

Oracle® Fusion Middleware
Programming Resource Adapters for Oracle WebLogic Server

11g Release 1 (10.3.1)

E13732-01

May 2009

This document is for resource adapter users, deployers, and
software developers who develop applications that include
J2EE resource adapters to be deployed to WebLogic Server.

Oracle Fusion Middleware Programming Resource Adapters for Oracle WebLogic Server, 11g Release 1
(10.3.1)

E13732-01

Copyright © 2007, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

Documentation Accessibility .. vii
Conventions .. vii

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to This Document.. 1-1
1.3 Related Documentation.. 1-2
1.4 Examples for the Resource Adapter Developer ... 1-2
1.5 New and Changed Features in This Release... 1-3

2 Understanding Resource Adapters

2.1 Overview of Resource Adapters .. 2-1
2.1.1 Comparing WebLogic Server and WebLogic Integration Resource Adapters........... 2-1
2.1.2 Inbound, Outbound, and Bidirectional Resource Adapters.. 2-1
2.1.3 Comparing 1.0 and 1.5 Resource Adapters.. 2-2
2.2 J2EE Connector Architecture... 2-3
2.2.1 J2EE Architecture Diagram and Components... 2-3
2.2.2 System-Level Contracts .. 2-5
2.3 Resource Adapter Deployment Descriptors ... 2-6

3 Creating and Configuring Resource Adapters

3.1 Creating and Configuring Resource Adapters: Main Steps ... 3-1
3.2 Modifying an Existing Resource Adapter ... 3-2
3.3 Configuring the ra.xml File ... 3-3
3.4 Configuring the weblogic-ra.xml File .. 3-4
3.4.1 Editing Resource Adapter Deployment Descriptors.. 3-5
3.4.1.1 Editing Considerations .. 3-5
3.4.1.2 Schema Header Information... 3-5
3.4.1.3 Conforming Deployment Descriptor Files to Schema .. 3-6
3.4.2 Dynamic Descriptor Updates: Console Configuration Tabs... 3-6
3.4.2.1 Dynamic Pool Parameters ... 3-6
3.4.2.2 Dynamic Logging Parameters .. 3-7
3.4.3 Automatic Generation of the weblogic-ra.xml File... 3-7
3.4.4 (Deprecated) Configuring the Link-Ref Mechanism .. 3-7

iv

4 Programming Tasks

4.1 Required Classes for Resource Adapters .. 4-1
4.2 Programming a Resource Adapter to Perform as a Startup Class....................................... 4-2
4.3 Suspending and Resuming Resource Adapter Activity.. 4-4
4.4 Extended BootstrapContext... 4-7
4.4.1 Diagnostic Context ID... 4-8
4.4.2 Dye Bits ... 4-8
4.4.3 Callback Capabilities... 4-8

5 Connection Management

5.1 Connection Management Contract .. 5-1
5.1.1 Connection Factory and Connection... 5-1
5.1.2 Resource Adapters Bound in JNDI Tree .. 5-2
5.1.3 Obtaining the ConnectionFactory (Client-JNDI Interaction) .. 5-2
5.2 Configuring Outbound Connections ... 5-3
5.2.1 Connection Pool Configuration Levels... 5-3
5.2.2 Multiple Outbound Connections Example .. 5-4
5.3 Configuring Inbound Connections .. 5-6
5.4 Configuring Connection Pool Parameters .. 5-7
5.4.1 initial-capacity: Setting the Initial Number of ManagedConnections 5-7
5.4.2 max-capacity: Setting the Maximum Number of ManagedConnections 5-7
5.4.3 capacity-increment: Controlling the Number of ManagedConnections 5-8
5.4.4 shrinking-enabled: Controlling System Resource Usage... 5-8
5.4.5 shrink-frequency-seconds: Setting the Wait Time Between Attempts to Reclaim

Unused ManagedConnections 5-8
5.4.6 highest-num-waiters: Controlling the Number of Clients Waiting for a Connection.......

