
BEAWebLogic
Server®

Developing Applications
with WebLogic Server

Version 10.0
Revised: March 30, 2007

Developing Applications with WebLogic Server iii

Contents

Overview of WebLogic Server Application Development
Document Scope and Audience . 1-2

WebLogic Server and the Java EE Platform . 1-2

Overview of Java EE Applications and Modules . 1-3

Web Application Modules . 1-4

Servlets . 1-4

JavaServer Pages. 1-4

More Information on Web Application Modules . 1-5

Enterprise JavaBean Modules . 1-5

EJB Overview . 1-5

EJBs and WebLogic Server . 1-6

Connector Modules . 1-6

Enterprise Applications . 1-7

Java EE Programming Model . 1-7

Packaging and Deployment Overview . 1-7

WebLogic Web Services . 1-8

JMS and JDBC Modules . 1-9

WebLogic Diagnostic Framework Modules . 1-10

XML Deployment Descriptors. 1-10

Automatically Generating Deployment Descriptors. 1-14

EJBGen . 1-14

Java-based Command-line Utilities. 1-14

iv Developing Applications with WebLogic Server

Upgrading Deployment Descriptors From Previous Releases of J2EE and WebLogic
Server . 1-15

Deployment Plans . 1-16

Development Software . 1-17

Apache Ant . 1-17

Source Code Editor or IDE. 1-18

Database System and JDBC Driver . 1-18

Web Browser. 1-19

Third-Party Software . 1-19

Using Ant Tasks to Configure and Use a WebLogic Server
Domain

Overview of Configuring and Starting Domains Using Ant Tasks 2-1

Starting Servers and Creating Domains Using the wlserver Ant Task 2-2

Basic Steps for Using wlserver . 2-2

Sample build.xml Files for wlserver . 2-3

wlserver Ant Task Reference . 2-4

Configuring a WebLogic Server Domain Using the wlconfig Ant Task 2-9

What the wlconfig Ant Task Does . 2-9

Basic Steps for Using wlconfig . 2-10

Sample build.xml Files for wlconfig . 2-11

Complete Example . 2-11

Query and Delete Example . 2-14

Example of Setting Multiple Attribute Values . 2-14

wlconfig Ant Task Reference. 2-14

Main Attributes . 2-15

Nested Elements . 2-16

Using the libclasspath Ant Task . 2-22

Developing Applications with WebLogic Server v

libclasspath Task Definition . 2-22

libclasspath Ant Task Reference . 2-22

Main libclasspath Attributes . 2-22

Nested libclasspath Elements . 2-24

 Example libclasspath Ant Task . 2-24

Creating a Split Development Directory Environment
Overview of the Split Development Directory Environment . 3-1

Source and Build Directories . 3-2

Deploying from a Split Development Directory . 3-3

Split Development Directory Ant Tasks. 3-4

Using the Split Development Directory Structure: Main Steps. 3-5

Organizing Java EE Components in a Split Development Directory 3-6

Source Directory Overview . 3-6

Enterprise Application Configuration . 3-8

Web Applications . 3-8

EJBs . 3-10

Important Notes Regarding EJB Descriptors . 3-11

Organizing Shared Classes in a Split Development Directory . 3-11

Shared Utility Classes. 3-11

Third-Party Libraries . 3-12

Class Loading for Shared Classes . 3-13

Generating a Basic build.xml File Using weblogic.BuildXMLGen 3-13

Developing Multiple-EAR Projects Using the Split Development Directory. 3-15

Organizing Libraries and Classes Shared by Multiple EARs 3-15

Linking Multiple build.xml Files . 3-16

Best Practices for Developing WebLogic Server Applications. 3-17

vi Developing Applications with WebLogic Server

Building Applications in a Split Development Directory
Compiling Applications Using wlcompile . 4-1

Using includes and excludes Properties. 4-2

wlcompile Ant Task Attributes . 4-2

Nested javac Options . 4-3

Setting the Classpath for Compiling Code. 4-3

Library Element for wlcompile and wlappc . 4-3

Building Modules and Applications Using wlappc. 4-4

wlappc Ant Task Attributes . 4-4

wlappc Ant Task Syntax. 4-7

Syntax Differences between appc and wlappc. 4-7

weblogic.appc Reference . 4-7

weblogic.appc Syntax . 4-7

weblogic.appc Options . 4-8

Deploying and Packaging from a Split Development Directory
Deploying Applications Using wldeploy . 5-1

Packaging Applications Using wlpackage . 5-1

Archive versus Exploded Archive Directory . 5-2

wlpackage Ant Task Example . 5-2

wlpackage Ant Task Attribute Reference . 5-3

Developing Applications for Production Redeployment
What is Production Redeployment? . 6-1

Supported and Unsupported Application Types . 6-2

Additional Application Support . 6-2

Programming Requirements and Conventions . 6-2

Applications Should Be Self-Contained . 6-3

Developing Applications with WebLogic Server vii

Versioned Applications Access the Current Version JNDI Tree by Default 6-3

Security Providers Must Be Compatible . 6-4

Applications Must Specify a Version Identifier . 6-4

Applications Can Access Name and Identifier. 6-4

Client Applications Use Same Version when Possible. 6-4

Assigning an Application Version. 6-5

Application Version Conventions. 6-5

Upgrading Applications to Use Production Redeployment. 6-6

Accessing Version Information . 6-6

Using Java EE Annotations and Dependency Injection
Annotation Processing . 7-1

Annotation Parsing . 7-1

Deployment View of Annotation Configuration . 7-2

Compiling Annotated Classes . 7-2

Dynamic Annotation Updates . 7-3

Dependency Injection of Resources . 7-3

Application Life-Cycle Annotation Methods. 7-4

Standard JDK Annotations . 7-4

javax.annotation.PostConstruct . 7-5

javax.annotation.PreDestroy. 7-6

javax.annotation.Resource . 7-7

javax.annotation.Resources . 7-8

Standard Security-Related JDK Annotations . 7-9

javax.annotation.security.DeclareRoles . 7-9

javax.annotation.security.DenyAll . 7-10

javax.annotation.security.PermitAll . 7-10

javax.annotation.security.RolesAllowed . 7-10

viii Developing Applications with WebLogic Server

javax.annotation.security.RunAs . 7-11

Understanding WebLogic Server Application Classloading
Java Classloading . 8-1

Java Classloader Hierarchy . 8-1

Loading a Class . 8-2

prefer-web-inf-classes Element . 8-2

Changing Classes in a Running Program. 8-3

WebLogic Server Application Classloading . 8-4

Overview of WebLogic Server Application Classloading . 8-4

Application Classloader Hierarchy . 8-5

Custom Module Classloader Hierarchies. 8-6

Declaring the Classloader Hierarchy . 8-7

User-Defined Classloader Restrictions . 8-10

Individual EJB Classloader for Implementation Classes . 8-12

Application Classloading and Pass-by-Value or Reference 8-14

Using a Filtering Classloader . 8-14

What is a Filtering ClassLoader . 8-15

Configuring a FilteringClassLoader . 8-15

Resource Loading Order . 8-16

Resolving Class References Between Modules and Applications 8-17

About Resource Adapter Classes . 8-18

Packaging Shared Utility Classes . 8-18

Manifest Class-Path . 8-18

Sharing Applications and Modules By Using Java EE Libraries 8-19

Adding JARs to the System Classpath . 8-19

Developing Applications with WebLogic Server ix

Creating Shared Java EE Libraries and Optional Packages
Overview of Shared Java EE Libraries and Optional Packages . 9-2

Optional Packages . 9-3

Library Directories . 9-3

Versioning Support for Libraries . 9-4

Shared Java EE Libraries and Optional Packages Compared 9-4

Additional Information. 9-6

Creating Shared Java EE Libraries . 9-6

Assembling Shared Java EE Library Files . 9-6

Assembling Optional Package Class Files . 9-7

Editing Manifest Attributes for Shared Java EE Libraries. 9-8

Packaging Shared Java EE Libraries for Distribution and Deployment 9-10

Referencing Shared Java EE Libraries in an Enterprise Application 9-11

Overriding context-roots Within a Referenced Enterprise Library 9-14

URIs for Shared Java EE Libraries Deployed As a Standalone Module 9-15

Referencing Optional Packages from a Java EE Application or Module 9-15

Using weblogic.appmerge to Merge Libraries . 9-18

Using weblogic.appmerge from the CLI . 9-19

Using weblogic.appmerge as an Ant Task . 9-19

Integrating Shared Java EE Libraries with the Split Development Directory Environment. .
9-20

Deploying Shared Java EE Libraries and Dependent Applications 9-20

Web Application Shared Java EE Library Information. 9-21

Using WebApp Libraries With Web Applications . 9-21

Accessing Registered Shared Java EE Library Information with LibraryRuntimeMBean9-22

Order of Precedence of Modules When Referencing Shared Java EE Libraries 9-23

Best Practices for Using Shared Java EE Libraries . 9-24

x Developing Applications with WebLogic Server

Programming Application Lifecycle Events
Understanding Application Lifecycle Events . 10-1

Registering Events in weblogic-application.xml . 10-2

Programming Basic Lifecycle Listener Functionality . 10-3

Configuring a Role-Based Application Lifecycle Listener 10-5

Examples of Configuring Lifecycle Events with and without the URI Parameter 10-6

Understanding Application Lifecycle Event Behavior During Re-deployment 10-7

Programming Application Version Lifecycle Events . 10-8

Understanding Application Version Lifecycle Event Behavior 10-8

Types of Application Version Lifecycle Events. 10-9

Example of Production Deployment Sequence When Using Application Version
Lifecycle Events . 10-9

Programming Context Propagation
Understanding Context Propagation . 11-1

Programming Context Propagation: Main Steps. 11-3

Programming Context Propagation in a Client . 11-3

Programming Context Propagation in an Application . 11-5

Programming JavaMail with WebLogic Server
Overview of Using JavaMail with WebLogic Server Applications 12-1

Understanding JavaMail Configuration Files . 12-2

Configuring JavaMail for WebLogic Server. 12-2

Sending Messages with JavaMail . 12-3

Reading Messages with JavaMail . 12-4

Threading and Clustering Topics
Using Threads in WebLogic Server . 13-1

Using the Work Manager API for Lower-Level Threading . 13-2

Developing Applications with WebLogic Server xi

Programming Applications for WebLogic Server Clusters. 13-3

Enterprise Application Deployment Descriptor Elements
weblogic-application.xml Deployment Descriptor Elements .A-1

weblogic-application .A-2

ejb . A-11

max-cache-size .A-15

xml. .A-16

jdbc-connection-pool. .A-18

security .A-33

application-param .A-33

classloader-structure .A-34

listener .A-34

startup .A-35

shutdown .A-36

work-manager .A-36

session-descriptor .A-39

library-ref .A-43

library-context-root-override. .A-44

weblogic-application.xml Schema. .A-45

application.xml Schema. .A-45

wldeploy Ant Task Reference
Overview of the wldeploy Ant Task . B-1

Basic Steps for Using wldeploy. B-2

Sample build.xml Files for wldeploy. B-2

wldeploy Ant Task Attribute Reference . B-4

Main Attributes. B-4

xii Developing Applications with WebLogic Server

Nested <files> Child Element . B-12

Spring Applications Reference
About Spring on WebLogic Server . C-1

Redesigning a J2EE-Based Application to a Spring-Based Application C-2

Configure Spring Inversion of Control . C-2

Enable the Spring Web Services Client Service . C-3

Make JMS Services Available to the Application at Runtime. C-4

Configure JMX: Expose the WebLogic Server Runtime MBean Server Connection to
Spring . C-5

Configure Spring JDBC to Communicate With the Connection Pool C-6

Use the Spring Transaction Abstraction Layer for Transaction Management. C-7

Make Use of WebLogic Server Clustering . C-9

Clustered Spring Remoting. C-9

Spring Extension to the WebLogic Administration Console . C-10

Installing the Spring Extension to the WebLogic Administration Console C-10

Exposing Spring Beans Through the WebLogic Administration Console. C-10

Support for Spring on WebLogic Server. C-10

Developing Applications with WebLogic Server 1-1

C H A P T E R 1

Overview of WebLogic Server
Application Development

The following sections provide an overview of WebLogic Server® applications and basic
concepts.

“Document Scope and Audience” on page 1-2

“Overview of Java EE Applications and Modules” on page 1-3

“Web Application Modules” on page 1-4

“Enterprise JavaBean Modules” on page 1-5

“Connector Modules” on page 1-6

“Enterprise Applications” on page 1-7

“WebLogic Web Services” on page 1-8

“JMS and JDBC Modules” on page 1-9

“WebLogic Diagnostic Framework Modules” on page 1-10

“XML Deployment Descriptors” on page 1-10

“Deployment Plans” on page 1-16

“Development Software” on page 1-17

Overv iew o f WebLog ic Se rve r App l i cat ion Deve lopment

1-2 Developing Applications with WebLogic Server

Document Scope and Audience
This document is written for application developers who want to build WebLogic Server
e-commerce applications using the Java Platform, Enterprise Edition 5 from Sun Microsystems.
It is assumed that readers know Web technologies, object-oriented programming techniques, and
the Java programming language.

WebLogic Server applications are created by Java programmers, Web designers, and application
assemblers. Programmers and designers create modules that implement the business and
presentation logic for the application. Application assemblers assemble the modules into
applications that are ready to deploy on WebLogic Server.

WebLogic Server and the Java EE Platform
WebLogic Server implements Java Platform, Enterprise Edition (Java EE) Version 5.0
technologies. Java EE is the standard platform for developing multi-tier Enterprise applications
based on the Java programming language. The technologies that make up Java EE were
developed collaboratively by Sun Microsystems and other software vendors, including BEA
Systems.

An important aspect of the Java EE programming model is the introduction of metadata
annotations. Annotations simplify the application development process by allowing a developer
to specify within the Java class itself how the application component behaves in the container,
requests for dependency injection, and so on. Annotations are an alternative to deployment
descriptors that were required by older versions of Enterprise applications (J2EE 1.4 and earlier).

According to Sun, “the focus in Java EE 5 is ease of development. With Java EE 5, there is less
code to write – much of the boilerplate code has been removed, defaults are used whenever
possible, and annotations are used extensively to reduce the need for deployment descriptors.”

EJB 3.0 makes it much easier to program an EJB, in particular by reducing the number of
required programming artifacts and introducing a set of EJB-specific metadata annotations
that make programming the bean file easier and more intuitive. Another goal of EJB 3.0 is
to standardize the persistence framework and reduce the complexity of the entity bean
programming model and object-relational (O/R) mapping model. WebLogic Server
continues to support Version 2.1 of the EJB specification.

Java EE 5 includes simplified Web Services support and the latest web services APIs,
making it an ideal implementation platform for Service-Oriented Architectures (SOA).

Overv iew o f Java EE Appl i cat ions and Modules

Developing Applications with WebLogic Server 1-3

Constructing web applications is made easier with JavaServer Faces (JSF) technology and
the JSP Standard Tag Library (JSTL). Java EE 5 supports rich thin-client technologies such
as AJAX, for building applications for Web 2.0.

WebLogic Server Java EE applications are based on standardized, modular components.
WebLogic Server provides a complete set of services for those modules and handles many details
of application behavior automatically, without requiring programming. Java EE defines module
behaviors and packaging in a generic, portable way, postponing run-time configuration until the
module is actually deployed on an application server.

Java EE includes deployment specifications for Web applications, EJB modules, Web Services,
Enterprise applications, client applications, and connectors. Java EE does not specify how an
application is deployed on the target server—only how a standard module or application is
packaged. For each module type, the specifications define the files required and their location in
the directory structure.

Note: Because Java EE is backward compatible, you can still run Java EE applications on
WebLogic Server versions 8.1 and higher.

Java is platform independent, so you can edit and compile code on any platform, and test your
applications on development WebLogic Servers running on other platforms. For example, it is
common to develop WebLogic Server applications on a PC running Windows or Linux,
regardless of the platform where the application is ultimately deployed.

For more information, refer to the Java EE specification at:
http://java.sun.com/javaee/5/docs/api/

Overview of Java EE Applications and Modules
A BEA WebLogic Server™ Java EE application consists of one of the following modules or
applications running on WebLogic Server:

Web application modules—HTML pages, servlets, JavaServer Pages, and related files. See
“Web Application Modules” on page 1-4.

Enterprise Java Beans (EJB) modules—entity beans, session beans, and message-driven
beans. See “Enterprise JavaBean Modules” on page 1-5.

Connector modules—resource adapters. See “Connector Modules” on page 1-6.

Enterprise applications—Web application modules, EJB modules, resource adapters and
Web Services packaged into an application. See “Enterprise Applications” on page 1-7.

Web Services—See “WebLogic Web Services” on page 1-8.

Overv iew o f WebLog ic Se rve r App l i cat ion Deve lopment

1-4 Developing Applications with WebLogic Server

A WebLogic application can also include the following WebLogic-specific modules:

JDBC and JMS modules—See “JMS and JDBC Modules” on page 1-9.

WebLogic Diagnostic FrameWork (WLDF) modules—See “WebLogic Diagnostic
Framework Modules” on page 1-10.

Web Application Modules
A Web application on WebLogic Server includes the following files:

At least one servlet or JSP, along with any helper classes.

Optionally, a web.xml deployment descriptor, a Java EE standard XML document that
describes the contents of a WAR file.

Optionally, a weblogic.xml deployment descriptor, an XML document containing
WebLogic Server-specific elements for Web applications.

A Web application can also include HTML and XML pages with supporting files such as
images and multimedia files.

Servlets
Servlets are Java classes that execute in WebLogic Server, accept a request from a client, process
it, and optionally return a response to the client. An HttpServlet is most often used to generate
dynamic Web pages in response to Web browser requests.

JavaServer Pages
JavaServer Pages (JSPs) are Web pages coded with an extended HTML that makes it possible to
embed Java code in a Web page. JSPs can call custom Java classes, known as tag libraries, using
HTML-like tags. The appc compiler compiles JSPs and translates them into servlets. WebLogic
Server automatically compiles JSPs if the servlet class file is not present or is older than the JSP
source file. See “Building Modules and Applications Using wlappc” on page 4-4.

You can also precompile JSPs and package the servlet class in a Web Application (WAR) file to
avoid compiling in the server. Servlets and JSPs may require additional helper classes that must
also be deployed with the Web application.

Ente rpr i se JavaBean Modules

Developing Applications with WebLogic Server 1-5

More Information on Web Application Modules
See the following documentation:

“Organizing Java EE Components in a Split Development Directory” on page 3-6.

Developing Web Applications, Servlets, and JSPs for WebLogic Server

Programming JSP Tag Extensions

Enterprise JavaBean Modules
Enterprise JavaBeans (EJBs) beans are server-side Java modules that implement a business task
or entity and are written according to the EJB specification. There are three types of EJBs: session
beans, entity beans, and message-driven beans.

Enterprise JavaBeans (EJB) 3.0 is a Java EE 5 technology for the development and deployment
of component-based business applications. Although EJB 2.X and previous is a powerful and
useful technology, the programming model was complex and confusing, requiring the creation of
multiple Java files and deployment descriptors for even the simplest of EJB. This complexity
hindered the wide adoption of EJBs.

Therefore, one of the central goals of version 3.0 of the EJB specification is to make it easier to
program an EJB, in particular by reducing the number of required programming artifacts and
introducing a set of EJB-specific metadata annotations that make programming the bean file
easier and more intuitive. Another goal of the EJB 3.0 specification was to standardize the
persistence framework and reduce the complexity of the entity bean programming model and
object-relational (O/R) mapping model.

For more information on Enterprise JavaBeans 3.0, see Understanding WebLogic Enterprise
JavaBeans 3.0.

For more information on Enterprise JavaBeans 2.X, see Understanding WebLogic Enterprise
JavaBeans.

EJB Overview
Session beans execute a particular business task on behalf of a single client during a single
session. Session beans can be stateful or stateless, but are not persistent; when a client finishes
with a session bean, the bean goes away.

Entity beans represent business objects in a data store, usually a relational database system.
Persistence—loading and saving data—can be bean-managed or container-managed. More than

Overv iew o f WebLog ic Se rve r App l i cat ion Deve lopment

1-6 Developing Applications with WebLogic Server

just an in-memory representation of a data object, entity beans have methods that model the
behaviors of the business objects they represent. Entity beans can be accessed concurrently by
multiple clients and they are persistent by definition.

The container creates an instance of the message-driven bean or it assigns one from a pool to
process the message. When the message is received in the JMS destination, the message-driven
bean assigns an instance of itself from a pool to process the message. Message-driven beans are
not associated with any client. They simply handle messages as they arrive.

EJBs and WebLogic Server
Java EE cleanly separates the development and deployment roles to ensure that modules are
portable between EJB servers that support the EJB specification. Deploying an EJB in WebLogic
Server requires running the WebLogic Server appc compiler to generate classes that enforce the
EJB security, transaction, and life cycle policies. See “Building Modules and Applications Using
wlappc” on page 4-4.

The Java EE-specified deployment descriptor, ejb-jar.xml, describes the enterprise beans
packaged in an EJB application. It defines the beans’ types, names, and the names of their home
and remote interfaces and implementation classes. The ejb-jar.xml deployment descriptor
defines security roles for the beans, and transactional behaviors for the beans’ methods.

Additional deployment descriptors provide WebLogic-specific deployment information. A
weblogic-cmp-rdbms-jar.xml deployment descriptor unique to container-managed entity
beans maps a bean to tables in a database. The weblogic-ejb-jar.xml deployment descriptor
supplies additional information specific to the WebLogic Server environment, such as JNDI bind
names, clustering, and cache configuration.

Connector Modules
Connectors (also known as resource adapters) contain the Java, and if necessary, the native
modules required to interact with an Enterprise Information System (EIS). A resource adapter
deployed to the WebLogic Server environment enables Java EE applications to access a remote
EIS. WebLogic Server application developers can use HTTP servlets, JavaServer Pages (JSPs),
Enterprise Java Beans (EJBs), and other APIs to develop integrated applications that use the EIS
data and business logic.

To deploy a resource adapter to WebLogic Server, you must first create and configure WebLogic
Server-specific deployment descriptor, weblogic-ra.xml file, and add this to the deployment

Ente rpr i se App l icat ions

Developing Applications with WebLogic Server 1-7

directory. Resource adapters can be deployed to WebLogic Server as stand-alone modules or as
part of an Enterprise application. See “Enterprise Applications” on page 1-7.

For more information on connectors, see Programming WebLogic Resource Adapters.

Enterprise Applications
An Enterprise application consists of one or more Web application modules, EJB modules, and
resource adapters. It might also include a client application. An Enterprise application can be
optionally defined by an application.xml file, which was the standard J2EE deployment
descriptor for Enterprise applications.

Java EE Programming Model
An important aspect of the Java EE programming model is the introduction of metadata
annotations. Annotations simplify the application development process by allowing a developer
to specify within the Java class itself how the application behaves in the container, requests for
dependency injection, and so on. Annotations are an alternative to deployment descriptors that
were required by older versions of Enterprise applications (1.4 and earlier).

With Java EE annotations, the standard application.xml and web.xml deployment descriptors
are optional. The Java EE programming model uses the JDK 5.0 annotations feature for Web
containers, such as EJBs, servlets, Web applications, and JSPs. See Chapter 7, “Using Java EE
Annotations and Dependency Injection.”

If the application includes WebLogic Server-specific extensions, the application is further
defined by a weblogic-application.xml file. Enterprise Applications that include a client
module will also have a client-application.xml deployment descriptor and a WebLogic
run-time client application deployment descriptor. See Appendix A, “Enterprise Application
Deployment Descriptor Elements.”

Packaging and Deployment Overview
For both production and development purposes, BEA recommends that you package and deploy
even stand-alone Web applications, EJBs, and resource adapters as part of an Enterprise
application. Doing so allows you to take advantage of BEA’s new split development directory
structure, which greatly facilities application development. See Chapter 3, “Creating a Split
Development Directory Environment.”

An Enterprise application consists of Web application modules, EJB modules, and resource
adapters. It can be packaged as follows:

Overv iew o f WebLog ic Se rve r App l i cat ion Deve lopment

1-8 Developing Applications with WebLogic Server

For development purposes, BEA recommends the WebLogic split development directory
structure. Rather than having a single archived EAR file or an exploded EAR directory
structure, the split development directory has two parallel directories that separate source
files and output files. This directory structure is optimized for development on a single
WebLogic Server instance. See Chapter 3, “Creating a Split Development Directory
Environment.” BEA provides the wlpackage Ant task, which allows you to create an
EAR without having to use the JAR utility; this is exclusively for the split development
directory structure. See “Packaging Applications Using wlpackage” on page 5-1.

For development purposes, BEA further recommends that you package stand-alone Web
applications and Enterprise JavaBeans (EJBs) as part of an Enterprise application, so that
you can take advantage of the split development directory structure. See “Organizing Java
EE Components in a Split Development Directory” on page 3-6.

For production purposes, BEA recommends the exploded (unarchived) directory format.
This format enables you to update files without having to redeploy the application. To
update an archived file, you must unarchive the file, update it, then rearchive and redeploy
it.

You can choose to package your application as a JAR archived file using the jar utility
with an .ear extension. Archived files are easier to distribute and take up less space. An
EAR file contains all of the JAR, WAR, and RAR module archive files for an application
and an XML descriptor that describes the bundled modules. See “Packaging Applications
Using wlpackage” on page 5-1.

The optional META-INF/application.xml deployment descriptor contains an element for each
Web application, EJB, and connector module, as well as additional elements to describe security
roles and application resources such as databases. If this descriptor is present the WebLogic
deployer picks the list of modules from this descriptor. However if this descriptor is not present,
the container guesses the modules from the annotations defined on the POJO
(plain-old-Java-object) classes. See Appendix A, “Enterprise Application Deployment
Descriptor Elements.”

WebLogic Web Services
Web services can be shared by and used as modules of distributed Web-based applications. They
commonly interface with existing back-end applications, such as customer relationship
management systems, order-processing systems, and so on. Web services can reside on different
computers and can be implemented by vastly different technologies, but they are packaged and
transported using standard Web protocols, such as HTTP, thus making them easily accessible by
any user on the Web. See Programming Web Services for WebLogic Server.

JMS and JDBC Modules

Developing Applications with WebLogic Server 1-9

A Web service consists of the following modules:

A Web Service implementation hosted by a server on the Web. WebLogic Web Services
are hosted by WebLogic Server. A Web Service module may include either Java classes or
EJBs that implement the Web Service. Web Services are packaged either as Web
Application archives (WARs) or EJB modules (JARs) depending on the implementation.
See Programming Web Services for WebLogic Server for more information.

A standard for transmitting data and Web service invocation calls between the Web service
and the user of the Web service. WebLogic Web Services use Simple Object Access
Protocol (SOAP) 1.1 as the message format and HTTP as the connection protocol.

A standard for describing the Web service to clients so they can invoke it. WebLogic Web
Services use Web Services Description Language (WSDL) 1.1, an XML-based
specification, to describe themselves.

A standard for clients to invoke Web services (JAX-RPC).

A standard for finding and registering the Web service (UDDI).

JMS and JDBC Modules
JMS and JDBC configurations are stored as modules, defined by an XML file that conforms to
the weblogic-jmsmd.xsd and weblogic-jdbc.xsd schema, respectively. These modules are
similar to standard Java EE modules. An administrator can create and manage JMS and JDBC
modules as global system resources, as modules packaged with a Java EE application (as a
packaged resource), or as standalone modules that can be made globally available.

With modular deployment of JMS and JDBC resources, you can migrate your application and the
required JMS or JDBC configuration from environment to environment, such as from a testing
environment to a production environment, without opening an enterprise application file (such as
an EAR file) or a JMS or JDBC standalone module, and without extensive manual JMS or JDBC
reconfiguration.

Application developers create application modules in an enterprise-level IDE or another
development tool that supports editing of XML files, then package the JMS or JDBC modules
with an application and pass the application to a WebLogic Administrator to deploy.

For more information, see:

Configuring JMS Application Modules for Deployment

Configuring JDBC Application Modules for Deployment

Overv iew o f WebLog ic Se rve r App l i cat ion Deve lopment

1-10 Developing Applications with WebLogic Server

WebLogic Diagnostic Framework Modules
The WebLogic Diagnostic Framework (WLDF) provides features for generating, gathering,
analyzing, and persisting diagnostic data from BEA WebLogic Server instances and from
applications deployed to server instances. For server-scoped diagnostics, some WLDF features
are configured as part of the configuration for the domain. Other features are configured as
system resource descriptors that can be targeted to servers (or clusters). For application-scoped
diagnostics, diagnostic features are configured as resource descriptors for the application.

Application-scoped instrumentation is configured and deployed as a diagnostic module, which is
similar to a diagnostic system module. However, an application module is configured in an XML
configuration file named weblogic-diagnostics.xml which is packaged with the application
archive.

For detailed instructions for configuring instrumentation for applications, see Configuring
Application-Scoped Instrumentation.

XML Deployment Descriptors
A deployment configuration refers to the process of defining the deployment descriptor values
required to deploy an Enterprise application to a particular WebLogic Server domain. The
deployment configuration for an application or module is stored in three types of XML document:
Java EE deployment descriptors, WebLogic Server descriptors, and WebLogic Server
deployment plans. This section describes the Java EE and WebLogic-specific deployment
descriptors. See “Deployment Plans” on page 1-16 for information on deployment plans.

The Java EE programming model uses the JDK 5.0 annotations feature for Web containers, such
as EJBs, servlets, Web applications, and JSPs. Annotations simplify the application development
process by allowing a developer to specify within the Java class itself how the component
behaves in the container, requests for dependency injection, and so on. Annotations are an
alternative to deployment descriptors that were required by older versions of Web Applications
(2.4 and earlier), Enterprise applications, and (1.4 and earlier), and Enterprise JavaBeans (2.x and
earlier). See Chapter 7, “Using Java EE Annotations and Dependency Injection.”

However, Enterprise applications fully support the use of deployment descriptors, even though
the standard J2EE ones are not required. For example, you may prefer to use the old EJB 2.x
programming model, or might want to allow further customizing of the EJB at a later
development or deployment stage; in these cases you can create the standard deployment
descriptors in addition to, or instead of, the metadata annotations.

XML Deplo yment Descr ip to rs

Developing Applications with WebLogic Server 1-11

Modules and applications have deployment descriptors—XML documents—that describe the
contents of the directory or JAR file. Deployment descriptors are text documents formatted with
XML tags. The Java EE specifications define standard, portable deployment descriptors for Java
EE modules and applications. BEA defines additional WebLogic-specific deployment
descriptors for deploying a module or application in the WebLogic Server environment.

Table 1-1 lists the types of modules and applications and their Java EE-standard and
WebLogic-specific deployment descriptors.

Note: The XML Schemas for the WebLogic deployment descriptors listed in the following
table include elements from the weblogic-javaee.xsd schema, which describes common
elements shared among all WebLogic-specific deployment descriptors.

Table 1-1 Java EE and WebLogic Deployment Descriptors

Module or
Application

Scope Deployment Descriptors

Web Application Java EE web.xml

See the Sun Microsystems Servlet 2.5 Schema.

WebLogic weblogic.xml

Schema:
http://www.bea.com/ns/weblogic/920/weblogic-web-app.xsd

See weblogic.xml Deployment Descriptor Elements in Developing
Web Applications for WebLogic Server.

Enterprise Bean 3.0 Java EE ejb-jar.xml

See the Sun Microsystems EJB 3.0 Schema.

WebLogic weblogic-ejb-jar.xml

Schema: http://www.bea.com/ns/weblogic/10.0/weblogic-ejb-jar.xsd
persistence-configuration.xml

Schema:
http://www.bea.com/ns/weblogic/10.0/persistence-configuration.xsd

See Programming WebLogic Enterprise JavaBeans, Version 3.0.

Overv iew o f WebLog ic Se rve r App l i cat ion Deve lopment

1-12 Developing Applications with WebLogic Server

Enterprise Bean 2.1 J2EE ejb-jar.xml

See the Sun Microsystems EJB 2.1 Schema.

WebLogic weblogic-ejb-jar.xml

Schema: http://www.bea.com/ns/weblogic/920/weblogic-ejb-jar.xsd

See “The weblogic-ejb-jar.xml Deployment Descriptor” in
Programming WebLogic Enterprise JavaBeans.
weblogic-cmp-rdbms-jar.xml

Schema:
http://www.bea.com/ns/weblogic/920/weblogic-rdbms20-persistence
.xsd

See “The weblogic-cmp-rdbms-jar.xml Deployment Descriptor” in
Programming WebLogic Enterprise JavaBeans.

Web Services Java EE webservices.xml

See the Sun Microsystems Web Services 1.2 Schema.

WebLogic weblogic-webservices.xml

Schema: http://www.bea.com/ns/weblogic/920/weblogic-wsee.xsd

See WebLogic Web Service Deployment Descriptor Element
Reference in WebLogic Web Services: Reference.

Resource Adapter Java EE ra.xml

See the Sun Microsystems Connector 1.5 Schema.

WebLogic weblogic-ra.xml

Schema: http://www.bea.com/ns/weblogic/920/weblogic-ra.xsd

See weblogic-ra.xml Schema in Programming WebLogic Resource
Adapters.

Table 1-1 Java EE and WebLogic Deployment Descriptors

Module or
Application

Scope Deployment Descriptors

XML Deplo yment Descr ip to rs

Developing Applications with WebLogic Server 1-13

Enterprise Application Java EE application.xml

See the Sun Microsystems Application 5 Schema.

WebLogic weblogic-application.xml

Schema:
http://www.bea.com/ns/weblogic/920/weblogic-application.xsd

See “weblogic-application.xml Deployment Descriptor Elements” on
page A-1.

Client Application Java EE application-client.xml

See the Sun Microsystems Application Client 5 Schema.

WebLogic weblogic-appclient.xml

Schema:
http://www.bea.com/ns/weblogic/10.0/weblogic-appclient.xsd

See Developing a J2EE Application Client (Thin Client) in
Programming Stand-alone Clients.

JMS Module WebLogic FileName-jms.xml, where FileName can be anything you want.

Schema: http://www.bea.com/ns/weblogic/920/weblogic-jmsmd.xsd

See Configuring JMS Application Modules for Deployment in
Configuring and Managing WebLogic JMS.

JDBC Module WebLogic FileName-jdbc.xml, where FileName can be anything you
want.

Schema: http://www.bea.com/ns/weblogic/920/weblogic-jdbc.xsd

See Configuring JDBC Application Modules for Deployment in
Configuring and Managing WebLogic JDBC.

WLDF Module WebLogic weblogic-diagnostics.xml

Schema: http://www.bea.com/ns/weblogic/920/diagnostics.xsd

See Deploying WLDF Application Modules in Configuring and Using
the WebLogic Diagnostics Framework.

Table 1-1 Java EE and WebLogic Deployment Descriptors

Module or
Application

Scope Deployment Descriptors

Overv iew o f WebLog ic Se rve r App l i cat ion Deve lopment

1-14 Developing Applications with WebLogic Server

When you package a module or application, you create a directory to hold the deployment
descriptors—WEB-INF or META-INF—and then create the XML deployment descriptors in that
directory.

Automatically Generating Deployment Descriptors
WebLogic Server provides a variety of tools for automatically generating deployment
descriptors. These are discussed in the sections that follow.

EJBGen
EJBGen is an Enterprise JavaBeans 2.x code generator or command-line tool that uses Javadoc
markup to generate EJB deployment descriptor files. You annotate your Bean class file with
Javadoc tags and then use EJBGen to generate the Remote and Home classes and the deployment
descriptor files for an EJB application, reducing to a single file you need to edit and maintain your
EJB .java and descriptor files. See “EJBGen Reference” in Programming WebLogic Enterprise
JavaBeans.

Java-based Command-line Utilities
WebLogic Server includes a set of Java-based command-line utilities that automatically generate
both standard Java EE and WebLogic-specific deployment descriptors for Web applications and
Enterprise Applications.

These command-line utilities examine the classes you have assembled in a staging directory and
build the appropriate deployment descriptors based on the servlet classes, and so on. These
utilities include:

java weblogic.marathon.ddinit.EarInit—automatically generates the deployment
descriptors for Enterprise applications.

java weblogic.marathon.ddinit.WebInit—automatically generates the deployment
descriptors for Web applications.

For an example of DDInit, assume that you have created a directory called c:\stage that
contains the JSP files and other objects that make up a Web application but you have not yet
created the web.xml and weblogic.xml deployment descriptors. To automatically generate
them, execute the following command:

 prompt> java weblogic.marathon.ddinit.WebInit c:\stage

The utility generates the web.xml and weblogic.xml deployment descriptors and places them
in the WEB-INF directory, which DDInit will create if it does not already exist.

XML Deplo yment Descr ip to rs

Developing Applications with WebLogic Server 1-15

Upgrading Deployment Descriptors From Previous
Releases of J2EE and WebLogic Server
So that your applications can take advantage of the features in the current Java EE specification
and release of WebLogic Server, BEA recommends that you always upgrade deployment
descriptors when you migrate applications to a new release of WebLogic Server.

To upgrade the deployment descriptors in your J2EE applications and modules, first use the
weblogic.DDConverter tool to generate the upgraded descriptors into a temporary directory.
Once you have inspected the upgraded deployment descriptors to ensure that they are correct,
repackage your J2EE module archive or exploded directory with the new deployment descriptor
files.

Invoke weblogic.DDConverter with the following command:

prompt> java weblogic.DDConverter [options] archive_file_or_directory

where archive_file_or_directory refers to the archive file (EAR, WAR, JAR, or RAR) or
exploded directory of your Enterprise application, Web application, EJB, or resource adapter.

The following table describes the weblogic.DDConverter command options.

The following example shows how to use the weblogic.DDConverter command to generate
upgraded deployment descriptors for the my.ear Enterprise application into the subdirectory
tempdir in the current directory:

prompt> java weblogic.DDConverter -d tempdir my.ear

Table 1-2 weblogic.DDConverter Command Options

Option Description

-d <dir> Specifies the directory to which
descriptors are written.

-help Prints the standard usage message.

-quiet Turns off output messages except error
messages.

-verbose Turns on additional output used for
debugging.

Overv iew o f WebLog ic Se rve r App l i cat ion Deve lopment

1-16 Developing Applications with WebLogic Server

Deployment Plans
A deployment plan is an XML document that defines an application’s WebLogic Server
deployment configuration for a specific WebLogic Server environment. A deployment plan
resides outside of an application’s archive file, and can apply changes to deployment properties
stored in the application’s existing WebLogic Server deployment descriptors. Administrators use
deployment plans to easily change an application’s WebLogic Server configuration for a specific
environment without modifying existing Java EE or WebLogic-specific deployment descriptors.
Multiple deployment plans can be used to reconfigure a single application for deployment to
multiple, differing WebLogic Server environments.

After programmers have finished programming an application, they export its deployment
configuration to create a custom deployment plan that administrators later use for deploying the
application into new WebLogic Server environments. Programmers distribute both the
application deployment files and the custom deployment plan to deployers (for example, testing,
staging, or production administrators) who use the deployment plan as a blueprint for configuring
the application for their environment.

