
Oracle® Business Process Management
Oracle BPM Studio Help
10g Release 3 (10.3.1)

January 2009

Oracle® Business Process Management Oracle BPM Studio Help 10g Release 3 (10.3.1)

Copyright © 2006, 2008, 2009 Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except asmay be expressly permitted in your license agreement for these Programs, no part of these Programs
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR52.227-19, Commercial Computer
Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks ofOracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programsmay provide links toWeb sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear
all risks associated with the use of such content. If you choose to purchase any products or services from a
third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the
quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with
any third party.

Contents

Introduction...8
Document Scope and Audience..8
Oracle Documentation and Resources...8

Getting Started..10
About Oracle BPM Studio..10
What's New in this version..11
Revision History..13

Version 6.0..13
Applying Product Updates..15

Working with Studio..16
Profiles..16
Studio Preferences...16

Setting Studio Preferences..16
Setting Project Preferences...16
Setting Engine Preferences...17
Setting Eclipse Preferences...17
Studio Preferences Reference...17

Views...24
Views Overview...24
Showing Views..25
Documentation View..25
Log Viewer View...26
Outline View..27
Problems View...27
Project Navigator View...28
Properties View..28
Simulation View..29
Variables View...29
Test Results View...30

Projects..30
Projects Overview..30
Oracle BPM Example Projects...31
Creating a Project..31
Importing a Project..32
Exporting a Project..32
Running a Project in Studio...33
Importing Designs...33
Creating a Project Report...34
Localization of Projects...34
Working with Source Control Systems..36
Setting Project Preferences...37

Oracle BPM | TOC | 3

Project Properties Reference..37
Reusing Assets Across Projects...38

Processes...42
Business Process Overview..42
Creating a Process...43
Importing Designs...43
Setting Process Properties..44
Process Instance Overview..44
Defining the Layout for the Lanes in a Process...44
Process-Level Debugging...46
Creating a Process Simulation Model..48
Exposing a Process as a Web Service..48
Process Web Service Reference..49
Publishing a Process to AquaLogic Service Bus...49
Process Property Reference..50

Flow Objects...51
Flow Object Overview..51
Activities...52
Gateways..62
Events..68
Global Activities..75
Artifacts...79
Adding a Flow Object...80
Configuring a Flow Object Properties..81
Flow Objects Property Reference..81
Flow Object Icon Reference..95

Groups...97
Creating a Group...98
Groups and Transitions..98
Groups and Grab Activities...100
Group Properties...100

Flow Object Tasks..101
What is a Task?...101
Tasks Types...102

Transitions..110
Transitions Overview..110
Adding a Transition..111
Unconditional Transition..112
Conditional Transition..112
Business Rule Transitions...114
Due Transition..115
Exception Transition...118
Compensate Transition...119
Message Based Transitions...119

Variables..120

4 | Oracle BPM | TOC

Creating Project and Instance Variables...120
Instance Variables..120
Predefined Variables...122
Project Variables...128
Local Variables...128

Screenflows...128
Screenflow Overview..128
Screenflow Timeout..130

Procedures..130
Procedures Overview..130
Creating a Procedure..132

Organizations...132
Organization Overview..132
Creating and Managing Organizations in Studio...135
Using Organizations with the Embedded Process Execution Engine...........................139
Attribute Reference...139

Simulations...142
Simulation Overview..142
Process Simulation Model..143
Project Simulation Models...144
Creating and Running a Process Simulation Model..145
Round-trip Simulations..146
Simulation Reference..147

Components Catalog...150
About Components...150
About the Components Catalog..151
Creating a Module...152
Deleting a Module...152
External Components...152

BPM Objects...189
BPM Object Overview..189
Creating a BPM Object..191
Attribute Overview...192
Defining an Attribute..192
Attribute Data Types...196
BPM Object Presentations..198
Creating a Presentation..198

External Resources..198
Creating an External Resource..199
External Resource Reference..199

Auditing..221
When Audit Events Are Generated..222
Which Audit Events are Generated..223
Configuring Auditing for a Process..223
Configuring Auditing Events for an Activity...224

Oracle BPM | TOC | 5

Configuring the Generation of Audit Records for an Activity Group..........................224
Modifying the Generation of Audit Records for an Activity Group.............................225

Advanced Use Cases...226
Dynamic Business Rules...226

When to use Dynamic Business Rules..226
Using Dynamic Business Rules...227
Defining a Business Rule..228
Letting Participants Edit Business Rules..229

Handling Exceptions...230
Exception Handling in Oracle BPM..230
System Exceptions...231
Business Exceptions..231
Code-level Exception Handling..232
Process-level Exception Handling..233
Typical Exception Handling Flow...233
Creating an Exception Flow in a Process...234
Creating a Business Exception...234

Business Activity Monitoring (BAM)...234
BAM Overview..235
Enabling and Configuring BAM in Studio..235
BAM Database...235
Using Variables in BAM...236
Creating a Predefined BAM Dashboard..237
Viewing BAM Dashboards in Studio...237
BAM Database Reference...237

Unit Testing BPM projects..243
Unit Test Overview...243
Creating a Unit Test...244
Running a Unit Test..244
Test Results View...244

Correlations..245
Correlation Sets..245
Defining a Correlation Set..245
Correlation Property Data Types..246
Correlations Example...246

End-User Interfaces on Oracle BPM...250
Building a User Interface..250

Process Business Language (PBL)..252
PBL Overview..252
Language Basics...252

PBL Methods..252
Comments...252
Expressions...253
Programming Styles..254

6 | Oracle BPM | TOC

Data Types..255
Variables..312
Operators..313
Statements...315
Regular Expressions..330

Programming...341
Objects...341
Code Conventions...344
Embedded SQL..359

Oracle BPM | TOC | 7

Introduction

This section provides general information about the Oracle BPM Studio Guide. This guide assumes that you
have already installed Oracle BPM Studio. See the Oracle BPM Installation Guide for more information.

Document Scope and Audience
This document is written for Business Analysts, Business Architects andDevelopers usingOracle BPMStudio
formodeling and implementing business processes. It covers all the functionality provided by the BPMStudio
workbench.

When reading this document from within Studio's help system, those sections not relevant to your current
Profile are hidden.

If you are new to BPM Studio, we recommend you start with the Oracle BPM Tutorial, which gives you a
practical step-by-step introduction to the product.

Oracle Documentation and Resources
This section describes other documentation, resources, support, and training information provided byOracle.

The table below lists a number of Oracle Documentation and Resources which will help you get started with
Oracle BPM.

DescriptionResource

The complete Oracle BPM 10.3 product documentation is available at
http://download.oracle.com/docs/cd/E13154_01/bpm/docs65/index.html.

Oracle BPM Documentation

The official BPM product page is available at
http://www.oracle.com/technology/products/bpm/index.html and provides news,
data sheets and useful links.

Oracle BPM Product Page

You can download the latest version of Oracle BPM from
http://www.oracle.com/technology/software/products/ias/bea_main.html.

Oracle BPM Download Page

To access online help:Online Help

• In BPM Studio, select Help ➤ Help Contents to access the complete
Oracle BPM Studio help. Context help is also available by pressing the
F1 key, or by selecting Help ➤ Dynamic Help from the menu.

• In BPMWorkSpace, click onHelp in the title bar, or click on the help icon
() in the title bar of any panel for help about that panel.

The Oracle Technology Network features articles, blogs, and newsgroups
which will help you make the most out of Oracle products.

Oracle Technology Network
(OTN)

http://www.oracle.com/technology/index.html

Visit theUserGroups to collaboratewith peers and viewupcomingmeetings.User Groups

At Oracle forums: http://forums.oracle.com/forums/forum.jspa?forumID=560

8 | Oracle BPM | Introduction

http://download.oracle.com/docs/cd/E13154_01/bpm/docs65/index.html
http://www.oracle.com/technology/products/bpm/index.html
http://www.oracle.com/technology/software/products/ias/bea_main.html
http://www.oracle.com/technology/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=560

DescriptionResource

If you cannot resolve an issue using the above resources, Oracle Technical
Support is happy to assist.

http://www.oracle.com/support/index.html

Technical Support

Oracle BPM | Introduction | 9

http://www.oracle.com/support/index.html

Getting Started

The following topics provide general information that you may need to know before using Oracle BPM
Studio. These sections include a general overview of Studio, what's new on this release and how to apply
updates.

About Oracle BPM Studio
Oracle BPM Studio is a desktop application that allows you to model and implement business processes.
Studio creates a common interface for business analysts and developers by providing common views into
the same process model.

Oracle BPM Studio allows you to integrate, design, test, and evolve your business activities using a process
driven method to coordinate and manage internal and external business services.

Process Design

Oracle BPM Studio provides a complete process modeling environment. Within an Oracle BPM project, you
can create different process models that correspond to different areas of your business. This allows you to
createmodels that account for all of the people, systems and organizationswithin your business. Each process
contains activities, transitions, and roles that define the tasks and workflow.

In addition to the activities, transitions, and roles of your process, you can also create project variables that
can be used to define Key Performance Indicators (KPI) for your business process.

Studio also allows you to comprehensively document how your process functions. Based on this
documentation, developers can implement the process according to the specifications defined by the business
analysts who created the process. This allows your process design to function as a contract between the
process design and implementation stages.

After you have created a processmodel, Oracle BPMStudio allows you to run process simulations thatmimic
how your process behaves in production.

Process Development

Oracle BPM Studio also provides a complete process development environment that allows you to go from
the process modeling stage to a functioning production environment.

Oracle BPM Studio allows you to define the business rules and logic that ties your business process together.

For processes requiring integration with back-end applications, Oracle BPM processes communicate with
these underlying application services through components. Components are also cataloged for use with the
Oracle BPM adaptors framework that interfaces with application APIs. These APIs can be implemented in
various technologies, including Java, EJB, COM,CORBA/IDL, JDBC/ODBC, XML, JMS and othermiddleware.

Technology adaptors connect to this standard technology instead of a particular application. This allows the
component Catalog to connect to any object. It has the ability to introspect any object technology and read
its methods and properties to create a 'wrapper' or 'proxies' that directly interfaces with it

Oracle BPMStudio also provides an environment for testing your business processes before they are deployed
in a production environment.

Profiles

To ensure that the appropriate level of functionality is presented to each type of users, Oracle BPM Studio
provides different profiles based on each user type. See Profiles on page 16 for more information.

10 | Oracle BPM | Getting Started

Eclipse Framework

Oracle BPM Studio is built on the Eclipse platform.

What's New in Oracle BPM 10.3 Studio
This topic provides an overview of themain new features, improvements and changes in this release of Oracle
BPM Studio.

Standards Support

• By default, new processes now use horizontal swim-lanes. You can change the swim-lanes orientation
individually for each process. You can define the default orientation for each project and for your Studio
installation.

• BPM Studio now embraces the BPMNmodeling elements and rendering constructs, and BPMN is the
new default process diagram theme. Automatic activities and groups now support Loop conditions.

The new flow elements are categorized into Activities, Gateways, Events, Global Activities, Flow, Lanes
and Artifacts. The name of some flow elements changed on this version.

GatewaysActivities

• Conditional• Interactive
• Decision • Split
• Automatic • OR Split (new)
• Group • Multiple (old name: Split-N)• Subflow
• Process Creation
• Termination Wait
• Grab

Global ActivitiesEvents

• Global Creation• Message Wait (old name: Notification Wait)
• Global Automatic• Send Message (old name: Process

Notification) • Global Interactive (old name: Global)
• Timer (new)
• Compensate

ArtifactsFlow

• Measurement Mark• Connector
• •

Transition Note

Lanes

• Lane (old name: Role)

• Studio is now built on top Eclipse 3.3. AquaLogic BPM 6.0 release was based on Eclipse 3.2.

Oracle BPM | Getting Started | 11

http://eclipse.org

WorkSpace

• WorkSpace provides a new edit modewhich allows users to change the configuration and layout of
panels.

• Users of BPMWorkSpace can configure and save the layout of panels. A new tabbed interface allows you
to define multiple pages, each with its own set of panels. You can export the layout configuration to an
XML file and re-import it on a different environment or as a different user. Administrators can define
layouts for all users in a certain Role.

• You can export the data in the Worklist panel to PDF (Portable Document Format) or CSV
(Comma-Separated values).

• You can see a chart representation of the distribution of items in the Worklist panel.
• WorkSpace includes the following new panels:

• Task Panel: Renders the execution of interactive tasks within the panel, instead of using the default
modal dialogs.

• Dashboard Display Panel: Provides a way to display Dashboards within a Panel.
• View Chart Panel: Provides predefined graphical reports about process performance, work items

distributions and workload.
• Application Panel: This panel contains an application (the execution of a Global Interactive).

Applications can respond to work item selections or run independently.

• The user can now do re-assignment operations on multiple instances at once.
• The Business Rules editor shows additional auditing information, including who and when a rule was

modified.
• WorkSpace now (optionally) stores session-specific information as client-side cookies. This allows

load-balancing on a cluster environment without affecting the user experience.
• This new version ofWorkSpace provides a simplified and streamlined interface, focused on usability and

ease of use.

General

• Studio now supports Mac/OS 10.4 Tiger and Mac/OS 10.5 Leopard.
• Studio now supports Windows Vista.
• Studio now supports CVS and Subversion version control systems (VCS). Additional systems may work

after installing their respective Eclipse VCS plugins but only CVS and Subversion are currently certified.
• The Studio UI incorporates Eclipse 3.3 improvements such as the following:

• NewMinimize/Maximize behavior:Whenminimizing view stacks in Studio, the view icons are placed
on the nearest trim area. If a view is maximized, all other views are minimized, rather than hidden.

• Tabs have a new color scheme based on your system title background color, and unselected tabs now
also have rounded corners to match the appearance of selected tabs. When tabs become crowded, they
now maintain their icon and no longer show an ellipsis in order to maximize the amount of useful
information.

• Firefox can now be set as the internal Web browser.

For more information on Eclipse 3.3 improvements, seeWhat's New in 3.3.

Process Design

• Interactive tasks provide a new "previewable" property. The new Application Display Panel and Task
Execution Panel of WorkSpace automatically start the execution of previewable tasks without locking the
process instance. Enabled by default for Dashboards.

• New type of Activity: Time Activity. A process instance that arrives to this activity just sits idle until a
timed event occurs.

• Option Process Notification Immediately on TerminationWait activities has been deprecated. Now both
the Wait activity and the first activity in the interruption flow always execute in the same transaction.

12 | Oracle BPM | Getting Started

http://help.eclipse.org/stable/index.jsp?topic=/org.eclipse.platform.doc.user/whatsNew/platform_whatsnew.html

• New auto-layout feature re-arranges all visual elements of a process diagram automatically, minimizing
superpositions and aligning the flow as much as possible. Only available for processes with horizontal
lane orientation.

• New process property (Greedy Execution Mode) indicates the Process Execution Engine to collapse
contiguous automatic tasks in a single transaction. This mode of execution provides better performance
for some processes. Disabled by default.

• AnewProcess-Level debugger allows developers to introduce breakpoints anddebug complete processes
running in Studio. When the execution reaches a breakpoint, the Engine pauses and Studio's debugging
view appears. You can inspect variables, add new breakpoints, resume and continue execution.

User Interface

• TheBusinessAnalyst andBusinessArchitect profiles provide a simpler set ofmenu options and toolbars.
• New editor for BPM Object Presentations. It's easier to use, provides a true WYSIWYG interface

(HTML-based), improved CSS support and a new Drag&Drop toolbar.
• You can now interrupt a running Simulation started with the Run to the End button.
• New BETWEEN operator added to Business Rules editor (on both Studio andWorkSpace). This operator

works with Time and numeric types.
• TheDocumentationViewnowdisplays read-only documentation for the standardFuego.* components.
• New on-line help bookOracle BPM Components Reference provides reference documentation for the

standard Fuego.* components. Only available for the developer profile.
• This version introduces Project Dependency, which allows you to re-use components and role definitions

from a common base project.

Integration

• Oracle BPM now provides an extension to the Microsoft Office 2007 Ribbon. This extension allows users
to submit documents to BPM processes right from the Office application.

• Added support for abstract types when cataloging XML Schemas.
• New timeout property added to external resources of typeHTTP Server. Use this setting to control timeouts

on web service invocations.
• Authentication information added to external resources of type JMS (Java Messaging System)
• Processes exposed as Web Services can now provide a runProcess operation, which synchronously

executes the complete process (from begin to end). Only meaningful on fully automated processes.
• New component Fuego.Social.ALIActivityStreamPublisher provides operations to publish

plain text messages to Oracle WebCenter Interaction (formerly AquaLogic Interaction) activity streams.

Revision History
This section contains changes made in previous versions.

Version 6.0
ALBPM6.0 included the first implementation of Studio using the Eclipse platform, added support for several
standards, and added built-in support of AquaLogic Service Bus and JDBC drivers. The WorkSpace Web
application was re-built using modular components.

Standards Support

• Process models in ALBPM are now compliant with the XPDL 2.0 standard.
• Support for BPEL 2.0. You can import BPEL 2.0 models into an ALBPM Project, and new models can be

designed within ALBPM Studio. The Process Execution Engine is now capable of executing BPEL 2.0
natively.

Oracle BPM | Getting Started | 13

• ALBPM Studio application is now built on top of the Eclipse platform.

Studio IDE

• Studio now includes a software agent for automatic problem reporting and feedback. In case of unexpected
errors in Studio, an automatic reportwill be sent toOracle for analysis. Studiowill prompt you for approval
before enabling this feature. We also encourage you to send us feedback using the Help ➤ Feedback...
menu option.

• When you first start ALBPM Studio, you have to select one of the available profiles according your skill
set: BusinessAnalyst, BusinessArchitect, Developer. ALBPMStudio presents a different subset of features
depending on the selected profile. This keeps the user interface uncluttered, hiding what you don't need.
All available features are visible under the Developer profile. The on-line documentation in Studio is also
filtered depending on the active profile. To switch profiles go to Help ➤ Welcome .

• This new release introduces the concept of Project Variables, replacing the External and Business Variables
of previous versions. Project Variables are functionally equivalent to the old External Variables but are
simpler to use: they are available to all processes in the project, with no need to "promote" them from
External to Instance. When the new property Business indicator is enabled, Project Variables behave as
the old Business Variables (they are used for BAM reporting).

• ALBPM project directories do not use the .fpr extension anymore.
• The Organization data and Simulation definitions are now accessed as nodes in the project tree.
• On previous version of Studio the Business Parameters of the project were accessible from the Variables

panel on right. Now you access them from the Business Parameters node under the Organization node
of the project tree.

• Integration with Version Control System feature (VCS) was re-implemented to leverage the Eclipse
platform. This paves theway for supporting virtually any Source Control systems compatiblewith Eclipse.

• Each resource that is independently stored as part of an ALBPM Project is modified using an "Editor"
tabbed panel, and you must explicitly save your changes on each resource with File > Save . For example,
on earlier versions of Studio you add or modify a Participant using a separate dialog window. Now a
special Participants editor opens in a new tab of the edition area. Thismakes it easier to workwith Version
Control systems, as each resource is managed and saved independently.

• Some editorsmay open nested editors (accessible via smaller tabs at the bottom of the editor). For example,
the editor for Process models uses independent sub-tabs for the process diagram and for each opened
process method.

Process Designer

• You can now open several projects at the same time. Before opening a project, you first need to add it to
your Studio workspace.

• Incremental compilation: There is no need for Publish&Deploy anymore. Once you start Studio's Process
Execution Engine, the project is running. While it is running, the Execution Engine immediately applies
changes you make to your project design and code.

• A new type of Interactive activity: Decision activities. This type of activity allows the end user to decide
the next path a process instance will take (one of the possible outgoing transitions), based on the value of
certain instance variables. The Process Execution Engine keeps track of those decisions over time and
presents the end user with recommendations on what decision to take based on past experience.

• Business Rules: ALBPM Studio now provides a way of defining business rules using a graphical rules
editor, without requiring any coding. After the project is deployed, authorized end users can also modify
these rules on-the-fly,while the processes are executing. They can do so right from theALBPMWorkSpace
UI.

• Round-trip Simulation: You can now create Simulation models from the actual execution of the processes
during a given period of time. This makes it easier to create realistic Simulation models.

14 | Oracle BPM | Getting Started

User Interface

• ALBPMWorkSpace has been re-designed and re-implemented from the groundup. It is based on amodern
modular architecture which makes it easier to customize and integrate naturally with AquaLogic UI and
WebLogic Portal. The old WorkSpace is still provided for backward compatibility but may be removed
in future versions.

• Dashboards provide better quality graphics and enduser interaction (i.e. rotation, detaching of pie sections).

Integration

• Native integration with ALSB. You can now easily consumeALSB services fromALBPM and also register
a business process in ALSB.

• Web Services inALBPMnow include support forWS-Security,Document-Literal style andWS-I compliance.
• ALBPM Studio now includes JDBC drivers for the most popular DBMS. This means you can integrate

with Oracle, DB2 and Microsoft SQL Server right out of the box.
• PAPI has deprecated several methods in favor of new ones which follow a new naming convention. PAPI

methods which where deprecated in ALBPM 5.7 have been deleted from the API.
• PAPI WebService 1.0 has been deprecated in favor of the new PAPI WebService 2.0. PAPI-WS 1.0 is

accessible through ALBPMWorkSpace while PAPI-WS 2.0 is accessible through its own newWeb
Application (papiws). This new version is functionally equivalent to the native Java PAPI, and adheres
to theWS-Security specification using the UserNameToken Profile implementation as well as HTTP Basic
Authentication.

Updating Studio
Follow this procedure to apply maintenance packs and patches to Oracle BPM Studio.

You initiate the Studio update procedure from within the Studio application.

Before updating Studio, check which version you currently have. On the main menu, click Help ➤ About
Oracle BPM Studio .

To update Studio:

1. In Studio, save all your changes using File ➤ Save All ()
2. In the main menu, click File ➤ Updates > Studio Local Update

Studio displays a dialog box indicating that Studio will close in order to execute the update, and asks if
you want to continue.

3. Click Yes.
Studio closes and theOpen dialog box is displayed.

4. Specify the update (.upd) file and clickOpen.
The update process runs. When the update procedure is complete, Studio will restart.

5. Verify that Studio is not at the expected revision by clicking Help ➤ About Oracle BPM Studio .

Oracle BPM | Getting Started | 15

Working with Studio

The following sections cover all the elements provided by the Oracle BPM Studio workbench.

Profiles
Oracle BPM Studio provides three separate profiles. Each profile contains different levels of functionality
which is targeted towards a specific user type.

DescriptionProfile

Provides access to process modeling functionality,
but does not contain any coding elements.

Business Analyst

Provides access to process modeling functionality as
well as modeling and service mapping, module

Business Architect

definitions, and access to the BPM Object Catalog.
Some basic coding functionality is supported.

Provides access to process modeling and all
development functionality.

Developer

The currently selected profile is also used by the online help system of Oracle BPM Studio to hide content
that is not relevant to your profile.

Studio Preferences
Oracle BPM Studio provides different levels of customization preferences.

Setting Studio Preferences
Oracle BPM Studio preferences determine the general behavior of the Studio application.

To set Studio Preferences:

1. Ensure that the Project Navigator is visible.

See Showing Views on page 25.

2. Select the icon.

The Preferenceswindow appears.

3. Select a preference category from the list. The set of preferences for the selected category appears on the
right.

4. Modify the preferences you need to modify

For a detailed description of the available preferences, see Studio Preferences Reference on page 17.

5. ClickOK.

Setting Project Preferences
Project preferences allow you to customize Oracle BPM Project-specific behavior.

16 | Oracle BPM | Working with Studio

To set project preferences:

1. Right-click on the Project whose preferences you want to edit.
2.

Select Project Preferences ().
3. Edit the Project preferences.

See Project Properties Reference on page 37 for detailed information on each Project preference.

4. ClickOk.

Setting Engine Preferences
Engine preferences allow you to customize the Oracle BPM Process Execution Engine behavior. Engine
preferences are saved independently for each BPM project.

1. Ensure that the Project Navigator View is visible.

See Showing Views on page 25.

2. Right-click on the BPM Project whose Engine preferences you want to edit.
3.

Select Engine Preferences ().

The Preferenceswindow appears.

4. Select a preference category from the list. The set of preferences for the selected category appears on the
right.

5. ClickOk.

Setting Eclipse Preferences
Eclipse preferences allow you to customize general behavior of the Eclipse Platform.

1. From the main menu: Windows ➤ Preferences .

The Preferenceswindow appears.

2. Select a preference category from the list. The set of preferences for the selected category appears on the
right.

3. ClickOk.

Studio Preferences Reference
The following reference provides detailed information about Studio Preferences.

General
Options available on the General preference page.

DefaultDescriptionOptions

OnSpecifies if Studio clears the application log when you launch it.Overwrite application
log at start time

OffSpecifies if theComponentCatalog shows libraries added to the catalogue
as dependencies of an introspected Java class.

Show hidden
components

HorizontalSpecifies the lane layout Studio useswhen you create a newBPMProject.
Possible values:

Default Lane Layout

• Horizontal
• Vertical

Oracle BPM | Working with Studio | 17

Activity
Options available on the Activity preference page.

General

DefaultDescriptionOption

OnSpecifies if Studio displays a dialog with the activity properties
immediately after you add a new activity.

Show properties
automaticallywhenadding
a new object

OffIf selected the cursor does not return to its default state after adding
an activity. This allows you add new activities of the type of selected.

Keep 'adding activity'
mode

OffSpecifies if a tooltip with information about the activity appears when
you roll the mouse over the activity.

Show tooltips

OffSpecifies if Studio re-layouts the design when adding a new object to
a process.

Layout automatically the
design when adding
objects

Messages

DefaultDescriptionOption

OnSpecifies if Studio shows a confirmation message before replacing an
activity task with the component you drag over the activity in the
Structure View.

Show confirmation when
replacing activity task

OnSpecifies if Studio asks you if youwant to re-layout the process design
when you add a new activity. This option is enabled only when the

Ask to do layout
automatically of the design
when adding an activity property Layout automatically the design when adding objects is

not selected.

PropertiesSpecifies which information to show when double clicking on an
activity. Possible values are:

On double click show

• Main Task
• Properties

NameSpecifies the information used to identify the activity in the process
diagram. Possible values are:

Show as title

• Name
• Description

Transition
Options available on the Transitions preference page.

General

DefaultDescriptionOptions

OnSpecifies if Studio displays a dialogwith the transition
properties immediately after you add a new transition.

Show properties automatically when
adding a new object

OnSpecifies if Studio ignores the value of the property
Show properties automatically when adding new

Ignore show properties option for
unconditional transitions

18 | Oracle BPM | Working with Studio

DefaultDescriptionOptions

objectswhen adding an unconditional transition. This
property becomes available when you select the
propertyShowproperties automaticallywhenadding
new objects.

Visual Properties

DefaultDescriptionOptions

NameSpecifieswhat type of information to show in the label
of the transitions. If you chooseNone, no label is
associated to the transitions. Possible values are:

On Transitions Show

• Condition
• Name
• Description
• None

Method Editor
Options available on the Method Editor preference page.

Language

DefaultDescriptionOptions

PBLSpecifies the PBL skin the method editor uses to
display the code. Possible values are:

Style

• PBL
• Java
• VisualBasic.NET

Auto Complete

DefaultDescriptionOptions

OnSpecifies if code completion is enabled.Auto Popup Members

Others

DefaultDescriptionOptions

OnSpecifies if the debugger commits SQL transactions.
If you do not select this property, the debugger
rollbacks all SQL transactions before exiting.

Allow Studio Debugger to commit
transactions.

9595Specifies the port where the web server used for
debugging runs. The Web Debugger uses this server
to display messages in an embedded browser.

Web Debugger Port

Printing
Options available on the Printing preference page.

Oracle BPM | Working with Studio | 19

General

DefaultDescriptionOption

OffSpecifies if the last role lane spreads through all the remaining
space in the page.

Complete page sizewith the last
role

Transitions

DefaultDescriptionOption

OnSpecifies if the information of conditional transitions is included
when printing a process design.

Print Conditional Transitions
Information

Reporting
Options defined on the Reporting preferences page.

General

DefaultDescriptionOption

OnSpecifies if use cases are included when generating a Project Report.Include use cases

OnSpecifies if the source code of the implementation is included when
generating a Project Report.

Include implementation
source code

OnSpecifies if variables are included when generating a Project Report.Include variables

Messages
Options available on the Messages preference page.

Process

DefaultDescriptionOption

OnSpecifies if Studio shows a confirmation message before deleting a
process.

Show confirmation when
deleting a process

OnSpecifies if Studio shows a confirmation message before deleting a
folder.

Show confirmation when
deleting a folder

Method

DefaultDescriptionOption

OnSpecifies if Studio shows a confirmation message before deleting a
method.

Show confirmation box
when deleting method

External Resources

DefaultDescriptionOption

OnSpecifies if Studio shows a confirmation message before deleting an
External Resource.

Show confirmation when
Deleting External
Resources

20 | Oracle BPM | Working with Studio

Variables

DefaultDescriptionOption

OnSpecifies if Studio shows a confirmation message before deleting a
variable.

Show confirmation when
deleting variables

Log
Options available on the Log preference page.

General

DefaultDescriptionOption

200 itemsLog Viewer Size

30
seconds

Update Frequency

Connection Settings
Options available on the Connection Settings preference page.

General

DefaultDescriptionOption

Direct
connection

Specifies the type of connection to the Internet. Possible values are:Connection Settings

• Direct connection to the Internet to the
Internet• Manual proxy configuration

If you selectManual proxy configuration you must specify the ID of
the proxy server and its port.

Presentation Preferences
Provides detailed information on the properties you can configure in the Presentation Editor.

Presentation Preferences

The following table describes the preferences you can use tomodify the appearance of the Presentation Editor.

DefaultDescriptionOption

OffSpecifies if the Presentation Editor uses the defined Presentation
Preferenceswhen adding a new component to an existing
presentation.

Use Preferences in Editor

#C2FFBFSpecifies the background color that identifies a drop target.DropTarget BackgroundColor

#0F6AD9Specifies the color of the border that identifies a drop target.Drop Target Border Color

#52A4F4Specifies the color used to identify the currently selected drop
target.

Drop Target Hover Color

DefaultSpecifies the color used to identify a selected component. Possible
values are:

Selection Border Color

• Custom
• Default

Oracle BPM | Working with Studio | 21

DefaultDescriptionOption

If you selectCustom, you can define which color to use using the
color browser located next to this property.

4Specifies the space the Presentation Editor uses to separate a
component from the cell that contains it. The Presentation Editor

Cell Padding in Tables

uses this value to render tables, ignoring the cell padding defined
for that specific table. You can use the preview to view the table
using cell padding values you defined for your presentation.

4Specifies the space the Presentation Editor uses to separate cells.
The Presentation Editor uses this value to render tables, ignoring

Cell Spacing in Tables

the cell spacing defined for that specific table. You can use the
preview to view the table using cell spacing values you defined
for your presentation.

General

DefaultDescriptionOption

#FFFFFFSpecifies the background color of the presentation.Background Color

Header/Body/FooterSpecifies the layout of the presentation. Possible values are:Layout

• Table Default Layout
• Header/ Body/ Footer

Table

DefaultDescriptionOption

7Specifies the space that separates the component from the
cell border.

Padding

0Specifies the space that separates the cells in a table.Spacing

Cell

DefaultDescriptionOption

Left justifySpecifies the horizontal alignment of the component added
to the cell. Possible values are:

Horizontal Alignment

• Center justify
• Left justify
• Right justify

CenterSpecifies the vertical alignment of the component added to
the cell. Possible values are:

Vertical Alignment

• Top
• Center
• Bottom

22 | Oracle BPM | Working with Studio

Text Field

DefaultDescriptionOption

PlainSpecifies the font style used in text fields. Possible values are:Font Style

• Plain
• Bold
• Italic
• Bold Italic

12Specifies the font size used in text fields.Font Size

20Specifies the number of columns in text fields. The number
of column determines the width of the text field.

Maximum Column Count

No colorSpecifies the background color used in text fields.Background Color

No colorSpecifies the foreground color used in text fields. The
foreground color determines the color of the font.

Foreground Color

Left
justify

Specifies the horizontal alignment for the text in the text field.
Possible values are:

Horizontal Alignment

• Center justify
• Left justify
• Right justify

Right
justify

Specifies the horizontal alignment for the numeric text in the
text field. Possible values are:

Horizontal Alignment (numeric
attributes)

• Center justify
• Left justify
• Right justify

Left
justify

Specifies the horizontal alignment of the text field within the
cell. Use this property to define a specific alignment for text
field components. Possible values are:

HorizontalAlignmentWithinCell

• <Cell Alignment>
• Center justify
• Left justify
• Right justify

Drop-Down List

DefaultDescriptionOption

Left
justify

Specifies the horizontal alignment for the text in the drop-down
list. Possible values are:

Horizontal Alignment

• Center justify
• Left justify
• Right justify

Oracle BPM | Working with Studio | 23

Button

DefaultDescriptionOption

OnSpecifies if the button uses a background color. If selected the
background color defined for the button is ignored and the button
allows you to see the component behind it.

Transparent?

Specifies which predefined buttons to include when building a
new presentation. You can include the following predefined
buttons:

Include Buttons
• Submit
• Cancel

• Submit
• Cancel
• Reset
• Refresh

Defines how to layout the selected predefined buttons.Layout Ordering
• Submit
• Cancel

Text

DefaultDescriptionOption

Right
justify

Specifies the horizontal alignment of the text field within the cell.
Use this property to define a specific alignment for text
components Possible values are:

Horizontal Alignment Within
Cell

• <Cell Alignment>
• Center justify
• Left justify
• Right justify

OnSpecifies if the PresentationWizard capitalizes the text component
that displays the name of the attribute.

Capitalize first letter?

OnSpecifies if the Presentation Wizard replaces underscores with
blank spaces in the text component that displays the name of the
attribute.

Separate names when
underscore is found?

OnSpecifies if the Presentation Wizard capitalizes all the words in
the text component that displays the name of the attribute.

Capitalize each word?

Views

Views Overview
Views provide multiple ways of navigating resources within your Project.

Eclipse Standard Views

The Eclipse IDE provides a standard set of views that are available in all perspectives. For general information
on using Views and for specific information about the default Eclipse views see theWorkbench User Guide.

24 | Oracle BPM | Working with Studio

Oracle BPM Custom Views

The Oracle BPM Perspective provides the following custom views:

DescriptionView

Allows you to create and edit documentation for a
Process and its Activities.

Documentation

Displays the error log for the embedded Process
Execution Engine.

Log Viewer

Displays information about errors andwarnings that
occur within a Project.

Problems

Provides a hierarchical view of resources within a
Project.

Project Navigator

Displays the properties of a BPMObject Presentation.Properties

Allows you to run and view Process simulations.Simulation

Displays a list of variables grouped by type.Variables

Displays the results of CUnit and PUnit tests.Test Results

Note: Custom Views are only available from the Oracle BPM Perspective. They are not visible within
other perspectives.

Showing Views
This task outlines the procedures for showing Views in Oracle BPM Studio.

To show a view that is not visible within a perspective or to show a view that you have closed:

1. Select Window ➤ Show View ➤ Other .
2. Expand the folder of the type of View you want to open.
3. Select the View.

Views that are specific to the Oracle BPM Studio perspective are in the BPM folder.

Documentation View
The Documentation View allows you to view, create and edit documentation for your Process and Activities.

This view provides a graphical text editor that allows you to perform basic text formatting, add images, and
create hyperlinks.

Oracle BPM | Working with Studio | 25

Documentation Audience

Oracle BPM Studio allows you to create documentation for two difference audiences:

DescriptionAudience

Provides information about a Project to end users. Content provided in this
option appears in WorkSpace.

Documentation

Provides internal information about a Project that is useful to process architects
and developers.

Use Case Documentation

You can switch between audiences using the drop-down menu in the Documentation View toolbar. Both
types of documentation appear in a generated Project Report.

Documentation View Toolbar

The following table outlines the options available in the Documentation View toolbar:

DescriptionToolbar Element

Selects the audience for the current content.Audience Drop-down
Menu

Specifies the language for the current audience.Language Drop-Down
Menu

Cuts the current selection and copies it to the clipboard.

Copies the current selection to the clipboard.

Pastes the current selection at the cursor location.

Defines the font size for the current selection.Font Size

Defines the font type for the current selection. Available font types depend on
the font styles installed on your system.

Font Type

Allows you to insert an image within the documentation.

Log Viewer View
The Log Viewer View provides logging information for the Embedded Process Execution Engine.

26 | Oracle BPM | Working with Studio

The Log Viewer only displays messages for the Project you use to start the Embedded Process Execution
Engine. To view log messages for another Project, you must stop the engine and restart it using a different
Project. See Running a Project in Studio on page 33.

Logging Information

The Log Viewer displays the following information for each log message:

DescriptionColumn

Indicates the kind of message (FATAL, SEVERE,
WARNING, INFO, DEBUG).

Severity

Contains the message that the Engine sends to the
log.

Message

The time that the message was logged.Date

The date the message was logged.Time

Application that sent the message. All BPM system
applications can send log messages to the log files.

Application

Module that sent the message.Module

Thread that sent the message.Thread

Item Properties Tab

The Item Properties displays detailed information about specific log entries.

Outline View
The Outline View displays an outline structure of a file that is currently open in an editor. The Outline View
is a standard Eclipse View, but is frequently used within Oracle BPM Studio.

The contents of the Outline View depend on the contents of the currently highlighted editor. The following
image shows an example of the Outline View of an Oracle BPM Process.

Problems View
The Problems View displays information about errors and warnings that occur within the Project.

Oracle BPM | Working with Studio | 27

Project Navigator View
The Project Navigator View displays all of the Projects and project resources within your current workspace.

The following figure shows a typical Oracle BPM Studio Project:

Setting Oracle BPM Studio Preferences

The icon in the Project Navigator toolbar opens the Studio Preferences window. For more information on
setting these preferences, see Studio Preferences on page 16.

Properties View
The Properties View displays the properties of a BPM Object Presentation. This view is different from the
standard Eclipse Properties view.

28 | Oracle BPM | Working with Studio

Simulation View
The Simulation View allows you to run and view Process simulations.

Variables View
The Variables View displays the variables that are available within a Project.

The contents displayed in the Variable View depends on your current Profile and the context of the editor
window you are viewing.

Oracle BPM | Working with Studio | 29

Test Results View
The Test Results View displays results from PUnit and CUnit tests.

Projects
Oracle BPM projects provide a way to organize, develop andmanage different processes, users, components
and systems catalogs. Projects allow you to collect and organize all of the processes and components associated
with the business application you are developing. Projects developed in Oracle BPM Studio are published
and deployed on Oracle BPM Enterprise.

Projects Overview
Abusiness project is the combination of a series of actions or operations pursuing a common business purpose.
These activities, either human or automated, need to be executed in order to deliver a product or service.
Business requirements may involve functional integration across the company or organization.

30 | Oracle BPM | Working with Studio

A Project involves not only the representation of all the elements that are part of a business, the human
resources, the organization, the processes and the systems execution but also the way in which all of them
interact.

Projects enable you to group processes that are related in some way and separate them from other groups.

Each project has its own component catalog so that you will be able to separate components used in some
processes but not in others by grouping them in different projects. The project also contains all the abstract
user roles used in it and its own Organization information required in order to deploy the project.

Project Resources

Each Project contains the following resources that are visible in the Project Navigator:

DescriptionResource

Contains the Processes, Procedures, and Screenflows
defined for the Project.Within the Processes resource
you can createmultiple folders to organize resources.

Processes

Contains theOrganizational elements that are defined
for the Project.

Organization

Contains simulations defined for the entire Project.Simulations

Displays the list of catalog resources accessible from
the Project.

Catalog

Contains user interface resources such asHTMLpages
and Java Server Pages.

webRoot

Contains Views and Presentations that are defined
locally for testing within Oracle BPM Studio.

Custom Views

Contains connectivity information for external
resource such as databases.

External Resources

Oracle BPM Example Projects
Oracle BPM Studio contains several example projects. These are grouped in sub-directories located under
<ORABPM_HOME>/samples.

To view the sample projects, you can import them as an exported Oracle BPM Project. See Importing a Project
on page 32.

The following table provides a brief description of each group of examples:

DescriptionSub-Directory

Projects showing non-trivial process models and advanced
features.

advanced/

Simple projects, using basic modeling features.basic/

Complete self-contained demo projects with associated script.demos/

Projects showing integration with external systems. Example:
Ant scripts.

integration/

Projects showing interoperability with other Oracle products.interop/

Creating a Project
This section describes the basic procedures for creating an Oracle BPM Project.

Oracle BPM | Working with Studio | 31

To create a Project:

1. Select File ➤ New ➤ BPM Project .
2. Provide a Project name.
3. Choose a Project Root Directory.

The Project root directory contains all of the resources used by the Project.

4. ClickNext.
5. Click Finish.

The new Project appears in the Project Navigator.

Importing a Project
Importing a project allows you to share Project resources.

To import a previously exported project:

1. Select File ➤ Import... .

The Importwindow appears.

2. Select BPM ➤ Exported BPM Project into Workspace .
3. ClickNext.
4. Click Browse to locate the Project you want to import.
5. ClickOpen, then clickNext.
6. Optionally, change the name of the imported Project.

Note: Click on the proposed project name to make it editable. The original name of the exported
Project appears by default. However, if your workspace already contains a project with this name,
you must specify a different one.

7. ClickNext.

The Project files are expanded into your workspace.

8. ClickNext, then click Finish.

The imported Project appears in the Project Navigator.

Exporting a Project
Exporting a Project allows you to create a self-contained, portable version of a Project.

To export a Project:

1. Right-click on the Project you want to export.
2. Select Export Project.
3. If your project depends on another project, select Include base project.

For more information on Project Dependency, see Reusing Assets Across Projects on page 38.

4. Choose which libraries to include with the export file.
DescriptionOption

Does not include any of the libraries used in the project.Exclude all Libraries

Includes versionable and non-versionable libraries. Use this option if you
want to import the exported file to another installation of Studio.

Include all Libraries

Includes only versionable libraries. Use this option if you want to use the
exported file to publish and deploy a project in an Enterprise installation.

IncludeVersionableLibraries
Only

32 | Oracle BPM | Working with Studio

DescriptionOption

It is not necessary to include these libraries because in an Enterprise
installation you need to copy non-versionable libraries manually.

For more information on Library Versioning, see Versionable Java Libraries on page 169.

5. ClickNext.
6. Provide the name and output directory of the exported Project file.
7. ClickNext.
8. Click Finish.

Running a Project in Studio
To run a BPM project in Oracle BPM studio you need to start the embedded Process Execution Engine.

To start the Engine in Studio:

1. In the Project Navigator, select the Project you want to use to start the Process Execution Engine.
2. Click the green play icon in the Eclipse toolbar.
3. Optionally, select from the following options:

DescriptionOption

Clears all previous process instances before starting the Engine.Delete Process Instances

Clears all log files before starting the Engine.Delete Log Files

4. ClickOk.
The Progress Informationwindow appears while the engine is starting. This may take several minutes.

When the Process Execution Engine starts, the green play icon changes to a red stop icon.

Importing Designs
The Import Designs command allows you to import Processes, Screenflows and Procedures from other
common Business Process Modeling formats.

To import designs:

1. In the Project Navigator, right-click on the process to which you want to add the imported process, or on
the Processes node of that project.

2. From the context menu, select Import Designs .
The Import Designs dialog box appears.

3. Specify the type of file you want to import in the Files of type drop-down list.
DescriptionOption

Process definition file used for Oracle BPM processes. This is an
XPDL 2.0 file with extensions.

Oracle BPM Process File (*.xpdl)

Process Definition Language compliant with the 1.0 spec by the
WfMC. Standard file type used to exchange process designs

XPDL 1.0 WorkflowManagement
Coalition Model (*.xpdl)

between process authoring tools. Because the standard allows for
proprietary extensions to be included in an XPDL 1.0 file, the
imported process can differ from the original version.

Process designs created with Microsoft Visio.Visio XML Drawings

Oracle BPM procedure files.Procedure Files (*.xadl)

Oracle BPM | Working with Studio | 33

DescriptionOption

Oracle BPM screenflow files.Screenflow Files

4. Select the file you want to import.
5. ClickOpen .

Each file you selected is imported to the project and opened in a new design editor window.

Creating a Project Report
Creating a project report allows you to view general and summary information about your project.

To generate a Project Report:

1. Right-click on the Project you wish to create a report for.
2. Select Project Report.

The Report Optionswindow displays.

3. Choose the elements you want to include in the report:

Report Elements

Include Use Cases

Include Implementation Source Code

Include Variables

4. ClickOK.
5. Select either HTML or PDF from the report output type drop-down list.
6. Select the folder where you want to output the report.
7. ClickOK.

The report is generated. In PDF format, this will be a single file. InHTML, a folder and subfolders are created.
You start reading an HTML report at the index.html page in the top folder.

Localization of Projects
Oracle BPM Studio allows you to localize elements of your business process. Most elements of a process that
are visible within WorkSpace can be localized.

Supported Languages

When localizing a Project, you can add as many of the supported languages as necessary. The following
languages are supported:

• Spanish
• Chinese (Traditional)
• Chinese (Simplified)
• Korean
• Japanese
• German
• French
• Italian
• Dutch
• Portuguese

English is the default language for a new Oracle BPM Project and is included automatically.

34 | Oracle BPM | Working with Studio

Project Elements that Can Be Localized

After adding a languages to your project, you can add localized labels to the following aspects of your Project:

• Project Variables
• Business Rules
• Process Names
• Activity Names
• Input Tasks
• Decision Tasks
• Role Names
• View Names
• Presentations

Adding a Language to a Project
Before you can localize different elements of your business processes, you must add a language to your
project.

To add a language to your project:

1. Right-click on the Project where you want to add a language.
2. Select Project Preferences.
3. Click Languages
4. Click Add.
5. Select the language you want to add.

See Localization of Projects on page 34 for a list of available languages.

6. ClickOk.

After adding a language to your Project you can localize individual elements of your processes.

Localizing a Process Name
The following procedures showyou how to localize a Project name. This localized name is usedwithinOracle
BPMWorkSpace.

Ensure you have added a language to your process before localizing Activity names. See Adding a Language
to a Project on page 35 for more information.

1. Right-click on the Project whose name you want to localize.
2. Select Properties.
3. Click the icon.
4. Enter the localized label next to the appropriate language.
5. ClickOk.
6. ClickOk.

Localizing a Flow Object within a Process
The procedures outlined in this topic show you how to localize flow object names within your process. These
localized names are used within Oracle BPMWorkSpace.

Ensure you have added a language to your process before localizing flowobject names. SeeAdding a Language
to a Project on page 35 for more information.

1. Open the Process containing the flow object you want to localize.
2. Right-click on the flow object.
3. Select Properties.

Oracle BPM | Working with Studio | 35

4. Select Activity ID.
5. Click the icon.
6. Enter the localized label next to the appropriate language.
7. ClickOK.
8. ClickOK.

Working with Source Control Systems
The following topics describe how to share Oracle BPM projects and resources with your source control
system.

Source Control Overview
Source control systems enable you to share and control resources within your organization. Oracle BPM
Studio allows you to easily integrate Project resources within your source control system.

Oracle BPM Studio uses a standard Eclipse layer for accessing source control system. Most source control
systems provide plugins for Eclipse. Oracle BPM includes the CVS and Subversion plugins by default.

Sharing Files Using Source Control
The following procedures show you how to share project resources using a source control system in Oracle
BPM.

1. In the Project Navigator, right-click on the resource you want to share.
2. Select Team ➤ Share Project

The Share Project wizard appears. This wizard allows you to define connectivity information for your
source control system.

3. To configure connectivity properties, follow the procedures defined in the Team CVS Tutorial or the Team
SVN Tutorial in the Getting Started section of theWorkBench User Guide. TheWorkBench User Guide is part
of Eclipse standard documentation.

Extracting Files from CVS Source Control System
The following procedure shows you how to access Oracle BPM Resources that are stored in a CVS source
control system.

1. In the Project Navigator, select File ➤ Import .
The Importwizard appears.

2. Expand CVS.
The Project from CVS node appears.

3. Select Projects from CVS.
4. ClickNext.

The page to configure the connection preferences appears.
5. To configure CVS connection preferences, follow the procedures defined in the Team CVS Tutorial in the

Getting Started section of theWorkBench User Guide. TheWorkBench User Guide is part of Eclipse standard
documentation.

Extracting Files from Subversion Source Control System
The following procedures show you how to access Oracle BPM Resources that are stored in a Subversion
source control system.

The following procedure assumes you defined a valid Subversion repository location. For information on
how to configure Eclipse to work with a Subversion repository, see Team SVN Tutorial in the section Getting
Started section of theWorkBench User Guide.

To checkout an Oracle BPM project from a Subversion repository:

36 | Oracle BPM | Working with Studio

1. Choose File ➤ Import .
The Importwizard appears.

2. ExpandOther.
The Checkout Project from SVN node appears.

3. Select Checkout Projects from SVN.
4. ClickNext.

The page to configure the connection preferences appears.
5. Select Use existing repository location.
6. Select a repository location.
7. ClickNext.
8. Provide the credentials to log in to the selected repository.
9. ClickOK.
10. Enter an author name and clickOK.
11. Select an Oracle BPM project to check out.
12. Click Finish.

The selected BPM project appears in the Project Navigator View.

Setting Project Preferences
Project preferences allow you to customize Oracle BPM Project-specific behavior.

To set project preferences:

1. Right-click on the Project whose preferences you want to edit.
2.

Select Project Preferences ().
3. Edit the Project preferences.

See Project Properties Reference on page 37 for detailed information on each Project preference.

4. ClickOk.

Project Properties Reference
Project properties allow you to define different aspects of a BPM Project.

General

DescriptionProperty

Developing for J2SE Development

Languages

DescriptionProperty

Specifies the language used by this project. This
setting is used to determine the language of Process

Current Language

names. If the localized version of a label is available,
this version is displayed to users. If no localized
version is available, the default language is used.

You can also use this page to add languages to a project. After adding a language to a project, you have the
option of creating localized Activity labels.

Oracle BPM | Working with Studio | 37

Exception Handling

DescriptionProperty

Defines how exceptions are handled within the
project. The following options are available:

Exception Handling

• Propagate: Causes un-handled exceptions are
propagated to the parent or invoking process. The
instance of the child process is aborted without
executing the End Activity.

• Handle Exceptions: Allows you to explicitly define
how exceptions are handled.

Causes Studio to automatically generate an exception
handling Activity and Role when creating a new

AutomaticallyGenerate ExceptionHandlingActivity

process. This option is only available when Handle
Exceptions is selected.

Reusing Assets Across Projects
You can create a project with generic assets to use them in multiple projects. Then you can use the assets in
the base project from another project. In this way you can leverage the effort made in other projects.

You can reuse the following assets:

• Processes
• Roles
• Components

To reuse an asset defined in another project, you need to configure your project to depend on that base project.
For more information on how to do this, see Configuring Project Dependency on page 40.

A project can depend on only one project, however the project it depends on can also depend on another
project.

Typically you create a base project with the most general assets. Some projects may directly depend on this
project, so that they can use the assets defined in the base project. If there is a group of projects that share the
need of other more specific assets, then you can configure them to depend on a project that contains those
specific assets and in turn, depends on the base project.

Reusing Processes

You can create a project with generic processes and use it as a library of processes. It should contain processes
that you can use as templates to develop other processes.

Generic processes comply with the following:

• They define a main flow, leaving the alternative path to the specific uses of this template
• Their activities do not have an associated task
• Their process methods solve problems related to the process nature

To build your project library add new processes and roles, or copy already existing ones following the
procedure described in Copying a Process and its Roles to a Process Library on page 40.

Your project should depend on the project containing the library of processes, so that you can use the processes
in the base project as templates. To do this follow the procedures described in Using a Process from a Process
Library on page 41.

38 | Oracle BPM | Working with Studio

The process you create using the template, uses the roles defined in the base project. If the activities in the
process template have an associated task then itmay use the components defined in the base project. However
when you modify the process in the base project, your project does not reflect the changes.

Reusing Roles

You can create a project with generic roles and use it as a library of roles. Typically you include the processes
that use these roles in the same project.

To use the roles defined in the base project, your project should depend on it. For more information on how
to use a role from the base project, see Using a Role from a Role Library on page 41.

Note that the roles in the base project are not copied to your project, your project uses them directly from the
base project. When you modify a role in the base project, the depending projects reflect the changes.

Reusing Components

You can create a project with reusable components and use it as a library of components. Typically you
include the processes that use these components in the same project.

Another common practice is to create a project that only contains a library of components and make all the
projects you create depend on this project so that they have access to those common components.

To build your component library you must catalogue the components or create new BPM Objects in the
selected project. You can copy already existing BPMObject components by following the procedures described
in Copying a BPM Object Component to a Component Library on page 41.

To use the components defined in the base project, your project should depend on it. For more information
on how to use a component from the base project, see Using a Component from a Component Library on page
41.

Note that the components in the base project are not copied to your project, your project uses them directly
from the base project. When you modify a component in the base project, the depending projects reflect the
changes.

If the component in the base project uses an external resource, then when you use it from the dependent
process it uses the external resource defined in the base project.

Compiling a Project With Dependencies
To compile a project with dependencies you need to have access to both, the base project and the dependant
project.

To compile a project that depends on another project, you need to add both projects Studio Workspace, and
open them. If in turn the base project depends on another project you need to add it to your StudioWorkSpace
and open it as well. If the base project is closed then you get errorswhen you compile your dependent project.

If someone else developed the project and shared it with you through a version control system, then make
sure you checkout all the projects it depends on.

If you import a project that depends on other projects, the exported project filemust include the dependencies.
For details on how to export a project with dependencies, see Exporting a Project With Dependencies on page
42.

Publishing a Process With Dependencies
This topic describes the considerations to take into accountwhen publishing a project that depends on another
project.

To publish a project that depends on another project in Studio, you need to add both projects to your Studio
Workspace and open them.

Oracle BPM | Working with Studio | 39

To publish your project in an Enterprise environment you must use the Exported Project option for the
publication source. To export the project and its dependencies follow the procedure described in Exporting
a Project With Dependencies on page 42.

Configuring Project Dependency
You can share assets between projects. The following procedure shows you how to configure your project to
use the assets defined in a base project.

To use the assets of a project from another project, you have to open both of them in the current workspace.

To configure a project to depend on another project:

1. Right-click on the project.
2. Choose Project Preferences.
3. SelectDependency.
4. Select Use project dependency.
5. Select a project from the Project base drop-down list.

The following assets from the base project, are available in the selected project:

• Components
• Roles
• External Resources

You can copy processes from the base project to the selected project.

Copying a Process and its Roles to a Process Library
The following procedure shows you how to copy an already existing process and its roles to the project you
chose to use as a process library.

Before you follow this procedure make sure that the destination project does not depend on the project that
contains your process, otherwise copying the process does not copy the roles.

To copy a process to the project that contains the process library:

1. Open the project that contains your project.
2. Open the project that contains your process library.
3. Copy the process to the destination project.

For information on how to do this, see Copying a Process Between Projects on page 40.

The selected process and the roles it uses are added to the project that contains the process library.

Copying a Process Between Projects
The following procedure shows you how to copy a process from a project to another.

This procedure requires you to import the source and destination projects in your Studio Workspace and
open them.

To copy a process from a project to another:

1. Select the process in the source project.
2. Drag the selected process to the destination project.

If the selectedprocess uses screenflows, procedures, or sub-processes, youmust copy them to the destination
project. Otherwise the destination project does not compile.

The selected process and the roles it uses are copied to the destination project.

Note: If the destination project depends on the source project, then the roles are not copied to your
project. Instead the copied process uses the roles directly from the source project.

40 | Oracle BPM | Working with Studio

Using a Process from a Process Library
The following procedure shows you how to copy a process from the base project to use it as a template for
new processes.

To use a process from a process library:

1. Configure your project to depend on the project that contains the process library.
For information on how to do this, see Configuring Project Dependency on page 40.

2. Select the process you want to use as a template.
3. Drag the selected process to the project where you want to use it.
4. Drop the process in the processes node or in any folder underneath it.

The selected process is part of your project and you can modify it.

Note: If you modify the process in the base project, the copied process does not reflect the changes.

Using a Role from a Role Library
You can reuse the roles defined in a project by configuring your project dependencies.

To use a role defined in a role library:

1. Configure your project to depend on the base project that contains the role library.
For information on how to do this, see Configuring Project Dependency on page 40.

2. Right-click on the process in your project.
3. Choose Add Role.

The Rolewindow appears.
4. Choose a role from the list of roles.

The list includes the roles from the base project as well as the roles from the current project.

5. ClickOK.

The role you selected from the role library is added to your process.

Copying a BPM Object Component to a Component Library
The following procedure shows you how to copy an already existing BPM Object component to the project
you choose to use as a component library.

To copy a component to the project that contains the component library:

1. Open the project that contains your project
2. Export the BPM Object.

Your BPM Object is exported to a zip file.
3. Add a module to the Component Catalogue.
4. Open the project that contains your component library.
5. Import the zip file that contains your BPM Object.

The BPM Object component is added to the project that contains the component library, in the module you
created.

Using a Component from a Component Library
You can reuse the components defined in a project by configuring your project dependencies.

To use a component defined in a component library, configure your project to depend on the base project
that contains the component library. For information on how to do this, see Configuring Project Dependency
on page 40.

Oracle BPM | Working with Studio | 41

The project depending on the base project, can use the components defined in the base project in the following
contexts:

• The tasks of activities that require a component
• PBL methods
• Process instance variables
• Method arguments and argument mapping
• BPM Object variables
• BPM Object methods
• BPM Object inheritance

The components from the base project do not appear in the component catalogue of the project. They only
appear when you browse the available types.

Exporting a Project With Dependencies
The following procedure shows you how to include the project dependencies when you export a project.

To export a project with all its dependencies:

1. Right-click on the project you want to export.
2. Choose Export Project.
3. Select Include base project.
4. ClickNext.
5. Enter a project name, in the Project name text field.
6. Select a location to store the exported project.
7. ClickNext.

A list of included files appears in the export wizard.
8. ClickNext.

A message to inform the export was completed successfully appears.
9. Click Finish.

The exported project file contains the selected project and its dependencies.

Processes

Business Process Overview
Abusiness process is a sequence of business tasks and activities that, when executed, produces awell-defined
outcome. Once this outcome is achieved, the process is complete.

A simple business process can involve hiring an employee, processing a sales order, or reimbursing a business
expense. A more complex business process can involve many people and activities across an organization.

Sometimes themain goal of a process cannot be achieved. For example, if a product is out of stock, a shipping
clerk may need to cancel a sales order. For this reason, a business process must provide for outcomes other
than the principal goal. For example, if the product is out of stock it may be possible to offer the client an
alternative that the client can then accept or reject. Thus, a process can have a range of possible outcomes.

Activities

Business processes include logical steps, called activities, each of which can involve performing one or more
tasks.

42 | Oracle BPM | Working with Studio

There are two types of activities: automatic and interactive. Automatic activities are executed automatically
by the Process Execution Engine, whereas interactive activities require human input.

The activities of a business process are linked by transitions, which determine the order in which they are
performed and the basic workflow of the process.

Roles and Participants

Each interactive activity belongs to a role, that is, a title or job function performed by participants in the
organization. For example, a role could be Supervisor or Finance Administrator.

Participants are the individuals who interact with the process. To perform an activity, a participant must be
assigned the role that the activity belongs to. A participant can have one or more roles.

Exceptions

Because it is often impossible to predict every outcome, a business process usually needs a way to deal with
exceptions. An exception is an event in which a pre-defined outcome of a process cannot be reached.

The way in which a process deals with such an event, known as exception handling, can involve such steps as
data clean-up or notifying a participant with a supervisory role that the situation needs attention.

Creating a Process
Creating a new process allows you to begin modeling your business function.

Before performing the procedures in this task, ensure that you have created a Project. See Creating a Project
on page 31.

To create a new Process:

1. In the Project Navigator, expand the Project where you want to create a new Process.
2. Right-click on Processes ➤ New Process
3. Provide a Process name and optional description.
4. Select the check box corresponding to how you want to generate Audit Trail Events for this Process.

See Auditing on page 221 for more information.

5. ClickOK.

The new process is opened in a Process Editor window. All new processes are created with a Begin and End
Activity connected by a default Transition. The new Process appears in the Processes resource in the Project
Navigator.

Importing Designs
The Import Designs command allows you to import Processes, Screenflows and Procedures from other
common Business Process Modeling formats.

To import designs:

1. In the Project Navigator, right-click on the process to which you want to add the imported process, or on
the Processes node of that project.

2. From the context menu, select Import Designs .
The Import Designs dialog box appears.

3. Specify the type of file you want to import in the Files of type drop-down list.
DescriptionOption

Process definition file used for Oracle BPM processes. This is an
XPDL 2.0 file with extensions.

Oracle BPM Process File (*.xpdl)

Oracle BPM | Working with Studio | 43

DescriptionOption

Process Definition Language compliant with the 1.0 spec by the
WfMC. Standard file type used to exchange process designs

XPDL 1.0 WorkflowManagement
Coalition Model (*.xpdl)

between process authoring tools. Because the standard allows for
proprietary extensions to be included in an XPDL 1.0 file, the
imported process can differ from the original version.

Process designs created with Microsoft Visio.Visio XML Drawings

Oracle BPM procedure files.Procedure Files (*.xadl)

Oracle BPM screenflow files.Screenflow Files

4. Select the file you want to import.
5. ClickOpen .

Each file you selected is imported to the project and opened in a new design editor window.

Setting Process Properties

Process Instance Overview
A business process is a sequence of steps. A process instance is a specific item moving through those steps.

As the instance proceeds through the process, it is acted upon by various participants or processed
automatically by software. For example, in a business process that handles purchases, each purchase order
would be a process instance acted upon by such participants as shipping clerks, supervisors, and finance
administrators.

Any number of instances can traverse a business process. For example, any number of purchase orders can
traverse a business process that handles purchases.

Every instance has a specific history and properties. For example, a purchase order usually contains such
data as a customer name, a list of items, an amount due, and dates of delivery and payment.

An instance can also have various status conditions. In the case of a purchase order, you want to know if it
has been approved, billed, or paid, or if the requested products have been shipped.

Finally, each instance has a beginning and an end as defined in the business process.

Note: In order to understand what a business process instance is, you must first understand the concept
of a Business Process Overview on page 42.

Note: In user interfaces designed for end users--for example, Oracle BPMWorkSpace--instances are also
called work items.

Defining the Layout for the Lanes in a Process
You can select how to layout the lanes in a process.

You can layout the lanes vertically or horizontally.

You can define how to layout lanes for:

• a single process
• new processes in a project
• new projects

44 | Oracle BPM | Working with Studio

Defining the Layout for a Single Process

You can change the layout of a process at any given time. This change applies only to that process.

For more information on how to change a process lane layout, see Changing the Process Lane Layout on page
45.

Defining the Layout for the New Processes in a Project

You can define which layout to use when creating a new process in a project. Note that the layout preference
is defined by project and does not affect processes that already exist.

For more information on how to change the lane layout for the new processes in a project, see Defining the
Lane Layout for the New Processes in a Project on page 45.

Defining the Layout for New Projects

You can define the layout to use when creating a new project. The new projects you create use this preference
to define their layout. For example if you prefer the horizontal layout, you might want to set this preference
so that all the projects you create use horizontal layout for the new processes.

Formore information on how to define the lane layout for newprojects, seeDefining the Layout for NewProjects
on page 45.

Changing the Process Lane Layout
The following procedure shows you how to change the layout of the lanes in a process.

To change the layout of a process:

1. In the Project Navigator, right-click a process.
2. Choose Properties.
3. Select a Lane Layout.

Options are:

• Vertical
• Horizontal

4. ClickOK.
5. If the process editor is opened, click Save.

The layout of the lanes in the process changes to the selected layout.

Defining the Lane Layout for the New Processes in a Project
The following procedure shows you how to configure the project preferences to use a certain layout the new
processes in that project. By default this preference value is horizontal.

To select a lane layout for the new processes in a project:

1. Right-click on the project.
2. Select Project Preferences.
3. Select Processes.
4. Select a lane layout.
5. ClickOK.

The new processes you create in this project use the selected lane layout.

Defining the Layout for New Projects
The following procedure shows you how to configureOracle BPMStudio to use a certain layoutwhen creating
new projects. By default this property is set to horizontal.

Oracle BPM | Working with Studio | 45

To set the project lane layout preference:

1. In the upper right corner of the Project Navigator tree, click BPM Preferences ().
2. SelectGeneral.
3. Select a lane layout.

Options are:

• Vertical
• Horizontal

4. ClickOK.

The next time you create a project, its process lane layout preference is the selected layout.

Process-Level Debugging
You can debug the execution of a business process to detect the code that is causing the process unexpected
behavior.

To debug a process you need to add breakpoints to signal the debugger where to temporarily suspend the
process execution. You can add breakpoints at any script —whether it is a process method, a BPM object
method, or amethodwithin a screenflow. From any given breakpoint, you can then examine each subsequent
line of code, add watchers, and use the debugging capabilities that the Eclipse platform provides.

Adding a Breakpoint
The following procedure shows you how to add a breakpoint to your process.

To add a breakpoint:

1. In the Process Navigator, open the process you want to debug.
2. Double-click the activity where you suspect the problem may reside.

You can only add breakpoints to activities with a method implementation.
A code editor displaying the implementation for that activity appears.

3. Identify the line of code where you want to add a breakpoint, and right-click on themarker bar.

Note: Note: Oracle BPM does not support inserting breakpoints on empty lines or on lines with
variable declarations.

4. Select Toggle Breakpoint.
A blue bullet appears at the point you selected.

Configuring a Debugging Session
The following procedure shows you how to configure a debugging session.

To configure a debugging session:

1. Choose Run ➤ Open Debug Dialog .
TheDebug dialog appears.

2. From the toolbar, clickNew launch configuration.
The right pane displays the debugging configurations.

3. In theName field , type a name for the debugging session.

Note: Note that each session can debug only the project selected from the Project Name list. For any
given project, you configure only one debugging session. To return to that session, select it from the
Debug dialog.

46 | Oracle BPM | Working with Studio

4. From the Project Name list, select the project you want to debug.
5. Click Apply.
6. If you want to start debugging your process, clickDebug, otherwise click Close.

Debugging a Process
The following procedure shows you how to debug a process.

To debug a process:

1. Choose Run ➤ Open Debug Dialog .
2. Select a debug configuration.
3. ClickDebug.
4. If the engine is not running, a dialog to start it appears. ClickOK to start the engine.
5. Choose Run ➤ Launch WorkSpace .

This launches your browser. A WorkSpace dialog prompts you to log in.
6. Log in as a participant with sufficient roles and privileges to execute the portion of the process you are

testing.
For example, if you inserted a breakpoint in or after an interactive activity, then log in as a participant
who can execute that activity.

7. Create a process instance and move it through the process until it reaches the activity in which you
previously inserted a breakpoint in Studio.

8. Return to Studio.

Notice the following:

• The currently executing line is highlighted in the code editor and a small arrow on the left shows the
current code pointer.

• TheDebug View displays the current debugging session and call stack.
• The Variables View displays the variables available in the selected method in the call stack.

9. Debug your process using the actions in the Debug View. For information about the available actions,
see Debugging Actions on page 47.

Debugging Actions
The following reference describes the available actions when debugging a process.

You can run these actions either by clicking on the Debug View toolbar, or by selecting them from the Run
menu.

ShortcutDescriptionIconAction

F8Resumes the process.Resume

Ctrl + F2Finishes the debugging session.Terminate

Finishes the debugging session.Disconnect

F5Steps into the current highlightedmethods, allowing
you to debug the statements it contains.

Step Into

F6Runs the currently highlighted statement without
stepping into it.

Step Over

F7Steps out of the current method.Step Return

Oracle BPM | Working with Studio | 47

Correcting a Process
Once you identify where the problem lies in the code, you can correct it by following these steps.

To correct the problem:

1. Stop debugging by clickingDisconnect in the Debug View toolbar.
2. Correct the process.

a) In the code editor, correct the problem.
b) Choose File ➤ Save .
c) Click Reload.

3. Choose Run ➤ Launch WorkSpace .
4. Log intoWorkSpace as a participant with the roles and privileges needed to execute the activity you have

corrected.
5. Verify your corrections by running the activity.

Creating a Process Simulation Model
The following steps describe how to create a Process Simulation Model.

1. In the Project Navigator View, expand the Project where you want to create the Process SimulationMode.
2. Expand Processes.
3. Right-click on the Process.
4. SelectNew Process Simulation Model.
5. Enter a name for you new Process Simulation Model.
6. ClickOK.

The Process Simulation Model appears in the editor window. It also appears as a Resource in the Project
Navigator View.

You can define the behavior of your Process Simulation Model.

Exposing a Process as a Web Service
Exposing a Process as a Web Service allows it to be accessed externally by other applications within your
enterprise.

Before performing the procedures in this task, ensure that you have created a Process. See Creating a Process
on page 43.

1. In the Project Navigator, expand the Project containing the Process you are exposing as a Web Service.
2. Expand Processes.
3. Right-click on your Process, then select Process Web Service

The Process Web Services tab is displayed in the Process Editor.

4. Click Add to create a newWeb Service operation.
5. Provide the required information for each field.

See Process Web Service Reference on page 49 for more information.

6. ClickOk.

The newWeb Service operation appears in the table. You can add more operations as required.

7. Configure the optional Advanced Options.

See Process Web Service Reference on page 49 for more information.

48 | Oracle BPM | Working with Studio

8. Select File ➤ Save

The process is exposed as a Web Service. If you start the Process Execution Engine using this process, you
can view the deployed Web Service at: http://localhost:9000/. See Running a Project in Studio on page 33 for
information.

Process Web Service Reference
The properties listed in these topics are available when exposing an Oracle BPM Process as a Web Service.

Operations

DescriptionProperty

Defines the name used to refer to the operation. This namewill become themethod
name to execute this operation.

Operation Name

Specifies the operation type:Operation Type

• Process Creation if this operation is to create an instance.
• Process Notification if this operation is to notify an instance waiting in a

Notification Wait activity.

Activity
• if the operation is for Creation then the Begin activity is automatically selected.
• if the operation is for Notification operations then select theMessageWait event

inwhich the instance is waiting and to be notified using this operation. TheWait
Activities receiving notifications be marked as Receiving External Events

Determines the argument set the operation uses to receive arguments. This allows
you to definemore than one operation of the same type, each one receiving different
arguments. If it is a Notification operation then you can define to use a Correlation.

Argument Set Name

Use Correlation

Displays the argument variables and types defined in the Argument Set Name.Argument / Type

Publishing a Process to AquaLogic Service Bus
Oracle BPM Processes can be used within AquaLogic Service Bus.

Before performing the procedures in this task, you should ensure that AquaLogic Service bus is configured
and running.

To publish an Oracle BPM process to AquaLogic Service Bus.

1. Create a Process.

See Creating a Process on page 43 for more information.

2. Expose the Process as a Web Service.

See Exposing a Process as a Web Service on page 48.

3. Run the project. This starts the Process Execution Engine.

See Running a Project in Studio on page 33.

4. Create an ALSB External Resource of type Management Host.

See Creating an External Resource on page 199 andAquaLogic Service Bus on page 215 for more information.

5. Create a second ALSB External Resource.

Oracle BPM | Working with Studio | 49

Configure the External Resource as described in Creating an External Resource on page 199.a)
b) Set the type to Process Registration.

This can be the same External Resource you configured in the previous step.
c) Provide a project name.

This is the name of the ALSB project where the process will be published to. This can be a new or
existing project.

d) After you have provided all of the information, click Create Structure.
The AquaLogic Service Bus project is updated or created.

6. Register the End Point
a) Right-click on the Project you used to start the Process Execution Engine.
b) Select Register End Point.

The AquaLogic Service Bus Registrationwindow appears.
c) Select the Registration Configuration you want to use.

This can be the ALSB Process Registration External Resource you created earlier.
d) Select Yes in the first column of the process you want to register.
e) Click Register.

A message is written to the log window. The status of the process is changed to up to date. You can
publish as many processes as necessary.

The process you registered is visible in the AquaLogic Service Bus Project Explorer under Business Services.

Process Property Reference
Process properties define specific attributes and behavior of a process.

General Properties

The following properties can be configured for a process under theGeneral tab:

DescriptionProperty

Specifies the name of the Process. You can localize
the name of the process for different languages.

Name

Specifies the ID of the process. This value is defined
when the process is created and cannot be modified.

Id

Provides a description of the process. This is used
when generating project documentation. You can

Description

localize the description of the process for different
languages.

Specifies an additional label to characterize the
process. Use it to distinguish between two processes

Variation

which have the same name, indicating that one is a
variation of the other . The Project Navigator displays
the variation in parenthesis next to the Process name.
This value is definedwhen the process is created and
cannot be modified.

Specifies who designed the Process.Author

Specifies how to layout the lanes in the process.Lane Layout

50 | Oracle BPM | Working with Studio

Advanced Properties

The following properties can be configured for a process under the Advanced tab:

DescriptionProperty

Defines how Auditing Events are generated for the
Process. SeeWhen Audit Events Are Generated on page
222 for details.

Generate Events

Defines whether the Process Execution Engine
executes each automatic activity in a separate

Greedy Execution Mode

transaction (Disable Greedy Execution) or if it
executes consecutive automatic activities into the same
transaction (Enable Greedy Execution). By default,
greedy execution mode is disabled.

Flow Objects
This section provided detailed information about the different flow objects you can use to model a process.

Flow Object Overview
A flow object models a step in a business process.

The following table describes different categories of flow objects:

Flow ObjectDescriptionCategory

Activities represent the work that
companies perform.

Activity
• Interactive
• Decision
• Automatic
• Group
• Subflow
• Process Creation
• Termination Wait
• Grab

Gateways control the divergence and
convergence of the process flow. They

Gateway
• Conditional
• Splitdetermine if the paths branch, fork, merge

or join to other paths. • Or-Split
• Multiple

Events affect the process flow. They
happen during the course of a business

Event
• Message Wait
• Send Messageprocess. They generally have a cause and

an impact. • Timer
• Compensate

Global activities handle global
requirements that are not associated with
a specific process instance.

Global Activity
• Global Creation
• Global Automatic
• Global Interactive

Oracle BPM | Working with Studio | 51

Flow ObjectDescriptionCategory

Artifacts provide additional information
about the process.

Artifact
• Measurement Mark

Activities
This section provides information about the activities you can use to design a process.

Interactive Activity
Interactive activities allow you to model tasks that require human involvement.

