MDFs for Identity Assertion
providers turn off the token type by default; then an administrator can manually make the token
type active by configuring the Identity Assertion provider that validates it.

Note: If an Identity Assertion provider is not developed and configured to validate and accept
a token type, the authentication process will fail. For more information about configuring
an Identity Assertion provider, see “Configure the Custom Identity Assertion Provider
Using the Administration Console” on page 4-24.

Ident i t y Asser t i on P rov ide rs

4-6 Developing Security Providers for WebLogic Server

Passing Tokens for Perimeter Authentication
An Identity Assertion provider can pass tokens from Java clients to servlets for the purpose of
perimeter authentication. Tokens can be passed using HTTP headers, cookies, SSL certificates,
or other mechanisms. For example, a string that is base 64-encoded (which enables the sending
of binary data) can be sent to a servlet through an HTTP header. The value of this string can be a
username, or some other string representation of a user’s identity. The Identity Assertion provider
used for perimeter authentication can then take that string and extract the username.

If the token is passed through HTTP headers or cookies, the token is equal to the header or cookie
name, and the resource container passes the token to the part of the WebLogic Security
Framework that handles authentication. The WebLogic Security Framework then passes the
token to the Identity Assertion provider, unchanged.

WebLogic Server is designed to extend the single sign-on concept all the way to the perimeter
through support for identity assertion. Identity assertion allows WebLogic Server to use the
authentication mechanism provided by perimeter authentication schemes such as the Security
Assertion Markup Language (SAML), the Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO), or enhancements to protocols such as Common Secure Interoperability
(CSI) v2 to achieve this functionality.

Common Secure Interoperability Version 2 (CSIv2)
WebLogic Server provides support for an Enterprise JavaBean (EJB) interoperability protocol
based on Internet Inter-ORB (IIOP) (GIOP version 1.2) and the CORBA Common Secure
Interoperability version 2 (CSIv2) specification. CSIv2 support in WebLogic Server:

Interoperates with the Java 2 Enterprise Edition (J2EE) version 1.4 reference
implementation.

Allows WebLogic Server IIOP clients to specify a username and password in the same
manner as T3 clients.

Supports Generic Security Services Application Programming Interface (GSSAPI) initial
context tokens. For this release, only usernames and passwords and GSSUP (Generic
Security Services Username Password) tokens are supported.

Note: The CSIv2 implementation in WebLogic Server passed Java 2 Enterprise Edition (J2EE)
Compatibility Test Suite (CTS) conformance testing.

The external interface to the CSIv2 implementation is a JAAS LoginModule that retrieves the
username and password of the CORBA object. The JAAS LoginModule can be used in a

The Ident i t y Asser t i on P rocess

Developing Security Providers for WebLogic Server 4-7

WebLogic Java client or in a WebLogic Server instance that acts as a client to another J2EE
application server. The JAAS LoginModule for the CSIv2 support is called
UsernamePasswordLoginModule, and is located in the weblogic.security.auth.login
package.

CSIv2 works in the following manner:

1. When creating a Security Extensions to Interoperable Object Reference (IOR), WebLogic
Server adds a tagged component identifying the security mechanisms that the CORBA object
supports. This tagged component includes transport information, client authentication
information, and identity token/authorization token information.

2. The client evaluates the security mechanisms in the IOR and selects the mechanism that
supports the options required by the server.

3. The client uses the SAS protocol to establish a security context with WebLogic Server. The
SAS protocol defines messages contained within the service context of requests and replies.
A context can be stateful or stateless.

For information about using CSIv2, see “Common Secure Interoperability Version 2” in
Understanding WebLogic Security. For more information about JAAS LoginModules, see
“LoginModules” on page 3-4.

The Identity Assertion Process
In perimeter authentication, a system outside of WebLogic Server establishes trust via tokens
(as opposed to the type of authentication described in “The Authentication Process” on
page 3-10, where WebLogic Server establishes trust via usernames and passwords). Identity
Assertion providers are used as part of perimeter authentication process, which works as follows
(see Figure 4-2):

1. A token from outside of WebLogic Server is passed to an Identity Assertion provider that is
responsible for validating tokens of that type and that is configured as “active”.

2. If the token is successfully validated, the Identity Assertion provider maps the token to a
WebLogic Server username, and sends that username back to WebLogic Server, which then
continues the authentication process as described in “The Authentication Process” on
page 3-10. Specifically, the username is sent via a Java Authentication and Authorization
Service (JAAS) CallbackHandler and passed to each configured Authentication
provider’s LoginModule, so that the LoginModule can populate the subject with the
appropriate principals.

http://e-docs.bea.com/wls/docs90/secintro/concepts.html#1123257

Ident i t y Asser t i on P rov ide rs

4-8 Developing Security Providers for WebLogic Server

Figure 4-2 Perimeter Authentication

As Figure 4-2 also shows, perimeter authentication requires the same components as the
authentication process described in “The Authentication Process” on page 3-10, but also adds an
Identity Assertion provider.

Do You Need to Develop a Custom Identity Assertion Provider?
The WebLogic Identity Assertion providers support certificate authentication using X509
certificates, SPNEGO tokens, SAML assertion tokens, and CORBA Common Secure
Interoperability version 2 (CSIv2) identity assertion.

The LDAP X509 Identity Assertion provider receives an X509 certificate, looks up the LDAP
object for the user associated with that certificate, ensures that the certificate in the LDAP object
matches the presented certificate, and then retrieves the name of the user from the LDAP object
for the purpose of authentication.

The Negotiate Identity Assertion provider is used for SSO with Microsoft clients that support the
SPNEGO protocol. The Negotiate Identity Assertion provider decodes SPNEGO tokens to
obtain Kerberos tokens, validates the Kerberos tokens, and maps Kerberos tokens to WebLogic
users. The Negotiate Identity Assertion provider utilizes the Java Generic Security Service (GSS)
Application Programming Interface (API) to accept the GSS security context via Kerberos. The
Negotiate Identity Assertion provider is for Windows NT Integrated Login.

The SAML Identity Assertion provider handles SAML assertion tokens when WebLogic Server
acts as a SAML destination site. The SAML Identity Assertion provider consumes and validates
SAML assertion tokens and determines if the assertion is to be trusted (using either the proof
material available in the SOAP message, the client certificate, or some other configuration
indicator).

Do You Need to Deve lop a Custom Ident i t y Asser t i on P rov ide r?

Developing Security Providers for WebLogic Server 4-9

The default WebLogic Identity Assertion provider validates the token type, then maps X509
digital certificates and X501 distinguished names to WebLogic usernames. It also specifies a list
of trusted client principals to use for CSIv2 identity assertion. The wildcard character (*) can be
used to specify that all principals are trusted. If a client is not listed as a trusted client principal,
the CSIv2 identity assertion fails and the invoke is rejected.

Note: To use the WebLogic Identity Assertion provider for X.501 and X.509 certificates, you
have the option of using the default user name mapper that is supplied with the WebLogic
Server product (weblogic.security.providers.authentication.
DefaultUserNameMapperImpl) or providing you own implementation of the
weblogic.security.providers.authentication.UserNameMapper interface.
This interface maps a X.509 certificate to a WebLogic Server user name according to
whatever scheme is appropriate for your needs. You can also use this interface to map
from an X.501 distinguished name to a user name. You specify your implementation of
this interface when you use the Administration Console to configure an Identity
Assertion provider.

The WebLogic Identity Assertion provider supports the following token types:

AU_TYPE—for a WebLogic AuthenticatedUser used as a token.

X509_TYPE—for an X509 client certificate used as a token.

CSI_PRINCIPAL_TYPE—for a CSIv2 principal name identity used as a token.

CSI_ANONYMOUS_TYPE—for a CSIv2 anonymous identity used as a token.

CSI_X509_CERTCHAIN_TYPE—for a CSIv2 X509 certificate chain identity used as a token.

CSI_DISTINGUISHED_NAME_TYPE—for a CSIv2 distinguished name identity used as a
token.

AUTHORIZATION_NEGOTIATE—for a SPNEGO internal token used as a token.

SAML_ASSERTION_B64_TYPE—for a Base64 encoded SAML.assertion used as a token.

SAML_ASSERTION_DOM_TYPE—for a SAML DOM element used as a token.

SAML_ASSERTION_TYPE—for a SAML string XML form used as a token.

SAML_SSO_CREDENTIAL_TYPE—for a SAML string consisting of the TARGET parameter
concatenated with the assertion itself and used as a token.

WSSE_PASSWORD_DIGEST_TYPE—for a username token with a password type of password
digest used as a token.

Ident i t y Asser t i on P rov ide rs

4-10 Developing Security Providers for WebLogic Server

WWW_AUTHENTICATE_NEGOTIATE—for a SPNEGO internal token used as a token.

If you want to perform additional identity assertion tasks or create new token types, then you need
to develop a custom Identity Assertion provider.

How to Develop a Custom Identity Assertion Provider
If the WebLogic Identity Assertion provider does not meet your needs, you can develop a custom
Identity Assertion provider by following these steps:

1. “Create Runtime Classes Using the Appropriate SSPIs” on page 4-10

2. “Generate an MBean Type Using the WebLogic MBeanMaker” on page 4-17

3. “Configure the Custom Identity Assertion Provider Using the Administration Console” on
page 4-24

4. Consider whether you need to implement Challenge Identity Assertion, as described in
“Challenge Identity Assertion” on page 4-24.

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

“Understand the Purpose of the “Provider” SSPIs” on page 2-3

“Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes” on page 2-6

When you understand this information and have made your design decisions, create the runtime
classes for your custom Identity Assertion provider by following these steps:

“Implement the AuthenticationProviderV2 SSPI” on page 4-11

“Implement the IdentityAsserterV2 SSPI” on page 4-12

Note: If you want to create a separate LoginModule for your custom Identity Assertion provider
(that is, not use the LoginModule from your Authentication provider), you also need to
implement the JAAS LoginModule interface, as described in “Implement the JAAS
LoginModule Interface” on page 3-15.

For an example of how to create a runtime class for a custom Identity Assertion provider, see
“Example: Creating the Runtime Class for the Sample Identity Assertion Provider” on page 4-13.

How to Deve lop a Cus tom Ident i t y Asser t i on P rov ider

Developing Security Providers for WebLogic Server 4-11

Implement the AuthenticationProviderV2 SSPI
Note: The AuthenticationProvider SSPI is deprecated in this release of WebLogic Server. Use

the AuthenticationProviderV2 SSPI instead.

To implement the AuthenticationProviderV2 SSPI, provide implementations for the
methods described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3 and the
following methods:

getLoginModuleConfiguration
public AppConfigurationEntry getLoginModuleConfiguration()

The getLoginModuleConfiguration method obtains information about the
Authentication provider’s associated LoginModule, which is returned as an
AppConfigurationEntry. The AppConfigurationEntry is a Java Authentication and
Authorization Service (JAAS) class that contains the classname of the LoginModule; the
LoginModule’s control flag (which was passed in via the Authentication provider’s
associated MBean); and a configuration options map for the LoginModule (which allows
other configuration information to be passed into the LoginModule).

For more information about the AppConfigurationEntry class (located in the
javax.security.auth.login package) and the control flag options for LoginModules,
see the Java 2 Enterprise Edition, v1.4.1 API Specification Javadoc for the
AppConfigurationEntry class and the Configuration class. For more information about
LoginModules, see “LoginModules” on page 3-4. For more information about security
providers and MBeans, see “Understand Why You Need an MBean Type” on page 2-10.

getAssertionModuleConfiguration
public AppConfigurationEntry getAssertionModuleConfiguration()

The getAssertionModuleConfiguration method obtains information about an
Identity Assertion provider’s associated LoginModule, which is returned as an
AppConfigurationEntry. The AppConfigurationEntry is a JAAS class that contains
the classname of the LoginModule; the LoginModule’s control flag (which was passed in
via the Identity Assertion provider’s associated MBean); and a configuration options map
for the LoginModule (which allows other configuration information to be passed into the
LoginModule).

The LoginModules in this configuration must populate the Subject with required
Principals, such as those of type WLSGroup, and must trust that the user has submitted
sufficient proof to login and not require a password or some other proof material.

Notes: The assertIdentity() method of an Identity Assertion provider is called every
time identity assertion occurs, but the LoginModules may not be called if the

http://java.sun.com/security/jaas/apidoc/javax/security/auth/login/AppConfigurationEntry.html
http://java.sun.com/security/jaas/apidoc/javax/security/auth/login/Configuration.html

Ident i t y Asser t i on P rov ide rs

4-12 Developing Security Providers for WebLogic Server

Subject is cached. The -Dweblogic.security.identityAssertionTTL flag
can be used to affect this behavior (for example, to modify the default TTL of 5
minutes or to disable the cache by setting the flag to -1).

It is the responsibility of the Identity Assertion provider to ensure not just that the
token is valid, but also that the user is still valid (for example, the user has not
been deleted).

getPrincipalValidator
public PrincipalValidator getPrincipalValidator()

The getPrincipalValidator method obtains a reference to the Principal Validation
provider’s runtime class (that is, the PrincipalValidator SSPI implementation). For
more information, see Chapter 5, “Principal Validation Providers.”

getIdentityAsserter
public IdentityAsserterV2 getIdentityAsserter()

The getIdentityAsserter method obtains a reference to the Identity Assertion
provider’s runtime class (that is, the IdentityAsserterV2 SSPI implementation). For
more information, see “Implement the IdentityAsserterV2 SSPI” on page 4-12.

Note: When the LoginModule used for the Identity Assertion provider is the same as that used
for an existing Authentication provider, implementations for the methods in the
AuthenticationProviderV2 SSPI (excluding the getIdentityAsserter method)
for Identity Assertion providers can just return null. An example of this is shown in
Listing 4-4, “SampleIdentityAsserterProviderImpl.java,” on page 4-14.

For more information about the AuthenticationProvider SSPI and the methods described
above, see the WebLogic Server API Reference Javadoc.

Implement the IdentityAsserterV2 SSPI
Note: The IdentityAsserterV2 SSPI includes additional token types and a handler parameter

to the assertIdentity method that can optionally be used to obtain additional
information when asserting the identity. Although the IdentityAsserter SSPI is still
supported, you should consider using the IdentityAsserterV2 SSPI instead.

To implement the IdentityAsserterV2 SSPI, provide implementations for the following method:

assertIdentity
public CallbackHandler assertIdentity(String type, Object token,
 ContextHandler handler) throws IdentityAssertionException;

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuthenticationProvider.html

How to Deve lop a Cus tom Ident i t y Asser t i on P rov ider

Developing Security Providers for WebLogic Server 4-13

The assertIdentity method asserts an identity based on the token identity information
that is supplied. In other words, the purpose of this method is to validate any tokens that
are not currently trusted against trusted client principals. The type parameter represents
the token type to be used for the identity assertion. Note that identity assertion types are
case insensitive. The token parameter contains the actual identity information. The
handler parameter is a ContextHandler object that can optionally be used to obtain
additional information that may be used in asserting the identity. The CallbackHandler
returned from the assertIdentity method is passed to all configured Authentication
providers’ LoginModules to perform principal mapping, and should contain the asserted
username. If the CallbackHandler is null, this signifies that the anonymous user should
be used.

A CallbackHandler is a highly-flexible JAAS standard that allows a variable number of
arguments to be passed as complex objects to a method. For more information about
CallbackHandlers, see the Java 2 Enterprise Edition, v1.4.1 API Specification Javadoc
for the CallbackHandler interface.

Notes: The assertIdentity() method of an Identity Assertion provider is called every
time identity assertion occurs, but the LoginModules may not be called if the
Subject is cached. The -Dweblogic.security.identityAssertionTTL flag
can be used to affect this behavior (for example, to modify the default TTL of 5
minutes or to disable the cache by setting the flag to -1).

It is the responsibility of the Identity Assertion provider to ensure not just that the
token is valid, but also that the user is still valid (for example, the user has not
been deleted).

For more information about the IdentityAsserterV2 SSPI and the method described above,
see the WebLogic Server API Reference Javadoc.

Example: Creating the Runtime Class for the Sample Identity Assertion
Provider
Listing 4-4 shows the SampleIdentityAsserterProviderImpl.java class, which is the
runtime class for the sample Identity Assertion provider. This runtime class includes
implementations for:

The three methods inherited from the SecurityProvider interface: initialize,
getDescription, and shutdown (as described in “Understand the Purpose of the
“Provider” SSPIs” on page 2-3.)

The four methods in the AuthenticationProviderV2 SSPI: the
getLoginModuleConfiguration, getAssertionModuleConfiguration,

http://java.sun.com/j2se/1.4/docs/api/javax/security/auth/callback/CallbackHandler.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/IdentityAsserter.html

Ident i t y Asser t i on P rov ide rs

4-14 Developing Security Providers for WebLogic Server

getPrincipalValidator, and getIdentityAsserter methods (as described in
“Implement the AuthenticationProviderV2 SSPI” on page 4-11.

The method in the IdentityAsserterV2 SSPI: the assertIdentity method (described
in “Implement the IdentityAsserterV2 SSPI” on page 4-12).

Note: The bold face code in Listing 4-4 highlights the class declaration and the method
signatures.

Listing 4-4 SampleIdentityAsserterProviderImpl.java

package examples.security.providers.identityassertion.simple;

import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.AppConfigurationEntry;
import weblogic.management.security.ProviderMBean;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.AuthenticationProviderV2;
import weblogic.security.spi.IdentityAsserterV2;
import weblogic.security.spi.IdentityAssertionException;
import weblogic.security.spi.PrincipalValidator;
import weblogic.security.spi.SecurityServices;

public final class SimpleSampleIdentityAsserterProviderImpl implements
AuthenticationProviderV2, IdentityAsserterV2
{

final static private String TOKEN_TYPE = "SamplePerimeterAtnToken";
final static private String TOKEN_PREFIX = "username=";

private String description;

public void initialize(ProviderMBean mbean, SecurityServices services)
{

System.out.println("SimpleSampleIdentityAsserterProviderImpl.initialize"
);

SimpleSampleIdentityAsserterMBean myMBean =
(SimpleSampleIdentityAsserterMBean)mbean;

description = myMBean.getDescription() + "\n" + myMBean.getVersion();
}

public String getDescription()
{

return description;
}

public void shutdown()
{

How to Deve lop a Cus tom Ident i t y Asser t i on P rov ider

Developing Security Providers for WebLogic Server 4-15

System.out.println("SimpleSampleIdentityAsserterProviderImpl.shutdown");
}

public IdentityAsserterV2 getIdentityAsserter()
{

return this;
}

public CallbackHandler assertIdentity(String type, Object token,
ContextHandler context) throws

IdentityAssertionException
{

System.out.println("SimpleSampleIdentityAsserterProviderImpl.assertIdent
ity");

System.out.println("\tType\t\t= " + type);
System.out.println("\tToken\t\t= " + token);

if (!(TOKEN_TYPE.equals(type))) {
String error = "SimpleSampleIdentityAsserter received unknown token

type \""
+ type + "\"." + " Expected " + TOKEN_TYPE;

System.out.println("\tError: " + error);
throw new IdentityAssertionException(error);

}

if (!(token instanceof byte[])) {
String error = "SimpleSampleIdentityAsserter received unknown token

class \""
+ token.getClass() + "\"." + " Expected a byte[].";

System.out.println("\tError: " + error);
throw new IdentityAssertionException(error);

}

byte[] tokenBytes = (byte[])token;
if (tokenBytes == null || tokenBytes.length < 1) {

String error = "SimpleSampleIdentityAsserter received empty token byte
array";

System.out.println("\tError: " + error);
throw new IdentityAssertionException(error);

}

String tokenStr = new String(tokenBytes);

if (!(tokenStr.startsWith(TOKEN_PREFIX))) {
String error = "SimpleSampleIdentityAsserter received unknown token

string \""
+ type + "\"." + " Expected " + TOKEN_PREFIX + "username";

System.out.println("\tError: " + error);
throw new IdentityAssertionException(error);

}

Ident i t y Asser t i on P rov ide rs

4-16 Developing Security Providers for WebLogic Server

String userName = tokenStr.substring(TOKEN_PREFIX.length());
System.out.println("\tuserName\t= " + userName);
return new SimpleSampleCallbackHandlerImpl(userName);

}

public AppConfigurationEntry getLoginModuleConfiguration()
{

return null;
}

public AppConfigurationEntry getAssertionModuleConfiguration()
{

return null;
}

public PrincipalValidator getPrincipalValidator()
{

return null;
}

}

Listing 4-5 shows the sample CallbackHandler implementation that is used along with the
SampleIdentityAsserterProviderImpl.java runtime class. This CallbackHandler
implementation is used to send the username back to an Authentication provider’s LoginModule.

Listing 4-5 SampleCallbackHandlerImpl.java

package examples.security.providers.identityassertion.simple;

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;

/*package*/ class SimpleSimpleSampleCallbackHandler implements CallbackHandler
{

private String userName;

/*package*/ SimpleSampleCallbackHandlerImpl(String user)
{

userName = user;
}

How to Deve lop a Cus tom Ident i t y Asser t i on P rov ider

Developing Security Providers for WebLogic Server 4-17

public void handle(Callback[] callbacks) throws UnsupportedCallbackException
{

for (int i = 0; i < callbacks.length; i++) {

Callback callback = callbacks[i];

if (!(callback instanceof NameCallback)) {
throw new UnsupportedCallbackException(callback, "Unrecognized

Callback");
}

NameCallback nameCallback = (NameCallback)callback;
nameCallback.setName(userName);

}
}

}

Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you should first:

“Understand Why You Need an MBean Type” on page 2-10

“Determine Which SSPI MBeans to Extend and Implement” on page 2-10

“Understand the Basic Elements of an MBean Definition File (MDF)” on page 2-11

“Understand the SSPI MBean Hierarchy and How It Affects the Administration Console”
on page 2-14

“Understand What the WebLogic MBeanMaker Provides” on page 2-16

When you understand this information and have made your design decisions, create the MBean
type for your custom Identity Assertion provider by following these steps:

1. “Create an MBean Definition File (MDF)” on page 4-18

2. “Use the WebLogic MBeanMaker to Generate the MBean Type” on page 4-18

3. “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on page 4-22

4. “Install the MBean Type Into the WebLogic Server Environment” on page 4-23

Ident i t y Asser t i on P rov ide rs

4-18 Developing Security Providers for WebLogic Server

Notes: Several sample security providers (available under "Code Samples: WebLogic Server"
on the dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a Windows
environment.

Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Identity Assertion provider to a text file.

Note: The MDF for the sample Identity Assertion provider is called
SampleIdentityAsserter.xml.

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in your MDF so
that they are appropriate for your custom Identity Assertion provider.

3. Add any custom attributes and operations (that is, additional <MBeanAttribute> and
<MBeanOperation> elements) to your MDF.

4. Save the file.

Note: A complete reference of MDF element syntax is available in Appendix A, “MBean
Definition File (MDF) Element Syntax.”

Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic MBeanMaker. The
WebLogic MBeanMaker is currently a command-line utility that takes as its input an MDF, and
outputs some intermediate Java files, including an MBean interface, an MBean implementation,
and an associated MBean information file. Together, these intermediate files form the MBean
type for your custom security provider.

The instructions for generating an MBean type differ based on the design of your custom Identity
Assertion provider. Follow the instructions that are appropriate to your situation:

“No Optional SSPI MBeans and No Custom Operations” on page 4-18

“Optional SSPI MBeans or Custom Operations” on page 4-19

No Optional SSPI MBeans and No Custom Operations
If the MDF for your custom Identity Assertion provider does not implement any optional SSPI
MBeans and does not include any custom operations, follow these steps:

http://dev2dev.bea.com/code/wls.jsp

How to Deve lop a Cus tom Ident i t y Asser t i on P rov ider

Developing Security Providers for WebLogic Server 4-19

1. Create a new DOS shell.

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Identity Assertion providers).

3. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 4-22.

Optional SSPI MBeans or Custom Operations
If the MDF for your custom Identity Assertion provider does implement some optional SSPI
MBeans or does include custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Ident i t y Asser t i on P rov ide rs

4-20 Developing Security Providers for WebLogic Server

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Identity Assertion providers).

3. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is named
MBeanNameImpl.java. For example, for the MDF named
SampleIdentityAsserter, the MBean implementation file to be edited is named
SampleIdentityAsserterImpl.java.

b. For each optional SSPI MBean that you implemented in your MDF, copy the method stubs
from the “Mapping MDF Operation Declarations to Java Method Signatures Document”
(available on the dev2dev Web site) into the MBean implementation file, and implement
each method. Be sure to also provide implementations for any methods that the optional
SSPI MBean inherits.

4. If you included any custom operations in your MDF, implement the methods using the
method stubs.

5. Save the file.

6. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 4-22.

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that your current
method implementations are not overwritten by the WebLogic MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:

http://dev2dev.bea.com/code/wls.jsp

How to Deve lop a Cus tom Ident i t y Asser t i on P rov ider

Developing Security Providers for WebLogic Server 4-21

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Identity Assertion providers).

4. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate and open the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is named
MBeanNameImpl.java. For example, for the MDF named
SampleIdentityAsserter, the MBean implementation file to be edited is named
SampleIdentityAsserterImpl.java.

b. Open your existing MBean implementation file (which you saved to a temporary directory
in step 1).

c. Synchronize the existing MBean implementation file with the MBean implementation file
generated by the WebLogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the method
implementations from your existing MBean implementation file into the
newly-generated MBean implementation file (or, alternatively, adding the new methods
from the newly-generated MBean implementation file to your existing MBean
implementation file), and verifying that any changes to method signatures are reflected
in the version of the MBean implementation file that you are going to use (for methods
that exist in both MBean implementation files).

d. If you modified the MDF to implement optional SSPI MBeans that were not in the original
MDF, copy the method stubs from the “Mapping MDF Operation Declarations to Java

http://dev2dev.bea.com/code/wls.jsp

Ident i t y Asser t i on P rov ide rs

4-22 Developing Security Providers for WebLogic Server

Method Signatures Document” (available on the dev2dev Web site) into the MBean
implementation file, and implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

5. If you modified the MDF to include any custom operations that were not in the original
MDF, implement the methods using the method stubs.

6. Save the version of the MBean implementation file that is complete (that is, has all methods
implemented).

7. Copy this MBean implementation file into the directory where the WebLogic MBeanMaker
placed the intermediate files for the MBean type. You specified this as filesdir in step 3.
(You will be overriding the MBean implementation file generated by the WebLogic
MBeanMaker as a result of step 3.)

8. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 4-22.

About the Generated MBean Interface File
The MBean interface file is the client-side API to the MBean that your runtime class or your
MBean implementation will use to obtain configuration data. It is typically used in the initialize
method as described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3.

Because the WebLogic MBeanMaker generates MBean types from the MDF you created, the
generated MBean interface file will have the name of the MDF, plus the text “MBean” appended
to it. For example, the result of running the SampleIdentityAsserter MDF through the
WebLogic MBeanMaker will yield an MBean interface file called
SampleIdentityAsserterMBean.java.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply implementations
for the appropriate methods within it, you need to package the MBean files and the runtime
classes for the custom Identity Assertion provider into an MBean JAR File (MJF). The WebLogic
MBeanMaker also automates this process.

To create an MJF for your custom Identity Assertion provider, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

http://dev2dev.bea.com/code/wls.jsp

How to Deve lop a Cus tom Ident i t y Asser t i on P rov ider

Developing Security Providers for WebLogic Server 4-23

java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a JAR file
containing the new MBean types, jarfile is the name for the MJF and filesdir is the
location where the WebLogic MBeanMaker looks for the files to JAR into the MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and no
errors occur, an MJF is created with the specified name.

Notes: When you create a JAR file for a custom security provider, a set of XML binding classes
and a schema are also generated. You can choose a namespace to associate with that
schema. Doing so avoids the possibility that your custom classes will conflict with those
provided by BEA. The default for the namespace is vendor. You can change this default
by passing the -targetNameSpace argument to the WebLogicMBeanMaker or the
associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and regenerate it. The
WebLogic MBeanMaker also has a -DIncludeSource option, which controls whether
source files are included into the resulting MJF. Source files include both the generated
source and the MDF itself. The default is false. This option is ignored when -DMJF is
not used.

The resulting MJF can be installed into your WebLogic Server environment, or distributed to
your customers for installation into their WebLogic Server environments.

Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level installation
directory for WebLogic Server. This “deploys” your custom Identity Assertion provider—that is,
it makes the custom Identity Assertion provider manageable from the WebLogic Server
Administration Console.

Note: WL_HOME\server\lib\mbeantypes is the default directory for installing MBean types.
(Beginning with 9.0, security providers can be loaded from
...\domaindir\lib\mbeantypes as well.) However, if you want WebLogic Server to
look for MBean types in additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line flag when starting
your server, where <dir> is a comma-separated list of directory names. When you use
this flag, WebLogic Server will always load MBean types from
WL_HOME\server\lib\mbeantypes first, then will look in the additional directories
and load all valid archives present in those directories (regardless of their extension). For

Ident i t y Asser t i on P rov ide rs

4-24 Developing Security Providers for WebLogic Server

example, if -Dweblogic.alternateTypesDirectory = dirX,dirY, WebLogic
Server will first load MBean types from WL_HOME\server\lib\mbeantypes, then any
valid archives present in dirX and dirY. If you instruct WebLogic Server to look in
additional directories for MBean types and are using the Java Security Manager, you
must also update the weblogic.policy file to grant appropriate permissions for the
MBean type (and thus, the custom security provider). For more information, see "Using
the Java Security Manager to Protect WebLogic Resources" in Programming WebLogic
Security.

You can create instances of the MBean type by configuring your custom Identity Assertion
provider (see “Configure the Custom Identity Assertion Provider Using the Administration
Console” on page 4-24), and then use those MBean instances from a GUI, from other Java code,
or from APIs. For example, you can use the WebLogic Server Administration Console to get and
set attributes and invoke operations, or you can develop other Java objects that instantiate
MBeans and automatically respond to information that the MBeans supply. We recommend that
you back up these MBean instances.

Configure the Custom Identity Assertion Provider Using the
Administration Console
Configuring a custom Identity Assertion provider means that you are adding the custom Identity
Assertion provider to your security realm, where it can be accessed by applications requiring
identity assertion services.

Configuring custom security providers is an administrative task, but it is a task that may also be
performed by developers of custom security providers.

Note: The steps for configuring a custom Identity Assertion provider using the WebLogic
Server Administration Console are described under “Configuring Weblogic Security
Providers” in Securing WebLogic Server.

Challenge Identity Assertion
The Challenge Identity Asserter interface supports challenge response schemes in which multiple
challenges, responses messages, and state are required. The Challenge Identity Asserter
interface allows Identity Assertion providers to support authentication protocols such as
Microsoft's Windows NT Challenge/Response (NTLM), Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO), and other challenge/response authentication mechanisms.

http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03
http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03
http://e-docs.bea.com/wls/docs90/secmanage/providers.html
http://e-docs.bea.com/wls/docs90/secmanage/providers.html

How to Deve lop a Cus tom Ident i t y Asser t i on P rov ider

Developing Security Providers for WebLogic Server 4-25

Challenge/Response Limitations in the Java Servlet API 2.3 Environment
The WebLogic Security Framework allows you to provide a custom Authentication and Identity
Assertion provider. However, due to the nature of the Java Servlet API 2.3 specification, the
interaction between the Authentication provider and the client or other servers is architecturally
limited during the authentication process. This restricts authentication mechanisms to those that
are compatible with the authentication mechanisms the Servlet container offers: basic, form, and
certificate.

Servlet authentication filters, which are described in Chapter 12, “Servlet Authentication Filters,”
have fewer architecturally-dependence limitations; that is, they are not dependent on the
authentication mechanisms offered by the servlet container. By allowing filters to be invoked
prior to the container beginning the authentication process, a security realm can implement a
wider scope of authentication mechanisms. For example, a servlet authentication filter could
redirect the user to a SAML provider site for authentication.

Servlet authentication filters provide a convenient way to implement a challenge/response
protocol in your environment. Filters allow your Challenge Identity Assertion interface to loop
through your challenge/response mechanism as often as needed to complete the challenge.

Filters and The Role of the weblogic.security.services.Authentication Class
Servlet authentication filters allow you to implement a challenge/response protocol without being
limited to the authentication mechanisms compatible with the Servlet container. However,
because servlet authentication filters operate outside of the authentication environment provided
by the Security Framework, they cannot depend on the Security Framework to determine
provider context, and require an API to drive the multiple-challenge Identity Assertion process.

In this release, the weblogic.security.services.Authentication class has been extended to allow
multiple challenge/response identity assertion from a servlet authentication filter. The new
methods and interface provide a wrapper for the ChallengeIdentityAsserterV2 and
ProviderChallengeContext interfaces so that you can invoke them from a servlet authentication
filter.

There is no other documented way to perform a multiple challenge/response dialog from a servlet
authentication filter within the context of the Security Framework. Your servlet authentication
filter cannot directly invoke the ChallengeIdentityAsserterV2 and ProviderChallengeContext
interfaces.

 Therefore, you need to implement the ChallengeIdentityAsserterV2 and
ProviderChallengeContext interfaces, and then use the

Ident i t y Asser t i on P rov ide rs

4-26 Developing Security Providers for WebLogic Server

weblogic.security.services.Authentication methods and AppChallengeContext
interface to invoke them from a servlet authentication filter.

How to Develop a Challenge Identity Asserter
To develop a Challenge Identity Asserter:

“Implement the AuthenticationProviderV2 SSPI” on page 4-11

“Implement the IdentityAsserterV2 SSPI” on page 4-12

“Implement the ChallengeIdentityAsserterV2 Interface” on page 4-26

“Invoke the weblogic.security.services Challenge Identity Methods” on page 4-27

“Invoke the weblogic.security.services AppChallengeContext Methods” on page 4-28

Implement the ChallengeIdentityAsserterV2 Interface
The ChallengeIdentityAsserterV2 interface extends the IdentityAsserterV2 SSPI. You must
implement the ChallengeIdentityAsserterV2 interface in addition to the IdentityAsserterV2 SSPI.

Provide an implementation for all of the IdentityAsserterV2 methods, and the following
methods:

assertChallengeIdentity
ProviderChallengeContext assertChallengeIdentity(String tokenType,
Object token, ContextHandler handler)

Use the supplied client token to establish client identity, possibly with multiple
challenges. This method returns your implementation of the
ProviderChallengeContext interface. The ProviderChallengeContext interface
provides a means to query the state of the challenges.

continueChallengeIdentity
void continueChallengeIdentity(ProviderChallengeContext context,

String tokenType, Object token, ContextHandler handler)

Use the supplied provider context and client token to continue establishing client identity.

 getChallengeToken
Object getChallengeToken(String type, ContextHandler handler)

This method returns the Identity Assertion provider's challenge token.

How to Deve lop a Cus tom Ident i t y Asser t i on P rov ider

Developing Security Providers for WebLogic Server 4-27

Implement the ProviderChallengeContext Interface
The ProviderChallengeContext interface provides a means to query the state of the
challenges. It allows the assertChallengeIdentity and continueChallengeIdentity
methods of the ChallengeIdentityAsserterV2 interface to return either the callback handler
or a new challenge to which the client must respond.

To implement the ProviderChallengeContext interface, provide implementations for the
following methods:

 getCallbackHandler
CallbackHandler getCallbackHandler()

This method returns the callback handler for the challenge identity assertion. Call this
method only when the hasChallengeIdentityCompleted method returns true.

 getChallengeToken
Object getChallengeToken()

This method returns the challenge token for the challenge identity assertion. Call this
method only when the hasChallengeIdentityCompleted method returns false.

 hasChallengeIdentityCompleted
boolean hasChallengeIdentityCompleted

This method returns whether the challenge identity assertion has completed. It returns true
if the challenge identity assertion has completed, false if not. If true, the caller should use
the getCallbackHandler method. If false, then the caller should use the
getChallengeToken method.

Invoke the weblogic.security.services Challenge Identity Methods
Have your servlet authentication filter invoke the following
weblogic.security.services.Authentication methods instead of calling the
ChallengeIdentityAsserterV2 SSPI directly:

assertChallengeIdentity
AppChallengeContext assertChallengeIdentity(String tokenType, Object
token, AppContext appContext)

 Use the supplied client token to establish client identity, possibly with multiple
challenges. This method returns the context of the challenge identity assertion. This result
may contain either the authenticated subject or an additional challenge to which the client

Ident i t y Asser t i on P rov ide rs

4-28 Developing Security Providers for WebLogic Server

must respond. The AppChallengeContext interface provides a means to query the state of
the challenges.

continueChallengeIdentity
void continueChallengeIdentity(AppChallengeContext context, String

tokenType, Object token, AppContext appContext)

 Use the supplied provider context and client token to continue establishing client identity.

 getChallengeToken
Object getChallengeToken

 This method returns the initial challenge token for the challenge identity assertion.

Invoke the weblogic.security.services AppChallengeContext Methods
Have your servlet authentication filter invoke the following AppChallengeContext methods
instead of invoking the ProviderChallengeContext interface directly:

 getAuthenticatedSubject
Subject getAuthenticatedSubject()

Returns the authenticated subject for the challenge identity assertion. Call this method
only when the hasChallengeIdentityCompleted method returns true.

getChallengeToken
Object getChallengeToken()

This method returns the challenge token for the challenge identity assertion. Call this
method only when the hasChallengeIdentityCompleted method returns false.

hasChallengeIdentityCompleted
boolean hasChallengeIdentityCompleted()

This method returns whether the challenge identity assertion has completed. It returns true
if the challenge identity assertion has completed, false if not. If true, the caller should use
the getCallbackHandler method. If false, then the caller should use the
getChallengeToken method.

Implementing Challenge Identity Assertion from a Filter
In the following code flow, assume that the servlet authentication filter, which is described in
Chapter 12, “Servlet Authentication Filters,” handles the HTTP level interactions (Authorization
and WWW-Authenticate) and is also responsible for calling the

How to Deve lop a Cus tom Ident i t y Asser t i on P rov ider

Developing Security Providers for WebLogic Server 4-29

weblogic.security.services.Authentication methods and interfaces to drive the
Challenge Identity Assertion process.

1. Browser sends a request

2. Filter sees requests and no Authorization header, so it calls the
weblogic.security.services.Authentication getChallengeToken method to get
an initial token and sends a 401 response with a WWW-Authenticate negotiate header back

3. Browser sees 401 with WWW-Authenticate and responds with a new request and a
Authorization Negotiate token.

a. Filter sees this and calls the weblogic.security.services.Authentication
assertChallengeIdentity method. assertChallengeIdentity takes the token as
input, processes it according to whatever rules it needs to follow for the assertion process
it is following (for example, if NTLM, then do whatever NTLM requires to process the
token), and determine if that succeeded or not. assertChallengeIdentity returns your
implementation of the AppChallengeContext interface.

b. Filter calls appChallengeContext hasChallengeCompleted method. Use the
AppChallengeContext hasChallengeIdentityCompleted method to see if the
challenge has completed. For example, it can determine if the callback handler is not null,
meaning that it contains a username, and return true. In this use it returns false, so it must
issue another challenge to the client. The filter then calls AppChallengeContext
getChallengeToken to get the token to challenge back with.

c. Filter likely stores the AppChallengeContext somewhere such as a session attribute.

d. Filter sends a 401 response with an WWW-Authenticate negotiate and the new token.

4. Browser sees the new challenge and responds again with an Authorization header.

a. Filter sees this and calls the weblogic.security.services.Authentication
continueChallengeIdentity method.

b. Filter calls the AppChallengeContext hasChallengeCompleted method. If it returns
false another challenge is in order, so call the AppChallengeContext getChallengeToken
method to get the token to challenge back with, and so forth. If it returned true, then the
challenge has completed and the filter would then call AppChallengeContext
getAuthenticatedSubject method and perform a runAs(subject, request).

Ident i t y Asser t i on P rov ide rs

4-30 Developing Security Providers for WebLogic Server

Developing Security Providers for WebLogic Server 5-1

C H A P T E R 5

Principal Validation Providers

Authentication providers rely on Principal Validation providers to sign and verify the authenticity
of principals (users and groups) contained within a subject. Such verification provides an
additional level of trust and may reduce the likelihood of malicious principal tampering.
Verification of the subject’s principals takes place during the WebLogic Server’s demarshalling
of RMI client requests for each invocation. The authenticity of the subject’s principals is also
verified when making authorization decisions.

The following sections describe Principal Validation provider concepts and functionality, and
provide step-by-step instructions for developing a custom Principal Validation provider:

“Principal Validation Concepts” on page 5-1

“The Principal Validation Process” on page 5-3

“Do You Need to Develop a Custom Principal Validation Provider?” on page 5-4

“How to Develop a Custom Principal Validation Provider” on page 5-5

Principal Validation Concepts
Before you develop a Principal Validation provider, you need to understand the following
concepts:

“Principal Validation and Principal Types” on page 5-2

“How Principal Validation Providers Differ From Other Types of Security Providers” on
page 5-2

Pr inc ipa l Va l idat i on P rov ide rs

5-2 Developing Security Providers for WebLogic Server

“Security Exceptions Resulting from Invalid Principals” on page 5-2

Principal Validation and Principal Types
Like Identity Assertion providers support specific types of tokens, Principal Validation providers
support specific types of principals. For example, the WebLogic Principal Validation provider
(described in “Do You Need to Develop a Custom Principal Validation Provider?” on page 5-4)
signs and verifies the authenticity of WebLogic Server principals.

The Principal Validation provider that is associated with the configured Authentication provider
(as described in “How Principal Validation Providers Differ From Other Types of Security
Providers” on page 5-2) will sign and verify all the principals stored in the subject that are of the
type the Principal Validation provider is designed to support.

How Principal Validation Providers Differ From Other Types of
Security Providers
A Principal Validation provider is a special type of security provider that primarily acts as a
“helper” to an Authentication provider. The main function of a Principal Validation provider is
to prevent malicious individuals from tampering with the principals stored in a subject.

The AuthenticationProvider SSPI (as described in “Implement the
AuthenticationProviderV2 SSPI” on page 3-13) includes a method called
getPrincipalValidator. In this method, you specify the Principal Validation provider’s
runtime class to be used with the Authentication provider. The Principal Validation provider’s
runtime class can be the one BEA provides (called the WebLogic Principal Validation provider)
or one you develop (called a custom Principal Validation provider). An example of using the
WebLogic Principal Validation provider in an Authentication provider’s
getPrincipalValidator method is shown in Listing 3-1,
“SimpleSampleAuthenticationProviderImpl.java,” on page 3-18.

Because you generate MBean types for Authentication providers and configure Authentication
providers using the WebLogic Server Administration Console, you do not have to perform these
steps for a Principal Validation provider.

Security Exceptions Resulting from Invalid Principals
When the WebLogic Security Framework attempts an authentication (or authorization)
operation, it checks the subject’s principals to see if they are valid. If a principal is not valid, the

The Pr inc ipa l Va l idat i on P rocess

Developing Security Providers for WebLogic Server 5-3

WebLogic Security Framework throws a security exception with text indicating that the subject
is invalid. A subject may be invalid because:

A principal in the subject does not have a corresponding Principal Validation provider
configured (which means there is no way for the WebLogic Security Framework to
validate the subject).

Note: Because you can have multiple principals in a subject, each stored by the
LoginModule of a different Authentication provider, the principals can have different
Principal Validation providers.

A principal was signed in another WebLogic Server security domain (with a different
credential from this security domain) and the caller is trying to use it in the current domain.

A principal with an invalid signature was created as part of an attempt to compromise
security.

A subject never had its principals signed.

The Principal Validation Process
As shown in Figure 5-1, a user attempts to log into a system using a username/password
combination. WebLogic Server establishes trust by calling the configured Authentication
provider’s LoginModule, which validates the user's username and password and returns a subject
that is populated with principals per Java Authentication and Authorization Service (JAAS)
requirements.

