
Oracle® WebLogic Server
Getting Started With WebLogic Web Services Using JAX-WS

10g Release 3 (10.3)

July 2008

Oracle WebLogic Server Getting Started With WebLogic Web Services Using JAX-WS, 10g Release 3 (10.3)

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Programming WebLogic Web Services Using JAX-WS iii

Contents

1. Introduction

2. Use Cases and Examples
Creating a Simple HelloWorld Web Service . 2-1

Creating a Web Service With User-Defined Data Types . 2-7

Creating a Web Service from a WSDL File . 2-16

Invoking a Web Service from a Stand-alone Java Client . 2-25

Invoking a Web Service from a WebLogic Web Service . 2-30

3. Developing WebLogic Web Services
Overview of the WebLogic Web Service Programming Model . 3-2

Developing WebLogic Web Services Starting From Java: Main Steps 3-2

Developing WebLogic Web Services Starting From a WSDL File: Main Steps 3-4

Creating the Basic Ant build.xml File . 3-6

Running the jwsc WebLogic Web Services Ant Task . 3-7

Examples of Using jwsc . 3-8

Advanced Uses of jwsc. 3-10

Running the wsdlc WebLogic Web Services Ant Task . 3-10

Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc 3-13

Deploying and Undeploying WebLogic Web Services . 3-14

Using the wldeploy Ant Task to Deploy Web Services . 3-15

Using the Administration Console to Deploy Web Services 3-17

Browsing to the WSDL of the Web Service . 3-17

iv Programming WebLogic Web Services Using JAX-WS

Configuring the Server Address Specified in the Dynamic WSDL 3-18

Testing the Web Service . 3-20

Integrating Web Services Into the WebLogic Split Development Directory Environment . .
3-21

4. Programming the JWS File
Overview of JWS Files and JWS Annotations . 4-2

Java Requirements for a JWS File. 4-2

Programming the JWS File: Typical Steps . 4-3

Example of a JWS File . 4-5

Specifying that the JWS File Implements a Web Service (@WebService Annotation). .
4-6

Specifying the Mapping of the Web Service to the SOAP Message Protocol
(@SOAPBinding Annotation) . 4-6

Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod and
@OneWay Annotations) . 4-7

Customizing the Mapping Between Operation Parameters and WSDL Elements
(@WebParam Annotation) . 4-8

Customizing the Mapping Between the Operation Return Value and a WSDL Element
(@WebResult Annotation) . 4-9

Specifying the Binding to Use for an Endpoint (@BindingType Annotation) 4-10

Accessing Runtime Information About a Web Service. 4-11

Accessing the Protocol Binding Context . 4-11

Accessing the Web Service Context . 4-14

Using the MessageContext Property Values. 4-16

Should You Implement a Stateless Session EJB? . 4-18

Programming the User-Defined Java Data Type. 4-20

Invoking Another Web Service from the JWS File. 4-22

Using SOAP 1.2. 4-22

Programming WebLogic Web Services Using JAX-WS v

Validating the XML Schema . 4-24

Enabling Schema Validation on the Server. 4-24

Enabling Schema Validation on the Client . 4-24

JWS Programming Best Practices . 4-25

5. Using JAXB Data Binding
Overview of Data Binding Using JAXB . 5-1

Developing the JAXB Data Binding Artifacts. 5-3

Standard Data Type Mapping . 5-4

Supported Built-In Data Types . 5-5

Supported User-Defined Data Types . 5-10

Customizing Java-to-XML Schema Mapping Using JAXB Annotations 5-13

Example of JAXB Annotations . 5-14

Specifying Default Serialization of Fields and Properties (@XmlAccessorType
Annotation) . 5-15

Mapping Properties to Local Elements (@XmlElement) . 5-15

Specifying the MIME Type (@XmlMimeType Annotation) 5-16

Mapping a Top-level Class to a Global Element (@XmlRootElement). 5-16

Binding a Set of Classes (@XmlSeeAlso) . 5-17

Mapping a Value Class to a Schema Type (@XmlType) . 5-17

Customizing XML Schema-to-Java Mapping Using Binding Declarations 5-18

Creating an External Binding Declarations File . 5-21

Embedding Binding Declarations . 5-23

JAX-WS Custom Binding Declarations . 5-24

JAXB Custom Binding Declarations . 5-30

6. Invoking Web Services
Overview of Web Services Invocation . 6-1

Invoking a Web Service from a Stand-alone Client: Main Steps 6-2

vi Programming WebLogic Web Services Using JAX-WS

Using the clientgen Ant Task To Generate Client Artifacts . 6-3

Getting Information About a Web Service . 6-5

Writing the Java Client Application Code to Invoke a Web Service 6-6

Compiling and Running the Client Application. 6-7

Sample Ant Build File for a Stand-Alone Java Client . 6-9

Invoking a Web Service from Another Web Service . 6-10

Sample build.xml File for a Web Service Client . 6-12

Sample JWS File That Invokes a Web Service . 6-14

Defining a Web Service Reference Using the @WebServiceRef Annotation 6-15

Using a Stand-Alone Client JAR File When Invoking Web Services. 6-17

Client Considerations When Redeploying a Web Service . 6-18

7. Administering Web Services
Overview of WebLogic Web Services Administration Tasks. 7-1

Administration Tools . 7-2

Using the Administration Console. 7-3

Invoking the Administration Console . 7-4

How Web Services Are Displayed In the Administration Console 7-5

Creating a Web Services Security Configuration . 7-6

Using the WebLogic Scripting Tool . 7-7

Using WebLogic Ant Tasks. 7-7

Using the Java Management Extensions (JMX) . 7-8

Using the Java EE Deployment API . 7-9

Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads
7-9

8. Migrating JAX-RPC Web Services and Clients to JAX-WS
Setting the Final Context Root of a WebLogic Web Service . 8-2

Using WebLogic-specific Annotations . 8-2

Generating a WSDL File . 8-2

Programming WebLogic Web Services Using JAX-WS vii

Using JAXB Custom Types . 8-3

Using EJB 3.0 . 8-3

Migrating from RPC Style SOAP Binding . 8-3

Updating SOAP Message Handlers . 8-3

Invoking JAX-WS Clients . 8-3

viii Programming WebLogic Web Services Using JAX-WS

Getting Started With WebLogic Web Services Using JAX-WS 1-1

C H A P T E R 1

Introduction

This document describes how to program WebLogic Web Services using Java API for
XML-based Web Services (JAX-WS). JAX-WS is a standards-based API for coding,
assembling, and deploying Java Web Services.

JAX-WS is designed to take the place of JAX-RPC in Web services and Web applications. To
compare the features that are supported for JAX-WS and JAX-RPC, see “How Do I Choose
Between JAX-WS and JAX-RPC?” in Introducing WebLogic Web Services. For information
about migrating a JAX-RPC Web Service to JAX-WS, see “Migrating JAX-RPC Web Services
and Clients to JAX-WS” on page 8-1.

The following table summarizes the contents of this guide.

Table 1-1 Content Summary

This section . . . Describes how to . . .

Use Cases and Examples Run common use cases and examples.

Developing WebLogic
Web Services

Develop Web Services using the WebLogic development
environment.

Programming the JWS File Program the JWS file that implements your Web Service.

Using JAXB Data Binding Use the Java Architecture for XML Binding (JAXB) data binding.

Invoking Web Services Invoke your Web Service from a stand-alone client or another Web
Service.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_intro/overview.html#choose
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_intro/overview.html#choose

1-2 Getting Started With WebLogic Web Services Using JAX-WS

For an overview of WebLogic Web Services, standards, samples, and related documentation, see
Introducing WebLogic Web Services.

JAX-WS supports Web Services Security (WS-Security) 1.1 (except for WS-Secure
Conversation). For information about WebLogic Web Service security, see Securing WebLogic
Web Services.

A Note About Upgrading Existing WebLogic Web Services
There are no steps required to upgrade a 10.0 WebLogic Web Service to Release 10.3; you can
redeploy a 10.0 Web Service to WebLogic Server Release 10.3 without making any changes or
recompiling it.

Administering Web
Services

Administer WebLogic Web Services using the Administration
Console.

Migrating JAX-RPC Web
Services and Clients to
JAX-WS

Migrate a JAX-RPC Web Service to JAX-WS.

Table 1-1 Content Summary (Continued)

This section . . . Describes how to . . .

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_intro/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/index.html

Getting Started With WebLogic Web Services Using JAX-WS 2-1

C H A P T E R 2

Use Cases and Examples

The following sections describe common Web Service use cases and examples:

“Creating a Simple HelloWorld Web Service” on page 2-1

“Creating a Web Service With User-Defined Data Types” on page 2-7

“Creating a Web Service from a WSDL File” on page 2-16

“Invoking a Web Service from a Stand-alone Java Client” on page 2-25

“Invoking a Web Service from a WebLogic Web Service” on page 2-30

Each use case provides step-by-step procedures for creating simple WebLogic Web Services and
invoking an operation from a deployed Web Service. The examples include basic Java code and
Ant build.xml files that you can use in your own development environment to recreate the
example, or by following the instructions to create and run the examples in an environment that
is separate from your development environment.

The use cases do not go into detail about the processes and tools used in the examples; later
chapters are referenced for more detail.

Creating a Simple HelloWorld Web Service
This section describes how to create a very simple Web Service that contains a single operation.
The Java Web Service (JWS) file that implements the Web Service uses just the one required JWS
annotation: @WebService. A JWS file is a standard Java file that uses JWS metadata annotations
to specify the shape of the Web Service. Metadata annotations were introduced with JDK 5.0, and

2-2 Getting Started With WebLogic Web Services Using JAX-WS

the set of annotations used to annotate Web Service files are called JWS annotations. WebLogic
Web Services use standard JWS annotations. For a complete list of JWS annotations that are
supported, see “Web Service Annotation Support” in WebLogic Web Services Reference.

The following example shows how to create a Web Service called HelloWorldService that
includes a single operation, sayHelloWorld. For simplicity, the operation returns the inputted
String value.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory, as follows:

 prompt> mkdir /myExamples/hello_world

3. Create a src directory under the project directory, as well as subdirectories that correspond
to the package name of the JWS file (shown later in this procedure):

 prompt> cd /myExamples/hello_world
 prompt> mkdir src/examples/webservices/hello_world

4. Create the JWS file that implements the Web Service.

Open your favorite Java IDE or text editor and create a Java file called
HelloWorldImpl.java using the Java code specified in “Sample HelloWorldImpl.java
JWS File” on page 2-4.

The sample JWS file shows a Java class called HelloWorldImpl that contains a single
public method, sayHelloWorld(String). The @WebService annotation specifies that
the Java class implements a Web Service called HelloWorldService. By default, all
public methods are exposed as operations.

5. Save the HelloWorldImpl.java file in the src/examples/webservices/hello_world
directory.

6. Create a standard Ant build.xml file in the project directory
(myExamples/hello_world/src) and add a taskdef Ant task to specify the full Java
classname of the jwsc task:

<project name="webservices-hello_world" default="all">

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#annotation_support

Creat ing a S imple He l loWor ld Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-WS 2-3

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

</project>

See “Sample Ant Build File for HelloWorldImpl.java” on page 2-5 for a full sample
build.xml file that contains additional targets from those described in this procedure,
such as clean, undeploy, client, and run. The full build.xml file also uses
properties, such as ${ear-dir}, rather than always using the hard-coded name for the
EAR directory.

7. Add the following call to the jwsc Ant task to the build.xml file, wrapped inside of the
build-service target:

 <target name="build-service">

 <jwsc
 srcdir="src"
 destdir="output/helloWorldEar">

 <jws file="examples/webservices/hello_world/HelloWorldImpl.java"

 type="JAXWS"/>

 </jwsc>

 </target>

The jwsc WebLogic Web Service Ant task generates the supporting artifacts, compiles the
user-created and generated Java code, and archives all the artifacts into an Enterprise
Application EAR file that you later deploy to WebLogic Server.

8. Execute the jwsc Ant task by specifying the build-service target at the command line:

prompt> ant build-service

See the output/helloWorldEar directory to view the files and artifacts generated by the
jwsc Ant task.

9. Start the WebLogic Server instance to which the Web Service will be deployed.

10. Deploy the Web Service, packaged in an Enterprise Application, to WebLogic Server, using
either the Administration Console or the wldeploy Ant task. In either case, you deploy the
helloWorldEar Enterprise application, located in the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="deploy">

2-4 Getting Started With WebLogic Web Services Using JAX-WS

 <wldeploy action="deploy"
 name="helloWorldEar" source="output/helloWorldEar"
 user="${wls.username}" password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />

 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port,
and wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

11. Test that the Web Service is deployed correctly by invoking its WSDL in your browser:

http://host:port/HelloWorldImpl/HelloWorldService?WSDL

You construct the URL using the default values for the contextPath and serviceUri
attributes. The default value for the contextPath is the name of the Java class in the JWS
file. The default value of the serviceURI attribute is the serviceName element of the
@WebService annotation if specified. Otherwise, the name of the JWS file, without its
extension, followed by Service. For example, if the serviceName element of the
@WebService annotation is not specified and the name of the JWS file is
HelloWorldImpl.java, then the default value of its serviceUri is
HelloWorldImplService.

These attributes will be set explicitly in the next example, “Creating a Web Service With
User-Defined Data Types” on page 2-7. Use the hostname and port relevant to your
WebLogic Server instance.

You can use the clean, build-service, undeploy, and deploy targets in the build.xml file
to iteratively update, rebuild, undeploy, and redeploy the Web Service as part of your
development process.

To run the Web Service, you need to create a client that invokes it. See “Invoking a Web Service
from a Stand-alone Java Client” on page 2-25 for an example of creating a Java client application
that invokes a Web Service.

Sample HelloWorldImpl.java JWS File
package examples.webservices.hello_world;

// Import the @WebService annotation

import javax.jws.WebService;

Creat ing a S imple He l loWor ld Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-WS 2-5

@WebService(name="HelloWorldPortType", serviceName="HelloWorldService")

/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHelloWorld
 */

public class HelloWorldImpl {
 // By default, all public methods are exposed as Web Services operation
 public String sayHelloWorld(String message) {
 try {
 System.out.println("sayHelloWorld:" + message);
 } catch (Exception ex) { ex.printStackTrace(); }

 return "Here is the message: '" + message + "'";
 }
}

Sample Ant Build File for HelloWorldImpl.java
The following build.xml file uses properties to simplify the file.

<project name="webservices-hello_world" default="all">

 <!-- set global properties for this build -->

 <property name="wls.username" value="weblogic" />

 <property name="wls.password" value="weblogic" />

 <property name="wls.hostname" value="localhost" />

 <property name="wls.port" value="7001" />

 <property name="wls.server.name" value="myserver" />

 <property name="ear.deployed.name" value="helloWorldEar" />

 <property name="example-output" value="output" />

 <property name="ear-dir" value="${example-output}/helloWorldEar" />

 <property name="clientclass-dir" value="${example-output}/clientclasses"

/>

 <path id="client.class.path">

 <pathelement path="${clientclass-dir}"/>

 <pathelement path="${java.class.path}"/>

 </path>

 <taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

2-6 Getting Started With WebLogic Web Services Using JAX-WS

 <taskdef name="clientgen"

 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <taskdef name="wldeploy"

 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="all" depends="clean,build-service,deploy,client" />

 <target name="clean" depends="undeploy">

 <delete dir="${example-output}"/>

 </target>

 <target name="build-service">

 <jwsc

 srcdir="src"

 destdir="${ear-dir}">

 <jws file="examples/webservices/hello_world/HelloWorldImpl.java"

 type="JAXWS"/>

 </jwsc>

 </target>

 <target name="deploy">

 <wldeploy action="deploy" name="${ear.deployed.name}"

 source="${ear-dir}" user="${wls.username}"

 password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}" />

 </target>

 <target name="undeploy">

 <wldeploy action="undeploy" name="${ear.deployed.name}"

 failonerror="false"

 user="${wls.username}" password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}" />

 </target>

 <target name="client">

 <clientgen

Creat ing a Web Serv i ce Wi th User-De f ined Data Types

Getting Started With WebLogic Web Services Using JAX-WS 2-7

wsdl="http://${wls.hostname}:${wls.port}/HelloWorldImpl/HelloWorldService?

WSDL"

 destDir="${clientclass-dir}"

 packageName="examples.webservices.hello_world.client"

 type="JAXWS"/>

 <javac

 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"

 includes="**/*.java"/>

 <javac

 srcdir="src" destdir="${clientclass-dir}"

 includes="examples/webservices/hello_world/client/**/*.java"/>

 </target>

 <target name="run">

 <java classname="examples.webservices.hello_world.client.Main"

 fork="true" failonerror="true" >

 <classpath refid="client.class.path"/>

 <arg

line="http://${wls.hostname}:${wls.port}/HelloWorldImpl/HelloWorldService"

/>

 </java> </target>

</project>

Creating a Web Service With User-Defined Data Types
The preceding use case uses only a simple data type, String, as the parameter and return value
of the Web Service operation. This next example shows how to create a Web Service that uses a
user-defined data type, in particular a JavaBean called BasicStruct, as both a parameter and a
return value of its operation.

There is actually very little a programmer has to do to use a user-defined data type in a Web
Service, other than to create the Java source of the data type and use it correctly in the JWS file.
The jwsc Ant task, when it encounters a user-defined data type in the JWS file, automatically
generates all the data binding artifacts needed to convert data between its XML representation
(used in the SOAP messages) and its Java representation (used in WebLogic Server).The data
binding artifacts include the XML Schema equivalent of the Java user-defined type.

2-8 Getting Started With WebLogic Web Services Using JAX-WS

The following procedure is very similar to the procedure in “Creating a Simple HelloWorld Web
Service” on page 2-1. For this reason, although the procedure does show all the needed steps, it
provides details only for those steps that differ from the simple HelloWorld example.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/complex

3. Create a src directory under the project directory, as well as subdirectories that correspond
to the package name of the JWS file (shown later in this procedure):

 prompt> cd /myExamples/complex

 prompt> mkdir src/examples/webservices/complex

4. Create the source for the BasicStruct JavaBean.

Open your favorite Java IDE or text editor and create a Java file called
BasicStruct.java, in the project directory, using the Java code specified in “Sample
BasicStruct JavaBean” on page 2-11.

5. Save the BasicStruct.java file in the src/examples/webservices/complex
subdirectory of the project directory.

6. Create the JWS file that implements the Web Service using the Java code specified in “Sample
ComplexImpl.java JWS File” on page 2-12.

The sample JWS file uses several JWS annotations: @WebMethod to specify explicitly that
a method should be exposed as a Web Service operation and to change its operation name
from the default method name echoStruct to echoComplexType; @WebParam and
@WebResult to configure the parameters and return values; and @SOAPBinding to specify
the type of Web Service. The ComplexImpl.java JWS file also imports the
examples.webservice.complex.BasicStruct class and then uses the BasicStruct
user-defined data type as both a parameter and return value of the echoStruct() method.

For more in-depth information about creating a JWS file, see Chapter 4, “Programming the
JWS File.”

Creat ing a Web Serv i ce Wi th User-De f ined Data Types

Getting Started With WebLogic Web Services Using JAX-WS 2-9

7. Save the ComplexImpl.java file in the src/examples/webservices/complex
subdirectory of the project directory.

8. Create a standard Ant build.xml file in the project directory and add a taskdef Ant task to
specify the fully Java classname of the jwsc task:

<project name="webservices-complex" default="all">

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

</project>

See “Sample Ant Build File for ComplexImpl.java JWS File” on page 2-13 for a full
sample build.xml file.

9. Add the following call to the jwsc Ant task to the build.xml file, wrapped inside of the
build-service target:

<target name="build-service">

 <jwsc

 srcdir="src"

 destdir="output/ComplexServiceEar" >

 <jws file="examples/webservices/complex/ComplexImpl.java"

 type="JAXWS">

 <WLHttpTransport

 contextPath="complex" serviceUri="ComplexService"

 portName="ComplexServicePort"/>

 </jws>

 </jwsc>

</target>

In the preceding example:

– The type attribute of the <jws> element specifies the type of Web Service (JAX-WS
or JAX-RPC).

– The <WLHttpTransport> child element of the <jws> element of the jwsc Ant task
specifies the context path and service URI sections of the URL used to invoke the Web
Service over the HTTP/S transport, as well as the name of the port in the generated
WSDL. For more information about defining the context path, see “Defining the
Context Path of a WebLogic Web Service” in WebLogic Web Services Reference.

10. Execute the jwsc Ant task:

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#how_to_determine_final_context_root
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#how_to_determine_final_context_root

2-10 Getting Started With WebLogic Web Services Using JAX-WS

prompt> ant build-service

See the output/ComplexServiceEar directory to view the files and artifacts generated by
the jwsc Ant task.

11. Start the WebLogic Server instance to which the Web Service will be deployed.

12. Deploy the Web Service, packaged in the ComplexServiceEar Enterprise Application, to
WebLogic Server, using either the Administration Console or the wldeploy Ant task. For
example:

 prompt> ant deploy

13. Deploy the Web Service, packaged in an Enterprise Application, to WebLogic Server, using
either the Administration Console or the wldeploy Ant task. In either case, you deploy the
ComplexServiceEar Enterprise application, located in the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="deploy">

 <wldeploy action="deploy"
 name="ComplexServiceEar" source="output/ComplexServiceEar"
 user="${wls.username}" password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />

 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port,
and wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

14. Test that the Web Service is deployed correctly by invoking its WSDL in your browser:

http://host:port/complex/ComplexService?WSDL

To run the Web Service, you need to create a client that invokes it. See “Invoking a Web Service
from a Stand-alone Java Client” on page 2-25 for an example of creating a Java client application
that invokes a Web Service.

Creat ing a Web Serv i ce Wi th User-De f ined Data Types

Getting Started With WebLogic Web Services Using JAX-WS 2-11

Sample BasicStruct JavaBean
package examples.webservices.complex;

/**
 * Defines a simple JavaBean called BasicStruct that has integer, String,
 * and String[] properties
 */

public class BasicStruct {

 // Properties

 private int intValue;
 private String stringValue;
 private String[] stringArray;

 // Getter and setter methods

 public int getIntValue() {
 return intValue;
 }

 public void setIntValue(int intValue) {
 this.intValue = intValue;
 }

 public String getStringValue() {
 return stringValue;
 }

 public void setStringValue(String stringValue) {
 this.stringValue = stringValue;
 }

 public String[] getStringArray() {
 return stringArray;
 }

 public void setStringArray(String[] stringArray) {
 this.stringArray = stringArray;
 }

 public String toString() {
 return "IntValue="+intValue+", StringValue="+stringValue;
 }
}

2-12 Getting Started With WebLogic Web Services Using JAX-WS

Sample ComplexImpl.java JWS File
package examples.webservices.complex;

// Import the standard JWS annotation interfaces

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the BasicStruct JavaBean

import examples.webservices.complex.BasicStruct;

// Standard JWS annotation that specifies that the portType name of the Web
// Service is "ComplexPortType", its public service name is "ComplexService",
// and the targetNamespace used in the generated WSDL is "http://example.org"

@WebService(serviceName="ComplexService", name="ComplexPortType",
 targetNamespace="http://example.org")

// Standard JWS annotation that specifies this is a document-literal-wrapped
// Web Service

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

/**
 * This JWS file forms the basis of a WebLogic Web Service. The Web Services
 * has two public operations:
 *
 * - echoInt(int)
 * - echoComplexType(BasicStruct)
 *
 * The Web Service is defined as a "document-literal" service, which means
 * that the SOAP messages have a single part referencing an XML Schema element
 * that defines the entire body.
 */

public class ComplexImpl {

 // Standard JWS annotation that specifies that the method should be exposed
 // as a public operation. Because the annotation does not include the
 // member-value "operationName", the public name of the operation is the
 // same as the method name: echoInt.
 //
 // The WebResult annotation specifies that the name of the result of the

Creat ing a Web Serv i ce Wi th User-De f ined Data Types

Getting Started With WebLogic Web Services Using JAX-WS 2-13

 // operation in the generated WSDL is "IntegerOutput", rather than the
 // default name "return". The WebParam annotation specifies that the input
 // parameter name in the WSDL file is "IntegerInput" rather than the Java
 // name of the parameter, "input".

 @WebMethod()
 @WebResult(name="IntegerOutput",
 targetNamespace="http://example.org/complex")
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/complex")
 int input)

 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }

 // Standard JWS annotation to expose method "echoStruct" as a public operation
 // called "echoComplexType"
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "EchoStructReturnMessage",
 // rather than the default name "return".

 @WebMethod(operationName="echoComplexType")
 @WebResult(name="EchoStructReturnMessage",
 targetNamespace="http://example.org/complex")
 public BasicStruct echoStruct(BasicStruct struct)

 {
 System.out.println("echoComplexType called");
 return struct;
 }
}

Sample Ant Build File for ComplexImpl.java JWS File
The following build.xml file uses properties to simplify the file.

<project name="webservices-complex" default="all">

 <!-- set global properties for this build -->

 <property name="wls.username" value="weblogic" />

 <property name="wls.password" value="weblogic" />

 <property name="wls.hostname" value="localhost" />

 <property name="wls.port" value="7001" />

 <property name="wls.server.name" value="myserver" />

2-14 Getting Started With WebLogic Web Services Using JAX-WS

 <property name="ear.deployed.name" value="complexServiceEAR" />

 <property name="example-output" value="output" />

 <property name="ear-dir" value="${example-output}/complexServiceEar" />

 <property name="clientclass-dir" value="${example-output}/clientclass" />

 <path id="client.class.path">

 <pathelement path="${clientclass-dir}"/>

 <pathelement path="${java.class.path}"/>

 </path>

 <taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <taskdef name="clientgen"

 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <taskdef name="wldeploy"

 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="all" depends="clean,build-service,deploy,client"/>

 <target name="clean" depends="undeploy">

 <delete dir="${example-output}"/>

 </target>

 <target name="build-service">

 <jwsc

 srcdir="src"

 destdir="${ear-dir}"

 keepGenerated="true"

 >

 <jws file="examples/webservices/complex/ComplexImpl.java"

 type="JAXWS">

 <WLHttpTransport

 contextPath="complex" serviceUri="ComplexService"

 portName="ComplexServicePort"/>

 </jws>

 </jwsc>

 </target>

Creat ing a Web Serv i ce Wi th User-De f ined Data Types

Getting Started With WebLogic Web Services Using JAX-WS 2-15

 <target name="deploy">

 <wldeploy action="deploy"

 name="${ear.deployed.name}"

 source="${ear-dir}" user="${wls.username}"

 password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}"/>

 </target>

 <target name="undeploy">

 <wldeploy action="undeploy" failonerror="false"

 name="${ear.deployed.name}"

 user="${wls.username}" password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}"/>

 </target>

 <target name="client">

 <clientgen

 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"

 destDir="${clientclass-dir}"

 packageName="examples.webservices.complex.client"

 type="JAXWS"/>

 <javac

 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"

 includes="**/*.java"/>

 <javac

 srcdir="src" destdir="${clientclass-dir}"

 includes="examples/webservices/complex/client/**/*.java"/>

 </target>

 <target name="run" >

 <java fork="true"

 classname="examples.webservices.complex.client.Main"

 failonerror="true" >

 <classpath refid="client.class.path"/>

 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService"

 />

2-16 Getting Started With WebLogic Web Services Using JAX-WS

 </java>

 </target>

</project>

Creating a Web Service from a WSDL File
Another common use case of creating a Web Service is to start from an existing WSDL file, often
referred to as the golden WSDL. A WSDL file is a public contract that specifies what the Web
Service looks like, such as the list of supported operations, the signature and shape of each
operation, the protocols and transports that can be used when invoking the operations, and the
XML Schema data types that are used when transporting the data. Based on this WSDL file, you
generate the artifacts that implement the Web Service so that it can be deployed to WebLogic
Server. You use the wsdlc Ant task to generate the following artifacts.

