
iWay
iWay Stored Procedures Reference
Version 5 Release 3.2

DN3501293.0904

EDA, EDA/SQL, FIDEL, FOCCALC, FOCUS, FOCUS Fusion, FOCUS Vision, Hospital-Trac, Information Builders, the Information Builders logo,
Parlay, PC/FOCUS, SmartMart, SmartMode, SNAPpack, TableTalk, WALDO, Web390, WebFOCUS and WorldMART are registered trademarks,
and iWay and iWay Software are trademarks of Information Builders, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trademarks. In most, if not
all cases, these designations are claimed as trademarks or registered trademarks by their respective companies. It is not this publisher’s
intent to use any of these names generically. The reader is therefore cautioned to investigate all claimed trademark rights before using any
of these names other than to refer to the product described.

Copyright © 2004, by Information Builders, Inc and iWay Software. All rights reserved. Patent Pending. This manual, or parts thereof, may
not be reproduced in any form without the written permission of Information Builders, Inc.

Preface
The iWay Stored Procedures Reference manual provides information about programs or
procedures, called stored procedures, that reside on a server and are called by connector
applications.

Stored procedures allow you to build on existing applications to create new client/server
applications for the desktop environment.

This manual is intended for the API Programmer, the Dialogue Manager Programmer, and
others who develop and maintain client/server applications that call stored procedures.

How This Manual Is Organized
This manual includes the following chapters:

Chapter/Appendix Contents

1 Introducing Stored
Procedures

Describes the types of stored procedures, how they are
called, and their execution order. Explains why stored
procedures are used.

2 Calling a Program as
a Stored Procedure

Describes ways to call a compiled program using the API
function call EDARPC, and using the commands
CALLPGM or EXEC in a Dialogue Manager procedure.
Addresses the use of parameters.

3 Calling a JAVA Class Describes ways to call a JAVA class using the CALLJAVA
command or the EX command.

4 Writing a 3GL
Compiled Stored
Procedure Program

Describes the requirements for writing a program to be
called by EDARPC, or by CALLPGM in a Dialogue Manager
procedure. Addresses the control block used for
communication between the server and the program;
storage of program values; error handling; and the
command CREATE TABLE, which a program issues to
describe the answer set it is returning.

5 Writing a Dialogue
Manager Procedure

Describes the features of the Dialogue Manager
language, including the syntax and use of Dialogue
Manager commands and how they are processed by the
server.
iWay Stored Procedures Reference iii

How This Manual Is Organized
6 Platform-specific
Commands

Describes the syntax and use of platform-specific
commands that can be included in a Dialogue Manager
procedure, such as DYNAM in MVS.

A Dialogue Manager
Quick Reference

Includes all Dialogue Manager commands, with their
syntax, in alphabetical order for easy reference.

B GENCPGM Usage Describes how to use the script that has been created for
UNIX, Windows NT/2000, and OpenVMS to assist in
simple compilations.

Chapter/Appendix Contents
iv iWay Software

Preface
Documentation Conventions
The following conventions apply throughout this manual:

Related Publications
To view a current listing of our publications and to place an order, visit our World Wide Web
site, http://www.iwaysoftware.com. You can also contact the Publications Order
Department at (800) 969-4636.

Convention Description

THIS TYPEFACE or
this typeface

Denotes syntax that you must enter exactly as shown.

this typeface Represents a placeholder (or variable) in syntax for a value that
you or the system must supply.

underscore Indicates a default setting.

this typeface Represents a placeholder (or variable), a cross-reference, or an
important term. It may also indicate a button, menu item, or
dialog box option you can click or select.

this typeface Highlights a file name or command.

Key + Key Indicates keys that you must press simultaneously.

{ } Indicates two or three choices; type one of them, not the
braces.

[] Indicates a group of optional parameters. None are required,
but you may select one of them. Type only the parameter in
the brackets, not the brackets.

| Separates mutually exclusive choices in syntax. Type one of
them, not the symbol.

... Indicates that you can enter a parameter multiple times. Type
only the parameter, not the ellipsis points (…).

.

.

.

Indicates that there are (or could be) intervening or additional
commands.
iWay Stored Procedures Reference v

http://www.iwaysoftware.com

Customer Support
Customer Support
Do you have questions about iWay Stored Procedures?

Call Information Builders Customer Support Services (CSS) at (800) 736-6130 or
(212) 736-6130. Customer Support Consultants are available Monday through Friday
between 8:00 A.M. and 8:00 P.M. EST to address all your iWay Stored Procedures questions.
Information Builders consultants can also give you general guidance regarding product
capabilities and documentation. Please be ready to provide your six-digit site code (xxxx.xx)
when you call.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our World Wide Web site, http://
www.informationbuilders.com. It connects you to the tracking system and known-problem
database at the Information Builders support center. Registered users can open, update,
and view the status of cases in the tracking system and read descriptions of reported
software issues. New users can register immediately for this service. The technical support
section of www.informationbuilders.com also provides usage techniques, diagnostic tips,
and answers to frequently asked questions.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.
vi iWay Software

http://www.informationbuilders.com
http://www.informationbuilders.com

Preface
Information You Should Have
To help our consultants answer your questions most effectively, be ready to provide the
following information when you call:

• Your six-digit site code (xxxx.xx).

• Your iWay Software configuration:

• The iWay Software version and release. You can find your server version and release
using the Version option in the Web Console. (Note: the MVS and VM servers do not
use the Web Console.)

• The communications protocol (for example, TCP/IP or LU6.2), including vendor and
release.

• The stored procedure (preferably with line numbers) or SQL statements being used in
server access.

• The database server release level.

• The database name and release level.

• The Master File and Access File.

• The exact nature of the problem:

• Are the results or the format incorrect? Are the text or calculations missing or
misplaced?

• The error message and return code, if applicable.

• Is this related to any other problem?

• Has the procedure or query ever worked in its present form? Has it been changed
recently? How often does the problem occur?

• What release of the operating system are you using? Has it, your security system,
communications protocol, or front-end software changed?

• Is this problem reproducible? If so, how?

• Have you tried to reproduce your problem in the simplest form possible? For example,
if you are having problems joining two data sources, have you tried executing a query
containing just the code to access the data source?

• Do you have a trace file?

• How is the problem affecting your business? Is it halting development or production?
Do you just have questions about functionality or documentation?
iWay Stored Procedures Reference vii

User Feedback
User Feedback
In an effort to produce effective documentation, the Documentation Services staff
welcomes your opinions regarding this manual. Please use the Reader Comments form at
the end of this manual to relay suggestions for improving the publication or to alert us to
corrections. You can also use the Documentation Feedback form on our Web site, http://
www.iwaysoftware.com.

Thank you, in advance, for your comments.

iWay Software Training and Professional Services
Interested in training? Our Education Department offers a wide variety of training courses
for iWay Software and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our World Wide Web site (http://www.iwaysoftware.com) or call (800) 969-INFO to speak to
an Education Representative.

Interested in technical assistance for your implementation? Our Professional Services
department provides expert design, systems architecture, implementation, and project
management services for all your business integration projects. For information, visit our
World Wide Web site (http://www.iwaysoftware.com).
viii iWay Software

http://www.iwaysoftware.com
http://www.iwaysoftware.com
http://www.informationbuilders.com/bookstore/derf.html
http://www.informationbuilders.com/bookstore/derf.html

Contents
1. Introducing Stored Procedures .1-1

Calling a Stored Procedure .1-2
Stored Procedure Libraries .1-3
Setting the Execution Order .1-4

Valid EXORDER Settings .1-5
Execution Order of Stored Procedures From Dialogue Manager .1-6

2. Calling a Program as a Stored Procedure .2-1
Calling a Compiled Program .2-2
Calling a Program With EDARPC .2-3
Calling a Program With CALLPGM or EXEC .2-4
Calling a Program With SQL EX .2-7

Switching Plans in DB2 (MVS Only) .2-7
Passing Parameters . 2-10

Using CALLPGM . 2-10
Using EDARPC . 2-11

Program Communication . 2-15

3. Calling a JAVA Class .3-1
Using CALLJAVA .3-2
Using EX .3-2
Passing Parameters .3-3
Writing a JAVA Class .3-3

Interfaces .3-4
JAVA Class Communication .3-5
Compiling and Running a JAVA Program .3-5

4. Writing a 3GL Compiled Stored Procedure Program .4-1
Program Requirements .4-2
Setting Up the Control Block .4-3

Control Block Specification .4-4
Setting Up a CALLPGM Control Block Structure for C . 4-12
Setting Up a CALLPGM LINKAGE SECTION Control Block for Cobol . 4-15
Setting Up a CALLPGM Data Structure Control Block for RPG . 4-18

Storing Program Values . 4-20
Error Handling . 4-32
Issuing the CREATE TABLE Command . 4-34

5. Writing a Dialogue Manager Procedure .5-1
Commands Included in a Procedure .5-2
iWay Stored Procedures Reference ix

Contents
Commands and Processing .5-3
Dialogue Manager Processing .5-5

Commenting a Procedure .5-8
Sending a Message to a Client Application .5-9
Controlling Execution . 5-10

Executing Stacked Commands: -RUN . 5-10
Executing Stacked Commands and Exiting the Procedure: -EXIT . 5-11
Canceling Execution: -QUIT . 5-12

Using Variables . 5-13
Naming Conventions . 5-14
Local Variables . 5-15
Global Variables . 5-18
System Variables . 5-19
Variables and Command Structures . 5-22

Supplying Values for Variables . 5-23
General Rules . 5-23
Supplying Values in the EXEC Command . 5-24
Debugging Execution Flow . 5-27
-DEFAULT[S] Command . 5-28
-SET Command . 5-29
-READ Command . 5-30

Branching . 5-33
Screening Values With -IF Tests . 5-37

Looping . 5-41
Ending a Loop . 5-42

Calling Another Procedure . 5-44
Nesting . 5-46
The EXEC Command . 5-47

The -REMOTE Commands . 5-48
Reading From and Writing to an External File . 5-49
.EVAL Operator . 5-50
Creating Expressions . 5-52

Arithmetic Expressions . 5-52
Alphanumeric Expressions . 5-54
Logical Expressions . 5-56
Compound Expressions . 5-58
x iWay Software

Contents
Using Functions . 5-59
System-supplied Function Examples . 5-59
System-supplied Function Table . 5-60
Verifying Function Parameters . 5-68
Creating Routines . 5-70
Editing a Value . 5-71
Decoding a Value . 5-72
Creating an Indexed Variable . 5-74
Removing Trailing Blanks From Variables With the TRUNCATE Function 5-75
Using Variables to Alter Commands . 5-77

Using Commands Specific to an Operating System . 5-78
ON TABLE HOLD . 5-79
ON TABLE PCHOLD . 5-80

6. Platform-specific Commands .6-1
DYNAM Command (MVS) .6-2

Use of Data Sets .6-5
DYNAM Allocation User Exit .6-5
The ALLOCATE Subcommand .6-6
The CONCAT Subcommand . 6-15
The FREE Subcommand . 6-16
The CLOSE Subcommand . 6-17
The COPY Subcommand . 6-18
The COPYDD Subcommand . 6-20
The DELETE Subcommand . 6-21
The RENAME Subcommand . 6-22
The SUBMIT Subcommand . 6-23
The COMPRESS Subcommand . 6-24

Comparison of TSO Commands, JCL, and DYNAM . 6-25
FILEDEF Command Under VM . 6-26
FILEDEF Command Under UNIX, Windows, OS/400, OS/390 and z/OS, and OpenVMS 6-27

Other FILEDEF Features . 6-29
OFFLINE Printing . 6-29

A. Dialogue Manager Quick Reference . A-1
Dialogue Manager Commands . A-2

B. GENCPGM Usage .B-1
Using GENCPGM .B-2
iWay Stored Procedures Reference xi

Contents
xii iWay Software

CHAPTER 1

Introducing Stored Procedures

Topics:

• Calling a Stored Procedure

• Stored Procedure Libraries

• Setting the Execution Order

A stored procedure is a program or procedure that resides
on the execution path of a server. The procedure is called
by a client application but can also be called or nested by
another explicitly requested procedure. It is executed on
the server on which it resides.

A stored procedure is one of the following:

• A compiled program, written in a language such as C or
COBOL, which is located and called on a server or
gateway process.

• A file of executable commands written in the server’s
Dialogue Manager (DM) language.

• A transaction running under the control of a
transaction-processing monitor such as CICS or IMS/
TM.

Note: The ability to use the above methods is limited to
what an underlying product (DBMS) supports and varies by
platform. Any limitations will be noted in the
documentation.

Stored procedures enable you to:

• Embed procedural logic in your server applications.
The logic may be modular, eliminating the need to
recreate it for each application.

• Update non-relational database management systems.
iWay Stored Procedures Reference 1-1

Calling a Stored Procedure
Calling a Stored Procedure
A client application typically executes a stored procedure using the API function call
EDARPC. The EDARPC function directly calls one of the following:

• A compiled program.

• A Dialogue Manager procedure, which can call:

• A compiled program, using the command CALLPGM or EXEC.

• A proprietary RDBMS procedure, using SQL Passthru mode (where supported).

• An IMS/TM transaction, using the CALLIMS or CALLIMSC procedure.

• Another Dialogue Manager procedure, using the command EXEC.

The following figure shows calls to stored procedures made from EDARPC and Dialogue
Manager.

Compiled Program

typedef struct tag_CPGPL{
 short parmlen;
 char parmdata;
 t_CPGPL;
}
.
.
.

 Dialogue Manager Procedure

-TYPE Examples of calls.
 .
 .
 .
CALLPGM PROGRAM1
EXEC PROGRAM2
 .
 .
 .
EXEC CALLIMSE
EXEC CALLIMS
EXEC MYPROC

compiled program

compiled program

IMS/TM transaction (TCP OTMA)

IMS/TM transaction (LU6.2)

Dialogue Manager procedure
1-2 iWay Software

Introducing Stored Procedures
Stored Procedure Libraries
A stored procedure must reside in the appropriate library in order for the server to locate it.

Note: An external name is a generic name for a variable that is set at the operating system
level. The various operating systems that support this feature have different names and
methods (syntax) for setting and reviewing these variables. Some of the more commonly
used terms for these external names and values are environment variables, registry
variables, globals, symbols, defines, assignments, and ddnames. See the Configuration and
Operations manual for your platform for specific aspects of working with external names.

Type of Stored Procedure Library

Dialogue Manager Server Procedure Library.

The external names, EDARPC (MVS) or EDAPATH (all other
platforms), are used to locate Dialogue Manager
procedures. You can also use the APP PATH feature to
locate and manage application code. This process is
platform dependent. See the Server Administration manual
for details.

Compiled Program Server Program Library.

The external name IBICPG or physical placement in the
user directory of EDACONF is used to locate compiled
programs. This process is platform dependent.

A common early practice was to place compiled
procedures in the installation home bin directory/library,
since it was always searched by default. This practice is no
longer recommended since service pack installations will
delete these types of files.

IMS/TM Transaction Server Program Library.

Underlying routines are part of the server installation
home bin directory; no library configuration is required.
iWay Stored Procedures Reference 1-3

Setting the Execution Order
Setting the Execution Order

This section describes the order in which the server searches for and runs stored
procedures. Understanding the execution order enables you to set it appropriately.

The server has a default search order. To change this order:

• Add the command SET EXORDER in the global or user profile. The server enforces the
execution order specified in the profile that was last run. For details on the global and
user profiles and how to customize each, see the Server Administration manual.

• Run a Dialogue Manager procedure on the server that contains the command SET
EXORDER. This command sets the execution order appropriately for subsequent calls to
stored procedures. If the Dialogue Manager procedure was the last run (that is, after the
global or user profile), the execution order it specifies takes precedence over the
execution order in the profile.

If you set the execution order in a Dialogue Manager procedure before you run the
procedure, make sure the execution order in effect includes a search of the Procedure
Library.

Execution order may be reset as needed. When you disconnect and then reconnect, the
global profile setting for the execution order will take effect. In a pooled environment,
however, the last setting of the prior user is maintained (unless an agent refresh has
occurred in the interim).

In this section:

Valid EXORDER Settings

Execution Order of Stored Procedures From Dialogue Manager

Using CALLPGM

Using EXEC

Using CALLIMS or CALLITOC

How to:

Query the Execution Order
1-4 iWay Software

Introducing Stored Procedures
Valid EXORDER Settings
The following table describes valid settings for the execution order.

The recommended setting is either:

• SET EXORDER=FEX/PGM

or

• SET EXORDER=PGM/FEX

Either setting ensures that both the Procedure Library and Program Library are searched,
providing you with the most flexibility.

Syntax: How to Query the Execution Order

Issue the following Dialogue Manager command to query the current setting of EXORDER:

? EXORDER

Setting Library Searched Comments

SET EXORDER=FEX Procedure Library only. This setting is the default.

SET EXORDER=PGM Program Library only.

SET EXORDER=FEX/PGM Procedure Library first,
followed by Program
Library.

If the call is to a program, the
name of the program cannot be
the same as the name of a
Dialogue Manager procedure on
the server’s search path. If it is,
the server will find the Dialogue
Manager procedure in the
Procedure Library and execute it,
rather than executing the
program.

SET EXORDER=PGM/FEX Program Library first,
followed by Procedure
Library.

If the call is to a Dialogue
Manager procedure, the name of
the procedure cannot be the
same as the name of a program
on the server’s search path. If it is,
the server will find the program
in the Program Library and
execute it, rather than executing
the Dialogue Manager
procedure.
iWay Stored Procedures Reference 1-5

Setting the Execution Order
Execution Order of Stored Procedures From Dialogue Manager
This section describes the execution order used by the server to locate and run stored
procedures called from Dialogue Manager.

Using CALLPGM

If you use explicit CALLPGM syntax in a Dialogue Manager procedure to call a stored
procedure, the server recognizes that the stored procedure is a compiled program, and
uses IBICPG or the existence of EDACONF in the user directory to locate the procedure with
no need to set EXORDER.

Using EXEC

If you use EXEC in a Dialogue Manager procedure to call a stored procedure, the server
adheres to the setting of the execution order specified by SET EXORDER, since EXEC could
be calling either a compiled program or a Dialogue Manager procedure.

Using CALLIMS or CALLITOC

The CALLIMS and CALLITOC programs contain Dialogue Manager procedures (called
CALLIMS and CALLIMSC) to front-end the underlying stored procedures. If you use the
CALLIMS or CALLITOC programs directly from a Dialogue Manager procedure, the server
recognizes that you are calling a compiled program, and IBICPG does not need to be set.
1-6 iWay Software

CHAPTER 2

Calling a Program as a Stored Procedure

Topics:

• Calling a Compiled Program

• Calling a Program With EDARPC

• Calling a Program With CALLPGM or
EXEC

• Passing Parameters

• Program Communication

The following are ways to call a compiled program.

• Directly, using the EDARPC function call.

• Indirectly, using either the CALLPGM command or the
EXEC command.

Any of these methods enables you to pass parameters to
programs and Dialogue Manager procedures.
iWay Stored Procedures Reference 2-1

Calling a Compiled Program
Calling a Compiled Program
The API function call EDARPC enables a client application to call a compiled program stored
on the server.

The program is called in the following ways:

• Directly, with EDARPC specifying the program name.

• Indirectly, with EDARPC specifying the name of a Dialogue Manager procedure that,
when executed, calls the program using one of the following commands:

• CALLPGM

• EXEC

• SQL EX

The command EXEC functions the same way as CALLPGM, except for the difference in
execution order requirements as described in Execution Order of Stored Procedures From
Dialogue Manager in Chapter 1, Introducing Stored Procedures. For simplicity, this
chapter refers only to CALLPGM when both CALLPGM and EXEC apply. The SQL EX
method has the advantage of being able to also apply intermediate processing to the
initial results set before passing the final answer set to the calling request.

The term program is also used to refer to a compiled program.

The following figure illustrates calls to programs made from EDARPC and Dialogue
Manager.
2-2 iWay Software

Calling a Program as a Stored Procedure
The following figure illustrates the libraries in which compiled programs and Dialogue
Manager procedures reside. See Chapter 1, Introducing Stored Procedures, for details on
stored procedure libraries and stored procedure execution order.

Calling a Program With EDARPC
The following figure illustrates a direct call to a program that could be either a compiled
program or a Dialogue Manager EXEC. The program is called using the function call
EDARPC. In the figure, the program is named myprog.

For details on the syntax and use of EDARPC, see the API Reference manual.

For specific requirements that may apply to your platform, see the Server Administration
manual.
iWay Stored Procedures Reference 2-3

Calling a Program With CALLPGM or EXEC
Calling a Program With CALLPGM or EXEC

Application developers use Dialogue Manager for program control and flexibility.
Additionally, CALLPGM is used where needed.

CALLPGM also provides application developers with:

• A consistent call interface to any program on a server.

• A simple way to create full answer sets and messages.

The following figure illustrates the use of CALLPGM to call a program within a Dialogue
Manager procedure.

The steps in this process are:

1. The client application issues the API function call EDARPC, specifying the name of a
Dialogue Manager procedure (myrp).

2. The Dialogue Manager procedure is located and executed by the server. The command
CALLPGM myprog within the procedure is run.

In this section:

Switching Plans in DB2 (MVS Only)

How to:

Call a Program From Dialogue Manager

Switch Plans in DB2

Example:

Processing an Answer Set on the Server
2-4 iWay Software

Calling a Program as a Stored Procedure
3. The program myprog executes and terminates.

Note: CALLPGM may call the program several times to allow it to construct and return
complete table data, a complete set of messages, or both. See Passing Parameters on
page 2-10 for more information.

4. CALLPGM performs one or both of the following actions, which are transparent to the
Dialogue Manager procedure:

• Passes a message or messages to the client application for processing. The client
application issues the API function call EDAACCEPT to access the message(s).

Note: The program must return messages to the client application before any table
data (that is, description of an answer set and the rows of data), or at the end of any
table data.

• Passes table data to the client application for processing. Table data consists of two
components:

A CREATE TABLE that tells the server the format of the returned data. For more
information on describing data, see Chapter 4, Writing a 3GL Compiled Stored
Procedure Program.

Rows of data, which the client application retrieves using the API function call
EDAFETCH.

The Dialogue Manager procedure itself does not need to create an answer set or
message.

The command CALLPGM and EXEC operates the same except EXEC has the advantage
of being able to let the EXORDER setting control if FOCEXECs by the same name will be
also searched for and which is considered first found (the compiled program or the
FOCEXEC.)
iWay Stored Procedures Reference 2-5

Calling a Program With CALLPGM or EXEC
Syntax: How to Call a Program From Dialogue Manager

CALLPGM progname[,parmval1][,...]
END

or

SET EXORDER=PGM/FEX
EX[EC] progname[parmval1][,...]
END

or

SET EXORDER=PGM/FEX
SET SQLENGINE=CPGFOC
SQL EX PROGRAM [parmval1][,...] TABLE FILE SQLOUT
PRINT field [ON TABLE PCHOLD]
END
SET SQLENGINE=OFF

where:

progname

Is the name of the program to be run. (If CALLPGM is used, it cannot be another
Dialogue Manager procedure.)

parmval1

Is an optional positional Dialogue Manager parameter passed to progname. A Dialogue
Manager parameter is an alphanumeric value. See Passing Parameters on page 2-10 for
examples.

The length of a single parameter (for example, parmval1) cannot exceed 32,000
characters. The total length of all specified parameters cannot exceed 32,000
characters.

END

Is a required command that terminates CALLPGM or EXEC.
2-6 iWay Software

Calling a Program as a Stored Procedure
Calling a Program With SQL EX
Using SQL EX is similar to using EXEC, the difference is that the output from SQL EX is stored
into a HOLD file called SQLOUT. The resulting SQLOUT file can then be processed with
additional SELECT or TABLE statements which may (or may not) contain additional selection
criteria, and possibly return less fields or create a virtual field that is derived from the data.

Syntax: How to Call a Program From Dialogue Manager

CALLPGM progname[,parmval1][,...]
END

or

SET EXORDER=PGM/FEX
EX[EC] progname[parmval1][,...]
END

or

SET EXORDER=PGM/FEX
SET SQLENGINE=CPGFOC
SQL EX PROGRAM [parmval1][,...] TABLE FILE SQLOUT
PRINT field [ON TABLE PCHOLD]
END
SET SQLENGINE=OFF

where:

progname

Is the name of the program to be run.

parmval1

Is an optional positional Dialogue Manager parameter passed to progname. A Dialogue
Manager parameter is an alphanumeric value. See Passing Parameters on page 2-10 for
examples.

The length of a single parameter (for example, parmval1) cannot exceed 32,000
characters. The total length of all specified parameters cannot exceed 32,000
characters.

END

Is a required command that terminates CALLPGM or EXEC.

Switching Plans in DB2 (MVS Only)
DB2 requires that all programmed interaction with a database be controlled at the program
module level. The program is represented to the database using an object called a plan. The
installation procedure automatically creates a plan for a server. When the server accesses
the RDBMS, it uses the plan name.
iWay Stored Procedures Reference 2-7

Calling a Program With SQL EX
When a program executed by CALLPGM contains SQL statements, it may be necessary to
switch from the plan named in the installation procedure to the plan required by the
program.

Syntax: How to Switch Plans in DB2

SQL DB2 SET PLAN &progplan
CALLPGM &program...
SQL DB2 SET PLAN ' '

where:

&progplan

Is the name of the plan required by the program.

&program

Is the name of the program to be run.SET PLAN ' '

Resets the plan.

An alternative is to use DB2 3.1 packages. Here, each CALLPGM program has its own
package (called by the same name as the program), and all programs are included in the
package list for the plan.

For example, assume that your server plan is called EDASQL. You wish to have two stored
procedures, called SPG1 and SPG2, that use static SQL to access DB2.

In this case, there are three DB2 database resource modules (DBRMs) created: EDASQL,
SPG1, and SPG2. Create three packages, called EDASQL.EDASQL, EDASQL.SPG1, and
EDASQL.SPG2, using the command CREATE PACKAGE. Then bind the packages together
into a plan using the command BIND PLAN with the package list option. When the server
executes, DB2 automatically selects the package with the same name as the program.

For more information on plans, see the applicable DB2 manuals.

Example: Processing an Answer Set on the Server

When executing a CALLPGM stored procedure, it is sometimes desirable to retain the
answer set on the server. The following example illustrates the method used to retain the
answer set on the server:
2-8 iWay Software

Calling a Program as a Stored Procedure
1. SQL EDA SET SERVER servername

2. SQL EDA EX programname parm1,...;

3. TABLE FILE SQLOUT
 PRINT *
 ON TABLE HOLD AS filename
 END

4. TABLE FILE filename
 PRINT col2 AS 'COLUMN, 2'
 col3 AS 'COLUMN, 3'
 END

The procedure processes as follows:

1. Identifies the remote server name in which to execute remote requests.

2. Executes the program name on the remote server.

3. Specifies that the temporary information is to be retained on the server in an extract
file.

4. Executes a TABLE request to generate an answer set containing column 2 and column 3
in the retained table.

Note:

• The file specified must be allocated prior to being used. For more information on
allocating a file, see Chapter 6, Platform-specific Commands.

• The above example is also valid when running CALLPGM locally.
iWay Stored Procedures Reference 2-9

Passing Parameters
Passing Parameters

The following terminology is used in this section:

• Parameters passed on the EDARPC call by an API program are called API parameters,
which specify Dialogue Manager (DM) and CALLPGM program (CPG) parameters
(described below).

• Amper variables used in a Dialogue Manager procedure are also called DM variables.

• Parameters in a Dialogue Manager procedure not directly stored in amper variables are
called DM parameters (that is, text parameters that get passed in and used).

• Parameters passed to a program called by CALLPGM are called CPG parameters.

Using CALLPGM
When passing CPG parameters that contain embedded spaces or commas, the parameters
must be enclosed in quotation marks. The following profile setting controls the stripping of
quotation marks from parameters.

Syntax: How to Control the Stripping of Quotes From Parameters

SQL SPG SET STRIPQUOTE {ON|OFF}

where:

ON

Causes the quotation marks to be stripped from the parameters. ON is the default
value.

OFF

Prevents the stripping of the quotation marks from the parameters.

In this section:

Using CALLPGM

Using EDARPC
2-10 iWay Software

Calling a Program as a Stored Procedure
Using EDARPC

EDARPC passes positional or keyword API parameters. Positional parameters work with
Dialogue Manager procedures or compiled programs. Keyword API parameters only work
with Dialogue Manager procedures.

Note: Positional and keyword API parameters are mixed if performed as described.

This section contains examples of positional and keyword API parameters passed by
EDARPC.

Example: Passing Positional API Parameters

EDARPC passes one or more positional API parameters to a Dialogue Manager procedure or
compiled program, which uses each in a variety of ways. Positional API parameters receive
the values from the order in the EDARPC calling sequence.

Positional API parameters are passed as a string enclosed in double quotation marks, with
the positional values separated by commas as shown in the following example:

EDARPC(scb,"myproc",6,"myprog,Sales,20",15)

where:

scb

Is the session control block.

myproc

Is the name of a Dialogue Manager procedure or compiled program.

6

Is the length of the string myproc.

myprog,Sales,20

Is a string (an API parameter) containing the three positional parameters.

15

Is the length of the above string.

Example:

Passing Positional API Parameters

Passing Keyword API Parameters

Combining Positional and Keyword API Parameters

Passing Long Parameters
iWay Stored Procedures Reference 2-11

Passing Parameters
For the purpose of this example, assume myproc is a Dialogue Manager procedure and the
procedure uses the API parameter as DM variables &1, &2, and &3 to, in turn, issue a
CALLPGM command as follows:

CALLPGM &1,&2,&3
END

When the Dialogue Manager procedure executes, the server substitutes the values for the
variables &1, &2, and &3, and the result is:

CALLPGM myprog,Sales,20
END

The values Sales and 20 are passed to the underlying compiled program myprog.

Example: Passing Keyword API Parameters

EDARPC also passes one or more keyword API parameters to a Dialogue Manager
procedure. The value of a keyword API parameter is determined by the name given before
the equal sign (=) on the EDARPC function call.

Keyword DM parameters are specified as name=value pairs in the API parameter and are
passed as a string enclosed in double quotation marks, with name=value pairs separated
by commas. Keyword DM parameters are only used in Dialogue Manager procedures.

EDARPC(scb,"myrp",4,"prog=myprog,parm1=Sales,parm2=20",32)

where:

scb

Is the session control block.

myrp

Is the name of a Dialogue Manager procedure.

4

Is the length of the string myrp.

prog=myprog,parm1=Sales,parm2=20

Is a string (an API parameter) containing three keyword DM parameter value pairs.

32

Is the length of the above string.

For the purpose of this example, assume that myrp is a Dialogue Manager procedure and
the procedure puts the keyword DM parameters in the DM variables &prog, &parm1, and
&parm2, and then uses each in a CALLPGM command:

CALLPGM &prog,&parm1,&parm2
END
2-12 iWay Software

Calling a Program as a Stored Procedure
When values are substituted at run time, the result is the same command as in the previous
example:

CALLPGM myprog,Sales,20
END

The advantage of keyword parameters is that the order of the parameters is positionally
independent. An API program does not need this level of knowledge and Dialogue
Manager is used to establish default values. Default values do not need to be established as
part of the API program.

For more information on API positional and keyword parameters, see the API Reference
manual.

Example: Combining Positional and Keyword API Parameters

EDARPC passes one or more positional API parameters mixed with one or more keyword
parameters to a Dialogue Manager procedure. The server substitutes the values for the
amper variables based on the relative position of the positional keywords to each other.

EDARPC(scb,"myproc",6,"prog=myprog,000001,000002,kparm1=keyparm,000003",47)

where:

scb

Is the session control block.

myproc

Is the name of a Dialogue Manager procedure.

6

Is the length of the string myproc.

prog=myprog...,000003

Is a string (an API parameter) containing three positional and two keyword Dialogue
Manager parameters.

47

Is the length of the above string.

For the purpose of this example, assume that myproc is a Dialogue Manager procedure and
the procedure uses the API positional parameters &1, &2, and &3, and the keyword
parameters &prog and &kparm1 to, in turn, issue a CALLPGM command as follows:

CALLPGM &prog,&1,&2,&kparm1,&3;
END

When the Dialogue Manager procedure executes, the server substitutes the values for the
variables &1, &2, &3, &prog, and &kparm1, and the result is:

CALLPGM myprog,000001,000002,keyparm,000003;
iWay Stored Procedures Reference 2-13

Passing Parameters
The values 000001, 000002, keyparm, and 000003 are passed to the program myprog.

Passing mixed positional and keyword parameters requires care in assembling the API
parameter string so that the positional values match up appropriately with the underlying
RPC.

Example: Passing Long Parameters

EDARPC passes a parameter up to 32,000 bytes in length. If a CALLPGM program is being
executed directly, the parameter is passed directly to the CALLPGM program.

