
BEAWebLogic
SIP Server™

Configuration Guide

Version 3.1
Revised: July 16, 2007

Copyright
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Configuration Guide vii

Contents
1. Overview of the WebLogic SIP Server Architecture

Goals of the WebLogic SIP Server Architecture. 1-1

Load Balancer . 1-2

Engine Tier . 1-3

Data tier . 1-4

Example of Writing and Retrieving Call State Data . 1-5

RDBMS Storage for Long-Lived Call State Data . 1-5

Geographically-Redundant Installations . 1-5

Alternate Configurations . 1-6

2. Overview of WebLogic SIP Server Configuration and
Management

Shared Configuration Tasks for WebLogic SIP Server and WebLogic Server. 2-1

WebLogic SIP Server Configuration Overview . 2-2

Diameter Configuration . 2-4

Methods and Tools for Performing Configuration Tasks . 2-4

Administration Console . 2-5

WebLogic Scripting Tool (WLST) . 2-5

Additional Configuration Methods. 2-5

Editing Configuration Files. 2-5

Custom JMX Applications . 2-6

Common Configuration Tasks. 2-6

3. Configuring Data Tier Partitions and Replicas
Overview of Data Tier Configuration . 3-1

datatier.xml Configuration File . 3-2

viii Configuration Guide

Configuration Requirements and Restrictions . 3-2

Best Practices for Configuring and Managing Data Tier Servers 3-3

Example Data Tier Configurations and Configuration Files . 3-4

Data Tier with One Partition . 3-4

Data Tier with Two Partitions . 3-5

Data Tier with Two Partitions and Two Replicas. 3-5

Monitoring and Troubleshooting Data Tier Servers . 3-6

4. Storing Long-Lived Call State Data in an RDBMS
Overview of Long-Lived Call State Storage. 4-1

Requirements and Restrictions . 4-2

Steps for Enabling RDBMS Call State Storage . 4-2

Using the Configuration Wizard RDBMS Store Template. 4-3

Modify the JDBC Datasource Connection Information . 4-4

Configuring RDBMS Call State Storage by Hand . 4-5

Configure JDBC Resources . 4-5

Configure WebLogic SIP Server Persistence Options . 4-6

Create the Database Schema . 4-6

Using Persistence Hints in SIP Applications . 4-7

5. Configuring Geographically- Redundant Installations
Overview of Geographic Persistence . 5-1

Example Domain Configurations. 5-3

Requirements and Limitations . 5-4

Steps for Configuring Geographic Persistence . 5-5

Using the Configuration Wizard Templates for Geographic Persistence 5-5

Installing and Configuring the Primary Site . 5-6

Installing the Secondary Site . 5-7

Configuration Guide ix

Configuring Geographical Redundancy by Hand . 5-8

Configuring JDBC Resources (Primary and Secondary Sites) 5-9

Configuring Persistence Options (Primary and Secondary Sites) 5-9

Configuring JMS Resources (Secondary Site Only) . 5-10

Understanding Geo-Redundant Replication Behavior . 5-11

Call State Replication Process . 5-12

Call State Processing After Failover . 5-12

Removing Backup Call States . 5-14

Monitoring Replication Across Regional Sites . 5-14

Troubleshooting Geographical Replication. 5-14

6. Configuring Engine Tier Container Properties
Overview of SIP Container Configuration . 6-2

Using the Administration Console to Configure Container Properties 6-2

Locking and Persisting the Configuration . 6-4

Configuring Container Properties Using WLST (JMX) . 6-4

Managing Configuration Locks . 6-5

Configuration MBeans for the SIP Servlet Container . 6-6

Locating the WebLogic SIP Server MBeans . 6-7

WLST Configuration Examples . 6-8

Invoking WLST . 6-8

WLST Template for Configuring Container Attributes . 6-9

Creating and Deleting MBeans . 6-10

Working with URI Values. 6-10

Reverting to the Original Boot Configuration . 6-11

Configuring NTP for Accurate SIP Timers . 6-12

x Configuration Guide

7. Using the Engine Tier Cache
Overview of Engine Tier Caching . 7-1

Configuring Engine Tier Caching . 7-2

Monitoring and Tuning Cache Performance. 7-2

A. Upgrading a WebLogic SIP Server 2.2 Configuration to Version
3.1

About the Upgrade Process . A-1

Step 1: Install Software and Prepare Domain . A-2

Step 2: Use the WebLogic Server 9.2 Upgrade Wizard . A-2

Step 3: Edit the config.xml File to Specify WebLogic SIP Server Resources A-3

Step 4: Relocate and Edit WebLogic SIP Server Configuration Files A-5

Upgrade sipserver.xml and datatier.xml Files . A-5

Upgrade diameter.xml Files . A-6

Step 5: Perform Optional Upgrade Tasks . A-22

B. Improving Failover Performance for Physical Network Failures
Overview of Failover Detection . B-1

WlssEchoServer Failure Detection . B-2

Forced Shutdown for Failed Replicas . B-2

WlssEchoServer Requirements and Restrictions . B-3

Starting WlssEchoServer on Data Tier Server Machines . B-3

Enabling and Configuring the Heartbeat Mechanism on Servers B-5

C. Tuning JVM Garbage Collection for Production Deployments
Goals for Tuning Garbage Collection Performance . C-1

Modifying JVM Parameters in Server Start Scripts . C-2

Tuning Garbage Collection with JRockit . C-2

Configuration Guide xi

Using JRockit without Deterministic Garbage Collection . C-3

Using JRockit with Deterministic Garbage Collection (WebLogic Real Time) C-3

Tuning Garbage Collection with Sun JDK . C-4

D. Avoiding JVM Delays Caused by Random Number Generation

xii Configuration Guide

Configuration Guide 1-1

C H A P T E R 1

Overview of the WebLogic SIP Server
Architecture

The following sections provide an overview of the WebLogic SIP Server 3.1 architecture:

“Goals of the WebLogic SIP Server Architecture” on page 1-1

“Load Balancer” on page 1-2

“Engine Tier” on page 1-3

“Data tier” on page 1-4

“Geographically-Redundant Installations” on page 1-5

“Alternate Configurations” on page 1-6

Goals of the WebLogic SIP Server Architecture
WebLogic SIP Server is designed to provide a highly scalable, highly available, performant
server for deploying SIP applications. The WebLogic SIP Server architecture is simple to manage
and easily adaptable to make use of available hardware. The basic architecture consists of these
components:

Load Balancer

Engine Tier

Data tier

Figure 1-1 shows the components of a basic WebLogic SIP Server installation. The sections that
follow describe each component of the architecture in more detail.

Overv iew o f the WebLog ic S IP Se rve r A rch i tec ture

1-2 Configuration Guide

Figure 1-1 WebLogic SIP Server Architecture

Load Balancer
Although it is not provided as part of the WebLogic SIP Server product, a load balancer (or
multiple load balancers) is an essential component of any production WebLogic SIP Server
installation. The primary goal of a load balancer is to provide a single public address that
distributes incoming SIP requests to available servers in the WebLogic SIP Server engine tier.
Distribution of requests ensures that WebLogic SIP Server engines are fully utilized.

Most load balancers have configurable policies to ensure that client requests are distributed
according to the capacity and availability of individual machines, or according to any other load
policies required by your installation. Some load balancers provide additional features for
managing SIP network traffic, such as support for routing policies based on source IP address,
port number, or other fields available in SIP message headers. Many load balancer products also
provide additional fault tolerance features for telephony networks, and can be configured to

Engine T ie r

Configuration Guide 1-3

consistently route SIP requests for a given call to the same engine server on which the call was
initiated.

In a WebLogic SIP Server installation, the load balancer is also essential for performing
maintenance activities such as upgrading individual servers (WebLogic SIP Server software or
hardware) or upgrading applications without disrupting existing SIP clients. The Administrator
modifies load balancer policies to move client traffic off of one or more servers, and then
performs the required upgrades on the unused server instances. Afterwards, the Administrator
modifies the load balancer policies to allow client traffic to resume on the upgraded servers.

BEA provides detailed information for setting up load balancers with the WebLogic SIP Server
engine tier for basic load distribution. See “Configuring Load Balancer Addresses” on page 7-2
to configure a load balancer used with WebLogic SIP Server and “Upgrading Software and
Converged Applications” on page B-1 to use a load balancer to perform system and application
upgrades.

Engine Tier
The engine tier is a cluster of WebLogic SIP Server instances that hosts the SIP Servlets and other
applications that provide features to SIP clients. The engine tier is a stateless cluster of servers,
and it stores no permanent or transient information about the state of SIP dialogs. Instead, all
stateful information about SIP dialogs is stored and retrieved from the Data tier, which also
provides replication and failover services for SIP session data.

Engine tier servers can optionally cache a portion of the session data managed by the data tier.
Caching is most useful in configurations that use a SIP-aware load balancer. See “Using the
Engine Tier Cache” on page 7-1.

The primary goal of the engine tier is to provide maximum throughput and low response time to
SIP clients. As the number of calls, or the average duration of calls to your system increases, you
can easily add additional server instances to the engine tier to manage the additional load.

Note that although the engine tier consists of multiple WebLogic SIP Server instances, you
manage the engine tier as a single, logical entity; SIP Servlets are deployed uniformly to all server
instances (by targeting the cluster itself) and the load balancer need not maintain an affinity
between SIP clients and servers in the engine tier.

Notes: WebLogic SIP Server start scripts use default values for many JVM parameters that
affect performance. For example, JVM garbage collection and heap size parameters may
be omitted, or may use values that are acceptable only for evaluation or development
purposes. In a production system, you must rigorously profile your applications with

Overv iew o f the WebLog ic S IP Se rve r A rch i tec ture

1-4 Configuration Guide

different heap size and garbage collection settings in order to realize adequate
performance. See “Tuning JVM Garbage Collection for Production Deployments” on
page C-1 for suggestions about maximizing JVM performance in a production domain.

Because the engine tier relies on data tier servers in order to retrieve call state data, BEA
recommends using dual, Gigabit Ethernet Network Interface Cards (NICs) on engine and
data tier machines to provide redundant network connections.

Data tier
The data tier is a cluster of WebLogic SIP Server instances that provides a high-performance,
highly-available, in-memory database for storing and retrieving the session state data for SIP
Servlets. The goals of the data tier are as follows:

To provide reliable, performant storage for session data required by SIP applications in the
WebLogic SIP Server engine tier.

To enable administrators to easily scale hardware and software resources as necessary to
accommodate the session state for all concurrent calls.

Within the data tier, session data is managed in one or more “partitions” where each partition
manages a fixed portion of the concurrent call state. For example, in a system that uses two
partitions, the first partition manages one half of the concurrent call state (sessions A through M)
while the second partition manages another half of the concurrent call states (sessions N through
Z). With three partitions, each partition manages a third of the call state, and so on. Additional
partitions can be added as necessary to manage a large number of concurrent calls. A simple
hashing algorithm is used to ensure that each call state is uniquely assigned to only one data tier
partition.

Within each partition, multiple servers can be added to provide redundancy and failover should
other servers in the partition fail. When multiple servers participate in the same partition, the
servers are referred to as “replicas” because each server maintains a duplicate copy of the
partition’s call state. For example, if a two-partition system has two servers in the first partition,
each server manages a replica of call states A through M. If one or more servers in a partition fails
or is disconnected from the network, any available replica can automatically provide call state
data to the engine tier. The data tier can have a maximum of three replicas, providing two levels
of redundancy.

See “Configuring Data Tier Partitions and Replicas” on page 3-1 for more information about
configuring the data tier for high availability.

Geographica l l y -Redundant Ins ta l la t i ons

Configuration Guide 1-5

Note: Because the engine tier relies on data tier servers in order to retrieve call state data, BEA
recommends using dual Network Interface Cards (NICs) on engine and data tier
machines to provide redundant network connections.

Example of Writing and Retrieving Call State Data
When an initial SIP message is received, WebLogic SIP Server uses Servlet mapping rules to
direct the message to the appropriate SIP Servlet deployed in the engine tier. The engine tier
maintains no stateful information about SIP dialogs, but instead persists the call state to the
engine tier at SIP transaction boundaries. A hashing algorithm is applied to the call state to select
a single data tier partition in which to store the call state data. The engine tier server then “writes”
the call state to each replica within that partition and locks the call state. For example, if the data
tier is configured to use two data tier servers within each partition, the engine tier opens a
connection to both replicas in the partition, and writes and locks the call state on each replica.

In a default configuration, the replicas maintain the call state information only in memory
(available RAM). Call state data can also be configured for longer-term storage in an RDBMS,
and it may also be persisted to an off-site WebLogic SIP Server installation for geographic
redundancy.

When subsequent SIP messages are generated for the SIP dialog, the engine tier must first retrieve
the call state data from the data tier. The hashing algorithm is again applied to determine the
partition that stores the call state data. The engine tier then asks each replica in the partition to
unlock and retrieve the call state data, after which a Servlet on the engine tier can update the call
state data.

RDBMS Storage for Long-Lived Call State Data
WebLogic SIP Server enables you to store long-lived call state data in an Oracle RDBMS in order
to conserve RAM. The data tier persists a call state’s data to the RDBMS after the call dialog has
been established, and retrieves or deletes the persisted call state data as necessary to modify or
remove the call state. See “Storing Long-Lived Call State Data in an RDBMS” on page 4-1.

Geographically-Redundant Installations
WebLogic SIP Server can be installed in a geographically-redundant configuration for customers
who have multiple, regional data centers, and require continuing operation even after a
catastrophic site failure. The geographically-redundant configuration enables multiple WebLogic
SIP Server installations (complete with engine and data tier clusters) to replicate call state
transactions between one another. If the a particular site’s installation were to suffer a critical

Overv iew o f the WebLog ic S IP Se rve r A rch i tec ture

1-6 Configuration Guide

failure, the administrator could choose to redirect all network traffic to the secondary, replicated
site to minimize lost calls. See “Configuring Geographically- Redundant Installations” on
page 5-1.

Alternate Configurations
Not all WebLogic SIP Server requirements require the performance and reliability provided by
multiple servers in the engine and data tiers. On a development machine, for example, it is
generally more convenient to deploy and test applications on a single server, rather than a cluster
of servers.

WebLogic SIP Server enables you to combine engine and data tier services on a single server
instance when replicating call states is unnecessary. In a combined-tier configuration, the same
WebLogic SIP Server instance provides SIP Servlet container functionality and also manages the
call state for applications hosted on the server. Although the combined-tier configuration is most
commonly used for development and testing purposes, it may also be used in a production
environment if replication is not required for call state data. Figure 1-2 shows an example
deployment of multiple combined-tier servers in a production environment.

Figure 1-2 Single-Server Configurations with SIP-Aware Load Balancer

Al te rnate Conf igu rat ions

Configuration Guide 1-7

Because each server in a combined-tier server deployment manages only the call state for the
applications it hosts, the load balancer must be fully “SIP aware.” This means that the load
balancer actively routes multiple requests for the same call to the same WebLogic SIP Server
instance. If requests in the same call are not pinned to the same server, the call state cannot be
retrieved. Also keep in mind that if a WebLogic SIP Server instance fails in the configuration
shown in Figure 1-2, all calls handled by that server are lost.

Overv iew o f the WebLog ic S IP Se rve r A rch i tec ture

1-8 Configuration Guide

Configuration Guide 2-1

C H A P T E R 2

Overview of WebLogic SIP Server
Configuration and Management

The following sections provide an overview of how to configure and manage WebLogic SIP
Server deployments:

“Shared Configuration Tasks for WebLogic SIP Server and WebLogic Server” on page 2-1

“WebLogic SIP Server Configuration Overview” on page 2-2

“Methods and Tools for Performing Configuration Tasks” on page 2-4

“Common Configuration Tasks” on page 2-6

Shared Configuration Tasks for WebLogic SIP Server and
WebLogic Server

WebLogic SIP Server is based on the award-winning WebLogic Server 9.2 application server,
and many system-level configuration tasks are the same for both products. This manual addresses
only those system-level configuration tasks that are unique to WebLogic SIP Server, such as tasks
related to network and security configuration and cluster configuration for the engine and data
tiers.

HTTP server configuration and other basic configuration tasks such as server logging are
addressed in the WebLogic Server 9.2 Documentation.

