
BEAWebLogic
Portal®

Portlet Development
Guide

Version 9.2
Revised: October 2006

Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop for JSP, BEA Workshop Struts, BEA Workshop Studio, Dev2Dev,
Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated Knowledge Transfer, AKT, BEA
Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA Self Assessment are service marks
of BEA Systems, Inc.

All other names and marks are property of their respective owners.

BEA WebLogic Portal Portlet Development Guide iii

Contents

1. Introduction
Portlet Overview . 1-1

Portlet Development and the Portal Life Cycle . 1-2

Architecture . 1-3

Development . 1-3

Staging . 1-4

Production. 1-4

Getting Started . 1-4

Prerequisites . 1-5

Related Guides . 1-5

Part I. Architecture

2. Portlet Planning
Portlet Development in a Distributed Portal Team . 2-2

Portlets in a Non-Portal Environment . 2-2

Planning Portlet Instances . 2-2

Security . 2-3

Interportlet Communication. 2-3

Performance Planning . 2-4

3. Portlet Types
Java Server Page (JSP) and HTML Portlets . 3-2

iv BEA WebLogic Portal Portlet Development Guide

Java Portlets (JSR 168) . 3-2

Java Page Flow Portlets. 3-2

Struts Portlets . 3-3

Java Server Faces (JSF) Portlets . 3-3

Browser (URL) Portlets . 3-4

Remote Portlets . 3-5

Portlet Type Summary Table . 3-5

Part II. Development

4. Understanding Portlet Development
Portlet Components . 4-1

Portlet Properties . 4-2

Portlet Title Bar, Mode, and State . 4-3

Portlet Preferences . 4-3

Resources for Creating Portlets. 4-3

Portlet Rendering. 4-4

Render and Pre-Render Forking . 4-4

Asynchronous Portlet Content Rendering . 4-5

Portlets as Popups (Detached Portlets) . 4-5

JSP Tags and Controls in Portlets . 4-5

Backing Files. 4-6

5. Building Portlets
Supported Portlet Types . 5-2

Portlets in Library Modules. 5-2

Portlet Wizard Reference . 5-3

Order of Creation - Resource or Portlet First. 5-4

Starting the Portlet Wizard. 5-7

BEA WebLogic Portal Portlet Development Guide v

New Portlet Dialog . 5-9

Select Portlet Type Dialog . 5-9

Portlet Details Dialogs . 5-10

How to Build Each Type of Portlet . 5-10

JSP and HTML Portlets . 5-11

Java Portlets . 5-12

Java Page Flow Portlets . 5-17

JSF Portlets. 5-20

Browser Portlets . 5-24

Struts Portlets . 5-27

Remote Portlets . 5-29

Web Service Portlets. 5-30

Detached Portlets . 5-30

Considerations for Using Detached Portlets. 5-31

Building Detached Portlets. 5-32

Portlet Properties . 5-32

Editing Portlet Properties . 5-33

Tips for Using the Properties View . 5-34

Portlet Properties in the Portal Properties View . 5-35

Portlet Properties in the Portlet Properties View . 5-36

Portlet Preferences . 5-49

Specifying Portlet Preferences . 5-50

Using the Preferences API to Access or Modify Preferences 5-55

Portlet Preferences SPI . 5-60

Best Practices in Using Portlet Preferences . 5-63

Backing Files . 5-64

How Backing Files are Executed . 5-65

Thread Safety and Backing Files . 5-67

vi BEA WebLogic Portal Portlet Development Guide

Scoping and Backing Files. 5-67

Backing File Guidelines. 5-67

Portlet Appearance and Features. 5-69

Portlet Dependencies . 5-70

Portlet Modes . 5-73

Portlet States. 5-76

Portlet Title Bar Icons . 5-77

Portlet Height and Scrolling. 5-78

Getting Request Data in Page Flow Portlets . 5-80

JSP Tags and Controls in Portlets . 5-81

Viewing Available JSP Tags . 5-81

Viewing Available Controls . 5-82

Portlet State Persistence . 5-84

Adding a Portlet to a Portal . 5-84

Deleting Portlets . 5-86

Third-Party Portlets . 5-86

Autonomy Portlets . 5-86

Documentum Portlets. 5-86

MobileAware Portlets. 5-87

Advanced Portlet Development with Tag Libraries . 5-87

Adding ActiveMenus . 5-88

Enabling Drag and Drop . 5-99

Enabling Dynamic Content . 5-102

6. Optimizing Portlet Performance
Performance-Related Portlet Properties . 6-1

Portlet Caching . 6-2

Remote Portlets . 6-2

BEA WebLogic Portal Portlet Development Guide vii

Portlet Forking . 6-3

Configuring Portlets for Forking . 6-3

Architectural Details of Forked Portlets. 6-6

Best Practices for Developing Forked Portlets. 6-10

Asynchronous Portlet Content Rendering . 6-13

Implementing Asynchronous Portlet Content Rendering. 6-13

Thread Safety and Asynchronous Rendering . 6-15

Considerations for IFRAME-based Asynchronous Rendering 6-16

Considerations for AJAX-based Asynchronous Rendering 6-16

Comparison of IFRAME- and AJAX-based Asynchronous Rendering. 6-17

Comparison of Asynchronous and Conventional or Forked Rendering 6-17

Portal Life Cycle Considerations with Asynchronous Content Rendering 6-18

Asynchronous Content Rendering and IPC . 6-19

7. Local Interportlet Communication
Definition Labels and Interportlet Communication. 7-2

Portlet Events. 7-2

Event Handlers . 7-2

Event Types . 7-4

Event Actions . 7-5

Portlet Event Handlers Wizard Reference . 7-5

IPC Example . 7-10

Before You Begin - Environment Setup. 7-10

Basic IPC Example. 7-13

IPC Special Considerations and Limitations . 7-26

Using Asynchronous Portlet Rendering with IPC . 7-26

Generic Event Handler for WSRP . 7-27

Consistency of the Listen To Field . 7-27

viii BEA WebLogic Portal Portlet Development Guide

Part III. Staging

8. Assembling Portlets into Desktops
Portlet Library . 8-1

Managing Portlets Using the Administration Console . 8-2

Copying a Portlet in the Library . 8-3

Modifying Library Portlet Properties. 8-3

Modifying Desktop Portlet Properties . 8-4

Deleting a Portlet . 8-5

Managing Portlets on Pages . 8-5

Overview of Portlet Categories . 8-6

Overview of Portlet Preferences . 8-8

Creating a Portlet Preference . 8-9

Editing a Portlet Preference . 8-10

Overview of Delegated Administration . 8-11

Overview of Visitor Entitlements . 8-11

9. Deploying Portlets
Deploying Portlets. 9-1

Part IV. Production

10.Managing Portlets in Production
Pushing Changes from the Library into Production . 10-1

Transferring Changes from Production Back to Development . 10-2

A. Portlet Database Data
Database Structure for Portlet Data. A-1

Removing Portlets from Production . A-2

BEA WebLogic Portal Portlet Development Guide ix

Portlet Resources in the Database .A-2

Types of Database Tables .A-3

Management of Portlet Data. .A-3

How the Database Shows Removed Portlets .A-4

x BEA WebLogic Portal Portlet Development Guide

BEA WebLogic Portal Portlet Development Guide 1-1

C H A P T E R 1

Introduction

This chapter introduces BEA WebLogic Portal® portlet concepts and describes the content of this
guide.

This chapter includes the following sections:

Portlet Overview

Portlet Development and the Portal Life Cycle

Portlet Overview
Portlets are modular panes within a web browser that surface applications, information, and
business processes. Portlets can contain anything from static HTML content to Java controls to
complex web services and process-heavy applications. Portlets can communicate with each other
and take part in Java page flows that use events to determine a user’s path through an application.
A single portlet can also have multiple instances—in other words, it can appear on a variety of
different pages within a single portal, or even across multiple portals if the portlet is enabled for
Web Services for Remote Portlets (WSRP). You can customize portlets to meet the needs of
specific users or groups.

Figure shows an example portal desktop with its associated portlets outlined in red.

In t roduct ion

1-2 BEA WebLogic Portal Portlet Development Guide

Figure 1-1 Portal Desktop with Portlets

WebLogic Portal supports the development of portlets through BEA Workshop for WebLogic
Platform (Workshop for WebLogic), which is a client-based tool. You can develop portals
without Workshop for WebLogic through coding in any tool of choice such as JBuilder, VI or
Emacs; portlets can be written in Java or JSP, and can include JavaScript for client-side
operations. However, to realize the full development-time productivity gains afforded to the
WebLogic Portal customer, you should use Workshop for WebLogic as your portal and portlet
development platform.

For a description of each type of portlet that you can build using WebLogic Portal, refer to
“Portlet Types” on page 3-1.

Portlet Development and the Portal Life Cycle
The tasks in this guide are organized according to the portal life cycle, which includes best
practices and sequences for creating and updating portals. For more information about the portal
life cycle, refer to the BEA WebLogic Portal Overview. The portal life cycle contains four phases:
architecture, development, staging, and production. Figure 1-2 shows a sampling of portlet
development tasks that occur at each phase.

Red outlined
elements are
portlets

Por t l e t Deve lopment and the Por ta l L i f e Cyc le

BEA WebLogic Portal Portlet Development Guide 1-3

Figure 1-2 Portlets and the Four Phases of the Portal Life Cycle

Architecture
During the architecture phase, you plan the configuration of your portal. For example, you can
create a detailed specification outlining the requirements for your portal, the specific portlets you
require, where those portlets will be hosted, and how they will communicate and interact with one
another. You also consider the deployment strategy for your portal. Security architecture is
another consideration that you must keep in mind at the portlet level.

The chapters describing tasks within the architecture phase include:

Chapter 2, “Portlet Planning”

Chapter 3, “Portlet Types”

Development
Developers use Workshop for WebLogic to create portlets, pages, and books. During
development, you can implement data transfer and interportlet communication strategies.

Production –
Roll out your portlets,
either individually or
within the entire portal,
to a production
environment, making
changes as needed

Staging –
Use the WebLogic Portal
Administration Console to
create and configure desktops

Development –
Use Workshop for
WebLogic to create
portlets, pages, and
books

Architecture –
Plan the basic configuration
of the portal

In t roduct ion

1-4 BEA WebLogic Portal Portlet Development Guide

In the development stage, careful attention to best practices is crucial. Wherever possible, this
guide includes descriptions and instructions for adhering to these best practices.

The chapters describing tasks within the development phase include:

Chapter 4, “Understanding Portlet Development”

Chapter 5, “Building Portlets”

Chapter 6, “Optimizing Portlet Performance”

Chapter 7, “Local Interportlet Communication”

Staging
BEA recommends that you deploy your portal, including portlets, to a staging environment,
where it can be assembled and tested before going live. In the staging environment, you use the
WebLogic Portal Administration Console to assemble and configure desktops. You also test your
portal in a staging environment before propagating it to a live production system. In the testing
aspect of the staging phase, there is tight iteration between staging and development until the
application is ready to be released.

The chapters describing tasks within the staging phase include:

Chapter 8, “Assembling Portlets into Desktops”

Chapter 9, “Deploying Portlets”

Production
A production portal is live and available to end users. A portal in production can be modified by
administrators using the WebLogic Portal Administration Console and by users using Visitor
Tools. For instance, an administrator might add additional portlets to a portal or reorganize the
contents of a portal.

The chapter describing tasks within the production phase is:

Chapter 10, “Managing Portlets in Production”

Getting Started
This section describes the basic prerequisites to using this guide and lists guides containing
related information and topics.

Gett ing S ta r ted

BEA WebLogic Portal Portlet Development Guide 1-5

Prerequisites
In general, this guide assumes that you have performed the following prerequisite tasks before
you attempt to use this guide to develop portlets:

Review the Related Guides and become familiar with the basic operation of the tools used
to create portals, portlets, and desktops,

Review the Workshop for WebLogic tutorials and documentation to become familiar with
the Eclipse-based development environment and the recommended project hierarchy.

Complete the tutorial Getting Started with WebLogic Portal.

Related Guides
BEA recommends that you review the following guides:

BEA WebLogic Portal Overview

BEA WebLogic Portal Development Guide

Whenever possible, this guide includes cross references to material in related guides.

../overview/index.html
../portals/index.html
../tutorials/index.html

In t roduct ion

1-6 BEA WebLogic Portal Portlet Development Guide

BEA WebLogic Portal Portlet Development Guide

Part I Architecture

Part I includes the following chapters:

Chapter 2, “Portlet Planning”

Chapter 3, “Portlet Types”

During the architecture phase, you plan the configuration of the portlets that comprise your portal.

For a view of how the tasks in this section relate to the overall portal life cycle, refer to the
WebLogic Portal Overview.

../overview/index.html

2-2 BEA WebLogic Portal Portlet Development Guide

BEA WebLogic Portal Portlet Development Guide 2-1

C H A P T E R 2

Portlet Planning

Proper planning is essential to portlet development. A properly planned portlet structure and
organizational model can provide a cohesive and consistent portal interface, flexible scalability,
and high performance without requiring frequent adjustments within your production system.

This chapter focuses on planning considerations and decisions that should precede the
development of your portlets. Global portal-wide planning information is provided in the BEA
WebLogic Portal Overview, which summarizes the types of issues to consider in the architecture
phase across your portal environment. The various WebLogic Portal feature guides, such as the
BEA WebLogic Portal Federated Portals Guide, describe architectural issues in detail for each
feature area.

This chapter includes the following sections:

Portlet Development in a Distributed Portal Team

Portlets in a Non-Portal Environment

Planning Portlet Instances

Security

Interportlet Communication

Performance Planning

message URL ../overview/index.html
../federation/index.html

Po r t l e t P lann ing

2-2 BEA WebLogic Portal Portlet Development Guide

Portlet Development in a Distributed Portal Team
If you will be creating portlets within an environment that includes a remote (distributed)
development team, you must carefully plan your implementation. Considerations for team
development include:

Using shared resources – You can have common portlets, such as the login portlet.

Sharing a common domain – You can have a common domain among team members
with different BEA home directories.

Integrating remotely developed portlets into the portal – You need to manage settings
that are common to the portal application, which must match across the entire development
project.

Team development of a WebLogic Portal web site revolves around well-designed source control
and a correctly configured shared domain for development. For detailed instructions on setting
up your development environment, refer to the Team Development chapter of the Production
Operations Guide.

Portlets in a Non-Portal Environment
In some cases, you might want to expose portlets in a web page even though that web application
is not based on WebLogic Portal. For example, you might want to expose portlets with WSRP
from a producer environment that does not include any WebLogic Portal components. You might
be running a Struts web application in a basic WebLogic Server domain, or a Java page flow
application in a basic Workshop for WebLogic domain. In either case, WebLogic Portal is not
part of the server configuration. The exposed portlets can then be consumed by remote portlets
running in a regular WebLogic Portal domain.

For more information on developing portlets for a non-WebLogic Portal environment, refer to the
Federated Portals Guide.

Planning Portlet Instances
In the Development phase, you use Workshop for WebLogic to create portlets and place them
onto a portal. In the Staging phase, you use the Administration Console to add portlets to portal
desktops. Each time you add a portlet to a desktop, you create an instance of that portlet. Portlet
instances allow for multiple variations of the same portlet definition. By using portlet instances,
portal users and administrators can configure multiple views of the same portlet through the use
of portlet preferences, and reduce the overall number of distinct portlets; this portlet reuse

../federation/index.html
../prodOps/index.html
../prodOps/index.html

Secur i t y

BEA WebLogic Portal Portlet Development Guide 2-3

improves portal performance and management efficiency. A common example of portlet
instances is a stock watch portlet in which there is a single or multi-valued preference for ticker
symbols such as BEAS, which would configure the portlet to display BEA Systems stock
information.

Try to plan your portal hierarchy to reuse portlets when practical. For more information about
portlet instances and how portlet instances are related to portlets in the Administration Console’s
portlet library, refer to “Portlet Library” on page 8-1.

Security
You can control access to portlet resources for two categories of users:

Portal visitors – You control access to portal resources using visitor entitlements. Visitor
access is determined based on visitor entitlement roles.

Portal administrators – You control portal resource management capabilities using
delegated administration. Administrative access is determined based on delegated
administration roles.

During the architecture phase, you plan how to organize security policies and roles, and how that
fits into your system-wide security strategy. You implement your security plans by setting up
delegated administration and visitor entitlements using the WebLogic Portal Administration
Console.

For an overall look at managing security for your portal environment, refer to the Security Guide.
Specific security considerations for feature areas are contained in those documents; for example,
recommendations for security in WSRP-enabled environments are contained in the Federated
Portals Guide.

Interportlet Communication
Interportlet communication (IPC) allows multiple portlets to use or react to data. You can use
interportlet communication within a single portal web application, or within federated portal
applications.

For more information on interportlet communication within a single portal web application, refer
to Chapter 7, “Local Interportlet Communication.” For more information on interportlet
communication within federated portal applications, refer to the Federated Portals Guide.

../security/index.html
../federation/index.html
../federation/index.html
../federation/index.html

Po r t l e t P lann ing

2-4 BEA WebLogic Portal Portlet Development Guide

Performance Planning
Try to plan for good performance within your portlet architecture to minimize the fine-tuning that
is required in a production environment.

Here are some examples of performance optimizations that you can plan into your overall portal
strategy:

Portlet caching – You can cache the portlet within a session instead of retrieving it each
time it recurs during a session (on different pages, for example).

Remote portlets – With remote portlets, any portal controls within the application (portlet)
that you are retrieving are rendered by the producer and not by your portal. The expense of
calling the control life cycle methods is borne by resources not associated with your portal.
You must balance this advantage against the delay that might be caused by network latency
issues.

Customized portlet properties – Customizing your portlet settings can help you improve
performance; for example, you can set process-expensive portlets to be processed in a
multi-threaded (forkable) environment.

Asynchronous portlet rendering - Asynchronous portlet rendering allows you to render
the content of a portlet independently from the surrounding portal page. You can use either
AJAX technology or IFRAME technology to implement asynchronous rendering.

Plan your performance optimizations before you begin developing portlets so that you can
implement any pre-requisites that are required. For detailed instructions on developing
high-performance portlets, refer to Chapter 6, “Optimizing Portlet Performance.” For
post-development WebLogic Portal performance recommendations, refer to the Performance
Tuning Guide.

BEA WebLogic Portal Portlet Development Guide 3-1

C H A P T E R 3

Portlet Types

As part of your portlet implementation plan, BEA recommends that you examine the different
types of portlets that are available in WebLogic Portal and decide which types are best suited for
the tasks that you want to accomplish. For example, if you are looking for a way to interface with
Java controls, use Struts-based infrastructure, and deliver rich navigation elements, then you
might choose to implement Java Page Flow or Struts portlets. If you are looking for a simple
portlet or you want to convert an existing JSP page into a portlet, you might consider using a JSP
portlet. If you work for an independent software company or other enterprise that is concerned
with portability across multiple portal vendors, then you might choose to use JSR 168-compliant
Java portlets whenever possible. If you want to implement asynchronous portlet rendering in your
portal, you can use nearly any of the portlet types described in this chapter.

This chapter differentiates the various portlet types to help you in your decision-making process.
This chapter contains the following sections:

Java Server Page (JSP) and HTML Portlets

Java Portlets (JSR 168)

Java Page Flow Portlets

Java Server Faces (JSF) Portlets

Browser (URL) Portlets

Struts Portlets

Po r t le t T ypes

3-2 BEA WebLogic Portal Portlet Development Guide

Remote Portlets

Portlet Type Summary Table

Java Server Page (JSP) and HTML Portlets
JSP portlets and HTML portlets point to JSP or HTML files for their content. These portlets can
be simple to implement and deploy, and they provide basic functionality quickly. However, this
type of portlet does not enforce separation of business logic and the presentation layer. As the
application grows, the portlet often becomes harder to maintain as you try to update the web
application and share code. JSP portlets are not well-suited for advanced portlet navigation.

When using JSP pages as part of a page flow portlet, you must make sure that requests adhere to
WebLogic Portal scoping requirements. For more information about JSP portlets and page flow
scoping, refer to the Portal Development Guide.

For instructions on building JSP portlets, see “JSP and HTML Portlets” on page 5-11.

Java Portlets (JSR 168)
JSR 168 (Java Portlet) is a Java specification that aims at establishing portability between portlets
and portals. One of the main goals of the specification is to define a set of standard Java APIs for
portal and portlet vendors. These APIs cover areas such as presentation, aggregation, security,
and portlet life cycle.

A Java portlet is expressed as a Java class. This type of portlet accommodates portability across
platforms, and does not require the use of portal server-specific JSP tags. The behavior is similar
to a servlet. Java portlets produced using WebLogic Portal can be used universally by any other
vendor’s application server container that supports JSR 168.

For instructions on building Java portlets, refer to “Java Portlets” on page 5-12.

Java Page Flow Portlets
A Java page flow portlet uses Apache Beehive page flows to retrieve its content. This portlet type
allows you to separate the user interface code from navigation control and other business logic,
and provides the ability to implement both simple and advanced portlet navigation.

The Page Flow framework that is recommended for portlet application development is built on
top of the Struts application framework. The Struts framework is a popular, reliable standard that
is widely used to quickly create robust and navigable web applications. The page flow framework

../portals/index.html

Struts Por t l e ts

BEA WebLogic Portal Portlet Development Guide 3-3

adds valuable data binding facilities to the Struts standard, and the portal framework provides a
scoping capability for page flow portlets so that multiple page flows can be supported in a single
portal. You can use resources such as Java controls and web services.

Java page flow portlets are best suited for an environment where more advanced features are
required—not for static, single-view portlets.

For instructions on building Java page flow portlets, refer to “Java Page Flow Portlets” on
page 5-17.

Struts Portlets
Struts portlets are based on the Struts framework, which is an implementation of the
Model-View-Controller (MVC) architecture. The MVC architecture provides a model for
separating the different components and roles of the application logic. This development
framework helps you create portlets that are easier to maintain over time.

Typically, native Struts development requires management and synchronization of multiple files
for each action, form bean, as well as the Struts configuration file. Even in the presence of tools
that help edit these files, developers are still exposed to all the underlying plumbing, objects, and
configuration details. The Page Flow implementation provides a simpler, single-file
programming model that allows developers to focus on the code they care about, see a visual
representation of the overall application flow, and navigate between pages, actions, and form
beans.

If you are developing a portal application from scratch, BEA recommends using a Page Flow
implementation; if your goal is to aggregate an existing Struts application, then using Struts
portlets can meet your needs.

For instructions on building Struts portlets, refer to “Struts Portlets” on page 5-27.

Java Server Faces (JSF) Portlets
The Java Server Faces (JSF) specification, JSR 127, defines a user interface framework that
simplifies development and maintenance of Java applications that run on a server and are
displayed and used from a client.

According to the Java Server Faces Specification, available from the Java Community Process
web site:

JSF’s core architecture is designed to be independent of specific protocols and markup. However
it is also aimed directly at solving many of the common problems encountered when writing

http://jcp.org/aboutJava/communityprocess/final/jsr127/index2.html

Po r t le t T ypes

3-4 BEA WebLogic Portal Portlet Development Guide

applications for HTML clients that communicate via HTTP to a Java application server that
supports servlets and JavaServer Pages (JSP) based applications. These applications are typically
form-based, and are comprised of one or more HTML pages with which the user interacts to
complete a task or set of tasks. JSF tackles the following challenges associated with these
applications:

Managing UI component state across requests

Supporting encapsulation of the differences in markup across different browsers and clients

Supporting form processing (single multi-page form, or more than one form per page)

Providing a strongly typed event model that allows the application to write server-side
handlers (independent of HTTP) for client generated events

Validating request data and providing appropriate error reporting

Enabling type conversion when migrating markup values (Strings) to and from application
data objects (which are often not Strings)

Handling error and exceptions, and reporting errors in human-readable form back to the
application user

Handling page-to-page navigation in response to UI events and model interactions.

For instructions on building Java Server Faces portlets, refer to “JSF Portlets” on page 5-20.

Browser (URL) Portlets
Browser portlets display HTML content from an external URL. Unlike other portlet types that are
limited to displaying data contained within the portal project, browser portlets display URL
content that is external from the portal project.

An advantage of browser portlets is that no development tasks are required to implement it, either
from the Workshop for WebLogic workbench or from the WebLogic Portal Administration
Console. However, keep in mind that WebLogic Portal does not provide a mechanism to develop
content for this type of portlet; the definition of the portlet merely contains the external URL to
display. For example, no mechanisms exist to dynamically influence the external content’s URL;
no support exists for portlet preferences, portlet modes, and so on. Browser portlets do not track
the URL through the user’s interaction with remote content – page refreshes cause the content of
the URL specified in the portlet definition to be displayed.

Remote Por t l e ts

BEA WebLogic Portal Portlet Development Guide 3-5

WebLogic Portal implements a browser portlet using an IFRAME. You can override the default
implementation mechanism using more advanced development techniques; more detailed
documentation about these techniques will be provided in a future dev2dev article.

The content of the browser portlet is completely disconnected from the portal. The embedded
application must manage the navigational state of the portlet.

For instructions on building Browser portlets, refer to “Browser Portlets” on page 5-24.

Remote Portlets
WebLogic Portal supports the Web Services for Remote Portlets (WSRP) standard, a product of
the OASIS standards body. Portlets that are written to meet this standard, which includes a
WSDL portlet description, can be hosted within a producer application, and surfaced in a
consumer application. Moreover, the WebLogic Portal Administration Console facilitates access
to WSRP producer applications in a local portal.

WebLogic Portal can act as either a WSRP remote producer or as a consumer. When acting as a
consumer, WebLogic Portal’s remote—or proxy—portlets are WSRP-compliant. These portlets
present content that is collected from WSRP-compliant producers, allowing you to use external
sources for portlet content, rather than having to create its content or its structure yourself.

Because setting up a remote portlet is a fundamental task in creating a federated portlet
environment, the task of creating a remote portlet is described in detail within the Federated
Portals Guide.

Portlet Type Summary Table
Table 3-1 summarizes the characteristics of each portlet type so that you can quickly determine
the advantages and disadvantages of each type.

../federation/index.html
../federation/index.html

Po r t le t T ypes

3-6 BEA WebLogic Portal Portlet Development Guide

Table 3-1 Portlet Type Summary Table

Type Advantages Disadvantages

JSP/HTML Simple to implement and deploy.

Provides basic functionality without
complexity.

Does not enforce separation of business logic
and presentation layer.

Not well-suited for advanced portlet
navigation.

Java (JSR 168) Accommodates portability across
platforms.

Does not require the use of portal
server-specific JSP tags.

Behavior is similar to a servlet

Lack of advanced portlet features that are
available with some other portlet types.

Requires a deeper understanding of the J2EE
programming model.

Java Page Flow Allows separation of the user interface
code from navigation control and other
business logic.

Provides the ability to implement both
simple and advanced portlet navigation.

Allow you to quickly leverage Java
controls, web services, and business
processes.

Provides a visual environment to build
rich applications based on struts.

Implementation is more complex.

Advanced page flow features are not necessary
for static or simple, one view portlets.

JSF Allows component-based development of
pages that can handle their own intra-page
events.

Simplifies separation of the user interface
code from navigation control and other
business logic.

Provides the ability to implement both
simple and advanced portlet navigation.

Allow you to quickly leverage Java
controls, web services, and business
processes.

All postbacks to a JSF application are expected
to be done using a POST; the GET method is
not supported.

Por t l e t T ype Summary Tab le

BEA WebLogic Portal Portlet Development Guide 3-7

Browser Allows a portlet to display content from a
URL that is outside the portal project.

Provides a “no development needed”
portlet for quick implementation.

Less control over formatting.

Lacks certain features of other portlet types,
such as Content Path and Error Path.

No interportlet communication support.

Struts Provides a flexible control layer based on
standard technologies like Java Servlets,
JavaBeans, ResourceBundles, and XML.

Provides a more structured approach for
creating and maintaining complex
applications.

Useful for importing existing applications.

Not quite as robust as page flow portlets, which
are based on Beehive. For new development,
page flow portlets provide a better solution.

Remote Allows you to functionally and
operationally de-couple applications
within your portal.

Allows you to leverage external sources
for portlet content.

Depending on the environment, might
improve performance.

Implementation is more complex.

Your application’s features might not be able to
be as robust; for example, some Javascript
might not perform correctly.

Depending on the environment, might have a
performance cost. For more about performance
with remote portlets, refer to “Remote Portlets”
on page 6-2.

Table 3-1 Portlet Type Summary Table (Continued)

Type Advantages Disadvantages

Po r t le t T ypes

3-8 BEA WebLogic Portal Portlet Development Guide

BEA WebLogic Portal Portlet Development Guide

Part II Development

Part II includes the following chapters:

Chapter 4, “Understanding Portlet Development”

Chapter 5, “Building Portlets”

Chapter 6, “Optimizing Portlet Performance”

Chapter 7, “Local Interportlet Communication”

During the development phase, you use Workshop for WebLogic to create portlets, pages, and
books. During development, you can implement federation and interportlet communication
strategies. In the development stage, careful attention to best practices is crucial.

For a view of how the tasks in this section relate to the overall portal life cycle, refer to the
WebLogic Portal Overview.

.

../overview/index.html

4-2 BEA WebLogic Portal Portlet Development Guide

BEA WebLogic Portal Portlet Development Guide 4-1

C H A P T E R 4

Understanding Portlet Development

This chapter provides conceptual and reference information that you might find useful as you
begin to develop portlets with WebLogic Portal. For a detailed description of the components that
are involved in portlet design, refer to the Portal Development Guide. For instructions on how to
create each type of portlet, refer to “Building Portlets” on page 5-1.

This chapter contains the following sections:

Portlet Components

Resources for Creating Portlets

Portlet Rendering

JSP Tags and Controls in Portlets

Backing Files

Portlet Components
Portlets are modular panes within a web browser that surface applications, information, and
business processes. Portlets can contain anything from static HTML content to Java controls to
complex web services and process-heavy applications. Within a portal application, a portlet is
represented as an XML file with a .portlet file extension. As you build portlets using
Workshop for WebLogic, the XML elements and attributes are automatically built.

Figure 4-1 shows the components that make up a portlet, which are located in the .portlet file.
Objects shown in gray text are described in more detail within the Portal Development Guide.

../portals/index.html
../portals/index.html

Unders tanding Por t l e t Deve lopment

4-2 BEA WebLogic Portal Portlet Development Guide

Figure 4-1 Portlet Components

This section includes the following topics:

Portlet Properties

Portlet Look & Feel Components

For details about Look & Feel components, refer to the Portal Development Guide.

Portlet Title Bar, Mode, and State

Portlet Preferences

Portlet Properties
Portlet properties are named attributes of the portlet that uniquely identify it and define its
characteristics. Some properties—such as title, definition label, and Content URI—are required;
many other optional properties allow you to enable specific functions for that portlet such as
scrolling, presentation properties, pre-processing (such as for authorization) and multi-threaded
rendering. The specific properties that you use for a portlet vary depending on your expected use
for that portlet.

For detailed information on portlet properties and how to set them, refer to “Portlet Properties”
on page 5-32.

../portals/index.html

Resources fo r C reat ing Por t l e ts

BEA WebLogic Portal Portlet Development Guide 4-3

Portlet Title Bar, Mode, and State
When you create a portlet, you can choose whether or not it should have a title bar. Also, all
portlets created with WebLogic Portal support modes and states. Modes affect the portlet’s
content; edit, help, float, and custom modes are available. States affect the rendering of the
portlet; minimize, maximize, normal, float, and delete states are available.

You must enable the title bar on a portlet if you want to set modes and states for that portlet.

In certain situations your selection of a mode and state for a portlet might affect your ability to
set up other portlet features, such as interportlet communication. For example, if you are setting
up an event handler that listens to a portlet, you can select to execute the event handler only if the
portlet to which it is listening is in a window that is not minimized, and is in view mode.

For detailed instructions on setting portlet modes and states, refer to “Portlet Appearance and
Features” on page 5-69.

Portlet Preferences
Portlets are distinct applications that you can reuse in a given portal. Once you create a portlet,
you can instantiate it several times.

Along with the ability to create multiple instances of portlets, WebLogic Portal allows you to
specify preferences for portlets. You use preferences to cause each portlet instance to behave
differently yet use the same code and user interface. Portlet preferences provide the primary
means of associating application data with portlets; this feature is key to personalizing portlets
based on their usage.

Plan a portlet implementation that allows portlets to be as reusable as possible; planning for reuse
simplifies your development and testing efforts because you can differentiate generic portlets by
setting unique preferences.

For detailed instructions on setting portlet preferences, refer to “Portlet Preferences” on
page 5-49.

Resources for Creating Portlets
Although the Portlet Wizard provides an easy way to create portlets, you might find that it is not
your primary means of creating them. You can create a portlet in many ways, such as duplicating
existing portlets or generating a portlet based on an existing JSP or struts module. Many resources
can provide the raw material for a portlet, including the following:

Unders tanding Por t l e t Deve lopment

4-4 BEA WebLogic Portal Portlet Development Guide

Portlets in Library Modules - Portlets provided with WebLogic Portal, which you can
copy into your project and modify for your use. For example, you can add the
Collaboration Portlets (pre-built portlets that are supplied with WebLogic Portal) to your
Portal Web Project, and have access to Calendar, Task, Address Book, Discussion, and
Mail portlets. These portlets are located in the library module
wlp-collab-portlets-web-lib in the path WebLogic_HOME/portal/lib/modules/.
For step-by-step instructions on adding the Collaboration portlets, refer to the Communities
Guide. For a complete list of library modules and their locations, refer to the Portal
Development Guide.

