
Integration Kit for

 B E A W e b L o g i c I n t e g r a t i o n K i t f o r I B M V i s u a l A g e f o r J a v a ,
 V e r s i o n 3 . 5

D o c u m e n t E d i t i o n 1 . 1

BEA WebLogic

 Tutorial

IBM VisualAge for Java

 F e b r u a r y 2 0 0 1

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

BEA WebLogic Integration Kit for IBM VisualAge for Java Installation Guide

Document Edition Part Number Date Software Version

1.1 860-001004-001 February 2001 3.5

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial iii

CHAPTER

Contents

About This Document
What You Need to Know ... vii
e-docs Web Site... viii
How to Print the Document... viii
Related Information... viii
Contact Us! .. ix
Documentation Conventions ... ix

1. Introduction
Overview ... 1-1
Using the Examples... 1-2

2. Developing, Deploying, Using and Debugging EJBs
Overview ... 2-2
Developing, Deploying, Using and Debugging a Stateless Session EJB.......... 2-3

Developing the EJB JAR.. 2-4
Looking at the StatelessSession Package.. 2-5
Starting the Build .. 2-7
Naming the EJB JAR File ... 2-8
Generating the Undeployable JAR ... 2-11
Generating the Container Classes ... 2-11
Generating the EJB JAR ... 2-12
Changing the Name or Location of the JAR file 2-13

Configuring BEA WebLogic Server to Run the EJB............................... 2-13
Verifying the EJB Deployment .. 2-14

Starting the WebLogic Server... 2-14
Checking the Server Messages on the consoles................................ 2-17

iv BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Running a Client Java Application that Communicates with the
Deployed EJB.. 2-19
Verifying the ClassPath... 2-19
Using Command-Line Parameters .. 2-22
Running the Client Application... 2-24

Debugging the Client Application and the Server Object 2-25
The IBM VisualAge for Java Integrated Debugger 2-26
Configuring the Server .. 2-27
Setting Breakpoints ... 2-29
Running the Client Application and the Server 2-31
Following the Processes in the Console and the Debugger 2-32
Stepping through the code... 2-36

Developing, Deploying, Using and Debugging a Container Managed
Entity EJB... 2-40
 Setting up the Oracle Database.. 2-42

Installing Oracle .. 2-42
Testing the Connection to the Oracle database. 2-43
Creating the Database Tables.. 2-44

Developing the EJB JAR.. 2-49
Looking at the ContainerManaged Package...................................... 2-49
Starting the Build .. 2-51
Naming the EJB JAR File ... 2-52
Generating the Undeployable JAR.. 2-52
Generating the Container Classes ... 2-53
Generating the EJB JAR ... 2-53

Configuring BEA WebLogic Server to Run the EJB............................... 2-54
Verifying the EJB Deployment .. 2-58

Starting the WebLogic Server ... 2-58
Checking the Server Messages on the consoles 2-59

Running a Client Java Application that Communicates with the
Deployed EJB.. 2-60
Verifying the ClassPath... 2-60
Using Command-Line Parameters .. 2-61
Running the Client Application... 2-62

Debugging the Client Application and the Server Object 2-68

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial v

3. Combining EJB with JMS and Servlet Technologies
Overview ... 3-2
Configuring BEA WebLogic Server for JMS ... 3-3

Creating a Database for JMS.. 3-4
Defining a JDBC Connection Pool for the JMS Database......................... 3-6
Defining JMS ConnectionFactories ... 3-7
Defining JMS Topics and Queues.. 3-7

Configuring BEA WebLogic Server for the Servlet ... 3-8
Registering the Servlet ... 3-8
Setting the Servlet Classpath and Reloading Properties 3-8

Running the Client Application... 3-10
Calling the Servlet from a Web Browser .. 3-14
Exporting the Classes to the Production BEA WebLogic Server 3-18

4. Developing an Applet Application
Overview ... 4-1
Setting Up the Database .. 4-2
Running and Debugging the Applet in the IBM VisualAge for Java

Environment ... 4-3
Developing the Applet ... 4-3

Verifying the Classpath... 4-4
Using Attributes and Parameters... 4-6
Running the Applet ... 4-7
Debugging the Applet ... 4-9

Running the Applet in BEA WebLogic Server and a Web Browser 4-12

5. Exporting Classes
Overview ... 5-1
Exporting Classes to a Production BEA WebLogic Server 5-1

A. Appendix - Tips and Troubleshooting
Overview .. A-1
Installing Service Packs.. A-1
Using EJB Dynamic Deployment .. A-3
Using Cloudscape Database ... A-3

vi BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial vii

About This Document

This document describes how to use the BEA WebLogic Integration Kit for IBM
VisualAge for Java Version 3.5 (the Integration Kit) to develop and debug your BEA
WebLogic Server application from within IBM VisualAge for Java Version 3.5.

This document covers the following topics:

� Chapter 1, “Introduction”

� Chapter 2, “Developing, Deploying, Using and Debugging EJBs”

� Chapter 3, “Combining EJB with JMS and Servlet Technologies”

� Chapter 4, “Developing an Applet Application”

� Chapter 5, “Exporting Classes”

What You Need to Know

This document is intended mainly for application developers who are interested in
building distributed Java applications that can be deployed within BEA WebLogic
Server using The Integration Kit. It assumes familiarity with The Integration Kit
platform, Java programming, and BEA WebLogic Server.

viii BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option.

A PDF version of this document is available on the Integration Kit documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the Integration Kit documentation Home page,
click the PDF files button and select the document you want to print.

If you do not have Adobe Acrobat Reader, you can get it for free from the Adobe Web
site at http://www.adobe.com.

Related Information

The following Integration Kit documents contain information that is relevant to using
IBM VisualAge for Java Version 3.5 and BEA WebLogic Server.

For more information in general about IBM VisualAge for Java Version 3.5 and BEA
WebLogic Server, refer to the following sources:

� BEA WebLogic Server Web Site at http://e-docs.bea.com

� IBM VisualAge for Java Version 3.5 site at
http://www.ibm.com/software/ad/vajava

http://www.ibm.com/software/ad/vajava
http://e-docs.bea.com
http://e-docs.bea.com
http://www.adobe.com

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial ix

Contact Us!

Your feedback on the BEA Integration Kit documentation is important to us. Send us
e-mail at docsupport@bea.com if you have questions or comments. Your comments
will be reviewed directly by the BEA professionals who create and update the
Integration Kit documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Integration Kit release.

If you have any questions about this version of Integration Kit, or if you have problems
installing and running Integration Kit, contact BEA Customer Support through BEA
WebSupport at www.bea.com. You can also contact Customer Support by using the
contact information provided on the Customer Support Card, which is included in the
product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

http://www.ibm.com/software/ad/vajava
http://www.bea.com

x BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial xi

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
� That an argument can be repeated several times in a command line
� That the statement omits additional optional arguments
� That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xii BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 1-1

CHAPTER

Introduction

Topics discussed in this section include:

� Overview

� Using the Examples

Overview

IBM VisualAge for Java Version 3.5 (Professional or Enterprise Edition) is an
integrated, visual environment that supports the complete cycle of Java program
development.

BEA WebLogic Server is an award-winning Java application server for developing,
deploying, and managing Web applications. It simplifies development of portable and
scalable applications, and it provides interoperability with other applications and
systems. BEA WebLogic Server also offers the most complete implementation of the
Java 2 Enterprise Edition standard.

The BEA Weblogic Integration Kit for IBM VisualAge for Java Version 3.5 (the
Integration Kit) is a Java application that helps you develop and debug your BEA
WebLogic Server applications from within IBM VisualAge for Java Version 3.5. All
activity in VisualAge for Java Version 3.5 is organized around a workspace that
contains the Java programs that you are developing. The workspace also contains all
the packages, classes, and interfaces that are found in the standard Java class libraries,
and other libraries that your classes may need. The Integration Kit for IBM VisualAge
for Java Version 3.5 adds the classes required to run BEA WebLogic Server to your
workspace. As you develop and debug your applications you can add classes and
projects to your workspace.

1 Introduction

1-2 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

This document discusses some of the examples included in the installation and, using
these examples, describes the most common scenarios in which the tools provided by
The Integration Kit are used in developing an application.

The focus of the scenarios is the usage of EJBs by themselves or in combination with
other Java technologies, such as JDBC, JMS, Servlets, and Applets. The descriptions
of these scenarios address the development and testing phase of the application, and
they provide brief hints on how to use the developed application in a production
environment. You can get more information about using BEA WebLogic Server in a
production environment from the BEA WebLogic Server documentation.

Using the Examples

The Integration Kit installation creates an IBM VisualAge for Java Version 3.5 project,
WebLogic Examples, that contains example code illustrating how to use many of the
capabilities of BEA WebLogic Server. It is recommended that you work through all
the examples included in the Integration Kit before attempting to create your own
EJBs. The examples illustrate all the process steps involved.

In addition to the Java code in the project, some of the examples also require
configuring the server settings in order to run properly, and some have command-line
arguments which you can modify.

For instructions on how to run each example, refer to the documentation on the BEA
WebLogic Server examples. These documents describe how to build and run the
examples from the command line. Most of the instructions also apply to running the
examples within IBM VisualAge for Java Version 3.5, but there are a few differences
to keep in mind:

� Compiling the examples

Code is automatically compiled in the IBM VisualAge for Java workspace. For
this reason, you can ignore instructions concerning compiling the examples from
BEA WebLogic Server.

Using the Examples

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 1-3

� Setting server properties

For most examples, properties must be configured in the
weblogic.properties file. The server reads its properties from the
weblogic.properties file in the WebLogic Server installation directory. If the
server is running in IBM VisualAge for Java Version 3.5, you must stop the
server and restart it after setting the example properties.

� Using command-line parameters to pass arguments to the executable class

To set command-line arguments, complete the following procedure:

a. In the workspace, select the main class for the example.

b. From the menu bar, select Selected→Properties to open the Properties window.

c. On the Program tab in the Properties window, enter the arguments in the
Command Line Arguments field.

d. Click OK.

� Cloudscape database

The BEA WebLogic Integration Kit for IBM VisualAge for Java Version 3.5
does not support the use of a Cloudscape database because of problems that
occur when Cloudscape is run in a VisualAge environment. This issue is
currently being investigated by IBM Support (PMR 15142,519,000).

Most of the examples shipped with BEA WebLogic Server use the demoPool
database connection pool, which is set up to use a pre-configured Cloudscape
database that is installed with BEA WebLogic Server. In order to run these
examples in IBM VisualAge for Java Version 3.5, you must create the example
tables in another database, such as Oracle, and change the demoPool
configuration in weblogic.properties to use that database.

1 Introduction

1-4 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-1

CHAPTER

Developing,
Deploying, Using, and
Debugging EJBs

Topics discussed in this section include:

� Overview

� Developing, Deploying, Using, and Debugging a Stateless Session EJB

� Developing, Deploying, Using, and Debugging a Container-Managed Entity EJB

The latter two of these sections provide information about the following:

� Setting up the Oracle Database (for the Container Managed Entity EJB only)

� Developing the EJB JAR

� Configuring BEA WebLogic Server to Run the EJB

� Verifying the EJB Deployment

� Running a Client Java Application that Communicates with the Deployed EJB

� Debugging the Client Application and the Server Object

2 Developing, Deploying, Using, and Debugging EJBs

2-2 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Overview

In this section, we will look at developing, deploying, using, and debugging Enterprise
JavaBeans using two examples that demonstrate different aspects of Enterprise
JavaBeans. The first example uses a Stateless Session EJB; the second uses a
Container-Managed Entity EJB.