BEA WebLogic Server provides the following tools to help programmers export an application’s
deployment configuration:

weblogic.PlanGenerator creates a template deployment plan with null variables for
selected categories of WebLogic Server deployment descriptors. This tool is recommended
if you are beginning the export process and you want to create a template deployment plan
with null variables for an entire class of deployment descriptors.

The Administration Console updates or creates new deployment plans as necessary when
you change configuration properties for an installed application. You can use the
Administration Console to generate a new deployment plan or to add or override variables
in an existing plan. The Administration Console provides greater flexibility than
weblogic.PlanGenerator, because it allows you to interactively add or edit individual
deployment descriptor properties in the plan, rather than export entire categories of
descriptor properties.

For complete and detailed information about creating and using deployment plans, see:

Understanding WebLogic Server Deployment

Exporting an Application for Deployment to New Environments

Understanding WebLogic Server Deployment Plans

Deve lopment So f tware

Developing Applications with WebLogic Server 1-17

Development Software
This section reviews required and optional tools for developing WebLogic Server applications.

Apache Ant
The preferred BEA method for building applications with WebLogic Server is Apache Ant. Ant
is a Java-based build tool. One of the benefits of Ant is that is it is extended with Java classes,
rather than shell-based commands. BEA provides numerous Ant extension classes to help you
compile, build, deploy, and package applications using the WebLogic Server split development
directory environment.

Another benefit is that Ant is a cross-platform tool. Developers write Ant build scripts in
eXtensible Markup Language (XML). XML tags define the targets to build, dependencies among
targets, and tasks to execute in order to build the targets. Ant libraries are bundled with WebLogic
Server to make it easier for our customers to build Java applications out of the box.

To use Ant, you must first set your environment by executing either the setExamplesEnv.cmd
(Windows) or setExamplesEnv.sh (UNIX) commands located in the
WL_SERVER\samples\domains\wl_server directory, where WL_SERVER is your WebLogic
Server installation directory.

For a complete explanation of ant capabilities, see:
http://jakarta.apache.org/ant/manual/index.html

Note: The Apache Jakarta Web site publishes online documentation for only the most current
version of Ant, which might be different from the version of Ant that is bundled with
WebLogic Server. Use the following command, after setting your WebLogic
environment, to determine the version of Ant bundled with WebLogic Server:
prompt> ant -version

To view the documentation for a specific version of Ant, such as the version included
with WebLogic Server, download the Ant zip file from
http://archive.apache.org/dist/ant/binaries/ and extract the documentation.

For more information on using Ant to compile your cross-platform scripts or using cross-platform
scripts to create XML scripts that can be processed by Ant, refer to any of the WebLogic Server
examples, such as
WL_HOME/samples/server/examples/src/examples/ejb20/basic/beanManaged/build

.xml.

Also refer to the following WebLogic Server documentation on building examples using Ant:
WL_HOME/samples/server/examples/src/examples/examples.html.

Overv iew o f WebLog ic Se rve r App l i cat ion Deve lopment

1-18 Developing Applications with WebLogic Server

Using A Third-Party Version of Ant
You can use your own version of Ant if the one bundled with WebLogic Server is not adequate
for your purposes. To determine the version of Ant that is bundled with WebLogic Server, run
the following command after setting your WebLogic environment:

prompt> ant -version

If you plan to use a different version of Ant, you can replace the appropriate JAR file in the
WL_HOME\server\lib\ant directory with an updated version of the file (where WL_HOME refers
to the main WebLogic installation directory, such as c:\bea\wlserver_10.0) or add the new
file to the front of your CLASSPATH.

Changing the Ant Heap Size
By default the environment script allocates a heap size of 128 megabytes to Ant. You can increase
or decrease this value for your own projects by setting the -X option in your local ANT_OPTS
environment variable. For example:

prompt> setenv ANT_OPTS=-Xmx128m

If you want to set the heap size permanently, add or update the MEM_ARGS variable in the scripts
that set your environment, start WebLogic Server, and so on, as shown in the following snippet
from a Windows command script that starts a WebLogic Server instance:

set MEM_ARGS=-Xms32m -Xmx200m

See the scripts and commands in WL_HOME/server/bin for examples of using the MEM_ARGS
variable.

Source Code Editor or IDE
You need a text editor to edit Java source files, configuration files, HTML or XML pages, and
JavaServer Pages. An editor that gracefully handles Windows and UNIX line-ending differences
is preferred, but there are no other special requirements for your editor. You can edit HTML or
XML pages and JavaServer Pages with a plain text editor, or use a Web page editor such as
DreamWeaver. For XML pages, you can also use an enterprise-level IDE with DTD validation
or another development tool that supports editing of XML files.

Database System and JDBC Driver
Nearly all WebLogic Server applications require a database system. You can use any DBMS that
you can access with a standard JDBC driver, but services such as WebLogic Java Message
Service (JMS) require a supported JDBC driver for Oracle, Sybase, Informix, Microsoft SQL

Deve lopment So f tware

Developing Applications with WebLogic Server 1-19

Server, IBM DB2, or PointBase. Refer to Supported Configurations to find out about supported
database systems and JDBC drivers.

Web Browser
Most Java EE applications are designed to be executed by Web browser clients. WebLogic Server
supports the HTTP 1.1 specification and is tested with current versions of the Firefox and
Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions you will
support. In your test plans, include testing plans for each supported version. Be explicit about
version numbers and browser configurations. Will your application support Secure Socket Layers
(SSL) protocol? Test alternative security settings in the browser so that you can tell your users
what choices you support.

If your application uses applets, it is especially important to test browser configurations you want
to support because of differences in the JVMs embedded in various browsers. One solution is to
require users to install the Java plug-in from Sun so that everyone has the same Java run-time
version.

Third-Party Software
You can use third-party software products to enhance your WebLogic Server development
environment. See BEA WebLogic Developer Tools Resources, which provides developer tools
information for products that support the BEA application servers.

To download some of these tools, see BEA WebLogic Server Downloads at
http://commerce.bea.com/downloads/weblogic_server_tools.jsp.

Note: Check with the software vendor to verify software compatibility with your platform and
WebLogic Server version.

Overv iew o f WebLog ic Se rve r App l i cat ion Deve lopment

1-20 Developing Applications with WebLogic Server

Developing Applications with WebLogic Server 2-1

C H A P T E R 2

Using Ant Tasks to Configure and Use a
WebLogic Server Domain

The following sections describe how to start and stop WebLogic Server instances and configure
WebLogic Server domains using WebLogic Ant tasks that you can include in your development
build scripts:

“Overview of Configuring and Starting Domains Using Ant Tasks” on page 2-1

“Starting Servers and Creating Domains Using the wlserver Ant Task” on page 2-2

“Configuring a WebLogic Server Domain Using the wlconfig Ant Task” on page 2-9

“Using the libclasspath Ant Task” on page 2-22

Overview of Configuring and Starting Domains Using Ant
Tasks

WebLogic Server provides a pair of Ant tasks to help you perform common configuration tasks
in a development environment. The configuration tasks enable you to start and stop WebLogic
Server instances as well as create and configure WebLogic Server domains.

When combined with other WebLogic Ant tasks, you can create powerful build scripts for
demonstrating or testing your application with custom domains. For example, a single Ant build
script can:

Compile your application using the wlcompile, wlappc, and Web Services Ant tasks.

Create a new single-server domain and start the Administration Server using the wlserver
Ant task.

Using Ant Tasks to Conf igure and Use a WebLog ic Se rve r Domain

2-2 Developing Applications with WebLogic Server

Configure the new domain with required application resources using the wlconfig Ant
task.

Deploy the application using the wldeploy Ant task.

Automatically start a compiled client application to demonstrate or test product features.

The sections that follow describe how to use the configuration Ant tasks, wlserver and
wlconfig.

Starting Servers and Creating Domains Using the
wlserver Ant Task

The wlserver Ant task enables you to start, reboot, shutdown, or connect to a WebLogic Server
instance. The server instance may already exist in a configured WebLogic Server domain, or you
can create a new single-server domain for development by using the generateconfig=true
attribute.

When you use the wlserver task in an Ant script, the task does not return control until the
specified server is available and listening for connections. If you start up a server instance using
wlserver, the server process automatically terminates after the Ant VM terminates. If you only
connect to a currently-running server using the wlserver task, the server process keeps running
after Ant completes.

The wlserver WebLogic Server Ant task extends the standard java Ant task
(org.apache.tools.ant.taskdefs.Java). This means that all the attributes of the java Ant
task also apply to the wlserver Ant task. For example, you can use the output and error
attributes to specify the name of the files to which output and standard errors of the wlserver
Ant task is written, respectively. For full documentation about the attributes of the standard java
Ant task, see Java on the Apache Ant site.

Basic Steps for Using wlserver
To use the wlserver Ant task:

1. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the directory
WL_HOME\server\bin, where WL_HOME is the top-level directory of your WebLogic Server
installation.

Star t ing Se rve rs and Creat ing Domains Us ing the w lse rve r Ant Task

Developing Applications with WebLogic Server 2-3

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your WebLogic Server
installation.

Note: The wlserver task is predefined in the version of Ant shipped with WebLogic
Server. If you want to use the task with your own Ant installation, add the following
task definition in your build file:

<taskdef name="wlserver"
classname="weblogic.ant.taskdefs.management.WLServer"/>

2. Add a call to the wlserver task in the build script to start, shutdown, restart, or connect to a
server. See “wlserver Ant Task Reference” on page 2-4 for information about wlserver
attributes and default behavior.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in the staging
directory, optionally passing the command a target argument:

prompt> ant

Use ant -verbose to obtain more detailed messages from the wlserver task.

Sample build.xml Files for wlserver
The following shows a minimal wlserver target that starts a server in the current directory using
all default values:

<target name="wlserver-default">

<wlserver/>

</target>

This target connects to an existing, running server using the indicated connection parameters and
username/password combination:

 <target name="connect-server">

<wlserver host="127.0.0.1" port="7001" username="weblogic"

password="weblogic" action="connect"/>

</target>

This target starts a WebLogic Server instance configured in the config subdirectory:

 <target name="start-server">

<wlserver dir="./config" host="127.0.0.1" port="7001" action="start"/>

</target>

Using Ant Tasks to Conf igure and Use a WebLog ic Se rve r Domain

2-4 Developing Applications with WebLogic Server

This target creates a new single-server domain in an empty directory, and starts the domain’s
server instance:

 <target name="new-server">

<delete dir="./tmp"/>

<mkdir dir="./tmp"/>

<wlserver dir="./tmp" host="127.0.0.1" port="7001"

generateConfig="true" username="weblogic" password="weblogic"

action="start"/>

</target>

wlserver Ant Task Reference
The following table describes the attributes of the wlserver Ant task.

Table 2-1 Attributes of the wlserver Ant Task

Attribute Description Data
Type

Required?

policy The path to the security policy file for the WebLogic
Server domain. This attribute is used only for starting
server instances.

File No

dir The path that holds the domain configuration (for
example, c:\bea\user_projects\mydomain). By
default, wlserver uses the current directory.

File No

beahome The path to the BEA home directory (for example,
c:\bea).

File No

weblogichome The path to the WebLogic Server installation directory
(for example, c:\bea\wlserver_10.0).

File No

Star t ing Se rve rs and Creat ing Domains Us ing the w lse rve r Ant Task

Developing Applications with WebLogic Server 2-5

servername The name of the server to start, shutdown, reboot, or
connect to.

A WebLogic Server instance is uniquely identified by its
protocol, host, and port values, so if you use this set of
attributes to specify the server you want to start, shutdown
or reboot, you do not need to specify its actual name using
the servername attribute. The only exception is when
you want to shutdown the Administration server; in this
case you must specify this attribute.

The default value for this attribute is myserver.

String Required
only when
shutting
down the
Administrati
on server.

domainname The name of the WebLogic Server domain in which the
server is configured.

String No

adminserverurl The URL to access the Administration Server in the
domain. This attribute is required if you are starting up a
Managed Server in the domain.

String Required for
starting
Managed
Servers.

username The username of an administrator account. If you omit
both the username and password attributes,
wlserver attempts to obtain the encrypted username
and password values from the boot.properties file.
See Boot Identity Files in the Managing Server Startup
and Shutdown for more information on
boot.properties.

String No

password The password of an administrator account. If you omit
both the username and password attributes,
wlserver attempts to obtain the encrypted username
and password values from the boot.properties file.
See Boot Identity Files in the Managing Server Startup
and Shutdown for more information on
boot.properties.

String No

pkpassword The private key password for decrypting the SSL private
key file.

String No

Table 2-1 Attributes of the wlserver Ant Task

Attribute Description Data
Type

Required?

Using Ant Tasks to Conf igure and Use a WebLog ic Se rve r Domain

2-6 Developing Applications with WebLogic Server

timeout The maximum time, in milliseconds, that wlserver
waits for a server to boot. This also specifies the
maximum amount of time to wait when connecting to a
running server.

The default value for this attribute is 0, which means the
Ant task never times out.

long No

timeoutSeconds The maximum time, in seconds, that wlserver waits for
a server to boot. This also specifies the maximum amount
of time to wait when connecting to a running server.

The default value for this attribute is 0, which means the
Ant task never times out.

long No

productionmodeenable
d

Specifies whether a server instance boots in development
mode or in production mode.

Development mode enables a WebLogic Server instance
to automatically deploy and update applications that are in
the domain_name/autodeploy directory (where
domain_name is the name of a WebLogic Server
domain). In other words, development mode lets you use
auto-deploy. Production mode disables the
auto-deployment feature. See Deploying Applications
and Modules for more information.

Valid values for this attribute are True and False. The
default value is False (which means that by default a
server instance boots in development mode.)

Note: If you boot the server in production mode by
setting this attribute to True, you must reboot
the server to set the mode back to development
mode. Or in other words, you cannot reset the
mode on a running server using other
administrative tools, such as the WebLogic
Server Scripting Tool (WLST).

boolean No

host The DNS name or IP address on which the server instance
is listening.

The default value for this attribute is localhost.

String No

Table 2-1 Attributes of the wlserver Ant Task

Attribute Description Data
Type

Required?

Star t ing Se rve rs and Creat ing Domains Us ing the w lse rve r Ant Task

Developing Applications with WebLogic Server 2-7

port The TCP port number on which the server instance is
listening.

The default value for this attribute is 7001.

int No

generateconfig Specifies whether or not wlserver creates a new
domain for the specified server.

Valid values for this attribute are true and false. The
default value is false.

boolean No

action Specifies the action wlserver performs: start,
shutdown, reboot, or connect.

The shutdown action can be used with the optional
forceshutdown attribute perform a forced shutdown.

The default value for this attribute is start.

String No

failonerror This is a global attribute used by WebLogic Server Ant
tasks. It specifies whether the task should fail if it
encounters an error during the build.

Valid values for this attribute are true and false. The
default value is false.

Boolean No

forceshutdown This optional attribute is used in conjunction with the
action="shutdown" attribute to perform a forced
shutdown. For example:
<wlserver

host="${wls.host}"
port="${port}"
username="${wls.username}"
password="${wls.password}"
action="shutdown"
forceshutdown="true"/>

Valid values for this attribute are true and false. The
default value is false.

Boolean No

protocol Specifies the protocol that the wlserver Ant task uses to
communicate with the WebLogic Server instance.

Valid values are t3, t3s, http, https, and iiop. The
default value is t3.

String No

Table 2-1 Attributes of the wlserver Ant Task

Attribute Description Data
Type

Required?

Using Ant Tasks to Conf igure and Use a WebLog ic Se rve r Domain

2-8 Developing Applications with WebLogic Server

forceImplicitUpgrade Specifies whether the wlserver Ant task, if run against
an 8.1 (or previous) domain, should implicitly upgrade it
to version 9.2.

Valid values are true or false. The default value is
false, which means that the Ant task does not implicitly
upgrade the domain, but rather, will fail with an error
indicating that the domain needs to be upgraded to version
9.2 of WebLogic Server.

For more information about upgrading domains, see
Upgrading WebLogic Application Environments.

Boolean No.

configFile Specifies the configuration file for your domain.

The value of this attribute must be a valid XML file that
conforms to the XML schema as defined in the BEA
WebLogic Server 9.2 Domain Configuration Schema
Reference.

The XML file must exist in the Administration Server's
root directory, which is either the current directory or the
directory that you specify with the dir attribute.

If you do not specify this attribute, the default value is
config.xml in the directory specified by the dir
attribute. If you do not specify the dir attribute, then the
default domain directory is the current directory.

String No.

Table 2-1 Attributes of the wlserver Ant Task

Attribute Description Data
Type

Required?

Conf igur ing a WebLog ic Se rve r Domain Us ing the w lconf ig Ant Task

Developing Applications with WebLogic Server 2-9

Configuring a WebLogic Server Domain Using the
wlconfig Ant Task

The following sections describe how to use the wlconfig Ant task to configure a WebLogic
Server domain.

What the wlconfig Ant Task Does
The wlconfig Ant task enables you to configure a WebLogic Server domain by creating,
querying, or modifying configuration MBeans on a running Administration Server instance.
Specifically, wlconfig enables you to:

Create new MBeans, optionally storing the new MBean Object Names in Ant properties.

Set attribute values on a named MBean available on the Administration Server.

useBootProperties Specifies whether to use the boot.properties file
when starting a WebLogic Server instance. If this
attribute is set to true, WebLogic Server uses the
username and encrypted password stored in the
boot.properties file to start rather than any values
set with the username and password attributes.

Note: The values of the username and password
attributes are still used when shutting down or
rebooting the WebLogic Server instance. The
useBootProperties attribute applies only
when starting the server.

Valid values for this attribute are true and false.
The default value is false.

Boolean No

verbose Specifies that the Ant task output additional information
as it is performing its action.

Valid values for this attribute are true and false. The
default value is false.

Boolean No

Table 2-1 Attributes of the wlserver Ant Task

Attribute Description Data
Type

Required?

Using Ant Tasks to Conf igure and Use a WebLog ic Se rve r Domain

2-10 Developing Applications with WebLogic Server

Create MBeans and set their attributes in one step by nesting set attribute commands within
create MBean commands.

Query MBeans, optionally storing the query results in an Ant property reference.

Query MBeans and set attribute values on all matching results.

Establish a parent/child relationship among MBeans by nesting create commands within
other create commands.

WARNING: The wlconfig Ant task works only against MBeans that are in the compatibility
MBean server, which has been deprecated as of version 9.0 of WebLogic Server.

In particular, the wlconfig Ant task uses the deprecated BEA proprietary API
weblogic.management.MBeanHome to access WebLogic MBeans, the same as
it did in Version 8.1 of WebLogic Server. The Ant task does not use the standard
JMX interface (javax.management.MBeanServerConnection) to discover
MBeans.

This means that the only MBeans that you can access using wlconfig are those
listed under the Deprecated MBeans category in the WebLogic Server MBean
Reference.

Basic Steps for Using wlconfig
1. Set your environment in a command shell. See “Basic Steps for Using wlserver” on page 2-2

for details.

Note: The wlconfig task is predefined in the version of Ant shipped with WebLogic
Server. If you want to use the task with your own Ant installation, add the following
task definition in your build file:

<taskdef name="wlconfig"
classname="weblogic.ant.taskdefs.management.WLConfig"/>

2. wlconfig is commonly used in combination with wlserver to configure a new WebLogic
Server domain created in the context of an Ant task. If you will be using wlconfig to
configure such a domain, first use wlserver attributes to create a new domain and start the
WebLogic Server instance.

3. Add an initial call to the wlconfig task to connect to the Administration Server for a domain.
For example:
<target name=”doconfig”>

<wlconfig url="t3://localhost:7001" username="weblogic"

Conf igur ing a WebLog ic Se rve r Domain Us ing the w lconf ig Ant Task

Developing Applications with WebLogic Server 2-11

password="weblogic">

</target>

4. Add nested create, delete, get, set, and query elements to configure the domain.

5. Execute the Ant task or tasks specified in the build.xml file by typing ant in the staging
directory, optionally passing the command a target argument:

prompt> ant doconfig

Use ant -verbose to obtain more detailed messages from the wlconfig task.

Sample build.xml Files for wlconfig
The following sections provide sample Ant build scripts for using the wlconfig Ant task.

Complete Example
This example shows a single build.xml file that creates a new domain using wlserver and
performs various domain configuration tasks with wlconfig. The configuration tasks set up
domain resources required by the Avitek Medical Records sample application.

The script starts by creating the new domain:

<target name="medrec.config">

<mkdir dir="config"/>

<wlserver username="a" password="a" servername="MedRecServer"

domainname="medrec" dir="config" host="localhost" port="7000"

generateconfig="true"/>

The script then starts the wlconfig task by accessing the newly-created server:

<wlconfig url="t3://localhost:7000" username="a" password="a">

Within the wlconfig task, the query element runs a query to obtain the Server MBean object
name, and stores this MBean in the ${medrecserver} Ant property:

 <query domain="medrec" type="Server" name="MedRecServer"

property="medrecserver"/>

The script the uses a create element to create a new JDBC connection pool in the domain,
storing the object name in the ${medrecpool} Ant property. Nested set elements in the create
operation set attributes on the newly-created MBean. The new pool is target to the server using
the ${medrecserver} Ant property set in the query above:

Using Ant Tasks to Conf igure and Use a WebLog ic Se rve r Domain

2-12 Developing Applications with WebLogic Server

<create type="JDBCConnectionPool" name="MedRecPool"

property="medrecpool">

<set attribute="CapacityIncrement" value="1"/>

<set attribute="DriverName"

value="com.pointbase.jdbc.jdbcUniversalDriver"/>

<set attribute="InitialCapacity" value="1"/>

<set attribute="MaxCapacity" value="10"/>

<set attribute="Password" value="MedRec"/>

<set attribute="Properties" value="user=MedRec"/>

<set attribute="RefreshMinutes" value="0"/>

<set attribute="ShrinkPeriodMinutes" value="15"/>

<set attribute="ShrinkingEnabled" value="true"/>

<set attribute="TestConnectionsOnRelease" value="false"/>

<set attribute="TestConnectionsOnReserve" value="false"/>

<set attribute="URL"

value="jdbc:pointbase:server://localhost/demo"/>

<set attribute="Targets" value="${medrecserver}"/>

</create>

Next, the script creates a JDBC TX DataSource using the JDBC connection pool created above:

<create type="JDBCTxDataSource" name="Medical Records Tx DataSource">

<set attribute="JNDIName" value="MedRecTxDataSource"/>

<set attribute="PoolName" value="MedRecPool"/>

<set attribute="Targets" value="${medrecserver}"/>

</create>

The script creates a new JMS connection factory using nested set elements:

<create type="JMSConnectionFactory" name="Queue">

<set attribute="JNDIName" value="jms/QueueConnectionFactory"/>

<set attribute="XAServerEnabled" value="true"/>

<set attribute="Targets" value="${medrecserver}"/>

</create>

A new JMS JDBC store is created using the MedRecPool:

<create type="JMSJDBCStore" name="MedRecJDBCStore"

property="medrecjdbcstore">

<set attribute="ConnectionPool" value="${medrecpool}"/>

Conf igur ing a WebLog ic Se rve r Domain Us ing the w lconf ig Ant Task

Developing Applications with WebLogic Server 2-13

<set attribute="PrefixName" value="MedRec"/>

</create>

When creating a new JMS server, the script uses a nested create element to create a JMS queue,
which is the child of the JMS server:

<create type="JMSServer" name="MedRecJMSServer">

<set attribute="Store" value="${medrecjdbcstore}"/>

<set attribute="Targets" value="${medrecserver}"/>

<create type="JMSQueue" name="Registration Queue">

<set attribute="JNDIName" value="jms/REGISTRATION_MDB_QUEUE"/>

</create>

</create>

This script creates a new mail session and startup class:

<create type="MailSession" name="Medical Records Mail Session">

<set attribute="JNDIName" value="mail/MedRecMailSession"/>

<set attribute="Properties"

value="mail.user=joe;mail.host=mail.mycompany.com"/>

<set attribute="Targets" value="${medrecserver}"/>

</create>

<create type="StartupClass" name="StartBrowser">

<set attribute="Arguments" value="port=${listenport}"/>

<set attribute="ClassName"

value="com.bea.medrec.startup.StartBrowser"/>

<set attribute="FailureIsFatal" value="false"/>

<set attribute="Notes" value="Automatically starts a browser on

server boot."/>

 <set attribute="Targets" value="${medrecserver}"/>

 </create>

Finally, the script obtains the WebServer MBean and sets the log filename using a nested set
element:

<query domain="medrec" type="WebServer" name="MedRecServer">

<set attribute="LogFileName" value="logs/access.log"/>

</query>

</wlconfig>

</target>

Using Ant Tasks to Conf igure and Use a WebLog ic Se rve r Domain

2-14 Developing Applications with WebLogic Server

Query and Delete Example
The query element does not need to specify an MBean name when nested within a query
element:

<target name="queryDelete">

<wlconfig url="${adminurl}" username="${user}" password="${pass}"

failonerror="false">

<query domain="${wlsdomain}:Name=MyNewServer2,*"

property="deleteQuery">

<delete/>

</query>

</wlconfig>

</target>

Example of Setting Multiple Attribute Values
The set element allows you to set an attribute value to multiple object names stored in Ant
properties. For example, the following target stores the object names of two servers in separate
Ant properties, then uses those properties to assign both servers to the target attribute of a new
JDBC Connection Pool:

<target name="multipleJDBCTargets">

<wlconfig url="${adminurl}" username="${user}" password="${pass}">

<query domain="mydomain" type="Server" name="MyServer"

property="myserver"/>

<query domain="mydomain" type="Server" name="OtherServer"

property="otherserver"/>

<create type="JDBCConnectionPool" name="sqlpool" property="sqlpool">

<set attribute="CapacityIncrement" value="1"/>

[.....]

<set attribute="Targets" value="${myserver};${otherserver}"/>

</create>

</wlconfig>

</target>

wlconfig Ant Task Reference
The following sections describe the attributes and elements that can be used with wlconfig.

Conf igur ing a WebLog ic Se rve r Domain Us ing the w lconf ig Ant Task

Developing Applications with WebLogic Server 2-15

Main Attributes
The following table describes the main attributes of the wlconfig Ant task.

Table 2-2 Main Attributes of the wlconfig Ant Task

Attribute Description Data
Type

Required?

url The URL of the domain’s Administration Server. String Yes

username The username of an administrator account. String No

password The password of an administrator account.

To avoid having the plain text password appear in the
build file or in process utilities such as ps, first store a
valid username and encrypted password in a
configuration file using the WebLogic Scripting Tool
(WLST) storeUserConfig command. Then omit
both the username and password attributes in your
Ant build file. When the attributes are omitted,
wlconfig attempts to login using values obtained from
the default configuration file.

If you want to obtain a username and password from a
non-default configuration file and key file, use the
userconfigfile and userkeyfile attributes with
wlconfig.

See the command reference for storeUserConfig in
the WLST Command and Variable Reference for more
information on storing and encrypting passwords.

String No

failonerror This is a global attribute used by WebLogic Server Ant
tasks. It specifies whether the task should fail if it
encounters an error during the build. This attribute is set
to true by default.

Boolean No

Using Ant Tasks to Conf igure and Use a WebLog ic Se rve r Domain

2-16 Developing Applications with WebLogic Server

Nested Elements
wlconfig also has several elements that can be nested to specify configuration options:

create

delete

set

get

query

invoke

userconfigfile Specifies the location of a user configuration file to use
for obtaining the administrative username and password.
Use this option, instead of the username and
password attributes, in your build file when you do not
want to have the plain text password shown in-line or in
process-level utilities such as ps.
Before specifying the userconfigfile attribute, you
must first generate the file using the WebLogic Scripting
Tool (WLST) storeUserConfig command as
described in the WLST Command and Variable
Reference.

File No

userkeyfile Specifies the location of a user key file to use for
encrypting and decrypting the username and password
information stored in a user configuration file (the
userconfigfile attribute).
Before specifying the userkeyfile attribute, you must
first generate the key file using the WebLogic Scripting
Tool (WLST) storeUserConfig command as
described in the WLST Command and Variable
Reference.

File No

Table 2-2 Main Attributes of the wlconfig Ant Task

Attribute Description Data
Type

Required?

Conf igur ing a WebLog ic Se rve r Domain Us ing the w lconf ig Ant Task

Developing Applications with WebLogic Server 2-17

create
The create element creates a new MBean in the WebLogic Server domain. The wlconfig task
can have any number of create elements.

A create element can have any number of nested set elements, which set attributes on the
newly-created MBean. A create element may also have additional, nested create elements that
create child MBeans.

The create element has the following attributes.

Table 2-3 Attributes of the create Element

Attribute Description Data
Type

Required?

name The name of the new MBean object to create. String No
(wlconfig
supplies a
default name
if none is
specified.)

type The MBean type. String Yes

property The name of an optional Ant property that holds
the object name of the newly-created MBean.

Note: If you nest a create element inside of
another create element, you cannot
specify the property attribute for the
nested create element.

String No

Using Ant Tasks to Conf igure and Use a WebLog ic Se rve r Domain

2-18 Developing Applications with WebLogic Server

delete
The delete element removes an existing MBean from the WebLogic Server domain. delete
takes a single attribute:

set
The set element sets MBean attributes on a named MBean, a newly-created MBean, or on
MBeans retrieved as part of a query. You can include the set element as a direct child of the
wlconfig task, or nested within a create or query element.

The set element has the following attributes:

Table 2-4 Attribute of the delete Element

Attribute Description Data
Type

Required?

mbean The object name of the MBean to
delete.

String Required when the
delete element is a direct
child of the wlconfig
task. Not required when
nested within a query
element.

Table 2-5 Attributes of the set Element

Attribute Description Data
Type

Required?

attribute The name of the MBean attribute to set. String Yes

value The value to set for the specified MBean attribute.

You can specify multiple object names (stored in
Ant properties) as a value by delimiting the entire
value list with quotes and separating the object
names with a semicolon. See “Example of Setting
Multiple Attribute Values” on page 2-14.

String Yes

Conf igur ing a WebLog ic Se rve r Domain Us ing the w lconf ig Ant Task

Developing Applications with WebLogic Server 2-19

get
The get element retrieves attribute values from an MBean in the WebLogic Server domain. The
wlconfig task can have any number of get elements.

The get element has the following attributes.

mbean The object name of the MBean whose values are
being set. This attribute is required only when the
set element is included as a direct child of the
main wlconfig task; it is not required when the
set element is nested within the context of a
create or query element.

String Required
only when
the set
element is a
direct child
of the
wlconfig
task.

domain This attribute specifies the JMX domain name for
Security MBeans and third-party SPI MBeans. It
is not required for administration MBeans, as the
domain corresponds to the WebLogic Server
domain.

Note: You cannot use this attribute if the set
element is nested inside of a create
element.

String No

Table 2-6 Attributes of the get Element

Attribute Description Data
Type

Required?

attribute The name of the MBean attribute whose value you
want to retrieve.

String Yes

Table 2-5 Attributes of the set Element

Attribute Description Data
Type

Required?

Using Ant Tasks to Conf igure and Use a WebLog ic Se rve r Domain

2-20 Developing Applications with WebLogic Server

query
The query elements finds MBean that match a search pattern.

The query element supports the following nested child elements:

set—performs set operations on all MBeans in the result set.

get—performs get operations on all MBeans in the result set.

create—each MBean in the result set is used as a parent of a new MBean.

delete—performs delete operations on all MBeans in the result set.

invoke—invokes all matching MBeans in the result set.

wlconfig can have any number of nested query elements.

query has the following attributes:

property The name of an Ant property that will hold the
retrieved MBean attribute value.

String Yes

mbean The object name of the MBean you want to
retrieve attribute values from.

String Yes

Table 2-7 Attributes of the query Element

Attribute Description Data
Type

Required?

domain The name of the WebLogic Server domain in
which to search for MBeans.

String No

type The type of MBean to query. String No

name The name of the MBean to query. String No

pattern A JMX query pattern. String No

Table 2-6 Attributes of the get Element

Attribute Description Data
Type

Required?

Conf igur ing a WebLog ic Se rve r Domain Us ing the w lconf ig Ant Task

Developing Applications with WebLogic Server 2-21

invoke
The invoke element invokes a management operation for one or more MBeans. For WebLogic
Server MBeans, you usually use this command to invoke operations other than the
getAttribute and setAttribute that most WebLogic Server MBeans provide.

The invoke element has the following attributes.

property The name of an optional Ant property that will
store the query results.

String No

domain This attribute specifies the JMX domain name for
Security MBeans and third-party SPI MBeans. It
is not required for administration MBeans, as the
domain corresponds to the WebLogic Server
domain.

String No

Table 2-8 Attributes of the invoke Element

Attribute Description Data
Type

Required?

mbean The object name of the MBean you want to
invoke.

String You must
specify either
the mbean or
type
attribute of
the invoke
element.

type The type of MBean to invoke. String You must
specify either
the mbean or
type
attribute of
the invoke
element.

Table 2-7 Attributes of the query Element

Attribute Description Data
Type

Required?

Using Ant Tasks to Conf igure and Use a WebLog ic Se rve r Domain

2-22 Developing Applications with WebLogic Server

Using the libclasspath Ant Task
Use the libclasspath Ant task to build applications that use libraries, such as application
libraries and web libraries.

“libclasspath Task Definition” on page 2-22

“wlserver Ant Task Reference” on page 2-4

“Example libclasspath Ant Task” on page 2-24

libclasspath Task Definition
To use the task with your own Ant installation, add the following task definition in your build file:

<taskdef name="libclasspath" classname="weblogic.ant.taskdefs.build.Lib

ClasspathTask"/>

libclasspath Ant Task Reference
The following sections describe the attributes and elements that can be used with the
libclasspath Ant task.

“Main libclasspath Attributes” on page 2-22

“Nested libclasspath Elements” on page 2-24

Main libclasspath Attributes
The following table describes the main attributes of the libclasspath Ant task.

methodName The method of the MBean to invoke. String Yes

arguments The list of arguments (separated by spaces) to pass
to the method specified by the methodName
attribute.

String No

Table 2-8 Attributes of the invoke Element

Attribute Description Data
Type

Required?

Us ing the l ibc lasspath Ant Task

Developing Applications with WebLogic Server 2-23

Table 2-9 Attributes of the libclasspath Ant Task

Attribute Description Required

basedir The root of .ear or .war file to extract
from.

One of the two attributes is
required.

If basewar is specified,
basedir is ignored and the
library referenced in
basewar is used as the
.war file to extract
classpath or resourcepath
information from.

basewar The name of the .war file to extract from.

tmpdir The fully qualified name of the directory to
be used for extracting libraries.

Yes.

classpathproperty Contains the classpath for the referenced
libraries.

For example, if basedir points to a .war
file that references web application libraries
in the weblogic.xml file, the
classpathproperty contains the
WEB-INF/classes and WEB-INF/lib
directories of the web application libraries.

Additionally, if basedir points to a .war
file that has .war files under
WEB-INF/bea-ext, the
classpathproperty contains the
WEB-INF/classes and WEB-INF/lib
directories for the BEA extensions.

At least one of the two
attributes is required.

resourcepathprope
rty

Contains library resources that are not
classes.

For example, if basedir points to a .war
file that has .war files under
WEB-INF/bea-ext,
resourcepathproperty contains the
roots of the exploded extensions.

Using Ant Tasks to Conf igure and Use a WebLog ic Se rve r Domain

2-24 Developing Applications with WebLogic Server

Nested libclasspath Elements
libclasspath also has two elements that can be nested to specify configuration options. At least
one of the elements is required when using the libclasspath Ant task:

librarydir
The following attribute is required when using this element:

dir—Specifies that all files in this directory are registered as available libraries.

library
The following attribute is required when using this element:

file—Register this file as an available library.

 Example libclasspath Ant Task
This section provides example code of a libclasspath Ant task:

Listing 2-1 Example libclasspath Ant Task Code

.

.

.

<taskdef name="libclasspath" classname="weblogic.ant.taskdefs.build.Lib

ClasspathTask"/>

<!-- Builds classpath based on libraries defined in weblogic-applicatio

n.xml. -->

<target name="init.app.libs">

<libclasspath basedir="${src.dir}" tmpdir="${tmp.dir}" classpathprop

erty="app.lib.classpath">

<librarydir dir="${weblogic.home}/common/deployable-libraries/"/>

</libclasspath>

<echo message="app.lib.claspath is ${app.lib.classpath}" level="info"/>

</target>

Us ing the l ibc lasspath Ant Task

Developing Applications with WebLogic Server 2-25

.

.

.

Using Ant Tasks to Conf igure and Use a WebLog ic Se rve r Domain

2-26 Developing Applications with WebLogic Server

Developing Applications with WebLogic Server 3-1

C H A P T E R 3

Creating a Split Development Directory
Environment

The following sections describe the steps for creating a WebLogic Server split development
directory that you can use to develop a Java EE application or module:

“Overview of the Split Development Directory Environment” on page 3-1

“Using the Split Development Directory Structure: Main Steps” on page 3-5

“Organizing Java EE Components in a Split Development Directory” on page 3-6

“Organizing Shared Classes in a Split Development Directory” on page 3-11

“Generating a Basic build.xml File Using weblogic.BuildXMLGen” on page 3-13

“Developing Multiple-EAR Projects Using the Split Development Directory” on page 3-15

“Best Practices for Developing WebLogic Server Applications” on page 3-17

Overview of the Split Development Directory
Environment

The WebLogic split development directory environment consists of a directory layout and
associated Ant tasks that help you repeatedly build, change, and deploy Java EE applications.
Compared to other development frameworks, the WebLogic split development directory
provides these benefits:

Creat ing a Sp l i t Deve lopment D i rec to r y Env i ronment

3-2 Developing Applications with WebLogic Server

Fast development and deployment. By minimizing unnecessary file copying, the split
development directory Ant tasks help you recompile and redeploy applications quickly
without first generating a deployable archive file or exploded archive directory.

Simplified build scripts. The BEA-provided Ant tasks automatically determine which
Java EE modules and classes you are creating, and build components in the correct order to
support common classpath dependencies. In many cases, your project build script can
simply identify the source and build directories and allow Ant tasks to perform their
default behaviors.

Easy integration with source control systems. The split development directory provides a
clean separation between source files and generated files. This helps you maintain only
editable files in your source control system. You can also clean the build by deleting the
entire build directory; build files are easily replaced by rebuilding the project.

Source and Build Directories
The source and build directories form the basis of the split development directory environment.
The source directory contains all editable files for your project—Java source files, editable
descriptor files, JSPs, static content, and so forth. You create the source directory for an
application by following the directory structure guidelines described in “Organizing Java EE
Components in a Split Development Directory” on page 3-6.

The top level of the source directory always represents an Enterprise Application (.ear file),
even if you are developing only a single Java EE module. Subdirectories beneath the top level
source directory contain:

Enterprise Application Modules (EJBs and Web Applications)

Note: The split development directory structure does not provide support for developing
new Resource Adapter components.