Caution: Portlets that are part of the GroupSpace sample application cannot be used outside
of the GroupSpace application.

Third-party portlets - Special-purpose portlets provided as separate products by partner
companies.

Existing JSPs, Struts modules, and Page Flows – Existing resources that you can drag
onto a portal page to automatically generate a portlet.

You can find detailed instructions on how to use these resources as the basis for a portlet in
Chapter 5, “Building Portlets.”

Portlet Rendering
Portlet rendering consists of two processes:

Pre-rendering – The background work to obtain necessary data or to perform
pre-processing

Rendering – The actual drawing of the portlet onto the portal page

General rendering topics are covered in the Portal Development Guide. This section contains the
following portlet-specific rendering topics:

Render and Pre-Render Forking

Asynchronous Portlet Content Rendering

Render and Pre-Render Forking
By default, pre-rendering and rendering for each portlet on a page is performed in sequence, and
the portal page is not displayed until processing is complete for every portlet. This sequence can
cause a noticeable delay in displaying the web page and might cause a user to think there is a

../portals/index.html
../portals/index.html
../portals/index.html
../communities/index.html
../communities/index.html

JSP Tags and Cont ro ls in Por t l e ts

BEA WebLogic Portal Portlet Development Guide 4-5

problem with the web site. To prevent this situation, you can set up your portlets so that they
perform pre-rendering and rendering tasks in parallel using multi-threaded forked processing.

Forking portlets at the rendering stage is supported for all portlet types. Pre-render forking is
supported for the following portlet types:

JSP

Page flow

Java (JSR168)

WSRP (consumer portlets only)

For detailed instructions on implementing forked portlets, refer to “Portlet Forking” on page 6-3.

Asynchronous Portlet Content Rendering
Asynchronous portlet rendering allows the content of a portlet to be rendered independently of
the surrounding portal page. When using asynchronous portlet rendering, a portlet is rendered in
two phases. The first phase is the normal portal page request during which the portlet's
non-content areas, such as the title bar, are rendered; a second request causes the portlet's content
to render in place.

For detailed instructions on implementing asynchronous content rendering, refer to
“Asynchronous Portlet Content Rendering” on page 6-13.

Portlets as Popups (Detached Portlets)
WebLogic Portal supports the use of detached portlets. Detached portlets provide popup-style
behavior. You can see examples of detached portlets within WebLogic Portal in the GroupSpace
Message Center and in the Administration Console wizards.

For detailed instructions on using detached portlets, refer to “Detached Portlets” on page 5-30.

JSP Tags and Controls in Portlets
WebLogic Portal provides JSP tags that you can use within JSPs. Portlets can use JSPs as their
content nodes, enabling reuse and facilitating personalization and other programmatic
functionality. When you use the JSP Design Palette view in Workshop for WebLogic, you can
view available JSP tags and then drag them into the Source View of your JSP, and use the
Properties view to edit elements of the code.

Unders tanding Por t l e t Deve lopment

4-6 BEA WebLogic Portal Portlet Development Guide

To view the JSP tags available as you develop a portal, select Window > Show View > JSP
Design Palette.

WebLogic Portal also provides custom Java controls that make it easy for you to quickly add
pre-built modules to your portal; custom Java controls exist for event management, Visitor Tools,
Community management, and so on. For example, most user management functionality can be
easily exposed with a User Manager Control on a page flow.

Note: The term control is also used to refer to the portal (netuix) framework controls, such as
desktop, book, page, and so on. These controls are referred to in the text as portal
framework controls.

For information about the classes associated with WebLogic Portal’s JSP tags, refer to the
Javadoc.

For more information about using controls within portlets, see “JSP Tags and Controls in
Portlets” on page 5-81.

Backing Files
The most common means of influencing portlet behavior within the control life cycle is to use a
portlet backing file. A portlet backing file is a Java class that can contain methods corresponding
to Portal control life cycle stages, such as init() and preRender(). You can use a portlet’s backing
context, an abstraction of the portlet control itself, to query and alter the portlet’s characteristics.
For example, in the init() life cycle method, a request parameter might be evaluated, and
depending on the parameter’s value, the portlet backing context can be used to specify whether
the portlet is visible or hidden.

Backing files can be attached to portals either by using Workshop for WebLogic or coding them
directly into a .portlet file.

For detailed instructions on implementing backing files, refer to “Backing Files” on page 5-64.

http://edocs.bea.com/wlp/docs92/javadoc/index.html

BEA WebLogic Portal Portlet Development Guide 5-1

C H A P T E R 5

Building Portlets

This chapter describes the most common ways to create portlets, including the Portlet Wizard and
the use of out-of-the-box portlets. This chapter also contains instructions for building each type
of portlet that is supported by WebLogic Portal.

Before you begin, be sure you are familiar with the concepts associated with creating portlets, as
described in Chapter 4, “Understanding Portlet Development.”

This chapter contains the following sections:

Supported Portlet Types

Portlets in Library Modules

Portlet Wizard Reference

How to Build Each Type of Portlet

Detached Portlets

Portlet Properties

Portlet Preferences

Backing Files

Portlet Appearance and Features

Getting Request Data in Page Flow Portlets

JSP Tags and Controls in Portlets

Bui ld ing Po r t le ts

5-2 BEA WebLogic Portal Portlet Development Guide

Portlet State Persistence

Adding a Portlet to a Portal

Deleting Portlets

Third-Party Portlets

Advanced Portlet Development with Tag Libraries

Supported Portlet Types
The following portlet types are supported by WebLogic Portal:

Java Server Page (JSP) and HTML Portlets - JSP portlets and HTML portlets point to JSP
or HTML files for their content.

Java Portlets (JSR 168) - Java portlets produced using WebLogic Portal can be used
universally by any vendor’s application server container that supports JSR 168.

Java Page Flow Portlets - Java page flow portlets use Apache Beehive page flows to
retrieve their content.

Java Server Faces (JSF) Portlets - JSF portlets produced using WebLogic Portal conform to
the JSR 127 specification.

Browser (URL) Portlets - Browser portlets display HTML content from an external URL;
no development tasks are required to implement them.

Struts Portlets - Struts portlets are based on the Struts framework, which is an
implementation of the Model-View-Controller (MVC) architecture.

Remote Portlets - WebLogic Portal’s remote portlets conform to the WSRP standard; they
can be hosted within a producer application, and surfaced in a consumer application.

For a detailed discussion of each portlet type, refer to Chapter 3, “Portlet Types.”

Portlets in Library Modules
You can copy portlets or other resources from a library module into your portal application and
modify them as needed. A portlet existing in your project will supersede a portlet of the same
name in a library module. To see a list of available portlets, you can use the Merged Projects View
of the workbench; resources contained in library modules are shown in italic print. You can
expand the tree to see the resources that are stored in the various modules. For a reference list of

Po r t le t W iza rd Refe rence

BEA WebLogic Portal Portlet Development Guide 5-3

all the library modules and their locations on your file system, you can select Window >
Preferences > WebLogic > Library Modules.

After you locate a portlet that you want to use, you can right-click the portlet in the Merged
Projects View and select the Copy to Project option. Figure 5-1 shows an example of a library
module portlet in the Merged Projects view with the Copy to Project option selected.

Caution: Portlets that are part of the GroupSpace sample application cannot be used in a
non-GroupSpace-enabled application.

If you copy J2EE library resources into your project, keep in mind that with future
updates to the WebLogic Portal product, you might have to perform manual steps in
order to incorporate product changes that affect those resources. With any future
patch installations, WebLogic Portal supports only configurations that do not have
copied J2EE library resources in the project.

Figure 5-1 Portlet Being Copied to a Project from Merged Projects View

For more information about library modules, refer to the Portal Development Guide.

Portlet Wizard Reference
An important tool that you can use to create portlets from scratch is the WebLogic Portal Portlet
Wizard. The following sections describe the Portlet Wizard in detail:

Order of Creation - Resource or Portlet First

Starting the Portlet Wizard

../portals/index.html

Bui ld ing Po r t le ts

5-4 BEA WebLogic Portal Portlet Development Guide

Select Portlet Type Dialog

Portlet Details Dialogs

In general, you choose the portlet type on the first dialog of the wizard; when generating a portlet
based on an existing resource, the Portlet Wizard automatically detects the portlet type whenever
possible.

Order of Creation - Resource or Portlet First
This section provides an overview of the two methods you can use to begin creating a portlet—
creating the portlet resource information/file first or creating the portlet itself first.

Creating the Resource First
You might already have a JSP file, for example, that you want to use as the basis for a portlet. (In
addition to JSP files, you can drag other resources onto the portal (such as content selectors) to
automatically start the portlet wizard.)

If you have an existing resource that you want to use as the basis of a portlet, follow these steps:

1. Create or open a portal's .portal file in Workshop for WebLogic.

2. Drag the resource, such as a JSP file, into one of the portal's placeholder areas in the design
view in the editor.

Workshop for WebLogic prompts you with a dialog similar to the example in Figure 5-2.

Figure 5-2 Portlet Wizard Prompt Following Drag and Drop of a Resource

If you click Yes, the Portlet Wizard uses information from the resource file to begin the
process of creating a portlet, and displays the Portlet Details dialog. Figure 5-3 shows an
example:

Po r t le t W iza rd Refe rence

BEA WebLogic Portal Portlet Development Guide 5-5

Figure 5-3 Example Portlet Wizard Details Dialog Following Drag and Drop of a Resource

Create the Portlet First
If you do not have an existing source file to start with, you can create the portlet using the New
Portlet dialog and the Portlet Wizard. To do so, right-click a folder in your portal web project and
select New > Portlet. Figure 5-4 shows an example of the New Portlet dialog.

Bui ld ing Po r t le ts

5-6 BEA WebLogic Portal Portlet Development Guide

Figure 5-4 Portlet Wizard New File Dialog

After you confirm or change the parent folder, name the portlet, and click Finish, the Portlet
Wizard begins and displays the Select Portlet Type dialog. Figure 5-5 shows an example dialog.

Po r t le t W iza rd Refe rence

BEA WebLogic Portal Portlet Development Guide 5-7

Figure 5-5 Portlet Wizard - Select Portlet Type Dialog

Detailed instructions for creating each type of portlet are contained in “How to Build Each Type
of Portlet” on page 5-10.

Starting the Portlet Wizard
Workshop for WebLogic invokes the Portlet Wizard any time you perform one of these
operations:

Select File > New > Portlet from Workshop for WebLogic's top-level menu, or right-click
a folder in your web application, and select New > Portlet. After you name the portlet and
click Create, the Portlet Wizard starts.

Drag and drop a resource such as a JSP from the Package Explorer view onto a placeholder
area of an open portal (in other words, a portal_name.portal file is open in the editor
view of the workbench.) Workshop for WebLogic prompts you with a dialog similar to the
example in Figure 5-6.

Bui ld ing Po r t le ts

5-8 BEA WebLogic Portal Portlet Development Guide

Figure 5-6 Portlet Wizard Prompt Following Drag and Drop of a Resource

If you click Yes, the Portlet Wizard uses information from the resource file to begin the
process of creating a portlet.

Right-click an existing resource such as a JSP file, a page flow, a portal placeholder, or a
portal content selector; then select Generate Portlet from the context menu. The Portlet
Wizard displays the Portlet Details dialog. Figure 5-7 shows an example of a dialog after
right-clicking a JSP file.

Figure 5-7 Portlet Wizard - Portlet Details Example for JSP Resource

Po r t le t W iza rd Refe rence

BEA WebLogic Portal Portlet Development Guide 5-9

New Portlet Dialog
When you use File > New > Portlet to create a new portlet, a New Portlet dialog displays before
the Portlet Wizard begins. Figure 5-4 shows an example of the New Portlet dialog.

The parent folder defaults to the location from which you selected to add the portlet.

This dialog requires that you select a project and directory for the new portlet, and provide a
portlet file name. (The file name appears in the Package Explorer view after you create the
portlet.) The Finish button is initially disabled; the button enables when you select a valid
project/directory and portlet name. If you select an invalid portal project in the folder tree on this
dialog, an error message appears in the status area near the top of the dialog explaining that the
project is not a valid portal project. You cannot continue until you have selected a valid project
(if one is available).

Note: With WebLogic Portal Version 9.2, the option to convert a non-portal project to a portal
project is not offered. For information on how to integrate portal library modules into an
already existing project, see the Portal Development Guide.

Select Portlet Type Dialog
When the Portlet Wizard starts, it determines the valid portlet types to offer on the Select Portlet
Type dialog, based on the type of project that you are working in.

For example, if you are working within a Portal Web Project that has only the WSRP-Producer
feature (and its required accompanying features) installed, it does not have the full set of portal
libraries. In this case, only the JPF, JSF, Browser, and Struts portlet types are valid selections; the
other portlet types are not included in the Select Portlet Type dialog.

If no valid portlet types exist based on the project type, an informational message displays.

Figure 5-8 shows an example of the Select Portlet Type dialog.

../portals/index.html

Bui ld ing Po r t le ts

5-10 BEA WebLogic Portal Portlet Development Guide

Figure 5-8 Portlet Wizard - Select Portlet Type Dialog

Portlet Details Dialogs
The Portlet Details dialogs that display after you select a portlet type vary according to the type
of portlet you are creating. The portlet-building tasks that are described in “How to Build Each
Type of Portlet” on page 5-10 contain detailed information about each data entry field of the
portlet details dialogs.

How to Build Each Type of Portlet
The following sections describe how to create each type of portlet supported by WebLogic Portal:

JSP and HTML Portlets

Java Portlets

Java Page Flow Portlets

JSF Portlets

Browser Portlets

How to Bu i ld Each T ype o f Po r t le t

BEA WebLogic Portal Portlet Development Guide 5-11

Struts Portlets

Remote Portlets

Web Service Portlets

JSP and HTML Portlets
JSP portlets are very similar to simple JSP files. In most cases you can use existing JSP files to
build portlets from them. JSP portlets are recommended when the portlet is simple and doesn’t
require the implementation of complex business logic. Also, JSP portlets are ideally suited for
single page portlets.

There are several ways to invoke the Portlet Wizard, as explained in the section “Starting the
Portlet Wizard” on page 5-7. This description assumes that you create a portlet based on an
existing JSP file.

To create a JSP portlet, follow these steps:

1. Right-click a JSP file and select Generate Portlet from the menu.

The Portlet Wizard displays the Portlet Details dialog; Figure 5-9 shows an example.

Figure 5-9 Portlet Wizard - JSP Portlet Details Dialog

Bui ld ing Po r t le ts

5-12 BEA WebLogic Portal Portlet Development Guide

2. Specify the values you want for this portlet, following the guidelines shown in Table 5-1.

3. Click Create.

The Workshop for WebLogic window updates, adding the Portlet_Name.portlet file to the
display tree; by default, Workshop for WebLogic places the portlet file in the same
directory as the content file.

Java Portlets
Java portlets are based on the JSR 168 specification that establishes rules for portlet portability.
Java portlets are intended for software companies and other enterprises that are concerned with
portability across multiple portlet containers.

Table 5-1 Portlet Wizard - JSP Portlet Data Entry Fields

Field Description

Title The value for the Title might already be filled in.You can change the value
if you wish.

Content URI The value for the Content URI (location of the JSP) is probably already
filled in. You can change this value if you wish.

Error Page URI To designate a default error page to appear in case of an error, check the
box and indicate the path to the desired URI.

Has Titlebar If you want your portlet to have a title bar, check this box. The displayed
title matches the value in the Title field. In order for a portlet to have
changeable states or modes, the portlet must have a title bar.

State Select the desired check boxes to allow the user to minimize, maximize,
float, or delete the portlet. For a more detailed description of portlet states,
refer to “Portlet States” on page 5-76.

Available Modes You can enable access to Help from the portlet or you can allow the user to
edit the portlet.

To enable an option, select the desired check box and provide the path to
the JSP page that will provide the appropriate function. For a more detailed
description of portlet modes, refer to “Portlet Modes” on page 5-73.

How to Bu i ld Each T ype o f Po r t le t

BEA WebLogic Portal Portlet Development Guide 5-13

WebLogic Portal provides capabilities for Java portlets beyond those listed in the JSR168 spec.
For example, you can set threading options, use a backing file, and so on. To implement these
additional features, WebLogic Portal uses a combination of the typical .portlet file—which
you create in the same way that you create other portlet types—as well as the standard
portlet.xml file and the weblogic-portlet.xml file.

Building a Java Portlet
To create a Java portlet, follow these steps:

1. Right-click the folder where you want to store the portlet and select New > Portlet.

The New Portlet dialog displays.

2. Enter a name for the portlet and click Create.

The Portlet Wizard displays the Select Portlet Type dialog.

3. Select the Java Portlet radio button and click Next.

The Java Portlet Details dialog displays. Figure 5-10 shows an example.

Figure 5-10 Portlet Wizard - Java Portlet Details Dialog

4. Identify whether you want to create a new portlet or update an existing portlet (as an entry in
the portlet.xml file) by selecting the appropriate radio button.

Bui ld ing Po r t le ts

5-14 BEA WebLogic Portal Portlet Development Guide

If you are creating a new portlet, WebLogic Portal uses the information that you enter in
the wizard to perform these two tasks:

– Create a new .portlet file

– Either create a new portlet.xml file (if this is the first Java portlet that you are
creating in the project), or add an entry in the portlet.xml file, which is located in
the WEB-INF directory.

If you choose to refer to an existing portlet in the wizard, the wizard displays a selection
for every entry in the portlet.xml file, allowing you to create a new .portlet file and
associate it with an existing entry in the portlet.xml file.

5. Specify the values you want for this portlet, following the guidelines shown in Table 5-2. All
fields are required.

Table 5-2 Portlet Wizard - Java Portlet Data Entry Fields

Field Description

New Portlet –
Title

The value for the Title maps to the <title> element in the file portlet.xml.
The title in the .portlet file takes priority over the one in the portlet.xml
file.

New Portlet –
Definition Label

This value acts as the definition label for any portlet; more importantly, the value
maps to the <portlet-name> element in the portlet.xml deployment
descriptor. This value must be unique.

New Portlet –
Class Name

Enter a valid class name or click Browse to navigate to the location of a Java class.
This value maps to the <portlet-class> element.

If you enter a javax.portlet.Portlet class that does not currently exist, the wizard
will create the corresponding .java file when you click Create.

Existing Portlet –
Select From List

The dropdown menu is populated from the portlet.xml file and contains the
values from the <portlet-name> elements.

When you select an existing portlet, the Title and Class Name display in read-only
fields.

Note: If you import an existing Java portlet into Workshop for WebLogic, you
do not need to add an entry in the web.xml file for the WebLogic Portal
implementation of the JSR-168 portlet taglib; this taglib is declared
implicitly. Be sure to use http://java.sun.com/portlet as the
taglib URI in your JSPs.

How to Bu i ld Each T ype o f Po r t le t

BEA WebLogic Portal Portlet Development Guide 5-15

6. Click Create.

Based on these values that you entered, the Wizard creates a .portlet file, and adds an
entry to /WEB-INF/portlet.xml, if it already exists, or creates the file if needed.

Workshop for WebLogic displays the newly created portlet and its current properties.
Figure 5-11 shows an example of a Java portlet’s appearance and properties.

Figure 5-11 Java Portlet Appearance and Properties

The portlet-name attribute in the portlet.xml file matches the definitionLabel property
in the .portlet file.

After you create the portlet, you can modify its properties in the Properties view, or double-click
the portlet in the editor to view and edit the generated Java class.

Note: If you delete a .portlet file, the corresponding entry remains in the portlet.xml file.
You might want to clean up the portlet.xml file periodically; these extra entries do not
cause problems when running the portal but do result in error messages in the log file.

Java Portlet Deployment Descriptor
The separate portlet.xml deployment descriptor file for Java portlets is located in the WEB-INF
directory. In addition, the weblogic-portlet.xml file is an optional BEA-specific file that you
can use to inject some additional features.

Listing 5-1 shows an example of how entries might look in the portlet.xml file:

Listing 5-1 Example of a portlet.xml file for a Simple Hello World Java Portlet

<?xml version="1.0" encoding="UTF-8"?>

Bui ld ing Po r t le ts

5-16 BEA WebLogic Portal Portlet Development Guide

<portlet-app version="1.0"
xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<portlet>

<description>Description goes here</description>
<portlet-name>helloWorld</portlet-name>
<portlet-class>aJavaPortlet.HelloWorld</portlet-class>
<portlet-info><title>Hello World!</title></portlet-info>
<supports>

<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>

</supports>
<portlet-info><title>new Java Portlet</title></portlet-info>

</portlet>
</portlet-app>

Packaging Java Portlets for Use on Other Systems
WebLogic Portal produces Java portlets that conform to the JSR 168 specification and can be
used universally across operating systems. To package a Java portlet that you created using
WebLogic Portal, use your desired packaging/archiving tool (such as the File > Export > WAR
file feature in Workshop for WebLogic) to create a standard WAR file that contains the
portlet.xml file, portlet .class file, and any other files the portlet needs to function. Keep in
mind that these required files might include Java classes from non-WebLogic Portal JARs, any
non-BEA EJBs from the application, JSPs or HTML files to handle rendering, and so on.

Customizing Java Portlets Using weblogic-portlet.xml
WebLogic Portal allows you to add more functionality to java portlets than you can obtain using
the standard JSR 168 specification. You can use the optional weblogic-portlet.xml file to
inject some additional features. The following sections provide some examples.

Floatable Java Portlets
If you want to create a floatable Java portlet, you can do so by declaring a custom state in
weblogic-portlet.xml as shown in the following example code:

<portlet>

 <portlet-name>fooPortlet</portlet-name>

 <supports>

How to Bu i ld Each T ype o f Po r t le t

BEA WebLogic Portal Portlet Development Guide 5-17

 <mime-type>text/html</mime-type>

 <window-state>

 <name>float</name>

 </window-state>

 </supports>

</portlet>

Adding an Icon to a Java Portlet
To add an icon to a Java portlet, you need to edit the weblogic-portlet.xml file, as described
in this section.

1. Place the icon in the images directory of the skin that the portal is using. For example, if the
skin name is avitek, icons must be placed in:

myPortal/skins/avitek/images

2. In the Application panel, locate and double-click the weblogic-portlet.xml file to open it.
This file is located in the portal's WEB-INF folder, for example:

myPortal/WEB-INF/weblogic-portlet.xml

3. Add the following lines to the weblogic-portlet.xml file:

<portlet>
 <portlet-name>myPortlet</portlet-name>
 <supports>
 <mime-type>text/html</mime-type>
 <titlebar-presentation>
 <icon-url>myIcon.gif</icon-url>
 </titlebar-presentation>
 </supports>
</portlet>

4. Make these substitutions:

– Change myPortlet to the name of the portlet that is specified in WEB-INF/portlet.xml

– Be sure the mime-type also matches the mime-type found in WEB-INF/portlet.xml

– Change myIcon.gif to the name of the icon you wish to add

Java Page Flow Portlets
You can use the Portlet Wizard to built a portlet that uses Apache Beehive Page Flows to retrieve
its content.

Bui ld ing Po r t le ts

5-18 BEA WebLogic Portal Portlet Development Guide

To create a page flow portlet, follow these steps:

1. Right-click the folder where you want to store the page flow portlet. (The folder must be
within the WebContent directory.)

2. Select New > Portlet.

The New Portlet dialog displays.

3. Enter a name for the portlet and click Create.

The Portlet Wizard displays the Select Portlet Type dialog.

4. Select the Java Page Flow Portlet radio button and click Next.

The Portlet Wizard displays the Portlet Details dialog; Figure 5-12 shows an example.

Figure 5-12 Portlet Wizard - JPF Portlet Details Dialog

5. Specify the values you want for this portlet, following the guidelines shown in Table 5-3.

How to Bu i ld Each T ype o f Po r t le t

BEA WebLogic Portal Portlet Development Guide 5-19

6. Click Create.

Table 5-3 Portlet Wizard - JPF Portlet Data Entry Fields

Field Description

Title The title for this portlet, which displays in the title bar if you select to
include one.

Content Path The Page Flow Request URI. You can type a value here, or click the
Browse button to open a class picker and select the appropriate class.

If you use the class picker to choose a page flow class, this fully-qualified
class name is converted to a URI path of a JPF. The JPF does not reside in
the project, but is referred to by the .portlet file when the portlet is
created.

If you enter or navigate to a .jpf that has no corresponding class in the
project or library modules, the Portlet Wizard creates the .java file for the
page flow. If multiple project source directories exist, then the wizard
prompts you to store the new .java file in the source directory of your
choice. The .java template refers to a .jpf that is also created as part of
this operation. The .jpf is created in the web content directory using the
same directory structure as the package name of the new page flow class.

Error Page Path To designate a default error page to appear in case of an error, check the
box and indicate the path to the desired URI.

Has Titlebar If you want your portlet to have a title bar, check this box. The displayed
title matches the value in the Title field. In order for a portlet to have
changeable states or modes, the portlet must have a title bar.

State Select the desired check boxes to allow the user to minimize, maximize,
float, or delete the portlet. For a more detailed description of portlet states,
refer to “Portlet States” on page 5-76.

Available Modes You can enable access to Help from the portlet or you can allow the user to
edit the portlet.

To enable an option, select the desired check box and provide the path to
the JSP page or page flow that will provide the appropriate function. For a
more detailed description of portlet modes, refer to “Portlet Modes” on
page 5-73.

Bui ld ing Po r t le ts

5-20 BEA WebLogic Portal Portlet Development Guide

The Workshop for WebLogic window updates, adding the Portlet_Name.portlet file to
the display tree; by default, Workshop for WebLogic places the portlet file in the same
directory as the content file.

In order to fully understand the process of creating a page flow portlet, you should be familiar
with the concept of Page Flows. For more information on using page flows with WebLogic
Portal, refer to the Portal Development Guide.

If you want to create a page flow portlet that calls a web service, refer to “Web Service Portlets”
on page 5-30.

JSF Portlets
You can create JSF portlets for a WSRP producer or a framework web application that has the
JSF facet installed (that is, you selected the JSF facet when you created the portal web project).

To create a JSF portlet, follow these steps:

1. Right-click in the Package Explorer view, within the web content directory, and select New
> Portlet from the menu.

The New Portlet dialog displays. Figure 5-15 shows an example of the New Portlet dialog.

../portals/index.html

How to Bu i ld Each T ype o f Po r t le t

BEA WebLogic Portal Portlet Development Guide 5-21

Figure 5-13 Portlet Wizard - New Portlet Dialog

The parent folder defaults to the location from which you selected to add the portlet.

2. Edit the parent folder field if needed to indicate the project and directory for the new portlet.

The Finish button is initially disabled; the button enables when you select a valid parent
folder and portlet name. If you select an invalid portal project in the folder tree on this
dialog, an error message appears in the status area near the top of the dialog explaining that
the project is not a valid portal project.

3. Type a file name for the new portlet.

4. Click Finish to continue.

The Portlet Wizard displays the Select Portlet Type dialog.

5. Click Java Server Faces (JSF) Portlet and then click Next.

The Portlet Wizard displays the Portlet Details dialog; Figure 5-14 shows an example.

Bui ld ing Po r t le ts

5-22 BEA WebLogic Portal Portlet Development Guide

Figure 5-14 Portlet Wizard - JSF Portlet Details Dialog

6. Specify the values you want for this portlet, following the guidelines shown in Table 5-4.

Table 5-4 Portlet Wizard - JSF Portlet Data Entry Fields

Field Description

Title The value for the portlet title, which displays in the title bar if enabled.

Content Path The value for the Content URI; this value should point to a JSF-enabled
.jsp file.

Error Page Path Note: Error pages are not supported with JSF portlets.

Has Titlebar If you want your portlet to have a title bar, check this box. The displayed
title matches the value in the Title field. In order for a portlet to have
changeable states or modes, the portlet must have a title bar.

How to Bu i ld Each T ype o f Po r t le t

BEA WebLogic Portal Portlet Development Guide 5-23

7. Click Create.

The Workshop for WebLogic window updates, adding the Portlet_Name.portlet file to the
display tree.

Placing Multiple JSF Portlets on a Portal Page
If you want to have more than one JSF portlet on a portal page, use the namingContainer JSP tag
immediately after a JSF view tag, in order to provide component naming in the generated
component tree. See Supporting Unique JSF Component Identifiers for an example.

Using JSPs in JSF Portlets
If you are using JSPs in your JSF portlets, be aware that you will only see your JSP edits when
you view the portlet in a new session. A simple page refresh is not sufficient. This behavior differs
from typical JSP development behavior, where changes are compiled and made available after a
page refresh. Normally, JSPs are handled by the servlet container, which checks for updated JSPs.
JSF, on the other hand, uses JSPs as a source for the component tree, which typically is loaded
only once per session, depending on how the JSF implementation handles or does not handle
changed JSP source. To see your JSP changes reflected in a JSF portlet, you must view the portlet
in a new session. Typically, you can do this by opening a new browser to view the portal.

Supporting Unique JSF Component Identifiers
JSF applications associate a unique identifier with each JSF component in the component tree.
When multiple JSF applications appear on a portal page, it becomes necessary to further scope
these unique identifiers.

State Select the desired check boxes to allow the user to minimize, maximize,
float, or delete the portlet. For a more detailed description of portlet states,
refer to “Portlet States” on page 5-76.

Available Modes You can enable access to Help from the portlet or you can allow the user to
edit the portlet.

To enable an option, select the desired check box and provide the path to
the file that will provide the appropriate function. For a more detailed
description of portlet modes, refer to “Portlet Modes” on page 5-73.

Table 5-4 Portlet Wizard - JSF Portlet Data Entry Fields (Continued)

Field Description

Bui ld ing Po r t le ts

5-24 BEA WebLogic Portal Portlet Development Guide

WLP provides the following features to support scoping JSF component identifiers on a portal
page:

The <namingContainer> tag

The NamingContainerComponent component

The ScopedIdBuilder class

These features are discussed in the WLP Javadoc for the com.bea.portlet.adapter.faces package.

Listing 5-2 is an example that demonstrates how to use the <namingContainer> tag. The
<namingContainer> tag is described in detail in the JSP Tag Javadoc.

Listing 5-2 Using the <namingContainer> Tag

<%@ page language='java' contentType='text/html;charset=UTF-8'%>

<%@ taglib uri='http://java.sun.com/jsf/core' prefix='f' %>

<%@ taglib uri='http://bea.com/faces/adapter/tags-naming'

prefix='jsf-naming' %>

<%@ taglib uri='http://java.sun.com/jsf/html' prefix='h' %>

<f:view>

<jsf-naming:namingContainer id='myPortlet'>

<h:outputText value='Hello World'/>

</jsf-naming:namingContainer>

</f:view>

Browser Portlets
Browser portlets, also called Content URI portlets, are basically HTML portlets that use URLs to
retrieve their content. Unlike other portlet types that are limited to displaying data contained
within the portal project, browser portlets can display URL content that is outside from the portal
project.

There are several ways to invoke the Portlet Wizard, as explained in the section “Starting the
Portlet Wizard” on page 5-7. This description assumes that you right-click in the Package
Explorer view tree within a portal project and select New > Portlet from the menu.

To create a browser portlet, follow these steps:

1. Right-click in the Navigation tree within a portal project and select New > Portlet from the
menu.

../javadocjsp/jsf/naming/namingContainer.html
../javadoc/com/bea/portlet/adapter/faces/component/naming/NamingContainerComponent.html
../javadoc/com/bea/portlet/adapter/faces/ScopedIdBuilder.html
../javadoc/com/bea/portlet/adapter/faces/package-summary.html
../javadocjsp/index.html

How to Bu i ld Each T ype o f Po r t le t

BEA WebLogic Portal Portlet Development Guide 5-25

The New Portlet dialog displays. Figure 5-15 shows an example of the New Portlet dialog.

Figure 5-15 Portlet Wizard - New Portlet Dialog

The parent folder defaults to the location from which you selected to add the portlet.

2. Edit the parent folder field if needed to indicate the project and directory for the new portlet.

The Finish button is initially disabled; the button enables when you select a valid parent
folder and portlet name. If you select an invalid portal project in the folder tree on this
dialog, an error message appears in the status area near the top of the dialog explaining that
the project is not a valid portal project.

3. Type a file name for the new portlet.

4. Click Finish to continue.

The Portlet Wizard displays the Select Portlet Type dialog.

5. Click Browser (URL) Portlet and then click Next.

The Portlet Wizard displays the Portlet Details dialog; Figure 5-16 shows an example.

Bui ld ing Po r t le ts

5-26 BEA WebLogic Portal Portlet Development Guide

Figure 5-16 Portlet Wizard - Browser Portlet Details Dialog

6. Specify the values you want for this portlet, following the guidelines shown in Table 5-5.

Table 5-5 Portlet Wizard - Browser Portlet Data Entry Fields

Field Description

Title The title for the portlet. This value appears in the title bar of the portlet in
the editor view of the Workshop for WebLogic workbench.

Content URL The value for the Content URL (external URL) that the portlet should use
to retrieve its information.

A validator checks the format of the URL that you enter, and a message
notifies you if the URL is not properly formatted. You can either change
the URL or ignore the warning and continue with the URL as is.