JWS service endpoint interface (SEI) that implements the Web Service described by the
WSDL file.

JWS implementation file that contains a partial (stubbed-out) implementation of the
generated JWS SEI. This file must be customized by the developer.

JAXB data binding artifacts.

Optional Javadocs for the generated JWS SEI.

Note: The only file generated by the wsdlc Ant task that you update is the JWS implementation
file. You never need to update the JAR file that contains the JWS SEI and data binding
artifacts.

Typically, you run the wsdlc Ant task one time to generate a JAR file that contains the generated
JWS SEI file and data binding artifacts, then code the generated JWS file that implements the
interface, adding the business logic of your Web Service. In particular, you add Java code to the
methods that implement the Web Service operations so that the operations behave as needed and
add additional JWS annotations.

After you have coded the JWS implementation file, you run the jwsc Ant task to generate the
deployable Web Service, using the same steps as described in the preceding sections. The only
difference is that you use the compiledWsdl attribute to specify the JAR file (containing the JWS
SEI file and data binding artifacts) generated by the wsdlc Ant task.

The following simple example shows how to create a Web Service from the WSDL file shown
in “Sample WSDL File” on page 2-20. The Web Service has one operation, getTemp, that returns
a temperature when passed a zip code.

Creat ing a Web Serv ice f rom a WSDL F i l e

Getting Started With WebLogic Web Services Using JAX-WS 2-17

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the Oracle products and domainName is the name of your domain.

2. Create a working directory:

 prompt> mkdir /myExamples/wsdlc

3. Put your WSDL file into an accessible directory on your computer.

For the purposes of this example, it is assumed that your WSDL file is called
TemperatureService.wsdl and is located in the /myExamples/wsdlc/wsdl_files
directory. See “Sample WSDL File” on page 2-20 for a full listing of the file.

4. Create a standard Ant build.xml file in the project directory and add a taskdef Ant task to
specify the full Java classname of the wsdlc task:

<project name="webservices-wsdlc" default="all">

 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

</project>

See “Sample Ant Build File for TemperatureService” on page 2-22 for a full sample
build.xml file that contains additional targets from those described in this procedure,
such as clean, undeploy, client, and run. The full build.xml file also uses
properties, such as ${ear-dir}, rather than always using the hard-coded name for the
EAR directory.

5. Add the following call to the wsdlc Ant task to the build.xml file, wrapped inside of the
generate-from-wsdl target:

 <target name="generate-from-wsdl">

 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="output/compiledWsdl"
 destImplDir="output/impl"
 packageName="examples.webservices.wsdlc" />

 </target>

The wsdlc task in the examples generates the JAR file that contains the JWS SEI and data
binding artifacts into the output/compiledWsdl directory under the current directory. It
also generates a partial implementation file (TemperaturePortTypeImpl.java) of the

2-18 Getting Started With WebLogic Web Services Using JAX-WS

JWS SEI into the output/impl/examples/webservices/wsdlc directory (which is a
combination of the output directory specified by destImplDir and the directory hierarchy
specified by the package name). All generated JWS files will be packaged in the
examples.webservices.wsdlc package.

6. Execute the wsdlc Ant task by specifying the generate-from-wsdl target at the command
line:

prompt> ant generate-from-wsdl

See the output directory if you want to examine the artifacts and files generated by the
wsdlc Ant task.

7. Update the generated
output/impl/examples/webservices/wsdlc/TemperaturePortTypeImpl.java
JWS implementation file using your favorite Java IDE or text editor to add Java code to the
methods so that they behave as you want.

See “Sample TemperaturePortType Java Implementation File” on page 2-21 for an
example; the added Java code is in bold. The generated JWS implementation file
automatically includes values for the @WebService JWS annotation that corresponds to the
value in the original WSDL file.

Note: There are restrictions on the JWS annotations that you can add to the JWS
implementation file in the “starting from WSDL” use case. See “wsdlc” in the
WebLogic Web Services Reference for details.

For simplicity, the sample getTemp() method in TemperaturePortTypeImpl.java
returns a hard-coded number. In real life, the implementation of this method would actually
look up the current temperature at the given zip code.

8. Copy the updated TemperaturePortTypeImpl.java file into a permanent directory, such
as a src directory under the project directory; remember to create child directories that
correspond to the package name:

prompt> cd /examples/wsdlc
prompt> mkdir src/examples/webservices/wsdlc
prompt> cp output/impl/examples/webservices/wsdlc/TemperaturePortTypeImpl.java
\
 src/examples/webservices/wsdlc/TemperaturePortTypeImpl.java

9. Add a build-service target to the build.xml file that executes the jwsc Ant task against
the updated JWS implementation class. Use the compiledWsdl attribute of jwsc to specify
the name of the JAR file generated by the wsdlc Ant task:

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#wsdlc

Creat ing a Web Serv ice f rom a WSDL F i l e

Getting Started With WebLogic Web Services Using JAX-WS 2-19

 <taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <target name="build-service">

 <jwsc

 srcdir="src"

 destdir="${ear-dir}">

 <jws file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"

 compiledWsdl="${compiledWsdl-dir}/TemperatureService_wsdl.jar"

 type="JAXWS">

 <WLHttpTransport

 contextPath="temp" serviceUri="TemperatureService"

 portName="TemperaturePort">

 </WLHttpTransport>

 </jws>

 </jwsc>

 </target>

In the preceding example:

– The type attribute of the <jws> element specifies the type of Web Services (JAX-WS
or JAX-RPC).

– The <WLHttpTransport> child element of the <jws> element of the jwsc Ant task
specifies the context path and service URI sections of the URL used to invoke the Web
Service over the HTTP/S transport, as well as the name of the port in the generated
WSDL.

10. Execute the build-service target to generate a deployable Web Service:

prompt> ant build-service

You can re-run this target if you want to update and then re-build the JWS file.

11. Start the WebLogic Server instance to which the Web Service will be deployed.

12. Deploy the Web Service, packaged in an Enterprise Application, to WebLogic Server, using
either the Administration Console or the wldeploy Ant task. In either case, you deploy the
wsdlcEar Enterprise application, located in the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

2-20 Getting Started With WebLogic Web Services Using JAX-WS

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="deploy">

 <wldeploy action="deploy" name="wsdlcEar"
 source="output/wsdlcEar" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />

 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port, and
wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

13. Test that the Web Service is deployed correctly by invoking its WSDL in your browser:

http://host:port/temp/TemperatureService?WSDL

The context path and service URI section of the preceding URL are specified by the
original golden WSDL. Use the hostname and port relevant to your WebLogic Server
instance. Note that the deployed and original WSDL files are the same, except for the host
and port of the endpoint address.

You can use the clean, build-service, undeploy, and deploy targets in the build.xml file
to iteratively update, rebuild, undeploy, and redeploy the Web Service as part of your
development process.

To run the Web Service, you need to create a client that invokes it. See “Invoking a Web Service
from a Stand-alone Java Client” on page 2-25 for an example of creating a Java client application
that invokes a Web Service.

Sample WSDL File
<?xml version="1.0"?>

<definitions
 name="TemperatureService"
 targetNamespace="http://www.bea.com/wls103"
 xmlns:tns="http://www.bea.com/wls103"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/" >

Creat ing a Web Serv ice f rom a WSDL F i l e

Getting Started With WebLogic Web Services Using JAX-WS 2-21

 <message name="getTempRequest">
 <part name="zip" type="xsd:string"/>
 </message>

 <message name="getTempResponse">
 <part name="return" type="xsd:float"/>
 </message>

 <portType name="TemperaturePortType">
 <operation name="getTemp">
 <input message="tns:getTempRequest"/>
 <output message="tns:getTempResponse"/>
 </operation>
 </portType>

 <binding name="TemperatureBinding" type="tns:TemperaturePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getTemp">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"
 namespace="http://www.bea.com/wls103" />
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.bea.com/wls103" />
 </output>
 </operation>
 </binding>

 <service name="TemperatureService">
 <documentation>
 Returns current temperature in a given U.S. zipcode
 </documentation>
 <port name="TemperaturePort" binding="tns:TemperatureBinding">
 <soap:address
 location="http://localhost:7001/temp/TemperatureService"/>
 </port>
 </service>

</definitions>

Sample TemperaturePortType Java Implementation File
package examples.webservices.wsdlc;

import javax.jws.WebService;

import javax.xml.ws.BindingType;

2-22 Getting Started With WebLogic Web Services Using JAX-WS

/**

 * examples.webservices.wsdlc.TemperatureServiceImpl class implements web

 * service endpoint interface

 * examples.webservices.wsdlc.TemperaturePortType */

@WebService(

 portName="TemperaturePort"

 serviceName="TemperatureService",

 targetNamespace="http://www.bea.com/wls103"

 endpointInterface="examples.webservices.wsdlc.TemperaturePortType"

 wsdlLocation="/wsdls/TemperatureServices.wsdl")

@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http")

public class TemperaturePortTypeImpl implements

examples.webservices.wsdlc.TemperaturePortType {

 public TemperaturePortTypeImpl() { }

 public float getTemp(java.lang.String zip) {

 return 1.234f;

 }

}

Sample Ant Build File for TemperatureService
The following build.xml file uses properties to simplify the file.

<project default="all">

 <!-- set global properties for this build -->

 <property name="wls.username" value="weblogic" />

 <property name="wls.password" value="weblogic" />

 <property name="wls.hostname" value="localhost" />

 <property name="wls.port" value="7001" />

 <property name="wls.server.name" value="myserver" />

 <property name="ear.deployed.name" value="wsdlcEar" />

 <property name="example-output" value="output" />

 <property name="compiledWsdl-dir" value="${example-output}/compiledWsdl"

/>

 <property name="impl-dir" value="${example-output}/impl" />

 <property name="ear-dir" value="${example-output}/wsdlcEar" />

Creat ing a Web Serv ice f rom a WSDL F i l e

Getting Started With WebLogic Web Services Using JAX-WS 2-23

 <property name="clientclass-dir" value="${example-output}/clientclasses"

/>

 <path id="client.class.path">

 <pathelement path="${clientclass-dir}"/>

 <pathelement path="${java.class.path}"/>

 </path>

 <taskdef name="wsdlc"

 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

 <taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <taskdef name="clientgen"

 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <taskdef name="wldeploy"

 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="all"

 depends="clean,generate-from-wsdl,build-service,deploy,client" />

 <target name="clean" depends="undeploy">

 <delete dir="${example-output}"/>

 </target>

 <target name="generate-from-wsdl">

 <wsdlc

 srcWsdl="wsdl_files/TemperatureService.wsdl"

 destJwsDir="${compiledWsdl-dir}"

 destImplDir="${impl-dir}"

 packageName="examples.webservices.wsdlc" />

 </target>

 <target name="build-service">

 <jwsc

 srcdir="src"

 destdir="${ear-dir}">

 <jws file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"

 compiledWsdl="${compiledWsdl-dir}/TemperatureService_wsdl.jar"

 type="JAXWS">

2-24 Getting Started With WebLogic Web Services Using JAX-WS

 <WLHttpTransport

 contextPath="temp" serviceUri="TemperatureService"

 portName="TemperaturePort"/>

 </jws>

 </jwsc>

 </target>

 <target name="deploy">

 <wldeploy action="deploy" name="${ear.deployed.name}"

 source="${ear-dir}" user="${wls.username}"

 password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}" />

 </target>

 <target name="undeploy">

 <wldeploy action="undeploy" name="${ear.deployed.name}"

 failonerror="false"

 user="${wls.username}" password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}" />

 </target>

 <target name="client">

 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/temp/TemperatureService?WSDL"

 destDir="${clientclass-dir}"

 packageName="examples.webservices.wsdlc.client"

 type="JAXWS">

 <javac

 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"

 includes="**/*.java"/>

 <javac

 srcdir="src" destdir="${clientclass-dir}"

 includes="examples/webservices/wsdlc/client/**/*.java"/>

 </target>

Invok ing a Web Serv ice f rom a S tand-a lone Java C l i ent

Getting Started With WebLogic Web Services Using JAX-WS 2-25

 <target name="run">

 <java classname="examples.webservices.wsdlc.client.TemperatureClient"

 fork="true" failonerror="true" >

 <classpath refid="client.class.path"/>

 <arg

 line="http://${wls.hostname}:${wls.port}/temp/TemperatureService"

/>

 </java>

 </target>

</project>

Invoking a Web Service from a Stand-alone Java Client
When you invoke an operation of a deployed Web Service from a client application, the Web
Service could be deployed to WebLogic Server or to any other application server, such as .NET.
All you need to know is the URL to its public contract file, or WSDL.

In addition to writing the Java client application, you must also run the clientgen WebLogic
Web Service Ant task to generate the artifacts that your client application needs to invoke the
Web Service operation. These artifacts include:

The Java class for the Service interface implementation for the particular Web Service
you want to invoke.

JAXB data binding artifacts.

The Java class for any user-defined XML Schema data types included in the WSDL file.

The following example shows how to create a Java client application that invokes the
echoComplexType operation of the ComplexService WebLogic Web Service described in
“Creating a Web Service With User-Defined Data Types” on page 2-7. The echoComplexType
operation takes as both a parameter and return type the BasicStruct user-defined data type.

Note: It is assumed in this procedure that you have created and deployed the ComplexService
Web Service.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is

2-26 Getting Started With WebLogic Web Services Using JAX-WS

BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/simple_client

3. Create a src directory under the project directory, as well as subdirectories that correspond
to the package name of the Java client application (shown later on in this procedure):

 prompt> cd /myExamples/simple_client
 prompt> mkdir src/examples/webservices/simple_client

4. Create a standard Ant build.xml file in the project directory and add a taskdef Ant task to
specify the full Java classname of the clientgen task:

<project name="webservices-simple_client" default="all">

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

</project>

See “Sample Ant Build File For Building Stand-alone Client Application” on page 2-29 for
a full sample build.xml file. The full build.xml file uses properties, such as
${clientclass-dir}, rather than always using the hard-coded name output directory for
client classes.

5. Add the following calls to the clientgen and javac Ant tasks to the build.xml file,
wrapped inside of the build-client target:

 <target name="build-client">

 <clientgen

 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"

 destDir="output/clientclass"

 packageName="examples.webservices.simple_client"

 type="JAXWS"/>

 <javac

 srcdir="output/clientclass" destdir="output/clientclass"

 includes="**/*.java"/>

 <javac
 srcdir="src" destdir="output/clientclass"
 includes="examples/webservices/simple_client/*.java"/>

</target>

Invok ing a Web Serv ice f rom a S tand-a lone Java C l i ent

Getting Started With WebLogic Web Services Using JAX-WS 2-27

The clientgen Ant task uses the WSDL of the deployed ComplexService Web Service
to generate the necessary artifacts and puts them into the output/clientclass directory,
using the specified package name. Replace the variables with the actual hostname and port
of your WebLogic Server instance that is hosting the Web Service.

In this example, the package name is set to the same package name as the client
application, examples.webservices.simple_client. If you set the package name to
one that is different from the client application, you would need to import the appropriate
class files. For example, if you defined the package name as
examples.webservices.complex, you would need to import the following class files in
the client application:

import examples.webservices.complex.BasicStruct;
import examples.webservices.complex.ComplexPortType;
import examples.webservices.complex.ComplexService;

The clientgen Ant task also automatically generates the
examples.webservices.simple_client.BasicStruct JavaBean class, which is the
Java representation of the user-defined data type specified in the WSDL.

The build-client target also specifies the standard javac Ant task, in addition to
clientgen, to compile all the Java code, including the stand-alone Java program described
in the next step, into class files.

The clientgen Ant task also provides the destFile attribute if you want the Ant task to
automatically compile the generated Java code and package all artifacts into a JAR file.
For details and an example, see “clientgen” in the WebLogic Web Services Reference.

6. Create the Java client application file that invokes the echoComplexType operation.

Open your favorite Java IDE or text editor and create a Java file called Main.java using
the code specified in “Sample Java Client Application” on page 2-28.

The application follows standard JAX-WS guidelines to invoke an operation of the Web
Service using the Web Service-specific implementation of the Service interface generated
by clientgen. For details, see Chapter 6, “Invoking Web Services.”

7. Save the Main.java file in the src/examples/webservices/simple_client
subdirectory of the main project directory.

8. Execute the clientgen and javac Ant tasks by specifying the build-client target at the
command line:

prompt> ant build-client

See the output/clientclass directory to view the files and artifacts generated by the
clientgen Ant task.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#clientgen

2-28 Getting Started With WebLogic Web Services Using JAX-WS

9. Add the following targets to the build.xml file, used to execute the Main application:

 <path id="client.class.path">
 <pathelement path="output/clientclass"/>
 <pathelement path="${java.class.path}"/>
 </path>

 <target name="run" >

 <java fork="true"
 classname="examples.webservices.simple_client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 </target>

The run target invokes the Main application, passing it the WSDL URL of the deployed
Web Service as its single argument. The classpath element adds the clientclass
directory to the CLASSPATH, using the reference created with the <path> task.

10. Execute the run target to invoke the echoComplexType operation:

 prompt> ant run

If the invoke was successful, you should see the following final output:

run:
 [java] echoComplexType called. Result: 999, Hello Struct

You can use the build-client and run targets in the build.xml file to iteratively update,
rebuild, and run the Java client application as part of your development process.

Sample Java Client Application
The following provides a simple Java client application that invokes the echoComplexType
operation. Because the <clientgen> packageName attribute was set to the same package name
as the client application, we are not required to import the <clientgen>-generated files.

package examples.webservices.simple_client;

/**
 * This is a simple stand-alone client application that invokes the
 * echoComplexType operation of the ComplexService Web service.
 */

public class Main {

 public static void main(String[] args) {

 ComplexService test = new ComplexService();
 ComplexPortType port = test.getComplexPortTypePort();

Invok ing a Web Serv ice f rom a S tand-a lone Java C l i ent

Getting Started With WebLogic Web Services Using JAX-WS 2-29

 BasicStruct in = new BasicStruct();

 in.setIntValue(999);
 in.setStringValue("Hello Struct");

 BasicStruct result = port.echoComplexType(in);
 System.out.println("echoComplexType called. Result: " + result.getIntValue()
+ ", " + result.getStringValue());
 }
}

Sample Ant Build File For Building Stand-alone Client
Application
The following build.xml file defines tasks to build the stand-alone client application. The
example uses properties to simplify the file.

<project name="webservices-simple_client" default="all">

 <!-- set global properties for this build -->

 <property name="wls.hostname" value="localhost" />

 <property name="wls.port" value="7001" />

 <property name="example-output" value="output" />

 <property name="clientclass-dir" value="${example-output}/clientclass" />

 <path id="client.class.path">

 <pathelement path="${clientclass-dir}"/>

 <pathelement path="${java.class.path}"/>

 </path>

 <taskdef name="clientgen"

 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <target name="clean" >

 <delete dir="${clientclass-dir}"/>

 </target>

 <target name="all" depends="clean,build-client,run" />

 <target name="build-client">

 <clientgen

 type="JAXWS"

 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"

2-30 Getting Started With WebLogic Web Services Using JAX-WS

 destDir="${clientclass-dir}"

 packageName="examples.webservices.simple_client"/>

 <javac

 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"

 includes="**/*.java"/>

 <javac

 srcdir="src" destdir="${clientclass-dir}"

 includes="examples/webservices/simple_client/*.java"/>

 </target>

 <target name="run" >

 <java fork="true"

 classname="examples.webservices.simple_client.Main"

 failonerror="true" >

 <classpath refid="client.class.path"/>

 </java>

 </target>

</project>

Invoking a Web Service from a WebLogic Web Service
You can also invoke a Web Service (WebLogic, .NET, and so on) from within a deployed
WebLogic Web Service, rather than from a stand-alone client.

The procedure is similar to that described in “Invoking a Web Service from a Stand-alone Java
Client” on page 2-25 except that instead of running the clientgen Ant task to generate the client
stubs, you use the <clientgen> child element of <jws>, inside of the jwsc Ant task. The jwsc
Ant task automatically packages the generated client stubs in the invoking Web Service WAR
file so that the Web Service has immediate access to them. You then follow standard JAX-WS
programming guidelines in the JWS file that implements the Web Service that invokes the other
Web Service.

The following example shows how to write a JWS file that invokes the echoComplexType
operation of the ComplexService Web Service described in “Creating a Web Service With
User-Defined Data Types” on page 2-7.

Note: It is assumed that you have successfully deployed the ComplexService Web Service.

1. Set your WebLogic Server environment.

Invok ing a Web Serv i ce f r om a WebLogic Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-WS 2-31

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/service_to_service

3. Create a src directory under the project directory, as well as subdirectories that correspond
to the package name of the JWS and client application files (shown later on in this procedure):

 prompt> cd /myExamples/service_to_service
 prompt> mkdir src/examples/webservices/service_to_service

4. Create the JWS file that implements the Web Service that invokes the ComplexService Web
Service.

Open your favorite Java IDE or text editor and create a Java file called
ClientServiceImpl.java using the Java code specified in “Sample
ClientServiceImpl.java JWS File” on page 2-33.

The sample JWS file shows a Java class called ClientServiceImpl that contains a single
public method, callComplexService(). The Java class imports the JAX-WS stubs,
generated later on by the jwsc Ant task, as well as the BasicStruct JavaBean (also
generated by clientgen), which is the data type of the parameter and return value of the
echoComplexType operation of the ComplexService Web Service.

The ClientServiceImpl Java class defines one method, callComplexService(), which
takes one parameter: a BasicStruct which is passed on to the echoComplexType
operation of the ComplexService Web Service. The method then uses the standard
JAX-WS APIs to get the Service and PortType of the ComplexService, using the stubs
generated by jwsc, and then invokes the echoComplexType operation.

5. Save the ClientServiceImpl.java file in the
src/examples/webservices/service_to_service directory.

6. Create a standard Ant build.xml file in the project directory and add the following task:

<project name="webservices-service_to_service" default="all">

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

</project>

The taskdef task defines the full classname of the jwsc Ant task.

2-32 Getting Started With WebLogic Web Services Using JAX-WS

See “Sample Ant Build File For Building ClientService” on page 2-34 for a full sample
build.xml file that contains additional targets from those described in this procedure,
such as clean, deploy, undeploy, client, and run. The full build.xml file also uses
properties, such as ${ear-dir}, rather than always using the hard-coded name for the
EAR directory.

7. Add the following call to the jwsc Ant task to the build.xml file, wrapped inside of the
build-service target:

<target name="build-service">

 <jwsc
 srcdir="src"
 destdir="output/ClientServiceEar" >
 <jws

file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXWS">

 <WLHttpTransport
 contextPath="ClientService" serviceUri="ClientService"
 portName="ClientServicePort"/>

 <clientgen
 type="JAXWS"
wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>
 </jwsc>
</target>

In the preceding example, the <clientgen> child element of the <jws> element of the
jwsc Ant task specifies that, in addition to compiling the JWS file, jwsc should also
generate and compile the client artifacts needed to invoke the Web Service described by
the WSDL file.

In this example, the package name is set to examples.webservices.complex, which is
different from the client application package name,
examples.webservices.simple_client. As a result, you need to import the
appropriate class files in the client application:

import examples.webservices.complex.BasicStruct;
import examples.webservices.complex.ComplexPortType;
import examples.webservices.complex.ComplexService;

If the package name is set to the same package name as the client application, the import
calls would be optional.

8. Execute the jwsc Ant task by specifying the build-service target at the command line:

Invok ing a Web Serv i ce f r om a WebLogic Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-WS 2-33

prompt> ant build-service

9. Start the WebLogic Server instance to which you will deploy the Web Service.

10. Deploy the Web Service, packaged in an Enterprise Application, to WebLogic Server, using
either the Administration Console or the wldeploy Ant task. In either case, you deploy the
ClientServiceEar Enterprise application, located in the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="deploy">

 <wldeploy action="deploy" name="ClientServiceEar"
 source="ClientServiceEar" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />

 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port, and
wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

11. Test that the Web Service is deployed correctly by invoking its WSDL in your browser:

http://host:port/ClientService/ClientService?WSDL

See “Invoking a Web Service from a Stand-alone Java Client” on page 2-25 for an example of
creating a Java client application that invokes a Web Service.

Sample ClientServiceImpl.java JWS File
The following provides a simple Web Service client application that invokes the
echoComplexType operation.

package examples.webservices.service_to_service;

import javax.jws.WebService;
import javax.jws.WebMethod;

// Import the BasicStruct data type, generated by clientgen and used
// by the ComplexService Web Service

import examples.webservices.complex.BasicStruct;

2-34 Getting Started With WebLogic Web Services Using JAX-WS

// Import the JAX-WS Stubs for invoking the ComplexService Web Service.
// Stubs generated by clientgen

import examples.webservices.complex.ComplexPortType;
import examples.webservices.complex.ComplexService;

@WebService(name="ClientPortType", serviceName="ClientService",
 targetNamespace="http://examples.org")

public class ClientServiceImpl {

 @WebMethod()
 public String callComplexService(BasicStruct input)
 {

 ComplexService test = new ComplexService();
 ComplexPortType port = test.getComplexPortTypePort();

 // Invoke the echoComplexType operation of ComplexService
 BasicStruct result = port.echoComplexType(input);
 System.out.println("Invoked ComplexPortType.echoComplexType.");

 return "Invoke went okay! Here's the result: '" + result.getIntValue() + ",
" + result.getStringValue() + "'";

 }
}

Sample Ant Build File For Building ClientService
The following build.xml file defines tasks to build the client application. The example uses
properties to simplify the file.

The following build.xml file uses properties to simplify the file.

