
Server™

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 1
D o c u m e n t D a t e : A p r i l 2 4 , 2 0 0 3

BEA WebLogic

WebLogic Tuxedo Connector
Programmer’s Guide

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Server WebLogic Tuxedo Connector Programmer’s Guide

Document Date Software Version

June 24, 2002 BEA WebLogic Server 6.1

Contents

About This Document
Audience.. viii

e-docs Web Site... viii

How to Print the Document... viii

Related Information... ix

Contact Us! .. ix

Documentation Conventions ...x

1. Introduction to WebLogic Tuxedo Connector Programming
Developing WebLogic Tuxedo Connector Applications1–2

Developing WebLogic Tuxedo Connector Clients1–2

Developing WebLogic Tuxedo Connector Servers1–2

Using WebLogic Tuxedo Connector for Interoperability with Tuxedo
CORBA objects...1–3

WebLogic Tuxedo Connector JATMI Primitives ...1–3

WebLogic Tuxedo Connector TypedBuffers ..1–4

2. Developing WebLogic Tuxedo Connector Client EJBs
Joining and Leaving Applications ...2–1

Joining an Application ...2–2

Leaving an Application ..2–3

Basic Client Operation ..2–3

Get a Tuxedo Object ..2–3

Perform Message Buffering ...2–4

Send and Receive Messages...2–4

Request/Response Communication...2–5

Conversational Communication..2–5
WebLogic Tuxedo Connector Programmer’s Guide iii

Close a Connection to a Tuxedo Object .. 2–6

Example Client EJB.. 2–6

3. Developing WebLogic Tuxedo Connector Service EJBs
Basic Service EJB Operation.. 3–1

Access Service Information... 3–2

Buffer Messages .. 3–2

Perform the Requested Service ... 3–3

Return Client Messages for Request/Response Communication....... 3–3

Use tpsend and tprecv for Conversational Communication............... 3–3

Example Service EJB ... 3–4

4. Using WebLogic Tuxedo Connector for RMI/IIOP and Corba
Interoperability

How to Develop WebLogic Tuxedo Connector Client Beans for Tuxedo CORBA
Objects... 4–2

Use the WTC ORB.. 4–2

Get Object References... 4–3

Invoke on the Object ... 4–3

Example ToupperCorbaBean.java Code ... 4–3

How to Modify Inbound RMI/IIOP Applications to use the WebLogic Tuxedo
Connector .. 4–5

How to Modify Outbound RMI/IIOP Applications to use the WebLogic Tuxedo
Connector .. 4–6

How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs 4–6

Assign env-entry-name .. 4–8

Assign env-entry-type .. 4–8

Assign env-entry-value .. 4–8

How to Modify EJBs to Use FederationURL to Access an Object........... 4–8

How to Use FederationURL Formats ... 4–10

Using corbaloc URL Format ... 4–10

Examples of corbaloc:tgiop.. 4–11

Examples using -ORBInitRef... 4–11

Examples Using -ORBDefaultInitRef.. 4–12

Using the corbaname URL Format.. 4–12

Examples Using -ORBInitRef.. 4–12
iv WebLogic Tuxedo Connector Programmer’s Guide

How to Manage Transactions for Tuxedo CORBA Applications...................4–12

5. WebLogic Tuxedo Connector ATMI Transactions
Global Transactions...5–1

JTA Transaction API...5–2

Types of JTA Interfaces ...5–2

Transaction..5–2

TransactionManager..5–3

UserTransaction ..5–3

JTA Transaction Primitives..5–3

Defining a Transaction ..5–4

Starting a Transaction...5–4

Using TPNOTRAN...5–4

Terminating a Transaction ...5–5

WebLogic Tuxedo Connector Transaction Rules ...5–5

Example Transaction Code..5–7

6. WebLogic Tuxedo Connector JATMI Conversations
Overview of WebLogic Tuxedo Connector Conversational Communication ..6–2

WebLogic Tuxedo Connector Conversation Characteristics6–2

WebLogic Tuxedo Connector JATMI Conversation Primitives.......................6–3

Creating WebLogic Tuxedo Connector Conversational Clients and Servers ...6–4

Creating Conversational Clients...6–4

Establishing a Connection to a Tuxedo Conversational Service6–4

Example TuxedoConversationBean.java Code...................................6–5

Creating WebLogic Tuxedo Connector Conversational Servers6–6

Sending and Receiving Messages ...6–6

Sending Messages ..6–6

Receiving Messages ...6–7

Ending a Conversation ..6–8

Tuxedo Application Originates Conversation..6–8

WebLogic Tuxedo Connector Application Originates Conversation6–9

Ending Hierarchical Conversations..6–9

Executing a Disorderly Disconnect ...6–10

Understanding Conversational Communication Events..................................6–10
WebLogic Tuxedo Connector Programmer’s Guide v

WebLogic Tuxedo Connector Conversation Guidelines................................ 6–12

7. Application Error Management
Testing for Application Errors.. 7–1

Exception Classes.. 7–1

Fatal Transaction Errors .. 7–2

WebLogic Tuxedo Connector Time-Out Conditions 7–2

Blocking vs. Transaction Time-out ... 7–3

Effect on commit() .. 7–3

Effect of TPNOTRAN... 7–3

Guidelines for Tracking Application Events .. 7–4
vi WebLogic Tuxedo Connector Programmer’s Guide

About This Document

This document introduces the BEA WebLogic Server WebLogic Tuxedo Connector
application development environment. It describes how to develop EJBs that allow
WebLogic Server to interoperate with Tuxedo objects.

The document is organized as follows:

� Chapter 1, “Introduction to WebLogic Tuxedo Connector Programming,”
provides information about the development environment you will be using to
write code for applications that interoperate between WebLogic Server and
Tuxedo.

� Chapter 2, “Developing WebLogic Tuxedo Connector Client EJBs,” provides
information on how to create client EJBs.

� Chapter 3, “Developing WebLogic Tuxedo Connector Service EJBs,” provides
information on how to create service EJBs.

� Chapter 4, “Using WebLogic Tuxedo Connector for RMI/IIOP and Corba
Interoperability,” provides information on how to develop CORBA applications
for the WebLogic Tuxedo Connector.

� Chapter 5, “WebLogic Tuxedo Connector ATMI Transactions,” provides
information on global transactions and how to define and manage them in your
applications.

� Chapter 6, “WebLogic Tuxedo Connector JATMI Conversations,” provides
information on conversations and how to define and manage them in your
applications.

� Chapter 7, “Application Error Management,” provide mechanisms to manage
and interpret error conditions.
WebLogic Tuxedo Connector Programmer’s Guide vii

Audience

This document is written for system administrators and application developers who are
interested in building distributed Java applications that interoperate between
WebLogic Server and Tuxedo environments. It is assumed that readers are familiar
with the WebLogic Server, Tuxedo, XML, CORBA, and Java programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
viii WebLogic Tuxedo Connector Programmer’s Guide

http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server and
Tuxedo.

For more information about Java and Java CORBA applications, refer to the following
sources:

� The OMG Web Site at http://www.omg.org/

� The Sun Microsystems, Inc. Java site at http://java.sun.com/

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages
WebLogic Tuxedo Connector Programmer’s Guide ix

http://www.omg.com
http://www.java.sun.com/
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]
x WebLogic Tuxedo Connector Programmer’s Guide

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
WebLogic Tuxedo Connector Programmer’s Guide xi

xii WebLogic Tuxedo Connector Programmer’s Guide

CHAPTER
1 Introduction to
WebLogic Tuxedo
Connector
Programming

The following sections provide information about the development environment you
will be using to write code for applications that interoperate between WebLogic Server
and Tuxedo:

� Developing WebLogic Tuxedo Connector Applications

� WebLogic Tuxedo Connector JATMI Primitives

� WebLogic Tuxedo Connector TypedBuffers
WebLogic Tuxedo Connector Programmer’s Guide 1-1

1 Introduction to WebLogic Tuxedo Connector Programming
Developing WebLogic Tuxedo Connector
Applications

Note: For more information on the WebLogic Tuxedo Connector JATMI, view the
Javadocs for WebLogic Server Classes. The WebLogic Tuxedo Connector
classes are located in the weblogic.wtc.jatmi and weblogic.wtc.gwt
packages.

In addition to the Java code that expresses the logic of your application, you will be
using the Java Application -to-Transaction Monitor Interface (JATMI) to provide the
interface between WebLogic Server and Tuxedo. This allows you to develop clients
and servers without modifying existing Tuxedo services.

Developing WebLogic Tuxedo Connector Clients

Note: For more information, see “Developing WebLogic Tuxedo Connector Client
EJBs” on page 2-1.

A client process takes user input and sends a service request to a server process that
offers the requested service. WebLogic Tuxedo Connector JATMI client classes are
used to create clients that access services found in Tuxedo. These client classes are
available to any service that is made available through the WebLogic Tuxedo
Connector XML configuration file in the Startup Class of your WebLogic Server.

Developing WebLogic Tuxedo Connector Servers

Note: For more information, see “Developing WebLogic Tuxedo Connector Service
EJBs” on page 3-1.

Servers are processes that provide one or more services. They continually check their
message queue for service requests and dispatch them to the appropriate service
subroutines. WebLogic Tuxedo Connector uses EJBs to implement services which
Tuxedo clients invoke.
1-2 WebLogic Tuxedo Connector Programmer’s Guide

http://e-docs.bea.com/wls/docs61/javadocs/index.html

WebLogic Tuxedo Connector JATMI Primitives
Using WebLogic Tuxedo Connector for Interoperability
with Tuxedo CORBA objects

Note: For more information, see “Using WebLogic Tuxedo Connector for RMI/IIOP
and Corba Interoperability” on page 4-1.

The WebLogic Tuxedo Connector provides bi-directional interoperability between
WebLogic Server and Tuxedo CORBA objects. The WebLogic Tuxedo Connector:

� Enables Tuxedo CORBA objects to invoke upon EJBs deployed in WebLogic
Server using the RMI/IIOP API (Inbound).

� Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects
deployed in Tuxedo using a CORBA Java API (Outbound).

WebLogic Tuxedo Connector JATMI
Primitives

The JATMI is a set of primitives used to begin and end transactions, allocate and free
buffers, and provide the communication between clients and servers.

Table 1-1 JATMI Primitives

Name Operation

tpacall Use for asynchronous invocations of a Tuxedo
service during request/response communication.

tpcall Use for synchronous invocation of a Tuxedo service
during request/response communication.

tpconnect Use to establish a connection to a Tuxedo
conversational service.
WebLogic Tuxedo Connector Programmer’s Guide 1-3

1 Introduction to WebLogic Tuxedo Connector Programming
WebLogic Tuxedo Connector TypedBuffers

Note: WebLogic Tuxedo Connector does not support double-byte character sets or
international character sets. These features are dependent on future releases of
Tuxedo.

tpdiscon Use to abort a conversational connection and
generate a TPEV_DISCONIMM event when
executed by the process controlling the
conversation.

tpdequeue Use for receiving messages from a Tuxedo /Q
during request/response communication.

tpenqueue Use for placing a message on a Tuxedo /Q during
request/response communication.

tpgetrply Use for retrieving replies from a Tuxedo service
during request/response communication.

tprecv Use to receive data across an open connection from
a Tuxedo application during conversational
communication.

tpsend Use to send data across a open connection to a
Tuxedo application during conversational
communication.

tpterm Use to close a connection to a Tuxedo object.

Table 1-1 JATMI Primitives

Name Operation
1-4 WebLogic Tuxedo Connector Programmer’s Guide

WebLogic Tuxedo Connector TypedBuffers
WebLogic Tuxedo Connector provides an interface called TypedBuffers that
corresponds to Tuxedo typed buffers. Messages are passed to servers in typed buffers.
The WebLogic Tuxedo Connector provides the following buffer types:.

Table 1-2 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that
terminates with the null character. Tuxedo equivalent:
STRING.

TypedCArray Buffer type used when the data is an undefined array of
characters (byte array), any of which can be null. Tuxedo
equivalent: CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field
carries its own identifier, an occurrence number, and possibly
a length indicator. Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger
character fields, more fields, and larger overall buffers.
Tuxedo equivalent: FML32.

TypedXML Buffer type used when data is an XML based message.
Tuxedo equivalent: XML for Tuxedo Release 7.1 and higher.
WebLogic Tuxedo Connector Programmer’s Guide 1-5

1 Introduction to WebLogic Tuxedo Connector Programming
1-6 WebLogic Tuxedo Connector Programmer’s Guide

CHAPTER
2 Developing WebLogic
Tuxedo Connector
Client EJBs

Note: For more information on the WebLogic Tuxedo Connector JATMI, view the
Javadocs for WebLogic Server Classes. The WebLogic Tuxedo Connector
classes are located in the weblogic.wtc.jatmi and weblogic.wtc.gwt
packages.

The following sections describe how to create client EJBs that take user input and send
service requests to a server process or outbound object that offers a requested service.

� Joining and Leaving Applications

� Basic Client Operation

� Example Client EJB

WebLogic Tuxedo Connector JATMI client classes are used to create clients that
access services found in Tuxedo.

Joining and Leaving Applications

Tuxedo and WebLogic Tuxedo Connector have different approaches to connect to
services.
WebLogic Tuxedo Connector Programmer’s Guide 2-1

http://e-docs.bea.com/wls/docs61/javadocs/index.html

2 Developing WebLogic Tuxedo Connector Client EJBs
Joining an Application

The following section compares how Tuxedo and WebLogic Tuxedo Connector join
an application:

� Tuxedo uses tpinit() to join an application.

� WebLogic Tuxedo Connector uses the BDMCONFIG XML configuration file to
provide information required to create a path to the Tuxedo service. It provides
security and client authentication by configuring the
T_DM_REMOTE_TDOMAIN and T_DM_IMPORT sections of the
BDMCONFIG XML configuration file. This pathway is created when the
WebLogic Server is started and the WebLogic Tuxedo Connector XML
configuration file is loaded.

� WebLogic Tuxedo Connector uses TuxedoConnection to get a Tuxedo object
and then uses getTuxedoConnection() to make a connection to the Tuxedo
object. The following example shows how a WebLogic Server application joins
a Tuxedo application using WebLogic Tuxedo Connector.

Listing 2-1 Example Client Code to Join a Tuxedo Application

.

.

.
try {

ctx = new InitialContext();
tcf =

(TuxedoConnectionFactory)
ctx.lookup("tuxedo.services.TuxedoConnection");

} catch (NamingException ne) {

// Could not get the tuxedo object, throw TPENOENT
throw new TPException(TPException.TPENOENT,

"Could not get TuxedoConnectionFactory : " + ne);
}

myTux = tcf.getTuxedoConnection();
.
.
.

2-2 WebLogic Tuxedo Connector Programmer’s Guide

Basic Client Operation
Leaving an Application

The following section compares how Tuxedo and WebLogic Tuxedo Connector leave
an application:

� Tuxedo uses tpterm() to leave an application.

� WebLogic Tuxedo Connector uses the JATMI primitive tpterm() to close a
connection to a Tuxedo object.

� WebLogic Tuxedo Connector closes the pathway to a Tuxedo service when the
WebLogic Server is shutdown.

Basic Client Operation

A client process uses Java and JATMI primitives to provide the following basic
application tasks:

� Get a Tuxedo Object

� Perform Message Buffering

� Send and Receive Messages

� Close a Connection to a Tuxedo Object

A client may send and receive any number of service requests before leaving the
application.

Get a Tuxedo Object

Establish a connection to a remote domain by using the TuxedoConnectionFactory
to lookup “tuxedo.services.TuxedoConnection” in the JNDI tree and get a
TuxedoConnection object using getTuxedoConnection().
WebLogic Tuxedo Connector Programmer’s Guide 2-3

2 Developing WebLogic Tuxedo Connector Client EJBs
Perform Message Buffering

Use the following buffer types when sending and receiving messages between your
application and Tuxedo:

Send and Receive Messages

WebLogic Tuxedo Connector clients support two types of communications with
Tuxedo service applications:

� Request/Response Communication

� Conversational Communication

Table 2-1 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that
terminates with the null character. Tuxedo equivalent:
STRING.

TypedCArray Buffer type used when the data is an undefined array of
characters (byte array), any of which can be null. Tuxedo
equivalent: CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field
carries its own identifier, an occurrence number, and possibly
a length indicator. Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger
character fields, more fields, and larger overall buffers.
Tuxedo equivalent: FML32.

TypedXML Buffer type used when data is an XML based message.
Tuxedo equivalent: XML for Tuxedo Release 7.1 and higher.
2-4 WebLogic Tuxedo Connector Programmer’s Guide

Basic Client Operation
Request/Response Communication

Use the following JATMI primitives to request and receive response messages
between your WebLogic Tuxedo Connector client application and Tuxedo:

Conversational Communication

Note: For more information on Conversational Communication, see “WebLogic
Tuxedo Connector JATMI Conversations” on page 6-1.

Use the following JATMI primitives when creating conversational clients that
communicate with Tuxedo services:

Table 2-2 JATMI Primitives

Name Operation

tpacall Use for asynchronous invocations of a Tuxedo
service.

tpcall Use for synchronous invocation of a Tuxedo
service.

tpdequeue Use for receiving messages from a Tuxedo /Q.

tpenqueue Use for placing a message on a Tuxedo /Q.

tpgetrply Use for retrieving replies from a Tuxedo service.

Table 2-3 WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

tpconnect Use to establish a connection to a Tuxedo conversational
service.

tpdiscon Use to abort a connection and generate a
TPEV_DISCONIMM event when executed by the
process controlling the conversation.

tprecv Use to receive data across an open connection from a Tuxedo
application.
WebLogic Tuxedo Connector Programmer’s Guide 2-5

2 Developing WebLogic Tuxedo Connector Client EJBs
Close a Connection to a Tuxedo Object

Use tpterm() to close a connection to an object and prevent future operations on this
object.

Example Client EJB

The following Java code provides an example of the ToupperBean.java client EJB
which sends a string argument to a server and receives a reply string from the server.

Listing 2-2 Example Client Application

.

.

.
public String Toupper(String toConvert)

throws TPException, TPReplyException
{

Context ctx;
TuxedoConnectionFactory tcf;
TuxedoConnection myTux;
TypedString myData;
Reply myRtn;
int status;

log("toupper called, converting " + toConvert);

try {
ctx = new InitialContext();
tcf = (TuxedoConnectionFactory) ctx.lookup(

tpsend Use to send data across a open connection to a Tuxedo
application.

Table 2-3 WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation
2-6 WebLogic Tuxedo Connector Programmer’s Guide

Example Client EJB
"tuxedo.services.TuxedoConnection");
}
catch (NamingException ne) {

// Could not get the tuxedo object, throw TPENOENT
throw new TPException(TPException.TPENOENT, "Could not get

TuxedoConnectionFactory : " + ne);
}

myTux = tcf.getTuxedoConnection();

myData = new TypedString(toConvert);

log("About to call tpcall");
try {

myRtn = myTux.tpcall("TOUPPER", myData, 0);
}

catch (TPReplyException tre) {
log("tpcall threw TPReplyExcption " + tre);
throw tre;

}
catch (TPException te) {

log("tpcall threw TPException " + te);
throw te;

}
catch (Exception ee) {

log("tpcall threw exception: " + ee);
throw new TPException(TPException.TPESYSTEM, "Exception: " + ee);

}
log("tpcall successfull!");

myData = (TypedString) myRtn.getReplyBuffer();

myTux.tpterm();// Closing the association with Tuxedo

return (myData.toString());
}
.
.
.