5-8
5.4.7 highest-num-unavailable: Controlling the Number of Unavailable Connections..... 5-8
5.4.8 connection-creation-retry-frequency-seconds: Recreating Connections 5-8
5.4.9 match-connections-supported: Matching Connections ... 5-9
5.4.10 test-frequency-seconds: Testing the Viability of Connections 5-9
5.4.11 test-connections-on-create: Testing Connections upon Creation 5-9
5.4.12 test-connections-on-release: Testing Connections upon Release to Connection Pool.......

5-9
5.4.13 test-connections-on-reserve: Testing Connections upon Reservation 5-9
5.5 Connection Proxy Wrapper - 1.0 Resource Adapters.. 5-9
5.5.1 Possible ClassCastException ... 5-10
5.5.2 Turning Proxy Generation On and Off ... 5-10
5.6 Testing Connections .. 5-11
5.6.1 Configuring Connection Testing .. 5-11
5.6.2 Testing Connections in the Administration Console .. 5-11

6 Transaction Management

6.1 Supported Transaction Levels... 6-1
6.1.1 XA Transaction Support ... 6-1
6.1.2 Local Transaction Support.. 6-1
6.1.3 No Transaction Support ... 6-2

v

6.2 Configuring Transaction Levels ... 6-2
6.2.1 Configure XA Transaction Recovery Credential Mapping ... 6-3

7 Message and Transactional Inflow

7.1 Overview of Message and Transactional Inflow.. 7-1
7.1.1 Architecture Components .. 7-2
7.1.2 Inbound Communication Scenario ... 7-3
7.2 How Message Inflow Works ... 7-4
7.2.1 Handling Inbound Messages ... 7-4
7.2.2 Proprietary Communications Channel and Protocol ... 7-4
7.3 Message Inflow to Message Endpoints (Message-driven Beans) .. 7-5
7.3.1 Deployment-Time Binding Between an MDB and a Resource Adapter 7-5
7.3.1.1 Binding an MDB and a Resource Adapter.. 7-5
7.3.2 Dispatching a Message.. 7-6
7.3.3 Activation Specifications .. 7-6
7.3.4 Administered Objects.. 7-6
7.4 Transactional Inflow... 7-7
7.4.1 Using the Transactional Inflow Model for Locally Managed Transactions................ 7-8
7.5 @LongRunning.. 7-8

8 Security

8.1 Container-Managed and Application-Managed Sign-on ... 8-1
8.1.1 Application-Managed Sign-on... 8-1
8.1.2 Container-Managed Sign-on.. 8-2
8.2 Password Credential Mapping ... 8-2
8.2.1 Authentication Mechanisms .. 8-2
8.2.2 Credential Mappings... 8-2
8.2.2.1 Non-initial Connection: Requires ManagedConnection from Adapter Upon

Application's Request 8-3
8.2.2.2 Initial Connection: Requires a ManagedConnection from Adapter Without

Application's Request 8-4
8.2.2.3 Special Users.. 8-5
8.2.3 Creating Credential Mappings Using the Console... 8-5
8.3 Security Policy Processing ... 8-6
8.4 Configuring Security Identities for Resource Adapters .. 8-6
8.4.1 default-principal-name: Default Identity ... 8-7
8.4.2 manage-as-principal-name: Identity for Running Management Tasks....................... 8-8
8.4.3 run-as-principal-name: Identity Used for Connection Calls from the Connector

Container into the Resource Adapter 8-8
8.4.4 run-work-as-principal-name: Identity Used for Performing Resource Adapter

Management Tasks 8-9
8.5 Configuring Connection Factory-Specific Authentication and Re-authentication

Mechanisms 8-9

9 Packaging and Deploying Resource Adapters

9.1 Packaging Resource Adapters... 9-1

vi

9.1.1 Packaging Directory Structure... 9-1
9.1.2 Packaging Considerations .. 9-2
9.1.3 Packaging Limitation .. 9-2
9.1.4 Packaging Resource Adapter Archives (RARs) .. 9-2
9.2 Deploying Resource Adapters .. 9-3
9.2.1 Deployment Options ... 9-3
9.2.2 Resource Adapter Deployment Names.. 9-4
9.2.3 Production Redeployment ... 9-4
9.2.3.1 Suspendable Interface and Production Redeployment .. 9-4
9.2.3.2 Production Redeployment Requirements... 9-5
9.2.3.3 Production Redeployment Process .. 9-5