Figure 5-1 The Principal Validation Process

WebLogic Server passes the subject to the specified Principal Validation provider, which signs
the principals and then returns them to the client application via WebLogic Server. Whenever the

Pr inc ipa l Va l idat i on P rov ide rs

5-4 Developing Security Providers for WebLogic Server

principals stored within the subject are required for other security operations, the same Principal
Validation provider will verify that the principals stored within the subject have not been
modified since they were signed.

Do You Need to Develop a Custom Principal Validation
Provider?

The default (that is, active) security realm for WebLogic Server includes a WebLogic Principal
Validation provider. Much like an Identity Assertion provider supports a specific type of token,
a Principal Validation provider signs and verifies the authenticity of a specific type of principal.
The WebLogic Principal Validation provider signs and verifies WebLogic Server principals. In
other words, it signs and verifies principals that represent WebLogic Server users or WebLogic
Server groups.

Notes: You can use the WLSPrincipals class (located in the weblogic.security package) to
determine whether a principal (user or group) has special meaning to WebLogic Server.
(That is, whether it is a predefined WebLogic Server user or WebLogic Server group.)
Furthermore, any principal that is going to represent a WebLogic Server user or group
needs to implement the WLSUser and WLSGroup interfaces (available in the
weblogic.security.spi package).

The WebLogic Principal Validation provider includes implementations of the WLSUser and
WLSGroup interfaces, named WLSUserImpl and WLSGroupImpl. These are located in the
weblogic.security.principal package. It also includes an implementation of the
PrincipalValidator SSPI called PrincipalValidatorImpl (located in the
weblogic.security.provider package). The sign() method in the
PrincipalValidatorImpl class generates a random seed and computes a digest based on that
random seed. (For more information about the PrincipalValidator SSPI, see “Implement the
PrincipalValidator SSPI” on page 5-5.)

How to Use the WebLogic Principal Validation Provider
If you have simple user and group principals (that is, they only have a name), and you want to use
the WebLogic Principal Validation provider:

Use the weblogic.security.principal.WLSUserImpl and
weblogic.security.principal.WLSGroupImpl classes.

Use the weblogic.security.provider.PrincipalValidatorImpl class.

How to Deve l op a Custom Pr inc ipa l Va l idat i on Prov ider

Developing Security Providers for WebLogic Server 5-5

If you have user or group principals with extra data members (that is, in addition to a name), and
you want to use the WebLogic Principal Validation provider:

Write your own UserImpl and GroupImpl classes.

Extend the weblogic.security.principal.WLSAbstractPrincipal class.

Implement the weblogic.security.spi.WLSUser and
weblogic.security.spi.WLSGroup interfaces.

Implement the equals() method to include your extra data members. Your
implementation should call the super.equals() method when complete so the
WLSAbstractPrincipal can validate the remaining data.

Note: By default, only the user or group name will be validated. If you want to validate your
extra data members as well, then implement the getSignedData() method.

Use the weblogic.security.provider.PrincipalValidatorImpl class.

If you have your own validation scheme and do not want to use the WebLogic Principal
Validation provider, or if you want to provide validation for principals other than WebLogic
Server principals, then you need to develop a custom Principal Validation provider.

How to Develop a Custom Principal Validation Provider
To develop a custom Principal Validation provider:

Write your own UserImpl and GroupImpl classes by:

– Implementing the weblogic.security.spi.WLSUser and
weblogic.security.spi.WLSGroup interfaces.

– Implementing the java.io.Serializable interfaces.

Write your own PrincipalValidationImpl class by implementing the
weblogic.security.spi.PrincipalValidator SSPI. (See “Implement the
PrincipalValidator SSPI” on page 5-5.)

Implement the PrincipalValidator SSPI
To implement the PrincipalValidator SSPI, provide implementations for the following
methods:

Pr inc ipa l Va l idat i on P rov ide rs

5-6 Developing Security Providers for WebLogic Server

validate
public boolean validate(Principal principal) throws
SecurityException;

The validate method takes a principal as an argument and attempts to validate it. In
other words, this method verifies that the principal was not altered since it was signed.

sign
public boolean sign(Principal principal);

The sign method takes a principal as an argument and signs it to assure trust. This allows
the principal to later be verified using the validate method.

Your implementation of the sign method should be a secret algorithm that malicious
individuals cannot easily recreate. You can include that algorithm within the sign method
itself, have the sign method call out to a server for a token it should use to sign the
principal, or implement some other way of signing the principal.

getPrincipalBaseClass
public Class getPrincipalBaseClass();

The getPrincipalBaseClass method returns the base class of principals that this
Principal Validation provider knows how to validate and sign.

For more information about the PrincipalValidator SSPI and the methods described above,
see the WebLogic Server API Reference Javadoc.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/PrincipalValidator.html

Developing Security Providers for WebLogic Server 6-1

C H A P T E R 6

Authorization Providers

Authorization is the process whereby the interactions between users and WebLogic resources
are controlled, based on user identity or other information. In other words, authorization answers
the question, “What can you access?” In WebLogic Server, an Authorization provider is used to
limit the interactions between users and WebLogic resources to ensure integrity, confidentiality,
and availability.

The following sections describe Authorization provider concepts and functionality, and provide
step-by-step instructions for developing a custom Authorization provider:

“Authorization Concepts” on page 6-1

“The Authorization Process” on page 6-2

“Do You Need to Develop a Custom Authorization Provider?” on page 6-5

“How to Develop a Custom Authorization Provider” on page 6-5

Authorization Concepts
Before you develop an Authorization provider, you need to understand the following concepts:

“Access Decisions” on page 6-2

“Using the Java Authorization Contract for Containers” on page 6-2

“Security Providers and WebLogic Resources” on page 2-26

Author i za t i on P rov ide rs

6-2 Developing Security Providers for WebLogic Server

Access Decisions
Like LoginModules for Authentication providers, an Access Decision is the component of an
Authorization provider that actually answers the “is access allowed?” question. Specifically, an
Access Decision is asked whether a subject has permission to perform a given operation on a
WebLogic resource, with specific parameters in an application. Given this information, the
Access Decision responds with a result of PERMIT, DENY, or ABSTAIN.

Note: For more information about Access Decisions, see “Implement the AccessDecision
SSPI” on page 6-9.

Using the Java Authorization Contract for Containers
The Java Authorization Contract for Containers (JACC) is part of J2EE 1.4. JACC extends the
Java 2 permission-based security model to EJBs and Servlets. JACC is defined by JSR-115.

JACC provides an alternate authorization mechanism for the EJB and Servlet containers in a
WebLogic Server domain. When JACC is configured, the WebLogic Security framework access
decisions, adjudication, and role mapping functions are not used for EJB and Servlet
authorization decisions.

Note: You cannot use the JACC framework in conjunction with the WebLogic Security
framework. The JACC classes used by WebLogic Server do not include an
implementation of a Policy object for rendering decisions but instead rely on the
java.security.Policy object.

WebLogic Server implements a JACC provider which, although fully compliant with JSR-115,
is not as optimized as the WebLogic Authentication provider. The Java JACC classes are used
for rendering access decisions. Because JSR-115 does not define how to address role mapping,
WebLogic JACC classes are used for role-to-principal mapping. See
http://java.sun.com/j2ee/javaacc/ for information on developing a JACC provider.

The Authorization Process
Figure 6-1 illustrates how Authorization providers (and the associated Adjudication and Role
Mapping providers) interact with the WebLogic Security Framework during the authorization
process, and an explanation follows.

http://www.jcp.org/en/jsr/detail?id=115
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Policy.html
http://java.sun.com/j2ee/javaacc/

The Author i za t i on P rocess

Developing Security Providers for WebLogic Server 6-3

Figure 6-1 Authorization Providers and the Authorization Process

Generally, authorization is performed in the following manner:

1. A user or system process requests a WebLogic resource on which it will attempt to perform a
given operation.

2. The resource container that handles the type of WebLogic resource being requested receives
the request (for example, the EJB container receives the request for an EJB resource).

Note: The resource container could be the container that handles any one of the WebLogic
Resources described in “Security Providers and WebLogic Resources” on page 2-26.

3. The resource container constructs a ContextHandler object that may be used by the
configured Role Mapping providers and the configured Authorization providers’ Access
Decisions to obtain information associated with the context of the request.

Note: For more information about ContextHandlers, see “ContextHandlers and WebLogic
Resources” on page 2-36. For more information about Access Decisions, see “Access

Author i za t i on P rov ide rs

6-4 Developing Security Providers for WebLogic Server

Decisions” on page 6-2. For more information about Role Mapping providers, see
Chapter 8, “Role Mapping Providers.”

The resource container calls the WebLogic Security Framework, passing in the subject, the
WebLogic resource, and optionally, the ContextHandler object (to provide additional
input for the decision).

4. The WebLogic Security Framework calls the configured Role Mapping providers.

5. The Role Mapping providers use the ContextHandler to request various pieces of
information about the request. They construct a set of Callback objects that represent the
type of information being requested. This set of Callback objects is then passed as an array
to the ContextHandler using the handle method.

The Role Mapping providers use the values contained in the Callback objects, the subject,
and the resource to compute a list of security roles to which the subject making the request
is entitled, and pass the list of applicable security roles back to the WebLogic Security
Framework.

6. The WebLogic Security Framework delegates the actual decision about whether the subject
is entitled to perform the requested action on the WebLogic resource to the configured
Authorization providers.

The Authorization providers’ Access Decisions also use the ContextHandler to request
various pieces of information about the request. They too construct a set of Callback
objects that represent the type of information being requested. This set of Callback
objects is then passed as an array to the ContextHandler using the handle method. (The
process is the same as described for Role Mapping providers in Step 5.)

7. The isAccessAllowed method of each configured Authorization provider’s Access
Decision is called to determine if the subject is authorized to perform the requested access,
based on the ContextHandler, subject, WebLogic resource, and security roles. Each
isAccessAllowed method can return one of three values:

– PERMIT—Indicates that the requested access is permitted.

– DENY—Indicates that the requested access is explicitly denied.

– ABSTAIN—Indicates that the Access Decision was unable to render an explicit decision.

This process continues until all Access Decisions are used.

8. The WebLogic Security Framework delegates the job of reconciling any discrepancies
among the results rendered by the configured Authorization providers’ Access Decisions to
the Adjudication provider. The Adjudication provider determines the ultimate outcome of
the authorization decision.

Do You Need to Deve lop a Cus tom Author i zat ion P rov ider?

Developing Security Providers for WebLogic Server 6-5

Note: For more information about the Adjudication provider, see Chapter 7, “Adjudication
Providers.”

9. The Adjudication provider returns either a TRUE or FALSE verdict, which is forwarded to the
resource container through the WebLogic Security Framework.

– If the decision is TRUE, the resource container dispatches the request to the protected
WebLogic resource.

– If the decision is FALSE, the resource container throws a security exception that
indicates that the requestor was not authorized to perform the requested access on the
protected WebLogic resource.

Do You Need to Develop a Custom Authorization Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic
Authorization provider. The WebLogic Authorization provider supplies the default enforcement
of authorization for this version of WebLogic Server. The WebLogic Authorization provider
returns an access decision using a policy-based authorization engine to determine if a particular
user is allowed access to a protected WebLogic resource. The WebLogic Authorization provider
also supports the deployment and undeployment of security policies within the system. If you
want to use an authorization mechanism that already exists within your organization, you could
create a custom Authorization provider to tie into that system.

Does Your Custom Authorization Provider Need to Support
Application Versioning?
All Authorization, Role Mapping, and Credential Mapping providers for the security realm must
support application versioning in order for an application to be deployed using versions. If you
develop a custom security provider for Authorization, Role Mapping, or Credential Mapping and
need to support versioned applications, you must implement the Versionable Application SSPI,
as described in Chapter 13, “Versionable Application Providers.”

How to Develop a Custom Authorization Provider
If the WebLogic Authorization provider does not meet your needs, you can develop a custom
Authorization provider by following these steps:

1. “Create Runtime Classes Using the Appropriate SSPIs” on page 6-6

2. “Generate an MBean Type Using the WebLogic MBeanMaker” on page 6-17

Author i za t i on P rov ide rs

6-6 Developing Security Providers for WebLogic Server

3. “Configure the Custom Authorization Provider Using the Administration Console” on
page 6-24

4. “Provide a Mechanism for Security Policy Management” on page 6-26

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

“Understand the Purpose of the “Provider” SSPIs” on page 2-3

“Determine Which “Provider” Interface You Will Implement” on page 2-4

“Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes” on page 2-6

When you understand this information and have made your design decisions, create the runtime
classes for your custom Authorization provider by following these steps:

“Implement the AuthorizationProvider SSPI” on page 6-6 or “Implement the
DeployableAuthorizationProviderV2 SSPI” on page 6-7

“Implement the AccessDecision SSPI” on page 6-9

Note: At least one Authorization provider in a security realm must implement the
DeployableAuthorizationProvider SSPI, or else it will be impossible to deploy
Web applications and EJBs.

For an example of how to create a runtime class for a custom Authorization provider, see
“Example: Creating the Runtime Class for the Sample Authorization Provider” on page 6-11.

Implement the AuthorizationProvider SSPI
To implement the AuthorizationProvider SSPI, provide implementations for the methods
described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3 and the following
method:

getAccessDecision
public AccessDecision getAccessDecision();

The getAccessDecision method obtains the implementation of the AccessDecision
SSPI. For a single runtime class called MyAuthorizationProviderImpl.java, the
implementation of the getAccessDecision method would be:

return this;

How to Deve lop a Custom Author i za t i on P rov ider

Developing Security Providers for WebLogic Server 6-7

If there are two runtime classes, then the implementation of the getAccessDecision
method could be:

return new MyAccessDecisionImpl;

This is because the runtime class that implements the AuthorizationProvider SSPI is
used as a factory to obtain classes that implement the AccessDecision SSPI.

For more information about the AuthorizationProvider SSPI and the getAccessDecision
method, see the WebLogic Server API Reference Javadoc.

Implement the DeployableAuthorizationProviderV2 SSPI
To implement the DeployableAuthorizationProviderV2 SSPI, provide implementations for
the methods described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3,
“Implement the AuthorizationProvider SSPI” on page 6-6, and the following methods:

deleteApplicationPolicies
public void deleteApplicationPolicies(ApplicationInfo application)
throws ResourceRemovalException

The deleteApplicationPolicies method deletes all policies for an application. The
deleteApplicationPolicies method is called only on the Administration Server.

deployExcludedPolicy
public void deleteApplicationPolicies(DeployPolicyHandle handle,
Resource resource) throws ResourceCreationException

The deployExcludedPolicy method deploys a policy that always denies access. If a
policy already exists, it is removed and replaced by this policy.

deployPolicy
public void deployPolicy(DeployPolicyHandle handle, Resource
resource, String[] roleNames) throws ResourceCreationException

The deployPolicy method creates a security policy on behalf of a deployed Web
application or EJB, based on the WebLogic resource to which the security policy should
apply and the security role names that are in the security policy.

deployUncheckedPolicy
public void deployUncheckedPolicy(DeployPolicyHandle handle, Resource
resource) throws ResourceCreationException

The deployUncheckedPolicy method deploys a policy that always grants access. If a
policy already exists, it is removed and replaced by this policy.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuthorizationProvider.html

Author i za t i on P rov ide rs

6-8 Developing Security Providers for WebLogic Server

endDeployPolicies
public void endDeployPolicies(DeployPolicyHandle handle) throws
ResourceCreationException

The deployExcludedPolicy method deploys a policy that always denies access. If a
policy already exists, it is removed and replaced by this policy.

startDeployPolicies
public deployPolicyHandle startDeployPolicies(ApplicationInfo
application) throws DeployHandleCreationException

The startDeployPolicies method marks the beginning of an application policy
deployment and is called on all servers within a WebLogic Server domain where an
application is targeted.

undeployAllPolicies
public void undeployAllPolicies(DeployPolicyHandle handle) throws
ResourceRemovalException

The undeployAllPolicies method deletes a set of policy definitions on behalf of an
undeployed Web application or EJB.

For more information about the DeployableAuthorizationProviderV2 SSPI and the
deployPolicy and undeployPolicy methods, see the WebLogic Server API Reference
Javadoc.

The ApplicationInfo Interface
The ApplicationInfo interface passes data about an application deployment to a security provider.
You can use this data to uniquely identity the application.

The Security Framework implements the ApplicationInfo interface for your convenience. You do
not need to implement any methods for this interface.

The DeployableAuthorizationProviderV2 and DeployableRoleProviderV2 interfaces use
ApplicationInfo. For example, consider an implementation of the
DeployableAuthorizationProviderV2 methods. The Security Framework calls the
DeployableAuthorizationProviderV2 startDeployPolicies method and passes in the
ApplicationInfo interface for this application. The ApplicationInfo data is determined based on
the information supplied in the Administration Console when an application is deployed.

The startDeployPolicies method returns DeployPolicyHandle, which you can then use in
the other DeployableAuthorizationProviderV2 methods.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/DeployableAuthorizationProvider.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/DeployableAuthorizationProvider.html

How to Deve lop a Custom Author i za t i on P rov ider

Developing Security Providers for WebLogic Server 6-9

You use the ApplicationInfo interface to get the application identifier, the component name, and
the component type for this application. Component type can be APPLICATION,
CONTROL_RESOURCE, EJB, or WEBAPP, as defined in the ApplicationInfo.ComponentType
class.

The following example shows one way to accomplish this task:
public DeployPolicyHandle startDeployPolicies(ApplicationInfo appInfo)

 throws DeployHandleCreationException

 :

// Obtain the application information...

 String appId = appInfo.getApplicationIdentifier();

 ComponentType compType = appInfo.getComponentType();

 String compName = appInfo.getComponentName();

The Security Framework calls the DeployableAuthorizationProviderV2
deleteApplicationPolicies method and passes in the ApplicationInfo interface for this
application. The deleteApplicationPolicies method deletes all policies for an application
and is called (only on the Administration Server within a WebLogic Server domain) at the time
an application is deleted.

Implement the AccessDecision SSPI
When you implement the AccessDecision SSPI, you must provide implementations for the
following methods:

isAccessAllowed
public Result isAccessAllowed(Subject subject, Map roles,
Resource resource, ContextHandler handler, Direction direction) throws
InvalidPrincipalException

The isAccessAllowed method utilizes information contained within the subject to
determine if the requestor should be allowed to access a protected method. The
isAccessAllowed method may be called prior to or after a request, and returns values of
PERMIT, DENY, or ABSTAIN. If multiple Access Decisions are configured and return
conflicting values, an Adjudication provider will be needed to determine a final result. For
more information, see Chapter 7, “Adjudication Providers.”

isProtectedResource
public boolean isProtectedResource(Subject subject, Resource
resource) throws InvalidPrincipalException

Author i za t i on P rov ide rs

6-10 Developing Security Providers for WebLogic Server

The isProtectedResource method is used to determine whether the specified
WebLogic resource is protected, without incurring the cost of an actual access check. It is
only a lightweight mechanism because it does not compute a set of security roles that may
be granted to the caller’s subject.

For more information about the AccessDecision SSPI and the isAccessAllowed and
isProtectedResource methods, see the WebLogic Server API Reference Javadoc.

Developing Custom Authorization Providers That Are Compatible With the Realm Adapter
Authentication Provider
An Authentication provider is the security provider responsible for populating a subject with
users and groups, which are then extracted from the subject by other types of security providers,
including Authorization providers. If the Authentication provider configured in your security
realm is a Realm Adapter Authentication provider, the user and group information will be stored
in the subject in a way that is slightly different from other Authentication providers. Therefore,
this user and group information must also be extracted in a slightly different way.

Listing 6-1 provides code that can be used by custom Authorization providers to check whether
a subject matches a user or group name when a Realm Adapter Authentication provider was used
to populate the subject. This code belongs in both the isAccessAllowed and
isProtectedResource methods.

Listing 6-1 Sample Code to Check if a Subject Matches a User or Group Name

/**
* Determines if the Subject matches a user/group name.
*
* @param principalWant A String containing the name of a principal in this role
* (that is, the role definition).
*
* @param subject A Subject that contains the Principals that identify the user
* who is trying to access the resource as well as the user's groups.
*
* @return A boolean. true if the current subject matches the name of the
* principal in the role, false otherwise.
*/
private boolean subjectMatches(String principalWant, Subject subject)
{

// first, see if it's a group name match
if (SubjectUtils.isUserInGroup(subject, principalWant)) {

return true;
}

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AccessDecision.html

How to Deve lop a Custom Author i za t i on P rov ider

Developing Security Providers for WebLogic Server 6-11

// second, see if it's a user name match
if (principalWant.equals(SubjectUtils.getUsername(subject))) {

return true;
}
// didn't match
return false;

}

Example: Creating the Runtime Class for the Sample Authorization Provider
Listing 6-2 shows the SampleAuthorizationProviderImpl.java class, which is the runtime
class for the sample Authorization provider. This runtime class includes implementations for:

The three methods inherited from the SecurityProvider interface: initialize,
getDescription and shutdown (as described in “Understand the Purpose of the
“Provider” SSPIs” on page 2-3).

The method inherited from the AuthorizationProvider SSPI: the getAccessDecision
method (as described in “Implement the AuthorizationProvider SSPI” on page 6-6).

The seven methods in the DeployableAuthorizationProviderV2 SSPI: the
deleteApplicationPolicies, deployExcludedPolicy, deployPolicy,
deployUncheckedPolicy, endDeployPolicies, starteployPolicies, and
undeployAllPolicies methods (as described in “Implement the
DeployableAuthorizationProviderV2 SSPI” on page 6-7).

The two methods in the AccessDecision SSPI: the isAccessAllowed and
isProtectedResource methods (as described in “Implement the AccessDecision SSPI”
on page 6-9).

Note: The bold face code in Listing 6-2 highlights the class declaration and the method
signatures.

Listing 6-2 SimpleSampleAuthorizationProviderImpl.java

package examples.security.providers.authorization.simple;

import java.security.Principal;
import java.util.Date;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.Map;

Author i za t i on P rov ide rs

6-12 Developing Security Providers for WebLogic Server

import java.util.Set;
import javax.security.auth.Subject;
import weblogic.management.security.ProviderMBean;
import weblogic.security.SubjectUtils;
import weblogic.security.WLSPrincipals;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.AccessDecision;
import weblogic.security.spi.ApplicationInfo;
import weblogic.security.spi.ApplicationInfo.ComponentType;
import weblogic.security.spi.DeployableAuthorizationProviderV2;
import weblogic.security.spi.DeployPolicyHandle;
import weblogic.security.spi.Direction;
import weblogic.security.spi.InvalidPrincipalException;
import weblogic.security.spi.Resource;
import weblogic.security.spi.Result;
import weblogic.security.spi.SecurityServices;
import weblogic.security.spi.VersionableApplicationProvider;

public final class SimpleSampleAuthorizationProviderImpl implements
DeployableAuthorizationProviderV2, AccessDecision,
VersionableApplicationProvider
{

private static String[] NO_ACCESS = new String[0];
private static String[] ALL_ACCESS = new String[]

{WLSPrincipals.getEveryoneGroupname()};
private String description;
private SimpleSampleAuthorizerDatabase database;

public void initialize(ProviderMBean mbean, SecurityServices services)
{

System.out.println("SimpleSampleAuthorizationProviderImpl.initialize");
SimpleSampleAuthorizerMBean myMBean = (SimpleSampleAuthorizerMBean)mbean;
description = myMBean.getDescription() + "\n" + myMBean.getVersion();
database = new SimpleSampleAuthorizerDatabase(myMBean);

}

public String getDescription()
{

return description;
}

public void shutdown()
{

System.out.println("SampleAuthorizationProviderImpl.shutdown");
}

public AccessDecision getAccessDecision()
{

return this;
}

How to Deve lop a Custom Author i za t i on P rov ider

Developing Security Providers for WebLogic Server 6-13

public Result isAccessAllowed(Subject subject, Map roles, Resource resource,
ContextHandler handler, Direction direction)
{

System.out.println("SimpleSampleAuthorizationProviderImpl.isAccessAllowe
d");

System.out.println("\tsubject\t= " + subject);
System.out.println("\troles\t= " + roles);
System.out.println("\tresource\t= " + resource);
System.out.println("\tdirection\t= " + direction);

Set principals = subject.getPrincipals();

for (Resource res = resource; res != null; res = res.getParentResource()) {
if (database.policyExists(res)) {

Result result = isAccessAllowed(res, subject, roles);
System.out.println("\tallowed\t= " + result);
return result;

}
}
Result result = Result.ABSTAIN;
System.out.println("\tallowed\t= " + result);
return result;

}

public boolean isProtectedResource(Subject subject, Resource resource) throws
InvalidPrincipalException
{

System.out.println("SimpleSampleAuthorizationProviderImpl.
isProtectedResource");

System.out.println("\tsubject\t= " + subject);
System.out.println("\tresource\t= " + resource);

for (Resource res = resource; res != null; res = res.getParentResource()) {
if (database.policyExists(res)) {

System.out.println("\tprotected\t= true");
return true;

}
}
System.out.println("\tprotected\t= false");
return false;

}

public DeployPolicyHandle startDeployPolicies(ApplicationInfo application)
{

String appId = application.getApplicationIdentifier();
String compName = application.getComponentName();
ComponentType compType = application.getComponentType();
DeployPolicyHandle handle = new
SampleDeployPolicyHandle(appId,compName,compType);

Author i za t i on P rov ide rs

6-14 Developing Security Providers for WebLogic Server

database.removePoliciesForComponent(appId, compName, compType);
return handle;

public void deployPolicy(DeployPolicyHandle handle,
Resource resource, String[] roleNamesAllowed)
{

System.out.println("SimpleSampleAuthorizationProviderImpl.deployPolicy");
System.out.println("\thandle\t= " +

((SampleDeployPolicyHandle)handle).toString());
System.out.println("\tresource\t= " + resource);
for (int i = 0; roleNamesAllowed != null && i < roleNamesAllowed.length; i++)

{
System.out.println("\troleNamesAllowed[" + i + "]\t= " +

roleNamesAllowed[i]);
}
database.setPolicy(resource, roleNamesAllowed);
}

public void deployUncheckedPolicy(DeployPolicyHandle handle, Resource
resource)
{

System.out.println("SimpleSampleAuthorizationProviderImpl.deployUncheckedPo
licy");

System.out.println("\thandle\t= " +
((SampleDeployPolicyHandle)handle).toString());

System.out.println("\tresource\t= " + resource);
database.setPolicy(resource, ALL_ACCESS);

}

public void deployExcludedPolicy(DeployPolicyHandle handle, Resource resource)

 {
System.out.println("SimpleSampleAuthorizationProviderImpl.deployExcludedPol

icy");
System.out.println("\thandle\t= " +

((SampleDeployPolicyHandle)handle).toString());
System.out.println("\tresource\t= " + resource);
database.setPolicy(resource, NO_ACCESS);

}

public void endDeployPolicies(DeployPolicyHandle handle)
{

database.savePolicies();
}

public void undeployAllPolicies(DeployPolicyHandle handle)
{

System.out.println("SimpleSampleAuthorizationProviderImpl.undeployAllPolici
es");

SampleDeployPolicyHandle myHandle = (SampleDeployPolicyHandle)handle;

How to Deve lop a Custom Author i za t i on P rov ider

Developing Security Providers for WebLogic Server 6-15

System.out.println("\thandle\t= " + myHandle.toString());

// remove policies
database.removePoliciesForComponent(myHandle.getApplication(),

myHandle.getComponent(),
myHandle.getComponentType());

}

public void deleteApplicationPolicies(ApplicationInfo application)
{

System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplication
Policies");

String appId = application.getApplicationIdentifier();
System.out.println("\tapplication identifier\t= " + appId);

// clear out policies for the application
database.removePoliciesForApplication(appId);

}

private boolean rolesOrSubjectContains(Map roles, Subject subject, String
roleOrPrincipalWant)
{

// first, see if it's a role name match
if (roles.containsKey(roleOrPrincipalWant)) {

return true;
}

// second, see if it's a group name match
if (SubjectUtils.isUserInGroup(subject, roleOrPrincipalWant)) {

return true;
}

// third, see if it's a user name match
if (roleOrPrincipalWant.equals(SubjectUtils.getUsername(subject))) {

return true;
}

// didn't match
return false;

}

private Result isAccessAllowed(Resource resource, Subject subject, Map roles)
{

// loop over the principals and roles in our database who are allowed to access
this resource

for (Enumeration e = database.getPolicy(resource); e.hasMoreElements();) {
String roleOrPrincipalAllowed = (String)e.nextElement();
if (rolesOrSubjectContains(roles, subject, roleOrPrincipalAllowed)) {
return Result.PERMIT;

Author i za t i on P rov ide rs

6-16 Developing Security Providers for WebLogic Server

}
}
// the resource was explicitly mentioned and didn't grant access
return Result.DENY;

}

public void createApplicationVersion(String appId, String sourceAppId)
{

System.out.println("SimpleSampleAuthorizationProviderImpl.createApplication
Version");

System.out.println("\tapplication identifier\t= " + appId);
System.out.println("\tsource app identifier\t= " + ((sourceAppId != null) ?

sourceAppId : "None"));

// create new policies when existing application is specified
if (sourceAppId != null) {

database.clonePoliciesForApplication(sourceAppId,appId);
}

}

public void deleteApplicationVersion(String appId)
{

System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplication
Version");

System.out.println("\tapplication identifier\t= " + appId);

// clear out policies for the application
database.removePoliciesForApplication(appId);

}

public void deleteApplication(String appName)
{

System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplication
");

System.out.println("\tapplication name\t= " + appName);

// clear out policies for the application
database.removePoliciesForApplication(appName);

}

class SampleDeployPolicyHandle implements DeployPolicyHandle
{

Date date;
String application;
String component;
ComponentType componentType;

How to Deve lop a Custom Author i za t i on P rov ider

Developing Security Providers for WebLogic Server 6-17

SampleDeployPolicyHandle(String app, String comp, ComponentType type)
{

this.application = app;
this.component = comp;
this.componentType = type;
this.date = new Date();

}

public String getApplication() { return application; }
public String getComponent() { return component; }
public ComponentType getComponentType() { return componentType; }

public String toString()
{
String name = component;
if (componentType == ComponentType.APPLICATION)

name = application;
return componentType +" "+ name +" ["+ date.toString() +"]";

}
}

}

Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you should first:

“Understand Why You Need an MBean Type” on page 2-10

“Determine Which SSPI MBeans to Extend and Implement” on page 2-10

“Understand the Basic Elements of an MBean Definition File (MDF)” on page 2-11

“Understand the SSPI MBean Hierarchy and How It Affects the Administration Console”
on page 2-14

“Understand What the WebLogic MBeanMaker Provides” on page 2-16

When you understand this information and have made your design decisions, create the MBean
type for your custom Authorization provider by following these steps:

1. “Create an MBean Definition File (MDF)” on page 6-18

2. “Use the WebLogic MBeanMaker to Generate the MBean Type” on page 6-18

3. “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on page 6-22

Author i za t i on P rov ide rs

6-18 Developing Security Providers for WebLogic Server

4. “Install the MBean Type Into the WebLogic Server Environment” on page 6-23

Notes: Several sample security providers (available under "Code Samples: WebLogic Server"
on the dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a Windows
environment.

Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Authorization provider to a text file.

Note: The MDF for the sample Authorization provider is called
SimpleSampleAuthorizer.xml.

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in your MDF so
that they are appropriate for your custom Authorization provider.

3. Add any custom attributes and operations (that is, additional <MBeanAttribute> and
<MBeanOperation> elements) to your MDF.

4. Save the file.

Note: A complete reference of MDF element syntax is available in Appendix A, “MBean
Definition File (MDF) Element Syntax.”

Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic MBeanMaker. The
WebLogic MBeanMaker is currently a command-line utility that takes as its input an MDF, and
outputs some intermediate Java files, including an MBean interface, an MBean implementation,
and an associated MBean information file. Together, these intermediate files form the MBean
type for your custom security provider.

The instructions for generating an MBean type differ based on the design of your custom
Authorization provider. Follow the instructions that are appropriate to your situation:

“No Optional SSPI MBeans and No Custom Operations” on page 6-19

“Optional SSPI MBeans or Custom Operations” on page 6-19

http://dev2dev.bea.com/code/wls.jsp

How to Deve lop a Custom Author i za t i on P rov ider

Developing Security Providers for WebLogic Server 6-19

No Optional SSPI MBeans and No Custom Operations
If the MDF for your custom Authorization provider does not implement any optional SSPI
MBeans and does not include any custom operations, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Authorization providers).

3. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 6-22.

Optional SSPI MBeans or Custom Operations
If the MDF for your custom Authorization provider does implement some optional SSPI MBeans
or does include custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

Author i za t i on P rov ide rs

6-20 Developing Security Providers for WebLogic Server

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Authorization providers).

3. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is named
MBeanNameImpl.java. For example, for the MDF named SampleAuthorizer, the
MBean implementation file to be edited is named SampleAuthorizerImpl.java.

b. For each optional SSPI MBean that you implemented in your MDF, copy the method stubs
from the “Mapping MDF Operation Declarations to Java Method Signatures Document”
(available on the dev2dev Web site) into the MBean implementation file, and implement
each method. Be sure to also provide implementations for any methods that the optional
SSPI MBean inherits.

4. If you included any custom operations in your MDF, implement the methods using the
method stubs.

5. Save the file.

6. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 6-22.

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that your current
method implementations are not overwritten by the WebLogic MBeanMaker.

2. Create a new DOS shell.

http://dev2dev.bea.com/code/wls.jsp

How to Deve lop a Custom Author i za t i on P rov ider

Developing Security Providers for WebLogic Server 6-21

3. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Authorization providers).

4. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is named
MBeanNameImpl.java. For example, for the MDF named SampleAuthorizer, the
MBean implementation file to be edited is named SampleAuthorizerImpl.java.

b. Open your existing MBean implementation file (which you saved to a temporary directory
in step 1).

c. Synchronize the existing MBean implementation file with the MBean implementation file
generated by the WebLogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the method
implementations from your existing MBean implementation file into the
newly-generated MBean implementation file (or, alternatively, adding the new methods
from the newly-generated MBean implementation file to your existing MBean
implementation file), and verifying that any changes to method signatures are reflected
in the version of the MBean implementation file that you are going to use (for methods
that exist in both MBean implementation files).

Author i za t i on P rov ide rs

6-22 Developing Security Providers for WebLogic Server

d. If you modified the MDF to implement optional SSPI MBeans that were not in the original
MDF, copy the method stubs from the “Mapping MDF Operation Declarations to Java
Method Signatures Document” (available on the dev2dev Web site) into the MBean
implementation file, and implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

5. If you modified the MDF to include any custom operations that were not in the original
MDF, implement the methods using the method stubs.

6. Save the version of the MBean implementation file that is complete (that is, has all methods
implemented).

7. Copy this MBean implementation file into the directory where the WebLogic MBeanMaker
placed the intermediate files for the MBean type. You specified this as filesdir in step 3.
(You will be overriding the MBean implementation file generated by the WebLogic
MBeanMaker as a result of step 3.)

8. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 6-22.

About the Generated MBean Interface File
The MBean interface file is the client-side API to the MBean that your runtime class or your
MBean implementation will use to obtain configuration data. It is typically used in the initialize
method as described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3.

Because the WebLogic MBeanMaker generates MBean types from the MDF you created, the
generated MBean interface file will have the name of the MDF, plus the text “MBean” appended
to it. For example, the result of running the SampleAuthorizer MDF through the WebLogic
MBeanMaker will yield an MBean interface file called SampleAuthorizerMBean.java.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply implementations
for the appropriate methods within it, you need to package the MBean files and the runtime
classes for the custom Authorization provider into an MBean JAR File (MJF). The WebLogic
MBeanMaker also automates this process.

To create an MJF for your custom Authorization provider, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

http://dev2dev.bea.com/code/wls.jsp
http://dev2dev.bea.com/code/wls.jsp

How to Deve lop a Custom Author i za t i on P rov ider

Developing Security Providers for WebLogic Server 6-23

java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a JAR file
containing the new MBean types, jarfile is the name for the MJF and filesdir is the
location where the WebLogic MBeanMaker looks for the files to JAR into the MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and no
errors occur, an MJF is created with the specified name.

Notes: When you create a JAR file for a custom security provider, a set of XML binding classes
and a schema are also generated. You can choose a namespace to associate with that
schema. Doing so avoids the possiblity that your custom classes will conflict with those
provided by BEA. The default for the namespace is vendor. You can change this default
by passing the -targetNameSpace argument to the WebLogicMBeanMaker or the
associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and regenerate it. The
WebLogic MBeanMaker also has a -DIncludeSource option, which controls whether
source files are included into the resulting MJF. Source files include both the generated
source and the MDF itself. The default is false. This option is ignored when -DMJF is
not used.

The resulting MJF can be installed into your WebLogic Server environment, or distributed to
your customers for installation into their WebLogic Server environments.

Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level installation
directory for WebLogic Server. This “deploys” your custom Authorization provider—that is, it
makes the custom Authorization provider manageable from the WebLogic Server Administration
Console.

Note: WL_HOME\server\lib\mbeantypes is the default directory for installing MBean types.
(Beginning with 9.0, security providers can be loaded from
...\domaindir\lib\mbeantypes as well.) However, if you want WebLogic Server to
look for MBean types in additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line flag when starting
your server, where <dir> is a comma-separated list of directory names. When you use
this flag, WebLogic Server will always load MBean types from
WL_HOME\server\lib\mbeantypes first, then will look in the additional directories
and load all valid archives present in those directories (regardless of their extension). For

Author i za t i on P rov ide rs

6-24 Developing Security Providers for WebLogic Server

example, if -Dweblogic.alternateTypesDirectory = dirX,dirY, WebLogic
Server will first load MBean types from WL_HOME\server\lib\mbeantypes, then any
valid archives present in dirX and dirY. If you instruct WebLogic Server to look in
additional directories for MBean types and are using the Java Security Manager, you
must also update the weblogic.policy file to grant appropriate permissions for the
MBean type (and thus, the custom security provider). For more information, see "Using
the Java Security Manager to Protect WebLogic Resources" in Programming WebLogic
Security.

You can create instances of the MBean type by configuring your custom Authorization provider
(see “Configure the Custom Authorization Provider Using the Administration Console” on
page 6-24), and then use those MBean instances from a GUI, from other Java code, or from APIs.
For example, you can use the WebLogic Server Administration Console to get and set attributes
and invoke operations, or you can develop other Java objects that instantiate MBeans and
automatically respond to information that the MBeans supply. We recommend that you back up
these MBean instances.

Configure the Custom Authorization Provider Using the
Administration Console
Configuring a custom Authorization provider means that you are adding the custom
Authorization provider to your security realm, where it can be accessed by applications requiring
authorization services.

Configuring custom security providers is an administrative task, but it is a task that may also be
performed by developers of custom security providers. This section contains information that is
important for the person configuring your custom Authorization providers:

“Managing Authorization Providers and Deployment Descriptors” on page 6-24

“Enabling Security Policy Deployment” on page 6-26

Note: The steps for configuring a custom Authorization provider using the WebLogic Server
Administration Console are described under “Configuring WebLogic Security
Providers” in Securing WebLogic Server.

Managing Authorization Providers and Deployment Descriptors
Some application components, such as Enterprise JavaBeans (EJBs) and Web applications, store
relevant deployment information in Java 2 Enterprise Edition (J2EE) and WebLogic Server
deployment descriptors. For Web applications, the deployment descriptor files (called web.xml
and weblogic.xml) contain information for implementing the J2EE security model, including

http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03
http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03
http://e-docs.bea.com/wls/docs90/secmanage/providers.html
http://e-docs.bea.com/wls/docs90/secmanage/providers.html

How to Deve lop a Custom Author i za t i on P rov ider

Developing Security Providers for WebLogic Server 6-25

declarations of security policies. Typically, you will want to include this information when first
configuring your Authorization providers in the WebLogic Server Administration Console.

Because the J2EE platform standardizes Web application and EJB security in deployment
descriptors, WebLogic Server integrates this standard mechanism with its Security Service to
give you a choice of techniques for securing Web application and EJB resources. You can use
deployment descriptors exclusively, the Administration Console exclusively, or you can combine
the techniques for certain situations.

Depending on the technique you choose, you also need to apply a Security Model. WebLogic
supports different security models for individual deployments, and a security model for
realm-wide configurations that incorporate the technique you want to use.

When configured to use deployment descriptors, WebLogic Server reads security policy
information from the web.xml and weblogic.xml deployment descriptor files (examples of
web.xml and weblogic.xml files are shown in Listing 6-3 and Listing 6-4). This information is
then copied into the security provider database for the Authorization provider.

Listing 6-3 Sample web.xml File

<web-app>

<welcome-file-list>

<welcome-file>welcome.jsp</welcome-file>

</welcome-file-list>

<security-constraint>

<web-resource-collection>

<web-resource-name>Success</web-resource-name>

<url-pattern>/welcome.jsp</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>developers</role-name>

</auth-constraint>

</security-constraint>

<login-config>

<auth-method>BASIC</auth-method>

Author i za t i on P rov ide rs

6-26 Developing Security Providers for WebLogic Server

<realm-name>default</realm-name>

</login-config>

<security-role>

<role-name>developers</role-name>

</security-role>

</web-app>

Listing 6-4 Sample weblogic.xml File

<weblogic-web-app>

<security-role-assignment>

<role-name>developers</role-name>

<principal-name>myGroup</principal-name>

</security-role-assignment>

</weblogic-web-app>

Enabling Security Policy Deployment
If you implemented the DeployableAuthorizationProviderV2 SSPI as part of developing
your custom Authorization provider and want to support deployable security policies, the person
configuring the custom Authorization provider (that is, you or an administrator) must be sure that
the Policy Deployment Enabled check box in the WebLogic Server Administration Console is
checked. Otherwise, deployment for the Authorization provider is considered “turned off.”
Therefore, if multiple Authorization providers are configured, the Policy Deployment Enabled
check box can be used to control which Authorization provider is used for security policy
deployment.

Provide a Mechanism for Security Policy Management
While configuring a custom Authorization provider via the WebLogic Server Administration
Console makes it accessible by applications requiring authorization services, you also need to
supply administrators with a way to manage this security provider’s associated security policies.
The WebLogic Authorization provider, for example, supplies administrators with a Policy Editor

How to Deve lop a Custom Author i za t i on P rov ider

Developing Security Providers for WebLogic Server 6-27

page that allows them to add, modify, or remove security policies for various WebLogic
resources.

Neither the Policy Editor page nor access to it is available to administrators when you develop a
custom Authorization provider. Therefore, you must provide your own mechanism for security
policy management. This mechanism must read and write security policy data (that is,
expressions) to and from the custom Authorization provider’s database.

You can accomplish this task in one of three ways:

“Option 1: Develop a Stand-Alone Tool for Security Policy Management” on page 6-27

“Option 2: Integrate an Existing Security Policy Management Tool into the Administration
Console” on page 6-27

Option 1: Develop a Stand-Alone Tool for Security Policy Management
You would typically select this option if you want to develop a tool that is entirely separate from
the WebLogic Server Administration Console.

For this option, you do not need to write any console extensions for your custom Authorization
provider, nor do you need to develop any management MBeans. However, your tool needs to:

1. Determine the WebLogic resource’s ID, since it is not automatically provided to you by the
console extension. For more information, see “WebLogic Resource Identifiers” on page 2-28.

2. Determine how to represent the expressions that make up a security policy. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom Authorization provider’s database.

Option 2: Integrate an Existing Security Policy Management Tool into the
Administration Console
You would typically select this option if you have a tool that is separate from the WebLogic
Server Administration Console, but you want to launch that tool from the Administration
Console.

For this option, your tool needs to:

1. Determine the WebLogic resource’s ID, since it is not automatically provided to you by the
console extension. For more information, see “WebLogic Resource Identifiers” on page 2-28.