WebLogic Tuxedo Connector Programmer’s Guide 2-7

2 Developing WebLogic Tuxedo Connector Client EJBs
2-8 WebLogic Tuxedo Connector Programmer’s Guide

CHAPTER
3 Developing WebLogic
Tuxedo Connector
Service EJBs

The following sections provide information on how to create WebLogic Tuxedo
Connector service EJBs:

� Basic Service EJB Operation

� Example Service EJB

Basic Service EJB Operation

A service application uses Java and JATMI primitives to provide the following tasks:

� Access Service Information

� Buffer Messages

� Perform the Requested Service
WebLogic Tuxedo Connector Programmer’s Guide 3-1

3 Developing WebLogic Tuxedo Connector Service EJBs
Access Service Information

Note: For more detailed information on the TPServiceInformation class, view the
Javadocs for WebLogic Server Classes. The WebLogic Tuxedo Connector
classes are located in the weblogic.wtc.jatmi package.

Use the TPServiceInformation class to access service information sent by the
Tuxedo client to run the service.do:

Buffer Messages

Use the following buffer types when sending and receiving messages between your
application and Tuxedo:

Table 3-1 JATMI TPServiceInformation Primitives

Buffer Type Description

getServiceData() Use to return the service data sent from the Tuxedo Client.

getServiceFlags() Use to return the service flags sent from the Tuxedo Client.

getServiceName() Use to return the service name that was called.

Table 3-2 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that
terminates with the null character. Tuxedo equivalent:
STRING.

TypedCArray Buffer type used when the data is an undefined array of
characters (byte array), any of which can be null. Tuxedo
equivalent: CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field
carries its own identifier, an occurrence number, and possibly
a length indicator. Tuxedo equivalent: FML.
3-2 WebLogic Tuxedo Connector Programmer’s Guide

http://e-docs.bea.com/wls/docs61/javadocs/index.html

Basic Service EJB Operation
Perform the Requested Service

Use Java code to express the logic required to provide your service.

Return Client Messages for Request/Response Communication

Note: For more detailed information on the TuxedoReply class, view the Javadocs
for WebLogic Server Classes. The WebLogic Tuxedo Connector classes are
located in the weblogic.wtc.jatmi package.

Use the TuxedoReply class setReplyBuffer() method to respond to client requests.

Use tpsend and tprecv for Conversational Communication

Note: For more information on Conversational Communication, see “WebLogic
Tuxedo Connector JATMI Conversations” on page 6-1.

Use the following JATMI primitives when creating conversational servers that
communicate with Tuxedo clients:

TypedFML32 Buffer type similar to TypeFML but allows for larger
character fields, more fields, and larger overall buffers.
Tuxedo equivalent: FML32.

TypedXML Buffer type used when data is an XML based message.
Tuxedo equivalent: XML for Tuxedo Release 7.1 and higher.

Table 3-2 TypedBuffers

Buffer Type Description

Table 3-3 WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

tpconnect Use to establish a connection to a Tuxedo conversational
service.
WebLogic Tuxedo Connector Programmer’s Guide 3-3

http://e-docs.bea.com/wls/docs61/javadocs/index.html
http://e-docs.bea.com/wls/docs61/javadocs/index.html

3 Developing WebLogic Tuxedo Connector Service EJBs
Example Service EJB

The following provides an example of the TolowerBean.java service EJB which
receives a string argument, converts the string to all lower case, and returns the
converted string to the client.

Listing 3-1 Example Service EJB

.

.

.

public Reply service(TPServiceInformation mydata) throws TPException {
TypedString data;
String lowered;
TypedString return_data;

log("service tolower called");

data = (TypedString) mydata.getServiceData();
lowered = data.toString().toLowerCase();
return_data = new TypedString(lowered);

mydata.setReplyBuffer(return_data);

return (mydata);

tpdiscon Use to abort a connection and generate a
TPEV_DISCONIMM event when executed by the
process controlling the conversation.

tprecv Use to receive data across an open connection from a Tuxedo
application.

tpsend Use to send data across a open connection to a Tuxedo
application.

Table 3-3 WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation
3-4 WebLogic Tuxedo Connector Programmer’s Guide

Example Service EJB
}
.
.
.

WebLogic Tuxedo Connector Programmer’s Guide 3-5

3 Developing WebLogic Tuxedo Connector Service EJBs
3-6 WebLogic Tuxedo Connector Programmer’s Guide

CHAPTER
4 Using WebLogic Tuxedo
Connector for
RMI/IIOP and Corba
Interoperability

Note: You will need to perform some administration tasks to configure the
WebLogic Tuxedo Connector for CORBA interoperability. For information
on how to administer the WebLogic Tuxedo Connector for CORBA
interoperability, see the WebLogic Tuxedo Connector Programmer’s Guide at
http://e-docs.bea.com/wls/docs61/wtc_atmi/index.html.

The WebLogic Tuxedo Connector provides bi-directional interoperability between
WebLogic Server and Tuxedo CORBA objects. The WebLogic Tuxedo Connector:

� Enables Tuxedo CORBA objects to invoke upon EJBs deployed in WebLogic
Server using the RMI/IIOP API (Inbound).

� Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects
deployed in Tuxedo using a CORBA Java API (Outbound).

The following sections provide information on how to modify your applications to use
WebLogic Tuxedo Connector to support interoperability between WebLogic Server
and Tuxedo CORBA objects:

� How to Develop WebLogic Tuxedo Connector Client Beans for Tuxedo
CORBA Objects
WebLogic Tuxedo Connector Programmer’s Guide 4-1

http://e-docs.bea.com/wls/docs61/wtc_atmi/index.html

4 Using WebLogic Tuxedo Connector for RMI/IIOP and Corba Interoperability
� How to Modify Inbound RMI/IIOP Applications to use the WebLogic Tuxedo
Connector

� How to Modify Outbound RMI/IIOP Applications to use the WebLogic Tuxedo
Connector

� How to Use FederationURL Formats

� How to Manage Transactions for Tuxedo CORBA Applications

How to Develop WebLogic Tuxedo Connector
Client Beans for Tuxedo CORBA Objects

Note: For an example on how to develop client beans for outbound Tuxedo CORBA
objects, see the examples/wtc/corba/simpappcns package in your
WebLogic Server distribution

Use the following steps when developing your EJB that will invoke on CORBA
objects deployed in Tuxedo:

� Use the WTC ORB

� Get Object References

� Invoke on the Object

Use the WTC ORB

To use CORBA with the WebLogic Tuxedo Connector, you must use the WTC ORB.
Use the following statement to instantiate the WTC ORB in your Bean:

 Prop.put("org.omg.CORBA.ORBClass",
"weblogic.wtc.corba.ORB");
4-2 WebLogic Tuxedo Connector Programmer’s Guide

How to Develop WebLogic Tuxedo Connector Client Beans for Tuxedo CORBA Objects
Get Object References

Note: For more information on object references, see “How to Use FederationURL
Formats” on page 4-10.

The WebLogic Tuxedo Connector uses the CosNaming service to get a reference to an
object in the remote Tuxedo CORBA domain. This is accomplished by using a
corbaloc:tgiop or corbaname:tgiop object reference. The following statements
use the CosNaming service to get a reference to a Tuxedo Corba Object:

// Get the simple factory.
org.omg.CORBA.Object simple_fact_oref =

orb.string_to_object("corbaname:tgiop:simpapp#simple_factory");

Where:

� simpapp is the domain id of the Tuxedo domain specified in the Tuxedo UBB.

� simple_factory is the name that the object reference was bound to in the
CosNaming server in Tuxedo CORBA.

Invoke on the Object

Perform your task by invoking upon the CORBA object deployed in Tuxedo using a
CORBA Java API.

Example ToupperCorbaBean.java Code

The following ToupperCorbaBean.java code provides an example of how to call
the WTC ORB and get an object reference using the COSNaming Service.

Listing 4-1 Example Service Application

.

.

.

WebLogic Tuxedo Connector Programmer’s Guide 4-3

4 Using WebLogic Tuxedo Connector for RMI/IIOP and Corba Interoperability
public String Toupper(String toConvert)
throws RemoteException
{

log("toupper called, converting " + toConvert);

try {
// Initialize the ORB.
String args[] = null;
Properties Prop;

Prop = new Properties();
Prop.put("org.omg.CORBA.ORBClass",

"weblogic.wtc.corba.ORB");

ORB orb = ORB.init(args, Prop);

// Get the simple factory.
org.omg.CORBA.Object simple_fact_oref =
orb.string_to_object("corbaname:tgiop:simpapp#simple_factory");

//Narrow the simple factory.
SimpleFactory simple_factory_ref =
SimpleFactoryHelper.narrow(simple_fact_oref);

// Find the simple object.
Simple simple = simple_factory_ref.find_simple();

// Convert the string to upper case.
org.omg.CORBA.StringHolder buf =
 new org.omg.CORBA.StringHolder(toConvert);

simple.to_upper(buf);
return buf.value;

}
catch (Exception e) {

throw new RemoteException("Can't call TUXEDO CORBA server: " +e);
}

}
.
.
.

4-4 WebLogic Tuxedo Connector Programmer’s Guide

How to Modify Inbound RMI/IIOP Applications to use the WebLogic Tuxedo Connector
How to Modify Inbound RMI/IIOP
Applications to use the WebLogic Tuxedo
Connector

Note: For an example on how to develop an inbound RMI/IIOP C++ client, see the
examples/iiop/ejb/stateless/server/tux package in your WebLogic
Server distribution

The only WebLogic Tuxedo Connector programming requirement is that the client
must pass the correct name to which the WebLogic Server’s name service has been
bound to the COSNaming Service. Listing 4-2 provides example code for obtaining a
naming context from the examples/iiop/ejb/stateless/server/tux example.
“WLS” is the bind name specified in the cnsbind command detailed in the WebLogic
Tuxedo Connector Programmer’s Guide at
http://e-docs.bea.com/wls/docs61/wtc_admin/index.html.

Listing 4-2 Example Code to Obtain a Naming Context

.

.

.
// obtain a naming context

TP::userlog("Narrowing to a naming context");
CosNaming::NamingContext_var context =

CosNaming::NamingContext::_narrow(o);
CosNaming::Name name;
name.length(1);
name[0].id = CORBA::string_dup("WLS");
name[0].kind = CORBA::string_dup("");

.