A weblogic-ra.xml Schema

A.1 weblogic-connector.. A-1
A.2 work-manager .. A-4
A.3 security .. A-6
A.3.1 default-principal-name .. A-7
A.3.2 manage-as-principal-name.. A-7
A.3.3 run-as-principal-name ... A-8
A.3.4 run-work-as-principal-name... A-8
A.4 properties .. A-8
A.5 admin-objects.. A-9
A.5.1 admin-object-group .. A-9
A.5.1.1 admin-object-instance ... A-10
A.6 outbound-resource-adapter.. A-11
A.6.1 default-connection-properties... A-11
A.6.1.1 pool-params.. A-12
A.6.1.2 logging... A-14
A.6.2 connection-definition-group ... A-16
A.6.2.1 connection-instance ... A-17

B Resource Adapter Best Practices

B.1 Classloading Optimizations for Resource Adapters .. B-1
B.2 Connection Optimizations.. B-1
B.3 Thread Management ... B-2
B.4 InteractionSpec Interface... B-2

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Programming Resource Adapters for Oracle WebLogic Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Conventions
The following text conventions are used in this document:

viii

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

The following sections describe the contents and organization of this guide—Oracle
Fusion Middleware Programming Resource Adapters for Oracle WebLogic Server.

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to This Document"

■ Section 1.3, "Related Documentation"

■ Section 1.4, "Examples for the Resource Adapter Developer"

■ Section 1.5, "New and Changed Features in This Release"

1.1 Document Scope and Audience
This document is written for resource adapter users, deployers, and software
developers who develop applications that include J2EE resource adapters to be
deployed to WebLogic Server. This document also contains information that is useful
for business analysts and system architects who are evaluating WebLogic Server or
considering the use of WebLogic Server resource adapters for a particular application.

The topics in this document are relevant during the design and development phases of
a software project. The document also includes topics that are useful in solving
application problems that are discovered during test and pre-production phases of a
project.

This document does not address production phase administration, monitoring, or
performance tuning topics. For links to WebLogic Server documentation and resources
for these topics, see Section 1.3, "Related Documentation."

It is assumed that the reader is familiar with J2EE and resource adapter concepts. The
foundation document for resource adapter development is Sun Microsystems J2EE
Connector Architecture Specification, Version 1.5 Final Release (referred to in this
guide as the J2CA 1.5 Specification). See
http://java.sun.com/j2ee/connector/. Resource adapter developers should
become familiar with the J2CA 1.5 Specification. This document emphasizes the
value-added features provided by WebLogic Server resource adapters and key
information about how to use WebLogic Server features and facilities to get a resource
adapter up and running.

1.2 Guide to This Document
■ This section, Chapter 1, "Introduction and Roadmap," introduces the organization

of this guide.

Related Documentation

1-2 Programming Resource Adapters for Oracle WebLogic Server

■ Chapter 2, "Understanding Resource Adapters," introduces you to the Oracle
WebLogic Server implementation of the J2EE Connector Architecture as well as the
resource adapter types and XML schema.

■ Chapter 3, "Creating and Configuring Resource Adapters," describes how to create
resource adapters using the Oracle WebLogic Server implementation of the J2EE
Connector Architecture.

■ Chapter 4, "Programming Tasks," describes programming tasks for resource
adapters.

■ Chapter 5, "Connection Management," introduces you to resource adapter
connection management.

■ Chapter 6, "Transaction Management," introduces you to the resource adapter
transaction management.

■ Chapter 7, "Message and Transactional Inflow," describes resource adapter
messaging inflow and transactional inflow.

■ Chapter 8, "Security," describes how to configure security for resource adapters.