Has Titlebar If you want your portlet to have a title bar, check this box. The displayed
title matches the value in the Title field. In order for a portlet to have
changeable states or modes, the portlet must have a title bar.

How to Bu i ld Each T ype o f Po r t le t

BEA WebLogic Portal Portlet Development Guide 5-27

7. Click Create.

The Workshop for WebLogic window updates, adding the Portlet_Name.portlet file to the
display tree; by default, Workshop for WebLogic places the portlet file in the same
directory as the content file.

Note: The internal implementation of Browser portlets depends on asynchronous portlet
content rendering; because of this, the portlet attribute Async Content displayed in the
Properties view is set to none and is read-only. For more information about asynchronous
content rendering, refer to “Asynchronous Portlet Content Rendering” on page 6-13.

Struts Portlets
You can use the Portlet Wizard to generate a portlet based on a Struts module.

Before you can create a Struts portlet, you must first integrate your existing Struts application into
your portal web application. For detailed information on integrating Struts applications into
WebLogic Portal, refer to the Portal Development Guide.

To create a Struts portlet, follow these steps:

1. Create or navigate to the folder that will contain the portlet file that you want to generate.

2. From the Workshop for WebLogic top-level menu, select File > New Portlet.

The New Portlet Dialog displays.

3. Enter a name for the portlet, then click Create.

The Portlet Wizard displays the Select Portlet Type dialog.

State Select the desired check boxes to allow the user to minimize, maximize,
float, or delete the portlet. For a more detailed description of portlet states,
refer to “Portlet States” on page 5-76.

Available Modes You can enable access to Help from the portlet or you can allow the user to
edit the portlet.

To enable an option, select the desired check box and provide the path to
the JSP page that will provide the appropriate function. For a more detailed
description of portlet modes, refer to “Portlet Modes” on page 5-73.

Table 5-5 Portlet Wizard - Browser Portlet Data Entry Fields (Continued)

Field Description

../portals/index.html

Bui ld ing Po r t le ts

5-28 BEA WebLogic Portal Portlet Development Guide

4. Select the Struts Portlet radio button, and click Next.

The Portlet Wizard displays the Struts Module Path dialog, as shown in Figure 5-17.

Figure 5-17 Portlet Wizard - Struts Module Path Dialog

5. Specify the relative path to the struts module.

Click Next.

The Struts Config File dialog displays; an example is shown in Figure 5-18.

Figure 5-18 Portlet Wizard - Struts Config File Dialog

How to Bu i ld Each T ype o f Po r t le t

BEA WebLogic Portal Portlet Development Guide 5-29

6. Type the path to, or browse to, the Struts module's XML configuration file(s); click Add to
add each applicable configuration file.

As a best practice, BEA recommends that you locate your configuration file(s) in the
WEB-INF directory of your portal web project.

7. Click Next:

The Struts Actions dialog displays, as shown in Figure 5-19.

Figure 5-19 Portlet Wizard - Struts Actions Dialog

8. Specify an action for the Struts portlet.

The actions that appear in the drop-down menu are based on entries in the configuration
file(s) that you selected in a previous step.

9. Click Create.

The Workshop for WebLogic window updates, adding the Portlet_Name.portlet file to the
display tree; by default, Workshop for WebLogic places the portlet file in the directory that you
specified in the Struts Module Path dialog of the wizard.

Remote Portlets
Because remote portlet development is a fundamental task in a federated portlet environment, the
task of creating remote portlets is described in detail within the BEA WebLogic Portal Federated
Portals Guide.

../federation/index.html

Bui ld ing Po r t le ts

5-30 BEA WebLogic Portal Portlet Development Guide

The following types of portlets can be exposed with WSRP inside a WebLogic portal:

Page flow portlets

JavaServer Pages (JSP) portlets

Struts portlets

Java portlets (JSR168; supported only for complex producers)

JavaServer Faces (JSF) portlets

Web Service Portlets
A web service portlet is a special type of page flow portlet, allowing you to call a web service.
You create web service portlets using the features of Workshop for WebLogic and WebLogic
Portal.

Before you can create a portlet that calls a web service, you must perform the following
prerequisite tasks:

1. Create a Java control from a web service.

2. Call the Java control from a page flow.

Instructions on performing these tasks are contained in the BEA Workshop for WebLogic
Programmer’s Guide.

After you have performed the setup tasks, you can create a web service portlet by following these
steps:

1. In Workshop for WebLogic, navigate to the page flow that you want to use as the basis for the
portlet.

2. Follow the instructions for creating a Java Page Flow portlet, as described in “Java Page Flow
Portlets” on page 5-17.

Detached Portlets
WebLogic Portal supports the use of detached portlets, which provide popup-style behavior.
Technically, a detached portlet is defined as anything outside of the calling portal context. Any
portlet type supported by WebLogic Portal can be rendered as a detached portlet.

Detached Por t l e ts

BEA WebLogic Portal Portlet Development Guide 5-31

Considerations for Using Detached Portlets
Keep the following considerations in mind as you implement detached portlets:

Detached portlets are never referenced from within a portal; there is no portlet instance in
the portal associated with a detached portlet.

Detached portlets can be streamed but generally cannot be entitled or customized; the
library instance can be entitled, but portlet instances that are de-coupled from the portlet
library cannot. For more information about library portlet instances and de-coupling, refer
to the Production Operations Guide.

Detached portlet are not visible or accessible from the WebLogic Portal Administration
Console portlet library.

In a streamed portal, the primary instance of the portal is used. In some cases, the primary
instance cannot be determined; for example, you might have set entitlements on the
primary instance to make it not viewable, or you could have set up a configuration that
excludes portlets from the scanner and poller so that they are not streamed into the
database. If the primary instance cannot be determined, a static version of the portlet is
used (the portlet will be served in file mode). In these cases, some features related to a
streamed portal (such as a community context) will not be available, and applications
might be required to implement workarounds.

Although technically a detached portlet can be implemented to use asynchronous
rendering, this is not a best practice and is not recommended.

No presentation mechanism is provided as part of the detached portlet feature; the
application must define how to actually present the portlet. For example, a floated portlet
will automatically be popped up in a separate window; detached portlets have no such
mechanism, so your application must handle popping up the window.

When developing detached portlets, you can place them anywhere in the hierarchy of your
portal web application; the portal references the absolute path to the portlet. A good
example of a detached portlet is the GroupSpace member list portlet.

The framework for standalone portlets creates a “dummy” control tree above the portlet,
including desktop, book, and page controls. The context objects associated with such
controls reflect the state of the dummy controls, and not of the main control tree; for
example, if a portlet tries to get information about its current book or page, the Book/Page
Presentation/Backing Context objects will not reflect the actual structure of the portal.
There might also be cases where the dummy control tree does not support certain backing

../prodOps/index.html

Bui ld ing Po r t le ts

5-32 BEA WebLogic Portal Portlet Development Guide

context APIs. When developing your portal, you need to keep this artificial control tree
structure in mind.

Building Detached Portlets
You use the standalonePortletUrl class or associated JSP tag to create URLs to detached
portlets.

To create a detached portlet URL from a JSP page, you use the render:standalonePortletUrl JSP
tag or class; the following example shows the syntax of the JSP tag:
<render:standalonePortletUrl
portletUri="/absolute_path/detached_portlet_name.portlet" …/>

To create a detached portlet URL from Java code, use the following example as a guide:
StandalonePortletURL detachedURL =
StandalonePortletURL.createStandalonePortletURL(request, response);
detachedURL.setPortletUri(“/path/to/detached.portlet”);

Portlet Properties
Portlet properties are named attributes of the portlet that uniquely identify it and define its
characteristics. Some properties—such as title, definition label, and content URI—are required;
many optional properties allow you to enable specific functions for the portlet such as scrolling,
presentation properties, pre-processing (such as for authorization) and multi-threaded rendering.
The specific properties that you use for a portlet vary depending on your expected use for that
portlet.

During the development phase of the portal life cycle, you generally edit portlet properties using
the Workshop for WebLogic interface; this section describes properties that you can edit using
Workshop for WebLogic.

During staging and production phases, you typically use the WebLogic Portal Administration
Console to edit portlet properties; only a subset of properties are editable at that point. For
instructions on editing portlet properties from the WebLogic Portal Administration Console, refer
to “Modifying Library Portlet Properties” on page 8-3 and “Modifying Desktop Portlet
Properties” on page 8-4.

For a detailed description of all portlet properties, refer to “Portlet Properties in the Portal
Properties View” on page 5-35 and “Portlet Properties in the Portlet Properties View” on
page 5-36.

This section contains the following topics:

Por t l e t P roper t i es

BEA WebLogic Portal Portlet Development Guide 5-33

Editing Portlet Properties

Tips for Using the Properties View

Portlet Properties in the Portal Properties View

Portlet Properties in the Portlet Properties View

Editing Portlet Properties
To edit portlet properties, follow these steps:

1. Navigate to the location of the portlet whose properties you want to edit, and double-click the
.portlet file to open it in the workbench editor.

2. Click the border of the desired portlet component to display the properties for that component
in the Properties view.

The displayed properties vary according to the active area that you select. If you click the
outer border, properties for the entire portlet appear; if you click the inner border,
properties for the content of the portlet appear, and so on.

3. Navigate to the Properties view to view the current values for the portlet properties.
Figure 5-20 shows a segment of a JSP portlet’s Properties view:

Figure 5-20 Editing Portlet Properties - JSP Portlet Properties View Example

4. Double-click the field that you want to change.

If you click on a property field, a description of that field displays in the status bar.

Bui ld ing Po r t le ts

5-34 BEA WebLogic Portal Portlet Development Guide

Values for some portlet properties are not editable after you create the portlet.

In some cases, from the property field you can view associated information pertaining to
that portlet property; for example, the Java portlet Class Name property contains a
read-only value with an Open button to view the associated Java file. For more
information about options available in the Properties view, refer to “Tips for Using the
Properties View” on page 5-34.

Tips for Using the Properties View
The behavior of the Properties view varies depending on the type of field you are editing. The
following tips might help you as you manipulate the content of the data fields in the Properties
view.

If a file is associated with a portlet property, the Properties view includes an Open button
in addition to a Browse button; you can click Open to display the appropriate Eclipse
editor/view for the file type.

If you want to edit the XML source for a portlet, you can right-click the .portlet file in
the Package Explorer view and choose Edit with > XML Editor to open the file using the
basic XML editor that Eclipse provides.

Caution: The Eclipse XML editor has limited validation capabilities. BEA recommends the
use of a robust validation tool to ensure that your hand-edited XML is valid.

The book, page, and portlet actions in the palette display properties in the Properties view
when you select them in the palette. The cell editor for the content file property is read
only, and includes an Open button; clicking Open displays the Eclipse editor/view for the
applicable file type.

For page flow portlets, a property editor is available for page flow content paths when
displaying a page flow portlet in the editor. The property editor is a dialog cell editor that
allows you to type in the URI of the page flow directly, or you can click the ellipses
button to launch the page flow class picker dialog. If you open the dialog, the page
flow class name is converted to a URI when you leave the dialog. WebLogic Portal stores
the URI in the .portlet file when you save the portlet. The property editor validates the
page flow URI specified and warns you if you choose a URI that has no corresponding
page flow class. You can choose to proceed anyway and store an invalid URI; you should
create a valid class later so that the portlet works correctly.

For page flow portlets, while in the portlet editor you can double-click the portlet content
view to launch the corresponding Java element specified in the portlet content path. This
consists of the page flow source if the source is available in the project or attached to the

Por t l e t P roper t i es

BEA WebLogic Portal Portlet Development Guide 5-35

JAR containing the class. If the source cannot be located, then the disassembled class
browser is displayed showing the contents of the class.

Due to a limitation in Eclipse, some long property descriptions are truncated in the Status
bar. To display the entire description, while the property is highlighted click the Show
Property Description button in the menu. A popup window displays the full text of the
property's description. Click outside the window to close it.

Portlet Properties in the Portal Properties View
The properties described in this section are contained within the .portal file and are editable
using the Workshop for WebLogic workbench. The values you enter here override the
corresponding value in the .portal file, if a value exists there.

To display the portlet properties that display in the Properties view for a portal, follow these steps:

Note: These steps assume that you have an existing portal that contains portlets.

1. Double-click the .portal file of the portal for which you want to view portlet instance
properties.

A WYSIWYG view of the portal appears in the editor.

2. Click a portlet to highlight it.

An orange border appears around the outside edge of the portlet.

The Properties view displays the properties of the portlet instance; Figure 5-21 shows an
example.

Figure 5-21 Portlet Instance Properties in the Portal Properties View

Table 5-6 describes these properties and their values.

Bui ld ing Po r t le ts

5-36 BEA WebLogic Portal Portlet Development Guide

Portlet Properties in the Portlet Properties View
The properties described in this section are contained within the .portlet file and are editable
using the Workshop for WebLogic workbench. The values you enter here override the
corresponding value in the .portlet file, if a value exists there.

Table 5-6 Portlet Instance Properties in the Properties View

Property Value

Default Minimized Optional. Select true for the portlet to be minimized when it is rendered. The
default value is false. Change the value for this property only if you want to
override the default value provided by the .portlet file.

Instance Label Required. A single portlet, represented by a .portlet file, can be used multiple
times in a portal. Each use of that portlet is a portlet instance, and each portlet
instance must have a unique ID, or Instance Label. A default value is entered
automatically, but you can change the value. Instance labels help WebLogic Portal
manage the runtime state of multiple instances of portlets independently of each
other on the server. WebLogic Portal also uses instance labels during URL
rewriting and scoping of various HTML controls such as names of forms, and ID
attributes.

Orientation Optional. Hint to the skeleton to position the portlet title bar on the top, bottom,
left, or right side of the portlet. You must build your own skeleton to support this
property. The allowable values are: default, top=0, left,=1 right=2, bottom=3.

Enter a value for this property only if you want to override the orientation
specified in the .portlet file. Selecting default removes the orientation
attribute from the portlet, book, and/or portlet instance; use this value if you want
to revert to the framework default setting for this attribute.

Portlet URI Required. The path (relative to the project) of the parent .portlet file. For
example, if the file is stored in Project\myportlets\my.portlet, the
Portlet URI is /myportlets/my.portlet.

Theme Optional. Select a theme to give the portlet a different Look & Feel than the rest
of the desktop.

Title Enter a title if you want to override the default title specified in the .portlet
file. The title is used in the portlet title bar.

Por t l e t P roper t i es

BEA WebLogic Portal Portlet Development Guide 5-37

When you select the outer border of a portlet instance in the editor, a related set of properties
appears in the Properties view. The displayed properties vary according to the type of portlet that
you are viewing. Figure 5-22 shows a portion of the Properties view for a portlet.

Figure 5-22 Properties View Example Showing Portlet Properties

Table 5-7 describes these properties and their values.

Table 5-7 Properties in the Portlet Properties View

Property Value

Backable Properties

Portlet Backing File Optional. If you want to use a class for preprocessing (for example,
authentication) prior to rendering the portlet, enter the fully qualified name of
that class. That class should implement the interface
com.bea.netuix.servlets.controls.content.backing.JspBacking or extend
com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking. From the
data field you can choose to browse to a class or open the currently displayed
class.

Content

Content Path Required. The path (relative to the project) to the file/class to be used for the
portlet's content. From the data field you can choose to browse to a file (or class
for page flow portlets) or open the currently displayed file/class. For example, if
the content is stored in Project/myportlets/my.jsp, the Content URI is
/myportlets/my.jsp.

Bui ld ing Po r t le ts

5-38 BEA WebLogic Portal Portlet Development Guide

Error Page Path Optional. The path (relative to the project) to the JSP or HTML file to be used
for the portlet's error message if the main content cannot be rendered. For
example, if the error page is stored in Project/myportlets/error.jsp,
the Content URI is /myportlets/error.jsp.

General Portlet Properties

Async Content
Rendering (new in
Version 9.2)

Allows you to specify whether to use asynchronous content for a given portlet
and the implementation to use. An editable dropdown menu provides the
selections none, ajax, and iframe. Portlet files that do not contain the
asyncContent attribute appear with the initial value none displayed.

For more information, refer to “Asynchronous Portlet Content Rendering” on
page 6-13.

Cache Expires
(seconds)

Optional. When the Render Cacheable property is set to true, enter the
number of seconds after which the portlet cache expires.

Cache Render
Dependencies (new
in Version 9.2)

This instance-scoped boolean property appears in the Properties view whenever
a window portlet or proxy portlet is loaded, allowing render dependencies to be
cached.

The value defaults to true if the attribute is not already included in the
.portlet file. The value is read-only for proxy portlets and editable for all
other portlet types. For proxy portlets, the value is initialized from the producer
whenever a proxy portlet is generated from the portlet wizard.

This property does not affect posts targeted to the portlet.

Table 5-7 Properties in the Portlet Properties View (Continued)

Property Value

Por t l e t P roper t i es

BEA WebLogic Portal Portlet Development Guide 5-39

Client Classifications Optional. Select the multichannel devices on which the portlet can be viewed.
The list of displayed devices is obtained from the file
Project_Path\WEB-INF\client-classifications.xml. You must
create this file to map clients to classifications in your portal web project.
For more information about this task, refer to the Portal Development
Guide.
In the Manage Portlet Classifications dialog:
1. Select whether you want to enable or disable classifications for the portlet.
2. Move the client classifications you want to enable or disable from the

Available Classifications to the Selected Classifications.
3. Click OK.

When you disable classifications for a portlet, the portlet is automatically
enabled for the classifications that you did not select for disabling.

Default Minimized Required. Select true if you want the portlet to be minimized when it is
rendered. The default value is false.

Definition Label Required. Each portlet must have a unique value within the web project. For Java
portlets, you type the desired value when creating the portlet; for the remaining
portlet types, a value is generated automatically when you create the portlet.
Definition labels can be used to navigate to portlets. Also, components must
have Definition Labels for entitlements and delegated administration.

As a best practice, you should edit this value in Workshop for WebLogic to
create a meaningful value. This is especially true when offering portlets
remotely, as it makes it easier to identify them from the producer list.

Note: When you create a portlet instance on a desktop using the WebLogic
Portal Administration Console, the generated definition label is not
editable.

Description Optional. A short text description of the portlet. The description is displayed in
the Administration Console and Visitor Tools areas, and is sent from a WSRP
producer where applicable.

Event Handlers Optional. Use this value to configure interportlet communication using portlet
events. The default is No event handlers. Click Browse if you want to
select or add an event handler.

Table 5-7 Properties in the Portlet Properties View (Continued)

Property Value

../portals/index.html
../portals/index.html

Bui ld ing Po r t le ts

5-40 BEA WebLogic Portal Portlet Development Guide

Forkable Optional. Indicates whether or not the portlet can be multithread rendered. When
set to true, a portal administrator can use the Fork Render property to make the
portlet multithread rendered. The default is false.

For more information, refer to “Portlet Forking” on page 6-3.

Fork Pre-Render Enables forking (multi-threading) in the pre-render life cycle phase. (Refer to
“How the Control Tree Affects Performance” in the BEA WebLogic Portal
Overview for more information about the control tree life cycle.) Pre-render
forking is supported by these portlet types:
• JSP
• Page Flow
• JSR168
• WSRP (consumer portlets only)

Setting Fork Pre-Render to true indicates that the portlet’s pre-render phase
should be forked.

Fork
Pre-RenderTimeout
(seconds)

Optional. If Fork Pre-Render is set to true, you can set an integer timeout value,
in seconds, to indicate that the portal framework should wait only as long as the
timeout value for each fork pre-render phase. The default value is -1 (no
timeout). If the time to execute the forked pre-render phase exceeds the timeout
value, the portlet itself times out (that is, the remaining life cycle phases for this
portlet are cancelled), the portlet is removed from the page where it was to be
displayed, and an error level message is logged that looks something like the
following example.
<May 26, 2005 2:04:05 PM MDT> <Error> <netuix>
<BEA-423350> <Forked render timed out for portlet
with id [t_portlet_1_1]. Portlet will not be included in
response.>

Fork Render Optional. Intended for use by a portal administrator when configuring or tuning
a portal. Setting to true tells the framework that it should attempt to multithread
render the portlet. This property can be set to true only if the Forkable property
is set to true.

Table 5-7 Properties in the Portlet Properties View (Continued)

Property Value

../overview/index.html

Por t l e t P roper t i es

BEA WebLogic Portal Portlet Development Guide 5-41

Fork Render Timeout
(seconds)

Optional. If Fork Render is set to true, you can set an integer timeout value, in
seconds, to indicate that the portal framework should wait only as long as the
timeout value for each fork render portlet. The default value is -1 (no timeout).
When a portlet rendering times out, an error is logged, but no markup is inserted
into the response for the timed-out portlet.

Selecting a value of 0 or -1 removes the timeout attribute from the portlet; use
this value if you want to revert to the framework default setting for this attribute.

Orientation Optional. Hint to the skeleton to position the portlet title bar on the top, bottom,
left, or right side of the portlet. You must build your own skeleton to support this
property in the .portal file. Following are the numbers used in the .portal file for
each orientation value: top=0, left=1, right=2, bottom=3.

You can override the orientation in each instance of the portlet (in the Properties
view).

Packed Optional. Rendering hint that can be used by the skeleton to render the portlet in
either expanded or packed mode. You must build your own skeleton to support
this property.

When packed=”false” (the default), the portlet takes up as much horizontal space
as it can.

When packed=”true,” the portlet takes up as little horizontal space as possible.

From an HTML perspective, this property is most useful when the window is
rendered using a table. When packed=”false,” the table's relative width would
likely be set to “100%.” When packed=”true,” the table width would likely
remain unset.

Render Cacheable Optional. To enhance performance, set to true to cache the portlet. For
example, portlets that call web services perform frequent, expensive processing.
Caching web service portlets greatly enhances performance.

Do not set this to true if you are doing your own caching.

For more information, refer to “Portlet Caching” on page 6-2.

Required User
Properties Mode

Optional. Possible values are none, all, or specified. If the value is
specified, then you must enter a list of property names in the field Required
User Properties Names field.

Required User
Properties Names

Optional. Use this field if you entered a value of specified in the Required
User Properties Mode field; enter a comma-delimited list of property names.

Table 5-7 Properties in the Portlet Properties View (Continued)

Property Value

Bui ld ing Po r t le ts

5-42 BEA WebLogic Portal Portlet Development Guide

Title Required. Enter the title for the portlet's title bar. You can override this title in
each instance of the portlet (in the portal editor, as described in “Portlet
Properties in the Portal Properties View” on page 5-35).

Page Flow Content

Listen To (Deprecated) The comma-separated list of instance labels of the portlets whose
actions should also be called in the selected page flow portlet. This functionality
has been replaced with the more complete interportlet communication
mechanism.

Page Flow Action Optional. The initial action to be executed in a page flow. If not specified, the
begin action is used.

Page Flow Refresh
Action

Optional. The action to be executed in the page flow when the page is refreshed
but the portlet is not targeted. This is equivalent to using portlet event handlers
configured on the onRefresh portal event to invoke the page flow action.

Table 5-7 Properties in the Portlet Properties View (Continued)

Property Value

Por t l e t P roper t i es

BEA WebLogic Portal Portlet Development Guide 5-43

Request Attribute
Persistence

Optional. Possible values are none, session, and transient-session.
This attribute controls attribute persistence for Page Flow, JSF, and Struts
portlets. The default is session, where request attributes populated by an
action are persisted into a collection class that is placed into a session attribute
so that the portal framework can safely include the forwarded JSP on subsequent
requests without re-running the action. Using the value session can cause
session memory consumption and replication that would not otherwise occur in
a standalone Page Flow, JSF, or Struts application. The value
transient-session places a serializable wrapper class around a HashMap
into the session. The value none performs no persistence operation.

JPF or Struts portlets that have the transient-session value applied
generally have the same behavior as existing portlets; however, in failover cases,
the persisted request attributes disappear on the failed-over-to server. In the
failover case, you must write forward JSPs to handle this contingency gracefully
by, at a minimum, not expecting any particular request attribute to be populated;
ideally you should include the ability to either repopulate automatically or
present the user with a link to re-run the last action to repopulate the request
attributes. For non-failover cases, request attributes are persisted, providing a
performance advantage for non-postback portlets identical to default session
persistence portlets.

Portlets that have the none value applied will never have request attributes
available on refresh requests; you must write forward JSPs to assume that they
will not be available. You can use this option to completely remove the
framework-induced session memory loading for persisted request attributes.

Java Server Faces (JSF) Content

Request Attribute
Persistence

Refer to the description in the Page Flow Content section.

Portlet Properties

Table 5-7 Properties in the Portlet Properties View (Continued)

Property Value

Bui ld ing Po r t le ts

5-44 BEA WebLogic Portal Portlet Development Guide

Content Presentation
Class

A CSS class that overrides any default CSS class used by the component’s
skeleton.

For proper rendering, the class must exist in a cascading style sheet (CSS) file in
the Look and Feel’s selected skin, and the skin’s skin.xml file must reference the
CSS file.

Sample: If you enter “my-custom-class”, the rendered HTML from the default
skeletons looks like this:
<div class="my-custom-class">

The properties you enter are added to the component's parent <div> tag. This
property also applies to books and pages. For more information, refer to the
Portal Development Guide.

Content Presentation
Style

Optional. The primary uses are to allow content scrolling and content
height-setting.

For scrolling, enter the following attributes:
• overflow:auto – Enables vertical and horizontal scrolling

For setting height, enter the following attribute:
• height:200px

where 200px is any valid HTML height setting.

You can also set other style properties for the content as you would using the
Presentation Style property. The properties are applied to the component's
content/child <div> tag.

Offer as Remote Optional. Defines whether the portlet is accessible using the WSRP producer.
The default is true, which allows the portlet to be accessed. For more
information about entitling remote portlets, refer to the Federated Portals Guide.

JSP Content

Content Backing File Optional. If you want to use a backing file for content prior to rendering the
portlet, enter the fully qualified name of the appropriate class. That class should
implement the interface
com.bea.netuix.servlets.controls.content.backing.JspBacking or extend
com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking.

Table 5-7 Properties in the Portlet Properties View (Continued)

Property Value

../federation/index.html
../portals/index.html

Por t l e t P roper t i es

BEA WebLogic Portal Portlet Development Guide 5-45

Thread Safe Optional. Performance setting for books, pages, and portlets that use backing
files.

When Thread Safe is set to true, an instance of a backing file is shared among
all books, pages, or portlets that request the backing file. You must synchronize
any instance variables that are not thread safe.

When Thread Safe is set to false, a new instance of a backing file is created
each time the backing file is requested by a different book, page, or portlet.

Portlet Title Bar

Can Delete Optional. If set to true the portlet can be deleted from a page.

Can Float Optional. If set to true the portlet can be floated into a separate window. For
instructions on creating a floatable Java portlet, which requires editing the
weblogic-portlet.xml file, in “Customizing Java Portlets Using
weblogic-portlet.xml” on page 5-16.

Can Maximize Optional. If set to true the portlet can be maximized.

Can Minimize Optional. If set to true the portlet can be minimized.

Edit Path Optional. The path (relative to the project) to the portlet's edit page.

Help Path Optional. The path (relative to the project) to the portlet's help file.

Icon Path Optional. The path (relative to the project) to the graphic to be used in the portlet
title bar. You must create a skeleton to support this property.

Mode Properties (available when you add a mode to a portlet)

Content Path Required. The path (relative to the project) to the JSP, HTML, or .jpf file to be
used for portlet's mode content, such as the edit page. For example, if the content
is stored in Project/myportlets/editPortlet.jsp, the Content URI is
/myportlets/editPortlet.jsp.

Although a Browse button appears for this property, if you want to point to a
page flow you must manually enter the path to the .jpf.

Table 5-7 Properties in the Portlet Properties View (Continued)

Property Value

Bui ld ing Po r t le ts

5-46 BEA WebLogic Portal Portlet Development Guide

Error Path Optional. The path (relative to the project) to the JSP, HTML, or .jpf file to be
used for the error message if the portlet's mode page cannot be rendered. For
example, if the error page is stored in Project/myportlets/errorPortletEdit.jsp, the
Content URI is /myportlets/errorPortletEdit.jsp.

Although a Browse button appears for this property, if you want to point to a
page flow you must manually enter the path to the .jpf.

Portlet Backing File Optional. If you want to use a class for preprocessing (for example,
authentication) prior to rendering the portlet's mode page (such as the edit page),
enter the fully qualified name of that class. That class should implement the
interface com.bea.netuix.servlets.controls.content.backing.JspBacking or
extend com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking.

Visible Optional. Makes the mode icon (such as the edit icon) in the title bar or menu
invisible (false) or visible (true). Set Visible to false when, for example,
you want to provide an edit URL in a desktop header.

Mode Toggle Button Properties

Name Optional. Displayed when you select an individual mode. An optional name for
the mode, such as Edit.

Presentation Properties

Presentation Class This property is described in the Portal Development Guide.

Presentation ID This property is described in the Portal Development Guide.

Presentation Style This property is described in the Portal Development Guide.

Properties Optional. A comma-delimited list of name-value pairs to associate with the
object. This information can be used by skeletons to affect rendering.

Skeleton URI This property is described in the Portal Development Guide.

Proxy Portlet Properties

Connection
Establishment
Timeout

Optional. The number of milliseconds after which this portlet will time out when
establishing an initial connection with its producer.

Table 5-7 Properties in the Portlet Properties View (Continued)

Property Value

../portals/index.html
../portals/index.html
../portals/index.html
../portals/index.html

Por t l e t P roper t i es

BEA WebLogic Portal Portlet Development Guide 5-47

Connection Timeout Optional. The number of milliseconds after which this portlet will time out when
communicating with its producer, after the physical connection has been
established. If not specified here, the default value contained in the file
WEB-INF/wsrp-producer-registry.xml is used.

Group ID Optional. This value is assigned by the producer and is not editable. Portlets with
the same Group ID from the same producer can share sessions. The Group ID
value is meaningful only to the producer and not manipulated by WebLogic
Portal.

Invoke Render
Dependencies (new
in version 9.2)

This boolean property allows the consumer to obtain render dependencies from
the producer during the pre-render life cycle of a proxy portlet.

When a portlet on a producer has a lafDependenciesUri value, the
producer exposes the invokeRenderDependencies boolean in the portlet
description. For more information on this attribute, refer to “Portlet
Dependencies” on page 5-70.

Note: Provide an absolute path for the lafDependenciesUri attribute,
rather than a relative path.

The value defaults to false if the attribute is not included in the .portlet
file. The value is read-only, and is initialized from the producer whenever a
proxy portlet is generated from the portlet wizard.

Portlet Handle Required. The producer’s unique identifier for the portlet that this proxy
references. The value is not editable.

Producer Handle Required. The producer’s unique identifier.

Templates Stored in
Session

Indicates whether the producer stores URL templates in the user's session on the
producer side. This boolean is meaningful only when URL Template Processing
boolean is set to true.

URL Template
Processing

Indicates whether the producer uses URL templates to create URLs. If true, the
consumer supplies URL templates. If false, the producer rewrites URLs using
special rewrite tokens.

Table 5-7 Properties in the Portlet Properties View (Continued)

Property Value

Bui ld ing Po r t le ts

5-48 BEA WebLogic Portal Portlet Development Guide

User Context Stored
In Session (new in
version 9.2)

Required. The purpose of this value is to cut down on network traffic by sending
the user's context (including the profile) only once per session. For WebLogic
Portal producers it will always be true. For third party producers it can be true
or false, depending on the response from GetServiceDescription. If it is
false, the entire user context will be sent on every getMarkup and
performBlockingInteraction request. If true it will be sent only once per
producer session.

This boolean value defaults to false if the attribute is not included in the
.portlet file.

The value is read-only, and is initialized from the producer whenever a proxy
portlet is generated from the portlet wizard.

Struts Content

Listen To (Deprecated) Allows this portlet to invoke an action when another portlet
invokes the same action. This functionality has been replaced with the more
complete interportlet communication mechanism. For more information on
interportlet communication, refer to Chapter 7, “Local Interportlet
Communication.”

Request Attribute
Persistence

Refer to the description in the Page Flow Content section.

Struts Action The begin action that this struts portlet should invoke on the first request to the
portlet.

Struts Module The struts module that is associated with this struts portlet.

A “struts module” is a means of scoping a particular set of struts actions to a
group called a module, which generally maps to a single subdirectory of web
resources and a separate struts-config.xml file.

Struts Refresh Action Optional. The action to be performed in the struts module when the page
is refreshed but the portlet itself is not targeted.

Uri Content (Browser portlet properties)

Content Url Required. The content control takes a URI that is expected to be a URL
for a standalone application or web page, and embeds the URL as portlet
content.

Table 5-7 Properties in the Portlet Properties View (Continued)

Property Value

Por t le t P re fe rences

BEA WebLogic Portal Portlet Development Guide 5-49

Portlet Preferences
Portlet preferences provide the primary means of associating application data with portlets. This
feature is key to personalizing portlets based on their usage. This section describes portlet
preferences in detail.

After you create a portlet, you can instantiate it several times. Because you can create several
instances of a portlet, it is natural to expect each instance to behave differently yet use the same
code and user interface. For instance, consider a typical portlet to display a Stock Portfolio. Given
a list of stock symbols, this portlet retrieves quotes from a stock quote web service periodically,
and displays the quotes in the portlet window. By letting each user change the list of stock
symbols and a time interval to reload the quote data, you can let each user customize this portlet.