.

.

WebLogic Tuxedo Connector Programmer’s Guide 4-5

http://e-docs.bea.com/wls/docs61/wtc_admin/index.html
http://e-docs.bea.com/wls/docs61/wtc_admin/index.html

4 Using WebLogic Tuxedo Connector for RMI/IIOP and Corba Interoperability
How to Modify Outbound RMI/IIOP
Applications to use the WebLogic Tuxedo
Connector

Note: For an example on how to develop an outbound RMI/IIOP client, see the
examples/iiop/ejb/stateless/server/wls package in your WebLogic
Server distribution

The only WebLogic Tuxedo Connector programming requirement is that the EJB uses
a WebLogic Tuxedo Connector-specific FederationURL to obtain the initial context
used to access a remote Tuxedo CORBA object. Use the following sections to modify
outbound RMI/IIOP applications to use the WebLogic Tuxedo Connector:

� How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs

� How to Modify EJBs to Use FederationURL to Access an Object

How to Modify the ejb-jar.xml File to Pass a
FederationURL to EJBs

The following code from the iiop.ejb.stateless.server.wls.ejb-jar.xml file
provides an example of how to configure an ejb-jar.xml file to pass a
FederationURL format to the EJB at run-time.

Listing 4-3 Example ejb-jar.xml File Passing a FederationURL to an EJB

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN' 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>
<small-icon>images/green-cube.gif</small-icon>
<enterprise-beans>
4-6 WebLogic Tuxedo Connector Programmer’s Guide

How to Modify Outbound RMI/IIOP Applications to use the WebLogic Tuxedo Connector
<session>
<small-icon>images/orange-cube.gif</small-icon>
<ejb-name>IIOPStatelessSession</ejb-name>
<home>examples.iiop.ejb.stateless.TraderHome</home>
<remote>examples.iiop.ejb.stateless.Trader</remote>
<ejb-class>examples.iiop.ejb.stateless.TraderBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<env-entry>

<env-entry-name>foreignOrb</env-entry-name>
<env-entry-type>java.lang.String </env-entry-type>
<env-entry-value>corbaloc:tgiop:simpapp</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>WEBL</env-entry-name>
<env-entry-type>java.lang.Double </env-entry-type>
<env-entry-value>10.0</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>INTL</env-entry-name>
<env-entry-type>java.lang.Double </env-entry-type>
<env-entry-value>15.0</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>tradeLimit</env-entry-name>
<env-entry-type>java.lang.Integer </env-entry-type>
<env-entry-value>500</env-entry-value>

</env-entry>
</session>
</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>IIOPStatelessSession</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>

</method>
<trans-attribute>NotSupported</trans-attribute>
</container-transaction>

</assembly-descriptor>
</ejb-jar>

To pass the FederationURL to the EJB at run-time, add an env-entry for the EJB in
the ejb-jar.xml file for your application. You must assign the following env-entry
sub-elements:
WebLogic Tuxedo Connector Programmer’s Guide 4-7

4 Using WebLogic Tuxedo Connector for RMI/IIOP and Corba Interoperability
� Assign env-entry-name

� Assign env-entry-type

� Assign env-entry-value

Assign env-entry-name

The env-entry-name element is used to specify the name of the variable used to pass
the value in the env-entry-value element to the EJB. The example code shown in
Figure 4-3 specifies the env-entry-name as foreignOrb.

Assign env-entry-type

The env-entry-type element is used to specify the data type (example String,
Integer, Double) of the env-entry-value element that is passed to the EJB. The
example code shown in Figure 4-3 specifies that the foreignOrb variable passes
String data to the EJB.

Assign env-entry-value

The env-entry-value element is used to specify the data that is passed to the EJB.
The example code shown in Figure 4-3 specifies that the foreignOrb variable passes
the following FederationURL format to the EJB:

corbaloc:tgiop:simpapp

How to Modify EJBs to Use FederationURL to Access an
Object

This section provides information on how to use the FederationURL to obtain the
InitialContext used to access a remote Tuxedo CORBA object.

The following code from the
iiop.ejb.stateless.server.wls.TraderBean.java file provides an example of
how to use FederationURL to get an InitialContext .
4-8 WebLogic Tuxedo Connector Programmer’s Guide

How to Modify Outbound RMI/IIOP Applications to use the WebLogic Tuxedo Connector
Listing 4-4 Example TraderBean.java Code to get InitialContext

.

.

.
public void createRemote() throws CreateException {

log("createRemote() called");

try {
InitialContext ic = new InitialContext();

// Lookup a EJB-like CORBA server in a remote CORBA domain
Hashtable env = new Hashtable();

env.put(Context.PROVIDER_URL, (String)
ic.lookup("java:/comp/env/foreignOrb") + "/NameService");

InitialContext cos = new InitialContext(env);
TraderHome thome = (TraderHome)PortableRemoteObject.narrow(

cos.lookup("TraderHome_iiop"),TraderHome.class);
remoteTrader = thome.create();

}
catch (NamingException ne) {

throw new CreateException("Failed to find environment value "+ne);
}

catch (RemoteException re) {
throw new CreateException("Error creating remote ejb "+re);

}
}
.
.
.

Use the following steps to use FederationURL to obtain an InitialContext for a remote
Tuxedo CORBA object:

1. Retrieve the FederationURL format defined in the ejb-jar.xml file.

Example:

"ic.lookup("java:/comp/env/foreignOrb")

The example code shown in Listing 4-3 specifies that the foreignOrb variable
passes the following FederationURL format to the EJB:

corbaloc:tgiop:simpapp
WebLogic Tuxedo Connector Programmer’s Guide 4-9

4 Using WebLogic Tuxedo Connector for RMI/IIOP and Corba Interoperability
2. Concatenate the FederationURL format with “/NameService” to form the
FederationURL.

Example:

"ic.lookup("java:/comp/env/foreignOrb") + "/NameService"

The resulting FederationURL is:

corbaloc:tgiop:simpapp/NameService

3. Get the InitialContext.

Example:

env.put(Context.PROVIDER_URL, (String)
ic.lookup("java:/comp/env/foreignOrb") + "/NameService");

InitialContext cos = new InitialContext(env);

The result is the InitialContext of the Tuxedo CORBA object.

How to Use FederationURL Formats

This section provides information on the syntax for the following FederationURL
formats:

� The CORBA URL syntax is described in the CORBA specification. For more
information, see the OMG Web Site at http://www.omg.org/.

� The corbaloc:tgiop form is specific to the BEA tgiop protocol.

Using corbaloc URL Format

This section provides the syntax for corbaloc URL format:

<corbaloc> = "corbaloc:tgiop":[<version>] <domain>["/"<key_string>]

<version> = <major> "." <minor> "@" | empty_string

<domain> = TUXEDO CORBA domain name

<major> = number
4-10 WebLogic Tuxedo Connector Programmer’s Guide

http://www.omg.com

How to Use FederationURL Formats
<minor> = number

<key_string> = <string> | empty_string

Examples of corbaloc:tgiop

This section provides examples on how to use corbaloc:tgiop

orb.string_to_object("corbaloc:tgiop:simpapp/NameService");

orb.string_to_object("corbaloc:tgiop:simpapp/FactoryFinder");

orb.string_to_object("corbaloc:tgiop:simpapp/InterfaceRepository");

orb.string_to_object("corbaloc:tgiop:simpapp/Tobj_SimpleEventsService");

orb.string_to_object("corbaloc:tgiop:simpapp/NotificationService");

orb.string_to_object("corbaloc:tgiop:1.1@simpapp/NotificationService);

Examples using -ORBInitRef

You can also use the -ORBInitRef option to orb.init and
resolve_initial_reference.

Given the following -ORBInitRef definitions:

-ORBInitRef FactoryFinder=corbaloc:tgiop:simp/FactoryFinder

-ORBInitRef InterfaceRepository=corbaloc:tgiop:simp/InterfaceRepository

-ORBInitRef Tobj_SimpleEventService=corbaloc:tgiop:simp/Tobj_SimpleEventsService

-ORBInitRef NotificationService=corbaloc:tgiop:simp/NotificationService

then:

orb.resolve_initial_references("NameService");

orb.resolve_initial_references("FactoryFinder");

orb.resolve_initial_references("InterfaceRepository");

orb.resolve_initial_references("Tobj_SimpleEventService");

orb.resolve_initial_references("NotificationService");
WebLogic Tuxedo Connector Programmer’s Guide 4-11

4 Using WebLogic Tuxedo Connector for RMI/IIOP and Corba Interoperability
Examples Using -ORBDefaultInitRef

You can use the -ORBDefaultInitRef and resolve_initial_reference.

Given the following -ORBDefaultInitRef definition:

-ORBDefaultInitRef corbaloc:tgiop:simpapp

then:

orb.resolve_initial_references("NameService");

Using the corbaname URL Format

You can also use the corbaname format instead of the corbaloc format.