<project name="webservices-service_to_service" default="all">

 <!-- set global properties for this build -->

 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />

 <property name="ear.deployed.name" value="ClientServiceEar" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/ClientServiceEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />

Invok ing a Web Serv i ce f r om a WebLogic Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-WS 2-35

 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="all" depends="clean,build-service,deploy,client" />

 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>

 <target name="build-service">

 <jwsc
 srcdir="src"
 destdir="${ear-dir}" >

 <jws
 file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXWS">

 <WLHttpTransport
 contextPath="ClientService" serviceUri="ClientService"
 portName="ClientServicePort"/>

 <clientgen
 type="JAXWS"
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>

 </jwsc>

 </target>

 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

2-36 Getting Started With WebLogic Web Services Using JAX-WS

 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

 <target name="client">

 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/ClientService/ClientService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.service_to_service.client"
 type="JAXWS"/>

 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>

 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/service_to_service/client/**/*.java"/>

 </target>

 <target name="run">
 <java classname="examples.webservices.service_to_service.client.Main"
 fork="true"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 </java>

 </target>

</project>

Getting Started With WebLogic Web Services Using JAX-WS 3-1

C H A P T E R 3

Developing WebLogic Web Services

The following sections describe the iterative development process for WebLogic Web Services:

“Overview of the WebLogic Web Service Programming Model” on page 3-2

“Developing WebLogic Web Services Starting From Java: Main Steps” on page 3-2

“Developing WebLogic Web Services Starting From a WSDL File: Main Steps” on
page 3-4

“Creating the Basic Ant build.xml File” on page 3-6

“Running the jwsc WebLogic Web Services Ant Task” on page 3-7

“Running the wsdlc WebLogic Web Services Ant Task” on page 3-10

“Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc” on
page 3-13

“Deploying and Undeploying WebLogic Web Services” on page 3-14

“Browsing to the WSDL of the Web Service” on page 3-17

“Configuring the Server Address Specified in the Dynamic WSDL” on page 3-18

“Testing the Web Service” on page 3-20

“Integrating Web Services Into the WebLogic Split Development Directory Environment”
on page 3-21

3-2 Getting Started With WebLogic Web Services Using JAX-WS

Overview of the WebLogic Web Service Programming
Model

The WebLogic Web Services programming model centers around JWS files—Java files that use
JWS annotations to specify the shape and behavior of the Web Service—and Ant tasks that
execute on the JWS file. JWS annotations are based on the metadata feature, introduced in
Version 5.0 of the JDK (specified by JSR-175), and include standard annotations defined by the
Web Services Metadata for the Java Platform specification (JSR-181), the JAX-WS specification
(JSR-224), as well as additional ones. For a complete list of JWS annotations that are supported,
see “Web Service Annotation Support” in WebLogic Web Services Reference. For additional
detailed information about this programming model, see “Anatomy of a WebLogic Web Service”
in Introducing WebLogic Web Services.

The following sections describe the high-level steps for iteratively developing a Web Service,
either starting from Java or starting from an existing WSDL file:

“Developing WebLogic Web Services Starting From Java: Main Steps” on page 3-2

“Developing WebLogic Web Services Starting From a WSDL File: Main Steps” on
page 3-4

Iterative development refers to setting up your development environment in such a way so that
you can repeatedly code, compile, package, deploy, and test a Web Service until it works as you
want. The WebLogic Web Service programming model uses Ant tasks to perform most of the
steps of the iterative development process. Typically, you create a single build.xml file that
contains targets for all the steps, then repeatedly run the targets, after you have updated your JWS
file with new Java code, to test that the updates work as you expect.

Developing WebLogic Web Services Starting From Java:
Main Steps

This section describes the general procedure for developing WebLogic Web Services starting
from Java—in effect, coding the JWS file from scratch and later generating the WSDL file that
describes the service. See “Use Cases and Examples” on page 2-1 for specific examples of this
process.

The following procedure is just a recommendation; if you have set up your own development
environment, you can use this procedure as a guide for updating your existing environment to
develop WebLogic Web Services.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#annotation_support
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_intro/overview.html#anatomy

Deve lop ing WebLogic Web Serv ices S tar t ing F rom Java : Main S teps

Getting Started With WebLogic Web Services Using JAX-WS 3-3

Note: This procedure does not use the WebLogic Web Services split development directory
environment. If you are using this development environment, and would like to integrate
Web Services development into it, see “Integrating Web Services Into the WebLogic
Split Development Directory Environment” on page 3-21 for details.

Table 3-1 Steps to Develop Web Services Starting From Java

Step Description

1 Set up the environment. Open a command window and execute the setDomainEnv.cmd
(Windows) or setDomainEnv.sh (UNIX) command, located in the
bin subdirectory of your domain directory. The default location of
WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where
BEA_HOME is the top-level installation directory of the Oracle products
and domainName is the name of your domain.

2 Create a project directory. The project directory will contain the JWS file, Java source for any
user-defined data types, and the Ant build.xml file. You can name
the project directory anything you want.

3 Create the JWS file that
implements the Web Service.

See “Programming the JWS File” on page 4-1.

4 Create user-defined data types.
(Optional)

If your Web Service uses user-defined data types, create the JavaBeans
that describes them. See “Programming the User-Defined Java Data
Type” on page 4-20.

5 Create a basic Ant build file,
build.xml.

See “Creating the Basic Ant build.xml File” on page 3-6.

6 Run the jwsc Ant task against
the JWS file.

The jwsc Ant task generates source code, data binding artifacts,
deployment descriptors, and so on, into an output directory. The jwsc
Ant task generates an Enterprise application directory structure at this
output directory; later you deploy this exploded directory to WebLogic
Server as part of the iterative development process. See “Running the
jwsc WebLogic Web Services Ant Task” on page 3-7.

7 Deploy the Web Service to
WebLogic Server.

See “Deploying and Undeploying WebLogic Web Services” on
page 3-14.

8 Browse to the WSDL of the Web
Service.

Browse to the WSDL of the Web Service to ensure that it was deployed
correctly. See “Browsing to the WSDL of the Web Service” on
page 3-17.

3-4 Getting Started With WebLogic Web Services Using JAX-WS

See “Invoking Web Services” on page 6-1 for information on writing client applications that
invoke a Web Service.

Developing WebLogic Web Services Starting From a
WSDL File: Main Steps

This section describes the general procedure for developing WebLogic Web Services based on
an existing WSDL file. See “Developing WebLogic Web Services” on page 3-1 for a specific
example of this process.

The procedure is just a recommendation; if you have set up your own development environment,
you can use this procedure as a guide for updating your existing environment to develop
WebLogic Web Services.

It is assumed in this procedure that you already have an existing WSDL file.

Note: This procedure does not use the WebLogic Web Services split development directory
environment. If you are using this development environment, and would like to integrate
Web Services development into it, see “Integrating Web Services Into the WebLogic
Split Development Directory Environment” on page 3-21 for details.

9 Test the Web Service. See “Testing the Web Service” on page 3-20.

10 Edit the Web Service. (Optional) To make changes to the Web Service, update the JWS file, undeploy
the Web Service as described in “Deploying and Undeploying
WebLogic Web Services” on page 3-14, then repeat the steps starting
from running the jwsc Ant task (Step 6).

Table 3-1 Steps to Develop Web Services Starting From Java (Continued)

Step Description

Deve lop ing WebLog ic Web Se rv ices S ta r t ing F rom a WSDL F i l e : Ma in S teps

Getting Started With WebLogic Web Services Using JAX-WS 3-5

Table 3-2 Steps to Develop Web Services Starting From Java

Step Description

1 Set up the environment. Open a command window and execute the setDomainEnv.cmd
(Windows) or setDomainEnv.sh (UNIX) command, located in the
bin subdirectory of your domain directory. The default location of
WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where
BEA_HOME is the top-level installation directory of the Oracle
products and domainName is the name of your domain.

2 Create a project directory. The project directory will contain the generated artifacts and the Ant
build.xml file.

3 Create a basic Ant build file,
build.xml.

See “Creating the Basic Ant build.xml File” on page 3-6.

4 Put your WSDL file in a
directory that the build.xml
Ant build file is able to read.

For example, you can put the WSDL file in a wsdl_files child
directory of the project directory.

5 Run the wsdlc Ant task against
the WSDL file.

The wsdlc Ant task generates the JWS service endpoint interface
(SEI), the stubbed-out JWS class file, JavaBeans that represent the
XML Schema data types, and so on, into output directories. See
“Running the wsdlc WebLogic Web Services Ant Task” on page 3-10.

6 Update the stubbed-out JWS file
generated by the wsdlc Ant
task.

The wsdlc Ant task generates a stubbed-out JWS file. You need to
add your business code to the Web Service so it behaves as you want.
See “Updating the Stubbed-out JWS Implementation Class File
Generated By wsdlc” on page 3-13.

7 Run the jwsc Ant task against
the JWS file.

Specify the artifacts generated by the wsdlc Ant task as well as your
updated JWS implementation file, to generate an Enterprise
Application that implements the Web Service. See “Running the jwsc
WebLogic Web Services Ant Task” on page 3-7.

8 Deploy the Web Service to
WebLogic Server.

See “Deploying and Undeploying WebLogic Web Services” on
page 3-14.

9 Browse to the WSDL of the Web
Service.

Browse to the WSDL of the Web Service to ensure that it was
deployed correctly. See “Browsing to the WSDL of the Web Service”
on page 3-17.

3-6 Getting Started With WebLogic Web Services Using JAX-WS

See “Invoking Web Services” on page 6-1 for information on writing client applications that
invoke a Web Service.

Creating the Basic Ant build.xml File
Ant uses build files written in XML (default name build.xml) that contain a <project> root
element and one or more targets that specify different stages in the Web Services development
process. Each target contains one or more tasks, or pieces of code that can be executed. This
section describes how to create a basic Ant build file; later sections describe how to add targets
to the build file that specify how to execute various stages of the Web Services development
process, such as running the jwsc Ant task to process a JWS file and deploying the Web Service
to WebLogic Server.

The following skeleton build.xml file specifies a default all target that calls all other targets
that will be added in later sections:

<project default="all">

 <target name="all"

 depends="clean,build-service,deploy" />

 <target name="clean">

 <delete dir="output" />

 </target>

 <target name="build-service">

 <!--add jwsc and related tasks here -->

 </target>

 <target name="deploy">

 <!--add wldeploy task here -->

 </dftarget>

10 Test the Web Service. See “Testing the Web Service” on page 3-20.

11 Edit the Web Service. (Optional) To make changes to the Web Service, update the JWS file, undeploy
the Web Service as described in “Deploying and Undeploying
WebLogic Web Services” on page 3-14, then repeat the steps starting
from running the jwsc Ant task (Step 6).

Table 3-2 Steps to Develop Web Services Starting From Java (Continued)

Step Description

Running the jwsc WebLog ic Web Se rv ices Ant Task

Getting Started With WebLogic Web Services Using JAX-WS 3-7

</project>

Running the jwsc WebLogic Web Services Ant Task
The jwsc Ant task takes as input a JWS file that contains JWS annotations and generates all the
artifacts you need to create a WebLogic Web Service. The JWS file can be either one you coded
yourself from scratch or one generated by the wsdlc Ant task. The jwsc-generated artifacts
include:

JSR-109 Web Service class file.

JAXB data binding artifact class file.

All required deployment descriptors, including:

– Servlet-based Web Service deployment descriptor file: web.xml.

– Ear deployment descriptor files: application.xml and
weblogic-application.xml.

Note: No EJB deployment descriptors are required for EJB 3.0-based Web Services.

Note: The WSDL file is generated when the service endpoint is deployed.

If you are running the jwsc Ant task against a JWS file generated by the wsdlc Ant task, the jwsc
task does not generate these artifacts, because the wsdlc Ant task already generated them for you
and packaged them into a JAR file. In this case, you use an attribute of the jwsc Ant task to
specify this wsdlc-generated JAR file.

After generating all the required artifacts, the jwsc Ant task compiles the Java files (including
your JWS file), packages the compiled classes and generated artifacts into a deployable JAR
archive file, and finally creates an exploded Enterprise Application directory that contains the
JAR file.

To run the jwsc Ant task, add the following taskdef and build-service target to the
build.xml file:

<taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-service">

 <jwsc

 srcdir="src_directory"

 destdir="ear_directory"

3-8 Getting Started With WebLogic Web Services Using JAX-WS

 >

 <jws file="JWS_file"

 compiledWsdl="WSDLC_Generated_JAR"

 type="WebService_type"/>

 </jwsc>

 </target>

where:

ear_directory refers to an Enterprise Application directory that will contain all the
generated artifacts.

src_directory refers to the top-level directory that contains subdirectories that
correspond to the package name of your JWS file.

JWS_file refers to the full pathname of your JWS file, relative to the value of the
src_directory attribute.

WSDLC_Generated_JAR refers to the JAR file generated by the wsdlc Ant task that
contains the JWS SEI and data binding artifacts that correspond to an existing WSDL file.

Note: You specify this attribute only in the “starting from WSDL” use case; this procedure
is described in “Developing WebLogic Web Services Starting From a WSDL File:
Main Steps” on page 3-4.

WebService_type specifies the type of Web Service. This value can be set to JAXWS or
JAXRPC.

The required taskdef element specifies the full class name of the jwsc Ant task.

Only the srcdir and destdir attributes of the jwsc Ant task are required. This means that, by
default, it is assumed that Java files referenced by the JWS file (such as JavaBeans input
parameters or user-defined exceptions) are in the same package as the JWS file. If this is not the
case, use the sourcepath attribute to specify the top-level directory of these other Java files. See
“jwsc” in WebLogic Web Services Reference for more information.

Examples of Using jwsc
The following build.xml excerpt shows a basic example of running the jwsc Ant task on a JWS
file:

 <taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#jwsc

Running the jwsc WebLog ic Web Se rv ices Ant Task

Getting Started With WebLogic Web Services Using JAX-WS 3-9

 <target name="build-service">

 <jwsc

 srcdir="src"

 destdir="output/helloWorldEar">

 <jws

 file="examples/webservices/hello_world/HelloWorldImpl.java"

 type="JAXWS"/>

 </jwsc>

 </target>

In the example:

The Enterprise application will be generated, in exploded form, in
output/helloWorldEar, relative to the current directory.

The JWS file is called HelloWorldImpl.java, and is located in the
src/examples/webservices/hello_world directory, relative to the current directory.
This implies that the JWS file is in the package examples.webservices.helloWorld.

A JAX-WS Web Service is generated.

The following example is similar to the preceding one, except that it uses the compiledWsdl
attribute to specify the JAR file that contains wsdlc-generated artifacts (for the “starting with
WSDL” use case):

 <taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <target name="build-service">

 <jwsc

 srcdir="src"

 destdir="output/wsdlcEar">

 <jws

 file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"

 compiledWsdl="output/compiledWsdl/TemperatureService_wsdl.jar"

 type="JAXWS"/>

 </jwsc>

 </target>

3-10 Getting Started With WebLogic Web Services Using JAX-WS

In the preceding example, the TemperaturePortTypeImpl.java file is the stubbed-out JWS
file that you updated to include your business logic. Because the compiledWsdl attribute is
specified and points to a JAR file, the jwsc Ant task does not regenerate the artifacts that are
included in the JAR.

To actually run this task, type at the command line the following:

 prompt> ant build-service

Advanced Uses of jwsc
This section described two very simple examples of using the jwsc Ant task. The task, however,
includes additional attributes and child elements that make the tool very powerful and useful. For
example, you can use the tool to:

Process multiple JWS files at once. You can choose to package each resulting Web Service
into its own Web application WAR file, or group all of the Web Services into a single
WAR file.

Specify the transports (HTTP/HTTPS) that client applications can use when invoking the
Web Service.

Update an existing Enterprise Application or Web application, rather than generate a
completely new one.

See “jwsc” in the WebLogic Web Services Reference for complete documentation and examples
about the jwsc Ant task.

Running the wsdlc WebLogic Web Services Ant Task
The wsdlc Ant task takes as input a WSDL file and generates artifacts that together partially
implement a WebLogic Web Service. These artifacts include:

JWS service endpoint interface (SEI) that implements the Web Service described by the
WSDL file.

JWS implementation file that contains a partial (stubbed-out) implementation of the
generated JWS SEI. This file must be customized by the developer.

JAXB data binding artifacts.

Optional Javadocs for the generated JWS SEI.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#jwsc

Running the wsd lc WebLog ic Web Se rv ices Ant Task

Getting Started With WebLogic Web Services Using JAX-WS 3-11

The wsdlc Ant task packages the JWS SEI and data binding artifacts together into a JAR file that
you later specify to the jwsc Ant task. You never need to update this JAR file; the only file you
update is the JWS implementation class.

To run the wsdlc Ant task, add the following taskdef and generate-from-wsdl targets to the
build.xml file:

 <taskdef name="wsdlc"

 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

 <target name="generate-from-wsdl">

 <wsdlc

 srcWsdl="WSDL_file"

 destJwsDir="JWS_interface_directory"

 destImplDir="JWS_implementation_directory"

 packageName="Package_name"

 type="WebService_type"/>

 </target>

where:

WSDL_file refers to the name of the WSDL file from which you want to generate a partial
implementation, including its absolute or relative pathname.

JWS_interface_directory refers to the directory into which the JAR file that contains
the JWS SEI and data binding artifacts should be generated.

The name of the generated JAR file is WSDLFile_wsdl.jar, where WSDLFile refers to the
root name of the WSDL file. For example, if the name of the WSDL file you specify to the
file attribute is MyService.wsdl, then the generated JAR file is MyService_wsdl.jar.

JWS_implementation_directory refers to the top directory into which the stubbed-out
JWS implementation file is generated. The file is generated into a subdirectory hierarchy
corresponding to its package name.

The name of the generated JWS file is Service_PortTypeImpl.java, where Service
and PortType refer to the name attribute of the <service> element and its inner <port>
element, respectively, in the WSDL file for which you are generating a Web Service. For
example, if the service name is MyService and the port name is MyServicePortType,
then the JWS implementation file is called MyService_MyServicePortTypeImpl.java.

Package_name refers to the package into which the generated JWS SEI and
implementation files should be generated. If you do not specify this attribute, the wsdlc
Ant task generates a package name based on the targetNamespace of the WSDL.

3-12 Getting Started With WebLogic Web Services Using JAX-WS

WebService_type specifies the type of Web Service. This value can be set to JAXWS or
JAXRPC.

The required taskdef element specifies the full class name of the wsdlc Ant task.

Only the srcWsdl and destJwsDir attributes of the wsdlc Ant task are required. Typically,
however, you generate the stubbed-out JWS file to make your programming easier. Oracle
recommends you explicitly specify the package name in case the targetNamespace of the
WSDL file is not suitable to be converted into a readable package name.

The following build.xml excerpt shows an example of running the wsdlc Ant task against a
WSDL file:

 <taskdef name="wsdlc"

 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

 <target name="generate-from-wsdl">

 <wsdlc

 srcWsdl="wsdl_files/TemperatureService.wsdl"

 destJwsDir="output/compiledWsdl"

 destImplDir="impl_output"

 packageName="examples.webservices.wsdlc"

 type="JAXWS" />

 </target>

In the example:

The existing WSDL file is called TemperatureService.wsdl and is located in the
wsdl_files subdirectory of the directory that contains the build.xml file.

The JAR file that will contain the JWS SEI and data binding artifacts is generated to the
output/compiledWsdl directory; the name of the JAR file is
TemperatureService_wsdl.jar.

The package name of the generated JWS files is examples.webservices.wsdld.

The stubbed-out JWS file is generated into the
impl_output/examples/webservices/wsdlc directory relative to the current directory.

Assuming that the service and port type names in the WSDL file are
TemperatureService and TemperaturePortType, then the name of the JWS
implementation file is TemperatureService_TemperaturePortTypeImpl.java.

A JAX-WS Web Service is generated.

Updat ing the Stubbed-out JWS Implementat ion C lass F i l e Gene ra ted By wsd lc

Getting Started With WebLogic Web Services Using JAX-WS 3-13

To actually run this task, type the following at the command line:

 prompt> ant generate-from-wsdl

See “wsdlc” in WebLogic Web Services Reference for more information.

Updating the Stubbed-out JWS Implementation Class File
Generated By wsdlc

The wsdlc Ant task generates the stubbed-out JWS implementation file into the directory
specified by its destImplDir attribute; the name of the file is Service_PortTypeImpl.java,
where Service is the name of the service and PortType is the name of the portType in the
original WSDL. The class file includes everything you need to compile it into a Web Service,
except for your own business logic.

The JWS class implements the JWS Web Service endpoint interface that corresponds to the
WSDL file; the JWS SEI is also generated by wsdlc and is located in the JAR file that contains
other artifacts, such as the Java representations of XML Schema data types in the WSDL and so
on. The public methods of the JWS class correspond to the operations in the WSDL file.

The wsdlc Ant task automatically includes the @WebService annotation in the JWS
implementation class; the value corresponds to the equivalent value in the WSDL. For example,
the serviceName attribute of @WebService is the same as the name attribute of the <service>
element in the WSDL file.

When you update the JWS file, you add Java code to the methods so that the corresponding Web
Service operations operate as required. Typically, the generated JWS file contains comments
where you should add code, such as:

 //replace with your impl here

In addition, you can add additional JWS annotations to the file, with the following restrictions:

You can include the following annotations from the standard (JSR-181) javax.jws
package in the JWS implementation file: @WebService, @HandlerChain,
@SOAPMessageHandler, and @SOAPMessageHandlers. If you specify any other JWS
annotation from the javax.jws package, the jwsc Ant task returns error when you try to
compile the JWS file into a Web Service.

You can specify only the serviceName and endpointInterface attributes of the
@WebService annotation. Use the serviceName attribute to specify a different <service>
WSDL element from the one that the wsdlc Ant task used, in the rare case that the WSDL

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#wsdlc

3-14 Getting Started With WebLogic Web Services Using JAX-WS

file contains more than one <service> element. Use the endpointInterface attribute to
specify the JWS SEI generated by the wsdlc Ant task.

You can specify JAX-WS (JSR 224), JAXB (JSR 222), or Common (JSR 250)
annotations, as required.

After you have updated the JWS file, Oracle recommends that you move it to an official source
location, rather than leaving it in the wsdlc output directory.

The following example shows the wsdlc-generated JWS implementation file from the WSDL
shown in “Sample WSDL File” on page 2-20; the text in bold indicates where you would add
Java code to implement the single operation (getTemp) of the Web Service:

package examples.webservices.wsdlc;

import javax.jws.WebService;
/**
 * TemperaturePortTypeImpl class implements web service endpoint interface
 * TemperaturePortType */

@WebService(
 serviceName="TemperatureService",
 endpointInterface="examples.webservices.wsdlc.TemperaturePortType")

public class TemperaturePortTypeImpl implements TemperaturePortType {

 public TemperaturePortTypeImpl() {

 }

 public float getTemp(java.lang.String zipcode)

 {

 //replace with your impl here

 return 0;

 }

}

Deploying and Undeploying WebLogic Web Services
Because Web Services are packaged as Enterprise Applications, deploying a Web Service simply
means deploying the corresponding EAR file or exploded directory.

There are a variety of ways to deploy WebLogic applications, from using the Administration
Console to using the weblogic.Deployer Java utility. There are also various issues you must

Deploy ing and Undep loy ing WebLog ic Web Se rv ices

Getting Started With WebLogic Web Services Using JAX-WS 3-15

consider when deploying an application to a production environment as opposed to a
development environment. For a complete discussion about deployment, see Deploying
Applications to WebLogic Server.

This guide, because of its development nature, discusses just two ways of deploying Web
Services:

Using the wldeploy Ant Task to Deploy Web Services

Using the Administration Console to Deploy Web Services

Using the wldeploy Ant Task to Deploy Web Services
The easiest way to deploy a Web Service as part of the iterative development process is to add a
target that executes the wldeploy WebLogic Ant task to the same build.xml file that contains
the jwsc Ant task. You can add tasks to both deploy and undeploy the Web Service so that as you
add more Java code and regenerate the service, you can redeploy and test it iteratively.

To use the wldeploy Ant task, add the following target to your build.xml file:

 <target name="deploy">

 <wldeploy action="deploy"

 name="DeploymentName"

 source="Source" user="AdminUser"

 password="AdminPassword"

 adminurl="AdminServerURL"

 targets="ServerName"/>

 </target>

where:

DeploymentName refers to the deployment name of the Enterprise Application, or the
name that appears in the Administration Console under the list of deployments.

Source refers to the name of the Enterprise Application EAR file or exploded directory that
is being deployed. By default, the jwsc Ant task generates an exploded Enterprise
Application directory.

AdminUser refers to administrative username.

AdminPassword refers to the administrative password.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/deployment/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/deployment/index.html

3-16 Getting Started With WebLogic Web Services Using JAX-WS

AdminServerURL refers to the URL of the Administration Server, typically
t3://localhost:7001.

ServerName refers to the name of the WebLogic Server instance to which you are
deploying the Web Service.

For example, the following wldeploy task specifies that the Enterprise Application exploded
directory, located in the output/ComplexServiceEar directory relative to the current directory,
be deployed to the myServer WebLogic Server instance. Its deployed name is
ComplexServiceEar.

 <target name="deploy">

 <wldeploy action="deploy"

 name="ComplexServiceEar"

 source="output/ComplexServiceEar" user="weblogic"

 password="weblogic" verbose="true"

 adminurl="t3://localhost:7001"

 targets="myserver"/>

 </target>

To actually deploy the Web Service, execute the deploy target at the command-line:

 prompt> ant deploy

You can also add a target to easily undeploy the Web Service so that you can make changes to its
source code, then redeploy it:

 <target name="undeploy">

 <wldeploy action="undeploy"

 name="ComplexServiceEar"

 user="weblogic"

 password="weblogic" verbose="true"

 adminurl="t3://localhost:7001"

 targets="myserver"/>

 </target>

When undeploying a Web Service, you do not specify the source attribute, but rather undeploy
it by its name.

Brows ing to the WSDL o f the Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-WS 3-17

Using the Administration Console to Deploy Web Services
To use the Administration Console to deploy the Web Service, first invoke it in your browser
using the following URL:

 http://[host]:[port]/console

where:

host refers to the computer on which WebLogic Server is running.

port refers to the port number on which WebLogic Server is listening (default value is
7001).

Then use the deployment assistants to help you deploy the Enterprise application. For more
information on the Administration Console, see the Administration Console Online Help.

Browsing to the WSDL of the Web Service
You can display the WSDL of the Web Service in your browser to ensure that it has deployed
correctly.

The following URL shows how to display the Web Service WSDL in your browser:

 http://[host]:[port]/[contextPath]/[serviceUri]?WSDL

where:

host refers to the computer on which WebLogic Server is running (for example,
localhost).

port refers to the port number on which WebLogic Server is listening (default value is
7001).

contextPath refers to the context root of the Web Service. There are many places to set
the context root (the <WLHttpTransport>, <module>, or <jws> element of jwsc) and
certain methods take precedence over others. See “Defining the Context Path of a
WebLogic Web Service” in WebLogic Web Services Reference for a complete explanation.

serviceUri refers to the value of the serviceUri attribute of the <WLHttpTransport>
child element of the jwsc Ant task. If you do not specify any serviceUri attribute in the
jwsc Ant task, then the serviceUri of the Web Service is the default value: the
serviceName element of the @WebService annotation if specified; otherwise, the name of the
JWS file, without its extension, followed by Service.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#how_to_determine_final_context_root
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#how_to_determine_final_context_root

3-18 Getting Started With WebLogic Web Services Using JAX-WS

For example, assume that you specified the following <WLHttpTransport> child element in the
jwsc task that you use to build your Web Service:

<target name="build-service">

 <jwsc

 srcdir="src"

 destdir="${ear-dir}"

 keepGenerated="true">

 <jws file="examples/webservices/complex/ComplexImpl.java"

 type="JAXWS">

 <WLHttpTransport

 contextPath="complex" serviceUri="ComplexService"

 portName="ComplexServicePort"/>

 </jws>

 </jwsc>

</target>

Then the URL to view the WSDL of the Web Service, assuming the service is running on a host
called ariel at the default port number (7001), is:

 http://ariel:7001/complex/ComplexService?WSDL

Configuring the Server Address Specified in the Dynamic
WSDL

The WSDL of a deployed Web Service (also called dynamic WSDL) includes an <address>
element that assigns an address (URI) to a particular Web Service port. For example, assume that
the following WSDL snippet partially describes a deployed WebLogic Web Service called
ComplexService:

<definitions name="ComplexServiceDefinitions"
 targetNamespace="http://example.org">

...