The portlet needs to be able to store the list of stock symbols and the retrieval interval persistently,
and update these values whenever a user customizes these values. In particular, the following data
must be persistently managed:

Default Values – Your portlet may specify a default list of stock symbols and a reasonable
retrieval interval. These values are applicable to all usages of the portlet no matter who the
user is. The user could even be anonymous.

Customized Values – Your portlet also needs to be able to store these values when a user
updates the values for a given portlet instance. Note that your portlet should also scope this
data to an instance, such that other instances of this portlet are not affected by this
customization.

Technically, a portlet preference is a named piece of string data. For example, a Stock Portfolio
portlet could have the following portlet preferences:

A preference with name “stockSymbols” and value “BEAS, MSFT”

Another preference with name “refreshInterval” and value “600” (in seconds).

You can associate several such preferences with a portlet. WebLogic Portal provides the
following means to manage portlet preferences:

Specify portlet preferences during the development phase

When you are building a portlet using the Workshop for WebLogic workbench, you can
specify the names and default values of preferences for each portlet. All portlet instances
derived from this portlet will, by default, assume the values specified during development.

Let administrators modify portlet preferences

Bui ld ing Po r t le ts

5-50 BEA WebLogic Portal Portlet Development Guide

WebLogic Portal allows portal administrators to modify preferences for a given portlet
instance.This task occurs during the staging phase and uses the WebLogic Portal
Administration Console.

Let portlets access and modify preferences at request time

At request time, your portlets can programmatically access and update preferences using a
javax.portlet.PortletPreferences object. You can create an edit page for your
portlet to let users update preferences, or you can automatically update preferences as part
of your normal portlet application flow.

This section contains the following topics:

Specifying Portlet Preferences

Using the Preferences API to Access or Modify Preferences

Portlet Preferences SPI

Best Practices in Using Portlet Preferences

Specifying Portlet Preferences
The steps to associate preferences with a portlet depend on the type of portlet you are building.
If you are using the Java Portlet API, described in “Getting and Setting Preferences for Java
Portlets Using the Preferences API” on page 5-56, the steps follow those specified in the Java
Portlet Specification. For other kinds of portlets, such as those using Java Page Flows, Struts, or
JSPs, you can use the Workshop for WebLogic workbench to add preferences to a portlet.

You can also allow the administrator to create new preferences using the Administration Console.
However, because the portlet developer is more likely to be aware of how portlet preferences are
used by the portlet, it is generally better to create portlet preferences during the development
phase.

Specifying Preferences for Java Portlets in the Deployment Descriptor
For portlets using Java Portlet API, you can specify preferences in the portlet deployment
descriptor according to the specification. For all portlets in a web project, the deployment
descriptor is portlet.xml, found in the WEB-INF directory of the web project. Listing 5-3
provides an example.

Por t le t P re fe rences

BEA WebLogic Portal Portlet Development Guide 5-51

Listing 5-3 Specifying Portlet Preferences in portlet.xml with a Single Value

<portlet>

<description>This portlet displays a stock portfolio.</description>

<portlet-name>portfolioPortlet</portlet-name>

<portlet-class>portlets.stock.PortfolioPortlet </portlet-class>

<supports>

<mime-type>text/html</mime-type>

<portlet-mode>edit</portlet-mode>

</supports>

<portlet-info>

<title>My Portfolio</title>

</portlet-info>

<portlet-preferences>

<preference>

<name>stockSymbols</name>

<value>BEAS, MSFT</value>

</preference>

<preference>

<name>refreshInterval</name>

<value>600</value>

</preference>

</portlet-preferences>

</portlet>

This snippet deploys the portfolio portlet with two preferences: a preference with name
stockSymbols and value BEAS, MSFT, and another preference refreshInterval with value 600.

Instead of specifying a single value for the stockSymbols preference, you can declare each
symbol as a separate value as shown in Listing 5-4 below, with the value elements shown in bold.

Listing 5-4 Specifying Portlet Preferences with Values Specified Separately

<portlet>

<description>

This portlet displays a stock portfolio.

Bui ld ing Po r t le ts

5-52 BEA WebLogic Portal Portlet Development Guide

</description>

<portlet-name>portfolioPortlet</portlet-name>

<portlet-class>portlets.stock.PortfolioPortlet </portlet-class>

<supports>

<mime-type>text/html</mime-type>

<portlet-mode>edit</portlet-mode>

</supports>

<portlet-info>

<title>My Portfolio</title>

</portlet-info>

<portlet-preferences>

<preference>

<name>stockSymbols</name>

<value>BEAS</value>

<value>MSFT</value>

</preference>

<preference>

<name>refreshInterval</name>

<value>600</value>

</preference>

/portlet-preferences>

</portlet>

If you prefer that portlets should not be allowed to programmatically update any given
preference, you can mark the preference as read-only. Listing 5-5 shows an example of
preventing a portlet from changing the refreshInterval.

Listing 5-5 Specifying a Read-Only Portlet Preference Value

<portlet>

<description>

This portlet displays a stock portfolio.

</description>

<portlet-name>portfolioPortlet

<portlet-class>portlets.stock.PortfolioPortlet

<supports>

Por t le t P re fe rences

BEA WebLogic Portal Portlet Development Guide 5-53

<mime-type>text/html</mime-type>

<portlet-mode>edit</portlet-mode>

</supports>

<portlet-info>

<title>My Portfolio</title>

</portlet-info>

<portlet-preferences>

<preference>

<name>stockSymbols</name>

<value>BEAS</value>

<value>MSFT</value>

/preference>

<preference>

<name>refreshInterval</name>

<value>600</value>

<read-only>true</read-only>

</preference>

</portlet-preferences>

</portlet>

Note that by marking a preference read-only, you are preventing the portlet from changing the
current value only at request time. Portal administrators can always change the value(s) of a
preference using the Administration Console.

Specifying Preferences for Other Types of Portlets using Workshop for
WebLogic
If you are building other kinds of portlets (such as those using Java Page Flows, Struts, or simple
JSPs), you can add preferences using Workshop for WebLogic.

To add a preference, follow these steps:

1. Click to select the portlet for which you want to add a preference.

2. In the Outline view for the portlet, right-click Preferences and in the context menu click Add
Preference. Figure 5-23 shows an example of the preferences context menu.

Bui ld ing Po r t le ts

5-54 BEA WebLogic Portal Portlet Development Guide

Figure 5-23 Portlet Preferences Context Menu

A new preference is added to the tree hierarchy with the name New Preference Preference.

3. Click the new item to display its properties in the Properties view.

4. Edit the values in the Properties view. Figure 5-24 shows an example of the fields in the
Properties view.

Figure 5-24 Portlet Preferences Properties View

Table 5-8 describes the attributes for portlet preferences as shown in the Properties view.

Por t le t P re fe rences

BEA WebLogic Portal Portlet Development Guide 5-55

Using the Preferences API to Access or Modify Preferences
At request time, portlet preferences for a given portlet are represented as instances of the
javax.portlet.PortletPreferences interface. This interface is part of the Java Portlet API.
This interface specifies methods to access and modify portlet preferences.

Getting Preferences Using the Preferences API
Table 5-9 describes methods that allow a portlet to access its preferences.

Table 5-8 Portlet Preference Properties

Field Value

Modifiable Indicates whether the preference is read-only or can be modified by
the user. The default is true.

Multi Valued Indicates whether the preference can have multiple values. The
default is true.
To specify multiple values for a preference, create multiple
preferences with the same name.

Description A brief description of the preference.

Name Name of the preference.

Value Each preference can have one or more values. Each value is of type
java.lang.String.

Table 5-9 Methods that Allow a Portlet to Access its Preference Values

Method Purpose

String getValue(String name,

String default)
Use this method to get the first value of a preference.

String[] getValues(String name,

String[] defaults)
Use this method to get all the values of a preference.

boolean isReadOnly(String name) Use this method to determine whether a given
preference is read-only.

Bui ld ing Po r t le ts

5-56 BEA WebLogic Portal Portlet Development Guide

Setting Preferences Using the Preferences API
Table 5-10 describes methods that allow a portlet to change preference values.

After modifying preferences by calling setValue(), setValues() and reset() methods, you must call
store() explicitly to make the changes permanent; otherwise, changes will not be made
permanent.

Getting and Setting Preferences for Java Portlets Using the Preferences API
For portlets written using the Java Portlet API, you can obtain an instance of
javax.portlet.PortletPreferences object from the incoming portlet request –
javax.portlet.RenderRequest within the processAction() method, or
javax.portlet.ActionRequest within the render() method.

Enumeration getNames() Use this method to get an enumeration of the names of
all preferences.

Map getMap() Use this method to get a map of preferences. The keys
in this map are the names of all the preferences, and
the values are the same as those returned by
getValues(String name, String[] defaults)

Table 5-10 Methods that Allow a Portlet to Change Preference Values

Method Purpose

void setValue(String name,

String value)
Use this method to set the value of a preference

void setValues(String name,

String[] values)
Use this method to set several values for a preference

void store() Use this method to commit the changes made to preferences
for a portlet.

void reset(String name) Use this method to reset the value of a preference to its
default, or remove the preference if there is no default

Table 5-9 Methods that Allow a Portlet to Access its Preference Values (Continued)

Method Purpose

Por t le t P re fe rences

BEA WebLogic Portal Portlet Development Guide 5-57

In Listing 5-6, the portlet displays a form to edit the current values of portlet preferences in a JSP
page included from the doEdit() method of the portfolio portlet.

Listing 5-6

<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet"%>

<%@ page import="javax.portlet.PortletPreferences" %>

<portlet:defineObjects/>

<%

PortletPreferences prefs = renderRequest.getPreferences();

String refreshInterval = prefs.getValue("refreshInterval", "600");

String symbols = prefs.getValue("stockSymbols", "BEAS, MSFT");

%>

<form method="POST" action="">

<table>

<tr>

<td>Symbols</td><td><input name="symbols"

value="<%=symbols>"/></td>

</tr>

<tr>

<td>Refresh Interval</td><td><input name="refreshInterval"

value="<%=refreshInterval>"/></td>

</tr>

<tr>

<td></td>

<td><input type="submit" value="Submit"/></td>

</tr>

</table>

</form>

The portlet updates the preferences in its processAction() method, as shown in Listing 5-7.

Bui ld ing Po r t le ts

5-58 BEA WebLogic Portal Portlet Development Guide

Listing 5-7 Portlet Updates the Preferences in the processAction() Method

public class PortfolioPortlet extends GenericPortlet

{

{

public void doEdit(RenderRequest renderRequest, RenderResponse

renderResponse)

throws IOException, PortletException

{

...

}

public void processAction(ActionRequest actionRequest, ActionResponse

actionResponse)

throws PortletException

{

String refreshInterval =

actionRequest.getParameter(“refreshInterval”);

String symbols = actionRequest.getParameter(“stockSymbols”);

PortletPreferences prefs = actionRequest.getPreferences();

prefs.setValue(“refreshInterval”, refreshInterval);

prefs.setValue(“stockSymbols”, symbols);

try

{

prefs.store();

}

catch(SecurityException se) {

// Thrown when the user does not have enough privileges to store

// preferences. Make sure that the user logged into the portal.

...

}

catch(catch(IOException ioe) {

// There is an error storing preferences

...

}

}

}

Por t le t P re fe rences

BEA WebLogic Portal Portlet Development Guide 5-59

During processAction(), this portlet uses the javax.portlet.ActionRequest object to
obtain preferences.

Getting and Setting Portlet Preferences Using the API for Other Portlet Types
Portlet preferences can be accessed and updated from other kinds of portlets too. The main
difference is in the way your portlets obtain an instance of the
javax.portlet.PortletPreferences object.

Before rendering, portlets can use
com.bea.netuix.servlets.controls.portlet.PortletBackingContext to obtain
portlet preferences; for example, in a page flow action, or in the handlePostbackData()
method of the backing file associated with the portlet.

During the render phase portlets can use
com.bea.netuix.servlets.controls.portlet.PortletPresentationContext to
obtain portlet preferences; for example, in a JSP associated with a page flow.

Both these classes provide a method getPreferences() that takes
javax.servlet.HttpServletRequest as an argument and return an object of type
javax.portlet.PortletPreferences.

JSP Tags for Getting Portlet Preferences
WebLogic Portal provides a JSP tag library for setting up portlet preferences. Table 5-11
describes the applicable JSP tags.

Table 5-11 JSP Tags for Getting Portlet Preferences

Method Purpose

getPreference Use this tag to get the value of a portlet preference.

getPreferences Use this tag to get all the values of a portlet preference.
This tag can also used to write multiple values to the
output separated by a separator.

forEachPreference Use this tag to iterate through all the preferences of a
portlet. You can nest other tags (getPreference,
getPreferences, ifModifiable and Else) inside this tag.

Bui ld ing Po r t le ts

5-60 BEA WebLogic Portal Portlet Development Guide

For more information on the Java classes associated with these tags, refer to the Javadoc.

Portlet Preferences SPI
In WebLogic Portal, the framework includes a default implementation that manages portlet
preferences in the built-in PF_PORTLET_PREFERENCE and
PF_PORTLET_PREFERENCE_VALUE database tables. If desired, you can replace this
implementation with your own.

You can use the Portlet Preferences SPI to allow portal applications to manage portlet preferences
outside framework-managed database tables. For example, you can store preferences along with
other application data in another back-end system or a different set of database tables.

When propagating a portal, the preferences SPI participates in the propagation process. When
you exporting data for the propagation, the SPI is called to obtain the preferences, and when you
are importing data, the SPI is called to store the preferences.

The following sections describe how to use the Portlet Preferences SPI.

Implement the SPI
You specify the SPI using the interface com.bea.portlet.prefs.IPreferenceAppStore. An
implementation of this class must be deployed as a EJB jar file.

Listing 5-8 provides an example.

Listing 5-8 Implementing the SPI Using the Interface IPreferencesAppStore

public interface IPreferenceAppStore extends EJBObject
{

/**

ifModifible Use this tag to include the body of this tag if the given
portlet preference is not read-only.

else Use this tag in conjunction with the ifModifiable tag to
include the body of this tag if the given portlet preference
is read-only

Table 5-11 JSP Tags for Getting Portlet Preferences

Method Purpose

http://edocs.bea.com/wlp/docs92/javadoc/index.html

Por t le t P re fe rences

BEA WebLogic Portal Portlet Development Guide 5-61

* Returns preferences for a portlet entity with the given uniqueId.
*
* The returned java.util.Map contains
* com.bea.netuix.application.prefs.Preference
* objects keyed against their names.</p>
*
* @param uniqueId unique ID
* @return preferences
*/
public Map getPreferences(PortletPreferencesId uniqueId) throws
RemoteException, PreferenceAppStoreException;

/**
* Writes the preferences to the underlying persistence.
*
* This method should be implemented to be atomic. That is, the
* implemenation should guarantee that either all preference
* values are persisted or none at all.
*
* The java.util.Map argument should contain
* com.bea.netuix.application.prefs.Preference
* objects keyed against their names.
*
* @param uniqueId unique ID
* @param preferences preferences
*/
public void storePreferences(PortletPreferencesId uniqueId,
Map preferences) throws RemoteException, PreferenceAppStoreException;

/**
* Clear all preferences for the given unique ID from the
* underlying persistence store.
*
* @param uniqueIds unique IDs
*/
public void removePreferences(PortletPreferencesId[] uniqueIds) throws
RemoteException, PreferenceAppStoreException;

}

Using the SPI
To cause the framework to use a new SPI in place of the default SPI, you must update the EJB
named PreferencePersistenceManager in the ejb-jar.xml file within netuix.jar. The

Bui ld ing Po r t le ts

5-62 BEA WebLogic Portal Portlet Development Guide

value BEA_netuix.DefaultStore must be changed to the name of the SPI EJB as specified in
its deployment descriptor (ejb-jar.xml). The value
com.bea.portlet.prefs.provider.DefaultStoreHome must be changed to the home
interface of the SPI implementation.

Caution: To edit the ejb-jar.xml file you need to copy the J2EE library resources into your
project. Keep in mind that with future updates to the WebLogic Portal product, you
might have to perform manual steps in order to incorporate product changes that
affect those resources.

The code segment in Listing 5-9 shows the default entries, which you must change to use the SPI.

Listing 5-9 Example Code Showing Default Entries that Must be Changed

<session>
<ejb-name>PreferencePersistenceManager</ejb-name>
<home>com.bea.portlet.prefs.PreferencePersistenceManagerHome</home>
<remote>com.bea.portlet.prefs.PreferencePersistenceManager</remote>
<ejb-class>com.bea.portlet.prefs.PreferencePersistenceManagerImpl
</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<env-entry>

<env-entry-name>prefs-spi-jndi-name</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>BEA_netuix.DefaultStore</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>prefs-spi-home-class-name</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>com.bea.portlet.prefs.provider.DefaultStoreHome
</env-entry-value>

</env-entry>
<!-- Snip -->
</session>

Por t le t P re fe rences

BEA WebLogic Portal Portlet Development Guide 5-63

Best Practices in Using Portlet Preferences

Desktop Testing of Portlet Preferences
In order to view and test the preferences that you have created, you must use a desktop view from
the WebLogic Portal Administration Console rather than Workshop for WebLogic’s Open on
Server view.

Portlets accessed from .portal files cannot store preferences. If you update a preference using
a .portal file, your portlet encounters a java.lang.UnsupportedOperationException
error.

Users Must be Authenticated
You must provide a means for users to log in before they can update preferences; users who are
updating portlet preferences must first be authenticated. If an anonymous user attempts to update
a portlet, a java.lang.SecurityException error occurs.

Note that portlets can always get portlet preferences whether or not the user is anonymous or
whether the portlet is accessed via a .portal file.

Do Not Store Arbitrary Data as Preferences
It is tempting to store arbitrary application data as portlet preferences. For example, if you have
a portlet that allows users to upload and store documents on the server, it might seem appropriate
to store those documents as portlet preferences. This is not a good practice. The purpose of portlet
preferences is to associate some properties for a portlet instance without having to be aware of
any implementation-specific portlet instance IDs. These properties allow customization of the
portlet’s behavior. The underlying implementation of portlet preferences is not designed for
storing arbitrary application data.

The following steps outline an alternative implementation that can meet the needs of the portlet:

Perform setup steps:

1. Add a preference to your portlet. This preference acts as the primary key to your portlet’s
application data. Assign a default value for this preference.

2. Create tables in your database to store application data with the value of the preference as the
primary key.

Bui ld ing Po r t le ts

5-64 BEA WebLogic Portal Portlet Development Guide

Set up preferences in your portlet:

1. When you want to associate application data with the current portlet instance, check the value
of the preference. If the value is the default, generate a new value (for example, using a
sequence number generator), and set this as the value of the preference, and store the
preference.

2. If the value of the preference is not the default, you do not need to generate a new value.

3. Store your application data using the value of the preference as the primary key.

This procedure ensures that your application data is always scoped to portlet instances.

Do Not Use Instance IDs Instead of Preferences
The portal framework maintains instance identity using internally generated instance IDs.
Portlets can access their instance IDs using getInstanceId() methods on
com.bea.netuix.servlets.controls.portlet.PortletPresentationContext and
com.bea.netuix.servlets.controls.portlet.PortletBackingContext.

Storing data directly in the database using portlet instance IDs does not work, for the following
reasons:

The portal framework generates instance IDs, and portlets have no control over when and
how those instance IDs are generated.

Instance IDs might change at any time without the portlet’s knowledge. For example, as
the user or administrator customizes a desktop using Visitor Tools or the Administration
Console, the framework can create new instances or change the instance ID of a portlet. If
the instance ID changes, your portlet cannot load the data from your database; the primary
key has changed without your portlet being aware of it.

Backing Files
The most common means of influencing portlet behavior within the control life cycle is to use a
portlet backing file. A portlet backing file is a Java class that can contain methods corresponding
to portal control life cycle stages, such as init() and preRender(). A portlet’s backing context, an
abstraction of the portlet control itself, can be used to query and alter the portlet’s characteristics.
For example, in the init() life cycle method, a request parameter might be evaluated, and
depending on the parameter’s value, the portlet backing context can be used to specify whether
the portlet is visible or hidden. For more information about backing contexts, refer to the Portal
Development Guide.

../portals/index.html
../portals/index.html

Back ing F i l es

BEA WebLogic Portal Portlet Development Guide 5-65

Backing files can be attached to portals either by using Workshop for WebLogic or coding them
directly into a .portlet file.

Backing files are simple Java classes that implement the
com.bea.netuix.servlets.controls.content.backing.JspBacking interface or extend
the com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking
interface abstract class. The methods on the interface mimic the controls life cycle methods
(refer to “How Backing Files are Executed” on page 5-65) and are invoked at the same time the
controls life cycle methods are invoked.

The following portal controls support backing files:

Desktops

Books

Pages

Portlets

JspContent controls

The interportlet communication example in Chapter 7, “Local Interportlet Communication” uses
backing files.

This section contains the following topics:

How Backing Files are Executed

Thread Safety and Backing Files

Backing File Guidelines

Adding a Backing File Using Workshop for WebLogic

How Backing Files are Executed
All backing files are executed before and after the JSP is called. In its life cycle, each backing file
calls these methods:

init()

handlePostBackData()

preRender()

dispose()

Bui ld ing Po r t le ts

5-66 BEA WebLogic Portal Portlet Development Guide

Figure 5-25 illustrates the life cycle of a backing file.

Figure 5-25 Backing File Life Cycle

On every request, the following sequence occurs:

Note: In the following steps, the methods are called unless items on inactive pages have been
“optimized away” if tree optimization is enabled. For example, if tree optimization is
enabled and items on an inactive page are not included on the resulting partial control
tree, then the method is not called.

1. All init() methods are called on all backing files in depth-first order (that is, in the order
they appear in the tree). This method is called whether or not the control (the portal, page,
book, or desktop) is on an active page.

2. If the _nfpb parameter is set to true, all handlePostbackData() methods are called.

– If the _nfpb parameter is set to true in the request parameter of any called
handlePostbackData() methods, raiseChangeEvents() is called. This method
causes events to fire, which is necessary if the backing file tries to make any state or
mode changes.

Tip: You can use the method AbstractJspBacking.isRequestTargeted(request) to
determine if a request is for a particular portlet.

– If the backing file’s handlePostbackData() method returns true, the
raiseChangeEvents() method is called.

3. All preRender() methods are called for all portal framework controls on an active (visible)
page.

Back ing F i l es

BEA WebLogic Portal Portlet Development Guide 5-67

4. The JSPs are called and rendered on the active page.

5. The dispose() method is called on each backing file.

Thread Safety and Backing Files
A new instance of a backing file is created per request, so you do not have to worry about thread
safety issues. New Java VMs are specially tuned for short-lived objects, so this is not the
performance issue it was in the past. Also, JspContent controls support a special type of backing
file that allows you to specify whether or not the backing file is thread safe. If this value is set to
true, only one instance of the backing file is created and shared across all requests.

Scoping and Backing Files
The difference between having a backing file as part of <netuix: portlet backingfile
=some_value> or part of <netuix: jspContent backingfile=some_value> is related to
scoping.

For example, if you have the backing file on the portlet itself, you can actually stop the portlet
from rendering. If the backing file is at the jspContent level, the portlet portion of the control tree
has already run; you use this implementation to run processes that are specifically for the JSP in
the portlet.

Backing File Guidelines
Follow these guidelines when creating a backing file:

Ensure netuix_servlet.jar is included in the in the project classpath; otherwise,
compilation errors occur.

When implementing the init() method, avoid any heavy processing.

Listing 5-10 shows an example backing file.In this example, the AbstractJspBacking class is
extended to provide the backing functionality required by the portlet. The example uses a session
attribute because of the volatility of the HTTPRequest object; BEA recommends that you pass
data between life cycle methods using the session rather than the request object.

Listing 5-10 Backing File Example

package backing;

Bui ld ing Po r t le ts

5-68 BEA WebLogic Portal Portlet Development Guide

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import com.bea.netuix.events.Event;

import com.bea.netuix.events.CustomEvent;

import

com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;

public class ListenCustomerName extends AbstractJspBacking

{

public void listenCustomerName(HttpServletRequest request,

HttpServletResponse response, Event event)

{

CustomEvent customEvent = (CustomEvent) event;

String message = (String) customEvent.getPayload();

HttpSession mySession = request.getSession();

mySession.setAttribute("customerName", message);

}

}

Adding a Backing File Using Workshop for WebLogic
You can add a backing file to a portlet either from within Workshop for WebLogic or by coding
it directly into the file to which you are attaching it. Simply specify the backing file in the
Backing File field of the Properties view, as shown in Figure 5-26. You need to specify the
backing directory and, following a dot-separator, only the backing file name. Do not include the
backing file extension; for example enter this:
backing.ListenCustomerName

Not this:
backing.ListenCustomerName.java

For the preceding example, if you include the file extension, the application interprets it as the
file name—because the file path is specified by a dot-separator—and looks for a non-existent file
called java in a non-existent directory called ListenCustomerName.

Por t le t Appearance and Featu res

BEA WebLogic Portal Portlet Development Guide 5-69

Figure 5-26 Adding a Backing File Using Workshop for WebLogic

Adding the Backing File Directly to the .portlet File
To add the backing file by coding it into a .portlet file, use the backingFile parameter within
the <netuix:jspContent> element, as shown in Listing 5-11.

Listing 5-11 Adding a Backing File to a .portlet File

<netuix:content>

 <netuix:jspContent

 backingFile="portletToPortlet.pageFlowSelectionDisplayOnly.menu.

 backing.MenuBacking"

 contentUri="/portletToPortlet/pageFlowSelectionDisplayOnly/menu/

 menu.jsp"/>

</netuix:content>

Portlet Appearance and Features
Some aspects of portlet appearance are controlled by default at the portal level, such as colors,
layouts, and themes. Appearance/rendering characteristics and portlet-specific features include
the use of title bars and associated states (minimize, maximize, float, and delete) and modes that
affect portlet content (edit mode, help mode, and custom modes).

The following sections describe how to work with portlet-specific appearance/content features
and modes:

Portlet Dependencies

Portlet Modes

Portlet States

Bui ld ing Po r t le ts

5-70 BEA WebLogic Portal Portlet Development Guide

Portlet Title Bar Icons

Portlet Height and Scrolling

Portlet Dependencies
In a rendered HTML page, the proper place to include most types of resources, such as script files
or style sheet references, is in the header of the document. Portlets sometimes need to specify
resources that are required for rendering the portlet in the page. In the past, methods for making
required elements available on the page included placing elements into the skeleton, which is not
recommended because this creates a coupling between the skeleton and the portlet; or putting
references directly in the portlet content, leading to the possibility of creating invalid HTML.

The problem was exacerbated in a federated (WSRP) environment because remote portlets are
potentially included in several places and there was no way for one of these portlets to indicate
that it relies on, for example, a piece of a CSS that resides in an external file.

WebLogic Portal now provides an explicit way to handle this requirement, using the portlet
dependencies feature.

The configuration of a Look & Feel has significantly changed in WebLogic Portal Version 9.2.
The concepts related to skin and skeleton resource dependencies are now more formally known
as render dependencies and script dependencies. Typical examples of such dependencies are CSS
files and JavaScript files.

Both skins and skeletons can now specify such dependencies as well as associated search paths
to be used for resolving these dependencies. Additionally, mechanisms exist to eliminate
redundancy and to provide a reliable ordering for dependencies related to skins, skeletons, and
theme skin and skeletons. These same capabilities are now available for portlets as well as
portals, so that a portlet can specify necessary dependencies in a standards-compliant way; you
identify these dependencies using appropriate elements located in the head section of the
rendered page. The other advantages of the Look & Feel dependencies framework are also
realized at a portlet level, such as reliable ordering and redundancy elimination.

This section contains the following topics:

Identifying Portlet Dependencies

Considerations and Limitations

Creating a Dependency File

Por t le t Appearance and Featu res

BEA WebLogic Portal Portlet Development Guide 5-71

Identifying Portlet Dependencies
The configuration of portlet dependencies shares the same mechanisms as the standard Look &
Feel—you use an XML configuration document conforming to a standard Look & Feel schema.
This XML document is referenced from a .portlet file using an attribute on the portlet element.

As with a Look & Feel’s render dependencies, you can resolve a portlet’s render dependencies
utilizing a set of application search paths. Additionally, the search paths of the Look & Feel skin,
or any appropriate Theme skin, are used before the portlet’s own search paths to resolve a
portlet’s render dependencies.

You can specify a portlet’s dependencies configuration file in the Workshop for WebLogic
Properties view by entering the value in LAF Dependencies Path field. Alternatively, you can add
the attribute lafDependenciesUri to the portlet element in a .portlet file, as shown in the
following example:
<netuix:portlet definitionLabel="myPortlet" title="My Portlet"
lafDependenciesUri="/portlets/example/myPortlet.dependencies">

By convention, you should adhere to the following guidelines when setting up a portlet’s
dependencies configuration file:

Give the file the same name as the .portlet file.

Assign the file a .dependencies extension.

Locate the file at the same level in the file hierarchy as the .portlet file.

Although the guidelines listed here are not required, deviating from them can lead to unexpected
behavior. For more information, refer to “Considerations and Limitations” on page 5-72.

The portlet dependencies configuration file uses standard types from the standard Look & Feel
schemas and looks similar to the example shown in Listing 5-12.

Listing 5-12 Portlet Dependencies Configuration File Example

<?xml version="1.0" encoding="UTF-8"?>

<p:window

xmlns:p="http://www.bea.com/servers/portal/framework/laf/1.0.0";

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance";

xsi:schemaLocation="http://www.bea.com/servers/portal/framework/laf/1.0.0

laf-window-1_0_0.xsd ">

 <p:render-dependencies>

Bui ld ing Po r t le ts

5-72 BEA WebLogic Portal Portlet Development Guide

 <p:html>

 <p:links>

 <p:search-path>

 <p:path-element>.</p:path-element>

 </p:search-path>

 <p:link rel="stylesheet" type="text/css" href="my.css"/>

 </p:links>

 </p:html>

 </p:render-dependencies>

</p:window>

The configuration file shown in Listing 5-12 causes a CSS file to be included in the rendered page
output (as a link element in the HTML head section). First, the search occurs for the CSS file
relative to the Look & Feel or Theme skin search paths for the links element. If the CSS file is
not found, then the search path in the configuration file is used. Relative search paths use the
directory of the configuration file as a base.

The default behavior is to look first in the Look & Feel or Theme–specified search paths. This
behavior allows a Look & Feel/Theme the ability to properly skin portlet resources. However,
portlet-level resources should not be placed in the Look & Feel/Theme directories. If a situation
arises when you do not want to use this behavior, you can disable it by specifying a value of
false for the use-skin-paths attribute on the render-dependencies element.

Considerations and Limitations
At this time, Workshop for WebLogic does not providing editing capabilities for portlet render
dependencies configuration files; you can use the included Eclipse-based XML file editor for this
purpose.

BEA recommends that you not share a single .dependencies file across several portlets.
Although WebLogic Portal does not prevent this usage, sharing a single file might lead to
confusion when coordinating updates to the file later.

Creating a Dependency File
You can use Workshop for WebLogic to create a valid dependency file that you can then
complete using Workshop’s XML editor.

1. Select File > New > Other.

Por t le t Appearance and Featu res

BEA WebLogic Portal Portlet Development Guide 5-73

2. In the New dialog, open the XML folder and select XML. The New XML File wizard opens.

3. Choose Create XML From XML Schema File and click Next.

4. Enter a name for the XML file in the XML File Name dialog and click Next.

5. In the Select XML Schema File dialog, choose Select XML Catalog Entry and in the Key
column select laf-window-1_0_0.xsd as the schema. Click Next.

6. In the Select Root Element dialog, choose the root element window.

7. Optionally check the boxes that add optional attributes/elements to your new XML file.

8. Click Finish.

9. Rename the generated file’s extension from .xml to .dependencies.

Portlet Modes
All portlets created with WebLogic Portal support the use of modes. Modes allow you to affect
the end user’s ability to edit the portlet or display Help for the portlet. You add icon buttons to a
portlet’s title bar to indicate the availability of a mode.

The following pre-defined modes exist for WebLogic Portal:

Edit – Lets you specify a custom file that lets users modify the portlet's content when they
click the Edit button.

Help – Lets you specify a custom file that shows users help content for the portlet when
they click the Help button.

You can also create your own custom portlet modes using WebLogic Portal.

Buttons for the selected modes appear in the portlet’s title bar. Figure 5-27 shows an example of
the default buttons for the portlet modes when displayed in the editor; Figure 5-28 shows the
appearance of the mode icons in a running portlet.

Bui ld ing Po r t le ts

5-74 BEA WebLogic Portal Portlet Development Guide

Figure 5-27 Portlet Mode and State Buttons in Editor

Figure 5-28 Portlet Mode and State Buttons in a Running Portlet

When you use the Portlet Wizard to create a portlet, mode and state settings are available on the
Portlet Details dialog. These settings can also be edited in the portlet’s Properties view: The
following sections describe possible methods of performing these tasks.

Adding or Removing a Mode for an Existing Portlet
To add or remove the Help or Edit mode from the title bar, follow these steps:

1. Display the portlet for which you want to add or remove a mode.

2. Right-click the title bar of the displayed portlet to display the context menu. Figure 5-29
shows an example of the title bar context menu.