Overv iew o f WebLog ic S IP Se rve r Conf igura t i on and Management

2-2 Configuration Guide

WebLogic SIP Server Configuration Overview
The SIP Servlet container, data tier replication, and Diameter protocol features of WebLogic SIP
Server are implemented in the WebLogic Server 9.2 product as custom resources. A pair of
custom resources, sipserver and datatier, implement the engine tier SIP Servlet container
functionality and data tier replication functionality. In production deployments, both resources
are generally installed. Specialized deployments may use only the sipserver resource in
conjunction with a SIP-aware load balancer, as described in “Alternate Configurations” on
page 1-6.

Another custom resource, diameter, provides Diameter base protocol functionality, and is
required only for deployments that utilize one or more Diameter protocol applications.

The WebLogic SIP Server custom resource assignments are visible in the domain configuration
file, config.xml, and should not be modified. Listing 2-1 shows the definitions for each
resource. Note that the sipserver and datatier resources must each be targeted to the same
servers or clusters; in Listing 2-1, the resources are deployed to both the engine tier and data tier
cluster.

Listing 2-1 WebLogic SIP Server Custom Resources

<custom-resource>

 <name>sipserver</name>

 <target>BEA_DATA_TIER_CLUST,BEA_ENGINE_TIER_CLUST</target>

 <descriptor-file-name>custom/sipserver.xml</descriptor-file-name>

<resource-class>com.bea.wcp.sip.management.descriptor.resource.SipServerRe

source</resource-class>

<descriptor-bean-class>com.bea.wcp.sip.management.descriptor.beans.SipServ

erBean</descriptor-bean-class>

</custom-resource>

<custom-resource>

 <name>datatier</name>

 <target>BEA_DATA_TIER_CLUST,BEA_ENGINE_TIER_CLUST</target>

WebLogic S IP Se rve r Conf igurat i on Overv iew

Configuration Guide 2-3

 <descriptor-file-name>custom/datatier.xml</descriptor-file-name>

<resource-class>com.bea.wcp.sip.management.descriptor.resource.DataTierRes

ource</resource-class>

<descriptor-bean-class>com.bea.wcp.sip.management.descriptor.beans.DataTie

rBean</descriptor-bean-class>

 </custom-resource>

<custom-resource>

 <name>diameter</name>

 <target>BEA_ENGINE_TIER_CLUST</target>

 <deployment-order>200</deployment-order>

 <descriptor-file-name>custom/diameter.xml</descriptor-file-name>

 <resource-class>com.bea.wcp.diameter.DiameterResource</resource-class>

<descriptor-bean-class>com.bea.wcp.diameter.management.descriptor.beans.Co

nfigurationBean</descriptor-bean-class>

</custom-resource>

The WebLogic SIP Server custom resources utilize the basic domain resources defined in
config.xml, such network channels, cluster and server configuration, and J2EE resources.
However, WebLogic SIP Server-specific resources are configured in separate configuration files
based on functionality:

sipserver.xml configures SIP container properties and general WebLogic SIP Server
engine tier functionality.

datatier.xml identifies servers that participate as replicas in the data tier, and also
defines the number and layout of data tier partitions.

diameter.xml configures Diameter nodes and Diameter protocol applications used in the
domain.

Keep in mind that the domain configuration file, config.xml, defines all of the Managed Servers
available in the domain. The sipserver.xml, datatier.xml, and diameter.xml
configuration files included in the sipserver application determines the role of each server

Overv iew o f WebLog ic S IP Se rve r Conf igura t i on and Management

2-4 Configuration Guide

instance, such as whether they behave as data tier replicas, engine tier nodes, or Diameter client
nodes.

Configuration changes to SIP Servlet container properties can be applied dynamically to a
running server by using the Administration Console SIP Servers node or from the command line
using the WLST utility. Configuration for data tier nodes cannot be changed dynamically, so you
must reboot data tier servers in order to change the number of partitions or replicas.

Diameter Configuration
The Diameter protocol implementation is implemented as a custom resource separate from the
SIP Servlet container functionality. The Diameter configuration file configures one or more
Diameter protocol applications to provide Diameter node functionality. WebLogic SIP Server
provides the Diameter protocol applications to support the following node types:

Diameter Sh interface client node (for querying a Home Subscriber Service)

Diameter Rf interface client node (for offline charging)

Diameter Ro interface client node (for online charging)

Diameter relay node

HSS simulator node (suitable for testing and development only, not for production
deployment)

The Diameter custom resource is deployed only to domains having servers that need to act as
Diameter client nodes or relay agents, or to servers that want to provide HSS simulation
capabilities. The actual function of the server instance depends on the configuration defined in
the diameter.xml file.

See Configuring Diameter Client Nodes and Relay Agents in Configuring Network Resources for
instructions to configure the Diameter Web Application in a WebLogic SIP Server domain. See
Using the IMS Sh Interface (Diameter) in Developing Applications with WebLogic SIP Server for
more information about using the Sh profile API.

Methods and Tools for Performing Configuration Tasks
WebLogic SIP Server provides several mechanisms for changing the configuration of the SIP
Servlet container:

“Administration Console” on page 2-5

Methods and Too ls fo r Pe r fo rming Conf igura t ion Tasks

Configuration Guide 2-5

“WebLogic Scripting Tool (WLST)” on page 2-5

“Additional Configuration Methods” on page 2-5

Administration Console
WebLogic SIP Server provides Administration Console extensions that allow you to modify and
SIP Servlet container, SIP Servlet domain, and Diameter configuration properties using a
graphical user interface. The Administration Console extensions for WebLogic SIP Server are
similar to the core console available in WebLogic Server 9.2. All WebLogic SIP Server
configuration and monitoring is provided via these nodes in the left pane of the console:

SipServer—configures SIP Servlet container properties and other engine tier functionality.
This extension also enables you to view (but not modify) data tier partitions and replicas.
See “Configuring Engine Tier Container Properties” on page 6-1 for more information
about configuring the SIP Servlet container using the Administration Console.

Diameter—configures Diameter nodes and applications.

WebLogic Scripting Tool (WLST)
The WebLogic Scripting Tool (WLST) enables you to perform interactive or automated (batch)
configuration operations using a command-line interface. WLST is a JMX tool that can view or
manipulate the MBeans available in a running WebLogic SIP Server domain. “Configuring
Engine Tier Container Properties” on page 6-1 provides instructions for modifying SIP Servlet
container properties using WLST.

Additional Configuration Methods
Most WebLogic SIP Server configuration is performed using either the Administration Console
or WLST. The methods described in the following sections may also be used for certain
configuration tasks.

Editing Configuration Files
You may also edit sipserver.xml, datatier.xml, and diameter.xml by hand, following the
respective schemas described in the Configuration Reference Manual.

If you edit configuration files by hand, you must manually reboot all servers to apply the
configuration changes.

Overv iew o f WebLog ic S IP Se rve r Conf igura t i on and Management

2-6 Configuration Guide

Custom JMX Applications
WebLogic SIP Server properties are represented by JMX-compliant MBeans. You can therefore
program JMX applications to configure SIP container properties using the appropriate WebLogic
SIP Server MBeans.

The general procedure for modifying WebLogic SIP Server MBean properties using JMX is
described in “Configuring Container Properties Using WLST (JMX)” on page 6-4 (WLST itself
is a JMX-based application). For more information about the individual MBeans used to manage
SIP container properties, see the WebLogic SIP Server Javadocs.

Common Configuration Tasks
General administration and maintenance of WebLogic SIP Server requires that you manage both
WebLogic Server configuration properties and WebLogic SIP Server container properties. These
common configuration tasks are summarized in Table 2-1.

Table 2-1 Common WebLogic SIP Server Configuration Tasks

Task Description

“Configuring Engine Tier
Container Properties” on
page 6-1

• Configuring SIP Container Properties using the
Administration Console

• Using WLST to perform batch configuration

“Configuring Data Tier
Partitions and Replicas”
on page 3-1

• Assigning WebLogic SIP Server instances to the data tier
partitions

• Replicating call state using multiple data tier instances

“Managing WebLogic
SIP Server Network
Resources” on page 7-1

• Configuring WebLogic Server network channels to
handling SIP and HTTP traffic

• Setting up multi-homed server hardware
• Configuring load balancers for use with WebLogic SIP

Server

Common Conf igura t ion Tasks

Configuration Guide 2-7

Configuring Digest
Authentication in
Configuring Security

• Configuring the LDAP Digest Authentication Provider
• Configuring a trusted host list

“Logging SIP Requests
and Responses” on
page 10-1

• Configuring logging Servlets to record SIP requests and
responses.

• Defining log criteria for filtering logged messages
• Maintaining WebLogic SIP Server log files

Table 2-1 Common WebLogic SIP Server Configuration Tasks

Task Description

Overv iew o f WebLog ic S IP Se rve r Conf igura t i on and Management

2-8 Configuration Guide

Configuration Guide 3-1

C H A P T E R 3

Configuring Data Tier Partitions and
Replicas

The following sections describe how to configure WebLogic SIP Server instances that make up
the data tier cluster of a deployment:

“Overview of Data Tier Configuration” on page 3-1

“Best Practices for Configuring and Managing Data Tier Servers” on page 3-3

“Example Data Tier Configurations and Configuration Files” on page 3-4

– “Data Tier with One Partition” on page 3-4

– “Data Tier with Two Partitions” on page 3-5

– “Data Tier with Two Partitions and Two Replicas” on page 3-5

“Monitoring and Troubleshooting Data Tier Servers” on page 3-6

Overview of Data Tier Configuration
The WebLogic SIP Server data tier is a cluster of server instances that manages the application
call state for concurrent SIP calls. The data tier may manage a single copy of the call state or
multiple copies as needed to ensure that call state data is not lost if a server machine fails or
network connections are interrupted.

The data tier cluster is arranged into one or more partitions. A partition consists of one or more
data tier server instances that manage the same portion of concurrent call state data. In a
single-server WebLogic SIP Server installation, or in a two-server installation where one server
resides in the engine tier and one resides in the data tier, all call state data is maintained in a single

Conf igur ing Data T ie r Par t i t i ons and Repl icas

3-2 Configuration Guide

partition. Multiple partitions are required when the size of the concurrent call state exceeds the
maximum size that can be managed by a single server instance. When more than one partition is
used, the concurrent call state is split among the partitions, and each partition manages an
separate portion of the data. For example, with a two-partition data tier, one partition manages
the call state for half of the concurrent calls (for example, calls A through M) while the second
partition manages the remaining calls (N through Z).

In most cases, the maximum call state size that can be managed by an individual server
corresponds to the Java Virtual Machine limit of approximately 1.6GB per server.

Additional servers can be added within the same partition to manage copies of the call state data.
When multiple servers are members of the same partition, each server manages a copy of the
same portion of the call data, referred to as a replica of the call state. If a server in a partition fails
or cannot be contacted due to a network failure, another replica in the partition supplies the call
state data to the engine tier. BEA recommends configuring two servers in each partition for
production installations, to guard against machine or network failures. A partition can have a
maximum of three replicas for providing additional redundancy.

datatier.xml Configuration File
The datatier.xml configuration file, located in the config/custom subdirectory of the
domain directory, identifies data tier servers and also defines the partitions and replicas used to
manage the call state. If a server’s name is present in datatier.xml, that server loads WebLogic
SIP Server data tier functionality at boot time. (Server names that do not appear in
datatier.xml act as engine tier nodes, and instead provide SIP Servlet container functionality
configured by the sipserver.xml configuration file.)

The sections that follow show examples of the datatier.xml contents for common data tier
configurations. See also Data Tier Configuration Reference (datatier.xml) in the Configuration
Reference Manual for full information about the XML Schema and elements.

Configuration Requirements and Restrictions
All servers that participate in the data tier should be members of the same WebLogic Server
cluster. The cluster configuration enables each server to monitor the status of other servers. Using
a cluster also enables you to easily target the sipserver and datatier custom resources to all
servers for deployment.

For high reliability, you can configure up to three replicas within a partition.

Best P ract i ces fo r Conf igur ing and Managing Data T ie r Se rve rs

Configuration Guide 3-3

You cannot change the data tier configuration while replicas or engine tier nodes are running.
You must restart servers in the domain in order to change data tier membership or reconfigure
partitions or replicas.

You can view the current data tier configuration using the Configuration->Data Tier page
(SipServer node) of the Administration Console, as shown in Figure 3-1.

Figure 3-1 Administration Console Display of Data Tier Configuration (Read-Only)

Best Practices for Configuring and Managing Data Tier
Servers

Adding replicas can increase reliability for the system as a whole, but keep in mind that each
additional server in a partition requires additional network bandwidth to manage the replicated
data. With three replicas in a partition, each transaction that modifies the call state updates data
on three different servers.

To ensure high reliability when using replicas, always ensure that server instances in the same
partition reside on different machines. Hosting two or more replicas on the same machine leaves
all of the hosted replicas vulnerable to a machine or network failure.

Data tier servers can have one of three different statuses:

ONLINE—indicates that the server is available for managing call state transactions.

OFFLINE—indicates that the server is shut down or unavailable.

ONLINE_LOCK_AUTHORITY_ONLY—indicates that the server was rebooted and is currently
being updated (from other replicas) with the current call state data. A recovering server
cannot yet process call state transactions, because it does not maintain a full copy of the
call state managed by the partition.

Conf igur ing Data T ie r Par t i t i ons and Repl icas

3-4 Configuration Guide

If you need to take a data tier server instance offline for scheduled maintenance, make sure that
at least one other server in the same partition is active. If you shut down an active server and
all other servers in the partition are offline or recovering, you will lose a portion of the active
call state.

WebLogic SIP Server automatically divides the call state evenly over all configured partitions.

Example Data Tier Configurations and Configuration Files
The sections that follow describe some common WebLogic SIP Server installations that utilize a
separate data tier.

Data Tier with One Partition
A single-partition, single-server data tier represents the simplest data tier configuration.
Listing 3-1 shows a data tier configuration for a single-server deployment.

Listing 3-1 Data Tier Configuration for Small Deployment

<?xml version="1.0" encoding="UTF-8"?>

 <data-tier xmlns="http://www.bea.com/ns/wlcp/wlss/300">

 <partition>

 <name>part-1</name>

 <server-name>replica1</server-name>

 </partition>

 </data-tier>

To add a replica to an existing partition, simply define a second server-name entry in the same
partition. For example, the datatier.xml configuration file shown in Listing 3-2 creates a
two-replica configuration.

Listing 3-2 Data Tier Configuration for Small Deployment with Replication

<?xml version="1.0" encoding="UTF-8"?>

 <data-tier xmlns="http://www.bea.com/ns/wlcp/wlss/300">

Example Data T ie r Conf igu rat i ons and Conf igura t i on F i l es

Configuration Guide 3-5

 <partition>

 <name>Partition0</name>

 <server-name>DataNode0-0</server-name>

 <server-name>DataNode0-1</server-name>

 </partition>

 </data-tier>

Data Tier with Two Partitions
Multiple partitions can be easily created by defining multiple partition entries in
datatier.xml, as shown in Listing 3-3.

Listing 3-3 Two-Partition Data Tier Configuration

<?xml version="1.0" encoding="UTF-8"?>

 <data-tier xmlns="http://www.bea.com/ns/wlcp/wlss/300">

 <partition>

 <name>Partition0</name>

 <server-name>DataNode0-0</server-name>

 </partition>

 <partition>

 <name>Partition1</name>

 <server-name>DataNode1-0</server-name>

 </partition>

 </data-tier>

Data Tier with Two Partitions and Two Replicas
Replicas of the call state can be added by defining multiple data tier servers in each partition.
Listing 3-4 shows the datatier.xml configuration file used to configure a system with two
partitions and two servers (replicas) in each partition.

Conf igur ing Data T ie r Par t i t i ons and Repl icas

3-6 Configuration Guide

Listing 3-4 Data Tier Configuration for Small Deployment

<?xml version="1.0" encoding="UTF-8"?>

 <data-tier xmlns="http://www.bea.com/ns/wlcp/wlss/300">

 <partition>

 <name>Partition0</name>

 <server-name>DataNode0-0</server-name>

 <server-name>DataNode0-1</server-name>

 </partition>

 <partition>

 <name>Partition1</name>

 <server-name>DataNode1-0</server-name>

 <server-name>DataNode1-1</server-name>

 </partition>

 </data-tier>

Monitoring and Troubleshooting Data Tier Servers
A runtime MBean, com.bea.wcp.sip.management.runtime.ReplicaRuntimeMBean,
provides valuable information about the current state and configuration of the data tier. See the
WebLogic SIP Server JavaDocs for a description of the attributes provided in this MBean.