The code used in both examples is based on examples that are shipped with BEA
Weblogic Server and adapted to work with an IDE (IBM VisualAge for Java). The
code elements are provided in the WebLogic Examples project when you install the
Integration Kit.

The WebLogic Examples project also contains other EJB examples included in the
BEA WebLogic Server distribution. You can easily experiment with them from inside
IBM VisualAge for Java without any further configuration (besides that required by
the specific example).

To get the most out of these examples, first read through the source code files. Start
with the XML deployment files to see the general structure of the EJB. Notice which
classes are used for the different objects and interfaces. Then look at the client file,
Client.java, to see how the application works.

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-3

Developing, Deploying, Using, and
Debugging a Stateless Session EJB

In this section you will build, deploy, and debug a stateless session Enterprise
JavaBean called TraderBean.

Using this Enterprise JavaBean, the client application will perform the following tasks:

1. Create a Trader.

2. Buy and sell shares of BEAS, MSFT, AMZN, and HWP. (The EJB does not
actually buy or sell; it simulates the actions of accessing a database.)

3. Remove the Trader.

This application will demonstrate the following:

� How the client maintains a persistent state, such as the change in the cash
account, across repeated calls to the session EJB

� How to use application-defined exceptions and utilities

The section will walk you through several steps that correspond to the steps in a typical
EJB application development process:

1. Developing the EJB JAR

2. Configuring BEA WebLogic Server to Run the EJB

3. Verifying the EJB Deployment

4. Running a Client Java Application that Communicates with the Deployed EJB

5. Debugging the Client Application and the Server Object

In this example you can configure BEA WebLogic Server to both run the EJB and
verify the EJB deployment before you develop the EJB JAR. This is because a
pre-built JAR file is installed in the WebLogic\myserver directory. Verifying the
EJB Deployment can be done before developing the EJB JAR because the example
includes the pre-built JAR file installed in the correct location. However, Developing
the EJB JAR has to be successfully completed before you can do Running a Client Java

2 Developing, Deploying, Using, and Debugging EJBs

2-4 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Application that Communicates with the Deployed EJB and Debugging the Client
Application and the Server Object. This is because these steps depend on having all
the generated container classes in the workspace.

The code used in this section is based on the example
examples.ejb.basic.statelessSession which is shipped with BEA Weblogic
Server and adapted to work with an IDE (IBM VisualAge for Java). All the code
elements (.java and .xml) for this example were included in the WebLogic
Examples project when you installed the Integration Kit.

In general, you will need to adjust certain BEA WebLogic Server properties to match
your setup. To deploy the EJB you will need to edit the property that begins with
weblogic.ejb.deploy in the weblogic.properties file. This property is
commented out in the default properties file; make sure that you uncomment all the
lines of the property.

Note: If you change the BEA WebLogic Server installation root to another location
after installing it, you must reconfigure the EJB tools using the Configure
Tools tool (From the menu bar, select Selected→Tools→WebLogic Server
Tools→Configure Tools). This tool associates the EJB tools with the new root
directory of the BEA WebLogic Server distribution. This is necessary because
the EJB tools depend on classes in the BEA WebLogic Server distribution that
have not been imported into the IBM VisualAge for Java workspace, and
because the Generate EJB JAR tool must know where to install the generated
JARs. This tool was run as part of the installation process and does not need
to be re-run unless you move the location of the BEA WebLogic Server
distribution after installation. For more information see the Installation Guide
for the Integration Kit.

Developing the EJB JAR

All the code elements for the stateless session example have already been developed
and are installed in the WebLogic Examples project. We will look at these elements
in the StatelessSession package and then build the deployable JAR file. A
pre-built EJB JAR file is already installed in the directory WebLogic\myserver
(where WebLogic is the installation directory of BEA WebLogic Server), but in order
to use and debug the EJB you need to generate the container classes.

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-5

Looking at the StatelessSession Package

To examine the StatelessSession package in the workspace:

1. Start IBM VisualAge for Java.

2. On the Projects tab of the Workbench, select the package
examples.ejb.basic.statelessSession in the project WebLogic
Examples.

Figure 2-1 The StatelessSession Package in the Projects Tab

2 Developing, Deploying, Using, and Debugging EJBs

2-6 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Notice that the examples.ejb.basic.statelessSession package already
contains:

� Executable class: Client

� Server EJB class: TraderBean

� Helper classes: TradeResult

� EJB interfaces: Trader and TraderHome

During the Integration Kit installation the Deployment Descriptors were included in
the project’s resource folder:

VisualAge\IDE\project_resources\WebLogic Examples\examples\ejb\
basic\statelessSession

The installation directory for IBM VisualAge for Java, in this case, is VisualAge (in
this example, C:\Program Files\IBM\VisualAge for Java). It contains the
following files:

� ejb-jar.xml

� weblogic-ejb-jar.xml

In a real development situation, you must do the following tasks:

� Create the java and XML files yourself using an IDE, such as IBM VisualAge
for Java. (It would be a good exercise to walk through the code, so that you
understand what is required to build an EJB.)

� Create a project (WebLogic Examples) and a package
(examples.ejb.basic.statelessSession) that you can use to develop your
EJB and client inside the IBM VisualAge for Java workspace. Using the IBM
VisualAge for Java Import utility, import the Deployment Descriptors into the
corresponding package (examples.ejb.basic.statelessSession).

Warning: Do not modify any files in the IBM VisualAge for Java
VisualAge\IDE\project_resources file system directory tree.

The deployable JAR file (ejb_basic_statelessSession.jar) is already built and
installed in the directory WebLogic\myserver (where WebLogic is the directory in
which BEA WebLogic Server is installed).

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-7

Starting the Build

For the client application to be able to communicate with the deployed EJB, you need
to have all the generated container classes in the workspace, so you must build the EJB
JAR.

To start the build of the EJB JAR:

1. Select the examples.ejb.basic.statelessSession package in the Project
WebLogic Examples.

2. From the menu bar, select Selected→Tools→Generate EJB JAR.

Figure 2-2 Selecting Generate EJB JAR in the Projects tab

2 Developing, Deploying, Using, and Debugging EJBs

2-8 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Note: Before using the Generate EJB JAR tool, users of the Enterprise Edition of
IBM VisualAge for Java must first create an open edition of the EJB package.
To create an open edition, select the package and then select the menu items
Selected→Manage→Create Open Edition. If you are not using an open
edition of the package, the Enterprise Edition reports an error message (see
Figure 2-3).

Figure 2-3 EJB Error message

The build process involves several steps, each of which is announced by a Generating
EJB message as it happens.

Naming the EJB JAR File

If you are building the package for the first time, you are prompted for an output JAR
filename.

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-9

Figure 2-4 Select JAR File for Beans Window

The tool makes the following suggestions for the location and name of the (deployable)
JAR file:

� Location: The resource directory in IBM VisualAge for Java where the project’s
resources reside (in this case VisualAge\IDE\project_resources\
WebLogic Examples where VisualAge is the installation directory for IBM
VisualAge for Java, in this example C:\Program Files\IBM\VisualAge for

Java).

� Name: The name of the project appended with the suffix (in this case
examples_ejb_basic_sessionStateless.jar).

In this example we will change the name and location to the values used in BEA
WebLogic Server Examples to avoid confusion.

2 Developing, Deploying, Using, and Debugging EJBs

2-10 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Figure 2-5 Setting Values for JAR File Location and Name

As shown in Figure 2-5, we will use the following settings:

� Location: WebLogic\myserver

Here WebLogic is the installation directory for BEA WebLogic Server. In this
example, the installation directory is C:\weblogic

� File Name: ejb_basic_sessionStateless.jar (similar to the name of the
corresponding file in the BEA WebLogic Server example)

Note: If the values suggested by the tool are used, you must modify the
weblogic.properties file accordingly (For details, see the following
section “Configuring BEA WebLogic Server to Run the EJB”.)

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-11

Generating the Undeployable JAR

Using the compiled classes in the package (EJB class, Interfaces, Client) and the
Deployment Descriptors, the build process will generate an undeployable JAR
(meaning the JAR cannot be deployed in any Web Application Server).

The name of the undeployable JAR file will be created by adding the prefix std_ to
the JAR name provided above. In this example the undeployable JAR will be called
std_ejb_basic_statelessSession.jar. The file will be installed in the specified
directory, in this example WebLogic/myserver where WebLogic is the installation
directory for BEA WebLogic Server (in this example, C:\weblogic).

Generating the Container Classes

If you have previously done a build and the generated container classes are already in
the statelessSession package, subsequent build processes will delete these
existing container classes before generating new ones. (A message will inform you of
the removal process and you will be able to see the classes being removed, one by one,
from the workspace.)

The Generating EJB message will announce the generation of the container classes.

Figure 2-6 The Generating EJB message

You will see the classes being added one by one to the workspace.

2 Developing, Deploying, Using, and Debugging EJBs

2-12 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Figure 2-7 The generated container classes in the StatelessSession package

Generating the EJB JAR

Using the compiled classes in the package (EJB class, Interfaces, Client), the
Deployment Descriptors and the newly generated container classes, the build process
will generate a deployable JAR (meaning that the JAR can be deployed in BEA
WebLogic Server). In this example the JAR will be called
ejb_basic_statelessSession.jar. The file will be installed in the specified
directory, WebLogic/myserver where WebLogic is the installation directory for BEA
WebLogic Server (in this example, C:\weblogic).

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-13

When the build process is complete, you will get an EJB Generated confirmation
message. This same message will be recorded in the log.

Figure 2-8 The EJB Generated confirmation message

Changing the Name or Location of the JAR file

If, at a later stage, you need to change the name and location of the JAR file, use the
Configure EJB package tool.

To change the name and location of the JAR file:

1. In the Projects tab in the Workbench, select the project or the EJB package inside it.

2. From the menu bar, select Selected→Tools→Weblogic Tools→Configure EJB
package.

Configuring BEA WebLogic Server to Run the EJB

In this example the EJB does not communicate with a database, so you are not required
either to set a database and its tables, or configure BEA WebLogic Server for
Database/Pool access. “Developing, Deploying, Using and Debugging a Container
Managed Entity EJB,”which discusses the case of an Entity EJB that connects to a
Database, shows you how to do that.

The bean’s JAR is already in the correct location in the WebLogic/myserver folder.

To successfully deploy and use the EJB you must add the path to the JAR file to the
weblogic.ejb.deploy property in the weblogic.properties file. The
weblogic.properties file is located in the root installation of the BEA WebLogic
Server (the default: c:\weblogic).

2 Developing, Deploying, Using, and Debugging EJBs

2-14 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

A commented-out version of this path can be found in the weblogic.ejb.deploy
property. You will need to uncomment and adjust the property depending on which
EJBs you are building and deploying, or if the location of the files differs from the
installed location. For this example you will have to uncomment:

weblogic.ejb.deploy=\

C:/weblogic/myserver/ejb_basic_statelessSession.jar

If you did not change the default name and location for the JAR file in the previous
section, “Developing the EJB JAR”, you will have to set the property in the
weblogic.properties file to correspond to your JAR file:

weblogic.ejb.deploy=\

VisualAge\IDE\project_resources\WebLogic Examples/
examples_ejb_basic_sessionStateless.jar

where VisualAge is the installation directory for IBM VisualAge for Java (in this
example, C:\Program Files\IBM\VisualAge for Java).

Note: If you configure server properties in the weblogic.properties file while the
server is running in IBM VisualAge for Java you will need to stop the server
and restart it.

Verifying the EJB Deployment

To verify if the EJB deploys correctly you have to start the server and look at the
messages displayed on the VisualAge console and the WebLogic console.

