
Server™

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 1
D o c u m e n t D a t e : S e p t e m b e r 1 9 , 2 0 0 1

BEA WebLogic

Programming
WebLogic Time Services

(Deprecated)

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc..

All other product names may be trademarks of the respective companies with which they are associated.

Programming WebLogic Server Time Services

Part Number Document Date Software Version

N/A July 30, 2001 BEA WebLogic Server Version 6.1

Contents

About This Document
Audience..v

e-docs Web Site...v

How to Print the Document... vi

Contact Us! .. vi

Documentation Conventions .. vii

1. Programming WebLogic Time Services (Deprecated)
Time Services Deprecated... 1-1

Overview ... 1-2

WebLogic Time Architecture.. 1-2

WebLogic Time API ... 1-3

2. Implementing with WebLogic Time
Scheduling a Recurring Trigger on a Client.. 2-1

Scheduling a Recurring Server-side Trigger from a WebLogic Client 2-3

Step 1. Implement the ScheduleDef and TriggerDef interfaces................. 2-3

Step 2. Create the ScheduledTrigger from a WebLogic Client.................. 2-5

Setting up Complex Schedules.. 2-6

Rescheduling ... 2-7

Stopping a ScheduledTrigger .. 2-8
Programming WebLogic Time Services iii

iv Programming WebLogic Time Services

About This Document

This document describes the architecture of the WebLogic Time Services that runs on
BEA WebLogic Server™ .

The document is organized as follows:

� Chapter 1, “Programming WebLogic Time Services (Deprecated),” is an
overview of the architecture of the WebLogic Time Services.

� Chapter 2, “Implementing with WebLogic Time,” describes how to implement
the WebLogic Time Services.

Audience

This document is written for application developers who want to implement Time
Services for their applications. It is assumed that readers know Web technologies,
object-oriented programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.
Introduction to BEA WebLogic Server v

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using
vi Introduction to BEA WebLogic Server

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.
Introduction to BEA WebLogic Server vii

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
viii Introduction to BEA WebLogic Server

Time Services Deprecated
1 Programming
WebLogic Time
Services (Deprecated)

The WebLogic Time API provides a mechanism for scheduling actions (triggers) to
take place at a future date and time, or on a regularly recurring schedule. The following
sections provide an introductiont to the Time Services features:

� Time Services Deprecated

� Overview

� WebLogic Time Architecture

� WebLogic Time API

Time Services Deprecated

WebLogic Time Services are deprecated in WebLogic Server Version 6.1. See J2EE
Scheduling Tools in WebLogic Server Tools for third-party scheduling services.
Programming WebLogic Time Services 1-1

http://e-docs.bea.com/wls/docs70/toolstable/index.html

1 Programming WebLogic Time Services (Deprecated)
Overview

The Time API allows any user-written trigger to be scheduled and then executed,
either in the client JVM, or on WebLogic Server on behalf of a client. The Time API
provides a dependable, distributable method of setting up actions that occur
automatically.

Note: Although you can use the time service with individual WebLogic Server
instances in a cluster, the service itself is non-clusterable. The WebLogic Time
API does not make use of cluster features such as load balancing and failover.

WebLogic Time Architecture

WebLogic Time is a lightweight, efficient API that shares many characteristics of
other WebLogic Server APIs. WebLogic Time is built around a ScheduledTriggerDef
object, constructed from a Schedulable object. The ScheduledTriggerDef object is
responsible for starting, stopping, or repeating the action schedule. A Triggerable
object defines the action to be carried out on schedule. You use an object factory to
create a ScheduledTrigger. Object factories provide a well-defined, easy-to-use
methodology for managing scarce resources within WebLogic Server.

Accounting for scheduling is kept in a series of efficient linked lists that are sorted only
at the most proximate chronological point as new triggers are scheduled and then acted
upon. For example, a trigger for a week from Tuesday at 12:15:30 is initially inserted
into the schedule for next Tuesday. Not until noon on Tuesday is the schedule for the
noon hour sorted, and not until fifteen minutes past noon are the triggers for that
minute sorted. This drastically reduces the overhead for scheduling in a heavily
scheduled environment.