Descriptor files for the Enterprise Application (application.xml and
weblogic-application.xml)

Utility classes shared by modules of the application (for example, exceptions, constants)

Libraries (compiled.jar files, including third-party libraries) used by modules of the
application

The build directory contents are generated automatically when you run the wlcompile ant task
against a valid source directory. The wlcompile task recognizes EJB, Web Application, and
shared library and class directories in the source directory, and builds those components in an

Overv iew o f the Sp l i t Deve lopment D i rec to r y Env i ronment

Developing Applications with WebLogic Server 3-3

order that supports common class path requirements. Additional Ant tasks can be used to build
Web Services or generate deployment descriptor files from annotated EJB code.

Figure 3-1 Source and Build Directories

The build directory contains only those files generated during the build process. The combination
of files in the source and build directories form a deployable Java EE application.

The build and source directory contents can be place in any directory of your choice. However,
for ease of use, the directories are commonly placed in directories named source and build,
within a single project directory (for example, \myproject\build and \myproject\source).

Deploying from a Split Development Directory
All WebLogic Server deployment tools (weblogic.Deployer, wldeploy, and the
Administration Console) support direct deployment from a split development directory. You
specify only the build directory when deploying the application to WebLogic Server.

WebLogic Server attempts to use all classes and resources available in the source directory for
deploying the application. If a required resource is not available in the source directory,
WebLogic Server then looks in the application’s build directory for that resource. For example,
if a deployment descriptor is generated during the build process, rather than stored with source
code as an editable file, WebLogic Server obtains the generated file from the build directory.

Creat ing a Sp l i t Deve lopment D i rec to r y Env i ronment

3-4 Developing Applications with WebLogic Server

WebLogic Server discovers the location of the source directory by examining the
.beabuild.txt file that resides in the top level of the application’s build directory. If you ever
move or modify the source directory location, edit the .beabuild.txt file to identify the new
source directory name.

“Deploying and Packaging from a Split Development Directory” on page 5-1 describes the
wldeploy Ant task that you can use to automate deployment from the split directory
environment.

Figure 3-2 shows a typical deployment process. The process is initiated by specifying the build
directory with a WebLogic Server tool. In the figure, all compiled classes and generated
deployment descriptors are discovered in the build directory, but other application resources
(such as static files and editable deployment descriptors) are missing. WebLogic Server uses the
hidden .beabuild.txt file to locate the application’s source directory, where it finds the
required resources.

Figure 3-2 Split Directory Deployment

Split Development Directory Ant Tasks
BEA provides a collection of Ant tasks designed to help you develop applications using the split
development directory environment. Each Ant task uses the source, build, or both directories to
perform common development tasks:

wlcompile—This Ant task compiles the contents of the source directory into
subdirectories of the build directory. wlcompile compiles Java classes and also processes

Us ing the Sp l i t Deve lopment D i re c to r y S t ruc ture : Ma in S teps

Developing Applications with WebLogic Server 3-5

annotated .ejb files into deployment descriptors, as described in “Compiling Applications
Using wlcompile” on page 4-1.

wlappc—This Ant task invokes the appc compiler, which generates JSPs and
container-specific EJB classes for deployment. See “Building Modules and Applications
Using wlappc” on page 4-4.

wldeploy—This Ant task deploys any format of Java EE applications (exploded or
archived) to WebLogic Server. To deploy directly from the split development directory
environment, you specify the build directory of your application. See “wldeploy Ant Task
Reference” on page B-1.

wlpackage—This Ant task uses the contents of both the source and build directories to
generate an EAR file or exploded EAR directory that you can give to others for
deployment.

Using the Split Development Directory Structure: Main
Steps

The following steps illustrate how you use the split development directory structure to build and
deploy a WebLogic Server application.

1. Create the main EAR source directory for your project. When using the split development
directory environment, you must develop Web Applications and EJBs as part of an Enterprise
Application, even if you do not intend to develop multiple Java EE modules. See “Organizing
Java EE Components in a Split Development Directory” on page 3-6.

2. Add one or more subdirectories to the EAR directory for storing the source for Web
Applications, EJB components, or shared utility classes. See “Organizing Java EE
Components in a Split Development Directory” on page 3-6 and “Organizing Shared Classes
in a Split Development Directory” on page 3-11.

3. Store all of your editable files (source code, static content, editable deployment descriptors)
for modules in subdirectories of the EAR directory. Add the entire contents of the source
directory to your source control system, if applicable.

4. Set your WebLogic Server environment by executing either the setWLSEnv.cmd (Windows)
or setWLSEnv.sh (UNIX) script. The scripts are located in the WL_HOME\server\bin\
directory, where WL_HOME is the top-level directory in which WebLogic Server is installed.

Creat ing a Sp l i t Deve lopment D i rec to r y Env i ronment

3-6 Developing Applications with WebLogic Server

5. Use the weblogic.BuildXMLGen utility to generate a default build.xml file for use with
your project. Edit the default property values as needed for your environment. See
“Generating a Basic build.xml File Using weblogic.BuildXMLGen” on page 3-13.

6. Use the default targets in the build.xml file to build, deploy, and package your application.
See “Generating a Basic build.xml File Using weblogic.BuildXMLGen” on page 3-13 for a
list of default targets.

Organizing Java EE Components in a Split Development
Directory

The split development directory structure requires each project to be staged as a Java EE
Enterprise Application. BEA therefore recommends that you stage even stand-alone Web
applications and EJBs as modules of an Enterprise application, to benefit from the split directory
Ant tasks. This practice also allows you to easily add or remove modules at a later date, because
the application is already organized as an EAR.

Note: If your project requires multiple EARs, see also “Developing Multiple-EAR Projects
Using the Split Development Directory” on page 3-15.

The following sections describe the basic conventions for staging the following module types in
the split development directory structure:

“Enterprise Application Configuration” on page 3-8

“Web Applications” on page 3-8

“EJBs” on page 3-10

“Shared Utility Classes” on page 3-11

“Third-Party Libraries” on page 3-12

The directory examples are taken from the splitdir sample application installed in
WL_HOME\samples\server\examples\src\examples\splitdir, where WL_HOME is your
WebLogic Server installation directory.

Source Directory Overview
The following figure summarizes the source directory contents of an Enterprise Application
having a Web Application, EJB, shared utility classes, and third-party libraries. The sections that
follow provide more details about how individual parts of the enterprise source directory are
organized.

Organi z ing Java EE Components in a Sp l i t Deve lopment D i rec to ry

Developing Applications with WebLogic Server 3-7

Figure 3-3 Overview of Enterprise Application Source Directory

Creat ing a Sp l i t Deve lopment D i rec to r y Env i ronment

3-8 Developing Applications with WebLogic Server

Enterprise Application Configuration
The top level source directory for a split development directory project represents an Enterprise
Application. The following figure shows the minimal files and directories required in this
directory.

Figure 3-4 Enterprise Application Source Directory

The Enterprise Application directory will also have one or more subdirectories to hold a Web
Application, EJB, utility class, and/or third-party Jar file, as described in the following sections.

Web Applications
Web Applications use the basic source directory layout shown in the figure below.

Organi z ing Java EE Components in a Sp l i t Deve lopment D i rec to ry

Developing Applications with WebLogic Server 3-9

Figure 3-5 Web Application Source and Build Directories

The key directories and files for the Web Application are:

helloWebApp\ —The top level of the Web Application module can contain JSP files and
static content such as HTML files and graphics used in the application. You can also store
static files in any named subdirectory of the Web Application (for example,
helloWebApp\graphics or helloWebApp\static.)

helloWebApp\WEB-INF\ —Store the Web Application’s editable deployment descriptor
files (web.xml and weblogic.xml) in the WEB-INF subdirectory.

helloWebApp\WEB-INF\src —Store Java source files for Servlets in package
subdirectories under WEB-INF\src.

When you build a Web Application, the appc Ant task and jspc compiler compile JSPs into
package subdirectories under helloWebApp\WEB-INF\classes\jsp_servlet in the build
directory. Editable deployment descriptors are not copied during the build process.

Creat ing a Sp l i t Deve lopment D i rec to r y Env i ronment

3-10 Developing Applications with WebLogic Server

EJBs
EJBs use the source directory layout shown in the figure below.

Figure 3-6 EJB Source and Build Directories

The key directories and files for an EJB are:

helloEJB\ —Store all EJB source files under package directories of the EJB module
directory. The source files can be either .java source files, or annotated .ejb files.

helloEJB\META-INF\ —Store editable EJB deployment descriptors (ejb-jar.xml and
weblogic-ejb-jar.xml) in the META-INF subdirectory of the EJB module directory. The
helloWorldEar sample does not include a helloEJB\META-INF subdirectory, because its
deployment descriptors files are generated from annotations in the .ejb source files. See
“Important Notes Regarding EJB Descriptors” on page 3-11.

During the build process, EJB classes are compiled into package subdirectories of the helloEJB
module in the build directory. If you use annotated .ejb source files, the build process also
generates the EJB deployment descriptors and stores them in the helloEJB\META-INF
subdirectory of the build directory.

Organ i z ing Shared C lasses in a Sp l i t Deve lopment D i rec to ry

Developing Applications with WebLogic Server 3-11

Important Notes Regarding EJB Descriptors
EJB deployment descriptors should be included in the source META-INF directory and treated as
source code only if those descriptor files are created from scratch or are edited manually.
Descriptor files that are generated from annotated .ejb files should appear only in the build
directory, and they can be deleted and regenerated by building the application.

For a given EJB component, the EJB source directory should contain either:

EJB source code in .java source files and editable deployment descriptors in META-INF

or:

EJB source code with descriptor annotations in .ejb source files, and no editable
descriptors in META-INF.

In other words, do not provide both annotated .ejb source files and editable descriptor files for
the same EJB component.

Organizing Shared Classes in a Split Development
Directory

The WebLogic split development directory also helps you store shared utility classes and libraries
that are required by modules in your Enterprise Application. The following sections describe the
directory layout and classloading behavior for shared utility classes and third-party JAR files.

Shared Utility Classes
Enterprise Applications frequently use Java utility classes that are shared among application
modules. Java utility classes differ from third-party JARs in that the source files are part of the
application and must be compiled. Java utility classes are typically libraries used by application
modules such as EJBs or Web applications.

Figure 3-7 Java Utility Class Directory

Creat ing a Sp l i t Deve lopment D i rec to r y Env i ronment

3-12 Developing Applications with WebLogic Server

Place the source for Java utility classes in a named subdirectory of the top-level Enterprise
Application directory. Beneath the named subdirectory, use standard package subdirectory
conventions.

During the build process, the wlcompile Ant task invokes the javac compiler and compiles
Java classes into the APP-INF/classes/ directory under the build directory. This ensures that
the classes are available to other modules in the deployed application.

Third-Party Libraries
You can extend an Enterprise Application to use third-party .jar files by placing the files in the
APP-INF\lib\ directory, as shown below:

Figure 3-8 Third-party Library Directory

Third-party JARs are generally not compiled, but may be versioned using the source control
system for your application code. For example, XML parsers, logging implementations, and Web
Application framework JAR files are commonly used in applications and maintained along with
editable source code.

Gene ra t ing a Bas ic bu i ld . xml F i l e Us ing web log ic .Bu i ldXMLGen

Developing Applications with WebLogic Server 3-13

During the build process, third-party JAR files are not copied to the build directory, but remain
in the source directory for deployment.

Class Loading for Shared Classes
The classes and libraries stored under APP-INF/classes and APP-INF/lib are available to all
modules in the Enterprise Application. The application classloader always attempts to resolve
class requests by first looking in APP-INF/classes, then APP-INF/lib.

Generating a Basic build.xml File Using
weblogic.BuildXMLGen

After you set up your source directory structure, use the weblogic.BuildXMLGen utility to
create a basic build.xml file. weblogic.BuildXMLGen is a convenient utility that
generates an Ant build.xml file for Enterprise applications that are organized in the split
development directory structure. The utility analyzes the source directory and creates build and
deploy targets for the Enterprise application as well as individual modules. It also creates targets
to clean the build and generate new deployment descriptors.

The syntax for weblogic.BuildXMLGen is as follows:

java weblogic.BuildXMLGen [options] <source directory>

where options include:

-help—print standard usage message

-version—print version information

-projectName <project name>—name of the Ant project

-d <directory>—directory where build.xml is created. The default is the current
directory.

-file <build.xml>—name of the generated build file

-librarydir <directories>—create build targets for shared Java EE libraries in the
comma-separated list of directories. See “Creating Shared Java EE Libraries and Optional
Packages” on page 9-1.

-username <username>—user name for deploy commands

-password <password>—user password

Creat ing a Sp l i t Deve lopment D i rec to r y Env i ronment

3-14 Developing Applications with WebLogic Server

After running weblogic.BuildXMLGen, edit the generated build.xml file to specify
properties for your development environment. The list of properties you need to edit are shown
in the listing below.

Listing 3-1 build.xml Editable Properties

<!-- BUILD PROPERTIES ADJUST THESE FOR YOUR ENVIRONMENT -->

<property name="tmp.dir" value="/tmp" />

<property name="dist.dir" value="${tmp.dir}/dist"/>

<property name="app.name" value="helloWorldEar" />

<property name="ear" value="${dist.dir}/${app.name}.ear"/>

<property name="ear.exploded" value="${dist.dir}/${app.name}_exploded"/>

<property name="verbose" value="true" />

<property name="user" value="USERNAME" />

<property name="password" value="PASSWORD" />

<property name="servername" value="myserver" />

<property name="adminurl" value="iiop://localhost:7001" />

In particular, make sure you edit the tmp.dir property to point to the build directory you want
to use. By default, the build.xml file builds projects into a subdirectory tmp.dir named after
the application (/tmp/helloWorldEar in the above listing).

The following listing shows the default main targets created in the build.xml file. You can view
these targets at the command prompt by entering the ant -projecthelp command in the EAR
source directory.

Listing 3-2 Default build.xml Targets

appc Runs weblogic.appc on your application
build Compiles helloWorldEar application and runs appc
clean Deletes the build and distribution directories
compile Only compiles helloWorldEar application, no appc
compile.appStartup Compiles just the appStartup module of the application
compile.appUtils Compiles just the appUtils module of the application
compile.build.orig Compiles just the build.orig module of the application
compile.helloEJB Compiles just the helloEJB module of the application
compile.helloWebApp Compiles just the helloWebApp module of the application
compile.javadoc Compiles just the javadoc module of the application
deploy Deploys (and redeploys) the entire helloWorldEar application
descriptors Generates application and module descriptors

Deve lop ing Mul t ip le -EAR Pro jec ts Us ing the Sp l i t Deve lopment D i rec to ry

Developing Applications with WebLogic Server 3-15

ear Package a standard J2EE EAR for distribution
ear.exploded Package a standard exploded J2EE EAR
redeploy.appStartup Redeploys just the appStartup module of the application
redeploy.appUtils Redeploys just the appUtils module of the application
redeploy.build.orig Redeploys just the build.orig module of the application
redeploy.helloEJB Redeploys just the helloEJB module of the application
redeploy.helloWebApp Redeploys just the helloWebApp module of application
redeploy.javadoc Redeploys just the javadoc module of the application
undeploy Undeploys the entire helloWorldEar application

Developing Multiple-EAR Projects Using the Split
Development Directory

The split development directory examples and procedures described previously have dealt with
projects consisting of a single Enterprise Application. Projects that require building multiple
Enterprise Applications simultaneously require slightly different conventions and procedures, as
described in the following sections.

Note: The following sections refer to the MedRec sample application, which consists of three
separate Enterprise Applications as well as shared utility classes, third-party JAR files,
and dedicated client applications. The MedRec source and build directories are installed
under WL_HOME/samples/server/medrec, where WL_HOME is the WebLogic Server
installation directory.

Organizing Libraries and Classes Shared by Multiple EARs
For single EAR projects, the split development directory conventions suggest keeping third-party
JAR files in the APP-INF/lib directory of the EAR source directory. However, a multiple-EAR
project would require you to maintain a copy of the same third-party JAR files in the
APP-INF/lib directory of each EAR source directory. This introduces multiple copies of the
source JAR files, increases the possibility of some JAR files being at different versions, and
requires additional space in your source control system.

To address these problems, consider editing your build script to copy third-party JAR files into
the APP-INF/lib directory of the build directory for each EAR that requires the libraries. This
allows you to maintain a single copy and version of the JAR files in your source control system,
yet it enables each EAR in your project to use the JAR files.

The MedRec sample application installed with WebLogic Server uses this strategy, as shown in
the following figure.

Creat ing a Sp l i t Deve lopment D i rec to r y Env i ronment

3-16 Developing Applications with WebLogic Server

Figure 3-9 Shared JAR Files in MedRec

MedRec takes a similar approach to utility classes that are shared by multiple EARs in the project.
Instead of including the source for utility classes within the scope of each ear that needs them,
MedRec keeps the utility class source independent of all EARs. After compiling the utility
classes, the build script archives them and copies the JARs into the build directory under the
APP-INF/LIB subdirectory of each EAR that uses the classes, as shown in figure Figure 3-9.

Linking Multiple build.xml Files
When developing multiple EARs using the split development directory, each EAR project
generally uses its own build.xml file (perhaps generated by multiple runs of
weblogic.BuildXMLGen.). Applications like MedRec also use a master build.xml file that
calls the subordinate build.xml files for each EAR in the application suite.

Ant provides a core task (named ant) that allows you to execute other project build files within
a master build.xml file. The following line from the MedRec master build file shows its usage:

<ant inheritAll="false" dir="${root}/startupEar" antfile="build.xml"/>

The above task instructs Ant to execute the file named build.xml in the /startupEar
subdirectory. The inheritAll parameter instructs Ant to pass only user properties from the
master build file tot the build.xml file in /startupEar.

MedRec uses multiple tasks similar to the above to build the startupEar, medrecEar, and
physicianEar applications, as well as building common utility classes and client applications.

Best P ract ices fo r Deve lop ing WebLog ic Se rve r App l i cat ions

Developing Applications with WebLogic Server 3-17

Best Practices for Developing WebLogic Server
Applications

BEA recommends the following “best practices” for application development.

Package applications as part of an Enterprise application. See “Packaging Applications
Using wlpackage” on page 5-1.

Use the split development directory structure. See “Organizing Java EE Components in a
Split Development Directory” on page 3-6.

For distribution purposes, package and deploy in archived format. See “Packaging
Applications Using wlpackage” on page 5-1.

In most other cases, it is more convenient to deploy in exploded format. See “Archive
versus Exploded Archive Directory” on page 5-2.

Never deploy untested code on a WebLogic Server instance that is serving production
applications. Instead, set up a development WebLogic Server instance on the same
computer on which you edit and compile, or designate a WebLogic Server development
location elsewhere on the network.

Even if you do not run a development WebLogic Server instance on your development
computer, you must have access to a WebLogic Server distribution to compile your
programs. To compile any code using WebLogic or Java EE APIs, the Java compiler needs
access to the weblogic.jar file and other JAR files in the distribution directory. Install
WebLogic Server on your development computer to make WebLogic distribution files
available locally.

Creat ing a Sp l i t Deve lopment D i rec to r y Env i ronment

3-18 Developing Applications with WebLogic Server

Developing Applications with WebLogic Server 4-1

C H A P T E R 4

Building Applications in a Split
Development Directory

The following sections describe the steps for building WebLogic Server Java EE applications
using the WebLogic split development directory environment:

“Compiling Applications Using wlcompile” on page 4-1

“Building Modules and Applications Using wlappc” on page 4-4

Compiling Applications Using wlcompile
You use the wlcompile Ant task to invoke the javac compiler to compile your application’s
Java components in a split development directory structure. The basic syntax of wlcompile
identifies the source and build directories, as in this command from the helloWorldEar sample:

<wlcompile srcdir="${src.dir}" destdir="${dest.dir}"/>

The following is the order in which events occur using this task:

1. wlcompile compiles the Java components into an output directory:

WL_HOME\samples\server\examples\build\helloWorldEar\APP-INF\classes\

where WL_HOME is the WebLogic Server installation directory.

2. wlcompile builds the EJBs and automatically includes the previously built Java modules in
the compiler's classpath. This allows the EJBs to call the Java modules without requiring you
to manually edit their classpath.

Bui ld ing App l icat ions in a Sp l i t Deve lopment D i rec to ry

4-2 Developing Applications with WebLogic Server

3. Finally, wlcompile compiles the Java components in the Web application with the EJB and
Java modules in the compiler's classpath. This allows the Web applications to refer to the EJB
and application Java classes without requiring you to manually edit the classpath.

Using includes and excludes Properties
More complex Enterprise applications may have compilation dependencies that are not
automatically handled by the wlcompile task. However, you can use the include and exclude
options to wlcompile to enforce your own dependencies. The includes and excludes
properties accept the names of Enterprise Application modules—the names of subdirectories in
the Enterprise application source directory—to include or exclude them from the compile stage.

The following line from the helloWorldEar sample shows the appStartup module being
excluded from compilation:

<wlcompile srcdir="${src.dir}" destdir="${dest.dir}"

excludes="appStartup"/>

wlcompile Ant Task Attributes
Table 4-1 contains Ant task attributes specific to wlcompile.

Table 4-1 wlcompile Ant Task Attributes

Attribute Description

srcdir The source directory.

destdir The build/output directory.

classpath Allows you to change the classpath used by wlcompile.

includes Allows you to include specific directories from the build.

excludes Allows you to exclude specific directories from the build.

librarydir Specifies a directory of shared Java EE libraries to add to the
classpath. See “Creating Shared Java EE Libraries and
Optional Packages” on page 9-1.

Compi l ing App l i ca t i ons Us ing wlcompi le

Developing Applications with WebLogic Server 4-3

Nested javac Options
The wlcompile Ant task can accept nested javac options to change the compile-time behavior.
For example, the following wlcompile command ignores deprecation warnings and enables
debugging:

<wlcompile srcdir=”${mysrcdir}” destdir=”${mybuilddir}”>

<javac deprecation=”false” debug=”true”

debuglevel=”lines,vars,source”/>

</wlcompile>

Setting the Classpath for Compiling Code
Most WebLogic services are based on Java EE standards and are accessed through standard Java
EE packages. The Sun, WebLogic, and other Java classes required to compile programs that use
WebLogic services are packaged in the weblogic.jar file in the lib directory of your
WebLogic Server installation. In addition to weblogic.jar, include the following in your
compiler’s CLASSPATH:

The lib\tools.jar file in the JDK directory, or other standard Java classes required by
the Java Development Kit you use.

The examples.property file for Apache Ant (for examples environment). This file is
discussed in the WebLogic Server documentation on building examples using Ant located
at: samples\server\examples\src\examples\examples.html

Classes for third-party Java tools or services your programs import.

Other application classes referenced by the programs you are compiling.

Library Element for wlcompile and wlappc
The library element is an optional element used to define the name and optional version
information for a module that represents a shared Java EE library required for building an
application, as described in “Creating Shared Java EE Libraries and Optional Packages” on
page 9-1. The library element can be used with both wlcompile and wlappc, described in
“Building Modules and Applications Using wlappc” on page 4-4.

Bui ld ing App l icat ions in a Sp l i t Deve lopment D i rec to ry

4-4 Developing Applications with WebLogic Server

The name and version information are specified as attributes to the library element, described in
Table 4-2.

The format choices for both specificationversion and implementationversion are
described in “Referencing Shared Java EE Libraries in an Enterprise Application” on page 9-11.
The following output shows a sample library reference:

<library file=”c:\mylibs\lib.jar” name=”ReqLib”

specificationversion=”90Beta” implementationversion=”1.1” />

Building Modules and Applications Using wlappc
The weblogic.appc compiler generates JSPs and container-specific EJB classes for
deployment, and validates deployment descriptors for compliance with the current Java EE
specifications. appc performs validation checks between the application-level deployment
descriptors and the individual modules in the application as well as validation checks across the
modules.

wlappc is the Ant task interface to the weblogic.appc compiler. The following section
describe the wlappc options and usage.

Both weblogic.appc and the wlappc Ant task compile modules in the order in which they
appear in the application.xml deployment descriptor file that describes your Enterprise
application.

wlappc Ant Task Attributes
Table 4-3 describes Ant task options specific to wlappc. These options are similar to the
weblogic.appc command-line options, but with a few differences.

Table 4-2 Library attributes

Attribute Description

file Required filename of a Java EE library

name The optional name of a required Java EE library.

specificationversion An optional specification version required for the library.

implementationversion An optional implementation version required for the library.

Bui ld ing Modules and App l i ca t i ons Us ing wlappc

Developing Applications with WebLogic Server 4-5

Notes: See “weblogic.appc Reference” on page 4-7 for a list of weblogic.appc options.

See also “Library Element for wlcompile and wlappc” on page 4-3.

Table 4-3 wlappc Ant Task Attributes

Option Description

print Prints the standard usage message.

version Prints appc version information.

output <file> Specifies an alternate output archive or directory. If not set, the
output is placed in the source archive or directory.

forceGeneration Forces generation of EJB and JSP classes. Without this flag, the
classes may not be regenerated (if determined to be
unnecessary).

lineNumbers Adds line numbers to generated class files to aid in debugging.

writeInferredDescri
ptors

Specfies that the application or module contains deployment
descriptors with annotation information.

basicClientJar Does not include deployment descriptors in client JARs
generated for EJBs.

idl Generates IDL for EJB remote interfaces.

idlOverwrite Always overwrites existing IDL files.

idlVerbose Displays verbose information for IDL generation.

idlNoValueTypes Does not generate valuetypes and the methods/attributes that
contain them.

idlNoAbstractInterfaces Does not generate abstract interfaces and methods/attributes
that contain them.

idlFactories Generates factory methods for valuetypes.

idlVisibroker Generates IDL somewhat compatible with Visibroker 4.5 C++.

idlOrbix Generates IDL somewhat compatible with Orbix 2000 2.0
C++.

Bui ld ing App l icat ions in a Sp l i t Deve lopment D i rec to ry

4-6 Developing Applications with WebLogic Server

idlDirectory <dir> Specifies the directory where IDL files will be created (default:
target directory or JAR)

idlMethodSignatures <> Specifies the method signatures used to trigger IDL code
generation.

iiop Generates CORBA stubs for EJBs.

iiopDirectory <dir> Specifies the directory where IIOP stub files will be written
(default: target directory or JAR)

keepgenerated Keeps the generated .java files.

librarydir Specifies a directory of shared Java EE libraries to add to the
classpath. See “Creating Shared Java EE Libraries and
Optional Packages” on page 9-1.

compiler <javac> Selects the Java compiler to use.

debug Compiles debugging information into a class file.

optimize Compiles with optimization on.

nowarn Compiles without warnings.

verbose Compiles with verbose output.

deprecation Warns about deprecated calls.

normi Passes flags through to Symantec's sj.

runtimeflags Passes flags through to Java runtime

classpath <path> Selects the classpath to use during compilation.

clientJarOutputDir <dir> Specifies a directory to place generated client jar files. If not
set, generated jar files are placed into the same directory
location where the JVM is running.

advanced Prints advanced usage options.

Table 4-3 wlappc Ant Task Attributes

Bui ld ing Modules and App l i ca t i ons Us ing wlappc

Developing Applications with WebLogic Server 4-7

wlappc Ant Task Syntax
The basic syntax for using the wlappc Ant task determines the destination source directory
location. This directory contains the files to be compiled by wlappc.

<wlappc source=”${dest.dir}” />

The following is an example of a wlappc Ant task command that invokes two options (idl and
idlOrverWrite) from Table 4-3.

<wlappc source="${dest.dir}"idl="true" idlOrverWrite="true" />

Syntax Differences between appc and wlappc
There are some syntax differences between appc and wlappc. For appc, the presence of a flag in
the command is a boolean. For wlappc, the presence of a flag in the command means that the
argument is required.

To illustrate, the following are examples of the same command, the first being an appc command
and the second being a wlappc command:

java weblogic.appc -idl foo.ear

<wlappc source="${dest.dir} idl="true"/>

weblogic.appc Reference
The following sections describe how to use the command-line version of the appc compiler. The
weblogic.appc command-line compiler reports any warnings or errors encountered in the
descriptors and compiles all of the relevant modules into an EAR file, which can be deployed to
WebLogic Server.

weblogic.appc Syntax
Use the following syntax to run appc:

prompt>java weblogic.appc [options] <ear, jar, or war file or directory>

Bui ld ing App l icat ions in a Sp l i t Deve lopment D i rec to ry

4-8 Developing Applications with WebLogic Server

weblogic.appc Options
The following are the available appc options:

Table 4-4 appc Options

Option Description

-print Prints the standard usage message.

-version Prints appc version information.

-output <file> Specifies an alternate output archive or directory. If not set, the
output is placed in the source archive or directory.

-forceGeneration Forces generation of EJB and JSP classes. Without this flag, the
classes may not be regenerated (if determined to be
unnecessary).

-library
<file[[@name=<string>][
@libspecver=<version>][
@libimplver=<version|stri
ng>]]>

A comma-separated list of shared Java EE libraries. Optional
name and version string information must be specified in the
format described in “Referencing Shared Java EE Libraries in
an Enterprise Application” on page 9-11.

-writeInferredDescr
iptors

Specfies that the application or module contains deployment
descriptors with annotation information.

-lineNumbers Adds line numbers to generated class files to aid in debugging.

-basicClientJar Does not include deployment descriptors in client JARs
generated for EJBs.

-idl Generates IDL for EJB remote interfaces.

-idlOverwrite Always overwrites existing IDL files.

-idlVerbose Displays verbose information for IDL generation.

-idlNoValueTypes Does not generate valuetypes and the methods/attributes that
contain them.

-idlNoAbstractInterfaces Does not generate abstract interfaces and methods/attributes
that contain them.

-idlFactories Generates factory methods for valuetypes.

-idlVisibroker Generates IDL somewhat compatible with Visibroker 4.5 C++.

Bui ld ing Modules and App l i ca t i ons Us ing wlappc

Developing Applications with WebLogic Server 4-9

-idlOrbix Generates IDL somewhat compatible with Orbix 2000 2.0
C++.

-idlDirectory <dir> Specifies the directory where IDL files will be created (default:
target directory or JAR)

-idlMethodSignatures <> Specifies the method signatures used to trigger IDL code
generation.

-iiop Generates CORBA stubs for EJBs.

-iiopDirectory <dir> Specifies the directory where IIOP stub files will be written
(default: target directory or JAR)

-keepgenerated Keeps the generated .java files.

-compiler <javac> Selects the Java compiler to use.

-g Compiles debugging information into a class file.

-O Compiles with optimization on.

-nowarn Compiles without warnings.

-verbose Compiles with verbose output.

-deprecation Warns about deprecated calls.

-normi Passes flags through to Symantec's sj.

-J<option> Passes flags through to Java runtime.

-classpath <path> Selects the classpath to use during compilation.

-clientJarOutputDir <dir> Specifies a directory to place generated client jar files. If not
set, generated jar files are placed into the same directory
location where the JVM is running.

-advanced Prints advanced usage options.

Table 4-4 appc Options

Bui ld ing App l icat ions in a Sp l i t Deve lopment D i rec to ry

4-10 Developing Applications with WebLogic Server

Developing Applications with WebLogic Server 5-1

C H A P T E R 5

Deploying and Packaging from a Split
Development Directory

The following sections describe the steps for deploying WebLogic Server Java EE applications
using the WebLogic split development directory environment:

“Deploying Applications Using wldeploy” on page 5-1

“Packaging Applications Using wlpackage” on page 5-1

Deploying Applications Using wldeploy
The wldeploy task provides an easy way to deploy directly from the split development directory.
wlcompile provides most of the same arguments as the weblogic.Deployer directory. To
deploy from a split development directory, you simply identify the build directory location as the
deployable files, as in:

<wldeploy user="${user}" password="${password}"

action="deploy" source="${dest.dir}"

name="helloWorldEar" />

The above task is automatically created when you use weblogic.BuildXMLGen to create the
build.xml file.

See “wldeploy Ant Task Reference” on page B-1 for a complete command reference.

Packaging Applications Using wlpackage
The wlpackage Ant task uses the contents of both the source and build directories to create either
a deployable archive file (.EAR file), or an exploded archive directory representing the Enterprise

Deploy ing and Packag ing f r om a Sp l i t Deve lopment D i rec to ry

5-2 Developing Applications with WebLogic Server

Application (exploded .EAR directory). Use wlpackage when you want to deliver your
application to another group or individual for evaluation, testing, performance profiling, or
production deployment.

Archive versus Exploded Archive Directory
For production purposes, it is convenient to deploy Enterprise applications in exploded
(unarchived) directory format. This applies also to stand-alone Web applications, EJBs, and
connectors packaged as part of an Enterprise application. Using this format allows you to update
files directly in the exploded directory rather than having to unarchive, edit, and rearchive the
whole application. Using exploded archive directories also has other benefits, as described in
Deployment Archive Files Versus Exploded Archive Directories in Deploying Applications to
WebLogic Server.

You can also package applications in a single archived file, which is convenient for packaging
modules and applications for distribution. Archive files are easier to copy, they use up fewer file
handles than an exploded directory, and they can save disk space with file compression.

The Java classloader can search for Java class files (and other file types) in a JAR file the same
way that it searches a directory in its classpath. Because the classloader can search a directory or
a JAR file, you can deploy Java EE modules on WebLogic Server in either a JAR (archived) file
or an exploded (unarchived) directory.

wlpackage Ant Task Example
In a production environment, use the wlpackage Ant task to package your split development
directory application as a traditional EAR file that can be deployed to WebLogic Server.
Continuing with the MedRec example, you would package your application as follows:

<wlpackage tofile="\physicianEAR\physicianEAR.ear"

 srcdir="\physicianEAR"

 destdir="\build\physicianEAR"/>

<wlpackage todir="\physicianEAR\explodedphysicianEar"

 srcdir="\src\physicianEAR"

 destdir="\build\physicianEAR" />

Packaging Appl ica t i ons Us ing wlpackage

Developing Applications with WebLogic Server 5-3

wlpackage Ant Task Attribute Reference
The following table describes the attributes of the wlpackage Ant task.

Table 5-1 Attributes of the wlpackage Ant Task

Attribute Description Data
Type

Required?

tofile Name of the EAR archive file into which the wlpackage
Ant task packages the split development directory
application.

String You must
specify one
of the
following
two
attributes:
tofile or
todir.

todir Name of an exploded directory into which the
wlpackage Ant task packages the split devleopment
directory application.

String You must
specify one
of the
following
two
attributes:
tofile or
todir.

srcdir Specifies the source directory of your split development
directory application.

The source directory contains all editable files for your
project—Java source files, editable descriptor files, JSPs,
static content, and so forth.

String Yes.

destdir Specifies the build directory of your split development
directory application.

It is assumed that you have already executed the
wlcompile Ant task against the source directory to
generate the needed components into the build directory;
these components include compiled Java classes and
generated deployment descriptors.

String Yes.

Deploy ing and Packag ing f r om a Sp l i t Deve lopment D i rec to ry

5-4 Developing Applications with WebLogic Server

Developing Applications with WebLogic Server 6-1

C H A P T E R 6

Developing Applications for Production
Redeployment

The following sections describes how to program and maintain applications use the production
redeployment strategy:

“What is Production Redeployment?” on page 6-1

“Supported and Unsupported Application Types” on page 6-2

“Programming Requirements and Conventions” on page 6-2

“Assigning an Application Version” on page 6-5

“Upgrading Applications to Use Production Redeployment” on page 6-6

“Accessing Version Information” on page 6-6

What is Production Redeployment?
Production redeployment enables an Administrator to redeploy a new version of an application
in a production environment without stopping the deployed application or otherwise interrupting
the application’s availability to clients. Production redeployment works by deploying a new
version of an updated application alongside an older version of the same application. WebLogic
Server automatically manages client connections so that only new client requests are directed to
the new version. Clients already connected to the application during the redeployment continue
to use the older, retiring version of the application until they complete their work.

See Using Production Redeployment to Upgrade Applications for more information.

Deve lop ing App l i cat ions fo r P roduc t ion Redep loyment

6-2 Developing Applications with WebLogic Server

Supported and Unsupported Application Types
Production redeployment only supports HTTP clients and RMI clients. Your development and
design team must ensure that applications using production redeployment are not accessed by an
unsupported client. WebLogic Server does not detect when unsupported clients access the
application, and does not preserve unsupported client connections during production
redeployment.

Enterprise Applications can contain any of the supported Java EE module types. Enterprise
Applications can also include application-scoped JMS and JDBC modules.

If an Enterprise Application includes a JCA resource adapter module, the module:

Must be JCA 1.5 compliant

Must implement the weblogic.connector.extensions.Suspendable interface

Must be used in an application-scoped manner, having enable-access-outside-app set
to false (the default value).

Before resource adapters in a newer version of the EAR are deployed, resource adapters in the
older application version receive a callback. WebLogic Server then deploys the newer application
version and retires the entire older version of the EAR.

For a complete list of production redeployment requirements for resource adapters, see
Production Redeployment in Programming WebLogic Resource Adapters.

Additional Application Support
Additional production redeployment support is provided for Enterprise Applications that are
accessed by inbound JMS messages from a global JMS destination, and that use one or more
message-driven beans as consumers. For this type of application, WebLogic Server suspends
message-driven beans in the older, retiring application version before deploying message-driven
beans in the newer version. Production redeployment is not supported with JMS consumers that
use the JMS API for global JMS destinations. If the message-driven beans need to receive all
messages published from topics, including messages published while bean are suspended, use
durable subscribers.

Programming Requirements and Conventions
WebLogic Server performs production redeployment by deploying two instances of an
application simultaneously. You must observe certain programming conventions to ensure that

Programming Requ i rements and Convent ions

Developing Applications with WebLogic Server 6-3

multiple instances of the application can co-exist in a WebLogic Server domain. The following
sections describe each programming convention required for using production redeployment.

Applications Should Be Self-Contained
As a best practice, applications that use the in-place redeployment strategy should be
self-contained in their use of resources. This means you should generally use application-scoped
JMS and JDBC resources, rather than global resources, whenever possible for versioned
applications.

If an application must use a global resource, you must ensure that the application supports safe,
concurrent access by multiple instances of the application. This same restriction also applies if
the application uses external (separately-deployed) applications, or uses an external property file.
WebLogic Server does not prevent the use of global resources with versioned applications, but
you must ensure that resources are accessed in a safe manner.

Looking up a global JNDI resource from within a versioned application results in a warning
message. To disable this check, set the JNDI environment property
weblogic.jndi.WLContext.ALLOW_GLOBAL_RESOURCE_LOOKUP to true when performing
the JNDI lookup.

Similarly, looking up an external application results in a warning unless you set the JNDI
environment property, weblogic.jndi.WLContext.ALLOW_EXTERNAL_APP_LOOKUP, to true.

Versioned Applications Access the Current Version JNDI
Tree by Default
WebLogic Server binds application-scoped resources, such as JMS and JDBC application
modules, into a local JNDI tree available to the application. As with non-versioned applications,
versioned applications can look up application-scoped resources directly from this local tree.
Application-scoped JMS modules can be accessed via any supported JMS interfaces, such as the
JMS API or a message-driven bean.

Application modules that are bound to the global JNDI tree should be accessed only from within
the same application version. WebLogic Server performs version-aware JNDI lookups and
bindings for global resources deployed in a versioned application. By default, an internal JNDI
lookup of a global resource returns bindings for the same version of the application.