 <service name="ComplexService">
 <port binding="s0:ComplexServiceSoapBinding" name="ComplexServicePort">
 <s1:address location="http://myhost:7101/complex/ComplexService"/>
 </port>
 </service>

</definitions>

Conf igu r ing the Se rver Address Spec i f i ed in the Dynamic WSDL

Getting Started With WebLogic Web Services Using JAX-WS 3-19

The preceding example shows that the ComplexService Web Service includes a port called
ComplexServicePort, and this port has an address of
http://myhost:7101/complex/ComplexService.

WebLogic Server determines the complex/ComplexService section of this address by
examining the contextPath and serviceURI attributes of the jwsc elements, as described in
“Browsing to the WSDL of the Web Service” on page 3-17. However, the method WebLogic
Server uses to determine the protocol and host section of the address (http://myhost:7101, in
the example) is more complicated, as described below. For clarity, this section uses the term
server address to refer to the protocol and host section of the address.

The server address that WebLogic Server publishes in a dynamic WSDL of a deployed Web
Service depends on whether the Web Service can be invoked using HTTP/S or JMS, whether you
have configured a proxy server, whether the Web Service is deployed to a cluster, or whether the
Web Service is actually a callback service.

The following sections reflect these different configuration options, and provide links to
procedural information about changing the configuration to suit your needs.

Web Service is not a callback service and can be invoked using HTTP/S

Web Service is a callback service

Web Service is invoked using a proxy server

It is assumed in the sections that you use the WebLogic Server Administration Console to
configure cluster and standalone servers.

Web Service is not a callback service and can be invoked
using HTTP/S
1. If the Web Service is deployed to a cluster, and the cluster Frontend Host, Frontend HTTP

Port, and Frontend HTTPS Port are set, then WebLogic Server uses these values in the
server address of the dynamic WSDL.

See “Configure HTTP Settings for a Cluster” in the Administration Console Online Help.

2. If the preceding cluster values are not set, but the Frontend Host, Frontend HTTP Port,
and Frontend HTTPS Port values are set for the individual server to which the Web Service
is deployed, then WebLogic Server uses these values in the server address.

See “Configure HTTP Protocol” in the Administration Console Online Help.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/clusters/ConfigureClusterHTTP.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/channels/ConfigureHTTPProtocol.html

3-20 Getting Started With WebLogic Web Services Using JAX-WS

3. If these values are not set for the cluster or individual server, then WebLogic Server uses the
server address of the WSDL request in the dynamic WSDL.

Web Service is a callback service
1. If the callback service is deployed to a cluster, and the cluster Frontend Host, Frontend

HTTP Port, and Frontend HTTPS Port are set, then WebLogic Server uses these values in
the server address of the dynamic WSDL.

See “Configure HTTP Settings for a Cluster’ in the Administration Console Online Help.

2. If the callback service is deployed to either a cluster or a standalone server, and the preceding
cluster values are not set, but the Frontend Host, Frontend HTTP Port, and Frontend
HTTPS Port values are set for the individual server to which the callback service is deployed,
then WebLogic Server uses these values in the server address.

See “Configure HTTP Protocol” in the Administration Console Online Help.

3. If the callback service is deployed to a cluster, but none of the preceding values are set, but
the Cluster Address is set, then WebLogic Server uses this value in the server address.

See “Configure Clusters” in the Administration Console Online Help.

4. If none of the preceding values are set, but the Listen Address of the server to which the
callback service is deployed is set, then WebLogic Server uses this value in the server address.

See “Configure Listen Addresses” in the Administration Console Online Help.

Web Service is invoked using a proxy server
Although not required, Oracle recommends that you explicitly set the Frontend Host,
FrontEnd HTTP Port, and Frontend HTTPS Port of either the cluster or individual server to
which the Web Service is deployed to point to the proxy server.

See “Configure HTTP Settings for a Cluster” or “Configure HTTP Protocol” in the
Administration Console Online Help.

Testing the Web Service
After you have deployed a WebLogic Web Service, you can use the Web Services Test Client,
included in the WebLogic Administration Console, to test your service without writing code. You
can quickly and easily test any Web Service, including those with complex types and those using

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/clusters/ConfigureClusterHTTP.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/channels/ConfigureHTTPProtocol.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/clusters/ConfigureClusters.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/channels/ConfigureListenAddresses.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/clusters/ConfigureClusterHTTP.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/channels/ConfigureHTTPProtocol.html

In tegrat ing Web Serv ices In to the WebLogic Sp l i t Deve lopment D i rec to r y Env i ronment

Getting Started With WebLogic Web Services Using JAX-WS 3-21

advanced features of WebLogic Server such as conversations. The test client automatically
maintains a full log of requests allowing you to return to the previous call to view the results.

To test a deployed Web Service using the Administration Console, follow these steps:

1. Invoke the Administration Console in your browser using the following URL:

http://[host]:[port]/console

where:

– host refers to the computer on which WebLogic Server is running.

– port refers to the port number on which WebLogic Server is listening (default value is
7001).

2. Follow the procedure described in “Test a Web Service” in the Administration Console
Online Help.

Integrating Web Services Into the WebLogic Split
Development Directory Environment

This section describes how to integrate Web Services development into the WebLogic split
development directory environment. It is assumed that you understand this WebLogic feature and
have set up this type of environment for developing standard Java Platform, Enterprise Edition
(Java EE) Version 5 applications and modules, such as EJBs and Web applications, and you want
to update the single build.xml file to include Web Services development.

For detailed information about the WebLogic split development directory environment, see
“Creating a Split Development Directory for an Application” in Developing Applications With
WebLogic Server and the splitdir/helloWorldEar example installed with WebLogic Server,
located in the WL_HOME/samples/server/examples/src/examples directory, where
WL_HOME is the top-level directory of your WebLogic Server installation.

1. In the main project directory, create a directory that will contain the JWS file that implements
your Web Service.

For example, if your main project directory is called /src/helloWorldEar, then create a
directory called /src/helloWorldEar/helloWebService:

prompt> mkdir /src/helloWorldEar/helloWebService

2. Create a directory hierarchy under the helloWebService directory that corresponds to the
package name of your JWS file.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/webservices/TestAWebService.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/programming/splitcreate.html

3-22 Getting Started With WebLogic Web Services Using JAX-WS

For example, if your JWS file is in the package examples.splitdir.hello package,
then create a directory hierarchy examples/splitdir/hello:

prompt> cd /src/helloWorldEar/helloWebService
prompt> mkdir examples/splitdir/hello

3. Put your JWS file in the just-created Web Service subdirectory of your main project directory
(/src/helloWorldEar/helloWebService/examples/splitdir/hello in this
example.)

4. In the build.xml file that builds the Enterprise application, create a new target to build the
Web Service, adding a call to the jwsc WebLogic Web Service Ant task, as described in
“Running the jwsc WebLogic Web Services Ant Task” on page 3-7.

The jwsc srcdir attribute should point to the top-level directory that contains the JWS
file (helloWebService in this example). The jwsc destdir attribute should point to the
same destination directory you specify for wlcompile, as shown in the following example:

 <target name="build.helloWebService">

 <jwsc
 srcdir="helloWebService"
 destdir="destination_dir"
 keepGenerated="yes" >

 <jws file="examples/splitdir/hello/HelloWorldImpl.java"
 type="JAXWS" />

 </jwsc>

 </target>

In the example, destination_dir refers to the destination directory that the other split
development directory environment Ant tasks, such as wlappc and wlcompile, also use.

5. Update the main build target of the build.xml file to call the Web Service-related targets:

 <!-- Builds the entire helloWorldEar application -->

 <target name="build"
 description="Compiles helloWorldEar application and runs appc"
 depends="build-helloWebService,compile,appc" />

Note: When you actually build your Enterprise Application, be sure you run the jwsc Ant
task before you run the wlappc Ant task. This is because wlappc requires some of
the artifacts generated by jwsc for it to execute successfully. In the example, this
means that you should specify the build-helloWebService target before the appc
target.

In tegrat ing Web Serv ices In to the WebLogic Sp l i t Deve lopment D i rec to r y Env i ronment

Getting Started With WebLogic Web Services Using JAX-WS 3-23

6. If you use the wlcompile and wlappc Ant tasks to compile and validate the entire Enterprise
Application, be sure to exclude the Web Service source directory for both Ant tasks. This is
because the jwsc Ant task already took care of compiling and packaging the Web Service.
For example:

<target name="compile">

 <wlcompile srcdir="${src.dir}" destdir="${dest.dir}"
 excludes="appStartup,helloWebService">
 ...
 </wlcomplile>

...
</target>

<target name="appc">

 <wlappc source="${dest.dir}" deprecation="yes" debug="false"
 excludes="helloWebService"/>

</target>

7. Update the application.xml file in the META-INF project source directory, adding a <web>
module and specifying the name of the WAR file generated by the jwsc Ant task.

For example, add the following to the application.xml file for the helloWorld Web
Service:

<application>

...

 <module>
 <web>
 <web-uri>examples/splitdir/hello/HelloWorldImpl.war</web-uri>
 <context-root>/hello</context-root>
 </web>
 </module>

...

</application>

Note: The jwsc Ant task always generates a Web Application WAR file from the JWS file that
implements your Web Service, unless your JWS file explicitly implements
javax.ejb.SessionBean. In that case you must add an <ejb> module element to the
application.xml file instead.

Your split development directory environment is now updated to include Web Service
development. When you rebuild and deploy the entire Enterprise Application, the Web Service

3-24 Getting Started With WebLogic Web Services Using JAX-WS

will also be deployed as part of the EAR. You invoke the Web Service in the standard way
described in “Browsing to the WSDL of the Web Service” on page 3-17.

Getting Started With WebLogic Web Services Using JAX-WS 4-1

C H A P T E R 4

Programming the JWS File

The following sections provide information about programming the JWS file that implements
your Web Service:

“Overview of JWS Files and JWS Annotations” on page 4-2

“Java Requirements for a JWS File” on page 4-2

“Programming the JWS File: Typical Steps” on page 4-3

“Accessing Runtime Information About a Web Service” on page 4-11

“Should You Implement a Stateless Session EJB?” on page 4-18

“Programming the User-Defined Java Data Type” on page 4-20

“Invoking Another Web Service from the JWS File” on page 4-22

“Using SOAP 1.2” on page 4-22

“Validating the XML Schema” on page 4-24

“JWS Programming Best Practices” on page 4-25

4-2 Getting Started With WebLogic Web Services Using JAX-WS

Overview of JWS Files and JWS Annotations
There are two ways to program a WebLogic Web Service from scratch:

1. Annotate a standard EJB or Java class with Web Service Java annotations, as defined by
JSR-181, the JAX-WS specification, and by the WebLogic Web Services programming
model.

2. Combine a standard EJB or Java class with the various XML descriptor files and artifacts
specified by JSR-109 (such as, deployment descriptors, WSDL files, data mapping
descriptors, data binding artifacts for user-defined data types, and so on).

Oracle strongly recommends using option 1 above. Instead of authoring XML metadata
descriptors yourself, the WebLogic Ant tasks and runtime will generate the required descriptors
and artifacts based on the annotations you include in your JWS. Not only is this process much
easier, but it keeps the information about your Web Service in a central location, the JWS file,
rather than scattering it across many Java and XML files.

The Java Web Service (JWS) annotated file is the core of your Web Service. It contains the Java
code that determines how your Web Service behaves. A JWS file is an ordinary Java class file
that uses Java metadata annotations to specify the shape and characteristics of the Web Service.
The JWS annotations you can use in a JWS file include the standard ones defined by the Web
Services Metadata for the Java Platform specification (JSR-181) plus a set of additional
annotations based on the type of Web Service you are building—JAX-WS or JAX-RPC. For a
complete list of JWS annotations that are supported for JAX-WS and JAX-RPC Web Services,
see “Web Service Annotation Support” in WebLogic Web Services Reference.

When programming the JWS file, you include annotations to program basic Web Service
features. The annotations are used at different levels, or targets, in your JWS file. Some are used
at the class-level to indicate that the annotation applies to the entire JWS file. Others are used at
the method-level and yet others at the parameter level.

Java Requirements for a JWS File
When you program your JWS file, you must follow a set of requirements, as specified by the Web
Services Metadata for the Java Platform specification (JSR-181). In particular, the Java class that
implements the Web Service:

Must be an outer public class, must not be declared final, and must not be abstract.

Must have a default public constructor.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#annotation_support

Programming the JWS F i l e : T yp i ca l S teps

Getting Started With WebLogic Web Services Using JAX-WS 4-3

Must not define a finalize() method.

Must include, at a minimum, a @WebService JWS annotation at the class level to indicate
that the JWS file implements a Web Service.

May reference a service endpoint interface by using the
@WebService.endpointInterface annotation. In this case, it is assumed that the service
endpoint interface exists and you cannot specify any other JWS annotations in the JWS file
other than @WebService.endpointInterface and @WebService.serviceName.

If JWS file does not implement a service endpoint interface, all public methods other than
those inherited from java.lang.Object will be exposed as Web Service operations. This
behavior can be overridden by using the @WebMethod annotation to specify explicitly the
public methods that are to be exposed. If a @WebMethod annotation is present, only the
methods to which it is applied are exposed.

Programming the JWS File: Typical Steps
The following procedure describes the typical steps for programming a JWS file that implements
a Web Service.

Note: It is assumed that you have created a JWS file and now want to add JWS annotations to it.

For more information about each of the JWS annotations, see “JWS Annotation Reference” in
WebLogic Web Services Reference.

Table 4-1 Steps to Program the JWS File

Step Description

1 Import the standard JWS
annotations that will be used in
your JWS file.

 The standard JWS annotations are in either the javax.jws or
javax.jws.soap package. For example:
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

2 Import additional annotations,
as required.

For a complete list of JWS annotations that are supported, see “Web
Service Annotation Support” in WebLogic Web Services Reference.

3 Add the standard required
@WebService JWS annotation
at the class level to specify that
the Java class exposes a Web
Service.

See “Specifying that the JWS File Implements a Web Service
(@WebService Annotation)” on page 4-6.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#annotation_support
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#annotation_support

4-4 Getting Started With WebLogic Web Services Using JAX-WS

4 Add the standard
@SOAPBinding JWS
annotation at the class level to
specify the mapping between the
Web service and the SOAP
message protocol. (Optional)

In particular, use this annotation to specify whether the Web Service is
document-literal, document-encoded, and so on. See “Specifying the
Mapping of the Web Service to the SOAP Message Protocol
(@SOAPBinding Annotation)” on page 4-6.

Although this JWS annotation is not required, Oracle recommends you
explicitly specify it in your JWS file to clarify the type of SOAP
bindings a client application uses to invoke the Web Service.

5 Add the JAX-WS
@BindingType JWS
annotation at the class level to
specify the binding type to use
for a Web Service endpoint
implementation class.
(Optional)

See “Specifying the Binding to Use for an Endpoint (@BindingType
Annotation)” on page 4-10.

6 Add the standard @WebMethod
annotation for each method in
the JWS file that you want to
expose as a public operation.
(Optional)

Optionally specify that the operation takes only input parameters but
does not return any value by using the standard @Oneway annotation.
See “Specifying That a JWS Method Be Exposed as a Public
Operation (@WebMethod and @OneWay Annotations)” on page 4-7.

7 Add @WebParam annotation to
customize the name of the input
parameters of the exposed
operations. (Optional)

See “Customizing the Mapping Between Operation Parameters and
WSDL Elements (@WebParam Annotation)” on page 4-8.

8 Add @WebResult annotations
to customize the name and
behavior of the return value of
the exposed operations.
(Optional)

See “Customizing the Mapping Between the Operation Return Value
and a WSDL Element (@WebResult Annotation)” on page 4-9.

9 Add your business code. Add your business code to the methods to make the WebService
behave as required.

Table 4-1 Steps to Program the JWS File (Continued)

Step Description

Programming the JWS F i l e : T yp i ca l S teps

Getting Started With WebLogic Web Services Using JAX-WS 4-5

Example of a JWS File
The following sample JWS file shows how to implement a simple Web Service.

package examples.webservices.simple;

// Import the standard JWS annotation interfaces

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Standard JWS annotation that specifies that the porType name of the Web
// Service is "SimplePortType", the service name is "SimpleService", and the
// targetNamespace used in the generated WSDL is "http://example.org"

@WebService(name="SimplePortType", serviceName="SimpleService",
 targetNamespace="http://example.org")

// Standard JWS annotation that specifies the mapping of the service onto the
// SOAP message protocol. In particular, it specifies that the SOAP messages
// are document-literal-wrapped.

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello
 *
 */

public class SimpleImpl {

 // Standard JWS annotation that specifies that the method should be exposed
 // as a public operation. Because the annotation does not include the
 // member-value "operationName", the public name of the operation is the
 // same as the method name: sayHello.

 @WebMethod()
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
}

4-6 Getting Started With WebLogic Web Services Using JAX-WS

Specifying that the JWS File Implements a Web Service
(@WebService Annotation)
Use the standard @WebService annotation to specify, at the class level, that the JWS file
implements a Web Service, as shown in the following code excerpt:

@WebService(name="SimplePortType", serviceName="SimpleService",

 targetNamespace="http://example.org")

In the example, the name of the Web Service is SimplePortType, which will later map to the
wsdl:portType element in the WSDL file generated by the jwsc Ant task. The service name is
SimpleService, which will map to the wsdl:service element in the generated WSDL file. The
target namespace used in the generated WSDL is http://example.org.

You can also specify the following additional attributes of the @WebService annotation:

endpointInterface—Fully qualified name of an existing service endpoint interface file.
This annotation allows the separation of interface definition from the implementation. If
you specify this attribute, the jwsc Ant task does not generate the interface for you, but
assumes you have created it and it is in your CLASSPATH.

portname—Name that is used in the wsdl:port.

None of the attributes of the @WebService annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) for the default values of each attribute.

Specifying the Mapping of the Web Service to the SOAP
Message Protocol (@SOAPBinding Annotation)
It is assumed that you want your Web Service to be available over the SOAP message protocol;
for this reason, your JWS file should include the standard @SOAPBinding annotation, at the class
level, to specify the SOAP bindings of the Web Service (such as, document-encoded or
document-literal-wrapped), as shown in the following code excerpt:

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,

 use=SOAPBinding.Use.LITERAL,

 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

In the example, the Web Service uses document-wrapped-style encodings and literal message
formats, which are also the default formats if you do not specify the @SOAPBinding annotation.

You use the parameterStyle attribute (in conjunction with the
style=SOAPBinding.Style.DOCUMENT attribute) to specify whether the Web Service

Programming the JWS F i l e : T yp i ca l S teps

Getting Started With WebLogic Web Services Using JAX-WS 4-7

operation parameters represent the entire SOAP message body, or whether the parameters are
elements wrapped inside a top-level element with the same name as the operation.

The following table lists the possible and default values for the three attributes of the
@SOAPBinding (either the standard or WebLogic-specific) annotation.

Specifying That a JWS Method Be Exposed as a Public
Operation (@WebMethod and @OneWay Annotations)
Use the standard @WebMethod annotation to specify that a method of the JWS file should be
exposed as a public operation of the Web Service, as shown in the following code excerpt:

public class SimpleImpl {

 @WebMethod(operationName="sayHelloOperation")

 public String sayHello(String message) {

 System.out.println("sayHello:" + message);

 return "Here is the message: '" + message + "'";

 }

...

In the example, the sayHello() method of the SimpleImpl JWS file is exposed as a public
operation of the Web Service. The operationName attribute specifies, however, that the public
name of the operation in the WSDL file is sayHelloOperation. If you do not specify the
operationName attribute, the public name of the operation is the name of the method itself.

You can also use the action attribute to specify the action of the operation. When using SOAP
as a binding, the value of the action attribute determines the value of the SOAPAction header
in the SOAP messages.

Table 4-2 Attributes of the @SOAPBinding Annotation

Attribute Possible Values Default Value

style SOAPBinding.Style.RPC
SOAPBinding.Style.DOCUMENT

SOAPBinding.Style.DOCUMENT

use SOAPBinding.Use.LITERAL SOAPBinding.Use.LITERAL

parameterS
tyle

SOAPBinding.ParameterStyle.BARE
SOAPBinding.ParameterStyle.WRAP
PED

SOAPBinding.ParameterStyle.WRAP
PED

4-8 Getting Started With WebLogic Web Services Using JAX-WS

You can specify that an operation not return a value to the calling application by using the
standard @Oneway annotation, as shown in the following example:

 public class OneWayImpl {

 @WebMethod()

 @Oneway()

 public void ping() {

 System.out.println("ping operation");

 }

...

If you specify that an operation is one-way, the implementing method is required to return void,
cannot use a Holder class as a parameter, and cannot throw any checked exceptions.

None of the attributes of the @WebMethod annotation is required. See the Web Services Metadata
for the Java Platform (JSR 181) for the default values of each attribute, as well as additional
information about the @WebMethod and @Oneway annotations.

If none of the public methods in your JWS file are annotated with the @WebMethod annotation,
then by default all public methods are exposed as Web Service operations.

Customizing the Mapping Between Operation Parameters
and WSDL Elements (@WebParam Annotation)
Use the standard @WebParam annotation to customize the mapping between operation input
parameters of the Web Service and elements of the generated WSDL file, as well as specify the
behavior of the parameter, as shown in the following code excerpt:

 public class SimpleImpl {

 @WebMethod()

 @WebResult(name="IntegerOutput",

 targetNamespace="http://example.org/docLiteralBare")

 public int echoInt(

 @WebParam(name="IntegerInput",

 targetNamespace="http://example.org/docLiteralBare")

 int input)

 {

 System.out.println("echoInt '" + input + "' to you too!");

 return input;

Programming the JWS F i l e : T yp i ca l S teps

Getting Started With WebLogic Web Services Using JAX-WS 4-9

 }

...

In the example, the name of the parameter of the echoInt operation in the generated WSDL is
IntegerInput; if the @WebParam annotation were not present in the JWS file, the name of the
parameter in the generated WSDL file would be the same as the name of the method’s parameter:
input. The targetNamespace attribute specifies that the XML namespace for the parameter is
http://example.org/docLiteralBare; this attribute is relevant only when using
document-style SOAP bindings where the parameter maps to an XML element.

You can also specify the following additional attributes of the @WebParam annotation:

mode—The direction in which the parameter is flowing (WebParam.Mode.IN,
WebParam.Mode.OUT, or WebParam.Mode.INOUT). OUT and INOUT modes are only
supported for RPC-style operations or for parameters that map to headers.

header—Boolean attribute that, when set to true, specifies that the value of the parameter
should be retrieved from the SOAP header, rather than the default body.

None of the attributes of the @WebParam annotation is required. See the Web Services Metadata
for the Java Platform (JSR 181) for the default value of each attribute.

Customizing the Mapping Between the Operation Return
Value and a WSDL Element (@WebResult Annotation)
Use the standard @WebResult annotation to customize the mapping between the Web Service
operation return value and the corresponding element of the generated WSDL file, as shown in
the following code excerpt:

 public class Simple {

 @WebMethod()

 @WebResult(name="IntegerOutput",

 targetNamespace="http://example.org/docLiteralBare")

 public int echoInt(

 @WebParam(name="IntegerInput",

 targetNamespace="http://example.org/docLiteralBare")

 int input)

 {

 System.out.println("echoInt '" + input + "' to you too!");

 return input;

4-10 Getting Started With WebLogic Web Services Using JAX-WS

 }

...

In the example, the name of the return value of the echoInt operation in the generated WSDL is
IntegerOutput; if the @WebResult annotation were not present in the JWS file, the name of the
return value in the generated WSDL file would be the hard-coded name return. The
targetNamespace attribute specifies that the XML namespace for the return value is
http://example.org/docLiteralBare; this attribute is relevant only when using
document-style SOAP bindings where the return value maps to an XML element.

None of the attributes of the @WebResult annotation is required. See the Web Services Metadata
for the Java Platform (JSR 181) for the default value of each attribute.

Specifying the Binding to Use for an Endpoint
(@BindingType Annotation)
Use the JAX-WS @BindingType annotation to customize the binding to use for a web service
endpoint implementation class, as shown in the following code excerpt:

import javax.xml.ws.BindingType;

import javax.xml.ws.soap.SOAPBinding;

 public class Simple {

 @WebService()

 @BindingType(value=SOAPBinding.SOAP12HTTP_BINDING)

 public int echoInt(

 @WebParam(name="IntegerInput",

 targetNamespace="http://example.org/docLiteralBare")

 int input)

 {

 System.out.println("echoInt '" + input + "' to you too!");

 return input;

 }

...

In the example, the deployed endpoint would use the SOAP1.2 over HTTP binding. If not
specified, the binding defaults to SOAP 1.1 over HTTP.

You can also specify the following additional attributes of the @BindingType annotation:

Access ing Runt ime In fo rmat ion About a Web Serv ice

Getting Started With WebLogic Web Services Using JAX-WS 4-11

features—An array of features to enable/disable on the specified binding. If not
specified, features are enabled based on their own rules.

For more information about the @BindingType annotation, see JAX-WS 2.1 Annotations.

Accessing Runtime Information About a Web Service
When a client application invokes a WebLogic Web Service that was implemented with a JWS
file, WebLogic Server automatically creates a context that the Web Service or client can use to
access, and sometimes change, runtime information about the service.

To access runtime information, you can use one of the following methods:

 javax.xml.ws.BindingProvider—From the client application, access the request and
response context of the protocol binding. See “Accessing the Protocol Binding Context” on
page 4-11.

 javax.xml.ws.WebServiceContext—From the Web Service, access runtime message
context and security information relative to a request being served. Typically, a
WebServiceContext is injected into an endpoint using the @Resource annotation. See
“Accessing the Web Service Context” on page 4-14.

javax.xml.ws.handler.MessageContext—Access a set of runtime properties from a
message handler—from the client application or Web Service—or directly from the
WebServiceContext from a Web Service. See “Using the MessageContext Property
Values” on page 4-16

The following sections describe how to use the BindingProvider, WebServiceContext, and
MessageContext to access runtime information in more detail.

Accessing the Protocol Binding Context
Note: The com.sun.xml.ws.developer.JAXWSProperties and

com.sun.xml.ws.client.BindingProviderProperties APIs are supported as an
extension to the JDK 6.0, provided by Sun Microsystems. Because the APIs are not
provided as part of the JDK 6.0 kit, they are subject to change.

The javax.xml.ws.BindingProvider interface enables you to access from the client
application the request and response context of the protocol binding. For more information about
developing Web Service client files, see “Invoking Web Services” on page 6-1.