■ Chapter 9, "Packaging and Deploying Resource Adapters," discusses packaging
and deploying requirements for resource adapters and provides instructions for
performing these tasks.

■ Appendix A, "weblogic-ra.xml Schema," provides a complete reference for the
schema for the WebLogic Server-specific deployment descriptor,
weblogic-ra.xml.

■ Appendix B, "Resource Adapter Best Practices," provides best practices for
resource adapter developers.

1.3 Related Documentation
The foundation document for resource adapter development is Sun Microsystems
J2EE Connector Architecture Specification, Version 1.5 Final Release (referred to in this
guide as the "J2CA 1.5 Specification"). See
http://java.sun.com/j2ee/connector/. This document assumes you are
familiar with the J2CA 1.5 Specification and contains design and development
information that is specific to developing WebLogic Server resource adapters.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

■ Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server is a
guide to developing WebLogic Server applications.

■ Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server is the
primary source of information about deploying WebLogic Server applications.

■ Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server contains
information on monitoring and improving the performance of WebLogic Server
applications.

1.4 Examples for the Resource Adapter Developer
In addition to this document, Oracle provides resource adapter examples for software
developers. WebLogic Server optionally installs API code examples in WL_
HOME\samples\server\examples\src\examples, where WL_HOME is the
top-level directory of your WebLogic Server installation. You can start the examples

New and Changed Features in This Release

Introduction and Roadmap 1-3

server, and obtain information about the samples and how to run them from the
WebLogic Server Start menu.

The resource adapter examples provided with this release of WebLogic Server are
compliant with the J2CA 1.5 Specification. Oracle recommends that you examine, run,
and understand these resource adapter examples before developing your own
resource adapters.

1.5 New and Changed Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see Oracle Fusion Middleware What's New in Oracle WebLogic Server.

New and Changed Features in This Release

1-4 Programming Resource Adapters for Oracle WebLogic Server

2

Understanding Resource Adapters 2-1

2Understanding Resource Adapters

The following sections introduce WebLogic resource adapters, the Oracle WebLogic
Server implementation of the J2EE Connector Architecture:

■ Overview of Resource Adapters

■ J2EE Connector Architecture

■ Resource Adapter Deployment Descriptors

2.1 Overview of Resource Adapters
A resource adapter is a system library specific to an Enterprise Information System
(EIS) and provides connectivity to an EIS; a resource adapter is analogous to a JDBC
driver, which provides connectivity to a database management system. The interface
between a resource adapter and the EIS is specific to the underlying EIS; it can be a
native interface. The resource adapter plugs into an application server, such as
WebLogic Server, and provides seamless connectivity between the EIS, application
server, and enterprise application.

Multiple resource adapters can plug in to an application server. This capability enables
application components deployed on the application server to access the underlying
EISes. An application server and an EIS collaborate to keep all system-level
mechanisms - transactions, security, and connection management - transparent to the
application components. As a result, an application component provider can focus on
the development of business and presentation logic for application components and
need not get involved in the system-level issues related to EIS integration. This leads
to an easier and faster cycle for the development of scalable, secure, and transactional
enterprise applications that require connectivity with multiple EISes.

2.1.1 Comparing WebLogic Server and WebLogic Integration Resource Adapters
It is important to note the difference between WebLogic Integration (WLI) resource
adapters and WebLogic Server resource adapters. WebLogic Integration resource
adapters are written to be specific to WebLogic Server and, in general, are not
deployable to other application servers. However, WebLogic Server resource adapters
written without WLI extensions are deployable in any J2EE-compliant application
server. This document discusses the design and implementation of non-WLI resource
adapters.

2.1.2 Inbound, Outbound, and Bidirectional Resource Adapters
WebLogic Server supports three types of resource adapters:

Overview of Resource Adapters

2-2 Programming Resource Adapters for Oracle WebLogic Server

■ Outbound resource adapter (supported by J2EE 1.0 and 1.5 Connector
Architecture) - Allows an application to connect to an EIS system and perform
work. All communication is initiated by the application. In this case, the resource
adapter serves as a passive library for connecting to an EIS and executes in the
context of the application threads.