Examples Using -ORBInitRef

Given the following -ORBInitRef definition:

-ORBInitRef NameService=corbaloc:tgiop:simpapp/NameService

then:

orb.string_to_object("corbaname:rir:#simple_factory");

orb.string_to_object("corbaname:tgiop:simpapp#simple_factory");

orb.string_to_object("corbaname:tgiop:1.1@simpapp#simple_factory");

orb.string_to_object("corbaname:tgiop:simpapp#simple/simple_factory");

How to Manage Transactions for Tuxedo
CORBA Applications

Note: For more information on managing transactions in Tuxedo CORBA
applications, see Overview of Transactions in BEA Tuxedo CORBA
Applications at http://e-docs.bea.com/tuxedo/tux80/transact/gstrx.htm.
4-12 WebLogic Tuxedo Connector Programmer’s Guide

http://e-docs.bea.com/tuxedo/tux80/transact/gstrx.htm
http://e-docs.bea.com/tuxedo/tux80/transact/gstrx.htm

How to Manage Transactions for Tuxedo CORBA Applications
The WebLogic Tuxedo Connector uses the Java Transaction API (JTA) to manage
transactions with Tuxedo Corba Applications. For more detailed information, see:

� Programming WebLogic JTA at http://e-docs.bea.com/wls/docs61/jta/index.html

� Transaction Management at
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html
WebLogic Tuxedo Connector Programmer’s Guide 4-13

http://e-docs.bea.com/wls/docs61/jta/index.html
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html#1092031

4 Using WebLogic Tuxedo Connector for RMI/IIOP and Corba Interoperability
4-14 WebLogic Tuxedo Connector Programmer’s Guide

CHAPTER
5 WebLogic Tuxedo
Connector ATMI
Transactions

The following sections provide information on global transactions and how to define
and manage them in your applications:

� Global Transactions

� JTA Transaction API

� Defining a Transaction

� WebLogic Tuxedo Connector Transaction Rules

� Example Transaction Code

Global Transactions

A global transaction is a transaction that allows work involving more than one resource
manager and spanning more than one physical site to be treated as one logical unit. A
global transaction is always treated as a specific sequence of operations that is
characterized by the following four properties:

� Atomicity: All portions either succeed or have no effect.
WebLogic Tuxedo Connector Programmer’s Guide 5-1

5 WebLogic Tuxedo Connector ATMI Transactions
� Consistency: Operations are performed that correctly transform the resources
from one consistent state to another.

� Isolation: Intermediate results are not accessible to other transactions, although
other processes in the same transaction may access the data.

� Durability: All effects of a completed sequence cannot be altered by any kind of
failure.

JTA Transaction API

Note: For more detailed information, see the JTA API at
http://java.sun.com/products/jta/index.htm.

The WebLogic Tuxedo Connector uses the Java Transaction API (JTA) to manage
transactions.

Types of JTA Interfaces

JTA offers three types of transaction interfaces:

� Transaction

� TransactionManager

� UserTransaction

Transaction

The Transaction interface allows operations to be performed against a transaction
in the target Transaction object. A transaction object is created to correspond to each
global transaction created. Use the Transaction interface to enlist resources,
synchronize registration, and perform transaction completion and status query
operations.
5-2 WebLogic Tuxedo Connector Programmer’s Guide

http://java.sun.com/products/jta/index.html

JTA Transaction API
TransactionManager

The TransactionManager interface allows the application server to communicate to
the Transaction Manager for transaction boundaries demarcation on behalf of the
application. Use the TransactionManager interface to communicate to the
transaction manager on behalf of container-managed EJB components.

UserTransaction

The UserTransaction interface is a subset of the TransactionManager interface.
Use the UserTransaction interface when it is necessary to restrict access to
Transaction object.

JTA Transaction Primitives

The following table maps the functionality of Tuxedo transaction primitives to
equivalent JTA transaction primitives.

Table 5-1 Mapping Tuxedo Transaction Primitives to JTA Equivalents

Tuxedo Tuxedo Functionality JTA Equivalent

tpabort Use to end a transaction. setRollbackOnly

tpcommit Use to complete a transaction. commit

tpgetlev Use to determine if a service routine is
in transaction mode.

getStatus

tpbegin Use to begin a transaction. setTransactionTimeout

begin
WebLogic Tuxedo Connector Programmer’s Guide 5-3

5 WebLogic Tuxedo Connector ATMI Transactions
Defining a Transaction

Transactions can be defined in either client or server processes. A transaction has three
parts: a starting point, the program statements that are in transaction mode, and a
termination point.

To explicitly define a transaction, call the begin() method. The same process that
makes the call, the initiator, must also be the one that terminates it by invoking a
commit() or a setRollbackOnly(). Any service subroutines that are called between
the transaction delimiter become part of the current transaction.

Starting a Transaction

Note: Setting setTransactionTimeout() to unrealistically large values delays
system detection and reporting of errors. Use time-out values to ensure
response to service requests occur within a reasonable time and to terminate
transactions that have encountered problem, such as a network failure. For
productions environments, adjust the time-out value to accommodate expected
delays due to system load and database contention.

A transaction is started by a call to begin(). To specify a time-out value, precede the
begin() statement with a setTransactionTimeout(int seconds) statement.

To propagate the transaction to Tuxedo, you must do the following:

� Look up a TuxedoConnectionFactory object in the JNDI.

� Get a TuxedoConnection object using getTuxedoConnection().

Using TPNOTRAN

Service routines that are called within the transaction delimiter are part of the current
transaction. However, if tpcall() or tpacall() have the flags parameter set to
TPNOTRAN, the operations performed by the called service do not become part of that
transaction. As a result, services performed by the called process are not affected by
the outcome of the current transaction.
5-4 WebLogic Tuxedo Connector Programmer’s Guide

WebLogic Tuxedo Connector Transaction Rules
Terminating a Transaction

A transaction is terminated by a call to either commit() or a setRollbackOnly().
When commit() returns successfully, all changes to the resource as a result of the
current transaction become permanent. setRollbackOnly() is used to indicate an
abnormal condition and rolls back any call descriptors to their original state.

In order for a commit() to succeed, the following two conditions must be met:

� The calling process must be the same one that initiated the transaction with a
begin()

� The calling process must have no transaction replies outstanding

If either condition is not true, the call fails and an exception is thrown.

WebLogic Tuxedo Connector Transaction
Rules

You must follow certain rules while in transaction mode to insure successful
completion of a transaction.The basic rules of etiquette that must be observed while in
a transaction mode follow:

� You must propagate the transaction to Tuxedo using a TuxedoConnection
object after you initiate a transaction with a begin().

� tpterm() closes a connection to an object and prevents future operations on this
object.

� Processes that are participants in the same transaction must require replies for
their requests.

� Requests requiring no reply can be made only if the flags parameter of
tpacall() is set to TPNOREPLY.

� A service must retrieve all asynchronous transaction replies before calling
commit().
WebLogic Tuxedo Connector Programmer’s Guide 5-5

5 WebLogic Tuxedo Connector ATMI Transactions
� The initiator must retrieve all asynchronous transaction replies before calling
begin().

� The asynchronous replies that must be retrieved include those that are expected
from non-participants of the transaction, that is, replies expected for requests
made with a tpacall() suppressing the transaction but not the reply.

� If a transaction has not timed out but is marked abort-only, further
communication should be performed with the TPNOTRAN flag set so that the work
done as a result of the communication has lasting effect after the transaction is
rolled back.

� If a transaction has timed out:

� the descriptor for the timed out call becomes stale and any further reference
to it will return TPEBADDESC.

� further calls to tpgetrply() or tprecv() for any outstanding descriptors
will return the global state of transaction time-out by setting tperrono to
TPETIME.

� asynchronous calls can be make with the flags parameter of tpacall() set
to TPNOREPLY | TPNOBLOCK | TPNOTRAN.

� Once a transaction has been marked abort-only for reasons other than time-out, a
call to tpgetrply() will return whatever represents the local state of the call,
that is, it can either return success or an error code that represents the local
condition.

� Once a descriptor is used with tpgetrply() to retrieve a reply, it becomes
invalid and any further reference to it will return TPEBADDESC.

� Once a descriptor is used with tpsend() or tprecv() to report an error
condition, it becomes invalid and any further reference to it will return
TPEV_DISCONIMM.

� Once a transaction is aborted, all outstanding transaction call descriptions (made
without the TPNOTRAN flag) become stale, and any further reference to them will
return TPEBADDESC.
5-6 WebLogic Tuxedo Connector Programmer’s Guide

Example Transaction Code
Example Transaction Code

The following provides a code example for a transaction:

Listing 5-1 Example Transaction Code

public class TransactionSampleBean implements SessionBean {

.....

public int transaction_sample () {

int ret = 0;
try {

javax.naming.Context myContext = new InitialContext();
TransactionManager tm = (javax.transaction.TransactionManager)
myContext.lookup("javax.transaction.TransactionManager");

// Begin Transaction
tm.begin ();

TuxedoConnectionFactory tuxConFactory = (TuxedoConnectionFactory)
ctxt.lookup("tuxedo.services.TuxedoConnection");

// You could do a local JDBC/XA-database operation here
// which will be part of this transaction.
.....

// NOTE 1: Get the Tuxedo Connection only after
// you begin the transaction if you want the
// Tuxedo call to be part of the transaction!

// NOTE 2: If you get the Tuxedo Connection before
// the transaction was started, all calls made from
// that Tuxedo Connection are out of scope of the
// transaction.

TuxedoConnection myTux = tuxConFactory.getTuxedoConnection();

// Do a tpcall. This tpcall is part of the transaction.
TypedString depositData = new TypedString("somecharacters,5000.00");

Reply depositReply = myTux.tpcall("DEPOSIT", depositData, 0);
WebLogic Tuxedo Connector Programmer’s Guide 5-7

5 WebLogic Tuxedo Connector ATMI Transactions
// You could also do tpcalls which are not part of
// transaction (For example, Logging all attempted
// operations etc.) by setting the TPNOTRAN Flag!

TypedString logData =
new TypedString("DEPOSIT:somecharacters,5000.00");

Reply logReply = myTux.tpcall("LOGTRAN", logData,
ApplicationToMonitorInterface.TPNOTRAN);

// Done with the Tuxedo Connection. Do tpterm.
myTux.tpterm ();

// Commit Transaction...
tm.commit ();

// NOTE: The TuxedoConnection object which has been
// used in this transaction, can be used after the
// transaction only if TPNOTRAN flag is set.
}

catch (NamingException ne) {
System.out.println ("ERROR: Naming Exception looking up JNDI: " + ne);
ret = -1;

}
catch (RollbackException re) {
System.out.println("ERROR: TRANSACTION ROLLED BACK: " + re);
ret = 0;

}
catch (TPException te) {
System.out.println("ERROR: tpcall failed: TpException: " + te);
ret = -1;

}
catch (Exception e) {
log ("ERROR: Exception: " + e);
ret = -1;

}

return ret;
}

5-8 WebLogic Tuxedo Connector Programmer’s Guide

CHAPTER
6 WebLogic Tuxedo
Connector JATMI
Conversations

Note: For more information on conversational communications for BEA Tuxedo,
see Writing Conversational Clients and Servers at
http://e-docs.bea.com/tuxedo/tux80/atmi/pgconv.htm.

