
Oracle® Business Process Management
Oracle BPM Process API
10g Release 3 (10.3.1)

January 2009

Oracle® Business Process Management Oracle BPM Process API 10g Release 3 (10.3.1)

Copyright © 2006, 2008, 2009 Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except asmay be expressly permitted in your license agreement for these Programs, no part of these Programs
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR52.227-19, Commercial Computer
Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks ofOracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programsmay provide links toWeb sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear
all risks associated with the use of such content. If you choose to purchase any products or services from a
third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the
quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with
any third party.

Contents

Oracle BPM Process API (PAPI)...4
Oracle BPM Process API (PAPI)..4
PAPI Overview..4
Process API Usage Scenarios...4
Process API Architecture Overview...5
Structure of a Java PAPI Application..6
Writing Your First Java PAPI Program...7
Compiling a Java PAPI Program...11
Running a Java PAPI Program..12
Connecting to an Engine Running in Studio...13
Configuring the Log of a PAPI Client...13

PAPI Client Log Properties..14
Log Severity Levels...14

Running a PAPI Client in a J2EE Distributed Environment...15
Configuring JNDI for a Single J2EE Process Execution Engine..16
Configuring JNDI for Multiple J2EE Engines...17

Oracle BPM PAPI Web Service...19
PAPI Web Service Overview..19
What's New in PAPI Web Service 2.0?...19
PAPI Web Service Usage Scenarios...20
PAPI Web Service Architecture Overview...20
Enabling PAPI Web Service...21

Enabling PAPI Web Service in Oracle BPM Studio..21
Enabling PAPI Web Service in Oracle BPM Enterprise...21
Installing PAPI Web Service on a J2EE Application Server...22

PAPI Web Service Configuration..23
PAPI Web Service Configuration Console...23
Editing PAPI Web Service Configuration..24
Configuring PAPI Web Service Log..25

PAPI Web Service Security Authentication...26
Developing a Custom Sign On Implementation...27
Configuring Custom Single Sign-On Authentication..27
Configuring Username Token Profile...27
Configuring HTTP Basic Authentication...28
Configuring PRESET Authentication...29

PAPI Web Service Examples..29
Java JAX WS Client Example...29
JAX-WS Client Main -Class..30
Running Java JAX WS Client Example...35
PAPI Web Service .NET Client Example..35
.NET Client Main-Class..36

Oracle BPM | TOC | 3

Oracle BPM Process API (PAPI)

This guide is an introduction to Oracle BPM Process API (PAPI). It contains relevant information about the
API architecture, an analysis of the structure of a Java application using PAPI, and instructions on how to
compile and run a Java PAPI application.

Oracle BPM Process API (PAPI)
This guide is an introduction to Oracle BPM Process API (PAPI). It contains relevant information about the
API architecture, an analysis of the structure of a Java application using PAPI, and instructions on how to
compile and run a Java PAPI application.

PAPI Overview
PAPI is a Java client-server API that allows you to interact with processes deployed on anOracle BPMProcess
Execution Engine.

PAPI is a Java API a Java API that can be invoked by any Java application written in Java 1.5.

PAPI provides the following operations:

• Create, send and abort process instances
• Select process instances
• Reassign process instances
• Audit an instance
• Suspend and resume process instances
• Grab and un-grab process instances
• Run interactive and global interactive activities
• Run external tasks
• Send notifications
• Get a list of process instances
• Get a list of deployed processes
• List the activities in a deployed process
• Get the latest version of a deployed process
• Manage views and presentations
• Manage attachments

Oracle BPMWorkSpace is built on PAPI. All the communication between the WorkSpace and the Process
Engine is done through PAPI.

The complete reference documentation for PAPI is available at
http://download.oracle.com/docs/cd/E13154_01/bpm/docs65/papi_javadocs/index.html.

Process API Usage Scenarios
PAPI provides a way for external applications to interact with Oracle BPM.

You should use PAPI to interact with external or legacy applications. Some common usage scenarios are:

4 | Oracle BPM | Oracle BPM Process API (PAPI)

http://download.oracle.com/docs/cd/E13154_01/bpm/docs65/papi_javadocs/index.html

• A web application that needs to create a process instance in Oracle BPMwith the information entered by
the user

• An external application whose execution final result is the execution of an Oracle BPM process
• An external application that need to perform a search, or to list information about processes in Oracle

BPM
• An external application that needs to trigger the execution of an activity
• Batch or automatic processing of process instances

Although you can use PAPI to replace Oracle BPMWorkSpace with a similar graphical application interface,
consider customizing Oracle BPMWorkSpace to suit your needs instead. Replacing Oracle BPMWorkSpace
causes you to lose-and then to have to rebuild-most of the out-of-the-box functionality WorkSpace provides
including, for example, both the authentication framework and the interactive execution framework.

Process API Architecture Overview
PAPI is a Java API that allows you to build a client to connect to the engine and perform operations on the
deployed processes.

When PAPI is initialized, the connected user is authenticated against the data in the directory service. Once
authenticated, the Java client using PAPI can interact with any of the engines configured in the directory
service.

PAPI must connect to a Process Execution Engine only to search for or operate on process instances and
deployed processes. It does not need to connect to an Engine if a request or operation requires only data
stored in the Directory Service.

The following operations do not require a connection to the engine:

• List available views
• Search for a specific view
• List available presentations
• List participants in the organization

You can successfully execute these operations even when the Process Engine is down.

PAPI can connect to one ormore engines at a time, provided they are configured in the same directory service.
When a client makes a request, PAPI automatically routes this request to the corresponding engine.

The following diagram shows interaction between a PAPI client, theDirectory Service and the Process Engine
in runtime. The diagram shows a custom Java client and Oracle BPMWorkspace that is also a PAPI client.

Oracle BPM | Oracle BPM Process API (PAPI) | 5

Figure 1: PAPI Components Runtime Diagram

Structure of a Java PAPI Application
A Java PAPI application should follow a certain structure. The different methods that you need to invoke
before and after performing operations with PAPI determine this structure.

A Java application that uses PAPI goes through the following stages:

1. Initialize the API.
2. Establish a session.
3. Operate with PAPI.
4. Close the session.
5. Release API resources.

Initialize the API

The ProcessService class is the main entry point to the API. Before you start using PAPI, you must create
a ProcessService object.

A ProcessService acts as a factory for ProcessServiceSession objects. To create a session, you must
first create and configure a ProcessService.

When you create a ProcessService object, a connection to the Directory Service is established. This
connection is used to load Oracle BPM's environment configuration information and later to authenticate the
user creating the process service session.

6 | Oracle BPM | Oracle BPM Process API (PAPI)

Establish a Session

A ProcessServiceSession represents the dialog between a participant and the Directory Service or one
or more engines.

You need a ProcessServiceSession to manage and obtain information about process instances,
participants, views, and presentations.

To create a ProcessServiceSession you need to provide the valid credentials--for example, the user
identifier and password--of a participant that exists in the Directory Service.

Operate with PAPI

Once you obtain a ProcessServiceSession you are ready to query for information and invoke any of
the operations provided by PAPI.

Close the Session

You need to close PAPI sessions before your application finishes so that caches are cleared and the connections
to the engine are closed.

Leaving sessions open may both cause a memory leak and use network resources unnecessarily. This is
because the allocated resources are never freed and the Engine continues to send information to the connected
participant.

Leaving sessions open can also cause problems in updating a participant’s role assignment. Because changes
to role assignments are applied only after the last session has been closed, leaving a session open indefinitely
means that changes to roles and permissions are never applied.

PAPI sessions do not expire by timing out. The application using PAPI is responsible for closing open sessions.

Once the session is closed it cannot be used again. Trying to invoke a method over a closed session results
in an exception.

Release API resources

It is advisable to close the ProcessService so that the resources it uses are released.

When a ProcessService is closed, the following events occur:

• All opened PAPI sessions are closed.
• Temporary files used by the API are deleted.
• The connection to the Directory Service is closed.
• Caches used by PAPI are cleared.

Writing Your First Java PAPI Program
This section shows you how to build a Java PAPI Client that retrieves a list of process instances visible to the
connected user.

Programming a Java PAPI Client

The typical steps you have to follow when building a Java PAPI Client are:

• Import the required libraries.
• Create a process service.
• Create a process service session.
• Perform operations with PAPI.
• Close the process service.

Oracle BPM | Oracle BPM Process API (PAPI) | 7

Import the Required Libraries

You need to import PAPI classes to be able to use them in your code. The following code imports the PAPI
classes needed for this example.

import fuego.papi.CommunicationException;
import fuego.papi.InstanceInfo;
import fuego.papi.ProcessService;
import fuego.papi.ProcessServiceSession;
import fuego.papi.OperationException;

Create a Process Service

In order to create a ProcessService you need a java.util.Properties object containing its configuration.
You can create this property object and build it within your Java code, or you can load it from a properties
file. This example adds the properties within the code for practical reasons.