Many of these attributes can be viewed using the SIP Servers Monitoring->Data Tier Information
tab in the Administration Console, as shown in “Data Tier Monitoring in the Administration
Console” on page 3-7.

Moni to r ing and T roub leshoo t ing Data T ie r Se rve rs

Configuration Guide 3-7

Figure 3-2 Data Tier Monitoring in the Administration Console

Listing 3-5 shows a simple WLST session that queries the current attributes of a single Managed
Server instance in a data tier partition. Table 3-1, “ReplicaRuntimeMBean Method and Attribute
Summary,” on page 3-8 describes the MBean services in more detail.

Listing 3-5 Displaying ReplicaRuntimeMBean Attributes

connect(‘weblogic’,’weblogic’,’t3://datahost1:7001’)

custom()

cd('com.bea')

cd('com.bea:ServerRuntime=replica1,Name=replica1,Type=ReplicaRuntime')

ls()

-rw- BackupStoreInboundStatistics null

-rw- BackupStoreOutboundStatistics null

-rw- BytesReceived 0

-rw- BytesSent 0

-rw- CurrentViewId 2

-rw- DataItemCount 0

-rw- DataItemsToRecover 0

-rw- DatabaseStoreStatistics null

-rw- HighKeyCount 0

-rw- HighTotalBytes 0

Conf igur ing Data T ie r Par t i t i ons and Repl icas

3-8 Configuration Guide

-rw- KeyCount 0

-rw- Name replica1

-rw- Parent com.bea:Name=replica1,Type=S

erverRuntime

-rw- PartitionId 0

-rw- PartitionName part-1

-rw- ReplicaId 0

-rw- ReplicaName replica1

-rw- ReplicaServersInCurrentView java.lang.String[replica1,

replica2]

-rw- ReplicasInCurrentView [I@75378c

-rw- State ONLINE

-rw- TimerQueueSize 0

-rw- TotalBytes 0

-rw- Type ReplicaRuntime

Table 3-1 ReplicaRuntimeMBean Method and Attribute Summary

Method/Attribute Description

dumpState() Records the entire state of the selected data tier server
instance to the WebLogic SIP Server log file. You may
want to use the dumpState() method to provide
additional diagnostic information to a Technical
Support representative in the event of a problem.

BackupStoreInboundStatistics Provides statistics about call state data replicated from
a remote geographical site.

BackupStoreOutboundStatistics Provides statistics about call state data replicated to a
remote geographical site.

BytesReceived The total number of bytes received by this data tier
server. Bytes are received as servers in the engine tier
provide call state data to be stored.

Moni to r ing and T roub leshoo t ing Data T ie r Se rve rs

Configuration Guide 3-9

BytesSent The total number of bytes sent from this data tier server.
Bytes are sent to engine tier servers when requested to
provide the stored call state.

CurrentViewId The current view ID. Each time the layout of the data
tier changes, the view ID is incremented. For example,
as multiple servers in a data tier cluster are started for
the first time, the view ID is incremented when each
server begins participating in the data tier. Similarly,
the view is incremented if a server is removed from the
data tier, either intentionally or due to a failure.

DataItemCount The total number of stored call state keys for which this
server has data. This attribute may be lower than the
KeyCount attribute if the server is currently
recovering data.

DataItemsToRecover The total number of call state keys that must still be
recovered from other replicas in the partition. A data
tier server may recover keys when it has been taken
offline for maintenance and is then restarted to join the
partition.

HighKeyCount The highest total number of call state keys that have
been managed by this server since the server was
started.

HighTotalBytes The highest total number of bytes occupied by call state
data that this server has managed since the server was
started.

KeyCount The number of call data keys that are stored on the
replica.

PartitionId The numerical partition ID (from 0 to 7) of this server’s
partition.

PartitionName The name of this server’s partition.

ReplicaId The numerical replica ID (from 0 to 2) of this server’s
replica.

Table 3-1 ReplicaRuntimeMBean Method and Attribute Summary

Method/Attribute Description

Conf igur ing Data T ie r Par t i t i ons and Repl icas

3-10 Configuration Guide

ReplicaName The name of this server’s replica.

ReplicaServersInCurrentView The names of other WebLogic SIP Server instances that
are participating in the partition.

State The current state of the replica. Data tier servers can
have one of three different statuses:
• ONLINE—indicates that the server is available for

managing call state transactions.
• OFFLINE—indicates that the server is shut down

or unavailable.
• ONLINE_LOCK_AUTHORITY_ONLY—indicates

that the server was rebooted and is currently being
updated (from other replicas) with the current call
state data. A recovering server cannot yet process
call state transactions, because it does not maintain
a full copy of the call state managed by the
partition.

TimerQueueSize The current number of timers queued on the data tier
server. This generally corresponds to the KeyCount
value, but may be less if new call states are being added
but their associated timers have not yet been queued.

Note: Engine tier servers periodically check with
data tier instances to determine if timers
associated with a call have expired. In order
for SIP timers to function properly, all engine
tier servers must actively synchronize their
system clocks to a common time source. BEA
recommends using a Network Time Protocol
(NTP) client or daemon on each engine tier
instance and synchronizing to a selected NTP
server.

TotalBytes The total number of bytes consumed by the call state
managed in this server.

Table 3-1 ReplicaRuntimeMBean Method and Attribute Summary

Method/Attribute Description

Configuration Guide 4-1

C H A P T E R 4

Storing Long-Lived Call State Data in
an RDBMS

The following sections describe how to configure a WebLogic SIP Server domain to use an
Oracle or MySQL RDBMS with the data tier cluster, in order to conserve RAM:

“Overview of Long-Lived Call State Storage” on page 4-1

“Requirements and Restrictions” on page 4-2

“Steps for Enabling RDBMS Call State Storage” on page 4-2

“Using the Configuration Wizard RDBMS Store Template” on page 4-3

“Configuring RDBMS Call State Storage by Hand” on page 4-5

“Using Persistence Hints in SIP Applications” on page 4-7

Overview of Long-Lived Call State Storage
WebLogic SIP Server enables you to store long-lived call state data in an Oracle or MySQL
RDBMS in order to conserve RAM. When you enable RDBMS persistence, by default the data
tier persists a call state’s data to the RDBMS after the call dialog has been established, and at
subsequent dialog boundaries, retrieving or deleting the persisted call state data as necessary to
modify or remove the call state.

BEA also provides an API for application designers to provide “hints” as to when the data tier
should persist call state data. These hints can be used to persist call state data to the RDBMS more
frequently, or to disable persistence for certain calls. See

Stor ing Long-L ived Ca l l S tate Data in an RDBMS

4-2 Configuration Guide

Note that WebLogic SIP Server only uses the RDBMS to supplement the data tier’s in-memory
replication functionality. To improve latency performance when using an RDBMS, the data tier
maintains SIP timers in memory, along with call states being actively modified (for example, in
response to a new call being set up). Call states are automatically persisted only after a dialog has
been established and a call is in progress, at subsequent dialog boundaries, or in response to
persistence hints added by the application developer.

When used in conjunction with an RDBMS, the data tier selects one replica server instance to
process all call state writes (or deletes) to the database. Any available replica can be used to
retrieve call states from the persistent store as necessary for subsequent reads.

RDBMS call state storage can be used in combination with an engine tier cache, if your domain
uses a SIP-aware load balancer to manage connections to the engine tier. See “Using the Engine
Tier Cache” on page 7-1.

Requirements and Restrictions
Enable RDBMS call state storage only when all of the following criteria are met:

The call states managed by your system are typically long-lived.

The size of the call state to be stored is large. Very large call states may require a
significant amount of RAM in order to store the call state.

Latency performance is not critical to your deployed applications.

The latency requirement, in particular, must be well understood before choosing to store call state
data in an RDBMS. The RDBMS call state storage option measurably increases latency for SIP
message processing, as compared to using a data tier cluster. If your system must handle a large
number of short-lived SIP transactions with brief response times, BEA recommends storing all
call state data in the data tier.

Note: RDBMS persistence is designed only to reduce the RAM requirements in the data tier for
large, long-lived call states. The persisted data cannot be used to restore a failed data tier
partition or replica.

Steps for Enabling RDBMS Call State Storage
In order to use the RDBMS call state storage feature, your WebLogic SIP Server domain must
include the necessary JDBC configuration, SIP Servlet container configuration, and a database
having the schema required to store the call state. You can automate much of the required

Using the Conf igurat ion Wizard RDBMS Sto re Template

Configuration Guide 4-3

configuration by using the Configuration Wizard to set up a new domain with the RDBMS call
state template. See “Using the Configuration Wizard RDBMS Store Template” on page 4-3.

If you have an existing WebLogic SIP Server domain, or you want to configure the RDBMS store
on your own, see “Configuring RDBMS Call State Storage by Hand” on page 4-5 for instructions
to configure JDBC and WebLogic SIP Server to use an RDBMS store.

Using the Configuration Wizard RDBMS Store Template
The Configuration Wizard provides a simple template that helps you easily begin using and
testing the RDBMS call state store. Follow these steps to create a new domain from the template:

1. Start the Configuration Wizard application:

cd ~/bea/sipserver30/common/bin

./config.sh

2. Accept the default selection, Create a new WebLogic domain, and click Next.

3. Select Base this domain on an existing template, and click Browse to display the Select a
Template dialog.

4. Select the template named replicateddomain.jar, and click OK.

5. Click Next.

6. Enter the username and password for the Administrator of the new domain, and click Next.

7. Select a JDK to use, and click Next.

8. Select No to keep the settings defined in the source template file, and click Next.

9. Click Create to create the domain.

The template creates a new domain with two engine tier servers in a cluster, two data tier
servers in a cluster, and an Administration Server (AdminServer). The engine tier cluster
includes the following resources and configuration:

– A JDBC datasource, wlss.callstate.datasource, required for storing long-lived
call state data. Note that you must modify this configuration to configure the datasource
for your own RDBMS server. See “Modify the JDBC Datasource Connection
Information” on page 4-4.

Stor ing Long-L ived Ca l l S tate Data in an RDBMS

4-4 Configuration Guide

– A persistence configuration (shown in the SipServer node, Configuration->Persistence
tab of the Administration Console) that defines default handling of persistence hints for
both RDBMS and geographical redundancy.

10. Click Done to exit the configuration wizard.

11. Follow the steps under “Modify the JDBC Datasource Connection Information” on page 4-4
to create the necessary tables in your RDBMS.

12. Follow the steps under “Create the Database Schema” on page 4-6 to create the necessary
tables in your RDBMS.

Modify the JDBC Datasource Connection Information
After installing the new domain, modify the template JDBC datasource to include connection
information for your RDBMS server:

1. Use your browser to access the URL http://address:port/console where address is the
Administration Server’s listen address and port is the listen port.

2. Click Lock & Edit to obtain a configuration lock.

3. Select the Services->JDBC->Data Sources tab in the left pane.

4. Select the data source named wlss.callstate.datasource in the right pane.

5. Select the Configuration->Connection Pool tab in the right pane.

6. Modify the following connection pool properties:

– URL: Modify the URL to specify the hostname and port number of your RDBMS
server.

– Properties: Modify the value of the user, portNumber, SID, and serverName properties
to match the connection information for your RDBMS.

– Password and Confirm Password: Enter the password of the RDBMS user you
specified.

7. Click Save to save your changes.

8. Select the Targets tab in the right pane.

9. On the Select Targets page, select the name of your data tier cluster (for example,
BEA_DATA_TIER_CLUST), then click Save.

Conf igur ing RDBMS Ca l l S ta te S to rage by Hand

Configuration Guide 4-5

10. Click Activate Changes to apply the configuration.

11. Follow the steps under “Create the Database Schema” on page 4-6 to create the necessary
tables in your RDBMS.

Configuring RDBMS Call State Storage by Hand
To change an existing WebLogic SIP Server domain to store call state data in an Oracle or
MySQL RDBMS, you must configure the required JDBC datasource, edit the WebLogic SIP
Server configuration, and add the required schema to your database. Follow the instructions in
the sections below to configure an Oracle Database.

Configure JDBC Resources
Follow these steps to create the required JDBC resources in your domain:

1. Boot the Administration Server for the domain if it is not already running.

2. Access the Administration Console for the domain.

3. Click Lock & Edit to obtain a configuration lock.

4. Select the Services->JDBC->Data Sources tab in the left pane.

5. Click New to create a new data source.

6. Fill in the fields of the Create a New JDBC Data Source page as follows:

– Name: Enter wlss.callstate.datasource

– JNDI Name: Enter wlss.callstate.datasource.

– Database Type: Select “Oracle.”

– Database Driver: Select an appropriate JDBC driver from the Database Driver list.
Note that some of the drivers listed in this field may not be installed by default on your
system. Install third-party drivers as necessary using the instructions from your
RDBMS vendor.

7. Click Next:

8. Fill in the fields of the Connection Properties tab using connection information for the
database you wan to use. Click Next to continue.

9. Click Test Driver Configuration to test your connection to the RDBMS, or click Next to
continue.

Stor ing Long-L ived Ca l l S tate Data in an RDBMS

4-6 Configuration Guide

10. On the Select Targets page, select the name of your data tier cluster (for example,
BEA_DATA_TIER_CLUST), then click Finish.

11. Click Save to save your changes.

12. Click Activate Changes to apply the configuration.

Configure WebLogic SIP Server Persistence Options
Follow these steps to configure the WebLogic SIP Server persistence options to use an RDBMS
call state store:

1. Boot the Administration Server for the domain if it is not already running.

2. Access the Administration Console for the domain.

3. Click Lock & Edit to obtain a configuration lock.

4. Select the SipServer node in the left pane.

5. Select the Configuration->Persistence tab in the right pane.

6. In the Default Handling drop-down menu, select either “db” or “all.” It is acceptable to select
“all” because geographically-redundant replication is only performed if the Geo Site ID and
Geo Remote T3 URL fields have been configured.

7. Click Save to save your changes.

8. Click Activate Changes to apply the configuration.

Create the Database Schema
WebLogic SIP Server includes a SQL script, callstate.sql, that you can use to create the
tables necessary for storing call state information. The script is installed to the
user_staged_config subdirectory of the domain directory when you configure a replicated
domain using the Configuration Wizard. The script is also available in the
WLSS_HOME/common/templates/scripts/db/oracle directory.

The contents of the callstate.sql SQL script are shown in Listing 4-1.

Listing 4-1 callstate.sql Script for Call State Storage Schema

drop table callstate;

Using Pers is tence H in ts in S IP App l icat ions

Configuration Guide 4-7

create table callstate (

 key1 int,

 key2 int,

 bytes blob default empty_blob(),

 constraint pk_callstate primary key (key1, key2)

);

Follow these steps to execute the script commands using SQL*Plus:

1. Move to the WebLogic SIP Server utils directory, in which the SQL Script is stored:

cd ~/bea/sipserver30/common/templates/scripts/db/oracle

2. Start the SQL*Plus application, connecting to the Oracle database in which you will create
the required tables. Use the same username, password, and connect to the same database that
you specified when configuring the JDBC driver in “Configure JDBC Resources” on
page 4-5. For example:

sqlplus username/password@connect_identifier

where connect_identifier connects to the database identified in the JDBC connection
pool.

3. Execute the WebLogic SIP Server SQL script, callstate.sql:

START callstate.sql

4. Exit SQL*Plus:

EXIT

Using Persistence Hints in SIP Applications
WebLogic SIP Server provides a simple API to provide “hints” as to when the data tier should
persist call state data. You can use the API to disable persistence for specific calls or SIP requests,
or to persist data more frequently than the default setting (at SIP dialog boundaries).

To use the API, simply obtain a WlssSipApplicationSession instance and use the
setPersist method to enable or disable persistence. Note that you can enable or disable
persistence either to an RDBMS store, or to as geographically-redundant WebLogic SIP Server
installation (see “Configuring Geographically- Redundant Installations” on page 5-1).

Stor ing Long-L ived Ca l l S tate Data in an RDBMS

4-8 Configuration Guide

For example, some SIP-aware load balancing products use the SIP OPTIONS message to
determine if a SIP Server is active. To avoid persisting these messages to an RDBMS and to a
geographically-redundant site, a Servlet might implement a doOptions method to echo the
request and turn off persistence for the message, as shown in Listing 4-2.