4-12 Getting Started With WebLogic Web Services Using JAX-WS

The following example shows a simple Web Service client application that uses the context to
access HTTP request header information. The code in bold is discussed in the programming
guidelines described following the example.

package examples.webservices.hello_world.client;

import javax.xml.namespace.QName;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.Map;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.handler.MessageContext;
import com.sun.xml.ws.developer.JAXWSProperties;
import com.sun.xml.ws.client.BindingProviderProperties;

/**
 * This is a simple standalone client application that invokes the
 * the <code>sayHelloWorld</code> operation of the Simple Web service.
 */

public class Main {
 public static void main(String[] args) {
 HelloWorldService service;
 try {
 service = new HelloWorldService(new URL(args[0] + "?WSDL"),
 new QName("http://hello_world.webservices.examples/",
 "HelloWorldService"));
 } catch (MalformedURLException murl) { throw new RuntimeException(murl); }
 HelloWorldPortType port = service.getHelloWorldPortTypePort();
 String result = null;
 result = port.sayHelloWorld("Hi there!");
 System.out.println("Got result: " + result);
 Map requestContext = ((BindingProvider)port).getRequestContext();
 requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://examples.com/HelloWorldImpl/HelloWorldService");
 requestContext.put(JAXWSProperties.CONNECT_TIMEOUT, 300);
 requestContext.put(BindingProviderProperties.REQUEST_TIMEOUT, 300);
 Map responseContext = ((BindingProvider)port).getResponseContext();
 Integer responseCode =
 (Integer)responseContext.get(MessageContext.HTTP_RESPONSE_CODE);
...
 }
}

Use the following guidelines in your JWS file to access the runtime context of the Web Service,
as shown in the code in bold in the preceding example:

Access ing Runt ime In fo rmat ion About a Web Serv ice

Getting Started With WebLogic Web Services Using JAX-WS 4-13

Import the javax.xml.ws.BindingProvider API, as well as any other related APIs that
you might use:

import java.util.Map;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.handler.MessageContext;
import com.sun.xml.ws.developer.JAXWSProperties;
import com.sun.xml.ws.client.BindingProviderProperties;
import com.sun.xml.ws.client.BindingProviderProperties;

Use the methods of the BindingProvider class to access the binding protocol context
information. The following example shows how to get the request and response context for
the protocol binding and subsequently set the target service endpoint address used by the
client for the request context, set the connection and read timeouts (in milliseconds) for the
request context, and set the HTTP response status code for the response context:

Map requestContext = ((BindingProvider)port).getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://examples.com/HelloWorldImpl/HelloWorldService");
requestContext.put(JAXWSProperties.CONNECT_TIMEOUT, 300);
requestContext.put(BindingProviderProperties.REQUEST_TIMEOUT, 300);
Map responseContext = ((BindingProvider)port).getResponseContext();
Integer responseCode =
 (Integer)responseContext.get(MessageContext.HTTP_RESPONSE_CODE);

The following table summarizes the methods of the javax.xml.ws.BindingProvider that you
can use in your JWS file to access runtime information about the Web Service.

One you get the request or response context, you can access the BindingProvider property
values defined in the following table and the MessageContext property values defined in “Using
the MessageContext Property Values” on page 4-16.

Table 4-3 Methods of the BindingProvider

Method Returns Description

getBinding() Binding Returns the binding for the binding provider.

getRequestContext() java.Util.Map Returns the context that is used to initialize the
message and context for request messages.

getResponseContext() java.Util.Map Returns the response context.

4-14 Getting Started With WebLogic Web Services Using JAX-WS

In addition, in the previous example:

The JAXWSProperties.CONNECT_TIMEOUT property is used to define the connection
timeout. For a complete list of JAXWSProperties that you can set, see the
com.sun.xml.ws.developer.JAXWSProperties Javadoc.

The BindingProviderProperties.REQUEST_TIMEOUT property is used to define the
request timeout. For a complete list of BindingProviderProperties that you can set,
see the com.sun.xml.ws.client.BindingProviderProperties Javadoc.

Accessing the Web Service Context
The javax.xml.ws.WebServiceContext interface enables you to access from the Web Service
runtime message context and security information relative to a request being served. Typically, a
WebServiceContext is injected into an endpoint using the @Resource annotation.

The following example shows a simple JWS file that uses the context to access HTTP request
header information. The code in bold is discussed in the programming guidelines described
following the example.

Table 4-4 Properties of BindingProvider

Property Type Description

ENDPOINT_ADDRESS_PROPERTY java.lang.String Target service endpoint address.

PASSWORD_PROPERTY java.lang.String Password used for authentication.

SESSION_MAINTAIN_PROPERTY java.lang.Boolea
n

Flag that specifies whether a service client
wants to participate in a session with a service
endpoint. Defaults to false, indicating that the
service client does not want to participate.

SOAPACTION_URI_PROPERTY java.lang.String Property for SOAPAction specifying the
SOAPAction URI. This property is valid only if
SOAPACTION_USE_PROPERTY is set to
true.

SOAPACTION_USE_PROPERTY java.lang.Boolea
n

Property for SOAPAction specifying whether
or not SOAPAction should be used.

USERNAME_PROPERTY java.lang.String User name used for authentication.

Access ing Runt ime In fo rmat ion About a Web Serv ice

Getting Started With WebLogic Web Services Using JAX-WS 4-15

package examples.webservices.jws_context;

import javax.jws.WebMethod;
import javax.jws.WebService;

import java.util.Map;
import javax.xml.ws.WebServiceContext;
import javax.annotation.Resource;
import javax.xml.ws.handler.MessageContext;

@WebService(name="JwsContextPortType", serviceName="JwsContextService",
 targetNamespace="http://example.org")

/**
 * Simple web service to show how to use the @Context annotation.
 */

public class JwsContextImpl {

 @Resource
 private WebServiceContext ctx;

 @WebMethod()
 public String msgContext(String msg) {
 MessageContext context=ctx.getMessageContext();
 Map requestHeaders = (Map)context.get(MessageContext.HTTP_REQUEST_HEADERS);
 }

}

Use the following guidelines in your JWS file to access the runtime context of the Web Service,
as shown in the code in bold in the preceding example:

Import the @javax.annotation.Resource JWS annotation:

import javax.annotation.Resource;

Import the javax.xml.ws.WebServiceContext API, as well as any other related APIs
that you might use:

import java.util.Map;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;

Annotate a private variable, of data type javax.xml.ws.WebServiceContext, with the
field-level @Resource JWS annotation:

@Resource
private WebServiceContext ctx;

4-16 Getting Started With WebLogic Web Services Using JAX-WS

Use the methods of the WebServiceContext class to access runtime information about the
Web Service. The following example shows how to get the message context for the current
service request and subsequently access the HTTP request headers:

MessageContext context=ctx.getMessageContext();
Map requestHeaders =
(Map)context.get(MessageContext.HTTP_REQUEST_HEADERS)

For more information about the MessageContext property values, see “Using the
MessageContext Property Values” on page 4-16.

The following table summarizes the methods of the javax.xml.ws.WebServiceContext that
you can use in your JWS file to access runtime information about the Web Service.

Using the MessageContext Property Values
The following table defined the javax.xml.ws.handler.MessageContext property values
that you can access from a message handler—from the client application or Web Service—or
directly from the WebServiceContext from the Web Service. For more information, see the
javax.xml.ws.handler.MessageContext Javadocs.

Table 4-5 Methods of the WebServiceContext

Method Returns Description

getMessageContext() MessageContext Returns the MessageContext for the current service
request. You can access properties that are
application-scoped only, such as
HTTP_REQUEST_HEADERS,
MESSAGE_ATTACHMENTS, and so on, as defined
in “Using the MessageContext Property Values” on
page 4-16.

getUserPrincipal() java.security.P
rincipal

Returns the Principal that identifies the sender of
the current service request. If the sender has not
been authenticated, the method returns null.

isUserInRole(java.lang
.String role)

boolean Returns a boolean value specifying whether the
authenticated user is included in the specified
logical role. If the user has not been authenticated,
the method returns false.

Access ing Runt ime In fo rmat ion About a Web Serv ice

Getting Started With WebLogic Web Services Using JAX-WS 4-17

Table 4-6 Properties of MessageContext

Property Type Description

HTTP_REQUEST_HEADERS java.util.Map Map of HTTP request headers for the request
message.

HTTP_REQUEST_METHOD java.lang.String HTTP request method for example GET,
POST, or PUT.

HTTP_RESPONSE_CODE java.lang.Intege
r

HTTP response status code for the last
invocation.

HTTP_RESPONSE_HEADERS java.util.Map HTTP response headers.

INBOUND_MESSAGE_ATTACHMEN
TS

java.util.Map Map of attachments for the inbound
messages.

MESSAGE_OUTBOUND_PROPERTY java.lang.Boolea
n

Message direction. This property is true for
outbound messages and false for inbound
messages.

OUTBOUND_MESSAGE_ATTACHME
NTS

java.util.Map Map of attachments for the outbound
messages.

PATH_INFO java.lang.String Request path information.

QUERY_STRING java.lang.String Query string for request.

REFERENCE_PARAMETERS java.awt.List WS-Addressing reference parameters. The
list must include all SOAP headers marked
with the
wsa:IsReferenceParameter="true"
attribute.

SERVLET_CONTEXT javax.servlet.Se
rvletContext

Servlet context object associated with
request.

SERVLET_REQUEST javax.servlet.ht
tp.HttpServletRe
quest

Servlet request object associated with
request.

SERVLET_RESPONSE javax.servlet.ht
tp.HttpServletRe
sponse

Servlet response object associated with
request.

4-18 Getting Started With WebLogic Web Services Using JAX-WS

Should You Implement a Stateless Session EJB?
The jwsc Ant task always chooses a plain Java object as the underlying implementation of a Web
Service when processing your JWS file.

Sometimes, however, you might want the underlying implementation of your Web Service to be
a stateless session EJB so as to take advantage of all that EJBs have to offer, such as instance
pooling, transactions, security, container-managed persistence, container-managed relationships,
and data caching. If you decide you want an EJB implementation for your Web Service, then
follow the programming guidelines in the following section.

EJB 3.0 introduced metadata annotations that enable you to automatically generate, rather than
manually create, the EJB Remote and Home interface classes and deployment descriptor files
needed when implementing an EJB. For more information about EJB 3.0, see Enterprise
JavaBeans (EJB) 3.0.

To implement an EJB in your JWS file, perform the following steps:

Import the EJB 3.0 annotations, all of which are in the javax.ejb package. At a minimum
you need to import the @Stateless annotation. You can also specify additional EJB
annotations in your JWS file to specify the shape and behavior of the EJB, see the
javax.ejb Javadoc for more information.

For example:

WSDL_DESCRIPTION org.xml.sax.Inpu
tSource

Input source (resolvable URI) for the WSDL
document.

WSDL_INTERFACE javax.xml.namesp
ace.QName

Name of the WSDL interface or port type.

WSDL_OPERATION javax.xml.namesp
ace.QName

Name of the WSDL operation to which the
current message belongs.

WSDL_PORT javax.xml.namesp
ace.QName

Name of the WSDL port to which the
message was received.

WSDL_SERVICE javax.xml.namesp
ace.QName

Name of the service being invoked.

Table 4-6 Properties of MessageContext (Continued)

Property Type Description

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ejb30.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ejb30.html

Should You Implement a S tate less Sess i on E JB?

Getting Started With WebLogic Web Services Using JAX-WS 4-19

import javax.ejb.Stateless;

At a minimum, use the @Stateless annotation at the class level to identify the EJB:

@Stateless
public class SimpleEjbImpl {

The following example shows a simple JWS file that implement a stateless session EJB. The
relevant code is shown in bold.

package examples.webservices.jaxws;

import weblogic.transaction.TransactionHelper;
import javax.ejb.Stateless;
import javax.ejb.SessionContext;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.annotation.Resource;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.transaction.SystemException;
import javax.transaction.Status;
import javax.transaction.Transaction;
import javax.xml.ws.WebServiceContext;

/**
* A transaction-awared stateless EJB-implemented JWS
*/

// Standard JWS annotation that specifies that the portName,serviceName and
// target Namespace of the Web Service.
@WebService(

name = "Simple",
portName = "SimpleEJBPort",
serviceName = "SimpleEjbService",
targetNamespace = "http://www.bea.com/wls/samples")

//Standard EJB annotation
@Stateless
public class SimpleEjbImpl {

 @Resource
 private WebServiceContext context;
 private String constructed = null;

 // The WebMethod annotation exposes the subsequent method as a public
 // operation on the Web Service.
 @WebMethod()
 @TransactionAttribute(TransactionAttributeType.REQUIRED)

4-20 Getting Started With WebLogic Web Services Using JAX-WS

 public String sayHello(String s) throws SystemException {
 Transaction transaction =
 TransactionHelper.getTransactionHelper().getTransaction();
 int status = transaction.getStatus();
 if (Status.STATUS_ACTIVE != status)
 throw new IllegalStateException("transaction did not start,
 status is: " + status + ", check ejb annotation processing");

 return constructed + ":" + s;
}

Programming the User-Defined Java Data Type
The methods of the JWS file that are exposed as Web Service operations do not necessarily take
built-in data types (such as Strings and integers) as parameters and return values, but rather, might
use a Java data type that you create yourself. An example of a user-defined data type is
TradeResult, which has two fields: a String stock symbol and an integer number of shares
traded.

If your JWS file uses user-defined data types as parameters or return values of one or more of its
methods, you must create the Java code of the data type yourself, and then import the class into
your JWS file and use it appropriately. The jwsc Ant task will later take care of creating all the
necessary data binding artifacts.

Follow these basic requirements when writing the Java class for your user-defined data type:

Define a default constructor, which is a constructor that takes no parameters.

Define both getXXX() and setXXX() methods for each member variable that you want to
publicly expose.

Make the data type of each exposed member variable one of the built-in data types, or
another user-defined data type that consists of built-in data types.

The jwsc Ant task can generate data binding artifacts for most common XML and Java data
types. For the list of supported user-defined data types, see “Supported User-Defined Data
Types” on page 5-10. See “Supported Built-In Data Types” on page 5-5 for the full list of
supported built-in data types.

The following example shows a simple Java user-defined data type called BasicStruct:

package examples.webservices.complex;

/**

 * Defines a simple JavaBean called BasicStruct that has integer, String,

Programming the User-De f ined Java Data Type

Getting Started With WebLogic Web Services Using JAX-WS 4-21

 * and String[] properties

 */

public class BasicStruct {

 // Properties

 private int intValue;

 private String stringValue;

 private String[] stringArray;

 // Getter and setter methods

 public int getIntValue() {

 return intValue;

 }

 public void setIntValue(int intValue) {

 this.intValue = intValue;

 }

 public String getStringValue() {

 return stringValue;

 }

 public void setStringValue(String stringValue) {

 this.stringValue = stringValue;

 }

 public String[] getStringArray() {

 return stringArray;

 }

 public void setStringArray(String[] stringArray) {

 this.stringArray = stringArray;

 }

}

The following snippets from a JWS file show how to import the BasicStruct class and use it as
both a parameter and return value for one of its methods; for the full JWS file, see “Sample
ComplexImpl.java JWS File” on page 2-12:

package examples.webservices.complex;

// Import the standard JWS annotation interfaces

4-22 Getting Started With WebLogic Web Services Using JAX-WS

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic-specific JWS annotation interface

// Import the BasicStruct JavaBean

import examples.webservices.complex.BasicStruct;

@WebService(serviceName="ComplexService", name="ComplexPortType",
 targetNamespace="http://example.org")

...

public class ComplexImpl {

 @WebMethod(operationName="echoComplexType")
 public BasicStruct echoStruct(BasicStruct struct)

 {
 return struct;
 }
}

Invoking Another Web Service from the JWS File
From within your JWS file you can invoke another Web Service, either one deployed on
WebLogic Server or one deployed on some other application server, such as .NET. The steps to
do this are similar to those described in “Invoking a Web Service from a Stand-alone Java Client”
on page 2-25, except that rather than running the clientgen Ant task to generate the client stubs,
you include a <clientgen> child element of the jwsc Ant task that builds the invoking Web
Service to generate the client stubs instead. You then use the standard JAX-WS APIs in your JWS
file the same as you do in a stand-alone client application.

See “Invoking a Web Service from Another Web Service” on page 6-10 for detailed instructions.

Using SOAP 1.2
WebLogic Web Services use, by default, Version 1.1 of Simple Object Access Protocol (SOAP)
as the message format when transmitting data and invocation calls between the Web Service and
its client. WebLogic Web Services support both SOAP 1.1 and the newer SOAP 1.2, and you are
free to use either version.

Us ing SOAP 1 .2

Getting Started With WebLogic Web Services Using JAX-WS 4-23

To specify that the Web Service use Version 1.2 of SOAP, use the class-level
@javax.xml.ws.BindingType annotation in your JWS file and set its single attribute to the
value SOAPBinding.SOAP12HTTP_BINDING, as shown in the following example (relevant code
shown in bold):

package examples.webservices.soap12;

import javax.jws.WebMethod;

import javax.jws.WebService;

import javax.xml.ws.BindingType;

import javax.xml.ws.SOAPBinding;

@WebService(name="SOAP12PortType",

 serviceName="SOAP12Service",

 targetNamespace="http://example.org")

@BindingType(value = SOAPBinding.SOAP12HTTP_BINDING)

/**

 * This JWS file forms the basis of simple Java-class implemented WebLogic

 * Web Service with a single operation: sayHello. The class uses SOAP 1.2

 * as its binding.

 *

 */

public class SOAP12Impl {

 @WebMethod()

 public String sayHello(String message) {

 System.out.println("sayHello:" + message);

 return "Here is the message: '" + message + "'";

 }

}

Other than set this annotation, you do not have to do anything else for the Web Service to use
SOAP 1.2, including changing client applications that invoke the Web Service; the WebLogic
Web Services runtime takes care of all the rest.

4-24 Getting Started With WebLogic Web Services Using JAX-WS

Validating the XML Schema
By default, SOAP messages are not validated against their XML schemas. You can enable XML
schema validation for document-literal Web Services on the server or client, as described in the
following sections.

Note: This feature adds a small amount of extra processing to a Web Service request.

Enabling Schema Validation on the Server
Note: The com.sun.xml.ws.developer.SchemaValidation API is supported as an

extension to the JDK 6.0, provided by Sun Microsystems. Because this API is not
provided as part of the JDK 6.0 kit, it is subject to change.

To enable schema validation on the server, add the @SchemaValidation annotation on the
endpoint implementation. For example:

import com.sun.xml.ws.developer.SchemaValidation;

import javax.jws.WebService;

@SchemaValidation

@WebService(name="HelloWorldPortType", serviceName="HelloWorldService")

public class HelloWorldImpl {

 public String sayHelloWorld(String message) {

 System.out.println("sayHelloWorld:" + message);

 return "Here is the message: '" + message + "'";

 }

}

You can pass your own validation error handler class as an argument to the annotation, if you
want to manage errors within your application. For example:

@SchemaValidation(handler=ErrorHandler.class)

Enabling Schema Validation on the Client
Note: The com.sun.xml.ws.developer.SchemaValidationFeature API is supported as

an extension to the JDK 6.0, provided by Sun Microsystems. Because this API is not

provided as part of the JDK 6.0 kit, it is subject to change.

To enable schema validation on the client, create a SchemaValidationFeature object and pass
this as an argument when creating the PortType stub implementation.

JWS Prog ramming Bes t P ract ices

Getting Started With WebLogic Web Services Using JAX-WS 4-25

package examples.webservices.hello_world.client;

import com.sun.xml.ws.developer.SchemaValidationFeature;

import javax.xml.namespace.QName;

import java.net.MalformedURLException;

import java.net.URL;

public class Main {

 public static void main(String[] args) {

 HelloWorldService service;

 try {

 service = new HelloWorldService(new URL(args[0] + "?WSDL"),

 new QName("http://example.org", "HelloWorldService"));

 } catch (MalformedURLException murl) { throw new RuntimeException(murl);

}

 SchemaValidationFeature feature =

 new SchemaValidationFeature();

 HelloWorldPortType port = service.getHelloWorldPortTypePort(feature);

 String result = null;

 result = port.sayHelloWorld("Hi there!");

 System.out.println("Got result: " + result);

 }

}

You can pass your own validation error handler as an argument to the
SchemaValidationFeature object, if you want to manage errors within your application. For
example:

 SchemaValidationFeature feature =

 new SchemaValidationFeature(MyErrorHandler.class);

 HelloWorldPortType port = service.getHelloWorldPortTypePort(feature);

JWS Programming Best Practices
The following list provides some best practices when programming the JWS file:

When you create a document-literal-bare Web Service, use the @WebParam JWS annotation
to ensure that all input parameters for all operations of a given Web Service have a unique
name. Because of the nature of document-literal-bare Web Services, if you do not
explicitly use the @WebParam annotation to specify the name of the input parameters,

4-26 Getting Started With WebLogic Web Services Using JAX-WS

WebLogic Server creates one for you and run the risk of duplicating the names of the
parameters across a Web Service.

In general, document-literal-wrapped Web Services are the most interoperable type of Web
Service.

Use the @WebResult JWS annotation to explicitly set the name of the returned value of an
operation, rather than always relying on the hard-coded name return, which is the default
name of the returned value if you do not use the @WebResult annotation in your JWS file.

Getting Started With WebLogic Web Services Using JAX-WS 5-1

C H A P T E R 5

Using JAXB Data Binding

The following sections provide information about using JAXB data binding:

“Overview of Data Binding Using JAXB” on page 5-1

“Developing the JAXB Data Binding Artifacts” on page 5-3

“Standard Data Type Mapping” on page 5-4

“Customizing Java-to-XML Schema Mapping Using JAXB Annotations” on page 5-13

“Customizing XML Schema-to-Java Mapping Using Binding Declarations” on page 5-18

Overview of Data Binding Using JAXB
With the emergence of XML as the standard for exchanging data across disparate systems, Web
Service applications need a way to access data that are in XML format directly from the Java
application. Specifically, the XML content needs to be converted to a format that is readable by
the Java application. Data binding describes the conversion of data between its XML and Java
representations.

JAX-WS uses Java Architecture for XML Binding (JAXB) to manage all of the data binding
tasks. Specifically, JAXB binds Java method signatures and WSDL messages and operations and
allows you to customize the mapping while automatically handling the runtime conversion. This
makes it easy for you to incorporate XML data and processing functions in applications based on
Java technology without having to know much about XML.

5-2 Getting Started With WebLogic Web Services Using JAX-WS

The following figure shows the JAXB data binding process.

Figure 5-1 Data Binding With JAXB

As shown in the previous figure, the JAXB data binding process consists of the following tasks:

Bind—Binds XML Schema to schema-derived JAXB Java classes, or value classes. Each
class provides access to the content via a set of JavaBean-style access methods (that is, get
and set). Binding is managed by the JAXB schema compiler.

Unmarshal—Converts the XML document to create a tree of Java program elements, or
objects, that represents the content and organization of the document that can be accessed
by your Java code. In the content tree, complex types are mapped to value classes.
Attribute declarations or elements with simple types are mapped to properties or fields
within the value class and you can access the values for them using get and set methods.
Unmarshalling is managed by the JAXB binding framework.

Marshal—Converts the Java objects back to XML content. In this case, the Java methods
that are deployed as WSDL operations determine the schema components in the
wsdl:types section. Marshalling is managed by the JAXB binding framework.

You can use the JAXB binding language to define custom binding declarations or specify JAXB
annotations to control the conversion of data between XML and Java.

This following sections describe:

Developing the JAXB Data Binding Artifacts—Describes how to develop the JAXB data
binding artifacts using WebLogic Server.

Deve lop ing the JAXB Data B ind ing Ar t i facts

Getting Started With WebLogic Web Services Using JAX-WS 5-3

Standard Data Type Mapping—Describes the standard built-in and user-defined data types
that are supported.

Customizing Java-to-XML Schema Mapping Using JAXB Annotations—Describes how
you can control and customize the Java-to-XML Schema mapping using JAXB annotations
in the JWS file.

Customizing XML Schema-to-Java Mapping Using Binding Declarations—Describes how
you can control and customize the XML Schema-to-Java mapping using binding
declarations that are defined in a separate file or embedded inline.

Developing the JAXB Data Binding Artifacts
The steps to develop the JAXB data binding artifacts using WebLogic Server depend on whether
you are starting from a Java class file or a WSDL.

Start from Java: Using this programming model, you create the Java classes. At run-time,
JAXB marshals the Java objects to generate the XML content which is then packaged in a
SOAP message and sent as a Web Service request or response.

To control the Java-to-XML mapping, you include JAXB annotations in your JWS file, as
described in “Customizing Java-to-XML Schema Mapping Using JAXB Annotations” on
page 5-13. If no customizations are required, JAXB uses the standard built-in and
user-defined data type mapping as described in the following sections: “Java-to-XML
Mapping for Built-In Data Types” on page 5-9 and “Supported Java User-Defined Data
Types” on page 5-12.

For more information about this programming model, see “Developing WebLogic Web
Services Starting From Java: Main Steps” on page 3-2.

Start from WSDL: Using this programming model, the XML Schemas exist and JAXB
unmarshals the XML document to generate the Java objects.

To control the XML-to-Java mapping, you can define custom binding declarations within
the WSDL or XML Schema, or in an external file, as described in “Customizing XML
Schema-to-Java Mapping Using Binding Declarations” on page 5-18. If no customizations
are required, the standard built-in and user-defined data type mapping as described in the
following sections: “XML-to-Java Mapping for Built-in Data Types” on page 5-5 and
“Supported XML User-Defined Data Types” on page 5-10.

For more information about this programming model, see “Developing WebLogic Web
Services Starting From a WSDL File: Main Steps” on page 3-4.

5-4 Getting Started With WebLogic Web Services Using JAX-WS

Please note, when invoking the jwsc, wsdlc, or clientgen Ant tasks described in these
procedures:

You must specify the type="JAXWS" attribute to generate a JAX-WS Web Service and
JAXB binding artifacts. For jwsc, you specify the type attribute as part of the <jws> child
element.

You can optionally specify the <binding> child element to specify a customizations file
that contains JAX-WS and JAXB data binding customizations. For information about
creating a customizations file, see “Customizing XML Schema-to-Java Mapping Using
Binding Declarations” on page 5-18. If no customizations are required, JAXB uses the
standard built-in and user-defined data type mappings described in “Standard Data Type
Mapping” on page 5-4.

For more information about the jwsc, wsdlc, or clientgen Ant tasks, see “Ant Task Reference”
in WebLogic Web Services Reference.

Standard Data Type Mapping
WebLogic Web Services support a full set of built-in XML Schema, Java, and SOAP types, as
specified by the JAXB 2.0 (JSR 222) specification, that you can use in your Web Service
operations without performing any additional programming steps. Built-in data types are those
such as integer, string, and time.

Additionally, you can use a variety of user-defined XML and Java data types as input parameters
and return values of your Web Service. User-defined data types are those that you create from
XML Schema or Java building blocks, such as <xsd:complexType> or JavaBeans. The
WebLogic Web Services Ant tasks, such as jwsc and clientgen, automatically generate the
data binding artifacts needed to convert the user-defined data types between their XML and Java
representations. The XML representation is used in the SOAP request and response messages,
and the Java representation is used in the JWS that implements the Web Service.