The two mandatory properties you need to specify are the directory id and the path to the directory.xml
file.

Properties configuration = new Properties();
properties.setProperty(ProcessService.DIRECTORY_ID, "default");
properties.setProperty(ProcessService.DIRECTORY_PROPERTIES_FILE, "directory.xml");

To create a ProcessService object you need to invoke the factorymethod ProcessService.create()
from the class ProcessService passing it the Property object as an argument.

If there is a problem locating the Directory Service, this method throws a CommunicationException , so
you need to call it inside a try-catch block.

try {
 ProcessService processService = ProcessService.create(configuration);
 //...
} catch (CommunicationException e) {
 System.out.println("Could not connect to Directory Service");
 e.printStackTrace();
}

Create a Process Service Session

To create a ProcessServiceSession you must invoke the factory method createSession over the
ProcessService object you've just created. This methods requires three String arguments:

• user: an existing participant in the Directory Service.
• password: the participant's password.
• host: the host from which the connection is established. This is an optional argument, it is used for

monitoring purposes, so if this information is not available this argument's value can be null.

If there is a problem authenticating the specified participant, thismethod throws an OperationException
, so you need to invoke it inside a try-catch block.

try {
 //...
 ProcessServiceSession session = processService.createSession("user",
"password", "host");

8 | Oracle BPM | Oracle BPM Process API (PAPI)

http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html
http://java.sun.com/javase/6/docs/api/java/util/Properties.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html#create(java.util.Properties)
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/CommunicationException.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html#createSession(java.lang.String,%20java.lang.String,%20java.lang.String)
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/OperationException.html

 //...
} catch (OperationException e) {
 System.out.println("Could not perform the requested operation");
 e.printStackTrace();
}

Perform Operations with PAPI

The following code retrieves a list of available processes by invoking the method processesGetIds()
over a ProcessServiceSession object.

It then iterates over them using those ids to obtain the process instances for each process by invoking the
method processGetInstances() over the session object.If there is a problem performing any of the
requested operations, this method throws an OperationException , so you need to invoke it inside a
try-catch block.

Finally it iterates over those instances invoking the method getId() and prints its result.

try {
 //...
 System.out.println("Show Instances by process:");
 for (String processId : session.processesGetIds()) {
 System.out.println("\n Process: " + processId);
 for (InstanceInfo instance : session.processGetInstances(processId)) {
 System.out.println(" -> " + instance.getId());
 }
 }
} catch (OperationException e) {
 System.out.println("Could not perform the requested operation");
 e.printStackTrace();
}

Close the Process Service Session

To close the session, invoke the method close() over the ProcessServiceSession object.

session.close();

Closing a session releases all the resources this session is using. After calling themethod close(), the session
can no longer be used. If you try to invoke a method on a closed session, its execution fails and a
SessionClosedException is thrown.

Close the Process Service

To close the ProcessService object, invoke the method close() over the ProcessService object.

processService.close();

This releases all the resources used by PAPI, clears the caches, deletes the temporary files, and closes the
connections to the Process Engine and the Directory Service.

Complete Code Example

The following class contains all the steps described in this section.

Oracle BPM | Oracle BPM Process API (PAPI) | 9

http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html#processesGetIds()
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html#processGetInstances(java.lang.String)
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/OperationException.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/InstanceInfo.html#getId()
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html#close()
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/exception/SessionClosedException.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/exception/SessionClosedException.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html#close()
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html

package papidoc.examples;

import fuego.papi.CommunicationException;
import fuego.papi.InstanceInfo;
import fuego.papi.ProcessService;
import fuego.papi.ProcessServiceSession;
import fuego.papi.OperationException;
import java.util.Properties;

public class PapiExample {

 public static void main(String[] args) {

 /////////////////// API Initialization ///////////////////
 Properties configuration = new Properties();
 configuration.setProperty(ProcessService.DIRECTORY_ID, "default");
 configuration.setProperty(ProcessService.DIRECTORY_PROPERTIES_FILE,
 "directory.xml");
 configuration.setProperty(ProcessService.WORKING_FOLDER, "/tmp");

 try {
 ProcessService processService = ProcessService.create(configuration);

 /////////////////// Establish a session ///////////////////
 ProcessServiceSession session = processService.createSession("test",
 "test", "host");

 /////////////////// Operate with PAPI ///////////////////
 for (String processId : session.processesGetIds()) {
 System.out.println("\n Process: " + processId);
 for (InstanceInfo instance :
session.processGetInstances(processId)) {
 System.out.println(" -> " + instance.getId());
 }
 }

 /////////////////// Close the session ///////////////////
 session.close();

 /////////////////// Release API Resources ///////////////////
 processService.close();
 } catch (CommunicationException e) {
 System.out.println("Could not connect to Directory Service");
 e.printStackTrace();
 } catch (OperationException e) {
 System.out.println("Could not perform the requested operation");
 e.printStackTrace();
 }
 }
}

The following sequence diagram shows the interaction between the classes used in the example.

10 | Oracle BPM | Oracle BPM Process API (PAPI)

Figure 2: PAPI Client Example Sequence Diagram

Compiling a Java PAPI Program
The following procedures show you how to compile from the command line a Java class that uses PAPI.

To compile a Java PAPI program from the command line you need to have a Java SE Development Kit 5 (JDK
5) installed. You can download the JDK from Sun Developer Network. You may also use the JDK bundled with
some installations of Oracle BPM Enterprise, which gets installed under
BEA_HOME/albpm6.0/enterprise/jre/.

PAPI classes are contained in the fuegopapi-client.jar JAR file, which is distributed with Oracle BPM
Enterprise under BEA_HOME/albpm6.0/enterprise/client/papi/lib/fuegopapi-client.jar.

1. Open a command-line session.
2. Add the PAPI library to the classpath by setting the environment variable CLASSPATH. Theway of doing

this depends on your operating system.

• Linux:

$export
CLASSPATH="/bea/albpm6.0/enterprise/client/papi/lib/fuegopapi-client.jar"

Oracle BPM | Oracle BPM Process API (PAPI) | 11

http://java.sun.com/javase/downloads/index_jdk5.jsp

• Windows:

C:>set
CLASSPATH="C:/bea/albpm6.0/enterprise/client/papi/lib/fuegopapi-client.jar"

3. Compile the Java PAPI program using javac (Java Compiler) provided by the JDK:
javac MyFirstPapiApplication.java

These two steps can be merged into one by using the -classpath option when calling the java compiler:
javac -classpath
"C:/bea/albpm6.0/enterprise/client/papi/lib/fuegopapi-client.jar"
MyFirstPAPIApplication.java

A file with the extension .class is generated in the directory where you compiled your program.

Running a Java PAPI Program
The following procedures show you how to run from the command line a Java program that uses PAPI.

To run a Java PAPI program you need to have a Java SE Development Kit 5 (JDK 5) installed. You can
download the JDK from Sun Developer Network. You may also use the JDK bundled with some installations
of Oracle BPM Enterprise, which gets installed under <ORABPM_HOME>/jre/.

PAPI classes are contained in the fuegopapi-client.jar JAR file, which is distributed with Oracle BPM
Enterprise under <ORABPM_HOME>/client/papi/lib/fuegopapi-client.jar.

1. Open a command-line session.
2. If you are not running the program from the same command-line session where you have compiled it,

you need to add the PAPI library to the Java classpath by setting the environment variable CLASSPATH.
The way of doing this depends on your operating system.

• Linux:

$export
CLASSPATH="/OraBPMEnterpriseHome/client/papi/lib/fuegopapi-client.jar"

• Windows:

C:>set
CLASSPATH="C:/OraBPMEnterpriseHome/client/papi/lib/fuegopapi-client.jar"

3. Copy the file directory.xml to the location specified in your properties file or in your PAPI program.
The file directory.xml resides in the directory <ORABPM_HOME>/conf.
In the analyzed example the directory.xml file was copied to the directory from where the example
is run. This location is specified in the following lines of code:

 Properties configuration = new Properties();
 //...
 configuration.setProperty(ProcessService.DIRECTORY_PROPERTIES_FILE,
"directory.xml");

12 | Oracle BPM | Oracle BPM Process API (PAPI)

http://java.sun.com/javase/downloads/index_jdk5.jsp

4. Run your PAPI program using the java command provided by the JDK:
java MyFirstPapiApplication

This step and step one can be merged into one by using the -classpath option when calling the java
command:
java -classpath "C:/OraBPMEnterpriseHome/client/papi/lib/fuegopapi-client.jar"
 MyFirstPAPIApplication

When you run the program you see a list of the deployed processes and their instances. The following lines
illustrate the generated output when executing this program connecting to an engine that has three instances
sitting on the deployed process "Process":

 Process: /Process#Default-1.0
 -> /Process#Default-1.0/1/0
 -> /Process#Default-1.0/3/0
 -> /Process#Default-1.0/2/0

Connecting to an Engine Running in Studio
You use a PAPI client with an engine running in Studio to debug and test the project you are developing.