If a CALLPGM program is being executed from a procedure residing on the server, the
-LINES function is used to pass long parameters to the CALLPGM program. The following is
an example of a server procedure passing the maximum parameter of 32,000 bytes:

"EX -LINES 401 CPG32000 LINE001
"
"LINEOFINFORMATION111
111111"
"LINEOFINFORMATION222
222222"
"LINEOFINFORMATION4004004004004004004004004004004004004004004004004004004
004004"
.
.
.
"LASTLINETOTAL32000BYTESTHEENDXX"

Note:

• The first line of data ends in column 72. The double quotation marks (“) are not part of
the procedure. Quotation marks are used to indicate the beginning and end of lines,
some of which may contain leading or trailing spaces.

• If any Dialogue Manager commands, such as -TYPE, are used in the procedure, the
parameter is limited to 72 bytes.

• The value after -LINES is the number of lines to read for parameters. In this example, for
brevity, several hundred lines are not shown.
2-14 iWay Software

Calling a Program as a Stored Procedure
Program Communication
Whether a program is called by EDARPC or CALLPGM, a control block is used for
communication between the server and the program.

The program is called repeatedly until it indicates that it is done by supplying the correct
value in the field action_value in the control block on return to CALLPGM.

See Chapter 4, Writing a 3GL Compiled Stored Procedure Program, for more information,
including the specific values to be returned in an action_value.

The process is illustrated below.
iWay Stored Procedures Reference 2-15

Program Communication
2-16 iWay Software

CHAPTER 3

Calling a JAVA Class

Topics:

• Using CALLJAVA

• Using EX

• Passing Parameters

• Writing a JAVA Class

• JAVA Class Communication

• Compiling and Running a JAVA
Program

You can easily access a JAVA class in your application, much
as you would access a program with CALLPGM. There are
two ways to call a JAVA class:

• CALLJAVA call.

• EX command.

Either method enables you to pass parameters to the JAVA
class.
iWay Stored Procedures Reference 3-1

Using CALLJAVA
Using CALLJAVA
You can invoke a user-written JAVA class with the CALLJAVA command.

Syntax: How to Use CALLJAVA to Execute a JAVA Class

CALLJAVA class, parameter1, parameter2, ...

where:

class

Is the full name of the class to be invoked.

parameter1, parameter2, ...

Are the remaining parameters which must be passed to the JAVA class according to the
rules described in Passing Parameters on page 3-3.

Example: Calling iway.test.jclass Using CALLJAVA

SET EXORDER=PGM/FEX
CALLJAVA iway.test.jclass,parameter1,"subparm1=val1,subparm2=val2",simple
parameter3
-EXIT

Using EX
You can invoke a user-written JAVA class with the EX command.

Syntax: How to Use EX to Execute a JAVA Class

EX java.class parameter1, parameter2, ...

where:

java.class

Is the full name of the class to be invoked and must be preceded by the prefix java.

parameter1, parameter2, ...

Are the parameters which must be passed to the JAVA class according to the rules
described in Passing Parameters on page 3-3.

Example: Calling iway.test.jclass Using EX

SET EXORDER=PGM/FEX
EX iway.test.jclass parameter1,"subparm1=val1,subparm2=val2",simple
parameter3
-EXIT
3-2 iWay Software

Calling a JAVA Class
Passing Parameters
The following terminology is used in this section:

• All parameters in either a CALLJAVA call or EX command are separated by commas.

• You must enclose complex parameters containing commas in double quotation marks.

• If a parameter contains a double quote, code it as two consecutive double quotation
marks with no spaces.

• Parameter names can have spaces.

• Enclose parameters with leading and/or trailing spaces in double quotes.

• Two consecutive commas do not represent a parameter; use " " to pass a blank
parameter.

• One parameter is generated for an unbalanced double quotation mark.

Example: Passing Parameters

The following command invokes the JAVA class java.ibi.bony.bonypoc with three
parameters:

EX java.ibi.bony.bonypoc Parameter1, " ", ""Parameter3""

Writing a JAVA Class
When you write a JAVA class to be invoked by the iWay Server, you use the class with the
CALLJAVA interface, as much as you would use a 3GL program with the CALLPGM interface.
The CALLJAVA interface defines two methods, execute and fetch.

• The execute method receives three parameters: user ID, password ID, and the String
array of parameters. Any one of those parameters can be a null object reference. Null
reference for the parameters array represents invocation with no parameters. The
server invokes the JAVA class in the “password pass through” mode. The execute
method performs the request and returns the instantiated IBI Answer Set object
populated with the answer set description. The fetch method populates this object
with data.

• The fetch method is invoked by the server to receive one row of the answer set at a
time. IBI_EOD is returned when the answer is finished; IBI_DATA is returned to indicate
more data is coming.

You can use ibtrace.println to trace execution of the program and ibtrace.printException
to output all information about a caught interruption. For example:

} catch (Exception e) {
ibtrace.printException(e, "Caught execute interruption");
}

iWay Stored Procedures Reference 3-3

Writing a JAVA Class
The output of ibtrace class method calls is forwarded into the standard server trace file.

Interfaces

ibiAnswerSet interface

package ibi.callpgm;

public interface ibiAnswerSet {

public static final int IBI_ALPHA = 6;
public static final int IBI_INTEGER = 1;
public static final int IBI_DATE = 10;
public static final String IBI_MISSING = ".";

public int getColsNumb();
public void setColName(int colIndex, String name);
public void setColType(int colIndex, int type);
public void setColSize(int colIndex, int size);
public void setColValue(int colIndex, String value);
}

callpgm interface

package ibi.callpgm;

public interface callpgm {
/**
* executes the request and returns answer set description
* @param username - the user name or null
* @param password - the user password or null
* @param parms - array of parameters or null
* @param ibianswr - the IBI Answer Set object
* @return ibianswr populated with the meta information
*/
public ibianswr execute(String username, String password, String[] parms)
throws Exception;
/**
* returns one row of the answer
* @param - none. IBI Answer Set object instantiated in "execute" is used
to return data
* @return End-Of-Data indicator
*/
public Integer fetch() throws Exception;

public static final Integer IBI_EOD = null;
public static final Integer IBI_DATA = new Integer(1);
}

3-4 iWay Software

Calling a JAVA Class
JAVA Class Communication
When you execute a JAVA class (either with the CALLJAVA call or EX command), the server
and the program communicate using an IBI answer set object.

This object has to be instantiated and populated with the answer set description on an
“execute” method call. This method is called by the server only once. The server will call a
“fetch” method repeatedly until it receives an IBI_EOD indicator. The server expects to
receive the answer set row by row in the same instance of the IBI answer set object.

Compiling and Running a JAVA Program
When you compile your JAVA program, the jscom3.jar file located in the EDAHOME etc
subdirectory needs to be accessible via the CLASSPATH environment variable or the javac
command parameter.

When you execute your JAVA class, you need to place the client jar file containing the JAVA
class to be invoked in the CLASSPATH environment variable prior to starting the iWay
Server.

Example

package ibi.bony;

import ibi.trace.*;
import ibi.callpgm.*;

public class bonypoc implements callpgm{
private ibianswr answr = null;
private int rownum = 0;
private int Rows = 2;
private String[] arrParms = null;

public bonypoc(){}

public ibianswr execute(String username, String password, String[] parms)
throws Exception
{
 ibtrace.println("...BoNY POC Constractor");
 ibtrace.println("...BoNY POC Username: " + username + ", Password: "
+ password);
 int numParms = (parms != null) ? parms.length : 0;
 ibtrace.println("...BoNY POC There is(are) " + numParms + "
parameter(s)");
 for(int i=1; i <= numParms;
 ibtrace.println("...-> Parameter " + i + ": " + parms[i-1]), i++);

 if(numParms == 0)
iWay Stored Procedures Reference 3-5

Compiling and Running a JAVA Program
 {
 Rows = 4;
 int Cols = 4;
 answr = new ibianswr(Cols);
 ibtrace.println("...BoNY POC number of columns set to " +
answr.getColsNumb());

 answr.setColSize(1, 6);
 answr.setColName(1, "Mes1");
 answr.setColSize(2, 15);
 answr.setColName(2, "Mes2");

 for (int col = 3; col <= Cols; col++)
 {
 answr.setColSize(col, 10);
 answr.setColName(col, "Col" + new Integer(col).toString());
 }
 }
 else
 {
 Rows = 2;
 arrParms = parms;
 answr = new ibianswr(arrParms.length);
 ibtrace.println("...BoNY POC number of columns set to " +
answr.getColsNumb());

 for (int col = 1; col <= answr.getColsNumb(); col++)
 {
 answr.setColSize(col,
 (col == 1) ? Math.max(5,arrParms[col-1].length())
 : arrParms[col-1].length());
 answr.setColName(col, "Col" + col);
 }
 }

 return answr;
}

public Integer fetch() throws Exception
{
 if(++rownum > Rows) return IBI_EOD;
 if(arrParms == null)
 {
 switch(rownum)
 {
 case 1:
 answr.setColValue(3, null);
 answr.setColValue(4, null);
3-6 iWay Software

Calling a JAVA Class
 answr.setColValue(1, "There");
 answr.setColValue(2, "is");
 break;
 case 2:
 answr.setColValue(3, " ");
 answr.setColValue(4, " ");
 answr.setColValue(2, "parameters");
 answr.setColValue(1, "no");
 break;
 default:
 for (int col = 1; col <= answr.getColsNumb();
 answr.setColValue(col++, "Row " + rownum));
 break;
 }
 }
 else
 {
 switch(rownum)
 {
 case 1:
 answr.setColValue(1, "Echo");
 for (int col = 2; col <= answr.getColsNumb();
 answr.setColValue(col, " "),
 col++);
 break;
 default:
 for (int col = 1; col <= answr.getColsNumb();
 answr.setColValue(col, arrParms[col-1]),
 col++);
 break;
 }
 }
 return IBI_DATA;
 }
}

iWay Stored Procedures Reference 3-7

Compiling and Running a JAVA Program
3-8 iWay Software

CHAPTER 4

Writing a 3GL Compiled Stored Procedure Program

Topics:

• Program Requirements

• Setting Up the Control Block

• Storing Program Values

• Error Handling

• Issuing the CREATE TABLE
Command

These topics describe the requirements for writing a 3GL
complied program to be called by the EDARPC function call
or by the CALLPGM command. They explain how to set up
control blocks for communication between the server and
the program, and how to store program values so that the
program retrieves addresses of allocated data storage.
These topics also discuss the CREATE TABLE command,
which the program issues in order to describe the answer
set that it is returning.
iWay Stored Procedures Reference 4-1

Program Requirements
Program Requirements
If you are writing a program to be stored on a server and called as a 3GL stored procedure,
you must:

• Write and compile a program as a loadable library.

• Create a control block for communication within the program.

• Retain values used by your program.

• Issue the CREATE TABLE command to describe any answer set before returning it.

Theoretically, any 3GL language can be used provided it can be compiled and linked as a
loadable library. However, reference examples and tools (GENCPGM) to assist in
compilation and linking only exist for a limited set of languages. Thus, any 3GL language is
supported, but some are untested and unlikely to be tested. For more information about
GENCPGM, see Appendix B, GENCPGM Usage for languages supported and the samples in
this chapter. If you are using an untested language and are having problems, contact iWay
customer support so that a specialist can assist you.

For details on calling a compiled program with EDARPC or CALLPGM, see Chapter 2, Calling
a Program as a Stored Procedure.

Note: Loadable library is a generic term. The actual technical name varies by operating
system. Other commonly used terms for these types of files are dll, service program, shared
library, and shared image. The script, gencpgm, is provided on UNIX, Windows, OS/400, and
OpenVMS to assist in the actual compilation of a program, but any method is allowed
provided that it links in the appropriate library and builds the file as a dynamic load library
(for example, .so for UNIX, .dll for Windows, service program on OS/400, and shared library
on OpenVMS). For more information, see Appendix B, GENCPGM Usage.
4-2 iWay Software

Writing a 3GL Compiled Stored Procedure Program
Setting Up the Control Block

The server uses a control block for communication with a compiled program. The following
applies:

• Under MVS, OpenVMS, UNIX, OS/400, or Windows NT, the address of the control block
is sent to the program as the first parameter.

• Under CICS, the control block is the COMMAREA.

CALLPGM supports two styles of control block layouts (old and new) and SET command to
control which is used. The default continues to remain the old style for backward
compatibility for existing applications. The difference between the two styles is the number
of address areas (buffers) and the applicable values for signaling actions. The old style uses
two address areas (buffers), one for passing messages and a shared one for creates and
answers rows. The new style has a third address area so creates and answer rows each have
there own buffer. Which style is used is controlled with the command statement

SQL SPG SET CPGUB style

where:

OLD

Uses two address area buffers.

NEW

Uses three address area buffers.

Applications are allowed to set the style at any time, but if all applications use the new style,
then the command should be put in the server profile.

The benefit of the new style is that some new action flags were added for both OLD and
NEW but some flags that are strictly for NEW. For example:

• Normally, to send a message, the subroutine would be called twice; first to send the
message and a second time so the “all done” exit flag could be set. With the newer flag,
a value of 13 (which means message and exit), the routine is only called once.

In this section:

Control Block Specification

Setting Up a CALLPGM Control Block Structure for C

Setting Up a CALLPGM LINKAGE SECTION Control Block for Cobol

Setting Up a CALLPGM Data Structure Control Block for RPG
iWay Stored Procedures Reference 4-3

Setting Up the Control Block
• Normally, to send multiple records, several calls would be used to set the create
statement, get each record, and then the exit flag. Under the newer flags (specifically
18), and with CPGUB NEW, a single call can set the create buffer, load the answer set
buffer with multiple records, and set the exit flag.

Therefore, even a minor recoding of an old application to use the newer exit flags can
gain in performance, but applications that can buffer up all data into a single pass will
particularly benefit.

The following sections provide the control block specifications and examples of the control
block in C, COBOL, and RPG.

Values for the fields in the control block are supplied by either the server or the called
program. If a field is designated non-modifiable in the sample control block in C, its value is
supplied by the server and cannot be changed by the program. This restriction also applies
to the corresponding field in the sample control block in COBOL and RPG.

Control Block Specification
Data layouts used in the control blocks in the following sections are described in the table
below. Specific variable names used within an actual program and the samples provided by
iWay Software vary based on the limitations of the languages, but closely follow the names
below.

Field
Length
(in bytes)

Data
Type Description

input_CB_length 2 Integer Specifies the length of the input_CB
passed by the server, including any
passed parameters.

Non-modifiable. The server supplies
the value; the called program cannot
modify it.

reserved 2 Integer Non-modifiable. Reserved for server
use.
4-4 iWay Software

Writing a 3GL Compiled Stored Procedure Program
flag_value 4 Integer Specifies whether this is the first time
the server has called the program for
this client application:

1 First time.

0 All other times (unless an error occurs;
see the following error codes).

Non-modifiable. The server supplies
the value; the called program cannot
modify it.

If the server encounters a problem, it
sets the flag_value to one of the
following error codes, and calls the
program again. The called program
should check for these errors; if it
receives one, it should clean up and log
the flag_value.

Field
Length
(in bytes)

Data
Type Description
iWay Stored Procedures Reference 4-5

Setting Up the Control Block
flag_value
(continued)

The server supplies the value; the called
program cannot modify it.

100 Program name invalid.

101 Cannot get main parameter buffer.

200 CS/2 error condition (a
communications subsystem error).

300 Cannot get memory.

302 Cannot load program.

305 Bad value from user program.

306 Remote program abend.

307 Client abend.

308 CVT not found.

309 Cxinit call failed (an internal API
error).

310 Cxdefault call error (an internal API
error).

311 Cxsetuser call error (an internal API
error).

312 Cxset call failed (an internal API
error).

313 Invalid blocking factor. An
action_value of 14, 15, or 18 was
specified, but the blocking factor was ≤
0.

Field
Length
(in bytes)

Data
Type Description
4-6 iWay Software

Writing a 3GL Compiled Stored Procedure Program
flag_value
(continued)

400 CS/3 error condition (a
communications subsystem error).

500 Cannot get memory.

501 Unexpected message received.

502 Cannot load program.

503 Premature disconnect.

600 NTTK (tokenizer) error in a CREATE
TABLE (an internal component error).

602 Main buffer failure in a CREATE
TABLE.

603 Left parenthesis missing in a
CREATE TABLE.

604 Field name missing in a CREATE
TABLE.

605 Data type missing in a CREATE
TABLE.

606 Unidentified data type in a CREATE
TABLE.

607 Too many digits in column length
in a CREATE TABLE.

608 Right parenthesis missing in a
CREATE TABLE.

700 NTTKOP call failed (an internal API
error).

701 More than 254 fields in a CREATE
TABLE.

702 Invalid Master File.

Field
Length
(in bytes)

Data
Type Description
iWay Stored Procedures Reference 4-7

Setting Up the Control Block
action_value

Initial value on
first call: 4

4 Integer Specifies the type of response from the
called program:

1 Program returning a CREATE TABLE
statement.

2 Program returning binary data.

3 Program returning character data.

4 Program returning a message.

9 Program done, exit flag … terminate
and do not call routine again.

10 Program returning a CREATE TABLE
statement plus exit flag.

11 Program returning binary data plus
exit flag.

12 Program returning character data
plus exit flag.

13 Program returning message plus
exit flag.

14 Program returning data as a block of
tuples. Row length supplied via
message_length.

15 Program returning CREATE TABLE
and data as a block of tuples. Row
length supplied via message_length.

16 Program returning CREATE TABLE
and binary data.

17 Program returning CREATE TABLE
and character data.

Field
Length
(in bytes)

Data
Type Description
4-8 iWay Software

Writing a 3GL Compiled Stored Procedure Program
action_value

Initial value on
first call: 4

4 Integer 18 Program returning CREATE TABLE
and data as a block of tuples plus exit
flag. Row length supplied via
message_length.

19 Program returning CREATE TABLE,
binary data plus exit flag.

20 Program returning CREATE TABLE,
character data plus exit flag.

Action values 15 and higher are only
valid for use with SQL SPG SET CPGUB
NEW. Undefined action values result in
exit flag behavior.

The called program supplies the value.

Pointer padding filler for OS/400
pointers. Only required to exist for OS/
400 applications. Do not declare on
other platforms.

filler 4 Any type Pointer padding filler for OS/400
pointers. Only required to exist for OS/
400 applications. Do not declare on
other platforms.

answer_area

Initial value on
first call: 0

4 (32 bit)
8 (64 bit)
16 (OS/400)

Pointer
(address)

The address of the data returned by the
called program.

The called program supplies the value,
depending on the action value.

See Storing Program Values on page 4-
20 for more information on the use of
this field.

answer_length

Initial value on
first call: 0

4 Integer The length of the data returned by the
called program.

The called program supplies the value,
depending on the action value.

Field
Length
(in bytes)

Data
Type Description
iWay Stored Procedures Reference 4-9

Setting Up the Control Block
filler 12 Any type Pointer padding filler for OS/400
pointers. Only required to exist for OS/
400 applications. Do not declare on
other platforms.

message_area

Initial value on
first call: 0

4 (32 bit)
8 (64 bit)
16 (OS/400)

Pointer
(address)

The address of a message returned by
the called program.

The called program supplies the value
when action_value is 4.

See Storing Program Values on page 4-
20 for more information on the use of
this field.

message_length

Initial value on
first call: 0

4 Integer The length of the message returned by
the called program.

Or

The length of an answer row when data
is returned as a block used when
action_value is 14, 15, or 18.

The called program supplies the value.

filler 12 Any type Pointer padding filler for OS/400
pointers. Only required to exist for OS/
400 applications. Do not declare on
other platforms.

Only existing and applicable when SQL
SET CPGUB NEW, do not code when
CPUG OLD is used.

Field
Length
(in bytes)

Data
Type Description
4-10 iWay Software

Writing a 3GL Compiled Stored Procedure Program
create_area

Initial value on
first call: 0

4 (32 bit)
8 (64 bit)
16 (OS/400)

Pointer
(address)

The address of a CREATE returned by
the called program.

The called program supplies the value
when action_value is 4.

See Storing Program Values on page 4-
20 for more information on the use of
this field.

Only existing and applicable when SQL
SET CPGUB NEW, do not code when
CPUG OLD is used.

filler 12 Any type Pointer padding filler for OS/400
pointers. Only required to exist for OS/
400 applications. Do not declare on
other platforms.

parmlen 4 Integer The length of a parameter passed to
the called program.

The server supplies the value.

This field is paired with parmdata (see
next item). Twelve pairs are permitted
per program call.

parmdata Variable Any type The value of the parameter passed to
the program.

The server supplies the value (from
EDARPC or a Dialogue Manager
procedure).

This field is paired with parmlen. Twelve
pairs are permitted per program call.

Field
Length
(in bytes)

Data
Type Description
iWay Stored Procedures Reference 4-11

Setting Up the Control Block
Setting Up a CALLPGM Control Block Structure for C

To use CALLPGM with C, a data structure needs to be created. The precise structure
depends on whether SQL SPG SET CPGUB is set to NEW or OLD.

The following examples use a static length string to carry size/data pairs for information
passed as parameters to the program. It is the responsibility of the developers to place the
string into specific variables by reading a given size (length) and moving the correct
portion of the string into a variable, then moving down the string to the next size/value
pairs until the length of the string is read. It is very important to not read past the end of the
total length of the actual data structure (carried in input_CB_length, for example,
commonarea_length in the C example) as this memory area may contain excess data
depending on how a given operating system initializes memory. The examples included in
this manual and the example on disk use one particular style for reading the input area into
variables for use in the actual program, but any method can be used.

Example:

Using SQL SPG SET CPGUB OLD in the C Control Block

Using SQL SPG SET CPGUB NEW in the C Control Block
4-12 iWay Software

Writing a 3GL Compiled Stored Procedure Program
Example: Using SQL SPG SET CPGUB OLD in the C Control Block

typedef struct tag_CPGUB_ext /* CPGUB structure
*/
{
 short commarea_length; /* non-modifiable */
 short reserved; /* reserved */
 long flag_value; /* i:flag=1 1st time, =0 all other */
#define CPGUB_flag_frst 1 /* First time value for flag */
#define CPGUB_flag_nfst 0 /* Non-first time value for flag */
 long action_value; /* o:Action to be taken on callback */
#define CPGUB_action_CT 1 /* Create Table */
#define CPGUB_action_DA 2 /* Data (Binary) */
#define CPGUB_action_CD 3 /* Character Data */
#define CPGUB_action_MS 4 /* Message */
#define CPGUB_action_EX 9 /* Exit */
#define CPGUB_action_CTE 10 /* Create Table & exit */
#define CPGUB_action_DAE 11 /* Data (Binary) & exit */
#define CPGUB_action_CDE 12 /* Character Data & exit */
#define CPGUB_action_MSE 13 /* Message & exit */
#define CPGUB_action_DAB 14 /* Data Block of Tuples */
 /* Use of any action not define is */
 /* treated as CPGUB_action_EX, ie exit. */
 char *answer_area; /* o:answer area address */
 long answer_length; /* o:answer area length */
 char *return_value; /* o:reply area address */
 /* for msg on _MS call (sent to client) */
 /* for reply on _EX calls */
 long return_length; /* o:reply area length */
} t_CPGUB;
iWay Stored Procedures Reference 4-13

Setting Up the Control Block
Example: Using SQL SPG SET CPGUB NEW in the C Control Block

typedef struct tag_CPGUB_ext /* CPGUB structure
*/
{
 short commarea_length; /* non-modifiable */
 short reserved; /* reserved */
 long flag_value; /* i:flag=1 1st time, =0 all other */
#define CPGUB_flag_frst 1 /* First time value for flag */
#define CPGUB_flag_nfst 0 /* Non-first time value for flag */
 long action_value; /* o:Action to be taken on callback */
#define CPGUB_action_CT 1 /* Create Table */
#define CPGUB_action_DA 2 /* Data (Binary) */
#define CPGUB_action_CD 3 /* Character Data */
#define CPGUB_action_MS 4 /* Message */
#define CPGUB_action_EX 9 /* Exit */
#define CPGUB_action_CTE 10 /* Create Table & exit */
#define CPGUB_action_DAE 11 /* Data (Binary) & exit */
#define CPGUB_action_CDE 12 /* Character Data & exit */
#define CPGUB_action_MSE 13 /* Message & exit */
#define CPGUB_action_DAB 14 /* Data Block of Tuples */
#define CPGUB_action_CTB 15 /* Create Table & Data Block of Tuples */
#define CPGUB_action_CTD 16 /* Create Table & Data (Binary) */
#define CPGUB_action_CTC 17 /* Create Table & Character Data */
#define CPGUB_action_CTBE 18/* Create Table, Block of Tuples & exit */
#define CPGUB_action_CTDE 19/* Create Table & Data (Binary) & exit */
#define CPGUB_action_CTCE 20/* Create Table & Character Data & exit */
 /* Use of any action not define is */
 /* treated as CPGUB_action_EX, ie exit. */
 char *answer_area; /* o:answer area address */
 long answer_length; /* o:answer area length */
 char *return_value; /* o:reply area address */
 /* for msg on _MS call (sent to client) */
 /* for reply on _EX calls */
 long return_length; /* o:reply area length */
 char *create_address; /* o:create table data address */
 long create_length; /* o:create table data length */
} t_CPGUB_ext;

The difference between control blocks SQL SPG SET CPGUB NEW and OLD is that an
additional CREATE pointer and length exist for returning separate CREATE information.
4-14 iWay Software

Writing a 3GL Compiled Stored Procedure Program
Setting Up a CALLPGM LINKAGE SECTION Control Block for Cobol

To use CALLPGM with Cobol, an 01 level data structure needs to be created. The precise
structure depends on whether SQL SPG SET CPGUB is set to NEW or OLD.

Cobol requires the use of fillers for padding out pointer lengths on OS/400. The padding is a
combination of being an OS/400 behavior for pointer alignment and COBOL requiring
pointer alignment to be explicitly coded on OS/400. Do not use these OS/400 specific fillers
on the platforms.

The following examples use a static length string to carry size/data pairs for information
passed as parameters to the program. It is the responsibility of the developers to place the
string into specific variables by reading a given size (length) and moving the correct
portion of the string into a variable, then moving down the string to the next size/value
pairs until the length of the string is read. It is very important to not read past the end of the
total length of the actual data structure (carried in input_CB_length, for example,
CALLPGM-DATA-LEN in the C example) as this memory area may contain excess data
depending on how a given operating system initializes memory. The examples included in
this manual and the example on disk use one particular style for reading the input string
into variables for use in the actual program, but any method can be used.

Example:

Using SQL SPG SET CPGUB OLD in the Cobol Control Block

Using SQL SPG SET CPGUB NEW in the Cobol Control Block
iWay Stored Procedures Reference 4-15

Setting Up the Control Block
Example: Using SQL SPG SET CPGUB OLD in the Cobol Control Block

01 CALLPGM-DATA.
 05 FIXED-LENGTH-PART.
 10 CALLPGM-DATA-LEN PIC S9(4) BINARY.
 10 FILLER PIC X(2).
 10 FLAG-VALUE PIC S9(8) BINARY.
 88 FLAG-FIRST-TIME VALUE +1.
 88 FLAG-NOT-FIRST-TIME VALUE 0.
 88 FLAG-ERROR VALUE +2 THRU +1999.
 10 ACTION-VALUE PIC S9(8) BINARY.
 88 CREATE-TABLE VALUE +1.
 88 RETURNING-MIXED-DATA VALUE +2.
 88 RETURNING-CHAR-DATA VALUE +3.
 88 RETURNING-MESSAGE VALUE +4.
 88 PROGRAM-FINISHED VALUE +9.
**** OS/400 Needs the filler on the next line for alignment.
**** All other platforms should have it commented out
*OS400 10 FILLER PIC X(4).
 10 ANSWER-ADDRESS POINTER.
 10 ANSWER-LENGTH PIC S9(8) BINARY.
**** OS/400 Needs the filler on the next line for alignment.
**** All other platforms should have it commented out.
*OS400 10 FILLER PIC X(12).
 10 MESSAGE-ADDRESS POINTER.
 10 MESSAGE-LENGTH PIC S9(8) BINARY.
**** OS/400 Needs the filler on the next line for alignment.
**** All other platforms should have it commented out.
**** The filler also needs to be here vs next section so
**** fix part length test operate correctly.
*OS400 10 FILLER PIC X(12).
 05 PARAMETERS-PART.
 Length is arbitrary at 80, could have been longer.
 Should be set the maximum expected length plus extra.
 10 INSTRING PIC X(80).
4-16 iWay Software

Writing a 3GL Compiled Stored Procedure Program
Example: Using SQL SPG SET CPGUB NEW in the Cobol Control Block

01 CALLPGM-DATA.
 05 FIXED-LENGTH-PART.
 10 CALLPGM-DATA-LEN PIC S9(4) BINARY.
 10 FILLER PIC X(2).
 10 FLAG-VALUE PIC S9(8) BINARY.
 88 FLAG-FIRST-TIME VALUE +1.
 88 FLAG-NOT-FIRST-TIME VALUE 0.
 88 FLAG-ERROR VALUE +2 THRU +1999.
 10 ACTION-VALUE PIC S9(8) BINARY.
 88 CREATE-TABLE VALUE +1.
 88 RETURNING-MIXED-DATA VALUE +2.
 88 RETURNING-CHAR-DATA VALUE +3.
 88 RETURNING-MESSAGE VALUE +4.
 88 PROGRAM-FINISHED VALUE +9.
**** OS/400 Needs the filler on the next line for alignment.
**** All other platforms should have it commented out.
*OS400 10 FILLER PIC X(4).
 10 ANSWER-ADDRESS POINTER.
 10 ANSWER-LENGTH PIC S9(8) BINARY.
**** OS/400 Needs the filler on the next line for alignment.
**** All other platforms should have it commented out.
*OS400 10 FILLER PIC X(12).
 10 MESSAGE-ADDRESS POINTER.
 10 MESSAGE-LENGTH PIC S9(8) BINARY.
**** OS/400 Needs the filler on the next line for alignment.
**** All other platforms should have it commented out.
*OS400 10 FILLER PIC X(12).
 10 CREATE-ADDRESS POINTER.
 10 CREATE-LENGTH PIC S9(8) BINARY.
**** OS/400 Needs the filler on the next line for alignment.
**** All other platforms should have it commented out.
**** The filler also needs to be here vs next section so
**** fix part length test operate correctly.
*OS400 10 FILLER PIC X(12).
 05 PARAMETERS-PART.
 Length is arbitrary at 80, could have been longer.
 Should be set the maximum expected length plus extra.
 10 INSTRING PIC X(80).

The difference between control blocks SQL SPG SET CPGUB NEW and OLD is that an
additional CREATE pointer and length exist for returning separate CREATE information.
iWay Stored Procedures Reference 4-17

Setting Up the Control Block
Setting Up a CALLPGM Data Structure Control Block for RPG

Note: RPG is an OS/400 only language.

To use CALLPGM with RPG, a data structure needs to be created. The precise structure
depends on whether SQL SPG SET CPGUB is set to NEW or OLD.

RPG (like Cobol on OS/400) requires the use of fillers for padding out pointer lengths. This
padding is a combination of being an OS/400 behavior for pointer alignment and RPG
requiring pointer alignment to be explicitly coded.

The following examples use a static length string to carry size/data pairs for information
passed as parameters to the program. It is the responsibility of the developers to place the
string into specific variables by read a given size (length) and moving the correct portion of
the string into a variable, then moving down the string to the next size/value pairs until the
length of the string is read. It is very important to not read past the end of the total length
of the actual data structure (carried in CB_LENGTH) as this memory area may contain excess
data depending on how the operating system initialized memory. The examples included
in this manual and the examples on disk use one particular style for reading the input string
into variables for use in the actual program, but any method can be used.

Example: Using SQL SPG SET CPGUB OLD in the RPG Control Block

 * Control Block Data Structure ...
 D cbds DS
 D CB_LENGTH 5I 0
 D FILLER 2A
 D FLAG_VALUE 9B 0
 D ACTION_VALUE 10I 0
 D FILLERA 4A
 D ANSWER_AREA *
 D ANSWER_LEN 10I 0
 D FILLERM 12A
 D MESSAGE_AREA *
 D MESSAGE_LEN 10I 0
 D FILLERI 12A
 * Parm Area (arbitrary minimum length)
 D PARMDATA 1024A

Example:

Using SQL SPG SET CPGUB OLD in the RPG Control Block

Using SQL SPG SET CPGUB NEW in the RPG Control Block
4-18 iWay Software

Writing a 3GL Compiled Stored Procedure Program
Example: Using SQL SPG SET CPGUB NEW in the RPG Control Block

 * Control Block Data Structure ...
 D cbds DS
 D CB_LENGTH 5I 0
 D FILLER 2A
 D FLAG_VALUE 9B 0
 D ACTION_VALUE 10I 0
 D FILLERA 4A
 D ANSWER_AREA *
 D ANSWER_LEN 10I 0
 D FILLERM 12A
 D MESSAGE_AREA *
 D MESSAGE_LEN 10I 0
 D FILLERC 12A
 D CREATE_AREA *
 D CREATE_LEN 10I 0
 D FILLERI 12A
 * Parm Area (arbitrary minimum length)
 D PARMDATA 1024A

The difference between control blocks SQL SPG SET CPGUB NEW and OLD is that an
additional CREATE pointer and length exist for returning separate CREATE information.
iWay Stored Procedures Reference 4-19

Storing Program Values
Storing Program Values

When running in a multi-user environment, programs called by CALLPGM may be
multi-threaded. If so, data returned to the server must be returned in dynamically allocated
storage, and the program must know how to retrieve the address of that storage. This is
illustrated in the sample code in the following subsections.