WebLogic Server also keeps accounting of the differences in time zone, clock
accuracy, and latency between users of the Time service. Note that WebLogic triggers
are not real time triggers that can be used to millisecond granularity. WebLogic
triggers used properly will function reliably within an estimated 1 second of accuracy.
1-2 Programming WebLogic Time Services

WebLogic Time API
WebLogic Time API

A ScheduledTrigger takes two objects in its constructor:

� An object that implements either weblogic.time.common.Schedulable or
weblogic.time.common.ScheduleDef

� An object that implements either weblogic.time.common.Triggerable or
weblogic.time.common.TriggerDef

An object passed to the ScheduledTrigger object factory method may also be a
client-side object, in which case the client creates, schedules, and executes a
ScheduledTrigger within its own JVM. The client-side object must implement
Schedulable (or ScheduleDef) and Triggerable (or TriggerDef).

The TimeServicesDef interface also provides methods for obtaining time-related
information about client and server:

� currentTimeMillis() returns the current server time, in “local server time”
format, which is the server’s time adjusted for propagation delay between the
method invoker and the server (zero when the method invoker is the server, and
some positive milliseconds when the invoker is the client or another WebLogic
Server).

� getRoundTripDelayMillis() returns the number of milliseconds of round-trip
delay between the client and server. This method depends on the algorithm
described in the overview.

� getLocalClockOffsetMillis() returns the number of milliseconds of offset
between the client and server clocks, based on the algorithm described in the
overview.

The weblogic.time.common.TimeRepeat class implements Schedulable. This
utility class is a prefabricated scheduler you can use to set up a repeating trigger. Just
pass an int that is the interval (in milliseconds) at which the trigger should repeat.
Then call its schedule() method with the starting time.

Warning: If your trigger throws an exception, it is not rescheduled. This is to ensure
that a failing trigger is not re-executed indefinitely. If you want to
reschedule a trigger after an exception, you must catch the exception and
schedule the trigger again.
Programming WebLogic Time Services 1-3

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/Schedulable.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/ScheduleDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/Triggerable.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/TriggerDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/TimeServicesDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/TimeRepeat.html

1 Programming WebLogic Time Services (Deprecated)
The package contains a single exception class, TimeTriggerException.
1-4 Programming WebLogic Time Services

CHAPTER
2 Implementing with
WebLogic Time

The following sections describe how to implement with the deprecated WebLogic
Time Service:

� Scheduling a Recurring Trigger on a Client

� Scheduling a Recurring Server-side Trigger from a WebLogic Client

� Setting up Complex Schedules

� Rescheduling

� Stopping a ScheduledTrigger

Scheduling a Recurring Trigger on a Client

The simplest case of scheduling a recurring trigger is to create a ScheduledTrigger that
is scheduled and executed on a WebLogic client. In such a case, you write a class that
implements both Schedulable and Triggerable, and implement the methods of those
interfaces.

 This example illustrates how to schedule and execute a trigger:

import weblogic.time.common.*;
import weblogic.common.*;
import java.util.*;
import weblogic.jndi.*;
import javax.naming.*;
Programming WebLogic Time Services 2-1

2 Implementing with WebLogic Time
import java.util.*;

class myTrigger implements Schedulable, Triggerable {
 ...
}

First, obtain a ScheduledTrigger object from the TimeServices factory. Obtain the
TimeServices factory from the T3Services remote factory stub on the WebLogic
Server via the getT3Services() method.

Note: To obtain a handle to the TimeServices interface on a WebLogic Server
instance (as opposed to a client application) use the static method,
weblogic.common.T3Services.getT3Services().

Next, call the schedule() and cancel() methods on the trigger, as shown in this
example:

 public myTrigger() throws TimeTriggerException {
 // Obtain a T3Services factory
 T3ServicesDef t3 = getT3Services("t3://localhost:7001");

 // Request a ScheduledTrigger from the factory. Use
 // this class for scheduling and execution
 ScheduledTriggerDef std =
 t3services.time().getScheduledTrigger(this, this);
 // Start the ball rolling
 std.schedule();
 // Your class may do other things after scheduling the trigger
 // When you are finished, cancel the trigger
 std.cancel();
 }

Your class must implement the methods in the following interfaces.

Schedulable

 The Schedulable interface has only one method, schedule(), which
allows you to set the time at which the trigger should be executed.

 public long schedule(long time) {
 // Schedule the trigger for every 5 seconds
 return time + 5000;
 }

Triggerable

 The Triggerable interface has only one method, trigger(), where the
client performs an action in response to the timed triggered.
2-2 Programming WebLogic Time Services

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/Schedulable.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/Triggerable.html

Scheduling a Recurring Server-side Trigger from a WebLogic Client
 public void trigger() {
 // The trigger method is where the work takes place
 System.out.println("trigger called");
 }

 This example is self-contained within a single class that implements both the
scheduler and the trigger. This is convenient since both required methods share class
variables necessary for scheduling or execution.