Note: The PAPI client and Studio application must run in the same host.

When configuring the connection properties, replace the property
ProcessService.DIRECTORY_PROPERTIES_FILE for the propertyProcessService.PROJECT_PATH
and assign it the file-path to your project.

The following code shows you how to use this property:

 Properties config = new Properties();
 config.setProperty(ProcessService.DIRECTORY_ID, "default");
config.setProperty(ProcessService.PROJECT_PATH, "../BPMWorkspace/PapiTest");

Note: When connecting to an Engine in Studio, the operations to store views and presentations are not
available.

Configuring the Log of a PAPI Client
The following procedure shows you how to configure the log of your PAPI client.

To configure the log of your PAPI client.

1. Create a properties file that contains the properties to configure your PAPI client log.

Create this file in a location that is accessible to your PAPI Client.

For a list of the properties you can include, see PAPI Client Log Properties on page 14 .

2. In PAPI client code add the necessary code to create a Properties object and load it using the properties
file you created.

Oracle BPM | Oracle BPM Process API (PAPI) | 13

3. Modify the code in your PAPI client so that it uses the ProcessService constructor that receives a properties
file as an argument.

4. Compile your PAPI client.
For information about how to compile a PAPI client, see Compiling a Java PAPI Program on page 11 .

The next time you run your PAPI client it logs using the properties you defined.

PAPI Client Log Properties
The following table describes the properties you can use to configure the log of your PAPI client.

Default ValueDescriptionProperty

papiSpecifies the name of the
application.

fuego.papi.application

By default it logs to standard error.Specifies the file where to redirect
the log.

fuego.log.<app_name>.file

WARNINGDefines the severity level of the log
message. For more information

fuego.log.<app_name>.severities

about security levels, see Log
Severity Levels on page 25.

1Specifies whether to log messages.
If set to 0 Oracle BPM does not log

fuego.log.<app_name>.detailLevel

any message, if set to 1 it logs all
messages.

[<{SEV}> 'dd/MM/yy HH:mm:ss']
{INDENT}{MSG}

Specifies the log format for the first
line of a log message.

fuego.log.<app_name>.format

{INDENT}{MSG}Specifies the log format for lines
that follow the first line of a log
message.

fuego.log.<app_name>.continuationFormat

Log Severity Levels
Oracle BPM allows you to define logging levels to specify the level of detail of the information stored in the
Oracle BPM logs.

DescriptionLog Level

Specifies a serious error that may cause the application to fail.Fatal

Specifies a serious error that may or may not cause the application to
fail.

Severe

Specifies a potentially harmful situation but generally does not pose a
threat to the stability of an application.

Warning

Specifies informational messages that highlight the progress of the
application at a high level. These can include:

Info

• Changes in the engine state, including: start, stop, and restart.
• Changes in state of engine services.
• Changes in engine properties.
• Changes in the state of a process deployed on the engine, including:

startup, deployment, redeployment, and deprecation.
• Actions of participants

14 | Oracle BPM | Oracle BPM Process API (PAPI)

DescriptionLog Level

• Work executed by the engine automatically.

Specifies informational messages that highlight the process instances
at a lower level. These can include:

Debug

• Tracing a process instance, including: instance creation, changing
activities, routing, and locks.

• Changes in the state of an instance, including: running, selection,
activity completion, and exceptions.

• Actions on a process, including: executing a task, executing an
activity, and executing a ToDo Item.

Running a PAPI Client in a J2EE Distributed Environment
If your PAPI Java client and the J2EE Process Engines it connects to run in different locations then you must
provide the PAPI client the information to connect to the remote Process Engine. You must provide this
information using standard JNDI properties.

Youmust configure JNDI processwhen the J2EE Process Execution Engine is running in an application server,
and the Java PAPI client is running in:

• a different applications server
• a different cluster
• a different WebLogic domain
• a different WebSphere cell
• an external servlet container
• a standalone environment

The Java PAPI client needs information to locate a J2EE Engine that is running in a different location. You
must provide the PAPI client this information using JNDI properties. The PAPI client uses these JNDI
properties to create a Context and connect to the application server where the J2EE Engine is running.

PAPI requires you to specify the following properties:

• java.naming.factory.initial
• java.naming.provider.url

These are standard JNDI properties. For information about these properties, see your application server
documentation. For WebLogic Server, see the Programming WebLogic JNDI document

If your PAPI client connects to a single Process Engine you can specify this properties using systemproperties,
or using a file. To specify this properties using a file follow the procedures described in Configuring JNDI for
a Single J2EE Process Execution Engine on page 16.

If your PAPI client needs to connect to multiple Process Engines then you have to provide it the information
to connect to them using a properties file for each of the engines. To do this follow the procedures described
in Configuring JNDI for Multiple J2EE Engines on page 17.

If your application server requires that you specify other properties then you can specify them in the same
properties file. The PAPI client uses all the properties defined in the properties file to create a Context to
connect to the application server.

Oracle BPM | Oracle BPM Process API (PAPI) | 15

Configuring JNDI for a Single J2EE Process Execution Engine
The following procedure shows you how to configure your PAPI Java client to connect to a single J2EE Process
Execution Engine running in a remote location, using JNDI.

To configure the JNDI properties you need to access a remote J2EE Process Engine from your PAPI client:

1. Create a properties file that contains the JNDI properties PAPI needs to connect to the remote J2EE Process
Engine.
You must specify the following basic properties:

• java.naming.factory.initial
• java.naming.provider.url

Note: If your remote server needs additional properties to connect using JNDI, specify this properties
as well.

2. Copy this file to a location that is accessible to your PAPI Client.
3. Provide the PAPI client access to the file that contains the JNDI properties. You can set this property in

the code of the PAPI client using system properties, or you can pass it as an argument using the -D option
of the java command.

DescriptionProperty

Specifies the name of file that contains the JNDI properties to connect to
the application server where the specified J2EE Process Engine runs. You
must specify the value of this property using the absolute path of the file.

fuego.j2ee.initialctx.file

Specifies the name of the resource that contains the JNDI properties to
connect to the application server where the specified J2EE Process Engine

fuego.j2ee.initialctx.resource

runs. PAPI obtains the resource using the method getResource() of the
context ClassLoader. You must add this resource to the CLASSPATH.

The URL of the file that contains the jndi properties to connect to the
application server where J2EE Process Engine runs.

fuego.j2ee.initialctx.url

The following example shows you how to specify the file that contains the jndi properties
to connect to the server where the default J2EE Process Engine runs, using the property
fuego.j2ee.initialctx.file.

• Using system properties in the Java code of the PAPI client:

System.setProperty("fuego.j2ee.initialctx.file",
"C:\\engine.properties");

• Using the option -D when running the PAPI client:

java -Dfuego.j2ee.initialctx.file=C:\\engine.properties

The following example shows you how to specify the resource that contains the jndi
properties to connect to the server where the default J2EE Process Engine runs, using the
property fuego.j2ee.initialctx.resource.

• Using system properties in the Java code of the PAPI client:

System.setProperty("fuego.j2ee.initialctx.resource",
"engine.properties");

• Using the option -D when running the PAPI client:

java -Dfuego.j2ee.initialctx.resource=engine.properties

16 | Oracle BPM | Oracle BPM Process API (PAPI)

The following example shows you how to specify theURL that contains the jndi properties
to connect to the server where the default J2EE Process Engine runs, using the property
fuego.j2ee.initialctx.url.

• Using system properties in the Java code of the PAPI client:

System.setProperty("fuego.j2ee.initialctx.url",
"http://server/conf/engine.properties");

• Using the option -D when running the PAPI client:

java
-Dfuego.j2ee.initialctx.url=http://server/conf/engine.properties

Configuring JNDI for Multiple J2EE Engines
The following procedure shows you how to configure your PAPI Java client to connect to a specific J2EE
Process Engine running in a remote location, using JNDI.

Follow this procedure for each of the J2EE Process Engines that you need to access from your PAPI client:

1. Create a properties file that contains the JNDI properties PAPI needs to connect to the remote J2EE Process
Engine.
You must specify the following basic properties:

• java.naming.factory.initial
• java.naming.provider.url

Note: If your remote server needs additional properties to connect using JNDI, specify this properties
as well.

2. Copy this file to a location that is accessible to your PAPI Client.
3. Provide the PAPI client access to the file that contains the JNDI properties. You can set this property in

the code of the PAPI client using system properties, or you can pass it as an argument using the -D option
of the java command.

DescriptionProperty

Specifies the name of file that contains the JNDI properties
to connect to the application server where the specified J2EE

fuego.j2ee.initialctx.ENGINE_ID.file

Process Engine runs. You must specify the value of this
property using the absolute path of the file.