Listing 4-2 Disabling RDBMS Persistence for Option Methods

protected void doOptions(SipServletRequest req) throws IOException {

 WlssSipApplicationSession session =

 (WlssSipApplicationSession) req.getApplicationSession();

 session.setPersist(WlssSipApplicationSession.PersistenceType.DATABASE,

 false);

session.setPersist(WlssSipApplicationSession.PersistenceType.GEO_REDUN

DANCY, false);

 req.createResponse(200).send();

}

Configuration Guide 5-1

C H A P T E R 5

Configuring Geographically-
Redundant Installations

The following sections describe how to replicate call state transactions across multiple, regional
WebLogic SIP Server installations (“sites”):

“Overview of Geographic Persistence” on page 5-1

“Requirements and Limitations” on page 5-4

“Steps for Configuring Geographic Persistence” on page 5-5

“Using the Configuration Wizard Templates for Geographic Persistence” on page 5-5

“Configuring Geographical Redundancy by Hand” on page 5-8

“Understanding Geo-Redundant Replication Behavior” on page 5-11

“Monitoring Replication Across Regional Sites” on page 5-14

“Troubleshooting Geographical Replication” on page 5-14

Overview of Geographic Persistence
The basic call state replication functionality available in the WebLogic SIP Server data tier
provides excellent failover capabilities for a single site installation. However, the active
replication performed within the data tier requires high network bandwidth in order to meet the
latency performance needs of most production networks. This bandwidth requirement makes a
single data tier cluster unsuitable for replicating data over large distances, such as from one
regional data center to another.

Conf igur ing Geograph ica l l y - Redundant Ins ta l la t ions

5-2 Configuration Guide

WebLogic SIP Server’s geographic persistence feature enables you to replica call state
transactions across multiple WebLogic SIP Server installations (multiple Administrative
domains or “sites”). A geographically-redundant configuration minimizes dropped calls in the
event of a catastrophic failure of an entire site, for example due to an extended, regional power
outage.

Figure 5-1 WebLogic SIP Server Geographic Persistence

When using geographic persistence, a single replica in the primary site places modified call state
data on a distributed JMS queue. By default, data is placed on the queue only at SIP dialog
boundaries. (A custom API is provided for application developers that want to replicate data
using a finer granularity, as described in “Using Persistence Hints in SIP Applications” on
page 4-7.) In a secondary site, engine tier servers use a message listener to monitor the distributed
queue to receive messages and write the data to its own data tier cluster. If the secondary site uses
an RDBMS to store long-lived call states (recommended), then all data writes from the distribute
queue go directly to the RDBMS, rather than to the in-memory storage of the data tier.

Overv iew o f Geograph ic Pe rs is tence

Configuration Guide 5-3

Example Domain Configurations
A secondary WebLogic SIP Server domain that persists data from another domain may itself
process SIP traffic, or it may exist solely as an active standby domain. In the most common
configuration, two sites are configured to replicate each other’s call state data, with each site
processing its own local SIP traffic. The administrator can then use either domain as the
“secondary” site should one of domains fail.

Figure 5-2 Common Geographically-Redundant Configuration

An alternate configuration utilizes a single domain that persists data from multiple, other sites,
acting as the secondary for those sites. Although the secondary site in this configuration can also
process its own, local SIP traffic, keep in mind that the resource requirements of the site may be
considerable because of the need to persist active traffic from several other installations.

Figure 5-3 Alternate Geographically-Redundant Configuration

Conf igur ing Geograph ica l l y - Redundant Ins ta l la t ions

5-4 Configuration Guide

Requirements and Limitations
WebLogic SIP Server’s geographically-redundant persistence feature is most useful for sites that
manage long-lived call state data in an RDBMS. Short-lived calls may be lost in the transition to
a secondary site, because WebLogic SIP Server may choose to collect data for multiple call states
before replicating between sites.

You must have a reliable, site-aware load balancing solution that can partition calls between
geographic locations, as well as monitor the health of a given regional site. WebLogic SIP Server
provides no automated functionality for detecting the failure of an entire domain, or for failing
over to a secondary site. It is the responsibility of the Administrator to determine when a given
site has “failed,” and to redirect that site’s calls to the correct secondary site. Furthermore, the
site-aware load balancer must direct all messages for a given callId to a single home site (the
“active” site). If, after a failover, the failed site is restored, the load balancer must continue
directing calls to the active site and not partition calls between the two sites.

During a failover to a secondary site, some calls may be dropped. This can occur because
WebLogic SIP Server generally queues call state data for site replication only at SIP dialog
boundaries. Failures that occur before the data is written to the queue result in the loss of the
queued data.

Also, WebLogic SIP Server replicates call state data across sites only when a SIP dialog boundary
changes the call state. If a long-running call exists on the primary site before the secondary site
is started, and the call state remains unmodified, that call’s data is not replicated to the secondary
site. Should a failure occur before a long-running call state has been replicated, the call is lost
during failover.

When planning for the capacity of a WebLogic SIP Server installation, keep in mind that, after a
failover, a given site must be able to support all of the calls from the failed site as well as from its
own geographic location. Essentially this means that all sites that are involved in a
geographically-redundant configuration will operate at less than maximum capacity until a
failover occurs.

Steps fo r Conf igur ing Geographic Pe rs is tence

Configuration Guide 5-5

Steps for Configuring Geographic Persistence
In order to use the WebLogic SIP Server geographic persistence features, you must perform
certain configuration tasks on both the primary “home” site and on the secondary replication site.
Table 5-1

Note: In most production deployments, two sites will perform replication services for each
other, so you will generally configure each installation as both a primary and secondary
site.

WebLogic SIP Server provides domain templates to automate the configuration of most of the
resources described in Table 5-1. See “Using the Configuration Wizard Templates for
Geographic Persistence” on page 5-5 for information about using the templates.

If you have an existing WebLogic SIP Server domain and want to use geographic persistence,
follow the instructions in “Configuring Geographical Redundancy by Hand” on page 5-8 to
create the resources.

Using the Configuration Wizard Templates for
Geographic Persistence

WebLogic SIP Server provides two Configuration Wizard templates for using geographic
persistence features:

Table 5-1 Steps for Configuring Geographic Persistence

Steps for Primary “Home” Site Steps for Secondary “Replication” Site:

1. Install WebLogic SIP Server software and create
replicated domain.

2. Enable RDBMS storage for long-lived call states
(recommended).

3. Configure persistence options to:

– Define the unique regional site ID.

– Identify the secondary site’s URL.

– Enable replication hints.

1. Install WebLogic SIP Server software and create
replicated domain.

2. Enable RDBMS storage for long-lived call states
(recommended).

3. Configure JMS Servers and modules required for
replicating data.

4. Configure persistence options to:

– Define the unique regional site ID.

Conf igur ing Geograph ica l l y - Redundant Ins ta l la t ions

5-6 Configuration Guide

WLSS_HOME/common/templates/domains/geo1domain.jar configures a primary site
having a site ID of 1. The domain replicates data to the engine tier servers created in
geo2domain.jar.

WLSS_HOME/common/templates/domains/geo2domain.jar configures a secondary site
that replicates call state data from the domain created with geo1domain.jar. This
installation has site ID of 2.

The server port numbers in both domain templates are unique, so you can test geographic
persistence features on a single machine if necessary. Follow the instructions in the sections that
follow to install and configure each domain.

Installing and Configuring the Primary Site
Follow these steps to create a new primary domain from the template:

1. Start the Configuration Wizard application:

cd ~/bea/sipserver30/common/bin

./config.sh

2. Accept the default selection, Create a new WebLogic domain, and click Next.

3. Select Base this domain on an existing template, and click Browse to display the Select a
Template dialog.

4. Select the template named geo1domain.jar, and click OK.

5. Click Next.

6. Enter the username and password for the Administrator of the new domain, and click Next.

7. Select a JDK to use, and click Next.

8. Select No to keep the settings defined in the source template file, and click Next.

9. Click Create to create the domain.

The template creates a new domain with two engine tier servers in a cluster, two data tier
servers in a cluster, and an Administration Server (AdminServer). The engine tier cluster
includes the following resources and configuration:

– A JDBC datasource, wlss.callstate.datasource, required for storing long-lived
call state data. If you want to use this functionality, edit the datasource to include your
RDBMS connection information as described in “Modify the JDBC Datasource
Connection Information” on page 4-4.

Us ing the Conf igurat ion Wizard Temp lates fo r Geographic Pe rs is tence

Configuration Guide 5-7

– A persistence configuration (shown in the SipServer node, Configuration->Persistence
tab of the Administration Console) that defines:

• Default handling of persistence hints for both RDBMS and geographic persistence.

• A Geo Site ID of 1.

• A Geo Remote T3 URL of t3://localhost:8011,localhost:8061, which
identifies the engine tier servers in the “geo2” domain as the replication site for
geographic redundancy.

10. Click Done to exit the configuration wizard.

11. Follow the steps under “Installing the Secondary Site” on page 5-7 to create the domain that
performs the replication.

Installing the Secondary Site
Follow these steps to use a template to create a secondary site from replicating call state data from
the “geo1” domain:

1. Start the Configuration Wizard application:

cd ~/bea/sipserver30/common/bin

./config.sh

2. Accept the default selection, Create a new WebLogic domain, and click Next.

3. Select Base this domain on an existing template, and click Browse to display the Select a
Template dialog.

4. Select the template named geo2domain.jar, and click OK.

5. Click Next.

6. Enter the username and password for the Administrator of the new domain, and click Next.

7. Select a JDK to use, and click Next.

8. Select No to keep the settings defined in the source template file, and click Next.

9. Click Create to create the domain.

The template creates a new domain with two engine tier servers in a cluster, two data tier
servers in a cluster, and an Administration Server (AdminServer). The engine tier cluster
includes the following resources and configuration:

Conf igur ing Geograph ica l l y - Redundant Ins ta l la t ions

5-8 Configuration Guide

– A JDBC datasource, wlss.callstate.datasource, required for storing long-lived
call state data. If you want to use this functionality, edit the datasource to include your
RDBMS connection information as described in “Modify the JDBC Datasource
Connection Information” on page 4-4.

– A persistence configuration (shown in the SipServer node, Configuration->Persistence
tab of the Administration Console) that defines:

• Default handling of persistence hints for both RDBMS and geographical redundancy.

• A Geo Site ID of 2.

– A JMS system module, SystemModule-Callstate, that includes:

• ConnectionFactory-Callstate, a connection factory required for backing up call
state data from a primary site.

• DistributedQueue-Callstate, a uniform distributed queue required for backing
up call state data from a primary site.

The JMS system module is targeted to the site’s engine tier cluster

– Two JMS Servers, JMSServer-1 and JMSServer-2, are deployed to engine1-site2
and engine2-site2, respectively.

10. Click Done to exit the configuration wizard.

Configuring Geographical Redundancy by Hand
If you have an existing replicated WebLogic SIP Server installation, or pair of installations, you
must create by hand the JMS and JDBC resources required for enabling geographical
redundancy. You must also configure each site to perform replication. These basic steps for
enabling geographical redundancy are:

1. Configure JDBC Resources. BEA recommends configuring both the primary and secondary
sites to store long-lived call state data in an RDBMS.

2. Configure Persistence Options. Persistence options must be configured on both the primary
and secondary sites to enable engine tier hints to write to an RDBMS or to replicate data to a
geographically-redundant installation.

3. Configure JMS Resources. A secondary site must have available JMS Servers and specific
JMS module resources in order to replicate call state data from another site.

The sections that follow describe each step in detail.

Conf igu r ing Geograph ica l Redundancy by Hand

Configuration Guide 5-9

Configuring JDBC Resources (Primary and Secondary Sites)
Follow the instructions in “Storing Long-Lived Call State Data in an RDBMS” on page 4-1 to
configure the JDBC resources required for storing long-lived call states in an RDBMS.

Configuring Persistence Options (Primary and Secondary
Sites)
Both the primary and secondary sites must configure the correct persistence settings in order to
enable replication for geographical redundancy. Follow these steps to configure persistence:

1. Use your browser to access the URL http://address:port/console where address is the
Administration Server’s listen address and port is the listen port.

2. Click Lock & Edit to obtain a configuration lock.

3. Select the SipServer node in the left pane. The right pane of the console provides two levels
of tabbed pages that are used for configuring and monitoring WebLogic SIP Server.

4. Select the Configuration->Persistence tab in the right pane.

5. Configure the Persistence attributes as follows:

– Default Handling: Select “all” to persist long-lived call state data to an RDBMS and to
replicate data to an external site for geographical redundancy (recommended). If your
installation does not store call state data in an RDBMS, select “geo” instead of “all.”

– Geo Site ID: Enter a unique number from 1 to 9 to distinguish this site from all other
configured sites. Note that the site ID of 0 is reserved to indicate call states that are
local to the site in question (call states not replicated from another site).

– Geo Remote T3 URL: For primary sites (or for secondary sites that replicate their own
data to another site), enter the T3 URL or URLs of the engine tier servers that will
replicate this site’s call state data. If the secondary engine tier cluster uses a cluster
address, you can enter a single T3 URL, such as t3://mycluster:7001. If the secondary
engine tier cluster does not use a cluster address, enter the URLs for each individual
engine tier server separated by a comma, such as
t3://engine1-east-coast:7001,t3://engine2-east-coast:7002,t3://engine3-east-coast:7001,t4
://engine4-east-coast:7002.

6. Click Save to save your configuration changes.

7. Click Activate Changes to apply your changes to the engine tier servers.

Conf igur ing Geograph ica l l y - Redundant Ins ta l la t ions

5-10 Configuration Guide

Configuring JMS Resources (Secondary Site Only)
Any site that replicates call state data from another site must configure certain required JMS
resources. The resources are not required for sites that do not replicate data from another site.

Follow these steps to configure JMS resources:

1. Use your browser to access the URL http://address:port/console where address is the
Administration Server’s listen address and port is the listen port.

2. Click Lock & Edit to obtain a configuration lock.

3. Select the Services->Messaging->JMS Servers tab in the left pane.

4. Click New in the right pane.

5. Enter a unique name for the JMS Server or accept the default name. Click Next to continue.

6. In the Target list, select the name of a single engine tier server node in the installation. Click
Finish to create the new Server.

7. Repeat Steps 3-6 for to create a dedicated JMS Server for each engine tier server node in your
installation.

8. Select the Services->Messaging->JMS Modules node in the left pane.

9. Click New in the right pane.

10. Fill in the fields of the Create JMS System Module page as follows:

– Name: Enter a name for the new module, or accept the default name.

– Descriptor File Name: Enter the prefix a configuration file name in which to store the
JMS module configuration (for example, systemmodule-callstate).

11. Click Next to continue.

12. Select the name of the engine tier cluster, and choose the option All servers in the cluster.

13. Click Next to continue.

14. Select Would you like to add resources to this JMS system module and click Finish to
create the module.

15. Click New to add a new resource to the module.

16. Select the Connection Factory option and click Next.

Understand ing Geo-Redundant Rep l i ca t ion Behav io r

Configuration Guide 5-11

17. Fill in the fields of the Create a new JMS System Module Resource as follows:

– Name: Enter a descriptive name for the resource, such as ConnectionFactory-Callstate.

– JNDI Name: Enter the name
wlss.callstate.backup.site.connection.factory.

18. Click Next to continue.

19. Click Finish to save the new resource.

20. Select the name of the connection factory resource you just created.

21. Select the Configuration->Load Balance tab in the right pane.

22. De-select the Server Affinity Enabled option, and click Save.

23. Re-select the Services->Messaging->JMS Modules node in the left pane.

24. Select the name of the JMS module you created in the right pane.

25. Click New to create another JMS resource.

26. Select the Distributed Queue option and click Next.

27. Fill in the fields of the Create a new JMS System Module Resource as follows:

– Name: Enter a descriptive name for the resource, such as DistributedQueue-Callstate.

28. JNDI Name: Enter the name Fill in the fields of the Create a new JMS System Module
Resource as follows:

– Name: Enter a descriptive name for the resource, such as ConnectionFactory-Callstate.

– JNDI Name: Enter the name wlss.callstate.backup.site.queue.

29. Click Next to continue.

30. Click Finish to save the new resource.

31. Click Save to save your configuration changes.

32. Click Activate Changes to apply your changes to the engine tier servers.

Understanding Geo-Redundant Replication Behavior
This section provides more detail into how multiple sites replicate call state data. Administrators
can use this information to better understand the mechanics of geo-redundant replication and to

Conf igur ing Geograph ica l l y - Redundant Ins ta l la t ions

5-12 Configuration Guide

better troubleshoot any problems that may occur in such a configuration. Note, however, that the
internal workings of replication across WebLogic SIP Server installations is subject to change in
future releases of the product.