Outbound resource adapters based on the J2EE 1.5 Connector Architecture can be
configured to have more than one simultaneous outbound connection. You can
configure each outbound connection to have its own WebLogic Server-specific
authentication and transaction support. See Section 5.2, "Configuring Outbound
Connections."

Outbound resource adapters based on the J2EE 1.0 Connector Architecture are also
supported. These resource adapters can have only one outbound connection.

■ Inbound resource adapter (1.5 only) - Allows an EIS to call application
components and perform work. All communication is initiated by the EIS. The
resource adapter may request threads from WebLogic Server or create its own
threads; however, this is not the Oracle-recommended approach. Oracle
recommends that the resource adapter submit work by way of the WorkManager.
See Chapter 7, "Message and Transactional Inflow."

■ Bi-directional resource adapter (1.5 only) - Supports both outbound and inbound
communication.

2.1.3 Comparing 1.0 and 1.5 Resource Adapters
WebLogic Server supports resource adapters developed under either the J2EE 1.0
Connector Architecture or the J2EE 1.5 Connector Architecture. The J2EE 1.0
Connector Architecture restricts resource adapter communication to a single external
system using one-way outbound communication. The J2EE 1.5 Connector Architecture
lifts this restriction. Other capabilities provided by and for a 1.5 resource adapter that
do not apply to 1.0 resource adapters include:

■ Outbound communication from the application to multiple systems, such as
Enterprise Information Systems (EISes) and databases. See Section 2.1.2, "Inbound,
Outbound, and Bidirectional Resource Adapters."

■ Inbound communication from one or more external systems such as an EIS to the
resource adapter. See Section 7.2.1, "Handling Inbound Messages."

■ Transactional inflow to enable a J2EE application server to participate in an XA
transaction controlled by an external Transaction Manager by way of a resource
adapter. See Section 7.4, "Transactional Inflow."

■ An application server-provided Work Manager to enable resource adapters to
create threads through Work instances. See Section A.2, "work-manager."

■ A life cycle contract for calling start() and stop() methods of the resource
adapter by the application server. See Section 4.2, "Programming a Resource
Adapter to Perform as a Startup Class."

Note: The WebLogic Server thin-client JAR also supports the
WorkManager contracts and thus can be used by non-managed
resource adapters (resource adapters not running in WebLogic
Server.).

J2EE Connector Architecture

Understanding Resource Adapters 2-3

Another important difference between 1.0 resource adapters and 1.5 resource adapters
has to do with connection pools. For 1.5 resource adapters, you do not automatically
get one connection pool per connection factory; you must configure a connection
instance. You do so by setting the connection-instance element in the
weblogic-ra.xml deployment descriptor.

Although WebLogic Server is now compliant with the J2EE 1.5 Connector
Architecture, it continues to fully support the J2EE 1.0 Connector Architecture. In
accordance with the J2EE 1.5 Connector Architecture, WebLogic Server now supports
schema-based deployment descriptors. Resource adapters that have been developed
based on the J2EE 1.0 Connector Architecture use Document Type Definition
(DTD)-based deployment descriptors. Resource adapters that are built on DTD-based
deployment descriptors are still supported.

This document describes the development and use of 1.5 resource adapters.

2.2 J2EE Connector Architecture
The J2EE Connector Architecture defines a standard architecture for connecting the
J2EE platform to heterogeneous Enterprise Information Systems (EISes), such as
Enterprise Resource Planning (ERP) systems, mainframe transaction processing (TP),
and database systems

The resource adapter serves as a protocol adapter that allows any arbitrary EIS
communication protocol to be used for connectivity. An application server vendor
extends its system once to support the J2EE Connector Architecture and is then
assured of seamless connectivity to multiple EISes. Likewise, an EIS vendor provides
one standard resource adapter that can plug in to any application server that supports
the J2EE Connector Architecture.

For a more detailed overview of the J2EE Connector Architecture, see Section 3 "The
Connector Architecture" of the J2CA 1.5 Specification
(http://java.sun.com/j2ee/connector/).