Specifies the name of the resource that contains the JNDI
properties to connect to the application server where the

fuego.j2ee.initialctx.ENGINE_ID.resource

specified J2EE Process Engine runs. PAPI obtains the resource
using the method getResource() of the context
ClassLoader. You must add this resource to the
CLASSPATH.

TheURL of the file that contains the jndi properties to connect
to the application server where J2EE Process Engine runs.

fuego.j2ee.initialctx.ENGINE_ID.url

The following example shows you how to specify the file that contains the jndi properties
to connect to the server where the J2EE Process Engine "engine1" runs, using the property
fuego.j2ee.initialctx.ENGINE_ID.file.

• Using system properties in the Java code of the PAPI client:

Oracle BPM | Oracle BPM Process API (PAPI) | 17

System.setProperty("fuego.j2ee.initialctx.engine1.file",
"C:\\engine1.properties");

• Using the option -D when running the PAPI client:

java -Dfuego.j2ee.initialctx.engine1.file=C:\\engine1.properties

The following example shows you how to specify the resource that contains the jndi
properties to connect to the server where the J2EE Process Engine "engine1" runs, using
the property fuego.j2ee.initialctx.ENGINE_ID.resource.

• Using system properties in the Java code of the PAPI client:

System.setProperty("fuego.j2ee.initialctx.engine1.resource",
"engine1.properties");

• Using the option -D when running the PAPI client:

java -Dfuego.j2ee.initialctx.engine1.resource=engine1.properties

The following example shows you how to specify theURL that contains the jndi properties
to connect to the server where the J2EE Process Engine "engine1" runs, using the property
fuego.j2ee.initialctx.ENGINE_ID.url.

• Using system properties in the Java code of the PAPI client:

System.setProperty("fuego.j2ee.initialctx.engine1.url",
"http://server/conf/engine1.properties");

• Using the option -D when running the PAPI client:

java
-Dfuego.j2ee.initialctx.engine1.url=http://server/conf/engine1.properties

18 | Oracle BPM | Oracle BPM Process API (PAPI)

Oracle BPM PAPI Web Service

This guide contains relevant information about PAPI Web Service architecture, an analysis of the structure
of PAPI Web Service clients written in different languages, and procedures that show you how to modify
PAPI Web Service configuration.

PAPI Web Service Overview
PAPI Web Service is an independent web application built on top of PAPI. This application exposes a subset
of PAPI functionality using SOAP over HTTP.

Using PAPI Web Service to communicate with the Engine has the following advantages over using PAPI:

• You can use it from any programming language that supports XML and HTTP.
• It does not need any external libraries on the client side.
• The application using PAPIWeb Service does not need a connection to theDirectory Server. This application

can run outside the domain where Oracle BPM is installed.

There are a few minor disadvantages:

• PAPI Web Service is a layer on top of PAPI. The web services client communicates with PAPI using XML.
This adds a small overhead thatmakes PAPIWeb Service slightly less performant than using PAPI directly.

• Attachments functionality is not available.
• PAPIWeb Service does not handle complex types. Onlymethodswith either primitive or catalogued XML

schema type arguments and primitive return type can be invoked.

What's New in PAPI Web Service 2.0?
This section describes the features supported by PAPI Web Service 2.0.

The following table shows the difference between PAPI Web Service 2.0 and PAPI Web Service 1.0:

PAPI Web Service 1.0PAPI Web Service 2.0

Bundled with Oracle BPMWorkspace.Independent web application.

Supports only the default configuration.You can modify its default configuration.

RPC/encoded style WSDL SOAP binding.Document/literalwrapped styleWSDLSOAPbinding.

Does not support any standard authentication
mechanisms.You need to send a session ID every time
you invoke an operation.

Supports WS Security Username Token Profile 1.1,
HTTP Basic and Single Sign On (SSO) authentication
mechanisms.

Method arguments only support primitive types.Method arguments support catalogued schema type
objects in addition to primitive types.

Its semantics are completely different from PAPI's
semantics.

The signature of the exposed methods matches the
signature of their equivalent methods in PAPI.

Note: PAPIWeb Service 1.0 is deprecated. If you still need to use it in Oracle BPM 6.0 you have to enable
and start Oracle BPM Classic WorkSpace.

Oracle BPM | Oracle BPM PAPI Web Service | 19

PAPI Web Service Usage Scenarios
PAPI Web Service provides access to a considerable subset of PAPI operations. This section describes the
scenarios where PAPI Web Service is more suitable than PAPI.

PAPI Web Service complies with Web Services standards. This allows you to take advantage of the existing
common infrastructure used by other applications such as load balancers, proxies, security services and
monitoring. PAPI Web Service fits perfectly into a SOA architecture.

Use PAPI Web Service to expose PAPI operations to:

• external applications written in virtually any programming language.
• applications running outside the domain where Oracle BPM resides.
• applications running behind a fire wall.

PAPI Web Service Architecture Overview
PAPI Web Service is a web service application that exposes a considerable set of PAPI operations.

PAPI Web Service is an independent web application that runs on top of PAPI. PAPI Web Service provides
aWSDL (Web Services Definition Language) descriptor that defines the operations the client can invoke and
the complex types these operations may use. The client application connected to PAPI Web Service, uses
SOAP (Simple Object Access Protocol) over HTTP to invoke any of the functions listed in the WSDL.

PAPIWeb Service relies on PAPI to obtain the information the client requests. Then it translates this information
into XML and uses SOAP to send it back to the client.

PAPI Web Service implementation is based on the following:

• JAX-WS 2.0 web service
• WS-I 1.1 compliant
• Document/literal wrapped style WSDL SOAP binding

The following diagram shows the interaction between PAPI Web Service components during runtime.

20 | Oracle BPM | Oracle BPM PAPI Web Service

Figure 3: PAPI Web Service Runtime Architecture

Enabling PAPI Web Service
PAPIWeb Service is not enabled by default. This section shows the how to enable PAPIWeb Service for each
of the possible environments and configurations. These procedures depend on the type and configuration
of Oracle BPM installation.

Enabling PAPI Web Service in Oracle BPM Studio
The following procedures show you how to enable PAPI Web Service in Studio.

By default PAPI Web Service application is not enabled. To enable PAPI Web Service in Studio:

1. Right-click on the project.
2. Select Engine Preferences.
3. Select Advanced.
4. Check Start PAPI Web Services.

The next time you start the engine, PAPI Web Service application is started. To verify this, launch PAPI Web
Service Console.

See Launching PAPI Web Service Console in Oracle BPM Studio on page 24

Enabling PAPI Web Service in Oracle BPM Enterprise
The following procedures show you how to enable PAPI Web Service in Oracle BPM Enterprise.

To enable PAPI Web Service:

Oracle BPM | Oracle BPM PAPI Web Service | 21

1. Launch Oracle BPM Admin Center.
2. Click Configuration.
3. Select BPMWeb Applications tab.
4. Select PAPI Web Services check-box in the list of BPM web applications to run.

The next time you start the engine, PAPI Web Service application is started. To verify this, launch PAPI Web
Service Console.

See Launching PAPI Web Service Console in Oracle BPM Enterprise on page 24.

Installing PAPI Web Service on a J2EE Application Server
To install PAPI Web Service when the Process Execution Engine is running on a J2EE application server, you
have to follow the procedures that describe how to install an Oracle BPM web application on that specific
server. This section shows the procedures for WebLogic Application Sever and WebSphere Application
Server.

Installing PAPI Web Service on WebLogic Server
The following procedures show you how to install PAPI Web Service on WebLogic Server

1. Build PAPI Web Service Application.
For information on how to build a web application on WebLogic Server, see steps 1 to 4 from Build and
Deploy Applications (.ear) on page 22.
This generates two ear files, that correspond to the two supported versions of WebLogic.

2. Choose the ear file that corresponds to the version of the WebLogic Server you are using.

The following table shows the correspondence between the version ofWebLogic Server and the generated
ear file.

ear FileWebLogic Server Version

07-papiws-XAFDIDS.earWebLogic Server 10

07-papiws-wls92-XAFDIDS.earWebLogic Server 9.2

3. Deploy PAPI Web Service Application.
For information on how to deploy a web application onWebLogic Sever, see step 5 from Build and Deploy
Applications (.ear) on page 22.

Build and Deploy Applications (.ear)
The Oracle BPM Process Administrator allows you to bundle the Oracle BPM applications as .ear files for
installation on WebLogic.

Before creating the Oracle BPM application archives, you must have an Oracle BPM Engine for WebLogic
configured.

1. Login to Oracle BPM Process Administrator. By default, it runs on http://host:8686/webconsole.
2. Click on Engines and then click on the name of your Oracle BPM Engine for WebLogic.

You should see the configuration properties for your Engine.
3. Click on the Basic Configuration tab and then on J2EE Application Server Files.

This page allows you to re-create the .ear files of those Oracle BPM applications associated with this
Engine.