Programs called by CALLPGM typically return the following data to the server:

• Messages (up to 80 bytes).

Messages returned by the program are pointed to by the control block field
message_area. The length is given in the field message_length.

• Answer set descriptions, that is, CREATE TABLEs (up to 1,000 bytes).

Answer set descriptions or rows (see below) returned by the program are pointed to by
the control block field answer_area. The length is given in the field answer_length.

• Rows or tuples (up to 32,000 bytes).

A program returns data by placing it in an address (pointer) area.

Address area space allocations are by default 1024-bytes, which may suffice in some
applications. An application may acquire dynamic storage on its own using those facilities
of the language that are available for use within any given language on any given operating
system or by issuing explicit commands to have the calling process (the server) set specific
address area allocations for the called program to use.

Example:

Storing Program Values in C

Storing Program Values in COBOL

Storing Program Values in COBOL II

Linking Program Variables to the Control Block

Checking for First-time Execution

Allocating and Freeing Dynamic Storage
4-20 iWay Software

Writing a 3GL Compiled Stored Procedure Program
To have the server set specific address allocations use one or more of the following
commands:

SQL SPG SET SPGALLOC_CRT n (SQL SPG SET CPGUB NEW ONLY)
SQL SPG SET SPGALLOC_MSG n
SQL SPG SET SPGALLOC_ANS n

Where n is a number between 1024 (1K) and 32768 (32K). The allocated address is then
placed into the respective control block pointer location for the CALLPGM program to use.

To have the application itself acquire dynamic storage depending upon your environment
use features such as:

• malloc in C.

• EXEC CICS GETMAIN in COBOL or C under CICS.

• 'GETCOR' in COBOL under VTAM.

• “LIB$GET_VM” in COBOL under OpenVMS.

It is the program’s responsibility to free such storage at its last invocation.

It may also be necessary for subsequent invocations of a program to retrieve previously
stored values, which would also require the use of dynamically acquired storage method.

By placing the address of the storage in the control block fields message_area and
answer_area, the server returns the values to you on the next call, and then re-addresses
the variables. Always point the message_area and answer_area to valid data when control
is returned to the server.

The examples in the following sections show how values are saved across invocations of a
program. The first time a program is called, it allocates dynamic storage for the values to be
saved. Each subsequent time the program is called, the address of the dynamic storage is
retrieved using the message_area or answer_area.
iWay Stored Procedures Reference 4-21

Storing Program Values
Sample programs are supplied with your software in locations as described below.

The portable COBOL examples have specifically been tested with IBM Enterprise COBOL
V3R2, HP OpenVMS COBOLv2.7, and IBM OS/400 ILE COBOL. Depending on the target
platform, minor editing (for example, commenting or uncommenting of lines) is required
for use. Specific instructions are contained as comments at the beginning of the file.

The supplied samples work by parsing the parameters passed to the program and passing
back information such as a number of records to return. None of the samples use actual
database access; they simulate what and how to send data and messages back to the
calling process using arbitrary text, therefore they need little in the way of setup for
demonstration purposes. The samples all contain comments on requirements for
compilation and use.

Type of Program Supplied As

C MVS CPGC370 in qualif.EDALIB.DATA
All other platforms cpt.c in $EDAHOME/etc

CICS COBOL CPGCICS in qualif.EDACICS.DATA for CICS COBOL II usage.

MVS COBOL CPGVTAM in qualif.EDACTL.DATA for MVS COBOL II usage.

COBOL Portable version for all other platforms (including MVS using
Enterprise COBOL.)

SPGOLD.CBL in $EDAHOME/etc
SPGNEW.CBL in $EDAHOME/etc

RPG (OS/400 only)
SPGOLD.RPG in $EDAHOME/etc
SPGNEW.RPG in $EDAHOME/etc
4-22 iWay Software

Writing a 3GL Compiled Stored Procedure Program
Example: Storing Program Values in C

The following sample C code illustrates the allocation of dynamic storage on the first call,
and addressability to program variables on subsequent calls.

typedef struct message_buffer
 { char message[80] ;
 } message_buffer;

 typedef struct answer_tuple
 { char customer_name[40] ;
 char customer_address[90] ;
 char balance_due[20] ;
 char comments[300] ;
 } answer_tuple;

 typedef struct answer_buffer
 { int *program_variable_buffer_ptr ;
 struct answer_tuple answer_set_tuple ;
 } answer_buffer;

 typedef struct program_variable_buffer
 { long number_of_rows ;
 long last_record ;
 short reserved ;
 short close_pending_flag ;
 } program_variable_buffer;
 .
 .
 .
 .
 .
 .
iWay Stored Procedures Reference 4-23

Storing Program Values
 /* On the first call, allocate message, answer, and program variable */
 /* buffers and anchor them in the input control block. The program’s */
 /* local variables are anchored by saving a pointer immediately */
 /* preceding the answer_area. The pointer saved in the answer_area is */
 /* actually 4 bytes into the answer_buffer, providing the correct */
 /* interface to the server for processing answer set requests, */
 /* while still anchoring the program's local variables by "hiding" the*/
 /* pointer in the memory immediately preceding the answer_area. By */
 /* placing the pointer before the answer_set_tuple, it is not seen */
 /* by the server. */
 /* */
 /* Check for first call of this program. */
 if (flag_value = CPGUB_flag_first)

 { /* Allocate answer_buffer. */
 answer_buffer_ptr = (answer_buffer *)
 malloc(sizeof(answer_buffer), 1);

 answer_area = (int *) (((long) (answer_buffer_ptr)) + 4);
 answer_length = sizeof(answer_buffer) - 4;

 /* Allocate buffer for program variables. */
 program_variable_buffer_ptr = (int *)
 malloc(sizeof(program_variable_buffer), 1);

 /* Allocate buffer for messages. */
 message_area = (int *) malloc(sizeof(message_buffer),1);

 message_length = sizeof(message_buffer);
 }
 /* On subsequent calls, locate addressability to the program’s local */
 /* variables via the pointer saved immediately before the answer_area */

 else
 { answer_buffer_ptr = (answer_buffer *) (((long) (answer_area)) - 4);
 }
 .
 .
 .
4-24 iWay Software

Writing a 3GL Compiled Stored Procedure Program
On the first call, the sample code allocates dynamic storage for:

• Answer set descriptions or rows returned by the program (pointed to by the control
block field answer_area).

• Program variables to be saved across invocations of the program.

• Messages returned by the program (pointed to by the control block field
message_area).

The pointer to the program variable buffer is saved at a fixed location (a known offset), in
the first n bytes of the buffer, for the answer set description or row (called the answer
buffer). This is illustrated in the figure below.

For example, you might allocate an answer buffer of 1,004 bytes with 1,000 bytes used to
store the largest answer set description and the 4 extra bytes used to store the pointer to
the program variable buffer.

As shown in the following figure, the pointer stored in the control block’s answer_area
points to the answer buffer, excluding the 4 bytes used to store the pointer to the program
variable buffer. That is, the pointer is directed toward the beginning of an answer set
description or row. (The message_area could also be used to store the pointer to the
program variable buffer, but for the purpose of illustration, the answer_area was chosen.)

The length of bytes to be stored in the control block’s answer_length would be 1,004 minus
4, or a value of 1,000, to reflect the value of the largest answer set description or row.
iWay Stored Procedures Reference 4-25

Storing Program Values
To determine the address of the program variable buffer on subsequent calls, the program
would subtract the size of the pointer to the program variable buffer (4 bytes on most
machines) from the answer_area in the control block.

When freeing memory on exit, the program determines the size of the answer buffer by
adding the answer_length to the size of the pointer to the program variable buffer.

When using this technique, it is important to keep the answer_area in the control block
consistent with the definition in the interface. Always point the answer_area and
message_area to valid data when control is returned to the server. Program variables are
kept in any allocated memory buffer using this technique.

The program must free all memory allocated during execution before returning an
action_value of 9 (exit) to the server. This requirement applies to the memory for program
variables, messages, answer set descriptions, and rows. If all memory is not freed at
program exit, server failure may result at a later time.

Example: Storing Program Values in COBOL

In COBOL, one way to save program variables across invocations of a program is to allocate
one block of storage big enough to hold:

• Any returned messages (up to 80 bytes).

• Answer set descriptions, that is, CREATE TABLEs (up to 1,000 bytes).

• Rows or tuples (up to 32,000 bytes).

• Program variables.

Dynamic storage is acquired in this example using EXEC CICS GETMAIN in COBOL under
CICS as the reference platform, but any language supporting the setting of dynamic
storage can be used with the syntax specific to that language.

The following sample COBOL code describes a MESSAGEAREA. It provides the field
MESSAGE-OUT for messages, answer set descriptions (CREATE TABLEs), and rows. It
provides the fields NUM-ROWS, LAST-REC, and CLOSE-PENDING-FLAG for program values
to be retrieved in subsequent invocations.

01 MESSAGEAREA.
 05 MESSAGE-OUT PIC X(1000).
 05 NUM-ROWS PIC S9(8) COMP-4.
 05 LAST-REC PIC S9(8) COMP-4.
 05 CLOSE-PENDING-FLAG PIC X.
 88 CLOSE-PENDING VALUE "1".
 88 CLOSE-NOT-PENDING VALUE "0".
 05 FILLER PIC X(15).
4-26 iWay Software

Writing a 3GL Compiled Stored Procedure Program
The code to store values is:

 IF FLAG-FIRST-TIME
 MOVE LENGTH OF MESSAGEAREA TO MESSAGE-LENGTH
******* GETMAIN, SET LENGTH, ADDRESSES
 EXEC CICS GETMAIN SET (ADDRESS OF MESSAGEAREA)
 FLENGTH (MESSAGE-LENGTH)
 INITIMG (INITVALUE)
 END-EXEC
 SET MESSAGE-ADDRESS TO ADDRESS OF MESSAGEAREA
 SET ANSWER-ADDRESS TO ADDRESS OF MESSAGEAREA
 ELSE
***** IF NOT THE FIRST TIME, RETRIEVE THE GETMAIN ADDRESS
***** FROM EITHER COMMAREA ADDRESS, AND SET THE ADDRESS
***** OF THE GETMAIN AREA SO IT IS ADDRESSABLE IN COBOL.
 SET ADDRESS OF MESSAGEAREA TO MESSAGE-ADDRESS.

The previous code fragment is executed each time the program is invoked. The first time,
the program uses EXEC CICS GETMAIN to allocate the storage to the length of the
MESSAGEAREA. On each subsequent execution, it gets the address of the MESSAGEAREA
from the field MESSAGE-ADDRESS.

The following figure illustrates the program logic in the code fragment. In the figure, the
field MESSAGE-ADDRESS in the code is represented as message_area in the control block.
iWay Stored Procedures Reference 4-27

Storing Program Values
In this example, the program allocates a buffer (MESSAGEAREA) of 1,000 bytes (for the
largest message, answer set description, or row to be returned), plus 24 bytes for the
program variables.

In the control block:

• The message_area and answer_area are set to the address of the beginning of the
buffer.

• The message_length reflects the size of the messages returned to the client
application.

• The answer_length reflects the size of the answer set descriptions or rows returned to
the client application.

To address program variables stored between invocations in this way, use

SET ADDRESS OF MESSAGEAREA TO MESSAGE-ADDRESS

as shown in the preceding sample code. This code enables the program to refer to the
variables NUM-ROWS, LAST-REC, and CLOSE-PENDING-FLAG.

To free storage allocated this way, use:

EXEC CICS FREEMAIN (MESSAGEAREA) END-EXEC

CICS frees the correct length.
4-28 iWay Software

Writing a 3GL Compiled Stored Procedure Program
Below is output from a sample session that runs CPGCICS using RDAAPP, a test program
supplied on your distribution media.

<<< RDAAPP : Initializing API SQL, Version x >>>
<<< Initialization Successful >>>
Trace level ?

Enter User Name :

Enter Password :

Enter Server name (Hit return for 'CICS ') :

<<< Successfully connected to server >>>
Enter (S/P <sql stmt;> / X <RPC> <parms> / D <tbl> / E <prep id> / C/R /
Q) :
x cpgcics 1
Please Wait.
000100
S. D. BORMAN
SURREY, ENGLAND
3215677826
11 81
$0100.11

<<< 1 record(s) processed. >>>
Enter (S/P <sql stmt;> / X <RPC> <parms> / D <tbl> / E <prep id> / C/R /
Q) :

Example: Storing Program Values in COBOL II

The following example uses VTAM MVS COBOL II as the reference platform.

To allocate dynamic storage, use the 'GETCOR' function, supplied on your distribution
media in the module CPGUSRO.

Specify the following three parameters on the function call:

• The address of the length of the storage to be allocated.

• The address of the allocated memory to be returned.

• The address of an area in which to place the return code.
iWay Stored Procedures Reference 4-29

Storing Program Values
The following is the code for allocating dynamic storage:

01 COR-DATA.
 05 MESSAGEAREA-LENGTH PIC S9(8) BINARY.
 05 MESSAGEAREA-ADDRESS POINTER.
 05 COR-RESP PIC S9(8) BINARY.
 .
 .
 .
MOVE LENGTH OF MESSAGEAREA TO MESSAGEAREA-LENGTH
CALL 'GETCOR' USING
BY REFERENCE MESSAGEAREA-LENGTH,
 BY REFERENCE MESSAGEAREA-ADDRESS,
 BY REFERENCE COR-RESP

To free dynamic storage on program exit, use the 'FRECOR' function, also supplied on your
distribution media.

Specify the following three parameters on the function call:

• The address of the allocated memory to be freed.

• The address of the length of the storage to be freed.

• The address of the area that held the return code.

The following is the code for freeing dynamic storage:

CALL 'FRECOR' USING
 BY CONTENT LENGTH OF MESSAGEAREA,
 BY REFERENCE MESSAGEAREA,
 BY REFERENCE COR-RESP

Note: Use the COR-RESP return code, not the COBOL RETURN-CODE, as the latter has an
arbitrary value.

To link edit the sample program (supplied as CPGVTAM on your distribution media), use the
statements below:

INCLUDE EDALIB(CPGUSRO)
 INCLUDE OBJECT
 MODE AMODE(31),RMODE(ANY)
 ENTRY CPGVTAM
 NAME CPGVTAM(R)

CPGUSRO is a non-executable module that provides dynamic linkage to 'GETCOR' and
'FRECOR'.
4-30 iWay Software

Writing a 3GL Compiled Stored Procedure Program
Example: Linking Program Variables to the Control Block

The following code fragment illustrates how to link program variables to the answer and
message pointers, defined in the control block in Control Block Specification on page 4-4.

WORKING-STORAGE SECTION.
01 MESSAGE-BUFFER PIC X(100) VALUE SPACES.
01 ANSWER-BUFFER PIC X(100) VALUE SPACES.
 .
 .
 .
SET ANSWER-ADDRESS TO ADDRESS OF ANSWER-BUFFER
SET MESSAGE-ADDRESS TO ADDRESS OF MESSAGE-BUFFER

Note: OpenVMS uses the keywords “TO REFERENCE OF” instead of “TO ADDRESS OF”.

Example: Checking for First-time Execution

The following code checks for the initial execution of the program so that it initializes
program variables on the first call:

PROCEDURE DIVISION USING CPGUB.
A010-BEGIN.
 IF FLAG-FIRST-TIME
 PERFORM A020-INIT-DATA
 ELSE
 IF PARM-COUNT < 5 AND PARM-REMAIN > ZERO PERFORM A030-READ-DATA.
 EXIT PROGRAM.
iWay Stored Procedures Reference 4-31

Error Handling
Example: Allocating and Freeing Dynamic Storage

The following code illustrates how to allocate and free dynamic storage used for storing
program values:

01 NUMBER-OF-BYTES PIC S9(9) COMP.
01 BASE-ADDRESS PIC S9(9) COMP.
01 RET-STATUS PIC S9(9) COMP.
 .
 .
 .
A080_ALLOC_STORAGE.
 MOVE +1000 TO NUMBER-OF-BYTES.
 CALL "LIB$GET_VM"
 USING BY REFERENCE NUMBER-OF-BYTES, BASE-ADDRESS
 GIVING RET-STATUS.
 .
 .
 .
A090_FREE_STORAGE.
 MOVE +1000 TO NUMBER-OF-BYTES.
 CALL "LIB$FREE_VM"
 USING BY REFERENCE NUMBER-OF-BYTES, BASE-ADDRESS
 GIVING RET-STATUS.

Error Handling
When the server encounters an error during the execution of a program, it calls the
program again, indicating the error condition in the control block field flag_value. The
program then does one of the following, indicating its response in the action_value field:

• Free any memory allocated during program execution, and exit, issuing an
action_value of 9 (exit). The program must allocate and free its own dynamic storage.
Make sure that the program frees any allocated resources (especially memory) before
issuing an action_value of 9. Not freeing memory may cause the server to fail at a later
point in time.

• Return a message to the server to explain the error, issuing an action_value of 4. The
server then attempts to return the message to the client application and call the
program again, which must free its resources and end, as described above.

Messages are retrieved by the client application before the processing of an answer set,
or after the completion of answer set processing.
4-32 iWay Software

Writing a 3GL Compiled Stored Procedure Program
Only the action_values for returning a message, or for exiting, are valid after the server has
reported an error. Any other action_value returned by the program causes the server to end
without further calls to the program. If the program does return another action_value, the
server attempts to report the program’s incorrect behavior to the client application using a
server-initiated message.

The following figure illustrates the correct error handling sequence. In the figure, the
following flag_values are shown:

1 Indicates the first call to the program.

0 Indicates a subsequent call to the program, without an error.

606 Indicates an error.

The program’s choices when it receives the error code 606 are also illustrated.

iWay Stored Procedures Reference 4-33

Issuing the CREATE TABLE Command
Issuing the CREATE TABLE Command
To return rows of table data to a client application, a program must first issue a CREATE
TABLE command. It is a description of the answer set, telling the server the format of the
row being returned (that is, the column name and type of data). The server uses that
information to inform the client application, converting it to a format the client retrieves
with the API function call EDAINFO.

The program then returns the actual rows of data in the table. The client application
retrieves the data rows with the function call EDAFETCH.

A CREATE TABLE may not exceed 1,000 bytes in length.

Syntax: How to Issue a Create Table

CREATE TABLE table_name (col_name col_type[,...])

where:

table_name

Is the name of the table to be created. The length and format of table_name must
comply with standard SQL requirements.

col_name

Is the name of a column to be created. The length and format of col_name must comply
with standard SQL requirements. The maximum number of columns permitted in one
CREATE TABLE is 254.

col_type

Is the data type of the column. Possible values are:

CHAR(n) for fixed-length alphanumeric, where n is less than 254. The value
CHAR(10) is used for date formats.

SMALLINT for two-byte binary integer.

INTEGER for four-byte binary integer.

DECIMAL(p,s) for packed decimal containing p digits with an implied number s
of decimal points.

REAL for four-byte, single-precision floating point.

FLOAT for eight-byte, double-precision floating point.
4-34 iWay Software

Writing a 3GL Compiled Stored Procedure Program
As shown in the syntax, you must include a blank:

• After table_name (before the left parenthesis).

• After the left parenthesis (before col_name).

• Before the right parenthesis.

Blanks are not permitted in col_type definitions. For example:

• DECIMAL(15,2) is valid.

• DECIMAL (15,2) is invalid.

When the CREATE TABLE specifies a DECIMAL value, the associated row must pass back the
value as an eight-byte packed field. For example,

DECIMAL(13,2)

and

DECIMAL(5,2)

would require an eight-byte packed field.

In COBOL, both the above fields are defined as:

PIC S9(13)V99 COMP-3

or

PIC S9(15) COMP-3
iWay Stored Procedures Reference 4-35

Issuing the CREATE TABLE Command
4-36 iWay Software

CHAPTER 5

Writing a Dialogue Manager Procedure

Topics:

• Commands Included in a Procedure

• Commands and Processing

• Commenting a Procedure

• Sending a Message to a Client
Application

• Controlling Execution

• Using Variables

• Supplying Values for Variables

• Branching

• Looping

• Calling Another Procedure

• The -REMOTE Commands

• Reading From and Writing to an
External File

• .EVAL Operator

• Creating Expressions

• Using Functions

• Using Commands Specific to an
Operating System

• ON TABLE HOLD

• ON TABLE PCHOLD

A Dialogue Manager procedure is a file of commands that
resides on a server. It typically includes SQL statements that
perform tasks such as report generation or file
maintenance, or it simply generates messages.

In these topics, a Dialogue Manager procedure is referred
to simply as a procedure.
iWay Stored Procedures Reference 5-1

Commands Included in a Procedure
Commands Included in a Procedure
A Dialogue Manager procedure must reside in a Procedure Library. See Chapter 1,
Introducing Stored Procedures, for details on stored procedure libraries and stored
procedure execution order.

With the EXEC command, a Dialogue Manager procedure is called by the API function call
EDARPC or by another Dialogue Manager procedure, or issued by a client application. This
is illustrated below.

In addition to Dialogue Manager commands (described later), include the following in a
procedure:

• SQL statements allowed by the server platform.

• Server commands, for example, CALLPGM, EXEC, and END. For details on CALLPGM and
EXEC when used to call a program, see Chapter 2, Calling a Program as a Stored
Procedure. This chapter discusses the use of EXEC to call another Dialogue Manager
procedure.

• Commands allowed in a server profile, such as SET SQLENGINE and SET EXORDER. For
details on the profile and its allowable commands, see the Server Administration
manual.

• Commands that enable portions of a procedure to be executed on a target server. See
The -REMOTE Commands on page 5-48 for details on the syntax and use of those
commands. Also see the Server Administration manual for commands that connect to a
target server, such as SQL EDA SET SERVER.

• The ON TABLE HOLD command, which holds an answer set in a temporary file on a
server. See ON TABLE HOLD on page 5-79 for details on syntax and use.

• The ON TABLE PCHOLD command, which sends an answer set to a client application.
See ON TABLE PCHOLD on page 5-80 for details on the syntax and use.

• The CALLIMS function.

• Platform-specific commands (for example, DYNAM in MVS). See Chapter 6, Platform-
specific Commands, for details.
5-2 iWay Software

Writing a Dialogue Manager Procedure
Commands and Processing

The following table summarizes the available Dialogue Manager commands. Notice that
every command begins with a hyphen (-).

The following sections describe the syntax and use of the commands. Appendix A, Dialogue
Manager Quick Reference, provides an alphabetical list for your convenience.

In this section:

Dialogue Manager Processing

Example:

Issuing an API Function Call (EDARPC)

Command Function

-* Signals a comment.

-? Displays the value of local variables.

-CLOSE Closes an external file opened for reading or writing (an external
file is a sequential file in the platform’s file system).

-AS/400 Executes an OS/400 operating system command, ignored on other
operating systems.

-CMS Executes a CMS operating system command, ignored on other
operating systems.

-DEFAULT

-DEFAULTS

Sets a variable to an initial value.

-DOS Executes a DOS operating system command, ignored on other
operating systems.

-EXIT Executes stacked commands and terminates the procedure. See
Dialogue Manager Processing on page 5-5 for a definition of stacked
commands.

-GOTO Forces an unconditional branch to a label.

-IF Determines the execution flow based on the evaluation of an
expression (a conditional branch).

-INCLUDE Calls another Dialogue Manager procedure.
iWay Stored Procedures Reference 5-3

Commands and Processing
-PASS Directly issues and controls passwords.

-PROMPT Types a message to the terminal (if edastart -t is in use) or creates
an input window with the message in a browser if the connection
type is HTTP and reads the reply from the user. This reply assigns a
value to the variable named.

-label Identifies a section of code that is the target of a -GOTO or -IF.

-QUIT Terminates the procedure without executing stacked commands.

-READ Reads data from an external file.

-REMOTE BEGIN Signals the start of commands on an originating server that are to
be sent to a target server. Only available with Hub Services.

-REMOTE END Signals the end of commands from an originating server.

-REPEAT Executes a loop.

-RUN Executes stacked commands and closes any external files opened
with -READ or -WRITE.

-SET Sets a variable to a literal value or to a value computed in an
expression.

-SYSTEM Executes an operating system command regardless of actual
operating system type.

-TSO RUN Executes an MVS operating system command, ignored on other
operating systems.

-TYPE Sends a message to a client application.

-UNIX Executes a UNIX operating system command, ignored on other
operating systems.

-VMS Executes a VMS operating system command, ignored on other
operating systems.

-WINNT Executes a Windows NT operating system command, ignored on
other operating systems.

-WRITE Writes data to an external file.

- Line continuation of prior Dialogue Manager command.

Command Function
5-4 iWay Software

Writing a Dialogue Manager Procedure
Dialogue Manager Processing
A procedure processes as follows:

• Dialogue Manager reads each line of the procedure, one by one. Values are substituted
for variables encountered in any line.

• All Dialogue Manager commands (commands that start with a “-“) execute as they are
encountered.

• Other commands are temporarily stored for subsequent execution and are called
stacked commands.

• The Dialogue Manager commands -RUN and -EXIT execute any stacked commands.

iWay Stored Procedures Reference 5-5

Commands and Processing
Example: Issuing an API Function Call (EDARPC)

The following is an example of a procedure, with an explanation of the way it processes.

To execute this procedure, a client application issued the API function call EDARPC,
specifying the procedure name SLRPT, and the parameters
“COUNTRY=ENGLAND,CAR=JAGUAR”.

1. -IF &COUNTRY EQ 'DONE' THEN GOTO GETOUT;

2. SQL
 SELECT COUNTRY,CAR,MODEL,BODY
 FROM CAR
 WHERE COUNTRY='&COUNTRY' AND CAR='&CAR'
 ORDER BY CAR;

3. TABLE
 ON TABLE PCHOLD
 END

4. -RUN

5. -EXIT

 -GETOUT
 -TYPE NO PROCESSING DONE: EXITING SP

The procedure processes as follows:

1. Values for the variables &COUNTRY and &CAR are passed to the procedure by the
function call EDARPC before the first line executes. Dialogue Manager substitutes the
value ENGLAND for the variable &COUNTRY in the first line and tests for the value
DONE. The test fails, so Dialogue Manager proceeds to the next line.

If the value were DONE instead of ENGLAND, control would pass to the label -GETOUT,
and the message NO PROCESSING DONE: EXITING SP would be sent to the client
application. (Dialogue Manager would skip the intervening lines of code.)

2. The next five lines are SQL. Dialogue Manager scans each for the presence of variables,
substituting the value ENGLAND for &COUNTRY and the value JAGUAR for &CAR
(remember, those values were passed by EDARPC). As each line is processed, it is placed
on a stack to be executed later by the server.
5-6 iWay Software

Writing a Dialogue Manager Procedure
3. The command ON TABLE PCHOLD sends the answer set to the client application.

The command END delimits ON TABLE PCHOLD.

After Dialogue Manager processes the command END, the stacked commands look like
this:

SQL
SELECT COUNTRY,CAR,MODEL,BODY
FROM CAR
WHERE COUNTRY='ENGLAND' AND CAR='JAGUAR'
ORDER BY CAR;
TABLE
ON TABLE PCHOLD
END

The next line is then processed by Dialogue Manager.

4. The Dialogue Manager command -RUN sends the stacked commands to the server for
execution.

5. The Dialogue Manager command -EXIT terminates the procedure.
iWay Stored Procedures Reference 5-7

Commenting a Procedure
Commenting a Procedure
It is good practice to include comments in a procedure for the benefit of others who may
use it.

It is particularly recommended that you use comments in a procedure header to supply the
date, the version, and other relevant information.

Comments are preceded with a hyphen and an asterisk (-*). You can:

• Include any text after the -*.

• Start the text immediately after the -*, omitting any space.

• Place comments at the beginning or end of a procedure, or in between commands. A
comment cannot be on the same line as a command (for example, -RUN -*Comment is
invalid).

The following example illustrates the use of comments at the beginning of a procedure to
supply information about it.

-* Version 1 07/28/04 SLRPT
-* Component of Retail Sales Reporting Module
SQL
 .
 .
 .
5-8 iWay Software

Writing a Dialogue Manager Procedure
Sending a Message to a Client Application
The command -TYPE enables you to send a message to a client application while a
procedure is processing. The message:

• Explains the purpose of the procedure.

• Displays the results of a calculation.

• Presents any kind of useful information.

Syntax: How to Send a Message to a Client Application

-TYPE text

where:

text

Is the message to be sent, followed by a line feed. If you include quotation marks
around text, the quotation marks display as part of the message. The length of text can
be up to 256 bytes. The message is sent as soon as -TYPE is encountered in the
processing of the procedure.

Use the following syntax

-label [TYPE text]

where:

-label

Is the target of a -GOTO or -IF.

TYPE text

Optionally sends a message to a client application.

Example: Using the -TYPE Command to Inform a Client Application About Report
Content

The following example illustrates the use of -TYPE to inform a client application about the
content of a report.

-* Version 1 07/28/04 SLRPT
-* Component of Retail Sales Reporting Module
-TYPE This report calculates percentage of returns.
SQL
 .
 .
 .
iWay Stored Procedures Reference 5-9

Controlling Execution
Controlling Execution

Dialogue Manager enables you to manage the flow of execution with these commands:

• -RUN

• -EXIT

• -QUIT

Executing Stacked Commands: -RUN
The Dialogue Manager command -RUN causes immediate execution of all stacked
commands and closes any external files opened with -READ or -WRITE. Following
execution, processing of the procedure continues with the line that follows -RUN.

Example: Using the -RUN Command

The following example illustrates the use of -RUN to execute stacked SQL code and then
return to the procedure.

1. -TYPE This report calculates percentage of returns.

2. SQL
 .
 .
 .
 END

3. -RUN

4. -TYPE This routine adds data to the sales file.
 SQL
 .
 .
 .

In this section:

Executing Stacked Commands: -RUN

Executing Stacked Commands and Exiting the Procedure: -EXIT

Canceling Execution: -QUIT

Example:

Using the -RUN Command

Using the -EXIT Command

Using the -QUIT Command
5-10 iWay Software

Writing a Dialogue Manager Procedure
The procedure processes as follows:

1. The command -TYPE sends a message to the client application.

2. The SQL code is stacked.

3. The command -RUN sends the stacked commands to the server, which then executes
the stacked command and sends the output to the client application.

4. Processing continues with the line following -RUN. In this case, another message is sent
to the client application and a second SQL request is initiated.

Executing Stacked Commands and Exiting the Procedure: -EXIT
Like the -RUN command, the Dialogue Manager command -EXIT forces execution of
stacked commands as soon as it is encountered. However, instead of returning to the
procedure, -EXIT closes all external files, terminates the procedure, and exits. If the
procedure that is processing was called by another procedure, control returns to the calling
procedure.

Example: Using the -EXIT Command

In the following example, either the first SQL request or the second SQL request executes,
but not both.

1. -TYPE This report calculates percentage of returns.

2. -IF &PROC EQ 'UPDATE' GOTO UPDATE;

3. -REPORT
 SQL
 .
 .
 .
 END

4. -EXIT

5. -UPDATE
 SQL
 .
 .
 .
 END
iWay Stored Procedures Reference 5-11

Controlling Execution
The procedure processes as follows:

1. The command -TYPE sends a message to the client application.

2. Assume the value passed to &PROC is REPORT.

The -IF test checks the value of &PROC. Since it is not equal to UPDATE, control passes
to the label -REPORT.

3. The SQL code is stacked. Control passes to the next line, -EXIT.

4. The command -EXIT executes the stacked commands. The output is sent to the client
application and the procedure is exited.

5. The SQL request under the label -UPDATE is not executed.

This example also illustrates an implicit exit. If the value of &PROC were UPDATE, control
would pass to the label -UPDATE after the -IF test, and the procedure would never
encounter the -EXIT. The second SQL request would execute and the procedure would
automatically terminate.

Canceling Execution: -QUIT
The Dialogue Manager command -QUIT cancels execution of any stacked commands and
causes an immediate exit from the procedure. If the procedure that is processing was called
by another procedure, control returns directly to the client application, not to the calling
procedure.

This command is useful if tests or computations generate results that make additional
processing unnecessary.