You can use Interactive activities to:

• present the user forms to collect data.
• allow the user to assign a value to instance and predefined variables.
• display information.

Adding an Interactive Activity
When you add an Interactive activity, you should take into account the following considerations.

Roles

You must add Interactive activities within a role lane in the process. When you try to add an Interactive
activity outside a role lane, Studio prompts you for an already existing role or allows you to create a new
one.

The role lane where you add the Interactive activity determines which users can access it. Only the users
assigned to that role can run the Interactive activity.

Transitions

You must connect an Interactive activity to the process flow using an inbound and an outbound transition.
An error appears in the Problems View if the inbound or outbound transitions are missing.

Variables

The task associated to an Interactive activity can access the following types of variables:

• predefined variables
• instance variables
• arguments
• local variables

Some tasks may require you to define an argument mapping. For more information, see the corresponding
task in Flow Object Tasks on page 101.

Using Interactive Activities as an Exception Handler

You can use an Interactive activity to handle a business exception. The activity that throws a user-defined
exception is connected to the Interactive activity through an exception transition. For more details about
exception handling, see Handling Exceptions on page 230.
Defining the Task of an Interactive Activity
Youmust define the logic of an Interactive activity in the main task. If appropriate youmight define optional
tasks to help the user run the main task.

There are different options to implement the tasks of an Interactive activity. Each option addresses specific
types of interaction.

The tasks of an Interactive activity can have the following implementation types:

52 | Oracle BPM | Working with Studio

• Method
• Component
• Screenflow
• External
• Input
• Display

The default implementation type is method.

For more information about the different implementation types, see Flow Object Tasks on page 101.

Optional Tasks

You can run optional tasks while you are running the main task of an Interactive activity. These tasks are
usually related to the main task. They provide information that you might need to complete the Interactive
activity.

Optional tasks are repeatable and read-only. They are not allowed tomodify the instance information because
this information is used by the main task.
Viewing an Interactive Activity in WorkSpace
Describes howWorkSpace displays Interactive activities.

You can view and process Interactive activities in WorkSpace if you have the required role.

According to the WorkSpace configuration Interactive activities display in one of the following ways:

• A dialog
• A maximized dialog
• A pop-up window
• Within the detail panel

You can search for instances sitting in an Interactive activity or define a view that includes them. To view
the instance details select the instance in the search result or in the view.

You can view information about the processing of an Interactive activity in the audit trail.
Running an Interactive Activity
Describes how the Process Execution Engine processes an Interactive activity.

Generally Interactive activities require human involvement to complete their task.Only after the user completes
the Interactive task associated to the activity, the instance moves to the next flow object in the process flow.

The Engine processes Interactive activities using interactive threads. If the implementation of the Interactive
activity is of type screenflow, then the engine releases the interactive thread at the beginning of the screenflow
and obtains a new interactive thread when the user completes the screenflow.When possible you should use
screenflows to implement Interactive activities because they optimize the use of interactive threads.

Decision Activity
Decision activities allow you to decide the next action to take based on statistics that show you how this
situation was solved in the past.

A Decision activity displays information about the instance you are processing and allows you to choose
between different actions. Each action provides information about the decision other users took in a similar
situation. This information is based on specific process variables.

You should use a Decision activity in those parts of the process where the user has to decide which of the
multiple outbound transitions the instance should follow. In this way you can assist the users in making their
decisions.

The following is a typical example of the use of a Decision activity: You can classify car insurance policies
into low, medium or high risk based on certain variables. The age of the insured, the geographic area and
the model of the car are some of the variables that determine the risk. You can model this classification with

Oracle BPM | Working with Studio | 53

a Decision activity. After some time the system learns and suggest the most appropriate answer for each new
insurance policy you need to evaluate.

Internally Decision activities use the standard component Fuego.Bis.DecisionProblem. You may use
this component fromPBLmethods if you need to implement a complex case that is not covered by theDecision
activity. The methods of this component allow you to provide the engine with data to perform the statistical
analysis, and to use the results of this analysis. You can use this component from any PBL or BPM Object
method.
Adding a Decision Activity
When you add a Decision activity, you should take into account the following considerations.

Roles

You must add Decision activities within a role lane in the process. When you try to add a Decision activity
outside a role lane, Studio prompts you for an already existing role or allows you to create a new one.

The role lane where you add the Decision activity determines which users can access it. Only the users
assigned to that role can run the interactive activity.

Transitions

You must connect a Decision activity to the process flow using an inbound and an outbound transition. An
error appears in the Problems View if the inbound or outbound transitions are missing.

Variables

Decision activities can access to the following variables:

• predefined variables
• instance variables

Using Decision Activities as Exception Handlers

You can use a Decision activity to handle a business exception. The activity that throws a user-defined
exception is connected to the Decision activity through an exception transition. For more details about
exception handling, see Exception Handling in Oracle BPM on page 230.
Defining the Task of Decision Activity
You must define the logic of a Decision activity in the main task.

The implementation type of a Decision activity is a task of type Decision. In this task you should specify the
instance and predefined variables that the activity shows to the user, and the buttons with the actions user
can select.

The user can not edit the instance and predefined variables you select. These variables only show information
that helps the user of the process make a decision.
Viewing a Decision Activity in WorkSpace
Describes howWorkSpace displays Decision activities.

You can view and process Decision activities in WorkSpace if you have the required roles.

According to the WorkSpace configuration Decision activities display in one of the following ways:

• A dialog
• A maximized dialog
• A pop-up window
• Within the detail panel

You can search for instances sitting in a Decision activity or define a view that includes them. To view the
instance details select the instance in the search result or in the view.

54 | Oracle BPM | Working with Studio

When you run aDecision activity it displays a list of variables that determinewhich action you should choose.
Below those variables it displays the buttons that correspond to the available actions. Each button displays
a percentage to guides you making your decision. These percentages show you how similar situations were
resolved in the past.
Running a Decision Activity
Describes how the Process Execution Engine processes a Decision activity.

The Process Execution Engine records your decisions and performs a statistical analysis to be able to provide
suggestions for future decisions. It uses an algorithm based on Support Vector Machines (SVMs) methods.

The Decision activity shows you a set of probability percentages. These percentages show you which action
users choose, when presentedwith similar data. Using these percentages you can thenmake a decision based
on the decisions made by previous users.

Note: To train the Process Engine you have to provide it a set of consistent data that support the decisions
you make. If you make wide fluctuations in the responses during the training period, then the Engine
makes inconsistent recommendations.

Note: The Process Engine analyses the recorded decisions at periodic intervals as part of the Engine
Disposer service. By default the Engine Disposer runs every two days. If you run a decision activity
before the Engine Disposer service run, then the Engine does not provide any suggestions.

Automatic Activity
Automatic activities do not require human involvement. The engine can process Automatic activities on its
own.

Automatic activities should use applications and components that do not require human intervention.

You should use Automatic activities for those parts of your process that do not require human intervention.

Typical uses of Automatic activities are:

• Updating databases
• Running batch programs
• Sending e-mail notifications

Adding an Automatic Activity
When you add an Automatic activity, you should take into account the following considerations.

Roles

You should addAutomatic activities in automatic role lanes. You can addAutomatic activities in user-defined
roles but this does not add any information to the process. The engine runs Automatic activities without the
user's intervention.

Transitions

You must connect an Automatic activity to the process flow using an inbound and an outbound transition.
An error appears in the Problems View if the inbound or outbound transitions are missing.

Variables

The task associated to the Automatic activity can access the following types of variables:

• predefined variables
• instance variables
• local variables

Oracle BPM | Working with Studio | 55

Argument Mapping

Youmay need to define an argumentmappingwhen you implement anAutomatic activitywith a component
or a procedure task.

When you implement an Automatic activity with a component task, the method you select might require
input and output arguments.

In this case you need define the argument mapping for this task to map:

• the instance variables in the process to the input arguments of the component method
• the output arguments of the component method to the instance variables in the process

When you implement an Automatic activity with a procedure task the procedure you select might require
might require input and output arguments.

In this case you need define the argument mapping for this task to map:

• the instance variables in the process to the input arguments of the procedure
• the output arguments of the procedure to the instance variables in the process

Defining the Task of an Automatic Activity
You must define the logic of an Automatic activity in the main task.

Automatic activities have only one main task associated to them.

The task of an Automatic activity can have the following implementation types:

• Method
• Component
• Procedure

The components accessed fromAutomatic activities should not require human involvement. If the component
needs input from an end user then you should use an Interactive activity.

You may invoke the display method in the PBL-Method of an Automatic activity for debugging. When you
invoke the displaymethod fromwithin anAutomatic activity the Process Execution Enginewrites themessage
to the Engine log.
Viewing an Automatic Activity in WorkSpace
Describes how you can view an Automatic activity in WorkSpace.

Automatic activities do not have a user interface because the engine runs them without the involvement of
a user. You cannot process Automatic activities.

You can search for instances sitting in an Automatic activity or define a view that includes them. To view the
instance details select the instance in the search result or in the view. If the instance is waiting for the engine
to process it you can add notes and attachments to it. If the engine is processing the instance adding a note
or an attachment causes an error.

You can view information about the processing of an Automatic activity in the audit trail.
Running an Automatic Activity
Describes how the Process Execution Engine processes an Automatic activity.

The Process Execution Engine processes the instances that arrive to an Automatic activity in the order they
arrive. If the instance arrives to the Automatic activity when the engine is processing another instance in the
same Automatic activity, then the engine queues the instance until it is available to process it.
Defining the Task of an Automatic Activity
You must define the logic of an Automatic activity in the main task.

Automatic activities have only one main task associated to them.

The task of an Automatic activity can have the following implementation types:

• Method

56 | Oracle BPM | Working with Studio

• Component
• Procedure

The components accessed fromAutomatic activities should not require human involvement. If the component
needs input from an end user then you should use an Interactive activity.

You may invoke the display method in the PBL-Method of an Automatic activity for debugging. When you
invoke the displaymethod fromwithin anAutomatic activity the Process Execution Enginewrites themessage
to the Engine log.
Handling Errors in an Automatic Activity
Describes how to handle the errors that might occur during the carrying out of an Automatic activity.

You can configure the Process Execution Engine to retry running the activity if it fails on the first attempt to
run it.

You can configure the number of times the Process Execution Engine retries to run the activity and thewaiting
interval between retries. If after trying the specified number of times the Process Execution Engine is not able
to complete the activity successfully then it throws an exception.

To revert the changes made by an Automatic activity that did not complete successfully, you should add an
exception handling flow to that Automatic activity. You should define an exception flow for all the exception
thatmay arise during the carrying out of the activity. To do this add one exception transition for each exception.
If you want to handle unexpected exceptions add an exception transition for the Others exception.

For more information about Exception Handling, see Handling Exceptions on page 230.

Subflow Activity
Subflow activities allow you to create an instance in another process.

The process invoked by the Subflow activity is called subprocess. You can use any process as a subprocess.

Use a Subflow activity to:

• Simplify a process.You can group related activities in a subprocess and then invoke the subprocess from
a Subflow activity. The Subflow activity represents a high level task.

• Reuse processes. You can invoke a process frommultiple Subflowactivities defined in different processes.
• Enable Business-to-Business (B2B) communication between processes. A Subflow activity can invoke

a process that is running in another Engine that might belong to another company.
• Distribute work load across multiple Process Executions Engines. You can distribute the work load of

your process by adding Subflow activities that invoke processes that are running in another Process
Execution Engine.

Adding a Subflow Activity
When you add a Subflow activity, you should take into account the following considerations.

After adding a Subflow activity, you must specify the subprocess it invokes.

Roles

You can add Subflow activities in user-defined or automatic role lanes.

Transitions

You must connect a Subflow activity to the process flow using an inbound and an outbound transition. An
error appears in the Problems View if the inbound or outbound transitions are missing.

Argument Mapping

You may need to define an argument mapping when the subprocess requires input or output arguments.

Oracle BPM | Working with Studio | 57

Viewing a Subflow Activity in WorkSpace
Describes how you can view a Subflow activity in WorkSpace.

Subflow activities do not have a user interface because the engine runs them without the involvement of a
user. You can not process Subflow activities.

You can search for instances sitting in a Subflow activity or define a view that includes them. To view the
instance details select the instance in the search result or in the view. If the instance is waiting for the engine
to process it you can add notes and attachments to it. If the engine is processing the instance adding a note
or an attachment causes an error.

You can view information about the processing of a Subflow activity in the audit trail.
Running a Subflow Activity
Describes how the Process Execution Engine processes a Subflow activity.

When an instance arrives to a Subflow activity the Process Execution Engine creates an instance in the process
associated to the Subflow activity.

If the subprocess requires input arguments, the Engine uses the argument mapping of the Subflow to assign
them values.

Then the instance created in the subprocess flows through it.

When the instance reaches the End of the subprocess, the subprocess notifies the Subflow activity. When the
Subflow activity receives the notification, it assigns the output arguments of the subprocess to the process
instance variables using the defined argument mapping.

Process Creation Activity
Process Creation activities create an instance in another process and run it asynchronously.

The process invoked by the Process Creation activity is called subprocess. You can use any process as a
subprocess.

Use Process Creation activities to:

• To reduce the time it takes to run a process. You can simultaneously run more than one process.
• Simplify a process. You can group related activities in a subprocess and then invoke the subprocess from

a Process Creation activity.The Process Creation activity represents a high level task.
• Reuse processes. You can invoke a process from multiple Process Creation activities defined in different

processes.
• Enable Business-to-Business (B2B) communication between processes. A Process Creation activity can

invoke a process that is running in another Engine that might belong to another company.
• Distribute work load across multiple Process Executions Engines. You can distribute the work load of

your process by adding subflow activities that invoke processes that are running in another Process
Execution Engine.

Process Creation activities are similar to Subflow activities because both create an instance in a subprocess.

Themain differencewith Subflow activities is that Process Creation activities are asynchronous. The instance
in the Process Creation activity does not wait for the subprocess to finish, to move to the next activity in the
process.

If you need to wait for the subprocess to finish or you need to retrieve its output arguments, you can add a
TerminationWait activity later on in the process flow. You can add flow objects between the Process Creation
activity and the Termination Wait activity. The Engine runs these flow Objects and the subprocess
simultaneously.
Adding a Process Creation Activity
When you add a Process Creation activity, you should take into account the following considerations.

After adding a subflow activity, you must specify the subprocess it invokes.

58 | Oracle BPM | Working with Studio

By default the Creation Activity run asynchronously and the subprocess does not return arguments to the
parent process. If you need to wait for the subprocess to finish or need to retrieve its output arguments, you
can add a TerminationWait activity. For more information about TerminationWait activities, see Termination
Wait Activity on page 59.

Roles

You can add Subflow activities in user-defined or automatic role lanes.

Transitions

Youmust connect a Process Creation activity to the process flowusing an inbound and an outbound transition.
An error appears in the Problems View if the inbound or outbound transitions are missing.

Argument Mapping

You may need to define an argument mapping when the subprocess requires input arguments.
Viewing a Process Creation Activity in WorkSpace
Describes how you can view a Process Creation activity in WorkSpace.

Process Creation activities do not have a user interface because the engine runs themwithout the involvement
of a user. You can not process Process Creation activities.

You can search for instances sitting in a Process Creation activity or define a view that includes them. To
view the instance details select the instance in the search result or in the view. If the instance is waiting for
the engine to process it you can add notes and attachments to it. If the engine is processing the instance adding
a note or an attachment causes an error.

You can view information about the processing of a Process Creation activity in the audit trail.
Running a Process Creation Activity
Describes how the Process Execution Engine processes a Process Creation activity.

When an instance arrives to a Process Creation activity, the Process Execution Engine creates an instance in
the subprocess associated to the Process Creation activity. If there is no Termination Wait activity associated
with the Process Creation activity, the Engine runs the subprocess and the rest of the process flow
simultaneously.

If there is a Termination Wait associated to the Process Creation activity, the Engine runs the subprocess and
the flow objects that may exist, simultaneously. The instance flows to the next activity when the Engine
finishes running the flow objects previous to the Termination Wait. When the instance in the subprocess
arrives to the End, the subprocess notifies the associated TerminationWait. Then the Enginemaps the output
arguments of the subprocess to the process instance variables, using the defined argument mapping.

If the instance in the parent process arrives to the Termination Wait before the Engine finishes running the
subprocess, and the property Process Notification Immediately is selected, then the Engine processes the
notification and the argument mapping in the same transaction.

Termination Wait Activity
TerminationWait activities add a synchronization point after a Process Creation activity. Adding a Termination
Wait activity after a Process Creation activity is optional.

TerminationWait activities are always related to a Process Creation activity. The associated Process Creation
must be located previous to the Termination Wait activity in the process flow, and it must have the property
Keep relationship with child process selected.

For more information about Process Creation activities, see Process Creation Activity on page 58.

The combination of the Process Creation and its corresponding Termination Wait activity is very similar to
a Subflow activity. The advantage of using a Process Creation and a Termination Wait is that you can add
multiple flowobjects between them. The Process Engine executes this flowobject and the subprocess associated
to the Process Creation Activity simultaneously.

Oracle BPM | Working with Studio | 59

Adding a Termination Wait Activity
When you add a Termination Wait activity, you should take into account the following considerations.

After adding a Termination Wait activity you must associate it with a Process Creation activity. The Process
Creation activity must be located previous to the Termination Wait activity in the process flow, and must
have the Keep relation with child process property selected.

For more information about Process Creation activities, see Process Creation Activity on page 58.

Roles

You should add Termination Wait activities in automatic role lanes. You can add Termination Wait activities
in user-defined roles but this does not add any information to the process. The engine runs TerminationWait
activities without the user's intervention.

Transitions

You must connect a Termination Wait activity to the process flow using an inbound and an outbound
transition. An error appears in the Problems View if the inbound or outbound transitions are missing.

Argument Mapping

You may need to define an argument mapping when the subprocess has output arguments.
Viewing a Termination Wait Activity in WorkSpace
Describes how you can view a Termination Wait activity in WorkSpace.

TerminationWait activities do not have a user interface because the engine runs themwithout the involvement
of a user. You can not process Termination Wait activities

You can search for instances sitting in a Termination Wait activity or define a view that includes them. To
view the instance details select the instance in the search result or in the view.

You can view information about the processing of a Termination Wait activity in the audit trail.
Running a Termination Wait Activity
Describes how the Process Execution Engine processes a Termination Wait activity.

The instance flows to a TerminationWait activity after the Engine finishes running the flow objects thatmight
exist between the Process Creation activity and the Termination Wait Activity. When the instance in the
subprocess arrives to the End, the subprocess notifies the associated TerminationWait. Then the Enginemaps
the output arguments of the subprocess to the process instance variables, using the defined argumentmapping.

If the instance in the parent process arrives to the TerminationWait activity before the Engine finishes running
the subprocess, and the property Process Notification Immediately is selected, then the Engine processes the
notification and the argument mapping in the same transaction.

Grab Activity
Grab activities allow you to move an instance from one activity to another, or to reassign it to another user.

You can use a grab activity to allow users in supervisory roles to control the instance flow. If necessary they
can run this activity to move an instance to another activity or to assign it to another user.

Grab activities give processes the flexibility to deal with slowdown conditions and to redistribute instances
to alleviate such conditions.

Typically you provide access to Grab activities only to supervisory roles.
Adding a Grab Activity
When you add a Grab activity, you should take into account the following considerations.

After you add a Grab you need to select a Grab type. The Grab type defines the transitions that the Grab
activity allows.

60 | Oracle BPM | Working with Studio

Roles

You must add Grab activities within a role lane in the process. When you try to add a grab activity outside
a role lane, Studio prompts you for an already existing role or allows you to create a new one.

The role lane where you add the Grab activity determines which users can access it. Only the users assigned
to that role can run the Grab activity.

Variables

The task associated to the Interactive activity can access the following types of variables:

• predefined variables
• instance variables
• arguments
• local variables

Transitions

• Defined Grab: You must add inbound and and outbound transitions to indicate from which flow
objects you can grab the instance and to which flow objects you can redirect it.

If a Defined Grab activity has transitions to or from flow objects in a Split-Join circuit, then it cannot have
transitions to or from flow objects outside the Split-Join circuit. Similarly, a Grab activity with transitions
to or from flow objects outside a Split-Join circuit cannot have transitions to or from flow objects located
in a Split-Join circuit.

• Grab FromAll: The Grab FromAll activity can grab instances from any flow object in the process. You
cannot add an inbound transition to a Grab From All Activity because it implicitly has inbound
transitions from all the flow objects in the process. You must add outbound transitions to indicate to
which flow objects you can redirect the grabbed instance.

• Grab From All/To All: The Grab From All/To All activity implicitly has an inbound and an outbound
transition to all the flow objects in the process. Thus you cannot add any transitions to this type of Grab
activity.

Defining the Task of a Grab Activity
You might need to define a main task to allow the user running the Grab activity to make changes to the
instance data. If appropriate you might define optional tasks to help the user run the main task.

There are different options to implement the tasks of a Grab activity. Each option addresses specific types of
interaction.

The tasks of a Grab activity can have the following implementation types:

• Method
• Component
• Screenflow
• External
• Input
• Display

The default implementation type is method.

For more information about the different implementation types, see Flow Object Tasks on page 101.

Optional Tasks

You can run optional tasks while you are running the main task of a Grab activity. These tasks are usually
related to the main task. They provide information that you might need to complete the Grab activity.

Oracle BPM | Working with Studio | 61

Optional tasks are repeatable and read-only. They are not allowed tomodify the instance information because
this information is used by the main task.
Viewing a Grab Activity in WorkSpace
Describes howWorkSpace displays Grab activities.

You can view and process Grab activities inWorkSpace if you have the required role. If the instance is sitting
in an activity that has an implicit or explicit transition to a Grab activity, an icon appears next to it to indicate
that you can grab this instance.

If the Grab activity has a main task defined then WorkSpace shows the main task after you click on the icon
to grab the instance. According to the WorkSpace configuration, the tasks of a Grab activity displays in one
of the following ways:

• A dialog
• A maximized dialog
• A pop-up window
• Within the detail panel

After you complete themain task the instance flows to the next flowobject according to the explicit or implicit
transitions. If the Grab activity is of the type FromAll/To All, it allows the user to select where it should flow.

You can search for instances sitting in aGrab activity or define a view that includes them. To view the instance
details select the instance in the search result or in the view.

You cannot grab an instance that is sitting in another Grab activity.
Running a Grab Activity
Describes how the Process Execution Engine processes a Grab activity.

Generally Grab activities require human involvement to complete their task. Only after the user completes
the Grab task associated to the activity, the instance moves to the next flow object in the process flow. If the
Grab activity is of type From All/To All then the user must select the next flow object.

The Engine processes Grab activities using interactive threads. If the implementation of the Grab activity is
of type screenflow, then the engine releases the interactive thread at the beginning of the screenflow and
obtains a new interactive thread when the user completes the screenflow. When possible you should use
screenflows to implement Grab activities because they optimize the use of interactive threads.

Gateways
This section provides information about the gateways you can use to design a process.

Conditional Gateway
Conditional gateways allow you to model conditional process flows.

Conditional gateways make the process easier to read. There is no difference between using conditional
transitions with or without a Conditional gateway.
Adding a Conditional Gateway
When you add a Conditional gateway, you should take into account the following considerations.

Roles

You should add Conditional gateways in automatic role lanes. You can add Conditional gateways in
user-defined roles but this does not add any information to the process. The engine runs Conditional gateways
without the user's intervention.

Transitions

You must connect a Conditional gateway to the process flow using an inbound and an outbound transition.
An error appears in the Problems View if the inbound or outbound transitions are missing.

62 | Oracle BPM | Working with Studio

Generally Conditional gateways have multiple outbound conditional transitions. You can decide the order
to evaluate these transitions.
Viewing a Conditional Gateway in WorkSpace
Describes how you can view a Conditional gateway in WorkSpace.

Conditional gateways do not have a user interface because the engine runs them without the involvement
of a user. You can not process Conditional gateways.

You can search for instances sitting in a Conditional gateway or define a view that includes them. To view
the instance details select the instance in the search result or in the view. If the instance is waiting for the
engine to process it you can add notes and attachments to it. If the engine is processing the instance adding
a note or an attachment causes an error.

You can view information about the processing of a Conditional gateway in the audit trail.
Running a Conditional Gateway
Describes how the Process Execution Engine processes a Conditional Gateway.

The Process Execution Engine processes the instances that arrive to a Conditional Gateway in the order they
arrive. If the instance arrives to the Conditional Gateway when the engine is processing another instance in
the same Conditional Gateway, then the engine queues the instance until it is available to process it.

The Process Execution Engine evaluates the outbound conditional transitions in the order you defined in the
Conditional gateway.

Split Gateway
A Split activity allows an instance to simultaneously run through multiple process paths.

The number of copies that the Split gateway generates corresponds to the number of outbound unconditional
transitions plus any outbound conditional transitions that evaluate to True.

Split activitiesmust have a corresponding Join activity in order to complete the circuit and resume the process
flow.
Adding a Split Gateway
When you add a Split gateway, you should take into account the following considerations.

When you add a Split gateway, Studio adds the corresponding Join gateway. After adding the Split gateway
you need to define the different threads by adding flow objects and transitions between the Split and the Join
gateway.

You can configure the Split-Join circuit to use multiple copies of the process instance, or to use the same
process instance for all the defined threads. To do this you need to edit the Split properties and modify the
Generate Copies property.

Typically you select the Generate Copies properties when the different threads do not modify the instance
information. If any of the threads modify the instance information you need to define how to merge this
information by adding PBL code to the Join gateway. If you do not define how to merge the instance data
then the modifications are lost.

If you need to share information between the different threads of the Split-Join circuit then you should not
select Generate Copies. In this way all the threads use and modify the original instance.

Roles

You should add Split-Join circuits in automatic role lanes. You can add Split-Join circuits in user-defined
roles but this does not add any information to the process. The engine runs the Split and Join gateways
without the user's intervention.

Oracle BPM | Working with Studio | 63

Transitions

You must connect the Split gateway to the process flow using an inbound transition. You must add one
outbound unconditional transition to the Split gateway. You may add it multiple outbound conditional and
unconditional transitions.

The Join gateway in a Split-Join circuit allowsmultiple inbound transitions. Youmust connect the Join gateway
to the process flow using one or more outbound transitions.

An error appears in the Problems View if the inbound or outbound transitions that connect the Split-Join
circuit to the process flow are missing.

The Split gatewaymust have at least one outboundunconditional transition. Itmay have one ormore outbound
conditional and unconditional transitions.

The flow objectswithin a Split-Join circuit can have transitions to other flow object within the Split-Join circuit.
You cannot define transitions to flowobjects outside the Split-Join circuit, with the exception of Grab activities.
However the outbound transition of the Grab activity should connect it to an activity in the Split-Join circuit
or to the End of the process.

Variables

The PBL-Methods associated to the Split and the Join gateway can access the following types of variables:

• predefined variables
• instance variables
• local variables
• arguments

Viewing a Split Gateway in WorkSpace
Describes how you can view a Split gateway in WorkSpace.

Split and Join gateways do not have a user interface because the engine runs them without the involvement
of a user. You cannot process Split and Join gateways.

You can search for instances sitting in a Split or a Join gateway, or define a view that includes them. To view
the instance details select the instance in the search result or in the view. If the instance is waiting for the
engine to process it you can add notes and attachments to it. If the engine is processing the instance adding
a note or an attachment causes an error.

You can view information about the processing of a Split or a Join gateway, in the audit trail.
Running a Split Gateway
Describes how the Process Execution Engine processes Split gateway.

When an instance reaches a Split gateway, the original instance immediately flows to the corresponding Join
gateway.

If the Generate Independent Copies property of the Split gateway is selected, the Split gateway creates a copy
of the instance for each of the threads of the Split-Join circuit. If any of the threads modifies the instance data
of the copies the other copies do not have access to the modified data. When the instance arrives to the Join
gateway the Engine runs the associated PBL-Method, generally this method merges the data in the different
copies and copies it to the original instance.

Note: The creation time of the instance copy corresponds to the time when the Process Engine created
the copy. This value is stored in the variable time of the predefined variable creation.

If the Generate Independent Copies property of the Split gateway is not selected, the Engine tries to run the
threads simultaneously. If one of the threads modifies the instance data the Engine locks the instance, so if
another thread needs to access the instance data it has to wait until the Engine unlocks it. When the instance
arrives to the Join gateway the Engine runs the associated PBL-Method. Because all the threads use the original
instance it is not necessary to merge data in the Join gateway.

64 | Oracle BPM | Working with Studio

Or-Split Gateway
You can use an Or-Split gateway to model alternative but non-exclusive paths and specify how to proceed
if none of these paths are feasible.

It represents a branching point in the process, where the process flow divides into alternative paths.

The Or-Split gateway provides a subset of the Split functionality. It contemplates multiple possibilities and
clearly states how to proceed if none of those possibilities are valid.
Adding an Or-Split Gateway
When you add an Or-Split gateway, you should take into account the following considerations.

When you add an Or-Split gateway, Studio adds the corresponding Join gateway. After adding the Or-Split
gateway you need to define the different threads by adding flow objects and transitions between the Or-Split
and the Join gateway.

You can configure the Or-Split-Join circuit to use multiple copies of the process instance, or to use the same
process instance for all the defined threads. To do this you need to edit the Or-Split properties and modify
the Generate Copies property.

Typically you select the Generate Copies properties when the different threads do not modify the instance
information. If any of the threads modify the instance information you need to define how to merge this
information by adding PBL code to the Join gateway. If you do not define how to merge the instance data
then the modifications are lost.

If you need to share information between the different threads of the Or-Split-Join circuit then you should
not select Generate Copies. In this way all the threads use and modify the original instance.

Roles

You should addOr-Split-Join circuits in automatic role lanes. You can addOr-Split-Join circuits in user-defined
roles but this does not add any information to the process. The engine runs the Or-Split and Join gateways
without the user's intervention.

Transitions

You must connect the Or-Split gateway to the process flow using an inbound transition. You must add one
outboundunconditional transition to theOr-Split gateway. Youmay add it one ormore outbound conditional
transitions.

The Join gateway in an Or-Split-Join circuit allows multiple inbound transitions. You must connect the Join
gateway to the process flow using one or more outbound transitions.

An error appears in the Problems View if the inbound or outbound transitions that connect the Or-Split-Join
circuit to the process flow are missing.

The flowobjectswithin anOr-Split-Join circuit can have transitions to other flowobjectwithin theOr-Split-Join
circuit. You cannot define transitions to flow objects outside the Or-Split-Join circuit, with the exception of
Grab activities. However the outbound transition of the Grab activity should connect it to an activity in the
Or-Split-Join circuit or to the End of the process.

Variables

The PBL-Methods associated to the Or-Split and the Join gateway can access the following types of variables:

• predefined variables
• instance variables
• local variables
• arguments

Viewing an Or-Split Gateway in WorkSpace
Describes how you can view an Or-Split gateway in WorkSpace.

Oracle BPM | Working with Studio | 65

Or-Split and Join gateways do not have a user interface because the engine runs themwithout the involvement
of a user. You cannot process Or-Split and Join gateways.

You can search for instances sitting in an Or-Split or a Join gateway, or define a view that includes them. To
view the instance details select the instance in the search result or in the view. If the instance is waiting for
the engine to process it you can add notes and attachments to it. If the engine is processing the instance adding
a note or an attachment causes an error.

You can view information about the processing of an Or-Split or a Join gateway, in the audit trail.
Running an Or-Split Gateway
Describes how the Process Execution Engine processes Split gateway.

When an instance reaches an Or-Split gateway, the original instance immediately flows to the corresponding
Join gateway.

Then the Engine evaluates the Or-Split conditional transitions and for each transitions that evaluates to true.
If none of the conditional transitions evaluated to true, then the Engine creates a thread for the unconditional
transition.

If the Generate Independent Copies property of the Or-Split gateway is selected, the Or-Split gateway creates
a copy of the instance for each of the threads of the Or-Split-Join circuit. If any of the threads modifies the
instance data of the copies the other copies do not have access to themodified data.When the instance arrives
to the Join gateway the Engine runs the associated PBL-Method, generally this method merges the data in
the different copies and copies it to the original instance.

If the Generate Independent Copies property of the Or-Split gateway is not selected, the Engine tries to run
the threads simultaneously. If one of the threads modifies the instance data the Engine locks the instance, so
if another threads needs to access the instance data it has towait until the Engine unlocks it.When the instance
arrives to the Join gateway the Engine runs the associated PBL-Method. Because all the threads use the original
instance it is not necessary to merge data in the Join gateway.

Multiple Gateway
Multiple gateways allow you to createmultiple copies of an instance so that different participants can process
the same instance simultaneously.

You should use aMultiple gateway if you need to processmultiple copies of the same instance simultaneously.
All the instance copies follow the same process flow. Generally a different user processes each of the copies.

A use case example of a Multiple Gateway is a process that solicits bids from external vendors. The company
wants to get multiple bids from different vendors and select the lowest bid that meets the company's
specifications.
Adding a Multiple Gateway
When you add a Multiple gateway, you should take into account the following considerations.

When you add a Multiple gateway, Studio automatically adds the corresponding Join gateway, and the
PBL-Method associated to the Multiple gateway.

When you edit the Join gateway Studio adds the corresponding PBL-Method, and associates it to the Join
gateway.

In a Multiple-Join circuit you must create the instance copies using PBL code.

Note: The Interactive activities you add within the Multiple-Join circuit must not be Suspendable.

Roles

You should add Multiple gateways in automatic role lanes. You can add Multiple gateways in user-defined
roles but this does not add any information to the process. The engine runs Multiple gateways without the
user's intervention.

66 | Oracle BPM | Working with Studio

Variables

The PBL-Methods associated to theMultiple and the Join gateway can access the following types of variables:

• predefined variables
• instance variables
• local variables
• arguments

Transitions

You must connect the Multiple gateway to the process flow using an inbound transition. You can add only
one outbound transition to the Multiple gateway.

The Join gateway in a Multiple-Join circuit allows only one inbound transition. You must connect the Join
gateway to the process flow using one or more outbound transitions.

An error appears in the ProblemsView if the inbound or outbound transitions that connect theMultiple-Join
circuit to the process flow are missing.

The flow objects within a Multiple-Join circuit can have transitions to other flow object within the Split-Join
circuit. You cannot define transitions to flow objects outside the Multiple-Join circuit, with the exception of
Grab activities. However the outbound transition of the Grab activity should connect it to an activity in the
Multiple-Join circuit or to the End of the process.

Creating the Instance Copies

To generate instance copies you must add the following code to the PBL-Method associated to the Multiple
gateway:

 i = 0
 while i < numberOfCopies
 do
 // Create a copy of the process instance.
 copy= clone(this)

 // Get ready for next loop.
 i = i + 1

 end

Join activities can also access instance copies by using copy. as shown below:

To access the instance copies from the Join gateway you must add the following code to the associated
PBL-Method:

 //Assign the instance variable the value of the variable in
 the copy.
 variableName = copy.variableName

Viewing a Multiple Gateway
Describes how you can view a Multiple gateway in WorkSpace.

Multiple and Join gateways do not have a user interface because the engine runs themwithout the involvement
of a user. You cannot process Multiple and Join gateways.

Oracle BPM | Working with Studio | 67

You can search for instances sitting in a Multiple or a Join gateway, or define a view that includes them. To
view the instance details select the instance in the search result or in the view. If the instance is waiting for
the engine to process it you can add notes and attachments to it. If the engine is processing the instance adding
a note or an attachment causes an error.

You can view information about the processing of a Multiple or a Join gateway, in the audit trail.
Running a Multiple Gateway
Describes how the Process Execution Engine processes Split gateway.

When the instance arrives to the Multiple gateway the Process Execution Engine runs the PBL-Method
associated to the Multiple gateway. The PBL-Method creates copies of the original instance.

The Engine processes themultiple instance copies simultaneously using the flowdefined between theMultiple
gateway and the Join gateway.

The original instance flows to the Join gateway and stays there until:

• all the instance copies arrive to the Join gateway.
• the number of copies specified by the property Number of copies to wait to release, arrive to the Join

gateway.
• the PBL-Method associated to the Join gateway sets the value of the predefined variable action to RELEASE.
• the process reaches it deadline.
• a due transition that connects the Join to the process flow expires.

If you add or modify the attachments of an instance copy, the Engine automatically updates the attachments
in the original instance when it reaches the Join gateway.

Note: If you modify the values of the instance variables in the copies, then the original instance uses the
values of the last copy that arrives to the Join gateway. If you want to select or merge the values of the
variables in the instance copies you can then you must add the PBL code to do this in the PBL-Method
associated to the Join gateway.

Events
This section provides information about the events you can use to design a process.

Begin Event
The Begin event provides an entry point to the process.

The Begin event creates an instance in the process and assigns values to the process instance variables.

There is only one Begin event per process.

You can trigger a Begin event running:

• a Global Creation activity.
• a Global Automatic activity.
• a Subflow activity located in a parent process.
• a Process Creation activity in another process.
• an external application or web page that uses PAPI or WAPI.

Working with a Begin Event
When you work with a Begin event, you should take into account the following considerations.

When you create a process, Studio automatically adds a Begin and an End event connected by an unconditional
transition.

68 | Oracle BPM | Working with Studio

Roles

Studio automatically adds a Begin event in an automatic role lane when you create a new process. You can
move a Begin event to a user-defined role but this does not add any information to the process. The engine
runs Begin events without the user's intervention.

Transitions

You cannot add an inbound transition to a Begin event. Youmust connect the Begin event to the process flow
through one unconditional outbound transition. You may add it multiple outbound conditional transitions.

If you define multiple Argument Sets, then Message based transitions become available.

Variables

A Begin event can access the following types of variables:

• predefined variables
• instance variables
• arguments
• local variables

Argument Mapping

You can add input arguments to a process using the ArgumentMapping of the Begin event. In the Argument
Mapping you define how to map the input arguments to the process instance variables.

The input arguments can come from:

• a Global Creation activity.
• a Process Creation activity.
• a Subflow activity.
• a Global Automatic activity running PBL code to create instances.
• a Global activity running PBL code to create instances.

Advance scripting is available for compatibility with previous versions. Oracle recommends not to use this
feature. If you need to run code immediately after the instance creation you can add an automatic activity
immediately after the Begin event.
Viewing a Begin Event in WorkSpace
Describes how you can view a Begin event in WorkSpace.

Begin events do not have a user interface because the engine runs them without the involvement of a user.
You cannot process Begin events.

You can view information about the processing of a Begin event in the audit trail.

End Event
The End event is the last activity in any process. It is the exit point of the process.

There is only one end per process. Studio automatically adds a Begin and an End event when you create a
process.

If you use the process as a subprocess the End event notifies and returns information to the Process Creation
or Subflow activities in the parent process.
Working with an End Event
When you work with an End event, you should take into account the following considerations.

When you create a process, Studio automatically adds a Begin and an End event connected by an unconditional
transition.

Oracle BPM | Working with Studio | 69

Roles

Studio automatically adds an End event in an automatic role lane when you create a new process. You can
move an End event to a user-defined role but this does not add any information to the process. The engine
runs End events without the user's intervention.

Transitions

You must connect the process flow to the End event using at least one inbound transition. You cannot add
an outbound transition to an End event.

You can grab instances sitting in an End event if they are not aborted or terminated.

Variables

A Begin event can access the following types of variables:

• predefined variables
• instance variables
• arguments
• local variables

Argument Mapping

If you use the process as a subprocess you can define anArgumentMappingwith output arguments to return
information to the parent process.

Advance scripting is available for compatibility with previous versions. Oracle recommends not to use this
feature. If you need to run code immediately after the instance creation you can add an automatic activity
immediately after the Begin event.
Viewing an End Event in WorkSpace
Describes how you can view an End event in WorkSpace.

End events do not have a user interface because the engine runs them without the involvement of a user.
You cannot process End events.

You can view information about the processing of an End event in the audit trail.

Message Wait Event
TheMessageWait Activity halts an instance until it receives a notification from another process or an external
application.

Message Wait events halt the instance until they receive a notification or until any outbound due transition
expires.

Message Wait events receive notifications from:

• a parent process.
• a child process.
• an external application.

Message Wait Event Types
The following table describes the different types of events that trigger the Message Wait event.

DescriptionEvent Type

The MessageWait event waits for a notification from
a Send Message event in the parent process.

Parent Process

70 | Oracle BPM | Working with Studio

DescriptionEvent Type

To use this option you must select the property Keep
relation with child in the corresponding Process
Creation activity in the parent process.

You must associate the Process Creation activity that
created the child instance, to the SendMessage event
using the Related Process Property in the Send
Message event. Andyoumust place the SendMessage
event between the Process Creation activity and the
Termination Wait activity in the parent process.

The MessageWait event waits for a notification from
a Send Message event in the child process.

Child Process

To use this option you must select the property Keep
relation with child in the corresponding Process
Creation activity in the parent process.

You must associate the Process Creation activity that
created the child instance, to the Message Wait event
using the Related Process Property in the Message
Wait event. And you must place the Message Wait
activity between the Process Creation activity and the
Termination Wait activity in the parent process.

The MessageWait event waits for a notification from
an external application. Possible external applications
are:

External Event

• A PAPI application
• An activity in an external process that uses the

send()method from the Notification
component

• A process that is not a subprocess of the current
process and contains a Send Message event that
notifies the current process

Interruptions
Using a MessageWait event with the property Allow Interruptions enabled, allows you to pull out instances
from the process flow when a certain event occurs. The Message Wait Event flow defines how to process the
affected instances in reaction to the occurred event.

A Message Wait activity with the property Allow Interruptions enabled behaves like a listener that waits for
a notification to pull out instances from the process flow and process them.

It is not part of the process flow. It defines a flow of its own. When a certain event occurs the instances in the
process flow are redirected to the Message Wait event flow.

Generally the notification received by the Message Wait event states which instances should be pulled out
from the process flow.

The last flow object in the Message Wait flow must return the instance back to the main process flow. You
can do this by setting the value of the predefined variable action to BACK.
Adding a Message Wait Event
When you add a Message Event event, you should take into account the following considerations.

Oracle BPM | Working with Studio | 71

Roles

You should addMessageWait events in automatic role lanes. You can addMessageWait events in user-defined
roles but this does not add any information to the process. The engine runs MessageWait events without the
user's intervention.

Transitions

You must connect a Message Wait event to the process flow using an inbound and an outbound transition.
An error appears in the Problems View if the inbound or outbound transitions are missing.

You can add an outbound due transition to allow instances to move to the next activity if it does not receive
a notification within a specified time period.

If you define multiple Argument Sets, then Message based transitions become available.

If you configure the Message Wait event to allow interruptions then you must not connect it to the process
flow. The Message Wait event defines a separate flow.

Argument Mapping

You can define an Argument Mapping for the Message Wait event to receive information from the process
or the application that triggers the Message Wait event.
Viewing a Message Wait Event in WorkSpace
Describes how you can view a Message Wait event in WorkSpace.

Message Wait events do not have a user interface because the engine runs them without the involvement of
a user. You cannot process Message Wait events.

You can search for instances sitting in a Message Wait event or define a view that includes them. To view
the instance details select the instance in the search result or in the view. If the instance is waiting for the
engine to process it you can add notes and attachments to it. If the engine is processing the instance adding
a note or an attachment causes an error.

You can view information about the processing of a Message Wait event in the audit trail.
Running a Message Wait Event
Describes how the Process Execution Engine processes a Message Wait event.

When an instance arrives to aMessageWait event it waits there until the specified event occurs. If theMessage
Wait event is connected to the process flow by a due transition, the instance leaves the MessageWait activity
when the due transition expires.

When theMessageWait event receives a notification from another process or application the Process Execution
Engine performs the Argument mapping and thenmoves the instance to the next activity in the process flow.

If theMessageWait has the property Allow Interruptions enabled, theMessageWait is not part of the process
flow. The Engine is constantly monitoring for an event to occur. When this event occurs the Engine pulls out
from the process flow the instances that match the criteria specified in the notification. Then the instances
flow through the Message Wait flow and once they get to the last activity they are sent back to the main
process flow.

Send Message Event
Send Message events allow you to notify an instance in another process.

You can combine Send Message and Message Wait events to allow communication between processes.

When an instance arrives to a Send Message event the Engine notifies the associated Message Wait activity.
Then the Message Wait activity releases the instance, allowing it to move to the next activity.

You can use a Send Message event to notify an instance in:

• a parent process.
• a child process.

72 | Oracle BPM | Working with Studio

• an external process.

You can only notify already existing instances. If you try to notify an instance that does not exist, the Engine
throws an Exception.

For more information about Message Wait events, seeMessage Wait Event on page 70.
Adding a Send Message Event
When you add a Send Message event, you should take into account the following considerations.

Roles

You should add SendMessage events in automatic role lanes. You can add SendMessage events in user-defined
roles but this does not add any information to the process. The engine runs Send Message events without
the user's intervention.

Transitions

You must connect the Send Message event to the process flow using an inbound transition. You may add
multiple inbound and outbound transitions if necessary.

Argument Mapping

You can define an Argument Mapping for the Send Message event to send information to the process it
notifies.
Viewing a Send Message Event in WorkSpace
Describes how you can view a Send Message event in WorkSpace.

Send Message events do not have a user interface because the engine runs them without the involvement of
a user. You cannot process Send Message events.

You can search for instances sitting in a Send Message event or define a view that includes them. To view
the instance details select the instance in the search result or in the view. If the instance is waiting for the
engine to process it you can add notes and attachments to it. If the engine is processing the instance adding
a note or an attachment causes an error.

You can view information about the processing of a Send Message event in the audit trail.
Running a Send Message Event
Describes how the Process Execution Engine processes a Send Message event.

When an instance reaches a Send Message event the Engine immediately sends a notification to the
corresponding Message Wait activity.

If the Engine succeeds delivering the notification the instance moves to the next activity in the process flow.

Timer Event
Timer event allow you to delay an instance for an specified time interval or until a certain date.

You can configure a Timer event to run:

• periodically, using a fixed interval.
• daily, weekly or monthly at a specified time.
• periodically, using an interval expressed in PBL code.

Adding a Timer Event
When you add a Timer event, you should take into account the following considerations.

Roles

You should add Timer events in automatic role lanes. You can add Timer events in user-defined roles but
this does not add any information to the process. The engine runs Timer eventswithout the user's intervention.

Oracle BPM | Working with Studio | 73

Transitions

You must connect a Timer event to the process flow using an inbound and an outbound transition. An error
appears in the Problems View if the inbound or outbound transitions are missing.

Variables

The PBL code associated to a Timer event can access the following types of variables:

• predefined variables
• instance variables
• local variables

Viewing a Timer Event in WorkSpace
Describes how you can view a Timer event in WorkSpace.

Timer events do not have a user interface because the engine runs them without the involvement of a user.
You cannot process Timer events.

You can search for instanceswaiting in a Timer event or define a view that includes them. To view the instance
details select the instance in the search result or in the view. If the instance is waiting for the engine to process
it you can add notes and attachments to it. If the engine is processing the instance adding a note or an
attachment causes an error.

You can view information about the processing of a Timer event in the audit trail.
Running a Timer Event
Describes how the Process Execution Engine processes a Timer event.

When an instance arrives to a Timer event it waits there until the Engine runs the Timer Event.

The Engine runs the Timer event periodically using the interval you specified in the Timer Event properties.

Compensate Event
Compensate activities allow you to revert the changes made by activities included in a compensation or an
exception flow.

Use a Compensate event to compensate all the activities in a compensation flow. You can only add
Compensation events to compensation flows or exception flows. Generally you Compensate events to an
exception flow or to a group that contains an exception flow.

If you do not specify the activity to compensate the Engine uses the default compensation mechanism of the
group. The default compensation order of a group is the inverted execution order.

If you specify an activity to compensate the Engine invokes the compensation of this activity.

The default behaviour of a group when an internal exception occurs within is to automatically compensates
all the activities that were run successfully.
Adding a Compensate Event
When you add a Compensate event, you should take into account the following considerations.

The following restrictions apply to Compensate events:

• You can add Compensate events only to exception or compensation flows.
• TheCompensate event can only reference flowobjects included in the group affected by the compensation

flow.
• You can add a Compensate event to a compensation flow or an exception flow that does not contain a

group, although it does not add any functionality because there are not any internal executions to
compensate.

74 | Oracle BPM | Working with Studio

Roles

You should add Compensate events in automatic role lanes. You can add Compensate events in user-defined
roles but this does not add any information to the process. The engine runs Compensate events without the
user's intervention.

Transitions

You must connect Compensate event to the compensation flow using an inbound compensate transition.
Viewing a Compensate Event in WorkSpace
Describes how you can view a Compensate event in WorkSpace.

Compensate events do not have a user interface because the engine runs them without the involvement of a
user. You cannot process Compensate events.

You can view information about the processing of an Automatic activity in the audit trail. The Compensation
Event appearsmultiple times in theAudit Trail because the Process Execution Engine executes aCompensation
event multiple times until the compensate flow is compensated.
Running a Compensate Event
Describes how the Process Execution Engine processes a Compensate activity.

When an instance arrive to a Compensate event the Engine immediately read the compensation log to
determine to which Object Flow it should delegate the control to compensate.

When it finishes compensating this activity the Engine looks for the next activity to compensate.

Global Activities
This section provides information about the global activities you can use to design a process.

Global Creation Activity
Global Creation activities allow you to create new instances in a process.

Use Global Creations activities to enable certain users to create instances in the process.

You can configure a Global Creation activity to receive input from the user and use this input to create an
instance in the process.
Adding a Global Creation Activity
When you add a Global Creation activity, you should take into account the following considerations.

Roles

You must add Interactive activities within a role lane in the process. When you try to add an Interactive
activity outside a role lane, Studio prompts you for an already existing role or allows you to create a new
one.

The role lane where you add the Interactive activity determines which users can access it. Only the users
assigned to that role can run the Interactive activity.

Variables

The task associated to a Global Creation activity can access the following types of variables:

• predefined variables that do not require an instance
• arguments
• local variables

Transitions

There are no transitions to or from the Global Creation activity. There is an implied transition from the Global
Creation to the Begin activity.

Oracle BPM | Working with Studio | 75

Defining the Task of a Global Creation
You must define the logic of a Global Creation activity in the main task.

There are different options to implement the tasks of a Global Creation activity.

The tasks of a Global Creation activity can have the following implementation types:

• method
• screenflow

The default implementation type is method.

For more information about the different implementation types, see Flow Object Tasks on page 101.
Viewing a Global Creation in WorkSpace
Describes howWorkSpace displays Global Creation activities.

You can view and process Global Creation activities in WorkSpace if you have the required role. Global
Creation activities appear in the Applications panel. To run a Global Creation activity click on the link in the
Applications panel.

According to the WorkSpace configuration the main task of the Global Creation activity displays in one of
the following ways:

• A dialog
• A maximized dialog
• A pop-up window

You can view information about the processing of a Global Creation activity in the audit trail.
Running a Global Creation
Describes how the Process Execution Engine processes a Global Creation activity.

If the implementation type of the main task of the Global Creation activity is of type Screenflow then the user
must process this activity before the Process Execution Engine creates an instance in the process.

If the implementation type is of type Method then it depends on the components this method invokes.

After the user processes the Global Creation activity the Engine creates a new instance in the process.

Global Automatic
Global Automatic activities allow you to periodically run a component or an application.

Global Automatic activities do not have any direct end user interaction. Typically they invoke applications
or components that run on a remote server.

You can use Global Automatic activities to:

• process batch reports.
• download a set of files at a schedules time.
• listen for an specific event in the process.
• listen to a port.
• check for specific events, such as a mouse-click or a broken connection error in a remote component.
• invoke a component or application to create new process instances.

Global Automatic activities are not connected to the process flow. However the events that occur in the
process flow may trigger its execution.
Adding a Global Automatic
When you add a Global Automatic activity, you should take into account the following considerations.

When you add a Global Automatic activity Studio creates a PBL-Method and associates it to the Global
Automatic activity. This PBL-Method contains the logic of the activity.

If the type of the Global Automatic activity is Execute when an event occurs, then Studio creates two
PBL-Methods.Onemethodhas the samename of the activity and the remaining one has the suffix "_Listening".

76 | Oracle BPM | Working with Studio

The Engine runs the first method when it starts-up or when you deploy the process. This method creates the
listening component. When the event occurs it triggers the method with the "_Listening" suffix.

Roles

You should addAutomatic activities in automatic role lanes. You can addAutomatic activities in user-defined
roles but this does not add any information to the process. The engine runs Automatic activities without the
user's intervention.

Variables

The PBL-Method associated to Global Automatic activity can access predefined and local variables.

Transitions

There are no transitions to or from the Global Automatic activity.
Viewing a Global Automatic in WorkSpace
Describes how you can view a Global Automatic activity in WorkSpace.

Global Automatic activities do not have a user interface because the engine runs themwithout the involvement
of a user. You can not process Global Automatic activities
Running a Global Automatic
Describes how the Process Execution Engine processes a Global Automatic activity.

The way the Process Execution Engine runs a Global Automatic activity depends on its type.

Polling by Interval

The Process Execution Engine waits for the specified time interval to run the PBL-Method. When the Engine
finishes running the PBL-Method it startswaiting for the specified time interval to run the PBL-Method again.

Executes when an Event Occurs (event listener)

When you start the Process Execution Engine or deploy a process, the Engine run the method that creates
the listening component.

Then Engine waits for a specified event to occur to run the Listening PBL Method.

Automatic Scheduled

The Process Execution Engine runs the PBL-Method at the specified times.

Automatic JMS Listener

The Process Execution Engine waits for JMS message to run the PBL-Method.

This type is applicable for J2EE Enterprise Editions. PBL-Method runs when a predefined event occurs. The
PBL-Method requires argument a Fuego.Msg.JmsMessage that is a wrapper of the javax.jms.Message.

Automatic JMX Listener

The Process Execution Engine waits for JMX message to run the PBL-Method.

Global Interactive Activity
Global Interactive activities allow you to run applications or database queries, that are not directly related
on an instance in the process.

You can use Global Interactive activities to:

• run applications that provide the user contextual information to run the process.

Oracle BPM | Working with Studio | 77

• send e-mails.
• retrieve information from a database.

You can configure a Global Interactive activity to run the following predefined applications:

• Process image: shows the location of instance within the process graphic.
• Display instance: customizes the instance panel.
• Workload: shows the workload each of the flow objects in the process.
• Dashboard: displays a dashboard with Business Activity Monitoring (BAM) information.

Adding a Global Interactive Activity
When you add a Global Interactive activity, you should take into account the following considerations.

Roles

You must add Global Interactive activities within a role lane in the process. When you try to add a Global
Interactive activity outside a role lane, Studio prompts you for an already existing role or allows you to create
a new one.

The role lane where you add the Global Interactive activity determines which users can access it. Only the
users assigned to that role can run the Global Interactive activity.

Variables

The task associated to a Global Interactive activity can access the following types of variables:

• predefined variables
• arguments
• local variables

Transitions

There are no transitions to or from a Global Interactive activity.
Defining the Task of a Global Interactive Activity
You must define the logic of a Global Interactive activity in the main task.

There are different options to implement the tasks of a Global Interactive activity.

The task of a Global Interactive activity can have the following implementation types:

• Method
• Screenflow
• ShowWorkload
• Show Dashboard
• Edit Business Rules

The task of a Global Interactive activity with instance access can have the following implementation types:

• Method
• Component
• Screenflow
• Show Process Image
• Display Instance Variables (only if the property Use activity instance for presentation is selected)

The default implementation type is method.

For more information about the different implementation types, see Flow Object Tasks on page 101.
Viewing a Global Interactive Activity in WorkSpace
Describes howWorkSpace displays Global Interactive activities.

78 | Oracle BPM | Working with Studio

You can view and process Global Interactive activities in WorkSpace if you have the required role. Global
Interactive activities appear in the Applications panel. To run a Global Interactive activity click on the link
in the Applications panel.

According to the WorkSpace configuration the main task of the Global Interactive activity displays in one of
the following ways:

• A dialog
• A maximized dialog
• A pop-up window

Running a Global Interactive
Describes how the Process Execution Engine processes a Global Interactive activity.

The Process Execution Engine runs the application associated to the Global Interactive activity when the user
triggers it.

If the Global Interactive does not have instance access then the running of this activity is completely
independent from the process flow.

Artifacts
This section provides information about the artifacts you can use to design a process.

Measurement Mark
Measurement marks are checkpoints in the process to measure time or business variables.

Measurement Marks allow you to measure performance metrics, workload metrics and business variables
on an event driven basis.

TheMeasurementMark gathers thesemetricswhen the instance flows through the transition and immediately
after it stores this information to the Engine database. Then the BAMUpdater processes this information and
adds it to the BAM and Data Mart databases.

You can only associate business variables of type measurement to a Measurement Mark.

Use a Snapshot Start and Stop Measurement Mark to measure:

• the value of a business variable when it leaves an activity.
• the instance flow between flow objects.
• the performance in the previous flow object.

Use a combination of Snapshot Start Measurement Mark and Snapshot StopMeasurement Mark to measure:

• the workload of a set of flow objects.
• the performance of a set of flow objects.
• the value of a business variable for a set of flow objects.
• the elapsed time for a certain part of the process.

The following table describes the available types of Measurement Marks:

DescriptionMeasurement Mark Type

Snapshot StartMeasurementMarks indicate the start
of ameasurement. They record the time and the initial
value of the associated Business Variables.

Snapshot Start

Snapshot Stop Measurement Marks are always
associated to a Snapshot Start Measurement Mark.
They indicate the end of the measurement.

Snapshot Stop

Measure predefined an associated business variables
when the instance flows through the transitions.

Snapshot Start and Stop

Oracle BPM | Working with Studio | 79

Adding a Measurement Mark
When you add a Measurement Mark, you should take into account the following considerations.

You can add a Measurement Mark to a transition to measure predefined variables and business variables
when the instance flows through that transition.

Roles

Measurement activities can appear either in automatic roles or in the user defined role types. However, if
the Measurement activity is in a user-defined role, it will not appear in WorkSpace.

Transitions

Measurement marks are associated to one transition.

When the Engine routes the instance through that transition it performs all the checkpoints associated with
the transition.
Viewing a Measurement Mark in WorkSpace
Describes how you can view a Measurement Mark in WorkSpace.

Measurement Marks do not have a user interface because the engine runs them without the involvement of
a user. You cannot process Measurement Marks activities.

You can view information about the processing of a Measurement Marks activity in the audit trail.

You can view the Measurement Mark gathered using BAM Dashboards.
Running a Measurement Mark
Describes how the Process Execution Engine processes a Measurement Mark.

When an instance flows through a transition with a Measurement Mark, the Process Execution Engine
performs all the checkpoints that correspond to the performance variables and business variables associated
to the Measurement Mark.

Adding a Flow Object
The following procedure shows you how to add a flow object to your process.

To add a flow object:

1. Select a flow object from the modeling element palette, located to the right of the process panel.
2. Move the flow object to the place where you want to add it in the process, and click to drop it there.

If the selected flow object requires to be included in the process flow, then when you approximate it to a
transition Studio highlights the transition. If you click while the transition is highlighted Studio
automatically adds the required transitions to connect the flow object to the process flow.

A window to configure the flow object properties appears.

3. Enter a name to identify the flow object in theName field.
4. ClickOK.

The selected flow object appears in the process.

Flow Object Naming Conventions
Providing descriptive names for your flow object allows your process to be self-documented.

Oracle recommends that you name your activity descriptively with a verb followed by a noun specifying the
function of the activity within the process. Some examples of useful activity names are: Create Order, Ship
Product, and Check Credit.

Note: After you define an activity name, you cannot change it. However, you can change the activity
label displayed to end users.

80 | Oracle BPM | Working with Studio

Configuring a Flow Object Properties
The following procedure shows you how to configure the properties of a flow object.

To configure the properties of a flow object:

1. Right-click on the flow object.
2. Select Properties.

A window displaying the properties for the selected flow object appears.
3. Edit the value of the flow object properties.

For a complete description of these properties, see Flow Objects Property Reference on page 81.

4. ClickOK.

Flow Objects Property Reference
The following sections describe the properties you can specify for the different types of flow objects.

General Flow Object Property Reference
This reference provides detailed information on properties shared by all flow objects.

Activity ID

In the Activity ID section, you can configure the following properties for a flow object.

DescriptionProperty

Specifies the IDOracle BPM Studio and the Process Execution Engine
use internally to identify the activity.

Activity ID

Defines a label that describes the name of the activity. This label is
used within process diagrams and WorkSpace.

Name

Provides a general description of the Activity.Description

Image

In the Activity ID section, you can configure the following properties for a flow object.

DescriptionProperty

Specifies if the process designer highlights this imagewhen you select
it. To highlight the image the process designer inverts its color palette.
This property is available only for custom images.

Invert Color Palette When Image is
Selected

Allows you to specify a custom image for this activity.Custom Image

Resets the image to the default icon based on your current theme.Reset Image

Interactive Activity Property Reference
This reference provides information on how to configure an Interactive activity.

Runtime

In the Runtime section, you can configure the following properties for an Interactive activity.

DescriptionProperty

Specifies if you can suspend a process instance sitting in this activity.
When you suspend a process instance, the process execution engine

Suspendable

Oracle BPM | Working with Studio | 81

DescriptionProperty

ignores its due transitions and the process deadline.When you resume
the process instance, the process execution engine recalculates due
transitions and process deadlines, adding the time it spent suspended.

Specifies if the user can decide which transition to follow. The user
can choose from a list of all the transitions that apply to the current
process instance.

User Selects Transition

If you enable this property, the process designer allows you to add
multiple unconditional transitions to an Interactive activity.

Specifies if the instance flows to the next activity immediately after
the user executes the mandatory main task or non read-only task.

Auto Complete

Specifies if the user can eliminate instances from the process. When
you eliminate a process instance it flows directly to the end of the
process.

Abortable

Specifies if the user can assign the instance in this activity to another
user. According to the permissions and categories granted to the user,
the following assignment operations are available:

Assignable

• Reassign
• Peer assign
• Escalate
• Delegate

Advanced

In the Advanced section, you can configure the following properties for an Interactive activity.

DescriptionProperty

Specifies if the amount of instances that can sit in an Interactive activity
at a given time is unlimited.

Unlimited Concurrent Executions

Specifies the number of instances that can sit at the Interactive activity
at a given time. If the number of instances exceeds this limit, the
remaining instances are queued.

Number of Concurrent Executions

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default
• Generate events
• Do not generate events

Decision Activity Property Reference
This reference provides information on how to configure a Decision activity.

Runtime

In the Runtime section, you can configure the following properties for a Decision activity.

82 | Oracle BPM | Working with Studio

DescriptionProperty

Specifies if you can suspend a process instance sitting in this activity.
When you suspend a process instance, the process execution engine

Suspendable

ignores its due transitions and the process deadline.When you resume
the process instance, the process execution engine recalculates due
transitions and process deadlines, adding the time it spent suspended.

Specifies if the user can decide which transition to follow. The user
can choose from a list of all the transitions that apply to the current
process instance.

User Selects Transition

If you enable this property, the process designer allows you to add
multiple unconditional transitions to a Decision activity.

This property is not available for Decision activities.Auto Complete

Specifies if the user can eliminate instances from the process. When
you eliminate a process instance it flows directly to the end of the
process.

Abortable

Specifies if the user can assign the instance in this activity to another
user. According to the permissions and categories granted to the user,
the following assignment operations are available:

Assignable

• Reassign
• Peer assign
• Escalate
• Delegate

Advanced

In the Advanced section, you can configure the following properties for a Decision activity.

DescriptionProperty

Specifies if the amount of instances that can sit in a Decision activity
at a given time is unlimited.

Unlimited Concurrent Executions

Specifies the number of instances that can sit at the Decision activity
at a given time. If the number of instances exceeds this limit, the
remaining instances are queued.

Number of Concurrent Executions

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default
• Generate events
• Do not generate events

Automatic Activity Property Reference
This reference provides information on how to configure an Automatic activity.

Runtime

In the Runtime section, you can configure the following properties for an Automatic activity.

Oracle BPM | Working with Studio | 83

DescriptionProperty

Specifies if the process execution engine should run this activity
successively until the defined condition is met.

Enable Loop Condition

Specifies if the process execution engine evaluates the condition before
or after running the Automatic activity. Possible values are:

Evaluation Order

• Before
• After

Specifies the condition that determines if the process execution engine
keeps running the loop. You must specify the condition using PBL.

Condition

Advanced

In the Advanced section, you can configure the following properties for an Automatic activity.

DescriptionProperty

Specifies if the amount of instances that can sit in anAutomatic activity
at a given time is unlimited.

Unlimited Concurrent Executions

Specifies the number of instances that can sit at theAutomatic activity
at a given time. If the number of instances exceeds this limit, the
remaining instances are queued.

Maximum Number of Instances

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default
• Generate events
• Do not generate events

Subflow Activity Property Reference
This reference provides information on how to configure a Subflow activity.

Related Process

In the Related Process section, you can configure the following properties for a Subflow activity.

DescriptionProperty

Specifies if the related process is a process interface.Dynamic Process Invocation

Specifies the process that is used as a subprocess. If you select Dynamic
Process Invocations the related process must be a process interface.

Related Process

Specifies the argument set the Subflow activity uses to invoke the
subprocess.

Argument Set Name

Advanced

In theGeneral section, you can configure the following properties for a Subflow activity.

DescriptionProperty

Specifies if the files attached to the process instance are visible from
the subprocess.

Attachments can beVisible toRelated
Process

84 | Oracle BPM | Working with Studio

DescriptionProperty

Specifies if the Engine processes the notification to the Subflowactivity
and the argument mapping, in the same transaction.

Process Notification Immediately

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default
• Generate events
• Do not generate events

Process Creation Property Reference
This reference provides information on how to configure a Process Creation activity.

Related Process

In the Related Process section, you can configure the following properties for a Process Creation activity.

DescriptionProperty

Specifies if the related process is a process interface.Dynamic Process Invocation

Specifies the process that is used as a subprocess. If you select Dynamic
Process Invocations the related process must be a process interface.

Related Process Name

Specifies the argument set the Subflow activity uses to invoke the
subprocess.

Argument Set Name

Advanced

In the Advanced section, you can configure the following properties for a Process Creation activity.

DescriptionProperty

Specifies if the files attached to the process instance are visible from
the subprocess.

Attachments can beVisible toRelated
Process

Specifies if the Process Creation activity keeps track of the instances
it creates in the subprocess.

Keep Relation With Child Process

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default
• Generate events
• Do not generate events

Termination Wait Activity Property Reference
This reference provides information on how to configure a Termination Wait activity.

Runtime

In the Runtime section, you can configure the following properties for a Termination Wait activity.

Oracle BPM | Working with Studio | 85

DescriptionProperty

Specifies the Process Creation activity associated to this Termination
Wait Activity.

Process Creation Activity

Advanced

In the Advanced section, you can configure the following properties for a Termination Wait activity.

DescriptionProperty

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default
• Generate events
• Do not generate events

Specifies if the Engine processes the notification to the ProcessCreation
activity and the argument mapping, in the same transaction.

Process Notification Immediately

Grab Activity Property Reference
This reference provides information on how to configure a Grab activity.

Runtime

In the Runtime section, you can configure the following properties for a Grab activity.

DescriptionProperty

Specifies the type of Grab Possible values are:Grab Type

• Defined
• From all
• From all/To all/

For more information, see Grab Types on page 87.

Specifies if you can suspend a process instance sitting in this activity.
When you suspend a process instance, the process execution engine

Suspendable

ignores its due transitions and the process deadline.When you resume
the process instance, the process execution engine recalculates due
transitions and process deadlines, adding the time it spent suspended.

Specifies if the user can decide which transition to follow. The user
can choose from a list of all the transitions that apply to the current
process instance.

User Selects Transitions

If you enable this property, the process designer allows you to add
multiple unconditional transitions to a Grab activity.

Specifies if the user can eliminate instances from the process. When
you eliminate a process instance it flows directly to the end of the
process.

Abortable

86 | Oracle BPM | Working with Studio

Grab Types

DescriptionType

You must define an inbound transition to specify from which flow
objects you can grab an instance, and an outbound transition to specify
to which flow objects you can redirect the grabbed instance.

Defined

The Grab activity has an implicit inbound transition from all the flow
objects in the process flow. You must define an outbound transition
to specify towhich flowobjects you can redirect the grabbed instance.

From All

The Grab activity has implicit inbound and outbound transitions to
all the flow objects in the process flow. You can grab an instance from

From All/To All

any flow object in the process flow and you can redirect the instance
to any flow object in the process flow.

Advanced

In the Advanced section, you can configure the following properties for a Grab activity.

DescriptionProperty

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default
• Generate events
• Do not generate events

Conditional Gateway Property Reference
You can only configure general properties for a Conditional gateway.

You can configure the properties under Activity Id and Image sections for a Conditional gateway.

Split Gateway Property Reference
This reference provides information on how to configure a Split gateway.

Advanced

In the Advanced section, you can configure the following properties for a Split gateway.

DescriptionProperty

Specifies if the instance copies the split gateway generates are
independent. Independent instance copies do not share the value of

Generate Independent Copies

process variables during the split circuit. If you select this option you
need to merge the data of the different instance copies in the join
gateway.

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default
• Generate events
• Do not generate events

Oracle BPM | Working with Studio | 87

Or-Split Gateway Property Reference
This reference provides information on how to configure an Or-Split gateway.

Advanced

In the Advanced section, you can configure the following properties for an Or-Split gateway.

DescriptionProperty

Specifies if the instance copies the split gateway generates are
independent. Independent instance copies do not share the value of

Generate Independent Copies

process variables during the split circuit. If you select this option you
need to merge the data of the different instance copies in the join
gateway.

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default
• Generate events
• Do not generate events

Multiple Gateway Property Reference
This reference provides information on how to configure a Multiple Gateway.

Advanced

In the Advanced section, you can configure the following properties for a Multiple gateway.

DescriptionProperty

Specifies the number of copies that can flow simultaneously within
the circuit. If the amount of copies exceeds this number, the remaining

MaximumNumber of Simultaneous
Copies

copies are queued until one of the copies in the circuit reaches the Join
event or is aborted.

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default
• Generate events
• Do not generate events

Join Property Reference
This reference provides information on how to configure a Join gateway.

Advanced

In the Advanced section, you can configure the following properties for a Join gateway.

88 | Oracle BPM | Working with Studio

DescriptionProperty

Specifies the number of copies to wait for before the instance resumes
the process flow. When this number of copies reaches the join, the
engine terminates the remaining copies that still in the circuit.

Amount of copies to wait to release

Note: If you set this property value to zero, the instance waits for
all the copies in the circuit to reach the join before resuming the
process flow.

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate events

• Default
• Generate events
• Do not generate events

Message Wait Property Reference
This reference provides information on how to configure a Message Wait event.

Advanced

In the Advanced section, you can configure the following properties for a Message Wait event.

DescriptionProperty

Specifies the Process Creation activity associated to thisMessageWait
event. This property is valid onlywhen the notifies comes from a child
process.

Process Creation Activity

Specifies the type of event that triggers the Message Wait event.
Possible values are:

Wait for (event type)

• Parent Process
• Child Process
• External Event

For more information, seeMessage Wait Event Types on page 70.

Specifies if the Message Wait event behaves like a listener that waits
for an event to occur to pull out the affected instances from the main

Allows Interruptions

process flow and process them using the defined Message Wait flow.
If you select this property, the icon of theMessageWait event changes.

Specifies if the Engine processes the notification to the Message Wait
event and the argument mapping, in the same transaction.

Process notification Immediately

Advanced

In the Advanced section, you can configure the following properties for a Message Wait event.

DescriptionProperty

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default

Oracle BPM | Working with Studio | 89

DescriptionProperty

• Generate events
• Do not generate events

Send Message Event Property Reference
This reference provides information on how to configure a Send Message event.

Notification

In theNotification section, you can configure the following properties for a Send Message event.

DescriptionProperty

Specifies the process to notify.Related Process Name

Displays the type of the Message Wait event.Notifies

Specifies the Message Wait event that receives the notification in the
related process.

Notification Target

Specifies the Argument Set of the Message Wait event, that this Send
Message uses to notify the Message wait event.

Argument Set Name

This property is available if the related process is a subprocess of the
current process. It specifies the Process Creation that created the
instance in the subprocess.

Process Creation Activity

Advanced

In the Advanced section, you can configure the following properties for a Message Wait event.

DescriptionProperty

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default
• Generate events
• Do not generate events

Begin Event Property Reference
This reference provides information on how to configure a Begin event.

General

In theGeneral section, you can configure the following properties for an End event.

DescriptionProperty

Specifies if the amount of instances that can sit in a Begin event at a
given time is unlimited.

Unlimited Concurrent Process
Instances

Specifies how to handle concurrent executions when the concurrent
process instances exceed the defined limit.

Action Performed When Limit is
Reached

90 | Oracle BPM | Working with Studio

Advanced

In the Advanced section, you can configure the following properties for an End event.

DescriptionProperty

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default
• Generate events
• Do not generate events

End Event Property Reference
This reference provides information on how to configure an End event.

Advanced

In the Advanced section, you can configure the following properties for an End event.

DescriptionProperty

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default
• Generate events
• Do not generate events

Timer Property Reference
This reference provides information on how to configure a Timer event.

Runtime

In the Runtime section, you can configure the following properties for an End event.

DescriptionProperty

Possible values are:Type

• Schedule based
• Interval expression
• Interval constant

Specifies if calendar rules affect the carrying out of this activity.Use calendar rules

Specifies the behaviour when the scheduled time is a holiday. This
property is available only when you select the propertyUse calendar
rules. Possible values are:

On holidays run on

• Next working day and same time
• Next scheduled based time

Oracle BPM | Working with Studio | 91

Schedule Based

DescriptionProperty

Specifies when to run this activity. Possible values are:Frequency

• Daily
• Weekly
• Monthly

Specifies the exact time to run this activity. The fields to define the
time vary according to the frequency you select. You can addmultiple
times.

When

Interval Expression

You must define an expression in PBL that determines when to run this activity.

Interval Constant

You must specify an interval to determines the rate at which to run this activity

Compensate Event Property Reference
This reference provides information on how to configure a Compensate activity.

Compensate

DescriptionProperty

Specifies an activity to revertwhen theCompensate event is associated
to a group. If you do not select an activity the Compensate event
reverts all the activities included in the group.

Activity to compensate

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default
• Generate events
• Do not generate events

Global Creation Property Reference
This reference provides information on how to configure a Global Creation activity.

Runtime

In the Runtime section, you can configure the following properties for a Global Creation activity.

DescriptionProperty

Specifies if the instance flows to the next activity immediately after
the user executes the mandatory main task or non read-only task.

Auto Complete

Specifies the argument set to use when invoking the Begin event.Argument Set Name

Global Automatic Property Reference
This reference provides information on how to configure a Global Automatic activity.