Call State Replication Process
When a call is initiated on a primary WebLogic SIP Server site, call setup and processing occurs
normally. When a SIP dialog boundary is reached, the call is replicated (in-memory) to the site’s
data tier, and becomes eligible for replication to a secondary site. WebLogic SIP Server may
choose to aggregate multiple call states for replication in order to optimize network usage.

A single replica in the data tier then places the call state data to be replicated on a JMS queue
configured on the replica site. Data is transmitted to one of the available engines (specified in the
geo-remote-t3-url element in sipserver.xml) in a round-robin fashion. Engines at the
secondary site monitor their local queue for new messages.

Upon receiving a message, an engine on the secondary site persists the call state data and assigns
it the site ID value of the primary site. The site ID distinguishes replicated call state data on the
secondary site from any other call state data actively managed by the secondary site. Timers in
replicated call state data remain dormant on the secondary site, so that timer processing does not
become a bottleneck to performance.

Call State Processing After Failover
To perform a failover, the Administrator must change a global load balancer policy to begin
routing calls from the primary, failed site to the secondary site. After this process is completed,
the secondary site begins processing requests for the backed-up call state data. When a request is
made for data that has been replicated from the failed site, the engine retrieves the data and
activates the call state, taking ownership for the call. The activation process involves:

Setting the site ID associated with the call to zero (making it appear local).

Activating all dormant timers present in the call state.

By default, call states are activated only for individual calls, and only after those calls are
requested on the backup site. SipServerRuntimeMBean includes a method,
activateBackup(byte site), that can be used to force a site to take over all call state data that
it has replicated from another site. The Administrator can execute this method using a WLST
configuration script. Alternatively, an application deployed on the server can detect when a
request for replicated site data occurs, and then execute the method. Listing 5-1 shows sample
code from a JSP that activates a secondary site, changing ownership of all call state data

Understand ing Geo-Redundant Rep l i ca t ion Behav io r

Configuration Guide 5-13

replicated from site 1. Similar code could be used within a deployed Servlet. Note that either a
JSP or Servlet must run as a privileged user in order to execute the activateBackup method.

In order to detect whether a particular call state request, Servlets can use the
WlssSipApplicationSession.getGeoSiteId() method to examine the site ID associated
with a call. Any non-zero value for the site ID indicates that the Servlet is working with call state
data that was replicated from another site.

Listing 5-1 Activating a Secondary Site Using JMX

<%

 byte site = 1;

 InitialContext ctx = new InitialContext();

 MBeanServer server = (MBeanServer)

ctx.lookup("java:comp/env/jmx/runtime");

 Set set = server.queryMBeans(new

ObjectName("*:*,Type=SipServerRuntime"), null);

 if (set.size() == 0) {

 throw new IllegalStateException("No MBeans Found!!!");

 }

 ObjectInstance oi = (ObjectInstance) set.iterator().next();

 SipServerRuntimeMBean bean = (SipServerRuntimeMBean)

 MBeanServerInvocationHandler.newProxyInstance(server,

 oi.getObjectName());

 bean.activateBackup(site);

 %>

Conf igur ing Geograph ica l l y - Redundant Ins ta l la t ions

5-14 Configuration Guide

Note that after a failover, the load balancer must route all calls having the same callId to the
newly-activated site. Even if the original, failed site is restored to service, the load balancer must
not partition calls between the two geographical sites.

Removing Backup Call States
You may also choose to stop replicating call states to a remote site in order to perform
maintenance on the remote site or to change the backup site entirely. Replication can be stopped
by setting the Site Handling attribute to “none” on the primary site as described in “Configuring
Persistence Options (Primary and Secondary Sites)” on page 5-9.

After disabling geographical replication on the primary site, you also may want to remove backup
call states on the secondary site. SipServerRuntimeMBean includes a method,
deleteBackup(byte site), that can be used to force a site to remove all call state data that it
has replicated from another site. The Administrator can execute this method using a WLST
configuration script or via an application deployed on the secondary site. The steps for executing
this method are similar to those for using the activateBackup method, described in “Call State
Processing After Failover” on page 5-12.

Monitoring Replication Across Regional Sites
The ReplicaRuntimeMBean includes two new methods to retrieve data about
geographically-redundant replication:

getBackupStoreOutboundStatistics() provides information about the number of calls
queued to a secondary site’s JMS queue.

getBackupStoreInboundStatistics() provides information about the call state data
that a secondary site replicates from another site.

See the JavaDoc for more information about ReplicaRuntimeMBean.

Troubleshooting Geographical Replication
In addition to using the ReplicaRuntimeMBean methods described in “Monitoring Replication
Across Regional Sites” on page 5-14, Administrators should monitor any SNMP traps that
indicate failed database writes on a secondary site installation.

Administrators must also ensure that all sites participating in geographically-redundant
configurations use unique site IDs.

Configuration Guide 6-1

C H A P T E R 6

Configuring Engine Tier Container
Properties

The following sections describe how to configure SIP Container features in the engine tier of a
WebLogic SIP Server deployment:

“Overview of SIP Container Configuration” on page 6-2

“Using the Administration Console to Configure Container Properties” on page 6-2

– “Locking and Persisting the Configuration” on page 6-4

“Configuring Container Properties Using WLST (JMX)” on page 6-4

– “Managing Configuration Locks” on page 6-5

– “Configuration MBeans for the SIP Servlet Container” on page 6-6

– “Locating the WebLogic SIP Server MBeans” on page 6-7

“WLST Configuration Examples” on page 6-8

– “Invoking WLST” on page 6-8

– “WLST Template for Configuring Container Attributes” on page 6-9

– “Creating and Deleting MBeans” on page 6-10

– “Working with URI Values” on page 6-10

“Reverting to the Original Boot Configuration” on page 6-11

“Configuring NTP for Accurate SIP Timers” on page 6-12

Conf igur ing Engine T ie r Conta iner P roper t i es

6-2 Configuration Guide

Overview of SIP Container Configuration
You can configure SIP Container properties either by using a JMX utility such as the
Administration Console or WebLogic Scripting Tool (WLST), or by programming a custom
JMX application. “Using the Administration Console to Configure Container Properties” on
page 6-2 describes how to configure container properties using the Administration Console
graphical user interface.

“Configuring Container Properties Using WLST (JMX)” on page 6-4 describes how to directly
access JMX MBeans to modify the container configuration. All examples use WLST to illustrate
JMX access to the configuration MBeans.

Using the Administration Console to Configure Container
Properties

The Administration Console included with WebLogic SIP Server enables you to configure and
monitor core WebLogic Server functionality as well as the SIP Servlet container functionality
provided with WebLogic SIP Server. To configure or monitor SIP Servlet features using the
Administration Console:

1. Use your browser to access the URL http://address:port/console where address is the
Administration Server’s listen address and port is the listen port.

2. Select the SipServer node in the left pane.

The right pane of the console provides two levels of tabbed pages that are used for
configuring and monitoring WebLogic SIP Server. Table 6-1 summarizes the available

Using the Admin is t ra t ion Conso le to Conf igure Conta ine r P roper t i es

Configuration Guide 6-3

pages and provides links to additional information about configuring SIP container
properties.

Table 6-1 WebLogic SIP Server Configuration and Monitoring Pages

Page Function

Configuration-> General Configure SIP timer values, session timeout duration, default
WebLogic SIP Server behavior (proxy or user agent), server header
format, call state caching, DNS name resolution, domain aliases,
rport support, and diagnostic image format.

Proxy Configure proxy routing URIs and proxy policies.

Overload Protection Configure the conditions for enabling and disabling automatic
overload controls.

Message Debug Enable or disable SIP message logging on a development system.

SIP Security Identify trusted hosts for which authentication is not performed.

Persistence Configure persistence options for storing long-lived session data in an
RDBMS, or for replicating long-lived session data to a remote,
geographically-redundant site.

Data Tier View the current configuration of data tier servers.

LoadBalancer Map Configure the mapping of multiple clusters to internal virtual IP
addresses during a software upgrade.

Targets Configure the list of servers or clusters that receive the engine tier
configuration. The target server list determines which servers and/or
clusters provide SIP Servlet container functionality.

Connection Pools Configure connection reuse pools to minimize communication
overhead with a Session Border Control (SBC) function or Serving
Call Session Control Function (S-CSCF).

Monitoring-> General View runtime information about messages and sessions processed in
engine tier servers.

SIP Applications View runtime session information for deployed SIP applications.

Data Tier
Information

View runtime information about the current status and the work
performed by servers in the data tier.

Conf igur ing Engine T ie r Conta iner P roper t i es

6-4 Configuration Guide

Locking and Persisting the Configuration
In order to modify information on any of the WebLogic SIP Server configuration pages, you must
first obtain a lock on the configuration by clicking the Lock & Edit button. Locking a
configuration prevents other Administrators from modifying the configuration at the same time.

If you obtain a lock on the configuration, you can change SIP Servlet container attribute values
on multiple configuration pages, saving the changes as needed. You then have two options
depending on whether you want to keep or discard the changes you have made:

Activate Changes—Persists all saved current changes to the sipserver.xml file.

Undo All Changes—Discards your current changes, deleting any temporary configuration
files that were written with previous Save operations.

Note that WebLogic SIP Server automatically saves the original boot configuration in the file
sipserver.xml.booted in the config/custom subdirectory of the domain directory. You can
use this file to revert to the booted configuration if necessary to discard all configuration changes
made since the server was started.

Configuring Container Properties Using WLST (JMX)
Notes: The WebLogic Scripting Tool (WLST) is a utility that you can use to observe or modify

JMX MBeans available on a WebLogic Server or WebLogic SIP Server instance. Full
documentation for WLST is available at
http://e-docs.bea.com/wls/docs92/config_scripting/index.html.

Before using WLST to configure a WebLogic SIP Server domain, set you environment
to add required WebLogic SIP Server classes to your classpath. Use either a domain
environment script or the setWLSEnv.sh script located in WLSS_HOME/server/bin
where WLSS_HOME is the root of your WebLogic SIP Server installation.

Conf igur ing Conta iner P roper t ies Us ing WLST (JMX)

Configuration Guide 6-5

Managing Configuration Locks
Table 6-2 summarizes the WLST methods used to lock a configuration and apply changes.

A typical configuration session involves the following tasks:

1. Call startEdit() to obtain a lock on the active configuration.

2. Modify existing SIP Servlet container configuration MBean attributes (or create or delete
configuration MBeans) to modify the active configuration. See “Configuration MBeans for
the SIP Servlet Container” on page 6-6 for a summary of the configuration MBeans.

3. Call save() to persist all changes to a temporary configuration file named
sipserver.xml.saved, or

Table 6-2 ConfigManagerRuntimeMBean Method Summary

Method Description

activate() Writes the current configuration MBean attributes (the
current SIP Servlet container configuration) to the
sipserver.xml configuration file and applies
changes to the running servers.

cancelEdit() Cancels an edit session, releasing the edit lock, and
discarding all unsaved changes. This operation can be
called by any user with administrator privileges, even if
the user did not start the edit session.

save() Writes the current configuration MBean attributes (the
current SIP Servlet container configuration) to a
temporary configuration file.

startEdit() Locks changes to the SIP Servlet container
configuration. Other JMX applications cannot alter the
configuration until you explicitly call stopEdit(), or
until your edit session is terminated.

If you attempt to call startEdit() when another
user has obtained the lock, you receive an error
message that states the user who owns the lock.

stopEdit() Releases the lock obtained for modifying SIP container
properties and rolls back any pending MBean changes,
discarding any temporary files.

Conf igur ing Engine T ie r Conta iner P roper t i es

6-6 Configuration Guide

4. Call activate() to persist changes to the sipserver.xml.saved file, rename
sipserver.xml.saved to sipserver.xml (copying over the existing file), and apply
changes to the running engine tier server nodes.

Note: When you boot the Administration Server for a WebLogic SIP Server domain, the
server parses the current container configuration in sipserver.xml and creates a
copy of the initial configuration in a file named sipserver.xml.booted. You can
use this copy to revert to the booted configuration, as described in “Reverting to the
Original Boot Configuration” on page 6-11.

Configuration MBeans for the SIP Servlet Container
ConfigManagerRuntimeMBean manages access to and persists the configuration MBean
attributes described in Table 6-3. Although you can modify other configuration MBeans, such as
WebLogic Server MBeans that manage resources such as network channels and other server
properties, those MBeans are not managed by ConfigManagerRuntimeMBean.

Table 6-3 SIP Container Configuration MBeans

MBean Type MBean Attributes Description

ClusterToLoadBa
lancerMap

ClusterName,
LoadBalancerSipURI

Manages the mapping of multiple clusters to
internal virtual IP addresses during a software
upgrade. This attribute is not used during
normal operations. See also Upgrading
Software in the Operations Guide for
more information.

OverloadProtect
ion

RegulationPolicy,
ThresholdValue,
ReleaseValue

Manages overload settings for throttling
incoming SIP requests. See also overload in
the Configuration Reference Manual.

Proxy ProxyURIs,
RoutingPolicy

Manages the URIs routing policies for proxy
servers. See also proxy—Setting Up an
Outbound Proxy Server in the Configuration
Reference Manual.

Conf igur ing Conta iner P roper t ies Us ing WLST (JMX)

Configuration Guide 6-7

Locating the WebLogic SIP Server MBeans
All SIP Servlet container configuration MBeans are located in the “serverConfig” MBean tree,
accessed using the serverConfig() command in WLST. Within this bean tree, individual
configuration MBeans can be accessed using the path:

CustomResources/sipserver/Resource/sipserver

SipSecurity TrustedAuthentication
Hosts

Defines trusted hosts for which
authentication is not performed. See also
sip-security in the Configuration Reference
Manual.

SipServer DefaultBehavior,
EnableLocalDispatch,
MaxApplicationSession
LifeTime,
OverloadProtectionMBe
an, ProxyMBean,
T1TimeoutInterval,
T2TimeoutInterval,
T4TimeoutInterval,
TimerBTimeoutInterval
,
TimerFTimeoutInterval

SipServer also has
several helper
methods:
createProxy(),
destroyProxy(),
createOverloadProtect
ion(),
destroyOverloadProtec
tion(),
createClusterToLoadBa
lancerMap(),
destroyClusterToLoadB
alancerMap()

Configuration MBean that represents the
entire sipserver.xml configuration file.
You can use this MBean to obtain and
manage each of the individual MBeans
described in this table, or to set SIP timer or
SIP Session timeout values. See also
“Creating and Deleting MBeans”
on page 6-10, default-behavior,
enable-local-dispatch,
max-application-session-lifeti
me, t1-timeout-interval,
t2-timeout-interval,
t4-timeout-interval,
timerB-timeout-interval, and
timerF-timeout-interval in the
Configuration Reference Manual.

Table 6-3 SIP Container Configuration MBeans

MBean Type MBean Attributes Description

Conf igur ing Engine T ie r Conta iner P roper t i es

6-8 Configuration Guide

For example, to browse the default Proxy MBean for a WebLogic SIP Server domain you would
enter these WLST commands:

serverConfig()

cd(‘CustomResources/sipserver/Resource/sipserver/Proxy’)

ls()

Runtime MBeans, such as ConfigManagerRuntime, are accessed in the “custom” MBean tree,
accessed using the custom() command in WLST. Runtime MBeans use the path:

mydomain:Location=myserver,Name=myserver,Type=mbeantype

Certain configuration settings, such as proxy and overload protection settings, are defined by
default in sipserver.xml. Configuration MBeans are generated for these settings when you
boot the associated server, so you can immediately browse the Proxy and OverloadProtection
MBeans. Other configuration settings are not configured by default and you will need to create
the associated MBeans before they can be accessed. See “Creating and Deleting MBeans” on
page 6-10.

WLST Configuration Examples
The following sections provide example WLST scripts and commands for configuring SIP
Servlet container properties.

Invoking WLST
To use WLST with WebLogic SIP Server, you must ensure that all WebLogic SIP Server JAR
files are included in your classpath. Follow these steps:

1. Set your WebLogic SIP Server environment:

cd ~/bea/sipserver31/server/bin

./setWLSEnv.sh

2. Start WLST:

java weblogic.WLST

3. Connect to the Administration Server for your WebLogic SIP Server domain:

connect('system','weblogic','t3://myadminserver:7001')

WLST Conf igurat ion Examples

Configuration Guide 6-9

WLST Template for Configuring Container Attributes
Because a typical configuration session involves accessing ConfigManagerRuntimeMBean
twice—once for obtaining a lock on the configuration, and once for persisting the configuration
and/or applying changes—JMX applications that manage container attributes generally have a
similar structure. Listing 6-1 shows a WLST script that contains the common commands needed
to access ConfigManagerRuntimeMBean. The example script modifies the proxy
RoutingPolicy attribute, which is set to supplemental by default in new WebLogic SIP
Server domains. You can use this listing as a basic template, modifying commands to access and
modify the configuration MBeans as necessary.