Minimize Maximize Delete Float Help Edit

Minimize Maximize Delete Float Edit Help

Por t le t Appearance and Featu res

BEA WebLogic Portal Portlet Development Guide 5-75

Figure 5-29 Available Portlet Modes - Title Bar Context Menu

3. Click Available Modes.

Checkmarks on the submenu indicate the available modes for this portlet, which were
determined when you created it. Figure 5-30 shows an example of the submenu.

Figure 5-30 Portlet Mode - Available Modes Submenu

4. Click the mode for which you want to change the availability status. For example, in
Figure 5-30, the Help mode is checked (available); when you click Help, the Help button
disappears from the title bar.

5. Select File > Save to save your changes.

Bui ld ing Po r t le ts

5-76 BEA WebLogic Portal Portlet Development Guide

Properties Related to Portlet Modes
You can view and edit the mode's property details in the Properties view. For example, you can
edit the Portlet Backing File property if you want to perform preprocessing before rendering the
portlet's mode page (such as the edit page).

To display the mode properties for the portlet, click the expand/contract toggle button in the
Portlet Mode area of the portlet. Edit mode properties and Help mode properties display in the
Properties view.

For descriptions of the mode properties, refer to Table 5-7.

Portlet States
States determine the end user’s ability to affect the rendering of a portlet. WebLogic Portal
supports these portlet states:

Normal – the typical rendered appearance of the portlet.

Minimize – Collapses the portlet, leaving only the title bar, when the user clicks the
Minimize button.

Maximize – Makes the portlet take up the entire desktop area (not including the desktop
header and footer) when the user clicks the Maximize button.

Float – Displays the portlet in a popup window when the user clicks the Float button.

Delete – Removes the portlet from the desktop when the user clicks the Delete button.

When you use the Portlet Wizard to create a portlet, state and mode settings are available on the
Portlet Details dialog. These settings can also be edited in the portlet’s Properties view: The
following sections describe possible methods of performing these tasks.

Modifying Portlet States in Workshop for WebLogic
You can select which of the states you want to include with the portlet by following these steps:

1. Right-click the portlet title bar.

A context menu showing applicable states appears. Figure 5-31 shows an example of the
title bar context menu showing all states as available.

Por t le t Appearance and Featu res

BEA WebLogic Portal Portlet Development Guide 5-77

Figure 5-31 Portlet State - Title Bar Context Menu

2. Click to select the state that you want to change.

Selecting a state adds it to the portlet, while deselecting the state removes it from the
portlet. For example, in Figure 5-31, all four states are selected, and appear in the title bar.
If you click to deselect Deletable, the Delete button on the portlet disappears.

3. Select File > Save to save your changes.

Minimizing or Maximizing a Portlet Programmatically
You can minimize or maximize a portlet either in the portlet file or in a portlet’s backing file. The
actual code is the same for both. Here is an example of maximizing a (Java page flow) portlet:
PortletBackingContext context =
PortletBackingContext.getPortletBackingContext(request);
context.setupStateChangeEvent(WindowCapabilities.MAXIMIZED.getName());

You can put this code in an action method of the Java page flow or in the
handlePostbackData method of the backing file. When using the backing file, in order to get
the handlePostbackData method to be called, you must have '_nfpb=true' in the URL.

These mechanisms do not work if asynchronous content rendering is enabled for the portlet.

Portlet Title Bar Icons
The default state and mode icons used in portlet title bars are stored in the
wlp-lookandfeel-web-lib library module; you can view them in Merged Projects view in the
various subdirectories of framework/skins.

Bui ld ing Po r t le ts

5-78 BEA WebLogic Portal Portlet Development Guide

Portlet Height and Scrolling
All portlets created with WebLogic Portal support height and scrolling.

Height affects the portlet’s displayed height on the portlet page.

Scrolling affects whether or not the portlet is scrollable.

You can control the height of portlets and determine whether or not their contents scroll.

Portlet height and scrolling is controlled by the following CSS style attributes:

overflow: auto – Enables vertical and horizontal scrolling

height: 200px (where 200px is any valid HTML setting)

You can set these attributes on a portlet that is open in the workbench editor.

To set these properties, follow these steps:

1. Open a portlet in the workbench editor.

2. Click the outer border of the portlet to display the portlet properties in the Properties view.

3. In the Properties view, set one of the following properties:

– Presentation Style - Enter any of the previously listed attributes for this property. You
can use overflow and height. Separate the values with a semicolon.

– Presentation Class - Enter the name of a style sheet class that contains the height or
scrolling attributes that you want to use.

– Content Presentation Style - Enter any of the previously listed attributes for this
property. You can use overflow and height. Separate the values with a semicolon.

– Content Presentation Class - Enter the name of a style sheet class that contains the
height or scrolling attributes that you want to use.

Note: The distinction between Presentation Style and Content Presentation Style, for
example, is the location where the styling is applied (portlet or content). The use of
one or the other depends on the specifics of what the specific styling is trying to
accomplish.

Figure 5-32 shows an example of a height property, set using Content Presentation Style.

Por t le t Appearance and Featu res

BEA WebLogic Portal Portlet Development Guide 5-79

Figure 5-32 Portlet Height and Scrolling Presentation Properties Example

Based on the entries shown in Figure 5-32, the result looks similar to the example in
Figure 5-33.

Figure 5-33 Portlet Height and Scrolling—Portlet Appearance Results

If you use the Presentation Class property instead of the Presentation Style property, you
must have the corresponding style class defined in a CSS file.

For example, if you use the value .portlet-scroll in the Content Presentation Class field,
you must have the following style class definition already set up in your CSS file:
.portlet-scroll
{

overflow:auto;
height:250px;

}

Bui ld ing Po r t le ts

5-80 BEA WebLogic Portal Portlet Development Guide

4. Select File > Save to save your changes.

Making All Portlets Scroll
To provide portlet height and scrolling automatically, you can specify an additional rule for the
standard portlet content CSS class. For example, you can do one of the following:

Add a <style> element to the skin.xml file for your Look & Feel containing this rule:
.bea-portal-window-content
{

height: 250px;
overflow: auto;

}

Alternatively, you can place the above rule in a custom CSS file and create a <style> or
<link> element in the skin.xml file that references the custom CSS file.

For more information on portal skins, themes, and skeletons, refer to the Portal Development
Guide.

Getting Request Data in Page Flow Portlets
A page flow stores information in the requests. If you have a portal page with multiple page flow
portlets, you need a way for each page flow to individually store and retrieve that information.
For example, the request object for a page might have a variable car_type, with a value of x.
When the page flow runs, it obtains this value and uses it in some way. If you have another page
flow portlet with a car_type value of z, and if only one request exists for the whole page, the two
page flow portlets might interfere with each other. To prevent this problem, WebLogic Portal
essentially makes a copy of the outer (portal) request to make separate scoped requests, one for
each portlet. This gives each page flow portlet its own unique request to use to store its
information.

In some cases, you might want to use information that is stored at the outer request rather than
within the scoped request.

For example, if you use regular HTML tags within Netui form tags, you might have something
similar to this:
<netui:form action="myAction">

<input type="check box" name="test"/>
<netui:button value="myAction"></netui:button>

</netui:form>

Based on the tags used above, you might typically use a regular getParameter request like this:

../portals/index.html
../portals/index.html

JSP Tags and Cont ro ls in Por t l e ts

BEA WebLogic Portal Portlet Development Guide 5-81

<%request.getParameter("test")%>

However, to get that HTML input value from the outer request, use the following:
<%@page import="org.apache.beehive.netui.pageflow.scoping.ScopedServletUtils"%>

<%
HttpServletRequest outerRequest = ScopedServletUtils.getOuterRequest
(request);
%>
test: <%=outerReq.getParameter("test")%>

JSP Tags and Controls in Portlets
WebLogic Portal provides JSP tags that you can use within JSPs. When you use the JSP Design
Palette view in Workshop for WebLogic, you can view available JSP tags and then drag them into
the Source View of your JSP, and use the Properties view to edit elements of the code.

WebLogic Portal also provides custom Java controls that make it easy for you to quickly add
pre-built modules to your portal; custom Java controls exist for event management, Visitor Tools,
Community management, and so on. For example, most user management functionality can be
easily exposed with a User Manager Control on a page flow.

Note: The term control is also used to refer to the portal (netuix) framework controls, such as
desktop, book, page, and so on. These controls are referred to in the text as portal
framework controls.

Viewing Available JSP Tags
When you open a JSP in Workshop for WebLogic, you can use the JSP Design Palette (Window
> Show View > JSP Design Palette) to display all the JSP tags currently loaded and available;
Figure 5-34 shows a portion of the display.

Bui ld ing Po r t le ts

5-82 BEA WebLogic Portal Portlet Development Guide

Figure 5-34 JSP Design Palette Showing Available JSP Tags

To use a tag, drag it into the editor, use the Source View to edit the code directly, and use the
Properties view to set properties, as shown in Figure 5-35:

Figure 5-35 Dragging a JSP Tag into the Design View – Properties for Add User JSP Tag

For information about the Java class associated with each JSP tag, refer to the Javadoc.

Viewing Available Controls
To view the available custom controls provided by WebLogic Portal when viewing a page flow:

1. Open an existing page flow (.jpf file) or create a new page flow.

http://edocs.bea.com/wlp/docs92/javadoc/index.html

JSP Tags and Cont ro ls in Por t l e ts

BEA WebLogic Portal Portlet Development Guide 5-83

For information about creating page flows using Workshop for WebLogic, refer to the BEA
Workshop for WebLogic Platform Programmer’s Guide.

2. If you are not already using the Page Flow Perspective, Workshop for WebLogic asks if you
want to switch to it. Do so.

3. Right-click in the source view for the Page Flow and select Insert > Control, as shown in
Figure 5-36.

Figure 5-36 Insert > Control Menu Selection

The Select Control dialog box displays, as shown in Figure 5-37.

Figure 5-37 Select Control Dialog

http://edocs.bea.com/workshop/docs92/platform.html
http://edocs.bea.com/workshop/docs92/platform.html

Bui ld ing Po r t le ts

5-84 BEA WebLogic Portal Portlet Development Guide

4. Expand the desired folder to view the custom Java controls for WebLogic Portal that you can
choose from.

After you add a custom WebLogic Portal control, al the methods in the control become available
to your Page Flow.

For more information about the custom controls provided by WebLogic Portal, refer to the Portal
Development Guide. For details about each control, refer to the Controls Javadoc.

Portlet State Persistence
You can control portlet state persistence using the persistence-enabled attribute in the
netuix-config.xml file, which is located by default in the WEB-INF directory. Using this
attribute causes the state to be saved in the WebLogic Portal database. The attribute is set to
false by default.

The following code segment shows an example of the attribute syntax:
<control-state-location>
<session persistence-enabled="true"/>
</control-state-location>

WebLogic Portal places an entry for the control tree state in the PROPERTY_KEY table, with
the following PROPERTY_SET_NAME value:

BEA_PORTAL_FRAMEWORK_CONTROL_TREE_STATE

Adding a Portlet to a Portal
In the development phase of the portal life cycle, you add portlets to a portal using the Workshop
for WebLogic workbench.

Note: A page must have a layout before you can add a portlet to it. The vertical or horizontal
placement of portlets in a placeholder is determined by the selected layout for the page.

Follow these steps:

1. In the Package Explorer view, double-click the portal (.portal file) to which you want to
add the portlet.

The portal displays in the editor.

2. If your portal has multiple pages, click the desired page to select it.

http://edocs.bea.com/wlp/docs92/javadoc/controls/index.html
../portals/index.html
../portals/index.html

Add ing a Po r t l e t t o a Po r ta l

BEA WebLogic Portal Portlet Development Guide 5-85

3. From the Palette view, drag the portlet (the .portlet file) onto the portal page at the desired
location.

Figure 5-38 shows an example of this step.

Figure 5-38 Dragging a Portlet from the Palette onto a Portal Page in Editor View

With the portlet selected, you can use the Properties view to customize desired portlet properties.

For detailed information about portlet properties, refer to “Portlet Properties” on page 5-32.

When you add a portlet to a page in the workbench editor, a reference to that portlet is added to
the .portal file. You can use the .portal file as a template for creating desktops in the
WebLogic Portal Administration Console. When a portal administrator creates a desktop based
on that template, the portlet is added to the portal resource library where it can be added to pages
in streaming desktops. For an overview of file-based portals compared with streaming portals,
refer to the Portal Development Guide.

In the Staging phase of the portal life cycle, you use the WebLogic Portal Administration Console
to configure portlets on desktops. A single portlet definition can be associated with one or more
portals (desktops) by creating instances of the portlet. Each of these portlet instances can have its
own “personality” and behavior as specified by a variety of different configuration options.

For details in adding a portlet to a portal desktop in the WebLogic Portal Administration Console,
refer to “Managing Portlets on Pages” on page 8-5.

../portals/index.html

Bui ld ing Po r t le ts

5-86 BEA WebLogic Portal Portlet Development Guide

Deleting Portlets
To remove a portlet from a portal without deleting the portlet from your portal web project,
right-click the portlet in the Workshop for WebLogic workbench editor and click Delete.

To delete a portlet from your portal web project, right-click the portlet in the Package Explorer
view and choose Delete.

To remove a portlet after you have assembled portlet instances into portal desktops using the
Administration Console, refer to “Deleting a Portlet” on page 8-5.

Third-Party Portlets
WebLogic Portal partner companies create special-purpose portlets that you can easily
incorporate into your portal; these companies include Autonomy, Documentum, and
MobileAware.

The following sections provide more information about third-party portlets:

Autonomy Portlets

Documentum Portlets

MobileAware Portlets

Autonomy Portlets
WebLogic Portal includes an embedded license of Autonomy-based search capabilities. You can
use these capabilities to integrate enterprise-class search into your portal; common use cases
include integration with content management systems, relational databases, and external web
sites. You can expose these sources of information for searches using portlets that some with
WebLogic Portal, and developers can use Autonomy APIs as they author new portlets and
business logic for integrating search into your portal as well.

In WebLogic Portal 9.2, the BEA proprietary search APIs are deprecated; we recommend that
you use Autonomy APIs to implement search capabilities.

For more information about Autonomy, see the Autonomy documentation.

Documentum Portlets
EMC Documentum has partnered with BEA to offer EMC Documentum Content Services for
BEA Weblogic Portal. This product provides a packaged set of Documentum functionality

../autonomy/index.html

Advanced Por t l e t Deve l opment w i th Tag L ib rar i es

BEA WebLogic Portal Portlet Development Guide 5-87

exposed through the BEA WebLogic Portal infrastructure, allowing users to access and interact
with all types of enterprise content including web pages, documents, and rich media such as audio
and video.

From a portlet development perspective, a key feature of this product is the inclusion of
Documentum portlets—application components that expose standardized, enhanced content
management user functions through the portal interface.

Documentum portlets expose four key applications:

Content management portlets allow users to manage any type of content.

Web Publisher portlets permit casual users to publish content to web sites and portals.

eRoom portlets provide dashboard views into EMC Documentum eRooms and allow
multiple project management.

The Enterprise Content Integration (ECI) Services portlet enables continuous access to
content in other repositories, databases, and Web sites.

See the Documentum web site for more information on Documentum portlets for WebLogic
Portal

MobileAware Portlets
BEA WebLogic Mobility Server provides a standards-based, non-proprietary environment that
extends BEA WebLogic deployments to offer multichannel mobile services in significantly
reduced time frames. Enterprises can broaden the effectiveness of business-critical systems for
employees and customers, and mobile carriers can rapidly deploy new, data-centric services,
without the need for re-training and re-tooling.

For more information about BEA WebLogic Mobility Server and how to use it with WebLogic
Portal, see the product documentation on the e-docs web site.

Advanced Portlet Development with Tag Libraries
During the Development phase, you can add other resources to a GroupSpace Community, a
custom Community, or a portal web application. Those resources are contained in three tag
libraries:

The ActiveMenus JSP tag library

The DragDrop JSP tag library

http://software.emc.com/products/product_family/documentum_family.htm
http://e-docs.bea.com/wlp/docs92/index.html

Bui ld ing Po r t le ts

5-88 BEA WebLogic Portal Portlet Development Guide

The DynamicContent JSP tag library

See the Communities Guide for additional information.

Adding ActiveMenus
You can add the ActiveMenus JSP tag library to a GroupSpace Community, a custom
Community, or a portal web application.

The ActiveMenus JSP tag library lets you set up a popup menu that displays when the mouse
hovers over specific text. An activemenus-config.xml file controls the contents of each
menu. The activemenus_taglib.jar file contains the ActiveMenus tag library.

By default, a GroupSpace Community has ActiveMenus enabled, so you only need to configure
the ActiveMenus tag (see “Configuring the ActiveMenus Tag” on page 5-90). See Figure 5-39
for an example of the ActiveMenus tag in a GroupSpace Community.

Figure 5-39 ActiveMenus in the GS Issue Portlet

You can tie a user’s capability to the ActiveMenu that you see when you hover your mouse over
an item (an Issue, for example) and hover over the arrow that appears. In this example, if your
assigned capabilities include the ability to delete items, you will see the Delete choice, as shown
in Figure 5-39.

Tip: You do not need to perform the following steps if you have a GroupSpace Community;
ActiveMenus are enabled by default for GroupSpace Communities.

Perform the following steps to enable ActiveMenus in a custom Community:

1. In Workshop for WebLogic, make the activemenus_taglib.jar file available to your
portal web project. When you create your portal web project, you must enable the
GroupSpace facets by selecting the WebLogic Portal Collaboration check boxes.

2. Add the activemenus-config.xml file to your /WEB-INF directory in your portal web
project. Add the file by right-clicking the activemenus-config.xml file and choosing
Copy To Project. Configure the file by follow the instructions in Configuring the
ActiveMenus Tag to edit the activemenus-config.xml file.

../portlets/index.html

Advanced Por t l e t Deve l opment w i th Tag L ib rar i es

BEA WebLogic Portal Portlet Development Guide 5-89

3. Register the GetActiveMenusResourceServlet by adding the servlet and servlet-mapping
to the web.xml file in the /WEB-INF directory in your portal web project. You can edit the file
in Workshop for WebLogic by double-clicking the web.xml file. Right-click the web-app
line in the file and choose Add Child > message-destination - welcome-file-list > servlet.
Add GetActiveMenusResourceServlet to the servlet-name line. Add
com.bea.apps.groupspace.servlets.GetActiveMenusResourceServlet to the
servlet-class line. See Figure 5-40 to view the edited file in Workshop for WebLogic.

Figure 5-40 Editing the web.xml File in Workshop for WebLogic

The code sample in Listing 5-1 shows the new information you added.

Listing 5-1 Code Sample of GetActiveMenusResourceServlet

<!-- ActiveMenus Servlet Mappings -->

<servlet>

 <servlet-name>GetActiveMenusResourceServlet</servlet-name>

 <servlet-class>

 com.bea.apps.groupspace.servlets.GetActiveMenusResourceServlet

 </servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>GetActiveMenusResourceServlet</servlet-name>

Bui ld ing Po r t le ts

5-90 BEA WebLogic Portal Portlet Development Guide

 <url-pattern>GetActiveMenusResourceServlet</url-pattern>

</servlet-mapping>

4. Redeploy the application for the changes to take effect.

After you enable the ActiveMenus, you must configure the ActiveMenus tag.

Configuring the ActiveMenus Tag
To use the ActiveMenus tag, you must set up the activemenus-config.xml file (the XSD that
defines this config file is located in the activemenus_taglib.jar file as
activemenus-config.xsd). This activemenus-config.xml file file must exist in your web
application's /WEB-INF directory. Multiple menus can be set up that consist of completely
different items, styles, and icons.

Use the following sections to configure the activemenus-config.xml file file:

Using The TypeInclude tag

Using The Type Tag

Using The TypeDefault Tag

Using The menuItem Tag

Using The TypeInclude tag
Use the typeInclude tag to keep your configuration file clean. Rather than adding the type tag
(see Using The Type Tag) you can add this tag and point its href attribute to an XML file
(relative to the web application) that contains all of the type information. An example of the
typeInclude tag is: <typeInclude xhref="/WEB-INF/activemenuTypes/
username.xml"/>.

You can also use the type tag with the typeInclude tag in the configuration file. See the code
sample in Listing 5-2.

Listing 5-2 You Can Use the typeInclude Tag with the Type Tag in the activemenus-config.xml File

<typeInclude xhref="/WEB-INF/activemenuTypes/username.xml"/>

<type>

 <menuItem>

Advanced Por t l e t Deve l opment w i th Tag L ib rar i es

BEA WebLogic Portal Portlet Development Guide 5-91

 <param name="linkId"/>

 <action action="editLink">

 <i18nNamebundleName="com.bea.apps.groupspace.links.

 LinksPopupMenu" key="edit.link"/>

 </action>

 </menuItem>

</type>

When you point to another XML file, ensure that you namespace it correctly, as shown in
Listing 5-3.

Listing 5-3 Pointing to Another XML File Called username.xml

<type name="username"

 xmlns="http://www.bea.com/servers/apps/groupspace/ui/

 activemenus-config/9.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.bea.com/servers/apps/groupspace/ui/

 activemenus-config/9.0">

...

</type>

Using The Type Tag
The type tag defines the individual menus to use within the web application. The name attribute
must be unique for each menu, because the name is how the menu is referenced when you use the
ActiveMenus tag. Following is an example of the type tag:

<type name="foo">

</type>

Note: The TypeDefault and MenuItem tags must be contained within the type tag.

Bui ld ing Po r t le ts

5-92 BEA WebLogic Portal Portlet Development Guide

Using The TypeDefault Tag
The typeDefault tag defines what displays in the browser where the ActiveMenus tag is used.
You can control the text that displays, the style of the text, and the image that appears on the
mouseover of that text (which denotes the menu itself).

The following items display within the browser where you used the ActiveMenus tag:

The displayText Attribute – Defines the actual text that displays. If the displayText is
not defined, whatever text is placed in the display attribute of the ActiveMenus tag
appears. However, if you want to display other text, you can specify a class and a method
within that class that returns a String to display. The following example shows how to
display other text.

GetUserNameFromProfile.java

public class GetUserNameFromProfile
{
 public static String getName(String userName)
 {
 return "XXX-" + username + "-XXX";
 }
}

If you use this code, the configuration defined above, and the following ActiveMenus tag:
<activemenus display="UserName" type="foo"/>, the following displays in the
browser: XXX-UserName-XXX.

This example allows you to use the information entered in the body of the ActiveMenus
tag to look up other information to display. For instance, a username can be used to look
up a user's full name to display. The only rules surrounding this action is that the method
used for the display text is public, static, takes in a String, and returns a String. No other
information can be passed into that method.

The displayTextStyle Attribute – Defines the CSS style or class that stylizes the display
text. In order for the class attribute to work correctly, the class must be defined on the
page (or the CSS file that defines the class must be imported).

The displayMenuImage Attribute – Defines the image that appears when the display text
is passed over with the mouse. If this tag is not defined, the default image is used. This
image is in the activemenus_taglib.jar file and is called menu_default.gif.

The menuStyle Attribute – Defines the CSS style or class that stylizes the menu itself,
which can include the border or background color. For the class attribute to work
correctly, the class must be defined on the page (or the CSS file that defines the class must
be imported).

Advanced Por t l e t Deve l opment w i th Tag L ib rar i es

BEA WebLogic Portal Portlet Development Guide 5-93

Note: The TypeDefault and MenuItem tags must be contained within the type tag.

Using The menuItem Tag
The menuItem tag defines the individual items within the popup menu. Listing 5-4 shows a code
sample using the menuItem tag.

Listing 5-4 The menuItem Tag

<menuItem>

 <param name="userId"/>

 <xmlHttp url="GetFirstNameServlet"/>

 <row class="menuRow" style="backround-color:red"/>

 <text class="menuText" style="color:#000000"/>

 <rowRollover class="menuRowRollover" style="background-color:green"/>

 <textRollover class="menuTextRollover" style="color:#FFFFFF"/>

</menuItem>

<menuItem>

 <javascript>

 <name>Testing</name>

 <script>testing(this);</script>

 </javascript>

</menuItem>

<menuItem default="true" showMenuItem="false">

 <param name="q" value="foo"/>

 <link url="http://www.google.com">

 <name>Google</name>

 </link>

</menuItem>

<menuItem>

 <showMenuItem className="com.foo.CheckUserRights" methodName=

 "doesUserHaveRights">

 <rights name="can_view"/>

 <rights name="can_edit"/>

 </showMenuItem>

 <allParams/>

 <action action="addEditLink" disableAsync="true">

 <i18nName bundleName="com.foo.LinksPopupMenu" key="edit.link"/>

Bui ld ing Po r t le ts

5-94 BEA WebLogic Portal Portlet Development Guide

 </action>

</menuItem>

<menuItem>

 <allParams/>

 <dcAction action="showFeedData" dcContainerId="feedDataContainer">

 <i18nName bundleName="com.foo.LinksPopupMenu" key="show.

 feedData"/>

 </dcAction>

</menuItem>

The menuItem tag defines the individual items within the popup menu with the following four
types:

The javascript Element – This element can be any JavaScript that you want to run when
the user clicks this menu item. To make this more useful, you can retrieve the values that
you specify in the param tag (see the code sample below) through custom parameters that
are added to the menu item. Following is a basic example of how to implement JavaScript.

...
 <activeMenus:activemenus display="Foo Link" type="link">
 <param name="linkId" value="${fooLink.id}"/>
 <param name="linkParent" value="${fooLink.parent}"/>
 </activeMenus:activemenus>
...

The next step is to define the custom JavaScript in your configuration file. The JavaScript
must pass in the code shown in Listing 5-5.

Listing 5-5 The activemenus-config.xml File

...

 <type name="link">

 <menuItem>

 <allParams/>

 <javascript>

 <name>Testing</name>

 <script>fooTest(this);</script>

 </javascript>

 </menuItem>

Advanced Por t l e t Deve l opment w i th Tag L ib rar i es

BEA WebLogic Portal Portlet Development Guide 5-95

 </type>

...

The last step in implementing the JavaScript element is to access the values in your
JavaScript function, as shown in the following code sample.

...
 <script>
 function fooTest(object)
 {
 var linkId = object.getAttribute("linkId");
 var linkParentName = object.getAttribute("linkParent");
 }
 </script>

 ...

The xmlHttp Element – The xmlHttp references a servlet (which must follow all standard
servlet configuration). Whatever the servlet outputs is shown in that row of the menu. If ""
or null is returned from the xmlHttp servlet, the menu item row does not appear in the
menu. The information is retrieved through an xmlHttp request, which allows the
information to be updated without refreshing the page. For example, you could show a
user’s online status that would update without having to make a full post. The two rules
that surround writing your servlet for this is that all the processing must happen in the
servlet's doPost() method. The second rule is that the defined parameters are passed in as
request parameters. Following is an example of getting the query parameters:
String userName = request.getHeader("linkId");

The link Element – This static URL opens a new browser window pointed to the defined
URL. This tag can take in either a name tag or an i18nName tag (defined below) that is
displayed within the menu itself. Any defined parameters are added to the end of the link
as regular request parameters.

The action Element – This action name must be available to the page or portlet that
contains the ActiveMenus tag. This element runs the action within the current browser, so
you can use forwards to control your page flow. This tag can take in a name tag or an
i18nName tag (defined below) that will appear within the menu itself. Any defined
parameters passed in are available on the request as parameters. Following is an example
of retrieving these values from a page flow:
String linkId = getRequest().getParameter("linkId");

Bui ld ing Po r t le ts

5-96 BEA WebLogic Portal Portlet Development Guide

You can also use an attribute called disableAsync within AJAX-enabled portlets. If you
want your menu item action to submit outside of the AJAX framework (so the page makes
a full post), set this attribute to true. By default, the attribute is set to false.

The dcAction Element – If you have a Dynamic Content container set up within your
page, you can set up a menu item to call an action and have it update the Dynamic Content
container. This works the same as an action menu item, and takes in the action name to
execute. The only difference is you must specify the dcContainerId and it must
correspond to a dcContainerId that is defined within a
<dc:executeContainerAction> tag on the page.

Other attributes and elements that you might use include the following:

– The showMenuItem Element – Add this element if you need to conditionally show the
menu item (for example, based on a set of rights for the current user). You define a
class name and a method name that determines if the menu item should be shown. You
can use multiple showMenuItem tags, each using different classes, methods, or rights.
If you use more than one tag, all cases must be satisfied in order for the menu item to
appear. For example, if the user passes nine of 10 cases, the menu item does not appear
because all cases were not passed. Listing 5-6 shows how you can use the
showMenuItem tag.

Listing 5-6 The CheckUserRights.java Class with the showMenuItem Tag

public class CheckUserRights

{

 public static boolean doesUserHaveRights(HttpServletRequest request,

 String[] rights)

 {

 for(int i=0;i<rights.length;i++)

 {

 if(!checkAccess(request, rights[i]))

 {

 return false;

 }

 }

 return true;

 }

 }

Advanced Por t l e t Deve l opment w i th Tag L ib rar i es

BEA WebLogic Portal Portlet Development Guide 5-97

– The default Attribute – When this attribute is used in a menuItem tag and set to
true, the display text anchor's href will be the link or action. Use this attribute when
you want a default action to occur when clicking the main link, and you also want to
display the action for consistency purposes. The default value for this attribute is
false.

– The showMenuItem Attribute – When this attribute is used in a menuItem tag and set
to false, the menu item does not appear in the ActiveMenu. Use this attribute when
you want a default action to occur when you click the main link, but you do not want to
display the action. The default value for this attribute is true.

Note: Do not wrap an ActiveMenus tag in an anchor tag because you can get undesired
results. Instead, use the default and showMenuItem attributes to control the
ActiveMenu display text link

– The allParams Element – This element specifies that all of the parameters defined on
the tag (see Using the ActiveMenus Tag) are set up on this menu item. If this element is
not used (and the param element is not used), then parameters are not set up on the
menu item.

– The param Element – This element sets the specified parameters on the menu item. The
param element has a name attribute that must match the name attribute on a param
element that is set within the ActiveMenu tag (see Using the ActiveMenus Tag). This
also has a value attribute that can be used to hard code a value at configuration time. If
this value attribute has been set, but a value was also specified at run-time (for
example, using the param tag within the ActiveMenu tag), the run-time value takes
precedence over the hard-coded value. Also, if just the hard-coded value is to be used,
the param tag does not have to be specified when you use the ActiveMenus tag.

– The name Element – This element displays only the static name defined within the tag
as the menu item.

– The i18nName Element – This element has both a bundleName attribute, which must
map to an available .properties file, and a key attribute. The bundleName attribute
uses the standard Java ResourceBundle convention. The key attribute defines the key to
grab within the specified bundle. The text that relates to this key within this bundle is
what appears in the menu item.

– The img Element – This element adds the specified image to the left column as an icon.
You must specify the path to the image file in relation to your web application.

Bui ld ing Po r t le ts

5-98 BEA WebLogic Portal Portlet Development Guide

– The bgImg Element – This element replaces the background image used in the left
column with the specified image. You must specify the path to the image file in relation
to your web application.

– The row Element – This element defines the CSS style or class that stylizes the row of
the menu item. For the class attribute to work correctly, the class must be defined on
the page (or the CSS file that defines the class must be imported).

– The text Element – This element defines the CSS style or class that stylizes the text of
the menu item. For the class attribute to work correctly, the class must be defined on
the page (or the CSS file that defines the class must be imported).

– The rowRollover Element – This element defines the CSS style or class that stylizes
the row of the menu item when it is rolled over. For the class attribute to work
correctly, you must define the class on the page (or the CSS file that defines the class
must be imported).

– The textRollover Element – This element defines the CSS style or class that stylizes
the text of the menu item when it is rolled over. For the class attribute to work
correctly, you must define the class on the page (or the CSS file that defines the class
must be imported).

Note: The TypeDefault and MenuItem tags must be contained within the type tag.

Using the ActiveMenus Tag
The taglib.tld file is located in the activemenus_taglib.jar file.

You can use the following attributes and elements with the ActiveMenus tag:

The display Attribute – This attribute defines what appears in place of the tag itself. If
you use the displayText attribute, this is the value that is passed to the method defined in
the displayText tag.

The type Attribute – This required attribute defines what is in the menu and must match a
type defined in the activemenus-config.xml file.

The href Attribute – This optional attribute can override the default anchor href for the
display text of the tag.

The newWindow Attribute – This optional href attribute specifies the link to open in a new
browser window. This is a Boolean attribute, and you set it to true or false.

The class Attribute – This optional attribute defines a CSS class for the display text.

Advanced Por t l e t Deve l opment w i th Tag L ib rar i es

BEA WebLogic Portal Portlet Development Guide 5-99

The style Attribute – This optional attribute defines a CSS style to place on the display
text.

The rightClick Attribute – This Boolean attribute turns the menu into a right-click menu,
rather than a rollover menu. The default is false. If this attribute is set to true, you
right-click the display text to bring up the menu. The menu appears under the mouse.

The escapeXml Attribute – This attribute is the same as escapeXml within the JSTL tags.
If you set it to true, characters are converted to their corresponding character entity codes.

The param Element – This element sets up parameters that can be passed in and used for
the different menu items. The following two attributes are both required:

– The name Attribute – This is the parameter name and must match the name attribute (if
used) when defining a menu item in the activemenus-config.xml file. The name
attribute also references the parameter within your menu item code. You can use a
runtime expression.