92 | Oracle BPM | Working with Studio

Runtime

In the Runtime section, you can configure the following properties for an Interactive activity.

DescriptionProperty

Specifies the type of this Global Automatic activity. Possible values
are:

Global Automatic Type

• Polling by interval
• Execute when an event occurs
• Automatic schedule
• Automatic JMS listener
• Automatic JMX listener

Specifies if this activity stops running when you deploy a newer
version of the process.

Stop Running When Process is
Deprecated

Global Automatic Types

The following table describes the different types you can select for a Global Automatic.

DescriptionProperty

The Engine waits for a time interval to run the Global Automatic
activity.

Polling by interval

The Engine waits for an event to occur to run the Global Automatic
activity.

Executes when an event occurs

The Engine runs theGlobal Automatic activity at the times you define
in a schedule.

Automatic schedule

The Engine runs the Global Automatic activity when a JMS message
arrives to the specified queue or topic.

Automatic JMS listener

The Engine runs theGlobal Automatic activitywhen it receives a JMX
message.

Automatic JMX listener

Polling by Interval

DescriptionProperty

Specifies if the Engine uses calendar rules to calculate the interval. If
selected the interval only includes working days.

Use Calendar Rules

Specifies the time towait between successive executions of this activity.Wait Interval

Executes When an Event Occurs

DescriptionProperty

A Component that implements the interface
Fuego.Lib.ServerEventSource.

Listener Class

Specifies the type of event to listen to. The Component Event Types
are defined in the Listener Class.

Component Event Type

Oracle BPM | Working with Studio | 93

Automatic Schedule

DescriptionProperty

Specifies if the engine runs this activity when the scheduled time
corresponds to a holiday.

Run on Holidays

Specifies when to run this activity. Possible values are:Frequency

• Daily
• Weekly
• Monthly

Specifies the exact time to run this activity. The fields to define the
time vary according to the frequency you select.

When

Automatic JMS Listener

DescriptionProperty

An external resource of type JMS.JMS Configuration

Amessage selector allows a JMS consumer select some of themessages
it receives from a particular topic or queue using a defined criteria. A

Message Selector

message selector uses message properties and headers to define
conditional expressions. These e expressions use Boolean logic to
define which messages should be delivered to the JMS client .

Automatic JMX Listener

DescriptionProperty

An external resource of type JMX. TheGlobal Automatic activity uses
this external resource to connect to the MBean Server.

JMX Configuration

The introspected JMXnotification theGlobalAutomatic activity listens
to.

JMX Component

The ObjectName used to locate theMBean that emits the notification.Object Name

Global Interactive Activity Property Reference
This reference provides information on how to configure a Global Interactive activity.

Runtime

In the Runtime section, you can configure the following properties for an Interactive activity.

DescriptionProperty

Specifies if the Global Interactive activity can access the instance
information.

Has Instance Access

Specifies if theGlobal Interactive activity is used to display the instance
information in the Instance Detail panel.

UseActivity for Instance Presentation

Specifies if running this activity generates events. The information in
the audit trail and BAM tables is based on these events. Possible values
are:

Generate Events

• Default

94 | Oracle BPM | Working with Studio

DescriptionProperty

• Generate events
• Do not generate events

Measurement Mark Property Reference
This reference provides information on how to configure a Measurement Mark.

You can configure the following properties for a Measurement Mark.

DescriptionProperty

Possible values are:Measurement mark type

• Snapshot start
• Snapshot stop
• Snapshot start-stop

Specifies the ID that identifies this Measurement Mark.ID

Specifies the name that identifies Measurement Marks of type start
and start-stop. You can localize this name.

Name

Specifies the Measurement Mark of type start associated to a
Measurement Mark of type stop.

Start Measurement

Provides a general description of the Measurement Mark. You can
localize this description.

Description

Specifies the project variables the Measurement Mark monitors. You
can only monitor business variables of type dimension.

Project variables

Flow Object Icon Reference
The following reference table shows the flow object icons for each of the process themes supported in Oracle
BPM Studio.

Activities

UML IconBPMN Color IconBPMN IconClassic IconActivity Name

Interactive

Decision

Automatic

Group

Oracle BPM | Working with Studio | 95

UML IconBPMN Color IconBPMN IconClassic IconActivity Name

Subflow

Process Creation

Termination Wait

Grab

Gateways

UML IconBPMN Color IconBPMN IconClassic IconActivity Name

Conditional

Split

Or-Split

Multiple

Join

Events

UML IconBPMN Color IconBPMN IconClassic IconActivity Name

Message Wait

Send Message

Timer

Compensate

Begin

96 | Oracle BPM | Working with Studio

UML IconBPMN Color IconBPMN IconClassic IconActivity Name

End

Global Activities

UML IconBPMN Color IconBPMN IconClassic IconActivity Name

Global Creation

Global Automatic

Global Interactive

Artifacts

UML IconBPMN Color IconBPMN IconClassic IconActivity Name

Measurement Mark

Groups
A Group is a compound activity. It is composed of a set of flow elements that may include other Groups.

Groups are primarily used to provide exception and compensation handlers to a group of activities. They
are also commonly used to handle timeouts for a group of activities.

AGroup can be formed by any flow element (also called leaf activity)with the exception ofGlobal Interactive,
Global Creation, Global Automatic, Begin and End activities. Also keep in mind that a group cannot contain
only a Split or a Join gateway.

Using Groups

Groups are useful in the following scenarios:

• You need to define a due interval within which a group of activities must be completed.
• You need tomanage a specific exception that can occur in any activity within a group. Instead of handling

the exception in each activity, you can define the group and handle the exception from within it.
• You need to reverse (compensate) a certain situation that involves more than one activity to be rolled

back.
• You need to manage a group of activities as a unique transaction (atomic group)
• You need to simplify the design. Groups help you better visualize the process design since you can collapse

a set of activities into one group element.

Compensating Work in a Group

If you want to undo the actions in a group, you should raise an exception and trigger a Compensate event.

Oracle BPM | Working with Studio | 97

Creating a Group
The following procedures outline the process for creating a Group.

1. Determine which flow elements you want to include in the Group.
2. Select the Group icon in the toolbar.
3. Select all the flow elements within the design that should be moved to the group.
4. Right-click and select Create group with selection.

Transitions between the elements will remain and two new ones will be generated: a unique incoming
transition to the group and a unique outgoing transition from the group.
TheGroupwindow appears.

5. Provide a name and optional description for the Group.
6. Edit the Group properties as necessary.

See Group Properties on page 100 for more information.

7. ClickOK.

The Group is created and appears as dotted lines around the selected activities.

Groups and Transitions
Transitions to and from Groups behave differently than Transitions to and from individual activities.

Due Transitions

A due transition can be specified for 'leaf' activities as well as for 'group' activities.

A group can have a due transition that applies to the instance in any activity within the group. In such case,
due time will begin running as soon as the instance arrives at the first activity within the group (entry point).

To define which calendar rule to apply, the engine looks for the organizational unit where the process of the
instance being executed has been deployed. If no calendar rule is defined for the organizational unit, the
engine keeps looking in the upper levels of the organizational hierarchy until it finds a calendar rule to apply.
If no calendar rule is found, it is assumed that all days are working days. The Engine will also take into
account the calendar rule set for the organizational unit where the process is deployed and the activity role
where the instance is running. The calendar rule set at role level is first evaluated by the Engine and overrides
rules defined for the organizational unit, if any are defined. Refer to Calendar Rules for further information.

Group due transitions override any single activity's (within the group) due transition. If a group has a due
transition and it exists inside another group that has a due transition, the instance is ruled by the outermost
group's due transition if both transitions expire at the same time. For example, between an activity due
transition and the group that contains the activity, due transition, the instance will be routed according to
the group due transition

When an activity task is being executed over an instance, the task timeout is set to the shortest due interval
of:

• The task timeout interval (defined as an engine property),
• PBL-Method timeout interval that is currently being executed (i.e., the PBL-Method that is being executed

within the list of PBL-Methods that might be connected with relay-to),
• The activity due transition interval,
• Each nesting group due transition (if there are multiple nested groups, all due transition are evaluated),
• The process deadline.

98 | Oracle BPM | Working with Studio

Compensate Transitions

Each leaf activity can have its own compensate flow. In addition, the group can also have its own compensate
flow. The group's compensate transition can send the instance to a leaf activity or to a group activity that will
perform any necessary action to compensate the situation. This group represents the compensate flow.

Within the group's compensate flow, you might not reference a specific inner compensation (compensation
defined in some inner activity). Therefore, the engine will call all the compensations defined in the group in
the inverted order in which they are executed. If it has reference to an inner compensation, the engine will
call only this compensation.

In the following figure, Group 1 is an inner group of Group2. Moreover, Group1 has activities act1, act3 and
act5 within it.

• If act1 needs to be compensated, the CompensateAct1 activity will be executed.
• If act3 needs to be compensated, as there is no compensate transition going out of this activity, no

compensation is performed.
• If no compensate transition is defined for a Group, then all inner activities compensations are performed.

They are performed in reverse order of the process flow. In the example, if there were no compensate
transition for Group2, inner compensations are executed: CompAct2 and then CompensateGroup1 in this
order.

Oracle BPM | Working with Studio | 99

A group can also be defined by grouping activities inside the compensate flow or exception flow. In this case,
no exit point for the group will exist. See Compensate Transition on page 119.

Exception Transitions

Groups can call andmanage their own exceptionflow. SeeException Transition onpage 118 formore information.

Groups and Grab Activities
An instance can be grabbed from any activity, regardless of whether the activity is grouped or not.

While grabbed, the instance will remain as grabbed in the grab activity, as in the following scenarios:

• A Grab activity's task is executed over the instance, or
• The instance is ungrabbed, or
• The instance is sent to an activity different from the source activity, the source group's property will rule

the operation (i.e., due transition expiration, exception handling, compensation handling).

The source activity's due time is removed when the instance is grabbed. On the other hand, the process
instance deadline is kept active. Moreover, the due time for groups nesting the source activity is also kept
active (in the event that the activity is within a group that is actually within another group).

When a grabbed instance is ungrabbed, from that moment on, the instance can be processed as usual in the
source activity (activity from which it was grabbed).

Note: Once an instance has been grabbed, it can be sent to an activity different from the source activity
but only within the same Group.

Group Properties

General Properties

The following table lists the general properties.

DescriptionProperty

A Group can be flagged as Atomic in order to be
executed as a single transaction. An atomic group is

Is Atomic

defined as a group of automatic activities all executed
in one transaction. For a group to become atomic, all
its Sub-Groupsmust be flagged as atomic. An atomic
group cannot include Interactive activities or external
notifications.

Activities inside an atomic group can belong to
different roles.

An atomic group can contain ONLY:

• Automatic activities.
• Split/Join gateways.
• Multiple/Join gateways.
• Send Message/Message Wait events (only

synchronization between copies.)

If any other activity (such as Interactive) is dropped
into a group, you will be warned about it and the
action will be automatically undone.

100 | Oracle BPM | Working with Studio

DescriptionProperty

An atomic group can contain other atomic groups.
However, it cannot contain non-atomic groups.

If a non-atomic group is dropped into an atomic
group, youwill bewarned about it and the actionwill
be undone.

Atomic groups cannot handle exceptions or
compensations within the group. Exceptions that
occur inside the atomic group have to be handled by
the group exception flow or any outer group.

Advanced Properties

The following table lists the general properties.

DescriptionProperty

Defines how Auditing Events are generated for the
Group. See Auditing on page 221.

Generate Events

Note: If the group does not generate events, it
will not be listed in the Audit Trail, but the
activitieswithin it, if they do generate events, will
appear

Flow Object Tasks
The following topics provide information about using Tasks within Oracle BPM Studio.

What is a Task?
A task consists of one or more actions that need to be executed in order to achieve a flow object's goal. Each
type of flow object can contain only one task, multiple tasks or no tasks at all.

There is a Main task and, additionally, some Optional tasks can be added. Flow objects that require human
intervention can have optional tasks, such as the Interactive activity and the Grab activity. The Main task is
automatically generated and the optional tasks have to be added and defined by the developer. The associated
PBL-Methods will also be generated. The first task in the list is the Main task, and the order of all Optional
tasks is the order in which they appear on the list within the dialog box where they are defined.

Some tasks are mandatory, which means that they should be processed before the instance can be sent to the
next flow object in the business service. Additionally, a task can be defined as repeatable, which means that
this task can be performed as many times as necessary until the instance moves to the next flow object.

Tasks appear in a list in WorkSpace. A WorkSpace user selects the task to run in the order that he or she
chooses.

Implementation Type

Each Task contains an Implementation Type which defines how the Task is implemented and how it behaves
within a business process. You can define the implementation type within a Task's properties. Not all
Implementation Types are available within each task.

Oracle BPM | Working with Studio | 101

Using Tasks Within Flow Objects

DescriptionAutomatically generatedNumber of TasksFlow Object

.NoneNoneBegin

.NoneNoneEnd

.Yes1Global Creation

.Yes1Global Automatic

This can be aMethod and
therefore it is createdwith

If it is a Method1Global

the same name as the flow
object.

The developer should
define as many tasks as

NoMultiple: Main and
optional tasks.

Interactive

required in the flow
object.

The developer should
define as many tasks as

NoMain oneAutomatic

required in the flow
object. No repeatable or
mandatory propertieswill
appear for this type of
flow object.

.Yes1Split

.Yes1Split N

.Yes1Join

The developer should
define as many tasks as

NoMultiple: Main and
optional tasks.

Grab

required in the flow
object.

.NoneNoneSubflow

.NoneNoneProcess Creation

.NoneNoneTermination Wait

.NoneNoneMessage Wait

.NoneNoneProcess Notification

Tasks Types
The topics in the section describe the different Implementation Types within an Oracle BPM Task. Different
flow objects can contain different Implementation Types.

Method Tasks
The Method Task allows you to define a PBL Method to perform the Task for a flow object.

A Method is a high-level scripting language used to define the business rules and the logic of flow object
types and certain transitions within a process. Each flow object type initiates a very specific action and the
PBL-Method provides the script for this action. PBL-Method includes statements that integrate variables,
expressions, operators and components.

102 | Oracle BPM | Working with Studio

Using the Method Editor

The Method Editor is a free-form text editor that allows you to copy, cut and paste partial or entire
PBL-Methods objects, including statements, expressions, arguments, variables, operators and components

Method Timeout

Timeouts apply to PBL-Method. Timeouts have a default value (5 minutes) that can be redefined using the
predefined variable timeout. As well, no matter the defined timeout for each of them, they are all limited to
the maximum specified in the Engine property Maximum PBL-Methods timeout.

SeeMethod Timeout on page 103 for more information.

Method Execution Results

When Methods are executed, several results may occur. The following information provides a complete list
of possible instance behavior according to the result of the PBL-Method. The predefined variable action is
used to indicate the Method result.

The Engine acts according to this variable and saves or undoes (commits or rollbacks) the changes.

The action variable is an enumeration that accepts the following valid values:

Calling Components from Methods

A number of standard components (Library Components) are available at the time of installation for you to
use in your process design. Youmay also add your own Java, SQL, EJB, JNDI, Web Service and BPMObjects.

The syntax for calling a component is the same, irrespectively of the type of component you are using. In
BPM skin, it will be as follows:
Syntax: [method name] [component name]

Example:

For example, a method name is calculateTotal and the component name is Pricing .

calculateTotal Pricing
Method Timeout
A timeout defines the amount of time a Task will wait to complete an action before processing continues.

Default Value

By default the PBL-Method has the timeout set to 5 minutes. You can change this value using the timeout
Predefined Variable.

Extending the Timeout Value

This method is not recommended for all situations. Instead, it should be used only occasionally. During the
PBL-Method execution, several Engine resources are locked, therefore if you extend the timeout for each
PBL-Method, the risk of having all the resources locked increases and it may produce a bottleneck.

The syntax is as follows:
// timeout is an interval
// Increasing it to 20
minutes timeout = '20m'

Note: If you set the PBL-Method timeout to be greater than the Engine property 'MaximumPBL-Methods
timeout', the PBL-Method will fail at runtime and a Engine log message is generated.

If you set the timeout predefined variable to null, then the Engine property (MaximumPBL-Methods timeout)
value applies.

Oracle BPM | Working with Studio | 103

Timeout Limit

The Administrator can limit the timeout to a maximum for all processes deployed in a specific engine using
the engine property Maximum PBL-Methods timeout. Maximum PBL-Methods timeout is a tool for the
Administrator to ensure that the Engine resources are enough to serve all deployed processes. If a PBL-Method
timeout is greater than the 'Maximum PBL-Methods timeout' property, such PBL-Method will fail.

The Maximum PBL-Methods timeout can be set from Studio Engine Properties as well as from Process
Administrator Engine Properties.

Integrated Components Within a PBL-Method

When you use Components within a PBL-Method, you can set a timeout as one of the component attributes.
This timeout applies to the component execution time.

If the PBL-Method runs one ormore component, although they can have individual timeouts, the PBL-Method
timeout rules the full processing.

For example, the maximum PBL-Method timeout is set to 3 minutes. You define a PBL-Method that runs 2
components (Component A and Component B), and both components have the timeout attribute set to 2
minutes.

ComponentA begins running and finishes in 1minute, 45 seconds. AlthoughComponent B has an individual
timeout set to 2 minutes, its execution will not last more than 1 minute, 15 seconds as passed that time the
PBL-Method execution is aborted.
Method Property Reference
The following sections describe the properties defined in the Main Task window using the Method
Implementation Type.

Properties

The following are available in the properties area. These properties are only available in Interactive Activity.

DescriptionProperty

If true, the user is allowed to run this task more than
once

Repeatable

If true, the user must run this task to complete the
activity

Mandatory

If true, this task cannot modify any instance variableRead-only

Method

DescriptionProperty

Defines the name of the method used as the Main
Task within this Activity.

Method Name

Defines themethod usedwhen a transaction fails and
work must be rolled-back.

Roll-back Method

Component Tasks
The Component Task allows you to specify a component method as the Task for a flow object.
Component Task Timeout
A timeout defines the amount of time a Task will wait to complete an action before processing continues.

104 | Oracle BPM | Working with Studio

Default Timeout

The timeout is set in theActivity task execution timeout that works the sameway as the PBL-Methods timeout
but applicable to the tasks implemented through components (not through a PBL-Method).

By default the Activity task execution timeout property has the timeout set to 5 minutes. You can change this
value if required (minutes:seconds).
Component Property Reference
The following sections describe the properties defined in the Main Task window using the Component
Implementation Type.

Properties

The following are available in the properties area. These properties are only available in Interactive Activity.

DescriptionProperty

If true, the user is allowed to run this task more than
once

Repeatable

If true, the user must run this task to complete the
flow object.

Mandatory

If true, this task cannot modify any instance variableRead-only

Component Method

DescriptionProperty

Specifies the timeout for the component call execution
(minutes:seconds). After this time occurs, the engine
cancels the component execution.

flow object Task Execution Timeout

Indicates that the invocation of the method will be
applied to the selected variable. By selecting a

Use Instance Variable

variable, the Component name is implied and taken
from the variable type. A typical example of instance
variable to use is a BPM Object instance variable

Represents the type of component to be invoked. If
an instance variable is selected, this valuewill be filled

Component Name

out from the variable type and cannot be edited from
here. Complete the component name or browse to
choose the component within the Project Catalog. If
the task corresponds to an Interactive activity, you
can only select a component defined to run on the
client-side

Component Member
• Input
• Display

Use Presentation

Use Instance Variable

If themethod requires any in or out arguments, these
arguments have to be mapped to instance variables

Argument Mapping

or predefined variables that contain the value/s to be
passed. Additionally, if you are using an instance
variable (for example a BPMObject instance var) and

Oracle BPM | Working with Studio | 105

DescriptionProperty

the component updates any of the attributes within
it, you need to explicitlymap the BPMObject instance
variable to an argument variable. For example, map
the BPM Object to the currentComponentInstance
variable.

Procedure Tasks
The Procedure Task allows you to specify a Procedure flow as the Task for a flow object.
Procedure Property Reference
The following section describes the properties defined in the Main Task window using the Procedure
Implementation Type.

Properties

The following are available in the properties area. These properties are only available in Interactive Activity.

DescriptionProperty

If true, the actual procedure to call is defined at
runtime.

Dynamic Process Invocation

Select the procedure to call. IfDynamic Process
Invocation is true, you must select a Procedure
interface instead of an actual procedure.

Related Procedures

Select the argument set youwant to use to invoke the
procedure

Select Procedure Argument Set

Screenflow Tasks
The Screenflow Task allows you to specify a Screenflow as the Task for a flow object.
Screenflow Property Reference
The following section describes the properties defined in the Main Task window of a Screenflow.

Properties

The following are available in the properties area. These properties are only available in Interactive Activity.

DescriptionProperty

If true, the user is allowed to run this task more than
once

Repeatable

If true, the user must run this task to complete the
activity

Mandatory

If true, this task cannot modify any instance variableRead-only

Related Screenflow

DescriptionProperty

Indicates the screenflowdefinedwithin the project to
be executed.

Name

Select the argument set youwant to use to invoke the
screenflow

Argument Mapping

106 | Oracle BPM | Working with Studio

External Tasks
External tasks are tasks that are implemented outside the BPM system.

The External task implementation allows you to implement the interactive activity (more precisely the GUI
presented to the user) outside the BPM system.

It is a framework to allow adding an external UI interface when executing an interactive task without using
any of the BPM system's presentation capabilities (BPM Object Presentations, Screenflows, etc). These tasks
are accessible from PAPI/PAPIWS by calling the methods. For further information see the PAPI's JavaDoc
documentation.

For example, this is useful if you need to integrate the Engine with a .NET client.
prepareExternalActivity(...)
commitExternalActivity(...)

The framework functions as follows:

1. A page displays all instances (you can get this using PAPI or PAPIWS).
2. You select the instance for execution (this instance is waiting in an interactive activity).
3. To start the execution, the preparemethod should be executed. Thismethod can retrieve some information

from the instance as well as leveraging retrieval of other information using the BPM system's integration
capabilities. Upon successful execution of the prepare method, the instance will remain locked for that
participant to prevent other participant from starting the execution for that instance.

4. You can render your own UI (ASP.NET, etc).
5. When this is submitted, the commitmethod should be executed. Thismethod receives information collected

from the external UI and most likely synchronize this data with instance variables. You can also perform
transactions against your back-end systemsusing the BPMsystem's integration capabilities. Upon successful
execution of this method, the lock over the instance will be released and the task will be marked as
completed.

When you select the External implementation you have to specify two methods:

• The prepareExternalActivity() method can be used to get any values needed by the presentation before
actually displaying it.

This method extracts and processes information from the instance variables or BPM Objects, and makes
it accessible through its output arguments

• The commitExternalActivity() method should be invoked once the user finished with the GUI and
processing can continue in the BPM system.

This method completes the task (and the instance if necessary), and maps its input arguments to instance
variables.

Both methods can declare input/output arguments that will be passed along whenever they are invoked. As
well both methods need to be invoked through PAPI or through PAPI-WebServices.

For example:

The instance arrives to the activity andwaits there until someone sends the prepareExternalActivity()method
to it. It executes the method and answers back a set of arguments (valid values lists or predefined/default
values to be used by the GUI). After the user finishes with the GUI (which could be implemented anyway
you want), the commitExternalActivity() method is invoked and the values entered by the user are passed
along so that the BPM system can use them (set them into a BPM Object for example). Then the instance
moves forward in the process (unless you finish the commitExternalActivity()methodwith anAction different
than OK or RELEASE).

• Configuration: you can optionally define anURL.When the task is executed fromWorkSpace,WorkSpace
redirects the execution to the URL.

Oracle BPM | Working with Studio | 107

External Task Property Reference
Provides detailed information for External Task properties.

The following sections describes the properties defined in the Main Task window of an External Task.

Properties

The following are available in the properties area. These properties are only available in Interactive Activity.

DescriptionProperty

If true, the user is allowed to run this task more than
once

Repeatable

If true, the user must run this task to complete the
activity

Mandatory

If true, this task cannot modify any instance variableRead Only

Methods

DescriptionProperty

Method executed by the client PAPI application to
retrieve values from the process instance

Prepare Method

Method executed by the client PAPI application to
submit new values to the process instance

Commit Method

Configuration

DescriptionProperty

Select theExternal Resources on page 198. Click on Edit
to modify the selected external resource.

Use configuration

Input Tasks
Input tasks allow you present a simple form to the end user.
Input Property Reference
The following sections describes the properties defined in the Main Task window of a Task using the Input
Implementation Type.

Properties

DescriptionProperty

If true, the user must run this task to complete the
flow object

Mandatory

If true, this task cannot modify any instance variableRead Only

Input Dialog

DescriptionProperty

Title for the dialog presented to the user. Click on
Instance Variables to use the value of variable as the
dialog title

Input Dialog Title

108 | Oracle BPM | Working with Studio

Buttons

DescriptionProperty

From the drop-down, select the instance variable
where you want to save the name of the button
pressed by the user

Assign Selected Button To

From the drop-down, select the button used to Cancel
the dialog

Cancel Button Is

Display Tasks
Display tasks allow you present a simple information dialog to the end user.
Display Property Reference
The following sections provide detailed information for Display Implementation Type properties

Properties

DescriptionProperty

If true, the user must run this task to complete the
flow object

Mandatory

If true, this task cannot modify any instance variableRead Only

Display Dialog

DescriptionProperty

Title for the dialog presented to the user.Display Dialog Title

Message to be displayed to the userValue

Buttons

DescriptionProperty

From the drop-down, select the instance variable
where you want to save the name of the button
pressed by the user

Assign Selected Button To

From the drop-down, select the button used to Cancel
the dialog

Cancel Button Is

Decision Task
Decision tasks allow you to present a decision for to the end user. This is equivalent to the use of Decision
Activities.
Decision Property Reference
The following sections provide detailed information for Decision Implementation Type properties.

Properties

DescriptionProperty

If true, the user must run this task to complete the
flow object.

Mandatory

If true, this task cannot modify any instance variableRead Only

Oracle BPM | Working with Studio | 109

Decision Dialog

DescriptionProperty

Title for the dialog presented to the user. Click on
Instance Variables to use the value of variable as the
dialog title

Decision Dialog Title

Buttons

DescriptionProperty

From the drop-down, select the instance variable
where you want to save the name of the button
pressed by the user

Assign Selected Button To

From the drop-down, select the button used to Cancel
the dialog

Cancel Button Is

Transitions

Transitions Overview
A transition advances the process from one flow object to another. In Business Process Modeling Notation
(BPMN), transitions are also known as connecting objects.

Transitions use directional arrows that display the direction of the flow. An instance flows through a process
by following the logic that applies to a transition.

Transition Types

Oracle BPM provides many types of transitions. The most common transitions are:Unconditional, Conditional
Due Exception Business Rule.

DescriptionTransitionNotation

Instances flow through the transitionwithout being affected
by any conditions. In Oracle BPM, this is known as an
uncontrolled flow.

Unconditional
(Uncontrolled)

Instances flow through this transition when alternative
condition transitions are not used.Oracle BPMautomatically

Unconditional (Default)

shows a default unconditional when at least one alternative
condition flow is added to the flow object.

Instances flow through the transition if a specified condition
is met.

Conditional

Instances flow through the transition if the specified
dynamic business rule evaluates to true.

Business Rule

Instances flow through the transition when a timer fires.Due (Timer)

Instances flow through the transition if an exception occurs.Exception (Error)

110 | Oracle BPM | Working with Studio

The transitions in the following table–compensate, message-based, and precedence--are used less frequently. If
you are just beginning to use Oracle BPM, you do not need to be familiar with these yet.

DescriptionTransitionNotation

Instances flow through the transition if compensationprocessing
is required. The actions performed reverse (or undo) any work

Compensate

done in the previous flow object in the event that PBL-Method
failure occurs.

Instances flow through the transition if a flow object that
handles different argument sets receives a message. Available
only from Begin or Message Wait events.

Message Based

Only available in a Split-Join circuit. Copies within a Split-Join
circuit can have a synchronization or a precedence. The

Precedence

precedence is represented by a dashed transition line and a
solid arrowhead, not to be confused with the BPMNMessage
Flow, which begins with a circle and has an outline arrowhead.

Which Transition Is Used?

All flow objects at least have an outgoing unconditional transition so there is always a way to continue the
process.However, inmost processes, condition transitions are also used.When one ormore condition transitions
originate from a flow object, the remaining unconditional transition is shown as a default flow transition.

In this case, the condition transitions are evaluated first, and the unconditional transition is taken only if the
condition transitions all evaluate to false. In programming terms, the default unconditional is like the else
clause in an if-then-else construct.

Business rule transitions are evaluated before condition transitions, so if a business rule transition and a
condition transition both evaluate to true, the business rule transition prevails.

Due transitions act separately. They "pull" the instance from the flow object as soon as a timer fires. In this
case, all other outgoing transitions are ignored.

Adding a Transition
You add transitions in the process design editor. This task shows you how to add any type of transition using
the process elements palette.

To add a transition:

1. Click on the Transition icon () from the palette, located in the Flow category.
2. Click on the flow object the transition will originate from.
3. Click on the flow object the transition will flow to.

An unconditional transition is added to the process diagram.
4. To change this transition into another type of transition, right-click on it and click Properties ().

The Transition dialog box appears.
a) Enter a name for the transition in theName field.
b) Click on the Properties tab.

The Properties page appears.
c) Select a transition type from the drop-down list in the Type section.

A section showing properties corresponding to the transition you selected type will appear.
d) Specify the data or options as required, and click OK.

The transition is changed.

Oracle BPM | Working with Studio | 111

Unconditional Transition
Provides detailed information on the Unconditional Transition.

When your process requires unrestrictedworkflowbetween twoflowobjects, you should add anUnconditional
Transition. This type of transition indicates that no conditions exist to prevent instances from moving to the
next flow object. Therefore, the transition occurs unconditionally.

After you create the transition, a line with a directional arrow connects the two flow objects on the design
workspace. No icon is displayed next to the transition.

Note: If you do notwant to see theUnconditional Transitions, disable the ShowUnconditional Transitions
property from the View menu, Transitions option.

Rules

The following rules apply to unconditional transitions:

• Each flow object must have at least one outgoing unconditional transition. Exceptions to this rule are the
following:

• if the flow object has a due transition. The Split and Multiple gateways are the only ones thatmust
have an unconditional transition, as an exception to this rule.

• Global Creation, Global, Global Automatic and End flow objects have no outgoing transitions.

• Each flow object must have only one outgoing unconditional transition. Exceptions to this rule are:

• Split gateways can have more than one outgoing unconditional transition.
• Interactive activities may have more than one outgoing unconditional transition if the User selects

transition check box is selected on the Interactive's Activity Property dialog box.

• Flow objects cannot have an unconditional and a conditional transition to the same destination flow object.

Adding a Unconditional Transition
You can add unconditional transitions directly from the flow object context menu.

To add a unconditional transition:

1. In the process design editor, right-click on the flow object fromwhich the transition will flow, and click
Add unconditional transition .

2. Click on the flow object the transition will flow to. Note that as you move the mouse, the transition line
is shown.

The unconditional transition is added to the process diagram.

Conditional Transition
Provides detailed information on the Conditional Transition.

When your process requires restricted workflow between two flow objects, you should add a Conditional
transition. A Conditional transition indicates that workflow will only occur if specified conditions are met.
The special conditions are added by using a PBL-Method in the Condition field in the Transition Properties
dialog box.

112 | Oracle BPM | Working with Studio

For example, in an Order Management process, a conditional transition directs instances from the Review
Order activity to the Special Care activity if the order status is equal to "Expedite" or "Alert". The PBL-Method
for this condition is as follows:

 orderStatus in ["Expedite", "Alert"]

After you create the transition, a line with a directional arrow connects the two flow objects on the design
workspace. The icon next to the transition indicates that it is a Conditional transition.

As well, the transition'sName, Description or Conditionmay appear next to it depending on the chosen
preference.

Note: If you do not want to see the Conditional transitions, disable the Show Conditional Transition
property from the Viewmenu, Transitions option.

Rules

The rules for using conditional transitions are as follows:

• Conditional transitions are available formost flowobjects, with the exception of End andMultiple. (Global,
Global Creation and Global Automatic do not require transitions.)

• Flow objects cannot have an unconditional and a conditional transition to the same destination flow object
at the same time.

Defining the Condition

The Condition is defined in the Transition Properties dialog box by typing a PBL-Method in the Condition
field. By default the transition's name is used as the expected result of the condition.

For example if the transition represents the normal flow then you can name it asOK and the condition is
automatically built as result =="OK". This is the default condition and is valid while the condition is empty.

If you manually define a condition then the default condition is no longer valid.

Instance variables can be used in the condition as well.

More than one conditional transition might be required. Multiple conditional transitions flowing out of a
flow object are ranked in order to determine the evaluation precedence. The precedence is assigned in
ascending order according to the creation order givenwhen the process is first designed in Studio.Nevertheless,
the conditional transitions' order can be changed by using the Conditional transitions order properties
window that Studio displays in the flow object shortcutmenu (right-click on the flow object) whenmore than
one conditional transition has been defined.

Note: it is highly recommended to name the condition to represent its condition. Furthermore, use the
predefined variable result to set the result of it.

• The syntax is automatically checked. If everything is correct, a blue flag appears on the upper-right corner
of the Conditional field. If something is incorrect, a red flag appears. Drag the mouse over the red line
below the red flag and the error displays. In addition, the error is shown at the bottom of the dialog box
if you click on the statement that has the problem.

• ClickOK to close the Transition Properties dialog box. When the dialog box closes, the last check is
performed. If something was not corrected, the error message will display.

Note: It is not recommended to use a variable type ANY because, in order to compare it, you will have
to cast it before. If this is not done, the comparison might fail.

See Process Business Language Programming Guide for further information.

Oracle BPM | Working with Studio | 113

Adding a Conditional Transition
You can add conditional transitions directly from the flow object context menu.

To add a conditional transition:

1. In the process design editor, right-click on the flow object fromwhich the transition will flow, and click
Add conditional transition ().

2. Click on the flow object the transition will flow to. Note that as you move the mouse, the transition line
is shown.
The Transition dialog box appears.

3. In theName field, enter a name for the new transition.
4. Switch to the Properties page of the Transition dialog box.
5. Enter a conditional expression using PBL syntax. This expression should evaluate to a boolean (a value

which is either true or false).

The condition can use instance variables. To see the instance variables which are available, click on the
Instance Variables icon.

The following illustrates valid and invalid conditional expressions, where total is an instance variable
of type Decimal:

Invalid ExpressionValid Expression

"true"true

2500total > 2500

totaltotal > 0

6. ClickOK.

The conditional transition is added to the process diagram.

Business Rule Transitions
Business rule transitions are a special kind of conditional transition which evaluates a dynamic business rule
instead of an expression. Business rule transitions are evaluated before conditional transitions.

Adding a Business Rule Transition
You can add business rule transitions directly from the flow object context menu in the process design editor.

To add a business rule transition:

1. In the process design editor, right-click on the flow object fromwhich the business rule transition will
flow, and click Add business rule transition ().

2. Click on the flow object the transition will flow to. Note that as you do move the mouse, the transition
line is shown.
The Transition dialog box appears.

3. In theName field, enter a name for the business rule transition.
4. Switch to the Properties page of the Transition dialog box.
5. In the Select Business Rule section, select a business rule from the drop-down list.

Note: If you have not yet defined any business rules in the project, clickNew and give the business
rule a name. After completing this task, youmust edit the business rule following the steps inDefining
a Business Rule on page 228.

6. ClickOK.

114 | Oracle BPM | Working with Studio

The business rule transition is added to the process diagram.

Due Transition
Provides detailed information on the Due Transition.

ADue Transition is usedwhen a process requires an instance tomove to the next flowobjectwithin a specified
time period. Due transitions are used to implement deadline processing.

Note: Flow objects can use only one due transition to link to another activity.

After you create the transition, a line with a directional arrow connects the two flow objects on the design
workspace.

The icon next to the transition indicates that it is an Interval expression or Interval constant due transition
. The due condition is displayed as well.

The icon next to the transition indicates that it is a Scheduled based due transition .

Note: If you do not want to see the Due Transitions disable the Show Due Transitions property from
the Viewmenu, Transitions option.

Defining the Due Condition

The Due Condition can be defined as Schedule based, Interval expression, or Interval constant.

In any of these cases, you can decide to use Calendar Rules. So, if the calculated due date is not a working
day, the applicable due date is moved to a valid date.

Schedule based

If the next scheduled due time falls on a non-working day, you have the ability to select whether the due
time is passed to theNext working day, same time orNext scheduled based time.

For example, if you set the due time to happen once a week, every Monday at 11:00 AM and one Monday is
a holiday, then if you have selected:

Next working day, same time the due time is set to Tuesday at 11:00 AM, or

Next scheduled based time the due time is set to next Monday at 11:00 AM.

The Scheduled option indicates that the due transition is set to run on a specific date at a specific time.

TheDAILY choice allows you to select a time you want the due time to apply each day. For example, every
day at 3:00 AM.

TheWEEKLY choice allows you to select a "day of the week" and a time that the due time applies every
week. For example, every Monday at '' 10:18 A.M.''

TheMONTHLY choice allows you to select the month, the week of the month (First-Second/Fourth-Last)/the
day of the week (Sun-Sat) or the day of the month and the day (1-31) and the time to which the due time
applies. For example, you can choose the third (3rd) Thursday of every month at 3:45 P.M.

Note: Notice that the due is moved based on the day and not on the time as explained on the dialog box

Interval Expression

The Interval Expression option allows the due time to begin themoment the instance arrives at the flowobject
plus an interval time. The interval time to add to the arriving time can be the result of an expression.

If the calendar rules apply and the calculated due time is on a non-working day, the due time is postponed
to the first working time.

Oracle BPM | Working with Studio | 115

• In the Due Interval field, type a time interval, making sure that you surround the time interval with a
single quote. (See below for time syntax examples.) For example, if you require a time interval of five
minutes, you need to type '5m'. This means that the instance has five minutes (5m) to flow through the
Due transition from the source flow object to the next flow object. To implement this example, you can
also define the Due transition as an Interval constant (see below for more information).

If you require a more complex condition, add a PBL-Method in the Due Interval field to force an instance
through the process in a specified amount of time under certain conditions. In the following example, the
PBL-Method indicates that an order greater than $5000 can sit in the Account Manager's queue for only 2
minutes ('2m'). If the order is less than $5000, the order can remain in the queue for 5 hours ('5h').

 (OrderAmount > 5000) ? '2m':'5h'

• The syntax is automatically checked. If everything is correct, a green flag appears on the top right corner
of the Conditional field. If something is wrong, a red flag appears. The error is shown at the bottom of the
dialog box if you click on the statement that contains the problem.

Note: Time will start running immediately after the instance reaches the source flow object of the due
transition.

Time syntax

Due interval logic to indicate an interval of time is added to the due transition properties. The syntax is:

• d for day
• h for hour
• m for minute
• s for seconds

Examples of valid intervals to enter in Due transition logic include:

• '3d ' for three days
• '1h' for one hour
• '4m' for four minutes
• '2m30s' for two minutes and 30 seconds.

See METHODS REFERENCE GUIDE for further information on time and interval syntax.

Interval Constant

The Interval Constant option allows the due time to begin the moment the instance arrives at the flow object
plus a defined time (number of months/days/hours/minutes/seconds).

If calendar rules apply and the calculated due time is on a non-working day, the due time is postponed to
the first working time.

For example, you decide that the due time is always the instance arrival time plus 7 days and 12 hours.

No expressions are available. If so, define the due time as an Interval expression.

Note: Time will start running immediately after the instance reaches the source flow object of the due
transition.

Priorities for the Due times

A due transition can be specified for leaf flow objects as well as for group activities. Therefore, an instance
can be affected by multiple due times as follows:

• the flow object due transition interval,

116 | Oracle BPM | Working with Studio

• each nesting group due transition interval,
• the process instance deadline.

When an instance arrives at a flowObject, these three options are considered in order to determine the shortest
due time and which due transition is first priority.

You should consider that a group's due transition time beginswhen the instance arrives at the first flow object
within that group.

The due time assigned to an instance, as it arrives at a flow object, is the shortest time of all the three possible
due time options listed above.

For example, as shown in following figure:

Figure 1: Due Transition Example

when the instance arrives at the activity Automatic3, as this activity has a due transition, the due time is the
shortest time between:

• 1 hour: defined in the Automatic3 due transition.
• The remaining time of 90minutes as defined for the Group1 due transition. This means that if the instance

has remained for 50 minutes in the Automatic1 activity, the remaining time for the group is 40 minutes.
In consequence, the instancewill probably flow through theGroup1 due transition to the Technical Control
activity instead of flowing to the Control activity (1 hour).

• The remaining time of 2 hours defined as the process due deadline. If the instance has been in the
Automatic2 Activity for 100 minutes, the remaining time for the process is 20 minutes. Thus, the instance

Oracle BPM | Working with Studio | 117

will probably flow to the End Event instead of flowing to the Technical Control activity (90 minutes) or
to the Control activity (1 hour).

If more than one due transition expires at the exact same time, the instance is sent through the outermost due
transition (of those transitions which time interval expired at that moment).

For example, the instance is within a flow object that has a due transition that expires at noon. Additionally,
this flow object belongs to a group that has also a due transition that expires at noon. At noon the instance
will flow through the group due transition.

When a due interval is calculated for a flow object (leaf or group), the calendar rules are taken into account
as regards the role where the instance is or whether the group spreads over many roles.

Task Timeout

If a task is running, the time it has to complete depends on the task timeout, defined with the predefined
variable timeout or 5 minutes by default. But the due time explained above also applies. Therefore, if there
is a task running for a specific instance and any of the due time at flow object, group or process level expires,
although the task might have some remaining time, the task will finish and the instance will flow through
the corresponding due transition.

Moreover, if the task timeoutwas setwith an interval greater than specified as the Engine property "Maximum
task timeout", the task will fail until the process or maximum task timeout is fixed.

Continuing with the example image above, the Automatic1 activity has a task that has set a timeout to 30
minutes. And the instance has been in the Automatic2 activity for 100 minutes, the remaining time for the
process is 20 minutes. So, although the task theoretically has 30 minutes to execute, after 20 minutes the
process due deadline expires, the task is terminated and the instance flows to the End event.

Due Time Calculation Failure

If a due time calculation fails, the transaction of the flow object from which the instance came from, fails.

For example, if you send an instance from an Interactive Activity to an Automatic Activity that has a due
transition but its calculation fails, the previous Interactive activity execution fails.

Adding a Due Transition
You can a due transitions directly from the flow object context menu in the process design editor.

To add a due transition:

1. In the process design editor, right-click on the flow object fromwhich the transition will flow, and click
Add due transition ().

2. Click on the flow object the transition will flow to. Note that as you move the mouse, the transition line
is shown.
The Transition dialog box appears.

3. In theName field, enter a name for the new transition.
4. Switch to the Properties page of the Transition dialog box.
5. Select an expression type, which can be Schedule Based, an Interval Expression, or an Interval Constant.
6. Enter the data required and clickOK.

The due transition is added to the process diagram.

Exception Transition
Provides detailed information on the Exception Transition.

An Exception Transition is used to submit the instance to an Exception Handler flow when the flow object
or group of activities fail or throw an exception.

118 | Oracle BPM | Working with Studio

Note: Flow objects or groups can use only one exception transition to link to the exception flow. The
exception flow can have as many flow objects as required to fix the exception condition.

After you create the transition, a line with a directional arrow connects the two flow objects on the design
workspace.

The source of the transition is the flow object or group where the exception occurred, and the target is the
first flow object in the exception handler flow. As the exception handler flow is independent from the main
process flow, it cannot have transitions back to the main process flow.

Exception holder variable: you can create and define an instance variable as the Exception holder variable.
If you do not define one, Studio creates it automatically.

Once the exception occurs it is stored in this variable and it is available within the exception flow that is
handling the exception. It can be used by the developer to debug or analyze the exception in depth.

You can create only one variable and re-use it in all the exception transitions or you can associate different
instance variables to each exception flow. Normally the variable type matches the exception type.

If there is no variable defined (backward compatibility), a default exceptionHandler instance variable (Any
type) is created when you check the design.

At runtime if the variable receives an unmatching type, then a warning is logged.

The variable content is available only within the Exception flow to where the instance is routed through the
exception transition. Therefore the exception contained in the variable is not propagated to other processes.

Compensate Transition
Provides detailed information on the Compensate Transition.

A Compensate Transition is used when an activity or group of activities require that the actions performed
by the BP-methods should be reversed. Reversal is needed in case of total or partial BP-method failure, which
could be caused by any number of things such as a call to an external system that fails, equipment failure, a
database call with bad data and so on.

Note: Activities or groups can use only one compensate transition to link to the compensate flow. The
compensate flow can have as many activities as required. However, no other compensate transition
between them applies.

After you create the transition, a line with a directional arrow connects the two activities on the design
workspace.

The source of the transition is the activity to be compensated and the target is the first activity in the
compensation handler flow. Since the compensation handler flow is independent from themain process flow,
it cannot have transitions back into the main process.

For further information, see Compensate Handling and Compensate Activity.

Message Based Transitions
Provides detailed information on the Message Based Transition

Message Based Transitions are available for the Begin and Message Wait event types. A Message Based
Transition can be added by using the source flow object argument mapping sets.

Begin and Message Wait events can receive different sets of arguments. Each set has a name defined as the
Argument set name. Within each set, the arguments can be mapped to instance variables or predefined
variables. For any of thesemappings, a new outgoing transition can be added to the flow object. The transition
type is calledMessage Based Transition. Basically, you define the transition that the instancewill flow through
based on the received message.

There cannot be more that one outgoing message based transition for the same Argument set name.

Oracle BPM | Working with Studio | 119

Variables
Variables are placeholders for values in your process. Each variable has a name, description, type and value.
Oracle BPM provides different classes of variables based on the scope and context where they are used.

Order of Precedence within a PBL method

Variable names are resolved in the following order of precedence:

1. Local
2. Argument
3. Instance

When accessing variables within a method, you should be aware of the order of precedence among different
types of variables. This is important if you have variables of different types that have identical names.

To explicitly state the scope of a variable, use the following prefix keywords:

DescriptionKeyword

Explicitly specifies an instance variable, including project and predefined
variables.

this.

Explicitly specifies an argument variable.arg.

Creating Project and Instance Variables
Outlines procedures for creating and editing Variables.

Before beginning this task, ensure that the Variables view is visible.

Instance and Project Variables are created and edited within the Variable view. You can also use the Variables
view to map incoming and outgoing Argument Variables.

1. Click the + icon in either the Project or Instance Variable area, depending on which type of variable you
are creating.
The Variable properties window appears.

2. Enter the Name and Label of the Variable.
3. Select the Variable type.
4. If you are creating a String or Decimal Variable, specify the variable size.
5. ClickOK.

The new Variable appears in the Variables view.

Instance Variables
Instance Variables are customvariableswhose scope is containedwithin a process. Instance Variables contain
information that flows through the process from the Begin to the End activities. The value of each variable
is stored independently for each process instance.

Most activities within a process can access and modify the value of an Instance Variable, with the exception
of Global Creation and Global Automatic activities. Global Interactive activities can access instance variables
only when theHas Instance Access property of the activity is checked.

Examples of instance variables that may be found in a shipping order management process include:
invoiceNumber, customerName, customerNumber, orderStatus, orderAmt and shipStatus.

120 | Oracle BPM | Working with Studio

Instance Variable Storage Categories

Instance variables have a property called category. This property determines how the Process Engine stores
the value of the variable in the database, but does not affect the logic of the process. This property takes one
of the following values:

DescriptionCategory

By default instance variables are defined as normal, and only those that have some
special characteristics need to be categorized in a different way. For each process

Normal

instance, the process execution engine stores all normal instance variables together by
serializing their values into a single BLOB in the Process Execution Engine database.
After the execution of each process activity, the Engine updates this BLOB in the
database.

To keep resources under control, the process engine limits the size of this BLOB for
each process instance. TheMaximum Instance Size property of the Engine defines
this limit (in kilobytes), and is configurable from the ProcessAdministrator application.
The default value is 16 KB.

The process execution engine stores separated variables in a separate table in the
database.

Separated

The Separated storage category is intended for variableswhichmust hold large amounts
of data (10 KB or more) and are used (and modified) rarely in the process.

A common use case for separated variables is when the input to the process is a
potentially big XML document, which must be parsed only once and is not modified
throughout the process. If the variable holding the XML is defined as Normal, every
time the process instance flows from activity to activity the XML is serialized to the
database along with the other Normal variables (even if the XML was not modified).
By defining the variable as Separated, the Process Engine updates Normal variables
independently, updating the XML only if it was modified.

Important: In Multiple Gateways, separated instance variables values are not
automatically copied to the separated instance variables of the copies. They have
to be copied manually in the Multiple Gateway PBL method.

Note: The size of a the BLOB for Separated variables is only limited by the
underlyingDBMSused by the Process Execution Engine.Mind though that storing
big data elements as instance variables (Normal or Separated) is not recommended
as it has a negative impact on Engine performance.

Default Values

Instance Variables are initialized based on their type according to the following table:

Default ValueType

0Numeric (int, real, decimal)

FALSEBoolean

NullAll other types

Oracle BPM | Working with Studio | 121

Accessing Instance Variables

All PBL methods of the process can refer to any instance variable by the variable's name. You may also use
the explicit this. prefix to avoid naming conflicts with variables defined at another scope (i.e.: argument
or local variables).

Predefined Variables
Predefined variables are special instance variables that are always defined for all BPMprocesses. All processes
include these predefined variables and cannot be removed. The value of some predefined variables cannot
me modified by the process logic.

Unlike with regular instance variables, end users can search for process instances using predefined variables
in their search conditions.

Predefined Variable Reference

The following table lists the Predefined Variables:

DescriptionTypePermitted ValuesPredefined Variable

The value of the action
defines the outcome of the

Fuego.Lib.ActionModifiable : OK ; FAIL ;
RELEASE ; CANCEL ;
REPEAT ;ABORT ; BACK
; SKIP ; NONE

action

current activity
transaction.Dependingon
this value, the Process
Execution Engine decides
what to do with the
current process instance
after the execution of the
activity is finished. The
action variable is reset
before every transaction.
See Action Variable on
page 126 for details.

Holds an object
representing the current
process activity.

Fuego.Lib.ActivityRead onlyactivity

Set automatically when
there is an outgoing Due

TimeRead onlyactivity.deadline

transition on the current
activity (receptionTime +
the due transition time
interval.)

The activity from which
the current instance came

Fuego.Lib.ActivityRead onlyactivity.source

into the current activity.
Null in the case of Global
andBegin activities.When
the process instance is in
an exception handling
flow (or TerminationWait
flow), the value of
activity.source refers
to the activity that raised
the exception (or received
the notification).

122 | Oracle BPM | Working with Studio

DescriptionTypePermitted ValuesPredefined Variable

Array holding the process
instance attachments.

Fuego.Lib.Attachment[]Read onlyattachments

Array of the Ids of the
process instances that are

String[ordered Object]Read onlychildren

children of this instance,
ordered by the list of
activities that created
them. Children instances
are those instances created
by theSubflow activity or
Process Creation activity.

Participant (end user) that
created this process
instance.

ParticipantRead only.creation.participant

Creation time of this
process instance.

TimeRead onlycreation.time

When the process instance
is within an exception

StringRead onlycurrentException

handling flow, this
variable holds the name
of the exception.

The Process Execution
Engine raises an

TimeModifiable.deadline

InstanceExpirationException
on the process instance if
the instance does not
reach the End activity
before the time specified
by deadline.

Descriptive name of the
instance that appears in

StringModifiabledescription

WorkSpace. By default:
ProcessName +
id.number.

The process instance
unique identifier. It

StringRead onlyid.id

includes the deployed
process name,
organization,
organizational unit and
the instance Id (including
thread id).

A number that uniquely
identifies an instance
within an Engine.

IntRead onlyid.number

The current instance copy
(thread) number. Copies

IntRead Onlyid.copy

are those instances created

Oracle BPM | Working with Studio | 123

DescriptionTypePermitted ValuesPredefined Variable

by a Multiple Gateways
and Split Gateways.

An array of all notes
added to an instance.

IntRead onlynotes

Name of organization
where the process is
running.

StringRead Onlyorganization

Name of the process
Organizational Unit, such
as Marketing or Finance.

StringRead OnlyorganiztionalUnit

The Id of the parent
instance of the current

StringRead onlyparent.id

instance if there is one;
null otherwise. In the case
of a Procedure, it contains
the id of the calling
process

The parent instance
thread number.

IntRead onlyparent.copy

A number that uniquely
identifies the parent
instancewithin anEngine.

IntRead onlyparent.number

The human participant
(end user) that is currently
processing the instance.

Fuego.Lib.ParticipantRead Only. Any
participant

participant

The language, country
and variant, if applicable,
of the current participant.

Fuego.Util.LocaleRead Onlyparticipant.locale

The participant to which
the instance will be

Fuego.Lib.ParticipantModifiable: Any
participant

participant.next

assigned when it arrives
to the next activity.

Ifparticipant.sticky
is set to true, variable

Fuego.Lib.ParticipantModifiable: Boolparticipant.sticky

participant.next is
automatically set to the
current participant (that
is, the value of
participant). Each time
the instance moves to a
new activity, it is assigned
to this participant
(provided the participant
has visibility over the
activity).

Priority of the instance.
This variable is intended

IntModifiable: 1 Lowest ; 2
Low ; 3 Normal ; 4 High ;
5 Highest

priority

to be used as a hint to

124 | Oracle BPM | Working with Studio

DescriptionTypePermitted ValuesPredefined Variable

participants regarding the
urgency of each work
item. The value of
priority has no effect
on how the Process
Execution Engine handles
each process instance.

The process the instance
belongs to.

Fuego.Lib.ProcessRead Onlyprocess

The Identifier of the
deployed process

StringRead Onlyprocess.id

containing the deployed
process name, its
organization and
organizational unit.

A number that identifies
the process inside the
Engine

IntRead Onlyprocess.idNumber

The name of the current
process.

StringRead onlyprocess.name

The timewhen the current
instance arrived at the
current activity.

TimeRead onlyreceptionTime

Generic String you can
use to set to indicate the

StringModifiable: Any stringresult

outcome of the current
activity. Intended to be
used for evaluating
outgoing conditional
transitions. The value of
result is reset when the
instances arrives to a new
activity.

Important: For
backward
compatibility, if the
action variable is
not set in a
PBL-method and the
value of result is
one of the possible
values of action, the
Engine maps the
value of result to
variable action. For
example, if variable
result is set to
"FAIL", this is
equivalent to setting

Oracle BPM | Working with Studio | 125

DescriptionTypePermitted ValuesPredefined Variable

action to
Action.FAIL.

Current status of the
process instance.

ProcessInstanceStateRead Only. RUNNING,
EXCEPTION,
SUSPENDED,GRABBED,

status

COMPLETED,
ABORTED,
ACTIVITY_COMPLETED

The amount of time that a
PBL-Method transaction

IntervalModifiabletimeout

has to complete before the
Process Execution Engine
aborts its execution. By
default this variable is set
to 5 minutes. The
Maximum Timeout
property of the Engine
defines the maximum
value you can assign to
variable timeout.

Number of copies of an
instance.

IntRead onlytotalCopies

Action Variable
When a PBL-Method is executed, multiple outcomes can result from the execution. PBL-Method execution
status is indicated by the value of the predefined action variable.

Depending on the value ofaction, the Engine responds accordingly and saves or undoes (commit or rollback)
the changesmade to any variablewhen the PBL-Method is executed. The following table lists the valid values
for the Action Variable:

ResultDescriptionaction =

PBL-Method changes to
"completed" status. If the activity

Indicates that PBL-Method
execution was successful. This is
the default value.

OK

NONE is marked as auto-complete, the
instance flows to the next activity
according to transition rules.

If a rollback PBL-Method is
included, it is executed. The Engine

Indicates that the PBL-Method has
failed its execution. The

FAIL

retries the original PBL-MethodPBL-Method must be executed
again. until it succeeds or reaches the

maximum number of retry times.
In the latter case, the instance is
routed to an Exception handling
activity. The effect of FAIL is
equivalent to that of a System
Exceptions on page 231.

The instance state is rolled back to
the point before PBL-Method

PBL-Method execution is aborted.CANCEL

execution. No trace of the

126 | Oracle BPM | Working with Studio

ResultDescriptionaction =

PBL-Method failure or execution
appears in the audit trail. CANCEL
is only relevant on interactive
executions.

REPEAT is only relevant on
interactive executions. The

Indicates that the PBL-Method
execution is successful, but not
recorded as completed.

REPEAT

transaction is committed.However,
the task's status remains in a
pending state and the task should
be executed again. REPEAT
indicates that, although the task
was successfully executed, it
remains pending. Therefore, if the
task is mandatory, the participant
has to execute it again.

The transaction is committed. The
instance is released to the next

Ends the PBL-Method execution
and releases the instance from this
activity.

RELEASE

activity without processing any of
the PBL-Methods in the current
activity, even if they are marked
mandatory. RELEASE is only
relevant on interactive executions
and on Join activities.

The instance is not processed and
is sent directly to the End activity.

Ends PBL-Method execution and
aborts the entire process instance.

ABORT

Caution: Instances that are
aborted cannot be recovered.

The transaction is committed. Used
in an exception handling flow (or

Ends PBL-Method execution and
sends the instance back to the

BACK

notification flow) to send theactivity where the exception (or
interruption) occurred. instance back to the activity where

the exception (or interruption)
occurred.

The transaction is committed. Used
in an exception handling flow (or

Ends PBL-Method execution and
sends the instance back to the

SKIP

notification flow) to send anactivity where the exception (or
interruption) occurred and skips it. instance back to an activity in the

process and skips its execution. The
instance goes back to originating
activity and is released to the next
activity, without re-executing the
activity that caused the failure.

Action Variable Example

The following PBL-Method example shows howyou canmanually set theaction variable
if a Boolean expression evaluates to true.

 if selectedButton == "Yes" then
 action = OK

Oracle BPM | Working with Studio | 127

 elseif selectedButton == "Abort" then
 action = ABORT

 else
 action = BACK

Project Variables
Project variables are special instance variables that are declared at the project level and appear in all processes
of the project. Unlike regular instance variables, end users can see project variables in work list columns of
the WorkSpace and use project variables in search conditions.

Like regular instance variables, the value of each project variable is stored independently for each process
instance.

Project instance variables have special advantages and limitations in comparison to regular instance variables:

• You define a project variable once for a given project. The characteristics of a project variable, such as
name, type, or length are the same for all processes in the project.

• You can only define Project Variables of basic types String, Int, Bool, Real, Decimal and Time.
• End users can viewproject variables in theWorkSpaceWork List panel and sort the lists by project variable.
• End users can search and filter process instance based on the value of project variables.

Project Variable Storage

The Process Execution Engine stores project variables into their columns in the database.

Note: Each project variable adds a new column to the Engine database. If multiple projects are deployed
to the same Process Execution Engine, the same column can be reused for variables of different projects.
You cannot have more than 256 project variables in a single project.

Defining Project Variables as a Business Indicator

You can define a Project Variable as a Business Indicator. A Business Indicator is used primarily to generate
Business Activity Monitoring (BAM) and Business Activity Data Mart information.

Local Variables
Local Variables store information that is used only inside the scope of a single PBL method. The scope and
lifetime of a local variable is withinmethod itself. Once themethod has been executed, the information stored
in a local variable is lost.

Screen Flows

Screenflow Overview
A screenflow is a user interaction flow. Screenflows are similar to processes in that they are designed
graphically, have a start and an end activities, support conditional expressions, and have their own instance
variables.

Screenflows differ from business processes in that the entire sequence of a screenflow is executed by a single
participant, so the first thing you will notice in a screenflow design editor is that there are no swimlanes.

128 | Oracle BPM | Working with Studio

Screenflows are called from an interactive activity. The state of a screenflow is not persisted in the process
instance till the screenflow is complete and returns to the calling activity. If a participant starts to execute a
three page screenflow and inputs information into the first two pages and then logs out, it is as if he had
input nothing.

You can call a screenflow are called from any interactive activity of any process in the project. Use them to
implement interactive tasks.

Figure 2: Simple Screenflow example. Note that there are no swimlanes.

Screenflows should be thought of as components with a process-like interface. Since screenflows are not
actual business processes, they are built from amuch smaller set of components. Only the following activities
are supported:

• Begin
• End
• Interactive Component Call
• Automatic
• Subscreenflow

These activities have similar behavior as those in the process, but they are much simpler. In addition,
screenflows support three types of transitions:

• Unconditional
• Conditional
• Exception
• Due

You should see interactive activities as a point in the process where instances get into an inbox for something
to be done. The execution of this activity task will involve the invocation of interactive components. This
sequence of interactive component invocations should bemapped to the screenflow's activities. Later on, this
screenflow should be mapped as the implementation of the interactive activity.

When to Use Screenflows

You should use screenflows in most interactive tasks whenever possible. They have several advantages over
BPM Objects with hand written interactions:

• Virtually no code is necessary to connect the different presentations.
• The flow between the screens is explicit and graphically shown.

Differences between Screenflows and Sub-processes

The most important differences are the following:

• Screenflows are executed by a single participant to complete a process task.
• They are designed to be used as a single task within a process.

Oracle BPM | Working with Studio | 129

Model-View-Controller Analogy

If you are familiar with Model-View-Controller (MVC) architecture, you can think of a screenflow as the
controller, while the BPM Object is the model, and presentations are the view. Just as with an MVC pattern,
the screenflow, acting as the controller, determines which page the user will see, and is responsible for
initializing it to whatever values are required.

Screenflow logic also handles user responses. For instance, note that in the example screenflow shown above,
a conditional transition is taken when the user clicks on the Cancel button in the Edit Preferences Interactive
Component Call. There are some characteristics, which do not fit exactly with the Model-View-Controller
model. For example, presentations are a part of the BPM Object definition, while an ASPX or JSP page is an
independent file.

Screenflow Timeout
A timeout defines the amount of time a task will wait to complete an action before processing continues.

If you deploy a process that has a screenflow, you need to consider that some timeout settings are available
in the Process Administrator. You can set the PBL-Method timeout and the Interactive component timeout

In a screenflow you can combine different types of activities and timeouts apply for each activity or group
of them. In the following example the PBL-Method timeout is set to 60 seconds and the Interactive component
timeout is set to 720 minutes.

Figure 3: Screenflow Timeout Example

Once the screenflow begins to execute, the first 3 automatic activities (Auto 1, Auto 2, and Auto3), will have
a total timeout of 60 seconds. When an interactive activity is reached, the Maximum PBL-Methods timeout
is reset.

Then the Interactive Component Call activity, Interactive 1, begins to execute. The user has 720 minutes
maximum to complete the task.

To complete the screenflow, the Auto 4 activity executes and has 60 seconds to complete its execution.

Procedures

Procedures Overview
Procedures provide a graphic definition of component methods that do not have interaction with end users.
Procedure use a graphical syntax similar to Oracle BPM Studio processes.

Procedures contain a set of activities that is executed by a single participant. It also has a reduced set of
activities that can be used. No roles are allowed because a procedure is limited to automatic activities.

130 | Oracle BPM | Working with Studio

Procedures are designed to be used in any part of a process. A procedure cannot be used outside the project
that it belongs to, but it can be reused among Processes in the same Project.

As it has an automatic behavior, a procedure does not have roles and it only includes automatic activities.
That is, activities of the following types: Begin, End, Process Creation with no Termination Wait activity,
Process Notification, Automatic, and Split-Join). It also includes Groups and Compensate Transitions.

Automatic Activities within the procedure can have:

• Process Business Language (PBL) Methods
• Component calls (Runs on server components only.)
• Procedure calls.

When to Use Procedures

Procedures should be used in order to reuse part of a process. They are the rightway to share process behavior
betweenmore than one process or inside the same process (calling the same procedure several times) instead
of using IPC.

A procedure is a set of automatic activities that does not define a Process, but it defines some automatic
instance behavior. For example:

• Having a set of automatic activities that perform several notifications to different third-party applications
and this behavior is repeated by most of the processes within the project.

• A set of automatic activities that should be used several times within a Process. Therefore, adding several
Procedure calls to the same Procedure would clarify the design.

• If your PBL-Method has a large number of lines, you should consider the possibility of moving the
PBL-Method to be implemented as a procedure and break down the method into several activities in a
graphical design.

• To graphically show a sequence of components methods to improve its comprehension.
• To hide certain details of the implementation and push some logic to another level of the design.

Procedures within a Process Instance

Once the process instance reaches an activity that executes a procedure, it remains there until the procedure
finishes. The process instance is never in the procedure. The process instance actually remains in the process
therefore, whatever you 'apply' in the procedure does not affect the process instance.

The procedure instance is a separate instance and the operations performed over the instance within the
procedure will not apply to the process instance. For example, neither adding notes nor attachments will
apply to the process instance. If you need to use any of the process instance variables data, they need to be
passed as arguments.

Rolling Back Procedures

Procedures are defined as atomic. The rollback is automatically done by the Engine.

Operations guaranteed to be rolled back are:

• Transactions performed using External Resources that handle transactions such as Data Base transactions
or EJB.In a BPM J2EE Engine the rollback is guaranteed by the two-face commit. In a BPM Engine
Standalone, the commit is an optimist commit. This means that each external resource receives an
independent commit but it is expected that neither of them will fail, but if one does, then the transaction
is not fully rolled back. For example, if you have two databaseswith different transactions, and the second
one fails, the commit performed to the first one is not rolled back.

• Update to Instance information.
• Update to variables information.

Exceptions cannot be treated inside a Procedure, they are thrown to the immediate outer group (or parent
group).

Oracle BPM | Working with Studio | 131

Creating a Procedure
The following steps describe how to create a new Procedure:

1. Right-click on the Processes resource in the Project Navigator.
2. SelectNew Procedure.
3. Enter a Name for the new Procedure and an optional description.
4. Click OK.

The new Procedure opens in an editor window showing the default Begin and End Activities.

5. Add required activities to the procedure.

Procedures are available under the Process resource in the Project Navigator.

Organizations
This section provides general information about organizations and provides procedures for creating and
maintaining an organization using Oracle BPM Enterprise. It also provides information on creating and
configuring directory services.

Organization Overview
Business processes that require user interaction generally occurwithin the context of an organization. Defining
an organization allows users participate in your business process once it is published and deployed. It also
ensures that users can only perform activities appropriate to their role within the organization. Each Oracle
BPM Project must have an organization defined.

Within Oracle BPM an organization defines a hierarchical structure that reflects the real-world organization
of your business. An Oracle BPM organization defines the way people are grouped and defines the roles or
each group and individual.

The following table lists the elements of an Oracle BPM organization.

DescriptionIconElement

Organizational Units are used to represent departments or
divisions within the organization. Organizational Units can be

OrganizationalUnits

defined hierarchically so that, for example, you can represent
divisionswithin an organization, departmentswithin a division,
areas within a department, and so on. You can assign
Participants, Calendars, and Business Parameters to an
Organizational Unit. You can also deploy processes under an
organizational unit.

Roles are used to represent functions performedbypeople related
to the organization. Roles are assigned to participants or groups,

Roles

and these assignments define the permissions the participants
have when executing Oracle BPM tasks through WorkSpace.

Groups are collections of roles. In this way, it is possible assign
multiple roles to participants in a single step. Groups may also
contain other groups.

Groups

132 | Oracle BPM | Working with Studio

DescriptionIconElement

Participants are the actual people who participate in the
organization, usually as end users of the BPM implementation.

Participants

Holidays Define the organization’s non-working days. These
rules inform the Process Execution Engine that there is an

Holidays

exception to the normal calendar rules on certain days of the
year.

Calendars define the organization’s work week and work
schedule. Calendar rules can be assigned to organizational units.

Calendars

Business Parameters are used tomaintain constant values defined
either for the entire organization, or at the Organizational Unit

Business Parameters

level. These parameters are visible to all instances and all
processes across theOrganization.Althoughbusiness parameters
may be changed every once in a while, they are not meant to be
used as variables. Rather, they provide a way of storing
long-lived values, such as a sales tax rate, without having to
hard-code them into Process Business Language methods.

Organizational Units
Organizational units are typically departments or divisions within an organization. Organizational units can
be organized in a hierarchy.

For example:

In this hierarchy, Dallas is a single top-level organizational unit which contains the Customer Support,
Documentation, and Product Management organizational units, while Customer Support contains Training,
Technical Support, and Product Support organizational units.

Once the organizational units have been defined, participants may be assigned to one of the organizational
units in the hierarchy. Processes can be deployed for one of the organizational units defined so that only
participants in that organizational unit and in lower levels within the hierarchy are able to perform tasks in
a process.

Every organizational unit might have a different calendar rule associated to it. This allows the Process
Execution Engine to take into account time zones andworking schedules set for the organizational unit where
processes are deployed and to calculate deadlines accordingly.

Studio allows you to define the organizational hierarchy and the properties of each organizational unit.
Remember that all the changes introduced to the organizational structure require a Refresh Engine Data
operation if they are to be made available to processes on a currently running Process Engine.

Oracle BPM | Working with Studio | 133

Roles
A role in the organization is a title or job function which is associated to a set of activities performed by
participants of the organization.

Examples of roles include Accounts Manager, Sales Clerk, or Customer. Roles are similar to job titles, but are
more flexible because a participant can be assigned to several roles, and some roles, such as Customer, may
not be jobs at all.

Roles and Activities

Every interactive activity is defined under a role. This is done by placing the activity within a swim lanewith
the name of the role. Swim lanes with no role name are only used for automatic activities which require no
user interaction, and are not assigned to a role.

Roles and Participants

Participants are assigned one or more roles. This is how the process can determine which participants can
execute a given activity.

See Permissions and Security in an Organization for more information.

Parametric Roles
A role can be defined as parametric. A parametric role includes a parameter which can adopt one of a set of
values defined with the role.

For example, the role could be called "sales support" and the parameter could define a set of regions, such
as East, West, and South. Even though there is only one role from a functional point of view, participants are
assigned based on the location parameter.

Parametric roles require an instance because the parameter to be used is defined as an instance variable. This
means that global activities cannot be assigned to parametric roles.

Restriction: Global activities cannot be assigned to parametric roles.

Groups
Groups are collections of roles. In this way, it is possible assign multiple roles to participants in a single step.
Groups may also contain other groups.

Unlike an organizational unit, which can belong to only one parent organizational unit, a group may be
included in many other groups. Groups are therefore not organized in a hierarchical structure. However, if
a group is included in another group, then it cannot have as a member that group. That is, so long as group
A includes group B, group B cannot include group A.

Participants
Participants defined in the organization are all the people enabled to track and perform tasks of business
processes designed and developed with Studio.

A participant might belong to an organizational unit. If so, he can only perform tasks on processes deployed
in that organizational unit or any organizational units that are below it.

You can assign a set of roles to a participant. A participant who logs in to WorkSpace can perform all the
tasks defined for the roles assigned to him.

You can create, edit, and delete participants from theProject Navigator. Participants are usually created
within Studio for process design and testing purposes. When the process is implemented into production,
actual participants will normally be imported from an existing company directory or will be defined within
Process Administrator.

134 | Oracle BPM | Working with Studio

Holiday Rules
Holiday rules are collections of holidays that can be applied to calendar rules.

Multiple holiday rules can be created as needed for different Calendar Rules on page 135. Holiday rules affect
the available work days for participants and the scheduling of activity deadlines.

Calendar Rules
Calendar rules define the work hours, time zone, and holiday rule assignment for organizational units.

Multiple calendar rules can be created as needed for different organizational units (such as day shift, night
shift, east coast, west coast, etc.). Calendar rules determine the available work days for participants and the
scheduling of activity deadlines.

Business Parameters
Business parameters are used to store long-lived information defined at the organization level.

Information suitable for storage as a business parameter includes company address and phone data, tax rates
used in calculations within the process, or infrequently changed economic values such as the prime lending
rate. Business parameters are visible from any process within a project and should generally be thought of
as constants, though they can be changed.

Tip: Business parameters should be used for infrequently changed values which you do not want to
include in the actual code. For example, company address data, the prime lending rate, or a sales tax rate
are all good uses for business parameters.

It is strongly recommended not to use Business Parameters for values which will change very frequently
(once a day or more). For those cases consider other options.

If you do need to change a Business Parameter from Process Business Language code, you can change it at
runtime using the component Business Parameter in the Lib category. See the Studio. component
documentation.

• If you change a Business parameter fromamethod youmust be aware that the newvalue is not immediately
available for all instances. Even more, if this value is changed from a Process Business Language method,
the result may not always be the expected one and not available at the same time across the all participants.

• If the business parameter is used in a due transition expression of an activity, the business parameter
value that applies is the one defined at the time the instance enters the activity. For example, let's say the
business parameter "MAXTIME" is used in the due transition expression of the activity "Reply toCustomer".
When the instance "Request Customer 1" arrives, the due time is calculated using the value that the
MAXTIME has at that moment. If another instance (in any process) changes the value of MAXTIME or
you manually change it in the Process Administrator, the new value does not apply for the due time of
the instance "Request Customer 1" for the activity "Reply to customer". It will apply for all instances that
arrive to that activity after the business parameter was changed.

Note: If you change the Business Parameter at runtime, and you then stop and restart the Studio Process
Engine, all business parameters are restored from the project definition. However, the Enterprise Process
Engine doesmaintain Business Parameter values through a start/stop cycle, because in a production
environment Business Parameter changes are assumed to be permanent.

Creating and Managing Organizations in Studio

Creating a New Organizational Unit
You can add an Organizational Unit from the Project Navigator.

To add an organizational unit:

1. ExpandOrganization () in the Project Navigator.

Oracle BPM | Working with Studio | 135

Organizationwill expand to showOrganizationalUnits,Roles,Groups,Participants,Holidays,Calendars,
and Business Parameters.

2. If possible, expandOrganizational Units ().
Any existing organizational units will be listed. If you cannot expand, there are no organizational units
present.

3. Right-click on eitherOrganizational Units or on an existing organizational unit, and selectNew from the
context menu.
TheName dialog box will appear.

4. Input the name of the organizational unit and clickOK to add it to the node where you obtained the
context menu.
the neworganizational unit is either created under the root organization node in the tree (if you right-clicked
onOrganizational Units) or under the organizational unit you right clicked on. In this way, hierarchical
organizations can be defined. An editor for organizational unit data will open.

5. In the organizational unit editor, you can add a description in theDescription text box, and you can select
a calendar. These are optional fields and you can edit them later if you wish.