The following sections provide information on conversations and how to define and
manage them in your applications:

� Overview of WebLogic Tuxedo Connector Conversational Communication

� WebLogic Tuxedo Connector Conversation Characteristics

� WebLogic Tuxedo Connector JATMI Conversation Primitives

� Creating WebLogic Tuxedo Connector Conversational Clients and Servers

� Sending and Receiving Messages

� Ending a Conversation

� Executing a Disorderly Disconnect

� Understanding Conversational Communication Events

� WebLogic Tuxedo Connector Conversation Guidelines
WebLogic Tuxedo Connector Programmer’s Guide 6-1

http://e-docs.bea.com/tuxedo/tux80/atmi/pgconv.htm

6 WebLogic Tuxedo Connector JATMI Conversations
Overview of WebLogic Tuxedo Connector
Conversational Communication

WebLogic Tuxedo Connector supports BEA Tuxedo conversations as a method to
exchange messages between WebLogic Server and Tuxedo applications. In this form
of communication, a virtual connection is maintained between the client and the server
and each side maintains information about the state of the conversation. The process
that opens a connection and starts a conversation is the originator of the conversation.
The process with control of the connection is the initiator; the process without control
is called the subordinate. The connection remains active until an event occurs to
terminate it.

During conversational communication, a half-duplex connection is established
between the initiator and the subordinate. Control of the connection is passed between
the initiator and the subordinate. The process that has control can send messages (the
initiator); the process that does not have control can only receive messages (the
subordinate).

WebLogic Tuxedo Connector Conversation
Characteristics

WebLogic Tuxedo Connector JATMI conversations have the following
characteristics:

� Data is passed using TypedBuffers. The type and sub-type of the data must
match one of the types and sub-types recognized by the service.

� The logical connection between the conversational client and the conversational
server remains active until it is terminated.

� Any number of messages can be transmitted across a connection between a
conversational client and the conversational server.
6-2 WebLogic Tuxedo Connector Programmer’s Guide

WebLogic Tuxedo Connector JATMI Conversation Primitives
� A WebLogic Tuxedo Connector conversational client initiates a request for
service using tpconnect rather than a tpcall or tpacall.

� WebLogic Tuxedo Connector conversational clients and servers use the JATMI
primitives tpsend to send data and tprecv receive data.

� A conversational client only sends service requests to a conversational server.

� Conversational servers are prohibited from making calls to tpforward.

WebLogic Tuxedo Connector JATMI
Conversation Primitives

Note: For more detailed information on WebLogic Tuxedo Connector JATMI, see
the Javadocs for WebLogic Classes - weblogic.wtc.jatmi at
http://e-docs.bea.com/wls/docs61/javadocs/index.html.

Use the following WebLogic Tuxedo Connector primitives when creating
conversational clients and servers that communicate between WebLogic Server and
Tuxedo:

Table 6-1 WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

tpconnect Use to establish a connection to a Tuxedo conversational
service.

tpdiscon Use to abort a connection and generate a
TPEV_DISCONIMM event.

tprecv Use to receive data across an open connection from a Tuxedo
application.

tpsend Use to send data across a open connection to a Tuxedo
application.
WebLogic Tuxedo Connector Programmer’s Guide 6-3

http://e-docs.bea.com/wls/docs61/javadocs/index.html

6 WebLogic Tuxedo Connector JATMI Conversations
Creating WebLogic Tuxedo Connector
Conversational Clients and Servers

The following sections provide information on how to create conversational clients
and servers.

Creating Conversational Clients

Follow the steps outlined in “Developing WebLogic Tuxedo Connector Client EJBs”
on page 2-1 to create WebLogic Tuxedo Connector conversational clients. The
following section provide information on how to use tpconnect to open a connection
and start a conversation.

Establishing a Connection to a Tuxedo Conversational Service

Note: For more information about tpconnect, see Javadocs for WebLogic Classes -
weblogic.wtc.jatmi at http://e-docs.bea.com/wls/docs61/javadocs/index.html.

A WebLogic Tuxedo Connector conversational client must establish a connection to
the Tuxedo conversational service. Use the JATMI primitive tpconnect to open a
connection and start a conversation. A successful call returns an object that can be used
to send and receive data for a conversation.

The following table describes tpconnect parameters:

Table 6-2 WebLogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description

svc Character pointer to a conversational service name. If you do not
specify a svc, the call will fail and TPException is set to
TPEV_DISCONIMM.
6-4 WebLogic Tuxedo Connector Programmer’s Guide

http://e-docs.bea.com/wls/docs61/javadocs/index.html

Creating WebLogic Tuxedo Connector Conversational Clients and Servers
Example TuxedoConversationBean.java Code

The following provides a code example to use tpconnect to start a conversation:

.

.

.
Context ctx;
Conversation myConv;
TuxedoConnection myTux;
TuxedoConnectionFactory tcf;
.
.

data Pointer to the data buffer. When establishing a connection, you can
send data simultaneously by setting the data parameter to point to a
buffer. The type and subtype of the buffer must be recognized by
the service being called. You can set the value of data to NULL to
specify that no data is to be sent.

flags Use flags or combinations of flags as required by your application
needs. Valid flag values are:

TPSENDONLY: specifies that the control is being retained by the
originator. The called service is subordinate and can only receive
data. Do not use in combination with TPRECVONLY.

TPRECVONLY: specifies that control is being passed to the called
service.The originator becomes subordinate and can only receive
data. Do not use in combination with TPSENDONLY.

TPNOTRAN: specifies that when svc is invoked and the originator is
transaction mode, svc is not part of the originator’s transaction. A
call remains subject to transaction timeouts. If svc fails, the
originator’s transaction is unaffected.

TPNOBLOCK: specifies that a request is not sent if a blocking
condition exists. If TPNOBLOCK is not specified, the originator
blocks until the condition subsides, a transaction timeout occurs, or
a blocking timeout occurs.

TPNOTIME: specifies that the originator will block indefinitely and
is immune to blocking timeouts. If the originator is in transaction
mode, the call is subject to transaction timeouts.

Table 6-2 WebLogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description
WebLogic Tuxedo Connector Programmer’s Guide 6-5

6 WebLogic Tuxedo Connector JATMI Conversations
.
ctx = new InitialContext();
tcf = (TuxedoConnectionFactory) ctx.lookup ("tuxedo.services.TuxedoConnection");
myTux = tcf.getTuxedoConnection();
flags =ApplicationToMonitorInterface.TPSENDONLY;
myConv = myTux.tpconnect("CONNECT_SVC",null,flags);
.
.
.

Creating WebLogic Tuxedo Connector Conversational
Servers

Follow the steps outlined in “Developing WebLogic Tuxedo Connector Service EJBs”
on page 3-1 to create WebLogic Tuxedo Connector conversational servers.

Sending and Receiving Messages

Once a conversational connection is established between a WebLogic Server
application and a Tuxedo application, the communication between the initiator (sends
message) and subordinate (receives message) is accomplished using send and receive
calls. The following sections describe how WebLogic Tuxedo Connector applications
use the JATMI primitives tpsend and tprecv:

� Sending Messages

� Receiving Messages

Sending Messages

Note: For more information about tpsend, see Javadocs for WebLogic Classes -
weblogic.wtc.jatmi at http://e-docs.bea.com/wls/docs61/javadocs/index.html.

Use the JATMI primitive tpsend to send a message to a Tuxedo application.
6-6 WebLogic Tuxedo Connector Programmer’s Guide

http://e-docs.bea.com/wls/docs61/javadocs/index.html
http://e-docs.bea.com/wls/docs61/javadocs/index.html

Sending and Receiving Messages
The following table describes tpsend parameters:

Receiving Messages

Note: For more information about tprecv, see Javadocs for WebLogic Classes -
weblogic.wtc.jatmi at http://e-docs.bea.com/wls/docs61/javadocs/index.html.

Use the JATMI primitive tprecv to receive messages from a Tuxedo application.

Table 6-3 WebLogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description

data Pointer to the buffer containing the data sent with this conversation.

flags The flag can be one of the following:

TPRECVONLY: specifies that after the initiator’s data is sent, the
initiator gives up control of the connection.The initiator becomes
subordinate and can only receive data.

TPNOBLOCK: specifies that the request is not sent if a blocking
condition exists. If TPNOBLOCK is not specified, the originator
blocks until the condition subsides, a transaction timeout occurs, or
a blocking timeout occurs.

TPNOTIME: specifies that an initiator is willing to block
indefinitely and is immune from blocking timeouts. The call is
subject to transaction timeouts.
WebLogic Tuxedo Connector Programmer’s Guide 6-7

http://e-docs.bea.com/wls/docs61/javadocs/index.html
http://e-docs.bea.com/wls/docs61/javadocs/index.html

6 WebLogic Tuxedo Connector JATMI Conversations
The following table describes tprecv parameters:

Ending a Conversation

A conversation between WebLogic Server and Tuxedo ends when the server process
successfully completes its tasks. The following sections describe how a conversation
ends:

� Tuxedo Application Originates Conversation

� WebLogic Tuxedo Connector Application Originates Conversation

� Ending Hierarchical Conversations

Tuxedo Application Originates Conversation

A WebLogic Server conversational server ends a conversation by a successful call to
return. A TPEV_SVCSUCC event is sent to the Tuxedo client that originated
connection to indicate that the service finished successfully. The connection is then
disconnected in an orderly manner.

Table 6-4 WebLogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description

flags The flag can be one of the following:

TPNOBLOCK: specifies that tprecv does not wait for a reply to
arrive. If a reply is available, tprecv gets the reply and returns. If
this flag is not specified and a reply is not available, tprecv waits
for one of the following to occur: a reply, a transaction timeout, or a
blocking timeout.