Example: Using the -QUIT Command

The following example illustrates the use of -QUIT to cancel execution based on the results
of an -IF test.

1. -TYPE This report calculates percentage of returns.
 SQL
 .
 .
 .

2. -IF &CODE GT 'B10' OR &CODE EQ 'DONE' GOTO QUIT;
 END

3. -QUIT
5-12 iWay Software

Writing a Dialogue Manager Procedure
The procedure processes as follows:

1. The command -TYPE sends a message to the client application. The SQL code is
stacked.

2. Assume that the value of &CODE is B11.

The command -IF tests the value and passes control to -QUIT.

The command END is a delimiter.

3. The command -QUIT cancels execution of the stacked commands and exits the
procedure.

Using Variables

This section describes how to use variables in a procedure.

Variables fall into two categories:

• Local and global variables, whose values must be supplied by the procedure at run
time.

• System and statistical variables, whose values are automatically supplied by the system
when referenced.

The following features apply to all variables:

• A variable stores numbers or a string of text, and is placed anywhere in a procedure.

• A variable refers to a command, a database field, a verb, or a phrase. Variables and
Command Structures on page 5-22 contains examples.

• The maximum number of variables allowed in a procedure is 1,024. Because
approximately 30 are reserved for server use, the maximum number of user-named
variables allowed in a procedure is 994.

In this section:

Naming Conventions

Local Variables

Global Variables

System Variables

Variables and Command Structures
iWay Stored Procedures Reference 5-13

Using Variables
Naming Conventions

This section describes how to use variables in a procedure.

Variables fall into two categories:

• Local and global variables, whose values must be supplied by the procedure at run
time.

• System and statistical variables, whose values are automatically supplied by the system
when referenced.

Local and global variable names are user-defined, while system and statistical variables
have predefined names.

The following rules apply to the naming of local and global variables:

• A local variable name is always preceded by an ampersand (&).

• A global variable name is always preceded by a double ampersand (&&).

• The maximum number of characters permitted in a name is 12, excluding the first
ampersand.

• Embedded blanks are not permitted.

• If an anticipated value for a variable might contain an embedded blank, enclose the
variable in single quotation marks when you refer to it.

• A variable name may be any combination of the characters A through Z, 0 through 9,
and the underscore (_). The first character of the name must be A through Z.

• Assign a number to a variable, instead of a name, to create a positional variable.

Syntax: How to Use Variables in a Procedure

&[&]name

where:

&name

Is the user-defined name of a local variable. The first character of name must be A
through Z.

&&name

Is the user-defined name of a global variable. The first character of name must be A
through Z.

How to:

Use Variables in a Procedure
5-14 iWay Software

Writing a Dialogue Manager Procedure
The following variables are properly named:

&WHICHPRODUCT
&WHICH_CITY
'&CITY'
&&CITY

The following variables are improperly named for the reason given:

Local Variables

Once supplied, values for local variables remain in effect throughout a single procedure.
The values are lost after the procedure finishes processing and are not passed to other
procedures that contain the same variable name.

Example: Using Local Variables

Consider the following procedure in which &CITY, &CODE1, and &CODE2 are local variables.

 .
 .
 .
SQL
SELECT SUM (UNIT_SOLD),
 SUM (RETURNS)
FROM SALES
WHERE CITY = '&CITY'
AND PROD_CODE >= '&CODE1'
AND PROD_CODE <= '&CODE2'
 .
 .
 .

Invalid Reason

&CORPORATECITY Too long (exceeds 12 characters).

&WHICH CITY Contains embedded blank.

&WHICH-CITY Contains a hyphen (-).

WHICHCITY Leading ampersand(s) is missing.

Example:

Using Local Variables

Creating an Indexed Variable

Displaying the Value of Local Variables
iWay Stored Procedures Reference 5-15

Using Variables
Assume you supply the following values when you call the procedure:

CITY=STAMFORD, CODE1=B10, CODE2=B20

Dialogue Manager substitutes the values for the variables as follows:

 .
 .
 .
SQL
SELECT SUM (UNIT_SOLD),
 SUM (RETURNS), CITY
FROM SALES
WHERE CITY = STAMFORD
AND PROD_CODE >= B10
AND PROD_CODE <= B20
GROUP BY CITY, PROD_CODE
 .
 .
 .

After the procedure executes and terminates, the values STAMFORD, B10, and B20 are lost.

Example: Creating an Indexed Variable

Append the value of one variable to the name of another, creating an indexed variable. This
feature applies to both local and global variables.

If the index value is numeric, the effect is similar to that of an array in traditional computer
programming languages. For example, if the value of index &K varies from 1 to 10, the
variable &AMOUNT.&K refers to one of ten variables, from &AMOUNT1 to &AMOUNT10.

A numeric index is used as a counter; it is set, incremented, and tested in a procedure.

You create an indexed variable with the command -SET

-SET &name.&index[.&index...] = expression;

where:

&name

Is a variable.

.&index

Is a numeric or alphanumeric variable whose value is appended to &name. The period
(.) is required.

[.&index...]

Represents any number of indices. When more than one index is used, all index values
are concatenated and the string appends to the name of the variable. For example,
&V.&I.&J.&K is equivalent to &V1120 when &I=1, &J=12, and &K=0.
5-16 iWay Software

Writing a Dialogue Manager Procedure
expression

Is a valid expression. See Creating Expressions on page 5-52 for information on the kinds
of expressions allowed.

An indexed variable is used in a loop. The following example creates the equivalent of a DO
loop used in traditional programming languages.

-SET &N = 0;
-LOOP
-SET &N = &N+1;
-IF &N GT 12 GOTO OUT;
-SET &MONTH.&N=&N;
-TYPE &MONTH.&N
-GOTO LOOP
-OUT

In this example, &MONTH is the indexed variable and &N is the index. The value of the index
is supplied through the command -SET; the first -SET initializes the index to 0, and the
second -SET increases the index by increments each time the procedure goes through a
loop.

If the value of an index is not defined prior to reference, a blank value is assumed. As a
result, the name (and value) of the indexed variable does not change.

Indexed variables are included in the system limit of 994.

Example: Displaying the Value of Local Variables

To display the current value of a local variable, enter the following in a procedure

-? &[string]

where:

string

Is an optional variable name of up to 12 characters. If this parameter is not specified,
the current values of all local, global, and defined system and statistical variables are
displayed.
iWay Stored Procedures Reference 5-17

Using Variables
Global Variables

Once a value is supplied for a global variable, it remains in effect throughout the session of
a processing service, unless cleared by the server. All procedures that contain the same
global variable name receive the supplied value until you terminate the session.

Example: Using Global Variables

The following example illustrates the use of three global variables: &&CITY, &&CODE1,
&&CODE2.

 .
 .
 .
SQL
SELECT SUM (UNIT_SOLD),
 SUM (RETURNS)
FROM SALES
WHERE CITY = &&CITY
AND PROD_CODE >= &&CODE1
AND PROD_CODE <= &&CODE2
 ;
TABLE
ON TABLE PCHOLD
END

Example: Displaying the Value of Global Variables

To display the current value of all global variables, enter the following command in a
procedure:

? &&

Example:

Using Global Variables

Displaying the Value of Global Variables
5-18 iWay Software

Writing a Dialogue Manager Procedure
System Variables

The table in this section describes system variables that you can use in a procedure.
Dialogue Manager automatically supplies values for system variables whenever the
variables are encountered.

Unless otherwise noted in the table, override system-supplied values by replacing the
values with values specified:

• In the function call EDARPC when you execute the procedure.

• In an EXEC command. See Supplying Values for Variables on page 5-23 for information.

Example:

Using System Variables

System Variable Description Format or Value

&APPROOT Physical location of the
APPROOT directory.

Directory name

&DATE Current date. MM/DD/YY

&DATEfmt Current date. fmt is any combination of YYMD, MDYY,
etc.

&MDY Current date. Useful for
numerical comparisons.

MMDDYY

&MDYY Current date (four-digit
year).

MMDDCCYY

&DMY Current date. DDMMYY

&DMYY Current date (four-digit
year).

DDMMCCYY

&YMD Current date. YYMMDD

&YYMD Current date (four-digit
year).

CCYYMMDD
iWay Stored Procedures Reference 5-19

Using Variables
&FOCFOCEXEC Current running
procedure.

Manages reporting operations
involving many similarly named
requests that are executed using EX.
&FOCFOCEXEC enables you to easily
determine which procedure is
running. &FOCFOCEXEC is specified
within a request or in a Dialogue
Manager command to display the
name of the currently running
procedure.

&FOCINCLUDE Current included
procedure.

Manages reporting operations
involving many similarly named
requests that are included using
-INCLUDE. &FOCINCLUDE is specified
within a request or in a Dialogue
Manager command to display the
name of the current included
procedure.

&ECHO Current echo tracing
value.

ON, OFF, or ALL

&FOCMODE Operating environment. AS/400
CMS
CRJE
MSO
DOS
TSO
UNIX
VMS
WINNT

&FOCPRINT Current print setting. ONLINE
OFFLINE

&FOCREL Source code release
number.

Release number (for example,
R720530B).

&IORETURN Value returned after the
last Dialogue Manager
-READ or -WRITE
operation.

0 Successful operation

1 End or failure

System Variable Description Format or Value
5-20 iWay Software

Writing a Dialogue Manager Procedure
Example: Using System Variables

The following example incorporates the system variable &DATE into an SQL request, testing
a user-supplied variable (IDATE) against it.

SQL
 SELECT '&DATE',IDATE
 FROM filename
 WHERE IDATE < '08/08/2004'
-EXIT

&RETCODE Value returned after a
server or operating
system command is
executed.

&RETCODE executes all
stacked commands, like
the command -RUN.

Any value returned by the server
command is valid (for example,
CALLPGM flag values).

&TOD Current time. When you
enter FOCUS, this
variable is updated to
the current system time
only when you execute
a MODIFY, SCAN, or
FSCAN command. To
obtain the exact time
during any process, use
the HHMMSS
subroutine.

HH.MM.SS

&FOCNET Environment. CLIENT, SERVER

You cannot override the
system-supplied value.

System Variable Description Format or Value
iWay Stored Procedures Reference 5-21

Using Variables
Variables and Command Structures
A variable refers to a command, a database field, a verb, or a phrase. In this way, the
command structure of a procedure is determined by the value of the variable.

Example: Using Variables to Alter Commands

In the following example, the variable &FIELD determines which field to SELECT in the SQL
request. For example, &FIELD could have the value RETURNS, DAMAGED, or UNIT_SOLD
from a database named SALES.

SQL
 .
 .
 .
SELECT &FIELD
ORDER BY PROD_CODE
 .
 .
 .
5-22 iWay Software

Writing a Dialogue Manager Procedure
Supplying Values for Variables

You must supply values for variables in a procedure even if the value is a blank. For instance,
some server commands are invalid without values but process normally with blanks.

Supply values for variables in the following ways:

• In the function call EDARPC. See the API Reference manual for information on the syntax
of EDARPC.

• Within the procedure itself:

• In the command EXEC.

• With a command such as -DEFAULTS, -SET, or -READ.

This section describes the second method, within the procedure itself.

General Rules
The following general rules apply to values for variables:

• The maximum length is 80 characters.

• A physical stack line with values substituted for variables cannot exceed 80 characters.

• Once a value is supplied for a local variable, it is used throughout the procedure unless
it is changed with a command such as -SET or -READ.

• Once a value is supplied for a global variable, it is used throughout the session in all
procedures unless it is changed with -SET, -READ, or another command.

In this section:

General Rules

Supplying Values in the EXEC Command

Debugging Execution Flow

-DEFAULT[S] Command

-SET Command

-READ Command
iWay Stored Procedures Reference 5-23

Supplying Values for Variables
Supplying Values in the EXEC Command

The command EXEC enables you to call one procedure from another and set values for
variables in the called procedure, using:

• Keyword parameters.

• Positional parameters.

• A combination of keyword and positional parameters.

A parameter list specified on the command line has a maximum string length of up to 4096
bytes including the “EX” and file name portions. A string of this length is typically built
using concatenation of values.

Note: EX lines have special treatment. Normally, all other lines are limited to 80 characters.

Example: Supplying Values With the EXEC Command

Consider the following procedure named SLRPT:

 .
 .
 .
SQL
SELECT SUM(UNIT_SOLD),SUM(RETURNS),PROD_CODE,CITY
FROM SALES
WHERE PROD_CODE BETWEEN '&CODE1' AND '&CODE2'
AND CITY = '&CITY'
GROUP BY PROD_CODE,CITY
 .
 .
 .

This procedure is called by another procedure using EXEC, with the values for &CODE1,
&CODE2, and &CITY supplied on the command line as keyword parameters:

EXEC SLRPT CODE1=A,CODE2=D,CITY=NYC

How to:

Pass Keyword Parameters

Pass Positional Parameters

Pass Long Parameters

Example:

Supplying Values With the EXEC Command

Combining Positional and Keyword Parameters

Passing Long Parameters
5-24 iWay Software

Writing a Dialogue Manager Procedure
Syntax: How to Pass Keyword Parameters

EX[EC] procedure name=value[,...]

where:

procedure

Is the name of the called procedure.

name=value

Is a keyword parameter.

If value contains an embedded comma, blank, or equal sign, it must be enclosed in
single quotation marks. For example:

EX SLRPT AREA=S, CITY='NY, NY'

Name=value pairs must be separated by commas. You do not need to enter pairs in the
order in which they are encountered in the procedure.

If the list of parameters exceeds the width of the command line, insert a comma as the last
character on the line and enter the rest of the list on the following line, as shown here:

EX SLRPT AREA=S,CITY=STAMFORD,VERB=COUNT,
FIELDS=UNIT_SOLD,CODE1=B10,CODE2=B20

Syntax: How to Pass Positional Parameters

EX[EC] procedure parm1[,...]

where:

procedure

Is the name of the called procedure.

parm1

Is a positional parameter. You do not need to specify the number in the parameter list.
Dialogue Manager matches the values, one by one, to the positional variables as they
are encountered in the called procedure.

However, you must specify the parameters in the order in which to be used in the called
procedure.
iWay Stored Procedures Reference 5-25

Supplying Values for Variables
Consider the following called procedure:

 .
 .
 .
SQL
SELECT SUM(UNIT_SOLD),SUM(RETURNS),RETURNS/UNIT_SOLD
FROM SALES
WHERE PROD_CODE BETWEEN '&1' AND '&2'
AND CITY = '&3'
 .
 .
 .

The calling procedure would issue:

EX SLRPT B10,B20,STAMFORD

Example: Combining Positional and Keyword Parameters

Consider the following procedure named PPARM1:

SQL
SELECT &1, &2, &field1, &3 FROM CAR;

It is called by another procedure using EXEC, with the values MODEL, MPG, field1=CAR, and
COUNTRY supplied on the command line as parameters:

EXEC PPARM1 MODEL,MPG,field1=CAR,COUNTRY

Syntax: How to Pass Long Parameters

Note: As of release 5.3, the line length limit has been increased to 32K, so large parameters
can be directly passed. The method described below continues to be supported, but there
is little reason to use this method in coding new applications.

Individual parameter keyword value pairs that are longer than 80 characters (the limit of a
physical line) must use special syntax to describe how many lines to read.

EX[EC] - LINES number procedure_name=value[,...]

where:

number

Is the number of additional lines to read as a continuation of the initial line. Break
variables into 80 character lengths per line.

procedure_name

Is the name of a Dialogue Manager procedure.

value

Is the actual string being passed.
5-26 iWay Software

Writing a Dialogue Manager Procedure
Example: Passing Long Parameters

The following is an example of a server procedure passing the maximum parameter of
32,000 bytes:

"EX -LINES 401 CPG32000=LINE001 "
"LINEOFINFORMATION111"
"LINEOFINFORMATION222"
"LINEOFINFORMATION4004"
.
.
.
"LASTLINETOTAL32000BYTESTHEENDXX"

Debugging Execution Flow
Dialogue Manager implements IF THEN ELSE and other flow logic such as -GOTO.
Dynamically display the flow of execution using the &ECHO variable.

Syntax: How to Display Command Lines While Executing

&ECHO = display

Valid values are:

ON

Displays lines that are expanded and stacked for execution.

ALL

Displays Dialogue Manager commands as well as lines that are expanded and stacked
for execution.

OFF

Suppresses display of both stacked lines and Dialogue Manager commands. OFF is the
default value.

Set &ECHO through -DEFAULTS, -SET, or on the command line. For example, set ECHO to
ALL for the execution of the procedure SLRPT using any of the following commands:

-DEFAULTS &ECHO = ALL

or

-SET &ECHO = ALL;

or

EX SLRPT ECHO = ON

If you use -SET or -DEFAULTS in the procedure, display begins from that point in the
procedure and is turned off and on again at any other point.

Note that if the procedure is encrypted, &ECHO automatically receives the value OFF,
regardless of the value that is assigned explicitly.
iWay Stored Procedures Reference 5-27

Supplying Values for Variables
-DEFAULT[S] Command
The Dialogue Manager command -DEFAULTS supplies an initial (default) value for a variable
that had no value before the command was processed. It ensures that values are passed to
variables whether or not they are provided elsewhere.

Syntax: How to Supply Values With the -DEFAULT[S] Command

-DEFAULT[S] &[&]name=value [...]

where:

&name

Is the name of the variable.

value

Is the default value assigned to the variable.

Example: Setting Default Values With the -DEFAULT[S] Command

In the following example, -DEFAULT[S] sets default values for &CITY and ®IONMGR.

-DEFAULTS &CITY=STAMFORD, ®IONMGR=SMITH
-TYPE Default values are Stamford, Smith.
SQL
 .
 .
 .

Reference: Overriding Default Values

Override default values by supplying new values:

• In the function call EDARPC.

• In the command EXEC.

• With the command -SET subsequent to -DEFAULT[S].

For example, if you issued the following EXEC command, the specified value for
REGIONMGR (JONES) would override the value SMITH in the previous example:

EX SLRPT REGIONMGR=JONES
5-28 iWay Software

Writing a Dialogue Manager Procedure
-SET Command

With the -SET command, assign a value computed in an expression.

Syntax: How to Supply Values With the -SET Command

-SET &[&]name=expression;

where:

&name

Is the name of the variable.

expression;

Is a valid expression. Expressions occupy several lines, so end the command with a
semicolon (;).

You can assign a literal value to a variable. Single quotation marks around the literal value
are optional unless it contains embedded blanks or commas, in which case you must
include single quotation marks:

-SET &NAME='JOHN DOE';

To assign a literal value that includes a single quotation mark, place two single quotation
marks where you want one to appear:

-SET &NAME='JOHN O''HARA';

The length of a literal value is limited by how the value is constructed. A single simple value
(such as the ‘JOHN DOE’ example) is limited to the line length limit, which was 80 but is now
32K as of release 5.3. Using concatenation, several lines of separate values may be joined
together to form longer variables, which is the method used for older releases. For example,

-SET &LONG = ’xxxxx...’;
-SET &LONGER = &LONG|&LONG|&LONG;
-SET &VERYLONG = &LONGER|&LONGER;

The maximum length of a variable is 32K, however, this is further limited if the variable is to
participate in a calculation or concatentation.

How to:

Supply Values With the -SET Command

Example:

Assigning Values With the -SET Command
iWay Stored Procedures Reference 5-29

Supplying Values for Variables
Through the technique of building strings above, the total maximum length is 4K (2K to the
right of the equal sign and 2K to the left of the equal sign). In the case of an expression, the
left side of the equal sign could be of a minimal length, with the remainder of the length on
the right side of the equal sign but the total maximum is 415.

Example: Assigning Values With the -SET Command

In the following example, -SET assigns the value 14Z or 14B to the variable &STORECODE, as
determined by the logical IF expression. The value of &CODE is supplied by the user.

-TYPE THIS REPORT IS FOR &CODE.
-SET &STORECODE = IF &CODE GT C2 THEN '14Z' ELSE '14B';
 SQL
 SELECT SUM(UNIT_SOLD),SUM(RETURNS),RETURNS/UNIT_SOLD
 FROM SALES
 WHERE PROD_CODE BETWEEN '&CODE1' AND '&CODE2'
 AND STORE_CODE = '&STORECODE'
GROUP BY PROD_CODE,STORECODE
 .
 .
 .

-READ Command

With the -SET command, assign a value computed in an expression.

Supply values for variables by reading each from an external file. The file is fixed format (the
data is in fixed columns) or free format (the data is delimited by commas).

Syntax: How to Supply Values With the -READ Command

-READ filename[,] [NOCLOSE] &name[.format.][,]...

where:

filename[,]

Is the name of the external file, which must be defined to the operating system. A space
after filename denotes a fixed-format file, while a comma denotes a free-format file. For
more information, see Chapter 6, Platform-specific Commands.

How to:

Supply Values With the -READ Command

Example:

Specifying Length

Using the -READ Command
5-30 iWay Software

Writing a Dialogue Manager Procedure
NOCLOSE

Optionally keeps the external file open until the -READ operation is complete. Files kept
open with NOCLOSE are closed using the command -CLOSE filename.

Note: The -RUN command does not close an external file if NOCLOSE is specified.

&name[,]...

Is a list of variables. For free-format files, you may optionally separate the variable
names with commas.

.format.

Is the format of the variable. For free-format files, you do not have to specify this value,
but you may. For fixed-format files, format is the length or the length and type of the
variable (A is the default type). The value of format must be delimited by periods. See
Specifying Length on page 5-31.

If the list of variables is longer than one line, end the first line with a comma (,) and begin
the next line with a hyphen (-) when you are reading a free-format file:

-READ EXTFILE, &CITY, &CODE1,
- &CODE2

When you are reading a fixed-format file, begin the next line with a hyphen and comma (-,):

-READ EXTFILE &CITY.A8. &CODE1.A3.,
-, &CODE2.A3.

The line immediately following a -READ is typically a check of &IORETURN for end of file, as
shown in the example shown in Using the -READ Command on page 5-31.

Example: Specifying Length

Instead of using .format., specify the length of a variable using -SET. For example:

-SET &CITY=' ';
-SET &CODE1=' ';
-SET &CODE2=' ';

Example: Using the -READ Command

The file name parameter is a symbolic name for a physical file known to the server
operating system. Each operating system has its own method for associating a symbolic
name with a physical file.

For instance, under MVS, the DYNAM command is used:

DYNAM ALLOC FILE EXTFILE DSNAME EDAUSER.EXTFILE.DATA SHR

On UNIX, Windows, OpenVMS, and OS/400 platforms, the FILEDEF command is used. For
example, on UNIX:

FILEDEF MYFILE DISK /home/edauser/extfile.dat
iWay Stored Procedures Reference 5-31

Supplying Values for Variables
where the data file portion would use the actual native file name convention of the
platform.

Assume that EXTFILE is a fixed-format file containing the data:

STAMFORDB10B20

To detect the end of file, the following code tests the system variable &IORETURN. When no
records remain to be read, its value is not equal to zero.

-READ EXTFILE &CITY.A8. &CODE1.A3. &CODE2.A3.
-IF &IORETURN NE 0 GOTO RUN;
 SQL
 SELECT SUM(UNIT_SOLD),SUM(RETURNS)
 FROM SALES
 WHERE PROD_CODE BETWEEN '&CODE1' AND '&CODE2'
 AND CITY = '&CITY'
GROUP BY PROD_CODE,CITY
-RUN
5-32 iWay Software

Writing a Dialogue Manager Procedure
Branching

The execution flow of a procedure is determined using the following commands:

• –GOTO. Used for unconditional branching, –GOTO transfers control to a label.

• –IF...GOTO. Used for conditional branching, –IF...GOTO transfers control to a label
depending on the outcome of a test.

Syntax: How to Use the -GOTO Command for Unconditional Branching

-GOTO label
 .
 .
 .
-label [TYPE text]

where:

label

Is a user-defined name of up to 12 characters. Do not use embedded blanks or the
name of any other Dialogue Manager command except -QUIT or -EXIT. Do not use
words that may be confused with functions or arithmetic or logical operations.

The label may precede or follow the -GOTO command in the procedure.

TYPE text

Optionally sends a message to a client application.

In this section:

Screening Values With -IF Tests

How to:

Use the -GOTO Command for Unconditional Branching

Use the -IF...GOTO Command for Conditional Branching

Example:

Using the -GOTO Command for Unconditional Branching

Using the -IF...GOTO Command for Conditional Branching

Using Compound -IF Tests

Reference:

Processing a -GOTO Command

Operators and Functions in -IF Tests
iWay Stored Procedures Reference 5-33

Branching
Reference: Processing a -GOTO Command

Dialogue Manager processes a -GOTO as follows:

• It searches forward through the procedure for the target label. If it reaches the end
without finding the label, it continues the search from the beginning of the procedure.

• The first time through a procedure, Dialogue Manager notes the addresses of all the
labels so that they are found immediately if needed again.

• If a -GOTO does not have a corresponding label, execution halts and a message is
displayed.

Example: Using the -GOTO Command for Unconditional Branching

The following example comments out all the SQL code using an unconditional branch
rather than -* in front of every line.

-START TYPE PROCESSING BEGINS
-GOTO DONE
 SQL
 SELECT SUM(UNIT_SOLD),SUM(RETURNS)
 FROM SALES
 WHERE PROD_CODE BETWEEN '&CODE1' AND '&CODE2'
 AND PRODUCT = '&PRODUCT'
GROUP BY PROD_CODE,CITY
-RUN
-DONE

The next example illustrates two labels with TYPE messages appended:

 .
 .
 .
-PRODSALES TYPE TOTAL SALES BY PRODUCT
 .
 .
 .
-PRODRETURNS TYPE TOTAL RETURNS BY PRODUCT
5-34 iWay Software

Writing a Dialogue Manager Procedure
Syntax: How to Use the -IF...GOTO Command for Conditional Branching

-IF expression [THEN] GOTO label1[;] [ELSE GOTO label2[;]]
 [ELSE IF...[;]]

where:

label

Is a user-defined name of up to 12 characters. Do not use embedded blanks or the
name of any other Dialogue Manager command except -QUIT or -EXIT. Do not use
words that may be confused with functions or arithmetic or logical operations.

The label may precede or follow the -IF command in the procedure.

expression

Is a valid expression. Literals need not be enclosed in single quotation marks unless
they contain embedded blanks or commas.

THEN

Is an optional keyword that increases readability of the command.

ELSE GOTO

Optionally passes control to label2 when the -IF test fails.

ELSE IF

Optionally specifies a compound -IF test. See Using Compound -IF Tests on page 5-36.

The command -IF must end with a semicolon (;) to signal that all logic has been specified.
Continuation lines must begin with a hyphen (-) and lines must break between words. A
space after the hyphen is not required, but adds to readability.

Example: Using the -IF...GOTO Command for Conditional Branching

In the following example, control passes to the label -PRODSALES if &OPTION is equal to S.
Otherwise, control falls through to the label -PRODRETURNS, the line following the -IF test.

-IF &OPTION EQ 'S' GOTO PRODSALES;
-PRODRETURNS
 SQL
 .

 .
 END
-EXIT
-PRODSALES
 SQL
 .
 .
 END
-EXIT
iWay Stored Procedures Reference 5-35

Branching
The following command specifies both transfers explicitly:

-IF &OPTION EQ 'S' GOTO PRODSALES ELSE
- GOTO PRODRETURNS;

Notice that the continuation line begins with a hyphen (-).

Example: Using Compound -IF Tests

Use compound -IF tests provided each test specifies a target label.

In the following example, if the value of &OPTION is neither R nor S, the procedure
terminates (GOTO QUIT). The -QUIT serves both as a target label for the GOTO and as an
executable command.

-IF &OPTION EQ 'R' THEN GOTO PRODRETURNS ELSE IF
- &OPTION EQ 'S' THEN GOTO PRODSALES ELSE
- GOTO QUIT;
 .
 .
 .
-QUIT

Reference: Operators and Functions in -IF Tests

Expressions in a -IF test include arithmetic and logical operators, as well as available
functions. See Creating Expressions on page 5-52 and Using Functions on page 5-59 for
details.
5-36 iWay Software

Writing a Dialogue Manager Procedure
Screening Values With -IF Tests

To ensure that a supplied value is valid in a procedure, test for its:

• Presence

• Type

• Length

For instance, you would not want to perform a numerical computation on a variable for
which alphanumeric data has been supplied.

Syntax: How to Test for the Presence of a Value

-IF &name.EXIST GOTO label...;

where:

&name

Is a user-supplied variable.

.EXIST

Indicates that you are testing for the presence of a value. If a value is not present, a zero
(0) is passed to the expression. Otherwise, a non-zero value is passed.

GOTO label

Specifies a label to branch to.

How to:

Test for the Presence of a Value

Test for the Length of a Value

Test for the Type of a Value

Example:

Testing for the Presence of a Variable

Testing for Variable Length

Testing for Variable Type
iWay Stored Procedures Reference 5-37

Branching
Example: Testing for the Presence of a Variable

In the following example, if no value is supplied, &OPTION.EXIST is equal to zero and control
is passed to the label -CANTRUN. The procedure sends a message to the client application
and then exits. If a value is supplied, control passes to the label -PRODSALES.

-IF &OPTION.EXIST GOTO PRODSALES ELSE GOTO CANTRUN;
 .
 .
 .
-PRODSALES
 SQL
 .
 .
 .
 END
-EXIT
-CANTRUN
-TYPE TOTAL REPORT CAN'T BE RUN WITHOUT AN OPTION.
-EXIT

Syntax: How to Test for the Length of a Value

-IF &name.LENGTH expression GOTO label...;

where:

&name

Is a user-supplied variable.

.LENGTH

Indicates that you are testing for the length of a value. If a value is not present, a zero (0)
is passed to the expression. Otherwise, the number of characters in the value is passed.

expression

Is the remainder of a valid expression, such as GT 8.

GOTO label

Specifies a label to branch to.
5-38 iWay Software

Writing a Dialogue Manager Procedure
Example: Testing for Variable Length

In the following example, if the length of &OPTION is greater than one, control passes to the
label -FORMAT, which informs the client application that only a single character is allowed.

-IF &OPTION.LENGTH GT 1 GOTO FORMAT ELSE
-GOTO PRODSALES;
 .
 .
 .
-PRODSALES
 SQL
 .
 .
 .
 END
-EXIT
-FORMAT
-TYPE ONLY A SINGLE CHARACTER IS ALLOWED.

Example Storing the Length of a Variable for Later Use

The following example sets the variable &WORDLEN to the length of the string contained in
the variable &WORD.

-PROMPT &WORD.ENTER WORD.
-SET &WORDLEN = &WORD.LENGTH;

You can use this technique when you want to use one variable to populate another.

Syntax: How to Test for the Type of a Value

-IF &name.TYPE expression GOTO label...;

where:

&name

Is a user-supplied variable.

.TYPE

Indicates that you are testing for the type of a value. The letter N (numeric) is passed to
the expression if the value is interpreted as a number up to 109–1 and is stored in four
bytes as a floating point format. In Dialogue Manager, the result of an arithmetic
operation with numeric fields is truncated to an integer after the whole result of an
expression is calculated. If the value could not be interpreted as numeric, the letter A
(alphanumeric) is passed to the expression.

expression

Is the remainder of a valid expression, such as EQ A.

GOTO label

Specifies a label to branch to.
iWay Stored Procedures Reference 5-39

Branching
Example: Testing for Variable Type

In the following example, if &OPTION is not alphanumeric, control passes to the label
-NOALPHA, which informs the client application that only alphanumeric characters are
allowed.

-IF &OPTION.TYPE NE A GOTO NOALPHA ELSE
- GOTO PRODSALES;
 .
 .
 .
-PRODSALES
 SQL
 .
 .
 .
 END
-EXIT
-NOALPHA
-TYPE ENTER A LETTER ONLY.
5-40 iWay Software

Writing a Dialogue Manager Procedure
Looping

The Dialogue Manager command -REPEAT allows looping in a procedure.

Syntax: How to Use the -REPEAT Command

-REPEAT label {n TIMES [FROM fromval] [TO toval] [STEP s]}

-REPEAT label {WHILE condition [FROM fromval] [TO toval] [STEP s]}

-REPEAT label {FOR &variable [FROM fromval] [TO toval] [STEP s]}

where:

label

Identifies the code to be repeated (the loop). A label includes another loop if the label
for the second loop has a different name from the first.

n TIMES

Specifies the number of times to execute the loop. The value of n is a local variable, a
global variable, or a constant. If it is a variable, it is evaluated only once, so the only way
to end the loop early is with -QUIT or -EXIT (the number of times to execute the loop
cannot be changed).

WHILE condition

Specifies the condition under which to execute the loop. The condition is any logical
expression that is either true or false. The loop is run if the condition is true.

FOR &variable

Is a variable that is tested at the start of each execution of the loop. It is compared with
the value of fromval and toval (if supplied). The loop is executed only if &variable is less
than or equal to toval (STEP is positive), or greater than or equal to toval (STEP is
negative).