Starting the WebLogic Server

 To start the WebLogic server:

1. Start IBM VisualAge for Java.

2. In the Projects tab of the Workbench select WebLogic Server.

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-15

Figure 2-9 The Weblogic Server project in the Projects tab

3. Do one of the following:

� Click the Run button.

� Right-click on the WebLogic Server project and select Run→Run main.

� Double-click the WebLogic Server project. This will open a separate
Weblogic Server window containing just the
weblogic.integration.visualage.server package. In the Weblogic
Server window click the Run button, or right-click on WebLogic Server and
select Run→Run main.

2 Developing, Deploying, Using, and Debugging EJBs

2-16 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Figure 2-10 The Weblogic Server window

While the server is running, a WebLogic Server message will be displayed that can be
used to shut down the server.

Figure 2-11 The Weblogic Server message

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-17

Checking the Server Messages on the consoles

To check whether the server has started correctly and whether the EJB has been
deployed correctly do either of the following:

� Check the messages displayed on the console

Figure 2-12 The console showing messages from the server

2 Developing, Deploying, Using, and Debugging EJBs

2-18 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

� Open the WebLogic console, attach to the BEA WebLogic Server, and examine
the EJB under Distributed Objects.You should see, and be able to monitor the
activity of, the deployed EJB interface statelessSession.TraderHome.

Figure 2-13 The WebLogic console

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-19

Running a Client Java Application that Communicates
with the Deployed EJB

Before running the client application you must verify that the Integration Kit has
provided the complete classpath for the application. You can also set Command-line
parameters. The output from the client application will appear on the console.

Verifying the ClassPath

To verify the complete classpath for the client application:

1. Right-click on the Client runnable class in the
examples.ejb.basic.statelessSession package in the project WebLogic
Examples.

2 Developing, Deploying, Using, and Debugging EJBs

2-20 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Figure 2-14 The Client class in the Projects tab of the Workbench

2. Select Properties from the context menu to open the Properties window.

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-21

Figure 2-15 The Class Path tab in the Properties window

3. In the Class Path tab of the Properties window, click the Edit button for the
Project Path field to open the Class Path window.

2 Developing, Deploying, Using, and Debugging EJBs

2-22 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Figure 2-16 The Class Path window

4. Verify that there are checkmarks in all the boxes corresponding to the BEA
WebLogic Server projects that were added to the IBM VisualAge for Java
workspace by the Integration Kit's Installer. If any of these projects are not
checked, check them.

5. Click OK.

The path to each of the checked projects is displayed in the Complete class path field
on the Class Path tab of the Properties window.

Using Command-Line Parameters

There are three command-line parameters in this application. The first parameter (url)
gets a default argument and only needs to be changed if the default settings are not
being used. The other two parameters are optional.

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-23

Command-line parameters are interpreted in this order:

1. url: URL of server (default such as t3://localhost:7001)

2. user: User name (default null)

3. password: User password (default null)

To edit the command-line arguments:

1. In the Properties window select the Program tab.

2. Enter the arguments in the Command line arguments text field with spaces
between each argument.

3. Press OK.

Figure 2-17 The Program tab in the Properties window

2 Developing, Deploying, Using, and Debugging EJBs

2-24 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Note: If you are not running the BEA WebLogic Server with its default settings, you
will have to supply the command-line argument:

t3://WebLogicURL:Port

where:

WebLogicURL is the domain address of the BEA WebLogic Server

Port is the port that is listening for connections
(weblogic.system.ListenPort)

Running the Client Application

To run the client do one of the following:

1. Select the Client class in the examples.ejb.basic.statelessSession
package and click on the Run button.

2. Right-click on the Client class in the
examples.ejb.basic.statelessSession package and select Run→Run
main.

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-25

When running this example, you should get output from the client application similar
to that shown in Figure 2-18 below.

Figure 2-18 The console showing messages from the client application

Debugging the Client Application and the Server Object

We will use the IBM VisualAge for Java integrated debugger to debug the Client
application and the server object. From the debugger, you can launch Inspectors to
look at and modify variable values for suspended threads, watches to evaluate
expressions as you step through a program, and an Evaluation window where you can
evaluate an expression during debugging.

Before running the application you have to configure the server.

2 Developing, Deploying, Using, and Debugging EJBs

2-26 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

You will set breakpoints in the server-side code and the client code and then follow the
progress of the two processes using the console and the debugger and trace the code
when it is invoked from a client.

The IBM VisualAge for Java Integrated Debugger

IBM VisualAge for Java integrated debugger assists in debugging applets and
applications running in the IDE.

You can open the debugger manually while a program is running to inspect threads and
variables. Also, the debugger will open automatically, with the current thread
suspended, for any of several reasons:

� A breakpoint in the code is encountered (We will experiment with this in the
example.)

� A conditional breakpoint that evaluates to true is encountered.

� An exception is thrown and not caught.

� An exception selected in the Exceptions page is caught.

� A breakpoint in an external class is encountered.

Once the debugger is open and a thread is suspended, you can work with the program
in the following ways:

� Inspect visible variable values

� Modify most variable values

� Step through methods

� Modify source code for methods in the workspace

� Replace methods with other editions from the repository

� Modify, clear or disable breakpoints

� Evaluate expressions in the Source pane or the Evaluation window

� Define expressions to watch as you step through programs

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-27

Using the debugger, you can optionally generate and view the class loading and
initialization trace.

To use the IBM VisualAge for Java debugger, server-side classes must be in an IBM
VisualAge for Java project. You can either create the project in IBM VisualAge for
Java, or if the code already exists, you can import it into IBM VisualAge for Java. It is
acceptable for client-side and server-side code to be in the same project.

Configuring the Server

Because the object we want to debug is a server-side object, make sure that the
WebLogic Examples project is added to classpath for the Server class. The server is
configured in the weblogic.properties file.

To add the project to the classpath for the Server class.

1. In the Projects tab of the Workbench, expand the WebLogic Server project, then
the weblogic.integration.visualage.server package.

2. Right-click on the Server runnable class and select Properties from the context
menu to open the Properties window.

3. In the Class Path tab, click the Edit button for the Project Path field to open the
Class Path window.

2 Developing, Deploying, Using, and Debugging EJBs

2-28 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Figure 2-19 The Class Path window

4. Make sure that the check box for the project WebLogic Examples is checked.

5. Make sure that the check box for WebLogic OCI is not checked.

6. Click OK.

To configure the BEA WebLogic Server, if you have not yet done this, edit
weblogic.properties as required (see “Configuring BEA WebLogic Server to Run
the EJB”).

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-29

Setting Breakpoints

We will set breakpoints in the both the server-side code and the client code, and then
trace the code when it is invoked from a client.

To set a breakpoint in source code in the IDE:

1. Go to the Workbench or any browser that shows the source code for the program
where you want to suspend the thread.

2. Do either of the following:

� Place the cursor in the line of code where you want the breakpoint and select
Edit→Breakpoint.

� Double-click to the left of the line of code where you want the breakpoint.

A breakpoint symbol is placed in the margin of the Source pane next to the line in
which you placed the cursor. If you try to set a breakpoint at an invalid location (for
example, a comment line), the breakpoint will be set at the closest valid location. If you
try to set a breakpoint in a method in which breakpoints cannot be used, a message will
inform you that there are no valid locations in the method for breakpoints.

Set breakpoints in the following places:

� In the buy()method in the TraderBean.java EJB class (see Figure 2-20)

� In the example()method in the Client class, after creating the Trader and
processing the buys and before processing the sells (see Figure 2-21)

2 Developing, Deploying, Using, and Debugging EJBs

2-30 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Figure 2-20 Setting a breakpoint in the Traderbean class

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-31

Figure 2-21 Setting a breakpoint in the client’s example() method

Running the Client Application and the Server

You may choose to run the client either from within or outside of IBM VisualAge for
Java, whichever is more convenient.

To start the debugging process:

1. Run the server (see “Verifying the EJB Deployment”).

2 Developing, Deploying, Using, and Debugging EJBs

2-32 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

2. Run the client application (see “Running a Client Java Application that
Communicates with the Deployed EJB”).

Note: IBM VisualAge for Java’s class loader allows you to modify and continue
debugging server-side code without restarting WebLogic Server as long as
you change only the content of the object methods. Changes to an object’s
interface will require restarting the server.

Following the Processes in the Console and the Debugger

The console will shows two processes running: the Server process and the
Client.main() process, suspended at the first breakpoint.

Figure 2-22 The console showing the suspension of the client’s messages

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-33

The Debug tab in the Debugger will display:

� All currently running threads, grouped by process.

� When a running thread has been suspended:

� The methods in the thread

� The visible variables and their values for the methods

� The source code for the methods

Figure 2-23 The Debug tab in the Debugger

2 Developing, Deploying, Using, and Debugging EJBs

2-34 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

In this tab you can also watch, change or try different values for specified variables.
For example, you can view and change the values of shares.

The Breakpoints tab in the Debugger will display:

� All methods in the workspace that have breakpoints set in them.

Figure 2-24 The Breakpoints tab in the Debugger

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-35

The Exceptions tab in the Debugger will display:

� The exceptions that will suspend the thread. (Currently none are set. To set them,
check the corresponding checkboxes.)

Figure 2-25 The Exceptions tab in the Debugger

Note: The client application may time out if the server is stopped at a breakpoint for
too long. (See Figure 2-26).

2 Developing, Deploying, Using, and Debugging EJBs

2-36 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Figure 2-26 The console showing a time-out by the client application

Stepping through the code

To step through the code:

1. Go to the Debug tab in the Debugger.

2. Click the Step Over button several times.

This runs the current statement, including all methods called within the statement, and
stops before the next statement. If you step over a method that takes a significant
amount of time to run, the string

/* Thread is currently stepping*/

 will be inserted into the Source pane. You may wait until it returns or resume the
process.

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-37

You can also step into methods. Some methods, however, cannot be stepped into as the
code for them is not visible to IBM VisualAge for Java. The classes they pertain to are
part of the WebLogic libraries.

To resume the process, click the Resume button .

The process will continue until the next break point or until it terminates.

Figure 2-27 The Debugger showing a breakpoint in the Debug tab

2 Developing, Deploying, Using, and Debugging EJBs

2-38 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

In this example you will have to click Resume several times in order for the client to
complete its task.

Figure 2-28 below shows the console after several buys have taken place:

Figure 2-28 The console showing the client’s output

Developing, Deploying, Using, and Debugging a Stateless Session EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-39

When the Client process terminates a T will be displayed next to the process in the
All Programs pane of the console.

Figure 2-29 The T indicates that the process has terminated

For more information on the Integrated Debugger consult the IBM VisualAge for Java
documentation.

2 Developing, Deploying, Using, and Debugging EJBs

2-40 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Developing, Deploying, Using and
Debugging a Container Managed Entity EJB

In this section you will build, deploy and debug a container managed entity Enterprise
JavaBean called AccountBean.

Using this Enterprise JavaBean, the client application will:

1. Find or create 20 separate accounts

2. Display the balance for each account

3. Find all accounts with balances over $5000

4. Find the first account with a balance of zero

5. Find any accounts with a null type

6. Remove all accounts

This application will demonstrate:

� Container-managed JDBC persistence (the code in the EJB never directly
accesses the data storage)

� How to use BEA WebLogic Server's EJB finders to find both single and
Enumerations of accounts

� How to use application-defined exceptions

� How to use the is-modified-method-name to reduce database access

A persistent storage for the entity EJB is required. We will use a database. The
persistent storage is completely invisible to the client; the actual storage is handled
automatically by the container and not by the EJB. All database properties, such as the
login name and password, are defined in the connection pool within the
weblogic.properties file.