TPNOTIME: specifies that tprecv waits indefinitely for a reply.
tprecv is immune from blocking timeouts but is subject to
transaction timeouts.

A flag value of 0 specifies that the initiator blocks until the condition
subsides or a timeout occurs.
6-8 WebLogic Tuxedo Connector Programmer’s Guide

Ending a Conversation
WebLogic Tuxedo Connector Application Originates
Conversation

A Tuxedo conversational server ends a conversation by a successful call to tpreturn.
A TPEV_SVCSUCC event is sent to the WebLogic Tuxedo Connector client that
originated connection to indicate that the service finished successfully. The connection
is then disconnected in an orderly manner.

Ending Hierarchical Conversations

The order in which an conversation ends is important to gracefully end hierarchal
conversations.

Assume there are two active connections: A-B and B-C. If B is a WebLogic Tuxedo
Connector application in control of both connections, a call to return has the
following effect: the call fails and a TPEV_SVCERR event is posted on all open
connections, and the connections are closed in a disorderly manner.

In order to terminate both connections in an orderly manner, the application must
execute the following sequence:

1. B calls tpsend with TPRECVONLY to transfer control of the B-C connection to the
Tuxedo application C.

2. C calls departure with rval set to TPSUCCESS, TPFAIL, or TPEXIT.

3. B calls return and posts an event (TPEV_SVCSUCC or TPEV_SVCFAIL) for
A.

Conversational services can make request/response calls. Therefore, in the preceding
example, the calls from B to C may be executed using tpacall or tpcall instead of
tpconnect. Conversational services are not permitted to make calls to tpforward.
WebLogic Tuxedo Connector Programmer’s Guide 6-9

6 WebLogic Tuxedo Connector JATMI Conversations
Executing a Disorderly Disconnect

WebLogic Server conversational clients or servers execute a disorderly disconnect is
through a call to tpdiscon. This is the equivalent of “pulling the plug” on a
connection.

A call to tpdiscon:

� Immediately tears down the connection and generates a TPEV_DISCONIMM at
the other end of the connection. Any data that has not yet reached its destination
may be lost. If the conversation is part of a transaction, the transaction must be
rolled back.

� Can only be called by the initiator of the conversation.

Understanding Conversational
Communication Events

Note: For more detailed information on WebLogic Tuxedo Connector JATMI, see
the Javadocs for WebLogic Classes - weblogic.wtc.jatmi at
http://e-docs.bea.com/wls/docs61/javadocs/index.html.

WebLogic Tuxedo Connector JATMI uses five events to manage conversational
communication. The following table lists the events, the functions for which they are
returned, and a detailed description of each.

Table 6-5 WebLogic Tuxedo Connector Conversational Communication Events

Event Received by Description

TPEV_SENDONLY Tuxedo tprecv Control of the connection has passed; this Tuxedo
process can now call tpsend

JATMI tprecv Control of the connection has passed; this JATMI
process can now call tpsend
6-10 WebLogic Tuxedo Connector Programmer’s Guide

http://e-docs.bea.com/wls/docs61/javadocs/index.html

Understanding Conversational Communication Events
TPEV_DISCONIMM Tuxedo tprecv, tpsend,
tpreturn

The connection has been torn down and no further
communication is possible. The JATMI tpdiscon
posts this event in the originator of the connection. The
originator sends it to all open connections when
tpreturn is called. Connections are closed in a
disorderly manner and if a transaction exists, it is
aborted.

JATMI tprecv, tpsend,
return

The connection has been torn down and no further
communication is possible. The Tuxedo tpdiscon
posts this event in the originator of the connection. The
originator sends it to all open connections when
return is called. Connections are closed in a
disorderly manner and if a transaction exists, it is
aborted.

TPEV_SVCERR Tuxedo tpsend or JATMI
tpsend

Received by the originator of the connection indicating
that the subordinate program issued a tpreturn
(Tuxedo) or return (JATMI) and ended without
control of the connection.

Tuxedo tprecv or JATMI
tprecv

Received by the originator of the connection indicating
that the subordinate program issued a successful
tpreturn (Tuxedo) or a successful return (JATMI)
without control of the connection, but an error occurred
before the call completed.

TPEV_SVCSUCC Tuxedo tprecv Received by the originator of the connection, indicating
that the subordinate service finished successfully; that
is, return was successfully called.

JATMI tprecv Received by the originator of the connection, indicating
that the subordinate service finished successfully; that
is, tpreturn was called with TPSUCCESS.

Table 6-5 WebLogic Tuxedo Connector Conversational Communication Events

Event Received by Description
WebLogic Tuxedo Connector Programmer’s Guide 6-11

6 WebLogic Tuxedo Connector JATMI Conversations
WebLogic Tuxedo Connector Conversation
Guidelines

Use the following guidelines while in conversation mode to insure successful
completion of a conversation:

� Use the JATMI conversational primitives as defined in the WebLogic Tuxedo
Connector Conversation interface and ApplicationToMonitorInterface
interface.

� Always use a flag.

� Only use flags defined in the WebLogic Tuxedo Connector JATMI.

� WebLogic Tuxedo Connector does not have a parameter that can be used to limit
the number of simultaneous conversations to prevent overloading the WebLogic
Server network.

� If the Tuxedo exceeds the maximum number of possible conversations (defined
by the MAXCONV parameter), TPEV_DISCONIMM is the expected WebLogic
Tuxedo Connector exception value.

� A tprecv to an unauthorized Tuxedo service results in a TPEV_DISCONIMM
exception value.

TPEV_SVCFAIL Tuxedo tpsend or JATMI
tpsend

Received by the originator of the connection indicating
that the subordinate program issued a tpreturn
(Tuxedo) or return (JATMI) and ended without
control of the connection. The service completed with
status of TPFAIL or TPEXIT and the data is set to null.

Tuxedo tprecv or JATMI
tprecv

Received by the originator of the connection indicating
that the subordinate program finished unsuccessfully.
The service completed with status of TPFAIL or
TPEXIT.

Table 6-5 WebLogic Tuxedo Connector Conversational Communication Events

Event Received by Description
6-12 WebLogic Tuxedo Connector Programmer’s Guide

WebLogic Tuxedo Connector Conversation Guidelines
� If a WebLogic Tuxedo Connector client is connected to a Tuxedo conversational
service which does tpforward to another conversational service,
TPEV_DISCONIMM is the expected WebLogic Tuxedo Connector exception
value.

� Conversations may be initiated within a transaction. Start the conversation as
part of the program statements in transaction mode. For more information on
transactions, see “WebLogic Tuxedo Connector ATMI Transactions” on page
5-1.

� If a WebLogic Tuxedo Connector remote domain experiences a TPENOENT, the
remote domain will send back a disconnect event message and be caught on the
WebLogic Tuxedo Connector application tprecv as a TPEV_DISCONIMM
exception.
WebLogic Tuxedo Connector Programmer’s Guide 6-13

6 WebLogic Tuxedo Connector JATMI Conversations
6-14 WebLogic Tuxedo Connector Programmer’s Guide

CHAPTER
7 Application Error
Management

The following sections provide mechanisms to manage and interpret error conditions
in your applications:

� Testing for Application Errors

� WebLogic Tuxedo Connector Time-Out Conditions

� Guidelines for Tracking Application Events

Testing for Application Errors

Note: To view an example that demonstrates how to test for error conditions, see
“Example Transaction Code” on page 5-7.

Your application logic should test for error conditions after the calls that have return
values and take suitable steps based on those conditions. In the event that a function
returned a value, you may invoke a functions that tests for specific values and performs
the appropriate application logic for each condition.

Exception Classes

The WebLogic Tuxedo Connector throws the following exception classes:
WebLogic Tuxedo Connector Programmer’s Guide 7-1

7 Application Error Management
� Ferror: Exception thrown for errors occurring while manipulating FML.

� TPException: Exception thrown that represents a TPException failure.

� TPReplyException: Exception thrown that represents a TPException failure
when user data is associated with the exception thrown.

Fatal Transaction Errors

In managing transactions, it is important to understand which errors prove fatal to
transactions. When these errors are encountered, transactions should be explicitly
aborted on the application level by having the initiator of the transaction call
commit(). Transactions fail for the following reasons:

� The initiator or participant of the transaction caused it to be marked for rollback.

� The transaction timed out.

� A commit() was called by a participant rather than by the originator of a
transaction.

WebLogic Tuxedo Connector Time-Out
Conditions

There are two types of time-out which can occur when using the WebLogic Tuxedo
Connector:

� Blocking time-out.

� Transaction time-out.
7-2 WebLogic Tuxedo Connector Programmer’s Guide

WebLogic Tuxedo Connector Time-Out Conditions
Blocking vs. Transaction Time-out

Blocking time-out is exceeding the amount of time a call can wait for a blocking
condition to clear up. Transaction time-out occurs when a transaction takes longer than
the amount of timed defined for it in setTransactionTimeout(). By default, if a
process is not in transaction mode, blocking time-outs are performed. When the flags
parameter of a a communication call is set to TPNOTIME, it applies to blocking
time-outs only. If a process is in transaction mode, blocking time-out and the
TPNOTIME flag are not relevant. The process is sensitive to transaction time-out only
as it has been defined for it when the transaction was started. The implications of the
two different types of time-out follow:

� If a process is not in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked will fail, but the call
descriptor is still valid and may be used on a re-issue call. Further
communication in general is unaffected.

� In the case of transaction time-out, the call descriptor to an asynchronous
transaction reply (done without the TPNOTRAN flag) becomes stale and may no
longer be referenced. The only further communication allowed is the one case
described earlier of no reply, no blocking, and no transaction.

Effect on commit()

The state of a transaction if time-out occurs after the call to commit() is undetermined.
If the transaction timed out and the system knows that it was aborted,
setRollbackOnly() returns with an error.

If the state of the transaction is in doubt, you must query the resource to determine if
any of the changes that were part of that transaction have been applied to it in order to
discover whether the transaction committed or aborted.