2. Determine how to represent the expressions that make up a security policy. (This
representation is entirely up to you and need not be a string.)

Author i za t i on P rov ide rs

6-28 Developing Security Providers for WebLogic Server

3. Read and write the expressions from and to the custom Authorization provider’s database.

4. Link into the Administration Console using basic console extension techniques, as
described in Extending the Administration Console.

http://e-docs.bea.com/wls/docs90/console_ext/index.html

Developing Security Providers for WebLogic Server 7-1

C H A P T E R 7

Adjudication Providers

Adjudication involves resolving any authorization conflicts that may occur when more than one
Authorization provider is configured, by weighing the result of each Authorization provider’s
Access Decision. In WebLogic Server, an Adjudication provider is used to tally the results that
multiple Access Decisions return, and determines the final PERMIT or DENY decision. An
Adjudication provider may also specify what should be done when an answer of ABSTAIN is
returned from a single Authorization provider’s Access Decision.

The following sections describe Adjudication provider concepts and functionality, and provide
step-by-step instructions for developing a custom Adjudication provider:

“The Adjudication Process” on page 7-1

“Do You Need to Develop a Custom Adjudication Provider?” on page 7-1

“How to Develop a Custom Adjudication Provider” on page 7-3

The Adjudication Process
The use of Adjudication providers is part of the authorization process, and is described in “The
Authorization Process” on page 6-2.

Do You Need to Develop a Custom Adjudication Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic
Adjudication provider. The WebLogic Adjudication provider is responsible for adjudicating
between potentially differing results rendered by multiple Authorization providers’ Access

Adjud icat ion P rov ide rs

7-2 Developing Security Providers for WebLogic Server

Decisions, and rendering a final verdict on whether or not access will be granted to a WebLogic
resource.

The WebLogic Adjudication provider has an attribute called Require Unanimous Permit that
governs its behavior. By default, the Require Unanimous Permit attribute is set to TRUE, which
causes the WebLogic Adjudication provider to act as follows:

If all the Authorization providers’ Access Decisions return PERMIT, then return a final
verdict of TRUE (that is, permit access to the WebLogic resource).

If some Authorization providers’ Access Decisions return PERMIT and others return
ABSTAIN, then return a final verdict of FALSE (that is, deny access to the WebLogic
resource).

If any of the Authorization providers’ Access Decisions return ABSTAIN or DENY, then
return a final verdict of FALSE (that is, deny access to the WebLogic resource).

If you change the Require Unanimous Permit attribute to FALSE, the WebLogic Adjudication
provider acts as follows:

If all the Authorization providers’ Access Decisions return PERMIT, then return a final
verdict of TRUE (that is, permit access to the WebLogic resource).

If some Authorization providers’ Access Decisions return PERMIT and others return
ABSTAIN, then return a final verdict of TRUE (that is, permit access to the WebLogic
resource).

If any of the Authorization providers’ Access Decisions return DENY, then return a final
verdict of FALSE (that is, deny access to the WebLogic resource).

Note: You set the Require Unanimous Permit attributes when you configure the WebLogic
Adjudication provider. For more information about configuring the WebLogic
Adjudication provider, see “Configuring a WebLogic Adjudication Provider” in
Securing WebLogic Server.

If you want an Adjudication provider that behaves in a way that is different from what is
described above, then you need to develop a custom Adjudication provider. (Keep in mind that
an Adjudication provider may also specify what should be done when an answer of ABSTAIN is
returned from a single Authorization provider’s Access Decision, based on your specific security
requirements.)

http://e-docs.bea.com/wls/docs90/secmanage/providers.html#adjudicationprovider

How to Deve lop a Custom Ad jud icat i on P rov ider

Developing Security Providers for WebLogic Server 7-3

How to Develop a Custom Adjudication Provider
If the WebLogic Adjudication provider does not meet your needs, you can develop a custom
Adjudication provider by following these steps:

1. “Create Runtime Classes Using the Appropriate SSPIs” on page 7-3

2. “Generate an MBean Type Using the WebLogic MBeanMaker” on page 7-4

3. “Configure the Custom Adjudication Provider Using the Administration Console” on
page 7-10

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

“Understand the Purpose of the “Provider” SSPIs” on page 2-3

“Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes” on page 2-6

When you understand this information and have made your design decisions, create the runtime
classes for your custom Adjudication provider by following these steps:

“Implement the AdjudicationProviderV2 SSPI” on page 7-3

“Implement the AdjudicatorV2 SSPI” on page 7-4

Implement the AdjudicationProviderV2 SSPI
To implement the AdjudicationProviderV2 SSPI, provide implementations for the methods
described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3 and the following
method:

getAdjudicator
public AdjudicatorV2 getAdjudicator()

The getAdjudicator method obtains the implementation of the AdjudicatorV2 SSPI.
For a single runtime class called MyAdjudicationProviderImpl.java, the
implementation of the getAdjudicator method would be:

return this;

If there are two runtime classes, then the implementation of the getAdjudicator method
could be:

Adjud icat ion P rov ide rs

7-4 Developing Security Providers for WebLogic Server

return new MyAdjudicatorImpl;

This is because the runtime class that implements the AdjudicationProviderV2 SSPI
is used as a factory to obtain classes that implement the AdjudicatorV2 SSPI.

For more information about the AdjudicationProviderV2 SSPI and the getAdjudicator
method, see the WebLogic Server API Reference Javadoc.

Implement the AdjudicatorV2 SSPI
To implement the AdjudicatorV2 SSPI, provide implementations for the following methods:

initialize
public void initialize(AuthorizerMBean[] accessDecisionClassNames)

The initialize method initializes the names of all the configured Authorization
providers’ Access Decisions that will be called to supply a result for the “is access
allowed?” question. The accessDecisionClassNames parameter may also be used by
an Adjudication provider in its adjudicate method to favor a result from a particular
Access Decision. For more information about Authorization providers and Access
Decisions, see Chapter 6, “Authorization Providers.”

adjudicate
public boolean adjudicate(Result[] results, Resource resource,
 ContextHandler handler)

The adjudicate method determines the answer to the “is access allowed?” question,
given all the results from the configured Authorization providers’ Access Decisions.

For more information about the Adjudicator SSPI and the initialize and adjudicate
methods, see the WebLogic Server API Reference Javadoc.

Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you should first:

“Understand Why You Need an MBean Type” on page 2-10

“Determine Which SSPI MBeans to Extend and Implement” on page 2-10

“Understand the Basic Elements of an MBean Definition File (MDF)” on page 2-11

“Understand the SSPI MBean Hierarchy and How It Affects the Administration Console”
on page 2-14

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AdjudicationProvider.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/Adjudicator.html

How to Deve lop a Custom Ad jud icat i on P rov ider

Developing Security Providers for WebLogic Server 7-5

“Understand What the WebLogic MBeanMaker Provides” on page 2-16

When you understand this information and have made your design decisions, create the MBean
type for your custom Adjudication provider by following these steps:

1. “Create an MBean Definition File (MDF)” on page 7-5

2. “Use the WebLogic MBeanMaker to Generate the MBean Type” on page 7-5

3. “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on page 7-8

4. Install the MBean Type Into the WebLogic Server Environment

Notes: Several sample security providers (available under "Code Samples: WebLogic Server"
on the dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a Windows
environment.

Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Authentication provider to a text file.

Note: The MDF for the sample Authentication provider is called
SampleAuthenticator.xml. (There is currently no sample Adjudication provider.)

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in your MDF so
that they are appropriate for your custom Adjudication provider.

3. Add any custom attributes and operations (that is, additional <MBeanAttribute> and
<MBeanOperation> elements) to your MDF.

4. Save the file.

Note: A complete reference of MDF element syntax is available in Appendix A, “MBean
Definition File (MDF) Element Syntax.”

Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic MBeanMaker. The
WebLogic MBeanMaker is currently a command-line utility that takes as its input an MDF, and
outputs some intermediate Java files, including an MBean interface, an MBean implementation,
and an associated MBean information file. Together, these intermediate files form the MBean
type for your custom security provider.

http://dev2dev.bea.com/code/wls.jsp

Adjud icat ion P rov ide rs

7-6 Developing Security Providers for WebLogic Server

The instructions for generating an MBean type differ based on the design of your custom
Adjudication provider. Follow the instructions that are appropriate to your situation:

“No Custom Operations” on page 7-6

“Custom Operations” on page 7-6

No Custom Operations
If the MDF for your custom Adjudication provider does not include any custom operations,
follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: The WebLogic MBeanMaker processes one MDF at a time. Therefore, you may have
to repeat this process if you have multiple MDFs (in other words, multiple
Adjudication providers).

3. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 7-8.

Custom Operations
If the MDF for your custom Adjudication provider does include custom operations, consider the
following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

How to Deve lop a Custom Ad jud icat i on P rov ider

Developing Security Providers for WebLogic Server 7-7

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Adjudication providers).

3. For any custom operations in your MDF, implement the methods using the method stubs.

4. Save the file.

5. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 7-8.

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that your current
method implementations are not overwritten by the WebLogic MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Adjud icat ion P rov ide rs

7-8 Developing Security Providers for WebLogic Server

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Adjudication providers).

4. If you modified the MDF to include any custom operations that were not in the original
MDF, implement the methods using the method stubs.

5. Save the version of the MBean implementation file that is complete (that is, has all methods
implemented).

6. Copy this MBean implementation file into the directory where the WebLogic MBeanMaker
placed the intermediate files for the MBean type. You specified this as filesdir in step 3.
(You will be overriding the MBean implementation file generated by the WebLogic
MBeanMaker as a result of step 3.)

7. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 7-8.

About the Generated MBean Interface File
The MBean interface file is the client-side API to the MBean that your runtime class or your
MBean implementation will use to obtain configuration data. It is typically used in the initialize
method as described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3.

Because the WebLogic MBeanMaker generates MBean types from the MDF you created, the
generated MBean interface file will have the name of the MDF, plus the text “MBean” appended
to it. For example, the result of running the MyAdjudicator MDF through the WebLogic
MBeanMaker will yield an MBean interface file called MyAdjudicatorMBean.java.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply implementations
for the appropriate methods within it, you need to package the MBean files and the runtime

How to Deve lop a Custom Ad jud icat i on P rov ider

Developing Security Providers for WebLogic Server 7-9

classes for the custom Adjudication provider into an MBean JAR File (MJF). The WebLogic
MBeanMaker also automates this process.

To create an MJF for your custom Adjudication provider, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a JAR file
containing the new MBean types, jarfile is the name for the MJF and filesdir is the
location where the WebLogic MBeanMaker looks for the files to JAR into the MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and no
errors occur, an MJF is created with the specified name.

Notes: When you create a JAR file for a custom security provider, a set of XML binding classes
and a schema are also generated. You can choose a namespace to associate with that
schema. Doing so avoids the possiblity that your custom classes will conflict with those
provided by BEA. The default for the namespace is vendor. You can change this default
by passing the -targetNameSpace argument to the WebLogicMBeanMaker or the
associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and regenerate it. The
WebLogic MBeanMaker also has a -DIncludeSource option, which controls whether
source files are included into the resulting MJF. Source files include both the generated
source and the MDF itself. The default is false. This option is ignored when -DMJF is
not used.

The resulting MJF can be installed into your WebLogic Server environment, or distributed to
your customers for installation into their WebLogic Server environments.

Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level installation
directory for WebLogic Server. This “deploys” your custom Adjudication provider—that is, it
makes the custom Adjudication provider manageable from the WebLogic Server Administration
Console.

Note: WL_HOME\server\lib\mbeantypes is the default directory for installing MBean types.
(Beginning with 9.0, security providers can be loaded from

Adjud icat ion P rov ide rs

7-10 Developing Security Providers for WebLogic Server

...\domaindir\lib\mbeantypes as well.) However, if you want WebLogic Server to
look for MBean types in additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line flag when starting
your server, where <dir> is a comma-separated list of directory names. When you use
this flag, WebLogic Server will always load MBean types from
WL_HOME\server\lib\mbeantypes first, then will look in the additional directories
and load all valid archives present in those directories (regardless of their extension). For
example, if -Dweblogic.alternateTypesDirectory = dirX,dirY, WebLogic
Server will first load MBean types from WL_HOME\server\lib\mbeantypes, then any
valid archives present in dirX and dirY. If you instruct WebLogic Server to look in
additional directories for MBean types and are using the Java Security Manager, you
must also update the weblogic.policy file to grant appropriate permissions for the
MBean type (and thus, the custom security provider). For more information, see "Using
the Java Security Manager to Protect WebLogic Resources" in Programming WebLogic
Security.

You can create instances of the MBean type by configuring your custom Adjudication provider
(see “Configure the Custom Adjudication Provider Using the Administration Console” on
page 7-10), and then use those MBean instances from a GUI, from other Java code, or from APIs.
For example, you can use the WebLogic Server Administration Console to get and set attributes
and invoke operations, or you can develop other Java objects that instantiate MBeans and
automatically respond to information that the MBeans supply. We recommend that you back up
these MBean instances.

Configure the Custom Adjudication Provider Using the
Administration Console
Configuring a custom Adjudication provider means that you are adding the custom Adjudication
provider to your security realm, where it can be accessed by applications requiring adjudication
services.

Configuring custom security providers is an administrative task, but it is a task that may also be
performed by developers of custom security providers. The steps for configuring a custom
Adjudication provider using the WebLogic Server Administration Console are described under
“Configuring WebLogic Security Providers” in Securing WebLogic Server.

http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03
http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03
http://e-docs.bea.com/wls/docs90/secmanage/providers.html

Developing Security Providers for WebLogic Server 8-1

C H A P T E R 8

Role Mapping Providers

Role mapping is the process whereby principals (users or groups) are dynamically mapped to
security roles at runtime. In WebLogic Server, a Role Mapping provider determines what security
roles apply to the principals stored a subject when the subject is attempting to perform an
operation on a WebLogic resource. Because this operation usually involves gaining access to the
WebLogic resource, Role Mapping providers are typically used with Authorization providers.

The following sections describe Role Mapping provider concepts and functionality, and provide
step-by-step instructions for developing a custom Role Mapping provider:

“Role Mapping Concepts” on page 8-1

“The Role Mapping Process” on page 8-3

“Do You Need to Develop a Custom Role Mapping Provider?” on page 8-6

“How to Develop a Custom Role Mapping Provider” on page 8-6

Role Mapping Concepts
Before you develop a Role Mapping provider, you need to understand the following concepts:

“Security Roles” on page 8-2

“Dynamic Security Role Computation” on page 8-2

“Security Providers and WebLogic Resources” on page 2-26

Role Mapping P rov ide rs

8-2 Developing Security Providers for WebLogic Server

Security Roles
A security role is a named collection of users or groups that have similar permissions to access
WebLogic resources. Like groups, security roles allow you to control access to WebLogic
resources for several users at once. However, security roles are scoped to specific resources in a
WebLogic Server domain (unlike groups, which are scoped to an entire WebLogic Server
domain), and can be defined dynamically (as described in “Dynamic Security Role Computation”
on page 8-2).

Notes: For more information about security roles, see “Users, Groups, and Security Roles” in
Securing WebLogic Resources. For more information about WebLogic resources, see
“Security Providers and WebLogic Resources” on page 2-26, and “WebLogic
Resources” in Securing WebLogic Resources.

The SecurityRole interface in the weblogic.security.service package is used to represent
the abstract notion of a security role. (For more information, see the WebLogic Server API
Reference Javadoc for the SecurityRole interface.)

Mapping a principal to a security role grants the defined access permissions to that principal, as
long as the principal is “in” the security role. For example, an application may define a security
role called AppAdmin, which provides write access to a small subset of that application's
resources. Any principal in the AppAdmin security role would then have write access to those
resources. For more information, see “Dynamic Security Role Computation” on page 8-2 and
“Users, Groups, and Security Roles” in Securing WebLogic Resources.

Many principals can be mapped to a single security role. For more information about principals,
see “Users and Groups, Principals and Subjects” on page 3-2.

Security roles are specified in Java 2 Enterprise Edition (J2EE) deployment descriptor files
and/or in the WebLogic Server Administration Console. For more information, see “Managing
Role Mapping Providers and Deployment Descriptors” on page 8-27.

Dynamic Security Role Computation
Security roles can be declarative (that is, Java 2 Enterprise Edition roles) or dynamically
computed based on the context of the request.

Dynamic security role computation is the term for this late binding of principals (that is, users
or groups) to security roles at runtime. The late binding occurs just prior to an authorization
decision for a protected WebLogic resource, regardless of whether the principal-to-security role
association is statically defined or dynamically computed. Because of its placement in the

http://e-docs.bea.com/wls/docs90/secwlres/secroles.html
http://e-docs.bea.com/wls/docs90/secwlres/types.html
http://e-docs.bea.com/wls/docs90/secwlres/types.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/service/SecurityRole.html
http://e-docs.bea.com/wls/docs90/secwlres/secroles.html

The Ro le Mapping Process

Developing Security Providers for WebLogic Server 8-3

invocation sequence, the result of any principal-to-security role computations can be taken as an
authentication identity, as part of the authorization decision made for the request.

This dynamic computation of security roles provides a very important benefit: users or groups
can be granted a security role based on business rules. For example, a user may be allowed to be
in a Manager security role only while the actual manager is away on an extended business trip.
Dynamically computing this security role means that you do not need to change or redeploy your
application to allow for such a temporarily arrangement. Further, you would not need to
remember to revoke the special privileges when the actual manager returns, as you would if you
temporarily added the user to a Managers group.

Note: You typically grant users or groups security roles using the role conditions available in
the WebLogic Server Administration Console. (In this release of WebLogic Server, you
cannot write custom role conditions.) For more information, see “Users, Groups, and
Security Roles” in Securing WebLogic Resources.

The computed security role is able to access a number of pieces of information that make up the
context of the request, including the identity of the target (if available) and the parameter values
of the request. The context information is typically used as values of parameters in an expression
that is evaluated by the WebLogic Security Framework. This functionality is also responsible for
computing security roles that were statically defined through a deployment descriptor or through
the WebLogic Server Administration Console.

Notes: The computation of security roles for an authenticated user enhances the Role-Based
Access Control (RBAC) security defined by the Java 2 Enterprise Edition (J2EE)
specification.

You create dynamic security role computations by defining role statements in the
WebLogic Server Administration Console. For more information, see “Users, Groups,
and Security Roles” in Securing WebLogic Resources.

The Role Mapping Process
The WebLogic Security Framework calls each Role Mapping provider that is configured for a
security realm as part of an authorization decision. For related information, see “The
Authorization Process” on page 6-2.

The result of the dynamic security role computation (performed by the Role Mapping providers)
is a set of security roles that apply to the principals stored in a subject at a given moment. These
security roles can then be used to make authorization decisions for protected WebLogic
resources, as well as for resource container and application code. For example, an Enterprise
JavaBean (EJB) could use the Java 2 Enterprise Edition (J2EE) isCallerInRole method to

http://e-docs.bea.com/wls/docs90/secwlres/secroles.html
http://e-docs.bea.com/wls/docs90/secwlres/secroles.html
http://e-docs.bea.com/wls/docs90/secwlres/secroles.html
http://e-docs.bea.com/wls/docs90/secwlres/secroles.html

Role Mapping P rov ide rs

8-4 Developing Security Providers for WebLogic Server

retrieve fields from a record in a database, without having knowledge of the business policies that
determine whether access is allowed.

Figure 8-1 shows how the Role Mapping providers interact with the WebLogic Security
Framework to create dynamic security role computations, and an explanation follows.

Figure 8-1 Role Mapping Providers and the Role Mapping Process

Generally, role mapping is performed in the following manner:

1. A user or system process requests a WebLogic resource on which it will attempt to perform a
given operation.

2. The resource container that handles the type of WebLogic resource being requested receives
the request (for example, the EJB container receives the request for an EJB resource).

Note: The resource container could be the container that handles any one of the WebLogic
Resources described in “Security Providers and WebLogic Resources” on page 2-26.

3. The resource container constructs a ContextHandler object that may be used by Role
Mapping providers to obtain information associated with the context of the request.

Note: For more information about ContextHandlers, see “ContextHandlers and WebLogic
Resources” on page 2-36.

The Ro le Mapping Process

Developing Security Providers for WebLogic Server 8-5

The resource container calls the WebLogic Security Framework, passing in the subject
(which already contains user and group principals), an identifier for the WebLogic
resource, and optionally, the ContextHandler object (to provide additional input).

Note: For more information about subjects, see “Users and Groups, Principals and
Subjects” on page 3-2. For more information about resource identifiers, see
“WebLogic Resource Identifiers” on page 2-28.

4. The WebLogic Security Framework calls each configured Role Mapping provider to obtain
a list of the security roles that apply. This works as follows:

a. The Role Mapping providers use the ContextHandler to request various pieces of
information about the request. They construct a set of Callback objects that represent the
type of information being requested. This set of Callback objects is then passed as an
array to the ContextHandler using the handle method.

The Role Mapping providers may call the ContextHandler more than once in order to
obtain the necessary context information. (The number of times a Role Mapping
provider calls the ContextHandler is dependent upon its implementation.)

b. Using the context information and their associated security provider databases containing
security policies, the subject, and the WebLogic resource, the Role Mapping providers
determine whether the requestor (represented by the user and group principals in the
subject) is entitled to a certain security role.

The security policies are represented as a set of expressions or rules that are evaluated
to determine if a given security role is to be granted. These rules may require the Role
Mapping provider to substitute the value of context information obtained as parameters
into the expression. In addition, the rules may also require the identity of a user or
group principal as the value of an expression parameter.

Note: The rules for security policies are set up in the WebLogic Server Administration
Console and in Java 2 Enterprise Edition (J2EE) deployment descriptors. For
more information, see “Security Policies” in Securing WebLogic Resources.

c. If a security policy specifies that the requestor is entitled to a particular security role, the
security role is added to the list of security roles that are applicable to the subject.

d. This process continues until all security policies that apply to the WebLogic resource or
the resource container have been evaluated.

5. The list of security roles is returned to the WebLogic Security Framework, where it can be
used as part of other operations, such as access decisions.

http://e-docs.bea.com/wls/docs90/secwlres/sec_poly.html

Role Mapping P rov ide rs

8-6 Developing Security Providers for WebLogic Server

Do You Need to Develop a Custom Role Mapping Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic Role
Mapping provider. The WebLogic Role Mapping provider computes dynamic security roles for
a specific user (subject) with respect to a specific protected WebLogic resource for each of the
default users and WebLogic resources. The WebLogic Role Mapping provider supports the
deployment and undeployment of security roles within the system. The WebLogic Role Mapping
provider uses the same security policy engine as the WebLogic Authorization provider. If you
want to use a role mapping mechanism that already exists within your organization, you could
create a custom Role Mapping provider to tie into that system.

Does Your Custom Role Mapping Provider Need to Support
Application Versioning?
All Authorization, Role Mapping, and Credential Mapping providers for the security realm must
support application versioning in order for an application to be deployed using versions. If you
develop a custom security provider for Authorization, Role Mapping, or Credential Mapping and
need to support versioned applications, you must implement the Versionable Application SSPI,
as described in Chapter 13, “Versionable Application Providers.”

How to Develop a Custom Role Mapping Provider
If the WebLogic Role Mapping provider does not meet your needs, you can develop a custom
Role Mapping provider by following these steps:

1. “Create Runtime Classes Using the Appropriate SSPIs” on page 8-6

2. “Generate an MBean Type Using the WebLogic MBeanMaker” on page 8-20

3. “Configure the Custom Role Mapping Provider Using the Administration Console”

4. “Provide a Mechanism for Security Role Management” on page 8-29

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

“Understand the Purpose of the “Provider” SSPIs” on page 2-3

“Determine Which “Provider” Interface You Will Implement” on page 2-4

How to Deve l op a Custom Ro le Mapping Prov ider

Developing Security Providers for WebLogic Server 8-7

“Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes”

When you understand this information and have made your design decisions, create the runtime
classes for your custom Role Mapping provider by following these steps:

“Implement the RoleProvider SSPI” on page 8-7 or “Implement the
DeployableRoleProviderV2 SSPI” on page 8-8

“Implement the RoleMapper SSPI” on page 8-9

“Implement the SecurityRole Interface” on page 8-11

Note: At least one Role Mapping provider in a security realm must implement the
DeployableRoleProviderV2 SSPI, or else it will be impossible to deploy Web
applications and EJBs.

For an example of how to create a runtime class for a custom Role Mapping provider, see
“Example: Creating the Runtime Class for the Sample Role Mapping Provider” on page 8-12.

Implement the RoleProvider SSPI
To implement the RoleProvider SSPI, provide implementations for the methods described in
“Understand the Purpose of the “Provider” SSPIs” on page 2-3 and the following method:

getRoleMapper
public RoleMapper getRoleMapper()

The getRoleMapper method obtains the implementation of the RoleMapper SSPI. For a
single runtime class called MyRoleProviderImpl.java, the implementation of the
getRoleMapper method would be:

return this;

If there are two runtime classes, then the implementation of the getRoleMapper method
could be:

return new MyRoleMapperImpl;

This is because the runtime class that implements the RoleProvider SSPI is used as a
factory to obtain classes that implement the RoleMapper SSPI.

For more information about the RoleProvider SSPI and the getRoleMapper method, see the
WebLogic Server API Reference Javadoc.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/RoleProvider.html

Role Mapping P rov ide rs

8-8 Developing Security Providers for WebLogic Server

Implement the DeployableRoleProviderV2 SSPI
Note: The DeployableRoleProvider SSPI is deprecated in this release of WebLogic Server. Use

the DeployableRoleProviderV2 SSPI instead.

To implement the DeployableRoleProviderV2 SSPI, provide implementations for the
methods described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3,
“Implement the RoleProvider SSPI” on page 8-7, and the following methods:

deleteApplicationRoles
void deleteApplicationRoles(ApplicationInfo application)

Deletes all roles for an application and is called only on the Administration Server within
a WLS domain at the time an application is deleted.

deployRole
void deployRole(DeployRoleHandle handle, Resource resource, String
roleName, String[] userAndGroupNames)

Creates a role on behalf of a deployed Web application or EJB. If the role already exists,
it is removed and replaced by this role.

endDeployRoles
void endDeployRoles(DeployRoleHandle handle)

Marks the end of an application role deployment.

startDeployRoles
DeployRoleHandle startDeployRoles(ApplicationInfo application)

Marks the beginning of an application role deployment and is called on all servers within
a WebLogic Server domain where an application is targeted.

undeployAllRoles
void undeployAllRoles(DeployRoleHandle handle)

Deletes a set of roles on behalf of an undeployed Web application or EJB.

For more information about the DeployableRoleProvider SSPI and the deployRole and
undeployRole methods, see the WebLogic Server API Reference Javadoc.

The ApplicationInfo Interface
The ApplicationInfo interface passes data about an application deployment to a security provider.
You can use this data to uniquely identity the application.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/DeployableRoleProvider.html

How to Deve l op a Custom Ro le Mapping Prov ider

Developing Security Providers for WebLogic Server 8-9

The Security Framework implements the ApplicationInfo interface for your convenience. You do
not need to implement any methods for this interface.

The DeployableAuthorizationProviderV2 and DeployableRoleProviderV2 interfaces use
ApplicationInfo. For example, consider an implementation of the DeployableRoleProviderV2
methods. The Security Framework calls the DeployableRoleProviderV2 startDeployRoles
method and passes in the ApplicationInfo interface for this application. The ApplicationInfo
data is determined based on the information supplied in the Administration Console when an
application is deployed.

The startDeployRoles method returns DeployRoleHandle, which you can then use in the
other DeployableRoleProviderV2 methods.

You use the ApplicationInfo interface to get the application identifier, the component name, and
the component type for this application. Component type can be APPLICATION,
CONTROL_RESOURCE, EJB, or WEBAPP, as defined in the ApplicationInfo.ComponentType
class.

The following example shows one way to accomplish this task:

public DeployRoleHandle startDeployRoles(ApplicationInfo appInfo)

 throws DeployHandleCreationException

 :

// Obtain the application information...

 String appId = appInfo.getApplicationIdentifier();

 ComponentType compType = appInfo.getComponentType();

 String compName = appInfo.getComponentName();

The Security Framework calls the DeployableRoleProviderV2 deleteApplicationRoles
method and passes in the ApplicationInfo interface for this application. The
deleteApplicationRoles method deletes all roles for an application and is called (only on the
Administration Server within a WebLogic Server domain) at the time an application is deleted.

Implement the RoleMapper SSPI
To implement the RoleMapper SSPI, provide implementations for the following methods:

getRoles
public Map getRoles(Subject subject, Resource resource,
ContextHandler handler)

Role Mapping P rov ide rs

8-10 Developing Security Providers for WebLogic Server

The getRoles method returns the security roles associated with a given subject for a
specified WebLogic resource, possibly using the optional information specified in the
ContextHandler. For more information about ContextHandlers, see “ContextHandlers
and WebLogic Resources” on page 2-36.

For more information about the RoleMapper SSPI and the getRoles methods, see the WebLogic
Server API Reference Javadoc.

Developing Custom Role Mapping Providers That Are Compatible With the Realm Adapter
Authentication Provider
An Authentication provider is the security provider responsible for populating a subject with
users and groups, which are then extracted from the subject by other types of security providers,
including Role Mapping providers. If the Authentication provider configured in your security
realm is a Realm Adapter Authentication provider, the user and group information will be stored
in the subject in a way that is slightly different from other Authentication providers. Therefore,
this user and group information must also be extracted in a slightly different way.

Listing 8-1 provides code that can be used by custom Role Mapping providers to check whether
a subject matches a user or group name when a Realm Adapter Authentication provider was used
to populate the subject. This code belongs in the getRoles method.

Listing 8-1 Sample Code to Check if a Subject Matches a User or Group Name

/**
* Determines if the Subject matches a user/group name.
*
* @param principalWant A String containing the name of a principal in this role
* (that is, the role definition).
*
* @param subject A Subject that contains the Principals that identify the user
* who is trying to access the resource as well as the user's groups.
*
* @return A boolean. true if the current subject matches the name of the
* principal in the role, false otherwise.
*/
private boolean subjectMatches(String principalWant, Subject subject)
{

// first, see if it's a group name match
if (SubjectUtils.isUserInGroup(subject, principalWant)) {

return true;
}
// second, see if it's a user name match
if (principalWant.equals(SubjectUtils.getUsername(subject))) {

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/RoleMapper.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/RoleMapper.html

How to Deve l op a Custom Ro le Mapping Prov ider

Developing Security Providers for WebLogic Server 8-11

return true;
}
// didn't match
return false;

}

Implement the SecurityRole Interface
The methods on the SecurityRole interface allow you to obtain basic information about a
security role, or to compare it to another security role. These methods are designed for the
convenience of security providers.

Note: SecurityRole implementations are returned as a Map by the getRoles() method (see
“Implement the RoleMapper SSPI” on page 8-9).

To implement the SecurityRole interface, provide implementations for the following methods:

equals
public boolean equals(Object another)

The equals method returns TRUE if the security role passed in matches the security role
represented by the implementation of this interface, and FALSE otherwise.

toString
public String toString()

The toString method returns this security role, represented as a String.

hashCode
public int hashCode()

The hashCode method returns a hashcode for this security role, represented as an integer.

getName
public String getName()

The getName method returns the name of this security role, represented as a String.

getDescription
public String getDescription()

The getDescription method returns a description of this security role, represented as a
String. The description should describe the purpose of this security role.

Role Mapping P rov ide rs

8-12 Developing Security Providers for WebLogic Server

Example: Creating the Runtime Class for the Sample Role Mapping Provider
Listing 8-2 shows the SimpleSampleRoleMapperProviderImpl.java class, which is the
runtime class for the sample Role Mapping provider. This runtime class includes
implementations for:

The three methods inherited from the SecurityProvider interface: initialize,
getDescription and shutdown (as described in “Understand the Purpose of the
“Provider” SSPIs” on page 2-3.)

The method inherited from the RoleProvider SSPI: the getRoleMapper method (as
described in “Implement the RoleProvider SSPI” on page 8-7).

The five methods in the DeployableRoleProviderV2 SSPI: the deleteApplicationRoles,
deployRole, endDeployRoles, startDeployRoles, and undeployAllRoles methods (as
described in “Implement the DeployableRoleProviderV2 SSPI” on page 8-8).

The method in the RoleMapper SSPI: the getRoles method (as described in “Implement
the RoleMapper SSPI” on page 8-9).

Note: The bold face code in Listing 8-2 highlights the class declaration and the method
signatures.

Listing 8-2 SimpleSampleRoleMapperProviderImpl.java

package examples.security.providers.roles.simple;

import java.security.Principal;
import java.util.Collections;
import java.util.Date;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Properties;
import java.util.Set;
import javax.security.auth.Subject;
import weblogic.management.security.ProviderMBean;
import weblogic.security.SubjectUtils;
import weblogic.security.WLSPrincipals;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.ApplicationInfo;
import weblogic.security.spi.ApplicationInfo.ComponentType;

How to Deve l op a Custom Ro le Mapping Prov ider

Developing Security Providers for WebLogic Server 8-13

import weblogic.security.spi.DeployableRoleProviderV2;
import weblogic.security.spi.DeployRoleHandle;
import weblogic.security.spi.Resource;
import weblogic.security.spi.RoleMapper;
import weblogic.security.spi.SecurityServices;
import weblogic.security.spi.VersionableApplicationProvider;

public final class SimpleSampleRoleMapperProviderImpl
implements DeployableRoleProviderV2, RoleMapper, VersionableApplicationProvider

{
private String description; // a description of this provider
private SimpleSampleRoleMapperDatabase database; // manages the role

definitions for this provider
private static final Map NO_ROLES = Collections.unmodifiableMap(new

HashMap(1)); // used when no roles are found

public void initialize(ProviderMBean mbean, SecurityServices services)
{

System.out.println("SimpleSampleRoleMapperProviderImpl.initialize");

// Cast the mbean from a generic ProviderMBean to a SimpleSampleRoleMapperMBean.
SimpleSampleRoleMapperMBean myMBean = (SimpleSampleRoleMapperMBean)mbean;

// Set the description to the simple sample role mapper's mbean's
description and version

description = myMBean.getDescription() + "\n" + myMBean.getVersion();

// Instantiate the helper that manages this provider's role definitions
database = new SimpleSampleRoleMapperDatabase(myMBean);

}

public String getDescription()
{

return description;
}

public void shutdown()
{

System.out.println("SimpleSampleRoleMapperProviderImpl.shutdown");
}

public RoleMapper getRoleMapper()

Role Mapping P rov ide rs

8-14 Developing Security Providers for WebLogic Server

 {
// Since this class implements both the DeployableRoleProvider
// and RoleMapper interfaces, this object is the
// role mapper object so just return "this".
return this;

}

public Map getRoles(Subject subject, Resource resource, ContextHandler handler)
{

System.out.println("SimpleSampleRoleMapperProviderImpl.getRoles");
System.out.println("\tsubject\t= " + subject);
System.out.println("\tresource\t= " + resource);

// Make a list for the roles
Map roles = new HashMap();

// Make a list for the roles that have already been found and evaluated
Set rolesEvaluated = new HashSet();

// since resources scope roles, and resources are hierarchical,
// loop over the resource and all its parents, adding in any roles
// that match the current subject.

for (Resource res = resource; res != null; res = res.getParentResource()) {
getRoles(res, subject, roles, rolesEvaluated);

}

// try global resources too
getRoles(null, subject, roles, rolesEvaluated);

// special handling for no matching roles
if (roles.isEmpty()) {

return NO_ROLES;
}

// return the roles we found.
System.out.println("\troles\t= " + roles);
return roles;
}

public DeployRoleHandle startDeployRoles(ApplicationInfo application)
{

String appId = application.getApplicationIdentifier();
String compName = application.getComponentName();

How to Deve l op a Custom Ro le Mapping Prov ider

Developing Security Providers for WebLogic Server 8-15

ComponentType compType = application.getComponentType();
DeployRoleHandle handle = new

SampleDeployRoleHandle(appId,compName,compType);

// ensure that previous roles have been removed so that
// the most up to date deployment roles are in effect
database.removeRolesForComponent(appId, compName, compType);

// A null handle may be returned if needed
return handle;

}

public void deployRole(DeployRoleHandle handle, Resource resource,
String roleName, String[] principalNames)
{

System.out.println("SimpleSampleRoleMapperProviderImpl.deployRole");
System.out.println("\thandle\t\t= " +

((SampleDeployRoleHandle)handle).toString());
System.out.println("\tresource\t\t= " + resource);
System.out.println("\troleName\t\t= " + roleName);

for (int i = 0; principalNames != null && i < principalNames.length; i++) {
System.out.println("\tprincipalNames[" + i + "]\t= " + principalNames[i]);

}
database.setRole(resource, roleName, principalNames);

}

public void endDeployRoles(DeployRoleHandle handle)
{
database.saveRoles();
}

public void undeployAllRoles(DeployRoleHandle handle)
{

System.out.println("SimpleSampleRoleMapperProviderImpl.undeployAllRoles");
SampleDeployRoleHandle myHandle = (SampleDeployRoleHandle)handle;
System.out.println("\thandle\t= " + myHandle.toString());

// remove roles
database.removeRolesForComponent(myHandle.getApplication(),

myHandle.getComponent(),
myHandle.getComponentType());

}

public void deleteApplicationRoles(ApplicationInfo application)

Role Mapping P rov ide rs

8-16 Developing Security Providers for WebLogic Server

{
System.out.println("SimpleSampleRoleMapperProviderImpl.deleteApplicationRol

es");
String appId = application.getApplicationIdentifier();
System.out.println("\tapplication identifier\t= " + appId);

// clear out roles for the application
database.removeRolesForApplication(appId);

}

private void getRoles(Resource resource, Subject subject,
Map roles, Set rolesEvaluated)

 {
// loop over all the roles in our "database" for this resource
for (Enumeration e = database.getRoles(resource); e.hasMoreElements();) {

String role = (String)e.nextElement();

// Only check for roles not already evaluated
if (rolesEvaluated.contains(role)) {
continue;

}

// Add the role to the evaluated list
rolesEvaluated.add(role);

// If any of the principals is on that role, add the role to the list.
if (roleMatches(resource, role, subject)) {

// Add a simple sample role mapper role instance to the list of roles.
roles.put(role, new SimpleSampleSecurityRoleImpl(role));

}
}

}

private boolean roleMatches(Resource resource, String role, Subject subject)
{

// loop over the the principals that are in this role.
for (Enumeration e = database.getPrincipalsForRole(resource, role);

e.hasMoreElements();) {

// get the next principal in this role
String principalWant = (String)e.nextElement();

// see if any of the current principals match this principal
if (subjectMatches(principalWant, subject)) {

How to Deve l op a Custom Ro le Mapping Prov ider

Developing Security Providers for WebLogic Server 8-17

return true;
}

}
return false;
}

private boolean subjectMatches(String principalWant, Subject subject)
{

// first, see if it's a group name match
if (SubjectUtils.isUserInGroup(subject, principalWant)) {

return true;
}
// second, see if it's a user name match
if (principalWant.equals(SubjectUtils.getUsername(subject))) {

return true;
}
// didn't match
return false;

}

public void createApplicationVersion(String appId, String sourceAppId)
{

System.out.println("SimpleSampleRoleMapperProviderImpl.createApplicationVer
sion");

System.out.println("\tapplication identifier\t= " + appId);
System.out.println("\tsource app identifier\t= " + ((sourceAppId != null) ?

sourceAppId : "None"));

// create new roles when existing application is specified
if (sourceAppId != null) {

database.cloneRolesForApplication(sourceAppId,appId);
}

}

public void deleteApplicationVersion(String appId)
{

System.out.println("SimpleSampleRoleMapperProviderImpl.deleteApplicationVer
sion");

System.out.println("\tapplication identifier\t= " + appId);

// clear out roles for the application
database.removeRolesForApplication(appId);

}

public void deleteApplication(String appName)
{

System.out.println("SimpleSampleRoleMapperProviderImpl.deleteApplication");
System.out.println("\tapplication name\t= " + appName);

Role Mapping P rov ide rs

8-18 Developing Security Providers for WebLogic Server

// clear out roles for the application
database.removeRolesForApplication(appName);

}

class SampleDeployRoleHandle implements DeployRoleHandle
{

Date date;
String application;
String component;
ComponentType componentType;

SampleDeployRoleHandle(String app, String comp, ComponentType type)
{

this.application = app;
this.component = comp;
this.componentType = type;
this.date = new Date();

}

public String getApplication() { return application; }
public String getComponent() { return component; }
public ComponentType getComponentType() { return componentType; }

public String toString()
{

String name = component;
if (componentType == ComponentType.APPLICATION)
name = application;

return componentType +" "+ name +" ["+ date.toString() +"]";
}
}

}

Listing 8-3 shows the sample SecurityRole implementation that is used along with the
SimpleSampleRoleMapperProviderImpl.java runtime class.

Listing 8-3 SimpleSampleSecurityRoleImpl.java

package examples.security.providers.roles.simple;

import weblogic.security.service.SecurityRole;

How to Deve l op a Custom Ro le Mapping Prov ider

Developing Security Providers for WebLogic Server 8-19

/*package*/ class SimpleSampleSecurityRoleImpl implements SecurityRole
{

private String roleName; // the role's name
private int hashCode; // the role's hash code

/*package*/ SimpleSampleSecurityRoleImpl(String roleName)
{

this.roleName = roleName;
this.hashCode = roleName.hashCode() + 17;

}

public boolean equals(Object genericRole)
{

// if the other role is null, we're not the same
if (genericRole == null) {
return false;
}

// if we're the same java object, we're the same
if (this == genericRole) {

return true;
}

// if the other role is not a simple sample role mapper role,
// we're not the same
if (!(genericRole instanceof SimpleSampleSecurityRoleImpl)) {
return false;
}

// Cast the other role to a simple sample role mapper role.
SimpleSampleSecurityRoleImpl sampleRole =
(SimpleSampleSecurityRoleImpl)genericRole;

// if our names don't match, we're not the same
if (!roleName.equals(sampleRole.getName())) {

return false;
}

// we're the same
return true;

}

public String toString()
{
return roleName;

Role Mapping P rov ide rs

8-20 Developing Security Providers for WebLogic Server

}

public int hashCode()
{
return hashCode;
}

public String getName()
{

return roleName;
}

public String getDescription()
{

return "";
}
}

Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you should first:

“Understand Why You Need an MBean Type” on page 2-10

“Determine Which SSPI MBeans to Extend and Implement” on page 2-10

“Understand the Basic Elements of an MBean Definition File (MDF)” on page 2-11

“Understand the SSPI MBean Hierarchy and How It Affects the Administration Console”
on page 2-14

“Understand What the WebLogic MBeanMaker Provides” on page 2-16

When you understand this information and have made your design decisions, create the MBean
type for your custom Role Mapping provider by following these steps:

1. “Create an MBean Definition File (MDF)” on page 8-21

2. “Use the WebLogic MBeanMaker to Generate the MBean Type” on page 8-21

3. “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on page 8-24

How to Deve l op a Custom Ro le Mapping Prov ider

Developing Security Providers for WebLogic Server 8-21

4. “Install the MBean Type Into the WebLogic Server Environment” on page 8-25

Notes: Several sample security providers (available under "Code Samples: WebLogic Server"
on the dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a Windows
environment.

Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Role Mapping provider to a text file.

Note: The MDF for the sample Role Mapping provider is called
SimpleSampleRoleMapper.xml.

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in your MDF so
that they are appropriate for your custom Role Mapping provider.

3. Add any custom attributes and operations (that is, additional <MBeanAttribute> and
<MBeanOperation> elements) to your MDF.

4. Save the file.

Note: A complete reference of MDF element syntax is available in Appendix A, “MBean
Definition File (MDF) Element Syntax.”

Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic MBeanMaker. The
WebLogic MBeanMaker is currently a command-line utility that takes as its input an MDF, and
outputs some intermediate Java files, including an MBean interface, an MBean implementation,
and an associated MBean information file. Together, these intermediate files form the MBean
type for your custom security provider.

The instructions for generating an MBean type differ based on the design of your custom Role
Mapping provider. Follow the instructions that are appropriate to your situation:

“No Custom Operations” on page 8-22

“Custom Operations” on page 8-22

http://dev2dev.bea.com/code/wls.jsp

Role Mapping P rov ide rs

8-22 Developing Security Providers for WebLogic Server

No Custom Operations
If the MDF for your custom Role Mapping provider does not include any custom operations,
follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Role Mapping providers).

3. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 8-24.

Custom Operations
If the MDF for your custom Role Mapping provider does include custom operations, consider the
following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

How to Deve l op a Custom Ro le Mapping Prov ider

Developing Security Providers for WebLogic Server 8-23

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Role Mapping providers).

3. For any custom operations in your MDF, implement the methods using the method stubs.

4. Save the file.

5. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 8-24.

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that your current
method implementations are not overwritten by the WebLogic MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Role Mapping P rov ide rs

8-24 Developing Security Providers for WebLogic Server

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Role Mapping providers).

4. If you modified the MDF to include any custom operations that were not in the original
MDF, implement the methods using the method stubs.

5. Save the version of the MBean implementation file that is complete (that is, has all methods
implemented).

6. Copy this MBean implementation file into the directory where the WebLogic MBeanMaker
placed the intermediate files for the MBean type. You specified this as filesdir in step 3.
(You will be overriding the MBean implementation file generated by the WebLogic
MBeanMaker as a result of step 3.)

7. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 8-24.

About the Generated MBean Interface File
The MBean interface file is the client-side API to the MBean that your runtime class or your
MBean implementation will use to obtain configuration data. It is typically used in the initialize
method as described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3.

Because the WebLogic MBeanMaker generates MBean types from the MDF you created, the
generated MBean interface file will have the name of the MDF, plus the text “MBean” appended
to it. For example, the result of running the SampleRoleMapper MDF through the WebLogic
MBeanMaker will yield an MBean interface file called SampleRoleMapperMBean.java.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply implementations
for the appropriate methods within it, you need to package the MBean files and the runtime
classes for the custom Role Mapping provider into an MBean JAR File (MJF). The WebLogic
MBeanMaker also automates this process.

To create an MJF for your custom Role Mapping provider, follow these steps:

How to Deve l op a Custom Ro le Mapping Prov ider

Developing Security Providers for WebLogic Server 8-25

1. Create a new DOS shell.

2. Type the following command:
java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a JAR file
containing the new MBean types, jarfile is the name for the MJF and filesdir is the
location where the WebLogic MBeanMaker looks for the files to JAR into the MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and no
errors occur, an MJF is created with the specified name.

Notes: When you create a JAR file for a custom security provider, a set of XML binding classes
and a schema are also generated. You can choose a namespace to associate with that
schema. Doing so avoids the possiblity that your custom classes will conflict with those
provided by BEA. The default for the namespace is vendor. You can change this default
by passing the -targetNameSpace argument to the WebLogicMBeanMaker or the
associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and regenerate it. The
WebLogic MBeanMaker also has a -DIncludeSource option, which controls whether
source files are included into the resulting MJF. Source files include both the generated
source and the MDF itself. The default is false. This option is ignored when -DMJF is
not used.

The resulting MJF can be installed into your WebLogic Server environment, or distributed to
your customers for installation into their WebLogic Server environments.

Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level installation
directory for WebLogic Server. This “deploys” your custom Role Mapping provider—that is, it
makes the custom Role Mapping provider manageable from the WebLogic Server
Administration Console.

Note: WL_HOME\server\lib\mbeantypes is the default directory for installing MBean types.
(Beginning with 9.0, security providers can be loaded from
...\domaindir\lib\mbeantypes as well.) However, if you want WebLogic Server to
look for MBean types in additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line flag when starting
your server, where <dir> is a comma-separated list of directory names. When you use

Role Mapping P rov ide rs

8-26 Developing Security Providers for WebLogic Server

this flag, WebLogic Server will always load MBean types from
WL_HOME\server\lib\mbeantypes first, then will look in the additional directories
and load all valid archives present in those directories (regardless of their extension). For
example, if -Dweblogic.alternateTypesDirectory = dirX,dirY, WebLogic
Server will first load MBean types from WL_HOME\server\lib\mbeantypes, then any
valid archives present in dirX and dirY. If you instruct WebLogic Server to look in
additional directories for MBean types and are using the Java Security Manager, you
must also update the weblogic.policy file to grant appropriate permissions for the
MBean type (and thus, the custom security provider). For more information, see "Using
the Java Security Manager to Protect WebLogic Resources" in Programming WebLogic
Security.

You can create instances of the MBean type by configuring your custom Role Mapping provider
(see “Configure the Custom Role Mapping Provider Using the Administration Console” on
page 8-26), and then use those MBean instances from a GUI, from other Java code, or from APIs.
For example, you can use the WebLogic Server Administration Console to get and set attributes
and invoke operations, or you can develop other Java objects that instantiate MBeans and
automatically respond to information that the MBeans supply. We recommend that you back up
these MBean instances.

Configure the Custom Role Mapping Provider Using the
Administration Console
Configuring a custom Role Mapping provider means that you are adding the custom Role
Mapping provider to your security realm, where it can be accessed by applications requiring role
mapping services.

Configuring custom security providers is an administrative task, but it is a task that may also be
performed by developers of custom security providers. This section contains information that is
important for the person configuring your custom Role Mapping providers:

“Managing Role Mapping Providers and Deployment Descriptors” on page 8-27

“Enabling Security Role Deployment” on page 8-28

Note: The steps for configuring a custom Role Mapping provider using the WebLogic Server
Administration Console are described under “Configuring Weblogic Security Providers”
in Securing WebLogic Server.

http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03
http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03
http://e-docs.bea.com/wls/docs90/secmanage/providers.html

How to Deve l op a Custom Ro le Mapping Prov ider

Developing Security Providers for WebLogic Server 8-27

Managing Role Mapping Providers and Deployment Descriptors
Some application components, such as Enterprise JavaBeans (EJBs) and Web applications, store
relevant deployment information in Java 2 Enterprise Edition (J2EE) and WebLogic Server
deployment descriptors. For Web applications, the deployment descriptor files (called web.xml
and weblogic.xml) contain information for implementing the J2EE security model, including
security roles. Typically, you will want to include this information when first configuring your
Role Mapping providers in the WebLogic Server Administration Console.

Because the J2EE platform standardizes Web application and EJB security in deployment
descriptors, WebLogic Server integrates this standard mechanism with its Security Service to
give you a choice of techniques for securing Web application and EJB resources. You can use
deployment descriptors exclusively, the Administration Console exclusively, or you can combine
the techniques for certain situations.

Depending on the technique you choose, you also need to apply a Security Model. WebLogic
supports different security models for individual deployments, and a security model for
realm-wide configurations that incorporate the technique you want to use.

For more information, see “Options for Securing EJB and Web Application Resources” in
Securing WebLogic Resources.

When configured to use deployment descriptors, WebLogic Server reads security role
information from the web.xml and weblogic.xml deployment descriptor files (examples of
web.xml and weblogic.xml files are shown in Listing 8-4, “Sample web.xml File,” on
page 8-27 and Listing 8-5, “Sample weblogic.xml File,” on page 8-28. This information is then
copied into the security provider database for the Role Mapping provider.

Listing 8-4 Sample web.xml File

<web-app>

<welcome-file-list>

<welcome-file>welcome.jsp</welcome-file>

</welcome-file-list>

<security-constraint>

<web-resource-collection>

<web-resource-name>Success</web-resource-name>

<url-pattern>/welcome.jsp</url-pattern>

<http-method>GET</http-method>

http://e-docs.bea.com/wls/docs90/secwlres/secejbwar.html#1223623

Role Mapping P rov ide rs

8-28 Developing Security Providers for WebLogic Server

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>developers</role-name>

</auth-constraint>

</security-constraint>

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>default</realm-name>

</login-config>

<security-role>

<role-name>developers</role-name>

</security-role>

</web-app>

Listing 8-5 Sample weblogic.xml File

<weblogic-web-app>

<security-role-assignment>

<role-name>developers</role-name>

<principal-name>myGroup</principal-name>

</security-role-assignment>

</weblogic-web-app>

Enabling Security Role Deployment
If you implemented the DeployableRoleProviderV2 SSPI as part of developing your custom
Role Mapping provider and want to support deployable security roles, the person configuring the
custom Role Mapping provider (that is, you or an administrator) must be sure that the Role
Deployment Enabled box in the WebLogic Server Administration Console is checked.
Otherwise, deployment for the Role Mapping provider is considered “turned off.” Therefore, if
multiple Role Mapping providers are configured, the Role Deployment Enabled box can be used
to control which Role Mapping provider is used for security role deployment.

How to Deve l op a Custom Ro le Mapping Prov ider

Developing Security Providers for WebLogic Server 8-29

Provide a Mechanism for Security Role Management
While configuring a custom Role Mapping provider via the WebLogic Server Administration
Console makes it accessible by applications requiring role mapping services, you also need to
supply administrators with a way to manage this security provider’s associated security roles. The
WebLogic Role Mapping provider, for example, supplies administrators with a Role Editor page
that allows them to add, modify, or remove security roles for various WebLogic resources.

Neither the Role Editor page nor access to it is available to administrators when you develop a
custom Role Mapping provider. Therefore, you must provide your own mechanism for security
role management. This mechanism must read and write security role data (that is, expressions) to
and from the custom Role Mapping provider’s database.

You can accomplish this task in one of two ways:

“Option 1: Develop a Stand-Alone Tool for Security Role Management” on page 8-29

“Option 2: Integrate an Existing Security Role Management Tool into the Administration
Console” on page 8-29

Option 1: Develop a Stand-Alone Tool for Security Role Management
You would typically select this option if you want to develop a tool that is entirely separate from
the WebLogic Server Administration Console.

For this option, you do not need to write any console extensions for your custom Role Mapping
provider, nor do you need to develop any management MBeans. However, your tool needs to:

1. Determine the WebLogic resource’s ID, since it is not automatically provided to you by the
console extension. For more information, see “WebLogic Resource Identifiers” on page 2-28.

2. Determine how to represent the expressions that make up a security role. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom Role Mapping provider’s database.

Option 2: Integrate an Existing Security Role Management Tool into the
Administration Console
You would typically select this option if you have a tool that is separate from the WebLogic
Server Administration Console, but you want to launch that tool from the Administration
Console.

For this option, your tool needs to:

Role Mapping P rov ide rs

8-30 Developing Security Providers for WebLogic Server

1. Determine the WebLogic resource’s ID, since it is not automatically provided to you by the
console extension. For more information, see “WebLogic Resource Identifiers” on page 2-28.

2. Determine how to represent the expressions that make up a security role. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom Role Mapping provider’s database.

4. Link into the Administration Console using basic console extension techniques, as
described in Extending the Administration Console.

http://e-docs.bea.com/wls/docs90/console_ext/index.html

Developing Security Providers for WebLogic Server 9-1

C H A P T E R 9

Auditing Providers

Auditing is the process whereby information about operating requests and the outcome of those

requests are collected, stored, and distributed for the purposes of non-repudiation. In WebLogic
Server, an Auditing provider provides this electronic trail of computer activity.

The following sections describe Auditing provider concepts and functionality, and provide
step-by-step instructions for developing a custom Auditing provider:

“Auditing Concepts” on page 9-1

“The Auditing Process” on page 9-2

“Do You Need to Develop a Custom Auditing Provider?” on page 9-7

“How to Develop a Custom Auditing Provider” on page 9-8

Auditing Concepts
Before you develop an Auditing provider, you need to understand the following concepts:

“Audit Channels” on page 9-2

“Auditing Events From Custom Security Providers” on page 9-2

Audi t ing Prov iders

9-2 Developing Security Providers for WebLogic Server

Audit Channels
An Audit Channel is the component of an Auditing provider that determines whether a security
event should be audited, and performs the actual recording of audit information based on Quality
of Service (QoS) policies.

Note: For more information about Audit Channels, see “Implement the AuditChannel SSPI” on
page 9-10.

Auditing Events From Custom Security Providers
Each type of security provider can call the configured Auditing providers with a request to write
out information about security-related events, before or after these events take place. For
example, if a user attempts to access a withdraw method in a bank account application (to which
they should not have access), the Authorization provider can request that this operation be
recorded. Security-related events are only recorded when they meet or exceed the severity level
specified in the configuration of the Auditing providers.

For information about how to post audit events from a custom security provider, see Chapter 11,
“Auditing Events From Custom Security Providers.”

The Auditing Process
Figure 9-1 shows how Auditing providers interact with the WebLogic Security Framework and
other types of security providers (using Authentication providers as an example) to audit selected
events. An explanation follows.

The Aud i t ing P rocess

Developing Security Providers for WebLogic Server 9-3

Figure 9-1 Auditing Providers, the WebLogic Security Framework, and Other Security Providers

Auditing providers interact with the WebLogic Security Framework and other types of security
providers in the following manner:

Note: In Figure 9-1 and the explanation below, the “other types of security providers” are a
WebLogic Authentication provider and a custom Authentication provider. However,
these can be any type of security provider that is developed as described in Chapter 11,
“Auditing Events From Custom Security Providers.”

1. A resource container passes a user’s authentication information (for example, a
username/password combination) to the WebLogic Security Framework as part of a login
request.

2. The WebLogic Security Framework passes the information associated with the login request
to the configured Authentication providers.

Audi t ing Prov iders

9-4 Developing Security Providers for WebLogic Server

3. If, in addition to providing authentication services, the Authentication providers are
designed to post audit events, the Authentication providers will each:

a. Instantiate an AuditEvent object. At minimum, the AuditEvent object includes
information about the event type to be audited and an audit severity level.

Note: An AuditEvent class is created by implementing either the AuditEvent SSPI or
an AuditEvent convenience interface in the Authentication provider’s runtime
class, in addition to the other security service provider interfaces (SSPIs) the
custom Authentication provider must already implement. For more information
about Audit Events and the AuditEvent SSPI/convenience interfaces, see
“Create an Audit Event” on page 11-3.

b. Make a trusted call to the Auditor Service, passing in the AuditEvent object.

Note: This is a trusted call because the Auditor Service is already passed to the security
provider’s initialize method as part of its “Provider” SSPI implementation.
For more information, see “Understand the Purpose of the “Provider” SSPIs” on
page 2-3.

4. The Auditor Service passes the AuditEvent object to the configured Auditing providers’
runtime classes (that is, the AuditChannel SSPI implementations), enabling audit event
recording.

Note: Depending on the Authentication providers’ implementations of the AuditEvent
convenience interface, audit requests may occur both pre and post event, as well as
just once for an event.

5. The Auditing providers’ runtime classes use the event type, audit severity and other
information (such as the Audit Context) obtained from the AuditEvent object to control
audit record content. Typically, only one of the configured Auditing providers will meet all
the criteria for auditing.

Note: For more information about audit severity levels and the Audit Context, see “Audit
Severity” on page 11-7 and “Audit Context” on page 11-8, respectively.

6. When the criteria for auditing specified by the Authentication providers in their
AuditEvent objects is met, the appropriate Auditing provider’s runtime class (that is, the
AuditChannel SSPI implementation) writes out audit records in the manner their
implementation specifies.

Note: Depending on the AuditChannel SSPI implementation, audit records may be written
to a file, a database, or some other persistent storage medium when the criteria for
auditing is met.

Implement ing the Contex tHand le r MBean

Developing Security Providers for WebLogic Server 9-5

Implementing the ContextHandler MBean
The ContextHandlerMBean, weblogic.management.security.audit.ContextHandler,
provides a set of attributes for ContextHandler support. You use this interface to manage audit
providers that support context handler entries in a standard way.

An Auditor provider MBean can optionally implement the ContextHandlerMBean MBean. The
Auditor provider can then use the MBean to determine the supported and active ContextHandler
entries.

The WebLogic Server Administration Console detects when an Auditor provider implements this
MBean and automatically provides a tab for using these attributes.

Note: The ContextHandler entries associated with the ContextHandlerMBean are not related
to, nor do they affect, the contents of an AuditEvent that is passed to the Audit providers.
An AuditEvent received by a provider may or may not include a ContextHandler with
ContextElements. If a ContextHandler is included, an Audit provider can get the
ContextHandler from the AuditEvent, regardless of whether you implemented the
ContextHandlerMBean management interface. In particular, the AuditContext
getContext method returns a weblogic.security.service.ContextHandler
interface that is independent of the context handler implemented by the
ContextHandlerMBean.

You can choose to implement the ContextHandlerMBean context handler in a manner
that compliments the AuditContext getContext method. (The
SimpleSampleAuditProviderImpl.java sample takes this approach.) However,
there is no requirement that you do so.

ContextHandlerMBean Methods
The ContextHandlerMBean interface implements the following methods:

getActiveContextHandlerEntries
public String[] getActiveContextHandlerEntries()

Returns the ContextHandler entries that the Audit provider is currently configured to
process.

getSupportedContextHandlerEntries
public String[] getSupportedContextHandlerEntries()

Returns the list of all ContextHandler entries supported by the auditor.

Audi t ing Prov iders

9-6 Developing Security Providers for WebLogic Server

setActiveContextHandlerEntries
public void setActiveContextHandlerEntries(String[] types) throws
InvalidAttributeValueException

Sets the ContextHandler entries that the Audit provider will process. The entries you
specify must be listed in the Audit provider's SupportedContextHandlerEntries attribute.

Example: Implementing the ContextHandlerMBean
Listing 9-3, “SimpleSampleAuditProviderImpl.java,” on page 9-10 shows the
SimpleSampleAuditProviderImpl.java class, which is the runtime class for the sample
Auditing provider. This sample Auditing provider has been enhanced to implement the
ContextHandlerMBean.

An MBean Definition File (MDF) is an XML file used by the WebLogic MBeanMaker utility to
generate the Java files that comprise an MBean type. All MDFs must extend a required SSPI
MBean that is specific to the type of the security provider you have created, and can implement
optional SSPI MBeans.

Listing 9-1 shows the key sections of the MDF for the sample Auditing provider, which
implements the optional ContexthandlerMBean.

Listing 9-1 Example: SimpleSampleAuditor.xml

<MBeanType

Name = "SimpleSampleAuditor"

DisplayName = "SimpleSampleAuditor"

Package = "examples.security.providers.audit.simple"

Extends = "weblogic.management.security.audit.Auditor"

Implements = "weblogic.management.security.audit.ContextHandler"

PersistPolicy = "OnUpdate"

>

...

<MBeanAttribute

Name = "SupportedContextHandlerEntries"

Type = "java.lang.String[]"

Writeable = "false"

Default = "new String[] {

"com.bea.contextelement.servlet.HttpServletRequest" }"

Do You Need to Deve lop a Custom Aud i t ing P rov ide r?

Developing Security Providers for WebLogic Server 9-7

Description = "List of all ContextHandler entries

supported by the auditor."

/>

Do You Need to Develop a Custom Auditing Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic Auditing
provider. The WebLogic Auditing provider records information from a number of security
requests, which are determined internally by the WebLogic Security Framework. The WebLogic
Auditing provider also records the event data associated with these security requests, and the
outcome of the requests.

The WebLogic Auditing provider makes an audit decision in its writeEvent method, based on
the audit severity level it has been configured with and the audit severity contained within the
AuditEvent object that is passed into the method. (For more information about AuditEvent
objects, see “Create an Audit Event” on page 11-3.

Note: You can change the audit severity level that the WebLogic Auditing provider is
configured with using the WebLogic Server Administration Console. For more
information, see “Configuring a WebLogic Auditing Provider” in Securing WebLogic
Server.

If there is a match, the WebLogic Auditing provider writes audit information to the
DefaultAuditRecorder.log file, which is located in the WL_HOME\yourdomain\
yourserver\logs directory. Listing 9-2 is an excerpt from the DefaultAuditRecorder.log
file.

Listing 9-2 DefaultAuditRecorder.log File: Sample Output

When Authentication suceeds. [SUCCESS]

Audit Record Begin <Feb 23, 2005 11:42:17 AM> <Severity=SUCCESS>
<<<Event Type = Authentication Audit Event><TestUser><AUTHENTICATE>>> Audit
Record End ####

When Authentication fails. [FAILURE]

Audit Record Begin <Feb 23, 2005 11:42:01 AM> <Severity=FAILURE>
<<<Event Type = Authentication Audit Event><TestUser><AUTHENTICATE>>> Audit
Record End ####When Operations are invoked.[SUCCESS]

http://e-docs.bea.com/wls/docs90/secmanage/providers.html#auditprovider

Audi t ing Prov iders

9-8 Developing Security Providers for WebLogic Server

When a user account is unlocked. [SUCCESS]

Audit Record Begin <Feb 23, 2005 11:42:17 AM> <Severity=SUCCESS>
<<<Event Type = Authentication Audit Event><TestUser><USERUNLOCKED>>> Audit
Record End ####

When an Authorization request succeeds. [SUCCESS]

Audit Record Begin <Feb 23, 2005 11:42:17 AM> <Severity=SUCCESS>
<<<Event Type = Authorization Audit Event ><Subject: 1
 Principal = class weblogic.security.principal.WLSUserImpl("TestUser")
><ONCE><<jndi>><type=<jndi>, application=, path={weblogic}, action=lookup>>>
Audit Record End ####

Specifically, Listing 9-2 shows the Role Manager (a component in the WebLogic Security
Framework that deals specifically with security roles) recording an audit event to indicate that an
authorized administrator has accessed a protected method in a certificate servlet.

Each time the WebLogic Server instance is booted, a new DefaultAuditRecorder.log file is
created (the old DefaultAuditRecorder.log file is renamed to
DefaultAuditRecorder.log.old).

You can specify a new directory location for the DefaultAuditRecorder.log file on the
command line with the following Java startup option:

-Dweblogic.security.audit.auditLogDir=c:\foo

The new file location will be c:\foo\yourserver\DefaultAuditRecorder.log.

If you want to write audit information in addition to that which is specified by the WebLogic
Security Framework, or to an output repository that is not the DefaultAuditRecorder.log
(that is, to a simple file with a different name/location or to an existing database), then you need
to develop a custom Auditing provider.

How to Develop a Custom Auditing Provider
If the WebLogic Auditing provider does not meet your needs, you can develop a custom Auditing
provider by following these steps:

1. “Create Runtime Classes Using the Appropriate SSPIs” on page 9-9

2. “Generate an MBean Type Using the WebLogic MBeanMaker” on page 9-13

3. “Configure the Custom Auditing Provider Using the Administration Console” on page 9-18

How to Deve lop a Cus tom Audi t ing Prov ider

Developing Security Providers for WebLogic Server 9-9

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

“Understand the Purpose of the “Provider” SSPIs” on page 2-3

“Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes” on page 2-6

When you understand this information and have made your design decisions, create the runtime
classes for your custom Auditing provider by following these steps:

“Implement the AuditProvider SSPI” on page 9-9

“Implement the AuditChannel SSPI” on page 9-10

For an example of how to create a runtime class for a custom Auditing provider, see “Example:
Creating the Runtime Class for the Sample Auditing Provider” on page 9-10.

Implement the AuditProvider SSPI
To implement the AuditProvider SSPI, provide implementations for the methods described in
“Understand the Purpose of the “Provider” SSPIs” on page 2-3 and the following method:

getAuditChannel
public AuditChannel getAuditChannel();

The getAuditChannel method obtains the implementation of the AuditChannel SSPI.
For a single runtime class called MyAuditProviderImpl.java, the implementation of the
getAuditChannel method would be:

return this;

If there are two runtime classes, then the implementation of the getAuditChannel
method could be:

return new MyAuditChannelImpl;

This is because the runtime class that implements the AuditProvider SSPI is used as a
factory to obtain classes that implement the AuditChannel SSPI.

For more information about the AuditProvider SSPI and the getAuditChannel method, see
the WebLogic Server API Reference Javadoc.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditProvider.html

Audi t ing Prov iders

9-10 Developing Security Providers for WebLogic Server

Implement the AuditChannel SSPI
To implement the AuditChannel SSPI, provide an implementation for the following method:

writeEvent
public void writeEvent(AuditEvent event)

The writeEvent method writes an audit record based on the information specified in the
AuditEvent object that is passed in. For more information about AuditEvent objects,
see “Create an Audit Event” on page 11-3.

For more information about the AuditChannel SSPI and the writeEvent method, see the
WebLogic Server API Reference Javadoc.

Example: Creating the Runtime Class for the Sample Auditing Provider
Listing 9-3 shows the SimpleSampleAuditProviderImpl.java class, which is the runtime
class for the sample Auditing provider. This runtime class includes implementations for:

The three methods inherited from the SecurityProvider interface: initialize,
getDescription and shutdown (as described in “Understand the Purpose of the
“Provider” SSPIs” on page 2-3.)

The method inherited from the AuditProvider SSPI: the getAuditChannel method (as
described in “Implement the AuditProvider SSPI” on page 9-9).

The method in the AuditChannel SSPI: the writeEvent method (as described in
“Implement the AuditChannel SSPI” on page 9-10).

Note: The bold face code in Listing 9-3 highlights the class declaration and the method
signatures.

Listing 9-3 SimpleSampleAuditProviderImpl.java

package examples.security.providers.audit.simple;

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.PrintStream;

import javax.servlet.http.HttpServletRequest;

import weblogic.management.security.ProviderMBean;
import weblogic.security.service.ContextHandler;

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditChannel.html

How to Deve lop a Cus tom Audi t ing Prov ider

Developing Security Providers for WebLogic Server 9-11

import weblogic.security.spi.AuditChannel;
import weblogic.security.spi.AuditContext;
import weblogic.security.spi.AuditEvent;
import weblogic.security.spi.AuditProvider;
import weblogic.security.spi.SecurityServices;

public final class SimpleSampleAuditProviderImpl implements AuditProvider,
AuditChannel

{
private String description; // a description of this provider
private PrintStream log; // the log file that events are written to
private boolean handlerEnabled = false;
private final static String HTTP_REQUEST_ELEMENT =

"com.bea.contextelement.servlet.HttpServletRequest";

public void initialize(ProviderMBean mbean, SecurityServices services)
{

System.out.println("SimpleSampleAuditProviderImpl.initialize");

SimpleSampleAuditorMBean myMBean = (SimpleSampleAuditorMBean)mbean;

description = myMBean.getDescription() + "\n" + myMBean.getVersion();

String [] activeHandlerEntries = myMBean.getActiveContextHandlerEntries();
if (activeHandlerEntries != null) {
for (int i=0; i<activeHandlerEntries.length; i++) {

if ((activeHandlerEntries[i] != null) &&
(activeHandlerEntries[i].equalsIgnoreCase(HTTP_REQUEST_ELEMENT)))

{
handlerEnabled = true;
break;

}
}

}

File file = new File(myMBean.getLogFileName());
System.out.println("\tlogging to " + file.getAbsolutePath());

try {
log = new PrintStream(new FileOutputStream(file), true);

} catch (IOException e) {
throw new RuntimeException(e.toString());

}

}

public String getDescription()
{

Audi t ing Prov iders

9-12 Developing Security Providers for WebLogic Server

return description;
}

public void shutdown()
{

System.out.println("SimpleSampleAuditProviderImpl.shutdown");
log.close();

}

public AuditChannel getAuditChannel()
{

return this;
}

public void writeEvent(AuditEvent event)
{

log.println(event);

if ((!handlerEnabled) || (!(event instanceof AuditContext)))
return;

AuditContext auditContext = (AuditContext)event;
ContextHandler handler = auditContext.getContext();

if ((handler == null) || (handler.size() == 0))
return;

Object requestValue =
handler.getValue("com.bea.contextelement.servlet.HttpServletRequest");

if ((requestValue == null) || (!(requestValue instanceof
HttpServletRequest)))

return;

HttpServletRequest request = (HttpServletRequest) requestValue;
log.println(" " + HTTP_REQUEST_ELEMENT + " method: " +

request.getMethod());
log.println(" " + HTTP_REQUEST_ELEMENT + " URL: " +

request.getRequestURL());
log.println(" " + HTTP_REQUEST_ELEMENT + " URI: " +

request.getRequestURI());
return;

}
}

How to Deve lop a Cus tom Audi t ing Prov ider

Developing Security Providers for WebLogic Server 9-13

Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you should first:

“Understand Why You Need an MBean Type” on page 2-10

“Determine Which SSPI MBeans to Extend and Implement” on page 2-10

“Understand the Basic Elements of an MBean Definition File (MDF)” on page 2-11

“Understand the SSPI MBean Hierarchy and How It Affects the Administration Console”
on page 2-14

“Understand What the WebLogic MBeanMaker Provides” on page 2-16

When you understand this information and have made your design decisions, create the MBean
type for your custom Auditing provider by following these steps:

1. “Create an MBean Definition File (MDF)” on page 9-13

2. “Use the WebLogic MBeanMaker to Generate the MBean Type” on page 9-14

3. “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on page 9-17

4. “Install the MBean Type Into the WebLogic Server Environment” on page 9-18

Notes: Several sample security providers (available under "Code Samples: WebLogic Server"
on the dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a Windows
environment.

Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Auditing provider to a text file.

Note: The MDF for the sample Auditing provider is called SampleAuditor.xml.

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in your MDF so
that they are appropriate for your custom Auditing provider.

3. Add any custom attributes and operations (that is, additional <MBeanAttribute> and
<MBeanOperation> elements) to your MDF.

4. Save the file.

http://dev2dev.bea.com/code/wls.jsp

Audi t ing Prov iders

9-14 Developing Security Providers for WebLogic Server

Note: A complete reference of MDF element syntax is available in Appendix A, “MBean
Definition File (MDF) Element Syntax.”

Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic MBeanMaker. The
WebLogic MBeanMaker is currently a command-line utility that takes as its input an MDF, and
outputs some intermediate Java files, including an MBean interface, an MBean implementation,
and an associated MBean information file. Together, these intermediate files form the MBean
type for your custom security provider.

The instructions for generating an MBean type differ based on the design of your custom
Auditing provider. Follow the instructions that are appropriate to your situation:

“No Custom Operations” on page 9-14

“Custom Operations” on page 9-15

No Custom Operations
If the MDF for your custom Auditing provider does not include any custom operations, follow
these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF

How to Deve lop a Cus tom Audi t ing Prov ider

Developing Security Providers for WebLogic Server 9-15

at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Auditing providers).

3. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 9-17.

Custom Operations
If the MDF for your custom Auditing provider does include custom operations, consider the
following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by <filesdir>, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Auditing providers).

3. For any custom operations in your MDF, implement the methods using the method stubs.

4. Save the file.

5. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 9-17.

Are you updating an existing MBean type? If so, follow these steps:

Audi t ing Prov iders

9-16 Developing Security Providers for WebLogic Server

1. Copy your existing MBean implementation file to a temporary directory so that your current
method implementations are not overwritten by the WebLogic MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: The WebLogic MBeanMaker processes one MDF at a time. Therefore, you may have
to repeat this process if you have multiple MDFs (in other words, multiple Auditing
providers).

4. If you modified the MDF to include any custom operations that were not in the original
MDF, implement the methods using the method stubs.

5. Save the version of the MBean implementation file that is complete (that is, has all methods
implemented).

6. Copy this MBean implementation file into the directory where the WebLogic MBeanMaker
placed the intermediate files for the MBean type. You specified this as filesdir in step 3.
(You will be overriding the MBean implementation file generated by the WebLogic
MBeanMaker as a result of step 3.)

7. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 9-17.

About the Generated MBean Interface File
The MBean interface file is the client-side API to the MBean that your runtime class or your
MBean implementation will use to obtain configuration data. It is typically used in the initialize
method as described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3.

How to Deve lop a Cus tom Audi t ing Prov ider

Developing Security Providers for WebLogic Server 9-17

Because the WebLogic MBeanMaker generates MBean types from the MDF you created, the
generated MBean interface file will have the name of the MDF, plus the text “MBean” appended
to it. For example, the result of running the SampleAuditor MDF through the WebLogic
MBeanMaker will yield an MBean interface file called SampleAuditorMBean.java.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply implementations
for the appropriate methods within it, you need to package the MBean files and the runtime
classes for the custom Auditing provider into an MBean JAR File (MJF). The WebLogic
MBeanMaker also automates this process.

To create an MJF for your custom Auditing provider, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a JAR file
containing the new MBean types, jarfile is the name for the MJF and <filesdir> is the
location where the WebLogic MBeanMaker looks for the files to JAR into the MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and no
errors occur, an MJF is created with the specified name.

Notes: When you create a JAR file for a custom security provider, a set of XML binding classes
and a schema are also generated. You can choose a namespace to associate with that
schema. Doing so avoids the possiblity that your custom classes will conflict with those
provided by BEA. The default for the namespace is vendor. You can change this default
by passing the -targetNameSpace argument to the WebLogicMBeanMaker or the
associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and regenerate it. The
WebLogic MBeanMaker also has a -DIncludeSource option, which controls whether
source files are included into the resulting MJF. Source files include both the generated
source and the MDF itself. The default is false. This option is ignored when -DMJF is
not used.

The resulting MJF can be installed into your WebLogic Server environment, or distributed to
your customers for installation into their WebLogic Server environments.

Audi t ing Prov iders

9-18 Developing Security Providers for WebLogic Server

Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level installation
directory for WebLogic Server. This “deploys” your custom Auditing provider—that is, it makes
the custom Auditing provider manageable from the WebLogic Server Administration Console.

Note: WL_HOME\server\lib\mbeantypes is the default directory for installing MBean types.
(Beginning with 9.0, security providers can be loaded from
...\domaindir\lib\mbeantypes as well.) However, if you want WebLogic Server to
look for MBean types in additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line flag when starting
your server, where <dir> is a comma-separated list of directory names. When you use
this flag, WebLogic Server will always load MBean types from
WL_HOME\server\lib\mbeantypes first, then will look in the additional directories
and load all valid archives present in those directories (regardless of their extension). For
example, if -Dweblogic.alternateTypesDirectory = dirX,dirY, WebLogic
Server will first load MBean types from WL_HOME\server\lib\mbeantypes, then any
valid archives present in dirX and dirY. If you instruct WebLogic Server to look in
additional directories for MBean types and are using the Java Security Manager, you
must also update the weblogic.policy file to grant appropriate permissions for the
MBean type (and thus, the custom security provider). For more information, see "Using
the Java Security Manager to Protect WebLogic Resources" in Programming WebLogic
Security.

You can create instances of the MBean type by configuring your custom Auditing provider (see
“Configure the Custom Auditing Provider Using the Administration Console” on page 9-18), and
then use those MBean instances from a GUI, from other Java code, or from APIs. For example,
you can use the WebLogic Server Administration Console to get and set attributes and invoke
operations, or you can develop other Java objects that instantiate MBeans and automatically
respond to information that the MBeans supply. We recommend that you back up these MBean
instances.

Configure the Custom Auditing Provider Using the
Administration Console
Configuring a custom Auditing provider means that you are adding the custom Auditing provider
to your security realm, where it can be accessed by security providers requiring audit services.

http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03
http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03

How to Deve lop a Cus tom Audi t ing Prov ider

Developing Security Providers for WebLogic Server 9-19

Configuring custom security providers is an administrative task, but it is a task that may also be
performed by developers of custom security providers. This section contains information that is
important for the person configuring your custom Auditing providers:

Configuring Audit Severity

Note: The steps for configuring a custom Auditing provider using the WebLogic Server
Administration Console are described under “Configuring WebLogic Security
Providers” in Securing WebLogic Server.

Configuring Audit Severity
During the configuration process, an Auditing provider’s audit severity must be set to one of the
following severity levels:

INFORMATION

WARNING

ERROR

SUCCESS

FAILURE

This severity represents the level at which the custom Auditing provider will initiate auditing.

http://e-docs.bea.com/wls/docs90/secmanage/providers.html
http://e-docs.bea.com/wls/docs90/secmanage/providers.html

Audi t ing Prov iders

9-20 Developing Security Providers for WebLogic Server

Developing Security Providers for WebLogic Server 10-1

C H A P T E R 10

Credential Mapping Providers

Credential mapping is the process whereby a legacy system's database is used to obtain an
appropriate set of credentials to authenticate users to a target resource. In WebLogic Server, a
Credential Mapping provider is used to provide credential mapping services and bring new types
of credentials into the WebLogic Server environment.

The following sections describe Credential Mapping provider concepts and functionality, and
provide step-by-step instructions for developing a custom Credential Mapping provider:

“Credential Mapping Concepts” on page 10-1

“The Credential Mapping Process” on page 10-2

“Do You Need to Develop a Custom Credential Mapping Provider?” on page 10-3

“How to Develop a Custom Credential Mapping Provider” on page 10-4

Credential Mapping Concepts
A subject, or source of a WebLogic resource request, has security-related attributes called
credentials. A credential may contain information used to authenticate the subject to new
services. Such credentials include username/password combinations, Kerberos tickets, and
public key certificates. Credentials might also contain data that allows a subject to perform
certain activities. Cryptographic keys, for example, represent credentials that enable the subject
to sign or encrypt data.

A credential map is a mapping of credentials used by WebLogic Server to credentials used in a
legacy (or any remote) system, which tell WebLogic Server how to connect to a given resource

10-2 Developing Security Providers for WebLogic Server

in that system. In other words, credential maps allow WebLogic Server to log in to a remote
system on behalf of a subject that has already been authenticated. You can map credentials in this
way by developing a Credential Mapping provider.

The Credential Mapping Process
Figure 10-1 illustrates how Credential Mapping providers interact with the WebLogic Security
Framework during the credential mapping process, and an explanation follows.

Figure 10-1 Credential Mapping Providers and the Credential Mapping Process

Generally, credential mapping is performed in the following manner:

1. Application components, such as JavaServer Pages (JSPs), servlets, Enterprise JavaBeans
(EJBs), or Resource Adapters call into the WebLogic Security Framework through the
appropriate resource container. As part of the call, the application component passes in the
subject (that is, the “who” making the request), the WebLogic resource (that is, the “what”
that is being requested) and information about the type of credentials needed to access the
WebLogic resource.

Do You Need to Deve lop a Custom Credent ia l Mapp ing P rov ider?

Developing Security Providers for WebLogic Server 10-3

2. The WebLogic Security Framework sends the application component’s request for
credentials to a configured Credential Mapping provider. It is up to the credential mapper to
decide whether it supports the token or not. If it supports the token, it performs its
processing.

3. The Credential Mapping provider consults the legacy system's database to obtain a set of
credentials that match those requested by the application component.

4. The Credential Mapping provider returns the credentials to the WebLogic Security
Framework.

5. The WebLogic Security Framework passes the credentials back to the requesting
application component through the resource container.

The application component uses the credentials to access the external system. The external
system might be a database resource, such as an Oracle or SQL Server.

Do You Need to Develop a Custom Credential Mapping
Provider?

The default (that is, active) security realm for WebLogic Server includes a WebLogic Credential
Mapping provider. The WebLogic Credential Mapping provider maps WebLogic Server users
and groups to the appropriate username/password credentials that may be required by other,
external systems. If the type of credential mapping you want is between WebLogic Server users
and groups and username/password credentials in another system, then the WebLogic Credential
Mapping provider is sufficient.

WebLogic Server includes a PKI Credential Mapping provider. The PKI (Public Key
Infrastructure) Credential Mapping provider included in WebLogic Server maps a WebLogic
Server subject (the initiator) and target resource (and an optional credential action) to a key pair
or public certificate that should be used by the application when using the targeted resource. The
PKI Credential Mapping provider uses the subject and resource name to retrieve the
corresponding credential from the keystore. The PKI Credential Mapping provider supports the
CredentialMapperV2.PKI_KEY_PAIR_TYPE and
CredentialMapperV2.PKI_TRUSTED_CERTIFICATE_TYPE token types.

Weblogic Server also includes the SAML Credential Mapping provider. The SAML Credential
Mapping provider generates SAML 1.1 assertions for authenticated subjects based on a target site
or resource. If the requested target has not been configured and no defaults are set, an assertion
will not be generated. User information and group membership (if configured as such) are put in
the AttributeStatement. The SAML Credential Mapping provider supports the

10-4 Developing Security Providers for WebLogic Server

CredentialMapperV2.SAML_ASSERTION_B64_TYPE,
CredentialMapperV2.SAML_ASSERTION_DOM_TYPE, and
CredentialMapperV2.SAML_ASSERTION_TYPE token types.

If the out-of-the-box Credential Mapping providers do not meet your needs, then you need to
develop a custom Credential Mapping provider. Note, however, that only the following token
types are ever requested by the WLS resource containers:

CredentialMapperV2.PASSWORD_TYPE

CredentialMapperV2.PKI_KEY_PAIR_TYPE

CredentialMapperV2.PKI_TRUSTED_CERTIFICATE_TYPE

CredentialMapperV2.SAML_ASSERTION_B64_TYPE

CredentialMapperV2.SAML_ASSERTION_DOM_TYPE

CredentialMapperV2.SAML_ASSERTION_TYPE

CredentialMapperV2.USER_PASSWORD_TYPE

Does Your Custom Credential Mapping Provider Need to
Support Application Versioning?
All Authorization, Role Mapping, and Credential Mapping providers for the security realm must
support application versioning in order for an application to be deployed using versions. If you
develop a custom security provider for Authorization, Role Mapping, or Credential Mapping and
need to support versioned applications, you must implement the Versionable Application SSPI,
as described in Chapter 13, “Versionable Application Providers.”

How to Develop a Custom Credential Mapping Provider
If the WebLogic Credential Mapping provider does not meet your needs, you can develop a
custom Credential Mapping provider by following these steps:

1. “Create Runtime Classes Using the Appropriate SSPIs” on page 10-5

2. “Generate an MBean Type Using the WebLogic MBeanMaker” on page 10-8

3. “Configure the Custom Credential Mapping Provider Using the Administration Console” on
page 10-15

4. “Provide a Mechanism for Credential Map Management” on page 10-18

How to Deve l op a Custom Credent ia l Mapping Prov ider

Developing Security Providers for WebLogic Server 10-5

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

“Understand the Purpose of the “Provider” SSPIs” on page 2-3

“Determine Which “Provider” Interface You Will Implement” on page 2-4

“Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes” on page 2-6

When you understand this information and have made your design decisions, create the runtime
classes for your custom Credential Mapping provider by following these steps:

“Implement the CredentialProviderV2 SSPI” on page 10-5 or “Implement the
DeployableCredentialProvider SSPI” on page 10-6

“Implement the CredentialMapperV2 SSPI” on page 10-6

Implement the CredentialProviderV2 SSPI
To implement the CredentialProviderV2 SSPI, provide implementations for the methods
described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3 and the following
method:

getCredentialProvider
public CredentialMapperV2 getCredentialProvider();

The getCredentialProviderV2 method obtains the implementation of the
CredentialMapperV2 SSPI. For a single runtime class called
MyCredentialMapperProviderImpl.java (as in Figure 2-3), the implementation of the
getCredentialProvider method would be:

return this;

If there are two runtime classes, then the implementation of the
getCredentialProvider method could be:

return new MyCredentialMapperImpl;

This is because the runtime class that implements the CredentialProviderV2 SSPI is
used as a factory to obtain classes that implement the CredentialMapperV2 SSPI.

For more information about the CredentialProviderV2 SSPI and the
getCredentialProvider method, see the WebLogic Server API Reference Javadoc.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/CredentialProvider.html

10-6 Developing Security Providers for WebLogic Server

Implement the DeployableCredentialProvider SSPI
Note: The DeployableCredentialProvider SSPI is deprecated in this release of WebLogic

Server.