Developing, Deploying, Using and Debugging a Container Managed Entity EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-41

The section will walk you through several steps that correspond to a typical EJB
application development process:

1. Setting up the Oracle Database

2. Developing the EJB JAR

3. Configuring BEA WebLogic Server to Run the EJB

4. Verifying the EJB Deployment

5. Running a Client Java Application that Communicates with the Deployed EJB

In this example “Setting up the Oracle Database” must be done first.

“Configuring BEA WebLogic Server to Run the EJB” and “Verifying the EJB
Deployment” can be done before “Developing the EJB JAR” because the example
includes the pre-built JAR file installed in the correct location. However, “Developing
the EJB JAR” has to be successfully completed before you can do “Running a Client
Java Application that Communicates with the Deployed EJB” and “Debugging the
Client Application and the Server Object” because these steps depend on having all the
generated container classes in the workspace.

The code used in this section is based on the example
examples.ejb.basic.containerManaged which is shipped with BEA Weblogic
Server and adapted to work with another DataBase (Oracle) and an IDE (IBM
VisualAge for Java). All the code elements (.java and .xml) for this example were
included in the WebLogic Examples project when you installed the Integration Kit.

In general, you will need to adjust certain BEA WebLogic Server properties to match
your setup. To deploy the EJB you will need to edit the property that begins with
weblogic.ejb.deploy in the weblogic.properties file. This property is
commented out in the default properties file; make sure that you uncomment all the
lines of the property.

This section will not be as detailed as the previous section, “Developing, Deploying,
Using, and Debugging a Stateless Session EJB”. For more details refer to the
corresponding paragraphs in this previous section.

2 Developing, Deploying, Using, and Debugging EJBs

2-42 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Note: If you change the BEA WebLogic Server installation root to another location
after installing it, you must reconfigure the EJB tools using the Configure
Tools tool (select Workspace→Tools→WebLogic Server Tools→
Configure tools). (For more information refer to the Installation manual for
BEA WebLogic Server) This tool associates the EJB tools with the new root
directory of the BEA WebLogic Server distribution. This is necessary because
the EJB tools depend on classes in the BEA WebLogic Server distribution that
have not been imported into the IBM VisualAge for Java workspace, and
because the Generate EJB JAR tool must know where to install the generated
JARs. This tool was run as part of the installation process and does not need
to be re-run unless you move the location of the BEA WebLogic Server
distribution after installation. For more information see the Installation Guide
for the Integration Kit.

 Setting up the Oracle Database

The container managed entity EJB example uses the demoPool database connection
pool. The BEA WebLogic Server distribution contains this same example, but it is
configured to use a pre-configured Cloudscape database that is installed with BEA
WebLogic Server. In order to run this example in IBM VisualAge for Java, you will
need to create the example tables in another database, such as Oracle, and change the
demoPool configuration in weblogic.properties to use this database. This section
shows you how to do this.

Installing Oracle

1. Install both Oracle8i Standard Edition Release 2 Version 8.1.6 and Oracle Client
(Administration Version).

During the installation set Global DB name to Demo and leave DB system

identifier(SID) as Demo. By default, the DB will be registered as Demo

2. Edit the PATH by adding WebLogic\bin\oci815_8.

Developing, Deploying, Using and Debugging a Container Managed Entity EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-43

Testing the Connection to the Oracle database.

To test the connection to the Oracle database use the convenience program
dbping.exe with the following arguments:

� DBTYPE: Use one of the following values:

� ORACLE,

� MSSQLSERVER4

� INFORMIX4

� USER: A valid username for database login. Use the same values and format that
you would use with isql (for SQL Server), sqlplus (for Oracle) or DBACCESS
(for Informix).

� PASS: A valid password for the user. Use the same values and format that you
would use with isql, sqlplus or DBACCESS.

� DB@SERVER:PORT: The name of the database. The format varies depending on
the database and version. Use the same values and format that you would use
with isql, sqlplus or DBACCESS. Type 4 drivers, such as MSSQLServer4 and
Informix4, need additional information to locate the server since they cannot
access the environment.

In this example use the command:

C:\weblogic\bin>dbping ORACLE scott tiger demo

2 Developing, Deploying, Using, and Debugging EJBs

2-44 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Listing 2-1 Output after running dbping

+++ WebLogic Native Layer for OCI 8.x (BETA-2)

**** Success!!! ****

You can connect to the database in your app using:

Class.forName("weblogic.jdbc.oci.Driver").newInstance();

java.sql.Connection conn =

DriverManager.getConnection("jdbc:weblogic:oracle:demo", "tiger");

**** or ****

java.util.Properties props = new java.util.Properties();

props.put("user", "scott");

props.put("password", "tiger");

props.put("server", "demo");

Class.forName("weblogic.jdbc.oci.Driver").newInstance();

java.sql.Connection conn =

DriverManager.getConnection("jdbc:weblogic:oracle", props);

C:\>

Creating the Database Tables

In this example you will create the database tables in the Oracle server using the
utils.Schema Java utility.

BEA WebLogic Server includes a Data-Definition Language (DDL) file for the
examples database and a Schema tool to create a database from a DDL file.

To execute utils.Schema, your CLASSPATH must contain the WebLogic/classes
directory.

Developing, Deploying, Using and Debugging a Container Managed Entity EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-45

The utils.Schema command uses the following syntax:

java utils.Schema url JDBC_driver [options] DDL_file

where:

� url is the database connection URL. This is a colon-separated URL as defined
by the JDBC specification.

� JDBC_driver is the full package name of the JDBC Driver class.

� options can be:

� Options like -u username or -p password which are used if the database
requires a username and password.

� The -verbose option which causes utils.Schema to echo the SQL
commands as they are executed.

� DDL_file is the full pathname of the text file containing the SQL commands to
execute. Lines beginning with pound signs (#)are comments. An SQL command
can span several lines and is terminated with a semicolon (;).

To create a utils.Schema command that will create the database tables in an Oracle
server named demo, with the username scott and password tiger:

1. Open a DOS prompt window.

2. Type the following single command:

c:\weblogic\jre1_2\jre\bin\java -classpath
c:\weblogic\jre1_2\jre\lib\rt.jar;c:\weblogic\classes;
c:\weblogic\license utils.Schema jdbc:weblogic:oracle:demo
weblogic.jdbc.oci.Driver -u scott -p tiger -verbose
"c:\weblogic\examples\utils\ddl\demo.ddl"

If you are not using JDK1.2.2, the Java executable and rt.jar must be
replaced.

Note: You must include the double quotes around the path of the DDL file.

2 Developing, Deploying, Using, and Debugging EJBs

2-46 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

On execution of this command you will see the messages shown in Listing 2-2 in the
DOS window.

Listing 2-2 Messages shown in DOS window as DB entries are created

C:\>c:\weblogic\jre1_2\jre\bin\java -classpath
c:\weblogic\jre1_21\jre\lib\rt.jar;c:\weblogic\classes;c:weblogic
\license utils.Schema jdbc:weblogic:oracle:demo
weblogic.jdbc.oci.Driver -u scott -p tiger -verbose
"c:\weblogic\examples\utils\ddl\demo.ddl"

utils.Schema will use these parameters:

url: jdbc:weblogic:oracle:demo

driver: weblogic.jdbc.oci.Driver

dbserver: null

user: scott

password: tiger

SQL file: c:\weblogic\examples\utils\ddl\demo.ddl

+++ WebLogic Native Layer for OCI 8.x (BETA-2)

DROP TABLE ejbAccounts

CREATE TABLE ejbAccounts (id varchar(15), bal float, type

varchar(15))

DROP TABLE idGenerator

CREATE TABLE idGenerator (tablename varchar(32), maxkey int)

DROP TABLE CUSTOMER

CREATE TABLE customer(custid int not null,name varchar(30),address

varchar(30), city varchar(30), state varchar(2), zip varchar(5),

area varchar(3), phone varchar(8))

insert into customer values(100,’Jackson’,’100 First
St.’,’Pleasantville’,’CA’,’95404’,’707’,’555-1234’)

insert into customer values(101,’Elliott’,’Arbor Lane, #3’,’Centre

Developing, Deploying, Using and Debugging a Container Managed Entity EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-47

Town’,’CA’,’96539’,’415’,’787-5467’)

insert into customer values

(102,’Avery’,’14Main’,’Arthur’,’CA’,’97675’,’510’,’834-7476’)

DROP TABLE emp

CREATE TABLE emp(empno int not null, ename varchar(10), job

varchar(9), mgr int, hiredate date, sal float, comm float, deptno

int)

create unique index empno on emp(empno)

insert into emp values

(7369,’SMITH’,’CLERK’,7902,DATE’1980-12-17’,800,NULL,20)

insert into emp

values(7499,’ALLEN’,’SALESMAN’,7698,DATE’1981-02-20’,1600,300,30)

insert into emp

values(7521,’WARD’,’SALESMAN’,7698,DATE’1981-02-22’,1250,500,30)

insert into emp

values(7566,’JONES’,’MANAGER’,7839,DATE’1981-04-02’,2975,NULL,20)

insert into emp

values(7654,’MARTIN’,’SALESMAN’,7698,DATE’1981-09-28’,1250,1400,3

insert into emp

values(7698,’BLAKE’,’MANAGER’,7839,DATE’1981-05-1’,2850,NULL,30)

insert into emp

values(7782,’CLARK’,’MANAGER’,7839,DATE’1981-06-9’,2450,NULL,10)

insert into emp

values(7788,’SCOTT’,’ANALYST’,7566,DATE’1981-06-9’,3000,NULL,20)

insert into emp

values(7839,’KING’,’PRESIDENT’,NULL,DATE’1981-11-17’,5000,NULL,10
)

insert into emp

2 Developing, Deploying, Using, and Debugging EJBs

2-48 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

values(7844,’TURNER’,’SALESMAN’,7698,DATE’1981-09-8’,1500,0,30)

insert into emp

values(7876,’ADAMS’,’CLERK’,7788,DATE’1981-06-9’,1100,NULL,20)

insert into emp

values(7900,’JAMES’,’CLERK’,7698,DATE’1981-12-3’,950,NULL,30)

insert into emp

values(7902,’FORD’,’ANALYST’,7566,DATE’1981-12-3’,3000,NULL,20)

insert into emp

values(7934,’MILLER’,’CLERK’,7782,DATE’1982-01-23’,1300,NULL,10)

DROP TABLE dept

create table dept(deptno int not null, dname varchar(10), loc

varchar(9))

insert into dept values(10,’ACCOUNTING’,’NEW YORK’)

insert into dept values(20,’RESEARCH’,’DALLAS’)

insert into dept values(30,’SALES’,’CHICAGO’)

insert into dept values(40,’OPERATIONS’,’BOSTON’)

DROP TABLE finderEnum

create table finderEnum(id varchar(10), bal float not null)

insert into finderEnum values(’PK1’, 0)

insert into finderEnum values(’PK2’, 0)

insert into finderEnum values(’PK3’, 0)

insert into finderEnum values(’PK4’, 0).2 Developing, Deploying,
Using and Debugging EJBs

insert into finderEnum values(’PK5’, 0)

insert into finderEnum values(’PK6’, 1)

insert into finderEnum values(’PK7’, 1)

insert into finderEnum values(’PK8’, 1)

insert into finderEnum values(’PK9’, 1)

Developing, Deploying, Using and Debugging a Container Managed Entity EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-49

insert into finderEnum values(’PK10’, 1)

DROP TABLE StockTable

create table StockTable(symbol varchar(10), price float, yearHigh

float, yearLow float, volume int)

Developing the EJB JAR

All the code elements for the container managed example have already been developed
and are installed in the WebLogic Examples project. We will look at these elements
in the ContainerManaged package and then build the deployable JAR file. A
pre-built EJB JAR file is already installed in the directory WebLogic\myserver
(where WebLogic is the installation directory of BEA WebLogic Server), but in order
to use and debug the EJB you need to generate the container classes.