2.2.1 J2EE Architecture Diagram and Components
Figure 2–1 and the discussion that follows describe a WebLogic Server implementation
of the J2EE 1.5 Connector Architecture.

J2EE Connector Architecture

2-4 Programming Resource Adapters for Oracle WebLogic Server

Figure 2–1 Connector Architecture Overview

The connector architecture shown in Figure 2–1 demonstrates a bi-directional resource
adapter. The following components are used in outbound connection operations:

■ A client application that connects to WebLogic Server, but also needs to interact
with the EIS.

■ An application component (an EJB or servlet) that the client application uses to
submit outbound requests to the EIS through the resource adapter

■ The WebLogic Server Connector container in which the resource adapter is
deployed. The container in this example holds the following:

– A deployed resource adapter that provides bi-directional (inbound and
outbound) communication to and from the EIS.

– One or more connection pools maintained by the container for the
management of outbound managed connections for a given
ManagedConnectionFactory (in this case, MCF-2 - there may be more
corresponding to different types of connections to a single EIS or even
different EISes)

– Multiple managed connections (MC1, MCn), which are objects representing
the outbound physical connections from the resource adapter to the EIS.

– Connection handles (C-handle) returned to the application component from
the connection factory of the resource adapter and used by the application
component for communicating with the EIS.

The following components are used for inbound connection operations:

J2EE Connector Architecture

Understanding Resource Adapters 2-5

■ One or more external message sources (MS1, MS2), which could be an Enterprise
Information System (EIS) or Message Provider, and which send messages inbound
to WebLogic Server.

■ One or more ActivationSpecs (Act Spec), each of which corresponds to a single
MessageListener type (MLT-i).

■ A MessageEndpointFactory created by the EJB container and used by the
resource adapter for inbound messaging to create proxies to MessageEndpoint
instances (MDB instances from the MDB pool).

■ A message endpoint application (a message-driven bean (MDB) and possibly
other J2EE components) that receives and handles inbound messages from the EIS
through the resource adapter.

2.2.2 System-Level Contracts
To achieve a standard system-level pluggability between WebLogic Server and an EIS,
WebLogic Server has implemented the standard set of system-level contracts defined
by the J2EE Connector Architecture. These contracts consist of SPI classes and
interfaces that are required to be implemented in the application server and the EIS, so
that the two systems can work cooperatively. The EIS side of these system-level
contracts are implemented in the resource adapter's Java classes. The following
standard contracts are supported:

■ Connection management contract - Enables WebLogic Server to pool connections
to an underlying EIS and enables application components to connect to an EIS.
Also allows efficient use of connection resources through resource sharing and
provides controls for associating and disassociating connection handles with EIS
connections.

■ Transaction management contract - A contract between the transaction manager
and an EIS that supports transactional access to EIS resource managers. Enables
WebLogic Server to use its transaction manager to manage transactions across
multiple resource managers.

■ Transaction inflow contract - Allows a resource adapter to propagate an imported
transaction to WebLogic Server. Allows a resource adapter to flow-in transaction
completion and crash recovery calls initiated by an EIS. Transaction inflow
involves the use of an external transaction manager to coordinate transactions.

■ Security contract - Provides secure access to an EIS and support for a secure
application environment that reduces security threats to the EIS and protects
valuable information resources managed by the EIS.

■ Life cycle management contract - Enables WebLogic Server to manage the life
cycle of a resource adapter. This allows bootstrapping a resource adapter instance
during its deployment or application server startup, and notification to the
resource adapter instance when it is undeployed or when the application server is
being shut down.

■ Work management contract - Allows a resource adapter to do work (monitor
network endpoints, call application components, and so on) by submitting Work
instances to WebLogic Server for execution.

■ Message inflow contract - Allows a resource adapter to asynchronously or
synchronously deliver messages to message endpoints residing in WebLogic
Server independent of the specific messaging style, messaging semantics, and
messaging infrastructure used to deliver messages. Also serves as the standard
message provider pluggability contract that enables a wide range of message

Resource Adapter Deployment Descriptors

2-6 Programming Resource Adapters for Oracle WebLogic Server

providers (Java Message Service, Java API for XML Messaging, and so on) to be
plugged into WebLogic Server through a resource adapter.