Note: The calendar rule set to an organizational unit does not affect the time zone used to display
information to participants belonging to that organizational unit. The time zone taken into account
to display dates inWorkSpace is the one set in theWorkSpace Settings dialog box. Settings, including
time zones, can be unique for each user.

Creating a Role
You can add a regular or parametric role to the organization from the Project Navigator.

To create a role:

1. In the Project Navigator, expand the project where you want to create a role.
2. ExpandOrganization ().
3. Right-click Roles (), then selectNew from the context menu.

TheName dialog box is displayed.
4. Enter a name for the new role, then clickOK.

The new role is created and an editor opens for the role.
5. In the editor, you can enter a label for this role in the Label field. The default value for the field is the

name of the role, so changing it is optional.
6. In the editor, you can also enter a description for this role in the Description text box. This is optional.
7. If you want the new role to be parametric, click the Parametric checkbox. In the Values pane, add values

as required with theAdd button. You can remove unwanted values by selecting them and clicking on the
Remove button.
A parametric role must have at least one defined value. Otherwise will let you save the role, but reports
an error.

8. Save the role.

The new role has been created.

Creating a Group
You can add a group from the Project Navigator.

To add a group:

1. ExpandOrganization in the Project Navigator.
2. If possible, expandGroups ().

Any existing groups will be listed. If you cannot expand, no groups exist.

136 | Oracle BPM | Working with Studio

3. Right-click onGroups, and selectNew from the context menu.
TheGroup dialog box will appear.

4. Input the name of the group in theName field and clickOK to add it.
The new group is created. An editor for the group will open.

5. In the group editor, you can add a description in the Description text box. This is optional.
6. Save the group.

The new group has been created.

Creating a Participant
You can add a participant from the Project Navigator.

To add a participant:

1. ExpandOrganization in the Project Navigator.
2. If possible, expand Participants ().

Any existing participants will be listed. If you cannot expand, there are no participants.
3. Right-click on Participants, and selectNew from the context menu.

The Participant dialog box will appear.
4. Input the name of the participant in theName field and clickOK.

The new participant is created. An editor for the participant opens.
5. Optionally complete the First Name, Last Name, andDisplay Name fields.
6. If the participant belongs to an organizational unit, select it from theOrganizational Unit drop-down list.
7. Optionally complete the E-mail address field.
8. If you will use this participant in simulations, enter values in the Efficiency and Cost per hour fields.
9. Optionally set the Locale and Time Zone drop-down lists to values appropriate for the participant.
10. Add the groups the participant belongs to by clickingAdd in theGroups pane, and selecting the desired

group(s) from theGroups dialog box.
11. Add the roles the participant carries out by clicking Add in the Roles pane, and selecting the desired

role(s) from the Roles dialog box.
12. Save the participant. If you close the editor without saving, the participant will still exist, but will not have

any of the settings entered in steps 5 through 11.

Creating a Holiday Rule
You can add a holiday rule from the Project Navigator.

To add a holiday rule:

1. ExpandOrganization in the Project Navigator.
2. If possible, expandHoliday Rules ().

Any existing holiday rules will be listed. If you cannot expand, no holiday rules exist.
3. Right-click onHoliday Rules , and selectNew from the context menu.

TheHoliday Rule dialog box will appear.
4. Input the name of the holiday rule in theName field and clickOK to add it.

The new holiday rule is created, but it contains no holidays. An editor for the holiday rule will open.
5. In the holiday rule editor, you can add holidays by clickingAdd in theRoles pane, and adding the desired

holiday(s) from theHoliday Rule dialog box.
6. When you are done adding holidays, save the holiday rule.

The new holiday rule has been created.

Note: If you close the editor without saving, the holiday rule will still exist, but will not have any of the
holidays added in step 5.

Oracle BPM | Working with Studio | 137

Creating a Calendar Rule
You can add a calendar rule from the Project Navigator.

To add a calendar rule:

1. ExpandOrganization in the Project Navigator.
2. If possible, expand Calendar Rules ().

Any existing calendar rules will be listed. If you cannot expand, no calendar rules exist.
3. Right-click on Calendar Rules , and selectNew from the context menu.

The Calendar Rule dialog box will appear.
4. Input the name of the calendar rule in theName field and clickOK to add it.

The new calendar rule is created, with default calendar values. An editor for the calendar rule will open.
5. In the calendar rule editor, mark the checkbox for each day of theweekwhich is awork day in this calendar

rule.
6. For each workday, set the first work period of the day, between the Starting Time and the Finish Time on

the left side. A second work period can be specified by setting the Starting Time and Finish time on the
right side. You control whether the second work period is enabled by setting the checkbox adjoining it.

7. Save the calendar rule.

The new calendar rule has been created.

Note: If you close the editor without saving, the calendar rule will still exist, but with the default calendar
values.

Creating a Business Parameter
You can add a business parameter from the Project Navigator

To add a business parameter:

1. ExpandOrganization in the Project Navigator.
2.

If possible, expand Business Parameters ().
Any existing business parameterswill be listed. If you cannot expand, no business parameters are defined.

3. Right-click on Business Parameters, and selectNew from the context menu.
The Business Parameter dialog box will appear.

4. Input the name of the business parameter in theName field and clickOK to add it. Business parameter
names are must be all upper case and the first character cannot be a number. Underscores are allowed.
The new business parameter is created. An editor for it will open.

5. In the business parameter editor, select the data type of the parameter in the Type drop-down list. Data
type choices are Bool, Int, Real, Time, Decimal, and String.

6. Enter a value for the whole organization in theOrganization Value field. You can override this value for
individual organizational units in the next step.

7. You can add values by organizational unit by clickingAdd in theOrganizational Units pane, and adding
the desired organizational unit from theOrganizational Units dialog box. For each organizational unit,
specify a value in the Values column of the Organizational Units table.

8. Save the business parameter.

The new business parameter has been defined.

Importing an Organization
You can import an organization separately fromaproject. Thisway, you do not need to setup your organization
with every new project.

To import an organization

138 | Oracle BPM | Working with Studio

1. In the Project Navigator, expand your project so you can seeOrganization ().
2. Right-click onOrganization and chose Import Data.

TheOpen dialog box will be displayed.
3. Choose an organization data file, and clickOpen.

The organization data will be imported.

Exporting an Organization
You can export an organization separately from a project. The organization data will then be available for
other projects.

To export an organization

1. In the Project Navigator, expand your project so you can seeOrganization ().
2. Right-click onOrganization and chose Export ().

The Save As dialog box will be displayed.
3. Anorganization data file namewill appear by default, with an XDML extension. You can choose a different

name or path, but you should keep the file type the same. Click Save.

The organization data will be exported to the file you specified.

Using Organizations with the Embedded Process Execution Engine

When the embedded Process Engine is started from Studio (select Run ➤ Start Engine from the menu), all
the information about the organization is copied to an isolated environment where the engine executes
processes.

Changes introduced while the Engine is running will not be updated to the runtime environment until the
Process Engine is stopped and started, or until a Refresh Engine Data operation is performed.Depending
on how runtime engine properties are set, the Refresh Engine Data operation might be performed
automatically after introducing changes to the organization structure.

See Engine Properties for further information on how the runtime environment is updated with the latest
changes. Some changes might require users currently logged in to WorkSpace first log out before having the
changes available in their WorkSpace sessions. Refer to Refreshing the Embedded Execution Engine Data for
further details on this topic.

Attribute Reference
The following sections describe the attributes of each element within an organization.

Organizational Unit Attributes

DescriptionAttribute

Displays the name of the organizational unit.Name

Note: This name is defined when you create an
organizational unit. It cannot be edited later.

Contains a description of the organizational unit.Description

Allows you to select a calendar rule for this
organizational unit.

Calendar

Oracle BPM | Working with Studio | 139

Role Attributes

DescriptionAttribute

Displays the name of the role.Name

Note: This name is defined when you create a
role. It cannot be edited later.

Allows you to define a custom label for this role. This
label is displayed in the swim lanes of the process
editor view and can be changed after a role is created.

Label

Contains a description of the role.Description

Showswhether the role is parametric or not. Defining
a role as parametric allows you to split a role into

Parametric

subroles. The subroles are determined by values
added to the role definition.

Note: You can only define a role as parametric
when it is created.

Allows you to define the parametric values for a role.Value

Group Attributes

DescriptionAttribute

Displays the name of the group.Name

Note: This name is defined when you create a
group. It cannot be edited later.

Contains a description of the group.Description

Displays the roles associated with this group. You
can associate new roles by clicking the Add button.

Roles

If a role is parametric, you can choose the parameter
associated with this role by selecting it from a
drop-down menu within the table.

Displays the groups associated with this group. To
make assigning permissions easier, a group can

Groups

contain a collection of subgroups. You can associate
new groups by clicking the Add button.

Participant Attributes

DescriptionAttribute

Displays the name of the participant.Name

Note: This name is defined when you create an
participant. It cannot be edited later.

Defines the first name of this participantFirst Name

140 | Oracle BPM | Working with Studio

DescriptionAttribute

Defines the last name of this participantLast Name

Defines the display name for this participant. This is
the name that appears in Oracle BPMWorkSpace.

Display Name

Allows you to specify which organizational unit the
participant belongs to.

Organizational Unit

Defines the email address of the participantE-mail address

Defines the locale for this participant. The locale value
determines the language used in Oracle BPM
WorkSpace.

Locale

Defines the time zone for this participant. The time
zone value determines the time zone used in Oracle
BPMWorkSpace.

Time Zone

Displays the roles associated with this participant.
You can associate new roles by clicking the Add

Roles

button. If a role is parametric, you can choose the
parameter associated with this role by selecting it
from a drop-down menu within the table.

Displays the groups associated with this participant.
You can associate new groups by clicking the Add
button.

Groups

Holiday Rule Attributes
Holiday Rules allow you to define a collection of holidays and other non-work days. Holiday rules can be
assigned to an organizational unit.

DescriptionAttribute

Displays the name of the holiday rule.Name

Note: This name is defined when you create an
holiday rule. It cannot be edited later.

Displays a description of an individual holiday.Description

Defines the type of holiday. Valid values are:Type

• Common
• Fixed

Defines the date of the holiday.Date

Calendar Rule Attributes

DescriptionAttribute

Displays the name of the calendar rule.Name

Note: This name is defined when you create an
holiday rule. It cannot be edited later.

Oracle BPM | Working with Studio | 141

DescriptionAttribute

Specifies the time zone for this calendar rule. This
information is used by Oracle BPMWorkSpace to

Time Zone

determine when a participant is available to perform
work.

Specifies the holiday rule associatedwith this calendar
rule.

Holiday Rule

Defines the number of work days per week as well
as the number of hours each day.

Work Days

Business Parameter Attributes

DescriptionAttribute

Displays the name of the business parameter.Name

Note: This name is defined when you create the
business parameter. It cannot be edited later.

Defines the type of data the business parameter
contains.

Type

Defines the value of the business parameter.Organizational Value

Specifies the organizational units that use this
business parameter. This table also allows you to

Organizational Units

define the value of the business parameter for each
organizational unit.

Simulations

Simulation Overview
After creating a processmodel, Oracle BPMStudio allows you to run simulations to determine the performance
of your process model. You can also use process simulations to compare how changes to an existing process
will affect performance. You can run process simulations based on simulated data or real-world data from
production processes.

Oracle BPM allows you to simulate the behavior of process models based on real or simulated data. After
you have designed a business process model, Oracle BPM Studio allows you to run process simulations to
determine their efficiency. You can also use simulations to test the effects of changes on your process design.

Process simulations do not execute each individual task within a process. For example, the code within an
activities task is not executed, variables are not assigned values, and external resources are not updated.
However, you canmimic the behavior of these elements of process's activity by configuring different attributes
within a simulation model. These attributes include:

• duration
• resources
• costs
• transitions

142 | Oracle BPM | Working with Studio

Process Simulation Models

To execute a process simulation, youmust define simulationmodels. Simulationmodels allow you to specify
behavior of each element of your process. There are two types of simulation models in Oracle BPM Studio:

DescriptionSimulation Model

Allow you to define the behavior for an individual process. See Process Simulation
Model on page 143.

Process Simulation
Models

Allow you to define the behavior for an entire project. A project simulation model
is composed of a group of process simulation models. Within a project simulation

Project Simulation
Models

models you can choosewhich process simulationmodels to run. SeeProject Simulation
Models on page 144.

You can configure multiple simulations models for a project and its processes. This allows you to mimic
different combinations of resources, etc.

Project Simulation Models

A project simulation model functions as a container for process simulation models. A project simulation
model allows you to define a scenario for an entire project. It also allows you to determine how processes
work together

Simulations View

After defining your process and project simulation models, you can run and view simulations using the
Simulations View The Simulations View provides controls for starting, stopping, and pausing simulations.
It also provides controls for displaying simulation data

Simulations Editor

Once you start a simulation, the Process Editor windowdisplays the path of the simulated in-flight instances.

Process Simulation Model
Process simulation models allow you to define how a process behaves as part of a Project Simulation Model.
You can define multiple process simulation models for each process. This allows you to create different
simulations based on different combinations of resource allocations and activity behavior.

Note: Grab, Global, and End activities are not simulated.

Process Information Tab

The Process Information Tab allows you to configure in:

DescriptionOption

Allows you to define the number of instances that can exist within the simulation
at one time. The process simulation will run until the duration is completed or
the maximum number of instances is reached.

Enable amount of current
instances

The following table lists the Distribution Types used when creating process instances:

DescriptionOption

Generates simulated process instances regularly as defined by the period property.Constant

Generates simulated process instances regularly, taking into account the variation specified in
the delta property.

Uniform

Oracle BPM | Working with Studio | 143

DescriptionOption

Creates simulated process instances using an average frequency of instances within a specific
interval.

Exponential

Generates simulated processes according to a Gauss Bell distribution based on a mean and
standard deviation.

Normal

Creates simulated process instances based on specific time-based criteria. This type of distribution
is primarily used with round-trip simulations. You can specify the interval criteria used to
categorize the distribution. You can also specify the mean and standard deviation.

Real

Project Simulation Models
A Project simulation model defines the behavior of the simulation for the entire project.

Project simulation models allow you to customize the following parameters to see how they influence the
performance of your project:

• Start time and duration of the simulation
• Determine which process simulation models you want to include in the project simulation
• Allows you to define the participant resources you want to include in the simulation
• Allows you to define the priority distribution of instances within the simulation

Within a project, you can define multiple project simulations. Defining different project simulations models
allows you to test different combinations of resources and priorities. The following parameters can be
configured for a project simulation model.

DescriptionParameter

Defines the start time for the simulation. This time is used only for logging. It is not
used for scheduling purposes.

Start Time

Defines the period the simulation will run. This interval is specified in months, days,
hours, minutes, and seconds.

Duration

Determines if calendar rules are used in simulation. Checking this box allows the
simulation to account for calendar rules when determining participant allocations.

UseCalendar Rule

Project SimulationModels also contain the following tabs which allow you to further define your simulation.

Project Tab

The Project Tab contains a table that lists all of the processes within the current project. For each process, you
can select which process simulation model you want to use for each process. Also, you must specify which
processes to include in the simulation.

For all of the included processes, instances are generated when the simulation is run.

Resource Tab

The Resource Tab allows you to define the resources usedwithin the process simulation. All process included
in the simulation will share these resources. The cost of each resource is defined per hour.

DescriptionIcon

Loads resources from the organization into the project simulation model.

Adds a new resource to the project simulation model.

Deletes the currently selected resource from the project simulation model.

144 | Oracle BPM | Working with Studio

Priority Tab

The Priority Tab allows you to specify the probability for priority distribution of an instance. This priority
determines the way an instance flows within a process. The sum of all priority distributions must equal 100.

Creating and Running a Process Simulation Model
The following tasks show you how to create simulations models and run a simulation.

Creating a Process Simulation Model
The following steps describe how to create a Process Simulation Model.

1. In the Project Navigator View, expand the Project where you want to create the Process SimulationMode.
2. Expand Processes.
3. Right-click on the Process.
4. SelectNew Process Simulation Model.
5. Enter a name for you new Process Simulation Model.
6. ClickOK.

The Process Simulation Model appears in the editor window. It also appears as a Resource in the Project
Navigator View.

You can define the behavior of your Process Simulation Model.

Creating a Project Simulation Model
The following steps describe how to create a Project Simulation Model.

You should define any Process Simulation Models that you want to include as part of your new Project
Simulation Model. See Creating a Process Simulation Model on page 145.

1. In the Project Navigator View, right-click Simulations.
2. SelectNew Simulation.
3. Enter a name for your Project Simulation Model.
4. ClickOK.
5. The Project Simulation Model appears in the editor window. Each Process Simulation Model that you

have defined appears in the table.

The Project SimulationModel also appears as a Resource under Simulations in the ProjectNavigator View.

6. Using the drop-down menu, select Yes in the Include in Simulation for each Process Simulation Model
that you want to include in your Project Simulation.

Running a Simulation
The steps in this task outline how to run a Process Simulation based on Process and Project SimulationModels.

Ensure that you have created Process Simulations Models and at least one Project Simulation Model. See
Creating a Process Simulation Model on page 145 and Creating a Project Simulation Model on page 145.

1. In the Project Navigator View, expand Simulations .
2. Select the Project Simulation Model that you want to run.
3. Ensure that the Simulation View is visible.

See Simulation View Reference on page 147.

Note: It may take several seconds for the Simulation View to load.

4. Click the Start icon.

Oracle BPM | Working with Studio | 145

The simulation animation plays in the Process Editorwindow. Simulation data is updated in the Simulation
View.

Round-trip Simulations

Round-trip Simulations

Round-tip Simulation provides a way to create process simulation models based on real-world data. When
creating a process simulationmodel using round-trip simulation, data is imported from the Process Execution
Engine Database. You can use data imported from the following environments:

UsesProcess ExecutionEngineDatabase

Using data from Studio's process execution engine, you can quickly
create a process simulation model.

Studio

Using data from the Enterprise process execution engine allows you
to create process simulationmodel based on 'real-world' data. You can

Enterprise

use this data to create a base-line simulation that mimics the
performance of your processes. This base-line can be compared to
simulations of revised processes to determine how performance can
be improved.

Note: After creating a process simulationmodel using round-trip simulation, youmustmanually enable
it in your Project Simulation Model. See Creating a Project Simulation Model on page 145.

Running a Round-trip Simulation in Studio
This topic outlines the procedures for running a round-trip simulation using within Studio. For testing
purposes, you can create a round-trip simulation model using WorkSpace to generate data based on real
world situation. This data is then imported from the Embedded Process Execution Engine into Studio.

Before running the following procedures, ensure that you have created a project and at least one process that
you want to simulate.

1. Start the Embedded Process Execution Engine within Studio.
2. Run WorkSpace
3. Use your deployed process to generate simulation data.

You should create and use enough instances of your process to create meaningful test data. There is no
minimum threshold of data. The exact amount of data required depends on the process you are simulating.

Note: Before continuing to the next step, you must wait several minutes for the embedded process
engine database to update.

4. Right-click on your Project.
5. Select Extract Simulation.

a) Provide a name for the new Process Simulation Model
b) Select the Process you where you are creating the simulation model.
c) Select the distribution criteria for this simulation.

6. ClickOK.

146 | Oracle BPM | Working with Studio

Simulation Reference

Simulation View Reference
The simulation view allows you to run and view simulations.

After defining Project and Process simulation models, you can run a Project simulation from the Simulation
View.

The Simulation View toolbar allows you to perform the following actions:

DescriptionToolbar Element

Starts the simulation. If the processes included in your
simulation are not open in an editor window, Studio
opens them.

Play Icon

Stops the simulation.Stop Icon

Note: If you stop a simulation, you must restart
it from the beginning.

Pauses the simulation. You can press the start icon to
resume the simulation.

Pause Icon

Runs the simulation in the background with no
animation. This allows you to run the simulation
faster.

Run to End Icon

Determines how fast simulated process instances are
created. In normal speed, instances are created at rate
of one per second.

Simulation Speed

Log Tab

The Log Tab displays a log of all the actions performed during the simulation.

Process Simulation Model Reference
Each process simulation model allows you to define parameters for the simulation as a whole as well as
define parameters to mimic the behavior of the activities within the process.

Activities Tab

Each configurable activity contains tabs that allow you to edit different simulation properties. The following
table shows what process parameters you can edit for each activity type.

Related
Process

CopiesInner
Activities

TransitionsResourcesQueue
Info

CostDuration

xxxxAutomatic

xBegin

xConditional

xxxxxDecision

xxxxxxGroup

xxxxxInteractive

xJoin

Oracle BPM | Working with Studio | 147

Related
Process

CopiesInner
Activities

TransitionsResourcesQueue
Info

CostDuration

xxMultiple

xOrSplit

xxxxProcess
Creation

xxxxxSubflow

xxxxTermination
Wait

Duration
TheDuration tab allows you define the amount of time required to complete the simulated activity.

Constant Distribution

Constant distribution causes the simulated time to complete an activity to be determined based on the Period
property described below.

DescriptionParameter

Determines the period required to complete an
activity.

Period

Uniform Distribution

Uniform distribution determines the period required to complete an activity consistently, taking into account
the variation specified in the delta property.

DescriptionParameter

Determines the mean time it takes to complete an
activity.

Mean

Defines the upper and lower limit variation of the
meanparameterwhen determining how long it takes
to complete a simulated activity.

Delta

Exponential Distribution

Exponential distribution determines how long it takes to complete a simulated activity by specifying how
many instances are completed within a specific period.

DescriptionParameter

Determines the number of average instances
processed within the interval defined by the Every
property.

Average Frequency

Defines the interval used for exponential distribution.Every

Normal Distribution

Normal distribution uses the Gauss Bell distribution to determine how long a simulated activity takes to
complete. You must specify the mean and standard distribution.

148 | Oracle BPM | Working with Studio

DescriptionParameter

The mean period required to perform an activity.Mean

The standard deviation of the mean required to
perform an activity.

Standard Deviation

Real Distribution

Real distribution allows you to specify the amount of time required to complete a simulated activity for a
specific time interval.

DescriptionParameter

Determines the time interval for determining how
long a simulated activity takes to complete.

Distribution Criteria

Interval

Defines the mean time to complete an activity.Mean

Defines the standarddeviation of themeanparameter.Standard Deviation

Cost
The Cost tab allows you define the amount of resources required to complete the simulated activity.

DescriptionParameter

Defines the cost required to perform the simulated
activity.

Fixed Base Cost

Calculated based on the define cost per hour and the
time it takes the resource to execute the instance.

Fixed Base Cost Plus Resource Cost

Queue Info
TheQueue Info tab allows you to configure the simulated behavior of how process instances are queued for
a given activity.

DescriptionParameter

Determines the number of incoming instances that
can be waiting for an activity at a time.

Queue Warning Size

Determines how incoming instances are handled by
the activity. The following values are available:

Activity Queue Policy

• F.I.F.O.
• L.I.F.O.
• Random
• By Priority

Resources

DescriptionParameter

Uses resources defined as part of the organization of
the project.

Use Organization Resource

Can be based on the Minimum Cost, Maximum
efficiency or Randomly. Cost and Efficiency values

Participant Selection Policy

Oracle BPM | Working with Studio | 149

DescriptionParameter

are those defined in the project simulation model
definition for each participant.

Indicates the number of participants assigned to the
Interactive activity. This option is used when costs

Use Fixed Resources

and efficiency parameters are not relevant in the
evaluation but only the amount of resources is needed.

Specifies a fixed number of resources available.Available Resources

Transitions
The Transition tab determines how an activities transitions are handled in the simulation.

DescriptionParameter

Lists all of the outgoing transitions of an activity.Transition

Determines the probability that a transitions will be
executed.

Probability

Inner Activities
The Inner Activities tab allows you to select whether the process simulation model will simulate activities
within an activity group.

Related Processes
TheRelated Processes tab allows you to configurewhether the activitieswithin a subflow are includedwithin
the process simulation.

Components Catalog

About Components
Components in Oracle BPM are object types containing data (attributes) and behavior (methods).

Components can be defined in Oracle BPM's PBL language (BPM Objects) or cataloged from external
technologies (such as Java, SQL tables or Web Services). Oracle BPM also provides a standard library of
components for common BPM programming tasks.

BPM Objects

You can create new components in your project using the PBL language. These components are called BPM
Objects and may be composed of other BPMObjects and external components defined in other technologies.

Use BPM Objects to define high-level business concepts and logic which can be re-used across your project.
BPM Objects provide a common programming layer to integrate lower-level components provided by
heterogeneous technologies (such as Java, Web Services and SQL databases).

You can create BPM Objects of the following types:

DescriptionComponent

A user-defined component that contains attributes, methods, and
presentations.

General BPM Object

A special type of BPMObject for BusinessActivityMonitor presentationBAM Dashboard

150 | Oracle BPM | Working with Studio

DescriptionComponent

A special type of BPM Object that represents a data type with a fixed
set of possible values.

Enumeration

A special type of BPM Object that represents an exception triggered
by a foreseeable business condition.

Business Exception

A special type of BPM Object that represents a unit test suite for
processes.

PUnit Suite

A special type of BPM Object that represents a unit test suite for
individual BPM Objects.

CUnit Suite

External (cataloged) Components

With Oracle BPM you can leverage external APIs (Application Programming Interfaces), services and data
sources. To use external components in your processes you must first include them into your project catalog.
You can catalog components exposed in different technologies such Java, .Net, COM, SOAPWeb Services
and others.

Once a component has been added to the catalog, it can be integrated into the project processes, thus enabling
you to utilize existing applications or services. For example, you can catalog components of an existing SQL
database and then use them to query or modify information contained in the database.

Standard Components

Oracle BPM includes a set of standard components to facilitate commonBPMprogramming tasks. Components
under the Javamodule expose the standard Java APIs. Components under the Fuegomodule provide
BPM-specific components (Refer to the Oracle BPM Components Reference for details).

The standard components are always available and are predefined in the component catalog of every BPM
project.

About the Components Catalog
The components catalog of a BPM project defines the set of business objects and services available to all
business processes in the project.

The catalog organizes components in a hierarchical structure ofmodules. Eachmodule can contain components
and other modules.

Standard Modules

The following standard modules are included in every project:

• Fuego: Contains sub-moduleswith BPM-specific components. Refer to theOracle BPMComponents Reference
for details.

• Java: Contains the complete standard Java APIs. You can use the Java APIs directly from PBL.
• Plumtree: Contains legacy APIs for integration with Oracle User Interaction (formerly AquaLogic

Interaction).

The standard modules are always available and are predefined in the component catalog of every BPM
project.

The standard modules are read-only. You cannot remove, modify or add components (or sub-modules) to
the standard modules.

Oracle BPM | Working with Studio | 151

User-Defined Modules

You can add your ownmodules to the project catalog. You can also addmodules withinmodules, organizing
them in a hierarchical structure.

You can create new BPM Objects and catalog external components into your modules. External components
provide away to communicatewith external applications, services, APIs, databases, or other software resources
your project needs to exchange information with.

Creating a Module

Ensure that the Project Navigator View is visible and that you have created or opened a Project.

1. Right-click and select Catalog () ➤ New ➤ Module .

To create a new module inside an existing one, right-click on the existing module () instead.

2. Enter a name for the new Module, then clickOK.
The new Module appears under the Catalog resource.

You may Right-click the new Module to get the list of available operations on that Module.

Deleting a Module

Ensure that the Project Navigator View is visible and that you have created or opened a Project.

1. Right-click on the module you want to delete and select Delete () .

Important: Deleting a module also removes all elements inside that module. This operation cannot
be undone.

2. Confirm whether you want to proceed.

Note: This confirmation dialog may be disabled.

External Components
External components are those you catalog from external technologies, such as Java, SQL and Web Services.

With BPM Studio you can leverage external APIs (Application Programming Interfaces), services and data
sources. To use external components in your processes you must first include them into your project catalog.

Cataloging services from different technologies into BPM components provides your project with a common
programming model, freeing developers from the integration and conversion details between otherwise
incompatible technologies. For example, you can read data from a Web Service, process it using an external
.Net component and store the results on a database using a SQL component.

External Resources Configuration

To catalog external components you need to provide the necessary configuration information to locate them.
For example, to catalog Oracle database tables you must supply information such as the host, port, user and
password to access the server.

This configuration information becomes part of the project under External Resources on page 198 in the Project
Navigator. Each external component in your catalog is associated with an External Resource.

Studio uses External Resources at cataloging time to inspect the components' definitions, and on runtime to
initiate connectivity and execute component invocations.

152 | Oracle BPM | Working with Studio

.NET Components
You can catalog .NET components and use them in your BPM project. Microsoft® .NET is a multi-language
software development and execution framework for Microsoft Windows.

Integrating .NET Assemblies

Assemblies are the building blocks of .NET Framework applications. An assembly is a collection of types and
resources that are built to work together and form a logical unit of functionality. An assembly provides the
common language runtimewith the information it needs to be aware of type implementations. To the runtime,
a type does not exist outside the context of an assembly.

If want to call an external application that exposes itself using .NET Assemblies, you need access to the .NET
documentation provided with that application (or contact the software vendor for further information).
Cataloging a .NET Component
Before using .NET components from BPM processes and objects, you must include them into the project
catalog. When you catalog a .NET assembly, you are gathering all the necessary information that Studio
needs in order to call and execute it at runtime.

Before cataloging .NET components, ensure theAbout the .NET Bridge on page 153 is running on the machine
hosting the .NET assemblies.

Also ensure that you have created a module where you want to catalog the .NET components. See Creating
a Module on page 152.

To catalog .NET components:

1. Right-click on the module where you want to catalog the components.
2. Select Catalog Component ➤ .NET Component
3. Select one of the following options:

DescriptionOption

Select this option if you have already configured an External Resource
for Microsoft .NET Service.

Use existing configuration

Select this option if you need to configure a new External Resource
for Microsoft .NET Service. See Creating an External Resource on page
199.

Create a new configuration

4. ClickNext.
Oracle BPM Studio connects to the .NET Bridge and presents you with a file system browser of the host
running the .NET Bridge.

5. Select the .NET assembly file containing the components you want to catalog.
Browse and select the .dll file that corresponds to the .NET assembly you want to inspect, and clickNext.
Not every .dll file is .NET file. If you have selected an invalid .dll file, an error is displayed. Click Back to
select the .NET .dll file again.

6. Click Finish to catalog the .NET components.
The components contained in the selected .NET assembly are now included in your catalog.

About the .NET Bridge
Oracle BPM provides the .NET Bridge application that allows you to catalog and execute .NET components
from BPM projects.

The .NET Bridge (netbridge.dll) is aWindows application that acts as a bridge between BPMapplications
and .NET Assemblies. Oracle BPM supplies this application to provide all the necessary services to catalog
and use .NET components.

The .NET Bridge runs as a standalone process on the Windows server hosting the assemblies. The bridge is
itself a .NET application.

Oracle BPM | Working with Studio | 153

On runtime, Oracle BPM connects to the .NET Bridge through a TCP port (by default 5050). Therefore, the
Oracle BPM Process Execution Engine can run in a different host environment from the one where .NET
Bridge is running (e.g., your BPMEnginemay reside on a Solaris box and leverage .NET components running
on a separate Windows server).

All components called by the bridge share the same CLI (Common Language Infrastructure) as the bridge
itself since they are called using System.Reflection APIs (it follows that they share the same process).

COM Components
You can catalog COM components and use them in your BPM project. COM components are software
programs that use the Microsoft Component Object Model (COM).

COM objects can be created in several different ways and with different tools, such as Visual Basic or C++).
Several applications expose functionality as COM objects - this includes most of Microsoft's applications
(Office, Internet Explorer, etc.) and many third-party applications.

Integrating COM Applications

If you want to call an external application that exposes itself using COM, you need access to the COM
documentation provided with that application. For example, if you wish to call Microsoft Excel components,
you will need to understand Excel's object model, which is documented in theMicrosoft Developer Network
Website.
Cataloging COM Components
Before using COM components from processes or BPM Objects, you must include them into the project
catalog. When you catalog a component, you are gathering all the necessary information that Studio needs
in order to call and execute it at runtime.

Before performing the procedures in this task, you should ensure that the About the COM Bridge on page 158
is installed and running on your system. See Installing COMBridge as a Service onpage 158 formore information.

You should also ensure that you have created a module where you want to catalog the COM components.
See Creating a Module on page 152.

To catalog a COM Component:

1. Right-click on the module where you want to catalog the COM component.
2. Select Catalog Component ➤ COM
3. Select one of the following options:

DescriptionOption

Select this option if you have already configured an External Resource
for the COM Component.

Use existing configuration

Select this option if you need to configure a new External Resource
for the COM Component. See Creating an External Resource on page
199.

Create a new configuration

4. ClickNext.
Oracle BPM Studio creates a list of COM Type Libraries that can be cataloged. This may take several
minutes.

5. Select the COM Type Libraries you want to introspect.
6. ClickNext.

The libraries are analyzed for dependencies and introspected.
7. Click Finish.

The libraries you chose to catalog appear in the Project Navigator.

154 | Oracle BPM | Working with Studio

COM example with MS Word

To run this example you have to catalog the Microsoft Word Object Library.

Creating a New Word File

The PBL below, shows how to create and fill with text a Word file.
 filename = "C:\\WordTest" + id.number + ".doc"

 Application.visible = false

 // get ready to use Word
 worddocs = Application.documents

 // create a new Word document
 worddoc = add(worddocs)

 // find something specific in the document.
 // in this case there isn't anything,
 // but the rangevar variable is still needed
 // for the next command which inserts the text.
 rangevar = range(worddoc)

 // tell Word where you want to put the sentence.
 // I say after rangevar, but as you know from above,
 // that isn't very specific.
 insertAfter rangevar
 using text = sentence + "\nFuego is the
 greatest software ever!"

 // save as the filename you want.
 // We built the name somewhat unique in a variable
 saveAs worddoc
 using fileName = filename

 // close the newly saved document
 close worddoc

 // quit
 quit Application

Setting Values in an Existing Word File

The PBL below, shows how to complete form fields in a Word file used as template, and saved as a new file.
 // Initialize variables
 custName = customerName
 worddocs = wordappl.documents
 Application.visible = false

 // Open Word file
 open worddocs using
 fileName = "C:\\tmp\\input.doc" returning worddoc

 // Initialize the form fields into their object
 wordformfields = worddoc.formFields

 // Select the form field you want to work on
 item wordformfields using
 index = "Text2" returning wordformfield

 // Set the value of the form field you selected
 wordformfield.result = custName

Oracle BPM | Working with Studio | 155

 // Save as a different Word file
 saveAs worddoc using
 fileName = "C:\\tmp\\result.doc"

 // Quit Word
 quit wordappl

COM example with MS Excel

To run this example you have to catalog theMicrosoft Excel Object Library under amodule namedMSEXCEL.

The PBL code shows how to use Excel from the BPM system.
do
// Open the sheet open MSEXCEL.Application.workbooks using
"C:\\tmp\\invoice.xls"

// Set it visible (for debugging purposes)
// MyExcel.Application.visible = true

// Get the active sheet cells
cells = Worksheet(
 MSEXCEL.Application.activeWorkbook.activeSheet).cells

// Ask for some client data, this could be taken
// from a database
input "Name:" name,
 "Address:" address,
 "State: " state,
 "Zip: " zip,
 "Phone:" phone,
 "Order No.:" orderNo
 using title = "Enter product"

// Fill the sheet, the getItem method, takes two args
// (in the case row and column), and returns a
// MSEXCEL.Range object that matches the criteria
// for selection
// Fill Name

getItem cells using 4, 3 returning temp
cell = MSEXCEL.Range(temp)
cell.value = name

// Fill Date
getItem cells using 4, 9 returning temp
cell = MSEXCEL.Range(temp)
cell.value = 'now'

// Fill Address
getItem cells using 5, 3 returning temp
cell = MSEXCEL.Range(temp)
cell.value = address

// Fill State
getItem cells using 5, 5 returning temp
cell = MSEXCEL.Range(temp)
cell.value = state

// Fill Zip
getItem cells using 5, 7 returning temp
cell = MSEXCEL.Range(temp)
cell.value = zip

156 | Oracle BPM | Working with Studio

// Fill Order No.
getItem cells using 5, 9 returning temp
cell = MSEXCEL.Range(temp)
cell.value = orderNo

// Fill Phone
getItem cells using 6, 3 returning temp
cell = MSEXCEL.Range(temp)
cell.value = phone

// Now we enter some data about products

for i in 10..21 do
 qty = 0
 product = ""
 price = 0

 // We ask for it

 input "Quantity:" qty, "Product:" product, "Unit Price:" price
 using title = "Enter product", buttons = ["Ok", "Finish"]
 returning buttonPressed = selection

 exit when buttonPressed != "Ok"

 // And then we fill the sheet
 // Fill Qty.

 getItem cells using i, 2 returning temp
 cell = MSEXCEL.Range(temp)
 cell.value = qty

 // Fill product
 getItem cells using i, 3 returning temp
 cell = MSEXCEL.Range(temp)
 cell.value = product

 // Fill price
 getItem cells using i, 8 returning temp
 cell = MSEXCEL.Range(temp)
 cell.value = price
end

// We finally ask for the shipping cost

price = 0
input "Shipping cost" price
 using title = "Invoice"

// Fill Shipping
getItem cells using 23, 9 returning temp
cell = MSEXCEL.Range(temp)
cell.value = price

display "What do you want to do with this sheet?"
 using title = "Invoice finished",
 options = ["Preview", "Print"],
 default = "Preview"
 returning buttonPressed = selection

if buttonPressed == "Print" then
 //Print it
 printOut Worksheet(
 MSEXCEL.Application.activeWorkbook.activeSheet)

Oracle BPM | Working with Studio | 157

else
 //Preview it
 MSEXCEL.Application.visible = true
 printPreview Worksheet(
 MSEXCEL.Application.activeWorkbook.activeSheet)
end

//Mark it as saved
MSEXCEL.Application.activeWorkbook.saved = true

// Just in case, we ask Excel to quit
quit MSEXCEL.Application

end

About the COM Bridge
Oracle BPM COM Bridge allows you to catalog and use COM components in Oracle BPM processes.

BPMCOMBridge is aWindows application that acts as a bridge betweenOracle BPMapplications andCOM.
Oracle BPMsupplies this application to provide all the necessary services to catalog anduseCOMcomponents.

BPM COM Bridge is packaged as a separate application and runs as a standalone Windows process. The
Bridge should be installed on themachinewhere the COMcomponents reside. However, this is not absolutely
necessary for all components because DCOM (Distributed COM) components, if properly configured, can
be located in a different machine from the one that is running COM Bridge.

On runtime, Oracle BPM connects to the COM Bridge through a TCP port (by default 4042). Therefore, the
Oracle BPM Process Execution Engine can run in a different host environment from the one where COM
Bridge is running (e.g., your BPMEnginemay reside on a Solaris box and leverageCOMcomponents running
on a separate Windows server).

The COM Bridge executable

There are two versions of Oracle BPM COM Bridge:

This program is installedwith Studio and runs automatically when required.
It is intended for the development stage of a project.

combridge.exe

Is the Windows service version of BPM COM Bridge. It is intended for
production environments,where noGUI interaction is requiredwith theCOM

combsvc.exe

components or applications that are being automated. After installation, it
will start whenever the machine starts.

Installing COM Bridge as a Service
You can install Oracle BPMCOMbridge as aWindows Service, so that it automatically starts whenWindows
boots.

The COM Bridge runs as an operating system service. It is only supported on Windows environments. The
COM Bridge application is included with Oracle BPM Studio and Enterprise.

1. To install COM Bridge as a Windows service simply run <ORABPM_HOME>/bin/combsvc -install.

A new Service is created on your Windows system.
2. Start the service.

You may start the COM Bridge service from the standard Windows Services panel. Alternatively, you
may start it from the command line using: <ORABPM_HOME>/bin/combsvc -start

COM Bridge options
The COMBridge application and service provide different command-line options for installing, starting and
stopping the bridge.

158 | Oracle BPM | Working with Studio

Standalone Version

DescriptionCommand

Installs the COM Bridge to start on every login.combridge -install

Uninstalls the COM Bridge.combridge -remove

Disables asynchronous logging.combridge -debug

Stops another COM Bridge running.combridge -stop

Sets the log file name (default is
%TEMP%\COMBridge.log).

combridge -log filename

Displays COM Bridge usage dialogcombridge - ?

The port is the TCP port where COM Bridge is
listening to incoming calls. Defaults to port 4042.

combridge [option] [port]

Service Version (recommended for production)

DescriptionCommand

Installs the COM Bridge as a service.combsvc -install

Uninstalls the COM Bridge as a service.combsvc -remove

Run the COM Bridge as a console application for
debugging.

combsvc -debug [params]

Starts the COM Bridge service.combsvc -start

Stops the COM Bridge service.combsvc -stop

Displays COM Bridge service commands.combsvc - ?

CORBA Components
You can catalogCORBA components and use them in your BPMproject. Studio allows you to catalogCORBA
objects that reside in a CORBA Interface Repository.

Supported CORBA environments

JCorb (not included) is the client library supported by Oracle BPM to integrate with CORBA components.

Oracle BPM supports integration with JCorb and Orbix CORBA Servers.

There is no support for CORBA name servers.

Supported CORBA Objects

Any CORBA type can be cataloged through Studio into the project catalog. However, the following are the
only types supported at run time:

• Interfaces with attributes and operations
• Structs
• Unions
• Sequences
• Enumerations
• Arrays
• Aliases

Oracle BPM | Working with Studio | 159

Cataloging a CORBA Component
Before using CORBA components from processes or BPM Objects, you must include them into the project
catalog. When you catalog a component, you are gathering all the necessary information that Studio needs
in order to call and execute it at runtime.

Before performing this procedure, ensure you have created a module where you want to catalog the COM
component. See Creating a Module on page 152.

1. Right-click on the module where you want to catalog the CORBA components.
2. Select Catalog Component ➤ CORBA Service
3. Select one of the following options:

DescriptionOption

Select this option if you have already configured an External Resource
for the COM Component.

Use existing configuration

Select this option if you need to configure a new External Resource
for the COM Component. See Creating an External Resource on page
199.

Create a new configuration

4. Set the Naming Service Values.
5. Set the Interface Repository IOR.
6. Select the source of the IDL Definitions.
7. Select the Components.
8. ClickNext.

CORBA Array Examples

The following examples illustrate different ways to use arrays with CORBA objects.

Unidimensional Arrays

Unidimensional arrays are supported with CORBA in BP-Methods. An example of arrays is shown in the
following IDL.

 interface ArrayTest
 {

 typedef string StringArray[];
 typedef long LongArray[];
 typedef boolean BooleanArray[];

 struct TestStruct
 {

 long longMember;
 string stringMember;

 };

 union TestUnion switch(boolean)
 {

 case TRUE: long longMember;
 case FALSE: string stringMember;

 };

 typedef TestStruct TestStructArray[];

160 | Oracle BPM | Working with Studio

 typedef TestUnion TestUnionArray[];

 };

arrays as IN arguments

 arrayTest = Module1.CorbaTests.ArrayTest("ArrayTest")

 stringArray = ["one", "two", "three",
 "four", "five"]

 stringArrayInOp arrayTest
 using aStringArray = stringArray
 returning stringArray

 display stringArray

Arrays as OUT Arguments

 arrayTest = Module1.CorbaTests.ArrayTest("ArrayTest")

 stringArray = ["one", "two", "three",
 "four", "five"]

 stringArrayOutOp arrayTest
 returning stringArray = aStringArray

 display stringArray

Arrays as INOUT Arguments

 arrayTest = Module1.CorbaTests.ArrayTest("ArrayTest")

 stringArray = ["one", "two", "three",
 "four", "five"]

 stringArrayInoutOp arrayTest
 using aStringArray = stringArray
 returning stringArray = aStringArray

CORBA Enumeration Examples

CORBA enumerations can be used in many situations. The following examples show how to use the
enumeration that appears in the Project Catalog after the IDL is cataloged.

Using enums in Operation Invocations

The following example shows how enumerations can be used in operation invocations or as the discriminator
of a union:

 module CorbaTests
 {
 interface EnumTest
 {
 enum Slot { s1, s2, s3 };

Oracle BPM | Working with Studio | 161

 union UnionTest switch(Slot)
 {

 case s1: string stringMember;
 case s2: long longMember;
 default: boolean booleanMember;

 };

 void enumOp(in Slot aSlot);

 void unionOp(in UnionTest aUnionTest);

 Slot retEnumOp(in Slot aSlot);

 void outEnumOp(out Slot aSlot);

 void inoutEnumOp(inout Slot aSlot);
 };
 };

Using enums as IN Arguments

 s1 = Module1.CorbaTests.EnumTest.Slot.s1

 enumTest = Module1.CorbaTests.EnumTest("EnumTest")

 enumOp enumTest using aSlot = s1

Using enums as OUT Arguments

 enumTest = Module1.CorbaTests.EnumTest("EnumTest")

 outEnumOp enumTest returning s3 = aSlot

Using enums as IN/OUT Arguments

 enumTest = Module1.CorbaTests.EnumTest("EnumTest")

 inoutEnumOp enumTest using aSlot = s2 returning s4 = aSlot

enum as the Return Type

 s2 = Module1.CorbaTests.EnumTest.Slot.s2

 enumTest = Module1.CorbaTests.EnumTest("EnumTest")

 retEnumOp enumTest using aSlot = s2 returning s1

162 | Oracle BPM | Working with Studio

enum as the Discriminator of a Union

 enumTest = Module1.CorbaTests.EnumTest("EnumTest")

 unionTest = Module1.CorbaTests.EnumTest.UnionTest()

 unionTest.longMember = 10

 unionOp enumTest using aUnionTest = unionTest

 unionTest.stringMember = "aString"

 unionOp enumTest using aUnionTest = unionTest

 unionTest.booleanMember = true

 unionOp enumTest using aUnionTest = unionTest

CORBA Sequence Examples

Sequences are bound in Methods. If the sequence length exceeds its bound, an exception is thrown. For
example, in the following Method script the sequence has 11 members but can only have 10 members.

 seqTest = Module1.CorbaTests.SeqTest("SeqTest")
 stringSeq = ["1", "2", "3", "4", "5", "6", "7", "8",
 "9", "10", "11"]

 boundStringSeqOp seqTest using
 aBoundStringSeq = stringSeq returning stringSeq

 display stringSeq

When this example is run, it displays the following exception on the screen:
Exception:
Sequence size is incorrect, it is 11 and should have been 10.

line=5
column=1

Sequences of primitive types

Any of the primitive types shown in Primitive types can be used to create a sequence. The following example
shows how to create a string sequence.

 seqTest = Module1.CorbaTests.SeqTest("SeqTest")

 stringSeq = ["one", "two", "three"]

 stringSeqOp seqTest using aStringSeq = stringSeq

 returning stringSeq

 display stringSeq

Oracle BPM | Working with Studio | 163

Sequences of Structs

The Method script below shows how structure sequences can be used in the Method.

 ts = 'now' // timestamp

 seqTest = Module1.CorbaTests.SeqTest("SeqTest")

 // create the first struct
 structOne = Module1.CorbaTests.SeqTest.TestStruct()
 structOne.longMember = 10
 structOne.stringMember = String(ts)

 // create the second struct
 structTwo = Module1.CorbaTests.SeqTest.TestStruct()
 structTwo.longMember = 20
 structTwo.stringMember = String(ts)

 // the array of structures
 structSeq = [structOne, structTwo]

 testStructSeqOp seqTest using

 aTestStructSeq = structSeq

Sequence of Unions

Using sequences of unions is the same as using sequences of structs, as shown in this example:

 ts = 'now' // timestamp

 seqTest = Module1.CorbaTests.SeqTest("SeqTest")

 unionOne = Module1.CorbaTests.SeqTest.TestUnion()
 unionOne.longMember = 10

 unionTwo = Module1.CorbaTests.SeqTest.TestUnion()
 unionTwo.stringMember = String(ts)

 unionSeq = [unionOne, unionTwo]

 testUnionSeqOp seqTest using

 aTestUnionSeq = unionSeq

Sequences as INOUT/OUT parameters

Sequences can also be passed as OUT or INOUT arguments in operation invocations. Note that when using
sequences of structures or unions as OUT arguments, the restriction that these objects must be instantiated
first before being used is still applicable, shown as follows:

 seqTest = Module1.CorbaTests.SeqTest("SeqTest")

 // union is instantiated
 testUnion = Module1.CorbaTests.SeqTest.TestUnion()
 testUnion.stringMember = "aString"

 testUnionSeqOutOp seqTest returning

 // union will be received in the sequence

164 | Oracle BPM | Working with Studio

 testUnionSeq = aTestUnionSeq

 unionOne = testUnionSeq[0]
 unionTwo = testUnionSeq[1]

EJB Components
You can catalog EJB (Enterprise JavaBeans) components and use them in your BPM project.
Cataloging an EJB Component
Before using EJB components from processes or BPMObjects, youmust include them into the project catalog.

Before performing this procedure, youmustCreating an External Resource on page 199 of type J2EEApplication
Server on page 213, with the connectivity information to your JEE container.

In addition, ensure you have created a module where you want to catalog the components. See Creating a
Module on page 152.

1. Right-click on the module where you want to catalog the EJB components.
2. Select Catalog Component ➤ EJB
3. Select one of the following options:

DescriptionOption

Select this option if you have already configured an External Resource
of type Enterprise Java Bean.

Use existing configuration

Select this option if you need to configure a new External Resource
for the EJB components. SeeCreating an External Resource on page 199.

Create a new configuration

4. ClickNext and specify an External Resource of type Java Class Library on page 215 with the .jar libraries
containing your EJB Home and Bean interfaces.
Select one of the following options for the Java Class Library resource:

DescriptionOption

Select this option if you have already configured an External Resource
of type Java Class Library.

Use existing configuration

Select this option if you need to configure a new External Resource
for the EJB classes components. See Creating an External Resource on
page 199.

Create a new configuration

5. Select the the EJB Home and Bean interfaces you want to catalog.
6. ClickNext.

The selected components are analyzed for dependencies. Any errors or warnings are listed.
7. Click Finish.

For each selected Java type, a new component appears in the Project Navigator.
Using EJB Components
Follow this guidelines when using EJB components on you BPM projects.

To access your EJB service from PBL you first use standard component Fuego.Ejb.EJBHome to locate the
Home interface of your EJB. Using the Home interface, you create a new reference to your Bean.

Example

// Obtain generic reference to an EJB Home object.
// Note: "calculator_ejb" is the name of the External Resource
// defined in your project for "CalculatorHome"

Oracle BPM | Working with Studio | 165

home as Any = EJBHome.locate(configuration : "calculator_ejb")

// Cast
calculatorHome as CalculatorHome = CalculatorHome(home)

// Create reference to EJB object
calculator = create(calculatorHome)

// Use the object
display "5+5="+ makeSum(calculator, arg1 : 5, arg2 : 5)

// dispose the EJB object
calculator.remove();

JNDI Components
You can catalog directory services using JNDI (JavaNaming andDirectory Interface) to query, retrieve, delete,
and add entries.
Cataloging JNDI Components

Before performing this procedure, you should ensure that your directory service is configured and running.

Also ensure that you have created a module where you want to catalog the JNDI components. See Creating
a Module on page 152.

To catalog a JNDI Component:

1. Right-click on the module where you want to catalog the JNDI component.
2. Select Catalog Component ➤ JNDI
3. Select one of the following options:

DescriptionOption

Select this option if you have already configured an External
Resource of type JNDI Directory Service.

Use existing configuration

Select this option if you need to configure a new External
Resource.

Create a new configuration

4. ClickNext.
The list of discovered JNDI classes appears.

5. Select the JNDI classes you want to introspect.
6. ClickNext.
7. Click Finish.

The components you chose to catalog appear in the Project Navigator.
JNDI Examples

Performing and LDAP Search

The following example shows how to query for and iterate over a set of LDAP entries using a for each
statement with a where clause.

The condition restricts the query to participants named 'Robert' belonging to the 'Documentation'
Organizational Unit.

 for each hp in humanparticipant
 where hp.ou = "Documentation" and hp.cn = "Robert" do

166 | Oracle BPM | Working with Studio

 display "The participant: " + hp.cn
 end

Searching LDAP by DN

To retrieve a directory entry by its dn (Distinguished Name), you should use the lookup()method instead
of the for each statement.

 myDN = "c=Argentina"
 result = lookup(country, dn : myDN)

 if (result) then
 delete country
 end

Add new LDAP entry

This example shows how to add a new entry to the directory.

 o1 = OrganizationalUnit()
 o1.ou = "test21"
 o1.description = "foo1"
 o1.dn = "ou=test21"
 o1.postalCode = "1001"
 o1.store()

Java Components
You can catalog Java class libraries (.jar files) and use them on your BPM project. Use Java components to
integrate with external APIs or leverage Java code from your BPM project.

Integrating Java libraries

To catalog Java class libraries you must provide a the .jar files containing the Java classes and their
dependencies.

Once the library is cataloged, Studio stores a copy of the .jar files in the lib/ directory of the project.

Cataloging Requirements

You can catalog any Java class or interface defined within a named Java package. You cannot catalog Java
types defined without a package name.

You must also catalog any additional Java types referred by the Java classes and methods you need to use
from your BPM project.

Runtime Requirements

If the Java classes you catalog depend on other .jar libraries on runtime, you must include these libraries into
your BPM project.

All Java code used from a BPMproject runs under the control of the SecurityManager of the Process Execution
Engine runtime environment. Its security policies prevent cataloged Java code from performing some
operations, including the following:

• Shutting down the JVM
• Spawning Threads or modifying/stopping existing Threads
• Creating new ClassLoaders
• Changing the Socket Factory
• Changing the standard input/output of the JVM

Oracle BPM | Working with Studio | 167

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/SecurityManager.html

Cataloging Java Libraries
Before using external Java components fromprocesses or BPMObjects, youmust include them into the project
catalog. When you catalog a component, you are gathering all the necessary information that Studio needs
in order to call and execute it at runtime.

Before performing the procedures in this task, ensure that you have created a module where you want to
catalog the Java components. See Creating a Module on page 152.

To catalog Java components:

1. Right-click on the module where you want to catalog the components.
2. Select Catalog Component ➤ Java
3. Select one of the following options:

DescriptionOption

Select this option if you have already configured an External Resource
of type Java Class Library.

Use existing configuration

Select this option if you need to configure a new External Resource
of type Java Class Library. See Creating an External Resource on page
199.

Create a new configuration

4. Select the Java types youwant to catalog. Selecting a package automatically selects all types in that package
and nested packages.

5. ClickNext.
The selected Java types are analyzed for dependencies. Any errors or warnings are listed.

6. Click Finish.

For each selected Java type, a new component appears in the Project Navigator.
Using Java Components
Follow this guidelines when using Java components on you BPM projects.

Java objects as Process Instance Variables

To use a Java component as a process instance variable, the Java class of the component must be Serializable
(it must implement interface java.io.Serializable).

Important: When the Engine stores a Java component as a process instance variable, it serializes the
whole graph of objects referenced by that variable. The bigger the object graph, the more overhead it
generates at runtime.

Versioning Java objects

If your process uses Java components as process instance variables you must be aware of Java class
compatibility.

When deploying a new revision of a BPM project, you must ensure that any changes you made to those Java
classes do not break compatibility with the previous version of the class.

Important: If a new revision of a project contains a Java class with an incompatible change, the Process
Execution Engine cannot de-serialize process instances holding objects based on older versions of the
class.

If you are making incompatible changes to a Java class used as process instance variable you must ensure
the following:

• The Java library containing the class is cataloged as versionable. See Versionable Java Libraries on page 169
for details.

168 | Oracle BPM | Working with Studio

• At project deployment time you force a new version of your BPM project (instead of a revision). When
forcing a new project version, the Engine keeps running the old process instances with the old version of
the Java class, and new process instances start using the new version of the Java class.

Refer to Versioning of Serializable Objects of the Java Serialization Specification for details about what changes
make a Java class incompatible.
Versionable Java Libraries
External Resources of type Java Class Libraries can be defined as versionable or non-versionable to define
how the Engine handles the library at runtime.

Versionable libraries

Versionable libraries are those that may change as processes evolve. Consequently, it is required that each
version of the process to be tied to a specific version of the library. Libraries should be tagged as versionable
when the goal is to prevent an update to the library from affecting the behavior of an old version of the process
or of a different process that depends on the same components. They could be thought of as integral pieces
of a project in the same way the component catalog or processes are.

In general, all new Java classes you write specifically for your BPM project should be tagged as versionable.

In particular, all Java types used as process instance variables should be set as versionable to avoid potential
compatibility problems at runtime.

Non-versionable libraries

Non-versionable libraries, are those that don't typically change over time. Or, if they do, the intention is for
them to affect all versions of all processes deployed in the Engine.

In general, those infrastructure Java libraries or extensions to the BPM systemneeded to support the execution
of processes should be tagged as non-versionable.

For example, libraries for third-party JDBC drivers should be tagged as non-versionable.
Mapping Java to BPM Components
This section explains how Java types are presented as PBL types when cataloged.

Packages to Module mapping

For each Java package you catalog, BPM Studio creates a new module in your component catalog.

Module names are capitalized to follow PBL naming conventions for modules.

Java to PBL types

Java types are mapped to PBL types as defined in the following table:

PBL TypeJava Type

Stringjava.lang.String, java.lang.Character, char

Intjava.lang.Byte, java.lang.Short, java.lang.Integer,
java.lang.Long, java.lang.Number, byte, short, int,
long

Decimaljava.math.BigDecimal

Realjava.lang.Float, java.lang.Double, float, double

Booljava.lang.Boolean, boolean

Timejava.util.Date, java.sql.Date, java.sql.Time,
java.sql.Timestamp, fuego.lang.Time

Binarybyte[]

Oracle BPM | Working with Studio | 169

http://java.sun.com/javase/6/docs/platform/serialization/spec/version.html

PBL TypeJava Type

arrayprimitive Java arrays, any implementation of
java.util.List, any implementation of java.util.Set,
java.util.Vector, any implementation of
java.util.Collection.

associative arrayany implementation of java.util.Map or
java.util.SortedMap.

Intervalfuego.lang.Interval

Oracle Service Bus Components
You can catalog bus services and use them in your BPM project. Oracle Service Bus (formerly AquaLogic
Service Bus or ALSB) is a repository for business services exposed as web services.

Oracle Service Bus is an enterprise service bus designed for connecting,mediating, andmanaging interactions
between heterogeneous services. Oracle SB can handle Web services, Java, .Net, messaging services, and
legacy end points. Oracle SB is designed to handle the deployment, management, and governance tasks
required to implement SOA (Service Oriented Architecture) at any scale.

Oracle Service Bus is stateless and policy-driven. It enables you to establish loose coupling between service
clients and business services while maintaining a centralized point of security control and monitoring.

Supported environments

Oracle BPM 10.3 only supports Oracle Service Bus 10.x (formerly AquaLogic Service Bus 3.0).

Oracle BPM supports the following types of Proxy Service Transports with Service Bus:

• HTTP
• HTTPS
• Oracle BPM (native) Transport

Cataloging Oracle Service Bus Components

Before performing this procedure, ensure that you have installed and configuredOracle Service Bus (formerly
AquaLogic Service Bus or ALSB) and that it is currently running.

Also ensure that you have created amodulewhere youwant to catalog theOracle SB components. SeeCreating
a Module on page 152.

To catalog a Oracle Service Bus Component:

1. Right-click on the module where you want to catalog the Oracle SB components.
2. Select Catalog Component ➤ Oracle Service Bus
3. Select one of the following options:

DescriptionOption

Select this option if you have already configured an External Resource
of type Oracle Service Bus / Management Host.

Use existing configuration

Select this option if you need to configure a new External Resource of
type Oracle Service Bus / Management Host. See Creating an External
Resource on page 199.

Create a new configuration

4. ClickNext.
Oracle BPM Studio connects to the Oracle Service Bus. This may take several minutes.

5. Select the Oracle SB Project you want to catalog.

170 | Oracle BPM | Working with Studio

Oracle Service Bus resources are organized into projects. You must select a Project that has at least one
Proxy Service defined.

6. Select the Proxy Service you wish to use.
Only projects using the supported transports are shown.

7. Provide a Module name.
This is the name that will appear in the Project Navigator. The default Module name is the name of the
Proxy Service you select.

8. Oracle BPM Studio generates a catalog component for each of the Proxy Service elements.
9. Click Finish.

The introspected Oracle Service Bus module appears in the Project Navigator.
Oracle Service Bus Example

The following example shows how to access Oracle Service Bus objects from within a PBL program.

Note: You must catalog Oracle Service Bus objects to the BPM Object Catalog before they can be used
within Studio.

Accessing Oracle SB Objects

The following PBL code shows how to access an Oracle Service Bus object after it has been cataloged. This
example is based on the default example that is provided with Oracle Service Bus.
 service as ServiceBus.LoanGateway1.MyService =
 ServiceBus.LoanGateway1.MyService();
request as ServiceBus.LoanGateway1.LoanStruct =
 ServiceBus.LoanGateway1.LoanStruct();

request.amount = 12345
request.name = 'John Smith'

//display request.name
processLoanApp service
 using loanRequest = request
 returning result2 = result

display result2.name
display result2.notes

SAP Components
You can catalog standard SAP interfaces to integrate your BPM processes with mySAP Business Suite.

Business Application Programming Interfaces (BAPIs) are standard SAP interfaces that enable software
vendors to integrate their software into themySAPBusiness Suite. BAPIs are implemented using RFC (Remote
Function Call) enabled function modules inside SAP systems. BAPIs are defined in the Business Object
Repository (BOR) as methods of SAP business objects that perform specific business tasks.

Requirements

Oracle BPM uses the SAP Java Connector (JCo) to use BAPIs to access SAP. The SAP Java Connector (JCo) is
a toolkit that allows Java applications to communicate with SAP systems. JCo is an encapsulation of the RFC
Library that supports all features of RFC. Oracle BPM is certified to work with versions 2.0.7 and 2.0.12 of
the SAP JCo library.

If you are using the Studio in a Windows environment:

• librfc32.dll: Must be located under the system32 directory.

Oracle BPM | Working with Studio | 171

• sapjcorfc.dll: Must be located under the ext directory of the Studio installation.

If you are using the Studio in a Unix environment:

• librfccm.so: Add to environment variable LD_LIBRARY_PATH the full path to the directory containing
the file.

• libsapjcorfc.so: Must be located under the ext directory of the Studio installation.

You must also rename sapjco.jar to sapjco-2.0.jar and copy it to the following directory of BPM
Studio: <ORABPM_HOME>/studio/eclipse/plugins/fuego.sap_6.5.0/lib/.

SAP BAPI Objects,Tables, and Structures

After cataloging SAP BAPI, the following are available:

DescriptionSAP Object

Anobject is created for each of the introspected BAPIsBAPI Objects

Represent SAP structureswhich are a set of attributes.SAP Structures

Represent an SAP table where each row has a set of
attributes

SAP Tables

BAPI Objects

Each BAPI Object contains the following:

Input arguments for the BAPI.Imports

Output arguments for the BAPIExports

Input/Output arguments for the BAPI.Tables

Used to invoke BAPI.Call Method

Tables

Use the currentRow attribute to access the fields in the current row and the rows attribute to get an iterator
to access all the rows in a for each statement.
Cataloging SAP Components

Before performing this procedure, ensure you have installed the SAP JCo Library in the SAP Introspector
Plugin. See your SAP documentation for more information.

You should also ensure that you have created a module where you want to catalog the components. See
Creating a Module on page 152.

To catalog an SAP BAPI Component:

1. Right-click on the module where you want to catalog the SAP component.
2. Select Catalog Component ➤ SAP
3. Select one of the following options:

DescriptionOption

Select this option if you have already configured anExternal Resource
for the Component.

Use existing configuration

Select this option if you need to configure a new External Resource
for the Component. See Creating an External Resource on page 199.

Create a new configuration

4. ClickNext.

172 | Oracle BPM | Working with Studio

5. Browse to the location of your SAP JCo file (sapjco.jar).
The first time you add a BAPI with Studio, the SAP JCo is required (sapjco.jar file). Browse the file system
to the location where the jar file is and click Next. The application needs to be restarted.

6. ClickNext.

SAP Example

The following is a template example that uses the introspected BAPI BAPI_ALM_ORDERHEAD_GET_LIST

Test is the module's name given when introspecting the BAPI.

 imports = B.Test.BapiAlmOrderheadGetList.Imports()
 tables = B.Test.BapiAlmOrderheadGetList.Tables()

 //Completing a Table
 // currentRow is used to refer to the row to complete
 tables.itRanges = B.Test.BapiAlmOrderListheadRanges()
 tables.itRanges.currentRow.fieldName =
 "OPTIONS_FOR_DOC_TYPE"
 tables.itRanges.currentRow.sign = "I"
 tables.itRanges.currentRow.option = "EQ"
 tables.itRanges.currentRow.lowValue = "PM01"

 //Adds the row and moves to the next row to complete
 appendRow tables.itRanges

 tables.itRanges.currentRow.fieldName =
 "OPTIONS_FOR_PLANPLANT"
 tables.itRanges.currentRow.sign = "I"
 tables.itRanges.currentRow.option = "EQ"
 tables.itRanges.currentRow.lowValue = "5300"

 appendRow tables.itRanges

 tables.itRanges.currentRow.fieldName =
 "OPTIONS_FOR_COMP_CODE"
 tables.itRanges.currentRow.sign = "I"
 tables.itRanges.currentRow.option = "EQ"
 tables.itRanges.currentRow.lowValue = "5560"

 appendRow tables.itRanges

 tables.itRanges.currentRow.fieldName =
 "SHOW_COMPLETED_DOCUMENTS"
 tables.itRanges.currentRow.sign = "I"
 tables.itRanges.currentRow.option = "EQ"
 tables.itRanges.currentRow.lowValue = "X"

 appendRow tables.itRanges

 tables.itRanges.currentRow.fieldName =
 "SHOW_DOCUMENTS_IN_PROCESS"
 tables.itRanges.currentRow.sign = "I"
 tables.itRanges.currentRow.option = "EQ"
 tables.itRanges.currentRow.lowValue = ""

 appendRow tables.itRanges

 tables.itRanges.currentRow.fieldName =
 "SHOW_OPEN_DOCUMENTS"
 tables.itRanges.currentRow.sign = "I"
 tables.itRanges.currentRow.option = "EQ"

Oracle BPM | Working with Studio | 173

 tables.itRanges.currentRow.lowValue = ""

 appendRow tables.itRanges

 tables.itRanges.currentRow.fieldName =
 "OPTIONS_FOR_CHANGE_DATE"
 tables.itRanges.currentRow.sign = "I"
 tables.itRanges.currentRow.option = "GE"
 tables.itRanges.currentRow.lowValue = "20060710"

 // "Exports" is defined to receive
 // the returned result from the BAPI
 Exports as B.Test.BapiAlmOrderheadGetList.Exports

 // Invoking the BAPI using the "call" method
 call B.Test.BapiAlmOrderheadGetList
 using imports,
 tables
 returning tables = tables,
 Exports = Exports

 // Table iteration to display the rows
 for each row in tables.itRanges.rows do
 display row
 end

 // Working with a table
 if size(tables.etResult) > 0 then
 display tables.etResult
 end

SQL Components
You can catalog SQL tables, views and store procedures. Use SQL components from your processes and BPM
objects to query, update and execute SQL statements on external databases.

Supported Databases

You can catalog components from JDBC-compliant databases. You need a special JDBC driver for each
database vendor.

Oracle BPM includes JDBC drivers for several database vendors including Oracle, IBM DB2, Microsoft SQL
Server, Informix and Sybase. To use an external JDBC driver you must first include the .jar files of the
driver as an External Resource of type Java Class Library on page 215.

JDBC Connections on Runtime

The Process Execution Engine manages and pools the connections to the database servers automatically.

When the Engine runs on an EJB container (such as Oracle WebLogic or IBMWebSphere), it leverages the
JDBC data source functionality provided by the container. In such environments, all JDBC connectivity and
connection pooling is handled by the EJB container.
Cataloging a SQL Component
Before using SQL tables from processes or BPMObjects, you must include them into the component catalog.
When you catalog SQL table components, Studio gathers all the information it needs for integrating with
your SQL database and executing statements at runtime.

Before performing this procedure, you should ensure that your database is installed, running and accessible
from your system through JDBC.

174 | Oracle BPM | Working with Studio

You should also ensure that you have created a module where you want to catalog the SQL components. See
Creating a Module on page 152.

To catalog a SQL Component:

1. Right-click on the module where you want to catalog the SQL component.
2. Select Catalog Component ➤ SQL
3. Select one of the following options:

DescriptionOption

Select this option if you have already configured an External Resource
of type SQL Database.

Use existing configuration

Select this option if you need to configure a new External Resource
of type SQL Database. See Creating an External Resource on page 199.

Create a new configuration

4. ClickNext.
Oracle BPM Studio creates a list of SQL objects that can be cataloged. This may take several minutes.

5. Select the SQL components you want to catalog.
6. ClickNext.

The components are analyzed for dependencies and cataloged.
7. Click Finish.

The components you chose to catalog appear in the Project Navigator.
Using SQL Components
You can catalog SQL tables, views and store procedures. Use SQL components from your processes and BPM
objects to query, update and execute SQL statements on external databases.

Oracle BPM provides developers the following mechanisms for accessing JDBC-compliant databases:

• Using cataloged SQL components. For each SQL table, view or store procedure, Studio generates a BPM
component with attributes and methods to read and update tables, and call procedures. In general, each
BPM component represents a table and each component instance represents a row in that table. SQL
components inherit from the standard Fuego.Sql.SqlObject component.

• Using SQL syntax embedded in PBL code. This allows you use SQL statementswhich are statically checked
at compilation time. A subset of the standard SQL language is accepted. Vendor-specific statements are
not allowed in embedded SQL code. See Embedded SQL Overview on page 359 for more details.

• Using the standard Fuego.Sql.DynamicSQL component. This component gives you themost flexibility
but provides no static checks at compilation time. With this component, you can build SQL statements
dynamically at runtime, and you can send any command to your database. Refer to the
Fuego.Sql.DynamicSQL component documentation for more details.

SQL Component methods

Components for cataloged SQL tables provide three methods:

• load(): Loads a row from the database into the component attributes.
• store(): Inserts/updates the component attribute values to the database.
• remove(): Deletes the database row associated with this component instance.

Refer to the reference documentation of the standard Fuego.Sql.SqlObject component for details.

Components for cataloged stored procedures provide a single method:

• call(...): Executes the store procedure. This method accepts the arguments defined by the stored
procedure.

Oracle BPM | Working with Studio | 175

Auto-loading

If the primary key attributes of SQL table component are set, the component automatically calls its load()
method the first time you read or set one of its non-key attributes. Example:

customer = CUSTOMER() // New instance of CUSTOMER table component
customer.id = "1234" // sets value of primary key attribute

logMessage "Customer Name=" +
 customer.name // this triggers an implicit call to "load()"

You can disable this automatic loading behavior by setting the accessDatabase attribute of the component
to false. This example is equivalent to the previous one but without using auto-loading:

customer = CUSTOMER() // New instance of CUSTOMER table component
customer.id = "1234" // sets value of primary key attribute
customer.accessDatabase = false // disable auto-loading

// Note: "customer.name" evaluates to null (row not auto-loaded)

customer.load() // load row explicitly

logMessage "Customer Name=" + customer.name

Handling Database Connections

The Process Execution Engine manages and pools the connections to the database servers automatically.

From PBL code you don't explicitly open or close JDBC connections. When your PBL code instantiates a SQL
component, the Engine automatically assigns a connection to that database from the pool. When all SQL
components for that database get out of scope, the Engine releases the connection back to the pool.

SQL Components connecting to the same database within the same transaction share a single connection.

Handling Database Transactions

The Process Execution Engine always executes PBL code in the context of a transaction. In general, PBL code
is called from a process activity, and the execution of the activity task defines the transaction boundaries.

From PBL code you don't explicitly start, commit or rollback a database transaction. When your PBL code
first instantiates a SQL component, the Engine automatically starts a transaction on that database.

When the execution of a PBL script succeeds (no Exceptions thrown), the Engine commits all associated
database transactions.When the execution of a PBL script fails (an Exception is thrown or predefined variable
action indicates so) the Engine rolls back all associated database transactions.

When the Process Exception Engine runs on an EJB container (such as Oracle WebLogic or IBMWebSphere)
and all JDBC data sources involved are configured to be "XA" (for distributed transactions), then database
connections will participate on the same global transaction managed by the container.

SQL on client-side methods

SQL components can only execute in the context of the Process Execution Engine.

If you are using SQL components from a BPM object method, you should set property Service Side Method
of your method to Yes.

Server-side methods cannot be invoked directly from BPM Object Presentations. If you need to access SQL
components from a Presentation, extract the code that uses SQL into a separate method, make this new
method Server Side and call it from the original client-side method.

176 | Oracle BPM | Working with Studio

SQL Components as Instance Variables
You can use cataloged SQL table components as process instance variables. This is useful when you want to
persist data associated with a process instance into a separate database.

Unlike any other component types, the Process Execution Engine treats process instance variables of a SQL
table component type in a special way.

When the Engine completes the execution of a transaction on a process instance (most commonly, the execution
of a process activity) the Engine persists the state of all instance variables on its runtime database. However,
for those instance variables of a SQL table component type, the Engine only persists its primary key attributes.

When you access the attributes of a SQL table object used as instance variable, the component automatically
loads its attributes from the database. Refer to Using SQL Components on page 175 for details on how SQL
components are auto-loaded.

This special behavior for SQL table components provides the following benefits:

• Prevents unnecessary duplication of information. Since you do not keep the information separately from
the original database, you always access the latest updated information.

• The SQL component is auto-loaded on demand. The component does not query the database until your
code sets or reads one of its attributes.

• Reduces the size of your process instances payload. This not only saves storage space but also improves
process execution performance.

•

Disabling special handling of SQL components

You can disable this behavior by setting the accessDatabase attribute of the component to false.

When attribute accessDatabase is false on a SQL component used as a process instance variable, the
Process Execution Engine persists the complete state of the variable, including all primary key andnon-primary
key attributes.

When attribute accessDatabase to false, auto-loading is disabled. Refer to Using SQL Components on
page 175 for details on how SQL components are auto-loaded.

 // "customer" is a process instance variable of
 // SQL table type "CUSTOMER"
 this.customer.accessDatabase = false

 //... from now own, the Engine stores the complete state of
 // "customer" variable, including non-primary key fields.
 // Auto-loading is also disabled for this variable.

Mapping SQL to BPM Components
This sections explains how JDBC/SQL objects and types map to BPM components and PBL types when
cataloging SQL tables, views and procedures.

When cataloging SQL objects, Studio creates a new BPM component for each table, view and store procedure
you select. These auto-generated components inherit from the standardFuego.Sql.SqlObject component
(refer to the Oracle BPM Components Reference for details).