– The value Attribute – This is the parameter value, and you can use a runtime
expression.

Notes: If a class is specified on the tag, the default class specified in the
activemenus-config.xml file is overridden and the default style is not placed on the
activename. If a style is specified on the tag, the default class is placed on the
activename. If a class="" is specified on the tag, the default class is not placed on the
activename.

Enabling Drag and Drop
You can use the DragDrop JSP tag library to enable drag and drop functionality in a GroupSpace
Community, a custom Community, or a portal web application. You must identify draggable
objects that are displayed on a JSP, and identify drop zones that are configured to react to a
dropped draggable object. The drop zones react by triggering Page Flow actions, calling
JavaScript functions, or posting data to a servlet.

Perform the following actions before you use the DragDrop tag library:

Include the dragdrop_taglib.jar file in the web application’s CLASSPATH

Place the code shown in Figure 5-1 into your web.xml file

Bui ld ing Po r t le ts

5-100 BEA WebLogic Portal Portlet Development Guide

Figure 5-1 Code Entry in the web.xml File

<servlet>

 <servlet-name>DragDropResourceServlet</servlet-name>

 <servlet-class>com.bea.apps.communities.servlets.

 GetDragDropResourceServlet

</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>DragDropResourceServlet</servlet-name>

 <url-pattern>DragDropResourceServlet</url-pattern>

</servlet-mapping>

Using the DragDrop Tags
Three tags are defined in the DragDrop tag library. Following are descriptions of how each tag is
used, along with sample JSP code:

The dragDropScript Tag – This tag includes the necessary DragDrop JavaScript libraries
in the page. The logic embedded into the tag ensures that these libraries are included only
once per request.

The draggableResource Tag – This tag identifies a draggable resource on the page.

The resourceDropZone Tag – This tag identifies an area on the page that reacts when a
draggable resource is dropped.

Using the dragDropScript Tag
You must include the dragDropScript tag before you use any other DragDrop tags on the page.
This tag ensures that the appropriate JavaScript libraries are included. The dragDropScript tag
does not take any attributes.

The following example shows how to use the dragDropScript tag:
<dragdrop:dragDropScript/>.

Using the draggableResource Tag
The draggableResource tag specifies a draggable resource on the page. The tag takes the
following attributes:

Advanced Por t l e t Deve l opment w i th Tag L ib rar i es

BEA WebLogic Portal Portlet Development Guide 5-101

The resourceId Attribute – The unique identifier of the resource that is being dragged.
This identifier should be an ID that can be used by the underlying business logic to
uniquely identify the resource.

The resourceName Attribute – The representative name of the resource being dragged.

The draggableResource tag performs a search for a child img tag that has a dragdrop:image
attribute. This image becomes the image that is displayed while performing the drag operation.
The image must have an absolute height and width attribute.

The resourceId value is accessible through the JavaScript function getSourceId(), when the
value is dropped onto a resourceDropZone. The resourceId value is also available as a
parameter in the request named sourceId, when it is dropped onto a resourceDropZone that
triggers a POST action. See Listing 5-7.

Listing 5-7 The sourceId Request Dropped onto a resourceDropZone

<dragdrop:draggableResource imageId="0" resourceId="${id}"resourceName=

 "${name}">

 ${name}

</dragdrop:draggableResource>

Using the resourceDropZone Tag
The resourceDropZone tag identifies an area where draggable resources can be dropped.

The tag takes the following attributes:

The targetId Attribute – The unique identifier of the drop zone object. This identifier can
be an ID that can be used by the underlying business logic to uniquely identify which
object received the drop action.

The jsFunctionCall Attribute – A JavaScript function that executes when a
draggableResource is dropped on this resourceDropZone.

The pageFlowAction Attribute – A valid Page Flow action that is initiated when a
draggableResource is dropped on this resourceDropZone.

The formAction Attribute – A valid JSP or servlet that receives a POST action when a
draggableResource is dropped on this resourceDropZone.

Bui ld ing Po r t le ts

5-102 BEA WebLogic Portal Portlet Development Guide

Only one of the following attributes is required: jsFunctionCall, pageFlowAction, or
formAction. The jsFunctionCall takes precedence, then pageFlowAction, and finally
formAction.

The targetId value is accessible through the JavaScript function getTargetId() when a
draggable resource is dropped. It is also available as a parameter in the targetId request when
a draggable resource is dropped that triggers a POST action. The following code shows how this
works:

<dragdrop:resourceDropZone targetId="${id}" pageFlowAction="moveIssue">

 Issues Folder

</dragdrop:resourceDropZone>

Listing 5-8 demonstrates how the moveIssue action can be coded in a file called
IssuesPageFlowController.java.

Listing 5-8 Coding the moveIssue Action

@Jpf.Action(forwards={ @Jpf.Forward(name = "success", path =

 "displayIssuesTree.do")})

 protected Forward moveIssue() {

 Forward forward = new Forward("success");

 String sourceId = getRequest().getParameter("sourceId");

 String targetId = getRequest().getParameter("targetId");

 move(sourceId, targetId);

 return forward;

 }

Enabling Dynamic Content
You can use the DynamicContent tag library to quickly update parts of a JSP page in a
GroupSpace Community, a custom Community, or a portal web application.

The DynamicContent tags let you use an AJAX request to update part of a JSP page within a
Page Flow-based portlet. The tags allow parts of the page to be updated without performing a full
portal request. These AJAX requests are smaller and faster than full portal requests, and therefore
provide a more responsive user experience when interacting with a portal application.

These tags are easy to incorporate into standard Page Flow-based portlet development and can
help create advanced user interface features that improve a user’s portal experience.

Advanced Por t l e t Deve l opment w i th Tag L ib rar i es

BEA WebLogic Portal Portlet Development Guide 5-103

Note: The DynamicContent tags are not related to Asynchronous Portlet Content Rendering.
Asynchronous portlets allow for the entire portlet content to be rendered independently
of the portal. The DynamicContent tags are designed to affect small parts of a JSP page
within a portlet.

Understanding the DynamicContent Tags
This section describes the main tags in the DynamicContent tag library.

The Container Tag
The Container tag designates a place on the JSP page that contains the HTML output from the
execution of a Page Flow action. The only required attribute for this tag is a container id. This id
is referenced by other DynamicContent tags to identify the container. The following code shows
how this tag is used: <dc:container dcContainerId="outputContainer"/>.

The Container Action Script Tag
This tag is a child of the Container tag and identifies a Page Flow action that can be executed
and whose HTML output is placed inside the parent container. The containerActionScript
tag takes the following attributes:

The action attribute – The Page Flow action name.

The initial attribute – Designates an action in the container as the initial action. This is
the action that initially populates the container.

The async attribute – Specifies if the action is performed synchronously or
asynchronously. The default is synchronous.

 The onErrorCallback Attribute – A user-defined JavaScript function that is called if a
client-side error occurs during the AJAX request creation and processing.

Only the action attribute is required. The following code sample shows how this tag is used in
the parent Container tag:

<dc:container dcContainerId="outputContainer">

 <dc:containerActionScript action="resetDynamicContentContainer"

 initial="true"/>

 <dc:containerActionScript action="showServerTime"/>

<dc:container/>

Bui ld ing Po r t le ts

5-104 BEA WebLogic Portal Portlet Development Guide

The Execute Container Action Tag
The Execute Container Action tag is used to create a call to a specific action inside a container.
This tag takes the following attributes:

The dcContainerId attribute – The id of the container in which the action is defined.

The action attribute – The Page Flow action name.

The async attribute – This specifies if the action is performed synchronously or
asynchronously. The default is synchronous.

The var attribute – A request attribute variable that holds a reference to the action
JavaScript call.

The dcContainerId and action attributes are required. Following is a sample of how this tag
is used:
<dc:executeContainerAction action="showServerTime" dcContainerId=
 "outputContainer"
 var="showServerTimeVar"/>

In the previous example, the call to the specified action is stored in the variable
showServerTimeVar. This variable can then be referenced, as shown in the following HTML
code:

<form>

 <input type="button" onclick="${showServerTimeVar}" value="Show Server

 Time"/>

</form>

When the user clicks a button, an AJAX request is created that executes the showServerTime
action and places the HTML output generated by that action into the container with the id of
outputContainer.

The Parameter Tags
The DynamicContent tags also include tags for parameters that are passed into the action
through the request. You can define parameters within the executeContainerAction tag or the
containerActionScript tag. These parameters are then accessible in the Page Flow action by
calling the request.getParameter() method.

Advanced Por t l e t Deve l opment w i th Tag L ib rar i es

BEA WebLogic Portal Portlet Development Guide 5-105

Using the DynamicContent Tags
Some critical limitations are associated with the DynamicContent tags. The AJAX requests used
to trigger the Page Flow actions are not processed through the main portal servlet. These requests
go through a special servlet that performs some processing to ensure that the proper Page Flow
instance is used. Many key elements that are normally available in the request are not accessible
from these AJAX requests. For example, in Community-based portal applications, the
CommunityContext object is not accessible from the AJAX request. The lack of access to some
of these framework elements could have an impact on things like entitlements and security.

Because of these limitations, the DynamicContent tags are best suited for specific uses that
involve small amounts of processing, with few dependencies on larger framework services. The
following use cases could benefit from the DynamicContent tags:

Update a small location on a JSP page to display frequently updated data obtained through
periodic client-side polling. For example, you could notify users of unread mail or display
the number of users logged onto a system.

Use the tags as a pagination mechanism for tabled data presented across multiple pages.

Send multiple requests to the server to obtain successive images to navigate through a
series of images in a photo gallery. The DynamicContent tags provide a tool to avoid an
expensive portal request to view each photo.

Obtain remote data, such as stock quotes or weather information from remote sites. The
obtained data can be displayed in a designated area on the page without updating other
parts of the page.

See dev2dev for sample code and utilities contained in the sample.zip file.

message URL https://codesamples.projects.dev2dev.bea.com/servlets/Scarab/remcurreport/true/template/ViewIssue.vm/id/S287/eventsubmit_dosetissueview/foo/resultpos/2/nbrresults/50/action/ViewIssue/tab/2/readonly/false

Bui ld ing Po r t le ts

5-106 BEA WebLogic Portal Portlet Development Guide

BEA WebLogic Portal Portlet Development Guide 6-1

C H A P T E R 6

Optimizing Portlet Performance

The process of optimizing your portlets for the best possible performance spans all phases of
development. You should continually monitor performance and make appropriate adjustments.

This chapter describes performance optimizations that you can incorporate as you develop
portlets.

This chapter contains the following sections:

Performance-Related Portlet Properties

Portlet Caching

Remote Portlets

Portlet Forking

Asynchronous Portlet Content Rendering

Performance-Related Portlet Properties
Customizing performance-related portlet properties can help you improve performance. For
example, you can set process-expensive portlets to pre-render or render in a multi-threaded
(forkable) environment. If a portlet has been designed as forkable (multi-threaded) you have the
option of adjusting that setting when building your portal.

The following portlet properties are performance related:

Render Cacheable/Cache Expires

Opt imiz ing Por t l e t Pe r fo rmance

6-2 BEA WebLogic Portal Portlet Development Guide

Forkable/Fork Render/Fork Render Timeout

Fork Pre-Render/Fork Pre-Render Timeout

AsyncContent

“Portlet Properties” on page 5-32 includes descriptions of these properties. If you design your
portlets to allow portal administrators to adjust cache settings and rendering options, you can
modify those properties in the Administration Console.

Portlet Caching
You can cache the portlet within a session instead of retrieving it each time it recurs during a
session (on different pages, for example). Portlets that call web services perform frequent,
expensive processing; caching web service portlets greatly enhances performance. Portlet
caching is well-suited to caching personalized content; however, it is not well suited to caching
static content that is presented identically to all users and that rarely expires.

The ideal use case of the portlet cache is for content that is personalized for each user and expires
often. In other situations, it might be more beneficial to use other caching alternatives such as
using the wl:cache tag or the portal cache.

For a detailed examination of the Render Cacheable property and a discussion of when you
should or should not use it, refer to the dev2dev article Portlet Caching by Gerald Nunn, available
at http://dev2dev.bea.com/pub/a/2005/01/portlet_caching.html.

Remote Portlets
Remote portlets are made possible by Web Services for Remote Portlets (WSRP), a web services
standard that allows you to “plug-and-play” visual, user-facing web services with portals or other
intermediary web applications. WSRP allows you to consume applications from
WSRP-compliant Producers, even those far removed from your enterprise, and surface them in
your portal.

While there might be a performance boost related to the use of remote portlets, it is unlikely that
you would implement them for this reason. The major performance benefit of remote portlets is
that any portal framework controls within the application (portlet) that you are retrieving are
rendered by the producer and not by your portal. The expense of calling the control life cycle
methods is borne by resources not associated with your portal.

Implementations using remote portlets also have limitations; for example:

http://dev2dev.bea.com/pub/a/2005/01/portlet_caching.html

Po r t l e t Fo rk ing

BEA WebLogic Portal Portlet Development Guide 6-3

Fetching data from the producer can be expensive. You need to decide if that expense is
within reason given the resources locally available.

Some features, such as customizations, are unavailable to the remote portlet.

If the expense of portal rendering sufficiently offsets the expense of transport and the other
limitations described above are inconsequential to your application, using remote portlets can
provide some performance boost to your portal.

For more information on implementing remote portlets with WSRP, refer to the Federated
Portals Guide.

Portlet Forking
Portlet forking allows portlets to be processed on multiple threads. Depending on the available
server resources, this means that the portal page will refresh more quickly than if all portlets were
processed sequentially. Forking is supported for JSP, Page Flow, Java, and WSRP portlets
(consumer portlets only).

Note: Although using this feature might reduce the response time to the user in most situations,
on a heavily loaded system it can actually decrease overall throughput as more threads
are being used on the server/JVM for each request—adding to contention for shared
resources.

This section includes these topics:

Configuring Portlets for Forking

Architectural Details of Forked Portlets

Best Practices for Developing Forked Portlets

Configuring Portlets for Forking
Forking is easy to enable – you just set properties using the portlet Properties editor in WorkSpace
Studio, as shown in Figure 6-1. The available forking properties are described in this section. For
detailed information on the Portlet Properties editor, see “Portlet Properties” on page 5-36.

../federation/index.html
../federation/index.html

Opt imiz ing Por t l e t Pe r fo rmance

6-4 BEA WebLogic Portal Portlet Development Guide

Figure 6-1 Forking Properties

Table 6-1 Portlet Forking Properties

Property Value

Forkable This property must be set to true if you want the portlet to be forked. This
property identifies the portlet as safe to run forked. If this attribute is false (the
default), the portlet will not be forked regardless of the settings of the other two
forking properties. See “Best Practices for Developing Forked Portlets” on
page 6-10 for tips on developing forked portlets.

When set to true, a portal administrator can use the Run the Portlet in a
Separate Thread property. If set to false, that property is not available to
administrators. See the Portal Development Guide for information on using the
Administration Console to edit portlet properties.

Fork Pre-Render Enables forking (multi-threading) in the pre-render life cycle phase. For an
overview of the portal life cycle, see “Architectural Details of Forked Portlets”
on page 6-6. See also “How the Control Tree Affects Performance” in the Portal
Development Guide for more information about the control tree life cycle.

Setting Fork Pre-Render to true indicates that the portlet’s pre-render phase
should be forked. See “Dispatching Pre-Render Forked Portlets to Threads” on
page 6-9 for more information on the pre-render phase.

../portals/index.html
../portals/index.html
../portals/index.html

Po r t l e t Fo rk ing

BEA WebLogic Portal Portlet Development Guide 6-5

The forking properties, if set, appear as XML elements a .portlet file. Listing 6-1 shows a sample
of a portlet configured for both pre-render and render forking:

Listing 6-1 Forking Properties Set in a .portlet File

<netuix:portlet title="Forked Portlet"

definitionLabel="forkedPortlet1"

forkable="true"

forkPreRender="true"

forkRender="true">

<netuix:content>

<netuix:jspContent contentUri="/portlets/forked.jsp"

Fork Pre-Render
Timeout (seconds)

If Fork Pre-Render is set to true, you can set an integer timeout value, in
seconds, to indicate that the portal framework should wait only as long as the
timeout value for each fork pre-render phase. The default value is -1 (no
timeout). If the time to execute the forked pre-render phase exceeds the timeout
value, the portlet itself times out (that is, the remaining life cycle phases for this
portlet are cancelled), the portlet is removed from the page where it was to be
displayed, and an error level message is logged that looks something like the
following example.
<May 26, 2005 2:04:05 PM MDT> <Error> <netuix>
<BEA-423350> <Forked render timed out for portlet
with id [t_portlet_1_1]. Portlet will not be included in
response.>

Fork Render Setting to true tells the framework that it should attempt to multi-thread render
the portlet. This property can be set to true only if the Forkable property is set
to true. See “Dispatching Render Forked Portlets to Threads” on page 6-9 for
more information on the render phase.

Fork Render Timeout
(seconds)

If Fork Render is set to true, you can set an integer timeout value, in seconds,
to indicate that the portal framework should wait only as long as the timeout
value for each fork render portlet. The default value is -1 (no timeout). When a
portlet rendering times out, an error is logged, but no markup is inserted into the
response for the timed-out portlet.

Selecting a value of 0 or -1 removes the timeout attribute from the portlet; use
this value if you want to revert to the framework default setting for this attribute.

Property Value

Opt imiz ing Por t l e t Pe r fo rmance

6-6 BEA WebLogic Portal Portlet Development Guide

backingFile="backing.PreRenderBacking"/>

</netuix:content>

</netuix:portlet>

Architectural Details of Forked Portlets
Generally, forking is easy to understand and to enable. However, with a deeper understanding of
how forking works, you can avoid potential problems and unwanted side effects. This section
discusses the architectural design of forked portlets. For specific implementation tips, see “Best
Practices for Developing Forked Portlets” on page 6-10.

This section includes these topics:

Understanding Request Latency and the Portal Life Cycle

Queuing and Dispatching Forked Portlets for Processing

Threading Details and Coordination

Forking Versus Asynchronous Rendering

Understanding Request Latency and the Portal Life Cycle
For most requests to the portal, the total time to process the request, or request latency, is roughly
related to the time needed to run through the portal life cycle phases successively for all the
portlets. Each life cycle phase is performed by walking through a tree of objects, called the
control tree, that make up the portal. Each phase is essentially a depth-first walk over the tree,
where the root of the tree is the desktop, and the leaves of the tree are the books, pages, portlets,
and other so-called controls. Figure 6-2 illustrates the general structure of a portal control tree.

Po r t l e t Fo rk ing

BEA WebLogic Portal Portlet Development Guide 6-7

Figure 6-2 Simple Portal Schematic Example

Figure 6-3 illustrates the successive phases of the portal rendering life cycle. During the first
traversal of the control tree, the init() method is called on each control. On the second traversal,
loadState() is called, and so on, until every control is processed.

Typically, portlet processing time is dominated by the execution of business logic, especially if
the portlets must access remote resources such as databases or web services, or if they are
computationally intensive. Forking allows you to parallelize some of these longer running portlet
operations to decrease the overall request latency. If forking is enabled, these operations are
collected in a queue and dispatched to multiple threads for processing. Depending on your
server’s resource availability, forking can theoretically reduce request latency to the maximum
latency of any of the forked portlets.

Opt imiz ing Por t l e t Pe r fo rmance

6-8 BEA WebLogic Portal Portlet Development Guide

Figure 6-3 Flow of Portal Life Cycle Methods

Queuing and Dispatching Forked Portlets for Processing
During the pre-render phase of the portal life cycle, all portal controls are iterated and
pre-rendering operations are executed. Any portlets that are marked for either pre-render or
render forking are identified during this pass and, if they are marked for forking, they are placed
in separate queues: a pre-render queue and a render queue. (See “Configuring Portlets for
Forking” on page 6-3 for details on how to mark portlets for pre-render and render forking.)

init()

loadState()

handlePostBackData()

raiseChangeEvents()

preRender()

saveState()

render()

dispose()

if _nfpb=true

If handlePostBackData() = false

if handlePostBack-
Data() = true

Po r t l e t Fo rk ing

BEA WebLogic Portal Portlet Development Guide 6-9

At the appropriate times, these queues are dispatched to threads and processed, as explained in
the following sections. See also “Threading Details and Coordination” on page 6-9.

Dispatching Pre-Render Forked Portlets to Threads
In the pre-render phase of the portal life cycle, portlets typically perform business logic, typically
by handling postback data or by calling a backing file method, such as the
AbstractJSPBacking.preRender() method.

During normal pre-render processing of the portal, any portlet that is marked for pre-render
forking is placed into a queue and the pre-render processing is skipped. After the entire pre-render
phase has been performed, the queue is inspected. If it is not empty, the queue is dispatched and
the portlets in the queue are assigned to a worker thread. After the queue is fully dispatched, the
main portal thread waits until either all the worker threads are completed or timed out.

Dispatching Render Forked Portlets to Threads
In some cases, business logic is performed during the render phase of the portal life cycle,
typically when JSP scriptlets are used.

Before running through the render life cycle, the render queue is examined. If it is not empty, the
queue is dispatched and any portlets in the queue are assigned to worker threads. As with
pre-render forking, the main portal thread waits until all of the render threads are either completed
or timed out. The resulting buffered response from each thread is saved for each completed forked
portlet. At this point, the actual render life cycle phase is run. When a portlet is encountered that
was marked for forking, the render processing is skipped and the saved buffered response data
for the portlet is written to into the response.

Some types of portlets, notably Struts or Page Flow portlets, provide a mapping between the
underlying application technology and the portal life cycle model. Usually in these cases, actions
are provided to handle business logic during the handle postback or pre-render phases of the life
cycle.

Threading Details and Coordination
The worker threads used by the forking feature are implemented as WLS WorkManager classes.
WebLogic Portal does not directly allocate any threads; rather, a WorkManager is identified by
its JNDI name. If found, the WorkManager is used to dispatch the worker threads (Work
instances). The default WorkManager for dispatching forked portlets is called
wm/forkedRenderQueueWorkManager, with a default called wm/Default. If you need to
customize the WorkManager for any reason, you can specify an alternate instance through the

Opt imiz ing Por t l e t Pe r fo rmance

6-10 BEA WebLogic Portal Portlet Development Guide

weblogic.xml or weblogic-config.xml file by associating the alternate instance with the JNDI
name wm/forkedRenderQueueWorkManager. See also “Consider Thread Safety” on page 6-11.

The framework uses a ForkedLifecycleContext object to coordinate between the mainline life
cycle thread and the forked Worker instances. During initialization of a Worker, the
ForkedLifecycleContext is created and registered with the forking dispatch queue. When the
Work instance has completed, the ForkedLifecycleContext is set to completed and the waiting
mainline thread is notified. Alternately, if the waiting mainline thread determines that the forked
Work instance is taking too long and should be timed out, the ForkedLifecycleContext is marked
as timed out and the Work instance is removed from the dispatch queue. Note that in this case,
the Work item is not aborted, and will keep running until the portlet code being run for either the
pre-render or render phase is completed. You can obtain the current ForkedPreRenderContext or
ForkedRenderContext using a utility method on those classes from the request. You can then
check if a timeout has been set to detect cases where the Worker thread was timed out by the
portal framework and should be aborted.

Forking Versus Asynchronous Rendering
Regardless of whether or not you use render forking, the portal does not render until all portlets
complete rendering. If you want portlets to render individually, you can use asynchronous portlet
rendering.

Asynchronous portlet content rendering refers to page processing that occurs on the client
browser; multiple threads are spawned, using AJAX or IFRAME technology. Asynchronous
portlet rendering allows the contents of a portlet to render independently from the surrounding
portal page. This can provide a significant performance boost; for example, when a portal visitor
works within a portlet, only that individual portlet needs to be redrawn.

WARNING: Using forked rendering with asynchronous portlet content rendering is
unnecessary, is not recommended, and could result in unexpected behavior.

For details on asynchronous rendering, see “Asynchronous Portlet Content Rendering” on
page 6-13. For a comparison of portlet forking and asynchronous rendering, see “Comparison of
Asynchronous and Conventional or Forked Rendering” on page 6-17.

Best Practices for Developing Forked Portlets
This section discusses three primary issues you need to consider when developing forked portlets:
thread safety, runtime environment, and interportlet communication issues.

Po r t l e t Fo rk ing

BEA WebLogic Portal Portlet Development Guide 6-11

Consider Thread Safety
Although the portal framework handles thread safety issues that affect the framework itself, any
code you write that is intended to be used in forked portlets should be written in a threadsafe
manner.

Only mark thread-safe portlets as forkable. This helps to ensure that administrators do not
incorrectly enable forking for portlets that were not written with thread safety in mind.

Cautiously evaluate interactions between your code and portal framework constructs. For
example, do not unwrap the request and response objects. They are used specifically to
isolate the request and response. For certain types of portlets, particularly Page Flow and
Struts portlets, an additional wrapper is put in place, so one level of unwrap may work, but
unwrapping to the root request or response will cause threading issues.

Avoid using portal-managed objects, such as the request and response, for your own code
synchronization. These objects are used by the portal framework for synchronization. If
you use them for that purpose, out of order lock acquisition and deadlocks can occur.

Consider the Runtime Environment for Forked Portlets
When designing forked portlets, try to maximize their independence from other constructs in the
portal (such as BackingContext) and from other portlets. Such dependencies create problems for
forked portlets because forked portlets are inherently isolated from the runtime environment.

Isolation of Forked Portlets from the Runtime Environment
The primary difference between the runtime environment for forked portlets and non-forked
portlets is in their level of isolation. This difference occurs because of the way that forked portlets
are collected and dispatched outside of the life cycle execution for the main portal control tree.

Each life cycle iteration of the control tree results in a life cycle method being called for that
control. In this way, each control has the opportunity to perform life cycle specific business logic.
Additionally, each life cycle method invocation involves both a begin and end operation, which
enables setup and teardown for controls that require such functionality.

Enabling preRender or render forking moves the execution of a portlet’s life cycle processing
from occurring within the main portal control tree walk to outside of it. The main side effects of
this are:

The forked portlet is essentially isolated from any stateful setup that its placement in the
control tree provided.

Opt imiz ing Por t l e t Pe r fo rmance

6-12 BEA WebLogic Portal Portlet Development Guide

Forked portlets are executed out of order, both in terms of other nodes in the control tree
and even amongst other sibling portlets. For the preRender phase, controls deeper in
depth-first order will be executed ahead of forkPrerender portlets. For the render phase, all
forkRender portlets will be executed before any other control in the tree processes its
render phase.

As a developer of forked portlets, be aware that code meant to be executed in a forked portlet
should be as stand-alone as possible. Avoid relying on interaction with other portlets, other
controls higher in the control tree, or state provided by other controls in the control tree.

Do not rely on any processing done during the same life cycle in other portlets, because forking
a portlet both takes it out of order with respect to control tree execution and applies an arbitrary
ordering among forked portlets in the dispatch queue.

BackingContext and Pre-Render Forked Portlets
For preRender forked portlets, one of the main areas of concern for forked portlets is the
BackingContext framework. This framework is managed in part by a stack-based implementation
involving the request, which depends on Backable controls in the control tree to push and pop
their BackingContext instances onto and off of the request. All of these activities happen during
the pre-render life cycle phase. When writing a portlet that expects a particular BackingContext
stack environment, problems can occur with Fork Pre-Render mode. Any access to
BackingContexts through the request will result in that BackingContext not being available while
forked.

To work around this BackingContext issue, you can use non-contextual methods to obtain
BackingContexts for other presentation controls in the control tree, but these generally involve
explicit walking of the context tree, and some contexts may be unavailable because the context
in question has already been cleaned up by the control that manages it in preRender.

Use Caution with Interportlet Communication and Forked Portlets
Interportlet communication (IPC) is another area of concern for forked portlets. Again, the more
you can isolate a portlet’s logic, the more successfully it will run in a forked environment.

IPC is performed in several different life cycles. When an IPC scenario is enabled that results in
an IPC call initiated during preRender, and a portlet is also enabled for forking, that IPC will not
be performed, since the actual dispatch of the IPC event queue happens immediately following
the main execution of preRender() over the control tree. This is of primary concern to portlets that
raise IPC events in a backing file preRender() method, from a Page Flow, a Struts begin action,
or from a JSF beginning view root.

Asynchronous Po r t l e t Content Render ing

BEA WebLogic Portal Portlet Development Guide 6-13

Asynchronous Portlet Content Rendering
Asynchronous portlet rendering allows you to render the content of a portlet independently from
the surrounding portal page. This can provide a huge performance boost; for example, when a
portal visitor works within a portlet, only that individual portlet needs to be redrawn.

You can use either AJAX technology or IFRAME technology to implement asynchronous
rendering. When using asynchronous portlet rendering, a portlet renders in two phases. The
normal portal page request process occurs first; during this process, the portlet's non-content
areas, such as the title bar, are rendered. Rather than rendering the actual portlet content, a
placeholder for the content is rendered. A subsequent request process displays the portlet content.

This section contains the following topics:

Implementing Asynchronous Portlet Content Rendering

Considerations for IFRAME-based Asynchronous Rendering

Considerations for AJAX-based Asynchronous Rendering

Comparison of IFRAME- and AJAX-based Asynchronous Rendering

Comparison of Asynchronous and Conventional or Forked Rendering

Asynchronous Content Rendering and IPC

Implementing Asynchronous Portlet Content Rendering
A new portlet property asyncContent in the Properties view allows you to specify whether to
use asynchronous rendering, and to select which technology to use. An editable dropdown menu
provides the selections none, ajax, and iframe. If you want to create a customized
implementation of asynchronous rendering, you can do so by editing the .portlet file to set this
up; more information about this task will be available in a dev2dev article in the future.

Portlet files that do not contain the asyncContent attribute appear with the initial value none
displayed in the Properties view. Any changes to the setting are saved to the .portlet file.

Note: Although Browser portlets use an internal implementation that appears similar to that of
an asynchronous portlet and both portlet types use IFRAME HTML elements, the actual
implementations are quite different. Browser portlets are merely displaying static
embedded documents, but asynchronous IFRAME portlets are managed by the
framework.

Opt imiz ing Por t l e t Pe r fo rmance

6-14 BEA WebLogic Portal Portlet Development Guide

Keep the following global considerations in mind for any asynchronous rendering
implementation:

As a best practice, do not depend on the built-in navigation features (Back and Forward
buttons) of a browser. Build navigation into your portlets so that navigation is handled at
that level of interaction.

If navigation is handled by the browser, the behavior of a portlet will vary according to the
type of asynchronous rendering technology used, and this inconsistency can be confusing
to the end user. For example, with IFRAME technology each portlet interaction is tracked,
but this interaction does not update the “view” from the server’s perspective; if the user
clicks the Back button, the server takes the user to a state preceding the interaction with the
portlet.

The initial (completion of) page load for an asynchronously rendered portlet page will be
longer because, for example, loading a page containing five asynchronous portlets entails
six requests to the server. However, because the portal page begins to load quickly, the user
might perceive a faster load time even if the completion takes more time overall.

You should pre-define portlet sizes using Look & Feel settings; otherwise, as the page
loads, the portlets might resize several times as they adjust to their arrangement on the
page.

Portlet backing files are run twice: once for the outer (portal) request and another for the
inner (content) request. You can use the set of framework APIs in the
PortletBackingContext class to distinguish between these two requests; for more
information, refer to the Javadoc information for these APIs:

com.bea.netuix.servlets.controls.portlet.PortletPresentationContext.isAsyncContent()
com.bea.netuix.servlets.controls.portlet.PortletPresentationContext.isContentOnly()
com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext.isAsyncContent()
com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext.isContentOnly()

Asynchronous portlet rendering can be used with control tree optimization. Most of the
best practices for control tree optimization also apply to the design of asynchronous
rendering. For more information on control tree optimization, refer to the Portal
Development Guide.

Interportlet communication is not supported when asynchronous content rendering is
enabled; however, you can temporarily disable asynchronous rendering in specific
situations if needed. For details, refer to “Asynchronous Content Rendering and IPC” on
page 6-19.

../portals/index.html
../portals/index.html

Asynchronous Po r t l e t Content Render ing

BEA WebLogic Portal Portlet Development Guide 6-15

HTTP redirects are not supported when asynchronous content rendering is enabled;
however, you can temporarily disable asynchronous rendering using the same mechanisms
as those described in “Asynchronous Content Rendering and IPC” on page 6-19.

Using forked pre-rendering or forked rendering in an asynchronous portlet is unnecessary
and in any case is not recommended, and although this is not an error condition, it could
result in unexpected behavior.

Using PostbackURLs (not derived types) within an asynchronous portlet (or a floated
portlet) causes the portlet to lose various aspects of its state, including the results of render
caching. Additionally, multiple instances of such portlets will begin to share state. To avoid
this issue, you can use one of these workarounds:

– Use alternative mechanisms for generating URLs more appropriate to the portlet type,
such as <render:jspContentUrl> or <netui:anchor>.

– Add GenericURL.WINDOW_LABEL_PARAM directly to the PostbackURL with the value
returned from PortletPresentationContext.getLabel() or
PortletBackingContext.getLabel().

WebLogic Portal allows portlets to change the current window state or mode of a portlet
either programmatically, or using parameters added to URLs. When you enable
asynchronous rendering for a portlet, these mechanisms will not provide a consistent view
to the end user; for example, the title bar rendered above the portlet will not immediately
reflect the change in the mode or state.