Note: When you access this page, the Process Administrator gets the status of each of the applications
by contacting Oracle BPMDeployer. You receive a warning message at the bottom of the page if there
is a problem contacting Oracle BPM Deployer. If this is the case, make sure the BPM Application

22 | Oracle BPM | Oracle BPM PAPI Web Service

Deployer URL (within the Application Server tab) is correct and that Oracle BPM Deployer is up
and running on WebLogic.

4. Click on the "new" icon () next to each of the applications you want to install.
5. Click on the "install" icon () next to each of the applications you want to install.

Attention: This may take several minutes. Do not click any link on the page or click the back button
in your browser until the page is automatically reloaded. When you click on the icon, Oracle BPM
ProcessAdministrator transfers the file over toWebLogic'sDeploymentManager (bymeans ofOracle
BPM Deployer) and then WebLogic goes through the application installation process.

Installing PAPI Web Service on WebSphere Application Server
The following procedures show you how to install PAPI Web Service on WebSphere Application Server.

To install PAPI Web Service on WebSphere Application Server:

1. Build and deploy PAPI Web Service application.
For information on how to build and deploy Oracle BPM applications onWebSphere Application Server,
see "WAS Basic Configuration, Deploy Oracle BPM Apps in WebSphere" in Oracle BPM Configuration Guide,
WebSphere Edition .

2. Open WebSphere Console.
3. Choose Applications ➤ Enterprise Applications .
4. Click 07-papiws-FDIDS.ear link.
5. Select Class loading and update detection.
6. Select Classes loaded with application class loader first.
7. SelectSingle class loader for application.
8. ClickOK.

If you do not enter a value in the field labeled Polling interval for updated files an errormessage appears.
A message asking you to confirm your changes appears.

9. ClickSave.
10. Restart the server.

The next time you start the server, PAPI Web Service application starts. To verify this, launch PAPI Web
Service Console.

PAPI Web Service Configuration
You can configure PAPI Web Service by modifying a set of properties either by using the provided user
interface or by editing the file where these properties are stored.This section shows you how to modify PAPI
Web Service configuration in Oracle BPM Studio and Enterprise.

PAPI Web Service Configuration Console
PAPI Web Service provides a console where you can view its configuration properties and other useful
information such as the endpoint and the WSDL URLs.

PAPI Web Service console is available in Oracle BPM Enterprise and Studio. The console enables you to edit
the PAPI Web Service configuration.

The information displayed in the PAPI Web Service console comprises the following:

Oracle BPM | Oracle BPM PAPI Web Service | 23

http://download.oracle.com/docs/cd/E13154_01/bpm/docs65/config_guide/index.html?t=modules/enterprise/jee/t_Creating_App_EAR.html
http://download.oracle.com/docs/cd/E13154_01/bpm/docs65/config_guide/index.html?t=modules/enterprise/jee/t_Creating_App_EAR.html

• Style: shows the format that the WSDL defines for the SOAP messages sent between the web service and
the client. PAPI Web Service uses document/literal wrapped format. You cannot change this style.

• SSO: shows if Single Sign On authentication is enabled.
• WS-Security Username Toke Profile Authentication: shows if Username Token Profile authentication is

enabled.
• HTTP Basic Authentication: shows if HTTP Basic authentication is enabled.
• PRESET Authentication: shows if PRESET authentication is enabled. This type of authentication is valid

only for Oracle BPM Enterprise. In Oracle BPM Studio the value of this property is always false, and it
cannot be changed.

• Endpoint: shows the URL of PAPI Web Service endpoint.
• WSDL: shows the URL where PAPI Web Service WSDL is published. Most web services stacks include a

tool to automatically generate stubs based on aWSDL. You need to provide this tool with theWSDLURL
displayed here.

Launching PAPI Web Service Console in Oracle BPM Studio
The following procedure shows you how to launch PAPI Web Service console in Oracle BPM Studio.

To launch PAPI Web Service console:

1. Enable PAPI Web Service in an already existing project.
See Enabling PAPI Web Service in Oracle BPM Studio on page 21.

2. Start the Process Engine.
3. Choose Run ➤ Launch PAPI Web Services.

The default browser opens showing Oracle BPMWeb Service console.

Launching PAPI Web Service Console in Oracle BPM Enterprise
The following procedure shows you how to launch PAPI Web Service console in Oracle BPM Enterprise.

1. Start Oracle BPM Admin Center.
2. Enable PAPI Web Service.

See Enabling PAPI Web Service in Oracle BPM Enterprise on page 21

3. Click Start BPMWeb Applications.
4. Click Launch PAPI Web Services Console.

The default browser opens showing Oracle BPMWeb Service console.

Editing PAPI Web Service Configuration
This section shows you how to change PAPI Web Service configuration in Studio and in Enterprise.

The way of editing PAPI Web Service configuration varies between both types of installation.

In an Enterprise installation PAPI Web Service's configuration is stored in the papiws.properties file,
located under <ORABPM_HOME>/webapps/papiws/WEB-INF. This file contains additional advanced
properties that you can use to tune PAPI Web Service performance. Each property has a comment that
describes their function.

Editing PAPI Web Service Configuration in Studio
The following procedure shows you how to edit PAPI Web Service configuration in Studio.

To edit PAPI Web Service configuration:

1. Launch PAPI Web Service console
See Launching PAPI Web Service Console in Oracle BPM Studio on page 24.

24 | Oracle BPM | Oracle BPM PAPI Web Service

2. Click Change configuration.
The displayed properties become editable and a Save changes button appears next to the Change
configuration button.

3. Modify the values of the properties you need to change.
4. Click Save changes.

A message informing changes were successfully applied appears.
5. Restart the engine to apply changes.

Launch PAPI Web Service console to verify your changes were applied.

Editing PAPI Web Service Configuration in Oracle BPM Enterprise
The following procedures showyou how to edit PAPIWeb Service configuration in anOracle BPMEnterprise.

To edit PAPI Web Service configuration:

1. Start Oracle BPM Admin Center.
2. Modify the values of the properties you need to change.
3. ClickOK.
4. Click Start BPMWeb Applications to apply the changes.

Click Launch PAPI Web Services Console to verify your changes were applied.

Configuring PAPI Web Service Log
PAPIWeb Service keeps a log of the performed operations that can be used for troubleshooting. The following
procedure shows you how to configure the directory where log files are stored, and the severity levels to
which you can filter the logged messages.

To enable the log for PAPI Web Service application:

1. Start Oracle BPM Admin Center.
2. Click Configuration.
3. Select PAPI Web Services tab.
4. Enter the complete path of the directory where you want to save PAPIWeb Service logs in the Log Folder

field, or click Browse... and select the directory.
5. Select a severity level from the Log Message Severity Level drop-down list.

The available severity levels are:

• Debug
• Info
• Warning
• Severe
• Fatal

For more information about severity levels, see Log Severity Levels on page 25.

The next time you start PAPI Web Service the changes made to the log configuration are applied.

Log Severity Levels
Oracle BPM allows you to define logging levels to specify the level of detail of the information stored in the
Oracle BPM logs.

DescriptionLog Level

Specifies a serious error that may cause the application to fail.Fatal

Oracle BPM | Oracle BPM PAPI Web Service | 25

DescriptionLog Level

Specifies a serious error that may or may not cause the application to
fail.

Severe

Specifies a potentially harmful situation but generally does not pose a
threat to the stability of an application.

Warning

Specifies informational messages that highlight the progress of the
application at a high level. These can include:

Info

• Changes in the engine state, including: start, stop, and restart.
• Changes in state of engine services.
• Changes in engine properties.
• Changes in the state of a process deployed on the engine, including:

startup, deployment, redeployment, and deprecation.
• Actions of participants
• Work executed by the engine automatically.

Specifies informational messages that highlight the process instances
at a lower level. These can include:

Debug

• Tracing a process instance, including: instance creation, changing
activities, routing, and locks.

• Changes in the state of an instance, including: running, selection,
activity completion, and exceptions.

• Actions on a process, including: executing a task, executing an
activity, and executing a ToDo Item.

PAPI Web Service Security Authentication
This section describes the different types of authentication mechanisms that PAPI Web Service supports.

PAPI Web Service supports the following types of authentication:

• Custom Single Sign On (SSO) authentication
• UsernameToken Profile 1.1 (Plain-text)
• HTTP Basic authentication
• PRESET authentication

You can independently enable or disable any of these authentication mechanisms.

Note: By default, Username Token Profile authentication is selected. You must select at least one
authentication method to provide PAPI Web Service the necessary information to authenticate against
the engine.

When PAPI Web Service starts running, it activates the authentication providers that correspond to the
enabled authentication mechanisms.

Every time a client makes a request to PAPI Web Service, this request goes through an authentication phase
before reaching the service endpoint. During this phase the activated authentication providers will be called
in the order they appear in the preceding list. When one of these providers successfully authenticates the
request, the application grants access to theweb service. If all the activated providers reject access, the request
is rejected.