Renamed elements and attributes

The naming conventions on Java and PBL dictate that component names should start with uppercase letters
and attribute names should start with lowercase letters. All names should use "camel-case" to separate words
and not use underscores ("_").

When cataloging SQL objects, the attributes of generated components will follow Java conventions and the
original SQL names are converted if necessary.

Oracle BPM | Working with Studio | 177

For example, for cataloged SQL column named purchase_order, the corresponding BPM component
attribute is named purchaseOrder.

JDBC column types to PBL types

JDBC column types are mapped to PBL types as defined in the following table:

PBL TypeJDBC Type

StringCHAR

StringLONGVARCHAR

StringVARCHAR

StringCLOB

TimeTIME

TimeDATE

TimeTIMESTAMP

BoolBIT

Int(8)TINYINT

Int(16)SMALLINT

IntINTEGER

Int(64)BIGINT

DecimalNUMERIC

DecimalDECIMAL

Real(32)FLOAT

RealDOUBLE

RealREAL

BinaryBINARY

BinaryLONGBINARY

BinaryVARBINARY

BinaryBLOB

Java.Lang.ObjectOTHER

Some database provide non standard column types. The following table shows how vendor-specific types
map to PBL types:

PBL TypeJDBC TypeVendor TypeDB Vendor

StringVARCHARNVARCHARMS-SQL

StringCHARNCHARMS-SQL

StringCHARNTEXTMS-SQL

StringCHARCHARACTERDB2

TimeDATE or TIMESTAMPDATEOracle

Oracle DATEs can store dates with or without the time component. The type mapping depends on the Use
Timestamp for Date columns option on the External Resource configuration.

178 | Oracle BPM | Working with Studio

SQL Query Components
You can catalog predefined SQL queries as components in your project catalog.

Studio allows you to create components that encapsulate predefined SQL queries. These SQL queries can
also receive arguments and are reusable across the project.

Think of cataloged SQL queries as SQL views defined on the client-side.

Studio generates a component containing one attribute for each column returned by the query. Only
SELECT-type queries are allowed and the generated component provides read-only access to the results.
Cataloging a SQL Query
The following procedures show you how to catalog a table using a SQL Query.

Before performing these procedures, ensure that you have create a Module within the Catalog.

1. In the Project Navigator, right-click on the Module where you want to Catalog a SQL query.
2. Select Catalog Component ➤ SQL Query
3. Select one of the following options:

DescriptionOption

Select this option if you have already configured an External Resource
of type SQL Database.

Use existing configuration

Select this option if you need to configure a new External Resource
of type SQL Database. See Creating an External Resource on page 199.

Create a new configuration

4. ClickNext.
5. Enter a name for the new component that represents your query.
6. Enter the SQL "SELECT" statement to query your database.

Select theParametric option if your query defines placeholders to be parametrized at runtime. SeeParametric
Queries on page 179 for details.

7. If the Parametric options is not selected, you may click Preview to test your query before continuing.
8. ClickNext.

The SQL query is executed. This may take a few minutes.

If the query defines parameters, you may now fill in sample values for each parameter and click Preview
to test your query before continuing, then clickNext

The list of columns returned by the query are displayed in a table.

9. ClickNext.

The component is cataloged.

10. Click Finish.

The SQL query component appears in the Project Navigator .
Parametric Queries
When you catalog a SQL query, you have the option of making it parametric. Parametric SQL Queries accept
arguments at runtime.

When you define the SQL statement of a parametric query, you can insert special markers in the place of
actual values. Studio then generates a component that accepts arguments to fill into the placeholders when
invoked.

This allows you specialize the query according to values that are determined at runtime, instead of design
time when you design and catalog the query.

Oracle BPM | Working with Studio | 179

Syntax

To use parametric markers in your SQL statement, use the following syntax: $name:type, where "name" is
the name of the parameter and "type" is the SQL type of the parameter value.

Each parameter defined by the query becomes an argument to the constructor of the generated query
component.

Example

Example:Here's a simple parametric query for a hypothetical component namedEmployeesByDepartment:

 SELECT * from EMPLOYEE WHERE deptNumber = $dept:VARCHAR

Whenusing the query component, you pass the value for the "dept" placeholder to the constructor, as follows:

 for each hrEmployee in EmployeesByDepartment(dept: "HR1")
 do
 // ...
 end

Using SQL Query Components
Use the for each statement to execute and iterate over the result set of a cataloged SQL query.

Query components define one attribute for each column returned by the query.

Simple Queries

To execute the query, simply iterate over the component using the for each statement:

 for each record in TotalItemsQty do
 display record.qty
 end

Parametric queries

To execute a parametric query, you must provide the values for all its parameters to the constructor of the
query component. The following example passes values for the "type" parameter defined by a query:

 for each record in TotalItemsQtybyType(type: "myType") do
 display record.qty
 end

Mapping SQL types to PBL
This sections explains how JDBC/SQL types map to PBL types when cataloging SQL queries.

JDBC column types to PBL types

JDBC column types are mapped to PBL types as defined in the following table:

PBL TypeJDBC Type

StringCHAR

StringLONGVARCHAR

StringVARCHAR

StringCLOB

TimeTIME

TimeDATE

180 | Oracle BPM | Working with Studio

PBL TypeJDBC Type

TimeTIMESTAMP

BoolBIT

Int(8)TINYINT

Int(16)SMALLINT

IntINTEGER

Int(64)BIGINT

DecimalNUMERIC

DecimalDECIMAL

Real(32)FLOAT

RealDOUBLE

RealREAL

BinaryBINARY

BinaryLONGBINARY

BinaryVARBINARY

BinaryBLOB

Java.Lang.ObjectOTHER

Some database provide non standard column types. The following table shows how vendor-specific types
map to PBL types:

PBL TypeJDBC TypeVendor TypeDB Vendor

StringVARCHARNVARCHARMS-SQL

StringCHARNCHARMS-SQL

StringCHARNTEXTMS-SQL

StringCHARCHARACTERDB2

TimeDATE or TIMESTAMPDATEOracle

Oracle DATEs can store dates with or without the time component. The type mapping depends on the Use
Timestamp for Date columns option on the External Resource configuration.

Web Service Components
You can catalog SOAPWeb Services from a WSDL (Web Services Description Language) definition and use
them in your BPM project. Use Web Service components to integrate with external systems using the SOAP
standard.

When you catalog a SOAP service you get a BPM component which provides one method for each SOAP
operation exposed by the service. If the web service defines complex data types, additional BPM components
are generated to represent them.

Supported Standards

Oracle BPM supports WSDL version 1.1 (Web Services Description Language) and SOAP versions 1.1 and
1.2.

Oracle BPM | Working with Studio | 181

Oracle BPM supports sending and receiving SOAP messages using RPC (Remote Procedure Call) and
Document styles.

Supported Transports

Oracle BPM supports the following transports for consuming SOAP services:

One-way and Request-Response interactions.HTTP

One-way interactions over Java Messaging Service.JMS

One-way and Request-Response interactions. For integration with Oracle
Service Bus.

Oracle BPM native

Cataloging Web Service Components

Before performing this procedure ensure you have created a module where you want to catalog the Web
Service components. See Creating a Module on page 152.

To catalog Web Service Components:

1. Right-click on the module where you want to catalog the components.
2. Select Catalog Component ➤ Web Service
3. Select one of the following options:

DescriptionOption

Select this option to specify the location to theWSDL file. Fill in theWSDLAddress
field with an HTTP URL or a file path on your local machine.

WSDL file

Select this option to access the WSDL definition through a UDDI (Universal
Description Discovery and Integration) registry. Fill in the Inquiry URL field with

UDDI inquiry

the URL to your UDDI registry. You may specify authentication credentials if your
registry requires it. Enable option UDDI Dynamic Endpoint Binding to query the
UDDI registry and resolve the endpoint address at runtime.

4. Provide a name for the new sub-module in theModule field.
5. Review all the information and clickNext.
6. If you selected to use UDDI inquiry:

a) Enter the type (Business or Service) and name to search for.
b) Click Next
c) If you searched for Businesses, select one of the businesses listed and click Next.
d) Select one of the Services from the list and click Next.
e) Select one of the endpoints listed and click Next.

7. Oracle BPM Studio generates a catalog component for each of the Web Service elements.
8. Click Finish.

The cataloged Web Service module appears in the Project Navigator.
Using Web Service Components
Use Web Service components to invoke external SOAP services.

Invoking a cataloged Service

Use the *Service interface to invoke operations on a cataloged Web Service. For example, the following
code uses a hypothetical Currency Exchange service:

 // Instantiate a Service component
 // Configuration taken from associated External Resource
 exchange as CurrencyExchangeService = CurrencyExchangeService()

182 | Oracle BPM | Working with Studio

 // Invoke the "getRate" operation
 rate = exchange.getRate(from: "USD", to: "EUR")

Overriding Endpoint configuration

If you use the default constructor of a *Service component, it reads the configuration values from the
associated External Resource.

You can override the External Resource configuration passing a String with the URL of the desired endpoint,
or passing an object of type Fuego.WebServices.Configuration. For example, the following code uses
the hypothetical Currency Exchange service, explicitly defining the endpoint information:

 // Build new WebService configuration:
 wsConfig = Fuego.WebServices.Configuration()
 exchangeEndPoint =
HttpEndpoint("http://localhost:8080/webservices/CurrencyExchange")
 wsConfig.endpoint = exchangeEndPoint

 // Instantiate a Service component, passing a configuration
 // object and ignoring the associated External Resource
 exchange as CurrencyExchangeService = CurrencyExchangeService(wsConfig)

 // Invoke the "getRate" operation
 rate = exchange.getRate(from: "USD", to: "EUR")

Refer to the documentation of Fuego.WebServices.Configuration component for more details.

Handling Exceptions

When a cataloged Web Service component encounters a SOAP fault, it throws a
Fuego.WebServices.SoapFaultException that contains the SOAP Fault code and description string.

Important: This exception only covers faults generated by the SOAP protocol. Lower-level network
problems and exceptions (like ConnectionException or NoRouteToHostException) are not covered by
SoapFaultException.

For example, the following code uses the hypothetical Currency Exchange service, explicitly handling
exceptions caused by the component:

do

 // Invoke service
 exchange as CurrencyExchangeService = CurrencyExchangeService()
 rate = exchange.getRate(from: "USD", to: "EUR")

on soapFault as SoapFaultException

 logMessage "SOAP fault caught: ["+ soapFault.faultCode+"] "
 + soapFault.faultString

 logMessage "Fault message:"+generateXmlFor(soapFault)

 // ...
on ex as Exception

 logMessage "Non-SOAP exception calling Web Service "+ex
 // ...

Oracle BPM | Working with Studio | 183

end

Mapping SOAP Web Services to BPM Components
This sections explains how SOAP services map to BPM components when cataloging WSDL definitions.

When cataloging aWSDLdescriptor, Studio creates a newBPMcomponent for each service theWSDLdefines.
The name of the component endwithService. The component providesmethods for each operation exposed
by the service.

Complex types

Since WSDL uses XML Schema (XSD) to describe complex data types, Studio maps all types defined in the
WSDL descriptor to XSD components as described inMapping XSD to BPMComponents on page 188. For each
complex XSD type, Studio generates a new BPM Component.

Port types and Messages defined in the WSDL also map to XSD components.

Fault Messages in the WSDL map to Fuego.WebServices.SoapFaulException in the catalog.

XML Schema Components
You can catalog XML Schema Definitions (XSD) components and use them in your BPM project. Use XML
Schema components for parsing, validating, manipulating and generating typed XML documents.

Supported XML Schema languages

Oracle BPM supports the XML Schema Definition (XSD) language versions 1.0 and 1.1.

Other XML schema languages, such as like DTD (Document Type Definition) are not currently supported.
Third party tools exist to convert other schema languages into XSD.

Not using Schemas

If you need to perform ad-hoc XML parsing and general XML processing without using schemas, refer to
the standard Fuego.Xml.XMLDocument and Fuego.Xml.XMLNode components.
Cataloging XML Schema
Before using XML Schema components from processes or BPM Objects, you must include them into the
project catalog. When you catalog a component, you are gathering all the necessary information that Studio
needs in order to call and execute it at runtime.

Before performing the procedures in this task, ensure that you have created a module where you want to
catalog the XML Schema components. See Creating a Module on page 152.

To catalog an XML Schema Component:

1. Right-click on the module where you want to catalog the component.
2. Select Catalog Component ➤ XML Schema
3. Enter the location of the schema file you want to catalog.

Note: Only XML Schema Definitions (.xsd) can be cataloged.

4. Enter a Module Name
5. ClickNext.

The XML schema is analyzed for dependencies. Any errors or warnings are listed.
6. Click Finish.

For each type defined in the XML Schema Definition, a new component appears in the Project Navigator.
Using XML Schema Components
Use XML Schema components for parsing, validating, manipulating and generating typed XML documents.

184 | Oracle BPM | Working with Studio

Loading XML documents

To create a typed XML object from an XML string use method load().

To create a typed XML object from an external XML file usemethod loadFromUrl(). This method supports
file:// and http:// protocols.

You can also work with the Fuego.Xml.XMLObject component directly, although it doesn't provide any
type information or validation.

Loading malformed documents causes a runtime Exception.

Validating an XSD component

When an XSD component loads an XML document (methods load, loadFromUrl) it does not validate the
document against the schema. The component ignores unknownXML elements and attributeswhen loading,
but these are not discarded: generating an XML string representation (with generateXmlFor()) includes
the original elements and attributes.

To validate a loaded document, use the validate()method. If validation fails, thismethod raises a runtime
Exception.

Converting XSD components to XML strings

All catalogedXSDcomponents providemethodgenerateXmlFor (inherited fromFuego.Xml.XMLObject).
Thismethod serializes the current XMLObject to anXMLString representation according to the XML-Schema
1.1 specification.

XSD Components on runtime

The XML SchemaDefinition documents (*.xsd) are not needed on runtime. Oracle BPMdoes not use the XSD
file once its been cataloged.
XML Schema Examples
An example of using XML Schema Definition representing customer information.

XML Schema Introspection Example

The following is an XML schema example for an XML document that may be used in a business process.

 <?xml version="1.0" encoding="UTF-8" ?>

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:simpleType name="Address" type="xsd:string"/>
 <xsd:simpleType name="CustomerCode" type="xsd:string"/>
 <xsd:simpleType name="CustomerName" type="xsd:string"/>
 <xsd:simpleType name="CodPay" type="xsd:string"/>
 <xsd:simpleType name="CustDisc" type="xsd:string"/>
 <xsd:simpleType name="CustType" type="xsd:string"/>
 <xsd:simpleType name="Mail" type="xsd:string"/>

 <xsd:group name="shipAndBill">
 <xsd:sequence>
 <xsd:element name="ShipAddress" type="Address"/>
 <xsd:element name="BillAddress" type="Address"/>
 </xsd:sequence>
 </xsd:group>

 <xsd:complexType name="Customer">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="CustomerCode"
 type="CustomerCode"/>

Oracle BPM | Working with Studio | 185

 <xsd:element name="CustomerName"
 type="CustomerName"/>
 <xsd:element name="CodPay" type="CodPay"/>
 <xsd:element name="CustDisc" type="CustDisc"/>
 <xsd:element name="CustType" type="CustType"/>
 <xsd:group ref="shipAndBill"/>
 <xsd:element name="Mail" type="Mail"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="customer" type="Customer"/>

 </xsd:schema>

After cataloging the XML Schema Definition detailed above, the Project catalog structure appears as shown
in the following image:

Note: You can drag and drop the XML attributes andmethods to the method editor in order to visualize
the usage template.

Create an XML File Based on an the cataloged components

 customer as XMLCOmp.Customer.Customer
 customer = XMLCOmp.Customer.Customer()

 customer.customerCode = "NEW"
 customer.customerName = "John Smith"
 customer.custDisc = null
 customer.billAddress = "Madison 2939 NY"
 customer.shipAddress = "Madison 2939 NY"
 customer.codPay = null
 customer.custType = null
 customer.mail = "pp@com.com"

 store customer
 using targetFile = "C:/tmp/customer.xml"

186 | Oracle BPM | Working with Studio

Loading an XML File Using loadFromUrl

The loadFromUrl()method can receive as parameter an URL pointing to the xml file, like
file://home/sharedDocuments/test.xml or httpd://....

 customer as XMLComp.Customer.Customer
 customer = XMLComp.Customer.Customer()

 customer.loadFromUrl("file://c:/tmp/customer.xml")

The loadFromUrl()method uses DOM (Document Object Model) to load the complete XML document
in memory.

Load an XML data file containing a customer using the load method

The loadmethod can receive as parameter:

• an URL
• a path location to the XMLfile. For example: C:\\documents\\test.xml or /documents/test.xml
• the XML document content.

Important Considerations
Advanced information you may need to know when working with cataloged XML Schema components.

About <xsd:import> and <xsd:include>

When anXSDdocuments uses<xsd:import> or<xsd:include>definitions, the referredXSDdocuments
will also be loaded and cataloged together in the same module.

If you catalog two separate XSD documents which both include a common third XSD document, the types
defined in the shared XSD will be included twice in your catalog.

For example, given the following scenario:

Customer.xsd includes Address.xsd
Provider.xsd includes Address.xsd

If you catalog Customer.xsd you will get components for both Customer types and Address types under
the Customermodule. If you then catalog Provider.xsd you will get components for both Provider and
(again) Address types under the new Providermodule. Those types defined in the shared Address.xsd
appear twice.

AlthoughAddress components under theCustomer and Providermodules are not strictly of the same PBL
type, you can convert objects from one to the other by converting them to XML strings and re-creating the
objects. Example:

 customer as XSD.Customer.Customer
 customer = XSD.Customer.Customer()
 customer.loadFromUrl("file://c:/tmp/customer.xml")

 // customer.address is of PBL type XSD.Customer.Address

 xmlAddress as String = generateXmlFor(customer.address)

 provider as XSD.Provider.Provider()
 provider.address = XSD.Provider.Address(xmlAddress)

Oracle BPM | Working with Studio | 187

Mapping XSD to BPM Components
This sections explains how XML Schema Definition (XSD) types map to BPM components and PBL types
when cataloging XSD components.

The document structures defined in the XSD are converted to regular BPM components.

For each complex XSD type, a new BPMComponent is generated. XML elements and XML attributes become
attributes of the BPM components. All generated XSD components inherit from the standard
Fuego.Xml.XMLObject component (refer to the Oracle BPM Components Reference).

If the type of an XML element is complex, then the type of the associated component attribute will be of that
of the component created for that complex type. For example, if a complex <customer> element includes a
complex <address> element, you get two BPM components (Customer and Address) and the Customer
component contains an attribute named address of type Address.

Renamed elements and attributes

The naming conventions on Java and PBL dictate that component names should start with uppercase letters
and attribute names should start with lowercase letters. All names should use "camel-case" to separate words
and not use underscores ("_").

When cataloging XSDs, the generated components' attributes will follow Java conventions and the original
XML element and attribute names will be converted if necessary.

For example, if an XSD defines an type named purchase_order, the corresponding BPM component is
named PurchaseOrder.

Simple XSD to PBL types

Simple XML types are mapped to simple PBL as defined in the following table:

PBL TypeXSD Type

Binarybase64Binary

BinaryhexBinary

StringanyURI

Stringanguage

StringnormalizedString

Stringstring

Stringtoken

Int(8)byte

Decimaldecimal

Realdouble

Real(32)float

Intint

int(64)integer

int(64)long

Int(64)negativeInteger

Int(64)nonNegativeInteger

Int(64)nonPositiveInteger

Int(64)positiveInteger

188 | Oracle BPM | Working with Studio

PBL TypeXSD Type

Int(16)short

Int(8)unsignedByte

IntunsignedInt

Int(64)unsignedLong

Int(16)unsignedShort

Timedate

TimedateTime

Intervalduration

IntgDay

IntgMonth

TimegMonthDay

Int(16)gYear

TimegYearMonth

Timetime

Fuego.Xml.XMLObjectanyType

StringanySimpleType

StringName

StringNCName

StringNOTATION

StringQName

StringENTITY

String[]ENTITIES

StringID

StringIDREF

String[]IDREFS

StringNMTOKEN

String[]NMTOKENS

BPM Objects

BPM Object Overview
A BPM Object is a user-defined component that contains attributes, methods, and presentations.

A BPM Object can be used to encapsulate any type of information that the process requires. For example, It
can be to input and store information that would be persisted in another type of data container, such as a
database or an XML file.

A BPM Object is composed of:

Oracle BPM | Working with Studio | 189

DescriptionBPM Object Element

Attributes are data elements (like variables), used to store data that define
and describe the BPM Object.

Attributes can be defined as virtual, in which case they do not actually
contain any data, but are instead implemented as a pair of methods for
reading and writing. Virtual attributes are accessed like regular attributes.

Attributes

Methods are like functions or subroutines associated to the object. Youwrite
methods in Process Business Language, and can use them to access or set

Methods

BPM Object data indirectly. For example, you may want to obtain the sum
of several numeric attributes. In this case you can read each attribute from
the BPMObject and add them, or you can add amethod to the BPMObject,
called for example attributeSum, which will return the summed value.

The resulting code is easier to maintain. For example, if you add a new
attribute to the BPM Object which must also be summed, you can edit the
attributeSummethod to include the new attribute. By doing it this way,
you avoid the need to track every piece of code which requires the sum of
the attributes of the object.

Groups are objects made up of one or more related attributes and stored in
an array. Groups are designed to be used wherever you require a list of

Groups

items and each item has several attributes. For example, in an invoice there
can be several items, and each item has a description, a quantity, and a
price.

If you are a Java programmer, you can think of a group as being analogous
to an inner class.

BPMObject Presentations are essentially formswhich either show or allow
input of BPMObject properties. A presentation can show all or some of the
properties of a BPM Object

Every BPMObjectmay contain one ormore presentations. Each of the fields
on the presentation are tied to one of the attributes. Presentations provide

Presentations

a simple way for end users to view or to input the attributes of the BPM
Object.

When a BPMObject is created, it is only a data container or non-presentable
BPMObject until a presentation is added to it; then it becomes presentable.

See End-User Interfaces on Oracle BPM on page 250 for more information
about how BPM Object data is presented to end users.

Example BPM Object

The following figure shows the structure of an expense report BPM Object:

190 | Oracle BPM | Working with Studio

Figure 4: Expense Report BPM Object

The BPM Object above shows methods, attributes, groups, and presentations. Most of
thesewere added by the developer,while a fewof themethodswere created automatically
based on the properties set when creating the different attributes. An example of an
automatically generatedmethod is the costCenterValidValuesmethod. Thismethod
is created by setting a list of valid values to the costCenter attribute when defining it.
This method returns an array containing all the values allowed for that attribute, which
is used by presentations to display a drop-down list with the possible values of an attribute.

Creating a BPM Object
You define BPM Objects in several steps. The first step is to create the BPM Object, where you will specify
its basic properties. Afterwards, you can add attributes, groups, methods, and presentations.

Note: If you are familiar with object-oriented programming, you can think of creating a BPM Object as
defining a class.

To create a BPM object:

1. In the Project Navigator, within your project, expand Catalog ().
You will see a list of catalog modules. If you are working on a new project, these include: Fuego, Java

2. You define BPMObjects in your ownmodules. To add your ownmodule, right-click on Catalog and click
New ➤ Module ().

Note: You can define several BPM Objects in one module, so you do not need to execute this step if
you already have defined a module.

TheModule dialog box appears.
3. Enter a name such as MyModule in theModule Name field, and click OK.

The module you specified is added to the catalog.

Oracle BPM | Working with Studio | 191

4. Right-click on the module icon and click New ➤ BPM Object ().
The BPM Object dialog box appears.

5. Enter a name for the new object, such as MyObject, in theName field. Click OK.
The BPM object is added to the module.

6. Expand your module and then expand your new BPM object.
You will see the contents of the new object. It contains onemethod, with the same name as the BPMObject.
This is the constructormethod, which means that it will execute whenever an object of this type is created
(or "constructed"). If you need to include code that will initialize something in the BPM object, you can
add it to this method.

Attribute Overview
Attributes are the data elements, such as numbers, strings, or date values, that describe the state and contents
of a BPM Object.

Read and Write Access

If an attribute has no read access, this means that its value is not accessible. On the contrary, if an attribute
has no write access, its value cannot be changed.

All real attributes have both read andwrite access set by default.When an attribute is added to a BPMObject,
it is created as a real attribute by default.When accessmethods are added to real type attributes, they override
this default. When access methods are removed, they reset to the default. These changes never modify the
read/write access of the attribute.

An attribute can be redefined as real or virtual by selecting or deselecting the Virtual check box available for
the attribute in the BPM Object editor panel.

You must define at least one access method for a virtual attribute. If no access method is defined, the BPM
Object compilation fails.

Read access has a return type identical to the return type of the attribute. Write access receives an argument
called value, which is of the same type and has no return type.

When to Use a Real or Virtual Attribute

You must use a real attribute when you need to store a data element. You should use virtual attributes to
expose values which can be calculated from existing real attributes. It may not always be obvious which
values should be calculated andwhich should be directly stored. In the temperature example abovewe could
have stored the Fahrenheit temperature while calculating the Celsius temperature

As a general rule, you should store what you consider to be the most natural value or the value you expect
to use the most. The main thing is to avoid storing redundant information, since you risk ending up with
divergent values for the same thing. Continuing with our example, if the object stores the temperature in
Fahrenheit and also in Celsius, it will be possible to change only one of the values. The BPM Object would
then contain two divergent values.

Defining an Attribute
You define an attribute in Studio from the Project Navigator.

To define a BPM Object attribute:

1. In the Project Navigator, right-click on the BPM Object (), and click New ➤ Attribute ().
The Attribute dialog box appears.

2. Enter the attribute name in theName field.
3. Select the data type from the Type drop-down list, and clickOK.

The attribute editor for the new attribute opens.

192 | Oracle BPM | Working with Studio

4. For some data types, you can specify length or precision, as shown below:

Possible valuesPropertyData Type

1 to 10,000Maximum LengthString

0 to 100Decimal DigitsDecimal

Date Only, Time Only, or TimestampTime PrecisionTime

5. In the Storage Constraints section of the editor, you can check one or more of the following:

DescriptionStorage Constraint

If set, the attribute will not hold data. Instead, you must define a Read
Access method, a Write Access method, or both. See Virtual Attributes on
page 195.

Virtual

If set, the attribute will be used as an identifier to determine if two BPM
Objects are the same. You would typically set this for an attribute
containing a unique value, such as an ID number.

Primary Key

If set, a null value is not allowed, and youwill need to set a default value
in the Default Value section.

Not Null

6. In theDefault Value section, you can set an initial value the attribute will be given when the BPM Object
is created. If you did not set theNot Null option, you may also set the default value to Null.

7. In the Required Expression field, you can enter a Process Business Language expression that will be
evaluated when the attribute field is changed in a presentation.
For example, you can make sure the user enters a value greater than zero with the following expression:
attributeValue > 0

8. Save () the changes and close the editor window by clicking on the X in the bottom tab. If you close from
the top tab, you will close the BPM Object.

Valid Values
BPM object attributes can be configuredwith a set of predefined valid values.When you do this, the attribute
will be presented to the user as a drop-down list, rather than a field. Thus, the user will only be able to select
from the choices provided.

There are three possible Valid Values settings for a BPM object attribute:

Presented AsDescriptionValid Values Setting

Text fieldAny value within the bounds of the data type
is accepted. This is the default setting.

All

Drop-down listOne of a list of values is accepted. The list is
fixed at design time.

Static List

Drop-down listOne of a list of values is accepted. The list is
dynamically built by a method in run-time.

Dynamic Method

The dynamic method is more flexible. For example, you can pull the information from a database. The static
list is easy to configure without writing any code.

Value Descriptions

You will often want end-users to choose among a set of values they can easily recognize, while in the
background you need an identifier to return to your system. A typical situation is with a database, where

Oracle BPM | Working with Studio | 193

youmightwant to obtain a record ID that has nomeaning to the user. In other cases, youmay need an expense
account number or an abbreviated code of some kind, such as a country code, while you want the user to be
able to choose from a more descriptive list, such as actual country names.

This can be easily done either with the static list or dynamic method options by choosing to use value
descriptions.
Setting a Static Valid Values List
A static valid values list is set at design time. You can use a static valid values list when you know that the
list is unlikely to change very often, and when it will contain relatively few options.

The main advantage of a static valid values list is easy to configure, and does not require writing any code.
If you want the list of valid values to change frequently, you are better off using a dynamic list obtained from
a database or other data source.

To define a list of valid values:

1. In theValidValues section of the attribute editor, select Static List. and check the Edit ValueDescriptions
option.
The Values table will appear.

2. You can choose to add value descriptions by checking the Edit Value Descriptions checkbox.
If you set this option, a Description column will appear in the table.

3. To add an entry to the table, click on the Add icon () and enter a numeric value in the Value column and,
if you've set value descriptions, also add a descriptive text in the Description column.

To delete an entry in the table, select the entry and click on the Remove icon ().

4. Once you are done adding entries to the list, make sure the Default Value field is set to a value (not a
description) that exists on the list.

Note: When an attribute is configured with a valid values list, theDefault field must be set to one of
the valid values. If it isn't, an error condition is indicated.

5. Save your changes and close the editor for this attribute.

Defining a Valid Values Method
When a list of valid values will change frequently, you will usually choose to load it dynamically. To do so,
you must write a Process Business Language method which will return the list or choose an existing method
or array attribute.

The advantages of a using a Process Business Language method to populate a list of valid values are that you
can use data from any source, and that you read this data when it is needed, so it is always current. You can
alsowrite amethod that generates valueswith an algorithm anddoes not obtain data from an external source.

You can load a list of valid values dynamically using:

• A method that obtains the values from an external source, such as a database or a Web service, or that
generates the values in some other way.

• An array attribute of the same data type as the attribute the valid values are for. For instance, an Int[]
array can hold valid values for an Int attribute.

To define a dynamic method valid values list:

1. In the Valid Values section of the attribute editor, selectDynamic Method.
TheMethod Descriptions option and theMethod or attribute used to load valid values panel appear.
In the panel, the drop-down list contains currently available methods which return an array of the data
type required, as well as array attributes also of the required data type.

2. If you want the valid values list to contain value-description pairs, click on theMethod Descriptions
option.
If you check this option, an associative array is expected. If not, an indexed array is expected. Therefore,
the list of matching methods and attributes will depend on your choice.

194 | Oracle BPM | Working with Studio

3. You can select an existingmethod or attribute from the drop-down list. If you need to create a newmethod,
go to step 4. Otherwise, select the method or attribute and save your changes.

4. To create a new method clickNew.
TheMethod dialog box appears.

5. Enter the name of the new method in theMethod Name field, and clickOK.
A Process Business Language method editor opens. In the Propertieswindow, note that Studio set the
return type to match that required by the attribute.

6. If your method will access a database or other catalog component with external dependencies, set Server
Side Method to Yes in the Propertieswindow.

Note: A server side Process Business Language method executes in the process execution engine. If
a method is not server side, it executes where it is called, and may execute in the WorkSpace server.
For the purposes of this setting, theWorkSpace considered to be the "client". Process Business Language
methods are never executed at the browser.

7. Enter yourmethod into the editor. Yourmethodmust contain a return statement at the endwhich specifies
the variable to be returned. See the examples below.

8. Save your changes and close the Process Business Language editor and the attribute editor.

Examples

The following Process Business Languagemethod loads a list from SQL table suppliers
into the valid values list of an integer attribute. This table was previously introspected
into the project catalog as an SQL component. In this table, supplierId is an Int, and
supplierName is a String.

In this case the valid values list has descriptions, so an associative array in the form
String[Int]must be returned:
listValues as String[Int]

for each record in
 SELECT supplierId, supplierName
 FROM suppliers
do
 listValues[record.supplierId] = record.supplierName
end

return listValues

The following loads the first 11 numbers of the Fibonacci sequence into a valid values list
with no description, so it returns an indexed array:
fNumber as Int[]

fNumber[0] = 1
fNumber[1] = 1

for n in 2..10 do
 fNumber[n] = fNumber[n - 1] + fNumber[n - 2]
end

return fNumber

Virtual Attributes
When an attribute is defined as virtual, it means that it stores no data value, and is defined by its read and
write access methods.

Oracle BPM | Working with Studio | 195

BPM Object attributes can be real or virtual. Defining an attribute as real means that the attribute contains an
actual data value. When an attribute is defined as virtual, it means that it contains no data value, and is
defined by its read and write access methods.

Virtual Attribute Definition

You create a virtual attribute the same way you create a real attribute, except that you select Virtual in the
Storage Constraints section of the attribute editor. When you do this, Studio creates two methods

For example, if you designed a BPM Object to obtain weather data, you would likely include a temperature
attribute. You could implement the temperature in degrees Celsius in an attribute called tempCelsius.

If you wanted to also handle the temperature in degrees Fahrenheit, you could implement a virtual attribute
tempFahrenheitwhich would be implemented as follows:

Read access:
return tempCelsius * 1.8 + 32

Write access:
tempCelsius = (value - 32) / 1.8

Virtual Attributes from Process Business Language Code

In Process Business Language code, you access a virtual attribute the same way you access a real attribute.
However, you can only access the variable in whatever modes are defined for it (read access or write access
or both). For example, a total virtual attribute in the invoice BPM Object has the following read access
method:
amount as Decimal(2)
amount = 0

for each item in items do
 amount = amount + item.amount
end

return amount

In this fragment of code, items is a group, and amount is a decimal value representing the cost of each item.

To obtain total value from code, you use:
invoice.total

There is no write method for the total attribute, nor would it make sense to have one (since by definition
the total must equal the sum of the amounts), so you would not set it to any value in code.

The tempFahrenheit virtual attribute we defined above does have both read access and write access. To
write, use:
weather.tempFarenheit = 70.7

Remember that the 70.7 value will not be stored. Instead, when this line of code is executed,
weather.tempCelsiuswill take on a value of 21.5.

To read, use:
display weather.tempFarenheit

The 70.7 value will be displayed.

Attribute Data Types

Available data types to define an attribute are:

196 | Oracle BPM | Working with Studio

DescriptionType

A boolean (True or False) valueBool

Integer numberInt

Decimal number value with defined precisionDecimal

Real (floating point) numberReal

Text stringString

A date, time, or date-time valueTime

A time intervalInterval

Binary container, for example, an image, a file, etc.Binary

Can hold any data type. Similar to a Visual Basic variant.Any

When defining the attribute type by clicking the browse button next to the Type field, you can select any
cataloged component in the Project Catalog as the defined type for the attribute you are declaring. This gives
you the ability to typify an attribute within a BPMObject with any component defined in the Project Catalog,
even another BPM Object. If it the attribute is typed after a different BPM Object, it is referred to as an Inner
BPM Object. Find an example in the Inner BPM Object section below.

Required Fields When Defining an Attribute

The following table shows the required fields for defining an attribute:

Attribute typeDescriptionField

Real & Virtual attributes.Domain type of data that the attribute
contains.

Type

Attribute must have write access.The attribute may be assigned, or not, a
null value.

Not null

Attribute must have read access.Is the attribute part of the primary key of
the BPM Object?

Primary Key

Date attributes.Only for Time attributes, you can choose
the following:Timestamp: The entire date

Time Precision

and time,Date only: The date, Time only:
The time.

The value of a time attribute which is set
as absolute is stored in GMT-0.

Absolute

Real & Virtual attributes.For String. TheMaximum length field
defines the maximum number of
characters allowed for the attribute.

Maximum length

Attribute must have write access.For Int, Decimal, Real, String, Time and
Interval types. Initial value that the

Default Value

attribute contains. A default value for a
Bool type attribute is defined by selecting
the True or False radio button.

Attribute must have write access.The Require Expression field allows you
to enter a Boolean expression to be checked

Require Expression

as a precondition to the assignment of a
value to the attribute. It can be built either
by a simple, one line expression that

Oracle BPM | Working with Studio | 197

Attribute typeDescriptionField

evaluates an expression or by calling a
method. This method must return a
boolean type.

Any attribute.Check Expression defines integrity
validation of the attribute within the BPM

Check Expression

Object instance. It can be built either by a
simple, one line expression that evaluates
an expression or by calling amethod. This
method must return a boolean type.

Any attributeList of valid values that an attribute can be
assigned. It can be built either by a

Valid Values

hard-coded list of valid values that the
attribute can contain or by a call to a
method that returns a list (array) of valid
values. This method must return an array
of the same domain type as the attribute's
type. The implementation allows you to
show the actual value or its description.
For further details, see section Valid
Values on this page.

BPM Object Presentations
A presentation is form that allows the users of the process to view or edit that data in a BPM Object.

Creating a Presentation
The following procedure shows you how to add a presentation to a BPM Object.

To add a presentation to a BPM Object:

1. Right-click on the BPM Object.
2. Select New ➤ Presentation
3. Enter the name of the new presentation in the Presentation field.

The Presentation Wizard appears.
4. ClickNext
5. ClickNext.

The Presentation Referenced Attributes page of the appears.
6. Select the attributes that you want to appear in the presentation.

You can modify the order of the attributes using the Up andDown buttons.

7. Click Finish.
The new presentation appears.

External Resources
External Resources provide a common method for connecting to other resources in an enterprise including
databases,Web Services, etc. External Resources are used to define connectivity and configuration information.

198 | Oracle BPM | Working with Studio

It is useful to define these separately since connectivity and configuration information is different between
systems. This allows you to easily deploy a project into a new environment because you only need to redefine
the External Resource without having to edit application code.

Creating an External Resource
Studio allows you to define external resources to connect to external systems and resources within your
environment.

1. In the Project Navigator View, expand the project where you want to define a new External Resource.
2. Right-click External Resources and selectNew External Resource.

The Edit External Resourcewindow appears.
3. Enter a name for the External Resource.
4. Select the type of External Resource you want to define.
5. Provide values for each of the External Resource properties.

For complete information on the properties for each type of External Resource seeExternal Resource Reference
on page 199.

6. ClickOK.

The new External Resource appears in the Project Navigator.

External Resource Reference
The following sections provide detailed information about the configuration options for each External Resource
type.

SQL Database
Provides detailed information for the SQL Database External Resource.

General Properties

The following table defines the general properties that are required for each supported database driver.

DescriptionProperty

Defines the name of the external resource.Name

Specifies the type of external resource.Type

Specifies the type of JDBC connection which
correspondence to the database vendor and version
number.

Supported Types

Oracle DB2 Driver Properties
You can specify the following connectivity properties for your DB2 database:

Basic

DescriptionProperty

Specifies the database server host.Host

Specifies the port of the database host.Port

Defines user ID you want to use to connect to the
database. This user must already exist in DB2 and

User

have permissions to create the schema and tables used
to store information.

Oracle BPM | Working with Studio | 199

DescriptionProperty

Specifies password for the user.Password

Specifies the database you wish to connect to.Database

Specifies the database schema to use. (optional)Schema

Defines the URL for the database entry.URL

Properties

You can define name/value pairs to provide additional configuration properties to your database. See your
vendor's documentation for more information.

Note: Connection property names are case-insensitive.

Runtime

DescriptionProperty

Determines themaximumnumber of connections that
can be created within the connection pool.

Maximum Pool Size

Determines themaximumnumber of connections that
can be created per user.

Maximum Connections Per User

Specifies the maximum time, in minutes, that a
database connection can remain idle before it is closed
automatically.

Connection Idle Time (minutes)

Determines theminimumnumber of connections that
can be created within a connection pool.

Minimum Pool Size

Determines themaximumnumber of cursors that can
be opened at one time.

Maximum Opened Cursors

Oracle Informix Driver Properties
You can specify the following connectivity properties for your Informix database:

Basic

DescriptionProperty

Specifies either the IP address or the server name (if
your network supports named servers) of the primary

Host

database server. For example, 122.23.15.12 or
InformixServer.

Specifies the TCP port on which the database server
listens for connections. The default varies depending
on operating system.

Port

Specifies the case-insensitive default user name used
to connect to your Informix database.

User

Specifies a case-insensitive password used to connect
to your Informix database.

Password

Specifies the name of the database towhich youwant
to connect.

Database

200 | Oracle BPM | Working with Studio

DescriptionProperty

Specifies the name of the Informix database server to
which you want to connect.

Server

Defines the URL format used to connect to your
database.

URL

Advanced

DescriptionProperty

Specifies the root dbspace of your Informix database.
The rootdb space is the initial dbspace created by the

Root dbspace name

Informix server. The root dbspace contains reserve
pages and internal tables.

Properties

You can define name/value pairs to provide additional configuration properties to your database. See your
vendor's documentation for more information.

Note: Connection property names are case-insensitive.

Runtime

DescriptionProperty

Determines themaximumnumber of connections that
can be created within the connection pool.

Maximum Pool Size

Determines themaximumnumber of connections that
can be created per user.

Maximum Connections Per User

Specifies the maximum time, in minutes, that a
database connection can remain idle before it is closed
automatically.

Connection Idle Time (minutes)

Determines theminimumnumber of connections that
can be created within a connection pool.

Minimum Pool Size

Determines themaximumnumber of cursors that can
be opened at one time.

Maximum Opened Cursors

Oracle SQL Server Driver Properties
You can specify the following connectivity properties for your SQL Server database:

Basic

DescriptionProperty

Specifies the hostname or IP address of the database
server.

Host

The TCP port of the primary database server that is
listening for connections to theMicrosoft SQL Server
database.

The default is 1433.

Port

Oracle BPM | Working with Studio | 201

DescriptionProperty

Specifies the case-insensitive user name used to
connect to your Microsoft SQL Server database.

User

Specifies a case-insensitive password used to connect
to your Microsoft SQL Server database.

Password

Specifies either the IP address or the server name, if
your network supports named servers, of the primary
database server.

Database

Defines the URL format used to connect to your
database.

URL

Properties

You can define name/value pairs to provide additional configuration properties to your database. See your
vendor's documentation for more information.

Note: Connection property names are case-insensitive.

Runtime

DescriptionProperty

Determines themaximumnumber of connections that
can be created within the connection pool.

Maximum Pool Size

Determines themaximumnumber of connections that
can be created per user.

Maximum Connections Per User

Specifies the maximum time, in minutes, that a
database connection can remain idle before it is closed
automatically.

Connection Idle Time (minutes)

Determines theminimumnumber of connections that
can be created within a connection pool.

Minimum Pool Size

Determines themaximumnumber of cursors that can
be opened at one time.

Maximum Opened Cursors

Oracle Driver Properties
You can specify the following connectivity properties for your Oracle database:

Basic

DescriptionProperty

Specifies the hostname or IP address of the database
server.

Host

Specifies the TCP port of the Oracle listener running
on the Oracle database server. The default is 1521,

Port

which is the Oracle default port number when
installing the Oracle database software.

Specifies the case-insensitive default user name used
to connect to your Oracle database.

User

Specifies the case-insensitive password used to
connect to your Oracle database.

Password

202 | Oracle BPM | Working with Studio

DescriptionProperty

Specifies the Oracle System Identifier that refers to
the instance of the Oracle database running on the
server.

SID

Specifies the schema of the Oracle database server.Schema (optional)

Defines the URL used to connect to your database.URL

Advanced

DescriptionProperty

Specifies the tablespace Oracle BPM uses to create
new tables.

Tablespace

Specifies the temporary tablespace Oracle BPM uses
to create new tables.

Temporary Tablespace

Specifies the profile Oracle BPM assigns to the users
it creates.

Profile

Specifies if a column of type Date stores the date and
the time. If unselected it only stores the date.

Use TimeStamp for Date Columns

Properties

You can define name/value pairs to provide additional configuration properties to your database. See your
vendor's documentation for more information.

Note: Connection property names are case-insensitive.

Runtime

DescriptionProperty

Determines themaximumnumber of connections that
can be created within the connection pool.

Maximum Pool Size

Determines themaximumnumber of connections that
can be created per user.

Maximum Connections Per User

Specifies the maximum time, in minutes, that a
database connection can remain idle before it is closed
automatically.

Connection Idle Time (minutes)

Determines theminimumnumber of connections that
can be created within a connection pool.

Minimum Pool Size

Determines themaximumnumber of cursors that can
be opened at one time.

Maximum Opened Cursors

Oracle Sybase Driver Properties
You can specify the following connectivity properties for your Sybase database:

Oracle BPM | Working with Studio | 203

Basic

DescriptionProperty

Specifies the hostname or IP address of the Sybase
database server.

Host

Specifies the TCP port of the Sybase listener running
on the Sybase database server. The default is 2048,

Port

which is the Sybase default port number when
installing the Sybase database software.

Specifies the case-sensitive default user name used to
connect to your Sybase database.

User

Specifies the case-sensitive password used to connect
to your Sybase database.

Password

The name of the database that contains the tables.Database

The device where tables are created.Device

The amount of space to allocate to the database
extension.

Allocation Size

The URL to connect to your Sybase database. You
cannot edit this field directly, theURL is formed using
the host and database you define.

URL

Properties Tab

The Properties tab allows you to define name/value pairs to configure database properties.

Note: All connection property names are case-insensitive.

Runtime Tab

DescriptionProperty

Determines themaximumnumber of connections that
can be created within the connection pool.

Maximum Pool Size

Determines themaximumnumber of connections that
can be created per user.

Maximum Connections Per User

Specifies the maximum time, in minutes, that a
database connection can remain idle before it is closed
automatically.

Connection Idle Time (minutes)

Determines theminimumnumber of connections that
can be created within a connection pool.

Minimum Pool Size

Determines themaximumnumber of cursors that can
be opened at one time.

Maximum Opened Cursors

Oracle DB2 AS/400 JDBC Properties
You can configure the following properties for your DB2 AS/400 database:

Basic

DescriptionProperty

Host

204 | Oracle BPM | Working with Studio

DescriptionProperty

Port

Specifies the case-sensitive user name used to connect
to your DB2 AS/400 database.

User

Specifies the case-sensitive password used to connect
to your DB2 AS/400 database.

Password

Specifies the name of your DB2 AS/400 database.Database

Specifies the schema of the DB2 AS/400 server.Schema

The URL to connect to your DB2 AS/400 database.
You cannot edit this field directly, the URL is formed
using the host, port and database you define.

URL

Properties

You can define name/value pairs to provide additional configuration properties to your database. See your
vendor's documentation for more information.

Note: Connection property names are case-insensitive.

Runtime

DescriptionProperty

Determines themaximumnumber of connections that
can be created within the connection pool.

Maximum Pool Size

Determines themaximumnumber of connections that
can be created per user.

Maximum Connections Per User

Specifies the maximum time, in minutes, that a
database connection can remain idle before it is closed
automatically.

Connection Idle Time (minutes)

Determines theminimumnumber of connections that
can be created within a connection pool.

Minimum Pool Size

Determines themaximumnumber of cursors that can
be opened at one time.

Maximum Opened Cursors

Oracle DB2 OS390 Properties
You can configure the following connectivity properties for your DB2 OS390 database:

Basic

DescriptionProperty

Specifies the case-sensitive user name used to connect
to your DB2 OS390 database.

User

Specifies the case-sensitive password used to connect
to your DB2 OS390 database.

Password

Specifies the name of your DB2 OS390 database.Database

Specifies the schema of the DB2 OS390 server.Schema

Oracle BPM | Working with Studio | 205

DescriptionProperty

The URL to connect to DB2 OS390 database. You
cannot edit this field directly, theURL is formed using
the database name you define.

URL

Properties

You can define name/value pairs to provide additional configuration properties to your database. See your
vendor's documentation for more information.

Note: Connection property names are case-insensitive.

Runtime

DescriptionProperty

Determines themaximumnumber of connections that
can be created within the connection pool.

Maximum Pool Size

Determines themaximumnumber of connections that
can be created per user.

Maximum Connections Per User

Specifies the maximum time, in minutes, that a
database connection can remain idle before it is closed
automatically.

Connection Idle Time (minutes)

Determines theminimumnumber of connections that
can be created within a connection pool.

Minimum Pool Size

Determines themaximumnumber of cursors that can
be opened at one time.

Maximum Opened Cursors

Derby Database Driver Properties
You can specify the following properties for your Derby database:

Basic

DescriptionProperty

The path to the file that contains the database.Database Path

Specifies if you need to provide a user and password
to connect to the database.

Requires Authentication

Specifies the case-sensitive user name used to connect
to your Derby database.

User

Specifies the case-sensitive password used to connect
to your Derby database.

Password

Specifies the schema of the derby database server.Schema

The URL to connect to the database. You cannot edit
this field directly, the URL is formed using the
database path you define.

URL

Properties

You can define name/value pairs to provide additional configuration properties to your database. See your
vendor's documentation for more information.

206 | Oracle BPM | Working with Studio

Note: Connection property names are case-insensitive.

Runtime

DescriptionProperty

Determines themaximumnumber of connections that
can be created within the connection pool.

Maximum Pool Size

Determines themaximumnumber of connections that
can be created per user.

Maximum Connections Per User

Specifies the maximum time, in minutes, that a
database connection can remain idle before it is closed
automatically.

Connection Idle Time (minutes)

Determines theminimumnumber of connections that
can be created within a connection pool.

Minimum Pool Size

Determines themaximumnumber of cursors that can
be opened at one time.

Maximum Opened Cursors

Generic JDBC Version 1 Properties
You can specify the following connectivity properties for your generic JDBC driver:

Basic

DescriptionProperty

Specifies the class name for the JDBC driver.JDBC Driver

Specifies the URL used to connect to your database.URL

Specifies the case-insensitive default user name used
to connect to your database.

User

Specifies the case-insensitive password used to
connect to your database.

Password

Runtime

DescriptionProperty

Determines themaximumnumber of connections that
can be created within the connection pool.

Maximum Pool Size

Determines themaximumnumber of connections that
can be created per user.

Maximum Connections Per User

Specifies the maximum time, in minutes, that a
database connection can remain idle before it is closed
automatically.

Connection Idle Time (minutes)

Determines theminimumnumber of connections that
can be created within a connection pool.

Minimum Pool Size

Determines themaximumnumber of cursors that can
be opened at one time.

Maximum Opened Cursors

Remote JDBC Properties
You can specify the following connectivity properties for a remote JDBC connection:

Oracle BPM | Working with Studio | 207

DescriptionProperty

Specifies the type of database used by the data source
defined in the J2EE Application Server.

Database Type

Specifies the external resource defined for the J2EE
Application Server.

J2EE

Specifies the JNDI nameused to locate the data source
in the J2EE Application Server.

Lookup Name

SAP Service
You can specify the following connectivity properties for an SAP Service.

General Properties

This section defines the general properties for this External Resources:

DescriptionProperty

Defines the name of this external resource.Name

Specifies the external resource type.Type

This field is disabled for this external resource type.Supported Types

SAP Properties

The following properties must be defined for an SAP Service:

DescriptionProperty

Specifies the SAP log-on client.Client

Specifies the SAP log-on user.User Id

Specifies the SAP log-on password.Password

Specifies the host name of the application server.Hostname

Specifies the SAP log-on system number.System Number

Specifies the SAP log-on language.Language

Specifies the size of the connection pool the SAP client
uses.

Pool Size

Web Service
Provides detailed information for configuring a Web Service.

General Properties

This section defines the general Web Service properties:

DescriptionProperty

Defines the name of the external resource.Name

Specifies the type of external resource.Type

Specifies the type of Web Service.Supported Types

208 | Oracle BPM | Working with Studio

Producer Web Service Properties

The following properties must be configured for a Producer Web Service External Resource:

DescriptionProperty

Defines the authentication type of this web service.Authentication Type

• None - uses no authentication for the web service
• Username Token Profile

The name used to expose the web service endpoint.Endpoint Identifier

Consumer Web Service Properties

The following properties must be configured for a Consumer Web Service under the Endpoint tab:

DescriptionProperty

Specifies if the endpoint and transport are static.Static Endpoint Binding

Specifies that the endpoint is obtained by searching
the binding in the UDDI registry.

UDDI Dynamic Endpoint Binding

The following properties must be configured for a ConsumerWeb Service that uses Static Endpoint Binding:

DescriptionProperty

Specifies the type of transport used to communicate
with the web service. Possible values are:

Transport Type

• HTTP
• JMS
• ALSB

HTTP Transport Configuration

DescriptionProperty

Specifies the Server Configuration external resource
where the web service is running.

HTTP Server Configuration

Specifies the path of the web service.Path

JMS Transport Configuration

DescriptionProperty

Specifies the JNDIDirectory Service external resource
that contains the configuration used to lookup the
JMS resource.

JNDI Server Configuration

The method used to subscribe to the queue. Possible
values are:

Destination Type

• Queue
• Topic

Specifies the name of the JMS Factory used to obtain
the JMS resource.

JMS Factory Name

Oracle BPM | Working with Studio | 209

DescriptionProperty

Specifies the name of the JMS resource.Destination Name

ALBS Transport Configuration

DescriptionProperty

Specifies the external resource of type Aqualogic
Service Bus and subtype Proxy Server that
corresponds to your Aqualogic Service Bus Server.

Proxy Server Configuration

Specifies the name of the proxy server used for
transport.

Service Name

Specifies if transactions can be propagated from the
PBL component to Aqualogic Service Bus.

Propagate Transaction

The following propertiesmust be configured for a ConsumerWeb Service that usesUDDIDynamic Endpoint
Binding:

DescriptionProperty

Specifies the Server Configuration external resource
where the web service is running.

Server Configuration

Specifies the location of the UDDI inquiry.Inquiry Path

Specifies if the inquiry requires authentication.Requires Authentication

Specifies the path where the UDDI authentication
server is running.

Security Path

Specifies the case-sensitive user name used to connect
to your web service.

User

Specifies the case-sensitive password used to connect
to your Oracle database.

Password

Specifies the key of the UDDI service.Service Key

Specifies the key of the UDDI binding.Binding TModel Key

The following properties must be configured for a Consumer Web Service under the Runtime tab:

DescriptionProperty

Specifies if theOracle BPMEngine treats SOAP faults
as System Exceptions. If this checkbox is not selected

Use System Exceptions

theOracle BPMEngine treats SOAP faults as Business
Exceptions.

The following properties must be configured for a Consumer Web Service under the Security tab:

DescriptionProperty

Specifies if the web service uses Username Token
Profile web service security. Possible values are:

Send Username Token

• None - uses no authentication for the web service
• Plain - uses Plain Username Token authentication

for the web service

210 | Oracle BPM | Working with Studio

DescriptionProperty

• Digest - uses Digest Username Token
authentication for the web service

Specifies if the web service security headers include
the nonce and timestamp elements.

Send Nonce and Timestamp

Defines the case-sensitive user name required to
connect to your web service.

Username

Defines the case-sensitive password required to
connect to your web service.

Password

Defines the case-sensitive password required to
connect to your web service.

Confirm Password

Server Configuration
Provides detailed information for configuring an Server as an External Resource.

General Properties

DescriptionProperty

Defines the name of this external resource.Name

Specifies the external resource type.Type

Details

The following properties must be defined for an Server configuration:

DescriptionProperty

Specifies the protocol for the server configuration.
Possible values are:

Protocol

• HTTP
• HTTPS

Specifies the hostname or IP address of the server.Host

Specifies the port numberwhere the server listens for
requests. The default is 85.

Port

Specifies the path part of the URL used to locate the
Server.

Path

Specifies the URL of the server. You cannot edit this
field directly, the URL is formed based on the
protocol, host, port and path you define.

URL

Specifies whether the HTTP server requires basic
HTTP authentication.

Requires HTTP Basic Authentication

Specifies the username used to authenticate HTTP
requests.

User

Specifies the password used to authenticate HTTP
requests.

Password

Oracle BPM | Working with Studio | 211

DescriptionProperty

Specifies the time (in seconds) the server waits for a
connection to become available.

Connection Timeout

Microsoft .NET Service
Provides detailed information for configuring a Microsoft .NET Service.

General Properties

This section defines the general properties for this External Resources:

DescriptionProperty

Defines the name of this external resource.Name

This field is disabled for this external resource type.Type

Microsoft .NET Service Properties

The following properties must be defined for a Microsoft .NET Service:

DescriptionProperty

Defines the location of the .NET Bridge host.Host

Defines the port used by the .NET Bridge host.Port

Mail Outgoing Service
Provides detailed information for configuring a Mail Outgoing Service.

General Properties

This section defines the general properties for this External Resource:

DescriptionProperty

Defines the name of this external resource.Name

Specifies the external resource type.Type

Specifies themail protocol used by the outgoingmail
server. Possible values are:

Supported Types

• SMTP

SMTP Properties

The following properties must be for an SMTP Mail Outgoing Service:

DescriptionProperty

Specifies the hostname or IP address of the outgoing
mail server.

Server Host

Specifies the port number the outgoing mail server
uses to send new mails. The default values is 25.

Server Port (optional)

Specifies the case-sensitive user name used to connect
to your mail server.

User

212 | Oracle BPM | Working with Studio

DescriptionProperty

Specifies the case-sensitive password used to connect
to your mail server.

Password

Defines the security protocol used. Valid values are:Secure Connection

• No - No security protocol is used
• TLS, if available
• TLS
• SSL - Uses the Secure Sockets Layer (default)

J2EE Application Server
Provides detailed information on configuring a J2EE Application Server as an External Resource.

To create Enterprise JavaBeans components, you must define a J2EE Application Server as an External
Resource.

General Properties

The following table defines the general properties for this External Resource:

DescriptionProperty

Defines the name of the external resource.Name

Specifies the type of external resource.Type

Specifies the type of J2EE server. Possible values are:Supported Types

• Generic J2EE
• Local J2EE

Local J2EE Application Server Properties

This type of J2EE application server is used when the process is deployed in a J2EE environment, and the
resources are located in the same Application Server.

The following properties must be configured for a Local J2EE Application Server using the Basic tab:

DescriptionProperty

The JNDI lookup name used to locate the user
transaction object used to demarcate transactions in
the Application Server.

User Transaction Lookup Name

Generic J2EE Application Server Properties

The following properties must be configured for a J2EE Application Server using the Basic tab:

DescriptionProperty

Specifies the classname of the JNDI Factory used to
connect to the J2EE Application Server.

Initial Context Factory

Specifies the URL to connect to the J2EE Application
Server.

URL

Specifies the case-sensitive user name used to connect
to your J2EE Application Server.

Principal

Oracle BPM | Working with Studio | 213

DescriptionProperty

Specifies the case-sensitive password used to connect
to your J2EE Application Server.

Credentials

The following properties must be configured for a J2EE Application Server under the Advanced tab:

DescriptionProperty

The JNDI lookup name used to locate the user
transaction object used to demarcate transactions in
the Application Server.

User Transaction Lookup Name

Properties Tab

The Properties tab allows you to define name/value pairs to configure J2EE Application Server connection
properties.

Note: All connection property names are case-insensitive.

Runtime Tab

The following properties must be configured for a J2EE Application Server using the Runtime tab:

DescriptionProperty

Determines themaximumnumber of connections that
can be created within the connection pool.

Maximum Pool Size

Determines themaximumnumber of connections that
can be created per user.

Maximum Connections Per User

Specifies the maximum time, in minutes, that a
connection can remain idle before it is closed
automatically.

Connection Idle Time (minutes)

Determines theminimumnumber of connections that
can be created within a connection pool.

Minimum Pool Size

Enterprise JavaBean (EJB)
Provides detailed information for configuring an Enterprise JavaBean as an External Resource.

General Properties

This section defines the general properties for this External Resource:

DescriptionProperty

Defines the name of this external resource.Name

Specifies the external resource type.Type

This field is disabled for this external resource type.Supported Types

EJB Properties

The following properties must be defined for an EJB:

214 | Oracle BPM | Working with Studio

DescriptionProperty

Specifies the external resource defined for the J2EE
Application Server.

J2EE

Specifies the JNDI name used to locate the Enterprise
JavaBean in the J2EE Application Server.

Lookup Name

Java Class Library
Provides detailed information for configuring a Java Class Library as an External Resource.

General Properties

This section defines the general properties for this External Resource:

DescriptionProperty

Defines the name of this external resource.Name

Specifies the external resource type.Type

This field is disabled for this external resource type.Supported Types

Java Class Library Properties

The following properties must be defined for a Java Class Library:

DescriptionProperty

Specifies if the jars contained in this External Resource
are published using project versioning. Refer to
Versionable Java Libraries on page 169 for details.

Versionable

Specifies the JAR files that contain your Java library
and the JAR files from the libraries it depends on.

JAR Libraries

AquaLogic Service Bus
Provides detailed information for configuring an AquaLogic Service Bus as an External Resource.

General Properties

This section defines the general External Resource properties:

DescriptionProperty

Defines the name of the external resource.Name

Specifies the type of external resource.Type

Specifies the type of AquaLogic Service Bus
connection.

Supported Types

Management Host Properties

The following properties must be configured for a Management Host:

DescriptionProperty

Host

Port

Oracle BPM | Working with Studio | 215

DescriptionProperty

User

Password

Proxy Service Properties

The following properties must be configured for a Proxy Service:

DescriptionProperty

Host

Port

User

Password

Process Deployment Properties

The following properties must be configured for a Process Deployment:

DescriptionProperty

Management Configuration

Project Name

WSDL Folder

Business Services Folder

WS-Security Account

Transport

Host

Port

Mail Incoming Service
Provides detailed information for configuring a Mail Incoming Service as an External Resource.

General Properties

This section defines the general properties for this External Resource:

DescriptionProperty

Defines the name of this external resource.Name

Specifies the external resource type.Type

Specifies themail protocol used by the incomingmail
server. Possible values are:

Supported Types

• IMAP
• POP3

IMAP and POP3 Properties

The following properties must be when using IMAP or POP3:

216 | Oracle BPM | Working with Studio

DescriptionProperty

Specifies the hostname or IP address of the incoming
mail server.

Service Host

Specifies the port number where the incoming mail
server listens to receive newmails. The default values
are:

Server Port (optional)

• IMAP: 143
• POP3: 110

Specifies the case-sensitive user name used to connect
to your mail server.

User

Specifies the case-sensitive password used to connect
to your mail server.

Password

Specifies if this server needs a secure connection.
Possible values are:

Secure Connection

• SSL
• No - No security protocol is used

Specifies if your incoming mail server needs
authentication.

Secure Authentication

Microsoft COM Service
Provides detailed information for configuring a Microsoft COM Service.

General Properties

This section defines the general properties for this External Resources:

DescriptionProperty

Defines the name of this external resource.Name

This field is disabled for this external resource type.Type

Microsoft COM Service Properties

The following properties must be defined for a Microsoft COM Service:

DescriptionProperty

Defines the location of the COM Bridge host.Host

Defines the port used by the COM Bridge host.Port

JMX Service
Provides detailed information on configuring a JMX Service as an External Resource.

Oracle BPM supports the following JMX service providers:

• Oracle Weblogic
• IBMWebSphere
• JBoss
• JSR-160

Oracle BPM | Working with Studio | 217

• MX4J

General Properties

This section defines the general properties for this External Resource:

DescriptionProperty

Defines the name of the external resource.Name

Specifies the type of external resource.Type

Specifies the type of JMX Server. Possible values are:Supported Types

• Oracle Weblogic
• IBMWebSphere
• JBoss
• JSR-160
• MX4J

Oracle Weblogic, IBM WebSphere, JBoss and MX4J Basic Properties

The following properties must be configured for an Oracle Weblogic, IBMWebSphere, JBoss or MX4J JMX
Service using the Basic tab:

DescriptionProperty

Specifies the hostname or IP address of the MBean
Server.

Host

JSR-160 Basic Properties

The following properties must be configured for a JSR-160 JMX Service using the Basic tab:

DescriptionProperty

Specifies the URL used to connect to the MBean
Server.

Service URL

Specifies the case-sensitive user name used to connect
to your M Server.

Principal

Specifies the case-sensitive password used to connect
to your MBean Server.

Credentials

Advanced

The Advanced tab allows you to define name/value pairs to configure J2EE Application Server connection
properties.

Note: All connection property names are case-insensitive.

CORBA Service
Provides information on configuring a CORBA Service as an External Resource.

Studio allows you to catalog CORBA objects that reside in an Interface Repository. Once cataloged, you can
manipulate the components of the CORBA object in your Method tasks in a process design. To catalog a
CORBA object, you need a configuration of CORBA type. Note that creating a configuration allows you to
reuse it each time you need to add new components or to introspect existing ones.

218 | Oracle BPM | Working with Studio

General Properties

This section defines the general SQL Database properties:

DescriptionProperty

Defines the name of the external resource.Name

Specifies the type of external resource.Type

This field is disabled for this external resource type.Supported Types

CORBA Service Properties

The following properties must be configured for a CORBA Service under the Basic tab:

DescriptionProperty

Specifies if Oracle BPM should lookup the default
ORB when running on an application server. If
unchecked, the default ORB is used.

Use Application Server ORB

The following properties must be configured for a CORBA Service under the Interface Repository tab:

DescriptionProperty

Specifies the URL to locate the IOR file used to locate
the Interface Repository.

Read IOR from URL

Specifies the absolute path to locate the IOR file used
to locate the Interface Repository.

Use This IOR

JMS Messaging Service
Provides detailed information for configuring a JMS Messaging Service as an External Resource.

General Properties

This section defines the general properties for this External Resources:

DescriptionProperty

Defines the name of this external resource.Name

Specifies the external resource type.Type

This field is disabled for this external resource type.Supported Types

JMS Messaging Service Properties

The following properties must be configured for a JMS Messaging Service:

DescriptionProperty

Specifies the J2EEApplication Server external resource
that corresponds to the Application Server where the
JMS resource is located.

J2EE

Specifies the method used to subscribe to the queue.
Possible values are:

Destination Type

• Queue
• Topic

Oracle BPM | Working with Studio | 219

DescriptionProperty

Specifies the lookup name to locate the JNDI resource.Lookup Name

Specifies the name of the JMS Factory used to obtain
the JMS resource.

Connection Factory Lookup

Specifies the case-sensitive user name used to connect
to your JMS Server.

User

Specifies the case-sensitive password used to connect
to your JMS Server.

Password

The WebSphere Listener port for the JMS resource.JMS Listener Port (WebSphere only)s

JNDI Directory Server
Provides detailed information on configuring a JNDI Directory Server as an External Resource.

General Properties

This section defines the general properties for this External Resource:

DescriptionProperty

Defines the name of the external resource.Name

Specifies the type of external resource.Type

Specifies the type of JNDI Directory Server. Possible
values are:

Supported Types

• Generic JNDI
• Active Directory
• Sun One LDAP

Basic

The following properties must be configured for a JNDI Directory Server using the Basic tab:

DescriptionProperty

Defines the name of the initial context factory you
want to use.

Initial Context Factory

Defines the URL you want to use to connect to the
directory service.

URL

Defines the root distinguished name for the directory
service.

Principle

Specifies the password for the directory service.Credentials

Referrals
• follow: the entry will be looked for directly.
• ignore: the entry is not looked for.
• throw: youmust catch andmanage any exceptions.

The following properties must be configured for a JNDI Directory Server using the Properties tab:

220 | Oracle BPM | Working with Studio

DescriptionProperty

Define any name/value pair properties that need to
be passed to the directory service.

Properties

The following properties must be configured for a JNDI Directory Server using the Runtime tab:

DescriptionProperty

Determines themaximumnumber of connections that
can be created within the connection pool.

Maximum Pool Size

Determines themaximumnumber of connections that
can be created per user.

Maximum Connections Per User

Specifies the maximum time, in minutes, that a
connection can remain idle before it is closed
automatically.

Connection Idle Time (minutes)

Determines theminimumnumber of connections that
can be created within a connection pool.

Minimum Pool Size

Java Process Definition (JPD)
Provides detailed information for configuring a Java Process Definition as an External Resource.

General Properties

This section defines the general properties for this External Resources:

DescriptionProperty

Defines the name of this external resource.Name

Specifies the external resource type.Type

This field is disabled for this external resource type.Supported Types

Java Process Definition Properties

The following properties must be configured for a Java Process Definition:

DescriptionProperty

Specifies an external resource of type HTTP Server
Configuration that corresponds to the container server
for the JPD Service.

HTTP Server Configuration

Specifies the path to the JPD Service in the container
server.

Path

Auditing
Oracle BPMProcesses provide auditing capabilities by recording information about the occurrence of sensible
events during the execution of the process.

Audit Events allow you to keep track of the events that occur while a process instance is flowing through the
process. An event is registered each time the instance enters or exits an activity (simple activity, group,
process). The Process Execution Engine generates one event per action each time an even enters or exits an
activity. By default events are only generated for interactive activities.

Oracle BPM | Working with Studio | 221

Enabling Auditing

Auditing properties are set in two locations within Oracle BPM:

• As a property of an activity within a business process.
• Globally for all published projects using Process Administrator.

When Audit Events Are Generated
You can define which process activities will generate auditing events.

You set whether an activity generates events in design time, and you can set this for each activity, for activity
groups, or for the whole process. You can also set whether the process engine generates events or not at run
time.

A timestamp is generated for each event. The application server retrieves each timestamp from the operating
system.

Design Time

Design time event generation options are set in Studio. At design time, the following options are available
for each activity:

DescriptionSetting

Indicates that the activity will record events according to the group or
process default, as described below.

Default (default setting)

The activity will generate events, regardless of the group or process
default.

Generate Events

The activity will not generate events, regardless of the process default.Do not Generate Events

Also at design time, the following options are available for each group:

DescriptionSetting

Indicates that the group's activities will record events according to the
process setting, as described below.

Default (default setting)

The default for the group's activitieswill be to generate events, regardless
of the process default.

Generate Events

The default for the group's activities will be not to generate events,
regardless of the process default.

Do not Generate Events

The following options are available for each process. These settings will be used by activities or groups set to
Default. If a group or activity is not set to Default, it will ignore the process setting.

DescriptionSetting

Each activity set to the Default option will generate events if it is
interactive, and will not generate events if it is automatic.

Generate Events for Interactive
Activities (default setting)

Each activity or group set to Defaultwill generate events.Generate Events for all Activities

Each activity or group set to Defaultwill not generate events.Do not Generate Events

Run Time

You set run time event generation in Process Administrator, for each process engine. You can set each process
engine to one of the following event recording modes:

222 | Oracle BPM | Working with Studio

DescriptionSetting

Indicates that the process engine will follow the settings of each process.
That is, it will follow the design time settings as described in the section
above.

Depends on Process (default setting)

No events are recorded, except instance begin and end activities. Design
time settings are ignored.

Never

All activities generate events, regardless of process, group, or activity
settings. Design time settings are ignored.

Always

Remarks

If all settings are left at their defaults, a process will generate events for interactive activities and not for
automatic activities. Begin and End activities are always generated.

This is a reasonable default because activities that require human interaction have themost variable execution
times. However, you may want to measure some automatic activities, for example those that invoke external
systems that for whatever reason have variable execution times.

Each event generated has a slight performance cost. This cost is not important for interactive activities since
these activities spend most of their time waiting for participants to execute them. However, it may have
significant impact on automatic activities that are performed frequently.

Which Audit Events are Generated

The following auditing events are generated:

• All the activities generate the same events (IN, OUT, EXECUTE, SELECT, UNSELECT, among others.)
• The Begin activity has no Activity IN event as the instance is created in it.
• The End activity has no Activity OUT event as the instance terminates there.
• The Join activity generates events only if the Split associated activity generates events.
• When an instance is created, a CREATION event is generated instead of an Enter event. This event is

always automatically generated if the Engine stores events. All original instances (copy 0) have the
CREATION event.

• When an instance is finished, an END event is generated. This event is always automatically generated if
the Engine stores events. All terminated original instances (copy 0) have the END event.

• Interactive activities have additional events that occur between the Enter and End events.

If you have anyGenerates events check box selected, the Audit Trail in WorkSpace is enabled. The Audit
Trail displays all events that have occurred for an instance.

Configuring Auditing for a Process
Auditing events generation can be configured at a process level. This configuration defines the default auditing
behavior for all the activities in the process.

To configure auditing events for a process:

1. Right-click on the process.
2. Select Properties.
3. Choose one of the following options:

DescriptionOption

Enables auditing events generation only for interactive
activities.

Generate Events for Interactive Activities

Oracle BPM | Working with Studio | 223

DescriptionOption

Enables auditing events generation for all the activities in
the process.

Generate Events for all Activities

Disables auditing events for this Process.Do not generate events

Configuring Auditing Events for an Activity
Auditing events generation can be enabled independently for each activity.

To configure auditing events for an activity:

1. Right-click on the activity.
2. Select Properties.
3. Select Advanced
4. Choose one of the following options:

DescriptionOption

Uses the configuration of the process towhich the activity belongs
to.

Default

Enables auditing events generation for this activity.Generate Events

Disables auditing events for this activity.Do not generate events

Configuring the Generation of Audit Records for an Activity Group
An activity group is a compound activity. It is a set of activities thatmay include other activity groups. During
the design time, you can configure audit record generation for an activity group when you create the group.

To configure audit record generation for an activity group, use Oracle BPM Studio as follows:

1. In the navigator pane, expand the project and the process inwhich the activity youwant tomodify resides.
2. After you decide the activities you want to group:

a) Click and hold the mouse button on the background of the process editor.
b) Drag the mouse to select the activities you have decided to group. The activities are surrounded by a

dotted line.
c) Right-click inside the dotted line. A pop-up menu appears.
d) Select Create Group with Selection. The Activity dialog box appears.

3. In the Activity dialog box, in the Category pane, select Advanced. The Advanced pane appears on the
right of the dialog box.

4. In the Generate Events section, specify whether and at what level to generate events for the activity.
You have these options:

• Default--Enables audit record generation at the activity level depending on the group to which the
activity belongs, if any, or the process event generation definition

• Generate Events--Enables audit record generation for all events at the activity level only, and not at
the process level or within an engine. If no audit records are generated at the group or process level,
they will be generated at the activity level.

• Do not Generate Events

5. Once you have made your selection, clickOK.

224 | Oracle BPM | Working with Studio

Modifying the Generation of Audit Records for an Activity Group

To modify the configuration for generating audit records for an activity group, use Oracle BPM Studio and
follow these steps:

1. In the navigator pane, expand the project and the process in which the activity group you want to modify
resides.

2. Right-click inside the dotted line of the activity group.
A pop-up menu appears.

3. From the pop-up menu, select Properties.
The Activity dialog box appears.

4. In the Activity window, in the Category pane, select Advanced.
The Advanced pane appears on the right of the window.

5. In the Generate Events section, specify whether and at what level to generate events for the activity.
You have these options:

• Default--Indicates that the group's activitieswill record events according to the default process setting.
• Generate Events--The default for the group's activities will be to generate events, regardless of the

process default.
• Do not Generate Events--The default for the group's activities will be not to generate events, regardless

of the process default.