If the current version of the application cannot be found, you can use the JNDI environment
property weblogic.jndi.WLContext.RELAX_VERSION_LOOKUP to return bindings from the
currently active version of the application, rather than the same version.

Deve lop ing App l i cat ions fo r P roduc t ion Redep loyment

6-4 Developing Applications with WebLogic Server

WARNING: Set weblogic.jndi.WLContext.RELAX_VERSION_LOOKUP to true only if you
are certain that the newer and older version of the resource that you are looking
up are compatible with one another.

Security Providers Must Be Compatible
Any security provider used in the application must support the WebLogic Server application
versioning SSPI. The default WebLogic Server security providers for authorization, role
mapping, and credential mapping support the application versioning SSPI.

Applications Must Specify a Version Identifier
In order to use production redeployment, both the current, deployed version of the application and
the updated version of the application must specify unique version identifiers. See “Assigning an
Application Version” on page 6-5.

Applications Can Access Name and Identifier
Versioned applications can programmatically obtain both an application name, which remains
constant across different versions, and an application identifier, which changes to provide a
unique label for different versions of the application. Use the application name for basic display
or error messages that refer to the application’s name irrespective of the deployed version. Use
the application ID when the application must provide unique identifier for the deployed version
of the application. See “Accessing Version Information” on page 6-6 for more information about
the MBean attributes that provide the name and identifier.

Client Applications Use Same Version when Possible
As described in “What is Production Redeployment?” on page 6-1, WebLogic Server attempts to
route a client application’s requests to the same version of the application until all of the client’s
in-progress work has completed. However, if an application version is retired using a timeout
period, or is undeployed, the client’s request will be routed to the active version of the
application. In other words, a client’s association with a given version of an application is
maintained only on a “best-effort basis.”

This behavior can be problematic for client applications that recursively access other applications
when processing requests. WebLogic Server attempts to dispatch requests to the same versions
of the recursively-accessed applications, but cannot guarantee that an intermediate application
version is not undeployed manually or after a timeout period. If you have a group of related

Ass ign ing an Appl i cat ion Vers ion

Developing Applications with WebLogic Server 6-5

applications with strict version requirements, BEA recommends packaging all of the applications
together to ensure version consistency during production redeployment.

Assigning an Application Version
BEA recommends that you specify the version identifier in the MANIFEST.MF of the application,
and automatically increment the version each time a new application is released for deployment.
This ensures that production redeployment is always performed when the administrator or
deployer redeploys the application.

For testing purposes, a deployer can also assign a version identifier to an application during
deployment and redeployment. See Assigning a Version Identifier During Deployment and
Redeployment in Deploying Applications to WebLogic Server.

Application Version Conventions
WebLogic Server obtains the application version from the value of the
Weblogic-Application-Version property in the MANIFEST.MF file. The version string can be
a maximum of 215 characters long, and must consist of valid characters as identified in Table 6-1.

For example, the following manifest file content describes an application with version
“v920.beta”:

Manifest-Version: 1.0

Created-By: 1.4.1_05-b01 (Sun Microsystems Inc.)

Weblogic-Application-Version: v920.beta

Table 6-1 Valid and Invalid Characters

Valid ASCII Characters Invalid Version Constructs

a-z ..

A-Z .

0-9

period (“.”), underscore
(“_”), or hyphen (“-”) in
combination with other
characters

Deve lop ing App l i cat ions fo r P roduc t ion Redep loyment

6-6 Developing Applications with WebLogic Server

Upgrading Applications to Use Production Redeployment
If you are upgrading applications for deployment to WebLogic Server 9.2, note that the Name
attribute retrieved from AppDeploymentMBean now returns a unique application identifier
consisting of both the deployed application name and the application version string. Applications
that require only the deployed application name must use the new ApplicationName attribute
instead of the Name attribute. Applications that require a unique identifier can use either the Name
or ApplicationIdentifier attribute, as described in “Accessing Version Information” on
page 6-6.

Accessing Version Information
Your application code can use new MBean attributes to retrieve version information for display,
logging, or other uses. The following table describes the read-only attributes provided by
ApplicationMBean.

ApplicationRuntimeMBean also provides version information in the new read-only attributes
described in the following table.

Table 6-2 Read-Only Version Attributes in ApplicationMBean

Attribute Name Description

ApplicationName A String that represents the deployment name of the
application

VersionIdentifier A String that uniquely identifies the current
application version across all versions of the same
application

ApplicationIdentifier A String that uniquely identifies the current
application version across all deployed applications
and versions

Access ing Vers i on In fo rmat ion

Developing Applications with WebLogic Server 6-7

Table 6-3 Read-Only Version Attributes in ApplicationRuntimeMBean

Attribute Name Description

ApplicationName A String that represents the deployment name of the
application

ApplicationVersion A string that represents the version of the
application.

ActiveVersionState An integer that indicates the current state of the
active application version. Valid states for an active
version are:
• ACTIVATED—indicates that one or more

modules of the application are active and
available for processing new client requests.

• PREPARED—indicates that WebLogic Server
has prepared one or more modules of the
application, but that it is not yet active.

• UNPREPARED—indicates that no modules of
the application are prepared or active.

See the WebLogic Server 9.2 API Reference for
more information.

Note that the currently active version does not
always correspond to the last-deployed version,
because the Administrator can reverse the
production redeployment process. See Rolling Back
the Production Redeployment Process in Deploying
Applications to WebLogic Server.

Deve lop ing App l i cat ions fo r P roduc t ion Redep loyment

6-8 Developing Applications with WebLogic Server

Developing Applications with WebLogic Server 7-1

C H A P T E R 7

Using Java EE Annotations and
Dependency Injection

The following sections describe the concepts of MetaData annotation and dependency injection:

“Annotation Processing” on page 7-1

“Dependency Injection of Resources” on page 7-3

“Standard JDK Annotations” on page 7-4

“Standard Security-Related JDK Annotations” on page 7-9

Annotation Processing
With Java EE annotations, the standard application.xml and web.xml deployment descriptors
are optional. The Java EE programming model uses the JDK 5.0 annotations feature for Web
containers, such as EJBs, servlets, Web applications, and JSPs.

Annotations simplify the application development process by allowing developers to specify
within the Java class itself how the application component behaves in the container, requests for
dependency injection, and so on. Annotations are an alternative to deployment descriptors that
were required by older versions of Enterprise applications (J2EE 1.4 and earlier).

Annotation Parsing
The application components can use annotations to define their needs. Annotations reduce or
eliminate the need to deal with deployment descriptors. Annotations simplify the development of
application components. The deployment descriptor can still override values defined in the
annotation. One usage of annotations is to define fields or methods that need Dependency

Using Java EE Anno ta t ions and Dependency In jec t ion

7-2 Developing Applications with WebLogic Server

Injection (DI). Annotations are defined on the POJO (plain old Java object) component classes
like the EJB or the servlet.

An annotation on a field or a method can declare that fields/methods need injection, as described
in “Dependency Injection of Resources” on page 7-3. Annotations may also be applied to the
class itself. The class-level annotations declare an entry in the application component’s
environment but do not cause the resource to be injected. Instead, the application component is
expected to use JNDI or component context lookup method to lookup the entry. When the
annotation is applied to the class, the JNDI name and the environment entry type must be
specified explicitly.

Deployment View of Annotation Configuration
The Java EE Deployment API [JSR88] provides a way for developers to examine deployment
descriptors. For example, consider an EJB Module that has no deployment descriptors. Assuming
that it has some classes that have been declared as EJBs using annotations. A user of Session
Helper will still be able to deal with the module as if it had the deployment descriptor. So the
developer can modify the configuration information and it will be written out in a deployment
plan. During deployment, such a plan will be honored and will override information from
annotations.

Compiling Annotated Classes
The Weblogic Server utility appc (and its Ant equivalent wlappc) and Appmerge support
metadata annotations. The appmerge and appc utilities take an application or module as inputs
and process them to produce an output application or module respectively. When used with
-writeInferredDescriptors flag, the output application/module will contain deployment
descriptors with annotation information. The descriptors will also have the metadata-complete
attribute set to true, as no annotation processing needs to be done if the output application or
module is deployed directly. However, setting of metadata-complete attribute to true will
also restrict appmerge and appc from processing annotations in case these tools are invoked on
a previously processed application or module.

The original descriptors must be preserved in such cases to with an .orig suffix. If a developer
wants to reapply annotation processing on the output application, they must restore the
descriptors and use the -writeInferredDescriptors flag again. If appmerge or appc is used
with -writeInferredDescriptors on an Enterprise application for which no standard
deployment descriptor exists, the descriptor will be generated and written out based on the
inference rules in the Java EE specification.

Dependency In jec t ion o f Resources

Developing Applications with WebLogic Server 7-3

For more information on using appc, see “weblogic.appc Reference” on page 4-7. For more
information on using appmerge, see “Using weblogic.appmerge to Merge Libraries” on
page 9-18.

Dynamic Annotation Updates
Deployed modules can be updated using update deployment operation. If such an update has
changes to deployment descriptor or updated classes, the container must consider annotation
information again while processing the new deployment descriptor.

Containers use the descriptor framework’s two-phase update mechanism to check the differences
between the current and proposed descriptors. This mechanism also informs the containers about
any changes in the non-dynamic properties. The containers then deal with such non-dynamic
changes in their own specific ways. The container must perform annotation processing on the
proposed descriptor to make sure that it is finding the differences against the right reference.

Similarly, some of the classes from a module could be updated during an update operation. If the
container knows that these classes could affect configuration information through annotations, it
makes sure that nothing has changed.

Dependency Injection of Resources
Dependency injection (DI) allows application components to declare dependencies on external
resources and configuration parameters via annotations. The container reads these annotations
and injects resources or environment entries into the application components. Dependency
injection is simply an easier-to-program alternative to using the javax interfaces or JNDI APIs
to look up resources.

A field or a method of an application component can be annotated with the @Resource
annotation. Note that the container will unbox the environment entry as required to match it to a
primitive type used for the injection field or method. Listing 7-1 illustrates how an application
component uses the @Resource annotation to declare environment entries.

Listing 7-1

 // fields

 // The maximum number of tax exemptions, configured by the Deployer.

 @Resource int maxExemptions;

Using Java EE Anno ta t ions and Dependency In jec t ion

7-4 Developing Applications with WebLogic Server

 // The minimum number of tax exemptions, configured by the Deployer.

 @Resource int minExemptions;

 …..

 }

In the above code the @Resource annotation has not specified a name; therefore, the container
would look for an env-entry name called <class-name>/maxExemptions and inject the value
of that entry into the maxExemptions variable. The field or method may have any access qualifier
(public, private, etc.). For all classes except application client main classes, the fields or methods
must not be static. Because application clients use the same life cycle as J2EE applications, no
instance of the application client main class is created by the application client container. Instead,
the static main method is invoked. To support injection for the application client main class, the
fields or methods annotated for injection must be static.

Application Life-Cycle Annotation Methods
An application component may need to perform initialization of its own after all resources have
been injected. To support this case, one method of the class can be annotated with the
@PostConstruct annotation. This method will be called after all injections have occurred and
before the class is put into service. This method will be called even if the class doesn’t request
any resources to be injected. Similarly, for classes whose life cycle is managed by the container,
the @PreDestroy annotation can be applied to one method that will be called when the class is
taken out of service and will no longer be used by the container. Each class in a class hierarchy
may have @PostConstruct and @PreDestroy methods.

The order in which the methods are called matches the order of the class hierarchy, with methods
on a superclass being called before methods on a subclass. From the Java EE side only the
application client container is involved in invoking these life-cycle methods for Java EE clients.
The life cycle methods for Java EE clients must be static. The Java EE client just supports the
@PostConstruct callback.

Standard JDK Annotations
This section provides reference information about the following annotations:

“javax.annotation.PostConstruct” on page 7-5

Standard JDK Annotat i ons

Developing Applications with WebLogic Server 7-5

“javax.annotation.PreDestroy” on page 7-6

“javax.annotation.Resource” on page 7-7

“javax.annotation.Resources” on page 7-8

For detailed information about EJB-specific annotations for WebLogic Server Enterprise
JavaBeans, see Programming WebLogic Enterprise JavaBeans, Version 3.0.

For detailed information about web component-specific annotations WebLogic Server
applications, see “WebLogic Annotation for Web Components” in Developing Web
Applications, Servlets, and JSPs for WebLogic Server.

javax.annotation.PostConstruct

Description
Target: Method

Specifies the life-cycle callback method that the application component should execute before the
first business method invocation and after dependency injection is done to perform any
initialization. This method will be called after all injections have occurred and before the class is
put into service. This method will be called even if the class doesn't request any resources to be
injected.

You must specify a @PostConstruct method in any component that includes dependency
injection.

Only one method in the component can be annotated with this annotation.

The method annotated with @PostConstruct must follow these requirements:

The method must not have any parameters, except in the case of EJB interceptors, in which
case it takes an javax.interceptor.InvocationContext object as defined by the EJB
specification.

The return type of the method must be void.

The method must not throw a checked exception.

The method may be public, protected, package private or private.

The method must not be static except for the application client.

The method may be final or non-final, except in the case of EJBs where it must be
non-final.

Using Java EE Anno ta t ions and Dependency In jec t ion

7-6 Developing Applications with WebLogic Server

If the method throws an unchecked exception the class must not be put into service. In the
case of EJBs, the method annotated with PostConstruct can handle exceptions and
cleanup before the bean instance is discarded.

This annotation does not have any attributes.

javax.annotation.PreDestroy

Description
Target: Method

Specifies the life-cycle callback method that signals that the application component is about to be
destroyed by the container. You typically apply this annotation to methods that release resources
that the class has been holding.

Only one method in the bean class can be annotated with this annotation.

The method annotated with @PreDestroy must follow these requirements:

The method must not have any parameters, except in the case of EJB interceptors, in which
case it takes an javax.interceptor.InvocationContext object as defined by the EJB
specification.

The return type of the method must be void.

The method must not throw a checked exception.

The method may be public, protected, package private or private.

The method must not be static except for the application client.

The method may be final or non-final, except in the case of EJBs where it must be
non-final.

If the method throws an unchecked exception the class must not be put into service. In the
case of EJBs, the method annotated with PreDestroy can handle exceptions and cleanup
before the bean instance is discarded.

This annotation does not have any attributes.

Standard JDK Annotat i ons

Developing Applications with WebLogic Server 7-7

javax.annotation.Resource

Description
Target: Class, Method, Field

Specifies a dependence on an external resource, such as a JDBC data source or a JMS destination
or connection factory.

If you specify the annotation on a field or method, the application component injects an instance
of the requested resource into the bean when the bean is initialized. If you apply the annotation
to a class, the annotation declares a resource that the component will look up at runtime.

Attributes

Table 0-1 Attributes of the javax.annotation.Resource Annotation

Name Description Data Type Required?

name Specifies the JNDI name of the resource.

If you apply the @Resource annotation to a field, the default
value of the name attribute is the field name, qualified by the
class name. If you apply it to a method, the default value is the
component property name corresponding to the method,
qualified by the class name. If you apply the annotation to class,
there is no default value and thus you are required to specify the
attribute.

String No

type Specifies the Java data type of the resource.

If you apply the @Resource annotation to a field, the default
value of the type attribute is the type of the field. If you apply it
to a method, the default is the type of the component property. If
you apply it to a class, there is no default value and thus you are
required to specify this attribute.

Class No

authentication
Type

Specifies the authentication type to use for the resource.

Valid values for this attribute are:
• AuthenticationType.CONTAINER

• AuthenticationType.APPLICATION

Default value is AuthenticationType.CONTAINER

Authentica
tionType

No

Using Java EE Anno ta t ions and Dependency In jec t ion

7-8 Developing Applications with WebLogic Server

javax.annotation.Resources

Description
Target: Class

Specifies an array of @Resource annotations. Since repeated annotations are not allowed, the
Resources annotation acts as a container for multiple resource declarations.

shareable Indicates whether a resource can be shared between this
component and other components.

Valid values for this attribute are true and false. Default
value is true.

boolean No

mappedName Specifies a WebLogic Server-specific name to which the
component reference should be mapped.

However, if you do not specify a JNDI name in the WebLogic
deployment descriptor file, then the value of mappedName will
always be used as the JNDI name to look up. For example:
@Resource(mappedName = "http://www.bea.com";)
URL url;

@Resource(mappedName="customerDB")
DataSource db;

@Resource(mappedName =
"jms/ConnectionFactory")
ConnectionFactory connectionFactory;

@Resource(mappedName = "jms/Queue")
Queue queue;

In other words, MappedName is honored as JNDI name only
when there is no JNDI name specified elsewhere, typically in the
WebLogic deployment descriptor file.

String No

description Specifies a description of the resource. String No

Table 0-1 Attributes of the javax.annotation.Resource Annotation

Name Description Data Type Required?

Standard Secur i t y -Re lated JDK Annotat i ons

Developing Applications with WebLogic Server 7-9

Attributes

Standard Security-Related JDK Annotations
This section provides reference information about the following annotations:

“javax.annotation.security.DeclareRoles” on page 7-9

“javax.annotation.security.DenyAll” on page 7-10

“javax.annotation.security.PermitAll” on page 7-10

“javax.annotation.security.RolesAllowed” on page 7-10

“javax.annotation.security.RunAs” on page 7-11

javax.annotation.security.DeclareRoles

Description
Target: Class

Defines the security roles that will be used in the Java EE container.

You typically use this annotation to define roles that can be tested from within the methods of the
annotated class, such as using the isUserInRole method. You can also use the annotation to
explicitly declare roles that are implicitly declared if you use the @RolesAllowed annotation on
the class or a method of the class.

You create security roles in WebLogic Server using the Administration Console. For details, see
Manage Security Roles.

Table 0-2 Attributes of the javax.annotation.Resources Annotation

Name Description Data Type Required?

value Specifies the array of @Resource annotations. Resourc
e[]

Yes

Using Java EE Anno ta t ions and Dependency In jec t ion

7-10 Developing Applications with WebLogic Server

Attributes

javax.annotation.security.DenyAll

Description
Target: Method

Specifies that no security role is allowed to access the annotated method, or in other words, the
method is excluded from execution in the Java EE container.

This annotation does not have any attributes.

javax.annotation.security.PermitAll

Description
Target: Method

Specifies that all security roles currently defined for WebLogic Server are allowed to access the
annotated method.

This annotation does not have any attributes.

javax.annotation.security.RolesAllowed

Description
Target: Class, Method

Specifies the list of security roles that are allowed to access methods in the Java EE container.

If you specify it at the class-level, then it applies to all methods in the application component. If
you specify it at the method-level, then it only applies to that method. If you specify the
annotation at both the class- and method-level, the method value overrides the class value.

Table 0-3 Attributes of the javax.annotation.security.DeclareRoles Annotation

Name Description Data Type Required?

value Specifies an array of security roles that will be used in the
Java EE container.

String[] Yes

Standard Secur i t y -Re lated JDK Annotat i ons

Developing Applications with WebLogic Server 7-11

You create security roles in WebLogic Server using the Administration Console. For details, see
Manage Security Roles.

Attributes

javax.annotation.security.RunAs

Description
Target: Class

Specifies the security role which actually executes the Java EE container.

The security role must exist in the WebLogic Server security realm and map to a user or group.
For details, see Manage Security Roles.

Attributes

Table 0-4 Attributes of the javax.annotation.security.RolesAllowed Annotation

Name Description Data Type Required?

value List of security roles that are allowed to access methods of
the Java EE container.

String[] Yes

Table 0-5 Attributes of the javax.annotation.security.RunAs Annotation

Name Description Data Type Required?

value Specifies the security role that the Java EE container
should run as.

String Yes

Using Java EE Anno ta t ions and Dependency In jec t ion

7-12 Developing Applications with WebLogic Server

Developing Applications with WebLogic Server 8-1

C H A P T E R 8

Understanding WebLogic Server
Application Classloading

The following sections provide an overview of Java classloaders, followed by details about
WebLogic Server Java EE application classloading.

“Java Classloading” on page 8-1

“WebLogic Server Application Classloading” on page 8-4

“Resolving Class References Between Modules and Applications” on page 8-17

“Sharing Applications and Modules By Using Java EE Libraries” on page 8-19

“Adding JARs to the System Classpath” on page 8-19

Java Classloading
Classloaders are a fundamental module of the Java language. A classloader is a part of the Java
virtual machine (JVM) that loads classes into memory; a classloader is responsible for finding
and loading class files at run time. Every successful Java programmer needs to understand
classloaders and their behavior. This section provides an overview of Java classloaders.

Java Classloader Hierarchy
Classloaders contain a hierarchy with parent classloaders and child classloaders. The relationship
between parent and child classloaders is analogous to the object relationship of super classes and
subclasses. The bootstrap classloader is the root of the Java classloader hierarchy. The Java
virtual machine (JVM) creates the bootstrap classloader, which loads the Java development kit

Unders tanding WebLog ic Serve r App l i cat ion C lass load ing

8-2 Developing Applications with WebLogic Server

(JDK) internal classes and java.* packages included in the JVM. (For example, the bootstrap
classloader loads java.lang.String.)

The extensions classloader is a child of the bootstrap classloader. The extensions classloader
loads any JAR files placed in the extensions directory of the JDK. This is a convenient means to
extending the JDK without adding entries to the classpath. However, anything in the extensions
directory must be self-contained and can only refer to classes in the extensions directory or JDK
classes.

The system classpath classloader extends the JDK extensions classloader. The system classpath
classloader loads the classes from the classpath of the JVM. Application-specific classloaders
(including WebLogic Server classloaders) are children of the system classpath classloader.

Note: What BEA refers to as a “system classpath classloader” is often referred to as the
“application classloader” in contexts outside of WebLogic Server. When discussing
classloaders in WebLogic Server, BEA uses the term “system” to differentiate from
classloaders related to Java EE applications or libraries (which BEA refers to as
“application classloaders”).

Loading a Class
Classloaders use a delegation model when loading a class. The classloader implementation first
checks its cache to see if the requested class has already been loaded. This class verification
improves performance in that its cached memory copy is used instead of repeated loading of a
class from disk. If the class is not found in its cache, the current classloader asks its parent for the
class. Only if the parent cannot load the class does the classloader attempt to load the class. If a
class exists in both the parent and child classloaders, the parent version is loaded. This delegation
model is followed to avoid multiple copies of the same form being loaded. Multiple copies of the
same class can lead to a ClassCastException.

Classloaders ask their parent classloader to load a class before attempting to load the class
themselves. Classloaders in WebLogic Server that are associated with Web applications can be
configured to check locally first before asking their parent for the class. This allows Web
applications to use their own versions of third-party classes, which might also be used as part of
the WebLogic Server product. The “prefer-web-inf-classes Element” on page 8-2 section
discusses this in more detail.

prefer-web-inf-classes Element
The weblogic.xml Web application deployment descriptor contains a
<prefer-web-inf-classes> element (a sub-element of the <container-descriptor>

Java C lass l oad ing

Developing Applications with WebLogic Server 8-3

element). By default, this element is set to False. Setting this element to True subverts the
classloader delegation model so that class definitions from the Web application are loaded in
preference to class definitions in higher-level classloaders. This allows a Web application to use
its own version of a third-party class, which might also be part of WebLogic Server. See
“weblogic.xml Deployment Descriptor Elements.”

When using this feature, you must be careful not to mix instances created from the Web
application’s class definition with issuances created from the server’s definition. If such instances
are mixed, a ClassCastException results.

Listing 8-1 illustrates the prefer-web-inf-classes element, its description and default
value.

Listing 8-1 prefer-web-inf-classes Element

/**

* If true, classes located in the WEB-INF directory of a web-app will be

* loaded in preference to classes loaded in the application or system

* classloader.

* @default false

*/

boolean isPreferWebInfClasses();

void setPreferWebInfClasses(boolean b);

Changing Classes in a Running Program
WebLogic Server allows you to deploy newer versions of application modules such as EJBs
while the server is running. This process is known as hot-deploy or hot-redeploy and is closely
related to classloading.

Java classloaders do not have any standard mechanism to undeploy or unload a set of classes, nor
can they load new versions of classes. In order to make updates to classes in a running virtual
machine, the classloader that loaded the changed classes must be replaced with a new classloader.
When a classloader is replaced, all classes that were loaded from that classloader (or any
classloaders that are offspring of that classloader) must be reloaded. Any instances of these
classes must be re-instantiated.

Unders tanding WebLog ic Serve r App l i cat ion C lass load ing

8-4 Developing Applications with WebLogic Server

In WebLogic Server, each application has a hierarchy of classloaders that are offspring of the
system classloader. These hierarchies allow applications or parts of applications to be
individually reloaded without affecting the rest of the system. “WebLogic Server Application
Classloading” on page 8-4 discusses this topic.

WebLogic Server Application Classloading
The following sections provide an overview of the WebLogic Server application classloaders:

“Overview of WebLogic Server Application Classloading” on page 8-4

“Application Classloader Hierarchy” on page 8-5

“Custom Module Classloader Hierarchies” on page 8-6

“Individual EJB Classloader for Implementation Classes” on page 8-12

“Application Classloading and Pass-by-Value or Reference” on page 8-14

“Using a Filtering Classloader” on page 8-14

Overview of WebLogic Server Application Classloading
WebLogic Server classloading is centered on the concept of an application. An application is
normally packaged in an Enterprise Archive (EAR) file containing application classes.
Everything within an EAR file is considered part of the same application. The following may be
part of an EAR or can be loaded as stand-alone applications:

An Enterprise JavaBean (EJB) JAR file

A Web application WAR file

A resource adapter RAR file

Note: For information on Resource Adapters and classloading, see “About Resource Adapter
Classes” on page 8-18.

If you deploy an EJB and a Web application separately, they are considered two applications. If
they are deployed together within an EAR file, they are one application. You deploy modules
together in an EAR file for them to be considered part of the same application.

Every application receives its own classloader hierarchy; the parent of this hierarchy is the system
classpath classloader. This isolates applications so that application A cannot see the classloaders
or classes of application B. In hierarchy classloaders, no sibling or friend concepts exist.

WebLog ic Se rve r App l i cat i on C lass load ing

Developing Applications with WebLogic Server 8-5

Application code only has visibility to classes loaded by the classloader associated with the
application (or module) and classes that are loaded by classloaders that are ancestors of the
application (or module) classloader. This allows WebLogic Server to host multiple isolated
applications within the same JVM.

Application Classloader Hierarchy
WebLogic Server automatically creates a hierarchy of classloaders when an application is
deployed. The root classloader in this hierarchy loads any EJB JAR files in the application. A
child classloader is created for each Web application WAR file.

Because it is common for Web applications to call EJBs, the WebLogic Server application
classloader architecture allows JavaServer Page (JSP) files and servlets to see the EJB interfaces
in their parent classloader. This architecture also allows Web applications to be redeployed
without redeploying the EJB tier. In practice, it is more common to change JSP files and servlets
than to change the EJB tier.

The following graphic illustrates this WebLogic Server application classloading concept.

Figure 8-1 WebLogic Server Classloading

WebApp 2

EJB 3

Application 2

WebApp 3

WebLogic Server

System Classpath Loader

WebApp 1

EJB 1

Application 1

EJB 2

Unders tanding WebLog ic Serve r App l i cat ion C lass load ing

8-6 Developing Applications with WebLogic Server

If your application includes servlets and JSPs that use EJBs:

Package the servlets and JSPs in a WAR file

Package the Enterprise JavaBeans in an EJB JAR file

Package the WAR and JAR files in an EAR file

Deploy the EAR file

Although you could deploy the WAR and JAR files separately, deploying them together in an
EAR file produces a classloader arrangement that allows the servlets and JSPs to find the EJB
classes. If you deploy the WAR and JAR files separately, WebLogic Server creates sibling
classloaders for them. This means that you must include the EJB home and remote interfaces in
the WAR file, and WebLogic Server must use the RMI stub and skeleton classes for EJB calls,
just as it does when EJB clients and implementation classes are in different JVMs. This concept
is discussed in more detail in the next section “Application Classloading and Pass-by-Value or
Reference” on page 8-14.

Note: The Web application classloader contains all classes for the Web application except for
the JSP class. The JSP class obtains its own classloader, which is a child of the Web
application classloader. This allows JSPs to be individually reloaded.

Custom Module Classloader Hierarchies
You can create custom classloader hierarchies for an application allowing for better control over
class visibility and reloadability. You achieve this by defining a classloader-structure
element in the weblogic-application.xml deployment descriptor file.

The following diagram illustrates how classloaders are organized by default for WebLogic
applications. An application level classloader exists where all EJB classes are loaded. For each
Web module, there is a separate child classloader for the classes of that module.

For simplicity, JSP classloaders are not described in the following diagram.

WebLog ic Se rve r App l i cat i on C lass load ing

Developing Applications with WebLogic Server 8-7

Figure 8-2 Standard Classloader Hierarchy

This hierarchy is optimal for most applications, because it allows call-by-reference semantics
when you invoke EJBs. It also allows Web modules to be independently reloaded without
affecting other modules. Further, it allows code running in one of the Web modules to load
classes from any of the EJB modules. This is convenient, as it can prevent a Web module from
including the interfaces for EJBs that is uses. Note that some of those benefits are not strictly Java
EE-compliant.

The ability to create custom module classloaders provides a mechanism to declare alternate
classloader organizations that allow the following:

Reloading individual EJB modules independently

Reloading groups of modules to be reloaded together

Reversing the parent child relationship between specific Web modules and EJB modules

Namespace separation between EJB modules

Declaring the Classloader Hierarchy
You can declare the classloader hierarchy in the WebLogic-specific application deployment
descriptor weblogic-application.xml.

The DTD for this declaration is as follows:

Unders tanding WebLog ic Serve r App l i cat ion C lass load ing

8-8 Developing Applications with WebLogic Server

Listing 8-2 Declaring the Classloader Hierarchy

<!ELEMENT classloader-structure (module-ref*, classloader-structure*)>

<!ELEMENT module-ref (module-uri)>

<!ELEMENT module-uri (#PCDATA)>

The top-level element in weblogic-application.xml includes an optional
classloader-structure element. If you do not specify this element, then the standard
classloader is used. Also, if you do not include a particular module in the definition, it is assigned
a classloader, as in the standard hierarchy. That is, EJB modules are associated with the
application Root classloader, and Web application modules have their own classloaders.

The classloader-structure element allows for the nesting of classloader-structure
stanzas, so that you can describe an arbitrary hierarchy of classloaders. There is currently a
limitation of three levels. The outermost entry indicates the application classloader. For any
modules not listed, the standard hierarchy is assumed.

Note: JSP classloaders are not included in this definition scheme. JSPs are always loaded into
a classloader that is a child of the classloader associated with the Web module to which
it belongs.

For more information on the DTD elements, refer to Appendix A, “Enterprise Application
Deployment Descriptor Elements.”

The following is an example of a classloader declaration (defined in the
classloader-structure element in weblogic-application.xml):

Listing 8-3 Example Classloader Declaration

<classloader-structure>

<module-ref>

<module-uri>ejb1.jar</module-uri>

</module-ref>

<module-ref>

<module-uri>web3.war</module-uri>

WebLog ic Se rve r App l i cat i on C lass load ing

Developing Applications with WebLogic Server 8-9

</module-ref>

<classloader-structure>

<module-ref>

<module-uri>web1.war</module-uri>

</module-ref>

</classloader-structure>

<classloader-structure>

<module-ref>

<module-uri>ejb3.jar</module-uri>

</module-ref>

<module-ref>

<module-uri>web2.war</module-uri>

</module-ref>

<classloader-structure>

<module-ref>

<module-uri>web4.war</module-uri>

</module-ref>

</classloader-structure>

<classloader-structure>

<module-ref>

<module-uri>ejb2.jar</module-uri>

</module-ref>

</classloader-structure>

</classloader-structure>

</classloader-structure>

Unders tanding WebLog ic Serve r App l i cat ion C lass load ing

8-10 Developing Applications with WebLogic Server

The organization of the nesting indicates the classloader hierarchy. The above stanza leads to a
hierarchy shown in the following diagram.

Figure 8-3 Example Classloader Hierarchy

User-Defined Classloader Restrictions
User-defined classloader restrictions give you better control over what is reloadable and provide
inter-module class visibility. This feature is primarily for developers. It is useful for iterative
development, but the reloading aspect of this feature is not recommended for production use,
because it is possible to corrupt a running application if an update includes invalid elements.
Custom classloader arrangements for namespace separation and class visibility are acceptable for
production use. However, programmers should be aware that the Java EE specifications say that
applications should not depend on any given classloader organization.

Some classloader hierarchies can cause modules within an application to behave more like
modules in two separate applications. For example, if you place an EJB in its own classloader so
that it can be reloaded individually, you receive call-by-value semantics rather than the
call-by-reference optimization BEA provides in our standard classloader hierarchy. Also note

WebLog ic Se rve r App l i cat i on C lass load ing

Developing Applications with WebLogic Server 8-11

that if you use a custom hierarchy, you might end up with stale references. Therefore, if you
reload an EJB module, you should also reload calling modules.

There are some restrictions to creating user-defined module classloader hierarchies; these are
discussed in the following sections.

Servlet Reloading Disabled
If you use a custom classloader hierarchy, servlet reloading is disabled for Web applications in
that particular application.

Nesting Depth
Nesting is limited to three levels (including the application classloader). Deeper nestings lead to
a deployment exception.

Module Types
Custom classloader hierarchies are currently restricted to Web and EJB modules.

Duplicate Entries
Duplicate entries lead to a deployment exception.

Interfaces
The standard WebLogic Server classloader hierarchy makes EJB interfaces available to all
modules in the application. Thus other modules can invoke an EJB, even though they do not
include the interface classes in their own module. This is possible because EJBs are always
loaded into the root classloader and all other modules either share that classloader or have a
classloader that is a child of that classloader.

With the custom classloader feature, you can configure a classloader hierarchy so that a callee’s
classes are not visible to the caller. In this case, the calling module must include the interface
classes. This is the same requirement that exists when invoking on modules in a separate
application.

Call-by-Value Semantics
The standard classloader hierarchy provided with WebLogic Server allows for calls between
modules within an application to use call-by-reference semantics. This is because the caller is
always using the same classloader or a child classloader of the callee. With this feature, it is

Unders tanding WebLog ic Serve r App l i cat ion C lass load ing

8-12 Developing Applications with WebLogic Server

possible to configure the classloader hierarchy so that two modules are in separate branches of
the classloader tree. In this case, call-by-value semantics are used.

In-Flight Work
Be aware that the classloader switch required for reloading is not atomic across modules. In fact,
updates to applications in general are not atomic. For this reason, it is possible that different
in-flight operations (operations that are occurring while a change is being made) might end up
accessing different versions of classes depending on timing.

Development Use Only
The development-use-only feature is intended for development use. Because updates are not
atomic, this feature is not suitable for production use.

Individual EJB Classloader for Implementation Classes
WebLogic Server allows you to reload individual EJB modules without requiring you to reload
other modules at the same time and having to redeploy the entire EJB module. This feature is
similar to how JSPs are currently reloaded in the WebLogic Server servlet container.

Because EJB classes are invoked through an interface, it is possible to load individual EJB
implementation classes in their own classloader. This way, these classes can be reloaded
individually without having to redeploy the entire EJB module. Below is a diagram of what the
classloader hierarchy for a single EJB module would look like. The module contains two EJBs
(Foo and Bar). This would be a sub-tree of the general application hierarchy described in the
previous section.

WebLog ic Se rve r App l i cat i on C lass load ing

Developing Applications with WebLogic Server 8-13

Figure 8-4 Example Classloader Hierarchy for a Single EJB Module

To perform a partial update of files relative to the root of the exploded application, use the
following command line:

Listing 8-4 Performing a Partial File Update

java weblogic.Deployer -adminurl url -user user -password password

-name myapp -redeploy myejb/foo.class

After the -redeploy command, you provide a list of files relative to the root of the exploded
application that you want to update. This might be the path to a specific element (as above) or a
module (or any set of elements and modules). For example:

Listing 8-5 Providing a List of Relative Files for Update

java weblogic.Deployer -adminurl url -user user -password password

-name myapp -redeploy mywar myejb/foo.class anotherejb

Unders tanding WebLog ic Serve r App l i cat ion C lass load ing

8-14 Developing Applications with WebLogic Server

Given a set of files to be updated, the system tries to figure out the minimum set of things it needs
to redeploy. Redeploying only an EJB impl class causes only that class to be redeployed. If you
specify the whole EJB (in the above example, anotherejb) or if you change and update the EJB
home interface, the entire EJB module must be redeployed.

Depending on the classloader hierarchy, this redeployment may lead to other modules being
redeployed. Specifically, if other modules share the EJB classloader or are loaded into a
classloader that is a child to the EJB's classloader (as in the WebLogic Server standard classloader
module) then those modules are also reloaded.

Application Classloading and Pass-by-Value or Reference
Modern programming languages use two common parameter passing models: pass-by-value and
pass-by-reference. With pass-by-value, parameters and return values are copied for each method
call. With pass-by-reference, a pointer (or reference) to the actual object is passed to the method.
Pass by reference improves performance because it avoids copying objects, but it also allows a
method to modify the state of a passed parameter.

WebLogic Server includes an optimization to improve the performance of Remote Method
Interface (RMI) calls within the server. Rather than using pass by value and the RMI subsystem’s
marshalling and unmarshalling facilities, the server makes a direct Java method call using pass
by reference. This mechanism greatly improves performance and is also used for EJB 2.0 local
interfaces.

RMI call optimization and call by reference can only be used when the caller and callee are within
the same application. As usual, this is related to classloaders. Because applications have their own
classloader hierarchy, any application class has a definition in both classloaders and receives a
ClassCastException error if you try to assign between applications. To work around this,
WebLogic Server uses call-by-value between applications, even if they are within the same JVM.

Note: Calls between applications are slower than calls within the same application. Deploy
modules together as an EAR file to enable fast RMI calls and use of the EJB 2.0 local
interfaces.

Using a Filtering Classloader
In WebLogic Server, any .jar file present in the system classpath is loaded by the WebLogic
Server system classloader. All applications running within a server instance are loaded in
application classloaders which are children of the system classloader. In this implementation of
the system classloader, applications cannot use different versions of third-party jars which are

WebLog ic Se rve r App l i cat i on C lass load ing

Developing Applications with WebLogic Server 8-15

already present in the system classloader. Every child classloader asks the parent (the system
classloader) for a particular class and cannot load classes which are seen by the parent.

For example, if a class called com.foo.Baz exists in both $CLASSPATH as well as the application
EAR, then the class from the $CLASSPATH is loaded and not the one from the EAR. Since
weblogic.jar is in the $CLASSPATH, applications can not override any WebLogic Server
classes.

The following sections define and describe how to use a filtering classloader:

“What is a Filtering ClassLoader” on page 8-15

“Configuring a FilteringClassLoader” on page 8-15

“Resource Loading Order” on page 8-16

What is a Filtering ClassLoader
The FilteringClassLoader provides a mechanism for you to configure deployment
descriptors to explicitly specify that certain packages should always be loaded from the
application, rather than being loaded by the system classloader. This allows you to use alternate
versions of applications such as Xerces and Ant.