Looking at the ContainerManaged Package

To examine the ContainerManaged package in the workspace:

1. Start IBM VisualAge for Java.

2. In the Projects tab of the Workbench, select the package
examples.ejb.basic.containerManaged in the project WebLogic
Examples.

2 Developing, Deploying, Using, and Debugging EJBs

2-50 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Figure 2-30 The ContainerManaged package in the Projects tab

Notice that the examples.ejb.basic.containerManaged package already
contains:

� The client runnable class: Client

� The server EJB class: AccountBean

� The exception class: ProcessingErrorException

� The EJB interfaces: Account, Account PS, and AccountHome

Developing, Deploying, Using and Debugging a Container Managed Entity EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-51

During the Integration Kit installation the Deployment Descriptors were included in
the project’s resource folder:

VisualAge\IDE\project_resources\WebLogic Examples\examples\
ejb\basic\containerManaged

where VisualAge is the installation directory for IBM VisualAge for Java (in this
example, C:\Program Files\IBM\VisualAge for Java).

This resource folder contains the following files:

� ejb-jar.xml

� weblogic-ejb-jar.xml

� weblogic-cmp-rdbms-jar.xml

In a real development situation, you will:

� create the Java and XML files yourself using an IDE, such as IBM VisualAge
for Java. (It would be a good exercise to walk through the code, so that you
understand what is required to build an EJB.)

� create a project (WebLogic Examples) and a package
(examples.ejb.basic.statelessSession) inside IBM VisualAge for Java
workspace to develop your EJB and Client. Using the IBM VisualAge for Java
Import utility, import the Deployment Descriptors into the corresponding
package (examples.ejb.basic.statelessSession).

Warning: Do not modify any files in the IBM VisualAge for Java
VisualAge\IDE\project_resources file system directory tree.

The deployable JAR file (ejb_basic_containerManaged.jar) is already built and
installed in the directory WebLogic\myserver (where WebLogic is the installation
directory for BEA WebLogic Server).

Starting the Build

For the client application to be able to communicate with the deployed EJB, you need
to have all the generated container classes in the workspace, so you must build the EJB
JAR.

2 Developing, Deploying, Using, and Debugging EJBs

2-52 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

To start the build of the EJB JAR:

1. Select the examples.ejb.basic.containerManaged package in the Project
WebLogic Examples.

2. From the menu bar, select Selected→WebLogic Server Tools→Generate EJB
JAR.

Note: To use the Generate EJB JAR tool, users of the Enterprise Edition of IBM
VisualAge for Java will first need to create an open edition of the EJB
package. To create an open edition, select the package and then select the
menu items Selected→Manage→Create Open Edition. If you are not using an
open edition of the package, the Enterprise Edition will report an error
message.

The build process involves several steps, each of which will be announced by a
Generating EJB message as it happens.

Naming the EJB JAR File

If it is the first time that you are building the package, you will be prompted for an
output JAR filename.

Change the default settings in the window to:

� Location: WebLogic\myserver

where WebLogic is the actual BEA WebLogic Server installation directory, such
as C:\weblogic

� Name: ejb_basic_containermanaged.jar

Generating the Undeployable JAR

Using the compiled classes in the package (EJB class, Interfaces, Client) and the
Deployment Descriptors, the build process will generate an undeployable JAR.

The name of the undeployable JAR file will be created by adding the prefix std_ to
the JAR name provided above. In this example the undeployable JAR will be called
std_ejb_basic_containerManaged.jar. The file will be installed in the specified
directory, in this example WebLogic/myserver where WebLogic is the installation
directory for BEA WebLogic Server (in this example, C:\weblogic).

Developing, Deploying, Using and Debugging a Container Managed Entity EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-53

Generating the Container Classes

The build process will generate the container classes and add them, one by one, to the
package. A Generating EJB message will inform you of the generation.

Figure 2-31 The package showing the generated container classes

Generating the EJB JAR

Using the compiled classes in the package (EJB class, Interfaces, Client), the
Deployment Descriptors and the newly generated container classes, the build process
will generate a deployable JAR. In this example the generated JAR will be called
ejb_basic_containerManaged.jar. The file will be installed in the specified
directory, WebLogic/myserver where WebLogic is the installation directory for BEA
WebLogic Server (in this example, C:\weblogic).

2 Developing, Deploying, Using, and Debugging EJBs

2-54 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

When the build process is complete, you will get an EJB Generated confirmation
message.

Figure 2-32 The EJB Generated confirmation message

Configuring BEA WebLogic Server to Run the EJB

In this example the EJB communicates with a database. After setting up the database
driver and tables (see “Setting up the Oracle Database” on page 2-42) you will have to
configure the server’s properties in the weblogic.properties file to allow access to
the database and pool, and the JAR file. For Container Managed persistence, you have
to add the path to the JAR file to the server’s classpath in order to run the application
and start the server from inside IBM VisualAge for Java.

Note: If you configure server properties in the weblogic.properties file while the
server is running in IBM VisualAge for Java you will need to stop the server
and restart it.

To successfully deploy and use an EJB which communicates with a database:

1. Configure BEA WebLogic Server for the pool and DataSource of your EJB.

Make the necessary configuration changes in the weblogic.properties file by
uncommenting the following lines and editing the name of the pool by changing
it from oraclePool to demoPool as shown below in Listing 2-3. The
weblogic.properties file is located in the root installation of the BEA
WebLogic Server (in this example, c:\weblogic).

Developing, Deploying, Using and Debugging a Container Managed Entity EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-55

Listing 2-3 The demoPool entry in the Properties file

weblogic.jdbc.connectionPool.demoPool=\

url=jdbc:weblogic:oracle,\

driver=weblogic.jdbc.oci.Driver,\

loginDelaySecs=1,\

initialCapacity=4,\

maxCapacity=10,\

capacityIncrement=2,\

allowShrinking=true,\

shrinkPeriodMins=15,\

refreshMinutes=10,\

testTable=dual,\

props=user=SCOTT;password=tiger;server=demo

weblogic.jdbc.TXDataSource.weblogic.jdbc.jts.demoPool=demoPool

weblogic.allow.reserve.weblogic.jdbc.connectionPool.demoPool=ever
yone

2. Add the path to the JAR file to the weblogic.ejb.deploy property in the
weblogic.properties file. A commented-out version of this path can be found
in the weblogic.ejb.deploy property. You will need to uncomment and adjust
the property depending on which EJBs you are building and deploying, or if the
location of the files differs from the installed location. For this example you will
have to uncomment:

weblogic.ejb.deploy=\

C:/weblogic/myserver/ejb_basic_containerManaged.jar

For Container Managed persistence, you must add the path to the EJB JAR to the BEA
WebLogic Server class in order to run the application and start the server from inside
IBM VisualAge for Java.

2 Developing, Deploying, Using, and Debugging EJBs

2-56 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

In this example it was done by the Integration Kit Installer, but to verify, do the
following:

1. In the Projects tab of the Workbench, expand the WebLogic Server project, then
the weblogic.integration.visualage.server package.

2. Select the Server runnable class in the WebLogic Server project.

3. Right-click on the Server class and select Properties from the context menu.

4. In the Properties window select the ClassPath tab.

5. On the Class Path tab, click the Edit button for the Extra Directories Path field.

6. In the IBM VisualAge for Java window click on Add JAR/Zip and Browse for
the JAR you need,
C:\weblogic\myserver\ejb_basic_containerManaged.jar in this
example.

7. Click OK on all the popped up windows.

Developing, Deploying, Using and Debugging a Container Managed Entity EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-57

Figure 2-33 Adding the JAR file to the server’s classpath

2 Developing, Deploying, Using, and Debugging EJBs

2-58 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Verifying the EJB Deployment

To verify if the EJB deploys correctly you have to start the server and look at the
messages displayed on the console or the WebLogic console.

Starting the WebLogic Server

Note: If running Oracle, the minimum amount of memory required for running the
server is 256MB.

To start the WebLogic server:

1. Start IBM VisualAge for Java.

2. In the Projects tab of the Workbench select WebLogic Server.

3. Do one of the following:

� Click the Run button.

� Right-click on the WebLogic Server project and select Run→Run main.

� Double-click on the WebLogic Server project. This will open a separate
Weblogic Server window containing just the
weblogic.integration.visualage.server package. In the Weblogic
Server window click the Run button, or right-click on WebLogic Server
and select Run→Run main.

While the server is running, a WebLogic Server message will be displayed that can be
used to shut down the server.

Figure 2-34 The Weblogic Server message

Developing, Deploying, Using and Debugging a Container Managed Entity EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-59

Checking the Server Messages on the consoles

To check whether the server has started correctly and whether the EJB has been
deployed correctly you can either check the messages displayed on the VisualAge
console or open the Weblogic console attached to the BEA WebLogic Server, and
examine the EJB under Distributed Objects.

Figure 2-35 The console showing messages from the server

2 Developing, Deploying, Using, and Debugging EJBs

2-60 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Running a Client Java Application that Communicates
with the Deployed EJB

Before running the client application you must verify that the Integration Kit has
provided the complete classpath for the application. You can also set Command-line
parameters. The output from the client application will appear on the console.

Verifying the Classpath

To verify the complete classpath for the client application:

1. Right-click on the Client runnable class in the
examples.ejb.basic.containerManaged package in the project WebLogic
Examples.

2. Select Properties from the context menu to open the Properties window.

3. In the Class Path tab, click the Edit button to the right of the Project Path field to
open the Class Path window.

Figure 2-36 The Class Path window

Developing, Deploying, Using and Debugging a Container Managed Entity EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-61

4. Verify that there are checkmarks in all the boxes corresponding to the BEA
WebLogic Server projects that were added to the IBM VisualAge for Java
workspace by the Integration Kit's Installer. If any of these projects are not
checked, check them.

5. Click OK.

The path to each of the checked projects is displayed in the Complete Class Path on the
Class Path tab of the Properties window.

Using Command-Line Parameters

There are three command-line parameters. The first parameter (url) gets a default
argument and only needs to be changed if the default settings are not being used. The
other two parameters are optional.

Command-line parameters are interpreted in this order:

1. url: URL of server (default such as t3://localhost:7001)

2. user: User name (default null)

3. password: User password (default null)

To edit the command-line arguments:

1. In the Properties window select the Program tab.

2. Enter the arguments in the Command Line Arguments text field.

3. Press OK.

Note: If you are not running the BEA WebLogic Server with its default settings, you
will have to supply the command-line parameter:

t3://WebLogicURL:Port

where:

WebLogicURL is the domain address of the BEA WebLogic Server

Port is the port that is listening for connections
(weblogic.system.ListenPort)

2 Developing, Deploying, Using, and Debugging EJBs

2-62 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Running the Client Application

To run the client do one of the following:

1. Select the Client class in the examples.ejb.basic.containerManaged
package and click on the Run button.

2. Right-click on the Client class in the
examples.ejb.basic.containerManaged package and select Run→Run
main.

Developing, Deploying, Using and Debugging a Container Managed Entity EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-63

When running the Client example, you should get output similar to this from the client
application:

Figure 2-37 The VisualAge console showing messages from the client

2 Developing, Deploying, Using, and Debugging EJBs

2-64 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Listing 2-4 shows the complete output to the VisualAge console:

Listing 2-4 Complete output to the VisualAge console

Beginning containerManaged.Client...

Starting Part A of the example...