To implement the DeployableCredentialProvider SSPI, provide implementations for the
methods described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3,
“Implement the CredentialProviderV2 SSPI” on page 10-5, and the following methods:

deployCredentialMapping
public void deployCredentialMapping(Resource resource, String
initiatingPrincipal, String eisUsername, String eisPassword)throws
ResourceCreationException;

The deployCredentialMapping method deploys credential maps (that is, creates a
credential mapping on behalf of a deployed Resource Adapter in a database). If the
mapping already exists, it is removed and replaced by this mapping. The resource
parameter represents the WebLogic resource to which the initiating principal (represented
as a String) is requesting access. The Enterprise Information System (EIS) username and
password are the credentials in the legacy (remote) system to which the credential maps
are being made.

undeployCredentialMappings
public void undeployCredentialMappings(Resource resource) throws
ResourceRemovalException;

The undeployCredentialMappings method undeploys credential maps (that is, deletes
a credential mapping on behalf of an undeployed Resource Adapter from a database). The
resource parameter represents the WebLogic resource for which the mapping should be
removed.

Note: The deployCredentialMapping/undeployCredentialMappings methods operate
on username/password credentials only.

For more information about the DeployableCredentialProvider SSPI and the
deployCredentialMapping/undeployCredentialMappings methods, see the WebLogic
Server API Reference Javadoc.

Implement the CredentialMapperV2 SSPI
The CredentialMapperV2 interface defines the security service provider interface (SSPI) for
objects capable of obtaining the appropriate set of credentials for a particular resource that is
scoped within an application.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/DeployableCredentialProvider.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/DeployableCredentialProvider.html

How to Deve l op a Custom Credent ia l Mapping Prov ider

Developing Security Providers for WebLogic Server 10-7

Only the following credential types are supported and passed to the CredentialMapperV2
interface:

PASSWORD_TYPE

PKI_KEY_PAIR_TYPE

PKI_TRUSTED_CERTIFICATE_TYPE

SAML_ASSERTION_B64_TYPE

SAML_ASSERTION_DOM_TYPE

SAML_ASSERTION_TYPE

USER_PASSWORD_TYPE

To implement the CredentialMapperV2 SSPI, you must provide implementations for the
following methods:

getCredential
public Object getCredential(Subject requestor, String initiator,
Resource resource, ContextHandler handler, String credType);

The getCredential method returns the credential of the specified type from the target
resource associated with the specified initiator.

getCredentials
public Object[] getCredentials(Subject requestor, Subject initiator,
Resource resource, ContextHandler handler, String credType);

The getCredentials method returns the credentials of the specified type from the target
resource associated with the specified initiator.

For more information about the CredentialMapperV2 SSPI and the getCredential and
getCredentials methods, see the WebLogic Server API Reference Javadoc.

Developing Custom Credential Mapping Providers That Are Compatible With the Realm
Adapter Authentication Provider
An Authentication provider is the security provider responsible for populating a subject with
users and groups, which are then extracted from the subject by other types of security providers,
including Credential Mapping providers. If the Authentication provider configured in your
security realm is a Realm Adapter Authentication provider, the user and group information will
be stored in the subject in a way that is slightly different from other Authentication providers.
Therefore, this user and group information must also be extracted in a slightly different way.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/CredentialMapper.html

10-8 Developing Security Providers for WebLogic Server

Listing 10-1 provides code that can be used by custom Credential Mapping providers to check
whether a subject matches a user or group name when a Realm Adapter Authentication provider
was used to populate the subject. This code belongs in whatever form of the getCredentials
method you choose to implement. The code makes use of the methods available in the
weblogic.security.SubjectUtils class.

Listing 10-1 Sample Code to Check if a Subject Matches a User or Group Name

/**
* Determines if the Subject matches a user/group name.
*
* @param principalWant A String containing the name of a principal in this role
* (that is, the role definition).
*
* @param subject A Subject that contains the Principals that identify the user
* who is trying to access the resource as well as the user's groups.
*
* @return A boolean. true if the current subject matches the name of the
* principal in the role, false otherwise.
*/
private boolean subjectMatches(String principalWant, Subject subject)
{

// first, see if it's a group name match
if (SubjectUtils.isUserInGroup(subject, principalWant)) {

return true;
}
// second, see if it's a user name match
if (principalWant.equals(SubjectUtils.getUsername(subject))) {

return true;
}
// didn't match
return false;

}

Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you should first:

“Understand Why You Need an MBean Type” on page 2-10

“Determine Which SSPI MBeans to Extend and Implement” on page 2-10

How to Deve l op a Custom Credent ia l Mapping Prov ider

Developing Security Providers for WebLogic Server 10-9

“Understand the Basic Elements of an MBean Definition File (MDF)” on page 2-11

“Understand the SSPI MBean Hierarchy and How It Affects the Administration Console”
on page 2-14

“Understand What the WebLogic MBeanMaker Provides” on page 2-16

When you understand this information and have made your design decisions, create the MBean
type for your custom Credential Mapping provider by following these steps:

1. “Create an MBean Definition File (MDF)” on page 10-9

2. “Use the WebLogic MBeanMaker to Generate the MBean Type” on page 10-10

3. “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on page 10-14

4. “Install the MBean Type Into the WebLogic Server Environment” on page 10-15

Notes: Several sample security providers (available under "Code Samples: WebLogic Server"
on the dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a Windows
environment.

Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Authentication provider to a text file.

Note: The MDF for the sample Authentication provider is called
SimpleSampleAuthenticator.xml. (There is currently no sample Credential
Mapping provider.)

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in your MDF so
that they are appropriate for your custom Credential Mapping provider.

3. Add any custom attributes and operations (that is, additional <MBeanAttribute> and
<MBeanOperation> elements) to your MDF.

4. Save the file.

Note: A complete reference of MDF element syntax is available in Appendix A, “MBean
Definition File (MDF) Element Syntax.”

http://dev2dev.bea.com/code/wls.jsp

10-10 Developing Security Providers for WebLogic Server

Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic MBeanMaker. The
WebLogic MBeanMaker is currently a command-line utility that takes as its input an MDF, and
outputs some intermediate Java files, including an MBean interface, an MBean implementation,
and an associated MBean information file. Together, these intermediate files form the MBean
type for your custom security provider.

The instructions for generating an MBean type differ based on the design of your custom
Credential Mapping provider. Follow the instructions that are appropriate to your situation:

“No Optional SSPI MBeans and No Custom Operations” on page 10-10

“Optional SSPI MBeans or Custom Operations” on page 10-11

No Optional SSPI MBeans and No Custom Operations
If the MDF for your custom Credential Mapping provider does not implement any optional SSPI
MBeans and does not include any custom operations, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Credential Mapping providers).

How to Deve l op a Custom Credent ia l Mapping Prov ider

Developing Security Providers for WebLogic Server 10-11

3. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 10-14.

Optional SSPI MBeans or Custom Operations
If the MDF for your custom Credential Mapping provider does implement some optional SSPI
MBeans or does include custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Credential Mapping providers).

3. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is named
MBeanNameImpl.java. For example, for the MDF named MyCredentialMapper, the
MBean implementation file to be edited is named MyCredentialMapperImpl.java.

b. For each optional SSPI MBean that you implemented in your MDF, copy the method stubs
from the “Mapping MDF Operation Declarations to Java Method Signatures Document”
(available on the dev2dev Web site) into the MBean implementation file, and implement

http://dev2dev.bea.com/code/wls.jsp

10-12 Developing Security Providers for WebLogic Server

each method. Be sure to also provide implementations for any methods that the optional
SSPI MBean inherits.

4. If you included any custom operations in your MDF, implement the methods using the
method stubs.

5. Save the file.

6. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 10-14.

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that your current
method implementations are not overwritten by the WebLogic MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Credential Mapping providers).

4. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is named
MBeanNameImpl.java. For example, for the MDF named

How to Deve l op a Custom Credent ia l Mapping Prov ider

Developing Security Providers for WebLogic Server 10-13

SampleCredentialMapper, the MBean implementation file to be edited is named
SampleCredentialMapperImpl.java.

b. Open your existing MBean implementation file (which you saved to a temporary directory
in step 1).

c. Synchronize the existing MBean implementation file with the MBean implementation file
generated by the WebLogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the method
implementations from your existing MBean implementation file into the
newly-generated MBean implementation file (or, alternatively, adding the new methods
from the newly-generated MBean implementation file to your existing MBean
implementation file), and verifying that any changes to method signatures are reflected
in the version of the MBean implementation file that you are going to use (for methods
that exist in both MBean implementation files).

d. If you modified the MDF to implement optional SSPI MBeans that were not in the original
MDF, copy the method stubs from the “Mapping MDF Operation Declarations to Java
Method Signatures Document” (available on the dev2dev Web site) into the MBean
implementation file, and implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

5. If you modified the MDF to include any custom operations that were not in the original
MDF, implement the methods using the method stubs.

6. Save the version of the MBean implementation file that is complete (that is, has all methods
implemented).

7. Copy this MBean implementation file into the directory where the WebLogic MBeanMaker
placed the intermediate files for the MBean type. You specified this as filesdir in step 3.
(You will be overriding the MBean implementation file generated by the WebLogic
MBeanMaker as a result of step 3.)

8. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 10-14.

About the Generated MBean Interface File
The MBean interface file is the client-side API to the MBean that your runtime class or your
MBean implementation will use to obtain configuration data. It is typically used in the initialize
method as described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3.

http://dev2dev.bea.com/code/wls.jsp
http://dev2dev.bea.com/code/wls.jsp

10-14 Developing Security Providers for WebLogic Server

Because the WebLogic MBeanMaker generates MBean types from the MDF you created, the
generated MBean interface file will have the name of the MDF, plus the text “MBean” appended
to it. For example, the result of running the MyCredentialMapper MDF through the WebLogic
MBeanMaker will yield an MBean interface file called MyCredentialMapperMBean.java.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply implementations
for the appropriate methods within it, you need to package the MBean files and the runtime
classes for the custom Credential Mapping provider into an MBean JAR File (MJF). The
WebLogic MBeanMaker also automates this process.

To create an MJF for your custom Credential Mapping provider, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a JAR file
containing the new MBean types, jarfile is the name for the MJF and filesdir is the
location where the WebLogic MBeanMaker looks for the files to JAR into the MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and no
errors occur, an MJF is created with the specified name.

Notes: When you create a JAR file for a custom security provider, a set of XML binding classes
and a schema are also generated. You can choose a namespace to associate with that
schema. Doing so avoids the possiblity that your custom classes will conflict with those
provided by BEA. The default for the namespace is vendor. You can change this default
by passing the -targetNameSpace argument to the WebLogicMBeanMaker or the
associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and regenerate it. The
WebLogic MBeanMaker also has a -DIncludeSource option, which controls whether
source files are included into the resulting MJF. Source files include both the generated
source and the MDF itself. The default is false. This option is ignored when -DMJF is
not used.

The resulting MJF can be installed into your WebLogic Server environment, or distributed to
your customers for installation into their WebLogic Server environments.

How to Deve l op a Custom Credent ia l Mapping Prov ider

Developing Security Providers for WebLogic Server 10-15

Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level installation
directory for WebLogic Server. This “deploys” your custom Credential Mapping provider—that
is, it makes the custom Credential Mapping provider manageable from the WebLogic Server
Administration Console.

Note: WL_HOME\server\lib\mbeantypes is the default directory for installing MBean types.
(Beginning with 9.0, security providers can be loaded from
...\domaindir\lib\mbeantypes as well.) However, if you want WebLogic Server to
look for MBean types in additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line flag when starting
your server, where <dir> is a comma-separated list of directory names. When you use
this flag, WebLogic Server will always load MBean types from
WL_HOME\server\lib\mbeantypes first, then will look in the additional directories
and load all valid archives present in those directories (regardless of their extension). For
example, if -Dweblogic.alternateTypesDirectory = dirX,dirY, WebLogic
Server will first load MBean types from WL_HOME\server\lib\mbeantypes, then any
valid archives present in dirX and dirY. If you instruct WebLogic Server to look in
additional directories for MBean types and are using the Java Security Manager, you
must also update the weblogic.policy file to grant appropriate permissions for the
MBean type (and thus, the custom security provider). For more information, see "Using
the Java Security Manager to Protect WebLogic Resources" in Programming WebLogic
Security.

You can create instances of the MBean type by configuring your custom Credential Mapping
provider (see “Configure the Custom Credential Mapping Provider Using the Administration
Console” on page 10-15), and then use those MBean instances from a GUI, from other Java code,
or from APIs. For example, you can use the WebLogic Server Administration Console to get and
set attributes and invoke operations, or you can develop other Java objects that instantiate
MBeans and automatically respond to information that the MBeans supply. We recommend that
you back up these MBean instances.

Configure the Custom Credential Mapping Provider Using the
Administration Console
Configuring a custom Credential Mapping provider means that you are adding the custom
Credential Mapping provider to your security realm, where it can be accessed by applications
requiring credential mapping services.

http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03
http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03

10-16 Developing Security Providers for WebLogic Server

Configuring custom security providers is an administrative task, but it is a task that may also be
performed by developers of custom security providers. This section contains information that is
important for the person configuring your custom Credential Mapping providers:

“Managing Credential Mapping Providers, Resource Adapters, and Deployment
Descriptors” on page 10-16

“Enabling Deployable Credential Mappings” on page 10-18

Note: The steps for configuring a custom Credential Mapping provider using the WebLogic
Server Administration Console are described under “Configuring WebLogic Security
Providers” in Securing WebLogic Server.

Managing Credential Mapping Providers, Resource Adapters, and
Deployment Descriptors
Note: The DeployableCredentialProvider SSPI is deprecated in this release of WebLogic

Server.

Some application components, such as Resource Adapters (Connectors), store relevant
deployment information in Java 2 Enterprise Edition (J2EE) and WebLogic Server deployment
descriptors. For Resource Adapters, the deployment descriptor file (called weblogic-ra.xml)
contains information such as username/password combinations that are used to create credential
maps. Typically, you will want to include this credential map information when first configuring
your Credential Mapping providers in the WebLogic Server Administration Console.

The Administration Console provides an Ignore Deploy Credential Mapping checkbox for this
purpose, which you or an administrator should be sure is unchecked the first time a custom
Credential Mapping provider is configured.

Notes: The Ignore Deploy Credential Mapping checkbox is unchecked by default. To locate the
On Ignore Deploy Credential Mapping checkbox, click Security Realms → realm, where
realm is the name of your security realm. Then select the General page of the
Configuration tab.

When the Ignore Deploy Credential Mapping checkbox is unchecked and a Resource Adapter
(Connector) is deployed, WebLogic Server reads credential maps from the weblogic-ra.xml
deployment descriptor file, an example of which is shown in Listing 10-2. This information is
then copied into the security provider database for the Credential Mapping provider

http://e-docs.bea.com/wls/docs90/secmanage/providers.html
http://e-docs.bea.com/wls/docs90/secmanage/providers.html

How to Deve l op a Custom Credent ia l Mapping Prov ider

Developing Security Providers for WebLogic Server 10-17

Listing 10-2 Sample weblogic-ra.xml File

<weblogic-connection-factory-dd>
<connection-factory-name>LogicalNameOfBlackBoxNoTx</connection-factory-name

>
<jndi-name>eis/BlackBoxNoTxConnectorJNDINAME</jndi-name>

<map-config-property>
<map-config-property-name>ConnectionURL</map-config-property-name>
<map-config-property-value>jdbc:pointbase:server://localhost/demo
<map-config-property-value>

</map-config-property>

<security-principal-map>
<map-entry>
<initiating-principal>*</initiating-principal>
<resource-principal>

<resource-username>examples</resource-username>
<resource-password>examples</resource-password>

</resource-principal>
</map-entry>

</security-principal-map>

</weblogic-connection-factory-dd>

Note: The sample Resource Adapter deployment descriptor shown in Listing 10-2 is located in
WL_HOME\samples\server\src\examples\resadapter\simple\rars\META-INF,
where WL_HOME is the top-level installation directory for WebLogic Server.

While you can set additional credential maps in deployment descriptors and in the Administration
Console, BEA recommends that you copy the credential maps defined in the Resource Adapter’s
deployment descriptor once, then use the Administration Console to define subsequent credential
maps. This is because any changes made to the credential maps through the Administration
Console during configuration of a Credential Mapping provider will not be persisted to the
weblogic-ra.xml file. Before you deploy the Resource Adapter (Connector) again (which will
happen if you redeploy it through the Administration Console, modify it on disk, or restart
WebLogic Server), you should check the Ignore Deploy Credential Mapping checkbox. If you do
not, the credential maps defined using the Administration Console will be overwritten by those
defined in the deployment descriptor.

10-18 Developing Security Providers for WebLogic Server

Enabling Deployable Credential Mappings
Note: The DeployableCredentialProvider SSPI is deprecated in this release of WebLogic

Server.

If you implemented the DeployableCredentialProvider SSPI as part of developing your
custom Credential Mapping provider and want to support deployable credential maps, the person
configuring the custom Credential Mapping provider (that is, you or an administrator) must be
sure that the Credential Mapping Deployment Enabled check box in the Administration Console
is checked. Otherwise, deployment for the Credential Mapping provider is considered “turned
off.” Therefore, if multiple Credential Mapping providers are configured, the Credential
Mapping Deployment Enabled check box can be used to control which Credential Mapping
provider is used for credential map deployment.

Note: The Ignore Deploy Credential Mapping checkbox (specified at the security realm level
and described in “Managing Credential Mapping Providers, Resource Adapters, and
Deployment Descriptors” on page 10-16) determines whether you want credential maps
to be copied into the security databases for the configured Credential Mapping providers.
The Credential Mapping Deployment Enabled check box (specified for each configured
Credential Mapping provider) determines whether or not the Credential Mapping
provider is the one that stores the deployed credential maps.

Provide a Mechanism for Credential Map Management
While configuring a custom Credential Mapping provider via the WebLogic Server
Administration Console makes it accessible by applications requiring credential mapping
services, you also need to supply administrators with a way to manage this security provider’s
associated credential maps. The WebLogic Credential Mapping provider, for example, supplies
administrators with a Credential Mappings page that allows them to add, modify, or remove
credential mappings for various Connector modules.

Neither the Credential Mapping page nor access to it is available to administrators when you
develop a custom Credential Mapping provider. Therefore, you must provide your own
mechanism for credential map management. This mechanism must read and write credential
maps to and from the custom Credential Mapping provider’s database.

You can accomplish this task in one of two ways:

“Option 1: Develop a Stand-Alone Tool for Credential Map Management” on page 10-19

“Option 2: Integrate an Existing Credential Map Management Tool into the Administration
Console” on page 10-19

How to Deve l op a Custom Credent ia l Mapping Prov ider

Developing Security Providers for WebLogic Server 10-19

Option 1: Develop a Stand-Alone Tool for Credential Map Management
You would typically select this option if you want to develop a tool that is entirely separate from
the WebLogic Server Administration Console.

For this option, you do not need to write any console extensions for your custom Credential
Mapping provider, nor do you need to develop any management MBeans. However, your tool
needs to:

1. Determine the WebLogic resource’s ID, since it is not automatically provided to you by the
console extension. For more information, see “WebLogic Resource Identifiers” on page 2-28.

2. Determine how to represent the represent the local-to-remote user relationship. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom Credential Mapping provider’s
database.

Option 2: Integrate an Existing Credential Map Management Tool into the
Administration Console
You would typically select this option if you have a tool that is separate from the WebLogic
Server Administration Console, but you want to launch that tool from the Administration
Console.

For this option, your tool needs to:

1. Determine the WebLogic resource’s ID. For more information, see “WebLogic Resource
Identifiers” on page 2-28.

2. Determine how to represent the represent the local-to-remote user relationship. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom Credential Mapping provider’s
database.

4. Link into the Administration Console using basic console extension techniques, as
described in Extending the Administration Console.

http://e-docs.bea.com/wls/docs90/console_ext/index.html

10-20 Developing Security Providers for WebLogic Server

Developing Security Providers for WebLogic Server 11-1

C H A P T E R 11

Auditing Events From Custom Security
Providers

As described in Chapter 9, “Auditing Providers,” auditing is the process whereby information
about operating requests and the outcome of those requests are collected, stored, and distributed
for the purposes of non-repudiation. Auditing providers provide this electronic trail of computer
activity.

Each type of security provider can call the configured Auditing providers with a request to write
out information about security-related events, before or after these events take place. For
example, if a user attempts to access a withdraw method in a bank account application (to which
they should not have access), the Authorization provider can request that this operation be
recorded. Security-related events are only recorded when they meet or exceed the severity level
specified in the configuration of the Auditing providers.

The following sections provide the background information you need to understand before
adding auditing capability to your custom security providers, and provide step-by-step
instructions for adding auditing capability to a custom security provider:

“Security Services and the Auditor Service” on page 11-1

“How to Audit From a Custom Security Provider” on page 11-3

Security Services and the Auditor Service
The SecurityServices interface, located in the weblogic.security.spi package, is a
repository for security services (currently just the Auditor Service). As such, the
SecurityServices interface is responsible for supplying callers with a reference to the Auditor
Service via the following method:

11-2 Developing Security Providers for WebLogic Server

getAuditorService
public AuditorService getAuditorService

The getAuditorService method returns the AuditService if an Auditing provider is
configured.

The AuditorService interface, also located in the weblogic.security.spi package,
provides other types of security providers (for example, Authentication providers) with limited
(write-only) auditing capabilities. In other words, the Auditor Service fans out invocations of
each configured Auditing provider’s writeEvent method, which simply writes an audit record
based on the information specified in the AuditEvent object that is passed in. (For more
information about the writeEvent method, see “Implement the AuditChannel SSPI” on
page 9-10. For more information about AuditEvent objects, see “Create an Audit Event” on
page 11-3.) The AuditorService interface includes the following method:

providerAuditWriteEvent
public void providerAuditWriteEvent (AuditEvent event)

The providerAuditWriteEvent method gives security providers write access to the
object in the WebLogic Security Framework that calls the configured Auditing providers.
The event parameter is an AuditEvent object that contains the audit criteria, including
the type of event to audit and the audit severity level. For more information about Audit
Events and audit severity levels, see “Create an Audit Event” on page 11-3 and “Audit
Severity” on page 11-7, respectively.

The Auditor Service can be called to write audit events before or after those events have taken
place, but does not maintain context in between pre and post operations. Security providers
designed with auditing capabilities will need to obtain the Auditor Service as described in
“Obtain and Use the Auditor Service to Write Audit Events” on page 11-10.

Notes: Implementations for both the SecurityServices and AuditorService interfaces are
created by the WebLogic Security Framework at boot time if an Auditing provider is
configured. (For more information about configuring Auditing providers, see “Configure
the Custom Auditing Provider Using the Administration Console” on page 9-18.)
Therefore, you do not need to provide your own implementations of these interfaces.

Additionally, SecurityServices objects are specific to the security realm in which
your security providers are configured. Your custom security provider’s runtime class
automatically obtains a reference to the realm-specific SecurityServices object as
part of its initialize method. (For more information, see “Understand the Purpose of
the “Provider” SSPIs” on page 2-3.)

How to Aud i t F rom a Custom Secur i t y P rov ide r

Developing Security Providers for WebLogic Server 11-3

For more information about these interfaces and their methods, see the WebLogic Server API
Reference Javadoc for the SecurityServices interface and the AuditorService interface.

How to Audit From a Custom Security Provider
Add auditing capability to your custom security provider by following these steps:

“Create an Audit Event” on page 11-3

“Obtain and Use the Auditor Service to Write Audit Events” on page 11-10

Examples for each of these steps are provided in “Example: Implementation of the
AuditRoleEvent Interface” on page 11-8 and “Example: Obtaining and Using the Auditor
Service to Write Role Audit Events” on page 11-11, respectively.

Note: If your custom security provider is to record audit events, be sure to include any classes
created as a result of these steps into the MBean JAR File (MJF) for the custom security
provider (that is, in addition to the other files that are required).

Create an Audit Event
Security providers must provide information about the events they want audited, such as the type
of event (for example, an authentication event) and the audit severity (for example, “error”).
Audit Events contain this information, and can also contain any other contextual data that is
understandable to a configured Auditing provider. To create an Audit Event, either:

“Implement the AuditEvent SSPI” on page 11-3 or

“Implement an Audit Event Convenience Interface” on page 11-4

Implement the AuditEvent SSPI
To implement the AuditEvent SSPI, provide implementations for the following methods:

getEventType
public java.lang.String getEventType()

The getEventType method returns a string representation of the event type that is to be
audited, which is used by the Audit Channel (that is, the runtime class that implements the
AuditChannel SSPI). For example, the event type for the BEA-provided implementation
is “Authentication Audit Event”. For more information, see “Audit Channels” on
page 9-2 and “Implement the AuditChannel SSPI” on page 9-10.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/SecurityServices.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditorService.html

11-4 Developing Security Providers for WebLogic Server

getFailureException
public java.lang.Exception getFailureException()

The getFailureException method returns an Exception object, which is used by the
Audit Channel to obtain audit information, in addition to the information provided by the
toString method.

getSeverity
public AuditSeverity getSeverity()

The getSeverity method returns the severity level value associated with the event type
that is to be audited, which is used by the Audit Channel. This allows the Audit Channel
to make the decision about whether or not to audit. For more information, see “Audit
Severity” on page 11-7.

toString
public java.lang.String toString()

The toString method returns preformatted audit information to the Audit Channel.

Note: The toString method can produce any character and no escaping is used. If your Audit
provider is writing the toString value into a format that uses characters for syntax,
escape the toString value before writing it.

For more information about the AuditEvent SSPI and these methods, see the WebLogic Server
API Reference Javadoc.

Implement an Audit Event Convenience Interface
There are several subinterfaces of the AuditEvent SSPI that are provided for your convenience,
and that can assist you in structuring and creating Audit Events.

Each of these Audit Event convenience interfaces can be used by an Audit Channel (that is, a
runtime class that implements the AuditChannel SSPI) to more effectively determine the
instance types of extended event type objects, for a certain type of security provider. For example,
the AuditAtnEventV2 convenience interface can be used by an Audit Channel that wants to
determine the instance types of extended authentication event type objects. (For more
information, see “Audit Channels” on page 9-2 and “Implement the AuditChannel SSPI” on
page 9-10.)

The Audit Event convenience interfaces are:

“The AuditAtnEventV2 Interface” on page 11-5

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditEvent.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditEvent.html

How to Aud i t F rom a Custom Secur i t y P rov ide r

Developing Security Providers for WebLogic Server 11-5

“The AuditAtzEvent and AuditPolicyEvent Interfaces” on page 11-6

“The AuditMgmtEvent Interface” on page 11-7

“The AuditRoleEvent and AuditRoleDeploymentEvent Interfaces” on page 11-7

Note: It is recommended, but not required, that you implement one of the Audit Event
convenience interfaces.

The AuditAtnEventV2 Interface
Note: The AuditAtnEvent interface is deprecated in this release of WebLogic Server.

The AuditAtnEventV2 convenience interface helps Audit Channels to determine instance types
of extended authentication event type objects.

To implement the AuditAtnEventV2 interface, provide implementations for the methods
described in “Implement the AuditEvent SSPI” on page 11-3 and the following methods:

getUsername
public String getUsername()

The getUsername method returns the username associated with the authentication event.

getAtnEventType
public AuditAtnEventV2.AtnEventTypeV2 getAtnEventType()

The getAtnEventType method returns an event type that more specifically represents the
authentication event. The specific authentication event types are:

AUTHENTICATE—simple authentication using a username and password occurred.

ASSERTIDENTITY—perimeter authentication based on tokens occurred.

CREATEDERIVEDKEY—represents the creation of the Derived key.

CREATEPASSWORDDIGEST—represents the creation of the Password Digest.

IMPERSONATEIDENTITY—client identity has been established using the supplied client
username (requires kernel identity).

USERLOCKED—a user account has been locked because of invalid login attempts.

USERUNLOCKED—a lock on a user account has been cleared.

USERLOCKOUTEXPIRED—a lock on a user account has expired.

11-6 Developing Security Providers for WebLogic Server

VALIDATEIDENTITY—authenticity (trust) of the principals within the supplied subject has
been validated.

toString
public String toString()

The toString method returns the specific authentication information to audit,
represented as a string.

Notes: The toString method can produce any character and no escaping is used. If your Audit
provider is writing the toString value into a format that uses characters for syntax,
escape the toString value before writing it.

The AuditAtnEventV2 convenience interface extends both the AuditEvent and
AuditContext interfaces. For more information about the AuditContext interface, see
“Audit Context” on page 11-8.

For more information about the AuditAtnEventV2 convenience interface and these methods, see
the WebLogic Server API Reference Javadoc.

The AuditAtzEvent and AuditPolicyEvent Interfaces
The AuditAtzEvent and AuditPolicyEvent convenience interfaces help Audit Channels to
determine instance types of extended authorization event type objects.

Note: The difference between the AuditAtzEvent convenience interface and the
AuditPolicyEvent convenience interface is that the latter only extends the
AuditEvent interface. (It does not also extend the AuditContext interface.) For more
information about the AuditContext interface, see “Audit Context” on page 11-8.

To implement the AuditAtzEvent or AuditPolicyEvent interface, provide implementations
for the methods described in “Implement the AuditEvent SSPI” on page 11-3 and the following
methods:

getSubject
public Subject getSubject()

The getSubject method returns the subject associated with the authorization event (that
is, the subject attempting to access the WebLogic resource).

getResource
public Resource getResource()

The getResource method returns the WebLogic resource associated with the
authorization event that the subject is attempting to access.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditAtnEvent.html

How to Aud i t F rom a Custom Secur i t y P rov ide r

Developing Security Providers for WebLogic Server 11-7

For more information about these convenience interfaces and methods, see the WebLogic Server
API Reference Javadoc for the AuditAtzEvent interface or the AuditPolicyEvent interface.

The AuditMgmtEvent Interface
The AuditMgmtEvent convenience interface helps Audit Channels to determine instance types
of extended security management event type objects, such as a security provider’s MBean. It
contains no methods that you must implement, but maintains the best practice structure for an
Audit Event implementation.

Note: For more information about MBeans, see “Security Service Provider Interface (SSPI)
MBeans” on page 2-9.

For more information about the AuditMgmtEvent convenience interface, see the WebLogic
Server API Reference Javadoc.

The AuditRoleEvent and AuditRoleDeploymentEvent Interfaces
The AuditRoleDeploymentEvent and AuditRoleEvent convenience interfaces help Audit
Channels to determine instance types of extended role mapping event type objects. They contain
no methods that you must implement, but maintain the best practice structure for an Audit Event
implementation.

Note: The difference between the AuditRoleEvent convenience interface and the
AuditRoleDeploymentEvent convenience interface is that the latter only extends the
AuditEvent interface. (It does not also extend the AuditContext interface.) For more
information about the AuditContext interface, see “Audit Context” on page 11-8.

For more information about these convenience interfaces, see the WebLogic Server API
Reference Javadoc for the AuditRoleEvent interface or the AuditRoleDeploymentEvent
interface.

Audit Severity
The audit severity is the level at which a security provider wants audit events to be recorded.
When the configured Auditing providers receive a request to audit, each will examine the severity
level of events taking place. If the severity level of an event is greater than or equal to the level
an Auditing provider was configured with, that Auditing provider will record the audit data.

Note: Auditing providers are configured using the WebLogic Server Administration Console.
For more information, see “Configure the Custom Auditing Provider Using the
Administration Console” on page 9-18.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditAtnEvent.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditAtnEvent.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditAtzEvent.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditPolicyEvent.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditMgmtEvent.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditMgmtEvent.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditAtnEvent.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditAtnEvent.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditRoleEvent.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/security/spi/AuditRoleDeploymentEvent.html

11-8 Developing Security Providers for WebLogic Server

The AuditSeverity class, which is part of the weblogic.security.spi package, provides
audit severity levels as both numeric and text values to the Audit Channel (that is, the
AuditChannel SSPI implementation) through the AuditEvent object. The numeric severity
value is to be used in logic, and the text severity value is to be used in the composition of the audit
record output. For more information about the AuditChannel SSPI and the AuditEvent object,
see “Implement the AuditChannel SSPI” on page 9-10 and “Create an Audit Event” on
page 11-3, respectively.

Audit Context
Some of the Audit Event convenience interfaces extend the AuditContext interface to indicate
that an implementation will also contain contextual information. This contextual information can
then be used by Audit Channels. For more information, see “Audit Channels” on page 9-2 and
“Implement the AuditChannel SSPI” on page 9-10.

The AuditContext interface includes the following method:

getContext
public ContextHandler getContext()

The getContext method returns a ContextHandler object, which is used by the runtime
class (that is, the AuditChannel SSPI implementation) to obtain additional audit
information. For more information about ContextHandlers, see “ContextHandlers and
WebLogic Resources” on page 2-36.

Example: Implementation of the AuditRoleEvent Interface
Listing 11-1 shows the MyAuditRoleEventImpl.java class, which is a sample implementation
of an Audit Event convenience interface (in this case, the AuditRoleEvent convenience
interface). This class includes implementations for:

The four methods inherited from the AuditEvent SSPI: getEventType,
getFailureException, getSeverity and toString (as described in “Implement the
AuditEvent SSPI” on page 11-3).

One additional method: getContext, which returns additional contextual information via
the ContextHandler. (For more information about ContextHandlers, see “ContextHandlers
and WebLogic Resources” on page 2-36.)

Note: The bold face code in Listing 11-1 highlights the class declaration and the method
signatures.

How to Aud i t F rom a Custom Secur i t y P rov ide r

Developing Security Providers for WebLogic Server 11-9

Listing 11-1 MyAuditRoleEventImpl.java

package mypackage;

import javax.security.auth.Subject;

import weblogic.security.SubjectUtils;

import weblogic.security.service.ContextHandler;

import weblogic.security.spi.AuditRoleEvent;

import weblogic.security.spi.AuditSeverity;

import weblogic.security.spi.Resource;

/*package*/ class MyAuditRoleEventImpl implements AuditRoleEvent

{

private Subject subject;

private Resource resource;

private ContextHandler context;

private String details;

private Exception failureException;

/*package*/ MyAuditRoleEventImpl(Subject subject, Resource resource,

ContextHandler context, String details, Exception

failureException) {

this.subject = subject;

this.resource = resource;

this.context = context;

this.details = details;

this.failureException = failureException;

}

public Exception getFailureException()

{

return failureException;

}

public AuditSeverity getSeverity()

{

return (failureException == null) ? AuditSeverity.SUCCESS :

AuditSeverity.FAILURE;

}

11-10 Developing Security Providers for WebLogic Server

public String getEventType()

{

return "MyAuditRoleEventType";

}

public ContextHandler getContext()

{

return context;

}

public String toString()

{

StringBuffer buf = new StringBuffer();

buf.append("EventType:" + getEventType() + "\n");

buf.append("\tSeverity: " +

getSeverity().getSeverityString());

buf.append("\tSubject: " +

SubjectUtils.displaySubject(getSubject());

buf.append("\tResource: " + resource.toString());

buf.append("\tDetails: " + details);

if (getFailureException() != null) {

buf.append("\n\tFailureException:" +

getFailureException());

}

return buf.toString();

}

}

Obtain and Use the Auditor Service to Write Audit Events
To obtain and use the Auditor Service to write audit events from a custom security provider,
follow these steps:

1. Use the getAuditorService method to return the Audit Service.

Note: Recall that a SecurityServices object is passed into a security provider’s
implementation of a “Provider” SSPI as part of the initialize method. (For more

How to Aud i t F rom a Custom Secur i t y P rov ide r

Developing Security Providers for WebLogic Server 11-11

information, see “Understand the Purpose of the “Provider” SSPIs” on page 2-3.) An
AuditorService object will only be returned if an Auditing provider has been
configured.

2. Instantiate the Audit Event you created in “Implement the AuditEvent SSPI” on page 11-3
and send it to the Auditor Service through the
AuditService.providerAuditWriteEvent method.

Example: Obtaining and Using the Auditor Service to Write Role Audit Events
Listing 11-2 illustrates how a custom Role Mapping provider’s runtime class (called
MyRoleMapperProviderImpl.java) would obtain the Auditor Service and use it to write out
audit events.

Note: The MyRoleMapperProviderImpl.java class relies on the
MyAuditRoleEventImpl.java class from Listing 11-1.

Listing 11-2 MyRoleMapperProviderImpl.java

package mypackage;

import javax.security.auth.Subject;

import weblogic.management.security.ProviderMBean;

import weblogic.security.SubjectUtils;

import weblogic.security.service.ContextHandler;

import weblogic.security.spi.AuditorService;

import weblogic.security.spi.RoleMapper;

import weblogic.security.spi.RoleProvider;

import weblogic.security.spi.Resource;

import weblogic.security.spi.SecurityServices;

public final class MyRoleMapperProviderImpl implements RoleProvider,

RoleMapper

{

private AuditorService auditor;

public void initialize(ProviderMBean mbean, SecurityServices

services)

{

auditor = services.getAuditorService();

11-12 Developing Security Providers for WebLogic Server

...

}

public Map getRoles(Subject subject, Resource resource,

ContextHandler handler)

{

...

if (auditor != null)

{

auditor.providerAuditWriteEvent(

new MyRoleEventImpl(subject, resource, context,

"why logging this event",

null); // no exception occurred

}

...

}

}

Auditing Management Operations from a Provider’s MBean
A SecurityServices object is passed into a security provider’s implementation of a “Provider”
SSPI as part of the initialize method. (For more information, see “Understand the Purpose of
the “Provider” SSPIs” on page 2-3.) The provider can use this object's auditor to audit
provider-specific security events, such as when a user is successfully logged in.

A security provider's MBean implementation is not passed a SecurityServices object. However,
the provider may need to audit its MBean operations, such as a user being created.

To work around this, the provider's runtime implementation can cache the SecurityServices
object and use a provider-specific mechanism to pass it to the provider's MBean implementation.
This allows the provider to audit its MBean operations.

The Manageable Sample Authentication Provider, one of the sample security providers available
under “Code Samples: WebLogic Server” on the dev2dev Web site, shows one way to accomplish
this task. The sample provider contains three major implementation classes:

ManageableSampleAuthenticationProviderImpl contains its security runtime
implementation.

ManageableSampleAuthenticatorImpl contains its MBean implementation.

http://dev2dev.bea.com/code/wls.jsp

How to Aud i t F rom a Custom Secur i t y P rov ide r

Developing Security Providers for WebLogic Server 11-13

UserGroupDatabase is a helper class used by
ManageableSampleAuthenticationProviderImpl and ManageableSampleAuthenticatorImpl.

The code flow to cache and obtain the SecurityServices object is as follows:

1. The ManageableSampleAuthenticationProviderImpl's initialize method is passed a
SecurityServices object.

2. The initialize method creates a UserGroupDataBase object and passes it the
SecurityServices object.

3. The UserGroupDataBaseObject caches the SecurityServices object. The initialize
method also puts the UserGroupDatabase object into a hash table using the realm's name as
the lookup key.

4. The ManageableSampleAuhenticatorImpl's init method finds its realm name from its
MBean.

5. The init method uses the realm name to find the corresponding UserGroupDataBase
object from the hash table.

6. The init method then retrieves the SecurityServices object from the UserGroupDatabase
object, and uses its auditor to audit management operations such as "createUser."

Note: A provider's runtime implementation is initialized only if the provider is part of the
default realm when the server is booted. Therefore, if the provider is not in the default
realm when the server is booted, its runtime implementation is never initialized, and the
provider's MBean implementation cannot gain access to the SecurityServices object.
That is, if the provider is not in the default realm when the server is booted, the provider
cannot audit its MBean operations.

Example: Auditing Management Operations from a Provider’s MBean
Listing 11-3 illustrates how the ManageableSampleAuhenticatorImpl's init method finds its
realm name from its MBean, how it uses the realm name to find the corresponding
UserGroupDataBase object from the hash table (via the UserGroupDatabase helper class), and
how it then retrieves the SecurityServices object from the UserGroupDatabase object.

Listing 11-3 also shows how ManageableSampleAuhenticatorImpl uses its auditor to audit
management operations such as "createUser."

11-14 Developing Security Providers for WebLogic Server

Listing 11-3 ManageableSampleAuthenticatorImpl.java

package examples.security.providers.authentication.manageable;
import java.util.Enumeration;
import javax.management.MBeanException;
import javax.management.modelmbean.ModelMBean;
import weblogic.management.security.authentication.AuthenticatorImpl;
import weblogic.management.utils.AlreadyExistsException;
import weblogic.management.utils.InvalidCursorException;
import weblogic.management.utils.NotFoundException;
import weblogic.security.spi.AuditorService;
import weblogic.security.spi.SecurityServices;

public class ManageableSampleAuthenticatorImpl extends AuthenticatorImpl
{
// Manages the user and group definitions for this provider:
private UserGroupDatabase database;

// Manages active queries (see listUsers, listGroups, listMemberGroups):
private ListManager listManager = new ListManager();

// The name of the realm containing this provider:
private String realm;

// The name of this provider:
private String provider;

// The auditor for auditing user/group management operations.
// This is only available if this provider was configured in
// the default realm when the server was booted.
private AuditorService auditor;

public ManageableSampleAuthenticatorImpl(ModelMBean base) throws MBeanException
{
super(base);
}

private synchronized void init() throws MBeanException
{
if (database == null) {
try {
ManageableSampleAuthenticatorMBean myMBean =
(ManageableSampleAuthenticatorMBean)getProxy();
database = UserGroupDatabase.getDatabase(myMBean);
realm = myMBean.getRealm().getName();
provider = myMBean.getName();
SecurityServices services = database.getSecurityServices();
auditor = (services != null) ? services.getAuditorService() : null;

How to Aud i t F rom a Custom Secur i t y P rov ide r

Developing Security Providers for WebLogic Server 11-15

}
catch(Exception e) {
throw new MBeanException(e, "SampleAuthenticatorImpl.init failed");
}
}
}
...
public void createUser(String user, String password, String description)
throws MBeanException, AlreadyExistsException
{
init();
String details = (auditor != null) ?
"createUser(user = " + user + ", password = " + password + ", description = " +
description + ")" : null;
try {
// we don't support descriptions so just ignore it

database.checkDoesntExist(user);
database.getUser(user).create(password);
database.updatePersistentState();
auditOperationSucceeded(details);
}
catch (AlreadyExistsException e) { auditOperationFailed(details, e); throw e; }
catch (IllegalArgumentException e) { auditOperationFailed(details, e); throw e;
}
}
...
private void auditOperationSucceeded(String details)
{
if (auditor != null) {
auditor.providerAuditWriteEvent(
new ManageableSampleAuthenticatorManagementEvent(realm, provider, details,
null)
);
}
}
...
private void auditOperationFailed(String details, Exception failureException)
{
if (auditor != null) {

auditor.providerAuditWriteEvent(
new ManageableSampleAuthenticatorManagementEvent(realm, provider, details,
failureException)
);
}
}
}

11-16 Developing Security Providers for WebLogic Server

Best Practice: Posting Audit Events from a Provider's MBean
Provider’s management operations that do writes (for example, create user, delete user, remove
data) shoud post audit events, regardless of whether or not the operation succeeds.

If your provider audits MBean operations, you should keep the following Best Practice guidelines
in mind.

If the write operation succeeds, post an INFORMATION audit event.

If the write operation fails because of a bad parameter (for example, because the user
already exists, or due to a bad import format name, a non-existent file name, or the wrong
file format), do not post an audit event.

If the write operation fails because of an error (for example, LDAPException,
RuntimeException), post a FAILURE audit event.

Import operations can partially succeed. For example, some of the users are imported, but
others are skipped because there are already users with that name in the provider.

If you can easily detect that the data you are skipping is identical to the data already in the
provider (for example, the username, description, and password are the same) then
consider posting a WARNING event.

If you are skipping data because there is a partial collision (for example, the username is
the same but the password is different), you should post a FAILURE event.