Scheduling a Recurring Server-side Trigger
from a WebLogic Client

You can write more flexible schedulers and triggers, which may be executed anywhere
within the WebLogic framework, by implementing ScheduleDef and TriggerDef
instead of the simpler interfaces Schedulable and Triggerable. This example
illustrates a flexible implementation that creates a recurring trigger that is rescheduled
and executed on a WebLogic Server, or anywhere within the WebLogic framework.

Here are the steps to creating a scheduled trigger in this scenario. You will need to
write a class that implements ScheduleDef and TriggerDef. We implement these
interfaces in separate classes in this example.

Compile the classes and place them in the WebLogic Server serverclasses
directory. Then create a ScheduledTrigger with those classes from a client
application.

Step 1. Implement the ScheduleDef and TriggerDef
interfaces

In this example, the scheduler implements ScheduleDef rather than Schedulable so that
its setServices() and scheduleInit() methods are called. The trigger implements
TriggerDef rather than Triggerable for the same reason. These objects differ from the
Programming WebLogic Time Services 2-3

2 Implementing with WebLogic Time
interfaces they implement in that they can be initialized with a ParamSet, and have
access to WebLogic services through the T3Services stub. These two differences are
important for the following reasons.

 You do not need to write different versions for client-side and server-side deployment
because the T3ServicesDef interface is a remote stub.

 When you instantiate an object dynamically, you must call the default constructor.
Consequently, all service-related interfaces, including the Time interfaces, require that
you implement the scheduleInit() method which takes a ParamSet, thus allowing
you to pass initialization parameters for the object.

Here is a simple implementation of ScheduleDef.

package examples.time;

import weblogic.common.*;
import weblogic.time.common.*;
import java.util.*;

class MyScheduler implements ScheduleDef {

 private int interval = 0;
 private T3ServicesDef services;

 public void setServices(T3ServicesDef services) {
 this.services = services;
 }

 public void scheduleInit (ParamSet ps) throws ParamSetException {
 interval = ps.getParam("interval").asInt();
 }

 public long schedule(long currentMillis) {
 return currentMillis + interval;
 }
}

Here is a simple class that implements TriggerDef. In this case, we do not need to set
or get any parameters for the Trigger, so we implement the method to do nothing.

package examples.time;

import weblogic.common.*;
import weblogic.time.common.*;
import java.util.*;

public class MyTrigger implements TriggerDef {
2-4 Programming WebLogic Time Services

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/ParamSet.html

Scheduling a Recurring Server-side Trigger from a WebLogic Client
 private T3ServicesDef services;

 public void setServices(T3ServicesDef services) {
 this.services = services;
 }

 public void triggerInit (ParamSet ps) throws ParamSetException {
 // Empty method definition
 }

 public void trigger(Schedulable sched) {
 System.out.println("trigger called");
 }
}

Step 2. Create the ScheduledTrigger from a WebLogic
Client

This method of setting up a scheduler and trigger require that you create a Scheduler
and Trigger object to pass to the get ScheduledTrigger() factory method. We
created those in “Step 1. Implement the ScheduleDef and TriggerDef interfaces.”

We have compiled those classes and placed them in the CLASSPATH of the
WebLogic Server. Now we’ll write a client that uses those classes to schedule a trigger
that runs in the server’s JVM.

We use a ParamSet to pass initialization parameters between the client and the objects
that the WebLogic Server instantiates. The class that we wrote in Step 1 to implement
ScheduleDef depends upon a Parameter “interval” to be set by the caller, so we’ll
create a ParamSet with one Param. The class we wrote to implement TriggerDef
doesn’t require any initialization parameters.

 T3ServicesDef t3services = getT3Services("t3://localhost:7001");

 // Create a ParamSet to pass initialization parameters for
 // the ScheduleDef object. Set one parameter, "interval,"
 // for 10 seconds
 ParamSet schedParams = new ParamSet();
 schedParams.setParam("interval", 10000);
Programming WebLogic Time Services 2-5

2 Implementing with WebLogic Time
Add the getT3Services() method to your client class and create the Scheduler and
Trigger wrapper objects that instantiate a ScheduledTrigger on the server. The
Scheduler and Trigger wrapper objects hold the name of the target class and a
ParamSet to initialize it, if necessary.