Listing 6-1 Template WLST Script for Accessing ConfigManagerRuntimeMBean

Connect to the Administration Server

connect('weblogic','weblogic','t3://localhost:7001')

Navigate to ConfigManagerRuntimeMBean and start an edit session.

custom()

cd('mydomain:Location=myserver,Name=sipserver,ServerRuntime=myserver,Type=

ConfigManagerRuntime')

cmo.startEdit()

--MODIFY THIS SECTION AS NECESSARY--

Edit SIP Servlet container configuration MBeans

cd('mydomain:DomainConfig=mydomain,Location=myserver,Name=myserver,SipServ

er=myserver,Type=Proxy')

set('RoutingPolicy','domain')

Navigate to ConfigManagerRuntimeMBean and persist the configuration

to sipserver.xml

cd('mydomain:Location=myserver,Name=sipserver,ServerRuntime=myserver,Type=

ConfigManagerRuntime')

cmo.activate()

Conf igur ing Engine T ie r Conta iner P roper t i es

6-10 Configuration Guide

Creating and Deleting MBeans
The SipServer MBean represents the entire contents of the sipserver.xml configuration file.
In addition to having several attributes for configuring SIP timers and SIP application session
timeouts, SipServer provides helper methods to help you create or delete MBeans representing
proxy settings and overload protection controls.

Listing 6-2 shows an example of how to use the helper commands to create and delete
configuration MBeans that configuration elements in sipserver.xml. See also Listing 6-3,

“SIP Container Configuration MBeans,” on page 6-6 for a listing of other helper
methods in SipServer, or refer to the WebLogic SIP Server JavaDocs.

Listing 6-2 WLST Commands for Creating and Deleting MBeans

connect()

custom()

cd('mydomain:Location=myserver,Name=sipserver,ServerRuntime=myserver,Type=

ConfigManagerRuntime')

cmo.startEdit()

cd('mydomain:DomainConfig=mydomain,Location=myserver,Name=sipserver,Server

Runtime=myserver,Type=SipServer')

cmo.destroyOverloadProtection()

cmo.createProxy()

cd('mydomain:Location=myserver,Name=sipserver,ServerRuntime=myserver,Type=

ConfigManagerRuntime')

cmo.save()

Working with URI Values
Configuration MBeans such as Proxy require URI objects passed as attribute values. BEA
provides a helper class, com.bea.wcp.sip.util.URIHelper, to help you easily generate URI
objects from an array of Strings. Listing 6-3 modifies the sample shown in Listing 6-2, “WLST
Commands for Creating and Deleting MBeans,” on page 6-10 to add a new URI attribute to the
LoadBalancer MBean. See also the WebLogic SIP Server JavaDocs for a full reference to the
URIHelper class.

Reve r t ing to the Or ig ina l Boo t Conf igurat ion

Configuration Guide 6-11

Listing 6-3 Invoking Helper Methods for Setting URI Attributes

Import helper method for converting strings to URIs.

from com.bea.wcp.sip.util.URIHelper import stringToSipURIs

connect()

custom()

cd('mydomain:Location=myserver,Name=sipserver,ServerRuntime=myserver,Type=

ConfigManagerRuntime')

cmo.startEdit()

cd('mydomain:DomainConfig=mydomain,Location=myserver,Name=sipserver,Type=S

ipServer')

cmo.createProxy()

cd('mydomain:DomainConfig=mydomain,Location=myserver,Name=sipserver,SipSer

ver=sipserver,Type=Proxy')

stringarg =

jarray.array([java.lang.String("sip://siplb.bea.com:5060")],java.lang.Stri

ng)

uriarg = stringToSipURIs(stringarg)

set('ProxyURIs',uriarg)

cd('mydomain:Location=myserver,Name=sipserver,ServerRuntime=myserver,Type=

ConfigManagerRuntime')

cmo.save()

Reverting to the Original Boot Configuration
When you boot the Administration Server for a WebLogic SIP Server domain, the server creates
parses the current container configuration in sipserver.xml, and generates a copy of the initial
configuration in a file named sipserver.xml.booted. This backup copy of the initial
configuration is preserved until you next boot the server; modifying the configuration using JMX
does not affect the backup copy.

Conf igur ing Engine T ie r Conta iner P roper t i es

6-12 Configuration Guide

If you modify the SIP Servlet container configuration and later decide to roll back the changes,
copy the sipserver.xml.booted file over the current sipserver.xml file. Then reboot the
server to apply the new configuration.

Configuring NTP for Accurate SIP Timers
As engine tier servers add new call state data to the data tier, data tier instances queue and
maintain the complete list of SIP protocol timers and application timers associated with each call.
Engine tier servers periodically poll all partitions of the data tier to determine which timers have
expired, given the current time. (Multiple engine tier polls to the data tier are staggered to avoid
contention on the timer tables.) Engine tier servers then process expired timers using threads
allocated in the sip.timer.Default execute queue.

In order for the SIP protocol stack to function properly, all engine and data tier servers must
accurately synchronize their system clocks to a common time source, to within one or two
milliseconds. Large differences in system clocks cause a number of severe problems such as:

SIP timers firing prematurely on servers with the fast clock settings.

Poor distribution of timer processing in the engine tier. For example, one engine tier server
may processes all expired timers, whereas other engine tier servers process no timers.

BEA recommends using a Network Time Protocol (NTP) client or daemon on each WebLogic
SIP Server instance and synchronizing to a common NTP server.

WARNING: You must accurately synchronize server system clocks to a common time source
(to within one or two milliseconds) in order for the SIP protocol stack to function
properly. Because the initial T1 timer value of 500 milliseconds controls the
retransmission interval for INVITE request and responses, and also sets the initial
values of other timers, even small differences in system clock settings can cause
improper SIP protocol behavior. For example, an engine tier server with a system
clock 250 milliseconds faster than other servers will process more expired timers
than other engine tier servers, will cause retransmits to begin in half the allotted
time, and may force messages to timeout prematurely.

Configuration Guide 7-1

C H A P T E R 7

Using the Engine Tier Cache

The following sections describe how to enable the engine tier cache for improved performance
with SIP-aware load balancers:

“Overview of Engine Tier Caching” on page 7-1

“Configuring Engine Tier Caching” on page 7-2

“Monitoring and Tuning Cache Performance” on page 7-2

Overview of Engine Tier Caching
As described in “Overview of the WebLogic SIP Server Architecture” on page 1-1, in the default
WebLogic SIP Server configuration the engine tier cluster is stateless. A separate data tier cluster
manages call state data in one or more partitions, and engine tier servers fetch and write data in
the data tier as necessary. Engines can write call state data to multiple replicas in each partition
to provide automatic failover should a data tier replica going offline.

WebLogic SIP Server also provides the option for engine tier servers to cache a portion of the call
state data locally, as well as in the data tier. When a local cache is used, an engine tier server first
checks its local cache for existing call state data. If the cache contains the required data, and the
local copy of the data is up-to-date (compared to the data tier copy), the engine locks the call state
in the data tier but reads directly from its cache. This improves response time performance for the
request, because the engine does not have to retrieve the call state data from a data tier server.

The engine tier cache stores only the call state data that has been most recently used by engine
tier servers. Call state data is moved into an engine’s local cache as necessary in order to respond

Using the Eng ine T ie r Cache

7-2 Configuration Guide

to client requests or to refresh out-of-date data. If the cache is full when a new call state must be
written to the cache, the least-recently accessed call state entry is first removed from the cache.
The size of the engine tier cache is not configurable.

Using a local cache is most beneficial when a SIP-aware load balancer manages requests to the
engine tier cluster. With a SIP-aware load balancer, all of the requests for an established call are
directed to the same engine tier server, which improves the effectiveness of the cache. If you do
not use a SIP-aware load balancer, the effectiveness of the cache is limited, because subsequent
requests for the same call may be distributed to different engine tier severs (having different
cache contents).

Configuring Engine Tier Caching
Engine tier caching is enabled by default. To disable partial caching of call state data in the engine
tier, specify the engine-call-state-cache-enabled element in sipserver.xml:

<engine-call-state-cache-enabled>false</engine-call-state-cache-enabled>

When enabled, the cache size is fixed at a maximum of 250 call states. The size of the engine tier
cache is not configurable.

Monitoring and Tuning Cache Performance
SipPerformanceRuntime monitors the behavior of the engine tier cache. Table 7-1 describes
the MBean attributes.

Table 7-1 SipPerformanceRuntime Attribute Summary

Attribute Description

cacheRequests Tracks the total number of requests for session data
items.

cacheHits The server increments this attribute each time a request
for session data results in a version of that data being
found in the engine tier server’s local cache. Note that
this counter is incremented even if the cached data is
out-of-date and needs to be updated with data from the
data tier.

cacheValidHits This attribute is incremented each time a request for
session data is fully satisfied by a cached version of the
data.

Moni to r ing and Tuning Cache Per fo rmance

Configuration Guide 7-3

When enabled, the size of the cache is fixed at 250 call states. Because the cache consumes
memory, you may need to modify the JVM settings used to run engine tier servers to meet your
performance goals. Cached call states are maintained in the tenured store of the garbage collector.
Try reducing the fixed “NewSize” value when the cache is enabled (for example,
-XX:MaxNewSize=32m -XX:NewSize=32m). Note that the actual value depends on the call state
size used by applications, as well as the size of the applications themselves.

Using the Eng ine T ie r Cache

7-4 Configuration Guide

Configuration Guide A-1

A P P E N D I X A

Upgrading a WebLogic SIP Server 2.2
Configuration to Version 3.1

The following sections provide instructions for upgrading WebLogic SIP Server from a previous
release:

“About the Upgrade Process” on page A-1

“Step 1: Install Software and Prepare Domain” on page A-2

“Step 2: Use the WebLogic Server 9.2 Upgrade Wizard” on page A-2

“Step 3: Edit the config.xml File to Specify WebLogic SIP Server Resources” on page A-3

“Step 4: Relocate and Edit WebLogic SIP Server Configuration Files” on page A-5

“Step 5: Perform Optional Upgrade Tasks” on page A-22

About the Upgrade Process
Upgrading a WebLogic SIP Server 2.2 domain to version 3.1 involves these basic steps:

Using the WebLogic Server 9.2 upgrade wizard and procedures to upgrade the basic
domain configuration (config.xml file and startup scripts) to comply with WebLogic
Server 9.2, upon which WebLogic SIP Server is based.

Manually editing the config.xml file to specify the custom resources required by
WebLogic SIP Server 3.1.

Manually upgrading WebLogic SIP Server configuration files (sipserver.xml,
diameter.xml) and resources to use the new WebLogic SIP Server 3.1 schemas.

Upgrading a WebLog ic S IP Server 2 .2 Conf igurat ion to Vers ion 3 .1

A-2 Configuration Guide

The sections that follow describe these steps in more detail, and reference the WebLogic Server
9.2 documentation where appropriate.

Step 1: Install Software and Prepare Domain
Begin by installing the WebLogic SIP Server 3.1 software into a new BEA home directory on
your Administration Server machine. You will need to access the version 3.1 software as well as
the domain directory for your existing WebLogic SIP Server 2.2 installation.

In the next section, you will use the WebLogic Server 9.2 upgrade procedure and utility to
upgrade the underlying WebLogic Server configuration to version 9.2. Before doing so, prepare
your running WebLogic SIP Server 2.2 domain by doing the following:

1. Shut down all Managed Servers in your domain (engine and data tier servers), leaving only
the Administration Server running.

2. Undeploy the WebLogic SIP Server 2.2 sipserver implementation application (EAR file)
from all servers. WebLogic SIP Server uses custom resources to implement SIP Servlet
container functionality, and the older sipserver application is no longer used. Only the
configuration files (sipserver.xml and datatier.xml) are required in the upgraded
domain.

3. Undeploy all Diameter applications and other user applications. The WebLogic Server 9.2
upgrade process requires that you first undeploy all applications from the domain.

4. Shut down the Administration Server.

5. Verify that your config.xml file contains no application deployments (no app-deployment
stanzas) before continuing the upgrade.

Step 2: Use the WebLogic Server 9.2 Upgrade Wizard
Follow the instructions in Upgrading a WebLogic Domain in the WebLogic Server 9.2
documentation to upgrade the underlying WebLogic Server configuration to 9.2. This process
updates the config.xml file, supporting files (such as startup scripts) and domain structure to
comply with WebLogic Server 9.2.

For more information about the WebLogic Server 9.2 procedure, see Upgrading WebLogic
Application Environments.

Step 3 : Ed i t the con f ig . xml F i l e t o Spec i f y WebLogic S IP Serve r Resources

Configuration Guide A-3

Step 3: Edit the config.xml File to Specify WebLogic SIP
Server Resources

WebLogic SIP Server 3.1 implements SIP Servlet container functionality, Diameter
functionality, and Administration Console support using custom resources. After upgrading your
domain’s config.xml file to be compliant with WebLogic Server 9.2, manually edit the file to
specify the required WebLogic SIP Server custom resources:

1. Move to the config subdirectory of the upgraded domain directory:

cd ~/bea/user_projects/mydomain/config

2. Open the config.xml file with a text editor.

3. Add the WebLogic SIP Server custom resource definitions to the end of the config.xml file,
before the final <admin-server-name> definition. Listing 7-1 shows the required entries.
Substitute italicized entries with the names of actual engine and data tier clusters
configured in your upgraded domain.

Listing 7-1 WebLogic SIP Server Custom Resource Definitions

...

 <custom-resource>

 <name>sipserver</name>

 <target>BEA_DATA_TIER_CLUST,BEA_ENGINE_TIER_CLUST</target>

 <descriptor-file-name>custom/sipserver.xml</descriptor-file-name>

<resource-class>com.bea.wcp.sip.management.descriptor.resource.SipServerRe

source</resource-class>

<descriptor-bean-class>com.bea.wcp.sip.management.descriptor.beans.SipServ

erBean</descriptor-bean-class>

 </custom-resource>

 <custom-resource>

 <name>datatier</name>

Upgrading a WebLog ic S IP Server 2 .2 Conf igurat ion to Vers ion 3 .1

A-4 Configuration Guide

 <target>BEA_DATA_TIER_CLUST,BEA_ENGINE_TIER_CLUST</target>

 <descriptor-file-name>custom/datatier.xml</descriptor-file-name>

<resource-class>com.bea.wcp.sip.management.descriptor.resource.DataTierRes

ource</resource-class>

<descriptor-bean-class>com.bea.wcp.sip.management.descriptor.beans.DataTie

rBean</descriptor-bean-class>

 </custom-resource>

 <custom-resource>

 <name>diameter</name>

 <target>BEA_ENGINE_TIER_CLUST</target>

 <deployment-order>200</deployment-order>

 <descriptor-file-name>custom/diameter.xml</descriptor-file-name>

 <resource-class>com.bea.wcp.diameter.DiameterResource</resource-class>

<descriptor-bean-class>com.bea.wcp.diameter.management.descriptor.beans.Di

ameterBean</descriptor-bean-class>

 </custom-resource>

 <custom-resource>

 <name>ProfileService</name>

 <target>BEA_ENGINE_TIER_CLUST</target>

 <deployment-order>300</deployment-order>

 <descriptor-file-name>custom/profile.xml</descriptor-file-name>

<resource-class>com.bea.wcp.profile.descriptor.resource.ProfileServiceReso

urce</resource-class>

<descriptor-bean-class>com.bea.wcp.profile.descriptor.beans.ProfileService

Bean</descriptor-bean-class>

Step 4 : Re locate and Ed i t WebLog ic S IP Se rve r Conf igura t i on F i l es

Configuration Guide A-5

 </custom-resource>

<admin-server-name>AdminServer</admin-server-name>

</domain>

4. Save your changes and exit the text editor.

Step 4: Relocate and Edit WebLogic SIP Server
Configuration Files

The existing WebLogic SIP Server configuration files (sipserver.xml, datatier.xml, and
diameter.xml) must be placed in the config/custom subdirectory of the upgraded domain
directory. Additionally, sipserver.xml and diameter.xml must be manually edited to
conform to the updated WebLogic SIP Server schema.