FROM fromval

Is a constant that is compared with &variable at the start of each execution of the loop.
1 is the default value.

In this section:

Ending a Loop

How to:

Use the -REPEAT Command

Example:

Using the -REPEAT Command
iWay Stored Procedures Reference 5-41

Looping
TO toval

Is a value that is compared with &variable at the start of each execution of the loop.
1,000,000 is the default value.

STEP s

Is a constant used to increment &variable at the end of each execution of the loop. It
may be positive or negative. 1is the default value.

The parameters FROM, TO, and STEP appear in any order.

Ending a Loop
A loop ends in one of three ways:

• It executes in its entirety.

• A -QUIT or -EXIT is issued.

• A -GOTO is issued to a label outside of the loop.

Note: If you later issue another -GOTO to return to the loop, the loop proceeds from the
point where it left off.

Example: Using the -REPEAT Command

This section illustrates how to write each of the syntactical elements of -REPEAT.

1. -REPEAT label n TIMES

Example:

-REPEAT LAB1 2 TIMES
-TYPE INSIDE
-LAB1 TYPE OUTSIDE

The output is:

INSIDE
INSIDE
OUTSIDE

2. -REPEAT label WHILE condition

Example:

-SET &A = 1;
-REPEAT LABEL WHILE &A LE 2;
-TYPE &A
-SET &A = &A + 1;
-LABEL TYPE END: &A
5-42 iWay Software

Writing a Dialogue Manager Procedure
The output is:

1
2
END: 3

3. -REPEAT label FOR &variable FROM fromval TO toval STEP s

Example:

-REPEAT LABEL FOR &A FROM 1 TO 4 STEP 2
-TYPE INSIDE &A
-LABEL TYPE OUTSIDE &A

The output is:

INSIDE 1
INSIDE 3
OUTSIDE 5
iWay Stored Procedures Reference 5-43

Calling Another Procedure
Calling Another Procedure

One procedure calls another procedure using:

• The command -INCLUDE, which incorporates a whole or partial procedure and
executes immediately when encountered. (A partial procedure might contain header
text, or code to include at run time based on a test in the calling procedure.)

• The command EXEC. The command is stacked and executed when the appropriate
Dialogue Manager command is encountered. The called procedure must be fully
executable.

Syntax: How to Use the -INCLUDE Command

Lines incorporated with a -INCLUDE are processed as though they had been placed in the
calling procedure originally.

-INCLUDE filename

where:

filename

Is the name of the called procedure.

A calling procedure cannot branch to a label in a called procedure, and vice versa.

In this section:

Nesting

The EXEC Command

How to:

Use the -INCLUDE Command

Example:

Using the -INCLUDE Command
5-44 iWay Software

Writing a Dialogue Manager Procedure
Example: Using the -INCLUDE Command

In the following example, Dialogue Manager searches for a procedure named DATERPT as
specified on the command -INCLUDE.

-IF &OPTION EQ 'S' GOTO PRODSALES
- ELSE GOTO PRODRETURNS;
 .
 .
 .
-PRODRETURNS
-INCLUDE DATERPT
-RUN
 .
 .

Assume that DATERPT contains the following SQL code:

SQL
SELECT PROD_CODE UNIT_SOLD
FROM SALES
WHERE PROD_CODE = '&PRODUCT';
TABLE
ON TABLE PCHOLD
END

Dialogue Manager incorporates this code into the original procedure. It substitutes a value
for the variable &PRODUCT as soon as the -INCLUDE is encountered. The ensuing command
-RUN executes the SQL request.

The following is an example of a -INCLUDE that calls a partial procedure named OBJECTS:

SQL
SELECT
-INCLUDE OBJECTS
FROM CAR
WHERE RETAIL_COST < 10000;

The procedure OBJECTS contains the fields to use:

COUNTRY,CAR,MODEL

The resulting stacked commands are:

SQL
SELECT
COUNTRY,CAR,MODEL
FROM CAR
WHERE RETAIL_COST < 10000;
iWay Stored Procedures Reference 5-45

Calling Another Procedure
Nesting

Any number of different procedures is invoked from a single calling procedure. Nest
-INCLUDE commands within each other, up to four levels deep:

-PRODSALES
-INCLUDE FILE1
-RUN

 FILE1
 -INCLUDE FILE2
 -RUN

 FILE2
 -INCLUDE FILE3
 -RUN

 FILE3
 -INCLUDE FILE4
 -RUN

 FILE4
 -RUN

Files one through four are incorporated into the original procedure. The server views all of
the included files as part of the original procedure.

Reference: Other Uses of the -INCLUDE Command

You can also use the -INCLUDE command to:

• Control the server environment. For example, the called procedure may set some
switches before the calling procedure continues execution.

• Shorten the code when there are several possible procedures that may be called. For
example, the command -INCLUDE &NEWLINES could be used to determine the called
procedure, reducing the number of GOTO commands (&NEWLINES is a variable whose
substitutable value is a file name).

Reference:

Other Uses of the -INCLUDE Command
5-46 iWay Software

Writing a Dialogue Manager Procedure
The EXEC Command
A procedure also calls another one with the command EXEC. The called procedure must be
fully executable.

See Supplying Values for Variables on page 5-23 for a description of the syntax.

Example: Using the DATERPT Command

In the following example, a procedure calls DATERPT:

-IF &OPTION EQ 'S' GOTO PRODSALES ELSE GOTO PRODRETURNS;
 .
 .
 .
-PRODRETURNS
 EX DATERPT
 .
 .
 .
-RUN
iWay Stored Procedures Reference 5-47

The -REMOTE Commands
The -REMOTE Commands
A procedure uses -REMOTE BEGIN and -REMOTE END to delimit commands that are sent
from an originating server and executed on a target server.

Syntax: How to Use the -REMOTE Commands

-REMOTE BEGIN
commands
-REMOTE END

where:

commands

Are a set of command lines to be processed by Dialogue Manager and then sent to the
target server for execution.

Note: The following conditions apply when using the -REMOTE commands:

• Another -REMOTE command cannot be included within the -REMOTE BEGIN and
-REMOTE END delimiters; that is, -REMOTE commands cannot be nested.

• Dialogue Manager commands within the delimiters are executed, and variable
substitution takes place before the stack is sent to the target server. A -INCLUDE
command takes a Dialogue Manager procedure residing on the originating server and
includes the procedure commands in the stack, as in normal procedure processing.

• The resulting stack of server commands must be a complete server request. Any
command that is valid on the target server is included in the stack.

• The command EXEC may be included within the delimiters:

-REMOTE BEGIN
EXEC SPNAME &PARM1,&PARM2
-REMOTE END

The second command line above is processed by Dialogue Manager (which substitutes real
parameters for the amper variables), and sent to the target server. Therefore, the Dialogue
Manager procedure (SPNAME) must exist on the target server.
5-48 iWay Software

Writing a Dialogue Manager Procedure
Reading From and Writing to an External File
Dialogue Manager reads information from an external file and writes information to it. This
section describes the command -WRITE. For information on -READ, see Supplying Values for
Variables on page 5-23.

Syntax: How to Use the -WRITE Command

-WRITE filename [NOCLOSE] text

where:

filename

Is the name of the file being written to. For more information, see Chapter 6, Platform-
specific Commands.

NOCLOSE

Keeps the external file open until the -WRITE operation is complete. A file kept open
with NOCLOSE is closed using the command:

-CLOSE filename

Note: The -RUN command does not close an external file if NOCLOSE is specified.

text

Is any combination of variables and text. If the command continues over several lines,
put a comma at the end of the line and a hyphen at the beginning of each succeeding
line.

Example: Using the -WRITE Command

The file name parameter is a symbolic name for a physical file known by the server
operating system. Each operating system has its own method for associating a symbolic
name with a physical file.

For instance, under MVS, the DYNAM command is used:

DYNAM ALLOC FILE MYFILE DSNAME EDAUSER.MYFILE.DATA SHR

On UNIX, Windows, OpenVMS, and OS/400 platforms, the FILEDEF command is used. For
example, on UNIX:

FILEDEF MYFILE DISK /home/edauser/myfile.dat

the data file portion would use the actual native file name convention of the platform.

The following example sets the physical name EDAUSER.MYFILE.DATA to the symbolic
name MYFILE. Consequently, you could issue the following command:

-WRITE CAR &ALINE
iWay Stored Procedures Reference 5-49

.EVAL Operator
.EVAL Operator
The .EVAL operator enables you to change a procedure dynamically.

Syntax: How to Use the .EVAL Operator

[&]&variable.EVAL

where:

variable

Is either local (&) or global (&&).

Consider the following example:

-SET &A = '-TYPE';
&A HELLO

The resulting stack for the above is:

-TYPE HELLO

which generates an error, because it is a Dialogue Manager command, not a server
command.

Adding the .EVAL operator to the preceding example enables the server to interpret the
amper variable correctly and generate the expected result:

-SET &A = '-TYPE';
&A.EVAL HELLO

The output with the .EVAL operator is:

HELLO

The .EVAL operator is typically used in:

• Record selection tests.

• Calculations.
5-50 iWay Software

Writing a Dialogue Manager Procedure
In the following example, the .EVAL operator is used in a record selection test. It forces early
substitution of the value for &R (that is, before parsing of the SQL code).

-SET &R = 'WHERE COUNTRY = ' || '''ENGLAND''';
-IF &OPTION EQ 'YES' GOTO START;
-SET &R = '-*';
-START
SELECT COUNTRY
FROM CAR
&R.EVAL
;
TABLE
ON TABLE HOLD
END

The next example illustrates the use of the .EVAL operator to perform a calculation. It forces
early substitution of the value for &OPER, converting the -SET command to a calculation.

-SET &A = &OPERANDA &OPER.EVAL &OPERANDB;
-TYPE &OPERANDA &OPER &OPERANDB IS &A
iWay Stored Procedures Reference 5-51

Creating Expressions
Creating Expressions
Dialogue Manager reads information from an external file and writes information to it. This
section describes the command -WRITE. For information on -READ, see Supplying Values for
Variables on page 5-23.

An expression consists of variables and literals (numeric or alphanumeric constants) that
are combined arithmetically, logically, or in some other way to create a new value.

This section describes how to create:

• Arithmetic Expressions.

• Alphanumeric Expressions.

• Logical Expressions.

• Compound Expressions.

Dialogue Manager has few restrictions on creating expressions. However, keep in mind that
an expression cannot exceed 40 lines or 16 -IF...THEN...ELSE commands.

Arithmetic Expressions

An arithmetic expression is:

• A numeric constant, for example, 1.

• Two variables joined by one of the following arithmetic operators:

An example is:

&DELIVER_AMT / &OPENING_AMT

Example:

Using Arithmetic Expressions

Reference:

Guidelines for Using Arithmetic Expressions

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation
5-52 iWay Software

Writing a Dialogue Manager Procedure
• Two or more arithmetic expressions, joined by one of the operators in the preceding
list. An example is:

(&RATIO - 1) ** 2

• A compound expression or function that gives an arithmetic result. See Using Functions
on page 5-59 for more information.

Example: Using Arithmetic Expressions

Following are three arithmetic expressions used in the command -SET:

-SET &COUNT = 1;
-SET &NEWVAL = (&RATIO - 1) ** 2;
-SET &RATIO = (&DELIVER_AMT * 100) / (&OPENING_AMT);

Reference: Guidelines for Using Arithmetic Expressions

Keep the following in mind as you create arithmetic expressions:

• If you attempt to divide by 0, Dialogue Manager sets the result to 0.

• Arithmetic operations are performed before logical operations, in the following order:

• For operations on the same level (for example, division and multiplication), the
evaluation is performed from left to right.

• An expression in parentheses is evaluated before any other expression.

• Values for local and global variables (amper variables) are stored internally as character
strings, including numeric values. If a calculation is performed on an amper variable,
the variable is first converted from a character string into a numeric. After the whole
result is calculated, the result of arithmetic operations with numeric fields is truncated
to the integer field. Finally, the result is converted back into a character string.

** Exponentiation

/ * Division and multiplication

+ - Addition and subtraction
iWay Stored Procedures Reference 5-53

Creating Expressions
Alphanumeric Expressions

An alphanumeric expression is:

• A literal enclosed in single quotation marks, for example ‘Smith John’.

• A logical expression that yields an alphanumeric result.

• A function that yields an alphanumeric result.

• Two or more alphanumeric variables or literals combined into a single string. See
Concatenate Alphanumeric Variables and Literals on page 5-54 for the syntax and an
example.

Syntax: How to Concatenate Alphanumeric Variables and Literals

variablename = {alphaexp1|'literal'} concatenation
{alphaexp2|'literal'} [...]

where:

variablename

Is the name of the variable assigned to the result of the concatenation.

alphaexp1, alphaexp2

Are local or global variable that forms part of the concatenation.

literal

Is a literal that forms part of the concatenation. It must be enclosed in single quotation
marks.

concatenation

Is one of the following symbols:

How to:

Concatenate Alphanumeric Variables and Literals

Use Date Functions

Example:

Concatenating Alphanumeric Variables and Literals

|| indicates strong concatenation, which suppresses trailing blanks.

| indicates weak concatenation, which preserves individual field lengths,
including trailing blanks.
5-54 iWay Software

Writing a Dialogue Manager Procedure
Example: Concatenating Alphanumeric Variables and Literals

-SET &NAME = &LASTNAME || ',' || &FIRST_INIT;

If &LASTNAME is equal to Doe and &FIRST_INIT is equal to J, &NAME is set to:

Doe,J

Syntax: How to Use Date Functions

System-supplied date functions enable you to calculate the number of days between start
and end dates, including leap years. The date format must be either alphanumeric or
integer.

datefield (begin, end)

where:

datefield

Is one of the following:

YMD is the number of days between two dates stored as year-month-day (for example,
850522).

MDY is the number of days between two dates stored as month-day-year (for example,
052285).

DMY is the number of days between two dates stored as day-month-year (for example,
220585).

begin

Is the start date.

end

Is the end date.

In the following example, &LOSRV is set to the number of days between &HIRE_DATE and
the literal 040101:

-SET &LOSRV = YMD(&HIRE_DATE,040101);
iWay Stored Procedures Reference 5-55

Creating Expressions
Logical Expressions

A logical expression contains logical and relational operators and is evaluated to a value
that is true or false.

Example: Forming a Logical Expression

This example shows various elements that are used to form a logical expression. The
abbreviation exp stands for expression.

{arithmetic exp|alphanumeric exp} operator1 {numeric lit|alphanumeric
lit} OR...

expression operator2 expression

logical exp {AND|OR} logical exp

NOT logical exp

where:

operator1

Is one of the following: EQ, NE, OMITS, or CONTAINS.

expression

Is either an arithmetic, alphanumeric, or logical expression.

operator2

Is one of the following: EQ, NE, LE, LT, GE, or GT.

The following table defines valid operators (EQ, NE, and so on) used in this example.

Example:

Forming a Logical Expression

Reference:

Guidelines for Alphanumeric and Logical Expressions

Operator Description

EQ Tests for a value equal to another value.

NE Tests for a value not equal to another value.

OMITS Tests for a value that does not contain a matching character string.

CONTAINS Tests for a value that does contain a matching character string.
5-56 iWay Software

Writing a Dialogue Manager Procedure
Reference: Guidelines for Alphanumeric and Logical Expressions

Keep the following in mind:

• An alphanumeric literal with embedded blanks or commas must be enclosed in single
quotation marks. For example:

-IF &NAME EQ 'JOHN DOE' GOTO QUIT;

To produce a single quotation mark within a literal, place two single quotation marks
where you want one to appear:

-IF &NAME EQ 'JOHN O''HARA' GOTO QUIT;

• A computational field may be assigned a value by equating it to a logical expression. If
the expression is true, the field has a value of 1; if the expression is false, the field has a
value of 0.

• Use OR to connect literals or other expressions. You must also use parentheses to
separate expressions connected with OR.

• Logical operations are done after arithmetic operations, in the following order:

EQ NE LE LT GE GT NOT CONTAINS OMITS

AND

OR

• Separate a collection of test values with OR:

-IF &STATE EQ 'NY' OR 'NJ' OR 'WA' GOTO QUIT;

In this case, OR and EQ are evaluated at the same level.

• Use parentheses to specify a desired order. An expression in parentheses is evaluated
before any other expression. For example, the command

LE Tests for a value less than or equal to another value.

LT Tests for a value less than another value.

GE Tests for a value greater than or equal to another value.

GT Tests for a value greater than another value.

AND Returns a value of true if both of its operands are true.

OR Returns a value of true if either of its operands is true.

NOT Returns a value of true if the operand is false.

Operator Description
iWay Stored Procedures Reference 5-57

Creating Expressions
-IF &STATE EQ 'NY' AND &COUNTRY EQ 'US' OR 'UK' THEN...

is evaluated as:

IF &STATE EQ 'NY' IF &COUNTRY EQ 'US'...

Dialogue Manager then evaluates the phrase OR UK and indicates that it is a syntax
error.

To write the command correctly, add parentheses:

-IF ((&STATE EQ 'NY') AND (&COUNTRY EQ 'US' OR 'UK')) THEN...

Compound Expressions
A compound expression has the following form:

-IF expression THEN expression ELSE expression;

The following restrictions apply:

• Each of the expressions may itself be a compound expression, although the expression
following -IF may not be a -IF...THEN...ELSE expression (for example, -IF...-IF...).

• If the expression following THEN is itself a compound expression, it must be enclosed in
parentheses; this rule does not apply to an expression following ELSE.

• Compound expressions only have up to 16 -IF commands.

Example: Using Compound Expressions

If the following example is executed without an input parameter list, the client application
receives the message NONE. If it executes with the parameter BANK='FIRST NATIONAL', the
client application receives the message FIRST NATIONAL.

-DEFAULTS &BANK = ' '
-SET &BANK = IF &BANK EQ ' ' THEN 'NONE'
-ELSE &BANK;
-TYPE &BANK

The next example uses a compound expression to define a truth condition (1 is true and 0 is
false).

-DEFAULTS &CURR_SAL = 900,&DEPARTMENT=MIS
-SET &MYTEST = (&CURR_SAL GE 1000) OR (&DEPARTMENT EQ MIS);
-IF &MYTEST EQ 1 THEN GOTO YES ELSE GOTO NO;
-YES
-TYPE YES
-EXIT
-NO
-TYPE NO

When this code is executed, the client application receives the message YES.
5-58 iWay Software

Writing a Dialogue Manager Procedure
Using Functions

This section describes system-supplied functions you can use in expressions. Write your
own functions to solve specific application problems.

System-supplied Function Examples
The arguments for the following usage examples are amper variables, expressions, or other
functions.

In this section:

System-supplied Function Examples

System-supplied Function Table

Editing a Value

Decoding a Value

Function Description

ABS Returns the absolute value of a number. Computes on one argument:

-SET &PRICE = (ABS(&AMOUNT-&OLDAMOUNT))/100;

INT Returns the integer part of a number. Computes on one argument:

-SET &YEAR = INT(&DATE/10000);

MAX Returns the maximum value. Computes on one or more arguments, each
separated by a comma:

-SET &LARGE = IF &FACTOR GT 10 THEN MAX(10,&AMOUNT)
- ELSE MAX(0,&AMOUNT,&VALUE/10);

MIN Returns the minimum value. Computes on one or more arguments, each
separated by a comma:

-SET &LOW = MIN(0,&AMOUNT,&NEWAMOUNT,&OTHER);

LOG Returns the logarithm of a number, base e. Computes on one argument:

-SET &VAL = 100*&AMOUNT*LOG(&PRICE);

SQRT Returns the square root of a number. Computes on one argument:

-SET &VALUE = 100*&AMOUNT/SQRT(&TOTA);
iWay Stored Procedures Reference 5-59

Using Functions
System-supplied Function Table
This table summarizes additional system-supplied functions and arguments. Contact your
iWay representative to request full documentation on these functions.

Function Arguments Description

ABS value Returns the absolute value of a
number.

ARGLEN inlength,infield,outfield Calculates the non-blank length of an
alphanumeric field.

ASIS value Distinguishes between a blank and
zero.

ATODBL number,inlength,outfield Converts an alphanumeric field
containing numeric data to a
double-precision decimal field.

AYM indate,months,outfield Adds or subtracts a number of
months from a given date.

AYMD indate,days,outfield Adds or subtracts a number of days
from a given date.

BAR barlength,infield,maxvalue,
char,outfield

Includes a bar graph in a tabular
report. Available for MVS and VM only.

BITSON bitnumber,infield,outfield Interprets multi-punch data (data that
cannot be represented
alphanumerically).

BITVAL infield,startbit,number,
outfield

Obtains the decimal value of a string
of bits.

BYTVAL character,outfield Obtains the decimal equivalent of an
alphanumeric character.

CHGDAT oldformat,newformat,indate,
outfield

Changes the format of a date.

CHKFMT numchar,infield,mask,
outfield

Checks character strings for incorrect
character types.

CHKPCK inlength,infield,error,
outfield

Validates packed field format.
5-60 iWay Software

Writing a Dialogue Manager Procedure
CNCTUSR outfield Indicates the connected user.

CTRAN inlength,infield,incode,
outcode,outfield

Substitutes characters in a string.

CTRFLD infield,inlength,outfield Centers character strings within fields.

DADMY indate,outfield Calculates number of days from
1/1/00 with input in day-month-year
format.

DADYM indate,outfield Calculates number of days from
1/1/00 with input in day-year-month
format.

DAMDY indate,outfield Calculates number of days from
1/1/00 with input in month-day-year
format.

DAMYD indate,outfield Calculates number of days from
1/1/00 with input in month-year-day
format.

DAYDM indate,outfield Calculates number of days from
1/1/00 with input in year-day-month
format.

DAYMD indate,outfield Calculates number of days from
1/1/00 with input in year-month-day
format.

DATEADD YYMDdate,unit,#units Adds or subtracts a unit to or from a
date format.

DATECVT indate,infmt,outfmt Converts date formats within
applications without requiring
intermediate calculations.

DATEDIF fromYYMD,toYYMD,unit Returns the difference between two
dates in units.

DATEMOV YYMDdate,move-point Moves a date to a significant point on
the calendar.

Function Arguments Description
iWay Stored Procedures Reference 5-61

Using Functions
DECODE instring (invalue
outvalue...)

Value translation (for more
information, see Decoding a Value on
page 5-72).

DMOD dividend,divisor,outfield Calculates the remainder from a
division operation and returns a
double-precision value.

DMY begin,end Calculates the difference between
two dates in integer, alphanumeric, or
packed format.

DOWK indate,outfield Provides the day of the week (in
4-character alphanumeric format)
based on input date.

DOWKL indate,outfield Provides the day of the week (in
12-character alphanumeric format)
based on input date.

DTDMY number,outfield Calculates the date from the number
of days since 1/1/00 in
day-month-year format.

DTDYM number,outfield Calculates the date from the number
of days since 1/1/00 in
day-year-month format.

DTMDY number,outfield Calculates the date from the number
of days since 1/1/00 in
month-day-year format.

DTMYD number,outfield Calculates the date from the number
of days since 1/1/00 in
month-year-day format.

DTYDM number,outfield Calculates the date from the number
of days since 1/1/00 in
year-day-month format.

DTYMD number,outfield Calculates the date from the number
of days since 1/1/00 in
year-month-day format.

Function Arguments Description
5-62 iWay Software

Writing a Dialogue Manager Procedure
EDIT infield[,mask] Converts numeric to string when both
parms are supplied or string to
masked string when only the first
parm is supplied. For more
information, see Editing a Value on
page 5-71.

EXP power,outfield Raises “e” to a given power.

EXPN n.nn {E|D} {+|-} p Evaluates an argument expressed in
scientific notation.

FEXERR nnnnn,A72 Retrieves an error message.

FGETENV envnamelen,envname,
outfieldlen,outfldformat

Retrieves the value of an environment
variable and returns it as an
alphanumeric string.

FINDMEM ddname,member,outfield Determines whether a partitioned
data set contains a specified member.
Available for MVS only.

FMLINFO ‘forvalue’, outfield Retrieves FML value for direct use in
calculations or a report.

FMOD dividend,divisor,outfield Calculates the remainder from a
division operation and returns a
single-precision value.

FORECAST fld2,interval,npredict,
method

Uncovers trends in numeric data.
Methods are: Simple Moving Average
(MOVAVE), Exponential Moving
Average (EXPAVE), and Linear
Regression Analysis (REGRESS).

FPUTENV namelength,name,
valuelength,value,outfield

Assigns a character string to an
environment variable.

FTOA number,usage,outfield Converts a numeric field to
alphanumeric format without
inserting leading zeros.

Function Arguments Description
iWay Stored Procedures Reference 5-63

Using Functions
GETPDS ddname,member,outfield Determines whether a specific
member of a partitioned data set
(PDS) exists and returns the PDS
name.

GETSECID outfield Retrieves the security ID. Available for
MVS only.

GETTOK infield,inlen,toknum,delim,
outlen,outfield

Extracts a token from a data string.

GETUSER outfield Retrieves the user ID from the system.

GREGDT indate,outfield Converts a Julian date to a Gregorian
date.

HADD dtfield,component,increment
,length,Hformat

Specifies a date-time field by a given
number of units.

HCNVRT dtfield,Hfmt,rlength,Ann Converts a date-time field to
alphanumeric format for use with
operators such as EDIT, CONTAINS,
and LIKE.

HDATE dtfield,dateformat Extracts the date portion of a
date-time field and converts it to a
date format.

HDIFF dtfield1,dtfield2,component
,Dformat

Finds the number of boundaries of a
given type crossed going from date 2
to date 1.

HDTTM datefield,length,Hformat Converts a date field to a date-time
field.

HEXBYT number,outfield Obtains the character equivalent of a
numeric value.

HGETC length,Hformat Stores the current date and time in a
date-time field.

HHMMSS outfield Retrieves the current time from the
system.

Function Arguments Description
5-64 iWay Software

Writing a Dialogue Manager Procedure
HINPUT inputlength,inputstring,
length,Hfmt

Converts an alphanumeric string to a
date-time value.

HMIDNT dtfield,length,Hformat Changes the time portion of a
date-time field to midnight.

HNAME dtfield,component,Aformat Extracts a specified component from
a date-time field and returns it in
alphanumeric format.

HPART dtfield,component,Iformat Extracts a specified component from
a date-time field and returns it in
numeric format.

HSETPT dtfield,component,value,
length,Hformat

Inserts the numeric value of a
specified component into a date-time
field.

HTIME length,dtfield,Dformat Converts the time portion of a
date-time field to a numeric number
of milliseconds or microseconds.

IMOD dividend,divisor,outfield Calculates the remainder from a
division operation and returns an
integer value.

INT value Returns the integer part of an
argument.

ITONUM sigbytes,infield,outfield Converts large binary integers in
non-FOCUS files to double-precision
format.

ITOPACK sigbytes,infield,outfield Converts large binary integers in
non-Dialogue Manager files to
packed format.

ITOZ outlength,number,outfield Converts a numeric field to a zoned
decimal.

JULDAT indate,outfield Converts a Gregorian date to a Julian
date.

Function Arguments Description
iWay Stored Procedures Reference 5-65

Using Functions
LCWORD length,instring,outstring Translates uppercase characters in
alphanumeric fields to lowercase on a
word-by-word basis.

LJUST inlength,infield,outfield Left-justifies a character string within
a field.

LOCASE length,infield,outfield Translates uppercase characters in
alphanumeric fields to lowercase
characters.

LOG value Returns the logarithm of a number,
base e.

MAX value1,value2... Returns the maximum value.

MDY begin,end Calculates the difference between
two dates in integer, alphanumeric, or
packed format.

MIN value1,value2... Returns the maximum value.

MVS
DYNAM

command,length,rc Transfers a specified FOCUS DYNAM
command to the DYNAM command
processor.

NORMSDST value,outfield Calculates percent of data value less
than or equal to a normalized value.

NORMSINV value,outfield Calculates the upper percent of data
value boundary for a normalized
value.

OVRLAY base,baselen,substring,
sublen,position,outfield

Overlays a character string on a
character string.

PARAG inlength,infield,delimiter,
subsize,outfield

Inserts a delimiter into a character
string.

PCKOUT infield,outlength,outfield Outputs a packed field.

POSIT parent,inlength,substring,
sublength,outfield

Finds the position of a character
string in another string.

Function Arguments Description
5-66 iWay Software

Writing a Dialogue Manager Procedure
PRDNOR seed,outfield Generates repeatable random
numbers for normal distribution.

PRDUNI seed,outfield Generates repeatable random
numbers for uniform distribution.

RDNORM outfield Generates random numbers for
normal distribution.

RDUNIF outfield Generates random numbers for
uniform distribution.

REVERSE length,input,output Reverses the characters that were
input.

RJUST inlength,infield,outfield Right-justifies an alphanumeric field.

SOUNDEX inlength,string,outfield Searches for character strings
phonetically.

SPELLNUM outlength,infield,outfield Takes an alphanumeric string or a
numeric value with two decimal
places and spells it out with dollars
and cents.

SQRT value Returns the square root of a number.

STRIP length,source_string,
strip_char,result

Removes all occurrences of a specific
character from an input string.

SUBSTR inlength,parent,start,end,
outlength,outfield

Extracts a substring.

TEMPPATH outlength,outfield Retrieves the physical directory name
of the current agent process.

TODAY outfield Retrieves the current date from the
system.

TRIM location,string,
string_length,pattern
pattern_length,,result

Removes leading and/or trailing
occurrences of a pattern within a
string. The location parm indicating
where to trim the pattern is L
(leading), T (trailing), or B (both
leading and trailing).

Function Arguments Description
iWay Stored Procedures Reference 5-67

Using Functions
In most cases, the outfield may be expressed as a format such as ‘A10’.

Verifying Function Parameters

The USERFCHK setting controls the level of verification applied to DEFINE FUNCTION and
Information-Builders-supplied function arguments. It does not affect verification of the
number of parameters; the correct number must always be supplied.

USERFCHK is not supported from Maintain.

Functions typically expect parameters to be a specific type or have a length that depends
on the value of another parameter. It is possible in some situations to enforce these rules by
truncating the length of a parameter and, therefore, avoid generating an error at run-time.

The level of verification and possible conversion to a valid format performed depends on
the specific function. The following two situations can usually be converted satisfactorily:

• If a numeric parameter specifies a maximum size for an alphanumeric parameter, but
the alphanumeric string supplied is longer than the specified size, the string can be
truncated.

• If a parameter supplied as a numeric literal specifies a value larger than the maximum
size for a parameter, it can be reduced to the proper value.

TRUNCATE var1 Removes trailing blanks from
Dialogue Manager amper variables
and adjusts the length accordingly.

UFMT infield,inlength,outfield, Converts characters in alphanumeric
fields to HEX representation.

UPCASE length,infield,outfield Translates lowercase characters in
alphanumeric fields to uppercase.

YM fromdate,todate,outfield Returns the number of months
between two dates.

YMD begin,end Calculates the difference between
two dates in integer, alphanumeric, or
packed format.

Function Arguments Description

How to:

Enable Parameter Verification

Control Function Parameter Verification
5-68 iWay Software

Writing a Dialogue Manager Procedure
Syntax: How to Enable Parameter Verification

Parameter verification can be enabled only for DEFINE FUNCTIONs and functions supplied
by Information Builders. If your site has a locally written function with the same name as an
Information-Builders-supplied function, the USERFNS setting determines which function
will be used:

SET USERFNS= {SYSTEM|LOCAL}

where:

SYSTEM

Gives precedence to functions supplied by Information Builders. SYSTEM is the default
setting. This setting is required in order to enable parameter verification.

LOCAL

Gives precedence to locally written functions. Parameter verification is not performed
with this setting in effect.

Syntax: How to Control Function Parameter Verification

Issue the following command in FOCPARM, FOCPROF, on the command line, in a FOCEXEC,
or in an ON TABLE command. Note that the USERFNS=SYSTEM setting must be in effect

SET USERFCHK = setting

where:

setting

Can be one of the following:

ON is the default value. Verifies parameters in requests, but does not verify parameters
for functions used in Master File DEFINEs. If a parameter has an incorrect length, an
attempt is made to fix the problem. If such a problem cannot be fixed, a message is
generated and the evaluation of the affected expression is terminated.

Note that if a parameter provided is the incorrect type, verification fails and processing
terminates.

Because parameters are not verified for functions specified in a Master File, no errors
are reported for those functions until the DEFINE field is used in a subsequent request
when, if a problem occurs, the following message is generated:

(FOC003) THE FIELDNAME IS NOT RECOGNIZED
iWay Stored Procedures Reference 5-69

Using Functions
OFF does not verify parameters except in the following cases:

• If a parameter that is too long would overwrite the memory area in which the
computational code is stored, the size is automatically reduced without issuing a
message.

• If an alphanumeric parameter is too short, it is padded with blanks to the correct
length.

FULL is the same as ON, but also verifies parameters for functions used in Master File
DEFINEs.

Note that if a parameter provided is the incorrect type, verification fails and processing
terminates.