Creating account 10020 with a balance of 3000.0 account type
Savings...

Account 10020 successfully created

Part A: Depositing $2000

Current balance is $5000.0

Attempting to withdraw an amount greater than current balance.
Expecting an exception...

Received expected Processing Error:

examples.ejb.basic.containerManaged.ProcessingErrorException:
Request to withdraw $5001.0; is more than balance $5000.0 in account
10020

Removing account...

End Part A of the example...

Starting Part B of the example...

Creating account ID: 0 with a balance of 0.0 account type null...

Account ID: 0 successfully created

Creating account ID: 1 with a balance of 1000.0 account type
Savings...

Account ID: 1 successfully created

Creating account ID: 2 with a balance of 2000.0 account type
Savings...

Account ID: 2 successfully created

Creating account ID: 3 with a balance of 3000.0 account type
Savings...

Developing, Deploying, Using and Debugging a Container Managed Entity EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-65

Account ID: 3 successfully created

Creating account ID: 4 with a balance of 4000.0 account type
Savings...

Account ID: 4 successfully created

Creating account ID: 5 with a balance of 5000.0 account type null...

Account ID: 5 successfully created

Creating account ID: 6 with a balance of 6000.0 account type
Savings...

Account ID: 6 successfully created

Creating account ID: 7 with a balance of 7000.0 account type
Savings...

Account ID: 7 successfully created

Creating account ID: 8 with a balance of 8000.0 account type
Savings...

Account ID: 8 successfully created

Creating account ID: 9 with a balance of 9000.0 account type
Savings...

Account ID: 9 successfully created

Creating account ID: 10 with a balance of 10000.0 account type
null...

Account ID: 10 successfully created

Creating account ID: 11 with a balance of 11000.0 account type
Savings...

Account ID: 11 successfully created

Creating account ID: 12 with a balance of 12000.0 account type
Savings...

Account ID: 12 successfully created

Creating account ID: 13 with a balance of 13000.0 account type
Savings...

Account ID: 13 successfully created

Creating account ID: 14 with a balance of 14000.0 account type
Savings...

2 Developing, Deploying, Using, and Debugging EJBs

2-66 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Account ID: 14 successfully created

Creating account ID: 15 with a balance of 15000.0 account type
null...

Account ID: 15 successfully created

Creating account ID: 16 with a balance of 16000.0 account type
Savings...

Account ID: 16 successfully created

Creating account ID: 17 with a balance of 17000.0 account type
Savings...

Account ID: 17 successfully created

Creating account ID: 18 with a balance of 18000.0 account type
Savings...

Account ID: 18 successfully created

Creating account ID: 19 with a balance of 19000.0 account type
Savings...

Account ID: 19 successfully created

Account: :ID: 0 has a balance of 0.0

Account: :ID: 1 has a balance of 1000.0

Account: :ID: 2 has a balance of 2000.0

Account: :ID: 3 has a balance of 3000.0

Account: :ID: 4 has a balance of 4000.0

Account: :ID: 5 has a balance of 5000.0

Account: :ID: 6 has a balance of 6000.0

Account: :ID: 7 has a balance of 7000.0

Account: :ID: 8 has a balance of 8000.0

Account: :ID: 9 has a balance of 9000.0

Account: :ID: 10 has a balance of 10000.0

Account: :ID: 11 has a balance of 11000.0

Account: :ID: 12 has a balance of 12000.0

Account: :ID: 13 has a balance of 13000.0

Developing, Deploying, Using and Debugging a Container Managed Entity EJB

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 2-67

Account: :ID: 14 has a balance of 14000.0

Account: :ID: 15 has a balance of 15000.0

Account: :ID: 16 has a balance of 16000.0

Account: :ID: 17 has a balance of 17000.0

Account: :ID: 18 has a balance of 18000.0

Account: :ID: 19 has a balance of 19000.0

Querying for accounts with a balance greater than 5000.0...

Account ID: 6; balance is $6000.0

Account ID: 7; balance is $7000.0

Account ID: 8; balance is $8000.0

Account ID: 9; balance is $9000.0

Account ID: 10; balance is $10000.0

Account ID: 11; balance is $11000.0

Account ID: 12; balance is $12000.0

Account ID: 13; balance is $13000.0

Account ID: 14; balance is $14000.0

Account ID: 15; balance is $15000.0

Account ID: 16; balance is $16000.0

Account ID: 17; balance is $17000.0

Account ID: 18; balance is $18000.0

Account ID: 19; balance is $19000.0

Querying for an account with zero balance...

Account ID: 0; balance is zero

Querying for accounts with a null account type

2 Developing, Deploying, Using, and Debugging EJBs

2-68 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Account ID: 0; account type is null

Account ID: 5; account type is null

Account ID: 10; account type is null

Account ID: 15; account type is null

Removing beans...

End Part B of the example...

End containerManaged.Client...

Debugging the Client Application and the Server Object

For explanations about debugging the client and server, see “Debugging the Client
Application and the Server Object” in the section “Developing, Deploying, Using, and
Debugging a Stateless Session EJB” above.

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 3-1

CHAPTER

Combining EJB with
JMS and Servlet
Technologies

Topics discussed in this chapter include:

� Configuring BEA WebLogic Server for JMS

� Configuring BEA WebLogic Server for the Servlet

� Running the Client Application

� Calling the Servlet from a Web Browser

� Exporting the Classes to the Production BEA WebLogic Server

Overview

Java Message Service (JMS) allows Java programs that share a messaging system to
exchange messages. A messaging system accepts messages from producer clients and
delivers them to consumer clients.

BEA WebLogic Server JMS implements the JavaSoft JMS specification, version
1.0.1.

3 Combining EJB with JMS and Servlet Technologies

3-2 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

BEA WebLogic Server JMS includes a fully-featured messaging system. This system
can be configured by setting properties in the weblogic.properties file or in the
BEA WebLogic Server console, or by setting them programmatically using the JMS
interfaces.

You can use BEA WebLogic Server JMS with the other BEA WebLogic Server APIs
and facilities, such as Enterprise JavaBeans (EJBs), JDBC connection pools, Servlets,
and RMI. JMS operations can participate in transactions with other Java APIs that use
the Java Transaction API.

In this chapter we will look at an application that combines three technologies:

� EJB (using the StatelessSession EJB created in the previous sections)

� JMS

� Servlet

In this application the Java servlet TraderServlet will send buy and sell messages to
a JMS Topic. The TraderReceive client will receive the messages and invoke an EJB
to process them.

To use this application you must have successfully built and deployed the
StatelessSession EJB in the example in the previous chapter.

Configuring BEA WebLogic Server for JMS

The BEA WebLogic Server already has built-in defaults for JMS so you can use some
of the default JMS features without doing any further special configuration. However,
to use persistent messages, durable subscriptions, or to set up custom JMS
applications, you have to do some or all of the following configuration tasks (see the
BEA WebLogic Server Administrator Guide for details):

� Creating a Database for JMS

� Creating Database Tables for Transacted, Durable Subscribers

� Defining a JDBC Connection Pool for the JMS Database

Configuring BEA WebLogic Server for JMS

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 3-3

� Defining JMS ConnectionFactories

� Defining JMS Topics and Queues

Once the necessary configuration has been done, JMS clients can begin sending and
receiving messages through the JMS API.

In this section you will configure the server for JMS as required by the application in
this chapter. You will create a JMS database, but the application does not require tables
for transacted, durable subscribers. When you combine JMS and EJBs in an
application that requires operations on both within the same transaction, you have to
set up the application to use the same database connection pool. You will define the
connection pool and the ConnectionFactory. You will define one Topic.

The weblogic.properties file included with the BEA WebLogic Server already has
a section for BEA WebLogic Server JMS properties. In order to use this JMS
application, you will have to include (uncomment) some of these properties before
starting the BEA WebLogic Server.

3 Combining EJB with JMS and Servlet Technologies

3-4 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Creating a Database for JMS

In this application we will use an Oracle database for JMS. The
WebLogic/classes/weblogic/jms/ddl directory contains JMS DDL files for
various types of databases. To use a different type of database you can copy and edit
one of these files.

The JMS database in this application will contain five system tables used internally by
JMS. To create the database tables use the BEA WebLogic Server console or the
utils.Schema utility. For information about the utils.Schema utility see “Setting
up the Oracle Database” on page 2-42.

The following example code shows a utils.Schema command that creates the JMS
tables in an Oracle server named demo, with the username scott and password tiger:

c:\weblogic\jre1_2\jre\bin\java -classpathc:\weblogic\jre1_2\jre
\lib\rt.jar;c:\weblogic\classes;c:\weblogic\licenseutils.Schema
jdbc:weblogic:oracle:demoweblogic.jdbc.oci.Driver -u scott -p
tiger-verbose"c:\weblogic\classes\weblogic\jms\ddl\
jms_oracle.ddl"

Note: If you are using a different Java Virtual Machine, replace the java command
and rt.jar with the new java command and classpath.

Listing 3-1 is the output from this command.

Listing 3-1 Output from interpreter

utils.Schema will use these parameters:

url: jdbc:weblogic:oracle:demo

driver: weblogic.jdbc.oci.Driver

dbserver: null

user: scott

password: tiger

SQL file: c:\weblogic\classes\weblogic\jms\ddl\jms_oracle.ddl

+++ WebLogic Native Layer for OCI 8.x (BETA-2)

DROP TABLE JMSDestination

Configuring BEA WebLogic Server for JMS

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 3-5

java.sql.SQLException: ORA-00942: table or view does not exist

SQL Error Code: 942

SQL State:

DROP TABLE JMSConsumer

java.sql.SQLException: ORA-00942: table or view does not exist

SQL Error Code: 942

SQL State:

DROP TABLE JMSMessage

java.sql.SQLException: ORA-00942: table or view does not exist

SQL Error Code: 942

SQL State:

DROP TABLE JMSMessageQueue

java.sql.SQLException: ORA-00942: table or view does not exist

SQL Error Code: 942

SQL State:

DROP TABLE JMSTableId

java.sql.SQLException: ORA-00942: table or view does not exist

SQL Error Code: 942

SQL State:

CREATE TABLE JMSDestination (destId int, destType int, destName
varchar(60))

CREATE TABLE JMSConsumer (consumerId int, clientName varchar(40),
consumerName

varchar(40), destId int, selector varchar(100), noLocal
NUMBER(1))

CREATE TABLE JMSMessage (messageId NUMBER(12), timeToLive int,
destId int,state NUMBER(1), message LONG RAW)

CREATE TABLE JMSMessageQueue (consumerId int, messageId NUMBER(12),
state int)

CREATE TABLE JMSTableId (tableName varchar(16), tableId NUMBER(12))

3 Combining EJB with JMS and Servlet Technologies

3-6 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

CREATE INDEX MSG_X ON JMSMessage (messageId)

CREATE INDEX MSGQ_X ON JMSMessageQueue (messageId)

INSERT INTO JMSTableId (tableName, tableId) VALUES
('JMSDestination', 1)

INSERT INTO JMSTableId (tableName, tableId) VALUES ('JMSConsumer',
1)

INSERT INTO JMSTableId (tableName, tableId) VALUES ('JMSMessage',
1)

INSERT INTO JMSTableId (tableName, tableId) VALUES ('JMSVersion',
500)

COMMIT

Configuring BEA WebLogic Server for JMS

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 3-7

Defining a JDBC Connection Pool for the JMS Database

If you are using persistent messages with JMS, you have to define a JDBC connection
pool in the weblogic.properties file to provide access to the JMS database.