In addition to the issues described in “Asynchronous Content Rendering and IPC” on
page 6-19, you must carefully consider the implications whenever a portlet tries to
communicate with the portal (or the portal communicates with the portlet). For example,
suppose a portlet or JSP places data in the request for the doobie portlet to process; if
portlet doobie is asynchronous, it is running on a different request and will never see the
data. Because of this behavior, there will be cases when you should not use asynchronous
portlets in your implementation.

Thread Safety and Asynchronous Rendering
If you use asynchronous portlet content rendering, be sure that your code (for example, in backing
files) is thread safe. The portal framework handles the major issues outside of a developer's
control, such as concurrent access to the request and response; and it manages coordination of
issues such as waiting for all async operations to finish and assembling the results in the correct
order. But the portlet developer has the responsibility for ensuring that the user code is thread
safe.

Opt imiz ing Por t l e t Pe r fo rmance

6-16 BEA WebLogic Portal Portlet Development Guide

This consideration also applies to parallel (forked) portlet processing.

Considerations for IFRAME-based Asynchronous Rendering
Some special considerations associated with IFRAME-based asynchronous rendering include:

IFRAME rendering varies depending on the browser. Making an IFRAME implementation
seamless to an end user involves several factors, such as proper skin/skeleton development
conventions, cross-browser development, and so on.

If the content is larger than the IFRAME region, horizontal and/or vertical scrolling will be
enabled. Be careful of content which itself contains scrolling regions, as it can be difficult
to manipulate all scrolling regions to view all embedded content.

IFRAME rendering might complicate other aspects of portal development, such as
cross-portlet drag and drop, which is used in the GroupSpace sample application.

IFRAME rendering works whether or not Javascript is enabled.

You can disable asynchronous portlet content rendering for certain operations by using the
<render:context> tag or the AsyncContentContext class as described in “Disabling
Asynchronous Rendering for a Single Interaction” on page 6-19; however, these
mechanisms do not work correctly when IFRAME-based asynchronous rendering is used.
To avoid this issue, turn off asynchronous rendering or use AJAX-based asynchronous
rendering.

Considerations for AJAX-based Asynchronous Rendering
Some special considerations associated with Asynchronous JavaScript and XML (AJAX)-based
asynchronous rendering include:

AJAX technology relies on Javascript. If users disable Javascript in their browser,
AJAX-based portlets will be broken (the content will never render).

This mechanism might not be compatible with other AJAX mechanisms, such as those that
might typically be used by content authors to dynamically populate forms, for example.
Generally speaking, a best practice is to either let WebLogic Portal manage AJAX at the
portal level, or turn off AJAX for a portlet if you intend to incorporate AJAX behaviors
into your portlet.

The current AJAX implementation does not support XHTML. The implementation
performs DOM operations that are known not to work in some browsers when using an

Asynchronous Po r t l e t Content Render ing

BEA WebLogic Portal Portlet Development Guide 6-17

XHTML content type. This problem arises when a Look & Feel skeleton is configured to
use an XHTML content type.You can avoid this problem by doing one of two things:

– Use an HTML content type for the portal

– Use the IFRAME-based implementation of async portlet rendering

Comparison of IFRAME- and AJAX-based Asynchronous
Rendering
Table 6-2 summarizes the advantages and disadvantages of IFRAME- and AJAX-based
asynchronous rendering. BEA recommends AJAX as a more robust implementation.

Comparison of Asynchronous and Conventional or Forked
Rendering
The following table compares some of the behavior and features of conventional or forked
rendering and asynchronous portlet content rendering.

Table 6-2 IFRAME-based and AJAX-based Asynchronous Portlet Summary Table

Type Advantages Disadvantages

IFRAME Works with Javascript enabled or
disabled
Support for embedded media
(non-HTML) files
Supports XHTML.

Generally perceived as providing a less
intuitive user experience

Can complicate more full-featured portlet
development tasks, such as cross-portlet
drag and drop

AJAX Generally perceived as providing a more
intuitive user experience

Provides a single document for
full-featured portlet development tasks,
such as cross-portlet drag and drop

Provides better Look & Feel integration

Works only with Javascript enabled
Does not currently support XHTML

Opt imiz ing Por t l e t Pe r fo rmance

6-18 BEA WebLogic Portal Portlet Development Guide

Portal Life Cycle Considerations with Asynchronous
Content Rendering
This section provides more information about life cycle and control tree implications associated
with using asynchronous content rendering.

For the initial request for a portal page, backing files attached to the portlet will run in the context
of a full portal control tree. However, portlet content—such as page flows, managed beans, JSP
pages, and so on—will not run for this initial request.

The values for the above-referenced APIs will be:

Table 6-3 Comparison of Behaviors - Forked/Conventional Rendering and Asynchronous Rendering

Behavior/Feature Forked or Conventional Rendering Asynchronous Rendering

Completed
rendering of page

Page does not render until all
portlet processing is complete

Page, and portlet frames, render
immediately; individual portlet content
renders as processing completes

HTML page No changes between conventional
rendering and forked rendering

Page uses AJAX or IFRAME for
rendering.

Rendering
requests

Requires only one request. Requires n + 1 requests
(where n is the number of asynchronous
portlets)

True only for page requests; when
interacting with an individual portlet,
only one request is required.

Refresh Entire page refreshes when
interaction occurs on any portlet

Refresh required only for an individual
portlet.

IPC Support IPC supported IPC not supported, although some
workarounds exist for AJAX
asynchronous portlets.

Page
request/response

Server response to page request
includes content of page

Portal page does not include portlet
content (less information needs to be
returned by the server); page starts
loading faster

Asynchronous Po r t l e t Content Render ing

BEA WebLogic Portal Portlet Development Guide 6-19

PortletBackingContext.isAsyncContent() = true
PortletBackingContext.isContentOnly() = false

For the subsequent content requests, backing files attached to the portlet, and the portlet content
itself—such as page flows, managed beans, JSP pages, and so on—will run in the context of a
“dummy” control tree.

The values for the above-referenced APIs will be:
PortletBackingContext.isAsyncContent() = true
PortletBackingContext.isContentOnly() = true
PortletPresentationContext.isAsyncContent() = true
PortletPresentationContext.isContentOnly() = true

An important consequence of this model is that when asynchronous content rendering is enabled
for portlets, the portlet content will run in isolation from the rest of the portal. Such portlets
therefore cannot expect to have direct access to other portal controls such as books, pages,
desktops, other portlets, and so on.

Asynchronous Content Rendering and IPC
Although IPC is not supported when asynchronous content rendering is enabled, WebLogic
Portal provides some features that allow these two mechanisms to coexist in your portal
environment. In addition, you can disable asynchronous rendering for single requests using the
mechanisms described in this section.

This section also applies to HTTP redirects.

Note: The techniques described in this section do not currently work with IFRAME portlets.

File Upload Forms
For forms containing file upload mechanisms, the WebLogic Portal framework automatically
causes page refreshes without the need for any workarounds.

Disabling Asynchronous Rendering for a Single Interaction
Generally, if a portlet needs to disable asynchronous content rendering for a single interaction
(such as a form submission, link click, and so on), you should use the mechanism described in
this section.

Tip: When you use these mechanisms to disable asynchronous rendering, the portlet’s
action/rendering will be performed using two requests. The portlet's action is performed
in the page request, while the portlet's rendering is performed on a subsequent request.

Opt imiz ing Por t l e t Pe r fo rmance

6-20 BEA WebLogic Portal Portlet Development Guide

Ensure that your action does not use request attributes to pass information to your JSP
page.

From a JSP page:
<render:controlContext asyncContentDisabled="true">

Form, anchor, etc. would appear here
(that is, <netui:form action=”submit”…)

</render:controlContext>

From Java code:
try {

AsyncContentContext.push(request).setAsyncContentDisabled(true);

// Code that generates a URL would appear here

} finally {

AsyncContentContext.pop(request)

}

URL Compression
URL compression interferes with some of the AJAX-specific mechanisms for page refreshes.
Because of this, URL compression must also be disabled whenever asynchronous content
rendering is disabled to force page refreshes. WebLogic Portal disables URL compression
automatically except when file upload forms are used; in this situation, you must explicitly
disable it. Use the following examples as a guide:

From a JSP page:
<render:controlContext urlCompressionDisabled="true">

Form, anchor, etc. would appear here
(that is, <netui:form action=”submit”…)

</render:controlContext>

From Java code:
try {

UrlCompressionContext.push(request).setUrlCompressionDisabled(true);

// Code that generates a URL would appear here

} finally {

UrlCompressionContext.pop(request)

}

Asynchronous Po r t l e t Content Render ing

BEA WebLogic Portal Portlet Development Guide 6-21

For more information about implementing URL compression, refer to the Portal Development
Guide.

../portals/index.html
../portals/index.html

Opt imiz ing Por t l e t Pe r fo rmance

6-22 BEA WebLogic Portal Portlet Development Guide

BEA WebLogic Portal Portlet Development Guide 7-1

C H A P T E R 7

Local Interportlet Communication

Interportlet communication (IPC)—also called portlet-to-portlet communication—allows
multiple portlets to use or react to data. For example, you might want to use IPC in a self-service
or sales implementation where common data elements, such as order ID or customer ID, are used
across multiple projects. All portlet types supported by WebLogic Portal can implement IPC.
Examples of IPC include:

A page flow portlet talks to a non-page flow portlet using the page flow’s outer (portal)
request.

A non-page flow portlet talks to a page flow portlet, using the ActionResolver class.

IPC in WebLogic Portal is based on the use of event handlers—objects that listen for predefined
events on other portlets in the portal and fire actions when that event occurs. You can set up
interportlet communication in two ways: using the Workshop for WebLogic interface, or using
the WebLogic Portal API.

This chapter includes a tutorial-based example of establishing interportlet communications using
an out-of-the-box portal event handler (“Basic IPC Example” on page 7-13). This example will
familiarize you with event handlers and show you some of their common uses.

This example is specific to interportlet communications within a single portal web project. For
information on establishing IPC with federated portals (WSRP), refer to the Federated Portals
Guide.

Note: IPC is not compatible with asynchronous portlet rendering, but workarounds can allow
them to co-exist in some cases. For details, refer to “Asynchronous Content Rendering
and IPC” on page 6-19.

../federation/index.html
../federation/index.html

Loca l In te rpo r t l e t Communicat i on

7-2 BEA WebLogic Portal Portlet Development Guide

This chapter includes the following sections:

Definition Labels and Interportlet Communication

Portlet Events

IPC Example

IPC Special Considerations and Limitations

Definition Labels and Interportlet Communication
IPC behavior is based on portlet definition labels; that is, all portlet instances of a given .portlet
file respond to the same events. You can use the event handler options Only If Displayed and
From Self Instance Only to discriminate among the instances of the same .portlet file. For a
description of these options, refer to “Portlet Event Handlers Wizard - Add Handler Field
Descriptions” on page 7-7.

Portlet Events
Portlet events (not to be confused with page flow events) allow portlets to communicate. One
portlet can create an event and other portlets can listen for that event. A portlet event can also
carry accompanying data called a payload, where the payload is a serializable Java object.

This section contains the following topics:

Event Handlers

Event Types

Event Actions

Portlet Event Handlers Wizard Reference

Event Handlers
Event handlers listen for events raised on subscribed portlets and fire one or more actions when
a specific event is detected. An event handler tag is a child of the <portlet> tag, and a portlet
can have any number of events associated with it. The following event handlers are available with
WebLogic Portal:

Portal (framework) - Responds to a portal framework event on a portlet by firing an action.

Por t l e t Events

BEA WebLogic Portal Portlet Development Guide 7-3

Page Flow- Fires an action when an event occurs on that portlet.

You can define a page flow event handler (on that portlet) that responds to these events and
performs actions, such as to notify other portlets (that is, raise a custom event) or invoke a
backing file call-back method, and so on.

Struts - Responds to an event on a portlet by firing a struts action.

Custom - Responds to an event that you define.

A custom event handler is triggered by an event and can pass a developer-defined payload
or fire any predefined action. Custom event handlers can be triggered declaratively or they
can be based on a methods called in a backing file. You can specify that an event should be
handled by a method in a backing file.

Generic - Allows you to set up an event that will fire in several possible situations. For
details, see Generic Event Handlers below.

Note: Java Server Faces event handlers are not supported out-of-the-box with WebLogic Portal
using the existing declarative event handling mechanisms. However, it is possible to
associate a backing file with the <netuix:portlet/> that contains the JSF content. The
backing file can transform events from Weblogic Portal to an appropriate JSF bean (a
“managed bean”). In the case of a breadcrumb style event, for example, JSF portlet_1
(with a backing file) could have a form where some user data is submitted. The backing
file for JSF portlet_1 gets the data from the request and updates a list within a JSF
managed bean. JSF portlet_2 then displays this list of data using an HTML table (using
JSF tags) databound to the list in the JSF managed bean.

To send events from JSF to WebLogic Portal, it is possible to use the
PortletBackingContext to fire events from the JSF application back into WebLogic Portal
during the action phase. More information about this process will be available in a future
documentation release or dev2dev article.

Generic Event Handlers
The generic event handler, with an event attribute value of myEvent, will be triggered on the
following conditions:

A custom event with event=myEvent is fired within the portal.

A page flow action with name myEvent is raised by a portlet within the portal.

The same conditions to which the <handlePortalEvent event=myEvent> handler
would react.

Loca l In te rpo r t l e t Communicat i on

7-4 BEA WebLogic Portal Portlet Development Guide

A generic event (see below) with event=myEvent is fired within the portal.

Using a generic event handler allows you to more effectively decouple your portal design,
because your application does not need to know the source or type of an event. You can change
the portlet type (for example, from a page flow portlet to a JSP portlet, with a backing file firing
custom events) without affecting how you events are processed.

Event Types
An event action depends upon the type of event being raised. Except for portal events, all other
events can be identified in the Events field on the Portlet Event Handlers Wizard, as described in
“Portlet Event Handlers Wizard Reference” on page 7-5. Events available with the portal event
handler are listed in Table 7-1.

Table 7-1 Events Available to a Portal Event Handler

This event... Fires an action when the portlet...

onActivation Becomes visible

onDeactivation Ceases to be visible

onMinimize Is minimized

onMaximize Is maximized

onNormal Returns to its normal state from either a maximized or minimized state

onDelete Is deleted from the portal

onHelp Enters the help mode

onEdit Enters the edit mode

onView Enters the view mode

onRefresh Is refreshed

onCustomEvent Mode change to the custom mode CustomEvent

Refer to “Event Handlers” on page 7-2.

Por t l e t Events

BEA WebLogic Portal Portlet Development Guide 7-5

Event Actions
Event handlers fire an action on the host portlet when that handler detects an event from another
portlet in the application (or possibly the same portlet, for example in the case of a page flow
portlet). For example, when the user minimizes the appropriate portlet, a portal event called
onMinimize might cause the handler listening for it to fire an action that invokes an attached
backing file.

Table 7-2 lists the event actions available for portlets.

Portlet Event Handlers Wizard Reference
The Portlet Event Handlers wizard included in Workshop for WebLogic allows you to implement
several types of event handlers and actions without programming. The following steps
summarize the process of setting up an event handler using the wizard:

1. Select a type of event handler to create.

2. Determine the portlets to which that handler will listen.

3. Select an event for which the handler will listen.

4. Select and configure an action to fire when the event occurs.

Table 7-2 Event Actions

This action... Has this effect...

Change Window Mode Changes the mode from its current mode to a user-specified mode; for
example, from help mode to edit mode.

Change Window State Changes the state from its current state to a user-specified state; for
example, from maximized to delete state.

Activate Page Opens the page on which the portlet currently resides.

Fire Generic Event Fires a user-specified generic event.

Fire Custom Event Fires a user-defined custom event.

Invoke BackingFile
Method

Runs a method in the backing file attached to the portlet. For more
information on backing files, refer to “Backing Files” on page 5-64.

Loca l In te rpo r t l e t Communicat i on

7-6 BEA WebLogic Portal Portlet Development Guide

The following sections describe the dialogs of the wizard and provide information about the
information required in each field of the dialogs.

For a specific procedural example of how to use the event handler wizard, refer to “Basic IPC
Example” on page 7-13.

Portlet Event Handlers Wizard Dialogs
The wizard opens when you open a portlet in Workshop for WebLogic and click the ellipsis
button next to Event Handlers in the Properties view.

Note: If no event handlers have been added, the Event Handler field indicates that. If any event
handlers have been added, the field indicates the number that currently exist.

The wizard appears, as shown in Figure 7-1.

Figure 7-1 Portlet Event Handlers Wizard

When you click Add Handler, the event handler drop-down menu allows you to select a handler;
to add an action, click Add Action to open the event action drop-down menu.

Based on your selection, the dialog box expands, displaying additional fields that you can use to
set up the handler or action. Figure 7-2 shows an example of the expanded dialog for adding an
event handler.

Por t l e t Events

BEA WebLogic Portal Portlet Development Guide 7-7

Figure 7-2 Expanded Event Handlers Dialog

Portlet Event Handlers Wizard - Add Handler Field Descriptions
Table 7-3 explains the fields in the Add Handler dialog and how your selections affect the
behavior of the event.

Table 7-3 Portlet Event Handlers Wizard - Add Handler

Field Description

Event Label Required. This identifier can be used by the <filterEvent> tag in the
portal file to distinguish multiple event handlers in the same portlet.

Description Optional.

Only If Displayed check
box

Optional. Indicates that the portlet to receive the event must be on the
current page and not minimized or maximized—the portlet’s content must
be currently in a rendered state. (Remember that the user must also be
entitled to see the portlet.) The default is true.

Note: If the event is <handlePortalEvent event=”onMinimize”
fromSelfInstanceOnly="true"> then it is logically impossible for
this event to fire if onlyIfDisplayed="true".

Loca l In te rpo r t l e t Communicat i on

7-8 BEA WebLogic Portal Portlet Development Guide

From Self Instance Only
checkbox

Optional. Defines whether the handler for a given portlet instance is
invoked only when the source event originates from that instance. The
default is false.

If From Self instance Only is set to true, any Listen To values are ignored.

Listen To (wildcard) Optional. Identifies the portlet(s) that this portlet can listen to. The values
include:
• This – The definition label of this portlet
• None
• Any

Note: Currently, None and Any are functionally equivalent.

Note: If both Listen to (wildcard) and Listen To (portlets) are defined, the
system will “union” their values during processing; that is, if the
wildcard is “this,” then the owning portlet definition label will be
added to those in Listen To (portlets), and if the wildcard is ‘any”
then the value of Listen To (portlets) is ignored.

Listen To (portlets) Optional. Allows you to specify the portlets that this portlet can listen to.
You can choose a .portlet file from the file system by clicking the '...'
button). When you select a .portlet file and hit Open, the portlet is added to
the Listen To list.

Caution: The values that you enter here are not validated. A typo in either
an event name or a definition label can be very difficult to resolve later.

Note: When you click Open, the definition label is also added to the
Listen To list and the Add button is enabled.Although the enabled
Add button might make it appear that the portlet still needs to be
added, it does not.

Table 7-3 Portlet Event Handlers Wizard - Add Handler (Continued)

Field Description

Por t l e t Events

BEA WebLogic Portal Portlet Development Guide 7-9

Portlet Event Handlers Wizard - Add Action Field Descriptions
The available fields for the action depend on the type of action that you select. Table 7-4 explains
the possible fields in the expanded Add Action dialog and how your selections affect the behavior
of the action.

Portlet You can type a portlet name in the field and click Add, or click the browse
button to navigate to the portlet for which you want to listen.

Event or Action Depending on the event handler you added, you will choose an event or an
action for which the portlet will listen. For example, if you added the
HandlePortalEvent handler, you can use the Event drop-down menu
to select portal events, such as the onRefresh event. If you choose a
handler that exposes actions, type the name of the action in the Action field.
For example, if you chose HandlePageFlowEvent, you could type
submitReport. The submitReport action of the page flow is now
visible in the Action drop-down menu.

Table 7-4 Portlet Event Handlers Wizard - Add Action

Field Description

Change Window Mode Enter the value of the new window mode.

Change Window State Enter the value of the new window state; possible values are normal,
minimized, maximized.

Activate Page This action activates the page on which the portlet
<portlet_def_id> currently resides. This action will fire only when
triggered during the handlePostBack life cycle.

Do not select the Activate Page action if the Only If Displayed check box
is selected. Logically, if the portlet is responding to the event only if it is
displayed, the page that it is on must be active anyway.

Invoke Struts Action Valid only for Struts portlets.

Use this selection to cause a struts action to be raised.

The value must be an unqualified name of a struts action defined in the
embedded content.

Table 7-3 Portlet Event Handlers Wizard - Add Handler (Continued)

Field Description

Loca l In te rpo r t l e t Communicat i on

7-10 BEA WebLogic Portal Portlet Development Guide

IPC Example
This section contains the following topics:

Before You Begin - Environment Setup

Basic IPC Example

Before You Begin - Environment Setup
Before you use the interportlet communication example in this chapter, you must have an existing
portal development environment, consisting of a domain, Portal EAR project, Portal Web project,
Datasync project, and portal. To complete the pre-requisite tasks, perform the tasks described in
the Getting Started with WebLogic Portal tutorial, using the information in Table 7-5 to enter the
necessary values.

1. Create a Portal domain (server).

2. Create a Portal EAR project.

3. Associate the EAR project with the server.

4. Create a Portal web project.

5. Create a portal.

Fire Generic Event Use this selection to cause a generic event to be raised.

Enter the name of the generic event.

Fire Custom Event Use this selection to cause a custom event to be raised.

Enter the name of the custom event.

Invoke BackingFile
Method

Use this selection to cause a backing file method to run.

Enter the name of the method that you want to invoke.

This option displays in the Add Action selection list only if you have an
existing backing file in the project.

Invoke Page Flow Action Use this selection to cause a page flow action to be raised.

Table 7-4 Portlet Event Handlers Wizard - Add Action

Field Description

../tutorials/index.html

I PC Example

BEA WebLogic Portal Portlet Development Guide 7-11

Table 7-5 IPC Example - Environment Setup Values

Setup Information Notes/Values

Domain Configuration Wizard - Welcome Create a new WebLogic domain (the default)

Domain Configuration Wizard -
Select Domain Source

In the Generate a domain configured automatically to
support the following BEA products list, select
WebLogic Portal.

When you do this, other components are selected
automatically; keep all of them selected.

Domain Configuration Wizard -
Configure Administrator Username and
Password

User name: weblogic

User password: weblogic

Confirm user password: weblogic

Domain Configuration Wizard -
Configure Server Start Mode and JDK

Development Mode (the default)

JRockit SDK

Domain Configuration Wizard -
Customize Environment and Services
Settings

No (the default)

Domain Configuration Wizard -
Create WebLogic Domain

Domain name: ipcDomain

Domain location: Accept the default, or specify another
directory on your system.

Portal EAR Project Wizard EAR Project Name: ipcEAR
Switch to the Portal Perspective if you are not already
using it.

Servers view Right-click the server in the Servers view and select Add
and Remove Projects

Associate the ipcEAR project with the portal domain
ipcDomain.

Loca l In te rpo r t l e t Communicat i on

7-12 BEA WebLogic Portal Portlet Development Guide

Figure 7-3 shows how your workbench should look after you complete the pre-requisite tasks:

Figure 7-3 Workbench with Portal Perspective and Merged Projects View - Completed IPC Pre-Setup

With a development environment set up, you can complete the steps described in this section:

Portal Web Project Wizard Web Project Name: ipcTestWebProject

In the Add project to an EAR checkbox: Check the box
and add to ipcEAR

Portal Wizard Right-click the ipcWebProject/WebContent
folder and select New > Portal
Portal Name: ipcPortal

Table 7-5 IPC Example - Environment Setup Values (Continued)

Setup Information Notes/Values

I PC Example

BEA WebLogic Portal Portlet Development Guide 7-13

Basic IPC Example

In this exercise, you create individual page flows, portlets, JSPs, and backing files to establish
interportlet communications within the portal project. You then add these portlets to a portal and
test the project to ensure that communication is successful.

Basic IPC Example
This section describes the process of setting up interportlet communications between two portlets
by using the Portal Event Handlers wizard in Workshop for WebLogic. This is a simple example
in which minimizing one portlet changes the text string in another portlet in the portal.

You should become familiar with the Portal Event Handlers Wizard and backing files before
attempting to replicate this example. For more information about the wizard, refer to “Portlet
Event Handlers Wizard Reference” on page 7-5. For more information on backing files, refer to
“Backing Files” on page 5-64.

This exercise includes five main tasks:

1. Create the Portlets

2. Create the Backing File

3. Attach the Backing File

4. Add the Event Handler to bPortlet

5. Test the Project

Create the Portlets
In this section, you create two JSP files and the JSP portlets that surface these files. You also
create a backing file that contains the instructions necessary to complete the communication
between the two portlets, and you add an event handler to one of the portlets. After you have
created the portlets and attached the backing file, you test the project in your browser.

Note: Before continuing with this procedure, ensure that Workshop for WebLogic is running
and the ipcWebProject node is expanded.

Create the JSP Files and Portlets
To create the JSP files that the portlets will surface, do the following:

1. Under the ipcWebProject node, double-click index.jsp.

Loca l In te rpo r t l e t Communicat i on

7-14 BEA WebLogic Portal Portlet Development Guide

index.jsp opens in the workbench editor, displaying the source code.

2. Replace the body text with the phrase Minimize Me! as shown in figure

Figure 7-4 index.jsp after Editing the Body Text in the Workbench Editor

3. Save the file as aPortlet.jsp

4. Right-click aPortlet.jsp in the Package Explorer view and select Generate Portlet from
the context menu.

The Portal Details dialog appears (Figure 7-5). with aPortlet.jsp in the Content Path
field.

Figure 7-5 Portal Details Dialog Box for a Portlet

I PC Example

BEA WebLogic Portal Portlet Development Guide 7-15

5. Select Minimizable and Maximizable and click Create.

aPortlet.portlet appears in the ipcWebProject/WebContent folder in the Package
Explorer view.

6. In the same directory, make a copy of aPortlet.jsp and give the name bPortlet.jsp to the
copy.

7. Open bPortlet.jsp in the workbench editor if it is not already open.

The XML code for the JSP file appears.

8. Copy the code from Listing 7-9 into the JSP, replacing everything from <netui:html>
through </netui:html>. This code displays event handling from the backing file that you
will create and attach in a subsequent step.

Listing 7-9 New JSP Code for bPortlet.jsp

<netui:html>

 <% String event = (String)request.getAttribute("minimizeEvent");%>

 <head>

 <title>

 Web Application Page

 </title>

 </head>

 <body>

 <p>

 Listening for portlet A minimize event:<%=event%>

 </p>

 </body>

</netui:html>

The source should look like the example in Figure 7-6.

Loca l In te rpo r t l e t Communicat i on

7-16 BEA WebLogic Portal Portlet Development Guide

Figure 7-6 Updated bPortlet JSP Source

9. Save the file.

10. Following the same steps you used previously, generate a portlet from the bPortlet.jsp
file.

Checkpoint: At this point the ipcWebProject/WebContent folder contains these files:
aPortlet.jsp, aPortlet.portlet, bPortlet.jsp, and bPortlet.portlet.

Create the Backing File
To create the backing file, do the following:

1. In ipcWebProject, right-click the src folder and select New > Folder from the menu.

The Create New Folder dialog box appears.

2. Create a folder called backing.

The folder backing will appear under ipcWebProject/src, as shown in Figure 7-7.

I PC Example

BEA WebLogic Portal Portlet Development Guide 7-17

Figure 7-7 New Backing File Folder in Package Explorer View

3. Right-click the backing folder and select New > Other.

4. In the New – Select a wizard dialog, select Java > Class, and click Next.

The New Java Class dialog appears, as shown in Figure 7-8. The Source folder field
auto-fills with the default path; leave it as is. The Package field auto-fills with backing;
leave it as is.

Figure 7-8 New Java Class Dialog

5. In the Name field, enter Listening and click Finish.

The new Java class appears in the editor.

6. Delete the entire default contents of Listening.java, and copy the code from Listing 7-10
into the file.

Loca l In te rpo r t l e t Communicat i on

7-18 BEA WebLogic Portal Portlet Development Guide

Listing 7-10 Backing File Code for Listening.java

package backing;

import com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;
import com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext;
import com.bea.netuix.events.Event;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class Listening extends AbstractJspBacking
{

static final long serialVersionUID=1L;
public void handlePortalEvent(HttpServletRequest request,
HttpServletResponse response, Event event)
{

String attributeId= this.getPortletInstanceLabel(request) +
"_minimizeEventHandled";

 // NB: Use the HttpSession to pass data between lifecycle phases
 // (that is, to the pre-render phase). Passing data between
 // backing file callback methods using the HttpRequest or static
 // instance variables should be avoided.
 // The portlet instance label is used to create a unique
 // attribute name for the session attribute.

request.getSession().setAttribute(attributeId, "minimized!");
}
public boolean preRender(HttpServletRequest request, HttpServletResponse
response)
{

String attributeId= this.getPortletInstanceLabel(request) +
"_minimizeEventHandled";

if (request.getSession().getAttribute(attributeId) != null)
{

// Reset the session flag
request.getSession().removeAttribute(attributeId);

// Pass minimize event notification to the JSP via the request.
request.setAttribute("minimizeEvent", "Minimize event handled");

}
else
{

request.setAttribute("minimizeEvent", null);
}

return true;
}

private String getPortletInstanceLabel(HttpServletRequest request)
{

I PC Example

BEA WebLogic Portal Portlet Development Guide 7-19

PortletBackingContext context=
PortletBackingContext.getPortletBackingContext(request);
return context.getInstanceLabel();

}
}

Figure 7-9 shows the top portion of the Listening.java file as it should look after you paste
the code into it.

Figure 7-9 Listening.java with Updated Backing File Code

7. Save Listening.java.

Attach the Backing File
Now you will attach the backing file created in the previous section to bPortlet.portlet.
Perform the following steps:

1. In the Package Explorer, double-click bPortlet.portlet to open it.

Loca l In te rpo r t l e t Communicat i on

7-20 BEA WebLogic Portal Portlet Development Guide

2. Click on the portlet in the editor, if needed, to display the portlet’s properties. You should see
an orange border around the outside of the portlet, as shown in Figure 7-10.

Figure 7-10 bPortlet with Outer Border Selected to Display Properties

Tip: The Properties view is a default view in the Portal perspective. If it is not visible,
select Window > Show View > Properties.

3. In the Properties view, enter backing.Listening into the Backable Properties > Portlet
Backing File field, as shown in Figure 7-11.

Figure 7-11 Attaching the Backing File in the Properties View

4. Save the portlet file.

Click here to
display all
properties

I PC Example

BEA WebLogic Portal Portlet Development Guide 7-21

Add the Event Handler to bPortlet
You now add the event handler to bPortlet.portlet. This handler will be set up so that it will
listen for an event on a specific portlet and fire an action in response to that event. To add the
event handler, perform the following steps:

Note: bPortlet.portlet should be displayed in the Workshop for WebLogic editor. If it
isn’t, locate it in the producerWeb/WebContent folder in the application panel and
double-click it.

1. Click on the portlet in the editor if needed to display its properties.

1. In the Properties view, click in the Value column of the Event Handlers property. A browse
button appears, as shown in Figure 7-12.

Figure 7-12 Event Handlers Button

2. Click the ellipsis button to display the Portlet Event Handlers dialog, as shown in
Figure 7-13.

Event Handlers Button

Loca l In te rpo r t l e t Communicat i on

7-22 BEA WebLogic Portal Portlet Development Guide

Figure 7-13 Portlet Event Handlers Dialog Box

3. Click Add Handler to open the Event Handler drop-down list.

4. From the drop down list, select Handle Portal Event.

The Portlet Event Handlers dialog box expands to allow entry of more details, as shown in
Figure 7-14.

Figure 7-14 Event Handler Dialog Box Expanded

5. Accept the defaults for all fields except Portlet.

6. In the Portlet field, click the ellipses button .

I PC Example

BEA WebLogic Portal Portlet Development Guide 7-23

The Please Choose a File dialog appears.

7. Click aPortlet.portlet and click OK.

The dialog box closes and aPortlet_1 appears in the Listen to (portlets): list and in the
Portlet field, as shown in Figure 7-15. The label aPortlet_1 is the definition label of the
portlet to which the event handler will listen.

Figure 7-15 Adding portlet_1

8. Click the Event drop-down control to open the list of portal events that the handler can listen
for and select onMinimize, as shown in Figure 7-16.

Figure 7-16 Event Drop-down List

9. Click Add Action to open the action drop-down list and select Invoke BackingFile Method.

The Invoke BackingFile selection will not appear unless a backing file is detected by
WebLogic Portal.

10. In the Method field, enter handlePortalEvent, as shown in Figure 7-17.

The dropdown menu for this field displays the last several values that you entered, if
applicable.

Loca l In te rpo r t l e t Communicat i on

7-24 BEA WebLogic Portal Portlet Development Guide

Figure 7-17 Adding the Backing File Method

11. Click OK.

The event handler is added. Note that the Value field of the Event Handlers property now
indicates 1 Event Handler.

Test the Project
Test the communication between your portlets by following these steps:

Note: Before you begin, ensure that all files are saved.