ALERT verifies parameters in a request without halting execution when a problem is
detected. It does not verify parameters for functions used in Master File DEFINEs. If a
parameter has an incorrect length and an attempt is made to fix the problem behind
the scenes, the problem is corrected with no message. If such a problem cannot be
fixed, a warning message is generated. Execution then continues as though the setting
were OFF, but the results may be incorrect.

Note that if a parameter provided is the incorrect type, verification fails and processing
terminates.

Creating Routines
Custom routines may be written in a 3GL and added to the servers search path provided
they are:

• Compiled properly and placed in the server’s user directory of EDACONF.

or

• Located on the IBICPG path and compiled as a shared library with one routine for each
library with the same name.

The script, gencpgm, is provided to assist in the actual compilation of a program on most
platforms, as well as sample routines, but any method is allowed provided that it compiles
and links a program correctly. For more information, see Appendix B, GENCPGM Usage.

On MVS, build routines into a loadlib and allocate as ALLOCATE F(IBICPG)
DA('USER.LIBRARY.LOAD') SHR, unless they are REXX based (see MVS REXX below).

On VM, build routines into a loadlib and execute GENSUBLL EXEC to generate the new
loadlib, unless they are REXX based (see VM REXX below).

On MVS and VM, routines may also be written in REXX. On MVS, REXX routines must be
stored in a PDS with a FUSREXX ddname allocated to the PDS. On VM, each routine must be
in a file with a file type of FUSREXX on an accessible disk. On VM, compiled REXX is also
supported and uses the same file type of FUSREXX.
5-70 iWay Software

Writing a Dialogue Manager Procedure
Editing a Value
The mask option of the EDIT function inserts characters in an alphanumeric value, or
extracts certain characters from the value.

Syntax: How to Use the EDIT Function

EDIT(fieldname,'mask');

where:

fieldname

Is the name of the field to be edited.

'mask'

Is a value that the field name matches against, enclosed in single quotation marks. If
mask contains the number 9, the corresponding character in fieldname is moved to the
new field. If mask contains a dollar sign ($), the corresponding character in fieldname is
ignored. If a character in mask is neither the number 9 nor a dollar sign, the character is
inserted in the new field.

Example: Using the EDIT Function

In the following example, assume that &EMP_ID is a 9-character alphanumeric field and
&FIRST_NAME is a 10-character alphanumeric field. Suppose you want to edit &EMP_ID by
inserting hyphens, then display the first initial and last name of an employee.

-SET &EMPIDEDIT = EDIT(&EMP_ID,'999-99-9999');
-SET &FIRST_INIT = EDIT(&FIRST_NAME,'9$');
-TYPE &EMPIDEDIT &FIRST_INIT &LAST_NAME

Assume that &EMP_ID is 516888704 and &FIRST_NAME is 'EDWARD'. The client application
receives:

516-88-8704 E Jones
iWay Stored Procedures Reference 5-71

Using Functions
Decoding a Value

Many times the value of a field is coded. For example, the field &SEX may contain code F for
female employees and code M for male employees, reducing the storage requirement for
the value.

One method for decoding (expanding) these values is to include a series of nested
-IF...THEN...ELSE commands (for example, -IF &SEX IS 'M' THEN 'MALE' ELSE 'FEMALE';), but
this becomes very cumbersome. As an alternative, Dialogue Manager provides the DECODE
function.

Syntax: How to Decode a Value
DECODE fieldname (code1 result1 code2 result2...[ELSE default]);

where:

fieldname

Is an alphanumeric or numeric field to be decoded.

code

Is the code to be expanded.

result

Is the expanded value to be substituted for code. If this value has embedded blanks or
commas, or if it is a negative number, enclose it in single quotation marks.

Use either commas or blanks to separate the code from the result, or one pair from
another pair.

default

Is the value to be assigned if the code is not found. If you do not supply a default,
Dialogue Manager assigns a blank or zero.

Code up to 40 lines of pairs of elements (a pair is a code and a result), or 39 if you include an
ELSE.

How to:

Decode a Value

Store Codes and Results in a Separate File

Example:

Using the DECODE Function
5-72 iWay Software

Writing a Dialogue Manager Procedure
Example: Using the DECODE Function

In the following example, values (results) are substituted for the codes FED, STAT, CITY, FICA,
HLTH, and SAVE:

-SET &DEDUCTION = DECODE &DED_CODE(FED 'TAXES' STAT 'TAXES'
- CITY 'TAXES' FICA 'FICA' HLTH 'INSURANCE' SAVE 'PERSONAL'
- ELSE 'OTHER');
-TYPE &DEDUCTION

Syntax: How to Store Codes and Results in a Separate File

DECODE &testvar (filename [ELSE default]);

where:

filename

Is the symbolic name of a physical file.

Each record in the file must contain one pair of elements (a code and a result), separated by
a comma or blanks. For example:

F FEMALE
M MALE

DECODE tests each record in filename; if the value of &testvar matches a value in the first
column of filename, DECODE returns the value in the second column. For example, if the
above file is named GENDER, the following results in MALE:

-SET &SEX = M;
-SET &SEX = DECODE &SEX(GENDER);
-TYPE &SEX

• If an element itself contains a comma or a blank, enclose it in single quotation marks.

• Leading and trailing blanks are ignored.

• Include up to 31,000 characters in the file.

• If a record contains only one element (with the remainder of the record entirely blank),
the element is interpreted as the code. The result defaults to either blank or zero, as
needed.

In the following example, &TAKE is set to 0 for &SELECT values found in filename, and is set
to 1 in all other cases:

&TAKE = DECODE &SELECT (filename ELSE 1);
&VALUE = IF &TAKE IS 0 THEN...ELSE...;
iWay Stored Procedures Reference 5-73

Using Functions
Creating an Indexed Variable
You can append the value of one variable to the value of another variable, creating an
indexed variable. This feature applies to both local and global variables.

If the indexed value is numeric, the effect is similar to that of an array in traditional
computer programming languages. For example, if the value of index &K varies from 1 to
10, the variable &AMOUNT.&K refers to one of ten variables, from &AMOUNT1 to
&AMOUNT10.

A numeric index can be used as a counter; it can be set, incremented, and tested in a
procedure.

Syntax How to Create an Indexed Variable

-SET &name.&index[.&index...] = expression;

where:

&name

Is a variable.

.&index

Is a numeric or alphanumeric variable whose value is appended to &name. The period is
required.

When more than one index is used, all index values are concatenated and the string
appends to the name of the variable.

For example, &V.&I.&J.&K is equivalent to &V1120 when &I=1, &J=12, and &K=0.

expression

Is a valid expression. For information on the kinds of expressions you can write, see the
Creating Reports manual.
5-74 iWay Software

Writing a Dialogue Manager Procedure
Example Using an Indexed Variable in a Loop

An indexed variable can be used in a loop. The following example creates the equivalent of
a DO loop used in traditional programming languages:

-SET &N = 0;
-LOOP
-SET &N = &N+1;
-IF &N GT 12 GOTO OUT;
-SET &MONTH.&N=&N;
-TYPE &MONTH.&N
-GOTO LOOP
-OUT

In this example, &MONTH is the indexed variable and &N is the index. The value of the index
is supplied through the command -SET; the first -SET initializes the index to 0, and the
second -SET increments the index each time the procedure goes through the loop.

If the value of an index is not defined prior to reference, a blank value is assumed. As a
result, the name and value of the indexed variable do not change.

Indexed variables are included in the system limit of 1024, which includes variables
reserved by FOCUS.

Removing Trailing Blanks From Variables With the TRUNCATE Function
The Dialogue Manager TRUNCATE function removes trailing blanks from Dialogue Manager
amper variables and adjusts the length accordingly.

The Dialogue Manager TRUNCATE function has only one argument, the string or variable to
be truncated. If you attempt to use the Dialogue Manager TRUNCATE function with more
than one argument, the following message is generated:

(FOC03665) Error loading external function 'TRUNCATE'

This function can only be used in Dialogue Manager commands that support function calls,
such as -SET and -IF commands. It cannot be used in -TYPE or -CRTFORM commands or in
arguments passed to stored procedures.

Note: A user-written function of the same name can exist without conflict.
iWay Stored Procedures Reference 5-75

Using Functions
Syntax How to Remove Trailing Blanks From Variables

-SET &var2 = TRUNCATE(&var1);

where:

&var2

Is the Dialogue Manager variable to which the truncated string is returned. The length
of this variable is the length of the original string or variable minus the trailing blanks. If
the original string consisted of only blanks, a single blank, with a length of one is
returned.

&var1

Is a Dialogue Manager variable or a literal string enclosed in single quotation marks.
System variables and statistical variables are allowed as well as user-created local and
global variables.

Example Removing Trailing Blanks

The following example shows the result of truncating trailing blanks:

-SET &LONG = 'ABC ' ;
-SET &RESULT = TRUNCATE(&LONG);
-SET &LL = &LONG.LENGTH;
-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

The output is:

LONG = ABC LENGTH = 06
RESULT = ABC LENGTH = 03

The following example shows the result of truncating a string that consists of all blanks:

-SET &LONG = ' ' ;
-SET &RESULT = TRUNCATE(&LONG);
-SET &LL = &LONG.LENGTH;
-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

The output is:

LONG = LENGTH = 06
RESULT = LENGTH = 01
5-76 iWay Software

Writing a Dialogue Manager Procedure
The following example uses the TRUNCATE function as an argument for EDIT:

-SET &LONG = 'ABC ' ;
-SET &RESULT = EDIT(TRUNCATE(&LONG)|'Z','9999');
-SET &LL = &LONG.LENGTH;
-SET &RL = &RESULT.LENGTH;
-TYPE LONG = &LONG LENGTH = &LL
-TYPE RESULT = &RESULT LENGTH = &RL

The output is:

LONG = ABC LENGTH = 06
RESULT = ABCZ LENGTH = 04

Using Variables to Alter Commands
A variable can refer to a FOCUS command or to a particular field. Therefore, the command
structure of a procedure can be determined by the value of the variable.

Example Using a Variable to Control What the TABLE Command Prints

In this example, the variable &FIELD determines the field to print in the TABLE request.

In the file named SALES, the variable &FIELD can display the values RETURNS, DAMAGED, or
UNIT_SOLD.

TABLE FILE SALES
 .
 .
 .
PRINT &FIELD
BY PROD_CODE
 .
 .
 .
iWay Stored Procedures Reference 5-77

Using Commands Specific to an Operating System
Using Commands Specific to an Operating System
A Dialogue Manager procedure executes commands that are specific to an operating
system. Operating systems include OS/400, VM, MVS/TSO, Windows, UNIX, and OpenVMS.

Syntax: How to Execute Commands With a Dialogue Manager

[operating system] command

where:

[operating system]

Specifies the operating system. Possible values are:

-AS/400, AS/400 or CMD specifies the OS/400 operating system.

-CMS or CMS specifies the CMS operating system.

-DOS or DOS specifies the DOS operating system.

-TSO RUN or TSO RUN specifies the MVS/TSO operating system.

-UNIX or UNIX specifies the UNIX operating system.

-VMS or VMS specifies the VMS operating system.

-WINNT or WINNT specifies the Windows NT operating system.

! for a generic request to specify a non-specific operating system.

command

Is an operating system command.

Specifications starting with a dash (-) are executed in the normal flow of Dialogue Manager
commands. Commands that do not start with a dash (-) are stacked until execution is forced
by an end of file or a -RUN. Note that there is no -! feature.
5-78 iWay Software

Writing a Dialogue Manager Procedure
ON TABLE HOLD
When a server receives the results of an SQL request (an answer set) from another server,
the answer set will either:

• Be returned to the client application using ON TABLE PCHOLD. That command is
described in ON TABLE PCHOLD on page 5-80.

• Be held on the initiating server, without sending it back to the client application, using
ON TABLE HOLD. A corresponding Master File for the file that holds the answer set is
also created.

Syntax: How to Use the ON TABLE HOLD Command

ON TABLE HOLD [AS filename] FORMAT format
END

where:

filename

Is the name of the file that holds the answer set. If filename is omitted, the name of the
held file on the server is HOLD, and subsequent creations of HOLD files overlay each
other. The file name is a symbolic name known to the operating system for the server
environment.

format

Is one of the format options valid for the server. Possible values are: ALPHA, BINARY,
COMMA, DBASE, DB2, DIF, DOC (WebFOCUS ONLY), EXCEL, EXL2K (WebFOCUS
ONLY), EXL2K PIVOT (WebFOCUS ONLY), FOCUS, FUSION, HTML, HTMTABLE,
INGRES, INTERNAL, LOTUS, PDF, POSTSCRIPT, REDBRICK, SQL, SQLDBC,

SQLINF, SQLMAC, SQLMSS, SQLODBC, SQLORA, SQLSYB, SYLK, TABT, WK1, WP.

END

Is required on a separate line.
iWay Stored Procedures Reference 5-79

ON TABLE PCHOLD
ON TABLE PCHOLD
In order for a Dialogue Manager procedure to return an answer set to a client application, a
certain set of commands must be issued directly after the SQL request in the syntax of the
procedure.

Syntax: How to Use the ON TABLE PCHOLD Command

SQL
SQL request;
TABLE
ON TABLE PCHOLD [FORMAT ALPHA]
END

where:

SQL request

Is a valid SQL request, ending with a semicolon.

FORMAT ALPHA

Optionally specifies that the hold file on the client is a text file. Use any valid format
available on the client, but the underlying transfer is in alpha format. FORMAT ALPHA is
the default value.

END

Is required on a separate line.

Example: Using the ON TABLE PCHOLD Command

This example shows how the ON TABLE PCHOLD command requests information from a
table in a catalog.

SQL
SELECT NAME, CREATOR, COLCOUNT, RECLENGTH FROM SYSTABLE
TABLE
ON TABLE PCHOLD FORMAT ALPHA
END

The result of the request is an answer set sent to the client application by the server.
5-80 iWay Software

CHAPTER 6

Platform-specific Commands

Topics:

• DYNAM Command (MVS)

• Comparison of TSO Commands,
JCL, and DYNAM

• FILEDEF Command Under VM

• FILEDEF Command Under UNIX,
Windows, OS/400, OS/390 and z/
OS, and OpenVMS

These topics describe platform-specific commands that are
included in a Dialogue Manager procedure. They explain
the DYNAM command for MVS and the rules that apply to
it, as well as the syntax and use of all DYNAM
subcommands. They also provide a comparison between
TSO commands and JCL to equivalent DYNAM commands.

On platforms other than MVS, native commands are
directly available using the -UNIX, -VMS, -WINNT, -AS/400,
and -CMS series of commands.

However, file references that are symbolic logical names for
the purpose of –READ –WRITE, TABLE (with external files),
and HOLD AS require a FILEDEF to create the logical
reference.

On VM, the native FILEDEF command of the operating
system (for example, CMS FILEDEF …) is used. On Windows,
UNIX, OS/400, and OpenVMS, an internal version of FILEDEF
is used. See the FILEDEF sections for details on the use of
FILEDEF.
iWay Stored Procedures Reference 6-1

DYNAM Command (MVS)
DYNAM Command (MVS)

This section describes the DYNAM command and its subcommands.

In this section:

Use of Data Sets

DYNAM Allocation User Exit

The ALLOCATE Subcommand

The CONCAT Subcommand

The FREE Subcommand

The CLOSE Subcommand

The COPY Subcommand

The COPYDD Subcommand

The DELETE Subcommand

The RENAME Subcommand

The SUBMIT Subcommand

The COMPRESS Subcommand

How to:

Use the DYNAM Command
6-2 iWay Software

Platform-specific Commands
Syntax: How to Use the DYNAM Command

The DYNAM command manipulates data sets under MVS.

DYNAM subcommand operand [operand]...

where:

subcommand

Is required, and specifies one of the operations (subcommands) in the list below. The
abbreviated form of the subcommand’s syntax is given under the full form. Details on
each subcommand are provided in the following sections as noted.

ALLOCATE
ALLOC
ALLO

Allocates a data set. See The ALLOCATE Subcommand on page 6-6.

CONCAT
CONC

Concatenates data sets. See The CONCAT Subcommand on page 6-15.

FREE Frees data sets specified by ddnames or dsnames. Names may contain
wildcard characters. See The FREE Subcommand on page 6-16.

CLOSE
CLO

Closes data sets. Use this subcommand when data sets cannot be freed
because of being open. See The CLOSE Subcommand on page 6-17.

COPY Copies an entire data set or selected partitioned data set (PDS)
members. This subcommand provides features such as record format
conversion, either automatic or option controlled. See The COPY
Subcommand on page 6-18.

COPYDD Copies a sequential data set or PDS member. COPY handles all the
features of COPYDD, and is recommended for use instead of COPYDD.
See The COPYDD Subcommand on page 6-20.

DELETE
DEL

Deletes an entire data set or selected PDS members. See The DELETE
Subcommand on page 6-21.

RENAME
REN

Renames an entire data set or selected PDS members. See The RENAME
Subcommand on page 6-22.

SUBMIT
SUB

Submits MVS jobs. See The SUBMIT Subcommand on page 6-23.

COMPRESS
COMP

Compresses a PDS. See The COMPRESS Subcommand on page 6-24.
iWay Stored Procedures Reference 6-3

DYNAM Command (MVS)
operand

May be a keyword, a keyword followed by its parameter, or a parameter without a
keyword.

The following rules apply to the DYNAM command:

• The subcommand, keywords, and parameters are separated with one or more blanks.
Keywords are coded in free format.

• A parameter may be a list of subparameters (for example, VOLUME for a multi-volume
data set). Separate subparameters in the list using commas. To include blanks between
subparameters (with or without the comma), enclose the entire list in parentheses. For
example:

A,B (A,B) (A B) (A, B) (A,B C, D)

• A DYNAM command may span several lines. Enter a hyphen (-) at the end of each line to
be continued. When the lines are concatenated, blanks after the hyphen and leading
blanks from the next line are removed. Blanks before the hyphen are removed if they
are preceded by a comma. The total length of a DYNAM command may not exceed
2,048 characters.

• Most keywords may be truncated up to the shortest unambiguous length. The
commonly used abbreviations are fixed. Note that the unique truncation of a keyword
may not always be valid as new keywords are added. It is recommended that the full
keyword be used in files.

• Fixed abbreviations are given in the following sections on the subcommands. For
example, DDNAME may be abbreviated as DD, DDN, DDNA, DDNAM, or DDNAME.

• Certain keywords have synonyms. For example, the keywords FILENAME and DDNAME
are synonyms, and so are DATASET and DSNAME.

• As in TSO, a data set name is enclosed in single quotation marks. Prefix substitution is
not supported; specify only the fully qualified data set names in JCL.

• Some DYNAM commands accept either the ddname or data set name (dsname) as the
same parameter. In such cases, the parameter is considered a ddname if it is not longer
than 8 bytes, does not contain periods (.), and is not enclosed in single quotation marks
('). Otherwise, the parameter is considered a data set name. Thus, to specify an
unqualified data set name, enclose it in single quotation marks.
6-4 iWay Software

Platform-specific Commands
Use of Data Sets
MVS obtains a lock for any allocated data set name; a shared lock for those specified as SHR,
and an exclusive lock for OLD, NEW, or MOD.

Although data sets are allocated more than once in a job step, only one type of lock may be
obtained. For example, if the data set is initially allocated as SHR and is then allocated as
OLD in the same step, the MVS lock changes from shared to exclusive, and the data set is
not available for use by other jobs until all allocations in the job are freed.

The DYNAM commands that manipulate data sets use an improved locking mechanism,
similar to that implemented in ISPF:

• Any output PDS is allocated by DYNAM (or pre-allocated by the user) as SHR. This
avoids exclusive MVS locking, which lasts until all data set allocations are freed.

• To protect from simultaneous updating, DYNAM obtains an exclusive lock as used by
ISPF (and other programs, including LINKEDIT), but only during the actual update time.
This lock controls access to the data set between users, even from within the same job
step.

Note: The DYNAM locking mechanism protects from simultaneous updating and possible
corruption of data, but does not protect from updating and simultaneous reading. For
example, it is possible to continue to read a PDS member recently deleted by another user.

DYNAM Allocation User Exit
The DYNAM allocation user exit is an optional site-supplied routine that may be called for
each data set allocation made by DYNAM. The routine may test, alter, or reject the
allocation request. For more information, see Information Builders Technical Memo 7860.1,
The DYNAM User Exit.
iWay Stored Procedures Reference 6-5

DYNAM Command (MVS)
The ALLOCATE Subcommand
The DYNAM ALLOCATE command allocates a data set.

Syntax: How to Use the ALLOCATE Subcommand

DYNAM ALLOCATE [disposition] [CLOSE]

DDNAME ddname [DEFER] [DSNAME dsname[(memname)]] [DUMMY]
[EXPDT date]
[HIPER OFF]

[INPT|OUTPT]

[LABEL type]
[MEMBER memname] [status] [MSVGP msvgp]

[PARALLEL] [PASSWORD password] [PERM] [POSITION nnnn]
[REFVOL dsname] [RETPD days] [REUSE]
[UNIT unit]
[VOLUME volser]

Space operands are:

[format]

[parameter]

 [DIR n]
 [PRIMARY n1]
 [RELEASE] [ROUND]
 [SECONDARY n2] [SPACE space]

DCB operands are:

 [BLKSIZE n] [BUFNO n]
 [DEN n] [DSORG dsorg]
 [LRECL n]
 [RECFM recfm] [REFDD ddname] [REFDSN dsname]

SMS and VSAM operands are:

 [DATACLASS name] [DSNTYPE|{LIBRARY|PDS}]

 [KEYOFF n]
 [LIKE dsname]
 [MGMTCLASS name]
 [RECORG recorg]
 [SECMODEL name] [STORCLASS name]
 [BUFND m]
 [BUFNI n]
6-6 iWay Software

Platform-specific Commands
Output printing operands are:

 [DEST dest[.user]]

 [FCB name [ALIGN|VERIFY]] [FORMS name]

 [HOLD]
 [OUTLIM n] [OUTPUT name]
 [SYSOUT class]
 [USER user]
 [WRITER name]

where:

ALLOCATE

Can be abbreviated as ALLOC or ALLO.

disposition

Is one of the following:

CLOSE

Is deallocation of the data set at close, rather than at the end of the step. The JCL
analogy is FREE=CLOSE.

DDNAME ddname
DD

Is the DDNAME to be associated with an allocation; it must be specified.
Synonyms are: DDNAME, FILENAME.

DEFER

Assigns device(s) to the data set but defers mounting of the volume(s) until the data set
is opened. The JCL analogy is DEFER in UNIT.

DSNAME dsname
[(memname)]

The member name is specified either in parentheses after dsname or using keyword
MEMBER (see below). If dsname is specified as an asterisk (*), terminal is allocated. This
is used for output only. Synonyms are DSNAME and DATASET.

DUMMY

Allocates a dummy data set.

CATALOG By default, for a data set status of NEW, if dsname is specified, the
disposition is CATALOG; otherwise, the disposition is DELETE. Is
incompatible with SYSOUT. CATLG and UNCAT are also valid as
synonyms for CATALOG and UNCATALOG. DELETE, KEEP, and
UNCATLOG follow the standard MVS meanings of delete after free,
keep as is after free, and keep uncataloged.

DELETE

KEEP

UNCATALOG
iWay Stored Procedures Reference 6-7

DYNAM Command (MVS)
EXPDT date

Is the expiration date in format YYDDD, YYYY/DDD, or YYYYDDD. Is incompatible with
RETPD and SYSOUT.

HIPER OFF

Prohibits allocation in a hiperspace. Is equivalent to UNIT NOHIPER, and is used when
UNIT is also to be specified. For example, UNIT VIO HIPER OFF.

INPT

Data set is to be processed as input only (INPT) or output only (OUTPUT). The JCL
analogy is IN in LABEL. Is incompatible with SYSOUT.

OUTPT

Data set is to be processed as input only (INPT) or output only (OUTPUT). JCL analogy:
IN in LABEL. Is incompatible with SYSOUT.

LABEL type

Specifies type of volume labels. Can be one of the following: NL, SL, NSL, SUL, BLP, LTM,
AL, or AUL. Is incompatible with SYSOUT.

MEMBER memname

Is the name of a PDS member to be allocated. See also: DSNAME.

status

Is the data set status. Possible values are:

MSVGP msvgp

Is the identification of a group of mass storage system (MSS) virtual volumes. Is
incompatible with SYSOUT and VOLUME.

PARALLEL

Each volume is to be mounted on a separate device. The JCL analogy is P in UNIT.

PASSWORD password

Password for a password-protected data set.

NEW is the default data set status. Incompatible with SYSOUT.

MOD is an extended data set.

OLD is exclusive control of the data set.

SHR is shared access to the data set.
6-8 iWay Software

Platform-specific Commands
PERM

The allocation is to be permanent—that is, protected from being freed or concatenated
by any DYNAM command issued by an MSO user. The operand is valid only in an MSO
server initialization profile.

POSITION nnnn

Data set sequence number on a tape volume, up to 9999. The JCL analogy is the first
subparameter in LABEL.

REFVOL dsname

Volume serial information is to be obtained from the named cataloged data set. The
JCL analogy is VOL=REF=dsname. Is incompatible with SYSOUT and VOLUME.

RETPD days

Is the retention period, up to 9999 days. Is incompatible with EXPDT and SYSOUT.

REUSE
REU

If the ddname to be allocated is already in use, it is to be freed.

UNIT unit

Is the device group name, device type, specific unit address, or NOHIPER. NOHIPER
prohibits allocation in a hiperspace, and is meaningful for a temporary (NEW, DELETE)
data set; see also HIPER OFF.

VOLUME volser
VOL

Are volume serial numbers. Are incompatible with REFVOL and SYSOUT.
Synonyms are VOLume and VOLser.
iWay Stored Procedures Reference 6-9

DYNAM Command (MVS)
Space operands may be:

format

The format of the primary space to be allocated. Possible values are:

ALX is up to five contiguous areas.

CONTIG is one contiguous area.

MXIG is one maximal contiguous area.

JCL analogy: ALX/CONTIG/MXIG in SPACE.

n

Represents units of primary and secondary space allocation.

parameter

The parameter for space allocation. Possible values are:

BLOCKS [n]
CYLINDERS
MEGABYTES
PAGES
TRACKS

n represents units of primary and secondary space allocation. If the parameter for
BLOCKS is omitted, the average block length is copied from BLKSIZE. If the space unit is
omitted but SPACE and BLKSIZE are specified, BLOCKS equal BLKSIZE is used. For
PAGES, BLOCKS 4096 is used. BLKSIZE must be specified if the BLOCKS parameter is
specified.

Synonyms are: CYLINDERS, CYLs; TRACKS, TRKs.

DIR n

The number of 256-byte records for the directory of a PDS.

PRIMARY n1

The primary space quantity. See also SPACE.

RELEASE

The unused space is to be released when the data set is closed.
Synonyms are: RELEASE, RLSE.

ROUND

If space is requested in BLOCKS, MEGABYTES, or PAGES, it is to be rounded to whole
cylinder(s).

SECONDARY n2

Is the secondary space quantity. See also SPACE.
6-10 iWay Software

Platform-specific Commands
SPACE space
SP

The primary (n1) and/or secondary (n2) space quantity in one of the following formats:

n1/(n1)/n1,n2/(n1,n2)/n1 n2/(n1 n2)/,n2/(,n2)

See also PRIMARY and SECONDARY.

DCB operands may be:

BLKSIZE n

The block size, up to 32760. See also BLOCKS.

BUFNO n

The number of buffers, up to 255.

DEN n

n represents magnetic tape density: 0, 1, 2, 3, or 4 for 200, 556, 800, 1600, 6250 bpi
respectively.

DSORG dsorg

The data set organization. Default, for NEW only: PO if DIR or DSNTYPE specified; PS
otherwise. Following values are syntactically correct:

LRECL n

The logical record length, up to 32760.

VS VSAM

PO/POU PDS or PDS unmovable.

DA/DAU Direct access or direct access unmovable.

PS/PSU Physical sequential or physical sequential unmovable.
iWay Stored Procedures Reference 6-11

DYNAM Command (MVS)
RECFM recfm

The record format. The first letter must be D, F, U, or V, which may be followed by any
valid combination of A, B, M, S, or T:

REFDD ddname

DCB attributes are to be copied from the specified ddname. Under TSO, EXPDT and
INPT/OUTPT specifications are also copied. Any of those can be overridden by the
appropriate keyword on the same command. The JCL analogy is DCB=*.ddname. Is
incompatible with REFDSN.

REFDSN dsname

DCB attributes (DSORG, RECFM, OPTCD, BLKSIZE, LRECL, RKP, KEYLEN) and EXPDT are to
be copied from the specified cataloged data set. Any of those can be overridden by the
appropriate keyword on the same command. The JCL analogy is DCB=dsname. Is
incompatible with REFDD.

SMS and VSAM operands are:

DATACLASS name

The name of a data class for an SMS-managed data set.

DSNTYPE {LIBRARY|PDS}

LIBRARY is for a new partitioned extended (PDSE), and PDS is for a new partitioned data
set. A PDSE cannot contain load modules, should be SMS-managed, and allows
concurrent updating of different members.

KEYOFF n

The offset of the key in each logical record for a new VSAM key-sequenced (RECORG KS)
data set.

A Records with ISO/ANSI control characters.

B Blocked records.

D Variable-length ISO/ANSI tape records.

F Fixed-length records.

M Records with machine code control characters.

S Standard fixed-length or spanned variable-length records.

T Track overflow.

U Undefined-length records.

V Variable-length records.
6-12 iWay Software

Platform-specific Commands
LIKE dsname

Allocation attributes (DSORG, RECORG, or RECFM, LRECL, KEYLEN, KEYOFF, SPace, DIR)
are to be copied from the specified cataloged data set (model). Any of those can be
overridden by the appropriate keyword on the same command.

MGMTCLASS name

The name of a management class for an SMS-managed data set.

RECORG recorg

The VSAM record organization: KS, ES, RR, or LS for key-sequenced, entry-sequenced,
relative record, or linear space data sets, respectively.

SECMODEL name

The data set RACF profile is to be copied from the named existing RACF profile.

STORCLASS name

The name of a storage class for an SMS-managed data set.

BUFND m

The number of VSAM DATA buffers.

BUFNI n

The number of VSAM INDEX buffers.

Output printing operands may be:

DEST dest[.user]

The remote destination for a SYSOUT data set. In conjunction with user ID, it is a node
and a user at that node; the user ID is coded after the period (.) or using the USER
keyword (see below).

FCB name
[ALIGN/VERIFY]

The name of an FCB (forms control buffer) image to be used for printing of a data set.
The operator may be asked to check the printer forms alignment (ALIGN), or to verify
the FCB image name displayed on the printer (VERIFY).

FORMS name
FORM

A SYSOUT form name. JCL analogy: third subparameter in SYSOUT, FORMS in OUTPUT
JCL.

HOLD

A SYSOUT data set is to be placed on the hold queue.

OUTLIM n

A limit for the number of logical records in a SYSOUT data set.
iWay Stored Procedures Reference 6-13

DYNAM Command (MVS)
OUTPUT name

The name(s) of OUTPUT JCL statement(s) to be associated with a SYSOUT data set.

SYSOUT class

A SYSOUT data set is to be allocated and the specified output class
(A-Z, 0-9) is to be assigned. If an asterisk (*) or NULL is coded, the class is copied either
from CLASS in OUTPUT JCL if it is specified, or otherwise from MSGCLASS in JOB.

USER user

A SYSOUT data set is to be routed to the specified user ID. DEST (see above) is required
to specify a user’s node.

WRITER name

The name of an installation-written system output printing routine. The JCL analogy is
the second subparameter in SYSOUT. Is incompatible with USER.

In addition to the shown fixed abbreviations and synonyms, keywords may be abbreviated
up to the unique truncation. Those abbreviations are not fixed and may be changed when
new keywords are added. They may be used interactively to save some keystrokes, but
when a command is saved in a file, it is recommended that you use unabbreviated
keywords.

Examples:

Allocate an existing data set:

DYNAM ALLOC DD MYDD DS MYID.DATA.SET SHR REU

Allocate a new data set. Defaults are NEW, CATALOG (dsname present), and DSORG PO
(not-zero DIR present):

DYNAM ALLOC DD MYDD DS MYID.DATA.SET SPACE 6,2 TRACKS DIR 4 UNIT SYSDA -
RECFM FB LRECL 80 BLKSIZE 1600

Allocate a terminal:

DYNAM ALLOC DD MYDD DS *

Allocate a SYSOUT data set with default output class. Upon freeing, the data set is sent to
the user ID U1234 at node SYSVM:

DYNAM ALLOC DD MYDD SYSOUT * DEST SYSVM.U1234
6-14 iWay Software

Platform-specific Commands
The CONCAT Subcommand
The DYNAM CONCAT command concatenates up to 16 data sets.