The following sections describe the built-in and user-defined data types that are supported by
JAXB:

Supported Built-In Data Types

Supported User-Defined Data Types

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html

Standard Data Type Mapp ing

Getting Started With WebLogic Web Services Using JAX-WS 5-5

Supported Built-In Data Types
The following sections describe the built-in data types supported by WebLogic Web Services and
the mapping between their XML and Java representations. As long as the data types of the
parameters and return values of the back-end components that implement your Web Service are
in the set of built-in data types, WebLogic Server automatically converts the data between XML
and Java.

When using user-defined data types, then you must create the data binding artifacts that convert
the data between XML and Java. WebLogic Server includes the jwsc and wsdlc Ant tasks that
can automatically generate the data binding artifacts for most user-defined data types. See
“Supported User-Defined Data Types” on page 5-10 for a list of supported XML and Java data
types.

XML-to-Java Mapping for Built-in Data Types
The following table lists alphabetically the supported XML Schema data types (target namespace
http://www.w3.org/2001/XMLSchema) and their corresponding Java data types. For a list of
the supported user-defined XML data types, see “Java-to-XML Mapping for Built-In Data
Types” on page 5-9.

Table 5-1 Mapping XML Schema Built-in Data Types to Java Data Types

XML Schema Data Type Java Data Type (lower case indicates a primitive data type)

anySimpleType (for
xsd:element of this type)

java.lang.Object

anySimpleType (for
xsd:attribute of this
type)

java.lang.String

base64Binary byte[]

boolean boolean

byte byte

date java.xml.datatype.XMLGregorianCalendar

dateTime javax.xml.datatype.XMLGregorianCalendar

decimal java.math.BigDecimal

5-6 Getting Started With WebLogic Web Services Using JAX-WS

The following example, borrowed from the JAXB specification, shows an example of the default
XML-to-Java binding.

XML Schema
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>
<xsd:element name="comment" type="xsd:string"/>
<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>

double double

duration javax.xml.datatype.Duration

float float

g java.xml.datatype.XMLGregorianCalendar

hexBinary byte[]

int int

integer java.math.BigInteger

long long

NOTATION javax.xml.namespace.QName

Qname javax.xml.namespace.QName

short short

string java.lang.String

time java.xml.datatype.XMLGregorianCalendar

unsignedByte short

unsignedInt long

unsignedShort int

Table 5-1 Mapping XML Schema Built-in Data Types to Java Data Types (Continued)

XML Schema Data Type Java Data Type (lower case indicates a primitive data type)

Standard Data Type Mapp ing

Getting Started With WebLogic Web Services Using JAX-WS 5-7

 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

<xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

<xsd:complexType name="Items">
 <xsd:sequence>
 <xsd:element name="item" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->
<xsd:simpleType name="SKU">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}-[A-Z]{2}"/>
 </xsd:restriction>
</xsd:simpleType>
</xsd:schema>

5-8 Getting Started With WebLogic Web Services Using JAX-WS

Default Java Binding
import javax.xml.datatype.XMLGregorianCalendar; import java.util.List;
public class PurchaseOrderType {
 USAddress getShipTo(){...}
 void setShipTo(USAddress){...}
 USAddress getBillTo(){...}
 void setBillTo(USAddress){...}
 /** Optional to set Comment property. */
 String getComment(){...}
 void setComment(String){...}
 Items getItems(){...}
 void setItems(Items){...}
 XMLGregorianCalendar getOrderDate()
 void setOrderDate(XMLGregorianCalendar)
};

public class USAddress {
 String getName(){...}
 void setName(String){...}
 String getStreet(){...}
 void setStreet(String){...}
 String getCity(){...}
 void setCity(String){...}
 String getState(){...}
 void setState(String){...}
 int getZip(){...}
 void setZip(int){...}
 static final String COUNTRY="USA";
};

public class Items {
 public class ItemType {
 String getProductName(){...}
 void setProductName(String){...}
 /** Type constraint on Quantity setter value 0..99.*/
 int getQuantity(){...}
 void setQuantity(int){...}
 float getUSPrice(){...}
 void setUSPrice(float){...}
 /** Optional to set Comment property. */
 String getComment(){...}
 void setComment(String){...}
 XMLGregorianCalendar getShipDate();
 void setShipDate(XMLGregorianCalendar);
 /** Type constraint on PartNum setter value "\d{3}-[A-Z]{2}".*/
 String getPartNum(){...} void setPartNum(String){...}
 };
 /** Local structural constraint 1 or more instances of Items.ItemType.*/

Standard Data Type Mapp ing

Getting Started With WebLogic Web Services Using JAX-WS 5-9

 List<Items.ItemType> getItem(){...}
}

public class ObjectFactory {
 // type factories
 Object newInstance(Class javaInterface){...}
 PurchaseOrderType createPurchaseOrderType(){...}
 USAddress createUSAddress(){...}
 Items createItems(){...}
 Items.ItemType createItemsItemType(){...}
 // element factories
JAXBElement<PurchaseOrderType>createPurchaseOrder(PurchaseOrderType){...}
 JAXBElement<String> createComment(String value){...}
}

Java-to-XML Mapping for Built-In Data Types
The following table lists alphabetically the supported Java data types and their equivalent XML
Schema data types. For a list of the supported user-defined Java data types, see “Supported Java
User-Defined Data Types” on page 5-12.

Table 5-2 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case indicates
a primitive data type)

XML Schema Data Type

boolean boolean

byte byte

double double

float float

long long

int int

javax.activation.DataHand
ler

base64Binary

java.awt.Image base64Binary

java.lang.Object anyType

java.lang.String string

5-10 Getting Started With WebLogic Web Services Using JAX-WS

Supported User-Defined Data Types
The tables in the following sections list the user-defined XML and Java data types for which the
jwsc and wsdlc Ant tasks can automatically generate data binding artifacts, such as the
corresponding Java or XML representation.

If your XML or Java data type is not listed in these tables, and it is not one of the built-in data
types listed in “Supported Built-In Data Types” on page 5-5, then you must create the
user-defined data type artifacts manually.

Supported XML User-Defined Data Types
The following table lists the XML Schema data types supported by the jwsc and wsdlc Ant tasks
and their equivalent Java data type or mapping mechanism.

java.math.BigInteger integer

java.math.BigDecimal decimal

java.net.URI string

java.util.Calendar dateTime

java.util.Date dateTime

java.util.UUID string

javax.xml.datatype.XMLGre
gorianCalendar

anySimpleType

javax.xml.datatype.Durati
on

duration

javax.xml.namespace.QName Qname

javax.xml.transform.Sourc
e

base64Binary

short short

Table 5-2 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case indicates
a primitive data type)

XML Schema Data Type

Standard Data Type Mapp ing

Getting Started With WebLogic Web Services Using JAX-WS 5-11

Table 5-3 Supported User-Defined XML Schema Data Types

XML Schema Data Type Equivalent Java Data Type or Mapping Mechanism

<xsd:complexType> with elements of both simple
and complex types.

JavaBean

<xsd:complexType> with simple content. JavaBean

<xsd:attribute> in <xsd:complexType> Property of a JavaBean

Derivation of new simple types by restriction of an
existing simple type.

Equivalent Java data type of simple type.

Facets used with restriction element. Facets not enforced during serialization and
deserialization.

<xsd:list> Array of the list data type.

Array derived from soapenc:Array by restriction
using the wsdl:arrayType attribute.

Array of the Java equivalent of the arrayType data
type.

Array derived from soapenc:Array by restriction. Array of Java equivalent.

Derivation of a complex type from a simple type. JavaBean with a property called _value whose type
is mapped from the simple type according to the rules
in this section.

<xsd:anyType> java.lang.Object

<xsd:any> javax.xml.soap.SOAPElement

<xsd:any[]> javax.xml.soap.SOAPElement[]

<xsd:union> Common parent type of union members.

<xsi:nil> and <xsd:nillable> attribute Java null value.

If the XML data type is built-in and usually maps to a
Java primitive data type (such as int or short), then
the XML data type is actually mapped to the
equivalent object wrapper type (such as
java.lang.Integer or java.lang.Short).

Derivation of complex types Mapped using Java inheritance.

Abstract types Abstract Java data type.

5-12 Getting Started With WebLogic Web Services Using JAX-WS

Supported Java User-Defined Data Types
The following table lists the Java user-defined data types supported by the jwsc and wsdlc Ant
tasks and their equivalent XML Schema data type.

Table 5-4 Supported Java User-Defined Data Types

Java Data Type Equivalent XML Schema Data Type

JavaBean whose properties are any supported data
type.

<xsd:complexType> whose content model is a
<xsd:sequence> of elements corresponding to
JavaBean properties.

Array and multidimensional array of any supported
data type (when used as a JavaBean property)

An element in a <xsd:complexType> with the
maxOccurs attribute set to unbounded.

java.lang.Object

Note: The data type of the runtime object must be
a known type.

<xsd:anyType>

java.util.Collection Literal Array

java.util.List Literal Array

java.util.ArrayList Literal Array

java.util.LinkedList Literal Array

java.util.Vector Literal Array

java.util.Stack Literal Array

java.util.Set Literal Array

java.util.TreeSet Literal Array

java.utils.SortedSet Literal Array

java.utils.HashSet Literal Array

Customiz ing Java-to-XML Schema Mapping Us ing JAXB Annotat ions

Getting Started With WebLogic Web Services Using JAX-WS 5-13

Customizing Java-to-XML Schema Mapping Using JAXB
Annotations

If required, you can override the default binding rules for Java-to-XML Schema mapping using
JAXB annotations. Table 5-5 summarizes the JAXB mapping annotations that you can include
in your JWS file to control how the Java objects are mapped to XML. Each of these annotations
are available with the javax.xml.bind.annotation package.

The default mapping of Java objects to XML Schema for the supported built-in and user-defined
types are listed in the following sections:

“Java-to-XML Mapping for Built-In Data Types” on page 5-9

“Supported Java User-Defined Data Types” on page 5-12

Table 5-5 JAXB Mapping Annotations

Annotation Description

@XmlAccessorType Specifies whether fields or properties are mapped by default. See “Specifying
Default Serialization of Fields and Properties (@XmlAccessorType Annotation)”
on page 5-15.

@XmlElement Maps a property contained in a class to a local element in the XML Schema
complex type to which the containing class is mapped. See “Mapping Properties to
Local Elements (@XmlElement)” on page 5-15.

@XMLMimeType Associates the MIME type that controls the XML representation of the property
with a textual representation, such as image/jpeg. See “Specifying the MIME
Type (@XmlMimeType Annotation)” on page 5-16.

@XmlRootElement Maps a top-level class to a global element in the XML Schema that is used
by the WSDL of the Web Service. See “Mapping a Top-level Class to a Global
Element (@XmlRootElement)” on page 5-16.

@XmlSeeAlso Binds other classes when binding the current class. See “Binding a Set of Classes
(@XmlSeeAlso)” on page 5-17.

@XmlType Maps a class or enum type to an XML Schema type.See “Mapping a Value Class to
a Schema Type (@XmlType)” on page 5-17.

5-14 Getting Started With WebLogic Web Services Using JAX-WS

Example of JAXB Annotations
The following provides an example of the JAXB annotations.

@XmlRootElement(name = "ComplexService", namespace ="http://examples.org")

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "basicStruct", propOrder = {

 "intValue",

 "stringArray",

 "stringValue"

)

public class BasicStruct {

 protected int intValue;

 @XmlElement(nillable = true)

 protected List<String> stringArray;

 protected String stringValue;

 public int getIntValue() {

 return intValue;

 }

 public void setIntValue(int value) {

 this.intValue = value;

 }

 public List<String> getStringArray() {

 if (stringArray == null) {

 stringArray = new ArrayList<String>();

 }

 return this.stringArray;

 }

 public String getStringValue() {

 return stringValue;

 }

 public void setStringValue(String value) {

 this.stringValue = value;

 }

}

Customiz ing Java-to-XML Schema Mapping Us ing JAXB Annotat ions

Getting Started With WebLogic Web Services Using JAX-WS 5-15

Specifying Default Serialization of Fields and Properties
(@XmlAccessorType Annotation)
The @XmlAccessorType annotation specifies whether fields or properties are mapped by default.
The annotation can be specified for the following Java program elements:

Package

Top-level class

The @XmlAccessorType can be specified with the @XmlType and @XmlRootElement
annotations.

The following table lists the optional element that can be passed to the @XmlAccessorType
annotation.

For more information, see the javax.xml.bind.annotation.XmlAccessorType Javadoc. An
example is provided in “Example of JAXB Annotations” on page 5-14.

Mapping Properties to Local Elements (@XmlElement)
The @XmlElement annotation maps a property contained in a class to a local element in the XML
Schema complex type to which the containing class is mapped. The annotation can be specified
for the following Java program elements:

JavaBean property

Non-static, non-transient field

Table 5-6 Optional Element for @XmlAccessorType Annotation

Element Description

value Specifies XMLAccessType.value, where value can be one of the following
values:
• FIELD—Fields are bound to XML.
• PROPERTY—JavaBean properties (getter/setter pairs) are bound to XML.
• PUBLIC_MEMBER—Public fields and JavaBean properties are bound to XML.

This is the default.
• NONE—Neither fields nor JavaBean properties are bound to XML.

#XmlType
#XmlRootElement

5-16 Getting Started With WebLogic Web Services Using JAX-WS

The following table lists the annotation elements that can be passed to the @XmlElement
annotation.

For more information, see the javax.xml.bind.annotation.XmlElement Javadoc.

Specifying the MIME Type (@XmlMimeType Annotation)
The @XmlMimeType annotation specifies the MIME type that controls the XML representation of
the property. The annotation can be specified for data types, such as Image or Source, that are
bound to the xsd:base64Binary binary in XML.

The following table lists the required element that can be passed to the @XmlMimeType
annotation.

For more information, see the javax.xml.bind.annotation.XmlMimeType Javadoc.

Mapping a Top-level Class to a Global Element
(@XmlRootElement)
The @XmlRootElement annotation maps a top-level class to a global element in the XML
Schema that is used by the WSDL of the Web Service. The annotation can be specified for the
following Java program elements:

Table 5-7 Optional Element Summary for @XMLElement Annotation

Element Description

name Local name of the XML element that represents the property of a JavaBean. This
element defaults to the JavaBean property name.

namespace Namespace of the XML element that represents the property of a JavaBean. By
default, the namespace is derived from the namespace of the containing class.

nillable Customize the element declaration to be nillable.

Table 5-8 Required Element for @XmlMimeType Annotation

Element Description

value Specifies the textual representation of the MIME type, such as image/jpeg,
text/xml, and so on.

Customiz ing Java-to-XML Schema Mapping Us ing JAXB Annotat ions

Getting Started With WebLogic Web Services Using JAX-WS 5-17

Top-level class

Enum type

The @XmlRootElement can be specified with the @XmlType and @XmlAccessorType
annotations.

The following table lists the optional elements that can be passed to the@XmlRootElement
annotation.

For more information, see the javax.xml.bind.annotation.XmlRootElement Javadoc. An
example is provided in “Example of JAXB Annotations” on page 5-14.

Binding a Set of Classes (@XmlSeeAlso)
The @XmlSeeAlso annotation binds a list of classes when binding the current class. The
following table lists the optional element that can be passed to the @XMLRootElement
annotation.

Mapping a Value Class to a Schema Type (@XmlType)
The @XmlType annotation maps a class or enum type to an XML Schema type. The type can be
a simple or complex type. The annotation can be specified for the following Java program
elements:

Top-level class

Table 5-9 Optional Elements for @XmlRootElement Annotation

Element Description

name Local name of the XML element. This element defaults to the class name.

namespace Namespace of the XML element. By default, the namespace is derived from the
package of the class.

Table 5-10 Optional Element for @XmlSeeAlso Annotation

Element Description

value List of classes that JAXB uses when binding the current class.

#XmlType
#XmlAccessorType

5-18 Getting Started With WebLogic Web Services Using JAX-WS

Enum type

The @XmlType can be specified with the @XmlRootElement and @XmlAccessorType
annotations.

The following table lists the optional elements that can be passed to the @XmlType annotation.

For more information, see the javax.xml.bind.annotation.XmlType Javadoc. An example
is provided in “Example of JAXB Annotations” on page 5-14.

Customizing XML Schema-to-Java Mapping Using Binding
Declarations

Due to the distributed nature of a WSDL, you cannot always control or change its contents to
meet the requirements of your application. For example, the WSDL may not be owned by you or
it may already be in use by your partners, making changes impractical or impossible.

If directly editing the WSDL is not an option, you can customize how the WSDL components are
mapped to Java objects by specifying custom binding declarations. You can use binding
declarations to control specific features, as well, such as asynchrony, wrapper style, and so on,
and to control the JAXB data binding artifacts that are produced by customizing the XML
Schema.

You can define binding declarations in one of the following ways:

Create an external binding declarations file that contains all binding declarations for a
specific WSDL or XML Schema document. See “Creating an External Binding
Declarations File” on page 5-21.

Table 5-11 Optional Elements for @XmlType Annotation

Element Description

name Name of the XML Schema type to which the class is mapped.

namespace Name of the target namespace of the XML Schema type. By default, the target
namespace to which the package containing the class is mapped.

propOrder List of JavaBean property names defined in a class. The list defines an order for the
XML Schema elements when the class is mapped to an XML Schema complex type.
Each name in the list is the name of a Java identifier of the JavaBean property. All of
the JavaBean properties must be listed.

#XmlRootElement
#XmlAccessorType

Customiz ing XML Schema-to- Java Mapp ing Us ing B ind ing Dec la rat i ons

Getting Started With WebLogic Web Services Using JAX-WS 5-19

Note: If customizations are required, Oracle recommends this method to maintain
flexibility by keeping the customizations separate from the WSDL or XML Schema
document.

Embed binding declarations within the WSDL or XML Schema document. See
“Embedding Binding Declarations” on page 5-23.

The binding declarations are semantically equivalent regardless of which method you choose.

Custom binding declarations are associated with a scope, as shown in the following figure.

Figure 5-2 Scopes for Custom Binding Declarations

The following table describes the meaning of each scope.

Table 5-12 Scopes for Custom Binding Declarations

Scope Definition

Global scope Describes customization values with global scope. Specifically:
• For JAX-WS binding declarations, describes customization values that are

defined as part of the root element, as described in “Specifying the Root
Element” on page 5-21.

• For JAXB annotations, describes customization values that are contained
within the <globalBindings> binding declaration. Global scope
values apply to all of the schema elements in the source schema as well as
any schemas that are included or imported.

Schema scope Describes JAXB customization values that are contained within the
<schemaBindings> binding declaration. Schema scope values apply to the
elements in the target namespace of a schema.

Note: This scope applies for JAXB binding declarations only.

5-20 Getting Started With WebLogic Web Services Using JAX-WS

Scopes for custom binding declarations adhere to the following inheritance and overriding rules:

Inheritance—Customization values are inherited from the top down. For example, a WSDL
element (JAX-WS) in a component scope inherits a customization value defined in global
scope. A schema element (JAXB) in a component scope inherits a customization value
defined in global, schema, and definition scopes.

Overriding—Customization values are overridden from the bottom up. For example, a
WSDL element (JAX-WS) in a component scope overrides a customization value defined
in global scope. A schema element (JAXB) in a component scope overrides a
customization value defined in definition, schema, and global scopes.

The following sections describe how to create custom binding declarations and describe the
standard custom binding declarations:

Creating an External Binding Declarations File

Embedding Binding Declarations

JAX-WS Custom Binding Declarations

JAXB Custom Binding Declarations

For more information about using custom binding declarations, see:

JAX-WS WSDL Customizations

“Customizing XML Schema to Java Representation Binding” in the JAXB specification

Definition scope Describes JAXB customization values that are defined in binding declarations
of a type definition or global declaration. Definition scope values apply to
elements that reference the type definition or global declaration.

Note: This scope applies for JAXB binding declarations only.

Component scope Describes customization values that apply to the WSDL or schema element
that was annotated.

Table 5-12 Scopes for Custom Binding Declarations (Continued)

Scope Definition

Customiz ing XML Schema-to- Java Mapp ing Us ing B ind ing Dec la rat i ons

Getting Started With WebLogic Web Services Using JAX-WS 5-21

Creating an External Binding Declarations File
Create an external binding declarations file that contains all binding declarations for a specific
WSDL or XML Schema document. Then, pass the binding declarations file to the <binding>
child element of the wsdlc, jwsc, or clientgen Ant task.

The following sections describe:

Creating an External Binding Declarations File Using JAX-WS Binding Declarations

Creating an External Binding Declarations File Using JAXB Binding Declarations

Creating an External Binding Declarations File Using JAX-WS Binding
Declarations
The following sections describe how to specify the root and child elements of the JAX-WS
binding declarations file. For information about the custom binding declarations that you can
define, see “JAX-WS Custom Binding Declarations” on page 5-24.

Specifying the Root Element
The jaxws:bindings declaration is the root of all other binding declarations and defines the
location of the WSDL file and the namespace to which the XML Schema conforms:
http://java.sun.com/xml/ns/jaxws.

The format of the root declaration is as follows:

<jaxws:bindings

 wsdlLocation="uri_of_wsdl"

 jaxws:xmlns="http://java.sun.com/xml/ns/jaxws">

uri_of_wsdl specifies the URI of the WSDL file.

The package, wrapper style, and asynchronous mapping customizations, defined in Table 5-13,
can be globally defined as part of the root binding declaration in the external customization file.
Global bindings apply to the entire scope of the wsdl:definition in the WSDL referenced by
the wsdlLocation attribute.

The following provides an example of the root binding element that defines the package name,
wrapper style, and asynchronous mapping customizations.

<jaxws:bindings
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation="http://localhost:7001/simple/SimpleService?WSDL"
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">

#jaxws_package
#jaxws_wrapper
#jaxws_asynchrony

5-22 Getting Started With WebLogic Web Services Using JAX-WS

 <package name="example.webservices.simple.simpleservice">
 <enableWrapperStyle>true</enableWrapperStyle>
 <enableAsyncMapping>false</enableAsyncMapping>
</jaxws:bindings>

Specifying Child Elements
The root jaxws:bindings element can contain child elements. You specify the WSDL node
that is being customized by passing an XPath expression in the node attribute.

An XML Schema inlined inside a compiled WSDL file can be customized by using standard
JAXB bindings. For more information, see “XML Schema Customization” in JAX-WS WSDL
Customizations. For information about the custom JAXB binding declarations that you can
define, see “JAXB Custom Binding Declarations” on page 5-30.

For example, the following example defines the package name as
examples.webservices.complex.complexservice for the wsdl:definitions node of the
WSDL document.

<jaxws:bindings
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation="http://localhost:7001/simple/SimpleService?WSDL
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">
 <jaxws:bindings node="wsdl:definitions"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <jaxws:package name="examples.webservices.simple.simpleservice"/>
</bindings>

Creating an External Binding Declarations File Using JAXB Binding
Declarations
The JAXB binding declarations file is an XML document that conforms to the XML Schema for
the following namespace: http://java.sun.com/xml/ns/jaxb. The following sections
describe how to specify the root and child elements of the JAXB binding declarations file. For
information about the custom binding declarations that you can define, see “JAXB Custom
Binding Declarations” on page 5-30.

Specifying the Root Element
The jaxb:bindings declaration is the root of all other binding declarations. The format of the
root declaration is as follows:

<jaxb:bindings

 schemaLocation="uri_of_schema">

Customiz ing XML Schema-to- Java Mapp ing Us ing B ind ing Dec la rat i ons

Getting Started With WebLogic Web Services Using JAX-WS 5-23

uri_of_schema specifies the URI of the XML Schema file.

Specifying Child Elements
The root jaxb:bindings element can contain child elements. You specify the schema node that
is being customized by passing an XPath expression in the node attribute.

For example, the following example defines the package name as
examples.webservices.simple.simpleservice.

<jaxb:bindings
 schemaLocation="simpleservice.xsd">
 <jaxb:bindings node="//xs:simpleType[@name='value1']">
 <jaxb:package name="examples.webservices.simple.simpleservice"/>
 </jaxb:bindings>
</jaxb:bindings>

Embedding Binding Declarations
You can embed binding declarations in a WSDL file using one of the following methods:

Embed a JAX-WS or JAXB binding declaration in the WSDL file using the
jaxws:bindings element as a WSDL extension. See “Embedding JAX-WS or JAXB
Binding Declarations in the WSDL File” on page 5-23.

Embed a JAXB binding declaration in the XML Schema as part of an <appinfo> element.
See “Embedding JAXB Binding Declarations in the XML Schema” on page 5-24.

Embedding JAX-WS or JAXB Binding Declarations in the WSDL File
You can embed a binding declaration in the WSDL file using the jaxws:bindings element as a
WSDL extension. For information about the custom binding declarations that you can define, see
“JAX-WS Custom Binding Declarations” on page 5-24.

For example, the following example defines the class name as SimpleService for the
SimpleServiceImpl service endpoint interface (or port).

<wsdl:portType name="SimpleServiceImpl">
 <jaxws:bindings xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">
 <jaxws:class name="SimpleService"/>
 </jaxws:bindings>
</wsdl:portType>

If this binding declaration had not been specified, the class name of the service endpoint interface
would be set to the wsdl:portType name—SimpleServiceImpl—by default.

5-24 Getting Started With WebLogic Web Services Using JAX-WS

An XML Schema inlined inside a compiled WSDL file can be customized by using standard
JAXB bindings. For more information, see “XML Schema Customizations” in JAX-WS WSDL
Customizations. For information about the custom JAXB binding declarations that you can
define, see “JAXB Custom Binding Declarations” on page 5-30.

Embedding JAXB Binding Declarations in the XML Schema
You can embed a JAXB custom declaration within the <appinfo> element of the XML Schema,
as illustrated below.

<xs:annotation>

 <xs:appinfo>

 <binding declaration>

 </xs:appinfo>

</xs:annotation>

For example, the following defines the package name for the schema:

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.w3.org/2001/XMLSchema"

 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"

 jaxb:version="2.0">

 <annotation>

 <appinfo>

 <jaxb:schemaBindings>

 <jaxb:package name="example.webservices.simple.simpleservice"/>

 </jaxb:schemaBindings>

 </appinfo>

 </annotation>

</schema>

JAX-WS Custom Binding Declarations
The following table summarizes the typical JAX-WS customizations. For a complete list of
JAX-WS custom binding declarations, see JAX-WS WSDL Customization.

Customiz ing XML Schema-to- Java Mapp ing Us ing B ind ing Dec la rat i ons

Getting Started With WebLogic Web Services Using JAX-WS 5-25

Table 5-13 JAX-WS Custom Binding Declarations

Customization Description

Package name Use the jaxws:package binding declaration to define the package
name.

If you do not specify this customization, the wsdlc Ant task generates
a package name based on the targetNamespace of the WSDL. This
data binding customization is overridden by the packageName
attribute of the wsdlc, jwsc, or clientgen Ant task. For more
information, see “Ant Task Reference” in the WebLogic Web Services
Reference.

This binding declaration can be specified as part of the root binding
element, as described in “Creating an External Binding Declarations
File” on page 5-21, or on the wsdl:definitions node, as shown in
the following example:

<bindings
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation=

"http://localhost:7001/simple/SimpleService?WSDL"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="wsdl:definitions"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <package
name="example.webservices.simple.simpleService"/>
</bindings>

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#wsdlc

5-26 Getting Started With WebLogic Web Services Using JAX-WS

Wrapper-style rules Use the jaxws:enablesWrapperStyle binding declaration to
enable or disable the wrapper style rules that control how the parameter
types and return types of a WSDL operation are generated.