These system-level contracts are described in detail in the J2CA 1.5 Specification
(http://java.sun.com/j2ee/connector/).

2.3 Resource Adapter Deployment Descriptors
The structure of a resource adapter and its run-time behavior are defined in
deployment descriptors. Programmers create the deployment descriptors during the
packaging process, and these become part of the application deployment when the
application is compiled.

WebLogic Server resource adapters have two deployment descriptors, each of which
has its own XML schema:

■ ra.xml - The standard J2EE deployment descriptor. All resource adapters must be
specified in an ra.xml deployment descriptor file. The schema for ra.xml is
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd.

■ weblogic-ra.xml - This WebLogic Server-specific deployment descriptor
contains elements related to WebLogic Server features such as transaction
management, connection management, and security. This file is required for the
resource adapter to be deployed to WebLogic Server. The schema for the
weblogic-ra.xml deployment descriptor file is
http://xmlns.oracle.com/weblogic/weblogic-connector/1.0/weblo
gic-connector.xsd. For a reference to the weblogic-ra.xml deployment
descriptor, see Appendix A, "weblogic-ra.xml Schema."

3

Creating and Configuring Resource Adapters 3-1

3Creating and Configuring Resource
Adapters

The following sections describe how to create and configure a WebLogic Server
resource adapter:

■ Creating and Configuring Resource Adapters: Main Steps

■ Modifying an Existing Resource Adapter

■ Configuring the ra.xml File

■ Configuring the weblogic-ra.xml File

3.1 Creating and Configuring Resource Adapters: Main Steps
This section describes how to create a new WebLogic resource adapter. The next
section, Section 3.2, "Modifying an Existing Resource Adapter," describes how to take
an existing resource adapter and prepare it for deployment on WebLogic Server.

To create a new WebLogic resource adapter, you must create the classes for the
particular resource adapter (ConnectionFactory, Connection, and so on), write
the resource adapter's deployment descriptors, and then package everything into an
archive file to be deployed to WebLogic Server.

The following are the main steps for creating a resource adapter:

1. Write the Java code for the various classes required by resource adapter
(ConnectionFactory, Connection, and so on) in accordance with the J2CA 1.5
Specification (http://java.sun.com/j2ee/connector/). You will specify
these classes in the ra.xml file. For example:

<managedconnectionfactory-class>
com.sun.connector.blackbox.LocalTxManagedConnectionFactory
</managedconnectionfactory-class>

<connectionfactory-interface>
javax.sql.DataSource
</connectionfactory-interface>

<connectionfactory-impl-class>
com.sun.connector.blackbox.JdbcDataSource
</connectionfactory-impl-class>

<connection-interface>
java.sql.Connection
</connection-interface>

Modifying an Existing Resource Adapter

3-2 Programming Resource Adapters for Oracle WebLogic Server

<connection-impl-class>
com.sun.connector.blackbox.JdbcConnection
</connection-impl-class>

For more information, see Chapter 4, "Programming Tasks."

2. Compile the Java code for the interfaces and implementation into class files, using
a standard compiler.

3. Create the resource adapter's deployment descriptors. A WebLogic resource
adapter uses two deployment descriptor files:

■ ra.xml describes the resource adapter-related attributes type and its
deployment properties using the standard XML schema specified by the J2CA
1.5 Specification.

■ weblogic-ra.xml adds additional WebLogic Server-specific deployment
information, including connection and connection pool properties, security
identities, Work Manager properties, and logging.

For detailed information about creating WebLogic Server-specific deployment
descriptors for resource adapters, refer to Section 3.4, "Configuring the
weblogic-ra.xml File," and Appendix A, "weblogic-ra.xml Schema."

4. Package the Java classes into a Java archive (JAR) file with a .rar extension.

Create a staging directory anywhere on your hard drive. Place the JAR file in the
staging directory and the deployment descriptors in a subdirectory called
META-INF.