If it is too difficult to distinguish the import data from the data already stored in the
provider, post a FAILURE event.

Developing Security Providers for WebLogic Server 12-1

C H A P T E R 12

Servlet Authentication Filters

A Servlet Authentication Filter is a provider type that performs pre- and post-processing for
authentication functions, including identity assertion. A Servlet Authentication Filter is a special
type of security provider that primarily acts as a “helper” to an Authentication provider.

The ServletAuthenticationFilter interface defines the security service provider interface
(SSPI) for authentication filters that can be plugged in to WebLogic Server. You implement the
ServletAuthenticationFilter interface as part of an Authentication provider, and typically
as part of the Identity Assertion form of Authentication provider, to signal that the Authentication
provider has authentication filters that it wants the servlet container to invoke during the
authentication process.

The following sections describe Servlet Authentication Filter interface concepts and
functionality, and provide step-by-step instructions for developing a Servlet Authentication
Filter:

“Authentication Filter Concepts” on page 12-1

“How Filters Are Invoked” on page 12-3

“Example of a Provider that Implements a Filter” on page 12-5

“How to Develop a Custom Servlet Authentication Filter” on page 12-6

Authentication Filter Concepts
Filters, as defined by the Java Servlet API 2.3 specification, are preprocessors of the request
before it reaches the servlet, and/or postprocessors of the response leaving the servlet. Filters

12-2 Developing Security Providers for WebLogic Server

provide the ability to encapsulate recurring tasks in reusable units and can be used to transform
the response from a servlet or JSP page.

Servlet Authentication filters are an extension to of the filter object that allows filters to replace
or extend container-based authentication.

Why Filters are Needed
The WebLogic Security Framework allows you to provide a custom Authentication provider.
However, due to the nature of the Java Servlet API 2.3 specification, the interaction between the
Authentication provider and the client or other servers is architecturally limited during the
authentication process. This restricts authentication mechanisms to those that are compatible
with the authentication mechanisms the Servlet container offers: basic, form, and certificate.

Filters have fewer architecturally-dependence limitations; that is, they are not dependent on the
authentication mechanisms offered by the Servlet container. By allowing filters to be invoked
prior to the container beginning the authentication process, a security realm can implement a
wider scope of authentication mechanisms. For example, a Servlet Authentication Filter could
redirect the user to a SAML provider site for authentication.

JAAS LoginModules (within a WebLogic Authentication provider) can be used for
customization of the login process. Customizing the location of the user database, the types of
proof material required to execute a login, or the population of the Subject with groups is
implemented via a LoginModule.

Conversely, redirecting to a remote site to execute the login, extracting login information out of
the query string, and negotiating a login mechanism with a browser are implemented via a Servlet
Authentication Filter.

Servlet Authentication Filter Design Considerations
You should consider the following design considerations when writing Servlet Authentication
Filters:

Do you need to allow multiple filters to be specified? You might want to allow this so that
administrative decisions can be made at configuration time.

Do you depend on a particular order of-execution? Servlet Authentication Filters must not
be dependent on the order in which filters are executed.

How F i l te rs A re Invoked

Developing Security Providers for WebLogic Server 12-3

Have you considered allowing each filter to process the request both before and after
authentication? If so, the filter should not make any assumptions about when it is being
invoked.

Consider allowing each filter to have the option of stopping the execution of the remaining
filters and the Servlet’s authentication process by not calling the Filter doFilter method.

Do you need to allow a filter to cause the browser to redirect?

Consider allowing a filter to work for 1-way SSL, 2-way SSL, identity assertion, form
authentication, and basic authentication. For example, Form authentication is a
two-request process and the filter is called twice for form authentication.

How Filters Are Invoked
The Servlet Authentication Filter interface allows an Authentication provider to implement zero
or more Servlet Authentication Filter classes. The filters are invoked as follows:

1. The servlet container calls the Servlet Authentication Filters prior to authentication occurring.

The servlet container gets the configured chain of Servlet Authentication Filters from the
WebLogic Security Framework.

The Security Framework returns the Servlet Authentication Filters in the order of the
authentication providers. If one provider has multiple Servlet Authentication Filters, the
Security Framework uses the ordered list of javax.servlet.Filters returned by the
ServletAuthenticationFilter getAuthenticationFilters method.

Duplicate filters are allowed because they might need to execute multiple times to correctly
manipulate the request.

2. For each filter, the servlet container calls the Filter init method to indicate to a filter that it
is being placed into service.

3. The servlet container calls the Filter doFilter method on the first filter each time a
request/response pair is passed through the chain due to a client request for a resource at the
end of the chain.

The FilterChain object passed in to this method allows the Filter to pass on the request and
response to the next entity in the chain. Filters use the FilterChain object to invoke the
next filter in the chain, or if the calling filter is the last filter in the chain, to invoke the
resource at the end of the chain.

12-4 Developing Security Providers for WebLogic Server

4. If all Servlet Authentication Filters call the Filter doFilter method then, when the final
one calls the doFilter method, the servlet container then performs authentication as it
would if the filters were not present.

However, if any of the Servlet Authentication Filters do not call the doFilter method, the
remaining filters, the servlet, and the servlet container’s authentication procedure are not
called. This allows a filter to replace the servlet’s authentication process. This typically
involves authentication failure or redirecting to another URL for authentication.

Do Not Call Servlet Authentication Filters From Authentication
Providers
Although you implement the Servlet Authentication Filter interface as part of an Authentication
provider, Authentication providers do not actually call Servlet Authentication Filters directly.
The implementation of Servlet Authentication Filters depends upon particular features of the
WebLogic Security Framework that know how to locate and invoke the filters.

If you develop a custom Servlet Authentication Filter, make sure that your custom Authentication
providers do not call the WLS-specific classes (for example, weblogic.servlet.*) and the
J2EE-specific classes (for example, javax.servlet.*). Following this rule ensures maximum
portability with WebLogic Enterprise Security.

Figure 12-1 illustrates this requirement.

Example o f a P rov ider that Imp lements a F i l te r

Developing Security Providers for WebLogic Server 12-5

Figure 12-1 Authentication Providers Do Not Call Servlet Authentication Filters

Example of a Provider that Implements a Filter
This release of WebLogic Server includes a Servlet Authentication Filter that handles the header
manipulation required by the Simple and Protected Negotiate (SPNEGO). This Servlet
Authentication Filter, called the “Negotiate Servlet Authentication Filter,” is configured to
support the WWW-Authenticate and Authorization HTTP headers.

The Negotiate Servlet Authentication Filter generates the appropriate WWW-Authenticate
header on unauthorized responses for the negotiate protocol and handles the Authorization
headers on subsequent requests. The filter is available through the Negotiate Identity Assertion
Provider.

12-6 Developing Security Providers for WebLogic Server

By default, the Negotiate Identity Assertion provider is available, but not configured, in the
WebLogic default security realm. The Negotiate Identity Assertion provider can be used instead
of, or in addition to, the WebLogic Identity Assertion provider.

How to Develop a Custom Servlet Authentication Filter
You can develop a custom Servlet Authentication Filter by following these steps:

1. “Create Runtime Classes Using the Appropriate SSPIs” on page 12-6

2. “Generate an MBean Type Using the WebLogic MBeanMaker” on page 12-9

3. “Configure the Authentication Provider Using Administration Console” on page 12-10

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

“Understand the Purpose of the “Provider” SSPIs” on page 2-3

“Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes” on page 2-6

When you understand this information and have made your design decisions, create the runtime
classes for your Servlet Authentication Filter by following these steps:

“Implement the AuthenticationProviderV2 SSPI” on page 4-11 or “Implement the
IdentityAsserterV2 SSPI” on page 4-12

“Implement the Servlet Authentication Filter SSPI” on page 12-6

“Implement the Filter Interface Methods” on page 12-7

For an example of how to create a runtime class for a custom Servlet Authentication Filter
provider, see “Generate an MBean Type Using the WebLogic MBeanMaker” on page 12-9

Implement the Servlet Authentication Filter SSPI
You implement the ServletAuthenticationFilter interface as part of an Authentication
provider to signal that the Authentication provider has authentication filters that it wants the
servlet container to invoke during the authentication process.

To implement the Servlet Authentication Filter SSPI, provide an implementation for the
following method:

How to Deve l op a Custom Serv le t Authent icat i on F i l te r

Developing Security Providers for WebLogic Server 12-7

get Servlet Authentication Filters
public Filter[] getServletAuthenticationFilters

The getServletAuthenticationFilters method returns an ordered list of the
javax.servlet.Filters that are executed during the authentication process of the Servlet
container. The container may call this method multiple times to get multiple instances of
the Servlet Authentication Filter. On each call, this method should return a list of new
instances of the filters.

Implement the Filter Interface Methods
To implement the Filter interface methods, provide implementations for the following methods.
In typical use, you would call init() once, doFilter() possibly many times, and destroy() once.

destroy
public void destroy()

The destroy method is called by the web container to indicate to a filter that it is being
taken out of service. This method is only called once all threads within the filter's doFilter
method have exited, or after a timeout period has passed. After the web container calls
this method, it does not call the doFilter method again on this instance of the filter.

This method gives the filter an opportunity to clean up any resources that are being held
(for example, memory, file handles, threads) and make sure that any persistent state is
synchronized with the filter's current state in memory

doFilter
public void doFilter(ServletRequest request, ServletResponse
response, FilterChain chain)

The doFilter method of the Filter is called by the container each time a request/response
pair is passed through the chain due to a client request for a resource at the end of the
chain. The FilterChain passed in to this method allows the Filter to pass on the request and
response to the next entity in the chain.

A typical implementation of this method would follow the following pattern:

1. Examine the request.

2. Optionally, wrap the request object with a custom implementation to filter content or
headers for input filtering.

3. Optionally, wrap the response object with a custom implementation to filter content or
headers for output filtering.

12-8 Developing Security Providers for WebLogic Server

4. Either invoke the next entity in the chain using the FilterChain object (chain.doFilter()),
or do not pass on the request/response pair to the next entity in the filter chain to block the
request processing.

5. Directly set headers on the response after invocation of the next entity in the filter chain.

init
public void init(FilterConfig filterConfig)

The init method is called by the web container to indicate to a filter that it is being placed
into service. The servlet container calls the init method exactly once after instantiating the
filter. The init method must complete successfully before the filter is asked to do any
filtering work.

Implementing Challenge Identity Assertion from a Filter
As described in Chapter 4, “Identity Assertion Providers,” the Challenge Identity Assertion
interface supports challenge response schemes in which multiple challenges, responses
messages, and state are required. The Challenge Identity Asserter interface allows Identity
Assertion providers to support authentication protocols such as Microsoft's Windows NT
Challenge/Response (NTLM), Simple and Protected GSS-API Negotiation Mechanism
(SPNEGO), and other challenge/response authentication mechanisms.

Servlet Authentication Filters allow you to implement a challenge/response protocol without
being limited to the authentication mechanisms compatible with the Servlet container. However,
because Servlet Authentication Filters operate outside of the authentication environment
provided by the Security Framework, they cannot depend on the Security Framework to
determine provider context, and require an API to drive the multiple-challenge Identity Assertion
process.

In this release, the weblogic.security.services.Authentication class has been extended
to allow multiple challenge/response identity assertion from a Servlet Authentication Filter. The
new methods and interface provide a wrapper for the ChallengeIdentityAsserterV2 and
ProviderChallengeContext SSPI interfaces so that you can invoke them from a Servlet
Authentication Filter.

There is no other documented way to perform a multiple challenge/response dialog from a Servlet
Authentication Filter within the context of the Security Framework. Your Servlet Authentication
Filter cannot directly invoke the ChallengeIdentityAsserterV2 and
ProviderChallengeContext interfaces.

How to Deve l op a Custom Serv le t Authent icat i on F i l te r

Developing Security Providers for WebLogic Server 12-9

Therefore, if you plan to implement multiple challenge/response identity assertion from a filter,
you need to implement the ChallengeIdentityAsserterV2 and
ProviderChallengeContext interfaces, and then use the
weblogic.security.services.Authentication methods and AppChallengeContect
interface to invoke them from a Servlet Authentication Filter.

The steps to accomplish this process are described in Chapter 4, “Identity Assertion Providers,”
and are summarized here:

“Implement the AuthenticationProviderV2 SSPI” on page 4-11 or “Implement the
IdentityAsserterV2 SSPI” on page 4-12

“Implement the ChallengeIdentityAsserterV2 Interface” on page 4-26

“Implement the ProviderChallengeContext Interface” on page 4-27

“Invoke the weblogic.security.services Challenge Identity Methods” on page 4-27

“Invoke the weblogic.security.services AppChallengeContext Methods” on page 4-28

Generate an MBean Type Using the WebLogic MBeanMaker
When you generate the MBean type for your custom Authentication provider as described in
Chapter 3, “Authentication Providers,” you must also implement the MBean for your Servlet
Authentication Filter.

The ServletAuthenticationFilter MBean extends the AuthenticationProvider MBean. The
ServletAuthenticationFilter MBean is a marker interface and has no methods.

<?xml version="1.0" ?>

<!DOCTYPE MBeanType SYSTEM "commo.dtd">

<MBeanType

Name = "ServletAuthenticationFilter"

Package = "weblogic.management.security.authentication"

Extends =

"weblogic.management.security.authentication.AuthenticationProvider"

PersistPolicy = "OnUpdate"

Abstract = "true"

Description = "The SSPI MBean that all Servlet Authentication Filter

providers must extend.

12-10 Developing Security Providers for WebLogic Server

This MBean is just a marker interface. It has no methods on it."

>

</MBeanType>

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply implementations
for the appropriate methods within it, you need to package the MBean files and the runtime
classes for the custom Authentication provider, including the Servlet Authentication Filter, into
an MBean JAR File (MJF).

These steps are described for the custom Authentication provider in “Use the WebLogic
MBeanMaker to Create the MBean JAR File (MJF)” on page 3-30.

Configure the Authentication Provider Using Administration
Console
Configuring a custom Authentication provider that implements a Servlet Authentication Filter
means that you are adding the custom Authorization provider to your security realm, where it can
be accessed by applications requiring authorization services.

Configuring custom security providers is an administrative task, but it is a task that may also be
performed by developers of custom security providers.

The steps for configuring a custom Authorization provider using the WebLogic Server
Administration Console are described under “Configuring WebLogic Security Providers” in
Securing WebLogic Server.

http://e-docs.bea.com/wls/docs90/secmanage/providers.html

Developing Security Providers for WebLogic Server 13-1

C H A P T E R 13

Versionable Application Providers

A versionable application is an application that has an application archive version specified in the
manifest of the application archive (EAR file). Versionable applications can be deployed
side-by-side and active simultaneously. Versionable applications allow multiple versions of an
application, where security constraints can vary between the application versions.

The Versionable Application provider SSPI enables all security providers that support
application versioning to be notified when versions are created and deleted. It also enables all
security providers that support application versioning to be notified when non-versioned
applications are removed.

 The following sections provide the background information you need to understand before
adding application versioning capability to your custom security providers, and provide
step-by-step instructions for adding application versioning capability to a custom security
provider:

“Versionable Application Concepts” on page 13-1

“The Versionable Application Process” on page 13-2

“Do You Need to Develop a Custom Versionable Application Provider?” on page 13-2

“How to Develop a Custom VersionableApplication Provider” on page 13-3

Versionable Application Concepts
Redeployment of versionable applications is always done via side-by-side versions, unless the
same archive version is specified in the subsequent redeployments. However, a versionable

13-2 Developing Security Providers for WebLogic Server

application has to be written in such a way that multiple versions of it can be run side-by-side
without conflicts; that is, it does not make any assumption of the uniqueness of the application
name, and so forth. For example, in the case where an applications may use the application name
as a unique key for global data structures, such as database tables or LDAP stores, the
applications would need to change to use the application identifier instead.

Production Redeployment is allowed only if the configured security providers support the
application versioning security SSPI. All Authorization, Role Mapping, and Credential Mapping
providers for the security realm must support application versioning for an application to be
deployed using versions.

See Developing Applications for Production Redeployment in Developing Applications with
WebLogic Server for detailed information on how an application assigns an application version.

The Versionable Application Process
For a security provider to support application versioning, it must implement the Versionable
Application SSPI. The WebLogic Security Framework calls the Versionable Application
provider SSPI when an application version is created and deleted so that the provider can take
any required actions to create, copy or removed data associated with the application version. It is
up to the provider to determine the appropriate action to take, if any.

In addition, the Versionable Application provider SSPI is also called when a non-versioned
application is deleted so that the provider can perform cleanup actions.

The WebLogic Security Framework passes the Versionable Application provider the application
identifier for the new version and the application identifier of the version used as the source of
application data. When the source identifier is not supplied, the initial version of the application
is being created.

Do You Need to Develop a Custom Versionable Application
Provider?

The WebLogic Server out-of-the-box security providers for Authorization, Role Mapping and
Credential Mapping support the application versioning SSPI. When a new version is created, all
the customized roles, policies and credential maps are cloned with new resource identifiers
representing the new application version. In addition, when an application version is deleted,
resources associated with the deleted version are removed.

http://e-docs.bea.com/wls/docs90/programming/versioning.html

How to Deve lop a Cus tom Vers i onableAppl ica t i on Prov ider

Developing Security Providers for WebLogic Server 13-3

If you develop a custom security provider for Authorization, Role Mapping, or Credential
Mapping and need to support versioned applications, you must implement the Versionable
Application SSPI.

How to Develop a Custom VersionableApplication Provider
If you need to support the Versionable Application SSPI, you can develop a custom Versionable
Application provider by following these steps:

Implement your custom Authorization, Role Mapping, or Credential Mapping providers.
All Authorization, Role Mapping, or Credential Mapping providers for the security realm
must support application versioning for an application to be deployed using versions.

“Create Runtime Classes Using the Appropriate SSPIs” on page 13-3

“Generate an MBean Type Using the WebLogic MBeanMaker” on page 13-5

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

“Understand the Purpose of the “Provider” SSPIs” on page 2-3

“Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes” on page 2-6

When you understand this information and have made your design decisions, create the runtime
classes for your custom Versionable Application provider by following these steps:

Implement your custom Authorization, Role Mapping, or Credential Mapping providers.

“Implement the VersionableApplication SSPI” on page 13-3

 Implement the VersionableApplication SSPI
To implement the VersionableApplication SSPI, provide implementations for the methods
described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3 and the following
methods:

createApplicationVersion
void createApplicationVersion(String appIdentifier, String

sourceAppIdentifier)

13-4 Developing Security Providers for WebLogic Server

Marks the creation of a new application version and is called (only on the Administration
Server within a WebLogic Server domain) on one server within a WebLogic Server
domain at the time the version is created. The WebLogic Security Framework passes the
createApplicationVersion method the application identifier for the new version
(appIdentifier) and the application identifier of the version used as the source of
application data (sourceAppIdentifier). When the source identifier is not supplied, the
initial version of the application is being created.

 deleteApplication
void deleteApplication(String appName)

Marks the deletion of a non-versioned application and is called (only on the
Administration Server within a WebLogic Server domain) at the time the application is
deleted.

 deleteApplicationVersion
void deleteApplicationVersion(String appIdentifier)

Marks the deletion of an application version and is only called (only on the Administration
Server within a WebLogic Server domain) at the time the version is deleted.

Example: Creating the Runtime Class for the Sample VersionableApplication
Provider
 “SimpleSampleAuthorizationProviderImpl” on page 13-4 shows how the Versionable
Application SSPI is implemented in the sample Authorization provider.

Listing 13-1 SimpleSampleAuthorizationProviderImpl

public final class SimpleSampleAuthorizationProviderImpl

 implements DeployableAuthorizationProviderV2, AccessDecision,

VersionableApplicationProvider

:

:

public void createApplicationVersion(String appId, String sourceAppId)

{

System.out.println("SimpleSampleAuthorizationProviderImpl.createApplicatio

nVersion");

System.out.println("\tapplication identifier\t= " + appId);

How to Deve lop a Cus tom Vers i onableAppl ica t i on Prov ider

Developing Security Providers for WebLogic Server 13-5

System.out.println("\tsource app identifier\t= " + ((sourceAppId != null) ?

sourceAppId : "None"));

// create new policies when existing application is specified

 if (sourceAppId != null) {

 database.clonePoliciesForApplication(sourceAppId,appId);

 }

public void deleteApplicationVersion(String appId)

{

System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplicatio

nVersion");

System.out.println("\tapplication identifier\t= " + appId);

// clear out policies for the application

database.removePoliciesForApplication(appId);

}

public void deleteApplication(String appName)

{

System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplicatio

n");

System.out.println("\tapplication name\t= " + appName);

// clear out policies for the application

database.removePoliciesForApplication(appName);

}

Generate an MBean Type Using the WebLogic MBeanMaker
When you generate the MBean type for your custom Authorization, Role Mapping, and
Credential Mapping providers, you must also implement the MBean for your Versionable
Application provider. The ApplicationVersionerMBean is a marker interface and has no
methods.

13-6 Developing Security Providers for WebLogic Server

 “Implementing the ApplicationVersionerMBean” on page 13-6 shows how the
SimpleSampleAuthorizer MBean Definition File (MDF) implements the
ApplicationVersionerMBean MBean.

Listing 13-2 Implementing the ApplicationVersionerMBean

<MBeanType

 Name = "SimpleSampleAuthorizer"

 DisplayName = "SimpleSampleAuthorizer"

 Package = "examples.security.providers.authorization.simple"

 Extends =

"weblogic.management.security.authorization.DeployableAuthorizer"

 Implements = "weblogic.management.security.ApplicationVersioner"

 PersistPolicy = "OnUpdate"

>

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply implementations
for the appropriate methods within it, you need to package the MBean files and the runtime
classes for the custom Authorization, Role Mapping, or Credential Mapping provider, including
the Versionable Application provider, into an MBean JAR File (MJF).

For a custom Authorization provider, these steps are described in “Use the WebLogic
MBeanMaker to Create the MBean JAR File (MJF)” on page 6-22.

For a custom Role Mapping provider, these steps are described in “Use the WebLogic
MBeanMaker to Create the MBean JAR File (MJF)” on page 8-24.

For a custom Credential Mapping provider, these steps are described in “Use the WebLogic
MBeanMaker to Create the MBean JAR File (MJF)” on page 10-14.

How to Deve lop a Cus tom Vers i onableAppl ica t i on Prov ider

Developing Security Providers for WebLogic Server 13-7

Configure the Custom Versionable Application Provider Using
the Administration Console
Configuring a custom Versionable Application provider means that you are adding the custom
Versionable Application provider to your security realm, where it can be accessed by applications
requiring application version services.

Configuring custom security providers is an administrative task, but it is a task that may also be
performed by developers of custom security providers.

The steps for configuring a custom Versionable Application provider using the WebLogic Server
Administration Console are described under “Configuring WebLogic Security Providers” in
Securing WebLogic Server.

http://e-docs.bea.com/wls/docs90/secmanage/providers.html

13-8 Developing Security Providers for WebLogic Server

Developing Security Providers for WebLogic Server 14-1

C H A P T E R 14

CertPath Providers

The WebLogic Security service provides a framework that finds and validates X509 certificate
chains for inbound 2-way SSL, outbound SSL, application code, and WebLogic Web services.
The Certificate Lookup and Validation (CLV) framework is a new security plug-in framework
that finds and validates certificate chains. The framework extends and completes the JDK
CertPath functionality, and allows you to create a custom CertPath provider.

The following sections provide the background information you need to understand before
adding certificate lookup and validation capability to your custom security providers, and provide
step-by-step instructions for adding certificate lookup and validation capability to a custom
security provider:

“Certificate Lookup and Validation Concepts” on page 14-1

“Do You Need to Develop a Custom CertPath Provider?” on page 14-8

“How to Develop a Custom CertPath Provider” on page 14-9

Certificate Lookup and Validation Concepts
A CertPath is a JDK class that stores a certificate chain in memory. The term CertPath is also
used to refer to the JDK architecture and framework that is used to locate and validate certificate
chains.

There are two distinct types of providers, CertPath Validators and CertPath Builders:

Cer tPath Prov iders

14-2 Developing Security Providers for WebLogic Server

The purpose of a certificate validator is to determine if the presented certificate chain is
valid and trusted. As the CertPath Validator provider writer, you decide how to validate the
certificate chain and determine whether you need to use the trusted CA’s.

The purpose of a certificate builder is to use a selector (which holds the selection criteria
for finding the CertPath) to find a certificate chain. Certificate builders often to validate the
certificate chain as well. As the CertPath Builder provider writer, you decide which of the
four selector types you support and whether you also validate the certificate chain. You
also decide how much of the certificate chain you fill in and whether you need to use the
trusted CA’s.

The WebLogic CertPath providers are built using both the JDK and WebLogic CertPath SPI’s.

The Certificate Lookup and Validation Process
The certificate lookup and validation process is shown in Figure 14-1, “Certificate Lookup and
Validation Process,” on page 14-3.

Cer t i f i ca te Lookup and Va l idat ion Concepts

Developing Security Providers for WebLogic Server 14-3

Figure 14-1 Certificate Lookup and Validation Process

Do You Need to Implement Separate CertPath Validators and
Builders?
You can implement the CertPath provider in several ways:

You can implement a CertPath Builder that performs both building and validation. In this
case, you are responsible for:

a. Implementing the Validator SPI.

b. Implementing the Builder SPI.

Cer tPath Prov iders

14-4 Developing Security Providers for WebLogic Server

c. You must validate the certificate chain you build as part of the Builder SPI. Your provider
will be called only once; you will not be called a second time specifically for validation.

d. You decide the validation algorithm, which selectors to support, and whether to use trusted
CA’s.

You can implement a CertPath Validator that performs only validation. In this case, you are
responsible for:

a. Implementing the Validator SPI.

b. You decide the validation algorithm and whether to use trusted CA’s.

You can implement a CertPath Builder that performs only building. In this case, you are
responsible for:

a. Implementing the Builder SPI.

b. You decide whether to validate the chain you build.

c. You decide which selectors to support and whether to use trusted CA’s.

CertPath Provider SPI MBeans
WebLogic Server includes two CertPath provider SPI MBeans, both of which extend
CertPathProviderMBean:

CertPathBuilderMBean indicates that the provider can look up certificate chains. It adds
no attributes or methods. CertPathBuilder providers must implement a custom MBean that
extends this MBean.

CertPathValidatorMBean indicates that the provider can validate a certificate chain. It
adds no attributes or methods. CertPathValidator providers must implement a custom
MBean that extends this MBean.

Your CertPath provider, depending on its type, must extend one or both of the MBeans. A
security provider that supports both building and validating should write an MBean that extends
both of these MBeans, as shown in Listing 14-1, “Sample CertPath MBean MDF,” on page 14-4.

Listing 14-1 Sample CertPath MBean MDF

<?xml version="1.0" ?>

<!DOCTYPE MBeanType SYSTEM "commo.dtd">

Cer t i f i ca te Lookup and Va l idat ion Concepts

Developing Security Providers for WebLogic Server 14-5

<MBeanType

Name = "MyCertPathProvider"

DisplayName = "MyCertPathProvider"

Package = "com.acme"

Extends = "weblogic.management.security.pk.CertPathBuilder"

Implements = "weblogic.management.security.pk.CertPathValidator"

PersistPolicy = "OnUpdate"

>

<MBeanAttribute

Name = "ProviderClassName"

Type = "java.lang.String"

Writeable = "false"

Default = ""com.acme.MyCertPathProviderRuntimeImpl""

/>

<MBeanAttribute

Name = "Description"

Type = "java.lang.String"

Writeable = "false"

Default = ""My CertPath Provider""

/>

<MBeanAttribute

Name = "Version"

Type = "java.lang.String"

Writeable = "false"

Default = ""1.0""

/>

 <!-- add custom attributes for the configuration data needed by this

provider -->

<MBeanAttribute

Name = "CustomConfigData"

Type = "java.lang.String"

Cer tPath Prov iders

14-6 Developing Security Providers for WebLogic Server

/>

WebLogic CertPath Validator SSPI
The WebLogic CertPath Validator SSPI has four parts:

An MBean SSPI, described in “CertPath Provider SPI MBeans” on page 14-4.

The JDK CertPathValidatorSPI interface, as described in“Implement the JDK
CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces” on page 14-10.

The WebLogic Server CertPathProvider SSPI interface, as described in “Implement the
CertPath Provider SSPI” on page 14-10.

The JDK security provider that registers your CertPathValidatorSPI implementation
with the JDK, as described in “Implement the JDK Security Provider SPI” on page 14-13.

WebLogic CertPath Builder SSPI
The WebLogic CertPath Builder SSPI has four parts:

An MBean SSPI, described in “CertPath Provider SPI MBeans” on page 14-4.

The JDK CertPathBuilderSPI interface, as described in“Implement the JDK
CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces” on page 14-10.

The WebLogic Server CertPathProvider SSPI interface, as described in “Implement the
CertPath Provider SSPI” on page 14-10.

The JDK security provider that registers your CertPathBuilderSPI with the JDK, as
described in “Implement the JDK Security Provider SPI” on page 14-13 .

Relationship Between the WebLogic Server CertPath SSPI and
the JDK SPI
Unlike other WebLogic Security Framework providers, your implementation of the CertPath
provider relies on a tightly-coupled integration of WebLogic and JDK interfaces. This integration
might best be shown in the tasks you perform to create a CertPath provider.

If you are writing a CertPath Validator, you must perform the following tasks:

Cer t i f i ca te Lookup and Va l idat ion Concepts

Developing Security Providers for WebLogic Server 14-7

1. Create a CertPathValidatorMBean that extends CertPathProviderMBean, as described in
“Generate an MBean Type Using the WebLogic MBeanMaker” on page 14-24.

2. Implement the JDK java.security.cert.CertPathValidatorSpi, as described in
“Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces” on
page 14-10.

Your JDK implementation will be passed a JDK CertPathParameters object that you can
cast to a WebLogic CertPathValidatorParametersSpi. You can then access its
WebLogic methods to get the trusted CA’s and ContextHandler. You can also use it to
access your WebLogic CertPath provider object.

Use the CertPathValidatorParametersSpi to provide the data you need to validate the
certificate chain, such as Trusted CA’s, the ContextHandler, and your CertPath provider
SSPI implementation, which gives access to any custom configuration data provided by
your MBean, as described in “Use the CertPathValidatorParametersSpi SSPI in Your
CertPathValidatorSpi Implementation” on page 14-16 .

Your WebLogic CertPath provider is important because your CertPathValidatorSpi
implementation has no direct way to get the custom configuration data in your MBean.
Your WebLogic CertPath provider can provide a proprietary mechanism to make your
custom MBean data available to your JDK implementation.

3. Implement the WebLogic CertPath provider SSPI, as described in “Implement the CertPath
Provider SSPI” on page 14-10. In particular, you use the initialize method of the
CertPath provider SSPI to hook into the MBean and make its custom configuration data
available to your CertPathValidatorSpi implementation, as shown in Listing 14-2,
“Code Fragment: Obtaining Custom Configuration Data From MBean,” on page 14-10.

4. Implement a JDK security provider that registers your CertPathValidatorSpi
implementation, as described in “Implement the JDK Security Provider SPI” on page 14-13.
This coding might not be intuitive, and is called out in Listing 14-5, “Implementing the
JDK Security Provider,” on page 14-13.

If you are writing a CertPath Builder, you must perform the following tasks:

1. Create a CertPathBuilderMBean that extends CertPathProviderMBean, as described in
“Generate an MBean Type Using the WebLogic MBeanMaker” on page 14-24.

Cer tPath Prov iders

14-8 Developing Security Providers for WebLogic Server

2. Implement the JDK java.security.cert.CertPathBuilderSpi, as described in
“Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces” on
page 14-10.

Your JDK implementation will be passed a JDK CertPathParameters object that you can
cast to a WebLogic CertPathBuilderParametersSpi. You can then access its WebLogic
methods to get the trusted CA’s, selector, and ContextHandler. You can also use it to access
your WebLogic CertPath provider object.

Use the CertPathBuilderParametersSpi to provide the data you need to build the
CertPath, such as Trusted CA’s, ContextHandler, the CertPathSelector, and your CertPath
provider SSPI implementation, which gives access to any custom configuration data
provided by your MBean, as described in “Use the CertPathBuilderParametersSpi SSPI in
Your CertPathBuilderSpi Implementation” on page 14-14.

Your WebLogic CertPath provider is important because your CertPathBuilderSpi
implementation has no direct way to get the custom configuration data in your MBean.
Your WebLogic CertPath provider can provide a proprietary mechanism to make your
custom MBean data available to your JDK implementation.

3. Implement a WebLogic CertPath provider SSPI, as described in “Implement the CertPath
Provider SSPI” on page 14-10. In particular, you use the initialize method of the
CertPath provider SSPI to hook into the MBean and make its custom configuration data
available to your CertPathBuilderSpi implementation, as shown in Listing 14-2, “Code
Fragment: Obtaining Custom Configuration Data From MBean,” on page 14-10.

4. Implement the JDK security provider that registers your CertPathBuilderSpi
implementation, as described in “Implement the JDK Security Provider SPI” on page 14-13.
This coding might not be intuitive, and is called out in Listing 14-5, “Implementing the
JDK Security Provider,” on page 14-13.

Do You Need to Develop a Custom CertPath Provider?
WebLogic Server includes a CertPath provider and the Certificate Registry.

The WebLogic Server CertPath provider is both a CertPath Builder and a CertPath Validator. The
provider completes certificate paths and validates the certificates using the trusted CA configured
for a particular WebLogic Server instance. It can build only chains that are self-signed or are
issued by a self-signed certificate authority, which must be listed in the server’s trusted CA’s. If
a certificate chain cannot be completed, it is invalid. The provider uses only the
EndCertificateSelector selector.

How to Deve lop a Custom Cer tPath Prov ider

Developing Security Providers for WebLogic Server 14-9

The WebLogic Server CertPath provider also checks the signatures in the chain, ensures that the
chain has not expired, and checks that one of the certificates in the chain is issued by one of the
trusted CAs configured for the server. If any of these checks fail, the chain is not valid. Finally,
the provider checks each certificate’s basic constraints (that is, the ability of the certificate to
issue other certificates) to ensure the certificate is in the proper place in the chain.

The WebLogic Server CertPath provider can be used as a CertPath Builder and a CertPath
Validator in a security realm.

The WebLogic Server Certificate Registry is an out-of-the-box CertPath provider that allows the
administrator to configure a list of trusted end certificates via the Administration Console. The
Certificate Registry is a builder/validator. The selection criteria can be
EndCertificateSelector, SubjectDNSelector, IssuerDNSerialNumberSelector, or
SubjectKeyIdentifier. The certificate chain that is returned has only the end certificate.
When it validates a chain, it makes sure only that the end certificate is registere; no further
checking is done.

You can configure both the CertPath provider and the Certificate Registry. You might do this to
make sure that a certificate chain is valid only if signed by a trusted CA, and that the end
certificate is in the registry.

If the supplied WebLogic Server CertPath providers do not meet your needs, you can develop a
custom CertPath provider.

How to Develop a Custom CertPath Provider
If the WebLogic CertPath provider or Certificate Registry does not meet your needs, you can
develop a custom CertPath provider by following these steps:

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

“Understand the Purpose of the “Provider” SSPIs” on page 2-3

“Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes” on page 2-6

When you understand this information and have made your design decisions, create the runtime
classes for your custom CertPath provider by following these steps:

“Generate an MBean Type Using the WebLogic MBeanMaker” on page 14-24.

Cer tPath Prov iders

14-10 Developing Security Providers for WebLogic Server

“Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces” on
page 14-10

“Implement the CertPath Provider SSPI” on page 14-10

“Implement the JDK Security Provider SPI” on page 14-13

“Use the CertPathBuilderParametersSpi SSPI in Your CertPathBuilderSpi Implementation”
on page 14-14 and/or “Use the CertPathValidatorParametersSpi SSPI in Your
CertPathValidatorSpi Implementation” on page 14-16.

Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi
Interfaces
The java.security.cert.CertPathBuilderSpi interface is the Service Provider Interface
(SPI) for the CertPathBuilder class. All CertPathBuilder implementations must include a
class that implements this interface (CertPathBuilderSpi).

The java.security.cert.CertPathValidatorSpi interface is the Service Provider
Interface (SPI) for the CertPathValidator class. All CertPathValidator implementations
must include a class that implements this interface (CertPathValidatorSpi).

Listing 14-6, “Creating the Sample Cert Path Provider,” on page 14-18 shows an example of
implementing the CertPathBuilderSpi and CertPathValidatorSpi interfaces.

Implement the CertPath Provider SSPI
The CertPathProvider SSPI interface exposes the services provided by both the JDK
CertPathValidator and CertPathBuilder SPIs and allows the provider to be manipulated
(initialized, started, stopped, and so on).

In particular, you use the initialize method of the CertPath provider SSPI to hook into the
MBean and make its custom configuration data available to your CertPathBuilderSpi or
CertPathValidatorSpi implementation, as shown in Listing 14-2, “Code Fragment:
Obtaining Custom Configuration Data From MBean,” on page 14-10.

A more complete example is available in Listing 14-6, “Creating the Sample Cert Path Provider,”
on page 14-18.

Listing 14-2 Code Fragment: Obtaining Custom Configuration Data From MBean

public class MyCertPathProviderRuntimeImpl implements CertPathProvider

How to Deve lop a Custom Cer tPath Prov ider

Developing Security Providers for WebLogic Server 14-11

{

:

:

public void initialize(ProviderMBean mBean, SecurityServices

securityServices)

{

MyCertPathProviderMBean myMBean = (MyCertPathProviderMBean)mBean;

description = myMBean.getDescription();

customConfigData = myMBean.getCustomConfigData();

:

}

:

// make my config data available to my JDK CertPathBuilderSpi and

// CertPathValidatorSpi impls

private String getCustomConfigData() { return customConfigData; }

}

:

static public class MyJDKCertPathBuilder extends CertPathBuilderSpi

{

:

//get my runtime implementation instance which holds the configuration

//data needed to build and validate the cert path

MyCertPathProviderRuntimeImpl runtime =

(MyCertPathProviderRuntimeImpl)params.getCertPathProvider();

String myCustomConfigData = runtime.getCustomConfigData();

Listing 14-5, “Implementing the JDK Security Provider,” on page 14-13 shows how to register
your JDK implementation with the JDK.

To implement the CertPathProvider SSPI, provide implementations for the methods described
in “Understand the Purpose of the “Provider” SSPIs” on page 2-3 and the following methods:

getCertPathBuilder
public CertPathBuilder getCertPathBuilder()

Cer tPath Prov iders

14-12 Developing Security Providers for WebLogic Server

Gets a CertPath Provider's JDK CertPathBuilder that invokes your JDK
CertPathBuilderSpi implementation, as shown in Listing 14-3, “Code Fragment:
getCertPathBuilder,” on page 14-12. A CertPathBuilder finds, and optionally validates, a
certificate chain.

Listing 14-3 Code Fragment: getCertPathBuilder

public void initialize(ProviderMBean mBean, SecurityServices

securityServices)

{

:

// get my JDK cert path impls

try {

certPathBuilder = CertPathBuilder.getInstance(BUILDER_ALGORITHM);

} catch (NoSuchAlgorithmException e) { throw new

AssertionError("..."); }

getCertPathValidator
public CertPathValidator getCertPathValidator()

Gets a CertPath Provider's JDK CertPathValidator that invokes your JDK
CertPathValidatorSpi implementation, as shown in Listing 14-4, “Code Fragment:
getCertPathValidator,” on page 14-12. A CertPathValidator validates a certificate chain.

Listing 14-4 Code Fragment: getCertPathValidator

public void initialize(ProviderMBean mBean, SecurityServices

securityServices)

{

:

// get my JDK cert path impls

try {

certPathValidator =

CertPathValidator.getInstance(VALIDATOR_ALGORITHM);

} catch (NoSuchAlgorithmException e) { throw new

How to Deve lop a Custom Cer tPath Prov ider

Developing Security Providers for WebLogic Server 14-13

AssertionError("..."); }

}

Implement the JDK Security Provider SPI
Implement the JDK security provider SPI and use it to register your CertPathBuilderSpi or
CertPathValidatorSpi implementations with the JDK. Use it to register your JDK implementation
in your provider’s initialize method.

Listing 14-6, “Creating the Sample Cert Path Provider,” on page 14-18 shows an example of
creating the runtime class for a sample CertPath provider. Listing 14-5, “Implementing the JDK
Security Provider,” on page 14-13 shows the fragment from that larger example that implements
the JDK security provider.

Listing 14-5 Implementing the JDK Security Provider

public class MyCertPathProviderRuntimeImpl implements CertPathProvider

{
private static final String MY_JDK_SECURITY_PROVIDER_NAME =
"MyCertPathProvider";
private static final String BUILDER_ALGORITHM = MY_JDK_SECURITY_PROVIDER_NAME +
"CertPathBuilder";
private static final String VALIDATOR_ALGORITHM = MY_JDK_SECURITY_PROVIDER_NAME
+ "CertPathValidator";
:
:

public void initialize(ProviderMBean mBean, SecurityServices
securityServices)

{
MyCertPathProviderMBean myMBean = (MyCertPathProviderMBean)mBean;

description = myMBean.getDescription();

customConfigData = myMBean.getCustomConfigData();

// register my cert path impls with the JDK
// so that the CLV framework may invoke them via
// the JDK cert path apis.

if (Security.getProvider(MY_JDK_SECURITY_PROVIDER_NAME) == null) {
AccessController.doPrivileged(

Cer tPath Prov iders

14-14 Developing Security Providers for WebLogic Server

new PrivilegedAction() {
public Object run() {

Security.addProvider(new MyJDKSecurityProvider());
return null;

}
}

);
}

:

// This class implements the JDK security provider that registers
// this provider's cert path builder and cert path validator implementations
// with the JDK.

private class MyJDKSecurityProvider extends Provider
{

private MyJDKSecurityProvider()
{

super(MY_JDK_SECURITY_PROVIDER_NAME, 1.0, "MyCertPathProvider JDK
CertPath provider");

put("CertPathBuilder." + BUILDER_ALGORITHM,
"com.acme.MyPathProviderRuntimeImpl$MyJDKCertPathBuilder");

put("CertPathValidator." + VALIDATOR_ALGORITHM,
"com.acme.MyCertPathProviderRuntimeImpl$MyJDKCertPathValidator");

}
}
}

Use the CertPathBuilderParametersSpi SSPI in Your CertPathBuilderSpi
Implementation
Your JDK implementation will be passed a JDK CertPathParameters object that you can cast
to a WebLogic CertPathBuilderParametersSpi. You can then access its WebLogic methods
to get the trusted CA’s, selector, and ContextHandler. You can also use it to access your WebLogic
CertPath provider object. The following methods are provided:

getCertPathProvider
CertPathProvider getCertPathProvider()

Gets the CertPath Provider SSPI interface that exposes the services provided by a
CertPath provider to the WebLogic Security Framework. In particular, you use the
initialize method of the CertPath provider SSPI to hook into the MBean and make its
custom configuration data available to your CertPathBuilderSpi implementation, as

How to Deve lop a Custom Cer tPath Prov ider

Developing Security Providers for WebLogic Server 14-15

shown in Listing 14-2, “Code Fragment: Obtaining Custom Configuration Data From
MBean,” on page 14-10.

 getCertPathSelector
CertPathSelector getCertPathSelector()

Gets the CertPathSelector interface that holds the selection criteria for finding the
CertPath.

WebLogic Server provides a set of classes in weblogic.security.pk that implement
the CertPathSelector interface, one for each supported type of certificate chain lookup.
Therefore, the getCertPathSelector method returns one of the following derived
classes:

– EndCertificateSelector – used to find and validate a certificate chain given its end
certificate.

– IssuerDNSerialNumberSelector – used to find and validate a certificate chain from its
end certificate’s issuer DN and serial number.