6. After you have made the changes, clickOK.

Oracle BPM | Working with Studio | 225

Advanced Use Cases

Dynamic Business Rules
In Oracle BPM you can define dynamic business rules. A dynamic business rule is a set of one or more
conditions evaluated against project variables or business parameters.

You define dynamic business rules in the business rule editor, which has two modes: A simple GUI mode
and an advanced mode where you define the rule by writing PBL code. You define each business rule with
a unique name.

Dynamic business rules are defined for the project. Once you define a dynamic business rule, you can use it
in any process from a Business Rule Transitions on page 114, or from code in any PBLmethod. You can design
your project so that WorkSpace participants can edit business rules at run time.

Business Rule Transitions

InOracle BPM, conditional transitions can be used to control the flowof an instancewithin a process.However,
standard conditional transitions are defined at design time and cannot be edited in run time.

Business rules can also be used to control process flowwhen used by business rule transitions. Business rule
transitions are similar to conditional transitions except that they evaluate a business rule instead of a conditional
expression.

Access From PBL Code

The Rules Editor and rule evaluation use the standard component Fuego.Rules.Rule. For advanced use
cases this component may be used directly from PBL code. This allows you to add or evaluate rules from any
type of activity or BPM Object.

Business Rules at Run Time

Dynamic business rules are considered dynamic because they can bemodified at run time. Dynamic business
rules can be edited by any participant who is a member of a role that has been enabled to edit business rules.

When to use Dynamic Business Rules
Dynamic business rules are suitable for specific situations.

You can use dynamic business rules when you want to do any of the following:

• You want at least some participants to be able to change a business rule at run-time, from theWorkSpace,
within a deployed process.

• You want to define a simple business rule without using code, or you want to allow Business Analysts to
do so. Dynamic business rules can be editedwith a simple Business Rules Editor, or, for advanced capability,
by writing code.

• Youwant to share a single business rule across processes or activities in a project. Dynamic business rules
are named, and they are defined at the project level.

• You want to audit the use of a business rule. Every time a business rule is evaluated, this evaluation (and
its result) is recorded in the Audit Trail.

You should not use dynamic business rules if any of the following are true:

226 | Oracle BPM | Advanced Use Cases

• You need the rule to operate on instance variables. Business rules cannot access instance variables. They
can only evaluate project variables and business parameters.

• You don't have a specific reason to use dynamic business rules. They require more system resources
because they are audited, require project variables, and are evaluated at run time.

Using Dynamic Business Rules
Business rules often need to change depending on your business context and requirements. The Business
Rules Editor allows you to easily view and change the business rules for each of your Oracle BPM Projects.

Business Rule Editing Modes

The Business Rules Editor has two modes: simple editor and advanced editorr. The simple editor is a UI which
lets you define one or more conditions to be checked. You can determine if you want the rule to match all
the conditions or any of them, and you must always compare a variable or business parameter to a constant.

The advanced editor allows you to enter PBL code and can therefore be used to implement more complex
conditions.

Editing Rules from the WorkSpace

Aweb version of the Business Rules Editor can also be used from theOracle BPMWorkSpaceweb application.
To have access to the editor, a participant must have a role where a global activity has been defined with an
Edit Business Rules implementation type.

This activity will be visible in the Applications panel of the WorkSpace page.

Versioning of Rules
Because dynamic business rules can be edited at run time, they are versioned. This allows the user to revert
to an earlier version if a newly edited one does not work as expected.

Version Numbers

Every time a business rule is edited, the business rules version is incremented. Business rules are not versioned
individually. Rather, there is a single version number for the whole set of rules in the project. Hence, if you
have two business rules A and B, and you edit rule B three times and rule A twice, your version numbers
may look like those shown below:

Rule EditedVersion number

A1

B2

B3

A4

B5

In this way, the rule A will be available in versions 1 and 4, while rule B will be available in versions 2, 3, and
5. WorkSpace users are able to select any available version of a given rule in the WorkSpace business rules
editor.

Rule Compatibility Checking

At run time, every time a rule needs to be evaluated, the first (most recent) compatible version of it is fetched
from the Directory Database. A compatible version of a business rule is a version which accesses project
variables and business parameters that exist in the project and have the type expected by the rule.

Oracle BPM | Advanced Use Cases | 227

If no compatible rule is found, the rule that was originally published with the current project version is used.
In other words, none of the versions of the rule edited at run time are used. This is a fail-safe mechanism so
that a new version of the process will be able to run even when previously edited (and no longer compatible)
rules are present.

Auditing and Rules
Every use of a business rule can be audited. You can control whether or not the evaluation of the rule will
be visible in the audit trail.

Dynamic business rules can be evaluated from a business rule transition or from code. The following table
describes how to handle each case:

To Enable AuditingRule Evaluated In

In the activity where the business rule transition originates (the from
activity), theGenerate Events option must be set.

Business Rule Transition

In the activity which causes the execution of the PBL code, the
Generate Events option must be set.

PBL Code

Defining a Business Rule
The following task outlines the procedures for creating and editing Business Rules.

To create a business rule, your project must have either one ormore project variables, or one ormore business
parameters.

To define a business rule:

1. Right-click on the project where you want to define Business Rules.
2. Select Business Rules ().

The Business Rules editor appears.

3. Click the Add icon ().

TheNew Business Rule dialog box appears.

4. Enter the name of your new business rule, and clickOK.
The new Business Rule appears in the table.

5. To edit the business rule, click on the Open icon (), or double-click on the business rule name.
The business rule editor page for that rule appears.

6. By default, the business rule editor page is in simple editor mode. You can also edit in advanced editor
mode. Go to the corresponding task listed below for instructions in the mode you will use.

7. To close the business rule editor and all open business rules, click the X on the top tab. To close only the
page with the business rule you have just saved, click the X on the bottom tab.

Simple Editor Mode
Use the simple editor mode to define simple business rules without having to write any PBL code.

To edit a business rule:

1. To add a condition, select one of the available project variables or business parameters from the Add
Condition drop-down list.

2. Click the Add button ().
A new condition line is added.

3. Select a comparison operator from the first drop-down list.

228 | Oracle BPM | Advanced Use Cases

The following table shows the full set of possible operators, but only a subset of these will be available
based on the data type of the variable or parameter you are comparing:

Equivalent PBL ExpressionOperator

x = aEquals

x != aNot Equals

x > aGreater Than

x < aLess Than

x >= aGreater Than or Equals To

x <= aLess Than or Equals To

(x >= a and x <= b)Between

(a > x or x > b)Not Between

4. Enter the value that will be compared to in the field on the right. Special options can appear for some data
types. For example, a time value field will be accompanied by a calendar tool to help you pick a date.
If you are using the Between or Not Between operators, you will need to enter two values.

5. Repeat steps 1 through 4 to add more conditions as required.
6. If you wish to remove a condition, click the Remove button () next to it.
7. Once you have set all the conditions in your business rule, save your changes by clicking the Save button

(), or by clicking File ➤ Save from the main menu.

Advanced Editor Mode
Use the advanced editor mode to write complex business rules. This mode requires PBL coding, so to use it
you should be familiar with PBL syntax.

Note: If your write a complex business rule in the advanced editor mode, you will no longer be able to
edit this rule in the simple editor mode.

To use the advanced editor:

1. In the simple editor, click Switch to Advanced Editor.
The advanced editor opens. This is a PBL code editor. If you have already defined any conditions, these
will be shown in code form.

2. In the editor, enter any PBL code you require to implement the business rule. You must exit your code
with a return statement which returns a boolean value (true or false).
For more information about PBL, consult the Process Business Language (PBL) on page 252.

3. If you want to switch back to the simple editor mode, right-click anywhere on the advanced editor and
click Switch to Simple Editor .
Recall that you will not be able to do this if you've edited the rule in such a way that it can no longer be
represented in the simple editor.

4. Save and close when you are done.

Letting Participants Edit Business Rules
You can enable participants to edit business rules at run time using the WorkSpace web application. To do
this, you add a global interactive activity with an "Edit Business Rules" implementation type.

To complete this task, at least one role must be defined.

Oracle BPM | Advanced Use Cases | 229

When you provide access to the business rules editor by adding a global interactive activity to a role, you
give every participant in that role the ability to edit the business rules selected in that activity.

To add a Global Interactive of type "Edit Business Rules":

1. Insert a global interactive activity () in the role you wish to enable to edit business rules.
The Activity dialog box appears.

2. Enter a name for the activity in theName field, and clickOK.
3. Right-click on the activity you have just added, and click Main Task .

TheMain Task dialog box appears.
4. In the Implementation Type section, select Edit Business Rules from the drop-down list.

A list of available business rules appears.
5. To enableWorkSpace editing of a business rule, click on the right side column so it saysYes. Alternatively,

you can click All to enable all business rules, orNone to disable them. You must enable at least one
business rule.

6. When you have enabled the desired business rules for this activity, clickOK.

The global interactive activity is now set to edit business rules, and will appear in the Applications pane of
any WorkSpace participant in the role where you added the activity.

Handling Exceptions

Exception Handling in Oracle BPM
Oracle BPMprovidesmultipleways of handling exceptions that occur outside of the normal flowof a program.
The specific way used depends on where the exception occurs and what causes it.

Within Oracle BPM exceptions can be classified according to the following distinctions:

• System versus Business Exceptions
• Code-level versus Process-level Exceptions

System Versus Business Exceptions

This distinction defines the nature of the exception.

A system exception occurs when there is a problem with one of the components used by a process. These
components can include databases, network connections, etc. System exceptions are included in the catalog
as part of the standard Java exceptions.

A business exception is designed as part of a process business process, but is something that occurs outside
of the normal flow of a process. This allows you to create cleaner processes where the main flow follows the
normal use cases. Business exceptions are defined as BPM objects within the catalog.

Another major differences between system and business exceptions is that business exceptions do not roll
back activity transactions. This is because business exceptions are considered as a normal part of the process
design rather than an error.

Code-level Versus Process-level Exceptions

This distinction defines where an exception is handled. All exceptions originate at the code level. However,
they can be handled at either the code or process level depending on the requirements of your process design.

Code-level exception handling occurswithin the scope of a PBL script. Code-level exceptions handling allows
you to write code that directly accounts for the exception within the PBL task where it occurred.

230 | Oracle BPM | Advanced Use Cases

Process-level exception occurs as part of the process design. When an exception occurs that is not explicitly
handledwithin the code, it is propagated up to the process level. Process-level exceptions are handledwithin
in exception flows.

Cataloging Exceptions

All exceptions are stored in the Catalog. System exceptions are stored as standard Java exceptions. Business
Exceptions are stored within a user-defined BPM Objects.

Example Project

An example project is included which shows different usage scenarios of Exceptions. It is located at
<ORABPM_HOME>/samples/advanced/ExceptionHandling.exp.

System Exceptions
System exceptions are those caused by failures on the underlying software or hardware infrastructure. System
exceptions are not expected problems within the business process logic.

System exceptions are often caused by temporary errors such as network connectivity failures. These are
often temporary errors that can be resolved by re-trying the failed transaction.

All System exceptions have a corresponding Java exception that is included as part of the component catalog,
within the standard Javamodule.

Transactions

If a System exception occurs during the execution of a process Activity (and it is not handled within PBL
code) it causes the Activity transaction to fail. The Process Execution Engine rolls the transaction back and
any changes made to process instance variables are lost.

Retries

When a transaction fails due to System exception, the Process Execution Engine retries the transaction. The
number of retries and amount of time in between tries is a configurable property of the Engine.

If the transaction keeps failing after the maximum number of tries, the process instance is routed to the
exception handling flow defined for that type of exception.

Interactive Activities

If a System exception is raised during the execution of an interactive activity, an error message with the
exception details is presented to the end user.

Engine Exceptions

Special exceptions raised internally by the Process Execution Engine, such as internal database time outs and
Execution Aborted exceptions, cannot be caught within PBL code or as part of a exception handling flow.

Business Exceptions
Business exceptions are expected conditions that prevent a process instance from advancing in the process.
Unlike System exceptions, business exceptions are triggered by your business process rules. They denote
that some condition in the business logic has not been met. Failure to pass a credit score check, for example,
could be handled as a business exception.

Business exceptions allow you to create cleaner processes and allow you to define exceptional situations
separately from the happy path of the process.

Business Exceptionsmust be defined as BPMObjects within the Catalog. They behave like other BPMObjects
and can contain methods, attributes, and presentations. They can be used anywhere within a process.

Oracle BPM | Advanced Use Cases | 231

Transactions

Business exceptions are expected business situations. Unlike System exceptions, Business exceptions do not
cause the running transaction to fail.

If your code throws a Business exception during the execution of a process Activity (and it is not handled
within PBL code) it causes the execution of the Activity to exit but the transaction is finished successfully.
The Process Execution Engine commits the transaction and any changes made to process instance variables
are persisted as usual.

No Retries

If the execution of a process activity finishes due to a Business exception, the Process Execution Engine does
not retry the execution of the activity because the execution did not fail.

In general, business exceptions are not resolved by retrying. For example, youmay raise a business exception
if the credit score for a credit card application is low. Trying the credit check again does not make the score
higher.

Interactive Activities

If a Business exception is raised during the execution of an interactive activity, the interaction window is
closed and the work item is no longer on the user work list. The process instance is moved to the exception
handling flow.

Throwing a Business Exception

Within PBL code, you can raise a Business Exception using the throw keyword as in the following example:

if creditScore > 700 then
 lowScoreEx as LowScoreException = LowScoreException()
 lowScoreEx.value = creditScore
 throw lowScoreEx
end

Code-level Exception Handling
Code-level Exception handling allows you to write code to deal with problems that occur within the scope
of a PBL task.

PBL uses the following block structure to handle exceptions:

do
 // regular code

on Exception
 // exception handling code

on exit
 // clean-up code (always executed)

end

The do-end block, though not required, allows you to clearly define the scope of an exception within your
code. This is particularly important if you need to nest exceptions within multiple do-end blocks.

The on Exception statement allows you to define the block of code that executes only if the exception is
raised.

232 | Oracle BPM | Advanced Use Cases

The on exit statement allows you to perform any clean up operation and releasing resources. This can
include cleaning up temporary systems files or database table created within your PBL code. This block is
always executed, whether an Exception was raised or not.

Exception Handling Example.

The following code example demonstrates the syntax for using the on Exception and on Exit constructs.

on TooCloseToDueDateException do
 sendAlert project
 using mailSubject = project.name + "is getting too close to due date",
 mailMessage = "The project " + project.name + "is getting to cloose to
due date."

on OverdueException do
 sendAlert project
 using mailSubject = project.name + "is overdue",
 mailMessage = "The project " + project.name + "is overdue."

on exit do
 sendAlert project
 using mailSubject = "Work on project " +project.name + " was started.",
 mailMessage = "Work on project " + project.name + " was started on " +
project.startDate
 + ". The project leader for is: " + project.projectLeaderId

end

This example uses the default PBL programming style. Other programming styles use different keywords
for exception handling, but the underlying concept is the same. If you are using the Java programming style,
this is implemented within a try-catch block.

See Compound Statement on page 323 for more information.

Propagating Exceptions to the Process Level

In many cases, you may not want to catch exceptions within PBL code. Within your process it may make
more sense to let them propagate as process-level exceptions. Any exceptions not explicitly handled within
PBL code (withon Exception blocks) are propagated. If an exception cannot be completely resolvedwithin
PBL code, it should propagate up as a process-level exception, to be handled with an exception handling
process flow.

Process-level Exception Handling
Process-level exceptions occur when a code exception is raised and is not handled within PBL code. The
exception is then propagated to the process level.

When a process-level exception occurs, it prevents the normal flow of the process instance from continuing.
The process instance gets into a special state and is routed to the exception handling flow defined for that
type of exceptions.

Typical Exception Handling Flow

The following list demonstrates how exception handling occurs within a typical process:

1. The Process Execution Engine begins executing the process instance.
2. An exception occurs within an Activity at the code level.
3. If exception handling code is available, then that code is executed.

The Activity completes successfully, transactions are committed, and the Process Execution Engine
continues with the next Activity in the instance.

Oracle BPM | Advanced Use Cases | 233

4. If no exception handling code is available, then the Process Execution Engine cannot continue. The exception
is propagated to the Process level

5. At the process level, the following options are possible:

• If no exception flow has been defined, the instance continues directly to the End Activity and the
STATUS predefined variable is set to ABORTED state.

Note: When designing your business process, you should always create at least one default
exception handling flow.

• If an exception flow has been defined, the process instance continues through the exception handling
flow. If you have defined different exception transitions, the flow is routed through the appropriate
transition.

6. Process flow continues through each Activity in the Exception flow.
7. In the Final Activity of the Exception Flow, the Process Execution Engine evaluates theACTIONpredefined

variable to determine where to continue the flow of the instance.
8. Based on the value of the ACTION predefined variable, instance flow is returned to the main process

flow.

Creating an Exception Flow in a Process

1. Create a new activity outside of your main process flow.
This activity will be part of your exception flow. For some activity types, you must use control-click to
add an activity outside of the main process flow.

2. Right-click within you process and select Add Exception Transition To
3. Select the Activity created above
4. On the Description tab enter a name for the exception transition
5. Select the Properties Tab.
6. Choose an Exception Name from the drop-down list
7. Choose an instance variable
8. ClickOK

Creating a Business Exception

Before performing this procedure, ensure that you have created amodulewhere youwant to create a Business
Exception component. See Creating a Module on page 152.

To create a Business Exception component:

1. Right-click on the module where you want to create a Business Exception.
2. Select New ➤ Business Exception
3. Enter a new for the new component and clickOK.

Business Activity Monitoring (BAM)
The following topics describe the Business Activity Monitor and provide information on the BAM database,
creating BAM Dashboards, and configuring BAM in Oracle BPM Studio.

234 | Oracle BPM | Advanced Use Cases

BAM Overview
Business Activity Monitoring (BAM) allows you to store, analyze, and display statistics about your business
process execution.

BAM provides information about process instance performance and process workload. This information can
be used to present almost real-time business processes metrics. You can then use these to analyze and then
improve or adapt business processes based on real-world conditions.

To store and present this information, BAM contains the following:

BAMdata is storedwithin a database. InOracle BPMStudio, this information
is stored internally as part of the embeddedprocess execution engine database.

Database

InOracle BPMEnterprise, youmust configure an external database to function
as the BAM database.

You canwrite queries that access the information stored in the BAMdatabase.
These queries are contained within a BPM Object Method. When you create

SQL Queries

a BAMDashboard using thewizard, thewizard automatically creates queries
based on the type of Dashboard template you choose. You can customize
these queries or create your own queries and dashboards to customize the
way you present BAM.

BAM Dashboards allow you to display BAM information in a meaningful
and usefulway. BAMDashboards also allow you to drill down from a general
view of a process to more specific information such as an order or claim.

BAM Dashboards

Note: BAM Dashboards require the Flash Plugin.

Enabling and Configuring BAM in Studio
BAM is included within Oracle BPM Studio. This allows you to test real-time dashboards using BAM data
generated by the embedded Process Execution Engine.

By default, Oracle BPM Studio does not generate BAM data. The following procedures show you have to
enable BAM and set other BAM properties.

1. Right-click on any project within Studio.
2. Select Engine Preferences.
3. Click BAM in the left-hand tree.
4. Click the checkbox next to Enable BAM.

You can also set other BAM properties on this page.

BAM Database
The BAM database is used to store information about your business processes.

The BAM database stores the following types of information about a process:

1. Workload
2. Task Performance
3. Process Performance

The following diagram shows the relationship between each of the BAM tables:

Oracle BPM | Advanced Use Cases | 235

How BAM Database is Populated

BAM database is populated with the information generated by auditing events. Auditing events generation
can be enabled for thewhole process, for a subset of activities or for a particular activity. Formore information
on how to configure auditing events generation please see the Oracle BPM Enterprise Administration Guide
and the Oracle BPM Studio User Guide.

Using Variables in BAM

When creating a Project variable, you can define it as a Business Indicator variable. This allows the variable
to be stored in BAM the database.

When you add Business Indicator variable to your process, a column is added to the following BAMdatabase
tables: Workload, Task Performance and Process Performance. The name of this column is the Business
Indicator name preceded by the prefix "V_".

If you define a business dimension, the workload table contains one row for each possible value of this
business dimension present in the process. Each row shows the quantity of instances thatmatch that business
dimension. If the business dimension has a numeric type, the value stored in BAM tables indicates the range
that corresponds to the value of the business dimension.

When you define a measurement business variable, the sum of this variable's value for all in flight instances
is stored into workload table. If business dimensions were defined as well, then this sumwill be divided into
as many rows as business dimension values present in flight instances.

Task performance table stores one row for each instance that completes an activity. Each of these rows contains
the value of dimensions and measurements at the time the instance completed the activity.

236 | Oracle BPM | Advanced Use Cases

In a similar way, process performance table stores one row for each instance that gets to the end activity.
Each of these rows contains the value of dimensions and measurements at the time the instance completed
the whole process.

Creating a Predefined BAM Dashboard
Oracle BPM Studio provides a quick method of creating BAM Dashboards using predefined templates.

To create a Predefined BAM Dashboard:

1. Ensure that you have enable BAM in Studio.

See Enabling and Configuring BAM in Studio on page 235 for more information.

2. Right-click on the Project where you want to create a BAM dashboard.
3. Select Add BAM Predefined Dashboard .
4. Select the type of template you want to use. You can select more than one template if necessary.
5. ClickOK .
6. Select the Process whose BAM information you want to report.
7. Select the Role you want to allow to view the BAM information.

Anyone assigned to this role is able to view the BAM dashboard.

Studio creates BAM Dashboards for each of the template you selected. Dashboard Global activities for each
dashboard are added to the process.

See Viewing BAM Dashboards in Studio on page 237 for information on viewing BAM Dashboards in Studio.

Viewing BAM Dashboards in Studio
After creating a BAM Dashboard, you can view it using Oracle BPM Studio's Process Execution Engine.

Ensure that you have a participant in the process who has been assigned the role where the BAMDashboard
reports are located.

1. Start the Oracle BPM Studio Process Execution Engine
2. Launch WorkSpace.
3. Login with the username of a participant who has been assigned the role used to view BAM information.
4. Click Applications to view the BAM Dashboard reports.

BAM Database Reference
The BAM database has a star shaped style schema. This reference describes the fact tables and dimension
tables in the BAM database.

Fact Tables:

• BAM_WORKLOAD
• BAM_TASK_PERFORMANCE
• BAM_PROCESS_PERFORMANCE

Dimension Tables:

• BAM_OUS
• BAM_ROLES
• BAM_PARTICIPANTS
• BAM_PROCESSES
• BAM_ACTIVITIES

Oracle BPM | Advanced Use Cases | 237

BAM_WORKLOAD

This table contains information about the work items in process. The BAMUpdater populates this table with
the information it obtains periodically from the engine.

DescriptionNULL ValueValueField Name

The date and time of the snapshot this row
belongs to.

NOT NULLTIMESTAMPsnapshot

The identification number (IN) of the
activity where the work items this row

NOT NULLDECIMAL(10)activityIn

represents, are sitting in. Use this IN in join
queries against the BAM_ACTIVITIES
table.

The identification number (IN) of the role
where the work items this row represents,

NOT NULLDECIMAL(10)roleIn

are sitting in. Use this IN in join queries
against the BAM_ROLES table.

The identification number (IN) of the
participant the work items this row

NOT NULLDECIMAL(10)participantIn

represents, are assigned to. Use this IN in
join queries against the
BAM_PARTICIPANT table.

If the work items this row represents, are
sitting in a subflow activity, this field

NOT NULLDECIMAL(10)origActivityIn

indicates the identification number of the
activity in the subprocess associated to this
subflow activity. Otherwise the value of
this field is 1.

If the work items this row represents, are
sitting in the sub-process of a subflow

NOT NULLDECIMAL(10)waitActivityIn

activity, this field indicates the
identification number of the subflow
activity in the parent process. Otherwise
the value of this field is 1.

Indicates the number of work items that
match the value of the following fields in
this row:

NOT NULLDECIMAL(10)quantity

• processIn
• activityIn
• roleIn
• participantIn
• business dimension
• latsnapshot

The averagewaiting time (in seconds), that
the instances represented by this row,

NOT NULLDECIMAL(10)avgTimeTask

spent in the activity at the moment of the
snapshot.

The median of the waiting time (in
seconds), that the instances represented by

NOT NULLDECIMAL(10)meanTimeTask

238 | Oracle BPM | Advanced Use Cases

DescriptionNULL ValueValueField Name

this row, spent in the activity at the
moment of the snapshot.

The averagewaiting time (in seconds), that
the instances represented by this row,

NOT NULLDECIMAL(10)avgTimeProcess

spent in the process at the moment of the
snapshot.

The median of the waiting time (in
seconds), that the instances represented by

NOT NULLDECIMAL(10)meamTimeProcess

this row, spent in the process at the
moment of the snapshot.

Primary Key: The primary key constraint is not defined in the database schema. The BAM Updater checks
this constraint.

The following fields form the primary key:

• activityIn
• processIn
• roleIn
• participantIn
• snapshotTime
• Business Dimensions

Foreign Keys

Referenced TableForeign Key

BAM_ACTIVITIESactivityIn

BAM_ACTIVITIESwaitActivityIn

BAM_ACTIVITIESorigActivityIn

BAM_ROLESroleIn

BAM_PARTICIPANTSparticipantIn

BAM_TASKPERFORMANCE

This table contains performance information for every work item that has completed an activity.

DescriptionNULL ValueValueField Name

The identification number (IN) of the
completed activity. Use this IN in join

NOT NULLDECIMAL(10)activityIn

queries against the BAM_ACTIVITIES
table.

The identification number (IN) of the role
the completed activity is assigned to. Use

NOT NULLDECIMAL(10)roleIn

this IN in join queries against the
BAM_ROLES table.

The identification number (IN) of the
participant the completed activity is

NOT NULLDECIMAL(10)participantIn

assigned to. Use this IN in join queries
against the BAM_ROLES table.

Oracle BPM | Advanced Use Cases | 239

DescriptionNULL ValueValueField Name

The time when the work item completed
the activity. This time is stored in GMT-0.

NOT NULLTIMESTAMPcompletionDate

The time (in seconds) the work item took
to complete the activity.

NOT NULLDECIMAL(10)taskTime

The time the work item waited until its
first execution.

NOT NULLDECIMAL(10)idleTime

Foreign Keys

Referenced TableForeign Key

BAM_ACTIVITIESactivityIn

BAM_ROLESroleIn

BAM_PARTICIPANTSparticipantIn

BAM_PROCESSPERFORMANCE

This table contains performance information for every work item that has completed the whole process.

DescriptionNULL ValueValueField Name

The identification number (IN) of the
process. This number identifies the process

NOT NULLDECIMAL(10)processIn

in the organizational unit. It may vary
between deployments. Use the IN only for
join queries with other tables. Do not use
the IN directly in your queries, instead use
the processID.

The time when the work item completed
the process. This time is stored in GMT-0.

NOT NULLTIMESTAMPcompletionDate

The time (in seconds) the work item took
to complete the activity.

NOT NULLTIMESTAMPtaskTime

Foreign Keys

Referenced TableForeign Key

BAM_PROCESSESprocessIn

BAM_LASTSNAPSHOT

This table stores the time when the BAM Updater took the last snapshot. The BAM Updater populates the
Workload with the data obtained in each snapshot.

DescriptionNULL ValueValueField Name

The time of the last snapshot. Use this time
to obtain from theWorkload table the rows

NOT NULLTIMESTAMPlastsnapshot

that correspond to the most up-to-date
data.

240 | Oracle BPM | Advanced Use Cases

BAM_OUS

DescriptionNull ValueValueField Name

The identification number (IN) of the
organizational unit. This number identifies

NOT NULLDECIMAL(10)ouIn

the organizational unit in its parent
organizational unit. It may vary between
deployments. Use the IN only for join
queries with other tables. Do not use it
directly in your queries, instead use the
name.

The identification number (IN) of the
parent organizational unit. If this row

NOT NULLDECIMAL(10)parentIn

corresponds to the Organization the value
of this field is -1.

The name of the organizational unit. Use
this ID in where clauses to restrict the
query to a certain role.

NOT NULLSTRING(255)name

The complete name of the organizational
unit, which includes the complete name of
its parent organizational unit.

NOT NULLSTRING(512)fullPathName

Primary Key: ouIN

BAM_ROLES

DescriptionNULL ValueValueField Name

The identification number (IN) of the role.
This number identifies the role in the

NOT NULLDECIMAL(10)roleIn

organizational unit. It may vary between
deployments. Use the IN only for join
queries with other tables. Do not use the
IN directly in your queries, instead use the
roleID.

The ID that identifies the role in the
organizational unit. Use this ID in where

NOT NULLDECIMAL(10)roleID

clauses to restrict the query to a certain
role.

Primary Key: roleIn

BAM_PARTICIPANTS

DescriptionNULL ValueValueField Name

The identification number (IN) of the
participant. This number identifies the

NOT NULLDECIMAL(10)participantIN

participant in the organizational unit. It
may vary between deployments. Use the
IN only for join queries with other tables.
Do not use the IN directly in your queries,
instead use the participantID.

Oracle BPM | Advanced Use Cases | 241

DescriptionNULL ValueValueField Name

The ID that identifies the participant in the
organizational unit. Use this ID in where

NOT NULLSTRING(255)participantID

clauses to restrict the query to a certain
participant.

The identification number (IN) of the
organizational unit the participant belongs

NOT NULLDECIMAL(10)ouIn

to. Do not use this number directly in your
queries, use it only for join queries against
the BAM_OU table.

The localized, human readable name of the
organizational unit. The system locale

STRING(255)displayName

settings of the environment where the
BAM Updater runs determine the
localization of this field.

Primary Key: participantIn

Foreign Keys

Referenced TableForeign Key

BAM_OUSouIn

BAM_PROCESSES

DescriptionNULL ValueValueField Name

The identification number (IN) of the
organizational unit where the process is

NOT NULLDECIMAL(10)ouIn

deployed. Do not use this number directly
in your queries, use it only for join queries
against the BAM_OU table.

The identification number (IN) of the
process. This number identifies the process

NOT NULLDECIMAL(10)processIn

in the organizational unit. It may vary
between deployments. Use the IN only for
join queries with other tables. Do not use
the IN directly in your queries, instead use
the processID.

The ID that identifies the process in the
organizational unit. Use this ID in where

NOT NULLSTRING(255)processId

clauses to restrict the query to a certain
process.

The localized, human readable name of the
process. The system locale settings of the

NOT NULLSTRING(255)label

environmentwhere theBAMUpdater runs
determine the localization of this field.

Primary Key: processIn .

Foreign Keys

242 | Oracle BPM | Advanced Use Cases

Referenced TableForeign Key

BAM_OUSouIn

BAM_ACTIVITIES

DescriptionNULL ValueValueField Name

The identification number (IN) of this
activity. This number identifies the activity

NOT NULLDECIMAL(10)activityIn

in the organizational unit. It may vary
between deployments. Use the IN only for
join queries with other tables. Do not use
the IN directly in your queries, instead use
the activityID.

The ID that identifies the activity in the
organizational unit. Use this ID in where

NOT NULLSTRING(255)activityId

clauses to restrict the query to a certain
activity.

The identification number (IN) of the
process this activity belongs to. Do not use

NOT NULLDECIMAL(10)processIN

this number directly in your queries, use
it only for join queries against the
BAM_PROCESSES table.

The localized, human readable name of the
activity. The system locale settings of the

STRING(255)label

environmentwhere theBAMUpdater runs
determine the localization of this field.

Primary Key: activityIn

Foreign Keys

Referenced TableForeign Key

BAM_PROCESSESprocessIn

Unit Testing BPM projects
The following topics describe how to create and run Process (PUnit) and Component (CUnit) test cases.

Unit Test Overview
Aunit test is a piece of code used to test pieces of code. Oracle BPMProvides a framework for testing individual
BPM Components or an entire Process.

The Oracle BPM unit tests are based on the JUnit unit test framework. See http://www.junit.org for more
information.

Oracle BPM provides two types of unit test suites:

DescriptionUnit Test Type

Allows you to create unit tests for individual BPM
Objects. New CUnit test suites are created with a

CUnit Test

Oracle BPM | Advanced Use Cases | 243

http://www.junit.org

DescriptionUnit Test Type

default method. You can add other methods as
necessary.

Allows you to create a test framework for an entire
Process. New PUnit test suites are created with a
default, setUp, and tearDown method.

PUnit Test

Within Oracle BPM, unit tests behave like other BPM Objects. They can contain Attributes, Groups,
Presentations, and Methods.

Example Project

An example project is included which shows usage of PUnit and CUnit test cases. It is located at
<ORABPM_HOME>/samples/advanced/BPMUnitTestExample.exp.

Creating a Unit Test
The following procedure shows you how to create CUnit and PUnit test suites.

1. In the Project Navigator, right-click on the Module where you want to create a Unit Test.
2. Select New ➤ PUnit Suite or New ➤ CUnit Suite
3. Enter a name for your test suite.
4. Enter the destination module.
5. ClickOk.

The new test unit suite appears as a resource under your Module. You can now define your unit test within
the Methods of your test suite.

Running a Unit Test
After you have created unit tests for your Components or Project, you can run the tests within Oracle BPM
Studio. Unit test results are displayed in the Test Results View.

To run a unit test:

1. Right-click on the Module or unit test Component.
2. Select Run Unit Test.

The test results appear in the Test Results View.
3. Select the test in the left-hand pane.

Test Results View
The Test Results View displays results from PUnit and CUnit tests.

244 | Oracle BPM | Advanced Use Cases

Correlations
In Oracle BPM, a correlation is an association between a set of one or more values and a process instance.
With correlations you assign a natural key to uniquely identify a process instance.

Consider a situationwhere you have a process that manages purchases. Your suppliers can access the system
through some kind of interface, perhaps a Web front end. You create an instance in your process by sending
a purchase order to a supplier. Your process will expect the seller to return an acknowledgment for the order,
stating if the order is accepted or not, so the process waits for this acknowledgment.

For the process to continue, the acknowledgment must be routed to the same instance that originated the
purchase order. However, your supplier does not have the instance ID. So then the question is: How can you
route the acknowledgment from the supplier to the correct instance? You could send the instance ID to your
supplier, but this ID has no meaning to the supplier, and the supplier may not even have a way of storing it.
In fact, the instance ID has no meaning anywhere outside the process.

In this situation, you can define a correlation set that correlates a business token to a given instance. A business
token is simply a value or set of values that has business meaning and is also unique to each instance. In this
example, you can use a purchase order number as a business token, but you can't use the date or amount of
the purchase, because these values are not unique to a given order.

Correlation Sets
You create correlation sets at design time. A correlation set has a name and one ormore correlation properties.
Each property is a reference to an argument of the argument set.

Correlation Sets

You can have one or more correlation relationships. For example, you may want to map a purchase order
number to more than one system. This would be the case if you have a supplier and a separate shipping
service. You may also have more than one process in your project that can use the same business token.

For each relationship, you create a correlation set. A correlation set is composed of one or more correlation
properties that uniquely identify the instance.

Defining a Correlation Set
To define and use correlation set, you must first create the set, then add properties to it, and then map these
properties to process arguments.

Before you define a correlation, you should know the name and data type for each of the properties you will
add to the correlation. The following steps assume that you have a process design open in the editor.

Oracle BPM | Advanced Use Cases | 245

To define a correlation set:

1. Creating a Correlation Set on page 246.
2. Adding Correlation Properties on page 246.

Creating a Correlation Set
You create a correlation set from the Argument Mapping dialog box. You can define argument mappings in
the Begin, Subflow, Process Creation, TerminationWait, Process Notification, andMessageWait flow objects.

Before you define a correlation, you should know the name and data type for each of the properties you will
add to the correlation. The following steps assume that you have a process design open in the editor.

To define a correlation set:

1. In the process design editor, right-click on the Begin activity and click Argument Mapping.
The Argument Mapping dialog box will appear.

2. Click on the Correlations Icon ().
The Correlations dialog box appears.

3. Click the Add button () in the Available Correlations section
TheNew Correlation Set dialog box appears.

4. Specify the Correlation Set Name, and click OK.
The new correlation set is created, and added to the Available Correlations list.

Adding Correlation Properties
Once you have defined a correlation set you must add properties to it.

To perform this task, you need to have created at least one Correlation Set. The task assumes that the
Correlations dialog box is open.

To add a correlation property:

1. In theAvailable Correlations list of theCorrelationsdialog box, right-click on the name of the Correlation
set you want to add a property to, and click Add Property.
The Property dialog box appears.

2. In the Property dialog box, enter a name for the property.
3. Select a Correlation Property Data Types on page 246 from the Type drop-down list.
4. ClickOK.

Correlation Property Data Types
Correlation Properties can be defined with one of several data types, as described in this section. Complex
data types, such as objects or arrays, are not allowed.

A correlation property can be one of the following data types:

• Bool
• Int
• Real
• Time
• Decimal
• String

Correlations Example
Oracle BPM includes an example project and an example Java application that sends notifications to process
instances of the process using a correlation property.

246 | Oracle BPM | Advanced Use Cases

The CorrelationsExample Project

The CorrelationsExample project contains the Accept Invoice process, its associated screenflows. Each
component is described below.

You can find the CorrelationsExample.exp file the
OraBPMStudioHome\samples\advanced\correlations folder.

Project Elements

The following table lists additional elements of the CorrelationsExample project.

DescriptionTypeName

The main process of the project. This process is where the
correlation is implemented. Click on the link for a full description.

processThe Accept Invoice
Process on page 247

Screenflow called by the Generate Invoice activity. You use it to
create a new invoice.

screenflowInvoice Input

Screenflow called by the Release Invoice activity. You use it to
specify the number of the invoice you want to release.

screenflowRelease Invoice

The Accept Invoice Process
The Accept Invoice process is a skeleton version of a process designed to be used in an accounts payable
department for initial invoice processing.

The primary purpose of this process is to demonstrate correlations, so it implements only two data attributes,
the invoice number (invoiceNr), and the approval status (approvalStatus). It uses one correlation set
(Invoice) with one attribute (number).

Figure 5:The Accept Invoice Process

Oracle BPM | Advanced Use Cases | 247

Process Flow

The process works as follows:

• You create a new invoice with the Generate Invoice activity. The only data you must input is an invoice
number.

• The Set Description activity sets the instance description (this.description) so that it contains the
invoice number.

• You display the invoice at the Display Invoice activity. The main purpose of this activity is to have an
interactive activity before the Message Wait, described below.

• The Wait for Release activity (which is a Message Wait activity) holds the instance till one of two things
happen:

• It receives a notification.
• The time out interval of the due transition elapses (it's set at two hours).

You "release" the invoice by sending a notification. To do this, you can use the Release Invoice activity,
which is listed in theWorkSpaceApplications panel, or you can release it from the includedReleaseInvoice
Java application. If you release it from the Release Invoice activity, the approvalStatus process variable
is set to "Released". If you release it from the Java application, approvalStatus is set to "Approved".

• Upon release, the instance proceeds to the Invoice Ready activity. When you execute this activity,
WorkSpace displays the status of the invoice.

Running the Example Process
Follow these steps to run the correlations example project.

1. Import the CorrelationsExample project.

The project is located at
<ORABPM_HOME>/samples/advanced/correlations/CorrelationsExample.exp.

2. Start the project.

See Running a Project in Studio on page 33.

3. Launch WorkSpace and login with user test.
4. Click onGenerate Invoice application link.
5. Enter any integer number in the Invoice Number field and clickOK.

This creates a new process instance, using the invoice number as a correlation value to identify it. You
should see the instance in yourWork Items list.

Important: Every time you generate a new Invoice instance, you must specify a different number.
Otherwise, you get an error message because correlation values must be unique.

6. Click onDisplay Invoice to confirm the information of your new instance.

Now the process instance is sitting on theWait for Release activity of The Accept Invoice Process on page
247.

7. Send a notification to the instance, identifying it by its invoice number.

You have two ways of notifying the process instance:

• Click on the Release Invoice application link, enter the invoice number of the instance you want to
notify and clickOK.

• Use the accompanying Java program Release Invoice. This program simulates an external system
sending a notification to your BPMprocess. SeeRunning Correlations Java program on page 249 for details.

The process instance you notified should now appear back in your list ofWork Items. The instance is now
sitting on the Invoice Ready activity of The Accept Invoice Process on page 247.

248 | Oracle BPM | Advanced Use Cases

8. You may now click on Invoice Ready to confirm the right instance was notified.

If you used the Release Invoice activity to notify the instance on the previous step, you should see a
message saying the instancewasReleased. If you used the external Java program, you should see a saying
the instance was Approved.

Running Correlations Java program
Follow these steps to run the accompanying Java program which complements the CorrelationsExample
project.

Before running this Java application, the CorrelationsExample projectmust be running in Studio. SeeRunning
the Example Process on page 248.

If you are interested in learning how the example is implemented, the complete Java code is located at
<ORABPM_HOME>/samples/advanced/correlations/java/.

1. Run script run.bat (Windows) or run.sh (Linux/MacOSX) to start the ReleaseInvoice Java program.

The script is located at <ORABPM_HOME>/samples/advanced/correlations/.

The application window should appear.

Figure 6: ReleaseInvoice example Java application

It connects to the running process and retrieves the list of process instanceswaiting on theWait for Release
activity. See The Accept Invoice Process on page 247.

2. Select any invoice number from the list and click Approve Invoice.

A confirmation message appears. ClickOK. The selected invoice number show no longer appear on the
list.

3. Login toWorkSpace to verify that the associated process instance in the The Accept Invoice Process on page
247 has been notified and approved. See Running the Example Process on page 248.

Oracle BPM | Advanced Use Cases | 249

End-User Interfaces on Oracle BPM
Most Oracle BPM processes include one or more interactive activities, meaning activities which are carried
out by people who are participants in the process. For people to interact with an activity, you will need to
build a user interface.

End users interact with Oracle BPM through aWeb application. This can either be theWorkSpace application
which is part of the BPM suite, or a custom application that interfaces to the process execution engine through
the Process API, or PAPI.

This section covers development using WorkSpace. PAPI-based development is covered separately.

The WorkSpace

End-users interactwith a BPMprocess through theWorkSpace,which is aweb application.Hence, participants
interact with web pages that can contain a form to complete or data for the participant to work with. See
WorkSpace documentation.

In WorkSpace, you can create a user interface for a given form or data display by creating an Oracle BPM
presentation or by writing a JSP page.

Both methods are used to create a web page or form which the participant will use to interact with the data.
Presentations can be built quickly in Studio using the Presentation Wizard, while JSP pages can implement
functionality and have a look and feel precisely defined by developers. Even if the process you are developing
will be deployed with JSP pages, you can use presentations to have something working quickly.

BPM Objects

In order to build a presentation, you need a BPM Object with attributes. In effect, a presentation is actually
a UI layer built on top of the data model of the object. Hence, your first step will be to define the BPMObject
and its data model. See BPM Objects on page 189 for a detailed description.

Presentations

A presentation is actually an element of the BPM Object, and a single BPM Object can have more than one
presentation. You can define several presentations to the same BPM Object when you do not want to show
every attribute to every participant. Also, in a presentation you can set whether an attribute field can be
edited or is read-only. Therefore, two presentations on the same object could show identical data, but the
fields available for editing will be different, as they would be intended for different participants.

Screenflows

Presentations can be used directly from the process, but normally they are used by screenflows, which are a
specialized kind of process for user interaction sequences. Screenflows are in turn called from the main
process. See Screenflow Overview on page 128.

Building a User Interface
There is more than one way to build a user interface with Oracle BPM. This section outlines how to build a
user interface using a BPM Object with BPM Object Presentations. The presentations are called in turn from
a screenflow.

This is a standard Oracle BPM approach to user interaction, and you should be familiar with it even if you
will use other methods, such as JSP pages.

1. Define the informationwhich should be present in the user interface, including both the data the user will
see and the data the user will input. You should have a unique name for each data element and know
what data type best represents it.

250 | Oracle BPM | Advanced Use Cases

http://download.oracle.com/docs/cd/E13154_01/bpm/docs65/workspace/index.html

Consider the following tips:

• The best data type for a given data element may not always be obvious. For example, it's easy to see
that you must use a String data type for a name field, but do you want to use a number for the postal
code? What happens if the process will be used in countries where postal codes can include letters?

• If you will receive or send data to an external application or service, some data type decisions have
already been made for you. You can follow them precisely or you may elect to use a different type
within your process and convert where data exchange requires it.

2. Creating a BPM Object on page 191 with attributes for the data you defined in the first step.

• If you need to work with tabular data, such as a list of items on an invoice, you can use groups. You do
not need to explicitly represent each item (item1, item2, item3, and so forth.). Instead, you should
create a group such as items[].

• For strings, you should set a maximum length even though this is optional. The Presentation Wizard
will later use this maximum length to determine whether to use a one-line or multiple-line text box
when you create the presentation. The default threshold is 20. You can change this value, called the
Maximum Column Count, in the BPM Preferences dialog box, in the Presentation Preferences > Text
page.

• Some information may be derived mathematically from other data. Such data should not be stored.
For instance, the total value on an invoice is a sum of the other invoice values. You should implement
such data elements as Virtual Attributes on page 195.

3. Creating a Presentation on page 198 for the BPMObject. Design each presentation as a function of a particular
task in your process. In some cases, you will be able to use the same presentation from different activities.
As a general rule, each presentation should show or allow input of the data required for the activity it is
designed for, and no more.

4. Create a screenflowwith an interactive component call activity (). The main task of this activity should
be of implementation type BPM Object Interactive Call. Choose the Use BPM Object Presentation option,
and specify the name of the presentation you want to use.

5. Use the screenflow created in step 4 from an interactive activity in your process design.

Oracle BPM | Advanced Use Cases | 251

Process Business Language (PBL)

PBL Overview
Process Business Language is the programming language used within Oracle BPM projects where code is
required to implement process features or to integrate with external resources.

PBL is simple, high-level language which treats components as objectsPBL can be used to define business
rules and logic within Activities and certain types of Transitions. The PBL development environment is
integrated within Oracle BPM Studio.

This language is specifically designed to integrate systems and to clearly express business process logic. In
addition, PBL supports the following features:

• Choice of syntax style, which can be native PBL, Java, or Visual Basic
• Integration with various back-end technologies including COM, CORBA, XML, SQL, Web Services, and

Java
• Amodern editor that supports syntax coloring, code completion, templates, and real-time error checking
• Component Libraries
• Regular Expressions

Methods compiled from PBL code are published together with the rest of a project for deployment, but a
deployed project contains JVM byte code and not PBL source code. Therefore PBL code can only be created,
edited, and tested using Studio.

Language Basics

PBL Methods
Introduces Business Process and Business Object methods

In Studio, a method can either be a Business Process or a Business Object. Both kinds support similar features,
but they differ in:

• Their visibility
• The sets of available predefined variables they can access
• Their runtime environment

Business Process methods can only be accessed from the process to which they belong. They are usually the
implementation of an Activity. They have several process-related, predefined variables and they always
execute inside a process-controlled transaction.

Business Object methods can run on the server side or the client side. They can be defined as functions and
inherit behavior from a superclass of the object that contains them. Typically, they are visible from the entire
project.

Comments
Describes purpose and syntax of comments

Comments are text notes which can be read by humans but are ignored by the compiler. Including comments
in your code helps make it easier for you and others to read it. Comments are especially useful to record the

252 | Oracle BPM | Process Business Language (PBL)

intent of a particular piece of code, since it may not be clear to others or, after a period of time, to the original
programmer. That said, code readability is not achieved exclusively by including comments. It is also enhanced
by adhering to coding conventions and using explicit variable and object names.

Under PBL, comments can be single line ormulti-line, and are delimited eitherwith standardC++/Java syntax
in the Java and PBL Styles, or with Visual Basic syntax in the Visual Basic style, as described below.

Tip: Always remember that when you write comments, you should explain the why and not the how.
The how can be read from the code itself.

PBL and Java Style Comments

Single line comments are denoted with a double forward slash (//):
//This is a single line comment.

Multi-line comments are enclosed between a forward slash and an asterisk (/*) and an asterisk and a forward
slash (*/):
/* This is a multi-line comment. It can span multiple lines
of code and can be as long as you want it to be.
You do not have to worry about line breaks, although
you may add them if you want to. */

Visual Basic Style Comments
Visual Basic style uses a single apostrophe (') for single line comments:
' This is a comment in the Visual Basic style.

Expressions
Expressions are operations in algebraic format that yield a value when evaluated.

An expression consists of operators and operands. Operators are special symbols commonly used in expressions,
denoting the operations to be performed with the operands they are adjacent to. Operands can be variables
or function invocations which return a value that can be operated on by the relevant operators

Expressions must operate on compatible variable types. Type checking is performed at compile time to
guarantee that no runtime errors occur due to an invalid mix of types. Some expression examples follow.

Expressions with numerical values:
//Variable c is assigned the sum of a and b.
c = a + b

// myVariable is assigned the product of 12 by the sum of yourVariable and
ourVariable.
myVariable = 12 * (yourVariable + ourVariable)

Expressions with string values:
employeeName = firstName + " " + lastName

Precedence

Notice the parentheses in the expression example above. Parentheses play a role in precedence. Precedence is
the order inwhich operations take place in amathematical equation. This is sometimes called order of operations.
Any operation inside parentheses is evaluated first, and then followed by other operations.

If you evaluate the example:
myVariable = 12 * (yourVariable + ourVariable)

using 10 for yourVariable and 5 for ourVariable, the order of the operation is the following:

1. yourVariable is added to myVariable resulting in 15.

Oracle BPM | Process Business Language (PBL) | 253

2. 15 is multiplied by 12 resulting in 180.
3. myVariable is assigned the value 180.

For further information on the different operators, please see Operators.

Conditional expressions

Conditional expressions assign a value to a variable depending on the result of an expression. The format of
a conditional expression is as follows:
<Boolean expression> ? <expression> : <expression>

If the Boolean expression evaluates to true, the value to the left of the colon is assigned. If it evaluates to false,
the value to the right of the colon is assigned. Now, look the next example.
myResult = (show = 1) ? "on" : "off"

In this example, the variable myResult is assigned the value "on" if the value of the variable show is equal
to 1. Otherwise, "off" is assigned to myResult.

Programming Styles
Describes PBL, Java, and Visual Basic programming styles

Studio supports different programming styles to reduce the time needed to learn how to program business
process methods. Each style mimics a well-known programming language as precisely as possible and adds
the features that are required to write your business rules effectively.

Oracle BPM Studio supports the following programming styles:

• PBL: The native Process Business Language (PBL) syntax
• Java
• Visual Basic

All available styles are functionally identical except where specifically noted. In other words, the Java and
Visual Basic styles are not Java or Visual Basic. They are actually PBL formatted with Java or Visual Basic
syntax as a programming aid to people familiar with these languages.

PBL Programming Style

This is the native and recommended style. Also, most of the programming examples in this documentation
are in the native PBL style. The following example shows some of the characteristics of the PBL programming
style:
firstName as String
lastName as String
selectedButton as String

// Ask the person's name
input "First Name:" : firstName, "Last Name:" : lastName
 using title = "Enter Your Name", buttons = ["Done", "Cancel"]
 returning selectedButton = selection

// Check the button pressed
if selectedButton = "Done" then
 display "Hello " + firstName + "!"
else
 display "Hello!"
end

Java Programming Style

This style emulates Java syntax and adds several features to match PBL expressions. These added features
include:

254 | Oracle BPM | Process Business Language (PBL)

• Output arguments
• Input and display statements
• Variable auto-initialization
• Transformations

The following example shows some of the characteristics of the Java programming style:
String firstName;
String lastName;
String selectedButton;

// Ask the person's name
input("First Name:" firstName,
 "Last Name:" lastName, title : "Enter Your Name", buttons : { "Done",
"Cancel" }, out selection : selectedButton);

// Check the button pressed
if (selectedButton == "Done")
{
 display("Hello " + firstName + "!");
}
else
{
 display("Hello!");
}

Visual Basic Programming Style

This style emulates Microsoft Visual Basic syntax. However, unlike Visual Basic, the Visual Basic style is case
sensitive. This programming style also has several additional features including:

• Input and display statements.
• Variable auto-initialization.
• Transformations.

The following example illustrates the Visual Basic programming style:
Dim firstName As String
Dim lastName As String
Dim selectedButton As String

' Ask the person's name
Input "First Name:" : firstName,
 "Last Name:" : lastName, title := "Enter Your Name", buttons := { "Done",
 "Cancel" }, Out selection := selectedButton

' Check the button pressed
If selectedButton = "Done" Then
 Display "Hello " & firstName & "!"
Else
 Display "Hello!"
End If

Data Types

Data Types Overview
Introduces PBL data types

PBL supports a number of data types, in four categories:

• Numbers Overview on page 256
• String Overview on page 266

Oracle BPM | Process Business Language (PBL) | 255

• Time and Interval Overview on page 273
• BooleansDescribes the Boolean data type

Often it is necessary to convert data types to other data types. For instance, a number can be converted to a
string for display, or an input string may have to be converted to a date. For more details, see Type Conversion
on page 256.

Type Conversion
Explains how to convert between data types

Conversion between variable types can be accomplished by "forcing" a type on a variable of another type.
There are two syntaxes to make the conversion: functional syntax and the conversion operator.

Functional Syntax

The value to be converted is passed as an argument to the type name. Any variable type can be converted
into a String. The following examples show you how to force a type on a variable:
someNum as Int = 23
someString as String

someString = String(someNum)
someString = String('now')

Any variable type can be converted from a String. However, this operation can fail if the format of the String
is not valid for the type to which you are converting. For example, to convert to a Time data type, certain
formats must be followed, as described in Time and Interval Overview on page 273.
localTime as Time
localTime = Time("2002/01/20 17:39:23")

The following example creates an Int from a String:
intNumber as Int

intNumber = Int("0001920")

Conversion Operator

Conversions can also be used by using the conversion operator to. The conversion operator is especially
important when dealing with Transformations.
localTime as Time
localTime = "2002/01/20 17:39:23" to Time

Numbers
Numbers Overview
Describes numeric data types

Studio supports the following number data types:

PBL DeclarationData Type

IntIntegers on page 257

RealReals on page 257

DecimalDecimals on page 258

Integers (type Int) are generally used for counting andwherewhole numbers are suitable for the job. Decimals
(type Decimal) can be definedwith a fixed decimal point and are particularly suited to store currency values.

256 | Oracle BPM | Process Business Language (PBL)

Reals (type Real) have a floating decimal point and can therefore adopt a very large range of values, but
shouldn't be used for currency values due to rounding effects.
Integers
Describes integer data types

Integers are whole numbers with no fractional part. In PBL all integer types are signed. Integers are suitable
for storing unit quantities and are also used within program code as counters in loops or to handle various
system values such as colors, character codes, and so on.

In PBL, integers constants can be specified in one of three bases:

Digits AllowedExampleType

0, 1, 2, 3, 4, 5, 6, 70567octal

0, 1, 2, 3, 4, 5, 6, 7, 8, 9579decimal

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F0x5AF3hexadecimal

Octal (base 8) numbers are prefixed by a 0 (zero), and are rarely used. Hexadecimal (base 16) numbers are
prefixed by '0x' and may be required for some types of values. However, in most situations with PBL, only
decimal (base 10) integers will be used. These should not be confused with the Decimal data type, described
below.

Integer variables have a fixed range of values that depends on their size in bits, or precision, as follows:

Minimum ValueMaximum ValuePrecision

-9,223,372,036,854,775,8089,223,372,036,854,775,80764

-2,147,483,6482,147,483,64732

-32,76832,76716

-1281278

Precision is specified in parenthesis after the data type, as follows:
n As Int(<precision>)

For example, if you wish to declare a 32-bit Int variable, you would use:
n As Int(32)

Note: Only the four precision values shown in the table are defined for integers.

Reals
Describes Real numbers

Real numbers are implemented as floating point numbers according to the IEEE 754 specification, which is
the specification used by Java. All constants of type Real must include a period and they may have an
exponential part denoted by 'e' or 'E'. They may also be denoted by the suffix 'f', 'F', 'd' or 'D'. The suffix is
optional if the exponent is included.

Reals provide a fast and compact way of handling a very large range of values. However, they introduce
rounding errors and are therefore not suitable when every digit, and particularly trailing digits, must be
exact. This is a requirement when operating on monetary amounts, which should be stored as Decimals on
page 258.

The following are all valid real constants:

• 2.0f
• 2.0E20
• 5.324d

Oracle BPM | Process Business Language (PBL) | 257

Variables of type Real can be declared in one of two precisions, measured in bits of storage:

Minimum ValueMaximum ValuePrecision

4.9x10-3241.7976931348623157x1030864

1.4x10-453.4028235x103832

The precision is specified in parenthesis after the data type, as follows:
x As Real(<precision>)

For example, if you wish to declare a 64-bit real, you would use:
x As Real(64)

Note: Only the two precision values shown in the table are supported.

Decimals
Describes Decimal numbers

Decimal numbers are arbitrary precision numbers which do not use an exponent multiplier as reals may.
Unlike reals, decimals must include every single digit. This eliminates the rounding problems of Reals but
increases storage requirements for large values. As a general rule, decimals are used for currency amounts.

Each decimal value has a precision and a scale. The scale is the number digits to the right of the decimal
separator. The precision is the total number of significant digits.

When you declare a decimal number you can do the following:

• Fix neither the precision nor the scale
• Fix only the scale
• Fix both scale and precision

The following example shows various ways of declaring decimal values:
unspecified as Decimal
fixedScale as Decimal(2)
fixedBoth as Decimal(5, 2)

In this example, unspecified is of arbitrary precision and scale, fixedScale can be any number with
only two digits to the right of the decimal digit (e.g. 600000.25), and fixedBoth can hold only numbers with
up to two digits to the right of the decimal point for a total of 5 digits.

Decimal constants are a sequence of decimal digits followed by a period (.), followed by another sequence
of decimal digits. Note that unlike Real constants, the number of digits to the right of the decimal point is
significant and specifies the scale of the constant. The scale affects how a number is displayed as in the
following example:
display 12.3456780 to Decimal(2)

This example displays 12.35. Note that it rounds, and does not truncate, the original value.
Decimal Arithmetic

It is very important to bear in mind the rules that apply to decimal arithmetic when dealing with variables
with different decimal precisions. They are the following:

• If you want a variable to handle a determined precision, you must declare it: Decimal(precision).
• In an addition or a subtraction, the result takes the highest precision of the two operands.
• In a multiplication, the precision of the result is the sum of the precisions of the two operands.
• In a division, the result has the precision of the left operand (the dividend).
• In an assignment:

• it takes the precision resulting from the operation if the left operand has no precision defined or if its
precision is higher.

258 | Oracle BPM | Process Business Language (PBL)

• it takes the left operand precision when it is lower than the precision resulting from the operation.

• Every time the precision is reduced, the resulting value is rounded. For example, 0.5 is rounded to 1 and
not to 0.

Assignment

dec4 = 10.20
dec2 = dec4
dec1 = dec4
dec3 = dec4

display 'dec1: ' + dec1 + ', dec2: ' + dec2 + ', dec3: ' + dec3 +
 ', dec4: ' + dec4

This example displays the following:
dec1:10.2000, dec2: 10.20, dec3: 10, dec4: 10.2

Addition

dec1 = 10.20
dec2 = 1.04
dec3 = 100.003

res1 = dec1 + dec2
res2 = dec1 - dec2
res3 = dec1 + dec2 + dec3
res4 = dec3 - dec2

display 'res1: ' +res1 + ', res2: ' + res2 +
 ' , res3: ' + res3 + ', res4: ' + res4

This example outputs the following:
res1:11.2400, res2:9.1600, res3: 111.2400, res4:98.96

Multiplication

dec1 = 10.20
dec2 = 1.04
dec3 = 100.003
res1 = dec1 * dec2
res2 = dec2 * dec1
res3 = dec3 * dec1
res4 = dec1 * dec1
display 'res1: ' +res1 + ', res2: ' + res2 +
 ', res3: ' + res3 + ', res4: ' +
res4

This example outputs the following:
res1: 10.608000, res2:10.608000, res3: 1020.0000, res4: 104.04000000

Division

dec1 = 10.20
dec2 = 1.04
dec3 = 100.003
res1 = dec1 / dec2
res2 = dec2 / dec1
res3 = dec3 / dec1

Oracle BPM | Process Business Language (PBL) | 259

res4 = dec1 / dec1
display 'res1: ' +res1 + ', res2: ' + res2 +
 ', res3: ' + res3 + ', res4: ' +
res4

This example outputs the following:
res1: 9.8077, res2: 0.10, res3: 10, res4: 1.0000

Real and Decimal Numbers

The choice betweenReal orDecimal numbers is important. Both can hold large numberswith a certain amount
of precision, but there are fundamental differences between the two types of numbers:

• Real numbers are designed for speed in calculationswhere accuracy is not so important andwhere a close
value is good enough.

• Decimal numbers are designed to provide a bound to the error you are willing to accept, sacrificing some
performance if it is needed to guarantee the accuracy.

These differences become especially important when dealing with money. As a rule, whenever you are
handling numbers that represent money, use Decimal numbers.
Enumerations

Enumerations are sets of related integer constants, where each value has a name. Studio has built-in support
for enumerations (sequential and non-sequential). These are some properties of enumerations:

• Type safe: The compiler checks that the values belong to the enumeration.
• User-Friendly: Understanding a piece of code that uses them is easier. Enumerations have a name that

indicates what they represent.
• Improved Performance: Comparison of enumeration values is reduced to a comparison between integers.

Using Enumerations

Enumerations can be used with a qualified name:
action = Action.SKI

or without qualification, when the type of the enumeration can be inferred from the context:
action = SKIP

To check the value of an Enumeration, you can use the is operator:
if action is CANCEL then
//Do something
end

or if you prefer, the multi-path conditional statement:
case action
when SKIP then
// Process SKIP
when CANCEL then
// Process CANCEL
else
// Handle all other values
end

Creating Enumerations

For further information on creating enumerations, refer to: Enumerations

260 | Oracle BPM | Process Business Language (PBL)

Number Functions Reference

abs

Returns the absolute value of a numeric value. If the argument is not negative, the argument is returned. If
the argument is negative, the negation of the argument is returned.

NumberArguments
numeric argument whose
absolute value is to be
determined

Numeric value of the same datatype as the input
argument

Returns

The following special cases apply to this function:

• If the argument is positive, zero, or negative zero, the result is positive zero.
• If the argument is infinite, the result is positive infinity.
• If the argument is not a number (NaN), the result is also not a number.

acos

Returns the arc cosine of an angle, in the range of 0.0 through pi.

NumberArguments
Numeric argument whose arc
cosine is to be determined. This
value can range from -1 to 1.

Real - the arc tangent of the argument.Returns

The following special cases apply to this function:

• If the argument is NaN or its absolute value is greater than 1, the result is NaN.

asin

Returns the arc sine of an angle, in the range of -pi/2 through pi/2.

NumberArguments
Numeric argument whose arc
sine is to be determined. This
value can range from -1 to 1.

Real - the arc sine of the argument.Returns

The following special cases apply to this function:

• If the argument is NaN or its absolute value is greater than 1, the result is NaN.
• If the argument is zero, the result is a zero with the same sign as the argument.

atan

Returns the arc tangent of an angle, in the range of -pi/2 through pi/2.

NumberArguments

Oracle BPM | Process Business Language (PBL) | 261

Numeric argument whose arc
sine is to be determined.

Real - the arc tangent of the argument.Returns

The following special cases apply to this function:

• If the argument is NaN, the result is NaN.
• If the argument is zero, the result is a zero with the same sign as the argument.

ceil

Returns the smallest (closest to negative infinity) real value which is not less than the argument and is equal
to a mathematical integer.

RealArguments

Real - the smallest (closest to negative infinity)
floating-point value that is not less than the argument
and is equal to a mathematical integer.

Returns

The following special cases apply to this function:

• If the argument value is already equal to a mathematical integer, the result is the same as the argument.
• If the argument is positive zero or negative zero, the result is the same as the argument.
• If the argument value is less than zero but greater than -1.0, the result is negative zero.

Note: The value of ceil(<Real>) is exactly the value of -floor(-<Real>).

cos

Returns the trigonometric cosine of an angle.

Real - an angle, in radians.Arguments

Real - the cosine of the argument.Returns

The following special cases apply to this function:

• If the argument is NaN or an infinity, the result is NaN.

exp

Returns Euler's number e raised to the power of a real value.

Real - the exponent to raise e to.Arguments

Real -the value e exp a, where e is the base of the
natural logarithms.

Returns

The following special cases apply to this function:

• If the argument is NaN, the result is NaN.
• If the argument is positive infinity, the result is positive infinity.
• If the argument is negative infinity, the result is positive zero.

floor

Returns the largest (closest to positive infinity) real value that is not greater than the argument and is equal
to a mathematical integer.

262 | Oracle BPM | Process Business Language (PBL)

Real = floor (Real)Syntax

Real - a value.Arguments

Real - the largest (closest to positive infinity)
floating-point value that is not greater than the
argument and is equal to a mathematical integer.

Returns

The following special cases apply to this function:

• If the argument value is already equal to a mathematical integer, the result is the same as the argument.
• If the argument is NaN, an infinity, positive zero, or negative zero, the result is the same as the argument.

log

Returns the natural logarithm (base e) of a numeric value.

Number - a number greater than 0.Arguments

Real - the value ln argument, the natural logarithm
of argument.

Returns

The following special cases apply to this function:

• If the argument is NaN or less than zero, the result is NaN.
• If the argument is positive infinity, the result is positive infinity.
• If the argument is positive zero or negative zero, the result is negative infinity.

max(numA, numB)

Returns the greater of two numeric values. That is, the result is the argument closer to positive infinity. If the
arguments have the same value, the result is that same value. If either value is NaN, the result is NaN. Unlike
the numerical comparison operators, this method considers negative zero to be strictly smaller than positive
zero. If one argument is positive zero and the other is negative zero, the result is positive zero (see the
References in the footnotes).

numAArguments
numeric value A

numB
numeric value B

Numeric value - the larger of the two arguments.Returns

min(numA, numB)

Returns the smaller of two numeric values. That is, the result is the argument closer to the value of
Real.MIN_VALUE . If the arguments have the same value, the result is that same value.

numAArguments
numeric value A

numB
numeric value B

Numeric value - the smaller of the two arguments.Returns

Oracle BPM | Process Business Language (PBL) | 263

pow

Returns the value of the first argument raised to the power of the second argument.

Real - the base.Arguments

Real - the exponent.

RealReturns

The following special cases apply to this function:

• If the second argument is positive or negative zero, the result is 1.0.
• If the second argument is 1.0, the result is the same as the first argument.
• If the second argument is NaN, the result is NaN.
• If the first argument is NaN and the second argument is nonzero, the result is NaN.
• If

• the absolute value of the first argument is greater than 1 and the second argument is positive infinity,
or

• the absolute value of the first argument is less than 1 and the second argument is negative infinity, the
result is positive infinity.

• If

• the absolute value of the first argument is greater than 1 and the second argument is negative infinity,
or

• the absolute value of the first argument is less than 1 and the second argument is positive infinity, the
result is positive zero.

• If the absolute value of the first argument equals 1 and the second argument is infinite, the result is NaN.
• If

• the first argument is positive zero and the second argument is greater than zero, or
• the first argument is positive infinity and the second argument is less than zero, the result is positive

zero.

• If

• the first argument is positive zero and the second argument is less than zero, or
• the first argument is positive infinity and the second argument is greater than zero, the result is positive

infinity.

• If

• the first argument is negative zero and the second argument is greater than zero but not a finite odd
integer, or

• the first argument is negative infinity and the second argument is less than zero but not a finite odd
integer, the result is positive zero.

• If

• the first argument is negative zero and the second argument is a positive finite odd integer, or
• the first argument is negative infinity and the second argument is a negative finite odd integer, the

result is negative zero.

• If

• the first argument is negative zero and the second argument is less than zero but not a finite odd
integer, or

264 | Oracle BPM | Process Business Language (PBL)

• the first argument is negative infinity and the second argument is greater than zero but not a finite odd
integer, the result is positive infinity.

• If

• the first argument is negative zero and the second argument is a negative finite odd integer, or
• the first argument is negative infinity and the second argument is a positive finite odd integer, the

result is negative infinity.

• If the first argument is finite and less than zero

• if the second argument is a finite even integer, the result is equal to the result of raising the absolute
value of the first argument to the power of the second argument.

• if the second argument is a finite odd integer, the result is equal to the negative of the result of raising
the absolute value of the first argument to the power of the second argument

• if the second argument is finite and not an integer, the result is NaN.

• If both arguments are integers, the result is exactly equal to the mathematical result of raising the first
argument to the power of the second argument if that result can, in fact, be represented exactly as a real
value.

In the foregoing descriptions, a floating-point value is considered to be an integer if and only if it is finite and
a fixed point of the method ceil or, equivalently, a fixed point of the method floor. A value is a fixed point of
a one-argument method if and only if the result of applying the method to the value is equal to the value.

round

Returns the closest int to the argument. The result is rounded to a real by adding 1/2, taking the floor of the
result and casting the result to type int. That is, round is equivalent to floor(num + 0.5).

NumberArguments
numeric value to be rounded

Real or Decimal value of the argument rounded to
the nearest whole number. If num is Real or Int, the

Returns

function returns a Real. If num is Decimal, a Decimal
is returned

The following special cases apply to this function:

• If the argument is NaN, the result is 0.
• If the argument is negative infinity or any value less than or equal to the value of Real.MIN_VALUE , the

result is equal to the value of Real.MIN_VALUE .
• If the argument is positive infinity or any value greater than or equal to the value of Real.MAX_VALUE

, the result is equal to the value of Real.MAX_VALUE .

sin

Returns the trigonometric sine of an angle.

Real - an angle, in radians.Arguments

Real - the sine of the argument.Returns

The following special cases apply to this function:

• If the argument is NaN or an infinity, the result is NaN.
• If the argument is zero, the result is a zero with the same sign as the argument.

Oracle BPM | Process Business Language (PBL) | 265

sqrt

Returns the correctly rounded positive square root of a Real value.

Real - a value.Arguments

Real - the positive square root of argument. If the
argument is NaN or less than zero, the result is NaN.

Returns

The following special cases apply to this function:

• If the argument is NaN or less than zero, the result is NaN.
• If the argument is positive infinity, the result is positive infinity.
• If the argument is positive zero or negative zero, the result is the same as the argument.
• Otherwise, the result is the real value closest to the true mathematical square root of the argument value.

tan

Returns the trigonometric tangent of an angle

Real - an angle, in radians.Arguments

Real - the tangent of the argument.Returns

The following special cases apply to this function:

• If the argument is NaN or an infinity, the result is NaN.
• If the argument is zero, the result is a zero with the same sign as the argument.

Strings
String Overview

A string is zero or more characters put together. A character is anything that you can type, such as a letter,
a digit, a symbol, or a space. Strings are used to hold any kind of text information.

String literals

Astring literal consists of zero ormore characters enclosed in double quotes. Each charactermay be represented
by an escape sequence. The following are examples of string literals:
// empty string
display ""

// a string containing 16 characters
display "This is a string."

// a string containing one double quote
display "\\""

In PBL style, consecutive strings are automatically merged:
display "This is a string "
 "made from separate strings."

The above code displays:

This is a string made from separate strings.

Escape sequences

Character and string escape sequences are used to denote some special characters as well as the single quote,
double quote, and backslash characters in string literals. The following table lists themost common characters:

266 | Oracle BPM | Process Business Language (PBL)

DescriptionUnicodeEscape code

Horizontal tab (HT)0009\t

Newline or line feed (LF)000a\n

Form feed (FF)000c\f

Carriage return (CR)000d\r

Single quote0027\'

Double quote0022\"

Backslash005c\\

If you know the Unicode code, any character can be specified. You must prefix the four-digit hexadecimal
code of the desired character with "\u". For example, the double quote would be expressed as "\u0022".

String concatenation

Strings can be concatenated at runtime with the string concatenation operator '+'. You can use any data type
to build a string, so long as at least one of the elements is a string:
total as Int
total = 200
display "Total is: " + total + " units"

Regular Expressions

Advanced string pattern matching and manipulation can be done with regular expressions. For further
information, please see Regular Expression Overview on page 330.
String Functions

substring

Returns a new string that is a substring of this string. The substring begins with the character at the specified
index and extends to the end of this string.

Arguments

• String: the string on which the function operates.
• Int first: the beginning index, inclusive.

Returns

• String: the specified substring.

Example

text as String
 text = "Hello World"
 display substring(text, first : 5)

The previous example displays "World!".

substring

Returns a new string that is a substring of this string. The substring begins at the specified first index and
extends to the character at index last - 1. Thus, the length of the substring is last - first.

Arguments

• String: the string on which the function operates.
• Int first: the beginning index, inclusive.
• Int last: the ending index, exclusive.

Oracle BPM | Process Business Language (PBL) | 267

Returns

• String: the specified substring.

Example

 text as String
 text = "Hello World!"
 display substring(text, first : 5, last : 11)

The previous example displays "World".

fields

Given a source string and delimiter character, it returns an array of strings containing substrings of the original
string delimited by the specified character. The delimiter is not included in the result.

Arguments

• String: the string on which the function operates.
• String delim: Character that delimits field.

Returns

• String[]: an array of strings containing the fields delimited by delim.

Example

 text as String
 text = "Hello World!"
 display fields(text, delim : " ")

The example above displays ["Hello", "World!"].

length

Returns the number of characters in the string.

Arguments

• String: the string on which the function operates.

Returns

• Int: Number of characters in the string.

Example

 text as String
 text = "Hello World!"
 display length(text)

The previous example displays 12.

replace

Returns a new string with all the occurrences of from in the original string replaced by to.

This function has a variation that accepts a regular expression for matching the pattern to be replaced. See
Regular Expressions for details.

Arguments

• String: the string on which the function operates.

268 | Oracle BPM | Process Business Language (PBL)

• String from: the string to find.
• String to: the replacement text.

Returns

• String: a new string with the replacements.

Example

 text as String
 text = "Hello World!"
 display replace(text, from : "World", @to : "Mary")

The previous example displays "Hello Mary!".

charAt

This function returns the character contained in the specified index position.

Arguments

• String: the string on which the function operates.
• Int position: zero-based index of a character inside the string.

Returns

• String(1): the character at the specified index.

Example

 text as String
 text = "Hello World!"
 display charAt(text, position : 6)

The previous example displays "W".

indexOf

Searches inside a string for another string and returns the index where the first occurrence happens.

This function has a variation that accepts a regular expression for matching. See Regular Expressions for
details.

Arguments

• String: the string on which the function operates.
• String text: the text to find.

Returns

• Int: the index of the occurrence or -1 if not found.