Upgrade sipserver.xml and datatier.xml Files
In WebLogic SIP Server 2.2, sipserver.xml and datatier.xml are stored in the config
subdirectory of the sipserver implementation application. Copy them to the new location using
a command similar to:

cp ~/bea/user_projects/domains/mydomain/sipserver/config/*.xml

~/bea/user_projects/domains/mydomain/custom/config

Upgrading a WebLog ic S IP Server 2 .2 Conf igurat ion to Vers ion 3 .1

A-6 Configuration Guide

Next, use a text editor to modify sipserver.xml to use the new WebLogic SIP Server 3.1
schema. Table A-1 summarizes important schema changes. See also the Engine Tier
Configuration Reference (sipserver.xml).

Upgrade diameter.xml Files
In WebLogic SIP Server 2.2, each Diameter application uses a distinct diameter.xml file. In
WebLogic SIP Server 3.1, multiple Diameter node configurations are stored in a single
diameter.xml file in the config/custom directory. Begin by copying all existing
diameter.xml files to distinct names in the config/custom directory, as in:

cp

~/bea/user_projects/domains/replicated/diameter_relay1/WEB-INF/config/diam

eter.xml

~/bea/user_projects/domains/replicated/config/custom/diameter_relay.xml

cp

~/bea/user_projects/domains/replicated/diameter_hssclient/WEB-INF/config/d

Table A-1 sipserver.xml Schema Updates

Version 2.2 Element Version 3.1 Equivalent Notes

targetNamespace=
"http://www.bea.com/ns/
wlcp/wlss/220"

targetNamespace=
"http://www.bea.com/ns/
wlcp/wlss/300"

Change the
targetNamespace
attribute to the new URL for
version 3.1.

overload overload Ensure that the order of
elements in the overload
stanza is:
threshold-policy,
threshold-value,
release-value.

Also ensure that the
previously-deprecated
regulation-policy
element is renamed to
threshold-policy.

timerB-timeout-interval timer-b-timeout-interval Rename the element.

timerF-timeout-interval timer-f-timeout-interval Rename the element.

Step 4 : Re locate and Ed i t WebLog ic S IP Se rve r Conf igura t i on F i l es

Configuration Guide A-7

iameter.xml

~/bea/user_projects/domains/replicated/config/custom/diameter_client.xml

Next, merge the contents of the multiple diameter.xml files from your version 2.2 directory into
a single, new diameter.xml file. Key version 3.1 schema changes to consider are:

Multiple nodes are defined in multiple configuration elements in diameter.xml.

Each node has to be targeted to an engine tier server configured in the domain, using the
target element.

Each node can have one or more application stanzas, which configure the Diameter
applications that run on the host.

Table A-1 summarizes important schema changes. See also the Diameter Configuration
Reference (diameter.xml). Listing 7-2 provides a sample diameter.xml file that you can use as
a template when merging the older files.

Table A-2 diameter.xml Schema Updates

Version 2.2 Element Version 3.1 Equivalent Notes

node configuration Multiple configuration
stanzas are used to configure
multiple Diameter nodes.
Change each node stanza to
be a configuration stanza
in the configuration file.

n/a target Add a target element to
each configuration
stanza to target the node
configuration to a particular
engine tier server. The
server(s) listed in the target
must also be defined as servers
in the domain config.xml
file.

debug debug-enabled Rename the element.

message-debug message-debug-enabled Rename the element.

Upgrading a WebLog ic S IP Server 2 .2 Conf igurat ion to Vers ion 3 .1

A-8 Configuration Guide

Listing 7-2 Sample diameter.xml File

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.bea.com/ns/wlcp/diameter/300"

elementFormDefault="qualified" attributeFormDefault="unqualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="diameter-descriptorType">

 <xs:annotation>

 <xs:documentation>Corresponds to DiameterDescriptorBean

(Interface=com.bea.wcp.diameter.management.descriptor.beans.DiameterDescri

ptorBean)</xs:documentation>

applications n/a There is no high-level
applications stanza in
3.1. Configure multiple
Diameter applications using
multiple application
stanzas.

auth-application-id n/a This ID is defined within the
application code itself.

acct-application-id n/a This ID is defined within the
application code itself.

vendor-id n/a This ID is defined within the
application code itself.

peers n/a There is no high-level peers
stanza in 3.1. Configure
multiple Diameter
applications using multiple
peer stanzas.

retry-delay peer-retry-delay Rename the element.

Table A-2 diameter.xml Schema Updates

Version 2.2 Element Version 3.1 Equivalent Notes

Step 4 : Re locate and Ed i t WebLog ic S IP Se rve r Conf igura t i on F i l es

Configuration Guide A-9

 </xs:annotation>

 <xs:sequence>

 <xs:element name="name" type="xs:string" minOccurs="0"

nillable="true">

 <xs:annotation>

 <xs:documentation><p>The name of the WLSS bean.</p>

(Interface=com.bea.wcp.diameter.management.descriptor.beans.DiameterDescri

ptorBean Attribute=getName)</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="paramType">

 <xs:annotation>

 <xs:documentation>Corresponds to ParamBean

(Interface=com.bea.wcp.diameter.management.descriptor.beans.ParamBean)</xs

:documentation>

 </xs:annotation>

 <xs:complexContent>

 <xs:extension base="ns:diameter-descriptorType"

xmlns:ns="http://www.bea.com/ns/wlcp/diameter/300">

 <xs:sequence>

 <xs:element name="value" type="xs:string" minOccurs="0"

nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ParamBean Attribute=getValue)</xs:documentation>

Upgrading a WebLog ic S IP Server 2 .2 Conf igurat ion to Vers ion 3 .1

A-10 Configuration Guide

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="applicationType">

 <xs:annotation>

 <xs:documentation>Corresponds to ApplicationBean

(Interface=com.bea.wcp.diameter.management.descriptor.beans.ApplicationBea

n)</xs:documentation>

 </xs:annotation>

 <xs:complexContent>

 <xs:extension base="ns:diameter-descriptorType"

xmlns:ns="http://www.bea.com/ns/wlcp/diameter/300">

 <xs:sequence>

 <xs:element name="class-name" type="xs:string" minOccurs="0"

nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ApplicationBean Attribute=getClassName)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="param" maxOccurs="unbounded" type="ns:paramType"

minOccurs="0" nillable="true">

 <xs:annotation>

Step 4 : Re locate and Ed i t WebLog ic S IP Se rve r Conf igura t i on F i l es

Configuration Guide A-11

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ApplicationBean Attribute=getParams)</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="peerType">

 <xs:annotation>

 <xs:documentation>Corresponds to PeerBean

(Interface=com.bea.wcp.diameter.management.descriptor.beans.PeerBean)</xs:

documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="host" type="xs:string" minOccurs="0"

nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.PeerBean Attribute=getHost)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="address" type="xs:string" minOccurs="0"

nillable="true">

 <xs:annotation>

Upgrading a WebLog ic S IP Server 2 .2 Conf igurat ion to Vers ion 3 .1

A-12 Configuration Guide

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.PeerBean Attribute=getAddress)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="port" type="xs:int" minOccurs="0" nillable="false"

default="3588">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.PeerBean Attribute=getPort)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="protocol" minOccurs="0" nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.PeerBean Attribute=getProtocol)</xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="tcp"/>

 <xs:enumeration value="sctp"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="watchdog-enabled" type="xs:boolean" minOccurs="0"

nillable="false" default="true">

 <xs:annotation>

Step 4 : Re locate and Ed i t WebLog ic S IP Se rve r Conf igura t i on F i l es

Configuration Guide A-13

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.PeerBean Attribute=getWatchdogEnabled)</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="diameterType">

 <xs:annotation>

 <xs:documentation>Corresponds to DiameterBean

(Interface=com.bea.wcp.diameter.management.descriptor.beans.DiameterBean)<

/xs:documentation>

 </xs:annotation>

 <xs:complexContent>

 <xs:extension base="ns:diameter-descriptorType"

xmlns:ns="http://www.bea.com/ns/wlcp/diameter/300">

 <xs:sequence>

 <xs:element name="configuration" maxOccurs="unbounded"

type="ns:configurationType" minOccurs="0" nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.DiameterBean Attribute=getConfigurations)</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

Upgrading a WebLog ic S IP Server 2 .2 Conf igurat ion to Vers ion 3 .1

A-14 Configuration Guide

 <xs:complexType name="configurationType">

 <xs:annotation>

 <xs:documentation>Corresponds to ConfigurationBean

(Interface=com.bea.wcp.diameter.management.descriptor.beans.ConfigurationB

ean)</xs:documentation>

 </xs:annotation>

 <xs:complexContent>

 <xs:extension base="ns:diameter-descriptorType"

xmlns:ns="http://www.bea.com/ns/wlcp/diameter/300">

 <xs:sequence>

 <xs:element name="target" maxOccurs="unbounded" type="xs:string"

minOccurs="0" nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getTargets)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="host" type="xs:string" minOccurs="0"

nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getHost)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="realm" type="xs:string" minOccurs="0"

nillable="true">

 <xs:annotation>

Step 4 : Re locate and Ed i t WebLog ic S IP Se rve r Conf igura t i on F i l es

Configuration Guide A-15

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getRealm)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="address" type="xs:string" minOccurs="0"

nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getAddress)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="port" type="xs:int" minOccurs="0"

nillable="false">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getPort)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="tls-enabled" type="xs:boolean" minOccurs="0"

nillable="false">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getTlsEnabled)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="sctp-enabled" type="xs:boolean" minOccurs="0"

nillable="false">

Upgrading a WebLog ic S IP Server 2 .2 Conf igurat ion to Vers ion 3 .1

A-16 Configuration Guide

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getSctpEnabled)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="debug-enabled" type="xs:boolean" minOccurs="0"

nillable="false">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getDebugEnabled)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="message-debug-enabled" type="xs:boolean"

minOccurs="0" nillable="false">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getMessageDebugEnabled)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="application" maxOccurs="unbounded"

type="ns:applicationType" minOccurs="0" nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getApplications)</xs:documentation>

 </xs:annotation>

 </xs:element>

Step 4 : Re locate and Ed i t WebLog ic S IP Se rve r Conf igura t i on F i l es

Configuration Guide A-17

 <xs:element name="peer-retry-delay" type="xs:int" minOccurs="0"

nillable="false" default="30">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getPeerRetryDelay)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="allow-dynamic-peers" type="xs:boolean"

minOccurs="0" nillable="false">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getAllowDynamicPeers)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="request-timeout" type="xs:long" minOccurs="0"

nillable="false" default="30000">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getRequestTimeout)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="watchdog-timeout" type="xs:int" minOccurs="0"

nillable="false" default="30">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getWatchdogTimeout)</xs:documentation>

 </xs:annotation>

Upgrading a WebLog ic S IP Server 2 .2 Conf igurat ion to Vers ion 3 .1

A-18 Configuration Guide

 </xs:element>

 <xs:element name="include-origin-state-id" type="xs:boolean"

minOccurs="0" nillable="false">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean

Attribute=getIncludeOriginStateId)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="peer" maxOccurs="unbounded" type="ns:peerType"

minOccurs="0" nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getPeers)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="route" maxOccurs="unbounded" type="ns:routeType"

minOccurs="0" nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getRoutes)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="default-route" type="ns:default-routeType"

minOccurs="0" nillable="true">

 <xs:annotation>

Step 4 : Re locate and Ed i t WebLog ic S IP Se rve r Conf igura t i on F i l es

Configuration Guide A-19

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.ConfigurationBean Attribute=getDefaultRoute)</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="routeType">

 <xs:annotation>

 <xs:documentation>Corresponds to RouteBean

(Interface=com.bea.wcp.diameter.management.descriptor.beans.RouteBean)</xs

:documentation>

 </xs:annotation>

 <xs:complexContent>

 <xs:extension base="ns:diameter-descriptorType"

xmlns:ns="http://www.bea.com/ns/wlcp/diameter/300">

 <xs:sequence>

 <xs:element name="realm" type="xs:string" minOccurs="0"

nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.RouteBean Attribute=getRealm)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="application-id" type="xs:int" minOccurs="0"

nillable="false">

Upgrading a WebLog ic S IP Server 2 .2 Conf igurat ion to Vers ion 3 .1

A-20 Configuration Guide

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.RouteBean Attribute=getApplicationId)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="action" minOccurs="0" nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.RouteBean Attribute=getAction)</xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="none"/>

 <xs:enumeration value="local"/>

 <xs:enumeration value="relay"/>

 <xs:enumeration value="proxy"/>

 <xs:enumeration value="redirect"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="server" maxOccurs="unbounded" type="xs:string"

minOccurs="0" nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.RouteBean Attribute=getServers)</xs:documentation>

 </xs:annotation>

Step 4 : Re locate and Ed i t WebLog ic S IP Se rve r Conf igura t i on F i l es

Configuration Guide A-21

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="default-routeType">

 <xs:annotation>

 <xs:documentation>Corresponds to DefaultRouteBean

(Interface=com.bea.wcp.diameter.management.descriptor.beans.DefaultRouteBe

an)</xs:documentation>

 </xs:annotation>

 <xs:complexContent>

 <xs:extension base="ns:diameter-descriptorType"

xmlns:ns="http://www.bea.com/ns/wlcp/diameter/300">

 <xs:sequence>

 <xs:element name="action" type="xs:string" minOccurs="0"

nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.DefaultRouteBean Attribute=getAction)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="server" maxOccurs="unbounded" type="xs:string"

minOccurs="0" nillable="true">

 <xs:annotation>

<xs:documentation>(Interface=com.bea.wcp.diameter.management.descriptor.be

ans.DefaultRouteBean Attribute=getServers)</xs:documentation>

Upgrading a WebLog ic S IP Server 2 .2 Conf igurat ion to Vers ion 3 .1

A-22 Configuration Guide

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="diameter" type="ns:diameterType"

xmlns:ns="http://www.bea.com/ns/wlcp/diameter/300"/>

</xs:schema>

Step 5: Perform Optional Upgrade Tasks
After upgrading the WebLogic SIP Server configuration files, you can remove the older, version
2.2 sipserver application directory, as well as any application directories created for Diameter
nodes in version 2.2.

Also, if you continue to use the version 2.2 example applications, note that some of the example
build.xml files reference the files wlss.jar and sipserver.jar. These libraries are now
located in WLSS_HOME/server/lib/wlss. Either update the older build.xml files or use the
examples installed with WebLogic SIP Server 3.1.

Configuration Guide B-1

A P P E N D I X B

Improving Failover Performance for
Physical Network Failures

The following sections describe how to configure use the WebLogic SIP Server “echo server”
process to improve data tier failover performance when a server becomes physically disconnected
from the network:

“Overview of Failover Detection” on page B-1

“WlssEchoServer Requirements and Restrictions” on page B-3

“Starting WlssEchoServer on Data Tier Server Machines” on page B-3

“Enabling and Configuring the Heartbeat Mechanism on Servers” on page B-5

Overview of Failover Detection
In a production system, engine tier servers continually access data tier replicas in order to retrieve
and write call state data. The WebLogic SIP Server architecture depends on engine tier nodes to
detect when a data tier server has failed or become disconnected. When an engine cannot access
or write call state data because a replica is unavailable, the engine connects to another replica in
the same partition and reports the offline server. The replica updates the current view of the data
tier to account for the offline server, and other engines are then notified of the updated view as
they access and retrieve call state data.

By default, an engine tier server uses its RMI connection to the replica to determine if the replica
has failed or become disconnected. The algorithms used to determine a failure of an RMI
connection are reliable, but ultimately they depend on the TCP protocol’s retransmission timers
to diagnose a disconnection (for example, if the network cable to the replica is removed). Because

Improv ing Fa i l ove r Pe r fo rmance fo r Phys ica l Ne two rk Fa i lu res

B-2 Configuration Guide

the TCP retransmission timer generally lasts a full minute or longer, WebLogic SIP Server
provides an alternate method of detecting failures that can diagnose a disconnected replica in a
matter of a few seconds.

WlssEchoServer Failure Detection
WlssEchoServer is a separate process that you can run on the same server hardware as a data
tier replica. The purpose of WlssEchoServer is to provide a simple UDP echo service to engine
tier nodes to be used for determining when a data tier server goes offline, for example in the event
that the network cable is disconnected. The algorithm for detecting failures with
WlssEchoServer is as follows:

1. For all normal traffic, engine tier servers communicate with data tier replicas using TCP. TCP
is used as the basic transport between the engine tier and data tier regardless of whether or not
WlssEchoServer is used.