Effect of TPNOTRAN

Note: A transaction can time-out while waiting for a reply that is due from a service
that is not part of that transaction.
WebLogic Tuxedo Connector Programmer’s Guide 7-3

7 Application Error Management
When a process is in transaction and makes a communications call with flags set to
TPNOTRAN, it prohibits the called service from becoming a participant of that
transaction. The success or failure of the service does not influence the outcome of that
transaction.

Guidelines for Tracking Application Events

You can track the execution of your applications by using System.out.println()
to write messages to the WebLogic Server trace log. Create a log() method that takes
a variable of type String and use the variable name as the argument to the call, or
include the message as a literal within quotation marks as the argument to the call. In
the following example, a series of messages are used to track the progress of a
tpcall().

Listing 7-1 Example Event Logging

.

.

.

log(“About to call tpcall”);
try {

myRtn = myTux.tpcall("TOUPPER", myData, 0);
}
catch (TPReplyException tre) {

log("tpcall threw TPReplyExcption " + tre);
throw tre;

}
catch (TPException te) {

log("tpcall threw TPException " + te);
throw te;

}
catch (Exception ee) {

log("tpcall threw exception: " + ee);
throw new TPException(TPException.TPESYSTEM,

"Exception: " + ee);
}
7-4 WebLogic Tuxedo Connector Programmer’s Guide

Guidelines for Tracking Application Events
log("tpcall successfull!");
.

.

.

private static void

log(String s)

{ System.out.println(s);}

.

.

.

WebLogic Tuxedo Connector Programmer’s Guide 7-5

7 Application Error Management
7-6 WebLogic Tuxedo Connector Programmer’s Guide

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to WebLogic Tuxedo Connector Programming
	Developing WebLogic Tuxedo Connector Applications
	Developing WebLogic Tuxedo Connector Clients
	Developing WebLogic Tuxedo Connector Servers
	Using WebLogic Tuxedo Connector for Interoperability with Tuxedo CORBA objects

	WebLogic Tuxedo Connector JATMI Primitives
	Table 1�1 JATMI Primitives

	WebLogic Tuxedo Connector TypedBuffers
	Table 1�2 TypedBuffers

	2 Developing WebLogic Tuxedo Connector Client EJBs
	Joining and Leaving Applications
	Joining an Application
	Listing 2-1 Example Client Code to Join a Tuxedo Application

	Leaving an Application

	Basic Client Operation
	Get a Tuxedo Object
	Perform Message Buffering
	Table 2�1 TypedBuffers

	Send and Receive Messages
	Request/Response Communication
	Table 2�2 JATMI Primitives

	Conversational Communication
	Table 2�3 WebLogic Tuxedo Connector Conversational Client Primitives

	Close a Connection to a Tuxedo Object

	Example Client EJB
	Listing 2-2 Example Client Application
	. . . public String Toupper(String toConvert) ���throws TPException, TPReplyException { �����Cont...

	3 Developing WebLogic Tuxedo Connector Service EJBs
	Basic Service EJB Operation
	Access Service Information
	Table 3�1 JATMI TPServiceInformation Primitives

	Buffer Messages
	Table 3�2 TypedBuffers

	Perform the Requested Service
	Return Client Messages for Request/Response Communication
	Use tpsend and tprecv for Conversational Communication
	Table 3�3 WebLogic Tuxedo Connector Conversational Client Primitives

	Example Service EJB
	Listing 3-1 Example Service EJB
	. . . public Reply service(TPServiceInformation mydata) throws TPException { �����TypedString dat...

	4 Using WebLogic Tuxedo Connector for RMI/IIOP and Corba Interoperability
	How to Develop WebLogic Tuxedo Connector Client Beans for Tuxedo CORBA Objects
	Use the WTC ORB
	Get Object References
	�����// Get the simple factory. ����������org.omg.CORBA.Object simple_fact_oref = ���������������...

	Invoke on the Object
	Example ToupperCorbaBean.java Code
	Listing 4-1 Example Service Application
	. . . public String Toupper(String toConvert) throws RemoteException { ����� log("toupper called,...
	��������Prop = new Properties(); ��������Prop.put("org.omg.CORBA.ORBClass", ����������������"webl...

	How to Modify Inbound RMI/IIOP Applications to use the WebLogic Tuxedo Connector
	Listing 4-2 Example Code to Obtain a Naming Context

	How to Modify Outbound RMI/IIOP Applications to use the WebLogic Tuxedo Connector
	How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs
	Listing 4-3 Example ejb-jar.xml File Passing a FederationURL to an EJB
	<?xml version="1.0"?> <!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBea...
	Assign env-entry-name
	Assign env-entry-type
	Assign env-entry-value

	How to Modify EJBs to Use FederationURL to Access an Object
	Listing 4-4 Example TraderBean.java Code to get InitialContext
	. . . public void createRemote() throws CreateException { �����log("createRemote() called"); ����...
	1. Retrieve the FederationURL format defined in the ejb-jar.xml file.
	2. Concatenate the FederationURL format with “/NameService” to form the FederationURL.
	3. Get the InitialContext.

	How to Use FederationURL Formats
	Using corbaloc URL Format
	<corbaloc> = "corbaloc:tgiop":[<version>] <domain>["/"<key_string>]
	<version> = <major> "." <minor> "@" | empty_string
	<domain> = TUXEDO CORBA domain name
	<major> = number
	<minor> = number
	<key_string> = <string> | empty_string
	Examples of corbaloc:tgiop
	orb.string_to_object("corbaloc:tgiop:simpapp/NameService");
	orb.string_to_object("corbaloc:tgiop:simpapp/FactoryFinder");
	orb.string_to_object("corbaloc:tgiop:simpapp/InterfaceRepository");
	orb.string_to_object("corbaloc:tgiop:simpapp/Tobj_SimpleEventsService");
	orb.string_to_object("corbaloc:tgiop:simpapp/NotificationService");
	orb.string_to_object("corbaloc:tgiop:1.1@simpapp/NotificationService);

	Examples using -ORBInitRef
	-ORBInitRef FactoryFinder=corbaloc:tgiop:simp/FactoryFinder
	-ORBInitRef InterfaceRepository=corbaloc:tgiop:simp/InterfaceRepository
	-ORBInitRef Tobj_SimpleEventService=corbaloc:tgiop:simp/Tobj_SimpleEventsService
	-ORBInitRef NotificationService=corbaloc:tgiop:simp/NotificationService
	orb.resolve_initial_references("NameService");
	orb.resolve_initial_references("FactoryFinder");
	orb.resolve_initial_references("InterfaceRepository");
	orb.resolve_initial_references("Tobj_SimpleEventService");
	orb.resolve_initial_references("NotificationService");

	Examples Using -ORBDefaultInitRef
	-ORBDefaultInitRef corbaloc:tgiop:simpapp
	orb.resolve_initial_references("NameService");

	Using the corbaname URL Format
	Examples Using -ORBInitRef
	orb.string_to_object("corbaname:rir:#simple_factory");
	orb.string_to_object("corbaname:tgiop:simpapp#simple_factory");
	orb.string_to_object("corbaname:tgiop:1.1@simpapp#simple_factory");
	orb.string_to_object("corbaname:tgiop:simpapp#simple/simple_factory");

	How to Manage Transactions for Tuxedo CORBA Applications

	5 WebLogic Tuxedo Connector ATMI Transactions
	Global Transactions
	JTA Transaction API
	Types of JTA Interfaces
	Transaction
	TransactionManager
	UserTransaction

	JTA Transaction Primitives
	Table 5�1 Mapping Tuxedo Transaction Primitives to JTA Equivalents

	Defining a Transaction
	Starting a Transaction
	Using TPNOTRAN

	Terminating a Transaction

	WebLogic Tuxedo Connector Transaction Rules
	Example Transaction Code
	Listing 5-1 Example Transaction Code
	public class TransactionSampleBean implements SessionBean { public int transaction_sample (...

	6 WebLogic Tuxedo Connector JATMI Conversations
	Overview of WebLogic Tuxedo Connector Conversational Communication
	WebLogic Tuxedo Connector Conversation Characteristics
	WebLogic Tuxedo Connector JATMI Conversation Primitives
	Table 6�1 WebLogic Tuxedo Connector Conversational Client Primitives

	Creating WebLogic Tuxedo Connector Conversational Clients and Servers
	Creating Conversational Clients
	Establishing a Connection to a Tuxedo Conversational Service
	Table 6�2 WebLogic Tuxedo Connector JATMI tpconnect Parameters

	Example TuxedoConversationBean.java Code
	. . . Context ctx; Conversation myConv; TuxedoConnection myTux; TuxedoConnectionFactory tcf;

	Creating WebLogic Tuxedo Connector Conversational Servers

	Sending and Receiving Messages
	Sending Messages
	Table 6�3 WebLogic Tuxedo Connector JATMI tpconnect Parameters

	Receiving Messages
	Table 6�4 WebLogic Tuxedo Connector JATMI tpconnect Parameters

	Ending a Conversation
	Tuxedo Application Originates Conversation
	WebLogic Tuxedo Connector Application Originates Conversation
	Ending Hierarchical Conversations
	1. B calls tpsend with TPRECVONLY to transfer control of the B-C connection to the Tuxedo applica...
	2. C calls departure with rval set to TPSUCCESS, TPFAIL, or TPEXIT.
	3. B calls return and posts an event (TPEV_SVCSUCC or TPEV_SVCFAIL) for A.

	Executing a Disorderly Disconnect
	Understanding Conversational Communication Events
	Table 6�5 WebLogic Tuxedo Connector Conversational Communication Events

	WebLogic Tuxedo Connector Conversation Guidelines

	7 Application Error Management
	Testing for Application Errors
	Exception Classes
	Fatal Transaction Errors

	WebLogic Tuxedo Connector Time-Out Conditions
	Blocking vs. Transaction Time-out
	Effect on commit()
	Effect of TPNOTRAN

	Guidelines for Tracking Application Events
	Listing 7-1 Example Event Logging