This binding declaration can be specified as part of the root binding
element, as described in “Creating an External Binding Declarations
File” on page 5-21, or on one of the following nodes:
• wsdl:definitions—Applies to all wsdl:operations of all

wsdl:portType attributes.
• wsdl:portType—Applies to all wsdl:operations in the

wsdl:portType.
• wsdl:operation—Applies to the wsdl:operation only.

The following example disables the wrapper style rules for the
wsdl:definitions node:

<bindings
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
wsdlLocation="http://localhost:7001/simple/Simple
Service?WSDL"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="wsdl:definitions"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <enableWrapperStyle>
 false
 </enableWrapperStyle>
</bindings>

Table 5-13 JAX-WS Custom Binding Declarations (Continued)

Customization Description

Customiz ing XML Schema-to- Java Mapp ing Us ing B ind ing Dec la rat i ons

Getting Started With WebLogic Web Services Using JAX-WS 5-27

Asynchrony Use the jaxws:enableAsycMapping binding declaration to
instruct the clientgen Ant task to generate asynchronous polling and
callback operations along with the normal synchronous methods when
it compiles a WSDL file.

This binding declaration can be specified as part of the root binding
element, as described in “Creating an External Binding Declarations
File” on page 5-21, or on one of the following nodes:
• wsdl:definitions—Applies to all wsdl:operations of all

wsdl:portType attributes.
• wsdl:portType—Applies to all wsdl:operations in the

wsdl:portType.
• wsdl:operation—Applies to the wsdl:operation only.

The following example disables asynchronous polling and callback
operations:

<bindings
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
wsdlLocation="http://localhost:7001/simple/Simple
Service?WSDL"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="wsdl:definitions"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <enableAsyncMapping>
 false
 </enableAsyncMapping>
</bindings>

Provider Use the jaxws:provider binding declaration to mark the part as a
provider interface. This binding declaration can be specified as part of
the wsdl:portType. This binding declaration applies when you are
developing a service starting from a WSDL file.

Table 5-13 JAX-WS Custom Binding Declarations (Continued)

Customization Description

5-28 Getting Started With WebLogic Web Services Using JAX-WS

Class name Use the jaxws:class binding declaration to define the class name.
This binding declaration can be specified for one of the following
nodes:
• wsdl:portType—Defines the interface class name.
• wsdl:fault—Defines fault class names.
• soap:headerfault—Defines exception class names.
• wsdl:service—Defines the implementation class names.

The following example defines the class name for the implementation
class.

<bindings

node="wsdl:definitions/wsdl:service[@name='Simple

Service']">

 <class name="myService"></class>

</bindings>

Method name Use the jaxws:method binding declaration to customize the
generated Java method name of a service endpoint interface or the port
accessor method in the generated Service class.

The following example defines the Java method name for the
wsdl:operation EchoHello.

<bindings

node="wsdl:definitions/wsdl:portType[@name='Simpl

eServiceImpl']/wsdl:operation[@name='EchoHello']"

>

 <method name="Greeting"></method>

</bindings>

Table 5-13 JAX-WS Custom Binding Declarations (Continued)

Customization Description

Customiz ing XML Schema-to- Java Mapp ing Us ing B ind ing Dec la rat i ons

Getting Started With WebLogic Web Services Using JAX-WS 5-29

Java parameter name Use the jaxws:parameter binding declaration to customize the
parameter name of generated Java methods. This declaration can be
used to change the method parameter of a wsdl:operation in a
wsdl:portType.

The following example defines the Java method name for the
wsdl:operation echoHello.

<bindings

node="wsdl:definitions/wsdl:portType[@name='Simpl

eServiceImpl']/wsdl:operation[@name='EchoHello']"

>

 <parameter

part="definitions/message[@name='EchoHello']/

 part[@name='parameters']" element="hello"

 name="greeting"/>

</bindings>

Javadoc Use the jaxws:javadoc binding declaration to specify Javadoc text
for a package, class, or method.

For example, the following defines Javadoc at the method level.

<bindings

node="wsdl:definitions/wsdl:portType[@name='Simpl

eServiceImpl']/wsdl:operation[@name='EchoHello']"

>

 <method name="Hello">

 <javadoc>Prints hello.</javadoc>

 </method>

</bindings>

Handler chain Use the javaee:handlerchain binding declaration to customize or
add handlers. The inline handler must conform to the handler chain
configuration defined in the Web Services Metadata for the Java
Platform specification (JSR-181)

Table 5-13 JAX-WS Custom Binding Declarations (Continued)

Customization Description

5-30 Getting Started With WebLogic Web Services Using JAX-WS

JAXB Custom Binding Declarations
The following table lists the typical JAXB customizations.

Note: The following table only summarizes the JAXB custom binding declarations, to help get
you started. For a complete list and description of all JAXB custom binding declarations,
see the JAXB specification or “Customizing JAXB Bindings” in the Sun Java EE 5
Tutorial.

Table 5-14 JAXB Custom Binding Declarations

Customization Description

Global bindings Use the <globalBindings> binding declaration to define binding
declarations with global scope (see Figure 5-2).
You can specify attributes and elements to the <globalBindings>
binding declaration. For example, the following binding declaration
defines:
• collectionType attribute that specifies a type class, myArray,

that implements the java.util.List interface and that is used
to represent all lists in the generated implementation.

• generateIsSetMethod attribute to generate the isSet()
method corresponding to the getter and sestter property methods.

• javaType element to customize the binding of an XML Schema
atomic datatype to a Java datatype (built-in or application-specific).

<jaxb:globalBindings

 collectionType ="java.util.myArray"

 generateIsSetMethod="false">

 <jaxb:javaType name="java.util.Date"

 xmlType="xsd:date"

 </jaxb:javaType>

</jaxb:globalBindings>

Schema bindings Use the <schemaBindings> binding declaration to define binding
declarations with schema scope (see Figure 5-2).
For an example, see Package name.

#jaxb_package_name

Customiz ing XML Schema-to- Java Mapp ing Us ing B ind ing Dec la rat i ons

Getting Started With WebLogic Web Services Using JAX-WS 5-31

Package name Use the <package> element of the <schemaBindings> binding
declaration to define the package name for the schema.

If you do not specify this customization, the wsdlc Ant task generates
a package name based on the targetNamespace of the WSDL. This
data binding customization is overridden by the packageName
attribute of the wsdlc, jwsc, or clientgen Ant task. For more
information, see “Ant Task Reference” in the WebLogic Web Services
Reference.

For example, the following defines the package name for all JAXB
classes generated from the simpleservice.xsd file:

<jaxb:bindings
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 schemaLocation="simpleservice.xsd"
 node="/xs:schema">
 <jaxb:schemaBindings>
 <jaxb:package name="examples.jaxb"/>
 </jaxb:schemaBindings>
</jaxb:bindings>

The following shows how to define the package name for an imported
XML Schema:

<jaxb:bindindgs
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

node="//xs:schema/xs:import[@namespace=’http://ex
amples.webservices.org/complexservice’]">
 <jaxb:schemaBindings>
 <jaxb:package name="examples.jaxb"/>
 </jaxb:schemaBindings>
 </jaxb:bindings>

Table 5-14 JAXB Custom Binding Declarations (Continued)

Customization Description

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#wsdlc
#schema_scope

5-32 Getting Started With WebLogic Web Services Using JAX-WS

Class name Use the <class> binding declaration to define the class name for a
schema element.

The following example defines the class name for an
xsd:complexType:

<xs:complexType name="ComplexType">

 <xs:annotation><xs:appinfo>

 <jaxb:class name="MyClass">

 <jaxb:javadoc>This is my

class.</jaxb:javadoc>

 </jaxb:class>

 </xs:appinfo></xs:annotation>

</xs:complexType>

Java property name Use the <property> binding declaration to define the property name
for a schema element.

The following example

<jaxb:bindindgs
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 node="//xs:schema/">
 <jaxb:schemaBindings>
 <jaxb:property generateIsSetMethod="true"/>
 </jaxb:schemaBindings>
</jaxb:bindings>

Java datatype Use the <javaType> binding declaration to customize the binding of
an XML Schema atomic datatype to a Java datatype (built-in or
application-specific).

For example, see Global bindings.

Table 5-14 JAXB Custom Binding Declarations (Continued)

Customization Description

#jaxb_global_bindings

Customiz ing XML Schema-to- Java Mapp ing Us ing B ind ing Dec la rat i ons

Getting Started With WebLogic Web Services Using JAX-WS 5-33

Javadoc Use the <javadoc> child element of the <class> or <property>
binding declaration to specify Javadoc for the element.

For example:

<xs:complexType name="ComplexType">

 <xs:annotation><xs:appinfo>

 <jaxb:class name="MyClass">

 <jaxb:javadoc>This is my

class.</jaxb:javadoc>

 </jaxb:class>

 </xs:appinfo></xs:annotation>

</xs:complexType>

Table 5-14 JAXB Custom Binding Declarations (Continued)

Customization Description

5-34 Getting Started With WebLogic Web Services Using JAX-WS

Getting Started With WebLogic Web Services Using JAX-WS 6-1

C H A P T E R 6

Invoking Web Services

The following sections describe how to invoke WebLogic Web Services:

“Overview of Web Services Invocation” on page 6-1

“Invoking a Web Service from a Stand-alone Client: Main Steps” on page 6-2

“Invoking a Web Service from Another Web Service” on page 6-10

“Using a Stand-Alone Client JAR File When Invoking Web Services” on page 6-17

“Client Considerations When Redeploying a Web Service” on page 6-18

Note: The following sections do not include information about invoking message-secured Web
Services; for that topic, see “Updating a Client Application to Invoke a Message-Secured
Web Service” in Securing WebLogic Web Services.

Overview of Web Services Invocation
Invoking a Web Service refers to the actions that a client application performs to use the Web
Service. Client applications that invoke Web Services can be written using any technology: Java,
Microsoft .NET, and so on.

There are two types of client applications:

Stand-alone—A stand-alone client application, in its simplest form, is a Java program that
has the Main public class that you invoke with the java command. It runs completely
separately from WebLogic Server.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html#security_client
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html#security_client

6-2 Getting Started With WebLogic Web Services Using JAX-WS

A Java EE component deployed to WebLogic Server—In this type of client application,
the Web Service runs inside a Java Platform, Enterprise Edition (Java EE) Version 5
component deployed to WebLogic Server, such as an EJB, servlet, or another Web Service.
This type of client application, therefore, runs inside a WebLogic Server container.

The sections that follow describe how to use Oracle’s implementation of the JAX-WS
specification to invoke a Web Service from a Java client application. You can use this
implementation to invoke Web Services running on any application server, both WebLogic and
non-WebLogic. In addition, you can create a stand-alone client application or one that runs as part
of a WebLogic Server.

WebLogic Server includes examples of creating and invoking WebLogic Web Services in the
WL_HOME/samples/server/examples/src/examples/webservices directory, where
WL_HOME refers to the main WebLogic Server directory. For detailed instructions on how to build
and run the examples, open the WL_HOME/samples/server/docs/index.html Web page in
your browser and expand the WebLogic Server Examples->Examples->API->Web Services
node.

Invoking a Web Service from a Stand-alone Client: Main
Steps

The following table summarizes the main steps to create a stand-alone client that invokes a Web
Service. See also “Using a Stand-Alone Client JAR File When Invoking Web Services” on
page 6-17.

Note: It is assumed that you use Ant in your development environment to build your client
application, compile Java files, and so on, and that you have an existing build.xml file
that you want to update with Web Services client tasks. For general information about
using Ant in your development environment, see “Creating the Basic Ant build.xml File”
on page 3-6. For a full example of a build.xml file used in this section, see “Sample Ant
Build File for a Stand-Alone Java Client” on page 6-9.

I nvok ing a Web Serv ice f r om a Stand-a lone C l i en t : Ma in Steps

Getting Started With WebLogic Web Services Using JAX-WS 6-3

Using the clientgen Ant Task To Generate Client Artifacts
The clientgen WebLogic Web Services Ant task generates, from an existing WSDL file, the
client artifacts that client applications use to invoke both WebLogic and non-WebLogic Web
Services. These artifacts include:

The Java class for the Service interface implementation for the particular Web Service
you want to invoke.

Table 6-1 Steps to Invoke a Web Service from a Stand-alone Client

Step Description

1 Set up the environment. Open a command window and execute the setDomainEnv.cmd
(Windows) or setDomainEnv.sh (UNIX) command, located in the
bin subdirectory of your domain directory. The default location of
WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where
BEA_HOME is the top-level installation directory of the Oracle
products and domainName is the name of your domain.

2 Update your build.xml file to
execute the clientgen Ant
task to generate the needed
client-side artifacts to invoke a
Web Service.

See “Using the clientgen Ant Task To Generate Client Artifacts” on
page 6-3.

3 Get information about the Web
Service, such as the signature of
its operations and the name of
the ports.

See “Getting Information About a Web Service” on page 6-5.

4 Write the client application Java
code that includes code for
invoking the Web Service
operation.

See “Writing the Java Client Application Code to Invoke a Web
Service” on page 6-6.

5 Create a basic Ant build file,
build.xml.

See “Creating the Basic Ant build.xml File” on page 3-6.

6 Compile and run your Java
client application.

See “Compiling and Running the Client Application” on page 6-7.

6-4 Getting Started With WebLogic Web Services Using JAX-WS

JAXB data binding artifacts.

The Java class for any user-defined XML Schema data types included in the WSDL file.

For additional information about the clientgen Ant task, such as all the available attributes, see
“Ant Task Reference” in the WebLogic Web Services Reference.

Update your build.xml file, adding a call to the clientgen Ant task, as shown in the following
example:

 <taskdef name="clientgen"

 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <target name="build-client">

 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"

 destDir="clientclasses"

 packageName="examples.webservices.simple_client"

 type="JAXWS"/>

 </target>

Before you can execute the clientgen WebLogic Web Service Ant task, you must specify its
full Java classname using the standard taskdef Ant task.

You must include the wsdl and destDir attributes of the clientgen Ant task to specify the
WSDL file from which you want to create client-side artifacts and the directory into which these
artifacts should be generated. The packageName attribute is optional; if you do not specify it, the
clientgen task uses a package name based on the targetNamespace of the WSDL. The type
is required in this example; otherwise, it defaults to JAXRPC.

In this example, the package name is set to the same package name as the client application,
examples.webservices.simple_client. If you set the package name to one that is different
from the client application, you would need to import the appropriate class files. For example, if
you defined the package name as examples.webservices.complex, you would need to import
the following class files in the client application:

import examples.webservices.complex.BasicStruct;

import examples.webservices.complex.ComplexPortType;

import examples.webservices.complex.ComplexService;

Note: The clientgen Ant task also provides the destFile attribute if you want the Ant task
to automatically compile the generated Java code and package all artifacts into a JAR file.
For details and an example, see “clientgen” in the WebLogic Web Services Reference.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#clientgen

I nvok ing a Web Serv ice f r om a Stand-a lone C l i en t : Ma in Steps

Getting Started With WebLogic Web Services Using JAX-WS 6-5

If the WSDL file specifies that user-defined data types are used as input parameters or return
values of Web Service operations, clientgen automatically generates a JavaBean class that is
the Java representation of the XML Schema data type defined in the WSDL. The JavaBean
classes are generated into the destDir directory.

For a full sample build.xml file that contains additional targets from those described in this
procedure, such as clean, see “Sample Ant Build File for a Stand-Alone Java Client” on
page 6-9.

To execute the clientgen Ant task, along with the other supporting Ant tasks, specify the
build-client target at the command line:

prompt> ant build-client

See the clientclasses directory to view the files and artifacts generated by the clientgen Ant
task.

Getting Information About a Web Service
You need to know the name of the Web Service and the signature of its operations before you
write your Java client application code to invoke an operation. There are a variety of ways to find
this information.

The best way to get this information is to use the clientgen Ant task to generate the Web
Service-specific Service files and look at the generated *.java files. These files are generated
into the directory specified by the destDir attribute, with subdirectories corresponding to either
the value of the packageName attribute, or, if this attribute is not specified, to a package based on
the targetNamespace of the WSDL.

The ServiceName.java source file contains the getPortName() methods for getting the
Web Service port, where ServiceName refers to the name of the Web Service and
PortName refers to the name of the port. If the Web Service was implemented with a JWS
file, the name of the Web Service is the value of the serviceName attribute of the
@WebService JWS annotation and the name of the port is the value of the portName
attribute of the <WLHttpTransport> child element of the <jws> element of the jwsc Ant
task.

The PortType.java file contains the method signatures that correspond to the public
operations of the Web Service, where PortType refers to the port type of the Web Service.
If the Web Service was implemented with a JWS file, the port type is the value of the name
attribute of the @WebService JWS annotation.

6-6 Getting Started With WebLogic Web Services Using JAX-WS

You can also examine the actual WSDL of the Web Service; see “Browsing to the WSDL of the
Web Service” on page 3-17 for details about the WSDL of a deployed WebLogic Web Service.
The name of the Web Service is contained in the <service> element, as shown in the following
excerpt of the TraderService WSDL:

 <service name="TraderService">

 <port name="TraderServicePort"

 binding="tns:TraderServiceSoapBinding">

 ...

 </port>

 </service>

The operations defined for this Web Service are listed under the corresponding <binding>
element. For example, the following WSDL excerpt shows that the TraderService Web
Service has two operations, buy and sell (for clarity, only relevant parts of the WSDL are
shown):

 <binding name="TraderServiceSoapBinding" ...>

 ...

 <operation name="sell">

 ...

 </operation>

 <operation name="buy">

 </operation>

 </binding>

Writing the Java Client Application Code to Invoke a Web
Service
In the following code example, a stand-alone application invokes a Web Service operation. The
application uses standard JAX-WS API code and the Web Service-specific implementation of the
Service interface, generated by clientgen, to invoke an operation of the Web Service.

The example also shows how to invoke an operation that has a user-defined data type
(examples.webservices.simple_client.BasicStruct) as an input parameter and return
value. The clientgen Ant task automatically generates the Java code for this user-defined data
type.

Because the <clientgen> packageName attribute was set to the same package name as the client
application, we are not required to import the <clientgen>-generated files.

I nvok ing a Web Serv ice f r om a Stand-a lone C l i en t : Ma in Steps

Getting Started With WebLogic Web Services Using JAX-WS 6-7

package examples.webservices.simple_client;

/**
 * This is a simple stand-alone client application that invokes the
 * the echoComplexType operation of the ComplexService Web service.
 */

public class Main {

 public static void main(String[] args) {

 ComplexService test = new ComplexService(),
 ComplexPortType port = test.getComplexPortTypePort();

 BasicStruct in = new BasicStruct();

 in.setIntValue(999);
 in.setStringValue("Hello Struct");

 BasicStruct result = port.echoComplexType(in);
 System.out.println("echoComplexType called. Result: " + result.getIntValue()
+ ", " + result.getStringValue());
 }
}

In the preceding example:

The following code shows how to create a ComplexPortType stub:

 ComplexService test = new ComplexService(),
 ComplexPortType port = test.getComplexPortTypePort();

The ComplexService class implements the JAX-WS Service interface. The
getComplexServicePortTypePort() method is used to return an instance of the
ComplexPortType stub implementation.

The following code shows how to invoke the echoComplexType operation of the
ComplexService Web Service:

 BasicStruct result = port.echoComplexType(in);

The echoComplexType operation returns the user-defined data type called BasicStruct.

Compiling and Running the Client Application
Add javac tasks to the build-client target in the build.xml file to compile all the Java files
(both of your client application and those generated by clientgen) into class files, as shown by
the bold text in the following example:

6-8 Getting Started With WebLogic Web Services Using JAX-WS

 <target name="build-client">

 <clientgen

 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"

 destDir="clientclasses"

 packageName="examples.webservices.simple_client"

 type="JAXWS"/>

 <javac

 srcdir="clientclasses"

 destdir="clientclasses"

 includes="**/*.java"/>

 <javac

 srcdir="src"

 destdir="clientclasses"

 includes="examples/webservices/simple_client/*.java"/>

 </target>

In the example, the first javac task compiles the Java files in the clientclasses directory that
were generated by clientgen, and the second javac task compiles the Java files in the
examples/webservices/simple_client subdirectory of the current directory; where it is
assumed your Java client application source is located.

In the preceding example, the clientgen-generated Java source files and the resulting compiled
classes end up in the same directory (clientclasses). Although this might be adequate for
prototyping, it is often a best practice to keep source code (even generated code) in a different
directory from the compiled classes. To do this, set the destdir for both javac tasks to a
directory different from the srcdir directory.

To run the client application, add a run target to the build.xml that includes a call to the java
task, as shown below:

<path id="client.class.path">

 <pathelement path="clientclasses"/>

 <pathelement path="${java.class.path}"/>

</path>

<target name="run" >

 <java

 fork="true"

 classname="examples.webServices.simple_client.Main"

I nvok ing a Web Serv ice f r om a Stand-a lone C l i en t : Ma in Steps

Getting Started With WebLogic Web Services Using JAX-WS 6-9

 failonerror="true" >

 <classpath refid="client.class.path"/>

</target>

The path task adds the clientclasses directory to the CLASSPATH. The run target invokes
the Main application, passing it the URL of the deployed Web Service as its single argument.

See “Sample Ant Build File for a Stand-Alone Java Client” on page 6-9 for a full sample
build.xml file that contains additional targets from those described in this procedure, such as
clean.

Rerun the build-client target to regenerate the artifacts and recompile into classes, then
execute the run target to invoke the echoStruct operation:

 prompt> ant build-client run

You can use the build-client and run targets in the build.xml file to iteratively update,
rebuild, and run the Java client application as part of your development process.

Sample Ant Build File for a Stand-Alone Java Client
The following example shows a complete build.xml file for generating and compiling a
stand-alone Java client. See “Using the clientgen Ant Task To Generate Client Artifacts” on
page 6-3 and “Compiling and Running the Client Application” on page 6-7 for explanations of
the sections in bold.

<project name="webservices-simple_client" default="all">

 <!-- set global properties for this build -->

 <property name="wls.hostname" value="localhost" />

 <property name="wls.port" value="7001" />

 <property name="example-output" value="output" />

 <property name="clientclass-dir" value="${example-output}/clientclass" />

 <path id="client.class.path">

 <pathelement path="${clientclass-dir}"/>

 <pathelement path="${java.class.path}"/>

 </path>

 <taskdef name="clientgen"

 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

6-10 Getting Started With WebLogic Web Services Using JAX-WS

 <target name="clean" >

 <delete dir="${clientclass-dir}"/>

 </target>

 <target name="all" depends="clean,build-client,run" />

 <target name="build-client">

 <clientgen

 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"

 destDir="${clientclass-dir}"

 packageName="examples.webservices.simple_client"

 type="JAXWS"/>

 <javac

 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"

 includes="**/*.java"/>

 <javac

 srcdir="src" destdir="${clientclass-dir}"

 includes="examples/webservices/simple_client/*.java"/>

 </target>

 <target name="run" >

 <java fork="true"

 classname="examples.webservices.simple_client.Main"

 failonerror="true" >

 <classpath refid="client.class.path"/>

 </java>

 </target>

</project>

Invoking a Web Service from Another Web Service
Invoking a Web Service from within a WebLogic Web Service is similar to invoking one from a
stand-alone Java application, as described in “Invoking a Web Service from a Stand-alone Client:
Main Steps” on page 6-2, with the following variations:

Instead of using the clientgen Ant task to generate the JAX-WS Service interface of
the Web Service to be invoked, you use the <clientgen> child element of the <jws>
element, inside the jwsc Ant task that compiles the invoking Web Service. In the JWS file

Invok ing a Web Se rv ice f rom Ano ther Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-WS 6-11

that invokes the other Web Service, however, you still use the same standard JAX-WS
APIs to get Service and PortType instances to invoke the Web Service operations.

You can use the @WebServiceRef annotation to define a reference to a Web Service, as
described in “Defining a Web Service Reference Using the @WebServiceRef Annotation”
on page 6-15.

This section describes the differences between invoking a Web Service from a client in a Java EE
component and invoking from a stand-alone client. It is assumed that you have read and
understood “Invoking a Web Service from a Stand-alone Client: Main Steps” on page 6-2. It is
also assumed that you use Ant in your development environment to build your client application,
compile Java files, and so on, and that you have an existing build.xml that builds a Web Service
that you want to update to invoke another Web Service.

The following list describes the changes you must make to the build.xml file that builds your
client Web Service, which will invoke another Web Service. See “Sample build.xml File for a
Web Service Client” on page 6-12 for the full sample build.xml file:

Add a <clientgen> child element to the <jws> element that specifies the JWS file that
implements the Web Service that invokes another Web Service. Set the required wsdl
attribute to the WSDL of the Web Service to be invoked. Set the required packageName
attribute to the package into which you want the JAX-WS client stubs to be generated.

The following list describes the changes you must make to the JWS file that implements the client
Web Service; see “Sample JWS File That Invokes a Web Service” on page 6-14 for the full JWS
file example.

Import the files generated by the <clientgen> child element of the jwsc Ant task. These
include the JAX-WS Service interface of the invoked Web Service, as well as the Java
representation of any user-defined data types used as parameters or return values in the
operations of the invoked Web Service.

Note: If the package name set using the packageName attribute of <clientgen> is set to
the same package name as the client application, then you are not required to import
the <clientgen>-generated files.

Get the Service and PortType interface implementation and invoke the operation on the
port as usual; see “Writing the Java Client Application Code to Invoke a Web Service” on
page 6-6 for details.

6-12 Getting Started With WebLogic Web Services Using JAX-WS

Sample build.xml File for a Web Service Client
The following sample build.xml file shows how to create a Web Service that itself invokes
another Web Service; the relevant sections that differ from the build.xml for building a simple
Web Service that does not invoke another Web Service are shown in bold.

The build-service target in this case is very similar to a target that builds a simple Web
Service; the only difference is that the jwsc Ant task that builds the invoking Web Service also
includes a <clientgen> child element of the <jws> element so that jwsc also generates the
required JAX-RPC client stubs.