The FilteringClassLoader sits between the application classloader and the system. It is a
child of the system classloader and the parent of the application classloader. The
FilteringClassLoader intercepts the loadClass(String className) method and
compares the className with a list of packages specified in weblogic-application.xml file.
If the package matches the className, the FilteringClassLoader throws a
ClassNotFoundException. This exception notifies the application classloader to load this class
from the application.

Configuring a FilteringClassLoader
To configure the FilteringClassLoader to specify a certain package is loaded from an
application, add a prefer-application-packages descriptor element to the
weblogic-application.xml which details the list of packages to be loaded from the
application. The following example specifies that org.apache.log4j.* and antlr.* packages
are loaded from the application, not the system classloader:

<prefer-application-packages>

 <package-name>org.apache.log4j.*</package-name>

 <package-name>antlr.*</package-name>

Unders tanding WebLog ic Serve r App l i cat ion C lass load ing

8-16 Developing Applications with WebLogic Server

</prefer-application-packages>

Resource Loading Order
The resource loading order is the order in which java.lang.ClassLoader methods
getResource()and getResources() return resources. When filtering is enabled, this order is
slightly different from the case when filtering is disabled. Filtering is enabled implies that there
are one or more package patterns in the FilteringClassLoader. Without any filtering
(default), the resources are collected in the top-down order of the classloader tree. For instance,
if Web (1) requests resources, the resources are grouped in the following order: Sys (3), App (2)
and Web(1). See Figure 8-5.

Figure 8-5 Using the System Classloader

System (3)

|

App (2)

|

Web (1)

To be more explicit, given a resource /META-INF/foo.xml which exists in all the classloaders,
would return the following list of URLs:

META-INF/foo.xml - from the System ClassLoader (3)

META-INF/foo.xml - from the App ClassLoader (2)

META-INF/foo.xml - from the Web ClassLoader (1)

When filtering is enabled, the resources from the child of the FilteringClassLoader (an
application classloader) down to the calling classloader are returned before the ones from the
system classloader. In Figure 8-6, if the same resource existed in all the classloaders (D), (B) and
(A) one would get them in the following order if requested by the Web classloader:

META-INF/foo.xml - from the App ClassLoader (B)

META-INF/foo.xml - from the Web ClassLoader (A)

META-INF/foo.xml - from the System ClassLoader (D)

Reso lv ing C lass Refe rences Between Modules and App l icat ions

Developing Applications with WebLogic Server 8-17

Note: The resources are returned in the default Java EE delegation model beneath the
FilteringClassLoader. Only the resources from the parent of the
FilteringClassLoader are appended to the end of the enumeration being returned.

Figure 8-6 Using a Filtering Classloading Implementation

System (D)

|

FilteringClassLoader (filterList := x.y.*) (C)

|

App (B)

|

Web (A)

If the application classloader requested the same resource, the following order would be obtained.

META-INF/foo.xml - from the App ClassLoader (B)

META-INF/foo.xml - from the System ClassLoader (D)

For getResource(), only the first descriptor is returned and getResourceAsStream() returns
the inputStream of the first resource.

Resolving Class References Between Modules and
Applications

Your applications may use many different Java classes, including Enterprise Beans, servlets and
JavaServer Pages, utility classes, and third-party packages. WebLogic Server deploys
applications in separate classloaders to maintain independence and to facilitate dynamic
redeployment and undeployment. Because of this, you need to package your application classes
in such a way that each module has access to the classes it depends on. In some cases, you may
have to include a set of classes in more than one application or module. This section describes
how WebLogic Server uses multiple classloaders so that you can stage your applications
successfully.

Unders tanding WebLog ic Serve r App l i cat ion C lass load ing

8-18 Developing Applications with WebLogic Server

About Resource Adapter Classes
Each resource adapter now uses its own classloader to load classes (similar to Web applications).
As a result, modules like Web applications and EJBs that are packaged along with a resource
adapter in an application archive (EAR file) do not have visibility into the resource adapter’s
classes. If such visibility is required, you must place the resource adapter classes in
APP-INF/classes. You can also archive these classes (using the JAR utility) and place them in
the APP-INF/lib of the application archive.

Make sure that no resource-adapter specific classes exist in your WebLogic Server system
classpath. If you need to use resource adapter-specific classes with Web modules (for example,
an EJB or Web application), you must bundle these classes in the corresponding module’s archive
file (for example, the JAR file for EJBs or the WAR file for Web applications).

Packaging Shared Utility Classes
WebLogic Server provides a location within an EAR file where you can store shared utility
classes. Place utility JAR files in the APP-INF/lib directory and individual classes in the
APP-INF/classes directory. (Do not place JAR files in the /classes directory or classes in
the /lib directory.) These classes are loaded into the root classloader for the application.

This feature obviates the need to place utility classes in the system classpath or place classes in
an EJB JAR file (which depends on the standard WebLogic Server classloader hierarchy). Be
aware that using this feature is subtly different from using the manifest Class-Path described in
the following section. With this feature, class definitions are shared across the application. With
manifest Class-Path, the classpath of the referencing module is simply extended, which means
that separate copies of the classes exist for each module.

Manifest Class-Path
The Java EE specification provides the manifest Class-Path entry as a means for a module to
specify that it requires an auxiliary JAR of classes. You only need to use this manifest
Class-Path entry if you have additional supporting JAR files as part of your EJB JAR or WAR
file. In such cases, when you create the JAR or WAR file, you must include a manifest file with
a Class-Path element that references the required JAR files.

The following is a simple manifest file that references a utility.jar file:

Manifest-Version: 1.0 [CRLF]

Class-Path: utility.jar [CRLF]

Shar ing Appl i cat ions and Modules By Us ing Java EE L ib ra r i es

Developing Applications with WebLogic Server 8-19

In the first line of the manifest file, you must always include the Manifest-Version attribute,
followed by a new line (CR | LF |CRLF) and then the Class-Path attribute. More information
about the manifest format can be found at:
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#JAR

The manifest Class-Path entries refer to other archives relative to the current archive in which
these entries are defined. This structure allows multiple WAR files and EJB JAR files to share a
common library JAR. For example, if a WAR file contains a manifest entry of y.jar, this entry
should be next to the WAR file (not within it) as follows:

/<directory>/x.war

/<directory>/y.jars

The manifest file itself should be located in the archive at META-INF/MANIFEST.MF.

For more information, see
http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html.

Sharing Applications and Modules By Using Java EE
Libraries

Java EE libraries provide an easy way to share one or more different types of Java EE modules
among multiple Enterprise Applications. A Java EE library is a single module or collection of
modules that is registered with the Java EE application container upon deployment. For more
information, see Chapter 9, “Creating Shared Java EE Libraries and Optional Packages.”

Adding JARs to the System Classpath
WebLogic Server includes a lib subdirectory, located in the domain directory, that you can use
to add one or more JAR files to the WebLogic Server system classpath when servers start up. The
lib subdirectory is intended for JAR files that change infrequently and are required by all or most
applications deployed in the server, or by WebLogic Server itself. For example, you might use
the lib directory to store third-party utility classes that are required by all deployments in a
domain. You can also use it to apply patches to WebLogic Server.

The lib directory is not recommended as a general-purpose method for sharing a JARs between
one or two applications deployed in a domain, or for sharing JARs that need to be updated
periodically. If you update a JAR in the lib directory, you must reboot all servers in the domain
in order for applications to realize the change. If you need to share a JAR file or Java EE modules

Unders tanding WebLog ic Serve r App l i cat ion C lass load ing

8-20 Developing Applications with WebLogic Server

among several applications, use the Java EE libraries feature described in “Creating Shared Java
EE Libraries and Optional Packages” on page 9-1.

To share JARs using the lib directory:

1. Shutdown all servers in the domain.

2. Copy the JAR file(s) to share into a lib subdirectory of the domain directory. For example:

mkdir c:\bea\wlserver_10.0\samples\domains\wl_server\lib
cp c:\3rdpartyjars\utility.jar

c:\bea\wlserver_10.0\samples\domains\wl_server\lib

Note: WebLogic Server must have read access to the lib directory during startup.

Note: The Administration Server does not automatically copy files in the lib directory to
Managed Servers on remote machines. If you have Managed Servers that do not share
the same physical domain directory as the Administration Server, you must manually
copy JAR file(s) to the domain_name/lib directory on the Managed Server
machines.

3. Start the Administration Server and all Managed Servers in the domain. WebLogic Server
appends JAR files found in the lib directory to the system classpath. Multiple files are added
in alphabetical order.

Developing Applications with WebLogic Server 9-1

C H A P T E R 9

Creating Shared Java EE Libraries and
Optional Packages

The following sections describe how to share components and classes among applications using
shared Java EE libraries and optional packages:

“Overview of Shared Java EE Libraries and Optional Packages” on page 9-2

“Creating Shared Java EE Libraries” on page 9-6

“Referencing Shared Java EE Libraries in an Enterprise Application” on page 9-11

“Referencing Optional Packages from a Java EE Application or Module” on page 9-15

“Using weblogic.appmerge to Merge Libraries” on page 9-18

“Integrating Shared Java EE Libraries with the Split Development Directory Environment”
on page 9-20

“Deploying Shared Java EE Libraries and Dependent Applications” on page 9-20

“Web Application Shared Java EE Library Information” on page 9-21

“Using WebApp Libraries With Web Applications” on page 9-21

“Accessing Registered Shared Java EE Library Information with LibraryRuntimeMBean”
on page 9-22

“Order of Precedence of Modules When Referencing Shared Java EE Libraries” on
page 9-23

“Best Practices for Using Shared Java EE Libraries” on page 9-24

Creat ing Shared Java EE L ib rar ies and Opt iona l Packages

9-2 Developing Applications with WebLogic Server

Overview of Shared Java EE Libraries and Optional
Packages

The shared Java EE library feature in WebLogic Server provides an easy way to share one or
more different types of Java EE modules among multiple Enterprise Applications. A shared Java
EE library is a single module or collection of modules that is registered with the Java EE
application container upon deployment. A shared Java EE library can be any of the following:

standalone EJB module

standalone Web application module

multiple EJB modules packaged in an Enterprise Application

multiple Web application modules package in an Enterprise Application

single plain JAR file

BEA recommends that you package a shared Java EE library into its appropriate archive file
(EAR, JAR, or WAR). However, for development purposes, you may choose to deploy shared
Java EE libraries as exploded archive directories to facilitate repeated updates and
redeployments.

After the shared Java EE library has been registered, you can deploy Enterprise Applications that
reference the library. Each referencing application receives a reference to the required library on
deployment, and can use the modules that make up the library as if they were packaged as part of
the referencing application itself. The library classes are added to the classpath of the referencing
application, and the referencing application’s deployment descriptors are merged (in memory)
with those of the modules that make up the shared Java EE library.

In general, this topic discusses shared Java EE libraries that can be referenced only by Enterprise
Applications. You can also create libraries that can be referenced only by another Web
application. The functionality is very similar to application libraries, although the method of
referencing them is slightly different. See “Web Application Shared Java EE Library
Information” on page 9-21 for details.

Note: WebLogic Server also provides a simple way to add one or more JAR files to the
WebLogic Server System classpath, using the lib subdirectory of the domain directory.
See “Adding JARs to the System Classpath” on page 8-19.

Overv i ew o f Shared Java EE L ib rar ies and Opt iona l Packages

Developing Applications with WebLogic Server 9-3

Optional Packages
WebLogic Server supports optional packages as described in the Java EE 5.0 Specification,
Section 8.2 Optional Package Support, with versioning described in Optional Package
Versioning. Optional packages provide similar functionality to Java EE libraries, allowing you to
easily share a single JAR file among multiple applications. As with Java EE libraries, optional
packages must first be registered with WebLogic Server by deploy the associated JAR file as an
optional package. After registering the package, you can deploy Java EE modules that reference
the package in their manifest files.

Optional packages differ from Java EE libraries because optional packages can be referenced
from any Java EE module (EAR, JAR, WAR, or RAR archive) or exploded archive directory.
Java EE libraries can be referenced only from a valid Enterprise Application.

For example, third-party Web Application Framework classes needed by multiple Web
Applications can be packaged and deployed in a single JAR file, and referenced by multiple Web
Application modules in the domain. Optional packages, rather than Java EE libraries, are used in
this case, because the individual Web Application modules must reference the shared JAR file.
(With Java EE libraries, only a complete Enterprise Application can reference the library).

Note: BEA documentation and WebLogic Server utilities use the term library to refer to both
Java EE libraries and optional packages. Optional packages are called out only when
necessary.

Library Directories
The Java EE platform provides several mechanisms for applications to use optional packages and
shared libraries. Libraries can be bundled with an application or may be installed separately for
use by any application. An EAR file may contain a directory that contains libraries packaged in
JAR files. The library-directory element of the EAR file’s deployment descriptor contains
the name of this directory. If a library-directory element isn’t specified, or if the EAR file
does not contain a deployment descriptor, the directory named lib is used. An empty
library-directory element may be used to specify that there is no library directory. All files
in this directory (but not in subdirectories) with a .jar extension must be made available to all
components packaged in the EAR file, including application clients. These libraries may
reference other libraries, either bundled with the application or installed separately.

This feature is similar to the APP-INF/lib feature supported in WebLogic Server. If both
APP-INF/lib and library-directory exist, then the jars in the library-directory would
take precedence; that is, they would be placed before the APP-INF/lib jar files in the classpath.
For more information on APP-INF/lib, see “Resolving Class References Between Modules and

Creat ing Shared Java EE L ib rar ies and Opt iona l Packages

9-4 Developing Applications with WebLogic Server

Applications” on page 8-17 and “Organizing Shared Classes in a Split Development Directory”
on page 3-11.

Versioning Support for Libraries
WebLogic Server supports versioning of shared Java EE libraries, so that referencing
applications can specify a required minimum version of the library to use, or an exact, required
version. WebLogic Server supports two levels of versioning for shared Java EE libraries, as
described in the Optional Package Versioning document:

Specification Version—Identifies the version number of the specification (for example, the
Java EE specification version) to which a shared Java EE library or optional package
conforms.

Implementation Version—Identifies the version number of the actual code implementation
for the library or package. For example, this would correspond to the actual revision
number or release number of your code. Note that you must also provide a specification
version in order to specify an implementation version.

As a best practice, BEA recommends that you always include version information (an
implementation version, or both an implementation and specification version) when creating
shared Java EE libraries. Creating and updating version information as you develop shared
components allows you to deploy multiple versions of those components simultaneously for
testing. If you include no version information, or fail to increment the version string, then you
must undeploy existing libraries before you can deploy the newer one. See “Deploying Shared
Java EE Libraries and Dependent Applications” on page 9-20.

Versioning information in the referencing application determines the library and package version
requirements for that application. Different applications can require different versions of a given
library or package. For example, a production application may require a specific version of a
library, because only that library has been fully approved for production use. An internal
application may be configured to always use a minimum version of the same library. Applications
that require no specific version can be configured to use the latest version of the library.
“Referencing Shared Java EE Libraries in an Enterprise Application” on page 9-11.

Shared Java EE Libraries and Optional Packages Compared
Optional packages and shared Java EE libraries have the following features in common:

Both are registered with WebLogic Server instances at deployment time.

Both support an optional implementation version and specification version string.

Overv i ew o f Shared Java EE L ib rar ies and Opt iona l Packages

Developing Applications with WebLogic Server 9-5

Applications that reference shared Java EE libraries and optional packages can specify
required versions for the shared files.

Optional packages can reference other optional packages, and shared Java EE libraries can
reference other shared Java EE libraries.

Optional packages differ from shared Java EE Libraries in the following basic ways:

Optional packages are plain JAR files, whereas shared Java EE libraries can be plain JAR
files, Java EE Enterprise Applications, or standalone Java EE modules (EJB and Web
applications). This means that libraries can have valid Java EE and WebLogic Server
deployment descriptors. Any deployment descriptors in an optional package JAR file are
ignored.

Any Java EE application or module can reference an optional package (using
META-INF/MANIFEST.MF), whereas only Enterprise Applications and Web applications can
reference a shared Java EE library (using weblogic-application.xml or
weblogic.xml)

In general, use shared Java EE libraries when you need to share one or more EJB, Web
Application or Enterprise Application modules among different Enterprise Applications. Use
optional packages when you need to share one or more classes (packaged in a JAR file) among
different Java EE modules.

Plain JAR files can be shared either as libraries or optional packages. Use optional packages if
you want to:

Share a plain JAR file among multiple Java EE modules

Reference shared JAR files from other shared JARs

Share plain JARs as described by the Java EE 5.0 specification

Use shared Java EE libraries to share a plain JAR file if you only need to reference the JAR file
from one or more Enterprise Applications, and you do not need to maintain strict compliance with
the Java EE specification.

Note: BEA documentation and WebLogic Server utilities use the term shared Java EE library
to refer to both libraries and optional packages. Optional packages are called out only
when necessary.

Creat ing Shared Java EE L ib rar ies and Opt iona l Packages

9-6 Developing Applications with WebLogic Server

Additional Information
For information about deploying and managing shared Java EE libraries, optional packages, and
referencing applications from the Administrator’s perspective, see Deploying Shared Java EE
Libraries and Dependent Applications in Deploying Applications to WebLogic Server.

Creating Shared Java EE Libraries
To create a new shared Java EE library that you can share with multiple applications:

1. Assemble the shared Java EE library into a valid, deployable Java EE module or Enterprise
Application. The library must have the required Java EE deployment descriptors for the Java
EE module or for an Enterprise Application.

See “Assembling Shared Java EE Library Files” on page 9-6.

2. Assemble optional package classes into a working directory.

See “Assembling Optional Package Class Files” on page 9-7.

3. Create and edit the MANIFEST.MF file for the shared Java EE library to specify the name and
version string information.

See “Editing Manifest Attributes for Shared Java EE Libraries” on page 9-8.

4. Package the shared Java EE library for distribution and deployment.

See “Packaging Shared Java EE Libraries for Distribution and Deployment” on page 9-10.

Assembling Shared Java EE Library Files
The following types of Java EE modules can be deployed as a shared Java EE library:

An EJB module, either an exploded directory or packaged in a JAR file.

A Web Application module, either an exploded directory or packaged in a WAR file.

An Enterprise application, either an exploded directory or packaged in an EAR file.

A plain Java class or classes packaged in a JAR file.

A shared Java EE library referenced from another library. (See “Web Application Shared
Java EE Library Information” on page 9-21.)

Shared Java EE libraries have the following restrictions:

Creat ing Shared Java EE L ib ra r i es

Developing Applications with WebLogic Server 9-7

You must ensure that context roots in Web application modules of the shared Java EE
library do not conflict with context roots in the referencing Enterprise Application. If
necessary, you can configure referencing applications to override a library’s context root.
See “Referencing Shared Java EE Libraries in an Enterprise Application” on page 9-11.

Shared Java EE libraries cannot be nested. For example, if you are deploying an EAR as a
shared Java EE library, the entire EAR must be designated as the library. You cannot
designate individual Java EE modules within the EAR as separate, named libraries.

As with any other Java EE module or Enterprise Application, a shared Java EE library
must be configured for deployment to the target servers or clusters in your domain. This
means that a library requires valid Java EE deployment descriptors as well as WebLogic
Server-specific deployment descriptors and an optional deployment plan. See Deploying
Applications to WebLogic Server.

BEA recommends packaging shared Java EE libraries as Enterprise Applications, rather than as
standalone Java EE modules. This is because the URI of a standalone module is derived from the
deployment name, which can change depending on how the module is deployed. By default,
WebLogic Server uses the deployment archive filename or exploded archive directory name as
the deployment name. If you redeploy a standalone shared Java EE library from a different file
or location, the deployment name and URI also change, and referencing applications that use the
wrong URI cannot access the deployed library.

If you choose to deploy a shared Java EE library as a standalone Java EE module, always specify
a known deployment name during deployment and use that name as the URI in referencing
applications.

Assembling Optional Package Class Files
Any set of classes can be organized into an optional package file. The collection of shared classes
will eventually be packaged into a standard JAR archive. However, because you will need to edit
the manifest file for the JAR, begin by assembling all class files into a working directory:

1. Create a working directory for the new optional package. For example:

mkdir /apps/myOptPkg

2. Copy the compiled class files into the working directory, creating the appropriate package
sudirectories as necessary. For example:

mkdir -p /apps/myOptPkg/org/myorg/myProduct
cp /build/classes/myOptPkg/org/myOrg/myProduct/*.class
/apps/myOptPkg/org/myOrg/myProduct

Creat ing Shared Java EE L ib rar ies and Opt iona l Packages

9-8 Developing Applications with WebLogic Server

3. If you already have a JAR file that you want to use as an optional package, extract its contents
into the working directory so that you can edit the manifest file:

cd /apps/myOptPkg
jar xvf /build/libraries/myLib.jar

Editing Manifest Attributes for Shared Java EE Libraries
The name and version information for a shared Java EE library are specified in the
META-INF/MANIFEST.MF file. Table 9-1 describes the valid shared Java EE library manifest
attributes.

Table 9-1 Manifest Attributes for Java EE Libraries

Attribute Description

Extension-Name An optional string value that identifies the name of the shared
Java EE library. Referencing applications must use the exact
Extension-Name value to use the library.

As a best practice, always specify an Extension-Name value
for each library. If you do not specify an extension name, one is
derived from the deployment name of the library. Default
deployment names are different for archive and exploded archive
deployments, and they can be set to arbitrary values in the
deployment command.

Creat ing Shared Java EE L ib ra r i es

Developing Applications with WebLogic Server 9-9

To specify attributes in a manifest file:

Specification-Version An optional String value that defines the specification version of
the shared Java EE library. Referencing applications can
optionally specify a required Specification-Version for a
library; if the exact specification version is not available,
deployment of the referencing application fails.

The Specification-Version uses the following format:
Major/minor version format, with version and revision
numbers separated by periods (such as “9.0.1.1”)

Referencing applications can be configured to require either an
exact version of the shared Java EE library, a minimum version,
or the latest available version.

The specification version for a shared Java EE library can also be
set at the command-line when deploying the library, with some
restrictions. See “Deploying Shared Java EE Libraries and
Dependent Applications” on page 9-20.

Implementation-Version An optional String value that defines the code implementation
version of the shared Java EE library. You can provide an
Implementation-Version only if you have also defined a
Specification-Version.

Implementation-Version uses the following formats:
• Major/minor version format, with version and revision

numbers separated by periods (such as “9.0.1.1”)
• Text format, with named versions (such as “9011Beta” or

“9.0.1.1.B”)

If you use the major/minor version format, referencing
applications can be configured to require either an exact version
of the shared Java EE library, a minimum version, or the latest
available version. If you use the text format, referencing
applications must specify the exact version of the library.

The implementation version for a shared Java EE library can also
be set at the command-line when deploying the library, with some
restrictions. See “Deploying Shared Java EE Libraries and
Dependent Applications” on page 9-20.

Table 9-1 Manifest Attributes for Java EE Libraries

Attribute Description

Creat ing Shared Java EE L ib rar ies and Opt iona l Packages

9-10 Developing Applications with WebLogic Server

1. Open (or create) the manifest file using a text editor. For the example shared Java EE library,
you would use the commands:

cd /apps/myLibrary
mkdir META-INF
emacs META-INF/MANIFEST.MF

For the optional package example, use:

cd /apps/myOptPkg
mkdir META-INF
emacs META-INF/MANIFEST.MF

2. In the text editor, add a string value to specify the name of the shared Java EE library. For
example:

Extension-Name: myExtension

Applications that reference the library must specify the exact Extension-Name in order to
use the shared files.

3. As a best practice, enter the optional version information for the shared Java EE library. For
example:

Extension-Name: myExtension
Specification-Version: 2.0
Implementation-Version: 9.0.0

Using the major/minor format for the version identifiers provides the most flexibility when
referencing the library from another application (see Table)

Note: Although you can optionally specify the Specification-Version and
Implementation-Version at the command-line during deployment, BEA
recommends that you include these strings in the MANIFEST.MF file. Including
version strings in the manifest ensures that you can deploy new versions of the library
alongside older versions. See “Deploying Shared Java EE Libraries and Dependent
Applications” on page 9-20.

Packaging Shared Java EE Libraries for Distribution and
Deployment
If you are delivering the shared Java EE Library or optional package for deployment by an
Administrator, package the deployment files into an archive file (an .EAR file or standalone
module archive file for shared Java EE libraries, or a simple .JAR file for optional packages) for
distribution. See “Deploying and Packaging from a Split Development Directory” on page 5-1.

Refe renc ing Shared Java EE L ib ra r i es in an Ente rp r ise Appl i cat ion

Developing Applications with WebLogic Server 9-11

Because a shared Java EE library is packaged as a standard Java EE application or standalone
module, you may also choose to export a library’s deployment configuration to a deployment
plan, as described in Deploying Applications to WebLogic Server. Optional package .JAR files
contain no deployment descriptors and cannot be exported.

For development purposes, you may choose to deploy libraries as exploded archive directories to
facilitate repeated updates and redeployments.

Referencing Shared Java EE Libraries in an Enterprise
Application

A Java EE application can reference a registered shared Java EE library using entries in the
application’s weblogic-application.xml deployment descriptor. Table 9-2 describes the
XML elements that define a library reference.

Table 9-2 weblogic-application.xml Elements for Referencing a Shared Java EE Library

Element Description

library-ref library-ref is the parent element in which you define a reference to a
shared Java EE library. Enclose all other elements within library-ref.

library-name A required string value that specifies the name of the shared Java EE library
to use. library-name must exactly match the value of the
Extension-Name attribute in the library’s manifest file. (See Table 9-4.)

specification-version An optional String value that defines the required specification version of
the shared Java EE library. If this element is not set, the application uses a
matching library with the highest specification version. If you specify a
string value using major/minor version format, the application uses a
matching library with the highest specification version that is not below the
configured value. If all available libraries are below the configured
specification-version, the application cannot be deployed. The
required version can be further constrained by using the exact-match
element, described below.
If you specify a String value that does not use major/minor versioning
conventions (for example, 9.2BETA) the application requires a shared Java
EE library having the exact same string value in the
Specification-Version attribute in the library’s manifest file. (See
Table 9-4.)

Creat ing Shared Java EE L ib rar ies and Opt iona l Packages

9-12 Developing Applications with WebLogic Server

For example, this simple entry in the weblogic-application.xml descriptor references a
shared Java EE library, myLibrary:

<library-ref>

<library-name>myLibrary</library-name>

</library-ref>

implementation-version An optional String value that specifies the required implementation version
of the shared Java EE library. If this element is not set, the application uses
a matching library with the highest implementation version. If you specify
a string value using major/minor version format, the application uses a
matching library with the highest implementation version that is not below
the configured value. If all available libraries are below the configured
implementation-version, the application cannot be deployed. The
required implementation version can be further constrained by using the
exact-match element, described below.
If you specify a String value that does not use major/minor versioning
conventions (for example, 9.2BETA) the application requires a shared Java
EE library having the exact same string value in the
Implementation-Version attribute in the library’s manifest file. (See
Table 9-4.)

exact-match An optional boolean value that determines whether the application should
use a shared Java EE library with a higher specification or implementation
version than the configured value, if one is available. By default this
element is false, which means that WebLogic Server uses higher-versioned
libraries if they are available. Set this element to true to require the exact
matching version as specified in the specification-version and
implementation-version elements.

context-root An optional String value that provides an alternate context root to use for a
Web application shared Java EE library. Use this element if the context root
of a library conflicts with the context root of a Web Application in the
referencing Java EE application.
Web application shared Java EE library refers to special kind of library: a
Web application that is referenced by another Web application. See “Web
Application Shared Java EE Library Information” on page 9-21.

Table 9-2 weblogic-application.xml Elements for Referencing a Shared Java EE Library

Element Description

Refe renc ing Shared Java EE L ib ra r i es in an Ente rp r ise Appl i cat ion

Developing Applications with WebLogic Server 9-13

In the above example, WebLogic Server attempts to find a library name myLibrary when
deploying the dependent application. If more than one copy of myLibrary is registered,
WebLogic Server selects the library with the highest specification version. If multiple copies of
the library use the selected specification version, WebLogic Server selects the copy having the
highest implementation version.

This example references a shared Java EE library with a requirement for the specification version:

<library-ref>

<library-name>myLibrary</library-name>

<specification-version>2.0</specification-version>

</library-ref>

In the above example, WebLogic Server looks for matching libraries having a specification
version of 2.0 or higher. If multiple libraries are at or above version 2.0, WebLogic Server
examines the selected libraries that use Float values for their implementation version and selects
the one with the highest version. Note that WebLogic Server ignores any selected libraries that
have a non-Float value for the implementation version.

This example references a shared Java EE library with both a specification version and a
non-Float value implementation version:

<library-ref>

<library-name>myLibrary</library-name>

<specification-version>2.0</specification-version>

<implementation-version>81Beta</implementation-version>

</library-ref>

In the above example, WebLogic Server searches for a library having a specification version of
2.0 or higher, and having an exact match of 81Beta for the implementation version.

The following example requires an exact match for both the specification and implementation
versions:

<library-ref>

<library-name>myLibrary</library-name>

<specification-version>2.0</specification-version>

<implementation-version>8.1</implementation-version>

<exact-match>true</exact-match>

</library-ref>

Creat ing Shared Java EE L ib rar ies and Opt iona l Packages

9-14 Developing Applications with WebLogic Server

The following example specifies a context-root-override, which in turn, refers to the old
context-root specified in one of its libraries and the new context-root that should be used
instead. (override):

<library-ref>

<library-name>myLibrary</library-name>

<library-context-root-override>

<library-context-root>webapp</library-context-root>

<override-value>mywebapp</override-value>

</library-context-root-override>

</library-ref>

Overriding context-roots Within a Referenced
Enterprise Library
A Java EE application can override context-roots within a referenced EAR library using
entries in the application’s weblogic-application.xml deployment descriptor. Table 9-3
describes the XML elements that override context-roots in a library reference.

The following example specifies a context-root-override, which in turn, refers to the old
context-root specified in one of its libraries and the new context-root that should be used
instead. (override):

<library-ref>

<library-name>myLibrary</library-name>

Table 9-3 weblogic-application.xml Elements for Overriding a Shared Java EE Library

Element Description

library-context-root An optional String value that overrides the context-root elements
declared in libraries. In the absence of this element, the library’s
context-root is used.
Only a referencing application (i.e., a user application) can override the
context-root elements declared in its libraries.

override-value An optional String value that specifies the value of the
library-context-root-override element when overriding the
context-root elements declared in libraries. In the absence of these elements,
the library’s context-root is used.

Referenc ing Opt i ona l Packages f rom a Java EE Appl ica t i on o r Modu le

Developing Applications with WebLogic Server 9-15

<specification-version>2.0</specification-version>

<implementation-version>8.1</implementation-version>

 <exact-match>true</exact-match>

</library-ref>

<library-context-root-override>

<library-context-root>webapp</library-context-root>

<override-value>mywebapp</override-value>

</library-context-root-override>

In the above example, the current application refers to myLibrary, which contains a Web
application with a context-root of webapp. The only way to override this reference is to
declare a library-context-root-override that maps webapp to mywebapp.

URIs for Shared Java EE Libraries Deployed As a Standalone
Module
When referencing the URI of a shared Java EE library that was deployed as a standalone module
(EJB or Web Application), note that the module URI corresponds to the deployment name of the
shared Java EE library. This can be a name that was manually assigned during deployment, the
name of the archive file that was deployed, or the name of the exploded archive directory that was
deployed. If you redeploy the same module using a different file name or from a different
location, the default deployment name also changes and referencing applications must be updated
to use the correct URI.

To avoid this problem, deploy all shared Java EE libraries as Enterprise Applications, rather than
as standalone modules. If you choose to deploy a library as a standalone Java EE module, always
specify a known deployment name and use that name as the URI in referencing applications.

Referencing Optional Packages from a Java EE
Application or Module

Any Java EE archive (JAR, WAR, RAR, EAR) can reference one or more registered optional
packages using attributes in the archive’s manifest file.

Creat ing Shared Java EE L ib rar ies and Opt iona l Packages

9-16 Developing Applications with WebLogic Server

Table 9-4 Manifest Attributes for Referencing Optional Packages

Attribute Description

Extension-List
logical_name [...]

A required String value that defines a logical name for an optional
package dependency. You can use multiple values in the
Extension-List attribute to designate multiple optional
package dependencies. For example:
Extension-List: dependency1 dependency2

[logical_name-]Extension
-Name

A required string value that identifies the name of an optional
package dependency. This value must match the
Extension-Name attribute defined in the optional package’s
manifest file.

If you are referencing multiple optional packages from a single
archive, prepend the appropriate logical name to the
Extension-Name attribute. For example:
dependency1-Extension-Name: myOptPkg

Referenc ing Opt i ona l Packages f rom a Java EE Appl ica t i on o r Modu le

Developing Applications with WebLogic Server 9-17

For example, this simple entry in the manifest file for a dependent archive references two optional
packages, myAppPkg and my3rdPartyPkg:

[logical_name-]Specifica
tion-Version

An optional String value that defines the required specification
version of an optional package. If this element is not set, the
archive uses a matching package with the highest specification
version. If you include a specification-version value
using the major/minor version format, the archive uses a matching
package with the highest specification version that is not below
the configured value. If all available package are below the
configured specification-version, the archive cannot be
deployed.
If you specify a String value that does not use major/minor
versioning conventions (for example, 9.2BETA) the archive
requires a matching optional package having the exact same
string value in the Specification-Version attribute in the
package’s manifest file. (See Table on page 8.)
If you are referencing multiple optional packages from a single
archive, prepend the appropriate logical name to the
Specification-Version attribute.

[logical_name-]Implement
ation-Version

An optional String value that specifies the required
implementation version of an optional package. If this element is
not set, the archive uses a matching package with the highest
implementation version. If you specify a string value using the
major/minor version format, the archive uses a matching package
with the highest implementation version that is not below the
configured value. If all available libraries are below the
configured implementation-version, the application
cannot be deployed.
If you specify a String value that does not use major/minor
versioning conventions (for example, 9.2BETA) the archive
requires a matching optional package having the exact same
string value in the Implementation-Version attribute in the
package’s manifest file. (See Table on page 8.)
If you are referencing multiple optional packages from a single
archive, prepend the appropriate logical name to the
Implementation-Version attribute.

Table 9-4 Manifest Attributes for Referencing Optional Packages

Attribute Description

Creat ing Shared Java EE L ib rar ies and Opt iona l Packages

9-18 Developing Applications with WebLogic Server

Extension-List: internal 3rdparty

internal-Extension-Name: myAppPkg

3rdparty-Extension-Name: my3rdPartyPkg

This example requires a specification version of 2.0 or higher for myAppPkg:

Extension-List: internal 3rdparty

internal-Extension-Name: myAppPkg

3rdparty-Extension-Name: my3rdPartyPkg

internal-Specification-Version: 2.0

This example requires a specification version of 2.0 or higher for myAppPkg, and an exact match
for the implementation version of my3rdPartyPkg:

Extension-List: internal 3rdparty

internal-Extension-Name: myAppPkg

3rdparty-Extension-Name: my3rdPartyPkg

internal-Specification-Version: 2.0

3rdparty-Implementation-Version: 8.1GA

By default, when WebLogic Server deploys an application or module and it cannot resolve a
reference in the application’s manifest file to an optional package, WebLogic Server prints a
warning, but continues with the deployment anyway. You can change this behavior by setting the
system property weblogic.application.RequireOptionalPackages to true when you
start WebLogic Server, either at the command line or in the command script file from which you
start the server. Setting this system property to true means that WebLogic Server does not
attempt to deploy an application or module if it cannot resolve an optional package reference in
its manifest file.

Using weblogic.appmerge to Merge Libraries
weblogic.appmerge is a tool that is used to merge libraries into an application, with merged
contents and merged descriptors. It also has the ability to write a merged application to disk. You
can then use weblogic.appmerge to understand a library merge by examining the merged
application you have written to disk.

“Using weblogic.appmerge from the CLI” on page 9-19

“Using weblogic.appmerge as an Ant Task” on page 9-19

Using web log ic .appmerge to Merge L ibra r i es

Developing Applications with WebLogic Server 9-19

Using weblogic.appmerge from the CLI
Invoke weblogic.appmerge using the following syntax:

java weblogic.appmerge [options] <ear, jar, war file, or directory>

where valid options are shown in Table 9-5:

Example:

$ java weblogic.appmerge -output CompleteSportsApp.ear -library Weather

.war,Calendar.ear SportsApp.ear

Using weblogic.appmerge as an Ant Task
The ant task provides similar functionality as the command line utility. It supports source,
output, libraryDir, plan and verbose attributes as well as multiple <library>
sub-elements. Here is an example:

Table 9-5 weblogic.appmerge Options

Option Comment

 -help Print the standard usage message.

-version Print version information.

-output <file> Specifies an alternate output archive or directory. If not set,
output is placed in the source archive or directory.

-plan <file> Specifies an optional deployment plan.

-verbose Provide more verbose output.

-library <file> Comma-separated list of libraries. Each library may optionally
set its name and versions, if not already set in its manifest, using
the following syntax:
<file> [@name=<string>@libspecver=<version>
@libimplver=<version|string>].

-librarydir <dir> Registers all files in specified directory as libraries.

-writeInferredDesc
riptors

Specifies that the application or module contains deployment
descriptors with annotation information.

Creat ing Shared Java EE L ib rar ies and Opt iona l Packages

9-20 Developing Applications with WebLogic Server

<taskdef name="appmerge" classname="weblogic.ant.taskdefs.j2ee.AppMergeTas

k"/>

<appmerge source="SportsApp.ear" output="CompleteSportsApp.ear">

<library file="Weather.war"/>

<library file="Calendar.ear"/>

</appmerge>

Integrating Shared Java EE Libraries with the Split
Development Directory Environment

The BuildXMLGen includes a -librarydir option to generate build targets that include one or
more shared Java EE library directories. See “Generating a Basic build.xml File Using
weblogic.BuildXMLGen” on page 3-13.

The wlcompile and wlappc Ant tasks include a librarydir attribute and library element to
specify one or more shared Java EE library directories to include in the classpath for application
builds. See “Building Applications in a Split Development Directory” on page 4-1.

Deploying Shared Java EE Libraries and Dependent
Applications

Shared Java EE libraries are registered with one or more WebLogic Server instances by
deploying them to the target servers and indicating that the deployments are to be shared. Shared
Java EE libraries must be targeted to the same WebLogic Server instances you want to deploy
applications that reference the libraries. If you try to deploy a referencing application to a server
instance that has not registered a required library, deployment of the referencing application fails.
See Registering Libraries with WebLogic Server in Deploying Applications to WebLogic Server
for more information.

See Install a Java EE Library for detailed instructions on installing (deploying) a shared Java EE
library using the Administration Console. See Target a Shared Java EE Library to a Server or
Cluster for instructions on using the Administration Console to target the library to the server or
cluster to which the application that is referencing the library is also targeted.

If you use the wldeploy Ant task as part of your iterative development process, use the library,
libImplVer, and libSpecVer attributes to deploy a shared Java EE library. See Appendix B,
“wldeploy Ant Task Reference,” for details and examples.