26 | Oracle BPM | Oracle BPM PAPI Web Service

Developing a Custom Sign On Implementation
Papi Web Service can use a custom Single Sign On (SSO) implementation to authenticate the client. The
following procedures show you how to develop a custom SSO implementation for PAPI Web Service.

To compile the class containing your custom SSO implementation you need to have a Java SE Development
Kit 5 (JDK 5) installed. You can download the JDK from Sun Developer Network.

To configure SSO Authentication:

Implement the interfacefuego.sso.SSOUserLoginInterface.
a) Add the file fuego.core.jar to the CLASSPATH.

This file resides in <ORABPM_HOME>/lib.
b) Create a Java class that implements the interface fuego.sso.SSOUserLoginInterface.

This class should contain your custom SSO implementation.
c) Compile the class created in the previous step.

Configuring Custom Single Sign-On Authentication
The following procedure shows you how to configure your web application to use a Custom Single Sign-On
implementation.

The following procedure assumes that you have developed and compiled a class that implements the
corresponding SSO interface.

To configure your web application to use your custom Single Sign-On implementation:

1. Copy the compiled class that contains your SSO implementation to the WEB-INF/lib directory of the
web application.
This directory is located under <ORABPM_HOME>/webapps/<Web_Application_Name>.

2. Edit the web application configuration and select the SSO option.
3. Enter the fully qualified name of the class containing the SSO implementation.

The next time you start the web application, SSO authentication is activated.

Configuring Username Token Profile
PAPI Web Service can use Web Services Security Username Token Profile to authenticate the client. The
following procedures show you how to configure Username Token Profile for PAPI Web Service.

To configure Username Token Profile authentication:

• Edit PAPI Web Service configuration and select the Username Token Profile authentication option.
See Editing PAPI Web Service Configuration on page 24.
The next time you start PAPIWeb Service application, Username Token Profile authentication is activated.

• Configure your web services client to send the Username Token SOAP header when it authenticates
against PAPI Web Service.
The way of doing this depends on the programming language and the stack used to code your client.

For example, for a client using Java JAX-WS stack you need to add the following method, and invoke it
before executing any operation.

import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPFactory;
import com.sun.xml.ws.api.message.Header;

Oracle BPM | Oracle BPM PAPI Web Service | 27

http://java.sun.com/javase/downloads/index_jdk5.jsp

import com.sun.xml.ws.api.message.Headers;
import com.sun.xml.ws.developer.WSBindingProvider;

//...

 private static final String SECURITY_NAMESPACE =
"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd";

//...

private static void addUserNameTokenProfile(PapiWebService papiWebServicePort)

 throws SOAPException {
 SOAPFactory soapFactory = SOAPFactory.newInstance();
 QName securityQName = new QName(SECURITY_NAMESPACE, "Security");
 SOAPElement security = soapFactory.createElement(securityQName);
 QName tokenQName = new QName(SECURITY_NAMESPACE, "UsernameToken");
 SOAPElement token = soapFactory.createElement(tokenQName);
 QName userQName = new QName(SECURITY_NAMESPACE, "Username");
 SOAPElement username = soapFactory.createElement(userQName);
 username.addTextNode("test");
 QName passwordQName = new QName(SECURITY_NAMESPACE, "Password");
 SOAPElement password = soapFactory.createElement(passwordQName);
 password.addTextNode("test");
 token.addChildElement(username);
 token.addChildElement(password);
 security.addChildElement(token);
 Header header = Headers.create(security);
 ((WSBindingProvider) papiWebServicePort).setOutboundHeaders(header);
}

//...

Configuring HTTP Basic Authentication
PAPI Web Service can use HTTP Basic authentication to authenticate the client. The following procedures
show you how to configure HTTP Basic authentication for PAPI Web Service.

To configure HTTP Basic authentication:

1. Edit PAPI Web Service configuration and select the HTTP Basic authentication option.
See Editing PAPI Web Service Configuration on page 24
The next time you start PAPI Web Service application, HTTP Basic authentication is activated.

2. Configure your web services client to use HTTP Basic authentication when it authenticates against PAPI
Web Service.
The way of doing this depends on the programming language used to code your client.

For example, for a client using Java JAX-WS stack you need to add the following method, and invoke it
before executing any operation.

import java.util.Map;
import javax.xml.ws.BindingProvider;

//...

 private static void addHttpBasicAuthentication(PapiWebService
papiWebServicePort) {

28 | Oracle BPM | Oracle BPM PAPI Web Service

 Map<String,Object> requestContext = ((BindingProvider)
papiWebServicePort).getRequestContext();
 requestContext.put(BindingProvider.USERNAME_PROPERTY, "test");
 requestContext.put(BindingProvider.PASSWORD_PROPERTY, "test");
 }

//...

Configuring PRESET Authentication
A PRESET is a set of properties that you can define in a directory.xml file for different purposes. This
mechanism of authentication is only available for Enterprise installations. The following procedures shows
you how to configure PRESET authentication for PAPI Web Service.

To configure PRESET authentication:

1. Use the ant task managedirectory, to add a PRESET with a valid user and password to the
directory.xml file that corresponds to the PAPI Web Service web application.

The directory.xml file for PAPI Web Service web application is located under
<ORABPM_HOME>/webapps/papiws/WEB-INF. This file is a copy of the XML file named after the
Directory Configuration name located under <ORABPM_HOME>/webapps/conf.

See managedirectory ant task .

2. Edit PAPI Web Service configuration and enter the PRESET name in the field labeled "Set PRESET ID for
PRESET authentication".
See Editing PAPI Web Service Configuration on page 24

The next time you start the PAPI Web Service application, PRESET authentication is activated.

PAPI Web Service Examples
You can develop a PAPI Web Service client in different programming languages. Some languages may even
provide more than one stack to develop a web service client. This section shows examples of PAPI Web
Service clients developed in different languages and stacks.

Java JAX WS Client Example
This section shows you how to develop a Java client using the JAX WS stack. It uses the PAPI Web Service
to retrieve a list of process instances visible to the connected user.

This example contains an analysis of the code of a PAPI Web Service client developed using JAX WS. The
source code includes:

• A set of ant scripts to generate the stubs from the WSDL, compile the code and run it
• A lib directory containing the external libraries needed to code an compile the JAX-WS client

You can use this project as a basis to develop more complex examples. To do this replace the class
PapiWsJaxWsExample by the classes you develop, and change the target run in the ant script so that it
executes the new class.

A Java JAX-WS client contains two different type of classes:

• JAX-WS portable artifacts
• Client Java classes

Oracle BPM | Oracle BPM PAPI Web Service | 29

http://download.oracle.com/docs/cd/E13154_01/bpm/docs65/anttasks/fuego.tools.ant.enterprise.taskdefs.ManageDirectoryFileTask.html

JAX-WS portable artifacts

The web service client code uses these artifacts to operate with PAPI Web Service. JAX-WS provides a tool
called Wsimport to generate these classes based on the WSDL PAPI Web Service. When you run Wsimport
using PAPI Web Service WSDL as an input argument it generates the following classes:

• Service Endpoint Interface
• Service
• Exception classes
• Java classes mapped from the schema types referenced in the WSDL

This example uses Wsimport ant task to generate this artifacts. For information about Wsimport, see
https://jax-ws.dev.java.net/nonav/2.1.2/docs/wsimport.html .

Client Java Classes

APAPIWeb Service client includes one ormore Java classes that contain the code to invoke PAPIWeb Service
and operate with it. You have to code these classes yourself. The code in these classes uses JAX-WS portable
artifacts to access the web service and to operate with it.

The client shown in this example contains only one class because it is a simple example. The code in this class
performs the following actions:

• Invokes the web service
• Authenticates using Username Token Profile and HTTP authentication
• Uses JAX-WS portable artifacts to obtain the list of process instances

For a detailed analyses of this class, see JAX WS Client Main Class .

Download

You can download the set of java classes of this example from
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-JaxWs-Example.zip . For information on how
to run this example seeRunning Java JAX WS Client Example on page 35.

JAX-WS Client Main -Class
This section analyzes the main-class of the JAX-WS client example step by step.