– SubjectDNSelector – used to find and validate a certificate chain from its end
certificate’s subject DN.

– SubjectKeyIdentifierSelector – used to find and validate a certificate chain from its end
certificate’s subject key identifier (an optional field in X509 certificates).

Each selector class has one or more methods to retrieve the selection data and a
constructor.

Your CertPathBuilderSpi implementation decides which selectors it supports. The
CertPathBuilderSpi implementation must use the getCertPathSelector method of
the CertPathBuilderParametersSpi SSPI to get the CertPathSelector that holds
the selection criteria for finding the CertPath. If your CertPathBuilderSpi
implementation supports that type of selector, it then uses the selector to build and validate
the chain. Otherwise, it must throw an InvalidAlgorithmParameterException, which is
propagated back to the caller.

 getContext()
ContextHandler getContext()

Gets a ContextHandler that may pass in extra parameters that can be used for building and
validating the CertPath.

 getTrustedCAs()

X509Certificate[] getTrustedCAs()

Cer tPath Prov iders

14-16 Developing Security Providers for WebLogic Server

Gets a list of trusted certificate authorities that may be used for building the certificate
chain. If your CertPathBuilderSpi implementation needs Trusted CA’s to build the
chain, it should use these Trusted CA’s.

clone
Object clone()

This interface is not cloneable.

Use the CertPathValidatorParametersSpi SSPI in Your CertPathValidatorSpi
Implementation
Your JDK implementation will be passed a JDK CertPathParameters object that you can cast
to a WebLogic CertPathValidatorParametersSpi. You can then access its WebLogic
methods to get the trusted CA’s and ContextHandler. You can also use it to access your WebLogic
CertPath provider object. The CLV framework ensures that the certificate chain passed to the
validator SPI is in order (starting at the end certificate), and that each cert has signed the next.
The following methods are provided:

getCertPathProvider
CertPathProvider getCertPathProvider()

Gets the CertPath Provider SSPI interface that exposes the services provided by a
CertPath provider to the WebLogic Security Framework. In particular, you use the
initialize method of the CertPath provider SSPI to hook into the MBean and make its
custom configuration data available to your CertPathValidatorSpi implementation, as
shown in Listing 14-2, “Code Fragment: Obtaining Custom Configuration Data From
MBean,” on page 14-10.

getContext()
ContextHandler getContext()

Gets a ContextHandler that may pass in extra parameters that can be used for building and
validating the CertPath.

SSL performs some built-in validation before it calls one or more CertPathValidator
objects to perform additional validation. A validator can reduce the amount of validation
it must do by discovering what validation has already been done.

For example, the WebLogic CertPath Provider performs the same Certicom validation
that SSL does, and there is no need to duplicate that validation when invoked by SSL.
Therefore, SSL puts some information into the context it hands to the validators to
indicate what validation has already occurred. The

How to Deve lop a Custom Cer tPath Prov ider

Developing Security Providers for WebLogic Server 14-17

weblogic.security.SSL.SSLValidationConstants

CHAIN_PREVALIDATED_BY_SSL field is a Boolean that indicates whether SSL has
pre-validated the certificate chain. Your application code can test this field, which is set
to true if SSL has pre-validated the certificate chain, and is false otherwise.

getTrustedCAs()

X509Certificate[] getTrustedCAs()

Gets a list of trusted certificate authorities that may be used for validating the certificate
chain. If your CertPathBuilderSpi implementation needs Trusted CA’s to validate the
chain, it should use these Trusted CA’s.

clone
Object clone()

This interface is not cloneable.

Returning the Builder or Validator Results
Your JDK CertPathBuilder or CertPathValidator implementation must return an object that
implements the java.security.cert.CertPathValidatorResult or
java.security.cert.CertPathValidatorResult interface.

You can write your own results implementation or you can use the WebLogic Server convenience
routines.

WebLogic Server provides two convenience results-implementation classes,
WLSCertPathBuilderResult and WLSCertPathValidatorResult, both of which are located
in weblogic.security.pk, that you can use to return instances of
java.security.cert.CertPathValidatorResult or
java.security.cert.CertPathValidatorResult.

Note: The results you return are not passed through the WebLogic Security framework.

Example: Creating the Sample Cert Path Provider
Listing 14-6, “Creating the Sample Cert Path Provider,” on page 14-18 shows an example
CertPath builder/validator provider. The example includes extensive comments that explain the
code flow.

Listing 14-1, “Sample CertPath MBean MDF,” on page 14-4 shows the CertPath MBean that
Listing 14-6, “Creating the Sample Cert Path Provider,” on page 14-18 uses.

Cer tPath Prov iders

14-18 Developing Security Providers for WebLogic Server

Listing 14-6 Creating the Sample Cert Path Provider

package com.acme;

import weblogic.management.security.ProviderMBean;
import weblogic.security.pk.CertPathSelector;
import weblogic.security.pk.SubjectDNSelector;
import weblogic.security.pk.WLSCertPathBuilderResult;
import weblogic.security.pk.WLSCertPathValidatorResult;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.CertPathBuilderParametersSpi;
import weblogic.security.spi.CertPathProvider;
import weblogic.security.spi.CertPathValidatorParametersSpi;
import weblogic.security.spi.SecurityServices;
import weblogic.security.SSL.SSLValidationConstants;

import java.security.InvalidAlgorithmParameterException;
import java.security.NoSuchAlgorithmException;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.security.Provider;
import java.security.Security;
import java.security.cert.CertPath;
import java.security.cert.CertPathBuilder;
import java.security.cert.CertPathBuilderResult;
import java.security.cert.CertPathBuilderSpi;
import java.security.cert.CertPathBuilderException;
import java.security.cert.CertPathParameters;
import java.security.cert.CertPathValidator;
import java.security.cert.CertPathValidatorResult;
import java.security.cert.CertPathValidatorSpi;
import java.security.cert.CertPathValidatorException;
import java.security.cert.X509Certificate;

public class MyCertPathProviderRuntimeImpl implements CertPathProvider
{

private static final String MY_JDK_SECURITY_PROVIDER_NAME =
"MyCertPathProvider";

private static final String BUILDER_ALGORITHM = MY_JDK_SECURITY_PROVIDER_NAME
+ "CertPathBuilder";

private static final String VALIDATOR_ALGORITHM =
MY_JDK_SECURITY_PROVIDER_NAME + "CertPathValidator";

// Used to invoke my JDK cert path builder / validator implementations
private CertPathBuilder certPathBuilder;

How to Deve lop a Custom Cer tPath Prov ider

Developing Security Providers for WebLogic Server 14-19

private CertPathValidator certPathValidator;

// remember my custom configuration data from my mbean
private String customConfigData;

private String description;

public void initialize(ProviderMBean mBean, SecurityServices
securityServices)

{
MyCertPathProviderMBean myMBean = (MyCertPathProviderMBean)mBean;

description = myMBean.getDescription();

customConfigData = myMBean.getCustomConfigData();

// register my cert path impls with the JDK
// so that the CLV framework may invoke them via
// the JDK cert path apis.
if (Security.getProvider(MY_JDK_SECURITY_PROVIDER_NAME) == null) {
AccessController.doPrivileged(

new PrivilegedAction() {
public Object run() {
Security.addProvider(new MyJDKSecurityProvider());
return null;

}
}

);
}

// get my JDK cert path impls
try {
certPathBuilder = CertPathBuilder.getInstance(BUILDER_ALGORITHM);

} catch (NoSuchAlgorithmException e) { throw new AssertionError("..."); }

try {
certPathValidator = CertPathValidator.getInstance(VALIDATOR_ALGORITHM);

} catch (NoSuchAlgorithmException e) { throw new AssertionError("..."); }
}

public void shutdown () { }
public String getDescription () { return description; }
public CertPathBuilder getCertPathBuilder () { return certPathBuilder;}
public CertPathValidator getCertPathValidator () { return

certPathValidator;}

Cer tPath Prov iders

14-20 Developing Security Providers for WebLogic Server

// make my config data available to my JDK CertPathBuilderSpi and
// CertPathValidatorSpi impls
private String getCustomConfigData() { return customConfigData; }

/**
* This class contains JDK cert path builder implementation for this provider.
*/

static public class MyJDKCertPathBuilder extends CertPathBuilderSpi
{
public CertPathBuilderResult
engineBuild(CertPathParameters genericParams)
throws CertPathBuilderException, InvalidAlgorithmParameterException

{

// narrow the CertPathParameters to the WLS ones so we can get the
// data needed to build and validate the cert path
if (!(genericParams instanceof CertPathBuilderParametersSpi)) {

throw new InvalidAlgorithmParameterException("The CertPathParameters must
be a weblogic.security.pk.CertPathBuilderParametersSpi instance.");

}

CertPathBuilderParametersSpi params =
(CertPathBuilderParametersSpi)genericParams;

// get my runtime implementation instance which holds the configuration
// data needed to build and validate the cert path
MyCertPathProviderRuntimeImpl runtime =

(MyCertPathProviderRuntimeImpl)params.getCertPathProvider();
String myCustomConfigData = runtime.getCustomConfigData();

// get the selector which indicates which cert path the caller wants built.
// it can be an EndCertificateSelector, SubjectDNSelector,
// IssuerDNSerialNumberSelector
// or a SubjectKeyIdentifier.
CertPathSelector genericSelector = params.getCertPathSelector();

// decide which kinds of selectors this builder wants to support.

if (genericSelector instanceof SubjectDNSelector) {

// get the subject dn of the end certificate of the cert path the caller
// wants built
SubjectDNSelector selector = (SubjectDNSelector)genericSelector;

How to Deve lop a Custom Cer tPath Prov ider

Developing Security Providers for WebLogic Server 14-21

String subjectDN = selector.getSubjectDN();

// if your implementation requires trusted CAs, get them.
// otherwise, ignore them. that is, it's a quality of service
// issue whether or not you require trusted CAs.
X509Certificate[] trustedCAs = params.getTrustedCAs();

// if your implementation requires looks for extra data in
// the context handler, get it. otherwise ignore it.
ContextHandler context = params.getContext();
if (context != null) {
// ...
}

// use my custom configuration data (ie. myCustomConfigData),
// the trusted CAs (if applicable to my implementation),
// the context (if applicable to my implementation),
// and the subject DN to build and validate the cert path
CertPath certpath = ...
// or X509Certificate[] chain = ...

// if not found, throw an exception:
if (...) {
throw new CertPathBuilderException("Could not build a cert path for " +

subjectDN);
}

// if not valid, throw an exception:
if (...) {
throw new CertPathBuilderException("Could not validate the cert path for "

+ subjectDN);
}

// if found and valid, return the cert path.
// for convenience, use the WLSCertPathBuilderResult class
return new WLSCertPathBuilderResult(certpath);
// or return new WLSCertPathBuilderResult(chain);

} else {

// the caller passed in a selector that my implementation does not support
throw new InvalidAlgorithmParameterException("MyCertPathProvider only
supports weblogoic.security.pk.SubjectDNSelector");

Cer tPath Prov iders

14-22 Developing Security Providers for WebLogic Server

}
}

}

/**
* This class contains JDK cert path validator implementation for this

provider.
*/

static public class MyJDKCertPathValidator extends CertPathValidatorSpi
{

public CertPathValidatorResult
engineValidate(CertPath certPath, CertPathParameters genericParams)
throws CertPathValidatorException, InvalidAlgorithmParameterException

{

// narrow the CertPathParameters to the WLS ones so we can get the
// data needed to build and validate the cert path
if (!(genericParams instanceof CertPathValidatorParametersSpi)) {

throw new InvalidAlgorithmParameterException("The CertPathParameters must
be a weblogic.security.pk.CertPathValidatorParametersSpi instance.");

}

CertPathValidatorParametersSpi params =
(CertPathValidatorParametersSpi)genericParams;

// get my runtime implementation instance which holds the configuration
// data needed to build and validate the cert path
MyCertPathProviderRuntimeImpl runtime =

(MyCertPathProviderRuntimeImpl)params.getCertPathProvider();
String myCustomConfigData = runtime.getCustomConfigData();

// if your implementation requires trusted CAs, get them.
// otherwise, ignore them. that is, it's a quality of service
// issue whether or not you require trusted CAs.
X509Certificate[] trustedCAs = params.getTrustedCAs();

// if your implementation requires looks for extra data in
// the context handler, get it. otherwise ignore it.
ContextHandler context = params.getContext();
if (context != null) {
// ...

How to Deve lop a Custom Cer tPath Prov ider

Developing Security Providers for WebLogic Server 14-23

}

// The CLV framework has already done some minimal validation
// on the cert path before sending it to your provider:
// 1) the cert path is not empty
// 2) the cert path starts with the end cert
// 3) each certificate in the cert path was issued and
// signed by the next certificate in the chain
// So, your validator can rely on these checks having
// already been performed (vs your validator needing to
// do these checks too).

// Use my custom configuration data (ie. myCustomConfigData),
// the trusted CAs (if applicable to my implementation),
// and the context (if applicable to my implementation)
// to validate the cert path

// if not valid, throw an exception:
if (...) {

throw new CertPathValidatorException("Could not validate the cerpath " +
certPath);

}
// if valid, return success

// For convenience, use the WLSCertPathValidatorResult class

return new WLSCertPathValidatorResult();
}

}

// This class implements the JDK security provider that registers this
// provider's
// cert path builder and cert path validator implementations with the JDK.
private class MyJDKSecurityProvider extends Provider
{
private MyJDKSecurityProvider()
{

super(MY_JDK_SECURITY_PROVIDER_NAME, 1.0, "MyCertPathProvider JDK CertPath
provider");

put("CertPathBuilder." + BUILDER_ALGORITHM,
"com.acme.MyPathProviderRuntimeImpl$MyJDKCertPathBuilder");

put("CertPathValidator." + VALIDATOR_ALGORITHM,
"com.acme.MyCertPathProviderRuntimeImpl$MyJDKCertPathValidator");

}

Cer tPath Prov iders

14-24 Developing Security Providers for WebLogic Server

}
}

Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you should first:

“Understand Why You Need an MBean Type” on page 2-10

“Determine Which SSPI MBeans to Extend and Implement” on page 2-10

“Understand the Basic Elements of an MBean Definition File (MDF)” on page 2-11

“Understand the SSPI MBean Hierarchy and How It Affects the Administration Console”
on page 2-14

“Understand What the WebLogic MBeanMaker Provides” on page 2-16

When you understand this information and have made your design decisions, create the MBean
type for your custom CertPath provider by following these steps:

“Create an MBean Definition File (MDF)” on page 14-24

“Use the WebLogic MBeanMaker to Generate the MBean Type” on page 14-25

“Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on page 14-29

“Install the MBean Type Into the WebLogic Server Environment” on page 14-30

Notes: Several sample security providers (available under Code Samples: WebLogic Server on
the dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a Windows environment.

Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Authentication provider to a text file.

Note: The MDF for the sample Authentication provider is called
SimpleSampleAuthenticator.xml. There is no sample CertPath provider.

How to Deve lop a Custom Cer tPath Prov ider

Developing Security Providers for WebLogic Server 14-25

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in your MDF so
that they are appropriate for your custom CertPath provider. You need to extend or
implement CertPathBuilderMBean or CertPathValidatorMBean.

3. Add any custom attributes and operations (that is, additional <MBeanAttribute> and
<MBeanOperation> elements) to your MDF.

4. Save the file.

Note: A complete reference of MDF element syntax is available in Appendix A, “MBean
Definition File (MDF) Element Syntax.”

Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic MBeanMaker. The
WebLogic MBeanMaker is currently a command-line utility that takes as its input an MDF, and
outputs some intermediate Java files, including an MBean interface, an MBean implementation,
and an associated MBean information file. Together, these intermediate files form the MBean
type for your custom security provider.

The instructions for generating an MBean type differ based on the design of your custom
CertPath provider. Follow the instructions that are appropriate to your situation:

“No Optional SSPI MBeans and No Custom Operations” on page 14-25

“Optional SSPI MBeans or Custom Operations” on page 14-26

No Optional SSPI MBeans and No Custom Operations
If the MDF for your custom CertPath provider does not implement any optional SSPI MBeans
and does not include any custom operations, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Cer tPath Prov iders

14-26 Developing Security Providers for WebLogic Server

Whenever xmlfile is provided, a new set of output files is generated. If files already
exist in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple CertPath providers).

3. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 14-29.

Optional SSPI MBeans or Custom Operations
If the MDF for your custom CertPath provider does implement some optional SSPI MBeans or
does include custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF

How to Deve lop a Custom Cer tPath Prov ider

Developing Security Providers for WebLogic Server 14-27

at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple CertPath providers).

3. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is named
MBeanNameImpl.java. For example, for the MDF named
SampleIdentityAsserter, the MBean implementation file to be edited is named
SampleIdentityAsserterImpl.java.

b. For each optional SSPI MBean that you implemented in your MDF, copy the method stubs
from the “Mapping MDF Operation Declarations to Java Method Signatures Document”
(available on the dev2dev Web site) into the MBean implementation file, and implement
each method. Be sure to also provide implementations for any methods that the optional
SSPI MBean inherits.

4. If you included any custom operations in your MDF, implement the methods using the
method stubs.

5. Save the file.

6. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 14-29.

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that your current
method implementations are not overwritten by the WebLogic MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:
java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code, xmlFile is the MDF (the XML MBean Description File) and filesdir is the
location where the WebLogic MBeanMaker will place the intermediate files for the MBean
type.

Whenever xmlfile is provided, a new set of output files is generated. If files already exist
in the location specified by filesdir, you are informed that the existing files will be
overwritten and are asked to confirm.

http://dev2dev.bea.com/code/wls.jsp

Cer tPath Prov iders

14-28 Developing Security Providers for WebLogic Server

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note: As of this version of WebLogic Server, you can also provide a directory that contains
multiple MDF's by using the -DMDFDIR <MDF directory name> option. In prior
versions of WebLogic Server, the WebLogic MBeanMaker processed only one MDF
at a time. Therefore, you had to repeat this process if you had multiple MDFs (in other
words, multiple Cert Path providers).

4. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate and open the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is named
MBeanNameImpl.java. For example, for the MDF named
SampleIdentityAsserter, the MBean implementation file to be edited is named
SampleIdentityAsserterImpl.java.

b. Open your existing MBean implementation file (which you saved to a temporary directory
in step 1).

c. Synchronize the existing MBean implementation file with the MBean implementation file
generated by the WebLogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the method
implementations from your existing MBean implementation file into the
newly-generated MBean implementation file (or, alternatively, adding the new methods
from the newly-generated MBean implementation file to your existing MBean
implementation file), and verifying that any changes to method signatures are reflected
in the version of the MBean implementation file that you are going to use (for methods
that exist in both MBean implementation files).

d. If you modified the MDF to implement optional SSPI MBeans that were not in the original
MDF, copy the method stubs from the “Mapping MDF Operation Declarations to Java
Method Signatures Document” (available on the dev2dev Web site) into the MBean
implementation file, and implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

5. If you modified the MDF to include any custom operations that were not in the original
MDF, implement the methods using the method stubs.

6. Save the version of the MBean implementation file that is complete (that is, has all methods
implemented).

http://dev2dev.bea.com/code/wls.jsp
http://dev2dev.bea.com/code/wls.jsp

How to Deve lop a Custom Cer tPath Prov ider

Developing Security Providers for WebLogic Server 14-29

7. Copy this MBean implementation file into the directory where the WebLogic MBeanMaker
placed the intermediate files for the MBean type. You specified this as filesdir in step 3.
(You will be overriding the MBean implementation file generated by the WebLogic
MBeanMaker as a result of step 3.)

8. Proceed to “Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)” on
page 14-29.

About the Generated MBean Interface File
The MBean interface file is the client-side API to the MBean that your runtime class or your
MBean implementation will use to obtain configuration data. It is typically used in the initialize
method as described in “Understand the Purpose of the “Provider” SSPIs” on page 2-3.

Because the WebLogic MBeanMaker generates MBean types from the MDF you created, the
generated MBean interface file will have the name of the MDF, plus the text “MBean” appended
to it. For example, the result of running the SampleIdentityAsserter MDF through the
WebLogic MBeanMaker will yield an MBean interface file called
SampleIdentityAsserterMBean.java.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply implementations
for the appropriate methods within it, you need to package the MBean files and the runtime
classes for the custom CertPath provider into an MBean JAR File (MJF). The WebLogic
MBeanMaker also automates this process.

To create an MJF for your custom CertPath provider, follow these steps:

1. Create a new DOS shell.

2. Type the following command:
java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a JAR file
containing the new MBean types, jarfile is the name for the MJF and filesdir is the
location where the WebLogic MBeanMaker looks for the files to JAR into the MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and no
errors occur, an MJF is created with the specified name.

Cer tPath Prov iders

14-30 Developing Security Providers for WebLogic Server

Notes: When you create a JAR file for a custom security provider, a set of XML binding classes
and a schema are also generated. You can choose a namespace to associate with that
schema. Doing so avoids the possiblity that your custom classes will conflict with those
provided by BEA. The default for the namespace is vendor. You can change this default
by passing the -targetNameSpace argument to the WebLogicMBeanMaker or the
associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and regenerate it. The
WebLogic MBeanMaker also has a -DIncludeSource option, which controls whether
source files are included into the resulting MJF. Source files include both the generated
source and the MDF itself. The default is false. This option is ignored when -DMJF is
not used.

The resulting MJF can be installed into your WebLogic Server environment, or distributed to
your customers for installation into their WebLogic Server environments.

Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level installation
directory for WebLogic Server. This “deploys” your custom CertPath provider—that is, it makes
the custom CertPath provider manageable from the WebLogic Server Administration Console.

Note: WL_HOME\server\lib\mbeantypes is the default directory for installing MBean types.
(Beginning with 9.0, security providers can be loaded from
...\domaindir\lib\mbeantypes as well.) However, if you want WebLogic Server to
look for MBean types in additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line flag when starting
your server, where <dir> is a comma-separated list of directory names. When you use
this flag, WebLogic Server will always load MBean types from
WL_HOME\server\lib\mbeantypes first, then will look in the additional directories
and load all valid archives present in those directories (regardless of their extension). For
example, if -Dweblogic.alternateTypesDirectory = dirX,dirY, WebLogic
Server will first load MBean types from WL_HOME\server\lib\mbeantypes, then any
valid archives present in dirX and dirY. If you instruct WebLogic Server to look in
additional directories for MBean types and are using the Java Security Manager, you
must also update the weblogic.policy file to grant appropriate permissions for the
MBean type (and thus, the custom security provider). For more information, see "Using
the Java Security Manager to Protect WebLogic Resources" in Programming WebLogic
Security.

http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03
http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03

How to Deve lop a Custom Cer tPath Prov ider

Developing Security Providers for WebLogic Server 14-31

You can create instances of the MBean type by configuring your custom CertPath provider (see
“Configure the Custom CertPath Provider Using the Administration Console” on page 14-31),
and then use those MBean instances from a GUI, from other Java code, or from APIs. For
example, you can use the WebLogic Server Administration Console to get and set attributes and
invoke operations, or you can develop other Java objects that instantiate MBeans and
automatically respond to information that the MBeans supply. We recommend that you back up
these MBean instances.

Configure the Custom CertPath Provider Using the
Administration Console
Configuring a custom CertPath provider means that you are adding the custom CertPath provider
to your security realm, where it can be accessed by applications requiring CertPath services.

Configuring custom security providers is an administrative task, but it is a task that may also be
performed by developers of custom security providers.

Note: The steps for configuring a custom CertPath provider using the WebLogic Server
Administration Console are described under “Configuring WebLogic Security
Providers” in Securing WebLogic Server.

http://e-docs.bea.com/wls/docs90/secmanage/providers.html
http://e-docs.bea.com/wls/docs90/secmanage/providers.html

Cer tPath Prov iders

14-32 Developing Security Providers for WebLogic Server

Developing Security Providers for WebLogic Server A-1

A P P E N D I X A

MBean Definition File (MDF) Element
Syntax

An MBean Definition File (MDF) is an input file to the WebLogic MBeanMaker utility, which
uses the file to create an MBean type for managing a custom security provider. An MDF must be
formatted as a well-formed and valid XML file that describes a single MBean type. The following
sections describe all the elements and attributes that are available for use in a valid MDF:

“The MBeanType (Root) Element” on page A-1

“The MBeanAttribute Subelement” on page A-4

“The MBeanConstructor Subelement” on page A-10

“The MBeanOperation Subelement” on page A-10

“Examples: Well-Formed and Valid MBean Definition Files (MDFs)” on page A-16

The MBeanType (Root) Element
All MDFs must contain exactly one root element called MBeanType, which has the following
syntax:

<MBeanType Name= string optional_attributes>
subelements

</MBeanType>

The MBeanType element must include a Name attribute, which specifies the internal,
programmatic name of the MBean type. (To specify a name that is visible in a user interface, use
the DisplayName attribute.) Other attributes are optional.

A-2 Developing Security Providers for WebLogic Server

The following is a simplified example of an MBeanType (root) element:

<MBeanType Name=“MyMBean” Package=”com.mycompany”>
<MBeanAttribute Name=“MyAttr” Type=”java.lang.String” Default=“Hello

World”/>
</MBeanType>

Attributes specified in the MBeanType (root) element apply to the entire set of MBeans
instantiated from that MBean type. To override attributes for specific MBean instances, you need
to specify attributes in the MBeanAttribute subelement. For more information, see “The
MBeanAttribute Subelement” on page A-4.

Table A-1 describes the attributes available to the MBeanType (root) element. The JMX
Specification/BEA Extension column indicates whether the attribute is a BEA extension to the
JMX specification or a standard JMX attribute. Note that BEA extensions might not function on
other J2EE Web servers.

Table A-1

Attribute JMX Specification
/BEA Extension

Allowed
Values

Description

Abstract BEA Extension true/false A true value specifies that the MBean
type cannot be instantiated (like any
abstract Java class), though other MBean
types can inherit its attributes and
operations. If you specify true, you
must create other non-abstract MBean
types for carrying out management
tasks. If you do not specify a value for
this attribute, the assumed value is
false.

Deprecated BEA Extension true/false Indicates that the MBean type is
deprecated. This information appears in
the generated Java source, and is also
placed in the ModelMBeanInfo object
for possible use by a management
application. If you do not specify this
attribute, the assumed value is false.

The MBeanType (Root) E lement

Developing Security Providers for WebLogic Server A-3

Description JMX Specification String An arbitrary string associated with the
MBean type that appears in various
locations, such as the Javadoc for
generated classes. There is no default or
assumed value.

Note: To specify a description that is
visible in a user interface, use
the DisplayName attribute.

DisplayName JMX Specification String The name that a user interface displays
to identify instances of MBean types.
For an instance of type X, the default
DisplayName is "instance of type X."
This value is typically overridden when
instances are created.

Extends BEA Extension Pathname A fully qualified MBean type name that
this MBean type extends.

Implements BEA Extension Comma-
separated list

A comma-separated list of fully
qualified MBean type names that this
MBean type implements.

See also Extends.

Name JMX Specification String Mandatory attribute that specifies the
internal, programmatic name of the
MBean type.

Table A-1

Attribute JMX Specification
/BEA Extension

Allowed
Values

Description

A-4 Developing Security Providers for WebLogic Server

The MBeanAttribute Subelement
You must supply one instance of an MBeanAttribute subelement for each attribute in your
MBean type. The MBeanAttribute subelement must be formatted as follows:

<MBeanAttribute Name=string optional_attributes />

The MBeanAttribute subelement must include a Name attribute, which specifies the internal,
programmatic name of the Java attribute in the MBean type. (To specify a name that is visible in
a user interface, use the DisplayName attribute.) Other attributes are optional.

The following is a simplified example of an MBeanAttribute subelement within an MBeanType
element:

<MBeanType Name=“MyMBean” Package=”com.mycompany”>
<MBeanAttribute Name= “WhenToCache”
Type=”java.lang.String”
LegalValues="’cache-on-reference’,’cache-at-initialization’,’cache-never’

"
Default= “cache-on-reference”

Package BEA Extension String Specifies the package name of the
MBean type and determines the location
of the class files that the WebLogic
MBeanMaker creates. If you do not
specify this attribute, the MBean type is
placed in the Java default package.

Note: MBean type names can be the
same as long as the package
name varies.

PersistPolicy JMX Specification /OnUpdate Specifies how persistence will occur:

OnUpdate. The attribute is stored every
time the attribute is updated.

Note: When specified in the
MBeanType element, this value
overrides any setting within an
individual MBeanAttribute subelement.

Table A-1

Attribute JMX Specification
/BEA Extension

Allowed
Values

Description

The MBeanAt t r ibute Sube lement

Developing Security Providers for WebLogic Server A-5

/>
</MBeanType>

Attributes specified in an MBeanAttribute subelement apply to a specific MBean instance. To
set attributes for the entire set of MBeans instantiated from an MBean type, you need to specify
attributes in the MBeanType (root) element. For more information, see “The MBeanType (Root)
Element” on page A-1.

Table A-2 describes the attributes available to the MBeanAttribute subelement. The JMX
Specification/BEA Extension column indicates whether the attribute is a BEA extension to the
JMX specification. Note that BEA extensions might not function on other J2EE Web servers.

Table A-2

Attribute JMX Specification
/BEA Extension

Allowed
Values

Description

Default JMX Specification String The value to be returned if the
MBeanAttribute subelement does
not provide a getter method or a cached
value. The string represents a Java
expression that must evaluate to an
object of a type that is compatible with
the provided data type for this attribute.

If you do not specify this attribute, the
assumed value is null. If you use this
assumed value, and if you set the
LegalNull attribute to false, then
an exception is thrown by WebLogic
MBeanMaker and WebLogic Server.

Deprecated BEA Extension true/false Indicates that the MBean attribute is
deprecated. This information appears in
the generated Java source, and is also
placed in the ModelMBeanInfo object
for possible use by a management
application. If you do not specify this
attribute, the assumed value is false.

A-6 Developing Security Providers for WebLogic Server

Description JMX Specification String An arbitrary string associated with the
MBean attribute that appears in various
locations, such as the Javadoc for
generated classes. There is no default or
assumed value.

Note: To specify a description that is
visible in a user interface, use
the DisplayName attribute.

Dynamic BEA Extension true/false Changes made to dynamic MBeans take
effect without rebooting the server. By
default, all custom security provider
MBean attributes are non-dynamic.

Note that in 8.1 and 7.0, all custom
security provider MBean attributes were
dynamic.

Encrypted BEA Extension true/false A true value indicates that this MBean
attribute will be encrypted when it is set.
If you do not specify this attribute, the
assumed value is false.

Table A-2

Attribute JMX Specification
/BEA Extension

Allowed
Values

Description

The MBeanAt t r ibute Sube lement

Developing Security Providers for WebLogic Server A-7

InterfaceType BEA Extension String Classname of an interface to be used
instead of the MBean interface
generated by the WebLogic
MBeanMaker. InterfaceType can
be

int

long

float

double

char

byte
Do not specify if "Type" is
java.lang.String,
java.lang.String[], or
java.lang.Properties.

IsIs JMX Specification true/false Specifies whether a generated Java
interface uses the JMX
is<AttributeName> method to
access the boolean value of the MBean
attribute (as opposed to the
get<AttributeName> method). If
you do not specify this attribute, the
assumed value is false.

LegalNull BEA Extension true/false Specifies whether null is an allowable
value for the current
MBeanAttribute subelement. If you
do not specify this attribute, the assumed
value is true.

Table A-2

Attribute JMX Specification
/BEA Extension

Allowed
Values

Description

A-8 Developing Security Providers for WebLogic Server

LegalValues BEA Extension Comma-
separated list

Specifies a fixed set of allowable values
for the current MBeanAttribute
subelement. If you do not specify this
attribute, the MBean attribute allows
any value of the type that is specified by
the Type attribute.

Note: The items in the list must be
convertible to the data type that
is specified by the subelement’s
Type attribute.

Max BEA Extension Integer For numeric MBean attribute types only,
provides a numeric value that represents
the inclusive maximum value for the
attribute. If you do not specify this
attribute, the value can be as large as the
data type allows.

Min BEA Extension Integer For numeric MBean attribute types only,
provides a numeric value which
represents the inclusive minimum value
for the attribute. If you do not specify
this attribute, the value can be as small
as the data type allows.

Name JMX Specification String Mandatory attribute that specifies the
internal, programmatic name of the
MBean attribute.

Table A-2

Attribute JMX Specification
/BEA Extension

Allowed
Values

Description

The MBeanAt t r ibute Sube lement

Developing Security Providers for WebLogic Server A-9

Type JMX Specification Java class
name

The fully qualified classname of the data
type of this attribute. This corresponding
class must be available on the classpath.
If you do not specify this attribute, the
assumed value is
java.lang.String. Type can be

java.lang.Integer

java.lang.Integer[]

java.lang.Long

java.lang.Long[]

java.lang.Float

java.lang.Float[]

java.lang.Double

java.lang.Double[]

java.lang.Char

java.lang.Char[]

java.lang.Byte

java.lang.Byte[]

java.lang.String

java.lang.String[]

java.util.Properties

Table A-2

Attribute JMX Specification
/BEA Extension

Allowed
Values

Description

A-10 Developing Security Providers for WebLogic Server

The MBeanConstructor Subelement
MBeanConstructor subelements are not currently used by the WebLogic MBeanMaker, but are
supported for compliance with the Java Management eXtensions 1.0 specification and upward
compatibility. Therefore, attribute details for the MBeanConstructor subelement (and its
associated MBeanConstructorArg subelement) are omitted from this documentation.

The MBeanOperation Subelement
You must supply one instance of an MBeanOperation subelement for each operation (method)
that your MBean type supports. The MBeanOperation must be formatted as follows:

<MBeanOperation Name=string optional_attributes >
<MBeanOperationArg Name=string optional_attributes />

</MBeanOperation>

The MBeanOperation subelement must include a Name attribute, which specifies the internal,
programmatic name of the operation. (To specify a name that is visible in a user interface, use the
DisplayName attribute.) Other attributes are optional.

Within the MBeanOperation element, you must supply one instance of an MBeanOperationArg
subelement for each argument that your operation (method) uses. The MBeanOperationArg
must be formatted as follows:

<MBeanOperationArg Name=string optional_attributes />

The Name attribute must specify the name of the operation. The only optional attribute for
MBeanOperationArg is Type, which provides the Java class name that specifies behavior for a

Writeable JMX Specification true/false A true value allows the MBean API to
set an MBeanAttribute’s value. If
you do not specify this attribute in
MBeanType or MBeanAttribute,
the assumed value is true.

When specified in the MBeanType
element, this value is considered the
default for individual
MBeanAttribute subelements.

Table A-2

Attribute JMX Specification
/BEA Extension

Allowed
Values

Description

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

The MBeanOperat ion Sube lement

Developing Security Providers for WebLogic Server A-11

specific type of Java attribute. If you do not specify this attribute, the assumed value is
java.lang.String.

The following is a simplified example of an MBeanOperation and MBeanOperationArg
subelement within an MBeanType element:

<MBeanType Name=“MyMBean” Package=”com.mycompany”>

<MBeanOperation
Name= “findParserSelectMBeanByKey”
ReturnType=”XMLParserSelectRegistryEntryMBean”
Description=”Given a public ID, system ID, or root element tag, returns the

object name of the corresponding XMLParserSelectRegistryEntryMBean.”
>

<MBeanOperationArg Name=”publicID” Type=”java.lang.String”/>
<MBeanOperationArg Name=”systemID” Type=”java.lang.String”/>
<MBeanOperationArg Name=”rootTag” Type=”java.lang.String”/>

</MBeanOperation>

</MBeanType>

A-12 Developing Security Providers for WebLogic Server

Table A-3 describes the attributes available to the MBeanOperation subelement. The JMX
Specification/BEA Extension column indicates whether the attribute is a BEA extension to the
JMX specification. Note that BEA extensions might not function on other J2EE Web servers.

Table A-3

Attribute JMX Specification
/BEA Extension

Allowed
Values

Description

Deprecated BEA Extension true/false Indicates that the MBean operation
is deprecated. This information
appears in the generated Java
source, and is also placed in the
ModelMBeanInfo object for
possible use by a management
application. If you do not specify
this attribute, the assumed value is
false.

Description JMX Specification String An arbitrary string associated with
the MBean operation that appears in
various locations, such as the
Javadoc for generated classes. There
is no default or assumed value.

Note: To specify a description that
is visible in a user interface,
use the DisplayName
attribute.

The MBeanOperat ion Sube lement

Developing Security Providers for WebLogic Server A-13

Name JMX Specification String Mandatory attribute that specifies
the internal, programmatic name
of the MBean operation.

ReturnType JMX Specification String A string containing the fully
qualified classname of the Java
object returned by the operation
being described. ReturnType can
be void or the following:

int

int[]

long

long[]

float

float[]

double

double[]

char

char[]

byte

byte[]

java.lang.String

java.lang.String[]

java.util.Properties

Table A-3

Attribute JMX Specification
/BEA Extension

Allowed
Values

Description

A-14 Developing Security Providers for WebLogic Server

Table A-4 describes the attributes available to the MBeanOperationArg subelement. The JMX
Specification/BEA Extension column indicates whether the attribute is a BEA extension to the
JMX specification. Note that BEA extensions might not function on other J2EE Web servers.

Table A-4

Attribute JMX Specification
/BEA Extension

Allowed
Values

Description

Description JMX Specification String An arbitrary string associated with
the MBean operation argument that
appears in various locations, such as
the Javadoc for generated classes.
There is no default or assumed
value.

The MBeanOperat ion Sube lement

Developing Security Providers for WebLogic Server A-15

Name JMX Specification String Mandatory attribute that specifies
the name of the argument.

Type JMX Specification String The type of the MBean operation
argument. If you do not specify this
attribute, the assumed value is
java.lang.String. Type can
be

int

int[]

long

long[]

float

float[]

double

double[]

char

char[]

byte

byte[]

java.lang.String

java.lang.String[]

java.util.Properties

Table A-4

Attribute JMX Specification
/BEA Extension

Allowed
Values

Description

A-16 Developing Security Providers for WebLogic Server

MBean Operation Exceptions
Your MBean Definition Files (MDFs) must use only JDK exception types or
weblogic.management.utils exception types. The following is a code fragment from
Listing A-1 that shows the use of an MBeanException within an MBeanOperation subelement:

<MBeanOperation

Name = "registerPredicate"

ReturnType = "void"

Description = "Registers a new predicate with the specified class name."

>

<MBeanOperationArg

Name = "predicateClassName"

Type = "java.lang.String"

Description = "The name of the Java class that implements the predicate."

/>

<MBeanException>weblogic.management.utils.InvalidPredicateException</MBean

Exception>

<MBeanException>weblogic.management.utils.AlreadyExistsException</MBeanExc

eption>

</MBeanOperation>

Examples: Well-Formed and Valid MBean Definition Files
(MDFs)

Listing A-1 and Listing A-2 provide examples of MBean Definition Files (MDFs) that use many
of the attributes described in this Appendix. Listing A-1 shows the MDF used to generate an
MBean type that manages predicates and reads data about predicates and their
arguments.Listing A-2 shows the MDF used to generate the MBean type for the WebLogic
(default) Authorization provider.

Listing A-1 PredicateEditor.xml

<?xml version="1.0" ?>

<!DOCTYPE MBeanType SYSTEM "commo.dtd">

Examples : We l l -Fo rmed and Va l id MBean De f in i t i on F i l es (MDFs)

Developing Security Providers for WebLogic Server A-17

<MBeanType

Name = "PredicateEditor"

Package = "weblogic.security.providers.authorization"

Implements = "weblogic.security.providers.authorization.PredicateReader"

PersistPolicy = "OnUpdate"

Abstract = "false"

Description = "This MBean manages predicates and reads data about predicates

and their arguments.<p>"

>

<MBeanOperation

Name = "registerPredicate"

ReturnType = "void"

Description = "Registers a new predicate with the specified class name."

>

<MBeanOperationArg

Name = "predicateClassName"

Type = "java.lang.String"

Description = "The name of the Java class that implements the predicate."

/>

<MBeanException>weblogic.management.utils.InvalidPredicateException</MBean

Exception>

<MBeanException>weblogic.management.utils.AlreadyExistsException</MBeanExc

eption>

</MBeanOperation>

<MBeanOperation

Name = "unregisterPredicate"

ReturnType = "void"

Description = "Unregisters the currently registered predicate." >

<MBeanOperationArg

Name = "predicateClassName"

Type = "java.lang.String"

Description = "The name of the Java class that implements predicate to be

A-18 Developing Security Providers for WebLogic Server

unregistered."

/>

<MBeanException>weblogic.management.utils.NotFoundException</MBeanExceptio

n>

</MBeanOperation>

</MBeanType>

Listing A-2 DefaultAuthorizer.xml

<?xml version="1.0" ?>

<!DOCTYPE MBeanType SYSTEM "commo.dtd">

<MBeanType

Name = "DefaultAuthorizer"

DisplayName = "DefaultAuthorizer"

Package = "weblogic.security.providers.authorization"

Extends ="weblogic.management.security.authorization.DeployableAuthorizer"

Implements = "weblogic.management.security.authorization.PolicyEditor,

weblogic.security.providers.authorization.PredicateEditor"

PersistPolicy = "OnUpdate"

Description = "This MBean represents configuration attributes for the

WebLogic Authorization provider. <p>"

>

<MBeanAttribute

Name = "ProviderClassName"

Type = "java.lang.String"

Writeable = "false"

Default""weblogic.security.providers.authorization.DefaultAuthorizati

onProviderImpl""

Description = "The name of the Java class used to load the WebLogic

Authorization provider."

/>

<MBeanAttribute

Name = "Description"

Type = "java.lang.String"

Writeable = "false"

Examples : We l l -Fo rmed and Va l id MBean De f in i t i on F i l es (MDFs)

Developing Security Providers for WebLogic Server A-19

Default = ""Weblogic Default Authorization Provider""

Description = "A short description of the WebLogic Authorization provider."

/>

<MBeanAttribute

Name = "Version"

Type = "java.lang.String"

Writeable = "false"

Default = ""1.0""

Description = "The version of the WebLogic Authorization provider."