Web App l i cat i on Shared Java EE L ib ra r y In fo rmat ion

Developing Applications with WebLogic Server 9-21

After registering a shared Java EE library, you can deploy applications and archives that depend
on the library. Dependent applications can be deployed only if the target servers have registered
all required libraries, and the registered deployments meet the version requirements of the
application or archive. See Deploying Applications that Reference Libraries in Deploying
Applications to WebLogic Server for more information.

Web Application Shared Java EE Library Information
In general, this topic discusses shared Java EE libraries that can be referenced only by Enterprise
Applications. You can also create libraries that can be referenced only by another Web
application. The functionality is very similar to application libraries, although the method of
referencing them is slightly different.

Note: For simplicity, this section uses the term Web application library when referring to a
shared Java EE library that is referenced only by another Web application.

In particular:

Web application libraries can only be referenced by other Web applications.

Rather than update the weblogic-application.xml file, Web applications reference Web
application libraries by updating the weblogic.xml deployment descriptor file. The
elements are almost same as those described in “Referencing Shared Java EE Libraries in
an Enterprise Application” on page 9-11; the only difference is that the <context-root>
child element of <library-ref> is ignored in this case.

You cannot reference any other type of shared Java EE library (EJB, Enterprise application,
or plain JAR file) from the weblogic.xml deployment descriptor file of a Web
Application.

Other than these differences in how they are referenced, the way to create, package, and deploy
a Web application library is the same as that of a standard shared Java EE library.

Using WebApp Libraries With Web Applications
Just as standard shared Java EE applications can be deployed to WebLogic Server as
application-libraries, a standard Web application can be deployed to WebLogic Server as
a webapp-library so that other Web applications can refer to these libraries.

Web application libraries facilitate the reuse of code and resources. Such libraries also help you
separate out third-party Web applications or frameworks that your Web application might be
using. Furthermore, common resources can be packaged separately as libraries and referenced in

Creat ing Shared Java EE L ib rar ies and Opt iona l Packages

9-22 Developing Applications with WebLogic Server

different Web applications, so that you don’t have to bundle them with each Web application.
When you include a webapp-library in your Web application, at deployment time the container
merges all the static resources, classes, and JAR files into your Web application.

The first step in using a WebApp library is to register a Web application as a webapp-library.
This can be accomplished by deploying a Web application using either the Administration
Console or the weblogic.Deployer tool as a library. To make other Web applications refer to
this library, their weblogic.xml file must have a library-ref element pointing to the
webapp-library, as follows:

 <library-ref>

 <library-name>BaseWebApp</library-name>

 <specification-version>2.0</specification-version>

 <implementation-version>8.1beta</implementation-version>

 <exact-match>false</exact-match>

 </library-ref>

When multiple libraries are present, the CLASSPATH/resource path precedence order follows
the order in which the library-refs elements appear in the weblogic.xml file.

Accessing Registered Shared Java EE Library
Information with LibraryRuntimeMBean

Each deployed shared Java EE library is represented by a LibraryRuntimeMBean. You can use
this MBean to obtain information about the library itself, such as its name or version. You can
also obtain the ApplicationRuntimeMBeans associated with deployed applications.
ApplicationRuntimeMBean provides two methods to access the libraries that the application is
using:

getLibraryRuntimes() returns the shared Java EE libraries referenced in the
weblogic-application.xml file.

getOptionalPackageRuntimes() returns the optional packages referenced in the
manifest file.

For more information, see the WebLogic Server 10.0 API Reference.

Order o f P recedence o f Modu les When Re fe renc ing Shared Java EE L ibra r i es

Developing Applications with WebLogic Server 9-23

Order of Precedence of Modules When Referencing
Shared Java EE Libraries

When an Enterprise Application references one or more shared Java EE libraries, and the
application is deployed to WebLogic Server, the server internally merges the information in the
weblogic-application.xml file of the referencing Enterprise Application with the
information in the deployment descriptors of the referenced libraries. The order in which this
happens is as follows:

1. When the Enterprise Application is deployed, WebLogic Server reads its
weblogic-application.xml deployment descriptor.

2. WebLogic Server reads the deployment descriptors of any referenced shared Java EE
libraries. Depending on the type of library (Enterprise Application, EJB, or Web application),
the read file might be weblogic-application.xml, weblogic.xml,
weblogic-ejb-jar.xml, and so on.

3. WebLogic Server first merges the referenced shared Java EE library deployment descriptors
(in the order in which they are referenced, one at a time) and then merges the
weblogic-application.xml file of the referencing Enterprise application on top of the
library descriptor files.

As a result of the way the descriptor files are merged, the elements in the descriptors of the shared
Java EE libraries referenced first in the weblogic-application.xml file have precedence over
the ones listed last. The elements of the Enterprise application’s descriptor itself have precedence
over all elements in the library descriptors.

For example, assume that an Enterprise application called myApp references two shared Java EE
libraries (themselves packaged as Enterprise applications): myLibA and myLibB, in that order.
Both the myApp and myLibA applications include an EJB module called myEJB, and both the
myLibA and myLibB applications include an EJB module called myOtherEJB.

Further assume that once the myApp application is deployed, a client invokes, via the myApp
application, the myEJB module. In this case, WebLogic Server actually invokes the EJB in the
myApp application (rather than the one in myLibA) because modules in the referencing application
have higher precedence over modules in the referenced applications. If a client invokes the
myOtherEJB EJB, then WebLogic Server invokes the one in myLibA, because the library is
referenced first in the weblogic-application.xml file of myApp, and thus has precedence over
the EJB with the same name in the myLibB application.

Creat ing Shared Java EE L ib rar ies and Opt iona l Packages

9-24 Developing Applications with WebLogic Server

Best Practices for Using Shared Java EE Libraries
Keep in mind these best practices when developing shared Java EE libraries and optional
packages:

Use shared Java EE Libraries when you want to share one or more Java EE modules
(EJBs, Web Applications, Enterprise Applications, or plain Java classes) with multiple
Enterprise Applications.

If you need to deploy a standalone Java EE module, such as an EJB JAR file, as a shared
Java EE library, package the module within an Enterprise Application. Doing so avoids
potential URI conflicts, because the library URI of a standalone module is derived from the
deployment name.

If you choose to deploy a shared Java EE library as a standalone Java EE module, always
specify a known deployment name during deployment and use that name as the URI in
referencing applications.

Use optional packages when multiple Java EE archive files need to share a set of Java
classes.

If you have a set of classes that must be available to applications in an entire domain, and
you do not frequently update those classes (for example, if you need to share 3rd party
classes in a domain), use the domain /lib subdirectory rather than using shared Java EE
libraries or optional packages. Classes in the /lib subdirectory are added to the system
classpath at server start-up time.

Always specify a specification version and implementation version, even if you do not
intend to enforce version requirements with dependent applications. Specifying versions
for shared Java EE libraries enables you to deploy multiple versions of the shared files for
testing.

Always specify an Extension-Name value for each shared Java EE library. If you do not
specify an extension name, one is derived from the deployment name of the library.
Default deployment names are different for archive and exploded archive deployments, and
they can be set to arbitrary values in the deployment command

When developing a Web Application for deployment as a shared Java EE library, use a
unique context root. If the context root conflicts with the context root in a dependent Java
EE application, use the context-root element in the EAR’s
weblogic-application.xml deployment descriptor to override the library’s context root.

Best P ract ices fo r Us ing Shared Java EE L ib rar i es

Developing Applications with WebLogic Server 9-25

Package shared Java EE libraries as archive files for delivery to Administrators or
deployers in your organization. Deploy libraries from exploded archive directories during
development to allow for easy updates and repeated redeployments.

Deploy shared Java EE libraries to all WebLogic Server instances on which you want to
deploy dependent applications and archives. If a library is not registered with a server
instance on which you want to deploy a referencing application, deployment of the
referencing application fails.

Creat ing Shared Java EE L ib rar ies and Opt iona l Packages

9-26 Developing Applications with WebLogic Server

Developing Applications with WebLogic Server 10-1

C H A P T E R 10

Programming Application Lifecycle
Events

The following sections describe how to create applications that respond to WebLogic Server
application lifecycle events:

“Understanding Application Lifecycle Events” on page 10-1

“Registering Events in weblogic-application.xml” on page 10-2

“Programming Basic Lifecycle Listener Functionality” on page 10-3

“Examples of Configuring Lifecycle Events with and without the URI Parameter” on
page 10-6

“Understanding Application Lifecycle Event Behavior During Re-deployment” on
page 10-7

“Programming Application Version Lifecycle Events” on page 10-8

WARNING: Application-scoped startup and shutdown classes have been deprecated as of
release 9.0 of WebLogic Server. The information in this chapter about startup and
shutdown classes is provided only for backwards compatibility. Instead, you
should use lifecycle listener events in your applications.

Understanding Application Lifecycle Events
Application lifecycle listener events provide handles on which developers can control behavior
during deployment, undeployment, and redeployment. This section discusses how you can use
the application lifecycle listener events.

Programming App l icat ion L i fec yc le Events

10-2 Developing Applications with WebLogic Server

Four application lifecycle events are provided with WebLogic Server, which can be used to
extend listener, shutdown, and startup classes. These include:

Listeners—attachable to any event. Possible methods for Listeners are:

public void preStart(ApplicationLifecycleEvent evt) {}

– The preStart event is the beginning of the prepare phase, or the start of the application
deployment process.)

public void postStart(ApplicationLifecycleEvent evt) {}

– The postStart event is the end of the activate phase, or the end of the application
deployment process. The application is deployed.

public void preStop(ApplicationLifecycleEvent evt) {}

– The preStop event is the beginning of the deactivate phase, or the start of the
application removal or undeployment process.

public void postStop(ApplicationLifecycleEvent evt) {}

– The postStop event is the end of the remove phase, or the end of the application
removal or undeployment process.

Shutdown classes only get postStop events.

WARNING: Application-scoped shutdown classes have been deprecated as of release 9.0
of WebLogic Server. Use lifecycle listeners instead.

Startup classes only get preStart events.

WARNING: Application-scoped shutdown classes have been deprecated as of release 9.0
of WebLogic Server. Use lifecycle listeners instead.

Note: For Startup and Shutdown classes, you only implement a main{} method. If you
implement any of the methods provided for Listeners, they are ignored.

No remove{} method is provided in the ApplicationLifecycleListener, because the
events are only fired at startup time during deployment (prestart and poststart) and
shutdown during undeployment (prestop and poststop).

Registering Events in weblogic-application.xml
In order to use these events, you must register them in the weblogic-application.xml
deployment descriptor. See “Application Deployment Descriptor Elements.” Define the
following elements:

Programming Bas ic L i fecyc le L is tener Funct i ona l i t y

Developing Applications with WebLogic Server 10-3

listener—Used to register user defined application lifecycle listeners. These are classes
that extend the abstract base class
weblogic.application.ApplicationLifecycleListener.

shutdown—Used to register user-defined shutdown classes.

startup—Used to register user-defined startup classes.

Programming Basic Lifecycle Listener Functionality
You create a listener by extending the abstract class (provided with WebLogic Server)
weblogic.application.ApplicationLifecycleListener. The container then searches
for your listener.

You override the following methods provided in the WebLogic Server
ApplicationLifecycleListener abstract class to extend your application and add any
required functionality:

preStart{}

postStart{}

preStop{}

postStop{}

Listing 10-1 illustrates how you override the ApplicationLifecycleListener. In this
example, the public class MyListener extends ApplicationLifecycleListener.

Listing 10-1 MyListener

import weblogic.application.ApplicationLifecycleListener;

import weblogic.application.ApplicationLifecycleEvent;

public class MyListener extends ApplicationLifecycleListener {

 public void preStart(ApplicationLifecycleEvent evt) {

 System.out.println

 ("MyListener(preStart) -- we should always see you..");

 } // preStart

 public void postStart(ApplicationLifecycleEvent evt) {

Programming App l icat ion L i fec yc le Events

10-4 Developing Applications with WebLogic Server

 System.out.println

 ("MyListener(postStart) -- we should always see you..");

 } // postStart

 public void preStop(ApplicationLifecycleEvent evt) {

 System.out.println

 ("MyListener(preStop) -- we should always see you..");

 } // preStop

 public void postStop(ApplicationLifecycleEvent evt) {

 System.out.println

 ("MyListener(postStop) -- we should always see you..");

 } // postStop

 public static void main(String[] args) {

 System.out.println

 ("MyListener(main): in main .. we should never see you..");

 } // main

}

Listing 10-2 illustrates how you implement the shutdown class. The shutdown class is attachable
to preStop and postStop events. In this example, the public class MyShutdown does not extend
ApplicationLifecycleListener because a shutdown class declared in the
weblogic-application.xml deployment descriptor does not need to depend on any
WebLogic Server-specific interfaces.

Listing 10-2 MyShutdown

import weblogic.application.ApplicationLifecycleListener;

import weblogic.application.ApplicationLifecycleEvent;

public class MyShutdown {

 public static void main(String[] args) {

Programming Bas ic L i fecyc le L is tener Funct i ona l i t y

Developing Applications with WebLogic Server 10-5

 System.out.println

 ("MyShutdown(main): in main .. should be for post-stop");

 } // main

}

Listing 10-3 illustrates how you implement the startup class. The startup class is attachable to
preStart and postStart events. In this example, the public class MyStartup does not extend
ApplicationLifecycleListener because a startup class declared in the
weblogic-application.xml deployment descriptor does not need to depend on any
WebLogic Server-specific interfaces.

Listing 10-3 MyStartup

import weblogic.application.ApplicationLifecycleListener;

import weblogic.application.ApplicationLifecycleEvent;

public class MyStartup {

 public static void main(String[] args) {

 System.out.println

 ("MyStartup(main): in main .. should be for pre-start");

 } // main

}

Configuring a Role-Based Application Lifecycle Listener
You can configure an application lifecycle event with role-based capability where a user identity
can be specified to startup and shutdown events using the run-as-principal-name element.
However, if the run-as-principal-name identity defined for the application lifecycle listener
is an administrator, the application deployer must have administrator privileges; otherwise,
deployment will fail.

Programming App l icat ion L i fec yc le Events

10-6 Developing Applications with WebLogic Server

1. Follow the basic programming steps outlined in “Programming Basic Lifecycle Listener
Functionality” on page 10-3.

2. Within the listener element add the run-as-principal-name element to specify the user
who has privileges to startup and/or shutdown the event. For example:

<listener>
<listener-class>myApp.MySessionAttributeListenerClass</listener-class

>
<run-as-principal-name>javajoe</run-as-principal-name>

</listener>

The identity specified here should be a valid user name in the system. If
run-as-principal-name is not specified, the deployment initiator user identity will be used as
the run-as identity for the execution of the application lifecycle listener.

Examples of Configuring Lifecycle Events with and
without the URI Parameter

The following examples illustrate how you configure application lifecycle events in the
weblogic-application.xml deployment descriptor file. The URI parameter is not required.
You can place classes anywhere in the application $CLASSPATH. However, you must ensure that
the class locations are defined in the $CLASSPATH. You can place listeners in
APP-INF/classes or APP-INF/lib, if these directories are present in the EAR. In this case,
they are automatically included in the $CLASSPATH.

The following example illustrates how you configure application lifecycle events using the URI
parameter. In this case, the archive foo.jar contains the classes and exists at the top level of the
EAR file. For example: myEar/foo.jar

Listing 10-4 Configuring Application Lifecycle Events Using the URI Parameter

 <listener>

 <listener-class>MyListener</listener-class>

 <listener-uri>foo.jar</listener-uri>

 </listener>

 <startup>

 <startup-class>MyStartup</startup-class>

Unders tanding Appl i ca t ion L i f ecyc l e Event Behav io r Dur i ng Re-dep loyment

Developing Applications with WebLogic Server 10-7

 <startup-uri>foo.jar</startup-uri>

 </startup>

 <shutdown>

 <shutdown-class>MyShutdown</shutdown-class>

 <shutdown-uri>foo.jar</shutdown-uri>

 </shutdown>

The following example illustrates how you configure application lifecycle events without using
the URI parameter.

Listing 10-5 Configuring Application Lifecycle Events without Using the URI Parameter

 <listener>

 <listener-class>MyListener</listener-class>

 </listener>

 <startup>

 <startup-class>MyStartup</startup-class>

 </startup>

 <shutdown>

 <shutdown-class>MyShutdown</shutdown-class>

 </shutdown>

Understanding Application Lifecycle Event Behavior
During Re-deployment

Application lifecycle events are only triggered if a full re-deployment of the application occurs.
During a full re-deployment of the application—provided the application lifecycle events have

Programming App l icat ion L i fec yc le Events

10-8 Developing Applications with WebLogic Server

been registered—the application lifecycle first commences the shutdown sequence, next
re-initializes its classes, and then performs the startup sequence.

For example, if your listener is registered for the full application lifecycle set of events (preStart,
postStart, preStop, postStop), during a full re-deployment, you see the following sequence of
events:

1. preStop{}

2. postStop{}

3. Initialization takes place. (Unless you have set debug flags, you do not see the initialization.)

4. preStart{}

5. postStart{}

Programming Application Version Lifecycle Events
The following sections describe how to create applications that respond to WebLogic Server
application version lifecycle events:

“Understanding Application Version Lifecycle Event Behavior” on page 10-8

“Types of Application Version Lifecycle Events” on page 10-9

“Example of Production Deployment Sequence When Using Application Version Lifecycle
Events” on page 10-9

Understanding Application Version Lifecycle Event
Behavior
WebLogic Server provides application version lifecycle event notifications by allowing you to
extend the ApplicationVersionLifecycleListener class and specify a lifecycle listener in
weblogic-application.xml. See Application Deployment Descriptor Elements and
“Examples of Configuring Lifecycle Events with and without the URI Parameter” on page 10-6.

Application version lifecycle events are invoked:

For both static and dynamic deployments.

Using either anonymous ID or using user identity.

Only if the current application is versioned; otherwise, version life cycle events are
ignored.

Programming App l icat ion Ve rs ion L i f ec yc le Events

Developing Applications with WebLogic Server 10-9

for all application versions, including the version that registers the listener. Use the
ApplicationVersionLifecycleEvent.isOwnVersion method to determine if an event
belongs to a particular version. See the ApplicationVersionLifecycleEvent class for
more information on types of version lifecycle events.

Types of Application Version Lifecycle Events
Four application version lifecycle events are provided with WebLogic Server:

public void preDeploy(ApplicationVersionLifecycleEvent evt)

– The preDeloy event is invoked when an application version deploy or redeploy
operation is initiated.

public void postDeploy(ApplicationVersionLifecycleEvent evt)

– The postDeloy event is invoked when an application version is deployed or
redeployed successfully.

public void preUndeploy(ApplicationVersionLifecycleEvent evt)

– The preUndeloy event is invoked when an application version undeploy operation is
initiated

public void postDelete(ApplicationVersionLifecycleEvent evt)

– The postDelete event is invoked when an application version is deleted.

Note: A postDelete event is only be fired after the entire application version is completely
removed. It does not include a partial undeploy, such as undeploying a module or
from a subset of targets.

Example of Production Deployment Sequence When Using
Application Version Lifecycle Events
The following table provides an example of a deployment (V1), production redeployment (V2),
and an undeploy (V2).

Programming App l icat ion L i fec yc le Events

10-10 Developing Applications with WebLogic Server

Table 10-1 Sequence of Deployment Actions and Application Version Lifecycle Events

Deployment action Time Version V1 Version V2

Deployment of
Version V1

T0 preDeploy(V1) invoked.

T1 Deployment starts.

T2 Application lifecycle listeners for
V1 are registered.

T3 V1 is active version, Deployment
is complete.

T4 postDeploy(V1) invoked.

T5 Application Listeners gets
postDeploy(V1).

Programming App l icat ion Ve rs ion L i f ec yc le Events

Developing Applications with WebLogic Server 10-11

Production
Redeployment of
Version V2

T6 preDeploy(V2) invoked.

T7 Application version listener
receives preDeploy(V1).

T8 Deployment starts.

T9 Application lifecycle listeners for
V2 are registered.

T10 If deploy(V2) succeeds, V1 ceases
to be active version.

If deploy(V2) succeeds, V2
replaces V1 as active version.

Deployment is complete.

T11 postDeploy(V2) invoked.

Note: This event occurs even
if the deployment fails.

T12 Application version listener gets
postDeploy(V2). If
deploy(V2) fails, V1 remains
active.

T13 Application listeners gets
postDeploy(V2).

T14 If deploy(V2) succeeds, V1 begins
retirement.

T15 Application listeners for V1 are
unregistered.

T16 V1 is retired.

Table 10-1 Sequence of Deployment Actions and Application Version Lifecycle Events

Deployment action Time Version V1 Version V2

Programming App l icat ion L i fec yc le Events

10-12 Developing Applications with WebLogic Server

Undeployment of
V2

T17 preUndeploy(v2) invoked.

T18 Application listeners gets
preUndeploy(v2) invoked.

T19 Undeployment begins.

T20 V2 is no longer active version.

T21 Application version listeners for
V2 are unregistered.

T22 Undeployment is complete.

T23 If the entire application is
undeployed, postDelete(V2)
is invoked.

Note: This event occurs even
if the undeployment
fails.

Table 10-1 Sequence of Deployment Actions and Application Version Lifecycle Events

Deployment action Time Version V1 Version V2

Developing Applications with WebLogic Server 11-1

C H A P T E R 11

Programming Context Propagation

The following sections describe how to use the context propagation APIs in your applications:

“Understanding Context Propagation” on page 11-1

“Programming Context Propagation: Main Steps” on page 11-3

“Programming Context Propagation in a Client” on page 11-3

“Programming Context Propagation in an Application” on page 11-5

Understanding Context Propagation
Context propagation allows programmers to associate information with an application which is
then carried along with every request. Furthermore, downstream components can add or modify
this information so that it can be carried back to the originator. Context propagation is also known
as work areas, work contexts, or application transactions.

Common use-cases for context propagation are any type of application in which information
needs to be carried outside the application, rather than the information being an integral part of
the application. Examples of these use cases include diagnostics monitoring, application
transactions, and application load-balancing. Keeping this sort of information outside of the
application keeps the application itself clean with no extraneous API usage and also allows the
addition of information to read-only components, such as 3rd party components.

Programming context propagation has two parts: first you code the client application to create a
WorkContextMap and WorkContext, and then add user data to the context, and then you code
the invoked application itself to get and possibly use this data. The invoked application can be of

Programming Contex t P ropagat ion

11-2 Developing Applications with WebLogic Server

any type: EJB, Web Service, servlet, JMS topic or queue, and so on. See “Programming Context
Propagation: Main Steps” on page 11-3 for details.

The WebLogic context propagation APIs are in the weblogic.workarea package. The
following table describes the main interfaces and classes.

Table 11-1 Interfaces and classes of the WebLogic Context Propagation API

Interface or
Class

Description

WorkContext
Map Interface

Main context propagation interface used to tag applications with data
and propagate that information via application requests.
WorkContextMaps is part of the client or application’s JNDI
environment and can be accessed through JNDI by looking up the
name java:comp/WorkContextMap.

WorkContext
Interface

Interface used for marshaling and unmarshaling the user data that is
passed along with an application. This interface has four
implementing classes for marshaling and unmarshaling the following
types of data: simple 8-bit ASCII contexts (AsciiWorkContext),
long contexts (LongWorkContext), Serializable context
(SerializableWorkContext), and String contexts
(StringWorkContext).

WorkContext has one subinterface, PrimitiveWorkContext,
used to specifically marshal and unmarshal a single primitive data
item.

WorkContext
Output/Inpu
t Interfaces

Interfaces representing primitive streams used for marshaling and
unmarshaling, respectively, WorkContext implementations.

Propagation
Mode Interface

Defines the propagation properties of WorkContexts. Specifies
whether the WorkContext is propagated locally, across threads, across
RMI invocations, across JMS queues and topics, or across SOAP
messages. If not specified, default is to propagate data across remote
and local calls in the same thread.

PrimitiveCo
ntextFactor
y Class

Convenience class for creating WorkContexts that contain only
primitive data.

Programming Contex t P ropagat ion : Ma in Steps

Developing Applications with WebLogic Server 11-3

For the complete API documentation about context propagation, see the weblogic.workarea
Javadocs.

Programming Context Propagation: Main Steps
The following procedure describes the high-level steps to use context propagation in your
application. It is assumed in the procedure that you have already set up your iterative
development environment and have an existing client and application that you want to update to
use context propagation by using the weblogic.workarea API.

1. Update your client application to create the WorkContextMap and WorkContext objects and
then add user data to the context.

See “Programming Context Propagation in a Client” on page 11-3.

2. If your client application is standalone (rather than running in a Java EE component deployed
to WebLogic Server), ensure that its CLASSPATH includes the Java EE application client,
also called the thin client.

See Programming Stand-Alone Clients.

3. Update your application (EJB, Web Service, servlet, and so on) to also create a
WorkContextMap and then get the context and user data that you added from the client
application.

See “Programming Context Propagation in an Application” on page 11-5.

Programming Context Propagation in a Client
The following sample Java code shows a standalone Java client that invokes a Web Service; the
example also shows how to use the weblogic.workarea.* context propagation APIs to
associate user information with the invoke. The code relevant to context propagation is shown in
bold and explained after the example.

For the complete API documentation about context propagation, see the weblogic.workarea
Javadocs.

Note: See Programming Web Services for WebLogic Server for information on creating Web
Services and client applications that invoke them.

package examples.workarea.client;

import java.rmi.RemoteException;

Programming Contex t P ropagat ion

11-4 Developing Applications with WebLogic Server

import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Stub;

import javax.naming.InitialContext;
import javax.naming.NamingException;

import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;
import weblogic.workarea.PrimitiveContextFactory;
import weblogic.workarea.PropagationMode;
import weblogic.workarea.PropertyReadOnlyException;

/**
 * This is a simple standalone client application that invokes the
 * the <code>sayHello</code> operation of the WorkArea Web service.
 *
 * @author Copyright (c) 2004 by BEA Systems. All Rights Reserved.
 */

public class Main {

 public final static String SESSION_ID= "session_id_key";

 public static void main(String[] args)
 throws ServiceException, RemoteException, NamingException,
PropertyReadOnlyException{

 WorkAreaService service = new WorkAreaService_Impl(args[0] + "?WSDL");
 WorkAreaPortType port = service.getWorkAreaPort();

 WorkContextMap map = (WorkContextMap)new
InitialContext().lookup("java:comp/WorkContextMap");

 WorkContext stringContext = PrimitiveContextFactory.create("A String
Context");

 // Put a string context
 map.put(SESSION_ID, stringContext, PropagationMode.SOAP);

 try {
 String result = null;
 result = port.sayHello("Hi there!");
 System.out.println("Got result: " + result);
 } catch (RemoteException e) {
 throw e;
 }
 }
}

In the preceding example:

Programming Contex t P ropagat ion in an Appl i cat ion

Developing Applications with WebLogic Server 11-5

The following code shows how to import the needed weblogic.workarea.* classes,
interfaces, and exceptions:

import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;
import weblogic.workarea.PrimitiveContextFactory;
import weblogic.workarea.PropagationMode;
import weblogic.workarea.PropertyReadOnlyException;

The following code shows how to create a WorkContextMap by doing a JNDI lookup of
the context propagation-specific JNDI name java:comp/WorkContextMap:

WorkContextMap map = (WorkContextMap)
 new InitialContext().lookup("java:comp/WorkContextMap");

The following code shows how to create a WorkContext by using the
PrimitiveContextFactory. In this example, the WorkContext consists of the simple
String value A String Context. This String value is the user data that is passed to the
invoked Web Service.

WorkContext stringContext =
 PrimitiveContextFactory.create("A String Context");

Finally, the following code shows how to add the context data, along with the key
SESSION_ID, to the WorkContextMap and associate it with the current thread. The
PropagationMode.SOAP constant specifies that the propagation happens over SOAP
messages; this is because the client is invoking a Web Service.

map.put(SESSION_ID, stringContext, PropagationMode.SOAP);

Programming Context Propagation in an Application
The following sample Java code shows a simple Java Web Service (JWS) file that implements a
Web Service. The JWS file also includes context propagation code to get the user data that is
associated with the invoke of the Web Service. The code relevant to context propagation is shown
in bold and explained after the example.

For the complete API documentation about context propagation, see the weblogic.workarea
Javadocs.

Note: See Programming Web Services for WebLogic Server for information on creating Web
Services and client applications that invoke them.

package examples.workarea;

import javax.naming.InitialContext;

Programming Contex t P ropagat ion

11-6 Developing Applications with WebLogic Server

// Import the Context Propagation classes

import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic.jws.WLHttpTransport;

@WebService(name="WorkAreaPortType",
 serviceName="WorkAreaService",
 targetNamespace="http://example.org")

@WLHttpTransport(contextPath="workarea",
 serviceUri="WorkAreaService",
 portName="WorkAreaPort")

/**
 * This JWS file forms the basis of simple WebLogic
 * Web Service with a single operation: sayHello
 *
 */

public class WorkAreaImpl {

 public final static String SESSION_ID = "session_id_key";

 @WebMethod()
 public String sayHello(String message) {

 try {

 WorkContextMap map = (WorkContextMap) new
InitialContext().lookup("java:comp/WorkContextMap");

 WorkContext localwc = map.get(SESSION_ID);

 System.out.println("local context: " + localwc);
 System.out.println("sayHello: " + message);

 return "Here is the message: '" + message + "'";

 } catch (Throwable t) {

 return "error";

 }

 }

}

Programming Contex t P ropagat ion in an Appl i cat ion

Developing Applications with WebLogic Server 11-7

In the preceding example:

The following code shows how to import the needed context propagation APIs; in this
case, only the WorkContextMap and WorkContext interfaces are needed:

import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;

The following code shows how to create a WorkContextMap by doing a JNDI lookup of
the context propagation-specific JNDI name java:comp/WorkContextMap:

WorkContextMap map = (WorkContextMap)
 new InitialContext().lookup("java:comp/WorkContextMap");

The following code shows how to get context’s user data from the current
WorkContextMap using a key; in this case, the key is the same one that the client
application set when it invoked the Web Service: SESSION_ID:

WorkContext localwc = map.get(SESSION_ID);

Programming Contex t P ropagat ion

11-8 Developing Applications with WebLogic Server

Developing Applications with WebLogic Server 12-1

C H A P T E R 12

Programming JavaMail with WebLogic
Server

The following sections contains information on additional WebLogic Server programming
topics:

“Overview of Using JavaMail with WebLogic Server Applications” on page 12-1

“Configuring JavaMail for WebLogic Server” on page 12-2

“Sending Messages with JavaMail” on page 12-3

“Reading Messages with JavaMail” on page 12-4

Overview of Using JavaMail with WebLogic Server
Applications

WebLogic Server includes the JavaMail API version 1.3 reference implementation from Sun
Microsystems. Using the JavaMail API, you can add email capabilities to your WebLogic Server
applications. JavaMail provides access from Java applications to Internet Message Access
Protocol (IMAP)- and Simple Mail Transfer Protocol (SMTP)-capable mail servers on your
network or the Internet. It does not provide mail server functionality; you must have access to a
mail server to use JavaMail.

Complete documentation for using the JavaMail API is available on the JavaMail page on the Sun
Web site. This section describes how you can use JavaMail in the WebLogic Server environment.

The weblogic.jar file contains the following JavaMail API packages from Sun:

javax.mail

Programming JavaMai l w i th WebLogic Serve r

12-2 Developing Applications with WebLogic Server

javax.mail.event

javax.mail.internet

javax.mail.search

The weblogic.jar also contains the Java Activation Framework (JAF) package, which
JavaMail requires.

The javax.mail package includes providers for Internet Message Access protocol (IMAP) and
Simple Mail Transfer Protocol (SMTP) mail servers. Sun has a separate POP3 provider for
JavaMail, which is not included in weblogic.jar. You can download the POP3 provider from
Sun and add it to the WebLogic Server classpath if you want to use it.

Understanding JavaMail Configuration Files
JavaMail depends on configuration files that define the mail transport capabilities of the system.
The weblogic.jar file contains the standard configuration files from Sun, which enable IMAP
and SMTP mail servers for JavaMail and define the default message types JavaMail can process.

Unless you want to extend JavaMail to support additional transports, protocols, and message
types, you do not have to modify any JavaMail configuration files. If you do want to extend
JavaMail, download JavaMail from Sun and follow Sun’s instructions for adding your
extensions. Then add your extended JavaMail package in the WebLogic Server classpath in front
of weblogic.jar.

Configuring JavaMail for WebLogic Server
To configure JavaMail for use in WebLogic Server, you create a mail session in the WebLogic
Server Administration Console. This allows server-side modules and applications to access
JavaMail services with JNDI, using Session properties you preconfigure for them. For example,
by creating a mail session, you can designate the mail hosts, transport and store protocols, and the
default mail user in the Administration Console so that modules that use JavaMail do not have to
set these properties. Applications that are heavy email users benefit because the mail session
creates a single javax.mail.Session object and makes it available via JNDI to any module that
needs it.

For information on using the Administration Console to create a mail session, see Configure
access to JavaMail in the Administration Console Online Help.

You can override any properties set in the mail session in your code by creating a
java.util.Properties object containing the properties you want to override. See “Sending

Send ing Messages wi th JavaMai l

Developing Applications with WebLogic Server 12-3

Messages with JavaMail” on page 12-3. Then, after you look up the mail session object in JNDI,
call the Session.getInstance() method with your Properties object to get a customized
Session.

Sending Messages with JavaMail
Here are the steps to send a message with JavaMail from within a WebLogic Server module:

1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need
to import java.util.Properties:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("myMailSession");

3. If you need to override the properties you set for the Session in the Administration Console,
create a java.util.Properties object and add the properties you want to override. Then
call getInstance() to get a new Session object with the new properties.

Properties props = new Properties();
props.put("mail.transport.protocol", "smtp");
props.put("mail.smtp.host", "mailhost");
// use mail address from HTML form for from address
props.put("mail.from", emailAddress);
Session session2 = session.getInstance(props);

4. Construct a MimeMessage. In the following example, to, subject, and messageTxt are
String variables containing input from the user.

Message msg = new MimeMessage(session2);
msg.setFrom();
msg.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(to, false));
msg.setSubject(subject);
msg.setSentDate(new Date());
// Content is stored in a MIME multi-part message
// with one body part
MimeBodyPart mbp = new MimeBodyPart();
mbp.setText(messageTxt);

Programming JavaMai l w i th WebLogic Serve r

12-4 Developing Applications with WebLogic Server

Multipart mp = new MimeMultipart();
mp.addBodyPart(mbp);
msg.setContent(mp);

5. Send the message.

Transport.send(msg);

The JNDI lookup can throw a NamingException on failure. JavaMail can throw a
MessagingException if there are problems locating transport classes or if communications with
the mail host fails. Be sure to put your code in a try block and catch these exceptions.

Reading Messages with JavaMail
The JavaMail API allows you to connect to a message store, which could be an IMAP server or
POP3 server. Messages are stored in folders. With IMAP, message folders are stored on the mail
server, including folders that contain incoming messages and folders that contain archived
messages. With POP3, the server provides a folder that stores messages as they arrive. When a
client connects to a POP3 server, it retrieves the messages and transfers them to a message store
on the client.

Folders are hierarchical structures, similar to disk directories. A folder can contain messages or
other folders. The default folder is at the top of the structure. The special folder name INBOX
refers to the primary folder for the user, and is within the default folder. To read incoming mail,
you get the default folder from the store, and then get the INBOX folder from the default folder.

The API provides several options for reading messages, such as reading a specified message
number or range of message numbers, or pre-fetching specific parts of messages into the folder’s
cache. See the JavaMail API for more information.

Here are steps to read incoming messages on a POP3 server from within a WebLogic Server
module:

1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need
to import java.util.Properties:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("myMailSession");

Read ing Messages wi th JavaMai l

Developing Applications with WebLogic Server 12-5

3. If you need to override the properties you set for the Session in the Administration Console,
create a Properties object and add the properties you want to override. Then call
getInstance() to get a new Session object with the new properties:

Properties props = new Properties();
props.put("mail.store.protocol", "pop3");
props.put("mail.pop3.host", "mailhost");
Session session2 = session.getInstance(props);

4. Get a Store object from the Session and call its connect() method to connect to the mail
server. To authenticate the connection, you need to supply the mailhost, username, and
password in the connect method:

Store store = session.getStore();
store.connect(mailhost, username, password);

5. Get the default folder, then use it to get the INBOX folder:

Folder folder = store.getDefaultFolder();
folder = folder.getFolder("INBOX");

6. Read the messages in the folder into an array of Messages:

Message[] messages = folder.getMessages();

7. Operate on messages in the Message array. The Message class has methods that allow you to
access the different parts of a message, including headers, flags, and message contents.

Reading messages from an IMAP server is similar to reading messages from a POP3 server. With
IMAP, however, the JavaMail API provides methods to create and manipulate folders and
transfer messages between them. If you use an IMAP server, you can implement a full-featured,
Web-based mail client with much less code than if you use a POP3 server. With POP3, you must
provide code to manage a message store via WebLogic Server, possibly using a database or file
system to represent folders.

Programming JavaMai l w i th WebLogic Serve r

12-6 Developing Applications with WebLogic Server

Developing Applications with WebLogic Server 13-1

C H A P T E R 13

Threading and Clustering Topics

The following sections contain information on additional WebLogic Server programming topics:

“Using Threads in WebLogic Server” on page 13-1

“Using the Work Manager API for Lower-Level Threading” on page 13-2

“Programming Applications for WebLogic Server Clusters” on page 13-3

Using Threads in WebLogic Server
WebLogic Server is a sophisticated, multi-threaded application server and it carefully manages
resource allocation, concurrency, and thread synchronization for the modules it hosts. To obtain
the greatest advantage from WebLogic Server’s architecture, construct your application modules
created according to the standard Java EE APIs.

In most cases, avoid application designs that require creating new threads in server-side modules:

Applications that create their own threads do not scale well. Threads in the JVM are a
limited resource that must be allocated thoughtfully. Your applications may break or cause
WebLogic Server to thrash when the server load increases. Problems such as deadlocks and
thread starvation may not appear until the application is under a heavy load.

Multithreaded modules are complex and difficult to debug. Interactions between
application-generated threads and WebLogic Server threads are especially difficult to
anticipate and analyze.

In some situations, creating threads may be appropriate, in spite of these warnings. For example,
an application that searches several repositories and returns a combined result set can return

Threading and C lus te r ing Top ics

13-2 Developing Applications with WebLogic Server

results sooner if the searches are done asynchronously using a new thread for each repository
instead of synchronously using the main client thread.

If you must use threads in your application code, create a pool of threads so that you can control
the number of threads your application creates. Like a JDBC connection pool, you allocate a
given number of threads to a pool, and then obtain an available thread from the pool for your
runnable class. If all threads in the pool are in use, wait until one is returned. A thread pool helps
avoid performance issues and allows you to optimize the allocation of threads between WebLogic
Server execution threads and your application.

Be sure you understand where your threads can deadlock and handle the deadlocks when they
occur. Review your design carefully to ensure that your threads do not compromise the security
system.