 Scheduler scheduler =
 new Scheduler("examples.time.MyScheduler", schedParams);
 Trigger trigger =
 new Trigger("examples.time.MyTrigger");

Finally, use the time services object factory to manufacture a ScheduledTrigger. It
takes two arguments, a Scheduler and a Trigger, which we have just created.

 ScheduledTriggerDef std =
 t3.services.time().getScheduledTrigger(scheduler, trigger);

The getScheduledTrigger() method returns a ScheduledTriggerDef object. To
initiate execute, the client calls the ScheduledTriggerDef’s schedule() and
cancel() methods.

If you are setting up a repeating schedule, you might also use the utility class
TimeRepeat, which is part of this package. Here is a simple example of how to use the
TimeRepeat class to set up a regular schedule for a ScheduledTrigger that repeats
every 10 seconds. Again, it uses the getT3Services() method to access the
WebLogic server-side services.

 T3ServicesDef t3services = getT3Services("t3://localhost:7001");

 Scheduler scheduler = new Scheduler(new TimeRepeat(1000 * 10));
 Trigger trigger = new Trigger("examples.time.MyTrigger");

 ScheduledTriggerDef std =
 t3services.time().getScheduledTrigger(scheduler, trigger);

 std.schedule();

Setting up Complex Schedules

You can design arbitrarily complex schedules with the schedule() method of a
Schedulable object. Here are some examples and tips on scheduling.
2-6 Programming WebLogic Time Services

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/TimeRepeat.html

Rescheduling
There are several ways in which the argument to the schedule() method can describe
the execution time:

� The current time, in milliseconds since the epoch.

� A specific future date and time, in a millisecond representation by performing
date arithmetic using standard Java classes (such as java.util.Date).

The schedule() method returns a long value, which allows you to set up repeating
triggers. Simply return the time at which the schedule() method was last called plus
the interval (in milliseconds) at which the schedule should repeat.

Rescheduling

In this example, we write the schedule() method to delay for an incrementing
interval between each call to the trigger() method. The schedule() and
trigger() methods are implemented in the same class in this example.

In the trigger() method, we set an incrementing delay, using a private int delay,
which we initialize to zero in the class constructor. Each time the trigger is called, it
incrementally adjusts its own schedule.

 public void trigger() {
 System.out.println("Trigger called");
 // Carry out some arbitrary tasks . . .
 System.out.println("Trigger completed");
 // Add a thousand milliseconds to the delay
 delay += 1000;
 }

In the schedule() method, we return the next execution of the trigger as the time of
the last scheduled execution, plus the delay incremented by the last scheduled
execution (in milliseconds). We also include an upper bounds on the delay to end the
scheduling.

 public long schedule(long t) {
 System.out.println("--------------------------------------");
 if (delay > 10000) {
 System.out.println("Cancelling Timer");
 return 0;
 }
Programming WebLogic Time Services 2-7

2 Implementing with WebLogic Time
 else {
 System.out.println("Scheduling next trigger for " +
 delay/1000 + " seconds");
 return t + delay;
 }
 }

Stopping a ScheduledTrigger

There are two ways to stop a ScheduledTrigger:

� Call the ScheduledTrigger’s cancel() method.

� Return zero (0) when the schedule() method is called ends the scheduling.

There is some slight difference in these two methods. If you return zero from the
schedule() method, the schedule is immediately ended. If you call a
ScheduledTrigger’s cancel() method, the clock continues to run until the next
scheduled instance of the trigger(), at which point it is cancelled.
2-8 Programming WebLogic Time Services

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	About This Document
	1. Programming WebLogic Time Services (Deprecated)
	2. Implementing with WebLogic Time

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Programming WebLogic Time Services (Deprecated)
	Time Services Deprecated
	Overview
	WebLogic Time Architecture
	WebLogic Time API

	2 Implementing with WebLogic Time
	Scheduling a Recurring Trigger on a Client
	Schedulable
	Triggerable

	Scheduling a Recurring Server-side Trigger from a WebLogic Client
	Step 1. Implement the ScheduleDef and TriggerDef interfaces
	Step 2. Create the ScheduledTrigger from a WebLogic Client

	Setting up Complex Schedules
	Rescheduling
	Stopping a ScheduledTrigger