1. Select ipcPortal.portal to display it in the workbench editor.

2. Drag both aPortlet.portlet and bPortlet.portlet from the Package Explorer view
onto the portal layout, as shown in Figure 7-18.

I PC Example

BEA WebLogic Portal Portlet Development Guide 7-25

Figure 7-18 Portal Layout with aPortlet and bPortlet Added

3. Save the portal.

4. Run the portal. To do this, right-click ipcPortal.portal in the Package Explorer view and
select Run As > Run on Server.

5. At the Run On Server – Define a New Server dialog, click Finish.

Wait while the server starts and the application is published to the server. The portal will
render in your browser (Figure 7-19).

Figure 7-19 ipcLocal Portal in Browser

6. Click the minimize button to minimize aPortlet.

Note the content change in bPortlet, as shown in Figure 7-20.

Loca l In te rpo r t l e t Communicat i on

7-26 BEA WebLogic Portal Portlet Development Guide

Figure 7-20 ipcPortal Showing the Effect of Minimizing aPortlet

Summary
In this example, you set up your environment and you added two JSP portlets to a local portal.
One portlet, aPortlet, was fairly simple, while the second portlet, bPortlet, surfaced a more
complex JSP file, used a backing file, and contained a portal event handler. When you tested the
communication between the portlets, you observed how the bPortlet changed when an event
occurred on aPortlet. This is called local interportlet communication.

IPC Special Considerations and Limitations
The following sections describe special considerations that you should keep in mind as you
implement interportlet communications.

This section contains the following topics:

Using Asynchronous Portlet Rendering with IPC

Generic Event Handler for WSRP

Consistency of the Listen To Field

Using Asynchronous Portlet Rendering with IPC
Although IPC is not supported when asynchronous content rendering is enabled, WebLogic
Portal provides some features that allow these two mechanisms to coexist in your portal
environment. In addition, you can disable asynchronous rendering for single requests using the
mechanisms described in “Asynchronous Content Rendering and IPC” on page 6-19.

Portlet text changed

I PC Spec ia l Cons iderat i ons and L imi tat i ons

BEA WebLogic Portal Portlet Development Guide 7-27

Generic Event Handler for WSRP
Use a generic event handler to work with WebLogic Portal WSRP. To do this, first select Generic
Event Handler, then select Add Action and select Window Mode|State. Then manually type in
the event name—for example, onMinimize.

Consistency of the Listen To Field
Pay attention to the Listen To field when you set up the listener portlet. The portlet definition you
use on the consumer must match the WSRP portlet's portlet definition. For example, if you have
“portlet_2” listening to “portlet_1”, the WSRP portlet corresponding to “portlet_1”—the proxy
on the consumer—must also have its portlet definition label set to “portlet_1”. For more
information on using IPC with WSRP, refer to the Federation Guide.

../federation/index.html

Loca l In te rpo r t l e t Communicat i on

7-28 BEA WebLogic Portal Portlet Development Guide

BEA WebLogic Portal Portlet Development Guide

Part III Staging

Part III includes the following chapters:

Chapter 8, “Assembling Portlets into Desktops”

Chapter 9, “Deploying Portlets”

BEA recommends that you deploy your portal, including portlets, to a staging environment,
where it can be assembled and tested before going live. In the staging environment, you use the
WebLogic Portal Administration Console to assemble and configure desktops. You also test your
portal in a staging environment before propagating it to a live production system.

For a view of how the tasks in this section relate to the overall portal life cycle, refer to the
WebLogic Portal Overview.

../overview/index.html

8-2 BEA WebLogic Portal Portlet Development Guide

BEA WebLogic Portal Portlet Development Guide 8-1

C H A P T E R 8

Assembling Portlets into Desktops

You perform the tasks described in this chapter to prepare the individual portlets that are part of
your portal application for public consumption. After you add portlets to desktops, you can
configure and test the application as a whole, and then deploy it to the production environment
when it is ready for public access.

Before you perform the tasks described in this chapter, use the Portal Development Guide to
create the framework into which you will add the portlets— this includes the portal and its menus,
layouts, the Look & Feel components for the overall portal, and the framework of the actual
desktop. Also, you must have already created the set of portlets in the portlet library, from which
you will choose the portlets to add to the desktop.

The primary tools used in this chapter are the WebLogic Portal Administration Console, the
WebLogic Portal Propagation Utility (to move database and LDAP data between staging,
development, and production), WebLogic Server application deployment tools, and any external
content or security providers that you are using.

This chapter contains the following sections:

Portlet Library

Managing Portlets Using the Administration Console

Portlet Library
The WebLogic Portal Administration Console organizes portal resources in a tree that consists of
Library resources and desktop resources. Understanding the relationship between Library and
desktop resources helps you to understand the effects and consequences of propagation.

../portals/index.html

Assembl ing Por t l e ts in to Desk tops

8-2 BEA WebLogic Portal Portlet Development Guide

The following text describes the relationships between the following instances of portal assets:

Primary instance – Created in WebLogic Workshop and stored in a .portal or
.portlet file.

Library instance – Created or updated in the Administration Portal, and displayed in the
Portal Resources tree under the Library node.

Desktop instance – Created or updated in the Administration Portal, and displayed in the
Portal Resources tree under the Portals node.

Visitor instance – Created or updated in the Visitor Tools.

For more details on portlets in libraries and in desktops, refer to the Production Operations
Guide.

Managing Portlets Using the Administration Console
This section contains instructions for performing portlet-related tasks using the WebLogic Portal
Administration Console.

This section contains the following topics:

Copying a Portlet in the Library

Modifying Library Portlet Properties

Modifying Desktop Portlet Properties

Deleting a Portlet

Managing Portlets on Pages

Overview of Portlet Categories

Overview of Portlet Preferences

Creating a Portlet Preference

Editing a Portlet Preference

Overview of Delegated Administration

Overview of Visitor Entitlements

../prodOps/index.html
../prodOps/index.html

Managing Po r t l e ts Us ing the Admin is t rat ion Conso le

BEA WebLogic Portal Portlet Development Guide 8-3

Copying a Portlet in the Library
You can use this feature of the WebLogic Portal Administration Console to duplicate an existing
portlet and use it as a template for a “new” portlet.

Perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet that you want
to copy.

2. Click Copy Portlet. The Copy Portlet dialog displays.

3. Enter a title and description for the copied portlet.

4. Click OK. The portlet is added at the bottom of the portlet list.

You can now customize the copied portlet by modifying its properties and preferences.

Modifying Library Portlet Properties
Portlet properties include all of the features and elements that make up the portlet. As a portal
administrator, you can modify some of these properties from the Details tab. You can also edit
the title, description, and locale information from the Title & Description tab, as described below.

To modify the properties of a portlet that resides in the library, perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet that you want
to modify.

2. From the Details tab, select the type of property that you want to change. Use the table below
for guidance.

Table 8-1 Modifying Library Portlet Properties

Title and Description

Change title and
description of the portlet
in the current locale

1. Click Title & Description.
2. Click the locale (for example, en) in the Locale cell; the Add a

Localized Title & Description dialog displays.
3. Enter a new Title and/or Description.
4. Click Update.

Assembl ing Por t l e ts in to Desk tops

8-4 BEA WebLogic Portal Portlet Development Guide

Modifying Desktop Portlet Properties
Portlet properties include all of the features and elements that make up the portlet. As a portal
administrator, you can modify some of these properties from the Details tab. You can also edit
the title, description, and locale information from the Title & Description tab, as described below.

To modify the properties of a portlet that resides on a desktop, perform these steps:

1. Expand the Portals node in the Portal Resources tree and navigate to the portlet that you want
to modify.

2. From the Details tab, select the type of property that you want to change. Use the table below
as a guide.

Add a localized title for
the portlet

1. Click Title & Description.
2. Click Add Localized Title; the Add a Localized Title &

Description dialog appears.
3. Enter a Language and Country identifier, Variant if applicable,

Title, and a Description for the localized title.
4. Click Create.

Portlet Preferences Refer to “Creating a Portlet Preference” on page 8-9 and “Editing a
Portlet Preference” on page 8-10.

Portlet Theme 1. Click Appearance; the Edit Appearance dialog displays.
2. From the drop-down menu, select a Theme.
3. Click Update.

Render caching and
timeout

1. Click Advanced Properties.
2. In the Render Caching Enabled drop-down menu, select True or

False.
3. If you selected True, enter a cache expiration value in the Cache

Expiration field.
4. Click Update.

Table 8-1 Modifying Library Portlet Properties (Continued)

Managing Po r t l e ts Us ing the Admin is t rat ion Conso le

BEA WebLogic Portal Portlet Development Guide 8-5

Deleting a Portlet
You can delete portlets from the Administration Console only if they were created there; for
example, if you used the Copy Portlet feature to duplicate the portlet. Portlets created in
Workshop for WebLogic cannot be deleted using the Administration Console.

Perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet that you want
to delete.

2. Click Delete Portlet.

Managing Portlets on Pages
The contents of a page include portlets and books. You can view the portlets that are already on
your page, and add and remove portlets to construct your page.

Adding Portlets to a Page
Library: To add a content to a page, perform these steps:

1. In the Portal Resource tree, expand the Library node and navigate to a page. The Details tab
displays.

2. Click Page Contents. The Edit Contents tab displays.

3. Click Add Contents. The Add Books and Portlets to Placeholder dialog displays.

Table 8-2 Modifying Desktop Portlet Properties

Title and Description You must edit these values within the Library resource tree.
Expand the Library node, select the portlet that you want to edit,
and follow the instructions in “Modifying Library Portlet
Properties” on page 8-3.

Portlet Preferences Refer to “Creating a Portlet Preference” on page 8-9 and
“Editing a Portlet Preference” on page 8-10.

Portlet Theme 1. Click Appearance; the Edit Appearance dialog displays.

2. From the drop-down menu, select a Theme.

3. Click Update.

Assembl ing Por t l e ts in to Desk tops

8-6 BEA WebLogic Portal Portlet Development Guide

4. Display the pages that you want to choose from, using the Search area if needed.

5. Choose the portlets that you want to add by selecting the desired check boxes, and click Add.

6. When finished, click Save.

Desktop: To add a portlets to a page, perform these steps:

1. In the Portal Resource tree, expand the Portals node and navigate to a page. The Details tab
displays.

2. Click Page Contents. The Edit Contents tab displays.

3. Click Add Contents; search for existing portlets if needed, then select the portlets that you
want, and click Add. When finished, click Save.

Positioning Elements on a Page
The page layout is the grid structure of a page that holds placeholders for portlets and books on
the page. You can select a layout for your portlets/books, and drag and drop them between the
placeholders to customize the layout of each page.

Perform these steps:

1. In the Portal Resource tree, expand either the Library node or the Portals node as applicable,
and select a page. The Details tab displays.

2. Click Page Contents. The Edit Contents tab displays.

3. If you want to change to a different layout, select a layout in the Layout drop-down menu.

4. Select the method that you want to use to position the elements on the page by selecting an
option in the Position Elements area. The default is Drag & Drop.

5. Move portlets or books between placeholder columns.

6. If you want to prevent users from moving or deleting elements from a placeholder, select the
Lock Placeholder check box.

7. When finished, click Save Changes.

Overview of Portlet Categories
Portlet categories provide for the classification of portlets, which is useful when organizing a
large collection of portlets into meaningful groupings. The portlet categories are similar to other
hierarchical structures in that parent “folders” can contain child folders and/or portlets. You must

Managing Po r t l e ts Us ing the Admin is t rat ion Conso le

BEA WebLogic Portal Portlet Development Guide 8-7

first create a portlet category, and then you can manage portlets by adding them to a category or
moving them between categories.

Creating a Portlet Category
To create a portlet category:

1. In the Portal Resources tree, expand the Library folder and select Portlet Categories. The
Browse Category tab displays.

2. Click Create New Category.

3. Type a title and description for the new category in the pop-up window.

4. Click Create.

Modifying Portlet Category Properties
Portlet category properties include all of the features and elements that make up the category. As
a portal administrator, you can modify some of these properties from the Summary tab. You can
also edit the title, description, and locale information from the Titles & Descriptions tab, as
described below.

Perform these steps:

1. In the Portal Resources tree, expand the Library node and navigate to a portlet category.

2. From the Summary tab, select the type of property that you want to change. Use the table
below as a guide.

Table 8-3 Modifying Portlet Category Properties

Title and Description

Change title and
description of the
category in the current
locale

1. Click Title & Description.
2. Click the locale (for example, en) in the Locale cell; the Add a

Localized Title & Description dialog displays.
3. Enter a new Title and/or Description.
4. Click Update.

Assembl ing Por t l e ts in to Desk tops

8-8 BEA WebLogic Portal Portlet Development Guide

Adding Portlets to a Portlet Category
To add portlets into a category:

1. Expand the Library node in the Portal Resources tree and navigate to a portlet category. The
Summary tab displays.

2. Click Portlets In Category.

3. Click Add Portlets.

4. In the Available Portlets area, select the portlets that you want to add, and click Add to include
them in the Selected Portlets area.

5. Click Save.

Overview of Portlet Preferences
A portlet preference is a property in a portlet that can be customized by either an administrator or
a user. Your portlet might already have preferences, but if you have the appropriate Delegated
Administration rights you can create additional portlet preferences.

Add a localized title for
the category

1. Click Title & Description.
2. Click Add Localized Title; the Add a Localized Title &

Description dialog appears.
3. Enter a Language and Country identifier, Variant if applicable,

Title, and a Description for the localized title.
4. Click Create.

Portlets in Category Refer to “Adding Portlets to a Portlet Category” on page 8-8.

Categories in Category 1. Click Categories In Category; the Browse Category tab displays.
2. Click Create New Category; the Create New Category dialog

displays.
3. Enter a Title and Description for the new category.
4. Click Create. The category is created and added to the currently

selected category.

Table 8-3 Modifying Portlet Category Properties (Continued)

Managing Po r t l e ts Us ing the Admin is t rat ion Conso le

BEA WebLogic Portal Portlet Development Guide 8-9

Creating a Portlet Preference
To create a portlet preference, perform these steps:

1. Expand the Portals node or the Library node in the Portal Resources tree, as appropriate, and
navigate to the portlet for which you want to create a preference. The Details tab displays.

2. Click Add Portlet Preference.

3. Fill in the information in the fields. Use the table below as a guide.

4. Click Save.

For library instances of portlets, when you add a preference it automatically proliferates to
library page instances and desktop page instances if the instances have not been decoupled.

5. If you want to force proliferation of this preference to every instance of this portlet, click
Propagate to Instances; WebLogic Portal overwrites all desktop instance's preferences with
the library preferences are. When complete, a message appears at the top of the
Administration Console.

Here are some tips related to portlet preferences that you might find useful:

When desktop instances of a portlet have no preferences, they automatically inherit the
preferences from the library instance of the portlet.

Table 8-4 Creating a Portlet Preference

For this field: Enter this information:

Name The name you want to give this preference.

Description A description of this preference.

Value(s) A value for a preference.

Is Modifiable? (checkbox) Select this check box if you want to allow end users to modify this
preference.

Is Multi-Valued?
(checkbox)

Select this check box if you want to enter multiple values for the
preference. If you select this box, an additional data entry field
displays for you to enter additional values. Click Add Another Value
after entering each value, until you are finished.

Assembl ing Por t l e ts in to Desk tops

8-10 BEA WebLogic Portal Portlet Development Guide

When desktop instances of a portlet have their own preferences set, they will not
automatically inherit preferences from the library instance.

If a desktop instance of a portlet has its own preferences set and these preferences are
removed, it will automatically inherit all preferences from the library instance.

If a desktop instance of a portlet has inherited preferences from the library instance and the
desktop instance of this preference has been modified, it will no longer automatically
inherit new preferences from the library or updates made to the library portlet's instance of
this preference.

If a desktop instance of a portlet has inherited the preferences from the library instance and
no desktop instance specific preferences have been set, and the inherited preferences have
not been modified in the desktop instance, the desktop instance will inherit all updates to
the library preferences.

Editing a Portlet Preference
If you have the appropriate Delegated Administration rights, you can edit a portlet's preferences
to change the way a portlet behaves.

To edit a portlet preference:

1. Expand the Portals node or the Library node in the Portal Resources tree, as appropriate, and
navigate to the portlet for which you want to edit a preference. The Details tab displays.

2. Click Portlet Preferences.

3. Select the portlet preference by clicking its name in the Name column.

4. Edit the information in the fields. Use the table below as a guide.

Table 8-5 Editing a Portlet Preference

For this field: Enter this information:

Name The name you want to give this preference.

Description A description of this preference.

Value(s) A value for a preference.

Managing Po r t l e ts Us ing the Admin is t rat ion Conso le

BEA WebLogic Portal Portlet Development Guide 8-11

5. Click Save.

For library instances of portlets, when you edit a preference it automatically proliferates to
library page instances and desktop page instances if the instances have not been decoupled.

6. If you want to force proliferation of this change to every instance of this portlet, click
Propagate to Instances. When complete, a message appears at the top of the Administration
Console.

Overview of Delegated Administration
In your organization, you typically want individuals to have different access privileges to various
administration tasks and resources. For example, a system administrator might have access to
every feature in the WebLogic Portal Administration Console. The system administrator might
then create a portal administrator role that can manage instances of portal resources in specific
desktop views of your portal, and a library administrator role that can manage your portal
resource library. Other delegated administration roles only have access to resources if that access
has been explicitly granted.

For more information about using delegated administration as a part of your security strategy, see
the Security Guide on e-docs.

Overview of Visitor Entitlements
Visitor entitlements allow you to define who can access the resources in a portal application and
what they can do with those resources. This access is based on the role assigned to a portal visitor,
allowing for flexible management of the resources.

For more information about using visitor entitlements as a part of your security strategy, see the
Security Guide on e-docs.

Is Modifiable? (checkbox) Select this check box if you want to allow end users to modify
this preference.

Is Multi-Valued?
(checkbox)

Select this check box if you want to enter multiple values for the
preference. If you select this box, an additional data entry field
displays for you to enter additional values. Click Add Another
Value after entering each value, until you are finished.

Table 8-5 Editing a Portlet Preference (Continued)

For this field: Enter this information:

../security/index.html
../security/index.html

Assembl ing Por t l e ts in to Desk tops

8-12 BEA WebLogic Portal Portlet Development Guide

BEA WebLogic Portal Portlet Development Guide 9-1

C H A P T E R 9

Deploying Portlets

Deploying Portlets
Generally speaking, a WebLogic Portal application consists of an EAR file, an LDAP repository,
and a database. The EAR file contains application code, such as JSPs and Java classes, and portal
framework files that define portals, portlets, and datasync data. The embedded LDAP contains
security-related data, such as entitlements, roles, users, and groups. The database contains
representations of portal framework and datasync elements used by the portal runtime in
streaming mode.

Portlet data can fall into the following two categories:

Portal Framework Data – Refers to desktops, books, pages, and other portal framework
elements that are created with the WebLogic Portal Administration Console.

EAR Data – Refers to the final product of Workshop for WebLogic development—a J2EE
EAR file. The EAR must be deployed to a destination server using the deployment feature
of the WebLogic Server Administration Console.

When you deploy or redeploy a portal application EAR file to a server in production mode,
.portlet files are automatically loaded into the database.

The primary tools you use to perform portlet deployment are the WebLogic Portal propagation
tools and the deployment feature of the WebLogic Server Administration Console. For detailed
instructions on deploying a portal and its portlets, refer to the Productions Operations Guide.

../prodOps/index.html

Deploy ing Por t l e ts

9-2 BEA WebLogic Portal Portlet Development Guide

BEA WebLogic Portal Portlet Development Guide

Part IV Production

Part IV includes the following chapter:

Chapter 10, “Managing Portlets in Production”

A production portal is live and available to end users. A portal in production can be modified by
administrators using the WebLogic Portal Administration Console and by users using Visitor
Tools. For instance, an administrator might add additional portlets to a portal or reorganize the
contents of a portal.

For a view of how the tasks in this section relate to the overall portal life cycle, refer to the BEA
WebLogic Portal Overview.

.

../overview/index.html

10-2 BEA WebLogic Portal Portlet Development Guide

BEA WebLogic Portal Portlet Development Guide 10-1

C H A P T E R 10

Managing Portlets in Production

During the life cycle of a WebLogic Portal application it moves back and forth between
development, staging, and production environments. This chapter contains information about
managing portlets that are on a production system.

This chapter contains the following sections:

Pushing Changes from the Library into Production

Transferring Changes from Production Back to Development

Pushing Changes from the Library into Production
Proliferation is the process by which changes made to the Library instance of a portal asset are
pushed into user-customized instances of that asset. For example, if a portal administrator deletes
a portlet from a desktop, that change must be reflected into user-customized instances of that
desktop.

The WebLogic Portal Administration Console includes a configuration setting for Proliferation
under Configuration Settings > Service Administration > Portal Resources. The proliferation
settings include synch, asynch, and off.

For more information on proliferation, refer to the Production Operations Guide.

../prodOps/index.html

Managing Po r t le ts in P roduct ion

10-2 BEA WebLogic Portal Portlet Development Guide

Transferring Changes from Production Back to
Development

WebLogic Portal utilities such as the propagation tools and the Export/Import Utility allow you
to reliably move and merge changes between environments. The Export/Import Utility allows a
full round-trip development life cycle, where you can easily move portals from a production
environment back to your Workshop for WebLogic development environment.

For instructions on using the propagation tools and Export/Import Utility, refer to the Production
Operations Guide.

../prodOps/index.html
../prodOps/index.html

BEA WebLogic Portal Portlet Development Guide A-1

A P P E N D I X A

Portlet Database Data

This appendix describes how portlet data is managed by databases, and contains the following
sections:

Database Structure for Portlet Data

Portlet Resources in the Database

Database Structure for Portlet Data
When a portlet’s data is loaded into the database, the portlet XML is parsed and a number of
tables are populated with information about the portlet, including PF_PORTLET_DEFINITION,
PF_MARKUP_DEFINITION, PF_PORTLET_INSTANCE, PF_PORTLET_PREFERENCE,
L10N_RESOURCE, and L10N_INTERSECTION.

PF_PORTLET_DEFINITION is the master record for the portlet and contains columns for
properties that are defined for the portlet, such as the definition label, the forkable setting, edit
URI, help URI, and so on. The definition label and web application name are the unique
identifying records for the portlet. Portlet definitions refer to the rest of the actual XML for the
portlet that is stored in PF_MARKUP_DEF.

In the Development phase, you use Workshop for WebLogic to create portlets and place them
onto a portal. In the Staging phase, you use the Administration Portal to add portlets to portal
desktops. Each time you add a portlet to a desktop, you create an instance of that portlet. Portlet
instances allow for multiple variations of the same portlet definition.

The following four types of portlet instances are recorded in the database for storing portlet
properties:

Po r t le t Database Data

A-2 BEA WebLogic Portal Portlet Development Guide

Primary – Properties defined in development and stored in the .portlet file.

Library – Properties defined in the Portal Library, which may be changed using the
WebLogic Administration Portal.

Admin – A customized instance of the portlet in a desktop. This allows you to customize a
portlet in a particular way for a desktop without affecting other instances of the portlet in
other desktops.

User – User-customized instances of the portlet defined in the Visitor Tools.

PF_PORTET_INSTANCE contains properties for the portlet for attributes such as
DEFAULT_MINIMIZED, TITLE_BAR_ORIENTATION, and PORTLET_LABEL.

If a portlet has portlet preferences defined, those are stored in the PF_PORTLET_PREFERENCE
table.

Finally, portlet titles can be internationalized. Those names are stored in the L10N_ RESOURCE
table which is linked using L10N_INTERSECTION to PF_PORTLET_DEFINITION.

Removing Portlets from Production
If a portlet is removed from a newly deployed portal application and it has already been defined
in the production database, it is marked as IS_PORTLET_FILE_DELETED in the
PF_PORTLET_DEFINITION table. It displays as grayed out in the WebLogic Administration
Portal, and user requests for the portlet, if it is still contained in a desktop instance, return a
message indicating that the portlet is unavailable.

Portlet Resources in the Database
During the development phase, the .portlet files for portal web projects are stored as XML in
the portal web application. As a developer creates new .portlet files, a file polling thread
monitors changes and loads the development database with the .portlet information. When a
portlet’s data is loaded into the database, the portlet XML is parsed and a number of tables are
populated with information about the portlet. Changes that you make using the WebLogic Portal
Administration Portal are directly reflected in the database.

This section contains the following sections:

Types of Database Tables

Management of Portlet Data

Po r t l e t Resources in the Database

BEA WebLogic Portal Portlet Development Guide A-3

How the Database Shows Removed Portlets

Types of Database Tables
Separate database tables store information about portlet resources, including the following:

Definitions – Portlet definition properties including creation date, content URI, whether
the portlet is forkable or cacheable, whether it has a backing file, and so on.

Instances (including a subset of tables for WSRP) – Instance properties indicate whether
the portlet is minimized by default, title bar orientation (top, left, right, bottom), the parent
portlet instance if applicable, and so on.WSRP portlet properties include proxy portlet
instance values.

Categories – Portlet categories provide for the classification of portlets, which is useful
when organizing a large collection of portlets into meaningful groupings. The database
stores values for the category ID and creation/modification dates.

Category definitions – The database stores values for the category ID and
creation/modification dates, parent category, and so on.

Preferences – Preference properties, such as whether or not the preference can be
multi-valued or whether it is modifiable, are stored in this table.

Preference values – The database stores the actual value of portlet preferences.

User properties – The database table maintains values of portlet user properties for WSRP
user profile propagation.

Tip: The tool you use to manipulate these resources varies according to the resource, and the
phase of development you are in; for example, you can change portlet preferences using
either Workshop for WebLogic or the WebLogic Portal Administration Portal, but you
must use the Administration Portal to create portlet categories.

Management of Portlet Data
When a portlet is loaded into the database, the portlet XML is parsed and a number of tables are
populated with information about the portlet, including PF_PORTLET_DEFINITION,
PF_MARKUP_DEFINITION, PF_PORTLET_INSTANCE, PF_PORTLET_PREFERENCE,
L10N_RESOURCE, and L10N_INTERSECTION.

Po r t le t Database Data

A-4 BEA WebLogic Portal Portlet Development Guide

PF_PORTLET_DEFINITION is the master record for the portlet and contains rows for properties
that are defined for the portlet, such as the definition label, the forkable setting, edit URI, help
URI, and so on. The definition label and web application name are the unique identifying records
for the portlet. Portlet definitions refer to the rest of the actual XML for the portlet that is stored
in PF_MARKUP_DEF.

PF_MARKUP_DEF contains stored tokenized XML for the .portlet file. This means that the
.portlet XML is parsed into the database and properties are replaced with tokens. For example,
the following code fragment shows a tokenized portlet:

<netuix:portlet $(definitionLabel) $(title) $(renderCacheable)

$(cacheExpires)>

These tokens are replaced by values from the master definition table in
PF_PORTLET_DEFINITION, or by a customized instance of the portlet stored in
PF_PORTLET_INSTANCE.

The following four types of portlet instances are recorded in the database for storing portlet
properties:

Primary – Properties defined in development and stored in the .portlet file.

Library – Properties defined in the Portal Library, which you can change using the
WebLogic Portal Administration Portal.

Admin – A customized instance of the portlet in a desktop. This allows you to customize a
portlet in a particular way for a desktop without affecting other instances of the portlet in
other desktops.

User – User-customized instances of the portlet defined in the Visitor Tools.

PF_PORTET_INSTANCE contains properties for the portlet for attributes such as
DEFAULT_MINIMIZED, TITLE_BAR_ORIENTATION, and PORTLET_LABEL.

If a portlet has portlet preferences defined, those are stored in the PF_PORTLET_PREFERENCE
table.

Finally, portlet titles can be internationalized. Those names are stored in the L10N_ RESOURCE
table which is linked using L10N_INTERSECTION and PF_PORTLET_DEFINITION.

How the Database Shows Removed Portlets
If a portlet is removed from a deployed portal project, and it has already been defined in the
production database, the portlet is marked as IS_PORTLET_FILE_DELETED in the

Po r t l e t Resources in the Database

BEA WebLogic Portal Portlet Development Guide A-5

PF_PORTLET_DEFINITION table. The portlet displays as grayed out in the Administration
Portal, and user requests for the portlet (if it is still contained in a desktop instance) return a
message indicating that the portlet is unavailable.

For detailed information about the content of WebLogic Portal database tables, refer to the
Database Administration Guide.

../db/index.html

Po r t le t Database Data

A-6 BEA WebLogic Portal Portlet Development Guide

	Introduction
	Portlet Overview
	Portlet Development and the Portal Life Cycle
	Architecture
	Development
	Staging
	Production

	Getting Started
	Prerequisites
	Related Guides

	Part I Architecture
	Portlet Planning
	Portlet Development in a Distributed Portal Team
	Portlets in a Non-Portal Environment
	Planning Portlet Instances
	Security
	Interportlet Communication
	Performance Planning

	Portlet Types
	Java Server Page (JSP) and HTML Portlets
	Java Portlets (JSR 168)
	Java Page Flow Portlets
	Struts Portlets
	Java Server Faces (JSF) Portlets
	Browser (URL) Portlets
	Remote Portlets
	Portlet Type Summary Table

	Part II Development
	Understanding Portlet Development
	Portlet Components
	Portlet Properties
	Portlet Title Bar, Mode, and State
	Portlet Preferences

	Resources for Creating Portlets
	Portlet Rendering
	Render and Pre-Render Forking
	Asynchronous Portlet Content Rendering
	Portlets as Popups (Detached Portlets)

	JSP Tags and Controls in Portlets
	Backing Files

	Building Portlets
	Supported Portlet Types
	Portlets in Library Modules
	Portlet Wizard Reference
	Order of Creation - Resource or Portlet First
	Starting the Portlet Wizard
	New Portlet Dialog
	Select Portlet Type Dialog
	Portlet Details Dialogs

	How to Build Each Type of Portlet
	JSP and HTML Portlets
	Java Portlets
	Java Page Flow Portlets
	JSF Portlets
	Browser Portlets
	Struts Portlets
	Remote Portlets
	Web Service Portlets

	Detached Portlets
	Considerations for Using Detached Portlets
	Building Detached Portlets

	Portlet Properties
	Editing Portlet Properties
	Tips for Using the Properties View
	Portlet Properties in the Portal Properties View
	Portlet Properties in the Portlet Properties View

	Portlet Preferences
	Specifying Portlet Preferences
	Using the Preferences API to Access or Modify Preferences
	Portlet Preferences SPI
	Best Practices in Using Portlet Preferences

	Backing Files
	How Backing Files are Executed
	Thread Safety and Backing Files
	Scoping and Backing Files
	Backing File Guidelines

	Portlet Appearance and Features
	Portlet Dependencies
	Portlet Modes
	Portlet States
	Portlet Title Bar Icons
	Portlet Height and Scrolling

	Getting Request Data in Page Flow Portlets
	JSP Tags and Controls in Portlets
	Viewing Available JSP Tags
	Viewing Available Controls

	Portlet State Persistence
	Adding a Portlet to a Portal
	Deleting Portlets
	Third-Party Portlets
	Autonomy Portlets
	Documentum Portlets
	MobileAware Portlets

	Advanced Portlet Development with Tag Libraries
	Adding ActiveMenus
	Enabling Drag and Drop
	Enabling Dynamic Content

	Optimizing Portlet Performance
	Performance-Related Portlet Properties
	Portlet Caching
	Remote Portlets
	Portlet Forking
	Configuring Portlets for Forking
	Architectural Details of Forked Portlets
	Best Practices for Developing Forked Portlets

	Asynchronous Portlet Content Rendering
	Implementing Asynchronous Portlet Content Rendering
	Thread Safety and Asynchronous Rendering
	Considerations for IFRAME-based Asynchronous Rendering
	Considerations for AJAX-based Asynchronous Rendering
	Comparison of IFRAME- and AJAX-based Asynchronous Rendering
	Comparison of Asynchronous and Conventional or Forked Rendering
	Portal Life Cycle Considerations with Asynchronous Content Rendering
	Asynchronous Content Rendering and IPC

	Local Interportlet Communication
	Definition Labels and Interportlet Communication
	Portlet Events
	Event Handlers
	Event Types
	Event Actions
	Portlet Event Handlers Wizard Reference

	IPC Example
	Before You Begin - Environment Setup
	Basic IPC Example

	IPC Special Considerations and Limitations
	Using Asynchronous Portlet Rendering with IPC
	Generic Event Handler for WSRP
	Consistency of the Listen To Field

	Part III Staging
	Assembling Portlets into Desktops
	Portlet Library
	Managing Portlets Using the Administration Console
	Copying a Portlet in the Library
	Modifying Library Portlet Properties
	Modifying Desktop Portlet Properties
	Deleting a Portlet
	Managing Portlets on Pages
	Overview of Portlet Categories
	Overview of Portlet Preferences
	Creating a Portlet Preference
	Editing a Portlet Preference
	Overview of Delegated Administration
	Overview of Visitor Entitlements

	Deploying Portlets
	Deploying Portlets

	Part IV Production
	Managing Portlets in Production
	Pushing Changes from the Library into Production
	Transferring Changes from Production Back to Development

	Portlet Database Data
	Database Structure for Portlet Data
	Removing Portlets from Production

	Portlet Resources in the Database
	Types of Database Tables
	Management of Portlet Data
	How the Database Shows Removed Portlets