To avoid undesirable interactions with WebLogic Server threads, do not let your threads call into
WebLogic Server modules. For example, do not use enterprise beans or servlets from threads that
you create. Application threads are best used for independent, isolated tasks, such as conversing
with an external service with a TCP/IP connection or, with proper locking, reading or writing to
files. A short-lived thread that accomplishes a single purpose and ends (or returns to the thread
pool) is less likely to interfere with other threads.

Avoid creating daemon threads in modules that are packaged in applications deployed on
WebLogic Server. When you create a daemon thread in an application module such as a Servlet,
you will not be able to redeploy the application because the daemon thread created in the original
deployment will remain running.

Be sure to test multithreaded code under increasingly heavy loads, adding clients even to the point
of failure. Observe the application performance and WebLogic Server behavior and then add
checks to prevent failures from occurring in production.

Using the Work Manager API for Lower-Level Threading
The Work Manager provides a simple API for concurrent execution of work items. This enables
Java EE-based applications (including Servlets and EJBs) to schedule work items for concurrent
execution, which will provide greater throughput and increased response time. After an
application submits work items to a Work Manager for concurrent execution, the application can
gather the results. The Work Manager provides common "join" operations, such as waiting for
any or all work items to complete. The Work Manager for Application Servers specification
provides an application-server-supported alternative to using lower-level threading APIs, which
are inappropriate for use in managed environments such as Servlets and EJBs, as well as being
too difficult to use for most applications.

Programming App l i cat ions fo r WebLog ic Se rve r C lus te rs

Developing Applications with WebLogic Server 13-3

For more information, see Timer and Work Manager for Application Servers and Using Work
Managers to Optimize Scheduled Work.

Programming Applications for WebLogic Server Clusters
JSPs and Servlets that will be deployed to a WebLogic Server cluster must observe certain
requirements for preserving session data. See “Requirements for HTTP Session State
Replication” in Using WebLogic Server Clusters for more information.

EJBs deployed in a WebLogic Server cluster have certain restrictions based on EJB type. See
“Understanding WebLogic Enterprise JavaBeans” in Programming WebLogic Enterprise
JavaBeans for information about the capabilities of different EJB types in a cluster. EJBs can be
deployed to a cluster by setting clustering properties in the EJB deployment descriptor.

If you are developing either EJBs or custom RMI objects for deployment in a cluster, also refer
to “Using WebLogic JNDI in a Clustered Environment” in Programming WebLogic JNDI to
understand the implications of binding clustered objects in the JNDI tree.

Threading and C lus te r ing Top ics

13-4 Developing Applications with WebLogic Server

Developing Applications with WebLogic Server A-1

A P P E N D I X A

Enterprise Application Deployment
Descriptor Elements

The following sections describe Enterprise application deployment descriptors:
application.xml (a Java EE standard deployment descriptor) and
weblogic-application.xml (a WebLogic-specific application deployment descriptor).

With Java EE annotations, the standard application.xml deployment descriptor is optional.
Annotations simplify the application development process by allowing developers to specify
within the Java class itself how the application component behaves in the container, requests for
dependency injection, and so on. Annotations are an alternative to deployment descriptors that
were required by older versions of Enterprise applications (J2EE 1.4 and earlier). See Chapter 7,
“Using Java EE Annotations and Dependency Injection.”

The weblogic-application.xml file is also optional if you are not using any WebLogic
Server extensions.

“weblogic-application.xml Deployment Descriptor Elements” on page A-1

“weblogic-application.xml Schema” on page A-45

“application.xml Schema” on page A-45

weblogic-application.xml Deployment Descriptor
Elements

The following sections describe the many of the individual elements that are defined in the
weblogic-application.xml Schema. The weblogic-application.xml file is the BEA
WebLogic Server-specific deployment descriptor extension for the application.xml

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-2 Developing Applications with WebLogic Server

deployment descriptor from Sun Microsystems. This is where you configure features such as
shared Java EE libraries referenced in the application and EJB caching.

The file is located in the META-INF subdirectory of the application archive. The following
sections describe elements that can appear in the file.

weblogic-application
The weblogic-application element is the root element of the application deployment
descriptor.

The following table describes the elements you can define within a weblogic-application
element.

Table A-1 weblogic-application Elements

Element Required? Maximum
Number In
File

Description

<ejb> Optional 1 Contains information that is specific to the EJB modules
that are part of a WebLogic application. Currently, one
can use the ejb element to specify one or more
application level caches that can be used by the
application’s entity beans.

For more information on the elements you can define
within the ejb element, refer to “ejb” on page A-11.

<xml> Optional 1 Contains information about parsers and entity mappings
for XML processing that is specific to this application.

For more information on the elements you can define
within the xml element, refer to “xml” on page A-16.

<jdbc-conne
ction-pool>

Optional Unbounde
d

Zero or more. Specifies an application-scoped JDBC
connection pool.

For more information on the elements you can define
within the jdbc-connection-pool element, refer to
“jdbc-connection-pool” on page A-18.

<security> Optional 1 Specifies security information for the application.

For more information on the elements you can define
within the security element, refer to “security” on
page A-33.

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-3

<applicatio
n-param>

Optional Unbounde
d

Zero or more. Used to specify un-typed parameters that
affect the behavior of container instances related to the
application. The parameters listed here are currently
supported. Also, these parameters in
weblogic-application.xml can determine the
default encoding to be used for requests and for
responses.
• webapp.encoding.default—Can be set to a

string representing an encoding supported by the
JDK. If set, this defines the default encoding used to
process servlet requests and servlet responses. This
setting is ignored if
webapp.encoding.usevmdefault is set to
true. This value is also overridden for request
streams by the input-charset element of
weblogic.xml.

• webapp.encoding.usevmdefault—Can be
set to true or false. If true, the system property
file.encoding is used to define the default
encoding.

The following parameter is used to affect the behavior of
Web applications that are contained in this application.
• webapp.getrealpath.accept_context_pa

th—This is a compatibility switch that may be set to
true or false. If set to true, the context path of
Web applications is allowed in calls to the servlet
API getRealPath.

Example:
<application-param>

<param-name>webapp.encoding.default
</param-name>

<param-value>UTF8</param-value>

</application-param>

For more information on the elements you can define
within the application-param element, refer to
“application-param” on page A-33.

Table A-1 weblogic-application Elements

Element Required? Maximum
Number In
File

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-4 Developing Applications with WebLogic Server

<classloade
r-structure
>

Optional Unbounde
d

A classloader-structure element allows you to
define the organization of classloaders for this
application. The declaration represents a tree structure
that represents the classloader hierarchy and associates
specific modules with particular nodes. A module's
classes are loaded by the classloader that its associated
with this element.

Example:

<classloader-structure>

<module-ref>
<module-uri>ejb1.jar</module-uri>

</module-ref>
</classloader-structure>

<classloader-structure>

<module-ref>
<module-uri>ejb2.jar</module-uri>

</module-ref>
</classloader-structure>

For more information on the elements you can define
within the classloader-structure element, refer
to “classloader-structure” on page A-34.

<listener> Optional Unbounde
d

Zero or more. Used to register user defined application
lifecycle listeners. These are classes that extend the
abstract base class
weblogic.application.ApplicationLifec
ycleListener.

For more information on the elements you can define
within the listener element, refer to “listener” on
page A-34.

Table A-1 weblogic-application Elements

Element Required? Maximum
Number In
File

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-5

<startup> Optional Unbounde
d

Zero or more. Used to register user-defined startup
classes.

For more information on the elements you can define
within the startup element, refer to “startup” on
page A-35.

Note: Application-scoped startup and shutdown
classes have been deprecated as of release 9.0
of WebLogic Server. Instead, you should use
lifecycle listener events in your applications.
For details, see Chapter 10, “Programming
Application Lifecycle Events.”

<shutdown> Optional Unbounde
d

Zero or more. Used to register user defined shutdown
classes.

For more information on the elements you can define
within the shutdown element, refer to “shutdown” on
page A-36.

Note: Application-scoped startup and shutdown
classes have been deprecated as of release 9.0
of WebLogic Server. Instead, you should use
lifecycle listener events in your applications.
For details, see Chapter 10, “Programming
Application Lifecycle Events.”

Table A-1 weblogic-application Elements

Element Required? Maximum
Number In
File

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-6 Developing Applications with WebLogic Server

<module> Optional Unbounde
d

Represents a single WebLogic application module, such
as a JMS or JDBC module.

This element has the following child elements:
• name—The name of the module.
• type—The type of module. Valid values are JMS,

JDBC, or Interception.
• path—The path of the XML file that fully describes

the module, relative to the root of the Enterprise
application.

The following example shows how to specify a JMS
module called Workflows, fully described by the XML
file jms/Workflows-jms.xml:

<module>
 <name>Workflows</name>
 <type>JMS</type>
 <path>jms/Workflows-jms.xml</path>
</module>

<library-re
f>

Optional Unbounde
d

A reference to a shared Java EE library.

For more information on the elements you can define
within the library element, refer to “library-ref” on
page A-43.

<fair-share
-request>

Optional Unbounde
d

Specifies a fair share request class, which is a type of
Work Manager request class. In particular, a fair share
request class specifies the average percentage of
thread-use time required to process requests.

The <fair-share-request> element can take the
following child elements:
• name—The name of the fair share request class.
• fair-share—An integer representing the average

percentage of thread-use time.

See Using Work Managers to Optimize Scheduled
Work.

Table A-1 weblogic-application Elements

Element Required? Maximum
Number In
File

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-7

<response-t
ime-request
>

Optional Unbounde
d

Specifies a response time request class, which is a a type
of Work manager class. In particular, a response time
request class specifies a response time goal in
milliseconds.

The <response-time-request> element can take
the following child elements:
• name—The name of the response time request class.
• goal-ms—The integer response time goal.

See Using Work Managers to Optimize Scheduled
Work.

<context-re
quest>

Optional Unbounde
d

Specifies a context request class, which is a a type of
Work manager class. In particular, a context request
class assigns request classes to requests based on context
information, such as the current user or the current user's
group.

The <context-request> element can take the
following child elements:
• name—The name of the context request class.
• context-case—An element that describes the

context.

The <context-case> element can itself take the
following child elements:
• user-name or group-name—The user or group

to which the context applies.
• request-class-name—The name of the request

class.

See Using Work Managers to Optimize Scheduled
Work.

Table A-1 weblogic-application Elements

Element Required? Maximum
Number In
File

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-8 Developing Applications with WebLogic Server

<max-thread
s-constrain
t>

Optional Unbounde
d

Specifies a max-threads-constraint Work
Manager constraint. A Work Manager constraint defines
minimum and maximum numbers of threads allocated to
execute requests and the total number of requests that
can be queued or executing before WebLogic Server
begins rejecting requests.

The max-threads constraint limits the number of
concurrent threads executing requests from the
constrained work set.

The <max-threads-constraint> element can take
the following child elements:
• name—The name of the max-thread-constaint

constraint.
• Either count or pool-name—The integer

maximum number of concurrent threads, or the name
of a connection pool which determines the
maximum.

See Using Work Managers to Optimize Scheduled
Work.

Table A-1 weblogic-application Elements

Element Required? Maximum
Number In
File

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-9

<min-thread
s-constrain
t>

Optional Unbounde
d

Specifies a min-threads-constraint Work
Manager constraint. A Work Manager constraint defines
minimum and maximum numbers of threads allocated to
execute requests and the total number of requests that
can be queued or executing before WebLogic Server
begins rejecting requests.

The min-threads constraint guarantees a number of
threads the server will allocate to affected requests to
avoid deadlocks.

The <min-threads-constraint> element can take
the following child elements:
• name—The name of the min-thread-constaint

constraint.
• count—The integer minimum number of threads.

See Using Work Managers to Optimize Scheduled
Work.

<capacity> Optional Unbounde
d

Specifies a capacity Work Manager constraint. A
Work Manager constraint defines minimum and
maximum numbers of threads allocated to execute
requests and the total number of requests that can be
queued or executing before WebLogic Server begins
rejecting requests.

The capacity constraint causes the server to reject
requests only when it has reached its capacity.

The <capacity> element can take the following child
elements:
• name—The name of the capacity constraint.
• count—The integer thread capacity.

See Using Work Managers to Optimize Scheduled
Work.

Table A-1 weblogic-application Elements

Element Required? Maximum
Number In
File

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-10 Developing Applications with WebLogic Server

<work-manag
er>

Optional Unbounde
d

Specifies the Work Manager that is associated with the
application.

For more information on the elements you can define
within the work-manager element, refer to
“work-manager” on page A-36.

See Using Work Managers to Optimize Scheduled Work
for detailed information on Work Managers.

<applicatio
n-admin-mod
e-trigger>

Optional Unbounde
d

Specifies the number of stuck threads needed to bring the
application into administration mode.

You can specify the following child elements:
• max-stuck-thread-time—The maximum

amount of time, in seconds, that a thread should
remain stuck.

• stuck-thread-count—Number of stuck
threads that triggers the stuck thread work manager.

<session-de
scriptor>

Optional Unbounde
d

Specifies a list of configuration parameters for servlet
sessions.

For more information on the elements you can define
within the <session-descriptor> element, refer to
“session-descriptor” on page A-39.

Table A-1 weblogic-application Elements

Element Required? Maximum
Number In
File

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-11

ejb
The following table describes the elements you can define within an ejb element.

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-12 Developing Applications with WebLogic Server

Table A-2 ejb Elements

Element Required? Maximum
Number in
File

Description

<entity-cache> Optional Unbounded Zero or more. The entity-cache element is used to
define a named application level cache that is used to
cache entity EJB instances at runtime. Individual entity
beans refer to the application-level cache that they must
use, referring to the cache name. There is no restriction on
the number of different entity beans that may reference an
individual cache.

Application-level caching is used by default whenever an
entity bean does not specify its own cache in the
weblogic-ejb-jar.xml descriptor. Two default
caches named ExclusiveCache and
MultiVersionCache are used for this purpose. An
application may explicitly define these default caches to
specify non-default values for their settings. Note that the
caching-strategy cannot be changed for the default caches.
By default, a cache uses max-beans-in-cache with
a value of 1000 to specify its maximum size.

Example:

<entity-cache>

<entity-cache-name>ExclusiveCache</enti

ty-cache-name>

<max-cache-size>

<megabytes>50</megabytes>

</max-cache-size>

</entity-cache>

For more information on the elements you can define
within the entity-cache element, refer to
“entity-cache” on page A-13.

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-13

entity-cache
The following table describes the elements you can define within a entity-cache element.

<start-mbds-wi
th- application

Optional 1 Allows you to configure the EJB container to start
Message Driven BeanS (MDBS) with the application. If
set to true, the container starts MDBS as part of the
application. If set to false, the container keeps MDBS in a
queue and the server starts them as soon as it has started
listening on the ports.

Table A-2 ejb Elements

Element Required? Maximum
Number in
File

Description

Table A-3 entity-cache Elements

Element Required? Maximum
Number in
File

Description

<entity-cache-
name>

Required 1 Specifies a unique name for an entity bean cache. The
name must be unique within an ear file and may not be the
empty string.

Example:
<entity-cache-name>ExclusiveCache</enti
ty-cache-name>

<max-beans-in-
cache>

Optional

If you
specify this
element,
you cannot
also specify
<max-cac
he-size>.

1 Specifies the maximum number of entity beans that are
allowed in the cache. If the limit is reached, beans may be
passivated. This mechanism does not take into account the
actual amount of memory that different entity beans
require. This element can be set to a value of 1 or greater.

Default Value: 1000

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-14 Developing Applications with WebLogic Server

<max-cache-siz
e>

Optional

If you
specify this
element,
you cannot
also specify
<max-bea
ns-in-ca
che>.

1 Used to specify a limit on the size of an entity cache in
terms of memory size—expressed either in terms of bytes
or megabytes. A bean provider should provide an estimate
of the average size of a bean in the
weblogic-ejb-jar.xml descriptor if the bean uses
a cache that specifies its maximum size using the
max-cache-size element. By default, a bean is
assumed to have an average size of 100 bytes.

For more information on the elements you can define
within the ejb element, refer to “max-cache-size” on
page A-15.

<max-queries-i
n-cache>

Optional 1 Specifies the maximum SQL queries that can be present in
the entity cache at a given moment.

<caching-strat
egy>

Optional 1 Specifies the general strategy that the EJB container uses
to manage entity bean instances in a particular application
level cache. A cache buffers entity bean instances in
memory and associates them with their primary key value.

The caching-strategy element can only have one of
the following values:
• Exclusive—Caches a single bean instance in

memory for each primary key value. This unique
instance is typically locked using the EJB container’s
exclusive locking when it is in use, so that only one
transaction can use the instance at a time.

• MultiVersion—Caches multiple bean instances
in memory for a given primary key value. Each
instance can be used by a different transaction
concurrently.

Default Value: MultiVersion

Example:

<caching-strategy>Exclusive</caching-strategy>

Table A-3 entity-cache Elements

Element Required? Maximum
Number in
File

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-15

max-cache-size
The following table describes the elements you can define within a max-cache-size element.

Table A-4 max-cache-size Elements

Element Required? Maximum
Number in
File

Description

<bytes> You must
specify
either
<bytes>
or
<megabyt
es>

1 The size of an entity cache in terms of memory size, expressed
in bytes.

<megabytes> You must
specify
either
<bytes>
or
<megabyt
es>

1 The size of an entity cache in terms of memory size, expressed
in megabytes.

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-16 Developing Applications with WebLogic Server

xml
The following table describes the elements you can define within an xml element.

Table A-5 xml Elements

Element Required? Maximum
Number in
File

Description

<parser-factor
y>

Optional 1 The parent element used to specify a particular XML
parser or transformer for an enterprise application.

For more information on the elements you can define
within the parser-factory element, refer to
“parser-factory” on page A-17.

<entity-mappin
g>

Optional Unbounded Zero or More. Specifies the entity mapping. This mapping
determines the alternative entity URI for a given public or
system ID. The default place to look for this entity URI is
the lib/xml/registry directory.

For more information on the elements you can define
within the entity-mapping element, refer to
“entity-mapping” on page A-18.

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-17

parser-factory
The following table describes the elements you can define within a parser-factory element.

Table A-6 parser-factory Elements

Element Required? Maximum
Number in
File

Description

<saxparser-fac
tory>

Optional 1 Allows you to set the SAXParser Factory for the XML
parsing required in this application only. This element
determines the factory to be used for SAX style parsing. If
you do not specify the saxparser-factory element
setting, the configured SAXParser Factory style in the
Server XML Registry is used.

Default Value: Server XML Registry setting

<document-buil
der-factory>

Optional 1 Allows you to set the Document Builder Factory for the
XML parsing required in this application only. This
element determines the factory to be used for DOM style
parsing. If you do not specify the
document-builder-factory element setting, the
configured DOM style in the Server XML Registry is
used.

Default Value: Server XML Registry setting

<transformer-f
actory>

Optional 1 Allows you to set the Transformer Engine for the style
sheet processing required in this application only. If you
do not specify a value for this element, the value
configured in the Server XML Registry is used.

Default value: Server XML Registry setting.

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-18 Developing Applications with WebLogic Server

entity-mapping
The following table describes the elements you can define within an entity-mapping element.

jdbc-connection-pool
Note: The jdbc-connection-pool element is deprecated. To define a data source in your

Enterprise application, you can package a JDBC module with the application. For more
information, see Configuring JDBC Application Modules for Deployment in
Configuring and Managing WebLogic JDBC.

The following table describes the elements you can define within a jdbc-connection-pool
element.

Table A-7 entity-mapping Elements

Element Required? Maximum
Number in
File

Description

<entity-mappin
g-name>

Required 1 Specifies the name for this entity mapping.

<public-id> Optional 1 Specifies the public ID of the mapped entity.

<system-id> Optional 1 Specifies the system ID of the mapped entity.

<entity-uri> Optional 1 Specifies the entity URI for the mapped entity.

<when-to-cache
>

Optional 1 Legal values are:

cache-on-reference

cache-at-initialization

cache-never
The default value is cache-on-reference.

<cache-timeout
-interval>

Optional 1 Specifies the integer value in seconds.

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-19

Table A-8 jdbc-connection-pool Elements

Element Required? Maximum
Number in
File

Description

<data-source-
jndi-name>

Required 1 Specifies the JNDI name in the application-specific
JNDI tree.

<connection-f
actory>

Required 1 Specifies the connection parameters that define
overrides for default connection factory settings.
• user-name—Optional. The user-name

element is used to override UserName in the
JDBCDataSourceFactoryMBean.

• url—Optional. The url element is used to
override URL in the
JDBCDataSourceFactoryMBean.

• driver-class-name—Optional. The
driver-class-name element is used to
override DriverName in the
JDBCDataSourceFactoryMBean.

• connection-params—Zero or more.
• parameter+ (param-value,

param-name)—One or more

For more information on the elements you can define
within the connection-factory element, refer to
“connection-factory” on page A-20.

<pool-params> Optional 1 Defines parameters that affect the behavior of the
pool.

For more information on the elements you can define
within the pool-params element, refer to
“pool-params” on page A-21.

<driver-param
s>

Optional 1 Sets behavior on WebLogic Server drivers.

For more information on the elements you can define
within the driver-params element, refer to
“driver-params” on page A-29.

<acl-name> Optional 1 DEPRECATED.

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-20 Developing Applications with WebLogic Server

connection-factory
The following table describes the elements you can define within a connection-factory
element.

Table A-9 connection-factory Elements

Element Required? Maximum
Number in
File

Description

<factory-name> Optional 1 Specifies the name of a
JDBCDataSourceFactoryMBean in the
config.xml file.

<connection-pr
operties>

Optional 1 Specifies the connection properties for the connection
factory. Elements that can be defined for the
connection-properties element are:
• user-name—Optional. Used to override UserName

in the JDBCDataSourceFactoryMBean.
• password—Optional. Used to override Password in

the JDBCDataSourceFactoryMBean.
• url—Optional. Used to override URL in the

JDBCDataSourceFactoryMBean.
• driver-class-name—Optional. Used to

override DriverName in the
JDBCDataSourceFactoryMBean

• connection-params—Zero or more. Used to set
parameters which will be passed to the driver when
making a connection. Example:

 <connection-params>
 <parameter>
 <description>Desc of param
 </description>
 <param-name>foo</param-name>
 <param-value>xyz</param-value>
 </parameter>
 </connection-params>

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-21

pool-params
The following table describes the elements you can define within a pool-params element.

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-22 Developing Applications with WebLogic Server

Table A-10 pool-params Elements

Element Required? Maximum
Number in
File

Description

<size-params> Optional 1 Defines parameters that affect the number of connections
in the pool.
• initial-capacity—Optional. The

initial-capacity element defines the number
of physical database connections to create when the
pool is initialized. The default value is 1.

• max-capacity—Optional. The max-capacity
element defines the maximum number of physical
database connections that this pool can contain. Note
that the JDBC Driver may impose further limits on
this value. The default value is 1.

• capacity-increment—Optional. The
capacity-increment element defines the
increment by which the pool capacity is expanded.
When there are no more available physical
connections to service requests, the pool creates this
number of additional physical database connections
and adds them to the pool. The pool ensures that it
does not exceed the maximum number of physical
connections as set by max-capacity. The default
value is 1.

• shrinking-enabled—Optional. The
shrinking-enabled element indicates whether
or not the pool can shrink back to its
initial-capacity when connections are
detected to not be in use.

• shrink-period-minutes—Optional. The
shrink-period-minutes element defines the
number of minutes to wait before shrinking a
connection pool that has incrementally increased to
meet demand. The shrinking-enabled element
must be set to true for shrinking to take place.

• shrink-frequency-seconds—Optional.
• highest-num-waiters—Optional.
• highest-num-unavailable—Optional.

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-23

<xa-params> Optional 1 Defines the parameters for the XA DataSources.
• debug-level—Optional. Integer. The

debug-level element defines the debugging level
for XA operations. The default value is 0.

• keep-conn-until-tx-complete-enabled—
Optional. Boolean. If you set the
keep-conn-until-tx-complete-enabled
element to true, the XA connection pool associates
the same XA connection with the distributed
transaction until the transaction completes.

• end-only-once-enabled—Optional. Boolean.
If you set the end-only-once-enabled element
to true, the XAResource.end() method is only
called once for each pending
XAResource.start() method.

• recover-only-once-enabled—Optional.
Boolean. If you set the recover-only-once-enabled
element to true, recover is only called one time on a
resource.

• tx-context-on-close-needed—Optional. Set
the tx-context-on-close-needed element to
true if the XA driver requires a distributed
transaction context when closing various JDBC
objects (for example, result sets, statements,
connections, and so on). If set to true, the SQL
exceptions that are thrown while closing the JDBC
objects in no transaction context are swallowed.

• new-conn-for-commit-enabled—Optional.
Boolean. If you set the
new-conn-for-commit-enabled element to
true, a dedicated XA connection is used for
commit/rollback processing of a particular distributed
transaction.

Table A-10 pool-params Elements

Element Required? Maximum
Number in
File

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-24 Developing Applications with WebLogic Server

<xa-params>
Continued...

Optional 1 • prepared-statement-cache-size—
Deprecated. Optional. Use the
prepared-statement-cache-size element to set the size
of the prepared statement cache. The size of the cache
is a number of prepared statements created from a
particular connection and stored in the cache for
further use. Setting the size of the prepared statement
cache to 0 turns it off.

Note: Prepared-statement-cache-size is
deprecated. Use cache-size in
driver-params/prepared-statement.
See “driver-params” for more information.

• keep-logical-conn-open-on-release—
Optional. Boolean. Set the
keep-logical-conn-open-on-release
element to true, to keep the logical JDBC
connection open when the physical XA connection is
returned to the XA connection pool. The default value
is false.

• local-transaction-supported—Optional.
Boolean. Set the
local-transaction-supported to true if
the XA driver supports SQL with no global
transaction; otherwise, set it to false. The default
value is false.

• resource-health-monitoring-enabled—Op
tional. Set the
resource-health-monitoring-enabled
element to true to enable JTA resource health
monitoring for this connection pool.

Table A-10 pool-params Elements

Element Required? Maximum
Number in
File

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-25

<xa-params>
Continued...

Optional 1 • xa-set-transaction-timeout—Optional.
 Used in: xa-params
 Example:
 <xa-set-transaction-timeout>
 true
 </xa-set-transaction-timeout>

• xa-transaction-timeout—Optional.
When the xa-set-transaction-timeout
value is set to true, the transaction manager invokes
setTransactionTimeout on the resource before calling
XAResource.start. The Transaction Manager
passes the global transaction timeout value. If this
attribute is set to a value greater than 0, then this value
is used in place of the global transaction timeout.
Default value: 0
Used in: xa-params
Example:
 <xa-transaction-timeout>

 30

 </xa-transaction-timeout>

• rollback-localtx-upon-connclose—
Optional.
When the
rollback-localtx-upon-connclose element
is true, the connection pool calls rollback() on the
connection before putting it back in the pool.
Default value: false
Used in: xa-params
Example:
<rollback-localtx-upon-connclose>

 true
</rollback-localtx-upon-connclose>

Table A-10 pool-params Elements

Element Required? Maximum
Number in
File

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-26 Developing Applications with WebLogic Server

<login-delay-s
econds>

Optional 1 Sets the number of seconds to delay before creating each
physical database connection. Some database servers
cannot handle multiple requests for connections in rapid
succession. This property allows you to build in a small
delay to let the database server catch up. This delay occurs
both during initial pool creation and during the lifetime of
the pool whenever a physical database connection is
created.

<leak-profilin
g-enabled>

Optional 1 Enables JDBC connection leak profiling. A connection
leak occurs when a connection from the pool is not closed
explicitly by calling the close() method on that
connection. When connection leak profiling is active, the
pool stores the stack trace at the time the connection object
is allocated from the pool and given to the client. When a
connection leak is detected (when the connection object is
garbage collected), this stack trace is reported.

This element uses extra resources and will likely
slowdown connection pool operations, so it is not
recommended for production use.

Table A-10 pool-params Elements

Element Required? Maximum
Number in
File

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-27

<connection-ch
eck-params>

Optional 1 • Defines whether, when, and how connections in a
pool is checked to make sure they are still alive.

• table-name—Optional. The table-name
element defines a table in the schema that can be
queried.

• check-on-reserve-enabled—Optional. If the
check-on-reserve-enabled element is set to true, then
the connection will be tested each time before it is
handed out to a user.

• check-on-release-enabled—Optional. If
the check-on-release-enabled element is set
to true, then the connection will be tested each time
a user returns a connection to the pool.

• refresh-minutes—Optional. If the
refresh-minutes element is defined, a trigger is
fired periodically (based on the number of minutes
specified). This trigger checks each connection in the
pool to make sure it is still valid.

• check-on-create-enabled—Optional. If set
to true, then the connection will be tested when it is
created.

• connection-reserve-timeout-seconds—Op
tional. Number of seconds after which the call to
reserve a connection from the pool will timeout.

• connection-creation-retry-frequency-s
econds—Optional. The frequency of retry attempts
by the pool to establish connections to the database.

• inactive-connection-timeout-seconds—
Optional. The number of seconds of inactivity after
which reserved connections will forcibly be released
back into the pool.

Table A-10 pool-params Elements

Element Required? Maximum
Number in
File

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-28 Developing Applications with WebLogic Server

<connection-ch
eck-params>

Continued...

Optional 1 • test-frequency-seconds—Optional. The
number of seconds between database connection tests.
After every test-frequency-seconds interval, unused
database connections are tested using table-name.
Connections that do not pass the test will be closed
and reopened to re-establish a valid physical database
connection. If table-name is not set, the test will
not be performed.

• init-sql—Optional. Specifies a SQL query that
automatically runs when a connection is created.

<jdbcxa-debug-
level>

Optional 1 This is an internal setting.

<remove-infect
ed-connections
-enabled>

Optional 1 Controls whether a connection is removed from the pool
when the application asks for the underlying vendor
connection object. Enabling this attribute has an impact on
performance; it essentially disables the pooling of
connections (as connections are removed from the pool
and replaced with new connections).

Table A-10 pool-params Elements

Element Required? Maximum
Number in
File

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-29

driver-params
The following table describes the elements you can define within a driver-params element.

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-30 Developing Applications with WebLogic Server

Table A-11 driver-params Elements

Element Required? Maximum
Number in
File

Description

<statement> Optional 1 Defines the driver-params statement. Contains the
following optional element: profiling-enabled.

Example:

 <statement>
 <profiling-enabled>true
 </profiling-enabled>
 </statement>

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-31

<prepared-stat
ement

Optional 1 Enables the running of JDBC prepared statement cache
profiling. When enabled, prepared statement cache
profiles are stored in external storage for further analysis.
This is a resource-consuming feature, so it is
recommended that you turn it off on a production server.
The default value is false.
• profiling-enabled—Optional.
• cache-profiling-threshold—Optional.

The cache-profiling-threshold element
defines a number of statement requests after which the
state of the prepared statement cache is logged. This
element minimizes the output volume. This is a
resource-consuming feature, so it is recommended
that you turn it off on a production server.

• cache-size—Optional. The cache-size
element returns the size of the prepared statement
cache. The size of the cache is a number of prepared
statements created from a particular connection and
stored in the cache for further use.

• parameter-logging-enabled—Optional.
During SQL roundtrip profiling it is possible to store
values of prepared statement parameters. The
parameter-logging-enabled element
enables the storing of statement parameters. This is a
resource-consuming feature, so it is recommended
that you turn it off on a production server.

• max-parameter-length—Optional. During
SQL roundtrip profiling it is possible to store values
of prepared statement parameters. The
max-parameter-length element defines
maximum length of the string passed as a parameter
for JDBC SQL roundtrip profiling. This is a
resource-consuming feature, so you should limit the
length of data for a parameter to reduce the output
volume.

• cache-type—Optional.

Table A-11 driver-params Elements

Element Required? Maximum
Number in
File

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-32 Developing Applications with WebLogic Server

<row-prefetch-
enabled>

Optional 1 Specifies whether to enable row prefetching between a
client and WebLogic Server for each ResultSet.

 When an external client accesses a database using JDBC
through Weblogic Server, row prefetching improves
performance by fetching multiple rows from the server to
the client in one server access. WebLogic Server ignores
this setting and does not use row prefetching when the
client and WebLogic Server are in the same JVM

<row-prefetch-
size>

Optional 1 Specifies the number of result set rows to prefetch for a
client.

The optimal value depends on the particulars of the query.
In general, increasing this number increases performance,
until a particular value is reached. At that point further
increases do not result in any significant increase in
performance.

Note: Typically you will not see any increase in
performance after 100 rows. The default value
should be adequate for most situations.

Valid values for this element are between 2 and 65536.
The default value is 48.

<stream-chunk-
size>

Optional 1 Specifies the data chunk size for streaming data types,
which are pulled from WebLogic Server to the client as
needed.

Table A-11 driver-params Elements

Element Required? Maximum
Number in
File

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-33

security
The following table describes the elements you can define within a security element.

application-param
The following table describes the elements you can define within a application-param element.

Table A-12 security Elements

Element Required? Maximum
Number in
File

Description

<realm-name> Optional 1 Names a security realm to be used by the application. If
none is specified, the system default realm is used

<security-role
-assignment>

Optional Unbounded Declares a mapping between an application-wide security
role and one or more WebLogic Server principals.

Example:

 <security-role-assignment>
 <role-name>
 PayrollAdmin
 </role-name>
 <principal-name>
 Tanya
 </principal-name>
 <principal-name>
 Fred
 </principal-name>
 <principal-name>
 system
 </principal-name>
 </security-role-assignment>

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-34 Developing Applications with WebLogic Server

classloader-structure
The following table describes the elements you can define within a classloader-structure element.

listener
The following table describes the elements you can define within a listener element.

Table A-13 application-param Elements

Element Required? Maximum
Number in
File

Description

<description> Optional 1 Provides a description of the application parameter.

<param-name> Required 1 Defines the name of the application parameter.

<param-value> Required 1 Defines the value of the application parameter.

Table A-14 classloader-structure Elements

Element Required? Maximum
Number in
File

Description

<module-ref> Optional Unbounde
d

The following list describes the elements you can
define within a module-ref element:
• module-uri—Zero or more. Defined within

the module-ref element.

<classloader-
structure>

Optional Unbounde
d

Allows for arbitrary nesting of classloader structures
for an application. However, for this version of
WebLogic Server, the depth is restricted to three
levels.

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-35

startup
The following table describes the elements you can define within a startup element.

WARNING: Application-scoped startup and shutdown classes have been deprecated as of
release 9.0 of WebLogic Server. Instead, you should use lifecycle listener events
in your applications. For details, see Chapter 10, “Programming Application
Lifecycle Events.”

Table A-15 listener Elements

Element Required? Maximum
Number in
File

Description

<listener-cla
ss>

Required 1 Name of the user’s implementation of
ApplicationLifecycleListener.

<listener-uri
>

Optional 1 A JAR file within the EAR that contains the
implementation. If you do not specify the
listener-uri, it is assumed that the class is
visible to the application.

<run-as-princ
ipal-name>

Optional 1 Specific a user identity to startup and shutdown
application lifecycle events. The identity specified
here should be a valid user name in the system. If
run-as-principal-name is not specified, the
deployment initiator user identity will be used as the
run-as identity for the execution of the application
lifecycle listener.

Note: If the run-as-principal-name identity
defined for the application lifecycle listener
is an administrator, the application deployer
must have administrator privileges;
otherwise, deployment will fail.

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-36 Developing Applications with WebLogic Server

shutdown
The following table describes the elements you can define within a shutdown element.

WARNING: Application-scoped startup and shutdown classes have been deprecated as of
release 9.0 of WebLogic Server. Instead, you should use lifecycle listener events
in your applications. For details, see Chapter 10, “Programming Application
Lifecycle Events.”

work-manager
The following table describes the elements you can define within a work-manager element.

Table A-16 startup Elements

Element Required? Maximum
Number in
File

Description

<startup-clas
s>

Required 1 Defines the name of the class to be run when the
application is being deployed.

<startup-uri> Optional 1 Defines a JAR file within the EAR that contains the
startup-class. If startup-uri is not
defined, then its assumed that the class is visible to the
application.

Table A-17 shutdown Elements

Element Required
Optional

Maximum
Number in
File

Description

<shutdown-cla
ss>

Required 1 Defines the name of the class to be run when the
application is undeployed.

<shutdown-uri
>

Optional 1 Defines a JAR file within the EAR that contains the
shutdown-class. If you do not define the
shutdown-uri element, it is assumed that the class
is visible to the application.

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-37

See Using Work Managers to Optimize Scheduled Work for examples and information on Work
Managers.

Table A-18 work-manager Elements

Element Required? Maximum
Number in
File

Description

<name> Required 1 The name of the Work Manager.

<response-tim
e-request-cla
ss>

Optional 1 See the description of the
<response-time-request> element in
“weblogic-application” on page A-2 for
information on this child element of
<work-manager>.

If you specify this element, you cannot also specify
<fair-share-request-class>,
<context-request-class>, or
<request-class-name>.

<fair-share-r
equest-class>

Optional 1 See the description of the
<fair-share-request> element in
“weblogic-application” on page A-2 for
information on this child element of
<work-manager>.

If you specify this element, you cannot also specify
<response-time-request-class>,
<context-request-class>, or
<request-class-name>.

<context-requ
est-class>

Optional 1 See the description of the <context-request>
element in “weblogic-application” on
page A-2 for information on this child element of
<work-manager>.

If you specify this element, you cannot also specify
<fair-share-request-class>,
<response-time-request-class>, or
<request-class-name>.

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-38 Developing Applications with WebLogic Server

<request-clas
s-name>

Optional 1 The name of the request class.

If you specify this element, you cannot also specify
<fair-share-request-class>,
<context-request-class>, or
<response-time-request-class>.

<min-threads-
constraint>

Optional 1 See the description of the
<min-threads-constraint> element in
“weblogic-application” on page A-2 for
information on this child element of
<work-manager>.

If you specify this element, you cannot also specify
<min-threads-constaint-name>.

<min-threads-
constraint-na
me>

Optional 1 The name of the min-threads constraint.

If you specify this element, you cannot also specify
<min-threads-constaint>.

<max-threads-
constraint>

Optional 1 See the description of the
<max-threads-constraint> element in
“weblogic-application” on page A-2 for
information on this child element of
<work-manager>.

If you specify this element, you cannot also specify
<max-threads-constaint-name>.

<max-threads-
constraint-na
me>

Optional 1 The name of the max-threads constraint.

If you specify this element, you cannot also specify
<max-threads-constaint>.

<capacity> Optional 1 See the description of the <capacity> element in
“weblogic-application” on page A-2 for
information on this child element of
<work-manager>.

If you specify this element, you cannot also specify
<capacity-name>.

Table A-18 work-manager Elements

Element Required? Maximum
Number in
File

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-39

session-descriptor
The following table describes the elements you can define within a session-descriptor element.

<capacity-nam
e>

Optional 1 The name of the thread capacity constraint.

If you specify this element, you cannot also specify
<capacity>.

<work-manager
-shutdown-tri
gger>

Optional 1 Used to specify a Stuck Thread Work Manager
component that can shut down the Work Manager in
response to stuck threads.