Programming a JAX-WS Client

The typical steps you have to follow to use PAPI Web Service with JAX-WS stack are:

• Import the required libraries
• Initialize the web service client
• Configure authentication
• Operate with PAPI Web Service

Import the Required Libraries

This example uses classes formjava.net,javax.xml andcom.sun.xml.wspackages. Youhave to import
these classes to be able to use them in your code. The following code imports the classes from these packages
that are used in this example.

import java.net.MalformedURLException;
import java.net.URL;
import java.util.Map;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;

30 | Oracle BPM | Oracle BPM PAPI Web Service

https://jax-ws.dev.java.net/nonav/2.1.2/docs/wsimport.html
https://jax-ws.dev.java.net/nonav/2.1.2/docs/wsimport.html
c_Java_JAX_WS_Client_Step_by_Step.xml
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-DotNet-Example.zip
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-DotNet-Example.zip

import javax.xml.soap.SOAPFactory;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.Service;
import com.sun.xml.ws.api.message.Header;
import com.sun.xml.ws.api.message.Headers;
import com.sun.xml.ws.developer.WSBindingProvider;

You also have to import the automatically generated JAX-WS portable artifacts. It is common to call these
classes stubs.

import stubs.InstanceInfoBean;
import stubs.InstanceInfoBeanList;
import stubs.OperationException_Exception;
import stubs.PapiWebService;
import stubs.PapiWebService_Service;
import stubs.StringListBean;

Initialize the Web Service Client

To invoke PAPIWeb Service you have to create a Service object. The constructor of a service object receives
a URL object that contains the URL of the WSDL. In this example the URL of the WSDL is passed as an
argument to the main method.

public class PapiWsJaxWsExample {
 private static final String SECURITY_NAMESPACE =

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd";

 public static void main(String[] args) {
 try {
 String endPoint = args[0];
 QName qName = new QName("http://bea.com/albpm/PapiWebService",
"PapiWebService");
 Service service = PapiWebService_Service.create(new URL(endPoint),
qName);

To be able to invoke operations over PAPI Web Service you have to obtain a PapiWebService object.
PapiWebService exposes all the operations that you can invoke remotely over PAPI Web Service.

 PapiWebService papiWebServicePort =
service.getPort(PapiWebService.class);

If there is a problem accessing theWSDL endpoint theURL constructor throws aMalformedURLException,
so you need to call it inside a try-catch block.

 //... Configure Authentication
 //... Operate with PAPI Web Service
 } catch (MalformedURLException e) {
 System.out.println("Could not connect to the web service endpoint");

 e.printStackTrace();
 }
 }
}

Oracle BPM | Oracle BPM PAPI Web Service | 31

Configure Authentication

Before invoking any operation over the web service the client has to authenticate itself. This example shows
you how to use JAX-WS with Username Token Profile and HTTP Basic authentication. Usually you choose
one of these twomechanisms because PAPIWeb Service only uses the second one in case the first authentication
mechanism fails. For more information on how authentications mechanisms work in PAPI Web Service, see
PAPI Web Service Security Authentication on page 26.

The code for this authentication mechanism is divided into two methods, one for each mechanism. These
methods should be invoked before invoking any operation over the web service.

 addUsernameTokenProfile(papiWebServicePort);
 addHttpBasicAuthentication(papiWebServicePort);

The method addUsernameTokenProfile() configures Username Token Profile authentication. Some of
the operations performed in thismethod throw aSOAPException, so you need to call them inside a try-catch
block.

This example adds the header programmatically but you can also configure Username Token Profile using
Web Services Interoperability Technologies (WSIT) from Metro Web Services stack. For information about
WSIT, seehttp://wsit.dev.java.

 private static void addUsernameTokenProfile(PapiWebService papiWebServicePort)

 throws SOAPException {
 try {
 SOAPFactory soapFactory = SOAPFactory.newInstance();
 QName securityQName = new QName(SECURITY_NAMESPACE, "Security");
 SOAPElement security = soapFactory.createElement(securityQName);
 QName tokenQName = new QName(SECURITY_NAMESPACE, "UsernameToken");
 SOAPElement token = soapFactory.createElement(tokenQName);
 QName userQName = new QName(SECURITY_NAMESPACE, "Username");
 SOAPElement username = soapFactory.createElement(userQName);
 username.addTextNode("test");
 QName passwordQName = new QName(SECURITY_NAMESPACE, "Password");
 SOAPElement password = soapFactory.createElement(passwordQName);
 password.addTextNode("test");
 token.addChildElement(username);
 token.addChildElement(password);
 security.addChildElement(token);
 Header header = Headers.create(security);
 ((WSBindingProvider) papiWebServicePort).setOutboundHeaders(header);

 } catch (SOAPException e) {
 System.out.println("Could not configure Username Token Profile
authentication");
 e.printStackTrace();
 }
 }

The method addHttpBasicAuthentication() configures HTTP Basic authentication by obtaining the
request context and adding it the username and password properties.

 private static void addHttpBasicAuthentication(PapiWebService
papiWebServicePort) {
 Map<String, Object> request =
 ((BindingProvider) papiWebServicePort).getRequestContext();
 request.put(BindingProvider.USERNAME_PROPERTY, "test");
 request.put(BindingProvider.PASSWORD_PROPERTY, "test");

32 | Oracle BPM | Oracle BPM PAPI Web Service

http://wsit.dev.java.net

 }

Operate with PAPI Web Service

Once PAPI Web Service successfully authenticates the client, the client is ready to perform operations over
the web service.

The following code retrieves a list of available processes by invoking themethod processesGetIds() over
a PapiWebService object. It then iterates over them using those ids to obtain the instances for each process
by invoking themethod processGetInstances() over the PapiWebService object.If there is a problem
performing any of the requested operations, this method throws an OperationException, so you need to
invoke it inside a try-catch block. Finally it iterates over those instances invoking the method getId() and
prints its result.

 try {
 StringListBean processIds =
papiWebServicePort.processesGetIds(true);
 for (String processId : processIds.getStrings()) {
 System.out.println("\nProcess: " + processId);
 InstanceInfoBeanList instances =
 papiWebServicePort.processGetInstances(processId);
 for (InstanceInfoBean instance : instances.getInstances())
 {
 System.out.println("-> " + instance.getId());
 }
 }
 } catch (OperationException_Exception e) {
 System.out.println("Could not perform the requested
operation");
 e.printStackTrace();
 }

Complete Code Example

The following class contains all the steps described in this section.

package example;

import java.net.MalformedURLException;
import java.net.URL;
import java.util.Map;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPFactory;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.Service;
import com.sun.xml.ws.api.message.Header;
import com.sun.xml.ws.api.message.Headers;
import com.sun.xml.ws.developer.WSBindingProvider;
import stubs.InstanceInfoBean;
import stubs.InstanceInfoBeanList;
import stubs.OperationException_Exception;
import stubs.PapiWebService;
import stubs.PapiWebService_Service;
import stubs.StringListBean;

public class PapiWsJaxWsExample {

Oracle BPM | Oracle BPM PAPI Web Service | 33

 private static final String SECURITY_NAMESPACE =

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd";

 public static void main(String[] args) {

 try {
 /////////////////// Initialize the web service client
///////////////////
 String endPoint = args[0];
 QName qName = new QName("http://bea.com/albpm/PapiWebService",
"PapiWebService");
 Service service = PapiWebService_Service.create(new URL(endPoint),
qName);
 PapiWebService papiWebServicePort =
service.getPort(PapiWebService.class);

 /////////////////// Configure authentication ///////////////////
 addUsernameTokenProfile(papiWebServicePort);
 addHttpBasicAuthentication(papiWebServicePort);

 /////////////////// Operate with PAPI Web Service ///////////////////

 try {
 StringListBean processIds =
papiWebServicePort.processesGetIds(true);
 for (String processId : processIds.getStrings()) {
 System.out.println("\nProcess: " + processId);
 InstanceInfoBeanList instances =
papiWebServicePort.processGetInstances(processId);
 for (InstanceInfoBean instance : instances.getInstances())
{
 System.out.println("-> " + instance.getId());
 }
 }
 } catch (OperationException_Exception e) {
 System.out.println("Could not perform the requested operation");

 e.printStackTrace();
 }
 } catch (MalformedURLException e) {
 System.out.println("Could not connect to the web service endpoint");

 e.printStackTrace();
 }
 }

 private static void addHttpBasicAuthentication(PapiWebService
papiWebServicePort) {
 Map<String, Object> request =
 ((BindingProvider) papiWebServicePort).getRequestContext();
 request.put(BindingProvider.USERNAME_PROPERTY, "test");
 request.put(BindingProvider.PASSWORD_PROPERTY, "test");
 }

 private static void addUsernameTokenProfile(PapiWebService papiWebServicePort)
 {
 try {
 SOAPFactory soapFactory = SOAPFactory.newInstance();
 QName securityQName = new QName(SECURITY_NAMESPACE, "Security");
 SOAPElement security = soapFactory.createElement(securityQName);
 QName tokenQName = new QName(SECURITY_NAMESPACE, "UsernameToken");
 SOAPElement token = soapFactory.createElement(tokenQName);

34 | Oracle BPM | Oracle BPM PAPI Web Service

 QName userQName = new QName(SECURITY_NAMESPACE, "Username");
 SOAPElement username = soapFactory.createElement(userQName);
 username.addTextNode("test");
 QName passwordQName = new QName(SECURITY_NAMESPACE, "Password");
 SOAPElement password = soapFactory.createElement(passwordQName);
 password.addTextNode("test");
 token.addChildElement(username);
 token.addChildElement(password);
 security.addChildElement(token);
 Header header = Headers.create(security);
 ((WSBindingProvider) papiWebServicePort).setOutboundHeaders(header);

 } catch (SOAPException e) {
 System.out.println("Could not configure Username Token Profile
authentication");
 e.printStackTrace();
 }
 }
}

Running Java JAX WS Client Example
The example contains all the necessary libraries to generate the stubs, compile and run it. These libraries are
contained in the directory lib. It also contains an ant script that contains all the necessary configurations to
compile, and run the client.