/>

</MBeanType>

A-20 Developing Security Providers for WebLogic Server

Developing Security Providers for WebLogic Server i-1

Index

A
Access Decisions

definition 6-2
purpose 6-2
relationship to Authorization providers 6-2

AccessDecision SSPI
methods 6-9

Active Types
attribute in MBean Definition Files (MDFs)

for Identity Assertion providers 4-5
defaulting 4-5

field in WebLogic Server Administration
Console 4-5

adjudication
definition 7-1
general process 7-1

Adjudication providers
configuring

in the WebLogic Server Administration
Console 7-10

custom
determining necessity 7-1
main steps for developing 7-3

purpose 7-1
WebLogic

description 7-1
AdjudicationProvider SSPI

methods 7-3
Adjudicator SSPI

methods 7-4
AppChallengeContext methods

invoking 4-28

appearance of custom attributes/operations in
WebLogic Server Administration Console 2-13
architecture of a security provider 2-1
argument-passing mechanisms

CallbackHandlers 3-7, 3-15, 4-13
attribute validators

differences for custom validators 2-42
differences in version 9.0 2-41

attributes for MBean Definition File (MDF)
elements

MBeanAttribute subelement A-5
MBeanOperation subelement A-12
MBeanOperationArg subelement A-14
MBeanType (root) element A-2

attributes/operations, custom
appearance in WebLogic Server

Administration Console 2-13
using to configure an existing security

provider database 2-39
what the WebLogic MBeanMaker utility

provides 2-16
Audit Channels

definition 9-2
purpose 9-2
relationship to Auditing providers 9-2

audit context
definition 11-8

audit events
creating 11-3
definition 11-3
posting from provider’s MBean 11-16
using the Auditor Service to write 11-10

example 11-11, 11-13

i-2 Developing Security Providers for WebLogic Server

audit severity
definition 11-7

AuditChannel SSPI
methods 9-10

AuditContext interface
methods 11-8

AuditEvent SSPI
convenience interfaces 11-4

AuditAtnEvent
example 11-8
methods 11-5

AuditAtzEvent
methods 11-6

AuditMgmtEvent 11-7
AuditPolicyEvent

methods 11-6
AuditRoleDeploymentEvent 11-7
AuditRoleEvent 11-7

methods 11-3
auditing

definition 9-1, 11-1
from a custom security provider

example 9-2, 11-1
main steps 11-3

auditing management operations
from provider’s MBean 11-12

Auditing providers
configuring in the WebLogic Server

Administration Console 9-18
audit severity 9-19

custom
determining necessity 9-7
main steps for developing 9-8

example of creating runtime classes 9-10
purpose 9-1, 11-1
relationship

to Audit Channels 9-2
WebLogic

description 9-7
Auditor Service

obtaining and using to write audit events
11-10

example 11-11, 11-13
AuditorService interface

implementations 11-2
methods 11-2
purpose 11-2

AuditProvider SSPI
methods 9-9

authentication
client-side

using UsernamePasswordLoginModule
3-7, 3-9, 4-7

definition 3-1
enabling different technologies with

LoginModules 3-4
establishing context 3-11
example

standalone T3 application 3-8
general process

usernames/passwords 3-10
multipart

using LoginModules 3-5
perimeter

definition 4-7
passing tokens 4-6
use of separate LoginModule 3-4

server-side
use of login method 3-8

use of CallbackHandlers 3-7, 3-15, 4-13
use of Java Authentication and

Authorization Service (JAAS) 3-6
Authentication class

role in servlet authentication filters 4-25
Authentication providers

appearance of optional SSPI MBean
attributes/operations in WebLogic
Server Administration Console
2-14

configuring in the WebLogic Server
Administration Console 3-31

Developing Security Providers for WebLogic Server i-3

custom
determining necessity 3-11
main steps for developing 3-12

difference from Identity Assertion providers
3-1

example of creating runtime classes 3-17
purpose 3-1
relationship

to LoginModules 3-4, 3-5
to Principal Validation providers 3-1,

5-1, 5-2
specifying the order of 3-33
use of LoginModules for multipart

authentication 3-5
WebLogic

description 3-11
use of embedded LDAP server 3-11

AuthenticationProvider SSPI
methods 3-13, 4-11

getPrincipalValidator 5-2
authorization

definition 6-1
general process 6-2
JACC 6-2

Authorization providers
configuring in the WebLogic Server

Administration Console 6-24
support for deployable security policies

6-26
use of security policies in deployment

descriptors 6-25
custom

determining necessity 6-5
main steps for developing 6-5

example of creating runtime classes 6-11
purpose 6-1
relationship

to Access Decisions 6-2
use with deployment descriptors 6-24
use with Role Mapping providers 8-1
WebLogic

description 6-5
AuthorizationProvider SSPI

methods 6-6
automatic creation of a security provider
database 2-38

B
base required SSPI MBean 2-13
best practices

security provider database
automatic creation 2-38
configuring existing 2-38

C
CallbackHandlers

definition 3-7, 3-15, 4-13
example of creating 4-16

challenge identity assertion
defined 4-24
implementing ChallengeIdentityAsserterV2

interface 4-26
implementing from a filter 4-28
implementing from filter 12-8
use of servlet authentication filters 4-25

ChallengeIdentityAsserterV2 interface
implementing 4-26

classes
ResourceBase 2-27
WLSPrincipals 5-4

client-side authentication using
UsernamePasswordLoginModule 3-7, 3-9, 4-7
Common Secure Interoperability Version 2
(CSIv2)

process 4-7
support 4-6

configuring
an existing database for use with security

providers 2-38, 2-39
Auditing Providers

audit severity 9-19

i-4 Developing Security Providers for WebLogic Server

Authorization providers
use of security policies in deployment

descriptors 6-25
Credential Mapping providers

use of credential mappings in
deployment descriptors 10-16

custom security providers
general information 1-6

Identity Assertion providers for use with
token types 4-4, 4-5

Role Mapping providers
use of role mappings in deployment

descriptors 8-27
console extensions

for custom security providers
when to write 1-5

context
audit

definition 11-8
authentication

establishing 3-11
element

definition 2-36
request

consideration during dynamic security
role computation 8-3

ContextHandlers
WebLogic resource use of 2-36

control flag setting for LoginModules 3-6
CORBA

Common Secure Interoperability Version 2
(CSIv2) specification 4-6

creating runtime classes for custom security
providers

main steps 1-3
Credential Mapping Deployment Enabled flag
10-18
Credential Mapping providers

configuring in the WebLogic Server
Administration Console 10-15

support for deployable credential
mappings 10-18

use of credential mappings in
deployment descriptors 10-16

custom
determining necessity 10-3
main steps for developing 10-4

interaction with WebLogic Security
Framework 10-2

purpose 10-1
use with deployment descriptors 10-16
WebLogic

description 10-3
credential mappings

definition 10-1
enabling deployment 10-18
in deployment descriptors 10-16
use of Credential Mapping Deployment

Enabled flag 10-18
use of Ignore Deploy Credential Mapping

checkbox 10-17
credential maps

management mechanisms
description 10-18
options 10-19
overview 1-6

CredentialMapperV2 SSPI
methods 10-6

CredentialProviderV2 SSPI
methods 10-5

credentials
default

security provider database initialization
2-37

definition 10-1
custom attributes/operations

appearance in WebLogic Server
Administration Console 2-13

specific steps for WebLogic MBeanMaker
utility 3-26, 3-27, 4-18, 4-19, 6-19,
7-6, 8-22, 9-14, 9-15, 10-10, 10-11

Developing Security Providers for WebLogic Server i-5

using to configure an existing security
provider database 2-39

what the WebLogic MBeanMaker utility
provides 2-16

customer support contact information xx

D
database, security provider

initializing 2-37
automatic creation 2-38
configuring existing 2-38
default users, groups, roles, policies,

credentials 2-37
requirements 2-37

storing WebLogic resources 2-30
declarative security roles 8-2
default users, groups, roles, policies, and
credentials

security provider database initialization 2-37
defaulting the ActiveTypes attribute for Identity
Assertion providers 4-5
Deployable versions of Provider SSPIs 2-4

DeployableAuthorizationProvider
methods 6-7

DeployableAuthorizationProviderV2 2-5
DeployableCredentialProvider 2-6

methods 10-6
DeployableRoleProvider

methods 2-5
DeployableRoleProviderV2 2-5

deployment descriptors
configuring use of in the WebLogic Server

Administration Console
Authorization providers 6-25
Credential Mapping providers 10-16
Role Mapping providers 8-27

credential mappings defined in 10-16
definitions

of roles 8-2
of security policies 6-25

of security roles 8-27
Enterprise JavaBean (EJB)/Web application

use of 6-24, 8-27
deployment support

for credential mappings 10-18
for role mappings 8-28
for security policies 6-26

developing custom security providers
creating runtime classes 1-3
designing 1-2
general information about configuring 1-6
generating MBean types 1-4
main steps

Adjudication 7-3
Auditing 9-8
Authentication 3-12
Authorization 6-5
Credential Mapping 10-4
Identity Assertion 4-10
Role Mapping 8-6

options for Principal Validation 5-5
process 1-2

differences between Principal Validation
providers and other security providers 5-2
documentation, where to find it xix
dynamic security role computation 8-2

consideration of request context 8-3
definition 8-2
general process 8-4
result of 8-3

E
EJB containers

use of ContextHandlers 2-36
element syntax for MBean Definition Files
(MDFs) A-1

examples A-16
MBeanAttribute subelement A-4
MBeanConstructor subelement A-10
MBeanOperation subelement A-10

i-6 Developing Security Providers for WebLogic Server

MBeanOperationArg subelement A-10
MBeanType (root) element A-1
understanding 2-11

element, context
definition 2-36

embedded LDAP server
WebLogic Authentication provider use of

3-11
enabling different authentication technologies
with LoginModules 3-4
Enterprise JavaBeans (EJBs)

use of deployment descriptors 6-24, 8-27
events, audit

creating 11-3
definition 11-3
using the Auditor Service to write 11-10

example 11-11, 11-13
exceptions, security

management 2-25
resulting from invalid principals 5-2

extending and implementing SSPI MBeans 2-10
extensions, console

for custom security providers
when to write 1-5

F
factories, Provider SSPIs as 2-7
file, MBean interface

definition 3-29, 4-22, 6-22, 7-8, 8-24, 9-16,
10-13, 14-29

flag
control 3-6
Credential Mapping Deployment Enabled

10-18
Policy Deployment Enabled 6-26
Role Deployment Enabled 8-28

G
generating MBean types for custom security
providers

main steps 1-4
getID method

for optimizing look ups of WebLogic
resources 2-33

use for runtime caching 2-29
use for WebLogic resource identification

2-29
getParentResource method

for traversing the single-parent resource
hierarchy 2-34

getPrincipalValidator method in
AuthenticationProvider SSPI 5-2
groups

default
creating 2-30
security provider database initialization

2-37
definition 3-2
WebLogic Server 3-3

H
hierarchy, single-parent

WebLogic resources 2-34
getParentResource method 2-34

I
identifying WebLogic resources 2-28

using the getID method 2-29
using the toString method 2-29

identity assertion
general process 4-7

Identity Assertion providers
configuring in the WebLogic Server

Administration Console 4-4, 4-24
ActiveTypes field 4-5
Supported Types field 4-4

custom
determining necessity 3-12, 4-8
main steps for developing 4-10

defaulting the Active Types attribute 4-5

Developing Security Providers for WebLogic Server i-7

difference from Authentication providers
3-1, 4-1

example of creating runtime classes 4-13
purpose 4-1
use of separate LoginModule 3-4, 4-2
use of tokens 4-3

creating new 4-3
WebLogic

description 4-8
token types supported 4-9

IdentityAsserter SSPI
methods 4-12

inheritance hierarchy
SSPI MBeans 2-14
SSPIs 2-6

initialization
security provider database 2-37

automatic creation 2-38
configuring existing 2-38
default users, groups, roles, policies,

credentials 2-37
requirements 2-37
using a database delegator 2-40

instances, MBean 2-10
interfaces

AuditContext
methods 11-8

AuditEvent convenience 11-4
AuditAtnEvent 11-5

example implementation 11-8
AuditAtzEvent 11-6
AuditMgmtEvent 11-7
AuditPolicyEvent 11-6
AuditRoleDeploymentEvent 11-7
AuditRoleEvent 11-7

AuditorService
implementations 11-2
methods 11-2

management 2-25
Resource 2-27
SecurityRole 8-2, 8-11

SecurityServices
implementations 11-2
methods 11-1

WLSGroup 3-3, 5-4
WLSUser 3-3, 5-4

J
JACC 6-2
Java Authentication and Authorization Service
(JAAS)

CallbackHandlers 3-7, 3-15, 4-13
description 3-6
subject’s use of 3-2
use of LoginModules 3-5
WebLogic Security Framework

interaction 3-7
example 3-8

Java Authorization Contract for Containers
See JACC

Java Management eXtensions (JMX)
specification 2-10

L
lockouts, user

implementing your own User Lockout
Manager 3-33

managing 3-32
preventing double 3-33
realm-wide User Lockout Manager 3-32
relationship to PasswordPolicyMBean 3-32

login method
use for server-side authentication 3-8

LoginModule interface
methods 3-15

LoginModules
control flag setting 3-6
definition 3-4
enabling different authentication

technologies 3-4
example implementation 3-20

i-8 Developing Security Providers for WebLogic Server

Java Authentication and Authorization
Service (JAAS) use of 3-5

purpose 3-4
relationship to Authentication providers 3-4,

3-5
use

for multipart authentication 3-5
for perimeter authentication 3-4
with Common Secure Interoperability

Version 2 (CSIv2) 4-6
with Identity Assertion providers 4-2

M
managemenrt operations

auditing from provider’s MBean 11-12
management mechanisms

description
credential maps 10-18
roles 8-29
security policies 6-26

options
credential maps 10-19
roles 8-29
security policies 6-27

overview
credential maps 1-6
security policies 1-6
security roles 1-6

management utilities package 2-25
mappings

credential
definition 10-1
enabling deployment 10-18
Ignore Deploy Credential Mapping

checkbox 10-17
in deployment descriptors 10-16
use of Credential Mapping Deployment

Enabled flag 10-18
role

definition 8-1

enabling deployment 8-28
in deployment descriptors 8-27
use of Role Deployment Enabled flag

8-28
MBean

posting audit events from 11-16
MBean Definition Files (MDFs)

creating 3-25, 4-18, 6-18, 7-5, 8-21, 9-13,
10-9

definition A-1
description 2-11
element syntax A-1

examples A-16
MBeanAttribute subelement A-4

attributes A-5
MBeanConstructor subelement A-10
MBeanOperation subelement A-10

attributes A-12
MBeanOperationArg subelement A-10

attributes A-14
understanding 2-11

Identity Assertion providers
ActiveTypes attribute 4-5
Supported Types attribute 4-4

sample 2-11
use of by WebLogic MBeanMaker utility

2-11, 2-16
using custom attributes/operations to

configure an existing security
provider database 2-39

MBean interface file
definition 3-29, 4-22, 6-22, 7-8, 8-24, 9-16,

10-13, 14-29
MBean JAR Files (MJFs)

creating with WebLogic MBeanMaker
utility 3-30, 4-22, 6-22, 7-8, 8-24,
9-17, 10-14, 14-29

MBean types
definition 2-10
generating

from SSPI MBeans 2-9

Developing Security Providers for WebLogic Server i-9

with WebLogic MBeanMaker utility
3-24, 3-25, 3-26, 4-17, 4-18,
6-17, 6-18, 7-4, 7-5, 8-20,
8-21, 9-13, 9-14, 10-8, 10-9,
10-10

installing into WebLogic Server
environment 3-31, 4-23, 6-23, 7-9,
8-25, 9-18, 10-15

instances created from 2-10
purpose 2-10

MBeans
definition 2-10
SSPI

quick reference 2-18
MBeanType (root) element in MBean Definition
Files (MDFs)

attributes A-2
syntax A-1

methods
AccessDecision SSPI 6-9
AdjudicationProvider SSPI 7-3
Adjudicator SSPI 7-4
AuditAtnEvent convenience interface 11-5
AuditAtzEvent convenience interface 11-6
AuditChannel SSPI 9-10
AuditContext interface 11-8
AuditEvent SSPI 11-3
AuditorService interface 11-2
AuditPolicyEvent convenience interface

11-6
AuditProvider SSPI 9-9
AuthenticationProvider SSPI 3-13, 4-11

getPrincipalValidator 5-2
AuthorizationProvider SSPI 6-6
CredentialMapperV2 SSPI 10-6
CredentialProviderV2 SSPI 10-5
DeployableAuthorizationProvider SSPI 6-7
DeployableCredentialProvider SSPI 10-6
DeployableRoleProvider SSPI 2-5, 8-8
getID

for optimizing look ups of WebLogic
resources 2-33

use for runtime caching 2-29
use for WebLogic resource

identification 2-29
getParentResource

for traversing the single-parent resource
hierarchy 2-34

IdentityAsserter SSPI 4-12
login

use for server-side authentication 3-8
LoginModule interface 3-15
PrincipalValidator SSPI 5-5
RoleMapper SSPI 8-9
RoleProvider SSPI 8-7
SecurityProvider interface 2-4
SecurityServices interface 11-1
toString

format 2-29
use for WebLogic resource

identification 2-29
multipart authentication

using LoginModules 3-5

O
optional SSPI MBeans

definition 2-11
specific steps for WebLogic MBeanMaker

utility 3-26, 3-27, 4-18, 4-19, 6-19,
10-10, 10-11

what the WebLogic MBeanMaker utility
provides 2-16

ordering Authentication providers 3-33

P
PasswordPolicyMBean

relationship to user lockouts 3-32
perimeter authentication

definition 4-7
passing tokens 4-6

i-10 Developing Security Providers for WebLogic Server

use of separate LoginModules 3-4
planning development activities 2-1
policies, security

default
creating 2-31
security provider database initialization

2-37
enabling deployment 6-26
in deployment descriptors 6-25
use of Policy Deployment Enabled flag 6-26

Policy Deployment Enabled flag 6-26
preventing double user lockouts 3-33
principal validation

general process 5-3
principal types 5-2

Principal Validation providers
custom

determining necessity 5-4
options for developing 5-5

differences from other security providers 5-2
principal types 5-4
purpose 3-3
relationship

to Authentication providers 3-1, 5-1,
5-2

WebLogic
description 5-4
how to use 5-4

principals
definition 3-2
invalid 5-2
types 5-4

PrincipalValidator SSPI 5-4
methods 5-5

process
adjudication 7-1
authentication

using identity assertion 4-7
using usernames/passwords 3-10

authorization 6-2

for developing custom security providers
1-2

principal validation 5-3
role mapping 8-3

Provider SSPIs
as factory 2-7
Deployable versions 2-4

DeployableAuthorizationProvider 6-7
DeployableAuthorizationProviderV2

2-5
DeployableCredentialProvider 2-6,

10-6
DeployableRoleProvider 8-8
DeployableRoleProviderV2 2-5

purpose 2-3
ProviderChallengeContext interface

implementing 4-27

Q
quick reference

SSPI MBeans 2-18
SSPIs 2-8

R
request context

consideration during dynamic security role
computation 8-3

required SSPI MBeans
definition 2-10

Resource interface 2-27
ResourceBase class 2-27
resources, WebLogic

architecture 2-27
creating default groups 2-30
creating default roles 2-30
creating default security policies 2-31
definition 2-26
identifiers 2-28

resource IDs 2-29
toString method 2-29

Developing Security Providers for WebLogic Server i-11

optimizing look ups 2-33
single-parent hierarchy 2-34

getParentResource method 2-34
storing in security provider database 2-30
types 2-28
use of ContextHandlers 2-36

Role Deployment Enabled flag 8-28
role mapping

definition 8-1
enabling deployment 8-28
general process 8-3
in deployment descriptors 8-27
use

of Role Deployment Enabled flag 8-28
Role Mapping providers

configuring in the WebLogic Server
Administration Console 8-26

support for deployable role mappings
8-28

use of role mappings in deployment
descriptors 8-27

custom
determining necessity 8-6
main steps for developing 8-6

example of creating runtime classes 8-12
purpose 8-1
use

with Authorization providers 8-1
with deployment descriptors 8-27

WebLogic
description 8-6

RoleMapper SSPI
methods 8-9

RoleProvider SSPI
methods 8-7

roles
declarative 8-2
default

creating 2-30
security provider database initialization

2-37

definition 8-2
dynamic computation 8-2

consideration of request context 8-3
definition 8-2
general process 8-4
result of 8-3

in deployment descriptors 8-2
management mechanisms

description 8-29
options 8-29
overview 1-6

specified in the WebLogic Server
Administration Console 8-2

runtime caching using the getID method 2-29
runtime classes

creating using security service provider
interfaces (SSPIs)

Adjudication providers 7-3
Auditing providers 9-9
AuditingProvider example

implementation 9-10
Authentication providers 3-12
AuthenticationProvider example

implementation 3-17
Authorization providers 6-6
AuthorizationProvider example

implementation 6-11
CallbackHandler example

implementation 4-16
Credential Mapping providers 10-5
Identity Assertion providers 4-10
IdentityAsserter example

implementation 4-13
LoginModule example implementation

3-20
Role Mapping providers 8-6
RoleProvider example implementation

8-12
SecurityRole example implementation

8-18
one versus two 2-6

i-12 Developing Security Providers for WebLogic Server

S
sample MBean Definition File (MDF) 2-11
security policies

default
creating 2-31
security provider database initialization

2-37
enabling deployment 6-26
in deployment descriptors 6-25
management mechanisms

description 6-26
options 6-27
overview 1-6

use
of Policy Deployment Enabled flag

6-26
security provider databases

initializing 2-37
automatic creation 2-38
configuring existing 2-38
default users, groups, roles, policies,

credentials 2-37
requirements 2-37

storing WebLogic resources 2-30
security providers

Adjudication
configuring in the WebLogic Server

Administration Console 7-10
custom

determining necessity for 7-1
main steps for developing 7-3

purpose 7-1
Auditing

configuring in the WebLogic Server
Administration Console 9-18

custom
determining necessity for 9-7
main steps for developing 9-8

example of creating runtime classes
9-10

purpose 9-1, 11-1

relationship
to Audit Channels 9-2

auditing from
example 9-2, 11-1
main steps 11-3

Authentication
configuring in the WebLogic Server

Administration Console 3-31
custom

determining necessity for 3-11
main steps for developing 3-12

difference from Identity Assertion
providers 3-1, 4-1

example of creating runtime classes
3-17

optional SSPI MBean
attributes/operations in the
WebLogic Server
Administration Console 2-14

purpose 3-1
relationship

to LoginModules 3-4, 3-5
to Principal Validation providers

3-1, 5-1
specifying the order of 3-33
use of LoginModules for multipart

authentication 3-5
Authorization

configuring in the WebLogic Server
Administration Console 6-24,
6-26

custom
determining necessity for 6-5
main steps for developing 6-5

example of creating runtime classes
6-11

purpose 6-1
relationship

to Access Decisions 6-2
use with Role Mapping providers 8-1

Credential Mapping

Developing Security Providers for WebLogic Server i-13

configuring in the WebLogic Server
Administration Console 10-15,
10-16, 10-18

custom
determining necessity for 10-3
main steps for developing 10-4

interaction with WebLogic Security
Framework 10-2

purpose 10-1
custom

auditing from 9-2, 11-1
main steps 11-3

creating runtime classes 1-3
general information about configuring

1-6
generating MBean types 1-4
when to write console extensions 1-5

general architecture 2-1
how the WebLogic Security Framework

locates 2-2
Identity Assertion

configuring
for use with token types 4-4
in the WebLogic Server Adminis-

tration Console 4-24
custom

determining necessity for 3-12
main steps for developing 4-10

determining necessity for custom 4-8
difference from Authentication

providers 3-1, 4-1
example of creating runtime classes

4-13
purpose 4-1
use of separate LoginModule 3-4, 4-2
use of tokens 4-3
WebLogic 4-8

initializing a database for use with 2-37
automatic creation 2-38
configuring existing 2-38

default users, groups, roles, policies,
credentials 2-37

requirements 2-37
interfaces

for creating runtime classes 2-2
for generating MBean types 2-9

Principal Validation
custom

determining necessity for 5-4
options for developing 5-5

differences from other types 5-2
purpose 3-3
relationship

to Authentication providers 3-1,
5-1

WebLogic 5-4
process for developing 1-2
Role Mapping

configuring in the WebLogic Server
Administration Console 8-26,
8-28

custom
determining necessity for 8-6
main steps for developing 8-6

example of creating runtime classes
8-12

purpose 8-1
use with Authorization providers 8-1

samples
Auditing provider 9-10
Authentication provider 3-17
Authorization provider 6-11
Identity Assertion provider 4-13
Role Mapping provider 8-12

use with deployment descriptors
Authorization 6-24
Credential Mapping 10-16
Role Mapping 8-27

security service provider interfaces (SSPIs)
AccessDecision 6-9
AdjudicationProvider 7-3

i-14 Developing Security Providers for WebLogic Server

Adjudicator 7-4
AuditChannel 9-10
AuditEvent 11-3
AuditEvent convenience interfaces 11-4
AuditProvider 9-9
AuthenticationProvider 3-13, 4-11

getPrincipalValidator method 5-2
AuthorizationProvider 6-6
creating runtime classes

Adjudication providers 7-3
Auditing providers 9-9
AuditingProvider example

implementation 9-10
Authentication providers 3-12
AuthenticationProvider example

implementation 3-17
Authorization providers 6-6
AuthorizationProvider example

implementation 6-11
Credential Mapping providers 10-5
Identity Assertion providers 4-10
IdentityAsserter example

implementation 4-13
LoginModule example implementation

3-20
Role Mapping providers 8-6
RoleProvider example implementation

8-12
SecurityRole example implementation

8-18
CredentialMapper 10-6
CredentialProvider 10-5
Deployable versions

DeployableAuthorizationProvider 6-7
DeployableAuthorizationProviderV2

2-5
DeployableCredentialProvider 2-6,

10-6
DeployableRoleProvider 2-5, 8-8
DeployableRoleProviderV2 2-5

ending in Provider

as factory 2-7
Deployable versions 2-4, 6-7, 8-8, 10-6
purpose 2-3

IdentityAsserter 4-12
inheritance hierarchy 2-6
PrincipalValidator 5-4, 5-5
quick reference 2-8
RoleMapper 8-9
RoleProvider 8-7

SecurityProvider interface
methods 2-4

SecurityRole interface 8-2, 8-11
SecurityServices interface

implementations 11-2
methods 11-1
purpose 11-1

server, embedded LDAP
WebLogic Authentication provider use of

3-11
servlet authentication filter

definition 12-1
how to invoke 12-6
implementing challenge identity assertion

from 12-8
servlet authentication filters

concepts 12-1
design considerations 12-2
how invoked 12-3
role of Authentication class 4-25
use in challenge identity assertion 4-25
why needed 12-1

Servlet containers
use of ContextHandlers 2-36

severity, audit
configuring for Auditing providers in the

WebLogic Server Administration
Console 9-19

definition 11-7
single sign-on

using Identity Assertion providers and
LoginModules 4-2

Developing Security Providers for WebLogic Server i-15

single-parent WebLogic resource hierarchies
2-34

getParentResource method 2-34
specification, Java Management eXtensions
(JMX) 2-10
SSPI MBeans

base required 2-13
definition 2-10
determining which to extend and implement

2-10
inheritance hierarchy 2-14
optional

appearance of attributes/operations in
WebLogic Server
Administration Console 2-14

definition 2-11
specific steps for WebLogic

MBeanMaker utility 3-26,
3-27, 4-18, 4-19, 6-19, 10-10,
10-11

what the WebLogic MBeanMaker
utility provides 2-16

quick reference 2-18
required

definition 2-10
using to generate MBean types 2-9

subinterfaces of the AuditEvent SSPI 11-4
subjects

definition 3-2, 10-1
support

technical xx
Supported Types

attribute in MBean Definition Files (MDFs)
for Identity Assertion providers 4-4

field in WebLogic Server Administration
Console 4-4

syntax, MBean Definition File (MDF) elements
A-1

examples A-16
MBeanAttribute subelement A-4

attributes A-5

MBeanConstructor subelement A-10
MBeanOperation subelement A-10

attributes A-12
MBeanOperationArg subelement A-10

attributes A-14
MBeanType (root) element A-1

attributes A-2

T
tokens

passing for perimeter authentication 4-6
types

configuring Identity Assertion
providers for use with 4-4

creating new 4-3
definition 4-3
for identity assertion 4-3
supported by WebLogic Identity

Assertion provider 4-9
toString method

format 2-29
use for WebLogic resource identification

2-29
types

principal 5-2, 5-4
tokens

configuring Identity Assertion
providers for use with 4-4

creating new 4-3
definition 4-3
for identity assertion 4-3
supported by WebLogic Identity

Assertion provider 4-9

U
user lockouts

implementing your own User Lockout
Manager 3-33

managing 3-32
preventing double 3-33

i-16 Developing Security Providers for WebLogic Server

realm-wide User Lockout Manager 3-32
relationship to PasswordPolicyMBean 3-32

username/password authentication 3-10
UsernamePasswordLoginModule

using for client-side authentication 3-7, 3-9
using for Common Secure Interoperability

version 2 (CSIv2) 4-7
users

default
security provider database initialization

2-37
definition 3-2
WebLogic Server 3-3

utilities, management 2-25
utility, WebLogic MBeanMaker

use of MDFs 2-11, 2-16
what it provides 2-16

V
versionable application

concepts 13-1
process for implementing 13-2

Versionable Application provider
defined 13-1
how to develop 13-3

versionable application provider
concepts 13-1

W
Web applications

use of deployment descriptors 6-24, 8-27
WebLogic MBeanMaker utility

creating MBean JAR Files (MJFs) 3-30,
4-22, 6-22, 7-8, 8-24, 9-17, 10-14,
14-29

generating MBean types 3-24, 3-25, 3-26,
4-17, 4-18, 6-17, 6-18, 7-4, 7-5,
8-20, 8-21, 9-13, 9-14, 10-8, 10-9,
10-10

specific steps

custom operations 3-26, 3-27, 4-18,
4-19, 6-19, 7-6, 8-22, 9-14,
9-15, 10-10, 10-11

optional SSPI MBeans 3-26, 3-27, 4-18,
4-19, 6-19, 10-10, 10-11

use of MDFs 2-11, 2-16
what it provides 2-16

WebLogic resources
architecture 2-27
creating default groups 2-30
creating default roles 2-30
creating default security policies 2-31
definition 2-26
identifiers 2-28

resource IDs 2-29
toString method 2-29

optimizing look ups 2-33
single-parent hierarchy 2-34

getParentResource method 2-34
storing in security provider database 2-30
types 2-28
use of ContextHandlers 2-36

WebLogic Security Framework
interaction

with Credential Mapping providers
10-2

with Java Authentication and
Authorization Service (JAAS)
3-7

example 3-8
security providers

exposing to 2-3
how located 2-2

WebLogic security providers
description

Adjudication provider 7-1
Auditing provider 9-7
Authentication provider 3-11
Authorization provider 6-5
Credential Mapping provider 10-3
Identity Assertion provider 4-8

Developing Security Providers for WebLogic Server i-17

Principal Validation provider 5-4
Role Mapping provider 8-6

WebLogic Server
installing MBean types into 3-31, 4-23,

6-23, 7-9, 8-25, 9-18, 10-15
support for Common Secure Interoperability

version 2 (CSIv2) 4-6
process 4-7

WebLogic Server Administration Console
ActiveTypes field for Identity Assertion

providers 4-5
configuring

Adjudication providers 7-10
audit severity of Auditing providers

9-19
Auditing providers 9-18
Authentication providers 3-31
Authorization providers 6-24, 6-25
Credential Mapping providers 10-15
deployable credential mappings 10-18
deployable security policies 6-26
deployable security roles 8-28
Identity Assertion providers 4-24
Role Mapping providers 8-26

custom attributes/operations in 2-13
optional SSPI MBean attributes/operations

for Authentication providers in
2-14

specifying roles 8-2
SSPI MBeans’ effect on 2-14
Supported Types field for Identity Assertion

providers 4-4
WLSGroup interface 3-3, 5-4
WLSPrincipals class 5-4
WLSUser interface 3-3, 5-4
writing console extensions

for custom security providers
when to write 1-5

i-18 Developing Security Providers for WebLogic Server

	About This Document
	Audience for This Guide
	Prerequisites for This Guide
	Product Documentation on the dev2dev Web Site
	Related Information
	Contact Us!
	Documentation Conventions

	Introduction to Developing Security Providers for WebLogic Server
	Audience for This Guide
	Prerequisites for This Guide
	Overview of the Development Process
	Designing the Custom Security Provider
	Creating Runtime Classes for the Custom Security Provider by Implementing SSPIs
	Generating an MBean Type to Configure and Manage the Custom Security Provider
	Writing Console Extensions
	Configuring the Custom Security Provider
	Providing Management Mechanisms for Security Policies, Security Roles, and Credential Maps

	New and Changed Features in This Release
	Support for Certificate Lookup and Validation
	Servlet Authentication Filters
	Versionable Applications
	Challenge Identity Assertion
	Auditing enhancements
	The ApplicationInfo Interface
	New V2 Providers
	New Provider Interfaces
	Additional Context Handler Support

	Design Considerations
	General Architecture of a Security Provider
	Security Services Provider Interfaces (SSPIs)
	Understand an Important Restriction
	Understand the Purpose of the “Provider” SSPIs
	Determine Which “Provider” Interface You Will Implement
	The DeployableAuthorizationProviderV2 SSPI
	The DeployableRoleProviderV2 SSPI
	The DeployableCredentialProvider SSPI

	Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two Runtime Classes
	SSPI Quick Reference

	Security Service Provider Interface (SSPI) MBeans
	Understand Why You Need an MBean Type
	Determine Which SSPI MBeans to Extend and Implement
	Understand the Basic Elements of an MBean Definition File (MDF)
	Throwing Exceptions from MBean Operations
	Specifying Non-Clear Text Values for MBean Attributes

	Understand the SSPI MBean Hierarchy and How It Affects the Administration Console
	Understand What the WebLogic MBeanMaker Provides
	About the MBean Information File

	SSPI MBean Quick Reference

	Security Data Migration
	Migration Concepts
	Formats
	Constraints
	Migration Files

	Adding Migration Support to Your Custom Security Providers
	Administration Console Support for Security Data Migration

	Management Utilities Available to Developers of Security Providers
	Security Providers and WebLogic Resources
	The Architecture of WebLogic Resources
	Types of WebLogic Resources
	WebLogic Resource Identifiers
	The toString() Method
	Resource IDs and the getID() Method

	Creating Default Groups for WebLogic Resources
	Creating Default Security Roles for WebLogic Resources
	Creating Default Security Policies for WebLogic Resources
	Looking Up WebLogic Resources in a Security Provider’s Runtime Class
	Single-Parent Resource Hierarchies
	Pattern Matching for URL Resources
	Example 1
	Example 2

	ContextHandlers and WebLogic Resources

	Initialization of the Security Provider Database
	Best Practice: Create a Simple Database If None Exists
	Best Practice: Configure an Existing Database
	Best Practice: Delegate Database Initialization

	Differences In Attribute Validators
	Differences In Attribute Validators for Custom Validators.

	Authentication Providers
	Authentication Concepts
	Users and Groups, Principals and Subjects
	Providing Initial Users and Groups

	LoginModules
	The LoginModule Interface
	LoginModules and Multipart Authentication

	Java Authentication and Authorization Service (JAAS)
	How JAAS Works With the WebLogic Security Framework
	Example: Standalone T3 Application

	The Authentication Process
	Do You Need to Develop a Custom Authentication Provider?
	How to Develop a Custom Authentication Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AuthenticationProviderV2 SSPI
	Implement the JAAS LoginModule Interface
	Throwing Custom Exceptions from LoginModules
	Method 1: Make Custom Exceptions Available via the System and Compiler Classpath
	Method 2: Make Custom Exceptions Available via the Application Classpath

	Example: Creating the Runtime Classes for the Sample Authentication Provider

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	No Optional SSPI MBeans and No Custom Operations
	Optional SSPI MBeans or Custom Operations
	About the Generated MBean Interface File

	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom Authentication Provider Using the Administration Console
	Managing User Lockouts
	Rely on the Realm-Wide User Lockout Manager
	Implement Your Own User Lockout Manager

	Specifying the Order of Authentication Providers

	Identity Assertion Providers
	Identity Assertion Concepts
	Identity Assertion Providers and LoginModules
	Identity Assertion and Tokens
	How to Create New Token Types
	How to Make New Token Types Available for Identity Assertion Provider Configurations

	Passing Tokens for Perimeter Authentication
	Common Secure Interoperability Version 2 (CSIv2)

	The Identity Assertion Process
	Do You Need to Develop a Custom Identity Assertion Provider?
	How to Develop a Custom Identity Assertion Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AuthenticationProviderV2 SSPI
	Implement the IdentityAsserterV2 SSPI
	Example: Creating the Runtime Class for the Sample Identity Assertion Provider

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	No Optional SSPI MBeans and No Custom Operations
	Optional SSPI MBeans or Custom Operations
	About the Generated MBean Interface File

	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom Identity Assertion Provider Using the Administration Console
	Challenge Identity Assertion
	Challenge/Response Limitations in the Java Servlet API 2.3 Environment
	Filters and The Role of the weblogic.security.services.Authentication Class
	How to Develop a Challenge Identity Asserter
	Implement the ChallengeIdentityAsserterV2 Interface
	Implement the ProviderChallengeContext Interface
	Invoke the weblogic.security.services Challenge Identity Methods
	Invoke the weblogic.security.services AppChallengeContext Methods
	Implementing Challenge Identity Assertion from a Filter

	Principal Validation Providers
	Principal Validation Concepts
	Principal Validation and Principal Types
	How Principal Validation Providers Differ From Other Types of Security Providers
	Security Exceptions Resulting from Invalid Principals

	The Principal Validation Process
	Do You Need to Develop a Custom Principal Validation Provider?
	How to Use the WebLogic Principal Validation Provider

	How to Develop a Custom Principal Validation Provider
	Implement the PrincipalValidator SSPI

	Authorization Providers
	Authorization Concepts
	Access Decisions
	Using the Java Authorization Contract for Containers

	The Authorization Process
	Do You Need to Develop a Custom Authorization Provider?
	Does Your Custom Authorization Provider Need to Support Application Versioning?

	How to Develop a Custom Authorization Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AuthorizationProvider SSPI
	Implement the DeployableAuthorizationProviderV2 SSPI
	The ApplicationInfo Interface

	Implement the AccessDecision SSPI
	Developing Custom Authorization Providers That Are Compatible With the Realm Adapter Authenticati...

	Example: Creating the Runtime Class for the Sample Authorization Provider

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	No Optional SSPI MBeans and No Custom Operations
	Optional SSPI MBeans or Custom Operations
	About the Generated MBean Interface File

	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom Authorization Provider Using the Administration Console
	Managing Authorization Providers and Deployment Descriptors
	Enabling Security Policy Deployment

	Provide a Mechanism for Security Policy Management
	Option 1: Develop a Stand-Alone Tool for Security Policy Management
	Option 2: Integrate an Existing Security Policy Management Tool into the Administration Console

	Adjudication Providers
	The Adjudication Process
	Do You Need to Develop a Custom Adjudication Provider?
	How to Develop a Custom Adjudication Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AdjudicationProviderV2 SSPI
	Implement the AdjudicatorV2 SSPI

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	No Custom Operations
	Custom Operations
	About the Generated MBean Interface File

	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom Adjudication Provider Using the Administration Console

	Role Mapping Providers
	Role Mapping Concepts
	Security Roles
	Dynamic Security Role Computation

	The Role Mapping Process
	Do You Need to Develop a Custom Role Mapping Provider?
	Does Your Custom Role Mapping Provider Need to Support Application Versioning?

	How to Develop a Custom Role Mapping Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the RoleProvider SSPI
	Implement the DeployableRoleProviderV2 SSPI
	The ApplicationInfo Interface

	Implement the RoleMapper SSPI
	Developing Custom Role Mapping Providers That Are Compatible With the Realm Adapter Authenticatio...

	Implement the SecurityRole Interface
	Example: Creating the Runtime Class for the Sample Role Mapping Provider

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	No Custom Operations
	Custom Operations
	About the Generated MBean Interface File

	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom Role Mapping Provider Using the Administration Console
	Managing Role Mapping Providers and Deployment Descriptors
	Enabling Security Role Deployment

	Provide a Mechanism for Security Role Management
	Option 1: Develop a Stand-Alone Tool for Security Role Management
	Option 2: Integrate an Existing Security Role Management Tool into the Administration Console

	Auditing Providers
	Auditing Concepts
	Audit Channels
	Auditing Events From Custom Security Providers

	The Auditing Process
	Implementing the ContextHandler MBean
	ContextHandlerMBean Methods
	Example: Implementing the ContextHandlerMBean

	Do You Need to Develop a Custom Auditing Provider?
	How to Develop a Custom Auditing Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AuditProvider SSPI
	Implement the AuditChannel SSPI
	Example: Creating the Runtime Class for the Sample Auditing Provider

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	No Custom Operations
	Custom Operations
	About the Generated MBean Interface File

	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom Auditing Provider Using the Administration Console
	Configuring Audit Severity

	Credential Mapping Providers
	Credential Mapping Concepts
	The Credential Mapping Process
	Do You Need to Develop a Custom Credential Mapping Provider?
	Does Your Custom Credential Mapping Provider Need to Support Application Versioning?

	How to Develop a Custom Credential Mapping Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the CredentialProviderV2 SSPI
	Implement the DeployableCredentialProvider SSPI
	Implement the CredentialMapperV2 SSPI
	Developing Custom Credential Mapping Providers That Are Compatible With the Realm Adapter Authent...

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	No Optional SSPI MBeans and No Custom Operations
	Optional SSPI MBeans or Custom Operations
	About the Generated MBean Interface File

	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom Credential Mapping Provider Using the Administration Console
	Managing Credential Mapping Providers, Resource Adapters, and Deployment Descriptors
	Enabling Deployable Credential Mappings

	Provide a Mechanism for Credential Map Management
	Option 1: Develop a Stand-Alone Tool for Credential Map Management
	Option 2: Integrate an Existing Credential Map Management Tool into the Administration Console

	Auditing Events From Custom Security Providers
	Security Services and the Auditor Service
	How to Audit From a Custom Security Provider
	Create an Audit Event
	Implement the AuditEvent SSPI
	Implement an Audit Event Convenience Interface
	The AuditAtnEventV2 Interface
	The AuditAtzEvent and AuditPolicyEvent Interfaces
	The AuditMgmtEvent Interface
	The AuditRoleEvent and AuditRoleDeploymentEvent Interfaces

	Audit Severity
	Audit Context
	Example: Implementation of the AuditRoleEvent Interface

	Obtain and Use the Auditor Service to Write Audit Events
	Example: Obtaining and Using the Auditor Service to Write Role Audit Events
	Auditing Management Operations from a Provider’s MBean
	Example: Auditing Management Operations from a Provider’s MBean

	Best Practice: Posting Audit Events from a Provider's MBean

	Servlet Authentication Filters
	Authentication Filter Concepts
	Why Filters are Needed
	Servlet Authentication Filter Design Considerations

	How Filters Are Invoked
	Do Not Call Servlet Authentication Filters From Authentication Providers

	Example of a Provider that Implements a Filter
	How to Develop a Custom Servlet Authentication Filter
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the Servlet Authentication Filter SSPI
	Implement the Filter Interface Methods
	Implementing Challenge Identity Assertion from a Filter
	Generate an MBean Type Using the WebLogic MBeanMaker
	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

	Configure the Authentication Provider Using Administration Console

	Versionable Application Providers
	Versionable Application Concepts
	The Versionable Application Process
	Do You Need to Develop a Custom Versionable Application Provider?
	How to Develop a Custom VersionableApplication Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the VersionableApplication SSPI
	Example: Creating the Runtime Class for the Sample VersionableApplication Provider

	Generate an MBean Type Using the WebLogic MBeanMaker
	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

	Configure the Custom Versionable Application Provider Using the Administration Console

	CertPath Providers
	Certificate Lookup and Validation Concepts
	The Certificate Lookup and Validation Process
	Do You Need to Implement Separate CertPath Validators and Builders?
	CertPath Provider SPI MBeans
	WebLogic CertPath Validator SSPI
	WebLogic CertPath Builder SSPI
	Relationship Between the WebLogic Server CertPath SSPI and the JDK SPI

	Do You Need to Develop a Custom CertPath Provider?
	How to Develop a Custom CertPath Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces
	Implement the CertPath Provider SSPI
	Implement the JDK Security Provider SPI
	Use the CertPathBuilderParametersSpi SSPI in Your CertPathBuilderSpi Implementation
	Use the CertPathValidatorParametersSpi SSPI in Your CertPathValidatorSpi Implementation
	Returning the Builder or Validator Results
	Example: Creating the Sample Cert Path Provider

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	No Optional SSPI MBeans and No Custom Operations
	Optional SSPI MBeans or Custom Operations
	About the Generated MBean Interface File

	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom CertPath Provider Using the Administration Console

	MBean Definition File (MDF) Element Syntax
	The MBeanType (Root) Element
	The MBeanAttribute Subelement
	The MBeanConstructor Subelement
	The MBeanOperation Subelement
	MBean Operation Exceptions
	Examples: Well-Formed and Valid MBean Definition Files (MDFs)

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