Syntax: How to Use the CONCAT Subcommand

DYNAM CONCAT [PERM] DDNAME ddname1 ddname2 [ddname3...]

where:

CONCAT

Can be abbreviated as CONC.

PERM

Is optional. This marks the concatenation as permanent—that is, protected from being
freed or concatenated again by any DYNAM command issued by an MSO user. Valid
only in an MSO server initialization profile.

DDNAME
DDN
DD

Are required; synonym is FILENAME.

ddname1

Is the first ddname to be concatenated and associated with the resulting concatenated
group.

ddname2

Is the second ddname and any subsequent ddname to be concatenated.

For example:

DYNAM CONCAT DDN EDARPC MYEX NEWEX
iWay Stored Procedures Reference 6-15

DYNAM Command (MVS)
The FREE Subcommand
The DYNAM FREE command deallocates any number of specified data sets.

Syntax: How to Use the FREE Subcommand

DYNAM FREE {DDNAME ddname [ddname...]|DSNAME dsname [dsname...]}

where:

DDNAME
DDN
DD

Are required if there is no dsname; synonym is FILENAME.

ddname

Is the ddname of the data set to be freed.

DSNAME
DSN
DS

Are required if there is no ddname; the synonym is DATASET.

dsname

Is the name of the data set to be freed. All ddnames associated with this dsname, except
concatenated groups, are deallocated.

While at least one ddname or data set name is required, you may specify more than one
ddname or data set name. Each specified name may contain asterisks (*) and question
marks (?) as wildcards. Wildcards are special characters used to specify a subset of names
rather than one name. The wildcards appear anywhere in a name and mean the following:

*

Represents any number of characters. For example, *Q* matches any name containing
the character Q.

?

Represents any single character. For example, ?Q? matches any 3-character name
containing the character Q in the middle.

If the ddname is not found, a message is issued only if a single ddname without wildcards is
specified. A message is not displayed if a data set or more than one ddname is not found.

Examples:

DYNAM FREE DDN SYS0* TEMP?

DYNAM FREE DSN MYID.DATA.SET
6-16 iWay Software

Platform-specific Commands
The CLOSE Subcommand
The DYNAM CLOSE command closes data sets that cannot be freed because they are
opened.

Syntax: How to Use the CLOSE Subcommand

DYNAM CLOSE {DDNAME ddname [ddname...]|DSNAME dsname [dsname...]}

where:

CLOSE

Can be abbreviated as CLO.

DDNAME
DDN
DD

Are required if there is no dsname; the synonym is FILENAME.

ddname

Is the ddname of the data set to be closed.

DSNAME
DSN
DS

Are required if there is no ddname; the synonym is DATASET.

dsname

Is the name of the data set to be closed. All ddnames associated with this dsname,
except concatenated groups, are closed.

While at least one ddname or data set name is required, more than one ddname or data
set name may be specified. Each specified name may contain wildcard characters. The
same rules apply to the DYNAM CLOSE command as to the DYNAM FREE command.
iWay Stored Procedures Reference 6-17

DYNAM Command (MVS)
The COPY Subcommand
The DYNAM COPY command copies an entire MVS data set or selected PDS members.

Syntax: How to Use the COPY Subcommand

DYNAM COPY dname1 {[TO] dname2 [[MEMBER] members]|[MEMBER]
members]}[options]

where:

dname1

Is the dsname or ddname of the input data set. This is a positional parameter. It must
precede all other operands.

TO

May be omitted if dname2 does not match a reserved word, the MEMBER keyword, an
option, or the TO keyword. To avoid confusion, use the TO keyword whenever dname2
is a ddname.

dname2

Is the dsname or ddname of the output data set. If the output data set is not a PDS and
the dsname is specified, it is allocated as OLD. If the ddname is specified, and the status
is SHR, ensure that other users do not access the data set during COPY. Unlike ISPF,
DYNAM locks a non-PDS data set in order to prevent simultaneous updating by
different DYNAM users.

MEMBER

May be omitted if members are specified in parentheses.

members

Can be a single member specification or a list of member specifications. If the members
are enclosed in parentheses, blanks preceding the left parenthesis may be omitted.

options

May be one or more of the following options:

APPEND adds the input to the end of the existing data, if the output is a sequential data
set.

FORCE copies input DCB attributes (RECFM, BLKSIZE, LRECL, and KEYLEN) to the output
data set. By default, only missing values are assigned.

KEYMOD allows key modification according to input/output KEYLEN: truncation or
padding with binary zeros.

REPLACE replaces all output members matching the selected member names.

TRUNCATE allows truncation of input records that are longer than the output record
length. Since trailing blanks are truncated automatically when RECFM is different, the
keyword is used either to cut records of the same format or to cut non-blank data.
6-18 iWay Software

Platform-specific Commands
A member specification has the following syntax

mem[,[newmem][,REPLACE]]

where:

mem

Is the selected member name.

newmem

Is the optional new name for the output member.

REPLACE

Is optional and specifies an existing member to be replaced in the output PDS.

Since the comma may be used in member specifications, they are separated with one
or more blanks when specified in a list. Therefore, a list of member specifications is
always enclosed in parentheses. For example:

(MEM MEM,NEWMEM MEM,NEWMEM,R MEM,,R)

Note:

• All conversions between different DCB attributes (RECFM, BLKSIZE, and LRECL) are
performed automatically.

• If the entire PDS is copied or any selected member’s directory entry contains a TTRN in
user data (for example, a load module), the IBM utility IEBCOPY is invoked. In this case,
all options except REPLACE are ignored, format conversion is not possible, and copying
members to the same PDS is not supported. Note that IEBCOPY requires APF
authorization in order to be performed.

• If the main member and its alias names are copied, the relationship remains the same
on the output PDS.

• If a specified ddname has been allocated with a member name, the data set is treated
as sequential.

Examples:

Copies the entire data set, whether it is a PDS or not.

DYNAM COPY MYDD MYID.DATA.SET

All four commands are equivalent. Either input or output may be a sequential data set, or
both are PDSs.

DYNAM COPY MYDD MYID.DATA.SET MEMBER MEM
DYNAM COPY MYDD MYID.DATA.SET(MEM)
DYNAM COPY MYDD(MEM) MYID.DATA.SET
DYNAM COPY MYDD MEMBER MEM MYID.DATA.SET
iWay Stored Procedures Reference 6-19

DYNAM Command (MVS)
Copies and renames one member.

DYNAM COPY MYID.DATA.LIB TO MYDD(MEM1,MEM2)

Copies two members.

DYNAM COPY MYID.DATA.LIB TO MYDD(MEM1 MEM2)

Copies two members into same PDS with renaming.

DYNAM COPY MYDD(OLD1,NEW1,R OLD2,NEW2)
DYNAM COPY MYDD(OLD1,NEW1 OLD2,NEW2) REPL

The COPYDD Subcommand
The DYNAM COPYDD command copies a sequential data set or PDS member.

Syntax: How to Use the COPYDD Subcommand

DYNAM COPYDD ddname1[(mem1)] ddname2[(mem2)]

where:

ddname1

Is the ddname of the input data set.

mem1

Is optional. It is the input member name.

ddname2

Is the ddname of the output data set.

mem2

Is optional. It is the output member name.

Note:

• If the specified ddname has been allocated with a member name, the data set is treated
as sequential.

• Identically named members are always replaced on the output PDS.

• All conversions between different DCB attributes (RECFM, BLKSIZE, and LRECL) are
performed automatically.

• Since the DYNAM COPY command has more features than COPYDD, it is recommended
that you use COPY instead of COPYDD.
6-20 iWay Software

Platform-specific Commands
The DELETE Subcommand
The DYNAM DELETE command deletes an entire MVS data set or selected PDS members.

Syntax: How to Use the DELETE Subcommand

DYNAM DELETE dsname

To delete individual members, use

DYNAM DELETE dname [MEMBER] members

where:

DELETE

Can be abbreviated as DEL.

dsname

Is the data set name to be deleted and uncataloged.

dname

Is the dsname or ddname of a PDS containing one or more members to be deleted. The
ISPF-like lock is obtained.

MEMBER

May be omitted if the members are specified in parentheses.

members

Can be a single member name or a list of members. If the members are enclosed in
parentheses, blanks before the left parenthesis can be omitted.

Examples:

DYNAM DELETE MYID.DATA.OLD
DYNAM DEL MYID.DATA.LIB MEMBER OLD1,OLD2
DYNAM DELETE MYDD(OLD1,OLD2)
DYNAM DEL MYDD(OLD1 OLD2 OLD3)
iWay Stored Procedures Reference 6-21

DYNAM Command (MVS)
The RENAME Subcommand
The DYNAM RENAME command renames an entire MVS data set or selected PDS members.

Syntax: How to Use the RENAME Subcommand

DYNAM RENAME dsname1 dsname2

To rename individual members, use

DYNAM RENAME dname [MEMBER] members [REPLACE]

where:

RENAME

Can be abbreviated as REN.

dsname1

Is the data set name to be renamed and uncataloged.

dsname2

Is the new name to be assigned to the data set and cataloged.

dname

Is the dsname or ddname of a PDS containing one or more members to be renamed.
The ISPF-like lock is obtained.

MEMBER

May be omitted if the members are specified in parentheses.

members

Can be a single member specification or a list of members. If the members are enclosed
in parentheses, blanks before the left parenthesis can be omitted.

REPLACE

Is optional. This replaces all members matching the specified new names.

A member specification has the following syntax

oldmem,newmem[,REPLACE]

where:

oldmem

Is the original member name.

newmem

Is the new member name.
6-22 iWay Software

Platform-specific Commands
REPLACE

Is optional and replaces existing members with the same name as newmem.

Since the comma is used in member specifications, each pair of members is separated
with one or more blanks when specified in a list; therefore, a list of member
specifications is always enclosed in parentheses.

Examples:

DYNAM RENAME MYID.DATA.OLD MYID.DATA.NEW
DYNAM REN MYID.DATA.LIB MEMBER OLD,NEW,R
DYNAM RENAME MYDD(OLD1,NEW1,R OLD2,NEW2)
DYNAM REN MYDD(OLD1,NEW1 OLD2,NEW2) REPL

The SUBMIT Subcommand
The DYNAM SUBMIT command submits jobs to MVS.

Syntax: How to Use the SUBMIT Subcommand

DYNAM SUBMIT dname [[MEMBER] members]

where:

SUBMIT

Can be abbreviated as SUB.

dname

Is the dsname or ddname of the input data set(s) containing JCL to be submitted. The
ddname specifies a concatenation of data sets.

MEMBER

May be omitted if the members are specified in parentheses.

members

May be a single member name or a list of members. When a member list is submitted,
the resulting job stream is the concatenation of the members. If the members are
enclosed in parentheses, blanks before the left parenthesis can be omitted.

Examples:

DYNAM SUBMIT MYDD MEMBER ASM,PROG,LKED
DYNAM SUB MYDD(ASM,PROG,LKED)
DYNAM SUB MYID.DATA.LIB(CREATE LOAD)
DYNAM SUBMIT MYFILE

Note: The DYNAM SUBMIT command provides an interface with the submit user exit
IKJEFF10 as described in the IBM TSO Extensions Version 2 Customization manual. For details,
see Information Builders Technical Memo 7859, Enabling a Site-Specified Submit Exit Routine.
iWay Stored Procedures Reference 6-23

DYNAM Command (MVS)
The COMPRESS Subcommand
The DYNAM COMPRESS command compresses the partitioned data sets (PDS).

Syntax: How to Use the COMPRESS Subcommand

DYNAM COMPRESS dname [dname]...

where:

COMPRESS

Can be abbreviated as COMP.

dname

Is the dsname or ddname of a PDS to be compressed. The ISPF-like lock is obtained.

If the dsname is specified, it is allocated as OLD. If the ddname is specified and status is SHR,
make sure that another user does not access the PDS during the compress operation.

Note: DYNAM COMPRESS uses the IBM utility IEBCOPY, and therefore are only used when
running with APF authorization.

Examples:

DYNAM COMPRESS MYDD
DYNAM COMPRESS MYID.DATA.LIB
DYNAM COMP MYDD MYID.DATA.LIB
6-24 iWay Software

Platform-specific Commands
Comparison of TSO Commands, JCL, and DYNAM
This section shows examples of TSO commands and JCL, compared to the equivalent
DYNAM commands.

Example: Allocating an Existing File

Example: Creating a New Data Set

Example: Freeing Files

Example: Concatenating Files

TSO: TSO ALLOC F(EDARPC) DA('MYUSER.EDARPC.DATA') SHR

JCL: //EDARPC DD DSN=MYUSER.EDARPC.DATA,DISP=SHR

DYNAM: DYNAM ALLOC FILE EDARPC DA MYUSER.EDARPC.DATA SHR

TSO: TSO ALLOC F(EDARPC) DA('MYUSER.EDARPC.DATA')-
SPACE(5,3) TRACKS CATALOG DIR(2) -
UNIT(SYSDA) USING(NEWDCB) -
LRECL(80) RECFM(F B) BLKSIZE(1600)

JCL: //EDARPC DD DSN=MYUSER.EDARPC.DATA,DISP=(NEW,CATLG),
// SPACE=(TRK,(5,3,2)),UNIT=SYSDA,
// CB=(LRECL=80,RECFM=FB,BLKSIZE=1600)

DYNAM: DYNAM ALLOC FILE EDARPC DA MYUSER.EDARPC.DATA -
SPACE 5,3 TRACKS CATLG DIR 2UNITSYSDA -
LRECL 80 RECFM FB BLKSIZE 1600

TSO: TSO FREE F(EDARPC)

DYNAM: DYNAM FREE FILE EDARPC

TSO: TSO ALLOC F(EDARPC) DA('MYUSER.EDARPC.DATA'-
 'MYUSER.PROGRAMS.DATA') SHR

JCL: //EDARPC DD DSN=MYUSER.EDARPC.DATA,DISP=SHR
// DD DSN=MYUSER.PROGRAMS.DATA,DISP=SHR

DYNAM: DYNAM ALLOC FILE EDARPC DA MYUSER.EDARPC.DATA SHR
DYNAM ALLOC FILE PROGRAMS DA MYUSER.PROGRAMS.DATA SHR
DYNAM CONCAT FILE EDARPC PROGRAMS
iWay Stored Procedures Reference 6-25

FILEDEF Command Under VM
FILEDEF Command Under VM
The VM Server uses the FILEDEF command of the VM/CMS operating system and retrieves
the file attribute information from the file. In the case of HOLD, the attributes are adjusted
as needed.

Syntax: How to Use the FILEDEF Command in VM

CMS FILEDEF dd DISK fn ft fm

where:

dd

Is the logical reference name.

fn

Is the file name.

ft

Is the file type.

fm

Is the file mode.

For more information on the specifics of FILEDEF options, see the VM/CMS manuals.
6-26 iWay Software

Platform-specific Commands
FILEDEF Command Under UNIX, Windows, OS/400, OS/390 and z/OS, and
OpenVMS

A logical name (or ddname) is a shorthand name that points to the physical file name as the
operating system actually knows the file. Logical names simplify code by allowing short
names to be used in place of the longer physical file name.

The FILEDEF command assigns a logical name (or ddname) to a physical file name and
specifies file attributes. FILEDEF assignments are in effect for the duration of a connection
(except when a server is running in Pool Mode). They are released when the connection to
the server is closed or a FILEDEF CLEAR is issued.

Syntax: How to Use the FILEDEF Command in UNIX, Windows, OS/400, OS/390 and
z/OS, and OpenVMS

FILEDEF ddname devicetype fileid [([LRECL n] [RECFM fm] [APPEND]]

FILEDEF ddname CLEAR

where:

ddname

Is the logical name. It may contain 1 to 8 alphanumeric characters.

devicetype

Identifies the type of device with which to interact. Specifies DISK for a file that resides
on disk. Other device types are PRINTER, TRMIN, and TRMOUT, which have special
meanings and options. For more information, see Other FILEDEF Features on page 6-29.

CLEAR

Clears the specified ddname.

In this section:

Other FILEDEF Features

OFFLINE Printing

How to:

Use the FILEDEF Command in UNIX, Windows, OS/400, OS/390 and z/OS, and OpenVMS
iWay Stored Procedures Reference 6-27

FILEDEF Command Under UNIX, Windows, OS/400, OS/390 and z/OS, and OpenVMS
fileid

Is the physical name of the file as it is known on the particular operating system using
the native style of the operating system. For instance, c:\mydir\myfile.dat (Windows),
\\mymachine\\mydir\myfile.dat (Windows), /home/myhome/mydir/mtfile.dat (UNIX,
OS/390 and z/OS, OS/400 IFS), DISK$MYDISK:[MYHOME.MYDIR]MYFILE.DAT
(OpenVMS), and MYLIB/MYFILE(MYMEMB) (OS/400 QSYS). UNIX, OS/390 and z/OS, and
OS/400 IFS are case sensitive file systems where lower case file names are the norm, so
appropriate names should be used when coding the fileid option of the FILEDEF. To
support directory names with embedded blanks on Windows, the complete fileid
needs to be enclosed in single quotation marks.

There is an additional mode of operation when APP ENABLE is active (the default as of
5.2.0). In this mode of operation UNIX like relative path name is used and the path
refers to which application directory under the APPROOT directory. For instance, abc/
mydata.ftm is the abc directory, which found under the directory pointed to by
APPROOT.

Note: APP usage is limited to one directory below APPROOT, any other usage is illegal.

LRECL n

Specifies the record length, n, in bytes. This parameter is optional. If you omit it, the
default is 80 bytes. Note that the right parenthesis preceding the optional parameters is
required.

RECFM fm

Describes the record format. Specifies F for fixed format, V for variable format. This
parameter is optional. If you omit it, the default is fixed format. Note that the right
parenthesis preceding the optional parameters is required.

APPEND

Enables you to open the specified file and add new material at the end of the file. This
parameter is optional. If you omit it and the specified file exists, it will be overwritten.
Note that the right parenthesis preceding the optional parameters is required.

Note that FOCUS data sources (files with the .foc extension) that do not conform to the
default naming conventions are identified using the USE command, not FILEDEF.
6-28 iWay Software

Platform-specific Commands
Other FILEDEF Features
PRINTER as a device type is used to change the default output file for the OFFLINE print file
or set output destinations. For more information, see OFFLINE Printing on page 6-29.

FILEDEF TRMIN TERM LOWER is used to change the uppercasing behavior of an interactive
session (edastart -t) into case sensitive mode. FILEDEF TRMIN TERM UP is used to restore
default behavior. Interactive session mode is typically used for testing and is not considered
a production feature for general use.

FILEDEF TRMOUT DISK fileid is used to capture session output into a file and is only valid
during an interactive session (edastart -t).

FILEDEF TRMOUT TERM is used to restore default behavior. Interactive session mode is
typically used for testing and is not considered a production feature for general use.

OFFLINE Printing
Server side printing of formatted reports is accomplished using the OFFLINE command,
which sets up and issues a default OFFLINE FILEDEF to receive the formatted outputs after
an OFFLINE CLOSE is issued.

There may be one or more outputs buffered to the same output file for printing, but they
are not released to the file until an OFFLINE CLOSE is issued. If a system level variable for
FOCPRINT is available at OFFLINE CLOSE time, it will be used to attempt printing of the
actual file.

The FILEDEF OFFLINE feature within iWay has been improved as of release 5.2 to allow the
specification of output destinations and, in some cases, additional operating system print
command switches for features such as multiple copies.

Prior behavior was that if the operating system variable FOCPRINT was declared (with an
operating system command and a $1) then it would be called to take an action on the file
name which also replaced the $1 in the string.

The FILEDEF command has been improved to:

FILEDEF OFFLINE PRINTER [filename] [(PRINTER printername].

The new printer name option is used with the standard print feature of a given platform. If
no printer name is declared or is set to blank then the offline file is created, but the print
feature is not called. Since printing is platform specific, each platform must be described
here individually, however, there are still some common issues that are sometimes best
resolved by creating a shell layer that acts as a proxy between the server and the print
system.
iWay Stored Procedures Reference 6-29

FILEDEF Command Under UNIX, Windows, OS/400, OS/390 and z/OS, and OpenVMS
UNIX and USS

The printer name is dropped in as the "-d" switch value in the "lp -c -d" command. The "-c"
switch is used to avoid over-writing of the offline file before actual printing has occurred. If
additional lp switches are desired (like multiple copies with -n switch) they may be stacked
into the name by enclosing the string in single quotation marks:

FILEDEF OFFLINE PRINTER (PRINTER '29d1 -n 2'

If a site uses lpr instead of l,p then an lp shell script can be created in the $PATH before the
standard lp command and can act as a proxy to call lpr instead. The lp script could be as
simple as "/usr/bin/lpr $*" to redirect lp to lpr.

Note: On USS, the file is spooled to the system and actual disposition will depend on the
configuration of the printer spool.

OpenVMS

The printer name is dropped in as the "/QUEUE=" switch value in the "PRINT/QUEUE="
command. OpenVMS always makes a copy of the file to be printed so it does not have an
over-writing the offline file problem. If additional PRINT switches are desired (like multiple
copies with /COPIES= switch) they may be stacked into the name by enclosing the string in
single quotation marks:

FILEDEF OFFLINE PRINTER (PRINTER '29d1 /COPIES=2'

Sites rarely use anything but the standard PRINT command, but can be also proxied if
necessary by creating an alternate printer command at the OS level or queue / symbiont
that routes to the alternate method.

Windows

The printer name is a shared printer name and is used to set up (and later drop a NET USE
for the LPT1device to a shared name (for example, \\nodename\myprinter), which is then
used in a PRINT /D:LPT1 command to print the actual file. As such, additional switch options
can not be done and use of a PRINT.BAT as a proxy is the only method for further
manipulation of the output.

OS/400

The output is always spooled from the offline file to the print spool using the system
QPRINT file (with whatever the standard values are) on the server's library list. If the spool is
set to directly print, then output will always be routed as directed with no declaration of a
printer name via FILEDEF. If output is not automatically routed and a printer name (via
FILEDEF) is declared, then a CHGSPLFA command will be issued with the printer name as
the OUTQ() value to direct the spool file to a destination. If additional CHGSPLFA
parameters are desired (like multiple copies with COPIES() parameter) they may be stacked
into the name by enclosing the string in single quotation marks:
6-30 iWay Software

Platform-specific Commands
FILEDEF OFFLINE PRINTER (PRINTER '29d1 COPIES(2)'

If an alternate QPRINT file is desired to control some special aspect (like adjusting page
size), this must be done by placing an alternate QPRINT in a library before the standard
copy in QGPL. Note that the CRTPRTF command for creating printer attribute files does not
create a default QPRINT that matches the IBM delivered standard default that is in QGPL. To
create a QPRINT with standard IBM delivered default values use:

CRTPRTF FILE(*CURLIB/QPRINT) RPLUNPRT(*NO) CHRID(*CHRIDCTL)

Then make any site specific changes and change the owner attribute rights from *ALL to
*CHANGE (to prevent over-writing) with:

EDTOBJAUT OBJ(*CURLIB/QPRINT) OBJTYPE(*FILE)

Also note that FOCUS 6.x allowed specifically named printer files and needed the
CTLCHAR(*FCFC) option. iWay does not allow specific alternate names and uses the library
path to locate and use the first found QPRINT file (standard OS/400 library path behavior)
and that use of a printer file with CTLCHAR(*FCFC) will cause page breaks to fail.

The use of an lp script on OS/400 as a proxy is not effective because lp is not used. The use
of alternate QPRINT files is the closest equivalent to an lp proxy.

FILEDEF OFFLINE to DISK versus PRINTER

The "(PRINTER printername" feature is only valid in reference to when the FILEDEF device is
PRINTER. There is, however, a difference between the use of DISK versus PRINTER as a device
in a FILEDEF for OFFLINE. When the device DISK is used, page breaks are represented by a 1
in the first column of a given line where a page break is to occur; this is the FORTRAN
Carriage Control method of page control and is a vestige of the product's original
mainframe roots. When the disk device is PRINTER, the more modern, Control L (^L /
Decimal 12 / Hex 0C) form feed method is used.

Other Printing Issues

Very often sophisticated laser based printers are "hung" off networks and communicated
with various print protocols. While these printers may come from many manufactures, a
very common (but not standard) attribute of these types of printers is automatic sensing
between a plain clear text file being sent to the printer and a postscript file that contains
printer attribute commands as well as the text to print. iWay OFFLINE files are plain text (vs.
HOLD FORMAT PS which do not get spooled via OFFLINE and it is up to the user to direct to
a printer). Very often these sophisticated printers can be set up or used improperly causing
a printer to think a plain text file is postscript when it is not and yielding a page with a
postscript error message. This has only been seen so far when printing from Windows, but
is in theory possible from any platform.
iWay Stored Procedures Reference 6-31

FILEDEF Command Under UNIX, Windows, OS/400, OS/390 and z/OS, and OpenVMS
This problem is not considered to be an iWay issue because the software is not directly
manipulating these printers and uses standard commands supplied by the OS vendor for
printing. Generally, this problem can also be repro'ed using standard print tools stand-
alone from an iWay environment. The systems administrator for these printers should be
able to track down why this happens in any given environment and take corrective action.
However, this may also be corrected by creating a proxy script to inject a leading character
into the output that resets the printer. Generally, this is a control D, but printers may vary.
Specific implementation of such proxy scripts is left to the customer since needs may vary
greatly.
6-32 iWay Software

APPENDIX A

Dialogue Manager Quick Reference

Topic:

• Dialogue Manager Commands

This topic describes all the Dialogue Manager commands in
alphabetical order. It also provides the syntax and explains
the functions.
iWay Stored Procedures Reference A-1

Dialogue Manager Commands
Dialogue Manager Commands

Command: -*

Syntax: -* text

where:

text

Is a comment. A space is not required between -* and text.

Function: The command -* signals the beginning of a comment line.

Any number of comment lines follows one another, but each must begin with -*. A
comment line may be placed at the beginning or end of a procedure, or in between
commands. However, it cannot be on the same line as a command.

Use comment lines liberally to document a stored procedure so that its purpose and
history are clear to others.

Command: -?

Syntax: -? &[string]

where:

string

Is an optional variable name of up to 12 characters. If this parameter is not
specified, the current values of all local, global, and defined system and statistical
variables are displayed.

Function: The command -? displays the current value of a local variable.

Command: -CLOSE

Syntax: -CLOSE filename

where:

filename

Is a symbolic name associated with a physical file known to the operating system.

Function: -CLOSE closes an external file opened with the -READ or -WRITE NOCLOSE option. The
NOCLOSE option keeps a file open until the -READ or -WRITE operation is complete.

The external file must be defined to the operating system.
A-2 iWay Software

Dialogue Manager Quick Reference
Command: -AS/400

Syntax: AS/400 command

where:

command

Is an OS/400 command.

Function: -AS/400 executes an OS/400 operating system command from a procedure.

Command: -CMS

Syntax: CMS command

where:

command

Is a CMS command.

Function: -CMS executes a CMS operating system command from a procedure.

Command: -DEFAULTS

Syntax: -DEFAULTS &[&]name=value [...]

where:

&name

Is a name of a variable.

value

Is the default value assigned to the variable.

Function: -DEFAULTS supplies an initial (default) value for a variable that had no value before the
command was processed.

Override values set with -DEFAULTS by supplying new values:

• On the function call EDARPC.

• On the command line EXEC.

• With the command -SET subsequent to the command -DEFAULTS.

By supplying values to variables in a stored procedure, -DEFAULTS helps ensure that it
runs correctly.
iWay Stored Procedures Reference A-3

Dialogue Manager Commands
Command: -DOS

Syntax: -DOS command

where:

command

Is a Windows or DOS command.

Function: -DOS executes a Windows or DOS operating system command from a procedure.

Command: -EXIT

Syntax: -EXIT

Function: -EXIT forces a stored procedure to end. All stacked commands are executed and the
stored procedure exits (if the stored procedure was called by another one, the calling
procedure continues processing).

Use -EXIT for terminating a stored procedure after processing a final branch that
completes the desired task.

The last line of a stored procedure is an implicit -EXIT. In other words, the procedure
ends after the last line is read.

Command: -GOTO

Syntax: -GOTO label

 .
 .
 .
-label [TYPE text]

where:

label

Is a user-defined name of up to 12 characters that specifies the target of the
-GOTO action.

Do not use embedded blanks or the name of any other Dialogue Manager
command except -QUIT or -EXIT. Do not use words that may be confused with
functions, arithmetic and logical operations, and so on.

TYPE text

Optionally sends a message to the client application.
A-4 iWay Software

Dialogue Manager Quick Reference
Function: -GOTO forces an unconditional branch to the specified label.

If Dialogue Manager finds the label, processing continues with the line following it.

If Dialogue Manager does not find the label, processing ends and a message is
displayed.

Command: -IF

Syntax: -IF expression [THEN] GOTO label1[;]
-[ELSE GOTO label2 [;]]
-[ELSE IF...[;]]

where:

label

Is a user-defined name of up to 12 characters that specifies the target of the GOTO
action.

Do not use embedded blanks or the name of any other Dialogue Manager
command except -QUIT or -EXIT. Do not use words that may be confused with
functions, arithmetic or logical operations, and so on.

expression

Is a valid expression. Literals need not be enclosed in single quotation marks
unless they contain embedded blanks or commas.

THEN

Is an optional keyword that increases readability of the command.

ELSE GOTO

Optionally passes control to label2 when the -IF test fails.

ELSE IF

Optionally specifies a compound -IF test.

;

Is required at the end of the command.

-

Must begin continuation lines.

Command: -GOTO
iWay Stored Procedures Reference A-5

Dialogue Manager Commands
Function: -IF routes execution of a stored procedure based on the evaluation of the specified
expression.

A -IF without an explicitly specified ELSE whose expression is false continues
processing with the line immediately following it.

Command: -INCLUDE

Syntax: -INCLUDE filename

where:

filename

Is the name of the called stored procedure.

Function: -INCLUDE enables one stored procedure to call another one.

A stored procedure calls any number of other procedures. Up to four -INCLUDE
commands are nested.

The called procedure contains fully executable or partial code.

The calling procedure cannot branch to a label in the called procedure and vice versa.

Command: -label

Syntax: -label [TYPE message]

where:

label

Is a user-supplied name of up to 12 characters that identifies the target for a
branch.

Do not use embedded blanks or the name of any other Dialogue Manager
command except -QUIT or -EXIT. Do not use words that may be confused with
functions, arithmetic or logical operations, and so on.

TYPE message

Optionally sends a message to the client application.

Function: A label is the target of a -GOTO or -IF command.

Command: -IF
A-6 iWay Software

Dialogue Manager Quick Reference
Command: -PASS

Syntax: -PASS password

where:

password

Is a literal FOCUS password or a variable containing a password.

Function: Directly issues and controls passwords. This feature is especially useful for specifying a
particular file or set of files that a given user can read or write. Passwords have detailed
sets of functions associated with them through the DBA module.

Procedures that set passwords should be encrypted so that it and the passwords that
it sets cannot be typed and made known.

A variable can be associated with -PASS so that you can prompt for and assign a
password value using -PROMPT.

The PASS command provides the same function at the command level, as does the
PASS parameter of the SET command.
iWay Stored Procedures Reference A-7

Dialogue Manager Commands
Command: -PROMPT

Syntax: -PROMPT &name [[.format|.(list)] [.text].]

where:

&name

Is a user-defined variable.

format

Optionally specifies alphanumeric or integer data type and length.

list

Optionally specifies a range of acceptable responses. Must be a comma
separated list enclosed in parentheses.

text

Optionally specifies prompting text that appears on the screen. Must be
delimited by periods.

Function: Types a message to the terminal (if edastart -t is in use) or creates an input
window with the message in a browser if the connection type is HTTP and reads
the reply from the user. This reply assigns a value to the variable named.

In edastart -t mode, if a format is specified and the supplied value does not
conform, FOCUS displays a message and prompts the user again for the value. In
HTTP mode, only a message is displayed.

In edastart -t mode, if a (list) is specified and the user does not reply with a value
on the list, FOCUS reprompts and prints the list of acceptable values. For HTTP
type connections, the list is interpreted as a pull-down list, so only a valid value
may be selected.

Note: You cannot use format and list together.
A-8 iWay Software

Dialogue Manager Quick Reference
Command: -QUIT

Syntax: -QUIT

Function: -QUIT forces an immediate exit from a stored procedure. Stacked commands are not
executed. In this respect, -QUIT is different from -EXIT, which executes stacked
commands.

If the procedure was called by another one, control returns directly to the client
application, not to the calling procedure.

-QUIT is the target of a branch.

Command: -READ

Syntax: -READ filename[,] [NOCLOSE] &name[.format.][,]...

where:

filename[,]

Is the name of an external file to read, which must be defined to the operating
system. A space after filename denotes a fixed-format file, while a comma after
filename denotes a free-format file.

NOCLOSE

Optionally keeps the external file open until the -READ operation is complete.
Files kept open with NOCLOSE are closed by using the command -CLOSE file
name.