You can specify the following child elements:
• max-stuck-thread-time—The maximum

amount of time, in seconds, that a thread should
remain stuck.

• stuck-thread-count—Number of stuck
threads that triggers the stuck thread work
manager.

If you specify this element, you cannot also specify
<ignore-stuck-threads>.

<ignore-stuck
-threads>

Optional 1 Specifies whether the Work Manager should ignore
stuck threads and never shut down even if threads
become stuck.

If you specify this element, you cannot also specify
<work-manager-shutdown-trigger>.

Table A-18 work-manager Elements

Element Required? Maximum
Number in
File

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-40 Developing Applications with WebLogic Server

Table A-19 session-descriptor Elements

Element Required? Maximum
Number in
File

Description

<timeout-secs
>

Optional 1 Specifies the number of seconds after which the
session times out.

Default value is 3600 seconds.

Note: The value of the session-timeout
element (defined in minutes) in web.xml
overrides the value of timeout-secs
defined in both weblogic.xml and
weblogic-application.xml. The value of
timeout-secs in weblogic.xml overrides
the value defined in
weblogic-application.xml.

<invalidation
-interval-sec
s>

Optional 1 Specifies the number of seconds of the invalidation
trigger interval.

Default value is 60 seconds.

<debug-enable
d>

Optional 1 Specifies whether debugging is enabled for HTTP
sessions.

Default value is false.

<id-length> Optional 1 Specifies the length of the session ID.

Default value is 52.

<tracking-ena
bled>

Optional 1 Specifies whether session tracking is enabled between
HTTP requests.

Default value is true.

<cache-size> Optional 1 Specifies the cache size for JDBC and file persistent
sessions.

Default value is 1028.

<max-in-memor
y-sessions>

Optional 1 Specifies the maximum sessions limit for
memory/replicated sessions.

Default value is -1, or unlimited.

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-41

<cookies-enab
led>

Optional 1 Specifies the Web application container should set
cookies in the response.

Default value is true.

<cookie-name> Optional 1 Specifies the name of the cookie that tracks sessions.

Default name is JSESSIONID.

<cookie-path> Optional 1 Specifies the session tracking cookie path.

Default value is /.

<cookie-domai
n>

Optional 1 Specifies the session tracking cookie domain.

Default value is null.

<cookie-comme
nt>

Optional 1 Specifies the session tracking cookie comment.

Default value is null.

<cookie-secur
e>

Optional 1 Specifies whether the session tracking cookie is
marked secure.

Default value is false.

<cookie-max-a
ge-secs>

Optional 1 Specifies that maximum age of the session tracking
cookie.

Default value is -1, or unlimited.

<persistent-s
tore-type>

Optional 1 Specifies the type of storage for session persistence.

You can specify the following values:
• memory—Default value.
• replicated—Requires clustering.
• replicated_if_clustered—Defaults to

memory in non-clustered case.
• file

• jdbc

• cookie

Table A-19 session-descriptor Elements

Element Required? Maximum
Number in
File

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-42 Developing Applications with WebLogic Server

<persistent-s
tore-cookie-n
ame>

Optional 1 Specifies the name of the cookie that holds the
attribute name and values when using cookie-based
session persistence.

Default value is WLCOOKIE.

<persistent-s
tore-dir>

Optional 1 Specifies the name of the directory when using
file-based session persistence. The directory is
relative to the temporary directory defined for the
Web application.

Default value is session_db.

<persistent-s
tore-pool>

Optional 1 Specifies the name of the JDBC connection pool when
using jdbc-based session persistence.

<persistent-s
tore-table>

Optional 1 Specifies the name of the database table when using
jdbc-based session persistence.

Default value is wl_servlet_sessions.

<jdbc-column-
name-max-inac
tive-interval
>

Optional 1 Alternative name for the
wl_max_inactive_interval column name
when using jdbc-based session persistence.
Required for certain databases that do not support
long column names

<jdbc-connect
ion-timeout-s
ecs>

Optional 1 DEPRECATED

<url-rewritin
g-enabled>

Optional 1 Specifies whether URL rewriting is enabled.

Default value is true.

Table A-19 session-descriptor Elements

Element Required? Maximum
Number in
File

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing Applications with WebLogic Server A-43

library-ref
The following table describes the elements you can define within a library-ref element.

See Chapter 9, “Creating Shared Java EE Libraries and Optional Packages,” for additional
information and examples.

<http-proxy-c
aching-of-coo
kies>

Optional 1 Specifies whether WebLogic Server adds the
following HTTP header to the response:

Cache-control: no-cache=set-cookie

This header specifies that proxy caches should not
cache the cookies.

Default value is true, which means that the header is
NOT added. Set this element to false if you want
the header added to the response.

<encode-sessi
on-id-in-quer
y-params>

Optional 1 Specifies whether WebLogic Server should encode
the session ID in the path parameters.

Default value is false.

<monitoring-a
ttribute-name
>

Optional 1 Used to tag runtime information for different sessions.
For example, set this element to username if you
have a username attribute that is guaranteed to be
unique.

<sharing-enab
led>

Optional 1 Specifies whether HTTP sessions are shared across
multiple Web applications.

Default value is false.

Table A-19 session-descriptor Elements

Element Required? Maximum
Number in
File

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-44 Developing Applications with WebLogic Server

library-context-root-override
The following table describes the elements you can define within a library-context-root-override
element to override context-root elements within a referenced EAR library. See “library-ref”
on page A-43.

See Chapter 9, “Creating Shared Java EE Libraries and Optional Packages,” for additional
information and examples.

Table A-20 library Elements

Element Required? Maximum
Number in
File

Description

<library-name> Required 1 Specifies the name of the referenced shared Java EE
library.

<specification
-version>

Optional 1 Specifies the minimum specification-version required.

<implementatio
n-version>

Optional 1 Specifies the minimum implementation-version required.

<exact-match> Optional 1 Specifies whether there must be an exact match between
the specification and implementation version that is
specified and that of the referenced library.

Default value is false.

<context-root> Optional 1 Specifies the context-root of the references Web
Applications shared Java EE library.

weblog ic-app l i ca t ion . xml Schema

Developing Applications with WebLogic Server A-45

weblogic-application.xml Schema
See http://www.bea.com/ns/weblogic/100/weblogic-application.xsd for the XML Schema of the
weblogic-application.xml deployment descriptor file.

application.xml Schema
For more information about application.xml deployment descriptor elements, see the JEE 5
schema available at http://java.sun.com/xml/ns/javaee/application_5.xsd.

Table A-21 library-context-root-override Elements

Element Required? Maximum
Number in
File

Description

<library-conte
xt-root>

Optional 1 Overrides the context-root elements declared in
libraries. In the absence of this element, the library’s
context-root is used.

Only a referencing application (i.e., a user application)
can override the context-root elements declared in its
libraries.

<override-valu
e>

Optional 1 Specifies the value of the
library-context-root-override element when
overriding the context-root elements declared in libraries.
In the absence of these elements, the library’s
context-root is used.

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-46 Developing Applications with WebLogic Server

Developing Applications with WebLogic Server B-1

A P P E N D I X B

wldeploy Ant Task Reference

The following sections describe tools for deploying applications and standalone modules to
WebLogic Server:

“Overview of the wldeploy Ant Task” on page B-1

“Basic Steps for Using wldeploy” on page B-2

“Sample build.xml Files for wldeploy” on page B-2

“wldeploy Ant Task Attribute Reference” on page B-4

Overview of the wldeploy Ant Task
The wldeploy Ant task enables you to perform weblogic.Deployer functions using attributes
specified in an Ant XML file. You can use wldeploy along with other WebLogic Server Ant
tasks to create a single Ant build script that:

Builds your application from source, using wlcompile, appc, and the Web Services Ant
tasks.

Creates, starts, and configures a new WebLogic Server domain, using the wlserver and
wlconfig Ant tasks.

Deploys a compiled application to the newly-created domain, using the wldeploy Ant
task.

wldep loy Ant Task Refe rence

B-2 Developing Applications with WebLogic Server

See “Using Ant Tasks to Configure and Use a WebLogic Server Domain” on page 2-1 for more
information about wlserver and wlconfig. See “Building Applications in a Split Development
Directory” on page 4-1 for information about wlcompile.

Basic Steps for Using wldeploy
To use the wldeploy Ant task:

1. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the directory
WL_HOME\server\bin, where WL_HOME is the top-level directory of your WebLogic Server
installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your WebLogic Server
installation.

2. In the staging directory, create the Ant build file (build.xml by default). If you want to use
an Ant installation that is different from the one installed with WebLogic Server, start by
defining the wldeploy Ant task definition:

<taskdef name="wldeploy"
classname="weblogic.ant.taskdefs.management.WLDeploy"/>

3. If necessary, add task definitions and calls to the wlserver and wlconfig tasks in the build
script to create and start a new WebLogic Server domain. See “Using Ant Tasks to Configure
and Use a WebLogic Server Domain” on page 2-1 for information about wlserver and
wlconfig.

4. Add a call to wldeploy to deploy your application to one or more WebLogic Server instances
or clusters. See “Sample build.xml Files for wldeploy” on page B-2 and “wldeploy Ant Task
Attribute Reference” on page B-4.

5. Execute the Ant task or tasks specified in the build.xml file by typing ant in the staging
directory, optionally passing the command a target argument:

prompt> ant

Sample build.xml Files for wldeploy
The following example shows a wldeploy target that deploys an application to a single
WebLogic Server instance:

Sample bu i ld . xml F i l es fo r w ldep loy

Developing Applications with WebLogic Server B-3

 <target name="deploy">

 <wldeploy

 action="deploy" verbose="true" debug="true"

 name="DeployExample" source="output/redeployEAR"

 user="weblogic" password="weblogic"

 adminurl="t3://localhost:7001" targets="myserver" />

 </target>

The following example shows a corresponding task to undeploy the application; the example
shows that when you undeploy or redeploy an application, you do not specify the source archive
file or exploded directory, but rather, just its deployed name.:

 <target name="undeploy">

 <wldeploy

 action="undeploy" verbose="true" debug="true"

 name="DeployExample"

 user="weblogic" password="weblogic"

 adminurl="t3://localhost:7001" targets="myserver"

 failonerror="false" />

 </target>

The following example shows how to perform a partial redeploy of the application; in this case,
just a single WAR file in the application is redeployed:

 <target name="redeploy_partial">

 <wldeploy

 action="redeploy" verbose="true"

 name="DeployExample"

 user="weblogic" password="weblogic"

 adminurl="t3://localhost:7001" targets="myserver"

 deltaFiles="examples/general/redeploy/SimpleImpl.war" />

 </target>

The following example uses the nested <files> child element of wldeploy to specify a
particular file in the application that should be undeployed:

 <target name="undeploy_partial">

 <wldeploy

 action="undeploy" verbose="true" debug="true"

 name="DeployExample"

 user="weblogic" password="weblogic"

wldep loy Ant Task Refe rence

B-4 Developing Applications with WebLogic Server

 adminurl="t3://localhost:7001" targets="myserver"

 failonerror="false">

 <files

 dir="${current-dir}/output/redeployEAR/examples/general/redeploy"

 includes="SimpleImpl.jsp" />

 </wldeploy>

 </target>

The following example shows how to deploy a Java EE library called myLibrary whose source
files are located in the output/myLibrary directory:

 <target name="deploy">

 <wldeploy action="deploy" name="myLibrary"

 source="output/myLibrary" library="true"

 user="weblogic" password="weblogic"

 verbose="true" adminurl="t3://localhost:7001"

 targets="myserver" />

 </target>

wldeploy Ant Task Attribute Reference
The following sections describe the attributes and child element <files> of the wldeploy Ant
task.

Main Attributes
The following table describes the main attributes of the wldeploy Ant task.

These attributes mirror some of the arguments of the weblogic.Deployer command. BEA
provides an Ant task version of the weblogic.Deployer command so that developers can easily
deploy and test their applications as part of the iterative development process. Typically,
however, administrators use the weblogic.Deployer command, and not the wldeploy Ant
task, to deploy applications in a production environment. For that reason, see the
weblogic.Deployer Command-Line Reference in Deploying Applications to WebLogic Server for

wldep loy An t Task A t t r ibu te Refe rence

Developing Applications with WebLogic Server B-5

the full and complete definition of the attributes of the wldeploy Ant task. The table below is
provided just as a quick summary.

Table B-1 Attributes of the wldeploy Ant Task

Attribute Description Data
Type

action The deployment action to perform.

Valid values are deploy, cancel, undeploy, redeploy,
distribute, start, and stop.

String

adminmode Specifies that the deployment action puts the application into Administration
mode.

Administration mode restricts access to an application to a configured
Administration channel.

Valid values for this attribute are true and false. Default value is false,
which means that by default the application is deployed in production mode
so that all clients can access it immediately.

Boolean

adminurl The URL of the Administration Server.

The format of the value of this attribute is protocol://host:port,
where protocol is either http or t3, host is the host on which the
Administration Server is running, and port is the port which the
Administration Server is listening.

Note: In order to use the HTTP protocol, you must enable the http
tunnelling option in the Administration Console.

String

allversions Specifies that the action (redeploy, stop, and so on) applies to all versions of
the application.

Valid values for this attribute are true and false. The default value is
false.

Boolean

altappdd Specifies the name of an alternate Java EE deployment descriptor
(application.xml) to use for deployment.

If you do not specify this attribute, and you are deploying an Enterprise
application, the default deployment descriptor is called
application.xml and is located in the META-INF subdirectory of the
main application directory or archive (specified by the source attribute.)

String

wldep loy Ant Task Refe rence

B-6 Developing Applications with WebLogic Server

altwlsappdd Specifies the name of an alternate WebLogic Server deployment descriptor
(weblogic-application.xml) to use for deployment.

If you do not specify this attribute, and you are deploying an Enterprise
application, the default deployment descriptor is called
weblogic-application.xml and is located in the META-INF
subdirectory of the main application directory or archive (specified by the
source attribute.)

String

appversion The version identifier of the deployed application. String

debug Enable wldeploy debugging messages. Boolean

deleteFiles Specifies whether to remove static files from a server's staging directory.

This attribute is valid only for unarchived deployments, and only for
applications deployed using stage mode. You must specify target servers
when using this attribute.

Specifying the deleteFiles attributes indicates that WebLogic Server
should remove only thos files that it copied to the staging area during
deployment.

This attribute can be used only in combination with
action="redeploy".

Because the deleteFiles attribute deletes all specified files, BEA
recommends that you use caution when using the deleteFiles attribute
and that you do not use it in production environments.

Valid values for this attribute are true and false. Default value is false.

Boolean

deltaFiles Specifies a comma- or space-separated list of files, relative to the root
directory of the application, which are to be redeployed.

Use this attribute only in conjunction with action="redeploy" to
perform a partial redeploy of an application.

String

enableSecurityValid
ation

Specifies whether or not to enable validation of security data.

Valid values for this attribute are true and false. Default value is false.

Boolean

Table B-1 Attributes of the wldeploy Ant Task

Attribute Description Data
Type

wldep loy An t Task A t t r ibu te Refe rence

Developing Applications with WebLogic Server B-7

externalStage Specifies whether the deployment uses external_stage deployment
mode.

In this mode, the Ant task does not copy the deployment files to target
servers; instead, you must ensure that deployment files have been copied to
the correct subdirectory in the target servers' staging directories.

You can specify only one of the following attributes: stage, nostage, or
external_stage. If none is specified, the default deployment mode to
Managed Servers is stage; the default mode to the Administration Server
and in single-server cases is nostage.

See Controlling Deployment File Copying with Staging Modes.

Boolean

failonerror This is a global attribute used by WebLogic Server Ant tasks. It specifies
whether the task should fail if it encounters an error during the build.

Valid values for this attribute are true and false. Default value is true.

Boolean

graceful Stops the application after existing HTTP clients have completed their work.

You can use this attribute only when stopping or undeploying an application,
or in other words, you must also specify either the action="stop" or
action="undeploy" attributes.

Valid values for this attribute are true and false. Default value is false.

Boolean

id Identification used for obtaining status or cancelling the deployment.

You assign a unique ID to an application when you deploy it, and then
subsequently use the ID when redeploying, undeploying, stopping, and so
on.

If you do not specify this attribute, the Ant task assigns a unique ID to the
application.

String

ignoresessions This option immediately places the application into Administration mode
without waiting for current HTTP sessions to complete.

You can use this attribute only when stopping or undeploying an application,
or in other words, you must also specify either the action="stop" or
action="undeploy" attributes.

Valid values for this attribute are true and false. Default value is false.

Boolean

Table B-1 Attributes of the wldeploy Ant Task

Attribute Description Data
Type

wldep loy Ant Task Refe rence

B-8 Developing Applications with WebLogic Server

libImplVer Specifies the implementation version of a Java EE library or optional
package.

This attribute can be used only if the library or package does not include a
implementation version in its manifest file. You can specify this attribute
only in combination with the library attribute.

See “Creating Shared Java EE Libraries and Optional Packages” on
page 9-1.

String

library Identifies the deployment as a shared Java EE library or optional package.
You must specify the library attribute when deploying or distributing any
Java EE library or optional package.

Valid values for this attribute are true and false. Default value is false.

See “Creating Shared Java EE Libraries and Optional Packages” on
page 9-1.

Boolean

libSpecVer Provides the specification version of a Java EE library or optional package.

This attribute can be used only if the library or package does not include a
specification version in its manifest file. You can specify this attribute only
in combination with the library attribute.

See “Creating Shared Java EE Libraries and Optional Packages” on
page 9-1.

String

name The deployment name for the deployed application.

If you do not specify this attribute, WebLogic Server assigns a deployment
name to the application, based on its archive file or exploded directory.

String

nostage Specifies whether the deployment uses nostage deployment mode.

In this mode, the Ant task does not copy the deployment files to target
servers, but leaves them in a fixed location, specified by the source
attribute. Target servers access the same copy of the deployment files.

You can specify only one of the following attributes: stage, nostage, or
external_stage. If none is specified, the default deployment mode to
Managed Servers is stage; the default mode to the Administration Server
and in single-server cases is nostage.

See Controlling Deployment File Copying with Staging Modes.

Boolean

Table B-1 Attributes of the wldeploy Ant Task

Attribute Description Data
Type

wldep loy An t Task A t t r ibu te Refe rence

Developing Applications with WebLogic Server B-9

noversion Indicates that the wldeploy Ant task should ignore all version related code
paths on the Administration Server. This behavior is useful when
deployment source files are located on Managed Servers (not the
Administration Server) and you want to use the external_stage staging
mode.

If you use this option, you cannot use versioned applications.

Valid values for this attribute are true and false. Default value is false.

Boolean

nowait Specifies whether wldeploy returns immediately after making a
deployment call (by deploying as a background task).

Boolean

password The administrative password.

To avoid having the plain text password appear in the build file or in
process utilities such as ps, first store a valid username and encrypted
password in a configuration file using the WebLogic Scripting Tool (WLST)
storeUserConfig command. Then omit both the username and
password attributes in your Ant build file. When the attributes are omitted,
wldeploy attempts to login using values obtained from the default
configuration file.

If you want to obtain a username and password from a non-default
configuration file and key file, use the userconfigfile and
userkeyfile attributes with wldeploy.

See the command reference for storeUserConfig in the WLST
Command and Variable Reference for more information on storing and
encrypting passwords.

String

plan Specifies a deployment plan to use when deploying the application or
module.

By default, wldeploy does not use an available deployment plan, even if
you are deploying from an application root directory that contains a plan.

String

planversion The version identifier of the deployment plan. String

remote Specifies whether the server is located on a different machine. This affects
how filenames are transmitted.

Valid values for this attribute are true and false. Default value is false,
which means that the Ant task assumes that all source paths are valid paths
on the local machine.

Boolean

Table B-1 Attributes of the wldeploy Ant Task

Attribute Description Data
Type

wldep loy Ant Task Refe rence

B-10 Developing Applications with WebLogic Server

retiretimeout Specifies the number of seconds before WebLogic Server undeploys the
currently-running version of this application or module so that clients can
start using the new version.

It is assumed, when you specify this attribute, that you are starting,
deploying, or redeploying a new version of an already-running application.

See Updating Applications in a Production Environment.

int

securityModel Specifies the security model to use for this deployment. Possible security
models are:
• Deployment descriptors only
• Customize roles
• Customize roles and policies
• Security realm configuration (advanced model)

Valid actual values for this attribute are DDOnly, CustomRoles,
CustomRolesAndPolicy, or Advanced.

See Options for Securing Web Application and EJB Resources for more
information on these security models

String

source The archive file or exploded directory to deploy. File

stage Specifies whether the deployment uses stage deployment mode.

In this mode, the Ant task copies deployment files to target servers' staging
directories.

You can specify only one of the following attributes: stage, nostage, or
external_stage. If none is specified, the default deployment mode to
Managed Servers is stage; the default mode to the Administration Server
and in single-server cases is nostage.

See Controlling Deployment File Copying with Staging Modes.

Boolean

submoduletargets Specifies JMS server targets for resources defined within a JMS application
module.

The value of this attribute is a comma-separated list of JMS server names.

See the Using Sub-Module Targeting with JMS Application Modules.

String

Table B-1 Attributes of the wldeploy Ant Task

Attribute Description Data
Type

wldep loy An t Task A t t r ibu te Refe rence

Developing Applications with WebLogic Server B-11

targets The list of target servers to which the application is deployed.

The value of this attribute is a comma-separated list of the target servers,
clusters, or virtual hosts.

If you do not specify a target list when deploying an application, the target
defaults to the Administration Server instance.

String

timeout The maximum number of seconds to wait for a deployment to succeed. int

upload Specifies whether the source file(s) are copied to the Administration
Server’s upload directory prior to deployment.

Use this attribute when you are on a remote machine and you cannot copy
the deployment files to the Administration Server by other means.

Valid values for this attribute are true and false. Default value is false.

Boolean

usenonexclusivelock Specifies that the deployment action (deploy, redeploy, stop, and so on) uses
the existing lock on the domain that has already been acquired by the same
user performing the action.

This attribute is particularly useful when the user is using multiple
deployment tools (Ant task, command line, Administration console, and so
on) simultaneously and one of the tools has already acquired a lock on the
domain.

Valid values for this attribute are true and false. Default value is false.

Boolean

user The administrative username. String

userconfigfile Specifies the location of a user configuration file to use for obtaining the
administrative username and password. Use this option, instead of the user
and password attributes, in your build file when you do not want to have
the plain text password shown in-line or in process-level utilities such as ps.

Before specifying the userconfigfile attribute, you must first generate
the file using using the WebLogic Scripting Tool (WLST)
storeUserConfig command as described in the WLST Command and
Variable Reference.

String

Table B-1 Attributes of the wldeploy Ant Task

Attribute Description Data
Type

wldep loy Ant Task Refe rence

B-12 Developing Applications with WebLogic Server

Nested <files> Child Element
The wldeploy Ant task also includes the <files> child element that can be nested to specify a
list of files on which to perform a deployment action (for example, a list of JSPs to undeploy.)

WARNING: Use of <files> to redeploy a list of files in an application has been deprecated as
of release 9.0 of WebLogic Server. Instead, use the deltaFiles attribute of
wldeploy.

The <files> element works the same as the standard <fileset> Ant task (except for the
difference in actual task name). Therefore, see the Apache Ant Web site for detailed reference
information about the attributes you can specify for the <files> element.

userkeyfile Specifies the location of a user key file to use for encrypting and decrypting
the username and password information stored in a user configuration file
(the userconfigfile attribute).

Before specifying the userkeyfile attribute, you must first generate the
key file using the WebLogic Scripting Tool (WLST) storeUserConfig
command as described in the WLST Command and Variable Reference.

String

verbose Specifies whether wldeploy displays verbose output messages. Boolean

Table B-1 Attributes of the wldeploy Ant Task

Attribute Description Data
Type

Developing Applications with WebLogic Server C-1

A P P E N D I X C

Spring Applications Reference

The following sections describe developing and managing Spring Framework-based applications
for WebLogic Server. In most cases, the information in these sections is described from the
perspective of creating MedRec-Spring.

“About Spring on WebLogic Server” on page C-1

“Redesigning a J2EE-Based Application to a Spring-Based Application” on page C-2

“Spring Extension to the WebLogic Administration Console” on page C-10

About Spring on WebLogic Server
To demonstrate the ways in which Spring can take advantage of WebLogic Server’s enterprise
features, BEA redesigned the Avitek Medical Records sample application (MedRec) to replace
core J2EE components with Spring components. For additional information on MedRec
architecture and its redesign see the article "Spring 2.0.1 and BEA WebLogic Server 9.2
Integration" at
http://dev2dev.bea.com/pub/a/2007/04/spring-2-weblogic-server-9-integration.html.

The following sections describe key steps that BEA performed when redesigning MedRec. You
can use this information if you want to redesign your own J2EE-based WebLogic Server
applications to use Spring components. You can also leverage this information if you want to
create a new application, based on Spring components, for WebLogic Server.

It is assumed that you are familiar with J2EE concepts, WebLogic Server, and the Spring
Framework. For information on WebLogic Server, see BEA WebLogic Server 10.0

Spr ing Appl ica t i ons Refe rence

C-2 Developing Applications with WebLogic Server

Documentation. For information about Spring on the BEA dev2dev Web site, see Spring
Resource Page. For information on the Spring Framework in general, see
http://www.springframework.org/.

Redesigning a J2EE-Based Application to a Spring-Based
Application

To transform a J2EE-based application to a Spring-based application, you perform the following
steps as desired:

1. Configure Spring Inversion of Control.

2. Enable the Spring Web Services Client Service. Spring offers a JAX-RPC factory which
produces a proxy for Web Services.

3. Make JMS Services Available to the Application at Runtime.

4. Configure JMX: Expose the WebLogic Server Runtime MBean Server Connection to Spring.

5. Configure Spring JDBC to Communicate With the Connection Pool.

6. Use the Spring Transaction Abstraction Layer for Transaction Management.

7. Make Use of WebLogic Server Clustering and Clustered Spring Remoting.

The following sections describe the details of redesigning a J2EE-based application to a
Spring-based application. Where appropriate, these sections include sample code. In most cases
the sample code is from MedRec-Spring.

Configure Spring Inversion of Control
In Spring, references to other beans (injected properties) are configured via a Spring
configuration XML file, applicationContext-web.xml.

In MedRec-Spring, BEA replaced stateless session EJBs with POJOs in the Spring configuration
file src\medrecEar\web\WEB-INF\applicationContext-web.xml as follows:
<bean name="/patient/record"

 class="com.bea.medrec.web.patient.actions.ViewRecordAction">

 <property name="medRecClientServiceFacade">

 <ref bean="medRecClientServiceFacade"/>

 </property>

Redes ign ing a J2EE-Based App l icat ion to a Spr ing-Based Appl i cat ion

Developing Applications with WebLogic Server C-3

 </bean>

Then, in the application code, BEA defined setter methods for the corresponding bean. For
example:

protected MedRecClientServiceFacade medRecClientServiceFacade;

 public void setMedRecClientServiceFacade(

 MedRecClientServiceFacade pMedRecClientServiceFacade){

 this.medRecClientServiceFacade = pMedRecClientServiceFacade;

 }

Enable the Spring Web Services Client Service
To use Spring’s JAX-RPC factory which produces a proxy for Web Services, you configure the
Spring JaxRpcPortProxyFactoryBean by implementing code such as the following; in
MedRec-Spring, BEA implemented this code in the Spring configuration file
src\physicianEar\APP-INF\classes\applicationContext-phys-service.xml.

<!-- reliable asynchronous web service for sending new medical records to

medrec -->

<bean id="reliableClientWebServicesPortType"

class="org.springframework.remoting.jaxrpc.JaxRpcPortProxyFactoryBean"

lazy-init="true">

<property name="wsdlDocumentUrl"

value="http://${WS_HOST}:${WS_PORT}/ws_phys/PhysicianWebServices?WSDL"/>

<property name="portName" value="PhysicianWebServicesPort"/>

<property name="jaxRpcService">

<ref bean="generatedReliableService"/>

</property>

<property name="serviceInterface"

value="com.bea.physician.webservices.client.PhysicianWebServicesPortType"/

>

<property name="username" value="medrec_webservice_user"/>

<property name="password" value="weblogic"/>

<property name="customProperties">

<props>

<prop key="weblogic.wsee.complex">true</prop>

</props>

Spr ing Appl ica t i ons Refe rence

C-4 Developing Applications with WebLogic Server

</property>

</bean>

<> <!-- allows the jaxRpcService class to execute its constructor which

loads in type mappings -->

<bean id="generatedReliableService"

class="com.bea.physician.webservices.client.PhysicianWebServices_Impl">

</bean>

In this code example, note that:

The serviceInterface represents Web Services operations.

The customProperties property allows for custom WebLogic Server Web Service stub
properties.

The jaxRpcService value is set to WebLogic Server’s generated JAX-RPC
implementation service.

Make JMS Services Available to the Application at Runtime
In Spring, you must configure JMS services so that they are provided to the application during
runtime. You can do this via a Spring Bean that represents a messaging destination. In
MedRec-Spring, BEA made JMS services available to the application at runtime by
implementing the following code in the Spring configuration file
src\medrecEar\APP-INF\classes\applicationContext-jms.xml.

<bean id="uploadQueue"

class="org.springframework.jndi.JndiObjectFactoryBean">

 <property name="jndiName"

 value="com.bea.medrec.messagging.MedicalRecordUploadQueue"/>

 </bean>

 <bean id="jmsConnFactory"

 class="org.springframework.jndi.JndiObjectFactoryBean">

 <property name="jndiName"

 value="com.bea.medrec.messagging.MedRecQueueConnectionFactory"/>

 </bean>

Redes ign ing a J2EE-Based App l icat ion to a Spr ing-Based Appl i cat ion

Developing Applications with WebLogic Server C-5

 <bean id="uploadJmsTemplate"

class="org.springframework.jms.core.JmsTemplate">

 <property name="connectionFactory">

 <ref bean="jmsConnFactory"/>

 </property>

 <property name="defaultDestination">

 <ref bean="uploadQueue"/>

 </property>

 </bean>

Configure JMX: Expose the WebLogic Server Runtime MBean
Server Connection to Spring
You can expose WebLogic Server’s MBean Server to Spring through Spring’s
MBeanServerConnectionFactoryBean, which is a convenience factory that produces an
MBeanServerConnection that is established and cached during application deployment and can
later be operated on by referencing beans. The MBeanServerConnectionFactoryBean can be
configured to return the WebLogic Server Runtime MBean Server, and to obtain a connection to
the WebLogic Server Domain Runtime MBean Server and the WebLogic Server Edit MBean
Server.

Note: Because the WebLogic Server Domain Runtime MBean Server is not active during
deployment, you must configure the MBeanServerConnectionFactoryBean to use
Spring’s lazy instantiation. Lazy instantiation fetches the Spring Bean when it is invoked.

Exposing the WebLogic Server Runtime MBean Server Connection to Spring is demonstrated in
the following code example, which, in MedRec-Spring, BEA implemented in the Spring
configuration file medrecEar/APP-INF/classes/applicationContext-jmx.xml.

<> <!-- expose weblogic server's runtime mbeanserver connection -->
<bean id="runtimeMbeanServerConnection"

class="org.springframework.jmx.support.MBeanServerConnectionFactoryBean">

<property name="serviceUrl"

value="service:jmx:t3://${WS_HOST}:${WS_PORT}/jndi/weblogic.management.mbe

anservers.runtime"/>

Spr ing Appl ica t i ons Refe rence

C-6 Developing Applications with WebLogic Server

<property name="environment">

<props>

<prop key="java.naming.security.principal">${WS_USERNAME}</prop>

<prop key="java.naming.security.credentials">${WS_USERNAME}</prop>

<prop

key="jmx.remote.protocol.provider.pkgs">weblogic.management.remote</prop>

</props>

</property>

</bean>

Configure Spring JDBC to Communicate With the
Connection Pool
In MedRec-Spring, BEA used a datasource that references a JDBC connection pool that is
managed by WebLogic Server and also employed Spring’s JdbcDaoSupport class. For
information on JdbcDaoSupport, see the Spring documentation.

For an example of the way in which BEA implemented JDBC, see the MedRec-Spring class

src\medrecEar\dao\com\bea\medrec\dao\jdbc\JdbcPatientDao.java

See also the following code examples, which, for MecRec-Spring, BEA implemented in the
Spring configuration files
src\medrecEar\APP-INF\classes\applicationContext-db.xml and
src\medrecEar\APP-INF\classes\applicationContext-jdbc.xml, respectively.

applicationContext-db.xml code example:

 <!-- datasource pool -->

 <bean id="dataSource"

 class="org.springframework.jndi.JndiObjectFactoryBean">

 <property name="jndiName" value="jdbc/MedRecGlobalDataSourceXA"/>

 </bean>

applicationContext-jdbc.xml code example:

 <bean id="patientDao"

 class="com.bea.medrec.dao.jdbc.JdbcPointBasePatientDao"

 autowire="byType"/>

Redes ign ing a J2EE-Based App l icat ion to a Spr ing-Based Appl i cat ion

Developing Applications with WebLogic Server C-7

Additionally, in MedRec-Spring, BEA replaced entity EJBs with POJOs and made use of Spring
JDBC for persistence. For an example, see the MedRec-Spring class
\src\medrecEar\core\com\bea\medrec\domain\Address.java

Use the Spring Transaction Abstraction Layer for
Transaction Management
Spring supports distributed transactions through WebLogic Server’s JTA implementation. You
can also configure the Spring transaction manager to delegate responsibility to the WebLogic
Server JTA transaction manager. This is accomplished via Spring’s
WebLogicJtaTransactionManager class. BEA used this approach with MedRec-Spring in
order to exactly mirror transaction management in the original version of MedRec.

To use the Spring transaction abstraction layer for transaction management and delegate
responsibility to the WebLogic Server JTA transaction manager, you implement code such as the
following, which BEA implemented in the Spring configuration files
src\medrecEar\APP-INF\classes\applicationContext-tx.xml and
src\medrecEar\APP-INF\classes\applicationContext-service.xml, respectively.

applicationContext-tx.xml code example:

<!-- spring's transaction manager delegates to WebLogic Server's transaction

manager -->

<bean id="transactionManager"

class="org.springframework.transaction.jta.WebLogicJtaTransactionManager">

<property name="transactionManagerName"

value="javax.transaction.TransactionManager"/>

</bean>

applicationContext-service.xml code example:

<!-- base transaction proxy for which medrec spring beans inherit-->

< bean id="baseTransactionProxy"

class="org.springframework.transaction.interceptor.TransactionProxyFactory

Bean"

abstract="true">

<property name="transactionManager" ref="transactionManager"/>

<property name="transactionAttributes">

<props>

<prop key="activate*">PROPAGATION_REQUIRED</prop>

<prop key="create*">PROPAGATION_REQUIRED</prop>

Spr ing Appl ica t i ons Refe rence

C-8 Developing Applications with WebLogic Server

<prop key="compose*">PROPAGATION_REQUIRED</prop>

<prop key="deny*">PROPAGATION_REQUIRED</prop>

<prop key="getRecord*">PROPAGATION_REQUIRED,readOnly</prop>

<prop key="getPatient*">PROPAGATION_REQUIRED,readOnly</prop>

<prop key="getLog*">PROPAGATION_NOT_SUPPORTED</prop>

<prop key="process*">PROPAGATION_REQUIRED</prop>

<prop key="save*">PROPAGATION_REQUIRED</prop>

<prop key="send*">PROPAGATION_REQUIRED</prop>

</props>

</property>

< /bean>

<!-- single point of service for all medrec clients -->

<bean id="medRecClientServiceFacade"

parent="baseTransactionProxy">

<property name="target">

<bean class="com.bea.medrec.service.MedRecClientServiceFacadeImpl">

<property name="adminService">

<ref bean="adminService"/>

</property>

<property name="patientService">

<ref bean="patientService"/>

</property>

<property name="recordService">

<ref bean="recordService"/>

</property>

<property name="recordXmlProcessorService">

<ref bean="recordXmlProcessorService"/>

</property>

</bean>

</property>

</bean>

The transactionAttributes you specify define the way in which Spring begins and ends
transactions. Because MedRec-Spring delegates transaction management to WebLogic JTA,
management tasks such as transaction suspension and rollback are handled as specified by
WebLogic’s transaction manager.

Redes ign ing a J2EE-Based App l icat ion to a Spr ing-Based Appl i cat ion

Developing Applications with WebLogic Server C-9

For more information on WebLogicJtaTransactionManager, see “Implementing Transaction
Suspension in Spring” at http://dev2dev.bea.com/pub/a/2005/07/spring_transactions.html.

Make Use of WebLogic Server Clustering
Spring applications can take advantage of WebLogic Server’s clustering features. Because most
Spring applications are packaged as Web applications (.war files), you need do not need to do
anything special in order to take advantage of WebLogic Server clusters; all you need to do is
deploy your Spring application to the servers in a WebLogic Server cluster.

Clustered Spring Remoting
The certification of Spring 1.2.8 and 2.0 on WebLogic Server extends the Spring
JndiRmiProxyFactoryBean and its associated service exporter so that it supports proxying with
any J2EE RMI implementation. To use the extension to the JndiRmiProxyFactoryBean and its
exporter:

1. Configure client support by implementing code such as the following:

<bean id="proProxy"
class="org.springframework.remoting.rmi.JndiRmiProxyFactoryBean">
<property name="jndiName" value="t3://${serverName}:${rmiPort}/order"/>
</property>
<property name="jndiEnvironment">
<props>
<prop key="java.naming.factory.url.pkgs">weblogic.jndi.factories</prop>
</props>
</property>
<property name="serviceInterface"
value="org.springframework.samples.jpetstore.domain.logic.OrderService"
/>
</bean>

2. Configure the service exporter by implementing code such as the following:

<bean id="order-pro"
class="org.springframework.remoting.rmi.JndiRmiServiceExporter">
<property name="service" ref="petStore"/>
<property name="serviceInterface"
value="org.springframework.samples.jpetstore.domain.logic.OrderService"
/>
<property name="jndiName" value="order"/>
</bean>

Spr ing Appl ica t i ons Refe rence

C-10 Developing Applications with WebLogic Server

Spring Extension to the WebLogic Administration Console
You can use a Spring extension to the WebLogic Server Administration Console to monitor and
manage Spring Beans, attributes, and operations that are defined in your application.

Installing the Spring Extension to the WebLogic
Administration Console
To install the Spring extension to the WebLogic Administration Console, perform the following
steps:

1. Copy the spring-ext-server.jar file to your yourdomain/console-ext directory.

2. Copy the spring-ext-client.jar file to your application’s WEB-INF/lib directory.

3. Restart WebLogic Server.

Exposing Spring Beans Through the WebLogic
Administration Console
In order to be able to access Spring Beans that are not MBeans through the WebLogic
Administration Console, you must configure an MBeanExporter in the
applicationContext.xml file and specify which beans to expose via the assembler. Make sure
that the applicationName property is the deployed name of your application.

Support for Spring on WebLogic Server
For information on how BEA supports this release of WebLogic Server and the Spring
Framework from Interface21, see Supported Configurations for Products with Spring
Framework.