Example

 text as String
 text = "Hello World!"
 display indexOf(text, text : "Wor")

The previous example displays 6.

lastIndexOf

Searches inside a string for another string and returns the index where the last occurrence happens.

Oracle BPM | Process Business Language (PBL) | 269

This function has a variation that accepts a regular expression for matching. See Regular Expressions for
details.

Arguments

• String: the string on which the function operates.
• String text: the text to find.

Returns

• Int: the index of the occurrence or -1 if not found.

Example

 text as String
 text = "Hello World!"
 display lastIndexOf(text, text : "o")

The previous example displays 7.

split

Splits a string using a regular expression. The delimiters are not included. See Regular Expressions for details.

Example

 text as String= "One Two Three"
 display split(text,'/\w+ \w+/m')

The previous example produces this output ["","Three"].

count

This function counts the number of times that a character is found in a string.

Arguments

• String: the string on which the function operates.
• String(1) ch: character to find.

Returns

• Int: the number of occurrences of the specified character in the string.

Example

 date as String = "10/12/2004"
 if count (date, ch: "/") = 2 then
 date = replace(date,"/","-")
 display date
 else
 display "Bad Date Format"
 end

The previous example displays "10-12-2004".

toUpperCase

Returns a new string with all the characters in uppercase.

Arguments

• String: the string on which the function operates.

270 | Oracle BPM | Process Business Language (PBL)

Returns

• String: a new string with all the characters in uppercase.

Example

 text as String
 text = "Hello World!"
 display toUpperCase(text)

The previous example displays "HELLOWORLD!".

toLowerCase

Returns a new string with all the characters in lowercase.

Arguments

• String: the string on which the function operates.

Returns

• String: a new string with all the characters in lowercase.

Example

 text as String
 text = "Hello World!"
 display toLowerCase(text)

The previous example displays "hello world!".

trim

Returns a new string with all the whitespace removed from the beginning and the end of the string.

Arguments

• String: the string on which the function operates.

Returns

• String: a new string with all the leading and trailing whitespace removed.

Example

 option as String = " Yes "
 if toLowerCase(trim (option))= "yes" then
 display "The option is correct"
 else
 display "The option is wrong".
 end

isMatch

Checkswhether a stringmatches a regular expression. SeeRegular ExpressionOverview on page 330 for details.

Example

 text as String= "One Two Three"
 display isMatch(text,'/\w+ Two \w+/g')

Oracle BPM | Process Business Language (PBL) | 271

The previous example displays true.

contains

This function returns true if a substring in a text matches the specified regular expression. See Regular
Expressions for details.

Example

 text as String= "One Two Three Four Five"
 display contains(text,'/\w+ Tw/g')

The previous example displays true.

chars

Returns an array of String(1) containing all the characters in the string.

Arguments

• String: the string on which the function operates.

Returns

• String(1)[]: the characters in the string.

Example

 text as String= "fuego"
 characters as String(1)[]
 characters = chars(text)
 for each i in characters
 do
 display "Char is "+ i
 end

The previous example displays:

 "Char is f"
 "Char is u"
 "Char is e"
 "Char is g"
 "Char is o"

pad

Returns a new string completed with spaces until the specified length is reached.

Arguments

• String: the string on which the function operates.
• Int len: the desired length of the string. If you pass a negative number (e.g.: -1), it is ignored and returns

an empty string.

Returns

• String: a new string of the specified length.

Example

 text as String

272 | Oracle BPM | Process Business Language (PBL)

 text = "Hello World!"
 display pad(text, len : 20)

strip

The strip function returns a new string truncated to a specified length. If the string is shorter than the length
specified, it is left as it is.

Arguments

• String: the string on which the function operates.
• Int len: the desired length of the string. If you pass a negative number (e.g.: -1), it is ignored and returns

an empty string.

Returns

• String: a new string of the specified length.

Example

 text as String
 text = "Hello World!"
 display strip(text, len : 5)

The previous example displays "Hello".

How to convert a String to a Time

The following will convert the string in strDate into a Time value to be set in realDate.
strDate = "Tue Feb 22 15:26:02 ART 2005"
strPattern = "EEE MMM dd HH:mm:ss z yyyy"

simpleDateFormat = Java.Text.SimpleDateFormat(strPattern)
realDate = parse(simpleDateFormat, strDate)

display realDate

The value of realDate becomes 2005-02-22 15:26:02-03

realDate is a variable of type Time. It contains the same date that was expressed as a string in strDate.
String Attributes

Empty

This attribute returns true if the string is empty (its length is zero).

Returns

• Boolean: true if its length is zero. False otherwise.

Example

 text as String
 text = "Hello World!"
 display text.empty

Times and Intervals
Time and Interval Overview

Studio supports two built-in types for time management:

Oracle BPM | Process Business Language (PBL) | 273

• Time - represents a specific point in time.
• Interval - represents the difference between two moments in time.

Times are stored as the number of microseconds since Jan 1, 1970 (also known as UNIX epoch).

Intervals are stored as months, days, and microseconds.

Times

The string representation of a time is ISO 8601 compliant. When converting a string into a time, Studio
supports a somewhat relaxed subset of ISO 8601; even dates without separators are accepted. The accepted
string formats match those of time literals.

Time Literals

Time literals are specified between single quotes. The following is a list of valid time literals:

 '23:30'
 '23:30:23'
 '23:30:23.001023'
 '23:30:23.001023Z'
 '23:30:23.001023-05'
 '23:30:23.001023-3:30'
 '1995-02-03'
 '1995-02-03 23:30'
 '1995-02-03 23:30:23'
 '1995-02-03 23:30:23.001023'
 '1995-02-03 23:30:23.001023Z'
 '1995-02-03 23:30:23.001023-05'
 '1995-02-03 23:30:23.001023-3:30'
 '1995-02-03T23:30'
 '1995-02-03T23:30:23'
 '1995-02-03T23:30:23.001023'
 '1995-02-03T23:30:23.001023Z'
 '1995-02-03T23:30:23.001023-05'
 '1995-02-03T23:30:23.001023-3:30'
 '19950203T'
 '19950203T233023.001023-330'

Time Zones

Following ISO 8601, time zones are specified as offsets from UTC. Named time zones are not supported
because there is no international standard for time zone abbreviations. If no time zone is specified in a time
literal, the default time zone for the current locale is used.

Note that:

• Interactive methods run in the locale of the current user.
• Automatic methods run in the Process Execution Engine's locale.

When a time is presented to a user, the format associated to the user’s locale is used. For custom time
formatting, the format function can be used. For further information, please see Time Functions.

Intervals

Intervals have two primary parts:

• Two calendar dependent components (months and days)
• A calendar independent component (hours, minutes, seconds and microseconds)

274 | Oracle BPM | Process Business Language (PBL)

The calendar dependent component exists, so arithmetic between time and interval is consistent.When using
a Gregorian calendar (the most common calendar in use), you cannot assume that a month equals to 30 days.
In fact, you cannot even assume that a day lasts 24 hours.

The Gregorian calendar inserts two corrections:

• The leap year - Every four years a day is added to February, unless the year is a multiple of 100 and not
a multiple of 400 (which is why the year 2000 had 366 days, instead of 365 like 1900).

• The leap second - Sometimes a second is added or removed from the last minute of certain days to cope
with the accumulated error caused by the Earth's change of speed.

So, for example, if you want to obtain a time two months from now, you can do:
display 'now' + '2M'

Interval Literals

Interval literals are enclosed by single-quotes ('). They are formed by a sequence of fields, where each field
is a number plus a unit suffix. The following table lists all valid suffixes:

DescriptionUnit Suffix

YearsY

MonthsM

Daysd or D

Hoursh or H

Minutesm

Secondss or S

Microsecondsx

Note: A 'T' in the constant forces the interpretation of 'M' to be equal to 'm', e.g.: '2MT2M' equals '2M2m'.

All magnitudes can contain a '.' to express a fractional part, although the fractional part is dropped for days
or months.

The following example shows some valid Interval constants:
display '2MT2.5M'
 display '1Y1M3h2m1.500s'
 display '1.5h'

Arithmetic

As mentioned before, time and intervals have some arithmetic rules.

The following table lists the behavior of addition and subtraction with time and interval:

Result TypeOperations

IntervalTime - Time

TimeTime + Interval (or Interval + Time)

TimeTime - Interval

IntervalInterval + Interval

IntervalInterval - Interval

For further information on Time and Interval, please refer to the following:

Oracle BPM | Process Business Language (PBL) | 275

• Time Attributes
• Interval Attributes
• Time and Interval Functions

Time Attributes

A Time object contains several attributes to manipulate the different components of time, such as days and
hours. The following table lists all Time's attributes and provides some examples:

DescriptionAttribute

Field that indicates the calendar era indicating the
common era (Anno Domini.).

AD

Example:

 time as Time
 /*this will display 1 because
 the current era is AD*/
 display time + "\n\n AD = " + time.AD

DescriptionAttribute

Boolean value which indicates whether the Time's
period is between midnight to just before noon.

am

Example:

 time as Time
 time = '2004-12-25 02:45:00-03'
 //this will display true
 display time + "\n\n am = " + time.am
 time = '2004-12-25 20:45:00-03'
 display time + "\n\n am = " + time.am

DescriptionAttribute

Field that indicates the period of the day. If the period
is am, it will return 0; otherwise, it will return 1.

ampm

Example:

 time as Time
 time = '2004-12-25 02:45:00-03'
 //this will display 0
 display time + "\n\n ampm = " + time.ampm
 time = '2004-12-25 20:45:00-03'
 //this will display 1
 display time + "\n\n ampm = " + time.ampm

DescriptionAttribute

Field that indicates the calendar era indicating the
period before the common era (before Christ).

BC

276 | Oracle BPM | Process Business Language (PBL)

Example:
time as Time
 /*this will display 0 because
 the current era is not BC*/
 display time + "\n\n BC = " + time.BC

DescriptionAttribute

String value containing the date formatted with the
default mask.

date

Example:
time as Time
 time = '2004-12-25 20:45:00-03'
 //this will display Dec 25, 2004
 display time + "\n\n" + time.date

DescriptionAttribute

Int value representing the day component of the time.day

Example:

 time as Time
 time = '2004-12-25 20:45:00-03'
 //it will display 25
 display time + "\n\n day: " + time.day

DescriptionAttribute

Int value representing the day part of the time.dayOfMonth

Example:
time as Time
 time = '2004-12-25 20:45:00-03'
 //this will display 25
 display time + "\n\n day of month: " +
 time.day

DescriptionAttribute

Day of theweek. Returns an integer from 1 to 7,where
Sunday is 1.

dayOfWeek

Example:
time as Time
 time = '2004-12-25 20:45:00-03'
 display time + "\n\n day of the week: " +
 time.dayOfWeek

DescriptionAttribute

Returns the number of days elapsed since 00:00
January 1, 1970 GMT (UNIX epoch).

days

Oracle BPM | Process Business Language (PBL) | 277

Example:
time as Time
 display "days since EPOCH: " + time.days

DescriptionAttribute

1969-12-31 00:00:00-00. Base time from which
milliseconds to calculate dates are counted.

EPOCH

Example:
//1969-12-31 00:00:00-00
 display "EPOCH: " + Time.EPOCH

DescriptionAttribute

Time value corresponding to the first day of the
month.

firstDayOfMonth

Example:
time as Time
 //firstDayOfMonth is a Time object
 display "fist day of month: " +
 time.firstDayOfMonth

DescriptionAttribute

Int value representing the hour component of the date
in the format h.

hour

Example:
time as Time
 time = '2004-12-25 20:45:00-03'
 display time + "\n\n hour: " + time.hour

DescriptionAttribute

Int value representing the hour component of the date
in the format hh.

hourOfDay

Example:
time as Time
 time = '2004-12-25 20:45:00-03'
 display time + "\n\n hour of the day: " +
 time.hour

DescriptionAttribute

Returns the number of hours elapsed since January
1, 1970 GMT.

hours

Example:
time as Time
 display "hours passed since EPOCH: "+
 time.hours

278 | Oracle BPM | Process Business Language (PBL)

DescriptionAttribute

Time value corresponding to the last day of the
month.

lastDayOfMonth

Example:
time as Time
 //lastDayOfMonth is a Time object
 display "last day of month: " +
 time.lastDayOfMonth

DescriptionAttribute

This attribute is used to change the current locale. It
is a write only attribute.

locale

Example:
time as Time
 display "date fomatted with default locale: " +
 time.formatDate
 Time.locale = Java.Util.Locale.GERMAN
 display "date with German locale: " +
 time.formatDate

DescriptionAttribute

The maximum value a Time object can have.maxvalue

Example:

 display "Time object's maximum value: "
 + Time.maxvalue

DescriptionAttribute

Int value representing the microseconds component
of the date.

microSecond

Example:
time as Time
 display time + "\n\n microseconds in time: " +
 time.microSecond

DescriptionAttribute

Returns the number of microseconds elapsed since
January 1, 1970 GMT.

microSeconds

Example:
time as Time
 display "microseconds since EPOCH: " +
 time.microDeconds

DescriptionAttribute

Returns the number of milliseconds elapsed since
January 1, 1970 GMT.

milliSeconds

Oracle BPM | Process Business Language (PBL) | 279

Example:
time as Time
 display "milliseconds since EPOCH: " +
 time.milliSeconds

DescriptionAttribute

Int value representing the minutes component of the
date.

minute

Example:
time as Time
 time = '2004-12-25 20:45:00-03'
 display time + "\n\n minutes: " + time.minute

DescriptionAttribute

Returns the number ofminutes elapsed since January
1, 1970 GMT.

minutes

Example:
time as Time
 display "minutes since EPOCH: " + time.minutes

DescriptionAttribute

The minimum value a Time object can have.minvalue

Example:
time as Time
 display "Time object's minimum value: "
 + time.minvalue

DescriptionAttribute

Int value representing the month component of the
date.

month

Example:
time as Time
 time = '2004-12-25 20:45:00-03'
 display time + "\n\n month: " +
 time.month

DescriptionAttribute

Int value representing the seconds component of the
date.

second

Example:
time as Time
 time = '2004-12-25 20:45:10-03'
 display time + "\n\n seconds: " + time.second

DescriptionAttribute

Returns the number of seconds elapsed since January
1, 1970 GMT.

seconds

280 | Oracle BPM | Process Business Language (PBL)

Example:
time as Time
 display "seconds since EPOCH: " + time.seconds

DescriptionAttribute

Int value representing the hours component of the
time, without calendar corrections.

timeOnlyHour

Example:
time as Time
 display time + "\n\n" +
 "hours: " +
 time.timeOnlyHour

DescriptionAttribute

Int value representing the microseconds component
of the time, without calendar corrections.

timeOnlyMicroSecond

Example:
time as Time
 display time + "\n\n" +
 "microseconds: "+
 time.timeOnlyMicroSecond

DescriptionAttribute

Int value representing the minutes component of the
time, without calendar corrections.

timeOnlyMinute

Example:
time as Time
 display time + "\n\n"+
 "minutes: " +
 time.timeOnlyMinute

DescriptionAttribute

Int value representing the seconds component of the
time, without calendar corrections.

timeOnlySecond

Example:
time as Time
 display time + "\n\n"+
 "seconds: " +
 time.timeOnlySecond

DescriptionAttribute

String value containing the time of the day formatted
with the default mask.

time

Example:
time as Time
 display "time formatted with default mask:" +
 time.date

Oracle BPM | Process Business Language (PBL) | 281

DescriptionAttribute

Time according to the locale.timeZone

Example:
time as Time
 Time.timeZone = TimeZone.getTimeZone("GMT-3")
 display "GMT-3: " + time
 Time.timeZone = TimeZone.getTimeZone("GMT-8")
 display "GMT-8: " + time

DescriptionAttribute

Int value indicating the week number within the
current month, starting from 1.

weekOfMonth

Example:
time as Time
 time = '2004-01-01 20:45:00-03'
 display time + "\n\n week of month: " +
 time.weekOfMonth
 time = '2004-01-07 20:45:00-03'
 display time + "\n\n week of month: " +
 time.weekOfMonth

DescriptionAttribute

Int value indicating the week number within the
current year, starting from 1.

weekOfYear

Example:
time as Time
 time = '2004-01-07 20:45:00-03'
 display time + "\n\n week of year: " +
 time.weekOfYear
 time = '2004-02-07 20:45:00-03'
 display time + "\n\n week of year: " +
 time.weekOfYear

Time Functions

addDays

Adds a specified number of days to a Time object.

Arguments

• Time - the Time object to which days will be added.
• Int i - the number of days to be added to the time object.

Returns

The Time object resulting from adding the specified number of days to the given time.

Example

The following example adds 15 days to the current time and displays the result.

 display "time in 15 days will be: " +

282 | Oracle BPM | Process Business Language (PBL)

 addDays('now', i : 15)

addHours

Adds a specified number of hours to a Time object.

Arguments

• Time - the Time object to which hours will be added.
• Int i - the number of hours to be added to the Time object.

Returns

The Time object resulting from adding the specified number of hours to the given time.

Example

The following example adds 12 hours to the current time and displays the result:
display "time in 12 hours will be: " +
 addHours('now', i : 12)

addMicroSeconds

Adds a specified number of microseconds to a Time object.

Arguments

• Time - the Time object to which microseconds will be added.
• Int i - the number of microseconds to be added to the Time object.

Returns

The Time object resulting from adding the specified number of microseconds to the given time.

Example

The following example adds 500 microseconds to the current time and displays the result:
display "time in 500 microseconds will be: " +
 addMicroSeconds('now', i : 500)

addMilliSeconds

Adds a specified number of milliseconds to a Time object.

Arguments

• Time - the Time object to which milliseconds will be added.
• Int i - the number of milliseconds to be added to the Time object.

Returns

The Time object resulting from adding the specified number of milliseconds to the given time.

Example

The following example adds 50,000 milliseconds to the current time and displays the result:
display "time in 50000 milliseconds will be: " +
 addMilliSeconds('now', i : 50000)

addMinutes

Adds a specified number of minutes to a Time object.

Arguments

• Time - the Time object to which the milliseconds will be added.
• Int i - the number of minutes to be added to the Time object.

Oracle BPM | Process Business Language (PBL) | 283

Returns

The Time object resulting from adding the specified number of milliseconds to the given time.

Example

The following example adds 30 minutes to the current time and displays the result:
display "time in 30 minutes will be: " +
 addMinutes('now', i : 30)

addMonths

Adds a specified number of months to a Time object.

Arguments

• Time - the Time object to which the months will be added.
• Int i - the number of months to be added to the Time object.

Returns

The Time object resulting from adding the specified number of months to the given time.

Example

The following example adds 6 months to the current time and displays the result.
display "time in 6 months will be: " +
 addMonths('now', i : 6)

addSeconds

Adds a specified number of seconds to a Time object.

Arguments

• Time - the Time object to which the seconds will be added.
• Int i - the number of seconds to be added to the Time object.

Returns

The Time object resulting from adding the specified number of seconds to the given time.

Example

The following example adds 50 seconds to the time object and displays the result:
display "time in 50 seconds will be: " +
 addSeconds('now', i : 50)

addWeeks

Adds a specified number of weeks to a Time object.

Arguments

• Time - the Time object to which the weeks will be added.
• Int i - the number of weeks to be added to the Time object.

Returns

The Time object resulting from adding the specified number of weeks to the given time.

Example

The following example adds 50 weeks to the current time and displays the result:
display "time in 50 weeks will be: " +
 addWeeks('now', weeks : 50)

addYears

284 | Oracle BPM | Process Business Language (PBL)

Adds a specified number of years to a Time object.

Arguments

• Time - the Time object to which the years will be added.
• Int i - the number of years to be added to the Time object.

Returns

The Time object resulting from adding the specified number of years to the given time:
display "time in 10 years will be: " +
 addYears('now', i : 10)

add

Adds a specified interval of time to a Time object.

Arguments

• Time - the Time object to which the interval of time will be added.
• Interval i - interval of time to add to the Time object.

Returns

The Time object resulting from adding the specified interval to the given time.

Example

The following example adds 5 days, 15 hours, and 30 minutes to the current time and displays the result:
display "time in 5 days 15 hours and 30 minutes: \n\n" +
 add('now', interval : '5d15h30m')

between

Determines if the given Time object is between two Time objects.

Arguments:

• Time - the given Time object.
• Time from - the upper bound of the time period in which to search the given time, exclusive.
• Time to - the lower bound of the time period in which to search the given time, inclusive.

Returns

true - if the given Time object is contained in the specified period.

false - if the given object is not contained in the specified period.

Example

The following example finds out if the current time is in between the first day and last day of year 2004:
display "is today between 2004-01-01 and 2004-12-31? "+
 between('now', from : '2004-01-01 12:00:00',
 @to : '2004-12-31 12:00:00')

daysSince

Calculates the days passed between a given time and another time.

Arguments

• Time - the Time object.
• Time t - the other Time object.

Returns

An Int value representing the number of days between the two given times.

Oracle BPM | Process Business Language (PBL) | 285

Example

The following example defines a Time variable birthdate, calculates the days passed between 'now' and
birthdate and displays the result:
birthdate as Time
 birthdate = '1979-02-19'
 display "days passed since birthdate: " +
 daysSince('now', t : birthdate)

formatDate

Formats the Time object with the default mask.

Arguments

• Time - the Time object to be formatted.

Returns

A String containing the representation of the Time object formatted with the default mask.

Example

The following example displays the current time formatted with the default mask:
display formatDate('now')

formatDate

Formats the Time object with the specified date formatting style for the default locale.

Arguments

• Time - the Time object to be formatted.
• Int style - The formatting style. Available styles are Time.DEFAULT, Time.FULL, Time.LONG, and

Time.SHORT.

Returns

A String containing the representation of the Time object formatted with the specified style.

Example

The following example displays the current time with the four possible formatting styles:

 defaultDate as String = "Default format --> " +
 formatDate('now', dateStyle : Time.DEFAULT)

 fullDate as String = "Full format --> " +
 formatDate('now', dateStyle : Time.FULL)

 longDate as String = "Long format --> " +
 formatDate('now', dateStyle : Time.LONG)

 shortDate as String = "Short format --> " +
 formatDate('now', dateStyle : Time.SHORT)

 display defaultDate + "\n\n" + fullDate + "\n\n" +
 longDate + "\n\n" + shortDate + "\n\n"

formatTimeOnly

Formats this Time object as a time only, with no time zone correction.

Arguments

• Time - The Time object to be formatted.

286 | Oracle BPM | Process Business Language (PBL)

Returns

A String containing the representation of the Time object formatted as time only.

The following example displays the current time formatted as time only. It should display something similar
to 12439d 16:58:58:
display formatTimeOnly('now')

formatTimeOnly

Formats this Time object as a time only, with no time zone correction, applying the specified style.

Arguments

• Time - The Time object to be formatted.
• Int - The formatting style. Available styles are Time.DEFAULT, Time.FULL, Time.LONG, andTime.SHORT.

Returns

A String containing the representation of the Time object formatted as time only, applying the specified style.

Example

The following example only displays the time representation of the current time in the four available styles:

 defaultTime as String = "Default format --> " +
 formatTimeOnly('now', intervalStyle : Time.DEFAULT)

 fullTime as String = "Full format --> " +
 formatTimeOnly('now', intervalStyle : Time.FULL)

 longTime as String = "Long format --> " +
 formatTimeOnly('now', intervalStyle : Time.LONG)

 shortTime as String = "Short format --> " +
 formatTimeOnly('now', intervalStyle : Time.SHORT)

 display defaultTime + "\n\n" +
 fullTime + "\n\n" +
 longTime + "\n\n" +
 shortTime + "\n\n"

formatTime

Formats the time component of a Time object with a specified style.

Arguments

• Time - The Time object to be formatted.
• Int timeStyle - The formatting style. Available styles are Time.DEFAULT, Time.FULL, Time.LONG, and

Time.SHORT.

Returns

A String containing the time component of the Time object formatted with the specified style.

Example

The following example displays the time component of the current time formatted with the four available
styles:

 defaultTime as String = "Default format --> " +
 formatTime('now', timeStyle : Time.DEFAULT)

Oracle BPM | Process Business Language (PBL) | 287

 fullTime as String = "Full format --> " +
 formatTime('now', timeStyle : Time.FULL)

 longTime as String = "Long format --> " +
 formatTime('now', timeStyle : Time.LONG)

 shortDate as String = "Short format --> " +
 formatTime('now', timeStyle : Time.SHORT)

 display defaultTime + "\n\n" +
 fullTime + "\n\n" +
 longTime + "\n\n" +
 shortTime + "\n\n"

format

Formats a Time object with the default mask.

Arguments

• Time - the Time object to be formatted.

Returns

A string containing the representation of the Time object formatted with the default mask.

Example

The following example displays the current time formatted with the default mask.
display format('now')

format

Formats a Time object with a specified date style and time style.

Arguments

• Time - The Time object to be formatted.
• Int dateStyle - The style to be applied to the date component of the Time object. Available styles

are:Time.DEFAULT, Time.FULL, Time.LONG, and Time.SHORT.
• Int timeStyle - The style to be applied to the time component of the Time object. Available styles are

Time.DEFAULT, Time.FULL, Time.LONG, and Time.SHORT.

Returns

A string containing the representation of the Time object whose date was formatted with the specified date
style, and whose time was formatted with the specified time style.

Example

The following example displays the current time with its date in full format style and its time in short format
style first, then the same time with its date in short format style and its time in full format style:

 fullDateShortTime as String = "Full date, short time: " +
 format('now', dateStyle : Time.FULL,
 timeStyle : Time.SHORT)

 shortDateFullTime as String = "Short date, full time: " +
 format('now', dateStyle : Time.SHORT,
 timeStyle : Time.FULL)

 display fullDateShortTime + "\n\n" + shortDateFullTime

288 | Oracle BPM | Process Business Language (PBL)

format

Formats a Time object by applying a specified formatter.

Arguments

• Time - The Time object to be formatted.
• Java.Text.DateFormat formatter - The formatter to be applied in order to format the Time object.

Returns

A String containing the representation of the Time object formatted by applying the specified formatter.

Example

The following example displays the current Time formatted with the formatter passed by arguments:
display format('now', formatter : DateFormat.getInstance())

format

Formats a Time object with a specified formatter using the provided time zone and locale.

Arguments

• Time - The Time object to be formatted.
• Java.Text.DateFormat formatter - The formatter to be applied in order to format the Time object.
• Java.Util.TimeZone timeZone - The time zone to apply to the Time object when formatting it.
• Java.Util.Locale locale - The locale to apply to the Time object when formatting it.

Returns

A String containing the representation of the Time object formatted by applying the specified formatter and
the time zone and locate provided.

Example

The following example displays the current Time formatted applying the formatter passed by arguments,
GMT-10 time zone and French locale:

 display format('now', formatter : DateFormat.getInstance(),
 timeZone : TimeZone.getTimeZone(arg1 : "GMT-10"),
 locale : Java.Util.Locale.FRANCE)

format

Formats a Time object with a specified mask.

Arguments

• Time - The Time object to be formatted.
• String mask - A string containing the mask to apply in order to format the Time object.

Returns

AString containing the representation of the Time object formattedwith the specifiedmask. The String should
be written according to the patterns and rules described below.

The following pattern letters are defined (all other characters from 'A' to 'Z' and from 'a' to 'z' are reserved):

ExamplePresentationDate or TimeComponentLetter

ADTextEra designatorG

1996; 96YearYeary

July; Jul; 07MonthMonth in yearM

Oracle BPM | Process Business Language (PBL) | 289

ExamplePresentationDate or TimeComponentLetter

27NumberWeek in yearw

2NumberWeek in monthW

189NumberDay in yearD

10NumberDay in monthd

2NumberDay of week in monthF

Tuesday; TueTextDay in weekE

PMTextAm/pm markera

0NumberHour in day (0-23)H

24NumberHour in day (1-24)k

0NumberHour in am/pm (0-11)K

12NumberHour in am/pm (1-12)h

30NumberMinute in hourm

55NumberSecond in minutes

978NumberMillisecondS

Pacific Standard Time;
PST; GMT-08:00

General time zoneTime zonez

-0800RFC 822 time zoneTime zoneZ

Pattern letters are usually repeated, as their number determines the exact presentation:

• Text: For formatting, if the number of pattern letters is 4 or more, the full form is used. Otherwise, a short
or abbreviated form is used if available. For parsing, both forms are accepted, independent of the number
of pattern letters.

• Number: For formatting, the number of pattern letters is the minimum number of digits, and shorter
numbers are zero-padded to this number. For parsing, the number of pattern letters is ignored unless it's
needed to separate two adjacent fields.

• Year: For formatting, if the number of pattern letters is 2, the year is truncated to 2 digits. Otherwise, it is
interpreted as a number.

Example

The following example displays the current time formatted with the mask defined by the String passed by
arguments. It should display something like: Thu 22 01 2004 04:31:48:975 PM ART:
display 'now'.format("E dd MM yyyy hh:mm:ss:SS a z")

getDateFormat

Returns an appropriate DateFormat based on the parts needed and a style.

Arguments

• Int parts - The neededparts. These could be Time.DATE_ONLY, Time.TIME_ONLY, or Time.DATE_TIME.
• Int style - The formatting style. Available styles are Time.DEFAULT, Time.FULL, Time.LONG, and

Time.SHORT.

Returns

The format based on the required parts and style.

Example

290 | Oracle BPM | Process Business Language (PBL)

The following example uses the function getDateFormat with different needed parts and style to format the
current time:

 fullDateOnly as String

 fullDateOnly = "Date only - Full format: " +
 'now'.format(Time.getDateFormat(
 parts : Time.DATE_ONLY,
 style : Time.FULL))

 shortTimeOnly as String
 shortTimeOnly = "Time only - Short format: " +
 'now'.format(Time.getDateFormat(
 parts : Time.TIME_ONLY,
 style : Time.SHORT))

 longDateTime as String
 longDateTime = "Date time - Long format: " +
 'now'.format(Time.getDateFormat(
 parts : Time.DATE_TIME,
 style : Time.FULL))

 display fullDateOnly + "\n\n" + shortTimeOnly + "\n\n" +
 longDateTime

getDateFormat

Returns an appropriate DateFormat based on the required parts, style, and locale.

Arguments

• Int parts - The neededparts. These could be Time.DATE_ONLY, Time.TIME_ONLY, or Time.DATE_TIME.
• Int style - The formatting style. Available styles are Time.DEFAULT, Time.FULL, Time.LONG, and

Time.SHORT.
• Java.Util.Locale - The locale the date formatter will have to apply.

Returns

Returns an appropriate DateFormat based on the required parts, style, and locale.

Example

The following example uses the function getDateFormat with different needed parts and style, and french
locale, to format the current time:

 fullDateOnly as String
 fullDateOnly = "Date only - Full format: " +
 'now'.format(Time.getDateFormat(
 parts : Time.DATE_ONLY,
 style : Time.FULL, Java.Util.Locale.FRANCE))

 shortTimeOnly as String
 shortTimeOnly = "Time only - Short format: " +
 'now'.format(Time.getDateFormat(
 parts : Time.TIME_ONLY,
 style : Time.SHORT, Java.Util.Locale.FRANCE))

 longDateTime as String
 longDateTime = "Date time - Long format: " +
 'now'.format(Time.getDateFormat(
 parts : Time.DATE_TIME,
 style : Time.FULL, Java.Util.Locale.FRANCE))

Oracle BPM | Process Business Language (PBL) | 291

 display fullDateOnly + "\n\n" + shortTimeOnly + "\n\n" +
 longDateTime

Time.getEaster

Calculates Easter day for a specified year.

Arguments
y

The year for which you would like to know Easter's date.

Returns

A Time object containing Easter date.

Example

The following example displays Easter date for the year 2007:
display Time.getEaster(y : 2007)

This will show:

Apr 8, 2007 12:00:00 AM

Time.getMonthName

Returns the name of the specified month.

Arguments
monthNum

The number which identifies the month from which you would like to know the name. This
number may vary between 1 (January) and 12 (December).

Returns

The name of the specified month.

Example

The following example displays the name of month 2 (February):
display Time.getMonthName(monthNum : 2)

Time.getWeekdayName

Returns the name of the specified weekday.

Arguments

• Int dayNum - The number which identifies the day from which you would like to know the name. This
number may vary between 0 (Sunday) and 6 (Saturday).

Returns

The name of the specified day.

Example

The following example displays the day 3 (Wednesday):
display Time.getWeekdayName(dayNum : 0)

292 | Oracle BPM | Process Business Language (PBL)

max

Returns the greater time between two Time objects.

Arguments
Time1

A Time object

Time2
Another Time object

Returns

The greater Time object.

Example

The following example displays the greater Time between the current time and the date the man landed on
the moon. The current time is returned:
manOnMoon as Time
manOnMoon = '1969-07-21 02:56:00 -00'
display max(manOnMoon, b : 'now')

min

Returns the smaller Time object between two Time objects.

Arguments

• Time a - A Time object.
• Time b - Another Time object.

Returns

The smaller Time object.

For example:
manOnMoon as Time
manOnMoon = '1969-07-21 02:56:00 -00'
display min(manOnMoon, b : 'now')

monthsSince

Returns the number of months elapsed since a given Time object.

Arguments
Time

A Time object

Returns

An Int value with the number of whole months elapsed since the time specified by the Time object to the
present time. For example, there are twowholemonths between January 15 andMarch 15, but only onewhole
month between January 15 and March 14.

For example:
xMas2007 as Time
xMas2007 = '2007-12-25'
display monthsSince('now', t : xMas2007)

roundToSeconds

Rounds a Time object to the nearest second.

Oracle BPM | Process Business Language (PBL) | 293

Arguments
Time

A Time object

Returns

A Time object with the value of Time rounded to the nearest second.

Note: The value is rounded, not truncated, so 499 milliseconds or less will be rounded down, while 500
milliseconds or more will be rounded up.

Example

The following example creates a Time object calledtimeStartwith seconds andmilliseconds, then it displays
the value rounded to the nearest second:
timeStart as Time
time = '2007-04-16 17:21:30.235'
display roundToSeconds(timeStart)

This displays:

Apr 16, 2007 2:21:30 PM

Interval Attributes

DescriptionAttribute

Interval value representing an interval of one day.ONE_DAY

Example:
interval as Interval
 interval = '25d5h1m'
 display "original interval: " + interval
 interval = interval + Interval.ONE_DAY
 display "after adding a day: " + interval

DescriptionAttribute

Interval value representing an interval of one hour.ONE_HOUR

Example:
interval as Interval
 interval = '25d5h1m'
 display "original interval: " + interval
 interval = interval + Interval.ONE_HOUR
 display "after adding an hour: " + interval

DescriptionAttribute

Interval value representing an interval of oneminute.ONE_MINUTE

Example:
interval as Interval
 interval = '25d5h1m'
 display "original interval: " + interval
 interval = interval + Interval.ONE_MINUTE
 display "after adding a minute: " + interval

294 | Oracle BPM | Process Business Language (PBL)

DescriptionAttribute

Interval value representing an interval of one month.ONE_MONTH

Example:
interval as Interval
 interval = '2M25d5h1m'
 display "original interval: " + interval
 interval = interval + Interval.ONE_MONTH
 display "after adding a month: " + interval

DescriptionAttribute

Interval value representing an interval of one second.ONE_SECOND

Example:
interval as Interval
 interval = '25d5h1m7s'
 display "original interval: " + interval
 interval = interval + Interval.ONE_SECOND
 display "after adding a second: " + interval

DescriptionAttribute

Interval representing the zero value. When added to
another interval, the interval does not change its
value.

ZERO

Example:
interval as Interval
 interval = '1M20d3h40m5s'
 display "original interval: " + interval
 interval = interval + Interval.ZERO
 display "after adding ZERO: " + interval

DescriptionAttribute

Int value representing the days component of an
interval.

daysOnly

Example:
interval as Interval
 interval = '1M20d10h'
 display "days component of an interval: " +
 interval.daysOnly

DescriptionAttribute

Int value representing the days component of an
interval.

days

Example:
interval as Interval
 interval = '1M20d10h'
 display "days component of an interval: " +

Oracle BPM | Process Business Language (PBL) | 295

 interval.days

DescriptionAttribute

Int value representing the hours component of an
interval.

hoursOnly

Example:
interval as Interval
 interval = '1d20h30m'
 display "hours component of an interval: " +
 interval.hoursOnly

DescriptionAttribute

Int value representing the hours component of an
interval.

hours

Example:
interval as Interval
 interval = '1d20h30m'
 display "hours component of an interval: " +
 interval.hours

DescriptionAttribute

Int value representing the microseconds component
of an interval.

microSecondsOnly

Example:
interval as Interval
 interval = Interval("20.000003s")
 display "microseconds component of an interval: "+
 interval.microSecondsOnly

DescriptionAttribute

Total number of microseconds contained in the
interval.

microSeconds

Example:
interval as Interval
 interval = Interval("20.000003s")
 display "total microseconds of an interval: " +
 interval.microSeconds

DescriptionAttribute

Int value representing the milliseconds component
of an interval, without including microseconds.

milliSecondsOnly

Example:
interval as Interval
 interval = '20.250320s'

296 | Oracle BPM | Process Business Language (PBL)

 display "milliseconds component of an interval: " +
 interval.milliSecondsOnly

DescriptionAttribute

Int value representing the milliseconds component
of an interval plus the microseconds contained in it.

milliSeconds

Example:
interval = '20.250320s'
 display "milliseconds component with microseconds: " +
 interval.milliSeconds

DescriptionAttribute

Int value representing the minutes component of an
interval.

minutesOnly

Examples:
interval as Interval
 interval = '2h20m10s'
 display "minutes component of an interval: " +
 interval.minutesOnly

DescriptionAttribute

Total number of minutes contained in the interval.minutes

Examples:
interval as Interval
 interval = '2h20m10s'
 display "total minutes of an interval: "+
 interval.minutes

DescriptionAttribute

Int value representing the months component of an
interval.

monthsOnly

Examples:
interval as Interval
 interval = '1Y2M3d20h'
 display "months component of an interval: " +
 interval.monthsOnly

DescriptionAttribute

Total number of months in an interval.months

Examples:
interval as Interval
 interval = '1Y2M3d20h'
 display "total months of an interval: " +
 interval.months

Oracle BPM | Process Business Language (PBL) | 297

DescriptionAttribute

Int value representing the seconds component of an
interval.

secondsOnly

Examples:
interval as Interval
 interval = '1h20m35s'
 display "seconds component of an interval: " +
 interval.secondsOnly

DescriptionAttribute

Total number of seconds in an interval.seconds

Examples:
interval as Interval
 interval = '1h1m5s'
 display "total seconds of an interval " +
 interval.seconds

DescriptionAttribute

Int value representing the total number of
microseconds contained in the interval.

totalMicroSeconds

Examples:
interval as Interval
 interval = '20.250320s'
 display "total microseconds of an interval: " +
 interval.totalMicroseconds

DescriptionAttribute

Int value representing the years component of an
interval.

yearsOnly

Examples:
interval as Interval
 interval = '2Y10M15d'
 display "years component of an interval: " +
 interval.yearsOnly

DescriptionAttribute

Total number of years contained in the interval.years

Examples:
interval as Interval
 interval = '25M15d'
 display "total years of an interval: " +
 interval.years

Interval Functions

abs

Returns the absolute value of a given interval.

298 | Oracle BPM | Process Business Language (PBL)

Arguments

• Interval - The given Interval object.

Returns

The absolute value of a given Interval object.

Example

The following example calculates an Interval by subtracting the current time from the first day of year 2000.
Then, it displays the absolute value of the resulting interval:
year2k as Time

year2k = '2000-01-01 00:00:00'
interval = year2k - 'now'
display interval
display abs(interval)

addDays

Adds a specified number of days to an Interval object.

Arguments

• Interval - The interval to which days will be added.
• Int i - The number of days to be added to the Interval object.

Returns

An Interval object resulting from adding the specified number of days to the given Interval object.

Example

The following example creates an Interval variable named holidays and another named newHolidays,
which is the result of adding 10 days to holidays. Then, it displays both the original variable and the one
resulting from adding 10 days to the original variable:

holidays as Interval
holidays = '15d20h00m'

updatedHolidays as Interval
updatedHolidays = addDays(holidays, i : 10)

display "original holidays: " + holidays +
 "\n\n updated holidays: " +
 updatedHolidays

addHours

Adds a specified number of hours to an Interval object.

Arguments

• Interval - The interval to which hours will be added.
• Int i - The number of hours to be added to the Interval object.

Returns

An Interval object resulting from adding the specified number of hours to the given Interval object.

Example

Oracle BPM | Process Business Language (PBL) | 299

The following example creates an Interval variable named deliveryTime and another named
newDeliveryTime, which is the result of adding 12 hours to deliveryTime. Then, it displays both the original
variable and the one resulting from adding 12 hours to the original variable:

deliveryTime as Interval
newDeliveryTime as Interval

deliveryTime = '1d00h00m'
newDeliveryTime = addHours(deliveryTime, i : 12)

display "original deliveryTime: " + deliveryTime +
 "\n\n new deliveryTime: " + newDeliveryTime

addMicroSeconds

Adds a specified number of microseconds to an Interval object.

Arguments
Interval

The interval to which microseconds will be added.

Int
The number of microseconds to be added to the Interval object.

Returns

An Interval object resulting from adding the specified number of microseconds to the given Interval object.

Example

The following example creates an Interval variable named retry and another named largerRetry, which
is the result of adding 222 microseconds to retry. Then, it displays both the original variable and the one
resulting from adding 222 microseconds to the original variable:

retry as Interval
retry = '1m30.600s'

largerRetry as Interval
largerRetry = addMicroSeconds(retry, i : 222)

display "old retry: " + retry + "\n\nnew retry: " +
 largerRetry

addMinutes

Adds a specified number of minutes to an Interval object.

Arguments
Interval

The interval to which minutes will be added.

Int
The number of minutes to be added to the Interval object.

Returns

An Interval object resulting from adding the specified number of minutes to the given Interval object.

Example

300 | Oracle BPM | Process Business Language (PBL)

The following example creates an Interval variable named breakTime and another named newBreakTime,
which is the result of adding 25 minutes to breakTime. Then, it displays both the original variable and the
one resulting from adding 25 minutes to the original variable:

breakTime as Interval
breakTime = '1h20m00s'

newBreakTime as Interval
newBreakTime = addMinutes(breakTime, i : 25)

display "old break-time: " +breakTime +
 "\n\n new break-time: "+ newBreakTime

addMonths

Adds a specified number of months to an Interval object.

Arguments

• Interval - The interval to which months will be added.
• Int i - The number of months to be added to the Interval object.

Returns

An Interval object resulting from adding the specified number of months to the given Interval object.

Example

The following example defines an Interval fishingSeason. Then, it creates a new Interval named
newFishingSeason, which is the result of adding a month to fishingSeason. Both the original interval
and the result of the addition are displayed:

fishingSeason as Interval
fishingSeason = '1M20d'

newFishingSeason as Interval
newFishingSeason = addMonths(fishingSeason, i : 1)

display "original fishingSeason: " + fishingSeason +
 "\n\nnew fishingSeason: " + newFishingSeason

addYears

Adds a specified number of years to an Interval object.

Arguments

• Interval - The Interval object to which years will be added.
• Int i - The number of years to be added to the Interval object.

Returns

The Interval object resulting from adding the specified number of years to the given Interval.

Example

licensePeriod as Interval
licensePeriod = '1Y6M'

newLicensePeriod as Interval
newLicensePeriod = addYears(licensePeriod, i : 1)

Oracle BPM | Process Business Language (PBL) | 301

display "original license period: "+ licensePeriod +
 "\n\nnew license period: " + newLicensePeriod

format

Returns a String representation of the given interval. This String representation is based on the current locale.

Arguments

• Interval - The given Interval object.

Returns

A String representation of the given Interval based on the current locale.

Example

interval as Interval
interval = '2Y6M15d12h30m30s'
display format(interval)

intValue

Returns the Int value of an Interval objects. This value represents the number of seconds in the interval.

Arguments

• Interval - The Interval object.

Returns

An Int representing the number of seconds in the given interval.

Example

The following example displays the Int representation, that is to say, the number of seconds in an interval of
1 hour, 30 minutes, and 20 seconds:
display intValue('1h30m20s')

max

Returns the greater of two Interval objects.

Arguments

• Interval - The given Interval object.
• Interval b - Another Interval object.

Returns

The greater of the two Interval objects.

Example

The following example displays the greater Interval between 1 hour and 20 minutes and 1 hour and 35
minutes:
display max('1h20m', b : '1h35m')

min

Returns the smaller of two Interval objects.

Arguments

• Interval - The given Interval object.
• Interval b - Another Interval object.

302 | Oracle BPM | Process Business Language (PBL)

Returns

The smaller of the two Interval objects.

Example

The following example displays the smaller Interval between 1 hour and 20 minutes and 1 hour and 35
minutes:
display min('1h20m', b : '1h35m')

sleep

Causes the current BP-method to sleep for the specified number of time. Note that you cannot sleep past the
current timeout.While themethod is sleeping the timeout period is still running, therefore the sleep is applicable
for the defined interval or until timeout, whatever happens first.

Arguments

Interval - Time to wait

Example

The following example pauses the execution for 5 seconds:
sleep('5s')

Arrays
Array Overview

An array is a collection of values of the same type. Each element of the array is identified with an index or a
key. Any type that can be used to declare a variable can be used to declare an array, even another array.

Types of arrays

Studio supports the following types of arrays:

• Indexed Arrays on page 303
• Associative Arrays on page 304

Indexed arrays are indexed by consecutive positive integers, starting from 0 (zero).

Associative arrays may be indexed by any type, although certain types are better suited for use as indexes.

For further information about Arrays, please refer to these sections:

• Manipulating Arrays on page 305
• Array Functions on page 307
• Array Attributes on page 309
• Array Procedures on page 310
• Mapping Array Members on page 311

Indexed Arrays

Indexed arrays are arrays that store a set of values in a sequence of positions which are specified by an index,
which is an integer number. PBL uses zero-based arrays, meaning that the index of the first position of the
array is zero rather than one. Zero-based arrays are used in Java and Visual Basic as well.

Declaration

Indexed arrays are declared using square brackets:
ages as Int[]

The code above declares an indexed array named ages, which is of type Int.

Oracle BPM | Process Business Language (PBL) | 303

Initializing an array

You can use in-line arrays for initialization, specifying the values separated by commas:
ages as Int[]
ages = [23, 42, 29]

The code above initializes the empty array ages, with the integer values 23, 42, and 29.

You can add array elements at the end of the array, but must not skip any index values. That is, if the array
has six elements, with indexes ranging from 0 to 5, the next assigned value must be with index 6:
ages as Int[]
codes = [505, 607, 404, 405, 307, 806]

codes[6] = 306

If you skip an index value, an Index out of bounds error is thrown.

Accessing elements

The elements of an indexed array can be accessed by the index:
ages as Int[]
ages = [23, 42, 29]

display ages[0]

If you pass an index which is higher than the last available index (in the example, the last index is 2), anArray
index out of bounds error results.

Expressions are allowed in the index, so long as they result in an integer within the array bounds:
codes as Int[]
codes = [505, 607, 404, 405, 307, 806]
I = 2

display codes[1 + 2]
display codes[i]
display codes[i * 2]

Changing Array Values

You can change the value of any element in the array by specifying its index. This example uses a string array:
Names as String[]
names = ["Bill", "Ed", "Alfred"]

names[1] = "Edward"
display names

Associative Arrays

Associative arrays are arrays that map (or associate) a set of keys to a set of values. The data type of the keys
need not be an integer, so descriptive strings, for instance, may be used. Keys must be unique, but need not
be contiguous, or even ordered.

Declaration

Associative arrays are declared almost the same way as indexed arrays, with the difference that you must
specify the data type of the key. For example:

ages as Int[String]

The code above declares an associative array named ages, which is of type Int and is indexed by string keys.

304 | Oracle BPM | Process Business Language (PBL)

Initializing an array

You can use in-line arrays for initialization. They are similar to indexed arrays, but you must specify a key
for each key-value pair, since the key is arbitrary:

ages as Int[String]
ages = ["John" : 23, "Peter" : 42, "Mary" : 29]

The code above initializes the array ages, associating the value 23 to the key "John", the value 42 to the key
"Peter", and the value 29 to the key "Mary".

You can use keys to add elements to an existing associative array. For example:

ages as Int[String]
ages["John"] = 23
ages["Peter"] = 42
ages["Mary"] = 29

The code above also initializes the empty array ages, and then adds associated key-value pairs. The value
23 is assigned to the key "John", the value 42 to the key "Peter", and the value 29 to the key "Mary". If a key
which already exists in the array is used again with a new value, this value replaces the old value for that key.

Accessing elements

The elements of an associative array can be accessed by key. The key is specified between square brackets,
as an index would be for an indexed array:

ages as Int[String]
ages = ["John" : 23, "Peter" : 42, "Mary" : 29]

display ages["John"]

If you pass a nonexistent key, a null value is returned.

Ordered arrays

An associative array can be automatically ordered by key. To do so, the array must be declared using the
ordered option before the index declaration, as follows:

ages as Int[ordered String]

The following example will result in an ordered array, even though the array keys are initialized out of order:

ages as Int[ordered String]
ages = ["John" : 23, "Peter" : 42, "Mary" : 29]
for key in ages do
 display key
end

The keys will be displayed in ascending order, using the key data type sort order, which in this case is
alphabetical.
Manipulating Arrays

Change Elements

To change an array element, you can just access it with its list number and assign it a new value:

 products = ["A", "B", "C"]
 products[2] = "D"

Oracle BPM | Process Business Language (PBL) | 305

This changes the value of the element with the list number two (remember, arrays start counting at zero, so
the element with the list number two is actually the third element.) As we changed "C" to "D", the array now
contains "A", "B" and "D".

Add Elements

Now, suppose that we want to add a new element to the array. We can add a new element in the last position
by just assigning a value to the next position. If it does not exist, it is added at the end:

 products = ["A", "B", "C"]
 products[3] = "D"

Now, the array has four elements: "A", "B", "C" and "D".

It is not necessary to know the array length to add an element at the end. In order to do it, the add ([]) operator
or the extend method can be used.

Example, the following method is equivalent to the previous one:

 products = ["A", "B", "C"]
 extend products // add at the end
 using "D"

Delete Elements

Elements can be deleted from an array by using the delete operator:

 products = ["A", "B", "C"]
 delete products[0] // delete first element

Now, the array has two elements "B", "C".

Find Elements

The 'in' operator can be used to check if an element is contained in an array. The following code checks
whether "A" is contained in the array products:

 products = ["A", "B", "C"]
 if "A" in products then
 display "'products' contains the element 'A'"
 end

Now, if you want to get the index of the first occurrence of an element:

 products = ["A", "B", "A", "C"]
 index = indexOf(products, "A")

 if index != -1 then
 display "'A' is located at position : " + index
 end

Last examples will show the index 0. Instead, if you want to find the last occurrence, 'lastIndexOf' can be
used:

 products = ["A", "B", "A", "C"]
 index = lastIndexOf(products, "A")

 if index != -1 then

306 | Oracle BPM | Process Business Language (PBL)

 display "'A' is located at position : " + index
 end

Array Functions

avg

Calculates the average value of the data contained in an array. Its behavior is defined for numeric element
types only. The return type will be the same as the type of the array.

ArrayArguments
array to be averaged

The average value of all numeric elements of the
array. If the array is empty, returns 0 (zero). If the

Returns

array contains null elements, they are ignored in the
calculation. With an array containing only null
elements, the function will also return 0 (zero).

The following will display 19.42:

array as Decimal [] = [10.49, 13.78, null, 33.99]
display avg(array)

count

Counts the number of non-null elements contained in an array.

ArrayArguments
array to be counted for non-null
elements

An Integer value with the index. If the element is not
found, returns -1. If the array is empty, returns -1.

Returns

The following will display 3:

array as Int[]=[22,33,null,55]
display count(array)

indexOf

This function returns the index of the first occurrence of an element in the array. The array index starts at
zero for the first element.

ArrayArguments
array to be searched for
matching elements

Any
the element to be searched

An Integer value with the index. If the element is not
found, returns -1. If the array is empty, returns -1.

Returns

Oracle BPM | Process Business Language (PBL) | 307

The following will display 1:

array as String[] = ["Hello","!!!","world","!!!"]
display indexOf(array, "!!!")

lastIndexOf

This function searches the array formatching elements, and returns the index of the element's last occurrence.
The array index starts at zero for the first element.

ArrayArguments
array to be searched for
matching elements

Any
the element to be searched

An Integer value with the index. If the element is not
found, returns -1. If the array is empty, returns -1.

Returns

The following will display -1:

 array as String[] = ["Hello","world","!!!"]
 display indexOf(array, "happy")

The following will return 2:

 array as String[] = ["Hello","world","!!!"]
 display indexOf(array, "!!!")

The following will display 3:

array as String[] = ["Hello","!!!","world","!!!"]
display lastIndexOf(array, "!!!")

length

This function returns the length of the array.

ArrayArguments
array fromwhich the lengthwill
be obtained

An Integer value with the number of elements in the
array. If the array is empty, returns 0 (zero).

Returns

The following will return display 4:

 array as Int[] = [7,8,9,10]
 display length(array)

max

This function returns themaximum element of the array. The element typemust have a defined sorting order.
The return type will be the same as the type of the array.

308 | Oracle BPM | Process Business Language (PBL)

ArrayArguments
array fromwhich the maximum
value will be obtained

The maximum element of the array. If the array is
empty, returns a null value.

Returns

For example, the following will display "D":

array as String[]=["A","B","C","D"]
display max(array)

min

This function returns the minimum element of the array. The element type must have a default ordering
defined. The return type will be the same as the type of the array.

ArrayArguments
array from which the minimum
value will be obtained

The minimum element of the array. If the array is
empty, returns a null value.

Returns

For example, the following will display 22:

array as Int[]=[22,33,44,55]
display min(array)

sum

Calculates the sum of all the elements of the array. This function is defined for numeric element types only.

ArrayArguments
array to be summed

The sum of all the elements of the array. If the array
has no elements, returns 0 (zero).

Returns

For example, the following should display 4394:

array as Int[]=[112,3233,454,595]
display sum(array)

Array Attributes

first

This attribute returns the first element of an array. The datatype of the attribute depends on the data type of
the array on which it is applied. For example, the first element of a String array will always be a String.

Returns

• the first element of the array, or null if the array is empty.

Oracle BPM | Process Business Language (PBL) | 309

Example

array as String[]= ["Hello","World","!!!"]
display array.first

The expected result is "Hello".

last

This attribute returns the last element of an array. As with first, the datatype of the attribute depends on the
data type of the array on which it is applied.

Returns

• the last element of the array, or null if the array is empty.

Example

array as String[]= ["Hello","World","!!!"]
display array.last

The expected result is "!!!".
Array Procedures

Array procedures operate on a given array. Unlike functions, they do not return a value. Rather, they modify
the actual array which is supplied to the procedure.

sort

Sorts the elements of the array. The array's element type must have a defined sort order.

ArrayArguments
array to be sorted

The arraywith the elements sorted in ascending order.
If the array contains null elements, an error will be
thrown.

Result

The following will display [2, 3, 5, 7]:

myArray as Int [] = [7, 3, 5, 2]
sort myArray
display myArray

clear

Clears all the elements of the array.

ArrayArguments
array to be cleared

The array with no elements.Result

310 | Oracle BPM | Process Business Language (PBL)

The following will result in an empty array:

myArray as Int [] = [7, 3, 5, 2]
clear myArray

insert

Inserts an element in the specified position.

ArrayArguments
array in which an element will
be inserted

Integer
index after which the element is
to be inserted

Any
a value of the same type as the
array

The array with no elements.Result

The following will result in myArray being changed to [2, 9, 7, 3, 4]:

myArray as Int[] = [2, 7, 3, 4]
insert myArray
 using int = 1,
 value = 9
display myArray

Mapping Array Members

All of the attributes of an array's element type are mapped to the array. This means that if you have an array
ofMyComponent andMyComponent has an attribute called name of String type, you can do the following:

 array as MyComponent[]
 names as String[]
 // ... initialize array ...
 names = array[].name

This has the effect of having an attribute called name on the array of String type.

The equivalent code without using member mapping is as follows:

 array as MyComponent[]
 names as String[]
 // ... initialize array ...
 for each component in array do
 names[] = component.name
 end

The following is an example using Interval:

 intervals as Interval[]
 intervals = ['1d2h', '2d3h', '5d6h']
 display intervals[].hours

Oracle BPM | Process Business Language (PBL) | 311

This displays an Int array containing [2, 3, 6].

Variables

Variables
Provides a description of the types of variables that can be used in a PBL program.

Variables are locations in memory (and sometimes in a database) in which data can be stored. Each variable
has a name, description, type, and value. Most variables only store data of one particular type. For example,
if you define a variable to store a number, it would not normally be used to store a text string.

Because data types are commonly fixed, the compiler will check to ensure that you are using correct type for
the values your code assigns to them. If a statement is meant to process integers, the compiler will detect
when you inadvertently try to use it to process another datatype, such as a string.

Variable Naming

Valid PBL variable names must start with an alphabetic character or an underscore character followed by
zero or more alphanumeric characters. The following are valid variable names:
participantName = "John Doe"
iso9001 = "..."
_ugly_var_name_ = 1

The following PBL variable names are not valid:
//Variables cannot begin with numbers
4ever = true

//display is a reserved word
display = true

Reserved Words

Certain names cannot be used as variable names in a PBL program. These are called reservedwords. Reserved
words are dependant on the current language skin. To use a reserved word as a variable name, you must
escape it with the '@' character.
// This is legal because the reserved word
// has been escaped
@display = true

// References to it must also include
// the escape character
display = @display

In this example, the '@' sign is not part of the variable name. It is just a way to tell the compiler that you are
not referring to the reserved word but that you want to refer (in this case) to the variable.

Variable Declaration

The exact variable declaration syntax within a PBL program is dependant on the skin you are using, The
following examples demonstrate how to declare variables using different programming styles:

Using the PBL Style:
name as String
temp as Any

Using the Visual Basic style:
Dim name as String
Dim temp as Any

312 | Oracle BPM | Process Business Language (PBL)

Using the Java style:
String name;
Any temp;

Variable Scope

The term scope is used to denote the applicability or availability of a variablewithin your project. For example,
variables defined within the code of a method have a local scope and are therefore called local variables. This
means that they can only be seen from within the method where they are declared.

Oracle BPM processes define special variables with special scopes, including process instance variables,
project variables and predefined variables. See Variables on page 120 for details.

Initializing Variables

Default Values

In Studio, all variables are automatically initialized when first used if there is a suitable default value for the
variable type. The following table summarizes the default values that are used for each type:

Default ValueVariable Type

0Numeric

""String

nullAny

'now'Time

'0s'Interval

Initialization

Variables can be initialized during declaration as in the following example:
name as String = "Hello"

Variables can also be initialized after declaration by using an Assignment Statement as in the following
example:
name as String
name = "Hello"

Operators

Operator Types Overview

An operator is a symbol that performs a function on one, two or three operands. An operator that requires
one operand is called a unary operator. If they require two or three operands, they are called binary or ternary
operators.

The following types of operators are provided in the Process Business Language:

• Arithmetic: Performs mathematical operations.
• Relational: Compares two or more values.
• Logical: Performs logical operations.

Arithmetic Operators

The following table lists the operators that can be used in a method to perform mathematical calculations:

Oracle BPM | Process Business Language (PBL) | 313

DescriptionVisual Basic StyleJava StylePBL Style

Addition+++

Subtraction---

Multiplication***

Division///

Modulo (Remainder)Mod%rem

Order of Precedence

When multiple operators are used within an expression, the following order of precedence is followed:

• operators within parentheses are evaluated first
• multiplication, division, and modulo are evaluated from left to right
• addition and subtraction are evaluated from left to right

Using Variables with Arithmetic Operators
Variables of Int, Decimal, Real, Time, and Interval types may be used as operands of arithmetic operators.
The result of a given expression is based on the following rules:

• If any of the operands is Real, the result is Real
• If any of the operands is Decimal and none are Real, the result is Decimal with sufficient places to hold

the operation's sum, difference, multiplication, or remainder
• If both operands are Integer, the result is Integer
• Monadic '-' (change of sign) and '+' identity are supported
• The result always has at least the precision of the operand with the highest precision in the expression

Relational Operators

Relational operations yield a Boolean result. Relational operators must be applied to homogenous variable
types. For example, comparing an integer to another integer passes the check. However, comparing an integer
to a Boolean results in an error. Any variable of a numeric type is considered homogenous.

Logical Operators
Logical operators can be used on or between Boolean variable types to obtain a boolean result.

The following table lists the operators that are available in BPL:

Evaluation CriteriaOrder of OperationMeaningOperator

Negates the operand
value so if the value is

5Logical notnot

true, it becomes false and
vice versa.

Yields true if and only if
both operands are true.

6Logical andand

Yields false if any of the
operands are false. Uses
evaluation by need, so if
the first operand is false,
the evaluation process is
stopped and the result is
false.

314 | Oracle BPM | Process Business Language (PBL)

Evaluation CriteriaOrder of OperationMeaningOperator

Yields true if either
operand is true. Yields

7Logical oror

false if and only if both
operands are false. Uses
evaluation by need, so if
the first operand is true,
the evaluation process is
stopped and the result is
true.

NOT Example:
if not found then
 // do something
end

AND Example:
if orderAmt < 200 and paymentType = "Credit" then
 // do something
end

OR Example:
if shipStatus = "Received" or shipStatus = "Pending") then
 // do something
end

Statements

Statements Overview

There are other statements, such as assignment statements, which allow you to set values to variables, and
interactive statements, which allow you to interact with the current participant.

Control Statements

Control statements are used to control the sequence of statement executions.

Top-down, sequential execution is the simplest sequence of method execution. The method starts to execute
on the first line of the code, goes to the next and continues until the final statement in the code has been
executed. This works fine for very simple tasks but tends to lack real-world usefulness since such a method
can only handle one situation. Most programs need to be able to decide what to do in response to changing
circumstances. By controlling the execution sequence according to different situations, a specific piece of code
can then be used to handle more than one situation.

Statement Timeout

To protect the Process Execution Engine against Method tasks that are not behaving as expected (such as
Method with an infinite loop) and remote components, every Method has a timeout property that controls
the maximum duration of Method execution. By default, this property is set to a five-minute ('5m') interval,
which starts counting from the moment the Method begins to execute.

 i = 1
 while i > 0
 // ... code here
 i = i + 1
 end

Oracle BPM | Process Business Language (PBL) | 315

If you run the Method as displayed above without some protection mechanism, the Method would run
forever (or until the engine is shut down). Besides locking the engine, infinite Method tasks also lock the
instance so that no other user is able to process it. To keep locking from occurring, the timeout property
invokes and ends the Method in five minutes.

The timeout property is checked when the following conditions occur:

• Method enters a loop or iteration.
• A remote component is invoked.

Changing Method Timeouts

To change a Method timeout:

 // Set the maximum time the Method can run

 timeout = '10m'

 // Execute a loop or iteration for 10 minutes at most
 for each i in myArray do
 // statements
 end

If theMethod task is in an Interactive activity, consider using relay to. The relay to statement automatically
ends Method execution for the activity when you expect that a user will take a certain amount of time to
finish the execution.When the user finally responds, the response is routed to an alternatemethod designated
in the relay to statement.

Relay to statements

Note: From this version onwards, consider using Screenflows instead of "relay to" invocations since
Screenflows have all the benefits of relay to invocations with the simplicity of process-like design.

Controlling long running statements with relay to

When developing a Method, consider the impact the code will have on your process. For example, code in
interactive activities often requires some kind of response from a human end user.

By nature, humans are unpredictable. A human end user may start his or her task in WorkSpace but then
something may cause him or her to forget to complete the task until a later time.

Uncompleted tasks lock resources in the BPM Engine. Locked resources not only lock the method, but also
decrease the scalability of the engine, which means that the engine cannot accommodate as many users as it
can do under normal circumstances. To ensure that resources do not lock while waiting for end user input,
you can use the relay to in your code.

When you use relay to in an interactive method, the engine immediately ends the execution of the method
and does not wait for end user input. This frees the resources to handle new instances. When the end user
finally enters his or her input, the engine routes the instancewith the end user input to themethoddesignated
by relay to.

Relay to example

In the following example, a simple input is requested. The relay to statement is then invoked.

 input "Enter something in the box here: " name
 using title = "Relay To Example"
 relay to CilReachedFromRelayTo
 using relayToName = name

316 | Oracle BPM | Process Business Language (PBL)

The method in the CilReachedFromRelayTo task is as follows:

 // This is the standalone Method reached by an input
 // statement in some Method in the process.
 // Usually, the only Method you see in it is setting
 // instance variable(s) from the Method's incoming
 // argument variable(s).

 name = arg.relayToName

 display "This is the standalone Method reached from another
 Method's input statement with a \"relay to\".
 You entered: " + name

For further information, refer to Using Relay To.

Input Statement

Input statements allow you to invite the current participant to enter information that is required by the
method's logic.

The following types are available:

• Basic input, which builds a simple form for entering data.
• Interceptor input, which intercepts one or more web pages fetching data from the different form fields.
• BPM Object input, which displays a presentation of a BPM Object.

Basic input and BPMObject input can be implemented with screenflows. This is strongly recommended. See
Screenflow's documentation for detailed information.

Note: If you use the input statement in a PBL-Method in a task, when the design is checked, a warning
is thrown. It is recommended to use a screenflow or the relay to option, as the input statement is not
applicable if you run the process in an EJB based Engine.

Syntax

Basic input

 input "field label" basicReference
 [({option}[={value}], ...)]
 [in [{valid values}]] [, ...]
 [using
 title = "{title}",
 buttons = [{button labels}],
 cancelButton = "{button label}"
]
 [returning
 {selected button} = selection
]

Interceptor input

 input "field label" basicReference
 [in [{valid values}]] [, ...]
 [using
 title = "{title}",
 buttons = [{button labels}]
 htmlForm = "{intitial URL}",
 until = "{stop condition}",

Oracle BPM | Process Business Language (PBL) | 317

 links = "{ intercept | popup | clear }",
 userControl = { true | false },
 cookies = [{ cookies }]
]
 [returning
 {selected button} = selection,
 {cookie map} = cookies
]

The main functionality of the Web Interceptor can be simplified in these 3 topics:

• Interact with existing Web Applications.
• Allow PBL-Method access forms in HTML, JSP, ASP.
• Support any form control as Lists, Text Areas, Radio Buttons, Fields.

How does the Web Interceptor work?

Web Interceptor basically works over HTTP(S), FTP and FILE resources.

The referenced URL (htmlForm) can be:

• http://…
• https://…
• ftp://…
• file://…

BPM Object input

 input basicReference
 [using
 selectedPresentation = "{presentation name}"
]
 [returning
 {selected button} = selection
]

Arguments

Attribute: title

Type: String

Description: The input form's title.

Attribute: buttons

Type: String[]

Description: An array containing the labels of the buttons you want to be displayed on the form.

Attribute: cancelButton

Type: String

Description: button that acts ignoring all changes and avoiding the input of required fields.

Attribute: htmlForm

Type: String

Description: Full or relative URL to the initial page to be intercepted.

For relative files as .html, .jsp or .asp to be intercepted have to be copied into the installation directory, in
studio/webapps/portal/dirname.

318 | Oracle BPM | Process Business Language (PBL)

The htmlForm attribute is composed by: http://host:port/projectname/dirname/file.[html/jsp/asp]", where:

host:port is the host and port in which you run the WorkSpace.

projectname is the name of your project,

dirname is the name of the directory you created in studio/webapps/portal/

For example:

htmlForm = "http://localhost:9595/InterceptorCase01/TestInterceptor/classRegister.html",

InterceptorCase01 is the name of the project,

TestInterceptor is the directory in studio/webapps/portal, and

classRegsiter.html is the html page to be intercepted.

Attribute: until

Type: String

Description: Stop condition that indicates the interceptor when to stop intercepting pages. It is of the form:
pattern@location

Where location is a full or partial url that marks the end of interceptions and pattern is a string that is sought
for when location is reached. (pattern@URL or pattern@file name)

If not found, interception continues.

Some examples for stop conditions are:

• post.asp?id=query
• http://mysite/Poster/post.asp
• Congratulations@post.asp
• Congratulations@http://mysite/Poster/post.asp

Attribute: links

Type: String

Description: This parameter determines what happens when the intercepted page contains links and the
user clicks on one. It takes one of the following values:

• popup: the content of the link will be displayed in a new window.
• clear: the link will be removed.
• intercept: the link will be intercepted and displayed in the same window.

It will continue to intercept until the specified criteria has been met or the user hits "Stop" in the navigational
control (see: userControl attribute.)

Attribute: userControl

Type: Bool

Description: If true, the navigational control will be displayed in the intercepted page.

One of the purposes of usingWeb interceptor is to set and get information from the pages you are intercepting
or navigating. This basically implies that you are able to go through a sequence of HTML, JSP or ASP pages
intercepting and collecting information that will later be used in the PBL-Method logic. The navigational tool
allows the end user go back and forward through the pages until the stop criteria is reached.

In order to show the navigational tool in the intercepted pages you need to set “userControl” to true. If you
set true to links, then userControl takes the value true automatically and the navigational toolbar is displayed.

The buttons showed in the navigational panel are:

• Go Back : Goes to the previous intercepted page.

Oracle BPM | Process Business Language (PBL) | 319

• Finish Interceptor : Stops the interception and returns the control to the PBL-Method.
• First page: It starts again the interception from the first page.

Attribute: cookies

Type: java.Object[java.Object]

Description: Associative array that contains a collection of cookies used during interception. The keys and
values are of String type.

Attribute: selection

Type: String

Description: Returns the label of the button that caused the form to be dismissed.

Attribute: selectedPresentation

Type: String

Description: The name of the desired presentation for the Object, if this attribute is not specified, the default
presentation will be used

Field options

The following table contains a list of the options that can be passed to an input field:

DescriptionRequired TypeOption

displays a Time as date-only.Timedate

displays a Time as time-only.Timetime

the field is displayed, but cannot
be modified.

Anyreadonly

the field is displayed as a password
field.

Stringpassword

The field cannot be null.Anyrequired

displays an area to enter a text.Stringtextarea

Remarks

For the BPM Object input, the selectedPresentation attribute is only valid if the basicReference is a BPM
Object. If it is not, a field label will be synthesized and the input will behave as a basic input.

If the selectedPresentation attribute is missing, the default presentation of the BPMObject will be displayed.

When you specify a partial URL in any of the fields that take one, the URL is relative to the portal in which
the input statement is displayed.

For an Interceptor input, the field name must match the name of a field in the form being intercepted. If it
does not match, the variable will be left empty.

Input Examples

Basic Input

 creditCardNo = ""
 acceptedTypes = ["visa" : "Visa", "master" : "Mastercard",
 "amex" : "American Express"]
 creditCardType = "visa"
 firstName = ""
 lastName = ""
 expiration = 'now'

320 | Oracle BPM | Process Business Language (PBL)

 comments = ""
 input "First Name:" firstName (required),
 "Last Name:" lastName (required),
 "Credit card type:" creditCardType (required)
 in acceptedTypes,
 "Credit card No.:" creditCardNo,
 "Expiration Date:" expiration,
 "Additional Comments:" comments (textarea)
 using
 title = "Enter payment info",
 buttons = ["Ok", "Cancel"]

Interceptor Input

 googleQuery = ""
 input "q" googleQuery
 using
 htmlForm = "http://www.google.com",
 links = "clear"

Refer to Web Interceptor for more examples.

BPM Object Input

 //Order is a BPM Object with a presentation called
 //'auditView'
 input order
 using
 selectedPresentation="auditView"

Display Statement

The display statement, as its name implies, allows you to display information to the user and to get feedback
based on the choice of buttons the user selected.

TheDisplay can be implemented with screenflows. This is strongly recommended. See Screenflow's
documentation for detailed information.

Note: If you use the display statement in a PBL-Method in a task, when the design is checked, a warning
is thrown. It is recommended to use a screenflow, as the display statement is not applicable if you run
the process in an EJB based Engine.

Syntax

Basic Display

 display {object}
 [using
 [title = "{title}",]
 [type = "{error | question | warning | info | plain}",]
 [options = {options},]
 [default = {default button}]
]
 [returning {selected button} = selection]

BPM Object Display

 display {fuego object}

Oracle BPM | Process Business Language (PBL) | 321

 [using selectedPresentation = "{presentation name"]

This form of display shows a BPM Object presentation as read-only.

Arguments

The following is the list of the arguments that can be passed to a display statement:

Argument: title

Type: String

Description: Title of the display window/page.

Argument: type

Type: String

Description: Kind of display. The icon will be chosen based on this argument. The default value is "plain".

Argument: options

Type: String[]

Description: Array of strings containing the labels of the buttons you want to display.

Argument: default

Type: String

Description: Which of the buttons is returned in case the display is canceled.

Argument: selectedPresentation

Type: String

Description: Nameof the presentation used to display a BPMObject. If left unspecified, the default presentation
will be used.

Display Examples

Basic Display

 selectedButton as String
 display "Should we try again?"
 using title = "Confirm",
 type = "question",
 buttons = ["Yes", "No"],
 default = "No"
 returning selectedButton = selection

 if selectedButton = "Yes" then
 //Retry
 end

BPM Object Display

 //Order is a BPM Object with a presentation
 //called 'auditView'
 input order
 using
 selectedPresentation="auditView"

322 | Oracle BPM | Process Business Language (PBL)

Compound Statement

A compound statement groups other statements in a logical unit. It defines a scope and allows you to handle
exceptions or execute statements that must always be executed, regardless of the outcome of the block.

Syntax

The most basic form of a compound statement simply encloses some statements together. This is also called
a code block:

do
 //Your statements here
end

You can also handle exceptions that are thrown inside the block:

do
 //Your statements here
on excep as Java.Exception
 //Handle Exception here
end

You can add some code to be executed when your block finishes, regardless of whether it has finished by
exception or not:

do
 //Your statements here
on exit
 //Do something that must be done always, such as
 //releasing external resources
end

Exception and end of block handling can be combined. For example:

do
 //Your statements here
on ex as Java.Exception
 //Handle Exception here
on exit
 //Do something that must always be done, such as
 //releasing external resources
end

About Loops and Methods

Loops and methods define special-purpose blocks, and these can also be used to handle exceptions.

Loops

Loops are used to execute a given code block several times, usually with one or more variables which hold
different values in each iteration of the loop. These values may be updated by the code block within the loop,
or as a result of the loop definition itself.