To define the connection pool for this application, search for WEBLOGIC JMS DEMO

PROPERTIES in the weblogic.properties file and replace the following property:

weblogic.jms.connectionPool=demoPool

To set up the pool, see “Configuring BEA WebLogic Server to Run the EJB” on page
2-54 of “Developing, Deploying, Using and Debugging a Container Managed Entity
EJB”.

3 Combining EJB with JMS and Servlet Technologies

3-8 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Defining JMS ConnectionFactories

ConnectionFactories allow JMS clients to create JMS connections. They can be
configured to create connection pools with predefined attributes. The JMS
specification classifies ConnectionFactories as administered objects. They are
configured by the messaging system administrator and added to the JNDI namespace
to allow access to JMS clients.

ConnectionFactories can be defined in the weblogic.properties file.

To define the ConnectionFactories for this application, search the
weblogic.properties file for WEBLOGIC JMS and uncomment the following
properties:

weblogic.jms.connectionFactoryName.trader=jms.connection.
traderFactory

weblogic.jms.connectionFactoryArgs.trader=ClientID=traderReceive

Configuring BEA WebLogic Server for the Servlet

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 3-9

Defining JMS Topics and Queues

The JMS specification classifies Queues, and Topics as administered objects. They are
configured by the messaging system administrator and added to the JNDI namespace
to allow access to JMS clients.

The JMS Queues and Topics that clients can access can be defined in the
weblogic.properties file with the weblogic.jms.queue and
weblogic.jms.topic properties.

This application does not use Queues.

To define the Topic that is required, search the weblogic.properties file for
WEBLOGIC JMS and uncomment the following property:

weblogic.jms.topic.exampleTopic=javax.jms.exampleTopic

Configuring BEA WebLogic Server for the
Servlet

In this application the TraderServlet servlet will send buy and sell messages to a
JMS Topic, to be received by the TraderReceive client which will invoke the EJB.

In this section you will register the servlet and include the path to the servlet in the
servlet classpath. Both of these tasks will involve setting properties in the
weblogic.properties file.

3 Combining EJB with JMS and Servlet Technologies

3-10 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Registering the Servlet

In this application we use the Java servlet TraderServlet.

To register the servlet, search for WEBLOGIC JMS DEMO PROPERTIES in the
weblogic.properties file and uncomment the following property:

weblogic.httpd.register.jmstrader=examples.jms.trader.
TraderServlet

Configuring BEA WebLogic Server for the Servlet

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 3-11

Setting the Servlet Classpath and Reloading Properties

In order to run and debug servlet projects in IBM VisualAge for Java, you need to
specify the path for the directory where IBM VisualAge for Java stores the servlet
classes. You can include more than one project in the servlet classpath. You may also
include packages that are not in the IBM VisualAge for Java workspace. However, you
will not be able to debug servlets that are not in the IBM VisualAge for Java
workspace.

After modifying the classpath you have to reload the properties.

To add the servlet path to the servlet classpath, add (uncomment) the following
property in the weblogic.properties file:

weblogic.httpd.servlet.classpath=\
VisualAge/ide/project_resources/projectName

where:

VisualAge is the directory where IBM VisualAge for Java is installed

projectName is the name of the servlet project.

In this application, the property will be:

weblogic.httpd.servlet.classpath=\
C:/weblogic/myserver/servletclasses

Note: For Weblogic Server Service Pack 8: If you have installed Service Pack 8,
when running this JMS application the server will display an Out of Memory
exception. To solve this problem, you must add the following line to the
weblogic.properties file:

weblogic.jms.ignoreMemExhaustCheck=true

To reload the properties, uncomment the following property in the
weblogic.properties file:

weblogic.httpd.servlet.reloadCheckSecs=1

Note: This assumes that you have installed IBM VisualAge for Java into the default
location.

3 Combining EJB with JMS and Servlet Technologies

3-12 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Running the Client Application

The TraderReceive client will receive the messages sent to the Topic by the servlet
and invoke an EJB to process them.

This application uses the StatelessSession EJB (from the example in Chapter 2)
which you must have successfully built and deployed in order to continue.

To run the client application:

1. Ensure that the following property is uncommented in the
c:\weblogic\weblogic.properties file:

weblogic.ejb.deploy =\

C:\weblogic\myserver\ejb_basic_statelessSession.jar

2. Start the BEA WebLogic Server (see “Verifying the EJB Deployment” on page
2-58).

3. Start IBM VisualAge for Java.

4. In the package examples.jms.trader under the WebLogic Examples Project,
select the TraderReceive (client) class.

5. Right click on the TraderReceive (client) class and go to properties. On the
Program tab, check that the Command line Arguments contain the following
setting:

t3://hostname:port

where:

hostname is the host name of the BEA WebLogic Server

port is the port where the server is listening for connections
(weblogic.system.ListenPort).

In this application, it will translate to: t3://localhost:7001.

Running the Client Application

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 3-13

Figure 3-1 The Command Line Arguments field in the Properties window

6. Select the Class Path tab and click the Edit button for the Project Path.

7. Ensure that all the WebLogic projects are checked.

3 Combining EJB with JMS and Servlet Technologies

3-14 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

8. Run the TraderReceive class.

Figure 3-2 and Figure 3-3 below show the messages that should appear on the console.

Figure 3-2 Messages from the server

Running the Client Application

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 3-15

Figure 3-3 Message from the client, TraderReceive

3 Combining EJB with JMS and Servlet Technologies

3-16 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Calling the Servlet from a Web Browser

Now that the client application is running, you can load the servlet into a web browser
and send messages to the JMS Topic where the client will receive them.

To load the servlet into a web browser, request the following URL in the browser:

http://hostname:port/jmstrader

where:

hostname is the host name of the BEA WebLogic Server

port is the port where the server is listening for connections
(weblogic.system.ListenPort)

In this application, it will translate to:

http://localhost:7001/jmstrader

Calling the Servlet from a Web Browser

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 3-17

Figure 3-4 below shows the form that appears in the browser.

Figure 3-4 The client application running

To submit a trade request to the server, fill in the fields on the form and click the
Send Message button.

3 Combining EJB with JMS and Servlet Technologies

3-18 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Figure 3-5 Entering data into the fields

Figure 3-6 The message returned after submitting the data

Calling the Servlet from a Web Browser

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 3-19

The TraderReceive client displays messages as they are received from the Topic.The
invoked EJB also displays messages in the console while processing the request.

Figure 3-7 The VisualAge console showing messages from TraderReceive

3 Combining EJB with JMS and Servlet Technologies

3-20 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Exporting the Classes to the Production BEA
WebLogic Server

When you have finished developing your BEA WebLogic Server application in IBM
VisualAge for Java, you have to export it to a file system for use in a production
environment. Refer to Chapter 5, “Exporting Classes.”

In this application we must export:

� the servlet class TraderServlet.class to
WebLogic/myserver/servletclasses/examples/jms/trader

� the client class TraderReceive.class to
WebLogic/myserver/servletclasses/examples/jms/trader

In order to debug the servlet, we set the servlet classpath to the IBM VisualAge for
Java workspace by adding (uncommenting) the following property:

weblogic.httpd.servlet.classpath=\
C:/Program Files/IBM/Visual Age for
Java/ide/project_resources/Weblogic Examples

in the weblogic.properties file.

To use the production BEA WebLogic server only, modify the servlet classpath to:

weblogic.httpd.servlet.classpath=\
weblogic/myserver/servletclasses

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 4-1

CHAPTER

Developing an Applet
Application

Topics discussed in this chapter include:

� Setting Up the Database

� Running and Debugging the Applet in the IBM VisualAge for Java Environment

� Running the Applet in BEA WebLogic Server and a Web Browser

Overview

This chapter demonstrates how to run and debug an applet inside IBM VisualAge for
Java IDE, how to deploy the applet into a production environment using BEA
WebLogic server, and how to test the applet using a web browser.

PhoneBook1 is an applet that accesses a small database, containing names and
addresses, via BEA WebLogic Server JDBC. The applet lists the entries in the
Customer table and allows you to select any entry, displaying it's details in separate
fields.

This applet is one of the examples from the BEA WebLogic Server distribution,
adapted to use an IDE (IBM VisualAge for Java) and an Oracle database. It was
installed into the WebLogic Examples project by the Integration Kit Installer.

4 Developing an Applet Application

4-2 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

As a result of Java's security model, one cannot use a regular two-tier JDBC driver in
an applet. We are using BEA WebLogic Server JDBC to connect to a pool driver on
the BEA WebLogic Server. We then configure the pool driver to use an accompanying
BEA WebLogic Server jDriver for Oracle two-tier driver.

Setting Up the Database

The applet uses a connection pool called demoPool, which connects to an Oracle
database.

In order to run this application you must set up the Oracle database and create and
populate the table, Customer. For detailed instructions on setting up the database see
“Setting up the Oracle Database” on page 2-42. Following these instructions, nothing
more is required from the JDBC/DBpool point of view because the database created
already contains the required Customer table.

If you want to use a different RDBMS (other than Oracle), you will have to create a
database table named Customer with the fields Custid, Name, Address, City, State,
Zip, Area, and Phone.You will also have to re-configure the demoPool connection
pool for your database.

Running and Debugging the Applet in the IBM VisualAge for Java Environment

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 4-3

Running and Debugging the Applet in the
IBM VisualAge for Java Environment

This section describes the steps needed to run the applet with the IBM VisualAge for
Java Applet Viewer, which will then enable you to debug the applet.

Developing the Applet

All the necessary classes have already been developed and installed in the IBM
VisualAge for Java workspace in the examples.applets package which is in the
WebLogic Examples project.

Notice that the examples.applets package already contains the four classes:

� Applet runnable class:=PhoneBook1

� Helper classes:
� PhoneBookControls

� PhoneBookFields

� WebLogicPreloader

In this tutorial we will not be using the WebLogicPreloader class which can be used
to ensure that all of the necessary classes required by BEA WebLogic Server JDBC are
downloaded by a separate thread.

4 Developing an Applet Application

4-4 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Figure 4-1 The examples.applets package in the Workbench

In a real development situation, you will have to create or import the applet classes into
a project/package inside IBM VisualAge for Java.

Verifying the Classpath

All the classes needed by the applet (other than the internal BEA WebLogic Server
ones) have to reside in the project or package in which the applet class resides.

BEA WebLogic Server classes called by the applet class must be included in the
applet's classpath.

Running and Debugging the Applet in the IBM VisualAge for Java Environment

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 4-5

To verify the complete classpath for the applet:

1. Select the applet class, PhoneBook1.

2. From the menu bar, select Selected→Properties to open the Properties window.

3. Select the Class Path tab and inspect the Complete Class Path list.

It should include:

VisualAge\ide\project_resources\WebLogic Server Classes;

VisualAge\ide\project_resources\WebLogic Support Libraries;

VisualAge\ide\project_resources\WebLogic Java Enterprise
Libraries;

Figure 4-2 The Class Path tab showing the Complete Classpath for PhoneBook1

To add any of these projects, click the Edit button for the Project Path field to open the
Class Path window and check off the required WebLogic projects.

4 Developing an Applet Application

4-6 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Using Attributes and Parameters

If the applet requires attributes or parameters that are normally specified in the HTML
page, you must add them to the properties of the applet class.

To specify attributes or parameters normally specified in the HTML page:

1. In the Properties window for the applet class, PhoneBook1, go to the Applet tab.

2. Add the values for the attributes in the Attributes pane.

In this application we have already entered the values for the Width and Height
attributes:

Width: 500

Height: 800

3. Add the parameters to the Parameters text box.

In this application we have already added parameters related to the weblogic_url
and the poolname:

<param name=weblogic_url value="t3://localhost:7001">

<param name=poolname value=demoPool>

Running and Debugging the Applet in the IBM VisualAge for Java Environment

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 4-7

Figure 4-3 The Applet tab showing the attributes and parameters

As seen in Figure 4-3, IBM VisualAge for Java recognizes the applet Codebase
as C:\Program Files\IBM\VisualAge for

Java\IDE\project_resources\WebLogic Examples.