To run the example you need to install Ant. You can download it from http://ant.apache.org/bindownload.cgi

To run this example:

1. Enable PAPI Web Service for an already existing project.
See Enabling PAPI Web Service on page 21.

2. Locate example file included with your Oracle BPM installation at
<ORABPM_HOME>/samples/integration/BPM-PapiWs-JaxWs-Example.zip.

3. Unzip the file. This will generate a directory named ALBPM-PapiWs-JaxWs-Example.
4. Open a command-line session.
5. Change to the generated directory.

For example: cd ALBPM-PapiWs-JaxWs-Example.
6. Type ant run.

Executing this task generates the stubs the client code needs to run, using the ant task JAX WS provides
for this purpose, and compiles the classes used in the example before running them.

7. Enter PAPI Web Service's endpoint.
You can copy this from the link displayed next to WSDL in the Web Services Console. For information
on how to launch the Web Services Console see PAPI Web Service Configuration Console on page 23.

After executing this procedure the example program runs. You will see a list of the processes deployed in
the running process engine and below them a list of all the in-flight instances in each process.

PAPI Web Service .NET Client Example
This section shows an example of a client developed with .NET Framework. This example uses PAPI Web
Service to retrieve a list of process instances visible to the connected user.

Oracle BPM | Oracle BPM PAPI Web Service | 35

http://ant.apache.org/bindownload.cgi

Download

You can download the complete code of this example from
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-DotNet-Example.zip . This project was
developed using .NET Framework 2.0.5 and Microsoft Web Service Enhancements 3.0.

The syntax used for this example is C#.

.NET Client Main-Class
This section analyzes the main-class of the .NET client example step by step.

Programming a .NET Client

The typical steps you have to follow to use PAPI Web Service with JAX-WS stack are:

• Import the required libraries
• Initialize the web service
• Configure authentication
• Operate with PAPI Web Service

Import the Required Libraries

This example uses classes from System.Web.Services.Protocols and System.Net packages. You
have to import these classes to be able to use them in your code. The following code imports the classes from
these packages that are used in this example.

using System.Web.Services.Protocols;
using System.Net;

The following code imports the classes that the client needs to perform authentication.

using Microsoft.Web.Services3.Security.Tokens;
using Microsoft.Web.Services3.Design;

You also have to import the automatically generated stubs. In the example project these classeswere generated
in the package PAPI_WS2_Sample.papiws.

using PAPI_WS2_Sample.papiws;

Initialize the Web Service

The following code instantiates aweb service proxy. This proxywill provide access to the operations exposed
by PAPI Web Service.

papiws.PapiWebServiceWse proxy = new papiws.PapiWebServiceWse();

Configure Authentication

Before invoking any operation over the web service the client has to authenticate. This example uses plain
text Username Token Profile authentication. The authentication mechanism has to match the one you define
in WSE 3 policy settings.

36 | Oracle BPM | Oracle BPM PAPI Web Service

http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-DotNet-Example.zip
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-DotNet-Example.zip

The following code creates a username token and sets it as the client credentials. Then it it sets the client
security policy by passing the id of this policy as an argument, to the method SetPolicy().

UsernameToken token = new UsernameToken("test", "test",
PasswordOption.SendPlainText);
proxy.SetClientCredential<UsernameToken>(token);
proxy.SetPolicy("ALBPM_Policy");

Operate with PAPI Web Service

The following code retrieves a list of available processes by invoking the method processesGetIds over
a PapiWebServiceWse object. It then iterates over them using those ids to obtain the instances for each
process by invoking the method processGetInstances() over the PapiWebServiceWse object.If there
is a problem performing any of the requested operations, this method throws a SoapException, so you
need to invoke it inside a try-catch block. It is a goodpractice towrap this exception in a user-defined exception.
Finally, it iterates over those instances invoking the method getId() and prints its result.

try {
 //...
 foreach (string processId in processIds)
 {
 Console.Out.WriteLine("\n Process: " + processId);
 instanceInfoBean[] instances = proxy.processGetInstances(processId);
 foreach (instanceInfoBean instance in instances)
 {
 Console.Out.WriteLine(" -> " + instance.id);
 }
 }

}
catch (SoapException e)
{
 OperationException oe = new OperationException(e.Message);
 throw oe;
}

Complete Code Example

The following class is the main class of the .NET PAPI Web Service client example.

using System;
using System.Collections.Generic;
using System.Text;
using System.Web.Services.Protocols;
using System.Net;
using PAPI_WS2_Sample.papiws;

using Microsoft.Web.Services3.Security.Tokens;
using Microsoft.Web.Services3.Design;

namespace PAPI_WS2_Sample
{
 class Program
 {
 static void Main(string[] args)
 {
 //Set a custom handler for unhandled exceptions (optional)
 AppDomain.CurrentDomain.UnhandledException +=

Oracle BPM | Oracle BPM PAPI Web Service | 37

Program.UnhandledExceptionHandler;

 try
 {
 /////////////////// Initialize the web service client
///////////////////
 papiws.PapiWebServiceWse proxy = new papiws.PapiWebServiceWse();

 /////////////////// Configure authentication ///////////////////

 UsernameToken token = new UsernameToken("test", "test",
PasswordOption.SendPlainText);
 proxy.SetClientCredential<UsernameToken>(token);
 proxy.SetPolicy("ALBPM_Policy");

 //set timeout and encoding
 proxy.Timeout = 60000;
 proxy.RequestEncoding = Encoding.UTF8;

 /////////////////// Operate with PAPI Web Service
///////////////////
 string[] processIds = proxy.processesGetIds(false);

 foreach (string processId in processIds)
 {
 Console.Out.WriteLine("\n Process: " + processId);
 instanceInfoBean[] instances =
proxy.processGetInstances(processId);
 foreach (instanceInfoBean instance in instances)
 {
 Console.Out.WriteLine(" -> " + instance.id);
 }
 }

 }
 catch (SoapException e)
 {
 OperationException oe = new OperationException(e.Message);
 throw oe;
 }

 }

 static public void UnhandledExceptionHandler(object sender,
UnhandledExceptionEventArgs e)
 {

 Console.Error.WriteLine("Unhandled Exception: \n" +
e.ExceptionObject.ToString());
 Environment.Exit(-1);
 }
 }

 public class OperationException : Exception
 {
 public OperationException(String message) : base(message)
 {
 }
 }
}

38 | Oracle BPM | Oracle BPM PAPI Web Service

	Contents
	Oracle BPM Process API (PAPI)
	Oracle BPM Process API (PAPI)
	PAPI Overview
	Process API Usage Scenarios
	Process API Architecture Overview
	Structure of a Java PAPI Application
	Writing Your First Java PAPI Program
	Compiling a Java PAPI Program
	Running a Java PAPI Program
	Connecting to an Engine Running in Studio
	Configuring the Log of a PAPI Client
	PAPI Client Log Properties
	Log Severity Levels

	Running a PAPI Client in a J2EE Distributed Environment
	Configuring JNDI for a Single J2EE Process Execution Engine
	Configuring JNDI for Multiple J2EE Engines

	Oracle BPM PAPI Web Service
	PAPI Web Service Overview
	What's New in PAPI Web Service 2.0?
	PAPI Web Service Usage Scenarios
	PAPI Web Service Architecture Overview
	Enabling PAPI Web Service
	Enabling PAPI Web Service in Oracle BPM Studio
	Enabling PAPI Web Service in Oracle BPM Enterprise
	Installing PAPI Web Service on a J2EE Application Server
	Installing PAPI Web Service on WebLogic Server
	Build and Deploy Applications (.ear)
	Installing PAPI Web Service on WebSphere Application Server

	PAPI Web Service Configuration
	PAPI Web Service Configuration Console
	Launching PAPI Web Service Console in Oracle BPM Studio
	Launching PAPI Web Service Console in Oracle BPM Enterprise

	Editing PAPI Web Service Configuration
	Editing PAPI Web Service Configuration in Studio
	Editing PAPI Web Service Configuration in Oracle BPM Enterprise

	Configuring PAPI Web Service Log
	Log Severity Levels

	PAPI Web Service Security Authentication
	Developing a Custom Sign On Implementation
	Configuring Custom Single Sign-On Authentication
	Configuring Username Token Profile
	Configuring HTTP Basic Authentication
	Configuring PRESET Authentication

	PAPI Web Service Examples
	Java JAX WS Client Example
	JAX-WS Client Main -Class
	Running Java JAX WS Client Example
	PAPI Web Service .NET Client Example
	.NET Client Main-Class