For example, the following loop will iterate three times, where the name variable will successively adopt the
values of "John", "Peter", and "Mary":

names as String[]
names = ["John", "Peter", "Mary"]
for each name in names do
 // Do something

Oracle BPM | Process Business Language (PBL) | 323

on ex as Java.Exception
 // Handle your exceptions
end

which is equivalent to:

names as String[]
names = ["John", "Peter", "Mary"]
do
 for each name in names do
 // Do something
 end
on ex as Java.Exception
 // Handle your exceptions
end

Methods

Methods define a compound statement that contains the entire body of themethod. Eachmethod is contained
by an implicit do/end block. For example, the following statement:
on Exception

is semantically equivalent to:

 do
 on Exception
 end

This block is labeled after the method's name, so you can add exit and exception handlers directly in the
method as in the following:

 ...
 ...
 on ex as Java.Exception
 //Handle Exception here
 on exit
 //Execute required code, such as releasing external resources
 ...

The choice between using an explicit do/end block or handling exceptions directlywithin amethod depends
on the scope of themethod you arewriting. Also, code readability should be taken into accountwhen choosing
which style to use.

Simple Conditional Statements (if-then-else)
Describes purpose and variants of the if-then-else statement

If-then-else

The if-then-else statement evaluates a boolean (true/false) expression. If the expression yields true, the
statement block following then is executed. Else, if the expression is false, execution goes to the else statement
block, if present. Execution the continues normally after the end statement.

The syntax is as follows, with the else clause being optional:
if <condition> then

<statements>
[else

<statements>]
end

324 | Oracle BPM | Process Business Language (PBL)

The following example is usedwith display and input statements to capture end user feedback. This particular
example evaluates the variable selected and sets the predefined action variable to FAIL:
if selected = "Cancel" then
 action = FAIL
end

The following example evaluates the variable orderTotal. If the order is greater than $5,000, the Boolean
variable checkCredit is set to true:
if orderTotal > 5000 then
 checkCredit = true
end

We can go one step further with the previous example. We can also check whether the order is a credit order
or a cash order by using the logical operator and to verify the two conditions. As before, the code checks if
orderTotal is greater than $5,000 and now also requires that paymentType be set to "Credit":
if orderTotal > 5000 and paymentType = "Credit" then
 checkCredit = true
end

The final example shows the use of the or logical operator and the else clause. This example checks whether
the variable lollipop is "cherry" or "raspberry". If so, eat is set to true. If not, eat is set to false:
if lollipop = "cherry" or lollipop = "raspberry" then
 eat = true
else
 eat = false
end

Elseif

Some times you will need to handle more than two alternatives. To support this situation you can use the
optional elseif clause:
if <condition> then

<statements>
[elseif <condition> then

<statements>]
...

[elseif <condition> then
<statements>]

[else <condition> then
<statements>]

end

In effect, each elseif concatenates two if-then-else statements. An arbitrary number of elseif blocks can be
included, as well as a single optional else clause at the end. The example below uses the elseif clause and the
else clause. This way, you can continue adding conditions indefinitely:
if selected = "Cancel" then
 action = FAIL
elseif selected = "Process" then
 orderStatus = "Reviewed"
 financeStatus = "Check"
else
 orderStatus = "In Review"
end

For situations where program flow must follow several possible options based on only one parameter, it is
better to use the Case Statement on page 325 statement.

Case Statement
Describes the case multipath conditional statement

Oracle BPM | Process Business Language (PBL) | 325

This statement is an alternative to the Simple Conditional Statements (if-then-else) on page 324 conditional
statement. The case construct is more efficient and easier to read when you need to execute one block of code
among many, based on the value of a single parameter.

Syntax:
case <expression>
when <case1> then

<statements>
[when <cases2> then

<statements>]
 ...

[when <caseN> then
<statements>]

[else
<statements>]

end

There can be zero or more when-then statement blocks, though normally there will be more than one.

A givenwhen expression can check formore than one value, where each value is placed in a comma-delimited
list:
case x
when 1 then
 display "x is equal to one"
when 2,3,4,5,6 then
 display "x is a value between two and six"
else
 display "x is greater than six or less than one"
end

The else block is optional. It can be used to implement a default action if no when conditions are met.

The following case example sets the string shortWeekday based on the value of dayNumber. There are
seven weekdays, so if dayNumber is not 1, 2, 3, 4, 5, 6, or 7, then its value is considered to be invalid.

Example:
case dayNumber
when 1 then
 shortWeekday = "Sun"
when 2 then
 shortWeekday = "Mon"
when 3 then
 shortWeekday = "Tue"
when 4 then
 shortWeekday = "Wed"
when 5 then
 shortWeekday = "Thu"
when 6 then
 shortWeekday = "Fri"
when 7 then
 shortWeekday = "Sat"
else
 shortWeekday = "This is not a valid weekday!"
end

Bounded Loops
Describes range and key iteration bounded loops

Bounded loops allow you to execute a set of statements a number of times which is known before entering
the loop. The number of times might be determined by a range or a collection.

326 | Oracle BPM | Process Business Language (PBL)

Range iteration (for in)

This loop iterates over an integer range. That is, on each iteration, an integer variable increments by one:
for <id> in <rangeStart>..<rangeEnd> do
 <statements>
end

Note: rangeStart and rangeEnd can be expressions. The range limits are inclusive. Modifying the variable
inside the loop does not have any effect on the loop's execution.

For example, this loop displays the numbers from 1 to 3, inclusive:
for i in 1..3 do
 display i
end

Key iteration (for in)

The for in loop can also iterate over the keys or indexes of an array:
for <id> in <expression> do
 <statements>
end

Note: expressionmust yield an array.

This example displays all the keys in the ages array:
ages as Int[String]
ages = ["John" : 23, "Peter" : 42, "Mary" : 29]

for name in ages do
 display name
end

Element iteration (for each in)

The for each in loop iterates over the values of an array. Some of them may be excluded by adding a
"where" clause:
for each <id> in <expression> [where <condition>] do
 <statements>
end

Note: expressionmust yield an array.

This example displays all the values in the ages array:
ages as Int[String]
ages = ["John" : 23, "Peter" : 42, "Mary" : 29]

for each age in ages do
 display age
end

The following example shows only the ages above 25:
ages as Int[String]
ages = ["John" : 23, "Peter" : 42, "Mary" : 29]

for each age in ages
 where age > 25
do
 display age
end

Oracle BPM | Process Business Language (PBL) | 327

Stopping a Loop

Loop execution can be stopped by using an Exit Statement. Execution will continue from the first statement
following the end of the loop.

Unbounded Loops

Unbounded loops are useful when the programmer does not know in advance howmany times the loopwill
be traversed.

This loop repeats an action until an associated test condition returns false or until an exit statement is executed.
The condition is evaluated before entering the loop and after each iteration.

Syntax

 while <condition> do
 <statements>
 end

Example

Continue asking until the user chooses "Ok":

 selection as String = ""

 while selection /= "Ok" do
 display "Are you sure ?"
 using buttons = ["Ok", "Cancel"]
 returning selection = selectedButton

 end

Exit Statement

A method or a loop in a method can be interrupted by using the exit statement:

• If the loop is labeled and the exit statement refers to that label, the exit statement exits the labeled loop.
• If the name provided is the method name, the execution of that method ends.
• If no name is provided, execution exits the innermost loop of the method, or the method itself, if it is

outside a loop.

Syntax:
exit [<label>] [when <condition>]

Note: label can be the method name or a labeled loop. The condition can be used to avoid
cluttering your code with a conditional statement.

The following example finds the first e-mail containing a specific subject then exits the loop:
// order is a variable of type Fuego.Net.Mail

order as Mail
url as String = ""

for each mail in MailServer(url, false).messages do
 if mail.subject = "New Order" then
 order = mail
 exit
 end
end

328 | Oracle BPM | Process Business Language (PBL)

// if there is no order to process,
// stop method execution exit when
// order is null.

The second example finds a participant, assigns it to the nextParticipant variable, and ends the method
execution. The name of the method is findParticipant:
participantName = "John"

for each p in activity.role.participants do
 if p.name = participantName then
 // participant found!
 nextParticipant = p
 exit : findParticipant
 // findParticipant is the name of the method
 end
end

For further information refer to topics:

Labeled Statement

Labels provide a name to identify and reference a statement. Labels are used by the exit statements to specify
the statement to which the exit applies.

Note that all methods have an enclosing label which has the same name as the method.

Syntax

 <label> : <statement>

Example

 // order is a variable of type Fuego.Net.Mail
 order as Mail
 url as String = ""

 mainLoop: for each mail in
 MailServer(url, false).messages do
 if mail.subject = "New Order" then
 order = mail
 exit : mainLoop
 end
 end

 // if there is no order to process, stop method execution
 exit when order is null

Throw Statement

The throw statement lets you raise an exception, thus breaking the execution until:

• The exception is handled.
• The method finishes and the process' exception handling procedures gain control.

Syntax

 throw <expression>

Oracle BPM | Process Business Language (PBL) | 329

Note: * expressionmust yield a Java.Lang.Throwable.

Example

 throw Java.Exception("Something is wrong")

Logging Statement

The logging statement is used to log a message in the log files maintained by the Process Execution Engine.
Log messages are useful to debug the behavior of your code, especially in automatic activities.

Syntax

 logMessage "message to log"
 [using
 [severity = <severity>]
 [, detail = <detail>]
]

Severity levels

The following are severity levels that can be used with the logging statement:

• DEBUG
• INFO
• WARNING
• SEVERE
• FATAL

You can choose the severity level you want to display in the Engine logs in the Execution Console.

Example

 orderName = 1
 customer = 1

 logMessage "Order " + orderNumber + " from customer "
 + customer + "was aborted" using severity = SEVERE

Regular Expressions

Regular Expression Overview

A regular expression is a pattern or template for string matching. Regular expressions are written with a very
specialized, powerful syntax which can perform complex string comparisons, extract desired substrings, or
perform advanced search and replace operations on strings.

PBL provides support for regular expressions using syntax compatible with Perl regular expression syntax.

330 | Oracle BPM | Process Business Language (PBL)

Regular Expression Syntax

Regular expressions are enclosed between forward slashes:

/{regular expression}/

The simplest regular expression is a single word to search for in a string. A regular expression consisting of
a word matches any string that contains that word. So, the following regular expression matches any string
that contains the word "hello" anywhere in the string:

/hello/

A regular expression is a pattern which is written to match single characters or multiple characters. In the
case above, each one of the characters in /hello/ is simply matching itself. The next simplest matching
character is the dot ".", whichwill match any single character except newline "\n". For example, the expression
/c.t/will match "cat", "cut", or any other three-character string starting with c and ending with t, so long
as the middle character is not a newline.

If, however, you specifically wish to match only "cat" and "cut", you can use a character class, which is a
pattern of characters within square brackets. The following matches "cat" and "cut", but no other word:
/c[au]t/

Many other characters and expressions are possible. They are described in various topics throughout this
section.

Using Regular Expressions

In PBL, you must write regular expressions between a single quotes as follows:

'/{regular expression}/'

In order to actually use a regular expression to do something in PBL, you must use a function which works
with regular expressions. For instance, to find out if a particular string contains a word, you need to use the
contains function, as follows:

myString.contains('/Hello/')

This line of code will search for the word "Hello" in the string that is contained in myString. It returns true
if "Hello" is found and false if it is not.

You can also apply function calls to literal strings instead of variables. For example:

"Hello world!".contains('/Hello/')

returns true because "Hello world!" does contain "Hello".

Regular Expressions in Functions

In Studio, you use regular expressions by calling functions (methods) used on string objects. The following
string functions support regular expressions:

ReturnsPurposeFunction

BoolMatches a substring contained in
the string.

contains()

BoolMatches the string completely.isMatch()

IntGets the first index location where
the regular expressionmatches the
string.

indexOf()

Oracle BPM | Process Business Language (PBL) | 331

ReturnsPurposeFunction

IntGets the last index where the
regular expression matches the
string.

lastIndexOf()

String[] - The array of
subexpressions (groupings)

Attempts to match and return the
substring(s) that matched the

match()

matched. When the g modifier isregular expression. This is useful
for extraction and parsing. used, the array of matched

occurrences is returned instead.

String[] - The array of fields (pieces
of the string thatwere separated by
the given separator.)

Splits a string using the given
regular expression as a separator.

split()

IntGets the number of substrings
(within the string) that the given
regular expression matches.

count()

String - the new modified string.Replaces pieces of the string with
new strings.

replace()

Search and Replace

Regular expressions can also be used to replace parts of a string by a different string. In Studio, you can do
this using the replace function. The first argument to replace is the regular expression search and the second
argument is the new string. For example:

 myString = "We played 1 on 1"
 myString.replace('/1/', "one")

 display myString

In the second line, 1 is replaced by one. Notice that only the first occurrence of 1 is replaced when you try
the code with the debugger. In order to replace all occurrences, you must use the gmodifier. For example:

 myString.replace('/1/g', "one")

The following code strips any zero digit on the left end of a string. For example, to change 005422 to 5422,
use:

 myString.replace('/\b0+/g', "")

A powerful feature of the replace function is that you can use backreferencing in the replacing string. You
do so by using $x, where x is the grouping number.

For example, to swap the first two words in a string:
myString.replace('/(w+) (\w+)/', "$2 $1")

To convert a MM-DD-YYYY date to DD/MM/YYYY, use:

 myString.replace('/(\d+)-(\d+)-(\d+)/', "$2/$1/$3")

To remove quotes surrounding any word:
myString.replace('/"(\w+)"/g', "$1")

332 | Oracle BPM | Process Business Language (PBL)

Modifiers

You may have already noticed that matching is case sensitive. This means that the regular expression will
only match a substring if both the regular expression and the substring have the same upper/lowercase
characters.

In order to make matching case insensitive, you need to use a modifier. Regular expression modifiers allow
you to change the default behavior of the matching.

To add a modifier, you extend the basic syntax of the regular expression as follows:

'/regular expression/modifier(s)'

Each modifier is just a single character that is specified between the last slash and the quote. The modifier
for insensitive case matching is i. So, the following regular expression matches Hello, hello, HeLlO, and
hELLO:

'/hello/i'

Some other modifiers are listed in the following table:

MeaningModifier

Searches in a case insensitive manner.i

Matches the regular expression as many times as
possible. Matches all substrings globally.

g

Treats the string as a single line.s

Treats the string as multiple lines.m

More than one modifier can be used at the same time.

Metacharacters and Character Sets

The power of regular expressions is based on the fact that they can contain special characters that perform
special functions. These characters are not treated as regular characters and are not matched literally. They
are known as metacharacters.

Some of the metacharacters that make pattern matching more generic are as follows:

[] . () * ^ $? \

The [and] characters are used to specify a set of characters that you wish to match. Characters can be listed
individually or a range of characters can be indicated by listing two characters separated by a dash (-). For
example, [aeiou]matches any of the vowels. The set [a-d] is equivalent to [abcd].

If you specify the ^ character right after the opening bracket, it matches the complement of the set. In other
words, any character that is not in the set. For example, [^0-9]matches any non-digit character.

The following table lists some examples of regular expressions using sets:

Strings that MatchRegular Expression

cat, rat'/[cr]at/'

Any digit'/[0-9]/'

Any digit'/[0123456789]/'

Any uppercase letter'/[A-Z]/'

Any two digits together (like 01, 42, 27…)'/[0-9][0-9]/'

Oracle BPM | Process Business Language (PBL) | 333

Strings that MatchRegular Expression

Any of the vowels'/[aeiou]/'

Fortunately, there are some shortcuts for some of the common character sets. For example, \d denotes "any
digit" the same way that [0-9] does. \Dmeans "any non-digit" like [^0-9]. The following table lists some
other common shortcuts.

Equivalent toShortcut Sequence

[0-9]\d

[^0-9]\D

[a-zA-Z0-9_] Any alphanumeric character including
the underscore.

\w

[^a-zA-Z0-9] Any non-alphanumeric character.\W

Any whitespace character.\s

Any non-whitespace character.\S

These shortcuts can be included inside a character class (set.) For example, [\da-fA-F] is a character class that
will match one hexadecimal digit. The tab, new line, and return characters are specified with \t, \n and \r,
respectively.

Another special metacharacter is the dot (.). A dot within a regular expression matches any character (except
the \\n character, unless the s modifier is used).

Special Cases

What happens if youwant to search for some of themetacharacters, like [or .? You can escape these characters
with a backslash (\) just before the character. For example, \., \, and \[match a literal dot, backslash, and
opening bracket, respectively.

Go back to theMethod example and try these metacharacters with different regular expressions. Experiment
with character classes and the shortcuts available. The only way to learn to use regular expressions is to build
some.

Matching Repetitions

In the previous examples, you were only matching expressions consisting of a few generic characters and
literal words. To help write more expressive patterns, you use a quantifier metacharacter. The quantifiers are
as follows:

? * + { }

The quantifiers allow you to determine the number of repeats of a portion of a regular expression you consider
a match. Quantifiers are located immediately after the character, character class or grouping that you want
to match. The following table defines each quantifier and its meaning.

DefinitionQuantifier

Match ‘a’ one or zero times.a?

Match ‘a’ zero or more times (any number of times.)a*

Match ‘a’ one or more times (at least one time.)a+

Match ‘a’ at least n times, but not more than m timesa{n,m}

Match ‘a’ at least n or more times.a{n, }

Match ‘a’ exactly n times.a{n}

334 | Oracle BPM | Process Business Language (PBL)

Note: 'a' in the previous table can be any character, character class or grouping. You will learn more
about groupings later but basically, you can group a part of a regular expression using parenthesis.

The following are some examples using matching repetitions:

DescriptionMatching repetition

Any alphanumeric word (one or more alphanumeric
characters together.)

‘/\w+/’

A number (one ormore digits) optionally prefixed by
a hyphen.

‘/-?\d+/’

Any lowercase word, followed by a tab, followed by
1 to 5 digits

‘/[a-z]+\t\d{1,5}/’

Any alphanumeric word (one or more alphanumeric
characters together.)

‘/\w+/’

Any line that is followed by anything and then dog.
Examples: The nice dog The quick brown fox jumped
over the lazy dog The WhateverHeredog Thedog

‘/The.*dog/’

Now, you have enough tools to create some useful regular expressions. For example, let's build a simple
regular expression to match 10 digit telephone numbers. You may start with:

 '/d{10}/' // 10 digits (no more, no less)

This regular expressionmatches any 10 digit number but it has someweaknesses. For instance, what happens
if you want to accept numbers that contain dashes (-) in between, such as 321-123-1234? In that case, you can
do the following:

 '/\d{3}-\d{3}-\d{4}/'

This is fine, but what if you want the dashes to be optional? Try this:

 '/\d{3}-?\d{3}-?\d{4}/'

This is better, but still there are some improvements to be made. You might not want to allow a zero (0) as
the first digit of the number. Thus, the first digit must be in the class [1-9] instead of \d as follows:

 '/[1-9]\d{2}-?\d{3}-?\d{4}/'

Did you understand it? Let's study it in parts:

1. First, a digit between 1 and 9: [1-9]
2. Next, two digits (from 0 to 9): \d{2}
3. Then, an optional dash: -?
4. Three digits: \d{3}
5. Another optional dash: -?
6. Finally, four digits: \d{4}

Try it in the debugger:

 phone as String
 input "Enter your phone number:" phone

Oracle BPM | Process Business Language (PBL) | 335

 if phone.isMatch('/[1-9]\d{2}-?\d{3}-?\d{4}/') then
 display "OK, a valid phone number"
 else
 display "ERROR, invalid phone number"
 end

Anchors
Describes purpose and use of anchor metacharacters.

When you use the contains function, it returns true if the regular expressionmatched anywhere in the string.
However, sometimes youwould like to specifywhere in the string the regular expression should try tomatch.
To do this, you use anchormetacharacters.

Common Anchor Metacharacters

The two most common anchor metacharacters are '^' and '$'. The '^' anchor means match at the beginning of
the line and the '$' anchor means match at the end of the line. The following examples show how they are
used:

 display "rock and roll".contains('/and/')
 // displays true
 display "rock and roll".contains('/~np~^~/np~and/')
 // displays false
 display "rock and roll".contains('/~np~^~/np~rock/')
 // true
 display "rock and roll".contains('/rock$/')
 // false
 display "rock and roll".contains('/roll$/')
 // true
 display "rock and roll".contains('/nd roll$/')
 // true
 display "rock and roll".contains('/\~np~^~/np~rock$/')
 // false
 display "rock and roll".contains('/\~np~^~/np~rock and roll$/')
 // true
 display "rock and roll".isMatch('/rock and roll/')
 // true

The second regular expression does notmatch because '^' constrains and tomatch only if it is at the beginning
of the string. The fifth regular expression does match, since the '$' constrains roll to match only at the end of
the string.

Look at the last two examples. If you use both the '^' and '$', youmean that the regular expressionmustmatch
both the beginning and the end of the string. In otherwords, the regular expressionmatches thewhole string.
Note that both examples are equivalent since the isMatch will always look for a complete match. The '^' and
'$' anchors are irrelevant when using isMatch.

Difference between '^' and '\A' and between '$' and '\Z'?

Usually, you will only use '^' and '$', but when using the m modifier, there is a small difference. If the string
contains newline (\n) characters, then the '^' and '$' match, just after and just before, the new line. However,
'\A' and '\Z' only match at the start and end of the whole string. So, using the m modifier and replacing the
space in "and roll"with a newline you get the following:

display "rock and~np~\~/np~nroll".contains('/and$/m')
 // true
display "rock and~np~\~/np~nroll".contains('/and~np~\~/np~Z/m')

336 | Oracle BPM | Process Business Language (PBL)

 // false
display "rock and~np~\~/np~nroll".contains('/^roll$/')
 // true
display "rock and~np~\~/np~nroll".contains('/~np~\~/np~Aroll~np~\~/np~Z/')
 // false
display "rock and~np~\~/np~nroll".contains('/~np~\~/np~Arock/')
 // true

The following table describes modifier behavior:

BehaviorModifier

Default behavior. '.' matches any character except '\n'.
'^' only matches at the beginning of the string and '$'
only matches at the end of the string.

none

Treat string as a single long line. '.' matches any
character, even '\n'. '^' only matches at the beginning

s

of the string and '$' only matches at the end or before
a new line at the end.

Treat string as a set of multiple lines. '.' matches any
character except '\n'. '^' and '$' are able to match at
the start or end of any line within the string.

m

Treat string as a single long line but detect multiple
lines. '.' matches any character, even '\n', '^', and '$'.

m and s

However, they are able to match at the start or at the
end of any line within the string.

Alternations

Sometimes, you need a regular expression to match different possible words or character strings. This is
possible by using the alternation metacharacter (|). So, if you want to match any substring that contains the
word hi or the word hello, then use the following expression:

 '/hi|hello/'

Bear in mind that the expression tries the alternative choices from left to right trying to match the regular
expression at the earliest possible point in the string. The following are some examples:

 "black and white".contains('/black|gray|white/')
 // matches black
 "black and white".contains('/white|gray|black/')
 // matches black. Even though white is the first
 // alternative in the string, black matches
 // earlier in the string.
 "Bye!".contains('/b|by|bye|bye!/i')
 // matches b
 "Bye!".contains('/bye!|bye|by|b/i')
 // matches bye!

The last example suggests that if some of the alternatives are prefixes of the others, they put the longest
alternatives first. Otherwise, they will never match.

In some way, you can think of character classes as character alternations. So '/[aeiou]/' behaves like
'/a|e|i|o|u/'.

Oracle BPM | Process Business Language (PBL) | 337

Grouping

Parts of a regular expression can be grouped so that they are treated as a single unit. Parts of a regular
expression are grouped by enclosing them with parenthesis (). Grouping a subexpression has many uses
such as for alternation on part of the whole regular expression, for repetitions, for text extraction and for
backreferencing. (Extraction and backreferencing are discussed in later sections.)

Some grouping examples are displayed in the following table:

Regular Expression

‘/(straw|blue|rasp)berry/’

String that Matches: strawberry, blueberry, or raspberry

Regular Expression

‘/Blah(blah)*/’

String that Matches: Blah, Blah blah, Blah blah blah, Blah, blah, blah, blah,...

Regular Expression

‘/^(a|b)/’

String that Matches: Matches either a or b at the beginning of the line (note that ‘/^a|b/’ would match a at
the beginning or any b anywhere).

Regular Expression

‘/y(es)?/i’

String that Matches: Y, y, or any case insensitive version of ‘yes’.

Extraction

In regular expressions, extraction refers to the storage of stringsmatched by one part of the regular expression
with the purpose of using them elsewhere in the expression. This is very useful for parsing and for general
text processing.

An extraction group is delimited by parenthesis. For each grouping, the part of the string that matches inside
the parenthesis goes into a particular position within an array of matched groupings. In PBL, the extraction
can be done with the match function, which returns the array of substrings for each grouping.

For example, suppose that you have a string with the current time, in hh:mm:ss format. You can build a basic
regular expression for matching times in that format, such as /\d\d:\d\d:\d\d/. However, you want to
knowwhat the value of just one element, such as the hour, is. To obtain it, group each elementwith parenthesis.
For example, /(\d\d):(\d\d):(\d\d)/. The following example shows how to display hours, minutes
and seconds using the index numbers of the array:
time as String
matches as String[]
input "Enter a time (hh:mm:ss):" time

matches = time.match('/(\d\d):(\d\d):(\d\d)/')

if matches is not null then
 display "Hours: " + matches[1] + "\n" +
 "Minutes: " + matches[2] + "\n" +
 "Seconds: " + matches[3]
else
 display "Invalid time!"
end

Note: When a regular expression is matched against a string, the whole part of the string that matches
is stored in position 0 (zero) of the array.

338 | Oracle BPM | Process Business Language (PBL)

For the previous example, if you enter "12:40:23", the array will contain the following:

ValuePosition

12:40:231

122

403

234

Positions are assigned to each group from left to right.

Extraction Example

The following is a real world example of extraction. Suppose that you need to interpret a text file with lines
with the following format:

property = value

The file can also have comment lines, which begin with the pound sign (#). A sample of the file follows:
Configuration parameters
adminEmail=admin@yoursite.com
serverHost=server.yoursite.com
serverPort=12345

some preferences
soundEnabled=false
fontSize=12

colors
background = white
foreground = blue

It would be useful if you could create an associative array, for simple access to each property. For example,
to get the value of the serverPort property defined in the file we would use:
port = properties["serverPort"]

First, you need to define the regular expression to interpret a valid line in the file. As mentioned before, lines
can be in property = value format or they may start with a pound (#) sign. In the latter case, the line must be
ignored.

The assignment lines can be matched with /\w+=\w+/. This looks for a word (\w+) and equals sign (=) and
another word (\w+).

The following allows optional white space around the equals sign:
/\w+\s?=\s?\w+/

Now you need to group the left side word (before the equals) and the right side word (after the equals sign)
so that you can extract the values:
/(\w+)\s?=\s?(\w+)/

One more detail is required. Let's force the regular expression to match the whole string. You achieve this
by adding the ^ and $ anchors:
/^(\w+)\s?=\s?(\w+)$/

The following code fragment tests the expression:
input "Enter a line:" line
m = line.match('/^(\w+)\s?=\s?(\w+)$/')
if m is not null then
 display "Property: " + m[1] + "\nValue: "

Oracle BPM | Process Business Language (PBL) | 339

 + m[2]
else
 display "ERROR, invalid line!"
end

A comment is easy to match by using the following regular expression (remember comment lines begin with
the pound sign # in the sample text file):
/^#.*/

The expression /^#.*/means a line beginning with # and followed by any number of characters. An
alternation will allow comment lines to match and test the Method again:
input "Enter a line:" line

m = line.match('/(^#.*$)|^(\w+)\s?=\s?(\w+)$/')

if m is not null then
 if m[1] = "" then
 display "Property: " + m[3] + "\nValue: "
 + m[4]
 else
 display "Comment line found: " + m[0]
 end
else
 display "ERROR, invalid line!"
end

Now that you have tested the regular expression, you can remove the display statements and write the code
that builds the associative array. Instead of reading the lines from an input, we read them from a file:
for each line in TextFile("/tmp/test.txt").lines
 m = line.match('/(^#.*$)|(^(\w+)\s?=\s?(\w+)$)/')
 if m is not null then
 // if m is not a comment
 if m[1] = "" then
 props[m[3]] = m[4]
 end
 else
 // erroneous line - ignore it
 end
end

display props

Replace tmp/test.txtwith a valid file name and location before testing the code.

Note: The TextFile component contains a built-in function for creating an associative array from a
properties file. This example just shows you how to use regular expressions in a real problem. If the file
were compatiblewith a Java properties file, then the Textfile.loadPropertiesFrom component is the easiest
solution.

The following examples show regular expression solutions to common problems.

Example 1

Obtain the path from the filename of a fully-qualified UNIX path and filename such as
/usr/utilities/reader/readme.txt. This requires two extractions, as follows:
/(.*)\/([^\/]*)$/

Position [1] will contain the path (usr/utilities/reader), and position [2] will contain the name of the
file (readme.txt).

340 | Oracle BPM | Process Business Language (PBL)

Example 2

Obtain the user ID and the host name from an e-mail address such as support@bea.com. This requires two
extractions, as follows:
/([\w\.]+)@([\w\.]+)/

Position [1] will contain the user ID (support), and position [2] will contain the host name (bea.com).

Example 3

To extract the parts of a URL such as http://www.bea.com:80/index.html. We require the protocol,
host name, port number, and resource:
/(\w+):\/\/([^:\/]+)(:(\d+))?(\/.*)?/

The following values will be obtained:

ValuePosition

http1

www.bea.com2

:803

804

/index.html5

Note that to obtain the port number both with and without the colon, a nested extraction was used.

Backreferencing

A substring matched by a grouping can also be referenced within the regular expression, which is known as
backreferencing. Backreferencing allows you to make matches later in a regular expression depending on
what matched earlier in the regular expression. You can reference a previous grouping with \x, where x is
the grouping position.

The following table provides some backreferencing examples:

Matching StringRegular Expression

The sameword repeated twice. For example, the
echo ha ha…

/(~np~\~/np~w+) ~np~\~/np~1/

Wordswith repeated parts. For example, mama,
papa, coco…

/(~np~\~/np~w+)~np~\~/np~1/

Anyfive-digit palindrome number. For example,
12321, 83638, 91119…

/(~np~\~/np~d)(~np~\~/np~d)(~np~\~/np~d)~np~\~/np~2~np~\~/np~1

Programming

Objects

Objects Overview

Studiomakes extensive use of components, and it includes a large library of built-in components for common
tasks. You can write your own components inside Studio (Business Objects), and you can include different
technologies as components in the component catalog.

Oracle BPM | Process Business Language (PBL) | 341

Components define a type, which can be used to declare variables. All components can be used to declare a
local variable or an argument variable, but not all components can be used as instance variables.

This happens because instance variables are usually persisted (a process instance variable) or transferred (a
Presentable Business Object instance variable). And, for persistence or instance variable transference towork,
the content of such variables must support serialization. Some components do not support serialization.

A component can be identified by its casing. Component names always begin with an uppercase letter. For
further details, refer to theGeneral NamingConventions onpage 350 topic. For further information on component
usage in Studio, please refer to the following topics:

• Implementing Business Objects using BPM Objects
• Introducing BPM Objects into the BPM Project Catalog

Creating an Object

As noted in the Variables on page 312, all variables have a type.

Variables of primitive types (such as String, Int, Real, and so on) always have a default value (as described
in Initializing Variables on page 313). On the other hand, variableswhich have a non-primitive type have special
initialization rules.

In this section, we will discuss how to explicitly initialize non-primitive variables.

Constructors
For initialization, we can group components in two categories:

• Instantiable components
• Components that must be obtained from another component

The difference between the two categories is that the first has a special method called a constructor, which is
used to create new instances of the component. The second does not.

Constructors are methods that are named after the component, and may or may not have arguments. If the
constructor of a component does not have arguments, it is called the default constructor.

The syntax to initialize a variable is the following:

variable = [Module.]ComponentName([[{argument name}:]{value}[,...]])

Note that the names and types of arguments depend on the component and on the constructor you are calling.

Consider the following example:

configFile as TextFile
configFile = TextFile(name : "/home/config.props")
for each line in configFile.lines do
 //Process the lines...
end

In the example above, on the first line, a local variable named configFile of type TextFile is declared,
and on the second line it is initialized using TextFile's constructor, passing a file name as an argument.

Duplicating an Object
Describes the clone function, used to duplicate objects.

Clone Function

Sometimes you want to create an exact copy of an object.

342 | Oracle BPM | Process Business Language (PBL)

Simply assigning a component to a variable does not create a copy of it. Rather, it creates an additional reference
to the same object. If any property of the original object changes, the new reference will also show these
changes, since it is still pointing to the same object.

In order to actually create a new duplicate of the object, you can use the clone function:
// Create an instance for each
// participant in the role

for each person in activity.role.participants do
 copy = clone(this)
 copy.participant.next = person
end

Function Behavior
The clone function behaves differently depending on how the object to be cloned is implemented. To be able
to respond to different conditions, the function follows the following steps:

1. If the object you are trying to clone has a method named clone and implements the interface Cloneable,
that method is used to obtain a copy.

2. If the object implements the Serializable interface, it attempts to serialize it and deserialize it to obtain a
copy of the object.

3. Otherwise, it attempts to dynamically create a copy of it.

Current and Default Instances
Object instance behavior under PBL

Default Instance

Oracle BPM has the concept of a default instance, which is an instance associated to a component.

Only components that have default constructors have default instances. Such instances are accessible within
the method scope. That is, a default instance that has been created while running a specific method only
exists through that method's execution.

For example:
show Menu
 using entries = ["Apples", "Oranges", "Chocolate"],
 title = "Which do you like best?"

In the example above, the reference to the component Menu is using its default instance, that is, an instance
is automatically created the first time that a reference to Menu appears.

Current Instance

Typically, when you want to refer to your current instance, you use the keyword this (or Me, in Visual Basic
style):
update this using date = 'now'

Suppose that the code above belongs to a component named MyComponent. In this case, you could alsowrite
it as follows:

update MyComponent using date = 'now'

Here, the default instance of MyComponent is the same as the this, so the current instance is used as the
default instance.

Object Cleanup

Studio automatically releases the memory used by components when they are no longer used. It is not
necessary to 'release' or 'clean' the components used in a method. However, there are certain components

Oracle BPM | Process Business Language (PBL) | 343

that require some kind of cleaning before ending the execution. Theymust be cleaned by using an 'exit' block
to ensure that they are always cleaned up. For example:

 do
 // use components here
 on exit
 // clean used components here
 end

Note that the code enclosed in the on exit (Java style: finally, VB style: Finally) part of the block is executed
even if an exception occurs. Next, after the execution, the original exception is thrown, unless it is masked
by an exception thrown in the on exit block.

Code Conventions

Code Conventions Overview
Provides a general description of code conventions

In any computer language, code conventions are a set of rules that should be followed when writing program
code. They are called conventions because they are not enforced by the compiler, as they are not a part of the
language syntax itself. For example, a variable can be named lastName or it can be named lstn01. The
first choice is easier to read for humans, but to the compiler either is valid. Think of code conventions as a
set of best practices, which under normal circumstances should be adhered to as closely as possible.

As a general rule, the purpose of code conventions is to improve readability and prevent bugs. To the extent
that everybody adopts the same conventions when programming, each individual will be able to understand
the work of others, and fewer mistakes will be made. This is even the case when a single individual reads
his own code many months or years after having written it.

One way to improve readability is to include comments in your code. On the other hand, for the most part
code conventions guide the way the code itself is structured. There are a number of ways to make code more
readable:

• Adhere to variable and object naming conventions
• Use explicit variable names
• Indent code according to depth within code blocks
• Express logical statements in the simplest way possible
• Use whitespace to separate program segments

The Studio editor can help you adhere to some of these code conventions using two commands: Indent and
Refactor.

Improving Code Readabilty

Nested conditional statements

Nested conditional statements are automatically grouped in one statement with both conditions.

Before

 a as Int

 if a > 2 then
 if a < 10 then
 a = 5
 end
 end

344 | Oracle BPM | Process Business Language (PBL)

After

 a as Int

 if a > 2 and a < 10 then
 a = 5
 end

Identifiers for Exceptions

Identifiers for exception handlers are automatically added when they are not specified.

Before

 message as String

 do
 message = "Ok"
 on Exception
 message = Exception.message
 end

After

 message as String
 do
 message = "Ok"
 on e as Exception
 message = e.message
 end

Bounded loop instead of unbounded loop

Unbounded loops are converted to bounded loops when possible.

Before

 i = 0

 while i <= 10 do
 i = i + 1
 end

After

 for i in 0..10 do
 end

Conditional Exit

Conditional statements with an exit statement are transformed to conditional exits.

Before

 array as Int[] = [10, 20, 30]

 for each e in array do

Oracle BPM | Process Business Language (PBL) | 345

 if e = 20 then
 exit
 end
 end

After

 array as Int[] = [10, 20, 30]

 for each e in array do
 exit when e = 20
 end

Redundant negation

Redundant negations are removed.

Before

 a as Int = 5

 if not a != 2 then
 end

After

 a as Int = 5

 if a = 2 then
 end

Conditional statement inside else blocks

Before

 a as Int = 2
 if a < 2 then
 a = 2
 else
 if a > 5 then
 a = 5
 end
 end

After

 a as Int = 2

 if a < 2 then
 a = 2
 elseif a > 5 then
 a = 5
 end

Check for null value

346 | Oracle BPM | Process Business Language (PBL)

Before

 s as String

 if s != null then
 end

After

 s as String

 if s is not null then
 end

Right order for 'is not'

Before

 s as String

 if not s is null then
 end

After

 s as String

 if s is not null then
 end

Redundant equality

Before

 found as Bool

 if found = false then
 end

After

 found as Bool

 if not found then
 end

Explicit argument names

Before

 open TextFile using "", ""

Oracle BPM | Process Business Language (PBL) | 347

After

 open TextFile using name = "",
 lineSeparator = ""

Unneeded parenthesis

This refactory is applied to 'if' and 'while' conditions in Process Business Language (PBL).

Before

 a as Int = 2

 if (a > 2) then
 end

After

 a as Int = 2

 if a > 2 then
 end

Legacy multi path conditional statements

Before

 a as Int = 2

 switch a in
 case 2:
 display "Two"
 case 4:
 display "Four"
 end

After

 a as Int = 2

 case a
 when 2 then
 display "Two"
 when 4 then
 display "Four"
 end

Functions

Functions are rewritten using functional syntax.

Before

 a as Int
 a = a.abs()

348 | Oracle BPM | Process Business Language (PBL)

After

 a as Int
 a = abs(a)

Wrong symbols

In PBL, some invalid symbols (e.g: &&, ||, !, ==) are accepted but they are automatically fixed when the code
is rewritten.

Before

 a as Int = 2
 b as Int = 4

 if ((a > 2 && a < 10) || b == 4) then
 end

After

 a as Int = 2
 b as Int = 4

 if (a > 2 and a < 10) or b = 4 then
 end

Misspelled member names

Before

 Open TextFile using name = "",
 lineSeparator = ""

 Mail.content_type = ""

After

 open TextFile using name = "",
 lineSeparator = ""

 Mail.contentType = ""

Methods equals() and toString()

Before

 if object.equals(this) then
 string = object.toString()
 end

After

 if equals(object, arg1 : this) then
 string = toString(object)

Oracle BPM | Process Business Language (PBL) | 349

 end

General Naming Conventions

Names representing types or modules must be nouns and they must be written in mixed case starting with
upper case:

 Line, FilePrefix

Variable names must be in mixed case starting with lower case:

 line, filePrefix

Makes variables easy to distinguish from types and effectively resolves potential naming collision as in the
declaration Line line.

Names representing constants (or enum values) should be all uppercase using underscore to separate words:

 MAX_ITERATIONS, RED, MONDAY

Names representingmethodsmust be verbs and theymust be written inmixed case starting with lower case:

 find(), computeTotalWidth()

This is identical to variable names but, in Studio, methods are already distinguishable from variables by their
specific form.

Abbreviations and acronyms should not be uppercase when used as a name:

 exportHtmlSource(); // NOT: exportHTMLSource();
 openDvdPlayer(); // NOT: openDVDPlayer();

Using all uppercase for the base name will trigger conflicts with the naming conventions given above. A
variable of this type should be named dVD, hTML, and so on, which is obviously not very readable. Another
problem is illustrated in the examples above. When the name is connected to another, the readability is
seriously reduced. The word following the acronym does not stand out as it should.

Variables should not have prefixes or suffixes.

Given the fact that the PBL Editor has already colored variables in a different way depending on their scope
(local, instance, and so on), it is not necessary to add prefixes:

 length as Int
 this.length = length

Generic variables should have the same name as their type:

 assignTopic (topic : Topic)

 NOT assignTopic (value : Topic)
 NOT assignTopic (aTopic : Topic)
 NOT assignTopic (x : Topic)

350 | Oracle BPM | Process Business Language (PBL)

Reduces complexity by reducing the number of terms and names that are used. Also, this makes it easier to
deduce the type given a variable name only.

If, for some reason this convention does not seem to fit, it is a strong indication that the type name is badly
chosen.

Non-generic variables have a role. These variables can often be named by combining role and type:

 startingPoint as Point
 centerPoint as Point
 loginName as Name

All names should be written in English.

 fileName NOT nomArchivo

English is the preferred language for international development.

Variables with a large scope should have long names, and variables with a small scope can have short names.

Scratch variables used for temporary storage or indexes are best kept short. A programmer reading such
variables should be able to assume that its value is not used outside a few lines of code. Common scratch
variables are:

i, j, k, m, n, i1, i2integers

b,b1,b2booleans

x,y,z,wreals

s,strStrings

The name of the object is implicit and should be avoided in a method name.

 line.length

 NOT line.lineLength

The latter seems natural in the class declaration but it proves superfluous in use, as shown in the example.

Specific Naming Conventions
Describes naming conventions

The term "compute" can be used in methods in which something is computed.

 computeAverage valueSet
 computeInverse matrix

Gives the reader the immediate clue that this is a potential time-consuming operation and, if used repeatedly,
he/she might consider caching the result. Consistent use of the term enhances readability.

The term "find" can be used in methods where something is looked up.

 findNearest Vertex
 findMinElementIn matrix
 NOT getMinElementIn matrix

Oracle BPM | Process Business Language (PBL) | 351

Gives the reader the immediate clue that this is a simple look up method with a minimum of computations
involved, butmore expensive than a simple getter. Consistent use of the term enhances readability.

The term "initialize" can be used where an object or a concept is established.

 initializeFontSetFor Printer

The American spelling of "initialize" should be used instead of the English "initialise". Abbreviation of "init"
must be avoided.

"n" prefix should be used for variables representing a number of objects.

 nPoints, nLines

The notation is taken frommathematics, where it is an established convention to indicate a number of objects.

If "number of" is the preferred statement, numberOf prefix can be used instead of just n. The num prefixmust
not be used.

The "No" suffix should be used for variables representing an entity number.

 tableNo, employeeNo

The notation is taken from mathematics, where it is an established convention for indicating the number of
an entity.

Complementary names should be used for complementary concepts or actions:

• add/remove
• create/destroy
• start/stop
• insert/delete
• increment/decrement
• old/new
• begin/end
• first/last
• up/down
• min/max
• next/previous
• old/new
• open/close
• show/hide
• get/set

Reduce complexity by symmetry, and avoid abbreviations in names wherever possible. For example, use
computeSalary, rather than compSal.

Exception classes should be suffixed with Exception:

 AccessException

Exception classes are really not part of the main design of the code. Naming them like this makes them stand
out relative to the other classes.

Functions (methods returning an object) should be named after what they return, and procedures (void
methods), after what they do.

352 | Oracle BPM | Process Business Language (PBL)

Increase readability. Makes it clear what the unit should do and, especially, what it is not supposed to do.
Again, this makes it easier to keep the code free from causing undesired side effects.

Negation

Negated boolean variable names must be avoided. For example, isError is better than isNotError.

The reason is that a readability problem arises when the logical not operator is used, and double negative
arises. It is not immediately clear what not isNotErrormeans.

Abbreviations

When considering the use of an abbreviation, think of which kind of word you are using. Common words
listed in a language dictionary should almost never be abbreviated. Avoid writing pt instead of point, comp
instead of compute, init instead of initialize, and so forth.

On the other hand, there are also domain-specific phrases that are more naturally known through their
acronym or abbreviation. These phrases should be kept abbreviated. For example, don't write: Hypertext
Markup Language instead of HTML, or Central Processing Unit instead of CPU.

Creating Statements

Variables

Tip: Variables should be initializedwhere they are declared and they should be declared in the narrowest
possible scope. This ensures that variables are valid at any time.

Sometimes, it is impossible to initialize a variable to a valid valuewhere it is declared. In these cases, it should
be left uninitialized rather than initialized to some phony value.

Tip: Variables must never have dual meaning.

Enhance readability by ensuring that all concepts are uniquely represented. Reduce the chance of error by
side effects.

Tip: Variables should be kept alive for as short a time as possible.

By keeping the operations on a variable within a narrow scope, it is easier to control the effects and side
effects of the variable.

Loops

Tip: Loop variables should be initialized immediately before the loop.

 ready as Bool = true
 while ready do
 //Do something
 end

Not:

 ready as Bool = true

 // Other stuff....

 while ready do
 //Do something
 end

Oracle BPM | Process Business Language (PBL) | 353

Tip: The use of break and exit should be minimized.

These statements should be used only if they prove to give a higher readability than their structured
counterparts.

Conditionals

Tip: Complex conditional expressions should be avoided. Introduce temporary boolean variables instead.

For example, the following code:

 if (elementNo < 0) or (elementNo > maxElement)
 or elementNo = lastElement then
 //Do something
 end

Should be replaced by:

 isFinished as Bool = (elementNo < 0) or (elementNo > maxElement)
 isRepeatedElement as Bool = elementNo = lastElement

 if isFinished or isRepeatedElement then
 //Do something
 end

By assigning boolean variables to expressions, the program gets automatic documentation. The construction
will be easier to read and debug.

Tip: The nominal case should be put in the if-part and the exception in the else-part of an if statement.

 isError as Bool = readFile (fileName)

 if not isError then
 //Do something
 else
 //Handle the error
 end

Makes sure that the exceptions do not obscure the normal path of execution. This is important for both the
readability and performance.

Tip: Executable statements in conditionals must be avoided.

 file = openFile (fileName, "w")
 if file /= null then
 //Do something
 end

Not:

 if (file = openFile (fileName, "w")) is not null then
 //Do something
 end

Conditionalswith executable statements are very difficult to read. This is especially true for newprogrammers.

354 | Oracle BPM | Process Business Language (PBL)

Miscellaneous

Tip: The use of magic numbers in the code should be avoided.

If the number does not have an obviousmeaning by itself, the readability is enhanced by introducing a named
constant instead.

 d = s / SECONDS_PER_DAY
 timeout = DEFAULT_TIMEOUT

Not:

 d = s / 86400
 timeout = 1000

Tip: Real andDecimal constants should always be written with a decimal point and at least one decimal:

total = 0.0
speed = 3.0

sum = (a + b) * 10.0;

Not:

total = 0;
speed = 3;

sum = (a + b) * 10;

This emphasizes the different nature of integer and floating point numbers, even if their valuesmight happen
to be the same in a specific case.

Moreover, as in the last example above, it emphasizes the type of the assigned variable (sum) at a point in
the code where this might not be evident.

Tip: Real and Decimal constants should always be written with a digit before the decimal point.

 total as Real = 0.5f

Not:

 total as Real = .5f

The number and expression system in Studio is borrowed from mathematics and one should adhere to
mathematical conventions for syntaxwherever possible. In addition, 0.5 ismuchmore readable than .5. There
is no way it can be mixed with the integer 5.

Code Layout and Comments

Indentation

Indentation enhances readability, particularlywithin loops and conditional statements. Under PBL, standard
practice is to indent four spaces per level.

 for i in 1..10 do

Oracle BPM | Process Business Language (PBL) | 355

 a[i] = 0
 end

To facilitate this, the Tab key inserts four spaces within the code editor.

The if-then-else class of statements should have the following form:

 if condition then
 // statements
 end

or:

 if condition then
 statements
 else
 statements
 end

or:

 if condition then
 statements
 elseif condition then
 statements;
 else
 statements;
 end

Not:

 if condition
 then
 statements
 end

And not:

 if condition then statements end

The chosen approach is considered to be better since each part of the if-else statement is written on separate
lines of the file. This shouldmake it easier tomanipulate the statement, for instance, whenmoving else clauses
around.

A bounded loop should have the following form:

 for i in set do
 //statements
 end

An unbounded loop should have the following form:

 while condition do
 //statements
 end

356 | Oracle BPM | Process Business Language (PBL)

AMultipath conditional statement should have the following form:

 case condition
 when ABC
 // statements
 when DEF
 // statements
 else
 // statements
 end

A Compound statement should have the following form:

 do
 statements;
 on e as Exception exception
 statements
 end

or:

 do
 statements;
 on e as Exception
 statements
 on exit
 statements
 end

White Space in Expressions

• Conventional operators should be surrounded by a space character.
• Reserved words should be followed by a white space.
• Commas should be followed by a white space.
• Colons should be followed by a white space.
• Semicolons for statements should be followed by a space character.

 a = (b + c) * d

These rulesmake the individual components of the statements stand out and enhance readability. It is difficult
to give a complete list of the suggested use of white space in Studio code. However, the examples shown
above should give a general idea.

Note: Logical units within a compound statement should be separated by one blank line. This enhances
readability by introducing a white space between logical units of a block.

Comments

Remember: Tricky code should not be commented on but rewritten.

In general, the use of comments should be minimized by making the code self-documenting through
appropriate name choices and an explicit logical structure.

Tip: All comments should be written in English.

Oracle BPM | Process Business Language (PBL) | 357

In an international environment, English is the preferred language.

Tip: Minimize the use of multi-line comments.

 // Comment spanning
 // more than one line

Since nested multi-line comments are not supported, using single line comments ensures that it is always
possible to comment out entire sections of code for debugging purposes, among others.

Remember: Comments should be indented in relation to their position in the code.

 while true do
 // Do something
 something()
 end

Not:

 while true do
 // Do something
 something()
 end

This is to prevent comments from breaking the logical structure of the program.

Files

Tip: File content must be kept within 100 columns.

Tip: The incompleteness of split lines should be made obvious.

 totalSum = a + b + c +
 d + e

 function (param1, param2,
 param3)

 passingText ("Long line split" +
 "into two parts.")

Split lines are required when a statement becomes too wide to read comfortably, or exceeds the column limit
given above. It is difficult to provide strict rules for how lines should be split, but the examples above can
serve to illustrate the guidelines shown below.

In general it is good practice to:

• Break after a comma.
• Break after an operator.
• Align the new line with the beginning of the expression on the previous line.

358 | Oracle BPM | Process Business Language (PBL)

Embedded SQL

Embedded SQL Overview
Introduces embedded SQL

Studio supports embedded SQL (ANSI-92 Entry Level), written directly in the code. This section describes
the supported syntax and provides some examples.

Note: In the syntax and examples in the topics of this section, SQL keywords appear in all-caps. This is
an SQL convention and it is not required by Studio. However, it is a useful convention which helps
differentiate SQL commands from regular code.

For further information about SQL Components, refer to SQL Components on page 174.

SQL Operators
Describes common SQL operators

SQL operators allow you to control query selection criteria and the values returned. The following is a list of
operators supported in PBL.

LIKE operator

The LIKE operator searches for strings that match a specific pattern. The percent sign "%" matches any string
and the underscore "_" matches any single character. The following example returns any row where fname
starts with "J":
for each e in
 SELECT *
 FROM employees
 WHERE fname LIKE "J%"
do
 // do something here
end

Concatenation operator (||)

In SQL statements, the || operator is used to concatenate two values of any type. For example:
for each e in
 SELECT lname || ", " || fname AS fullname
 FROM employees
do
 display "full name: " + e.fullname
end

Note: In PBL and Java style, the || symbol means "or" and it is used in conditional expressions. For
further information, please see Logical Operators on page 314.

IN operator

The IN operator matches a column value against a set of literal values:
column_name IN (<value1>, <value2>, ...)

For example:
for each e in
 SELECT lname, fname
 FROM employees
 WHERE salary IN (20000, 25000, 30000)
do

Oracle BPM | Process Business Language (PBL) | 359

 display "name: " + e.lname
end

This statement is equivalent to the following:
for each e in
 SELECT lname, fname
 FROM employees
 WHERE salary = 20000 or salary = 25000 or salary = 30000
do
 display "name: " + e.lname
end

IS operator

The IS operator locates a record that does or does not have a null value for a particular column:
<column_name> IS [NOT] NULL

For example:
for each e in
 SELECT lname, fname
 FROM employees
 WHERE address IS NOT NULL
do
 display "name: " + e.lname + ", address: "
 + e.address
end

BETWEEN Operator

The BETWEEN operator allows you to select records that are between two values:
<column_name> [NOT] BETWEEN <value1> AND <value2>

The expression a BETWEEN b AND c is equivalent to a >= b AND a <= c. For example:
for each e in
 SELECT lname, fname
 FROM employees
 WHERE salary BETWEEN 20000 AND 30000
do
 display "name: " + e.name + ", salary: "
 + e.salary
end

SQL Keywords
Lists SQL keywords

Some words in an SQL statement have a special meaning and cannot be used as regular identifiers. These
keywords include the following:
ALL
AND
AS
ASC
AVG
BETWEEN
BY
COUNT
DELETE
DESC
DISTINCT
FROM
GROUP

360 | Oracle BPM | Process Business Language (PBL)

HAVING
IN
INSERT
INTO
IS
LIKE
MAX
MIN
NULL
OR
ORDER
SELECT
SET
SUM
UPDATE
VALUES
WHERE

Note: These keywords can be used as regular identifiers outside SQL statements. Also, in compliance
with SQL standards, keyword case is ignored within SQL statements, so SELECT, Select, and select
are all accepted.

INSERT Statement
Describes the SQL INSERT statement and common options

The INSERT statement is used to add one or more rows to a table. Columns may be specified by position or
by name. If specified by position, the order of the values must match the position of the corresponding
columns in the table. If columns are specified by name, they may be listed in any order.

In general, it is recommended practice to specify columns by name, since the table may be modified and
columnpositionsmay change, breaking your code.Name references are position independent, and aSELECT
statement with column names is more explicit and easier to read.

Columns not specified in the column list are set to their default values or to null. If the column value cannot
be set to null (if it is defined as NOT NULL in the database) and it has no default value, an error will result
and the INSERTwill fail.

Note: In the syntax and examples below, SQL keywords appear in all caps. This is an SQL convention
and it is not necessary in Studio. However, it is a useful convention to differentiate SQL statements from
regular code.

There are two alternative ways to supply data for the INSERT operation. One is to specify a list of values
directly:
INSERT INTO <table_name> [(<col_name1>, <col_name2>, ...)]
VALUES (<value1>, <value2>, ...)

The other alternative is to specify a SELECT query. In this case, the rows obtained from this query will be
inserted into the table, so long as the column values from the query match the column values required by
the INSERT:
INSERT INTO <table_name> [(<col_name1>, <col_name2>,...)]
<select statement>

The following example specifies a set of values and will insert one row:
INSERT INTO employees(fname, lname, salary)
VALUES ("John", "Smith", 25000)

The value set can also include expressions:
firstname = "John"
salary = 20000

Oracle BPM | Process Business Language (PBL) | 361

INSERT INTO employees(fname, lname, salary)
VALUES(firstname, "Smith", salary + 5000)

The following example uses INSERTwith a SELECT statement:
INSERT INTO students
SELECT *
FROM employees
WHERE salary > 30000

UPDATE Statement
Describes purpose and syntax of the UPDATE statement

The UPDATE statement modifies a set of field values in each row which satisfies a given search condition.
If no row matches the condition, the UPDATEwill have no effect.

Note: In the syntax and example sections below, SQL keywords appear in all caps. This is an SQL
convention and it is not required by Studio. However, it is useful to help differentiate SQL commands
from regular code.

Syntax:

UPDATE <table_name>
SET <column_name1> = <value-expression1>,

<column_name2> = <value-expression2>,
 ...
[WHERE <condition>]

For example, the following UPDATE increases the salary by 10% for all employees who earn less than $25,000:
UPDATE employee
SET salary = salary * 1.1
WHERE salary < 25000

Note: If the WHERE condition is not specified, all the rows will be updated.

DELETE Statement
Describes purpose and syntax of the SQL DELETE statement

DELETE removes all rows that satisfy a given condition from a table:
DELETE FROM <table_name>
[WHERE <condition>]

The following example deletes all employees whose first name is "John" and last name is "Smith":
DELETE FROM employees
WHERE fname = "John" and lname = "Smith"

SELECT Statement
Describes the SELECT statement and basic query options

The SELECT statement finds and retrieves rows, columns, and derived values from one or more tables of a
database. The SELECT statement is flexible, with many options, and accepts column specifications, search
conditions, ordering instructions, and other parameters. The powerful and complex SELECT statement is a
core feature of SQL and a thorough description of it well exceeds the scope of this document. This section
outlines basic SELECT syntax and clauses which suffice for most simple queries.

362 | Oracle BPM | Process Business Language (PBL)

Syntax

A SELECT operation may retrieve one or many records, so in PBL it is commonly placed within a for each
loop, as follows:
for each <variable> in
 SELECT [DISTINCT | ALL] <column1>, <column2>,...
 FROM <table1>, <table2>, ...
 [WHERE <condition>]
 [GROUP BY <grouping-column1>, <grouping-column2>, ...]
 [HAVING <group-selection-condition1>]
 [ORDER BY <ordering-col1> [ASC | DESC],

<ordering-col2> [ASC | DESC], ...]
do
 // ...
end

The columns to be retrieved are delimited by commas or, alternatively, an asterisk (*) may be used to retrieve
all columns from every table queried. It is recommended that you specify each column you need rather than
retrieving all of them, as this will improve performance, substantially if the table is large and contains many
columns you do not need.

You can request that a column be returned under an alias by using the AS clause:
SELECT clientId, fn AS firstName FROM clients

This selectsclientId andfn from the database, but itwill return the columns asclientId andfirstName.
In this way, you will be able to access the column using firstName in your code rather than fn, so it will
be easier to read.

A column can also be an expression or an aggregate function.Aggregate functions combine values from every
row into a single value, such as a sum or an average, and are discussed below.

You may use the ORDER BY clause to sort the results of the query according to a given value. Ordering may
be ascending (ASC), or descending (DESC). Ascending order is the default and need not be specified. You can
order by one or more columns, delimited by commas. Sorting is first done on the first ORDER BY column,
and subsequent ORDER BY columns are used when the previous column contains equal values.

The following example displays the name of every employee with a salary higher than 25,000:
for each e in
 SELECT *
 FROM employees
 WHERE salary > 25000
 ORDER BY lname
do
 display "employee name: " + e.lname + ", " + e.fname
end

Using Aggregate Functions

The following example selects themaximum salary in the employee table using theMAX function. The row.1
term is used to specify the first column. The variable salary is used to store the result of the maximum
salary in the table:
for each row in
 SELECT MAX(salary)
 FROM employees
do
 salary = row.1
end

Oracle BPM | Process Business Language (PBL) | 363

The following example returns the average salary of employees grouped by depnumber, but does not return
employeeswheredepnumber is equal to 3 or 4, or caseswhere 5 or fewer employees have the samedepnumber
value:
for each e in
 SELECT depnumber, COUNT(*), AVG(salary)
 FROM employees
 WHERE depnumber != 3 and depnumber !=4
 GROUP BY depnumber
 HAVING COUNT(*) > 5
 ORDER BY depnumber
do
 // ...
end

Stored Procedures
Describes support for stored procedures

Any procedure that you have developed in your database system (such as Oracle or Microsoft SQL Server)
is added to the catalog during introspection. The stored procedure can be treated as a method and used in
your code. Any procedure that uses vendor specific features, such as rowtype in Oracle, is not supported.
Only standard SQL procedures are added to the catalog.

364 | Oracle BPM | Process Business Language (PBL)

	Contents
	Introduction
	Document Scope and Audience
	Oracle Documentation and Resources

	Getting Started
	About Oracle BPM Studio
	What's New in this version
	Revision History
	Version 6.0

	Applying Product Updates

	Working with Studio
	Profiles
	Studio Preferences
	Setting Studio Preferences
	Setting Project Preferences
	Setting Engine Preferences
	Setting Eclipse Preferences
	Studio Preferences Reference
	General
	Activity
	Transition
	Method Editor
	Printing
	Reporting
	Messages
	Log
	Connection Settings
	Presentation Preferences

	Views
	Views Overview
	Showing Views
	Documentation View
	Log Viewer View
	Outline View
	Problems View
	Project Navigator View
	Properties View
	Simulation View
	Variables View
	Test Results View

	Projects
	Projects Overview
	Oracle BPM Example Projects
	Creating a Project
	Importing a Project
	Exporting a Project
	Running a Project in Studio
	Importing Designs
	Creating a Project Report
	Localization of Projects
	Adding a Language to a Project
	Localizing a Process Name
	Localizing a Flow Object within a Process

	Working with Source Control Systems
	Source Control Overview
	Sharing Files Using Source Control
	Extracting Files from CVS Source Control System
	Extracting Files from Subversion Source Control System

	Setting Project Preferences
	Project Properties Reference
	Reusing Assets Across Projects
	Compiling a Project With Dependencies
	Publishing a Process With Dependencies
	Configuring Project Dependency
	Copying a Process and its Roles to a Process Library
	Copying a Process Between Projects
	Using a Process from a Process Library
	Using a Role from a Role Library
	Copying a BPM Object Component to a Component Library
	Using a Component from a Component Library
	Exporting a Project With Dependencies

	Processes
	Business Process Overview
	Creating a Process
	Importing Designs
	Setting Process Properties
	Process Instance Overview
	Defining the Layout for the Lanes in a Process
	Changing the Process Lane Layout
	Defining the Lane Layout for the New Processes in a Project
	Defining the Layout for New Projects

	Process-Level Debugging
	Adding a Breakpoint
	Configuring a Debugging Session
	Debugging a Process
	Debugging Actions
	Correcting a Process

	Creating a Process Simulation Model
	Exposing a Process as a Web Service
	Process Web Service Reference
	Publishing a Process to AquaLogic Service Bus
	Process Property Reference

	Flow Objects
	Flow Object Overview
	Activities
	Interactive Activity
	Adding an Interactive Activity
	Defining the Task of an Interactive Activity
	Viewing an Interactive Activity in WorkSpace
	Running an Interactive Activity

	Decision Activity
	Adding a Decision Activity
	Defining the Task of Decision Activity
	Viewing a Decision Activity in WorkSpace
	Running a Decision Activity

	Automatic Activity
	Adding an Automatic Activity
	Defining the Task of an Automatic Activity
	Viewing an Automatic Activity in WorkSpace
	Running an Automatic Activity
	Defining the Task of an Automatic Activity
	Handling Errors in an Automatic Activity

	Subflow Activity
	Adding a Subflow Activity
	Viewing a Subflow Activity in WorkSpace
	Running a Subflow Activity

	Process Creation Activity
	Adding a Process Creation Activity
	Viewing a Process Creation Activity in WorkSpace
	Running a Process Creation Activity

	Termination Wait Activity
	Adding a Termination Wait Activity
	Viewing a Termination Wait Activity in WorkSpace
	Running a Termination Wait Activity

	Grab Activity
	Adding a Grab Activity
	Defining the Task of a Grab Activity
	Viewing a Grab Activity in WorkSpace
	Running a Grab Activity

	Gateways
	Conditional Gateway
	Adding a Conditional Gateway
	Viewing a Conditional Gateway in WorkSpace
	Running a Conditional Gateway

	Split Gateway
	Adding a Split Gateway
	Viewing a Split Gateway in WorkSpace
	Running a Split Gateway

	Or-Split Gateway
	Adding an Or-Split Gateway
	Viewing an Or-Split Gateway in WorkSpace
	Running an Or-Split Gateway

	Multiple Gateway
	Adding a Multiple Gateway
	Viewing a Multiple Gateway
	Running a Multiple Gateway

	Events
	Begin Event
	Working with a Begin Event
	Viewing a Begin Event in WorkSpace

	End Event
	Working with an End Event
	Viewing an End Event in WorkSpace

	Message Wait Event
	Message Wait Event Types
	Interruptions
	Adding a Message Wait Event
	Viewing a Message Wait Event in WorkSpace
	Running a Message Wait Event

	Send Message Event
	Adding a Send Message Event
	Viewing a Send Message Event in WorkSpace
	Running a Send Message Event

	Timer Event
	Adding a Timer Event
	Viewing a Timer Event in WorkSpace
	Running a Timer Event

	Compensate Event
	Adding a Compensate Event
	Viewing a Compensate Event in WorkSpace
	Running a Compensate Event

	Global Activities
	Global Creation Activity
	Adding a Global Creation Activity
	Defining the Task of a Global Creation
	Viewing a Global Creation in WorkSpace
	Running a Global Creation

	Global Automatic
	Adding a Global Automatic
	Viewing a Global Automatic in WorkSpace
	Running a Global Automatic

	Global Interactive Activity
	Adding a Global Interactive Activity
	Defining the Task of a Global Interactive Activity
	Viewing a Global Interactive Activity in WorkSpace
	Running a Global Interactive

	Artifacts
	Measurement Mark
	Adding a Measurement Mark
	Viewing a Measurement Mark in WorkSpace
	Running a Measurement Mark

	Adding a Flow Object
	Flow Object Naming Conventions

	Configuring a Flow Object Properties
	Flow Objects Property Reference
	General Flow Object Property Reference
	Interactive Activity Property Reference
	Decision Activity Property Reference
	Automatic Activity Property Reference
	Subflow Activity Property Reference
	Process Creation Property Reference
	Termination Wait Activity Property Reference
	Grab Activity Property Reference
	Conditional Gateway Property Reference
	Split Gateway Property Reference
	Or-Split Gateway Property Reference
	Multiple Gateway Property Reference
	Join Property Reference
	Message Wait Property Reference
	Send Message Event Property Reference
	Begin Event Property Reference
	End Event Property Reference
	Timer Property Reference
	Compensate Event Property Reference
	Global Creation Property Reference
	Global Automatic Property Reference
	Global Interactive Activity Property Reference
	Measurement Mark Property Reference

	Flow Object Icon Reference

	Groups
	Creating a Group
	Groups and Transitions
	Groups and Grab Activities
	Group Properties

	Flow Object Tasks
	What is a Task?
	Tasks Types
	Method Tasks
	Method Timeout
	Method Property Reference

	Component Tasks
	Component Task Timeout
	Component Property Reference

	Procedure Tasks
	Procedure Property Reference

	Screenflow Tasks
	Screenflow Property Reference

	External Tasks
	External Task Property Reference

	Input Tasks
	Input Property Reference

	Display Tasks
	Display Property Reference

	Decision Task
	Decision Property Reference

	Transitions
	Transitions Overview
	Adding a Transition
	Unconditional Transition
	Adding a Unconditional Transition

	Conditional Transition
	Adding a Conditional Transition

	Business Rule Transitions
	Adding a Business Rule Transition

	Due Transition
	Adding a Due Transition

	Exception Transition
	Compensate Transition
	Message Based Transitions

	Variables
	Creating Project and Instance Variables
	Instance Variables
	Predefined Variables
	Action Variable

	Project Variables
	Local Variables

	Screenflows
	Screenflow Overview
	Screenflow Timeout

	Procedures
	Procedures Overview
	Creating a Procedure

	Organizations
	Organization Overview
	Organizational Units
	Roles
	Parametric Roles
	Groups
	Participants
	Holiday Rules
	Calendar Rules
	Business Parameters

	Creating and Managing Organizations in Studio
	Creating a New Organizational Unit
	Creating a Role
	Creating a Group
	Creating a Participant
	Creating a Holiday Rule
	Creating a Calendar Rule
	Creating a Business Parameter
	Importing an Organization
	Exporting an Organization

	Using Organizations with the Embedded Process Execution Engine
	Attribute Reference
	Organizational Unit Attributes
	Role Attributes
	Group Attributes
	Participant Attributes
	Holiday Rule Attributes
	Calendar Rule Attributes
	Business Parameter Attributes

	Simulations
	Simulation Overview
	Process Simulation Model
	Project Simulation Models
	Creating and Running a Process Simulation Model
	Creating a Process Simulation Model
	Creating a Project Simulation Model
	Running a Simulation

	Round-trip Simulations
	Round-trip Simulations
	Running a Round-trip Simulation in Studio

	Simulation Reference
	Simulation View Reference
	Process Simulation Model Reference
	Duration
	Cost
	Queue Info
	Resources
	Transitions
	Inner Activities
	Related Processes

	Components Catalog
	About Components
	About the Components Catalog
	Creating a Module
	Deleting a Module
	External Components
	.NET Components
	Cataloging a .NET Component
	About the .NET Bridge

	COM Components
	Cataloging COM Components
	COM example with MS Word
	COM example with MS Excel
	About the COM Bridge
	Installing COM Bridge as a Service
	COM Bridge options

	CORBA Components
	Cataloging a CORBA Component
	CORBA Array Examples
	CORBA Enumeration Examples
	CORBA Sequence Examples

	EJB Components
	Cataloging an EJB Component
	Using EJB Components

	JNDI Components
	Cataloging JNDI Components
	JNDI Examples

	Java Components
	Cataloging Java Libraries
	Using Java Components
	Versionable Java Libraries
	Mapping Java to BPM Components

	Oracle Service Bus Components
	Cataloging Oracle Service Bus Components
	Oracle Service Bus Example

	SAP Components
	Cataloging SAP Components
	SAP Example

	SQL Components
	Cataloging a SQL Component
	Using SQL Components
	SQL Components as Instance Variables
	Mapping SQL to BPM Components

	SQL Query Components
	Cataloging a SQL Query
	Parametric Queries
	Using SQL Query Components
	Mapping SQL types to PBL

	Web Service Components
	Cataloging Web Service Components
	Using Web Service Components
	Mapping SOAP Web Services to BPM Components

	XML Schema Components
	Cataloging XML Schema
	Using XML Schema Components
	XML Schema Examples
	Important Considerations
	Mapping XSD to BPM Components

	BPM Objects
	BPM Object Overview
	Creating a BPM Object
	Attribute Overview
	Defining an Attribute
	Valid Values
	Setting a Static Valid Values List
	Defining a Valid Values Method

	Virtual Attributes

	Attribute Data Types
	BPM Object Presentations
	Creating a Presentation

	External Resources
	Creating an External Resource
	External Resource Reference
	SQL Database
	Oracle DB2 Driver Properties
	Oracle Informix Driver Properties
	Oracle SQL Server Driver Properties
	Oracle Driver Properties
	Oracle Sybase Driver Properties
	Oracle DB2 AS/400 JDBC Properties
	Oracle DB2 OS390 Properties
	Derby Database Driver Properties
	Generic JDBC Version 1 Properties
	Remote JDBC Properties

	SAP Service
	Web Service
	Server Configuration
	Microsoft .NET Service
	Mail Outgoing Service
	J2EE Application Server
	Enterprise JavaBean (EJB)
	Java Class Library
	AquaLogic Service Bus
	Mail Incoming Service
	Microsoft COM Service
	JMX Service
	CORBA Service
	JMS Messaging Service
	JNDI Directory Server
	Java Process Definition (JPD)

	Auditing
	When Audit Events Are Generated
	Which Audit Events are Generated
	Configuring Auditing for a Process
	Configuring Auditing Events for an Activity
	Configuring the Generation of Audit Records for an Activity Group
	Modifying the Generation of Audit Records for an Activity Group

	Advanced Use Cases
	Dynamic Business Rules
	When to use Dynamic Business Rules
	Using Dynamic Business Rules
	Versioning of Rules
	Auditing and Rules

	Defining a Business Rule
	Simple Editor Mode
	Advanced Editor Mode

	Letting Participants Edit Business Rules

	Handling Exceptions
	Exception Handling in Oracle BPM
	System Exceptions
	Business Exceptions
	Code-level Exception Handling
	Process-level Exception Handling
	Typical Exception Handling Flow
	Creating an Exception Flow in a Process
	Creating a Business Exception

	Business Activity Monitoring (BAM)
	BAM Overview
	Enabling and Configuring BAM in Studio
	BAM Database
	Using Variables in BAM
	Creating a Predefined BAM Dashboard
	Viewing BAM Dashboards in Studio
	BAM Database Reference

	Unit Testing BPM projects
	Unit Test Overview
	Creating a Unit Test
	Running a Unit Test
	Test Results View

	Correlations
	Correlation Sets
	Defining a Correlation Set
	Creating a Correlation Set
	Adding Correlation Properties

	Correlation Property Data Types
	Correlations Example
	The Accept Invoice Process
	Running the Example Process
	Running Correlations Java program

	End-User Interfaces on Oracle BPM
	Building a User Interface

	Process Business Language (PBL)
	PBL Overview
	Language Basics
	PBL Methods
	Comments
	Expressions
	Programming Styles
	Data Types
	Data Types Overview
	Type Conversion
	Numbers
	Numbers Overview
	Integers
	Reals
	Decimals
	Decimal Arithmetic
	Real and Decimal Numbers
	Enumerations
	Number Functions Reference

	Strings
	String Overview
	String Functions
	String Attributes

	Times and Intervals
	Time and Interval Overview
	Time Attributes
	Time Functions
	Interval Attributes
	Interval Functions

	Arrays
	Array Overview
	Indexed Arrays
	Associative Arrays
	Manipulating Arrays
	Array Functions
	Array Attributes
	Array Procedures
	Mapping Array Members

	Variables
	Variables
	Initializing Variables

	Operators
	Operator Types Overview
	Arithmetic Operators
	Relational Operators
	Logical Operators

	Statements
	Statements Overview
	Statement Timeout
	Input Statement
	Compound Statement
	Simple Conditional Statements (if-then-else)
	Case Statement
	Bounded Loops
	Unbounded Loops
	Exit Statement
	Labeled Statement
	Throw Statement
	Logging Statement

	Regular Expressions
	Regular Expression Overview
	Regular Expressions in Functions
	Search and Replace
	Modifiers
	Metacharacters and Character Sets
	Matching Repetitions
	Anchors
	Alternations
	Grouping
	Extraction
	Backreferencing

	Programming
	Objects
	Objects Overview
	Creating an Object
	Duplicating an Object
	Current and Default Instances
	Object Cleanup

	Code Conventions
	Code Conventions Overview
	Improving Code Readabilty
	General Naming Conventions
	Specific Naming Conventions
	Creating Statements
	Code Layout and Comments

	Embedded SQL
	Embedded SQL Overview
	SQL Operators
	SQL Keywords
	INSERT Statement
	UPDATE Statement
	DELETE Statement
	SELECT Statement
	Stored Procedures