<project name="webservices-service_to_service" default="all">

 <!-- set global properties for this build -->

 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />

 <property name="ear.deployed.name" value="ClientServiceEar" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/ClientServiceEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />

 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="all" depends="clean,build-service,deploy,client" />

 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>

 <target name="build-service">

Invok ing a Web Se rv ice f rom Ano ther Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-WS 6-13

 <jwsc
 srcdir="src"
 destdir="${ear-dir}" >

 <jws
 file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXWS">
 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>

 </jwsc>

 </target>

 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

 <target name="client">

 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/ClientService/ClientService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.service_to_service.client"
 type="JAXWS"/>

 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>

 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/service_to_service/client/**/*.java"/>

 </target>

6-14 Getting Started With WebLogic Web Services Using JAX-WS

 <target name="run">
 <java classname="examples.webservices.service_to_service.client.Main"
 fork="true"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 </java>

 </target>

</project>

Sample JWS File That Invokes a Web Service
The following sample JWS file, called ClientServiceImpl.java, implements a Web Service
called ClientService that has an operation that in turn invokes the echoComplexType
operation of a Web Service called ComplexService. This operation has a user-defined data type
(BasicStruct) as both a parameter and a return value. The relevant code is shown in bold and
described after the example.

package examples.webservices.service_to_service;

import javax.jws.WebService;
import javax.jws.WebMethod;

// Import the BasicStruct data type, generated by clientgen and used
// by the ComplexService Web Service

import examples.webservices.complex.BasicStruct;

// Import the JAX-WS Stubs for invoking the ComplexService Web Service.
// Stubs generated by clientgen

import examples.webservices.complex.ComplexPortType;
import examples.webservices.complex.ComplexService;

@WebService(name="ClientPortType", serviceName="ClientService",
 targetNamespace="http://examples.org")

public class ClientServiceImpl {

 @WebMethod()
 public String callComplexService(BasicStruct input, String serviceUrl)
 {

 // Create service and port stubs to invoke ComplexService
 ComplexService test = new ComplexService();
 ComplexPortType port = test.getComplexPortTypePort();

Invok ing a Web Se rv ice f rom Ano ther Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-WS 6-15

 // Invoke the echoComplexType operation of ComplexService
 BasicStruct result = port.echoComplexType(input);
 System.out.println("Invoked ComplexPortType.echoComplexType.");

 return "Invoke went okay! Here's the result: '" + result.getIntValue() + ",
" + result.getStringValue() + "'";

 }
}

Follow these guidelines when programming the JWS file that invokes another Web Service; code
snippets of the guidelines are shown in bold in the preceding example:

Import any user-defined data types that are used by the invoked Web Service. In this
example, the ComplexService uses the BasicStruct JavaBean:

import examples.webservices.complex.BasicStruct;

Import the JAX-WS interfaces of the ComplexService Web Service; the stubs are
generated by the <cliengen> child element of <jws>:

import examples.webservices.complex.ComplexPortType;
import examples.webservices.complex.ComplexService;

Create the JAX-WS Service and PortType instances for the ComplexService:

ComplexService test = new ComplexService();
ComplexPortType port = test.getComplexPortTypePort();

Invoke the echoComplexType operation of ComplexService using the port you just
instantiated:

BasicStruct result = port.echoComplexType(input);

Defining a Web Service Reference Using the
@WebServiceRef Annotation
The @WebServiceRef annotation enables you to define a reference to a Web Service. For
example, in the following sample, a reference to the ComplexService is defined by passing the
WSDL of the Web Service to the @WebServiceRef annotation.

package examples.webservices.service_to_service;

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.xml.ws.WebServiceRef;

// Import the BasicStruct data type, generated by clientgen and used
// by the ComplexService Web Service

6-16 Getting Started With WebLogic Web Services Using JAX-WS

import examples.webservices.complex.BasicStruct;

// Import the JAX-WS interfaces for invoking the ComplexService Web Service.
// Interfaces generated by clientgen

import examples.webservices.complex.ComplexPortType;
import examples.webservices.complex.ComplexService;

@WebService(name="ClientPortType", serviceName="ClientService",
 targetNamespace="http://examples.org")

public class ClientServiceImpl {
 @WebServiceRef()
 ComplexService service;

 @WebMethod()
 public String callComplexService(BasicStruct input)
 {

 // Create service and port stubs to invoke ComplexService
 ComplexPortType port = service.getComplexPortTypePort();

 // Invoke the echoComplexType operation of ComplexService
 BasicStruct result = port.echoComplexType(input);
 System.out.println("Invoked ComplexPortType.echoComplexType.");

 return "Invoke went okay! Here's the result: '" + result.getIntValue() + ",
" + result.getStringValue() + "'";

 }
}

In the preceding example:

The @WebServiceRef annotation is used to define a reference to a Web Service and an
injection target for it:

@WebServiceRef()
ComplexService service;

The following code shows how to return an instance of the ComplexPortType stub
implementation using the Web Service reference:

ComplexPortType port = service.getComplexPortTypePort();

The following code shows how to invoke the sayHello operation of the ComplexService
Web Service:

BasicStruct result = port.echoComplexType(input);

Using a S tand-A lone C l ient JAR F i l e When Invok ing Web Serv ices

Getting Started With WebLogic Web Services Using JAX-WS 6-17

Using a Stand-Alone Client JAR File When Invoking Web
Services

It is assumed in this document that, when you invoke a Web Service using the client-side artifacts
generated by the clientgen or wsdlc Ant tasks, you have the entire set of WebLogic Server
classes in your CLASSPATH. If, however, your computer does not have WebLogic Server
installed, you can still invoke a Web Service by using the stand-alone WebLogic Web Services
client JAR file, as described in this section.

The standalone client JAR file supports basic client-side functionality, such as:

Use with client-side artifacts created by both the clientgen Ant tasks

Processing SOAP messages

Using client-side SOAP message handlers

Using MTOM

Invoking both JAX-WS and JAX-RPC Web Services

Using SSL

The stand-alone client JAR file does not, however, support invoking Web Services that use the
following advanced feature:

Message-level security (WS-Security)

To use the stand-alone WebLogic Web Services client JAR file with your client application,
follow these steps:

1. Copy the file WL_HOME/server/lib/wseeclient.zip from the computer hosting
WebLogic Server to the client computer, where WL_HOME refers to the WebLogic Server
installation directory, such as /bea/wlserver_10.3.

2. Unzip the wseeclient.zip file into the appropriate directory. For example, you might unzip
the file into a directory that contains other classes used by your client application.

3. Add the wseeclient.jar file (unzipped from the wseeclient.zip file) to your
CLASSPATH.

Note: Also be sure that your CLASSPATH includes the JAR file that contains the Ant
classes (ant.jar). This JAR file is typically located in the lib directory of the Ant
distribution.

6-18 Getting Started With WebLogic Web Services Using JAX-WS

4. If you are using JDK 6 Update 2, note that this version of the Sun JDK only supports JAX-WS
2.0 and JAXB 2.0 APIs. In order to use JDK 6 Update 2 with this release, you need to update
the API JARs in your JDK6 installation. To do so:

a. Copy the following JARs from the WebLogic Server installation into your Sun JDK6
endorsed directory:

• $BEA_HOME/modules/javax.xml.bind_2.1.1 jar to
JDK6_HOME/jre/lib/endorsed

• $BEA_HOME/modules/javax.xml.ws_2.1.1 jar to
JDK6_HOME/jre/lib/endorsed

b. Use the Java endorsed library to override the existing JDK 6 Update 2 library files, as
described in Java Endorsed Standards Override Mechanism.

Client Considerations When Redeploying a Web Service
WebLogic Server supports production redeployment, which means that you can deploy a new
version of an updated WebLogic Web Service alongside an older version of the same Web
Service.

WebLogic Server automatically manages client connections so that only new client requests are
directed to the new version. Clients already connected to the Web Service during the
redeployment continue to use the older version of the service until they complete their work, at
which point WebLogic Server automatically retires the older Web Service.

You can continue using the old client application with the new version of the Web Service, as
long as the following Web Service artifacts have not changed in the new version:

WSDL that describes the Web Service

WS-Policy files attached to the Web Service

If any of these artifacts have changed, you must regenerate the JAX-WS stubs used by the client
application by re-running the clientgen Ant task.

For example, if you change the signature of an operation in the new version of the Web Service,
then the WSDL file that describes the new version of the Web Service will also change. In this
case, you must regenerate the JAX-WS stubs. If, however, you simply change the implementation
of an operation, but do not change its public contract, then you can continue using the existing
client application.

Getting Started With WebLogic Web Services Using JAX-WS 7-1

C H A P T E R 7

Administering Web Services

The following sections describe how to administer WebLogic Web Services:

“Overview of WebLogic Web Services Administration Tasks” on page 7-1

“Administration Tools” on page 7-2

“Using the Administration Console” on page 7-3

“Using the WebLogic Scripting Tool” on page 7-7

“Using WebLogic Ant Tasks” on page 7-7

“Using the Java Management Extensions (JMX)” on page 7-8

“Using the Java EE Deployment API” on page 7-9

“Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute
Threads” on page 7-9

Overview of WebLogic Web Services Administration
Tasks

When you use the jwsc Ant task to compile and package a WebLogic Web Service, the task
packages it as part of an Enterprise Application. The Web Service itself is packaged inside the
Enterprise application as a Web application WAR file, by default. However, if your JWS file
implements a session bean then the Web Service is packaged as an EJB JAR file. Therefore, basic

7-2 Getting Started With WebLogic Web Services Using JAX-WS

administration of Web Services is very similar to basic administration of standard Java Platform,
Enterprise Edition (Java EE) Version 5 applications and modules. These standard tasks include:

Installing the Enterprise application that contains the Web Service.

Starting and stopping the deployed Enterprise application.

Configuring the Enterprise application and the archive file which implements the actual
Web Service. You can configure general characteristics of the Enterprise application, such
as the deployment order, or module-specific characteristics, such as session time-out for
Web applications or transaction type for EJBs.

Creating and updating the Enterprise application’s deployment plan.

Monitoring the Enterprise application.

Testing the Enterprise application.

The following administrative tasks are specific to Web Services:

Configuring the WS-Policy files associated with a Web Service endpoint or its operations.

Note: If you used the @Policy annotation in your Web Service to specify an associated
WS-Policy file at the time you programmed the JWS file, you cannot change this
association at run-time using the Administration Console or other administrative
tools. You can only associate a new WS-Policy file, or disassociate one you added at
run-time.

Viewing the SOAP handlers associated with the Web Service.

Viewing the WSDL of the Web Service.

Creating a Web Service security configuration.

Administration Tools
There are a variety of ways to administer Java EE modules and applications that run on WebLogic
Server, including Web Services; use the tool that best fits your needs:

Using the Administration Console

Using the WebLogic Scripting Tool

Using WebLogic Ant Tasks

Using the Java Management Extensions (JMX)

Using the Admin is t rat ion Conso le

Getting Started With WebLogic Web Services Using JAX-WS 7-3

Using the Java EE Deployment API

Using the Administration Console
The WebLogic Server Administration Console is a Web browser-based, graphical user interface
you use to manage a WebLogic Server domain, one or more WebLogic Server instances, clusters,
and applications, including Web Services, that are deployed to the server or cluster.

One instance of WebLogic Server in each domain is configured as an Administration Server. The
Administration Server provides a central point for managing a WebLogic Server domain. All
other WebLogic Server instances in a domain are called Managed Servers. In a domain with only
a single WebLogic Server instance, that server functions both as Administration Server and
Managed Server. The Administration Server hosts the Administration Console, which is a Web
Application accessible from any supported Web browser with network access to the
Administration Server.

You can use the System Administration Console to:

Install an Enterprise application.

Start and stop a deployed Enterprise application.

Configure an Enterprise application.

Configure Web applications.

Configure EJBs.

Create a deployment plan.

Update a deployment plan.

Test the modules in an Enterprise application.

Associate the WS-Policy file with a Web Service.

View the SOAP message handlers of a Web Service.

View the WSDL of a Web Service.

Create a Web Service security configuration

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/applications/DeployEnterpriseApplications.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/applications/StopDeployedEnterpriseApplications.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/applications/ConfigureEnterpriseApplications.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/web_applications/ConfigureWebApplications.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/ejb/ConfigureEJBModules.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/applications/CreateDeploymentPlan.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/applications/UpdateDeploymentPlan.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/applications/TestAppModules.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/webservices/ConfigureWSPolicyFile.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/webservices/ViewSoapMessageHandlers.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/webservices/ViewWsdl.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDefaultWSSConfig.html

7-4 Getting Started With WebLogic Web Services Using JAX-WS

Invoking the Administration Console
To invoke the Administration Console in your browser, enter the following URL:

http://host:port/console

where

host refers to the computer on which the Administration Server is running.

port refers to the port number where the Administration Server is listening for connection
requests. The default port number for the Administration server is 7001.

Click the Help button, located at the top right corner of the Administration Console, to invoke
the Online Help for detailed instructions on using the Administration Console.

The following figure shows the main Administration Console window.

Figure 7-1 WebLogic Server Administration Console Main Window

Using the Admin is t rat ion Conso le

Getting Started With WebLogic Web Services Using JAX-WS 7-5

How Web Services Are Displayed In the Administration
Console
Web Services are typically deployed to WebLogic Server as part of an Enterprise Application.
The Enterprise Application can be either archived as an EAR, or be in exploded directory format.
The Web Service itself is almost always packaged as a Web Application; the only exception is if
your JWS file implements a session bean in which case it is packaged as an EJB. The Web Service
can be in archived format (WAR or EJB JAR file, respectively) or as an exploded directory.

It is not required that a Web Service be installed as part of an Enterprise application; it can be
installed as just the Web Application or EJB. However, Oracle recommends that users install the
Web Service as part of an Enterprise application. The WebLogic Ant task used to create a Web
Service, jwsc, always packages the generated Web Service into an Enterprise application.

To view and update the Web Service-specific configuration information about a Web Service
using the Administration Console, click on the Deployments node in the left pane and, in the
Deployments table that appears in the right pane, locate the Enterprise application in which the
Web Service is packaged. Expand the application by clicking the + node; the Web Services in the
application are listed under the Web Services category. Click on the name of the Web Service to
view or update its configuration.

The following figure shows how the HelloWorldService Web Service, packaged inside the
helloWorldEar Enterprise application, is displayed in the Deployments table of the
Administration Console.

7-6 Getting Started With WebLogic Web Services Using JAX-WS

Figure 7-2 Web Service Displayed in Deployments Table of Administration Console

Creating a Web Services Security Configuration
When a deployed WebLogic Web Service has been configured to use message-level security
(encryption and digital signatures, as described by the WS-Security specification), the Web
Services runtime determines whether a Web Service security configuration is also associated with
the service. This security configuration specifies information such as whether to use an X.509
certificate for identity, whether to use password digests, the keystore to be used for encryption,
and so on. A single security configuration can be associated with many Web Services.

Because Web Services security configurations are domain-wide, you create them from the
domainName > WebService Security tab of the Administration Console, rather than the
Deployments tab. The following figure shows the location of this tab.

Using the WebLog ic Sc r ip t ing Too l

Getting Started With WebLogic Web Services Using JAX-WS 7-7

Figure 7-3 Web Service Security Configuration in Administration Console

Using the WebLogic Scripting Tool
The WebLogic Scripting Tool (WLST) is a command-line scripting interface that you can use to
interact with and configure WebLogic Server domains and instances, as well as deploy Java EE
modules and applications (including Web Services) to a particular WebLogic Server instance.
Using WLST, system administrators and operators can initiate, manage, and persist WebLogic
Server configuration changes.

Typically, the types of WLST commands you use to administer Web Services fall under the
Deployment category.

For more information on using WLST, see WebLogic Scripting Tool.

Using WebLogic Ant Tasks
WebLogic Server includes a variety of Ant tasks that you can use to centralize many of the
configuration and administrative tasks into a single Ant build script. These Ant tasks can:

Create, start, and configure a new WebLogic Server domain, using the wlserver and
wlconfig Ant tasks.

Deploy a compiled application to the newly-created domain, using the wldeploy Ant task.

See “Using Ant Tasks to Configure and Use a WebLogic Server Domain” and “wldeploy Ant
Task Reference” in Developing Applications With WebLogic Server for specific information
about the non-Web Services related WebLogic Ant tasks.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/config_scripting/reference.html#deployment_commands
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/config_scripting/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/programming/ant_tasks.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/programming/wldeploy.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/programming/wldeploy.html

7-8 Getting Started With WebLogic Web Services Using JAX-WS

Using the Java Management Extensions (JMX)
A managed bean (MBean) is a Java bean that provides a Java Management Extensions (JMX)
interface. JMX is the Java EE solution for monitoring and managing resources on a network. Like
SNMP and other management standards, JMX is a public specification and many vendors of
commonly used monitoring products support it.

WebLogic Server provides a set of MBeans that you can use to configure, monitor, and manage
WebLogic Server resources through JMX. WebLogic Web Services also have their own set of
MBeans that you can use to perform some Web Service administrative tasks.

There are two types of MBeans: runtime (for read-only monitoring information) and
configuration (for configuring the Web Service after it has been deployed).

The configuration Web Services MBeans are:

WebserviceSecurityConfigurationMBean

WebserviceCredentialProviderMBean

WebserviceSecurityMBean

WebserviceSecurityTokenMBean

WebserviceTimestampMBean

WebserviceTokenHandlerMBean

The runtime Web Services MBeans are:

WseeRuntimeMBean

WseeHandlerRuntimeMBean

WseePortRuntimeMBean

WseeOperationRuntimeMBean

WseePolicyRuntimeMBean

For more information on JMX, see the WebLogic Server MBean Reference and the following
sections in Developing Custom Management Utilities With JMX:

Understanding WebLogic Server MBeans

Accessing WebLogic Server MBeans with JMX

Managing a Domain’s Configuration with JMX

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WebserviceSecurityConfigurationMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WebserviceSecurityConfigurationMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WebserviceSecurityMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WebserviceSecurityTokenMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WebserviceTimestampMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WebserviceTokenHandlerMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WseeRuntimeMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WseeHandlerRuntimeMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WseePortRuntimeMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WseeOperationRuntimeMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WseePolicyRuntimeMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/jmx/understandWLS.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/jmx/accessWLS.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/jmx/editWLS.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/index.html

Using the Java EE Dep loyment AP I

Getting Started With WebLogic Web Services Using JAX-WS 7-9

Using the Java EE Deployment API
In Java EE 5, the J2EE Application Deployment specification (JSR-88) defines a standard API
that you can use to configure an application for deployment to a target application server
environment.

The specification describes the Java EE Deployment architecture, which in turn defines the
contracts that enable tools or application programmers to configure and deploy applications on
any Java EE platform product. The contracts define a uniform model between tools and Java EE
platform products for application deployment configuration and deployment. The Deployment
architecture makes it easier to deploy applications: Deployers do not have to learn all the features
of many different Java EE deployment tools in order to deploy an application on many different
Java EE platform products.

See Deploying Applications to WebLogic Server for more information.

Using Work Managers to Prioritize Web Services Work
and Reduce Stuck Execute Threads

After a connection has been established between a client application and a Web Service, the
interactions between the two are ideally smooth and quick, whereby the client makes requests and
the service responds in a prompt and timely manner. Sometimes, however, a client application
might take a long time to make a new request, during which the Web Service waits to respond,
possibly for the life of the WebLogic Server instance; this is often referred to as a stuck execute
thread. If, at any given moment, WebLogic Server has a lot of stuck execute threads, the overall
performance of the server might degrade.

If a particular Web Service gets into this state fairly often, you can specify how the service
prioritizes the execution of its work by configuring a Work Manager and applying it to the
service. For example, you can configure a response time request class (a specific type of Work
Manager component) that specifies a response time goal for the Web Service.

The following shows an example of how to define a response time request class in a deployment
descriptor:

<work-manager>

 <name>responsetime_workmanager</name>

 <response-time-request-class>

 <name>my_response_time</name>

 <goal-ms>2000</goal-ms>

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/deployment/index.html

7-10 Getting Started With WebLogic Web Services Using JAX-WS

 </response-time-request-class>

</work-manager>

You can configure the response time request class using the Administration Console, as described
in “Work Manager: Response Time: Configuration” in the Administration Console Online Help.

For more information about Work Managers in general and how to configure them for your Web
Service, see “Using Work Managers to Optimize Scheduled Work” in Configuring WebLogic
Server Environments.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/config_wls/self_tuned.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/pagehelp/Corecoreworkresponsetimerequestclassconfigtitle.html

Getting Started With WebLogic Web Services Using JAX-WS 8-1

C H A P T E R 8

Migrating JAX-RPC Web Services and
Clients to JAX-WS

This section provides tips for migrating JAX-RPC Web Services and clients to JAX-WS. The
following table summarizes the topics that are covered.

Note: In some cases, a JAX-RPC feature may not be supported currently by JAX-WS, such as
WebLogic Reliable Messaging, conversational or buffered Web Services, and so on. In
this case, the application cannot be migrated unless it is re-architected.

Table 8-1 Tips for Migrating JAX-RPC Web Services and Clients to JAX-WS

Topic Description

Setting the Final Context
Root of a WebLogic Web
Service

Describes the methods that can be used to set the final context root of a WebLogic
Web Service. The use of @WLXXXTransport JWS annotations is not supported
for JAX-WS; these annotations are supported by JAX-RPC only.

Using WebLogic-specific
Annotations

Describes the WebLogic-specific annotations that are supported by JAX-WS.

Generating a WSDL File Describes how to generate a WSDL file when you are generating a JAX-WS Web
Service using the jwsc Ant task.

Using JAXB Custom
Types

Describes the use of Java Architecture for XML Binding (JAXB) for managing all
of the data binding tasks.

Using EJB 3.0 Describes changes in EJB 3.0 from EJB 2.1. JAX-WS supports EJB 3.0. JAX-RPC
supports EJB 2.1 only.

Migrating from RPC Style
SOAP Binding

Provides guidelines for setting the SOAP binding. RPC style is supported, but not
recommended for JAX-WS.

8-2 Getting Started With WebLogic Web Services Using JAX-WS

Setting the Final Context Root of a WebLogic Web Service
You can set the final context root of a WebLogic Web Service using a variety of methods, as
described in “How to Determine the Final Context Root of a WebLogic Web Service” in
WebLogic Web Services Reference.

As described in this section, when defining a JAX-RPC Web Service, you can use the
@WLXXXTransport JWS annotations to specify the context root. For JAX-WS Web Services, the
@WLXXXTransport JWS annotations are not valid. If used in the JAX-RPC Web Service, the
JWS file needs to be updated to remove the annotations in favor of one of the other methods.

Using WebLogic-specific Annotations
JAX-WS supports the following WebLogic-specific annotations:

@Policy

@Policies

@WssConfiguration

All other WebLogic-specific annotations must be removed from your JAX-RPC applications
when migrating to JAX-WS. For more information, see “WebLogic-specific Annotations” in
WebLogic Web Services Reference.

Generating a WSDL File
When you run the jwsc file on a JAX-RPC Web Service, a WSDL file is generated in the
specified output directory. For JAX-WS Web Services, the WSDL file is generated when the
service endpoint is deployed. In order to generate a WSDL file in the output directory, you must
specify the wsdlOnly attribute of the <jws> child element of the jwsc Ant task. For more
information, see “jwsc” in the WebLogic Web Services Reference.

Updating SOAP Message
Handlers

Explains how you must re-write your JAX-RPC SOAP message handlers when
migrating to JAX-WS.

Invoking JAX-WS Clients Explains how you must re-write your JAX-RPC client to invoke JAX-WS clients.

Table 8-1 Tips for Migrating JAX-RPC Web Services and Clients to JAX-WS (Continued)

Topic Description

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#jwsc
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#wls_annotations
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#how_to_determine_final_context_root

Us ing JAXB Custom Types

Getting Started With WebLogic Web Services Using JAX-WS 8-3

Using JAXB Custom Types
JAX-WS uses Java Architecture for XML Binding (JAXB) to manage all of the data binding
tasks. If your application supports custom types using XMLBeans or Tylar, you will need to
modify them to use JAXB. For more information about using JAXB, see “Using JAXB Data
Binding” on page 5-1.

Using EJB 3.0
JAX-WS supports EJB 3.0. JAX-RPC supports EJB 2.1 only.

EJB 3.0 introduced metadata annotations that enable you to automatically generate, rather than
manually create, the EJB Remote and Home interface classes and deployment descriptor files
needed when implementing an EJB.

For more information about EJB 3.0 bean class requirements and changes from 2.x, see
“Programming the Bean File: Requirements and Changes from 2.X” in Enterprise JavaBeans
(EJB) 3.0.

Migrating from RPC Style SOAP Binding
Use of the SOAPBinding.Style.RPC style, although supported, is not recommended with
JAX-WS. It is recommended that you change the style to SOAPBinding.Style.DOCUMENT.

Updating SOAP Message Handlers
Although the SOAP APIs are similar, JAX-RPC SOAP handlers will need to be modified to run
with JAX-WS. For more information, see “Creating and Using SOAP Message Handlers” in
Programming Advanced Features of WebLogic Web Services Using JAX-WS.

Invoking JAX-WS Clients
JAX-RPC clients will need to be re-written as the JAX-RPC and JAX-WS client APIs are
completely different. For more information about writing JAX-WS clients, see “Invoking Web
Services” in Getting Started With WebLogic Web Services Using JAX-WS.

message URL http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ejb30/program.html#requirements
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv/client.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv/client.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_adv/handlers.html

8-4 Getting Started With WebLogic Web Services Using JAX-WS

	Oracle® WebLogic Server
	10g Release 3 (10.3)

	Oracle WebLogic Server Getting Started With WebLogic Web Services Using JAX-WS, 10g Release 3 (10.3)
	Introduction
	Use Cases and Examples
	Creating a Simple HelloWorld Web Service
	Creating a Web Service With User-Defined Data Types
	Creating a Web Service from a WSDL File
	Invoking a Web Service from a Stand-alone Java Client
	Invoking a Web Service from a WebLogic Web Service

	Developing WebLogic Web Services
	Overview of the WebLogic Web Service Programming Model
	Developing WebLogic Web Services Starting From Java: Main Steps
	Developing WebLogic Web Services Starting From a WSDL File: Main Steps
	Creating the Basic Ant build.xml File
	Running the jwsc WebLogic Web Services Ant Task
	Examples of Using jwsc
	Advanced Uses of jwsc

	Running the wsdlc WebLogic Web Services Ant Task
	Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc
	Deploying and Undeploying WebLogic Web Services
	Using the wldeploy Ant Task to Deploy Web Services
	Using the Administration Console to Deploy Web Services

	Browsing to the WSDL of the Web Service
	Configuring the Server Address Specified in the Dynamic WSDL
	Testing the Web Service
	Integrating Web Services Into the WebLogic Split Development Directory Environment

	Invoking Web Services
	Overview of Web Services Invocation
	Invoking a Web Service from a Stand-alone Client: Main Steps
	Using the clientgen Ant Task To Generate Client Artifacts
	Getting Information About a Web Service
	Writing the Java Client Application Code to Invoke a Web Service
	Compiling and Running the Client Application
	Sample Ant Build File for a Stand-Alone Java Client

	Invoking a Web Service from Another Web Service
	Sample build.xml File for a Web Service Client
	Sample JWS File That Invokes a Web Service
	Defining a Web Service Reference Using the @WebServiceRef Annotation

	Using a Stand-Alone Client JAR File When Invoking Web Services
	Client Considerations When Redeploying a Web Service

	Administering Web Services
	Overview of WebLogic Web Services Administration Tasks
	Administration Tools
	Using the Administration Console
	Invoking the Administration Console
	How Web Services Are Displayed In the Administration Console
	Creating a Web Services Security Configuration

	Using the WebLogic Scripting Tool
	Using WebLogic Ant Tasks
	Using the Java Management Extensions (JMX)
	Using the Java EE Deployment API
	Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads

	Migrating JAX-RPC Web Services and Clients to JAX-WS
	Setting the Final Context Root of a WebLogic Web Service
	Using WebLogic-specific Annotations
	Generating a WSDL File
	Using JAXB Custom Types
	Using EJB 3.0
	Migrating from RPC Style SOAP Binding
	Updating SOAP Message Handlers
	Invoking JAX-WS Clients