2. Engine tier servers send a periodic heartbeat message to each configured WlssEchoServer
over UDP. During normal operation, WlssEchoServer responds to the heartbeats so that the
connection between the engine node and replica is verified.

3. Should there be a complete failure of the data tier stack, or the network cable is disconnected,
the heartbeat messages are not returned to the engine node. In this case, the engine node can
mark the replica as being offline without having to wait for the normal TCP connection
timeout.

4. After identifying the offline server, the engine node reports the failure to an available data tier
replica, and the data tier view is updated as described in the previous section.

Also, should a data tier server notice that its local WlssEchoServer process has died, it
automatically shuts down. This behavior ensures even quicker failover because avoids the time
it takes engine nodes to notice and report the failure as described in “Overview of Failover
Detection” on page B-1.

You can configure the heartbeat mechanism on engine tier servers to increase the performance of
failover detection as necessary. You can also configure the listen port and log file that
WlssEchoServer uses on data tier servers.

Forced Shutdown for Failed Replicas
If any engine tier server cannot communicate with a particular replica, the engine access another,
available replica in the data tier to report the offline server. The replica updates its view of the
affected partition to remove the offline server. The updated view is then distributed to all engine

WlssEchoServer Requ i rements and Rest r i c t i ons

Configuration Guide B-3

tier servers that later access the partition. Propagating the view in this manner helps to ensure that
engine servers do not attempt to access the offline replica.

The replica that updates the view also issues a one-time request to the offline replica to ask it to
shut down. This is done to try to shut-down running replica servers that cannot be accessed by
one or more engine servers due to a network outage. If an active replica can reach the replica
marked as “offline,” the offline replica shuts down.

WlssEchoServer Requirements and Restrictions
Note: Using WlssEchoServer is not required in all WebLogic SIP Server installations. Enable

the echo server only when your system requires detection of a network or replica failure
faster than the configured TCP timeout interval.

Observe the following requirements and restrictions when using WlssEchoServer to detect
replica failures:

If you use the heartbeat mechanism to detect failures, you must ensure that the
WlssEchoServer process is always running on each replica server machine. If the
WlssEchoServer process fails or is stopped, the replica will be treated as being “offline”
even if the server process is unaffected.

Note that WlssEchoServer listens on all IP addresses available on the server machine.

WlssEchoServer requires a dedicated port number to listen for heartbeat messages.

Starting WlssEchoServer on Data Tier Server Machines
WlssEchoServer is a Java program that you can start directly from a shell or command prompt.
The basic syntax for starting WlssEchoServer is:

java -classpath WLSS_HOME/telco/lib/wlss.jar options

com.bea.wcp.util.WlssEchoServer

Improv ing Fa i l ove r Pe r fo rmance fo r Phys ica l Ne two rk Fa i lu res

B-4 Configuration Guide

Where WLSS_HOME is the path to the WebLogic SIP Server installation and options may include
one of the options described in Table B-1.

BEA recommends that you include the command to start WlssEchoServer in the same script you
use to start each WebLogic SIP Server data tier instance. If you use the
startManagedWebLogic.sh script to start an engine or data tier server instance, add a command
to start WlssEchoServer before the final command used to start the server. For example, change
the lines:

"$JAVA_HOME/bin/java" ${JAVA_VM} ${MEM_ARGS} ${JAVA_OPTIONS} \

 -Dweblogic.Name=${SERVER_NAME} \

 -Dweblogic.management.username=${WLS_USER} \

 -Dweblogic.management.password=${WLS_PW} \

 -Dweblogic.management.server=${ADMIN_URL} \

 -Djava.security.policy="${WL_HOME}/server/lib/weblogic.policy" \

 weblogic.Server

to read:

"$JAVA_HOME/bin/java" -classpath WLSS_HOME/telco/lib/wlss.jar \

 -Dwlss.ha.echoserver.port=6734 com.bea.wcp.util.WlssEchoServer &

"$JAVA_HOME/bin/java" ${JAVA_VM} ${MEM_ARGS} ${JAVA_OPTIONS} \

 -Dweblogic.Name=${SERVER_NAME} \

 -Dweblogic.management.username=${WLS_USER} \

Table B-1 WlssEchoServer Options

Option Description

-Dwlss.ha.echoserver.port Specifies the port number used to listen for heartbeat
messages. Ensure that the port number you specify is not used
by any other process on the server machine. By default
WlssEchoServer uses port 6734.

-Dwlss.ha.echoserver.logfile Specifies the log file location and name. By default, log
messages are written to ./echo_servertime.log where
time is the time expressed in milliseconds.

Enab l ing and Conf igu r ing the Hear tbeat Mechanism on Servers

Configuration Guide B-5

 -Dweblogic.management.password=${WLS_PW} \

 -Dweblogic.management.server=${ADMIN_URL} \

 -Djava.security.policy="${WL_HOME}/server/lib/weblogic.policy" \

 weblogic.Server

Enabling and Configuring the Heartbeat Mechanism on
Servers

To enable the WlssEchoServer heartbeat mechanism, you must include the
-Dreplica.host.monitor.enabled JVM argument in the command you use to start all engine
and data tier servers. BEA recommends adding this option directly to the script used to start
Managed Servers in your system. For example, in the startManagedWebLogic.sh script,
change the line:

JAVA_OPTIONS="-Dweblogic.attribute=value -Djava.attribute=value"

to read:

JAVA_OPTIONS="-Dreplica.host.monitor.enabled"

Several additional JVM options configure the functioning of the heartbeat mechanism. Table B-2
describes the options used to configure failure detection.

Table B-2 WlssEchoServer Options

Option Description

-Dreplica.host.monitor.enabled This system property is required on both engine and data
tier servers to enable the heartbeat mechanism.

-Dwlss.ha.heartbeat.interval Specifies the number of milliseconds between heartbeat
messages. By default heartbeats are sent every 1,000
milliseconds.

-Dwlss.ha.heartbeat.count Specifies the number of consecutive, missed heartbeats
that are permitted before a replica is determined to be
offline. By default, a replica is marked offline if the
WlssEchoServer process on the server fails to respond
to 3 heartbeat messages.

-Dwlss.ha.heartbeat.SoTimeout Specifies the UDP socket timeout value.

Improv ing Fa i l ove r Pe r fo rmance fo r Phys ica l Ne two rk Fa i lu res

B-6 Configuration Guide

Configuration Guide C-1

A P P E N D I X C

Tuning JVM Garbage Collection for
Production Deployments

The following sections describe how to tune Java Virtual Machine (JVM) garbage collection
performance for engine tier servers:

“Goals for Tuning Garbage Collection Performance” on page C-1

“Modifying JVM Parameters in Server Start Scripts” on page C-2

“Tuning Garbage Collection with JRockit” on page C-2

“Tuning Garbage Collection with Sun JDK” on page C-4

Goals for Tuning Garbage Collection Performance
Production installations of WebLogic SIP Server generally require extremely small response
times (under 50 milliseconds) for clients at all times, even under peak server loads. A key factor
in maintaining brief response times is the proper selection and tuning of the JVM’s Garbage
Collection (GC) algorithm for WebLogic SIP Server instances in the engine tier.

Whereas certain tuning strategies are designed to yield the lowest average garbage collection
times or to minimize the frequency of full GCs, those strategies can sometimes result in one or
more very long periods of garbage collection (often several seconds long) that are offset by
shorter GC intervals. With a production SIP Server installation, all long GC intervals must be
avoided in order to maintain response time goals.

The sections that follow describe GC tuning strategies for JRockit and Sun’s JVM that generally
result in best response time performance.

Tun ing JVM Garbage Co l l ec t i on fo r P roduct ion Dep loyments

C-2 Configuration Guide

Modifying JVM Parameters in Server Start Scripts
If you use custom startup scripts to start WebLogic SIP Server engines and replicas, simply edit
those scripts to include the recommended JVM options described in the sections that follow.

The BEA Configuration Wizard also installs default startup scripts when you configure a new
domain. These scripts are installed in the
BEA_HOME/user_projects/domains/domain_name/bin directory by default, and include:

startWebLogic.cmd, startWebLogic.sh—These scripts start the Administration Server
for the domain.

startManagedWebLogic.cmd, startManagedWebLogic.sh—These scripts start
managed engines and replicas in the domain.

If you use the BEA-installed scripts to start engines and replicas, you can override JVM memory
arguments by first setting the USER_MEM_ARGS environment variable in your command shell.

Note: Setting the USER_MEM_ARGS environment variable overrides all default JVM memory
arguments specified in the BEA-installed scripts. Always set USER_MEM_ARGS to the full
list of JVM memory arguments you intend to use. For example, when using the Sun JVM,
always add -XX:MaxPermSize=128m to the USER_MEM_ARGS value, even if you only
intend to change the default heap space (-Xms, -Xmx) parameters.

Tuning Garbage Collection with JRockit
JRockit provides several monitoring tools that you can use to analyze the JVM heap at any given
moment, including:

JRockit Runtime Analyzer—provides a view into the runtime behavior of garbage
collection and pause times.

JRockit Stack Dumps—reveals applications’ thread activity to help you troubleshoot and/or
improve performance.

Use these and other tools in a controlled environment to determine the effects of JVM settings
before you use the settings in a production deployment. See the BEA WebLogic JRockit 1.4.2
SDK Documentation for more information about JRockit and JRockit profiling tools.

The following sections describe suggested starting JVM options for use with the JRockit JVM.
The JRockit JVM is available in a standard edition (included with WebLogic SIP Server) or as
part of BEA WebLogic Real Time, available separately. The standard JRockit JVM can be tuned

Tun ing Garbage Co l l ec t i on w i th JRock i t

Configuration Guide C-3

to provide high throughput and low response times using the information in “Using JRockit
without Deterministic Garbage Collection” on page C-3.

The version of JRockit included with BEA WebLogic Real Time uses a deterministic garbage
collector, and is recommended when extremely low latency is the overriding requirement of your
application. The deterministic garbage collector attempts to maximize throughput, but places the
highest priority on guaranteeing short, predictable pause times. This focus on guaranteeing short
pause times may result in lower overall throughput when compared to the standard JRockit JVM.
See “Using JRockit with Deterministic Garbage Collection (WebLogic Real Time)” on page C-3
for more information.

Using JRockit without Deterministic Garbage Collection
When using BEA’s JRockit JVM without deterministic garbage collection (the version included
with WebLogic SIP Server), the best response time performance is obtained by using the
generational concurrent garbage collector.

The full list of example startup options for an engine tier server are:

-Xms1024m -Xmx1024m -Xgc:gencon -XXnosystemgc -XXtlasize:min=3k

-XXkeeparearatio=0 -Xns:48m

Note: Fine tune the heap size according to the amount of live data used by deployed
applications.

The full list of example startup options for a replica server are:

-Xms3072m -Xmx3072m -Xgc:gencon -XXnosystemgc -XXtlasize:min=3k

-XXkeeparearatio=0 -Xns:48m

Using JRockit with Deterministic Garbage Collection
(WebLogic Real Time)
Very short response times are most easily achieved by using JRockit’s deterministic garbage
collector, which is available with the WebLogic Real Time product. See JVM Tuning for
Real-Time Applications in the WebLogic Real Time documentation for basic information about
tuning with deterministic garbage collection.

BEA recommends using the following JVM arguments for engine tier servers in replicated cluster
configurations:

-Xms1024m -Xmx1024m -XgcPrio:deterministic -XpauseTarget=30ms -XXnosystemgc

Tun ing JVM Garbage Co l l ec t i on fo r P roduct ion Dep loyments

C-4 Configuration Guide

Note: You may need to increase the -XpauseTarget value for allocation-intensive
applications. The value can be decreased for smaller applications under light loads.

Note: Adjust the heap size according to the amount of live data used by deployed applications.
As a starting point, set the heap size from 2 to 3 times the amount required by your
applications. A value closer to 3 times the required amount generally yields the best
performance.

For replica servers, use the arguments:

-Xms3072m -Xmx3072m -XgcPrio:deterministic -XpauseTarget=30ms -XXnosystemgc

These settings fix the heap size and enable the dynamic garbage collector with deterministic
garbage collection. -XpauseTarget sets the maximum pause time and -XXtlasize=3k sets the
thread-local area size. -XXnosystemgc prevents System.gc() application calls from forcing
garbage collection.

Tuning Garbage Collection with Sun JDK
When using Sun’s JDK, the goal in tuning garbage collection performance is to reduce the time
required to perform a full garbage collection cycle. You should not attempt to tune the JVM to
minimize the frequency of full garbage collections, because this generally results in an eventual
forced garbage collection cycle that may take up to several full seconds to complete.

The simplest and most reliable way to achieve short garbage collection times over the lifetime of
a production server is to use a fixed heap size with the default collector and the parallel young
generation collector, restricting the new generation size to at most one third of the overall heap.

The following example JVM settings are recommended for most engine tier servers:

-server -Xmx1024m -XX:MaxPermSize=128m -XX:+UseParNewGC

-XX:+UseConcMarkSweepGC -XX:+UseTLAB -XX:+CMSIncrementalMode

-XX:+CMSIncrementalPacing -XX:CMSIncrementalDutyCycleMin=0

-XX:CMSIncrementalDutyCycle=10 -XX:MaxTenuringThreshold=0

-XX:SurvivorRatio=256 -XX:CMSInitiatingOccupancyFraction=60

-XX:+DisableExplicitGC

For replica servers, use the example settings:

-server -Xmx3072m -XX:MaxPermSize=128m -XX:+UseParNewGC

-XX:+UseConcMarkSweepGC -XX:+UseTLAB -XX:+CMSIncrementalMode

-XX:+CMSIncrementalPacing -XX:CMSIncrementalDutyCycleMin=0

-XX:CMSIncrementalDutyCycle=10 -XX:MaxTenuringThreshold=0

Tun ing Garbage Co l l ec t i on w i th Sun JDK

Configuration Guide C-5

-XX:SurvivorRatio=256 -XX:CMSInitiatingOccupancyFraction=60

-XX:+DisableExplicitGC

The above options have the following effect:

-XX:+UseTLAB—Uses thread-local object allocation blocks. This improves concurrency by
reducing contention on the shared heap lock.

-XX:+UseParNewGC—Uses a parallel version of the young generation copying collector
alongside the concurrent mark-and-sweep collector. This minimizes pauses by using all
available CPUs in parallel. The collector is compatible with both the default collector and
the Concurrent Mark and Sweep (CMS) collector.

-Xms, -Xmx—Places boundaries on the heap size to increase the predictability of garbage
collection. The heap size is limited in replica servers so that even Full GCs do not trigger
SIP retransmissions. -Xms sets the starting size to prevent pauses caused by heap
expansion.

-XX:MaxTenuringThreshold=0—Makes the full NewSize available to every NewGC
cycle, and reduces the pause time by not evaluating tenured objects. Technically, this
setting promotes all live objects to the older generation, rather than copying them.

-XX:SurvivorRatio=128—Specifies a high survivor ratio, which goes along with the
zero tenuring threshold to ensure that little space is reserved for absent survivors.

Tun ing JVM Garbage Co l l ec t i on fo r P roduct ion Dep loyments

C-6 Configuration Guide

Configuration Guide D-1

A P P E N D I X D

Avoiding JVM Delays Caused by
Random Number Generation

The library used for random number generation in Sun’s JVM relies on /dev/random by default
for UNIX platforms. This can potentially block the WebLogic SIP Server process because on
some operating systems /dev/random waits for a certain amount of “noise” to be generated on
the host machine before returning a result. Although /dev/random is more secure, BEA
recommends using /dev/urandom if the default JVM configuration delays WebLogic SIP Server
startup.

To determine if your operating system exhibits this behavior, try displaying a portion of the file
from a shell prompt:

head -n 1 /dev/random

If the command returns immediately, you can use /dev/random as the default generator for
SUN’s JVM. If the command does not return immediately, use these steps to configure the JVM
to use /dev/urandom:

1. Open the $JAVA_HOME/jre/lib/security/java.security file in a text editor.

2. Change the line:

securerandom.source=file:/dev/random

to read:

securerandom.source=file:/dev/urandom

3. Save your change and exit the text editor.

Avo id ing JVM De lays Caused by Random Number Generat ion

D-2 Configuration Guide