&name[,]...

Is a list of variables. For free-format files, you may separate the variable names
with commas, but it is not necessary.

.format.

Is the format of the variable. For free-format files, you do not have to define the
length of the variable, but you may. For fixed-format files, the format specifies the
length or the length and type of the variable (A is the default type). The value of
format must be delimited by periods.
iWay Stored Procedures Reference A-9

Dialogue Manager Commands
Function: -READ enables the reading of data from an external file that is defined to the
operating system.

The length of the variable list must be known before the -READ command is
encountered. Use a -DEFAULTS command to establish the number of characters
expected for each variable.

If the list of variables is longer than one line, end the first line with a comma and begin
the next line with a hyphen if you are reading a free-format file.

-READ EXTFILE, &CITY, &CODE1,
 - &CODE2

If you are reading a fixed-format file, begin the next line with a hyphen and comma.

-READ EXTFILE &CITY.A8. &CODE1.A3.,
-, &CODE2.A3.

Command: -REMOTE

Syntax: -REMOTE [BEGIN|END]

where:

BEGIN

Specifies the start of commands on an originating server to be sent to a target
server.

END

Specifies the end of commands from the originating server.

Function: -REMOTE commands are the initial form of stored procedure routing, and are available
with Hub Services only.

Dialogue Manager commands within the delimiters are executed, and variable
substitution takes place before the stack is sent to the target server. A -INCLUDE
command takes a Dialogue Manager procedure residing on the originating server
and includes the procedure commands in the stack.

The commands within the delimiters must make up a complete server request. Any
command valid on the target server is included.

The command EXEC may be included within the delimiters to execute a stored
procedure on the target server.

-REMOTE commands cannot be nested.

Command: -READ
A-10 iWay Software

Dialogue Manager Quick Reference
Command: -REPEAT

Syntax: -REPEAT label n TIMES

or

-REPEAT label WHILE condition

or

-REPEAT label FOR &variable [FROM fromval] [TO toval] [STEP s]

where:

label

Identifies the code to be repeated (the loop). A label includes another loop if the
label for the second loop has a different name from the first.

n TIMES

Specifies the number of times to execute the loop. The value of n is a local
variable, a global variable, or a constant. If it is a variable, it is evaluated only once,
so the only way to end the loop early is with -QUIT or -EXIT (you cannot change
the number of times to execute the loop).

WHILE condition

Specifies the condition under which to execute the loop. The condition is any
logical expression that is either true or false. The loop is run if the condition is true.

FOR &variable

Is a variable that is tested at the start of each execution of the loop. It is compared
with the value of fromval and toval (if supplied). The loop is executed only if
&variable is less than or equal to toval (STEP is positive), or greater than or equal to
toval (STEP is negative).

FROM fromval

Is a constant that is compared with &variable at the start of each execution of the
loop. 1 is the default value.

TO toval

Is a value against which &variable is tested. 1,000,000 is the default value.

STEP s

Is a constant used to increment &variable at the end of each execution of the loop.
It may be positive or negative. 1 is the default value.
iWay Stored Procedures Reference A-11

Dialogue Manager Commands
Function: -REPEAT allows looping in a stored procedure.

The parameters FROM, TO, and STEP appear in any order.

A loop ends when:

• It is executed in its entirety.

• A -QUIT or -EXIT is issued.

• A -GOTO is issued to a label outside of the loop. If a -GOTO is later issued to return
to the loop, the loop proceeds from the point it left off.

Command: -RUN

Syntax: -RUN

Function: -RUN causes immediate execution of all stacked commands.

Following execution, processing of the stored procedure continues with the line that
follows -RUN.

-RUN is commonly used to:

• Generate results from an SQL request that are then used in testing and branching.

• Close an external file opened with -READ or -WRITE. When a file is closed, the line
pointer is placed at the beginning of the file for a -READ. The line pointer for a
-WRITE is positioned depending on the allocation and definition of the file.

Command: -SET

Syntax: -SET &[&]name=expression;

where:

&name

Is the name of a variable whose value is to be set.

expression

Is a valid expression. Expressions occupy several lines, so end the command with
a semicolon.

Command: -REPEAT
A-12 iWay Software

Dialogue Manager Quick Reference
Function: -SET assigns a literal value to a variable, or a value that is computed in an arithmetic or
logical expression.

Single quotation marks around a literal value are optional unless it contains
embedded blanks or commas, in which case the quotation marks must be included.

Command: -TSO RUN

Syntax: -TSO RUN command

where:

command

Is a TSO command.

Function: -TSO executes a TSO operating system command from a procedure.

Command: -TYPE

Syntax: -TYPE text

where:

text

Is a message that is sent to a client application, followed by a line feed. Quotation
marks will be displayed as part of the message if included around text.

The length of text can be up to 256 bytes.

Function: -TYPE sends a message to a client application.

Any number of -TYPE commands can follow one another but each must begin with
-TYPE.

Variables may be embedded in the message. The values currently assigned to each
variable are displayed.

Command: -UNIX

Syntax: -UNIX command

where:

command

Is a UNIX command.

Command: -SET
iWay Stored Procedures Reference A-13

Dialogue Manager Commands
Function: -UNIX executes a UNIX operating system command from a procedure.

Command: -VMS

Syntax: -VMS command

where:

command

Is a VMS command.

Function: -VMS executes a VMS operating system command from a procedure.

Command: -WINNT

Syntax: -WINNT command

where:

command

Is a Windows or DOS command.

Function: -WINNT executes a Windows or DOS operating system command from a procedure.

Command: -WRITE

Syntax: -WRITE filename [NOCLOSE] text

where:

filename

Is a symbolic name for a physical external file being written to. The file name must
be known to the operating system.

NOCLOSE

Keeps the external file open until the -WRITE operation is complete. Files kept
open with NOCLOSE are closed with the command -CLOSE filename.

text

Is any combination of variables and text.

Command: -UNIX
A-14 iWay Software

Dialogue Manager Quick Reference
Function: -WRITE writes data to an external file.

If the command continues over several lines, put a comma at the end of the line and a
hyphen at the beginning of each succeeding line.

Unless you specify the NOCLOSE option, an opened file is closed upon termination of
the procedure with -RUN, -EXIT, or -QUIT.

Command: -WRITE
iWay Stored Procedures Reference A-15

Dialogue Manager Commands
A-16 iWay Software

APPENDIX B

GENCPGM Usage

Topic:

• Using GENCPGM

The building and compilation of 3GL applications is
platform-specific and sometimes driven by standards with
which a site must conform in terms of programming style
or managing programming source. Due to this wide
variation, we only make recommendations, test certain
languages, and provide limited examples with a script that
minimally compiles the test examples.

The specific uses for 3GL programs and examples are
documented elsewhere, but the general purposes are:

• To add a user written routine to the functions of the
product (also know as a FUSELIB).

• To customize user exits that provide special functions.

• To create CALLPGM programs that the server executes.

• To create API programs to converse with a server.
iWay Stored Procedures Reference B-1

Using GENCPGM
Using GENCPGM

A script has been created for UNIX, OS/400, Windows NT/2000, and OpenVMS to assist in
simple compilations of the provided C examples. On the respective platforms, the names
are gencpgm.sh (also for OS/400), gencpgm.bat, and gencpgm.com. The script is located in
the bin directory of EDAHOME.

The basic function of GENCPGM is to either:

• Create a program similar to an API application that is run.

or

• Create a dynamically loadable library program that may be accessed by other
programs. Dynamically loadable library program type programs are known as .dll on
Windows, .exe shared object images on OpenVMS, .so or .sl shared object libraries on
UNIX, and Service Programs on OS/400.

There is no specific requirement that GENCPGM be used in program creation, only that a
given program be a properly compiled and linked program. GENCPGM is provided as a tool
to expedite program creation in many, but not all cases.

On some platforms, the GENCPGM script supports languages other than C and has had
testing for these other languages. While theoretically any language can be used to create a
program, C is the only officially supported language for these platforms as it is universally
and readily available and testable. Support for using other languages is only extended as
far as reviewing cases when language compilers or expertise in the language is not
available.

How to:

Compile and Link a Procedure

Run GENCPGM

Display GENCPGM Options

Example:

Generating an API Program From a C Source File

Generating an API Program From a C++ Source File

Generating a CALLPGM Program Library From a C Source File

Generating a Routine with the MTHNAME Sample Routine

Reference:

GENCPGM Parameters
B-2 iWay Software

GENCPGM Usage
The GENCPGM script is written for simple compilation cases. Complex cases such as
multiple sources, including library locations, ordering of libraries, special compilers, and
linker options are not handled and are up to the developer to create their own build scripts.
In complex cases, the GENCPGM script may be used as a model for forming an application-
specific script.

Procedure: How to Compile and Link a Procedure

This section outlines the steps required to compile and link a procedure:

1. Copy GENCPGM from the EDAHOME bin directory to your working directory or use the
full path name to the location.

• For an API program or to build the sample API program (EDAAPP), copy EDA.H,
EDASYS.H, and EDAAPP.* (the sample program) from the etc directory of EDAHOME
to your working directory.

• For a CALLPGM program or to build the CALLPGM sample program (CPT, SPG*.CBL,
or SPG*.RPG), copy the sample program and any required include files from the etc
directory of EDAHOME to your working directory.

• For user exits, copy the desired sample exit from the etc directory of EDAHOME to
your working directory. There are MTHNAME samples for C, COBOL, RPG, and
Fortran.

• For user routines, write the routine or copy an existing routine to your working
directory.

2. Issue an environment variable for the EDAHOME directory.

3. If building an API program, also issue an environment variable for the EDACONF
directory.

Syntax: How to Run GENCPGM

gencpgm[.sh] [-g] [-q] [-x] [-m [option]][-c [option]] prog

where:

prog

Is the name of the procedure to be compiled and linked. Generally, a file extension does
not need to be supplied, but may be if nontypical extensions are used.

Note: OpenVMS requires use of a leading “@” for DCC execution, and UNIX and OS/400
require the .sh extension to be explicitly used.

Syntax: How to Display GENCPGM Options

Display the full GENCPGM options available for a given platform by issuing:

gencpgm -?
iWay Stored Procedures Reference B-3

Using GENCPGM
Reference: GENCPGM Parameters

The following table explains the GENCPGM parameters, parameter options, and useage.

Parameter Use Possible Values

-g An optional parameter,
which creates a debug
version of the module.

No value needed.

-q Suppresses output messages
from platforms that have
messages.

No value needed.

-x Activates set –x for shell
tracing.

No value needed.

-m Specifies the type of module
to create. If this parameter is
omitted, the default is -m
cpgm.

api Creates an API
program.

api m Same as API, but uses
XXX dll linkage (OS/390
only).

cpgm Creates a CALLPGM
program, a user exit, or
a routine.
B-4 iWay Software

GENCPGM Usage
-c Specifies the type of
compiler to use. If this
parameter is omitted, the
default will be -c cc.

cc Uses the standard C
compiler to compile
prog.c.

CC Uses the C++ compiler
to compile prog.cpp.
(UNIX)

cxx or c++
cpp

Uses the C++ compiler
to compile prog.cpp.
(OpenVMS, Windows,
and UNIX)

gcc GNU C compiler

fortran
for
f

Uses the Fortran
compiler. (OpenVMS
only) Parameter values
drive the default file
extension unless the
full file name is used to
specify the file.

cobol
cob
cbl

Uses the COBOL
compiler. (OpenVMS
and OS/400) Parameter
values drive the default
file extension unless
the full file name is
used to specify the file.

RPG Uses RPG compiler to
compile pro.rpg.
(OS/400 only)

DDS Use to compile OS/400
DDS files for use with
RPG and other OS/400
languages.

Parameter Use Possible Values
iWay Stored Procedures Reference B-5

Using GENCPGM
After running GENCPGM, an executable for the program will be created in the working
directory. If the compilation was for an API program, a “helper” script with the same name is
also created containing start up variables and program initialization information.

If the compilation was for an API program and the files need to be moved to another
directory, then the helper script should also be moved and edited to account for the new
location in any of its variables.

If the compilation was for CALLPGM, a user exit, or a routine, the final step is to either copy
the resulting routine to the user directory of EDACONF or set the environment variable
IBICPG to the name of the actual working directory (and restart the server). This final step
puts the resulting routine in a path that the server searches for routines at run time. User
exits are not explicitly covered in this manual, but follow the same rules as a routine.

Example: Generating an API Program From a C Source File

Because the Standard C compiler and API mode are default options, the following example
will generate an API program from a C source file named myprog.c using the standard C
compiler.

gencpgm myprog

Example: Generating an API Program From a C++ Source File

Because the Standard C compiler and API mode are default options, the following example
will generate a debuggable API program from a sample C++ source file named edaapp.cpp
using the C++ compiler.

gencpgm -g -c C++ edaapp

Example: Generating a CALLPGM Program Library From a C Source File

The following example will generate a debuggable callpgm program library from a C
source code file named myprog.c using the standard C compiler.

gencpgm -g -m cpgm myprog

For actual CALLPGM code samples, see Chapter 4, Writing a 3GL Compiled Stored Procedure
Program.
B-6 iWay Software

GENCPGM Usage
Example: Generating a Routine with the MTHNAME Sample Routine

The following example is a routine that is used in Dialogue Manger to translate a month
number into a spelled out name. This sample uses C version, but this sample and matching
mthname samples in COBOL, RPG, and Fortran are included with the product in the
EDAHOME etc subdirectory.

mthname.c

mthname(mth,month)
double *mth;
char *month;
{
static char *nmonth[13] = {"** Error **",
 "January ",
 "Febuary ",
 "March ",
 "April ",
 "May ",
 "June ",
 "July ",
 "August ",
 "September ",
 "October ",
 "November ",
 "December ",};
int imth, loop;
imth = (int)*mth;
imth = (imth < 1 || imth > 12 ? 0:imth);
for (loop=0;loop < 12;++loop)
 month[loop] = nmonth[imth][loop];
}

mthname.fex

-SET &MTHNAME = MTHNAME(&MTHNUMBER,'A12') ;
-TYPE Month &MTHNUMBER is &MTHNAME

Compile and set IBICPG (this is an example on UNIX):

gencpgm -m cpgm myprog
export IBICPG=`pwd`

After restarting the server, execute an RPC like:

EX MTHNAME MTHNUMBER=4

And receive:

Month 4 is March
iWay Stored Procedures Reference B-7

Using GENCPGM
B-8 iWay Software

Index

Symbols

! command 5-78

&&name variable 5-14

&DATE variable 5-19, 5-21

&DATEfmt variable 5-19

&DMY variable 5-19

&DMYY variable 5-19

&ECHO variable 5-27

&FOCFOCEXEC variable 5-19

&FOCINCLUDE variable 5-19

&FOCMODE variable 5-19

&FOCNET variable 5-19

&FOCPRINT variable 5-19

&FOCREL variable 5-19

&IORETURN variable 5-19

&MDY variable 5-19

&MDYY variable 5-19

&name variable 5-14 to 5-15

&RETCODE variable 5-19

&TOD variable 5-19

&YMD variable 5-19

&YYMD variable 5-19

-* command 5-3, A-2

-? command 5-3, 5-17, A-2

? EXORDER command 1-5

Numerics

3GL programs 4-1, B-1
requirements 4-2

A

ABS function 5-59 to 5-60

ALLOCATE subcommand 6-2, 6-6

allocating data sets 6-6

allocating dynamic storage 4-32

allocating files 6-25

alphanumeric expressions 5-54 to 5-55, 5-57

amper variables 5-75

AND keyword 5-56

answer sets 2-8
returning 4-20, 4-23, 4-26, 5-79 to 5-80

API parameters 2-11

ARGLEN function 5-60

arithmetic expressions 5-52 to 5-53

ASIS function 5-60

ATODBL function 5-60

AYM function 5-60

AYMD function 5-60

B

BAR function 5-60

BITSON function 5-60

BITVAL function 5-60

branching 5-33 to 5-36

BYTVAL function 5-60
iWay Stored Procedures Reference I-1

Index
C

C programming language B-2

CALLIMS procedure 1-6

calling procedures 5-44 to 5-46

calling programs 2-2 to 2-4, 2-6 to 2-7

calling stored procedures 1-2
Dialogue Manager 1-6

CALLITOC program 1-6

CALLPGM command 1-6, 2-2, 2-4, 2-6 to 2-7, 4-20
DB2 plans 2-7 to 2-8

CHGDAT function 5-60

CHKFMT function 5-60

CHKPCK function 5-60

-CLOSE command 5-3, A-2

CLOSE subcommand 6-2, 6-17

-CMD command 5-3, 5-78, A-3

-CMS command 5-3, 5-78, A-3

CNTCTUSR function 5-60

command lines 5-27

commands 5-2
changing with variables 5-77
delimiting 5-48
variables and 5-22

comments 5-8

communicating between the server and the
program 2-15

compiled programs 2-1, 4-1
calling 2-2 to 2-4, 2-6 to 2-7
libraries 1-3
requirements 4-2
running 4-31 to 4-32

compound expressions 5-58

COMPRESS subcommand 6-2, 6-24

CONCAT subcommand 6-2, 6-15

concatenating files 6-25

concatenation 5-54

conditional branching 5-35 to 5-36

CONTAINS operator 5-56

control block fields 4-4, 4-12, 4-15, 4-18

control blocks 2-15, 4-3 to 4-4, 4-12, 4-15, 4-18,
4-31

COPY subcommand 6-2, 6-18

COPYDD subcommand 6-20

CPG parameters 2-10

CREATE TABLE command 4-20, 4-34

creating data sets 6-25

creating expressions 5-52

creating variables 5-16

CTRAN function 5-60

CTRFLD function 5-60

D

DADMY function 5-60

DADYM function 5-60

DAMDY function 5-60

DAMYD function 5-60

data sets 6-3
allocating 6-6
creating 6-25
locking 6-5

date fields 5-55

DATEADD function 5-60

DATECVT function 5-60
I-2 iWay Software

Index
DATEDIF function 5-60

DATEMOV function 5-60

DATERPT command 5-47

DAYDM function 5-60

DAYMD function 5-60

DB2 plans 2-7 to 2-8

ddnames (logical names) 6-27

DECODE function 5-72 to 5-73

-DEFAULTS command 5-3, 5-28, A-3

DELETE subcommand 6-2, 6-21

Dialogue Manager commands 5-3, 5-9 to 5-10, 6-1,
A-1

! command 5-78
-* command 5-3, A-2
-? command 5-3, A-2
-CLOSE 5-3, A-2
-CMD 5-3, 5-78, A-3
-CMS 5-3, 5-78, A-3
-DEFAULTS 5-3, 5-28, A-3
-DOS 5-78, A-4
-EXIT 5-3, 5-11, 5-42, A-4
-GOTO 5-3, 5-33 to 5-34, 5-42, A-4
-IF 5-3, 5-35 to 5-40, A-5
-INCLUDE 5-3, 5-44 to 5-46, A-6
-label 5-3, A-6
-QUIT 5-3, 5-12, 5-42, A-9
-READ 5-3, 5-30 to 5-31, A-9
-REMOTE 5-48, A-10
-REMOTE BEGIN 5-3, 5-48
-REMOTE END 5-3, 5-48
-REPEAT 5-3, 5-41 to 5-42, A-11
-RUN 5-3, 5-10, A-12
-SET 5-3, 5-29 to 5-30, A-12
-TSO RUN 5-3, 5-78, A-13
-TYPE 5-3, 5-9, A-13
-UNIX 5-3, 5-78, A-13
-VMS 5-3, 5-78, A-14
-WINNT 5-78, A-14
-WRITE 5-3, 5-49, 5-52, A-14
 command 5-3

Dialogue Manager procedures 1-3 to 1-4, 1-6, 2-2,
2-4, 5-2, 5-9

calling 5-6
creating 5-8
platform-specific commands 6-1
running 5-5
variables and 5-13 to 5-15

displaying GENCPGM options B-3

displaying variable values 5-17 to 5-18

DMOD function 5-60

DMY function 5-60

-DOS command 5-78, A-4

DOWK function 5-60

DOWKL function 5-60

DTDMY function 5-60

DTDYM function 5-60

DTMDY function 5-60

DTMYD function 5-60

DTYDM function 5-60

DTYMD function 5-60

DYNAM command 6-2 to 6-3, 6-5, 6-16, 6-25

DYNAM subcommands 6-2
ALLOCATE 6-2, 6-6
CLOSE 6-2, 6-17
COMPRESS 6-2, 6-24
CONCAT 6-2, 6-15
COPY 6-2, 6-18
COPYDD 6-20
DELETE 6-2, 6-21
FREE 6-2, 6-16
RENAME 6-2, 6-22
SUBMIT 6-2, 6-23

dynamic storage 4-20, 4-23, 4-26, 4-29
allocating 4-32
iWay Stored Procedures Reference I-3

Index
E

EDAFETCH method call 4-34

EDAINFO method call 4-34

EDAPATH method call 1-3

EDARPC command 2-11

EDARPC method call 1-2 to 1-3, 2-2 to 2-3, 5-6

EDIT function 5-71

EQ operator 5-56

error processing 4-32

EVAL operator 5-50

EXEC command 1-6, 2-2, 2-6 to 2-7, 5-24, 5-44, 5-47

execution flow 5-10 to 5-12, 5-27, 5-33
debugging 5-27

execution order 1-4, 1-6
Dialogue Manager 1-6
querying 1-5
setting 1-5

-EXIT command 5-3, 5-11, 5-42, A-4

EXORDER command 1-5

EXORDER parameter 1-4

EXP function 5-60

EXPN function 5-60

expressions 5-52 to 5-58

external files 5-49, 5-52

F

FEXERR function 5-60

FGETENV function 5-60

field variables 5-77

file attributes 6-26
specifying 6-27

FILEDEF command 6-26 to 6-27, 6-29

files 6-25
concatenating 6-25
freeing 6-25

FINDMEM function 5-60

flow of execution 5-10 to 5-12, 5-27, 5-33
debugging 5-27

FMOD function 5-60

FORECAST function 5-60

FPUTENV function 5-60

FREE command 6-16

FREE subcommand 6-2, 6-16

freeing dynamic storage 4-32

freeing files 6-25

FTOA function 5-60

functions 5-59 to 5-60
expressions and 5-59

functions and subroutines
TRUNCATE 5-75

G

GE operator 5-56

GENCPGM parameters B-4

GENCPGM script B-1 to B-2, B-6 to B-7
displaying options B-3
running B-3

generating API programs B-6

generating CALLPGM programs B-6

GETPDS function 5-60

GETSECID function 5-60

GETTOK function 5-60

GETUSER function 5-60
I-4 iWay Software

Index
global variables 5-13 to 5-14, 5-18
naming 5-14

-GOTO command 5-3, 5-33 to 5-34, 5-42, A-4

GREGDT function 5-60

GT operator 5-56

H

HADD function 5-60

HCNVRT function 5-60

HDATE function 5-60

HDIFF function 5-60

HDTTM function 5-60

HEXBYT function 5-60

HGETC function 5-60

HHMMSS function 5-60

HINPUT function 5-60

HMIDNT function 5-60

HNAME function 5-60

HPART function 5-60

HSETPT function 5-60

HTIME function 5-60

I

IBICPG library 1-3

-IF command 5-3, 5-35 to 5-40, A-5 to A-6

IMOD function 5-60

IMS/TM transactions 1-3

-INCLUDE command 5-3, 5-44 to 5-46, A-6

indexed variables 5-16, 5-74 to 5-75
creating 5-74

INT function 5-59 to 5-60

ITONUM function 5-60

ITOPACK function 5-60

ITOZ function 5-60

J

JCL commands 6-25

JULDAT function 5-60

K

keyword parameters 2-11, 5-26
passing 2-12 to 2-13, 5-25

L

-label command 5-3, A-6

LCWORD function 5-60

LE operator 5-56

libraries 1-3

LJUST function 5-60

local variables 5-13 to 5-15, 5-17
naming 5-14

LOCASE function 5-60

locking data sets 6-5

LOG function 5-59 to 5-60

logical expressions 5-56 to 5-57

logical names 6-27

logical operators 5-56

long parameters 2-14
passing 5-26 to 5-27

looping 5-41 to 5-42
iWay Stored Procedures Reference I-5

Index
M

MAX function 5-59 to 5-60

MDY function 5-60

message delivery 5-9

messages 4-20
returning 4-23, 4-26

MIN function 5-59 to 5-60

MTHNAME routine B-7

multi-threaded programs 4-20

MVS commands 6-2 to 6-3

MVS DYNAM function 5-60

N

naming variables 5-14

NE operator 5-56

nesting 5-46

NOT operator 5-56

O

OFFLINE command 6-29

OMITS operator 5-56

ON TABLE HOLD 5-79

ON TABLE PCHOLD 5-79 to 5-80

operating system commands 5-78

operators 5-56
CONTAINS 5-56
EQ 5-56
EVAL 5-50
GE 5-56
LE 5-56
NOT 5-56
OMIT 5-56
OR 5-56

OR operator 5-56

order of execution 1-4, 1-6
Dialogue Manager 1-6
querying 1-5
setting 1-5

overriding default variable values 5-28

OVRLAY function 5-60

P

PARAG function 5-60

parameters 2-10, 3-3, 5-26
passing 2-10 to 2-12, 2-14, 5-25 to 5-27

passing parameters 2-10 to 2-14, 3-3, 5-25 to 5-27

PCKOUT function 5-60

plans for DB2 2-7 to 2-8

platform-specific commands 6-1

POSIT function 5-60

positional parameters 2-11, 5-26
passing 2-11, 2-13, 5-25

PRDNOR function 5-60

PRDUNI function 5-60

procedure libraries 1-3

procedures 1-1
calling 5-44 to 5-46
compiling B-3
creating 5-50
exiting 5-11
linking B-3
testing 5-27

program libraries 1-3

program values 4-20, 4-23, 4-26, 4-29
storing 4-32

program variables 4-31

program-to-server communication 2-15
I-6 iWay Software

Index
Q

-QUIT command 5-3, 5-12 to 5-13, 5-42, A-9

quotes 2-10

R

RDNORM function 5-60

RDUNIF function 5-60

-READ command 5-3, 5-30 to 5-32, A-9

reading variable values 5-30 to 5-31

-REMOTE BEGIN command 5-3, 5-48

-REMOTE command 5-48, A-10

-REMOTE END command 5-3, 5-48

RENAME subcommand 6-2, 6-22

-REPEAT command 5-3, 5-41 to 5-42, A-11

REVERSE function 5-60

RJUST function 5-60

-RUN command 5-3, 5-10 to 5-11, A-12

S

screening values with -IF tests 5-39

-SET command 5-3, 5-29 to 5-31, A-13

SET parameters
EXORDER 1-4

SOUNDEX function 5-60

specifying variable length 5-31

SPELLNUM function 5-60

SQRT function 5-59 to 5-60

stacked commands 5-5, 5-11
canceling 5-12
running 5-10

statistical variables 5-13 to 5-14

stored procedure libraries 1-3, 2-2

stored procedures 1-1, 4-1
calling 1-2, 2-1
canceling 5-12
exiting 5-11
requirements 4-2
running 1-4 to 1-6, 2-8

stored values 4-20, 4-23, 4-26, 4-29

storing program values 4-20, 4-23, 4-26, 4-29, 4-32

STRIP function 5-60

stripping quotes from parameters 2-10

SUBMIT subcommand 6-2, 6-23

SUBSTR function 5-60

supplying variable values 5-23 to 5-24, 5-28 to 5-31

system variables 5-13 to 5-14, 5-19, 5-21

system-supplied functions 5-59 to 5-60

T

TEMPPATH function 5-60

testing for variable values 5-37 to 5-40

TODAY function 5-60

trailing blanks 5-75
deleting 5-76

TRIM function 5-60

TRUNCATE function 5-60, 5-75 to 5-76

TSO commands 6-25

-TSO RUN command 5-3, 5-78, A-13

-TYPE command 5-3, 5-9, A-13
iWay Stored Procedures Reference I-7

Index
U

UFMT function 5-60

unconditional branching 5-33 to 5-34

-UNIX command 5-3, 5-78, A-13

UPCASE function 5-60

user exit routines 6-5

V

values 5-71
decoding 5-72 to 5-73
screening 5-39

variable values 5-22 to 5-24
displaying 5-17 to 5-18
overriding 5-28
setting 5-28 to 5-31
testing 5-37 to 5-40

variables 5-13 to 5-15, 5-18 to 5-19
changing commands 5-77
commands and 5-22
creating 5-16
naming 5-14

-VMS command 5-3, 5-78, A-14

W

-WINNT command 5-78, A-14

-WRITE command 5-3, 5-49, 5-52, A-14

Y

YM function 5-60

YMD function 5-60
I-8 iWay Software

Reader Comments

In an ongoing effort to produce effective documentation, the Documentation Services staff at
Information Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert us to corrections.
Identify specific pages where applicable. You can contact us through the following methods:

Name:___

Company:__

Address:___

Telephone:____________________________________Date:_____________________________________

E-mail:___

Comments:

Mail: Documentation Services - Customer Support
Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

Fax: (212) 967-0460

E-mail: books_info@ibi.com

Web form: http://www.informationbuilders.com/bookstore/derf.html
Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433

iWay Stored Procedures Reference DN3501293.0904
Version 5 Release 3.2

mailto:books_info@ibi.com
http://www.informationbuilders.com/bookstore/derf.html

Reader Comments
Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433

iWay Stored Procedures Reference DN3501293.0904
Version 5 Release 3.2

	Preface
	Contents
	1. Introducing Stored Procedures
	Calling a Stored Procedure
	Stored Procedure Libraries
	Setting the Execution Order
	Valid EXORDER Settings
	Execution Order of Stored Procedures From Dialogue Manager

	2. Calling a Program as a Stored Procedure
	Calling a Compiled Program
	Calling a Program With EDARPC
	Calling a Program With CALLPGM or EXEC
	Calling a Program With SQL EX
	Switching Plans in DB2 (MVS Only)

	Passing Parameters
	Using CALLPGM
	Using EDARPC

	Program Communication

	3. Calling a JAVA Class
	Using CALLJAVA
	Using EX
	Passing Parameters
	Writing a JAVA Class
	Interfaces

	JAVA Class Communication
	Compiling and Running a JAVA Program

	4. Writing a 3GL Compiled Stored Procedure Program
	Program Requirements
	Setting Up the Control Block
	Control Block Specification
	Setting Up a CALLPGM Control Block Structure for C
	Setting Up a CALLPGM LINKAGE SECTION Control Block for Cobol
	Setting Up a CALLPGM Data Structure Control Block for RPG

	Storing Program Values
	Error Handling
	Issuing the CREATE TABLE Command

	5. Writing a Dialogue Manager Procedure
	Commands Included in a Procedure
	Commands and Processing
	Dialogue Manager Processing

	Commenting a Procedure
	Sending a Message to a Client Application
	Controlling Execution
	Executing Stacked Commands: -RUN
	Executing Stacked Commands and Exiting the Procedure: -EXIT
	Canceling Execution: -QUIT

	Using Variables
	Naming Conventions
	Local Variables
	Global Variables
	System Variables
	Variables and Command Structures

	Supplying Values for Variables
	General Rules
	Supplying Values in the EXEC Command
	Debugging Execution Flow
	-DEFAULT[S] Command
	-SET Command
	-READ Command

	Branching
	Screening Values With -IF Tests

	Looping
	Ending a Loop

	Calling Another Procedure
	Nesting
	The EXEC Command

	The -REMOTE Commands
	Reading From and Writing to an External File
	.EVAL Operator
	Creating Expressions
	Arithmetic Expressions
	Alphanumeric Expressions
	Logical Expressions
	Compound Expressions

	Using Functions
	System-supplied Function Examples
	System-supplied Function Table
	Verifying Function Parameters
	Creating Routines
	Editing a Value
	Decoding a Value
	Creating an Indexed Variable
	Removing Trailing Blanks From Variables With the TRUNCATE Function
	Using Variables to Alter Commands

	Using Commands Specific to an Operating System
	ON TABLE HOLD
	ON TABLE PCHOLD

	6. Platform-specific Commands
	DYNAM Command (MVS)
	Use of Data Sets
	DYNAM Allocation User Exit
	The ALLOCATE Subcommand
	The CONCAT Subcommand
	The FREE Subcommand
	The CLOSE Subcommand
	The COPY Subcommand
	The COPYDD Subcommand
	The DELETE Subcommand
	The RENAME Subcommand
	The SUBMIT Subcommand
	The COMPRESS Subcommand

	Comparison of TSO Commands, JCL, and DYNAM
	FILEDEF Command Under VM
	FILEDEF Command Under UNIX, Windows, OS/400, OS/390 and z/OS, and OpenVMS
	Other FILEDEF Features
	OFFLINE Printing

	A. Dialogue Manager Quick Reference
	Dialogue Manager Commands

	B. GENCPGM Usage
	Using GENCPGM

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