Running the Applet

Running the applet inside the IBM VisualAge for Java IDE enables you to debug it.

To run the applet with the IBM VisualAge for Java Applet Viewer:

1. Configure the server to run the container managed entity EJB (see “Configuring
BEA WebLogic Server to Run the EJB” on page 2-54).

Ensure that the weblogic.properties file contains the following entry that
deploys the EJB:

weblogic.ejb.deploy=\

C:/weblogic/myserver/ejb_basic_containerManaged.jar

4 Developing an Applet Application

4-8 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

2. Start the server so the applet can connect to it via JDBC (see “Verifying the EJB
Deployment” on page 2-58).

3. In the Workbench select PhoneBook1 in the examples.applets package and
from the menu bar, select Selected→Run→In Applet Viewer.

The applet should load, connect to the BEA WebLogic Server via JDBC, download the
entries from the database, and allow you to view the details of each entry in the Applet
Viewer by selecting a name from the list at the top of the Applet.

Figure 4-4 The Applet Viewer showing entries in the database

Running and Debugging the Applet in the IBM VisualAge for Java Environment

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 4-9

Debugging the Applet

While the applet is running you will see the debuggable applet thread in the Debug tab
of the Debugger.

Figure 4-5 The Debug tab showing the applet thread

You can debug the applet if necessary (see “Debugging the Client Application and the
Server Object” on page 2-25 for detailed instruction on debugging inside IBM
VisualAge for Java, and IBM VisualAge for Java documentation about the Integrated
Debugger).

4 Developing an Applet Application

4-10 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

To debug the PhoneBook1 applet:

1. In the Debug tab of the Debugger set a breakpoint in the ShowFirst() method of
the PhoneBook1 class (see Figure 4-6).

Figure 4-6 Setting the breakpoint in the ShowFirst() method

Running and Debugging the Applet in the IBM VisualAge for Java Environment

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 4-11

2. Reload the applet by selecting Applet→Reload in the Applet Viewer.

The applet initializes (its window is empty) and the debugger shows the
suspended thread (among the other running threads started by the applet).

Figure 4-7 The Debugger showing the suspended thread

3. Resume the suspended thread.

The applet will continue running and the Applet Viewer will display the
database as before.

Note: If you close the Applet Viewer, you shut down the applet and the applet
threads will disappear from the Debugger window

4 Developing an Applet Application

4-12 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

Running the Applet in BEA WebLogic Server
and a Web Browser

This section describes the steps needed to run the applet in a web browser. While the
applet is running in a web browser VM, not the IBM VisualAge for Java VM, you
cannot debug it. You can, however, test the applet in its HTML context.

To run the applet in a web browser:

1. Export the applet classes to the WebLogic\myserver\serverclasses directory
of the BEA WebLogic Server distribution as described in Chapter 5, “Exporting
Classes.”

Running the Applet in BEA WebLogic Server and a Web Browser

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 4-13

Figure 4-8 Exporting the applet classes to the WebLogic directory

2. Create the HTML file that runs and tests the applet and copy it to the server's
document root directory.

The HTML file for this application, phonebook1.html is already created and
you can find it in the folder WebLogic\examples\applets, where WebLogic is
the BEA WebLogic Server installation folder.

4 Developing an Applet Application

4-14 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

The document root directory is where the BEA WebLogic Server searches for
public HTML files. By default it is set to the directory
WebLogic/myserver/public_html in your BEA WebLogic Server installation
directory.

For this application, copy PhoneBook1.html to the
WebLogic\myserver\public_html directory.

3. Run the server.

For production purposes, run the server from outside IBM VisualAge for Java
(see the BEA WebLogic Server documentation for the configuration settings:
http://www.weblogic.com/docs51/examples/applets/Package-examples.applets.ht
ml)

For testing purposes you can also start the server from inside IBM VisualAge for
Java (see “Debugging the Client Application and the Server Object” on page
2-25).

4. In the web browser, request the URL:

http://localhost:7001/phonebook1.html

After some time needed to load all the necessary classes, the applet will appear.

www.e-docs.bea.com
www.e-docs.bea.com

Running the Applet in BEA WebLogic Server and a Web Browser

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 4-15

Figure 4-9 The applet running in the web browser

Note: It has been observed that in certain implementations of Windows Internet
Explorer the applet cannot be run in the browser.

You can find more details about using BEA WebLogic Server and Web browsers in
the BEA WebLogic Server documentation.

4 Developing an Applet Application

4-16 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 5-1

CHAPTER

Exporting Classes

Topics discussed in this chapter include:

� Exporting Classes to a Production BEA WebLogic Server

Overview

When you have finished developing your BEA WebLogic Server application in IBM
VisualAge for Java, you will need to export it to a file system for use in a production
environment.

Exporting Classes to a Production BEA
WebLogic Server

When exporting the application to the production environment you do not have to
export the EJB JAR files because they are exported as part of the development process.
Other classes compiled within the IBM VisualAge for Java workspace during
development do have to be exported.

5 Exporting Classes

5-2 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

The three directories where classes for BEA WebLogic Server applications are placed
are:

� WebLogic/myserver/clientclasses for classes required by client
applications

� WebLogic/myserver/serverclasses for classes required by server-side
objects

� WebLogic/myserver/servletclasses for servlet classes

where WebLogic is the installation directory for BEA WebLogic Server.

Classes from your BEA WebLogic Server project in IBM VisualAge for Java should
be exported to the appropriate directories. Classes that are shared by the client and
server should be exported to both WebLogic/myserver/clientclasses and
WebLogic/myserver/serverclasses.

You can export classes with their resources and/or source code. You can also export
packages (or projects) with their included classes, resources and/or source code.

To export classes or packages:

1. Select the required classes or packages.

2. From the menu bar, select Selected—>Export to open the SmartGuide window.

3. Select Directory as the Export Destination and click Next.

4. Enter the appropriate directory in the Directory field.

5. Under the section What do you want to export?, check the appropriate boxes:

� .class: for classes

� .java: for the source code of the selected classes or resources

� resource: for resources

Notice that next to the Details button for each of these options you will be told
how many are currently selected.

6. For each box you have checked, click the Details button to see or change the
selected classes. If you are exporting a package, all the classes in the package will
be selected. You can select or deselect classes.

Note: The system is not dynamic enough to reflect these changes on the Workbench.

Exporting Classes to a Production BEA WebLogic Server

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial 5-3

In Figure 5-1, 3 classes have been selected which means that the source code for
3 classes has also been selected. However the .java box has not been checked, so
the source code will not be exported.

Figure 5-1 The SmartGuide window showing that 3 classes have been selected

7. Select Finish.

The specified files will be exported to the specified directory.

5 Exporting Classes

5-4 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial A-1

APPENDIX A

Tips and
Troubleshooting

Topics discussed in this section include:

� Installing Service Packs

� Using EJB Dynamic Deployment

� Using Cloudscape Database

This section provides tips and discusses problems you may encounter while using the
BEA WebLogic Integration Kit for IBM VisualAge for Java.

Installing Service Packs

Service packs are occasionally released for BEA WebLogic Server to provide a safe,
easy and convenient way for users to incorporate resolved issues into their current
release. For more information, see WebLogic FAQ on service packs.

To install a service pack into your BEA WebLogic Integration Kit for IBM VisualAge
for Java:

1. Extract the service pack .zip file into a temporary directory.

2. Select the WebLogic Server Classes project in the Projects tab of the
VisualAge for Java Workbench.

A Tips and Troubleshooting

A-2 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

3. From the menu bar, select Selected→Managed→Version.

4. Select Jar File as the import source, then select Next.

5. Click the Browse button next to the Filename field, and select the service pack
JAR that you previously extracted into a temporary directory.

6. Under What type of file do you want to import?, choose .class and resource.

7. Select Finish. VisualAge will ask you, if want to create an edition of classes that
are replaced by the service pack. Select Yes To All.

In order to keep track of the service packs that you have installed, you should version
all of the classes that you have just installed with an appropriate name.

To version all of the classes that you have just installed:

1. Select the Show Edition Names button at the top of the VisualAge IDE.

2. Select each class that has just been installed as part of the service pack. To select
multiple classes hold down the Ctrl key while you highlight the names of the
appropriate classes. To locate all the classes that have been replaced, see the list
of all classes included in the service pack that is provided in the service pack
documentation.

3. From the Selected menu, choose Managed, then Version.

4. Select One Name. In the corresponding field, enter a name that is representative
of the service pack that you have just installed, such as 451sp1.

5. Select OK.

Note: If you have installed WebLogic Server Service Pack 8, the server will display
an Out of Memory exception when you run a JMS application. To solve this
problem, you must add the following line to the weblogic.properties file:

weblogic.jms.ignoreMemExhaustCheck=true

Using EJB Dynamic Deployment

BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial A-3

Using EJB Dynamic Deployment

You cannot use the new dynamic EJB deployment while debugging server-side code
in IBM VisualAge for Java.

Dynamic deployment uses classloaders in ways that are incompatible with the
debugger classloader in VisualAge for Java. However, the debugger will reloads
modified classes at run time, so you can do much of the work of developing and
debugging server applications without restarting the server.

Using Cloudscape Database

The Integration Kit does not support the use of the Cloudscape database with IBM
VisualAge for Java Version 3.5 and BEA WebLogic Server Version 5.1. Cloudscape
database usage is unsupported because of problems that occur when Cloudscape is run
in a VisualAge environment. This issue is currently being investigated by IBM
Support (PMR 15142,519,000).

A Tips and Troubleshooting

A-4 BEA WebLogic Integration Kit for IBM VisualAge for Java Tutorial

	Copyright
	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction
	Overview
	Using the Examples

	2 Developing, Deploying, Using, and Debugging EJBs
	Overview
	Developing, Deploying, Using, and Debugging a Stateless Session EJB
	Developing the EJB JAR
	Configuring BEA WebLogic Server to Run the EJB
	Verifying the EJB Deployment
	Running a Client Java Application that Communicates with the Deployed EJB
	Debugging the Client Application and the Server Object

	Developing, Deploying, Using and Debugging a Container Managed Entity EJB
	Setting up the Oracle Database
	Developing the EJB JAR
	Configuring BEA WebLogic Server to Run the EJB
	Verifying the EJB Deployment
	Running a Client Java Application that Communicates with the Deployed EJB
	Debugging the Client Application and the Server Object

	3 Combining EJB with JMS and Servlet Technologies
	Overview
	Configuring BEA WebLogic Server for JMS
	Creating a Database for JMS
	Defining a JDBC Connection Pool for the JMS Database
	Defining JMS ConnectionFactories
	Defining JMS Topics and Queues

	Configuring BEA WebLogic Server for the Servlet
	Registering the Servlet
	Setting the Servlet Classpath and Reloading Properties

	Running the Client Application
	Calling the Servlet from a Web Browser
	Exporting the Classes to the Production BEA WebLogic Server

	4 Developing an Applet Application
	Overview
	Setting Up the Database
	Running and Debugging the Applet in the IBM VisualAge for Java Environment
	Developing the Applet

	Running the Applet in BEA WebLogic Server and a Web Browser

	5 Exporting Classes
	Overview
	Exporting Classes to a Production BEA WebLogic Server

	A Tips and Troubleshooting
	Installing Service Packs
	Using EJB Dynamic Deployment
	Using Cloudscape Database