Then create the resource adapter archive by executing a jar command similar to
the following in the staging directory:

jar cvf myRAR.rar *

5. Deploy the resource adapter archive (RAR) file on WebLogic Server in a test
environment and test it.

During testing, you may need to edit the resource adapter deployment
descriptors. You can do this using the WebLogic Server Administration Console or
manually using an XML editor or a text editor. For more information about editing
deployment descriptors, see Section 3.4, "Configuring the weblogic-ra.xml File,"
and "Configure resource adapter properties" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help. See also Appendix A,
"weblogic-ra.xml Schema," for detailed information on the elements in the
deployment descriptor.

6. Deploy the RAR resource adapter archive file on WebLogic Server or include it in
an enterprise archive (EAR) file to be deployed as part of an enterprise application.

For information about these steps, see Chapter 9, "Packaging and Deploying
Resource Adapters." See also Oracle Fusion Middleware Deploying Applications
to Oracle WebLogic Serverfor detailed information about deploying components
and applications in general.

3.2 Modifying an Existing Resource Adapter
In some cases, you may already have a resource adapter available for deployment to
WebLogic Server. This section describes how to take an existing resource adapter that
is packaged in a RAR file and modify it for deployment to WebLogic Server. This
involves adding the weblogic-ra.xml deployment descriptor and repackaging the

Configuring the ra.xml File

Creating and Configuring Resource Adapters 3-3

resource adapter. The following procedure supposes you have an existing resource
adapter packaged in a RAR file named blackbox-notx.rar.

1. Create a temporary directory anywhere on your hard drive to stage the resource
adapter:

mkdir c:/stagedir

2. Extract the contents of the resource adapter archive:

cd c:/stagedir
jar xf blackbox-notx.rar

The staging directory should now contain the following:

■ A JAR file containing Java classes that implement the resource adapter

■ A META-INF directory containing the Manifest.mf and ra.xml files

Execute these commands to see these files:

c:/stagedir> ls
 blackbox-notx.rar
 META-INF
c:/stagedir> ls META-INF
 Manifest.mf
 ra.xml

3. Create the weblogic-ra.xml file. This file is the WebLogic-specific deployment
descriptor for resource adapters. In this file, you specify parameters for connection
factories, connection pools, and security settings.

For more information, see Section 3.4, "Configuring the weblogic-ra.xml File," and
also refer to Appendix A, "weblogic-ra.xml Schema," for information on the XML
schema that applies to weblogic-ra.xml.

4. Copy the weblogic-ra.xml file into the temporary directory's META-INF
subdirectory. The META-INF directory is located in the temporary directory where
you extracted the RAR file or in the directory containing a resource adapter in
exploded directory format. Use the following command:

cp weblogic-ra.xml c:/stagedir/META-INF
c:/stagedir> ls META-INF
 Manifest.mf
 ra.xml
 weblogic-ra.xml

5. Create the resource adapter archive:

jar cvf blackbox-notx.rar -C c:/stagedir

6. Deploy the resource adapter to WebLogic Server. For more information about
packaging and deploying the resource adapter, see Chapter 9, "Packaging and
Deploying Resource Adapters," and Oracle Fusion Middleware Deploying
Applications to Oracle WebLogic Server.

3.3 Configuring the ra.xml File
If your resource adapter does not already contain a ra.xml file, you must manually
create or edit an existing one to set the necessary deployment properties for the
resource adapter. You can use a text editor or XML editor to edit the properties. For

Configuring the weblogic-ra.xml File

3-4 Programming Resource Adapters for Oracle WebLogic Server

information on creating a ra.xml file, refer to the J2CA 1.5 Specification
(http://java.sun.com/j2ee/connector/).

3.4 Configuring the weblogic-ra.xml File
In addition to supporting features of the standard resource adapter configuration
ra.xml file, WebLogic Server defines an additional deployment descriptor file, the
weblogic-ra.xml file. This file contains parameters that are specific to configuring
and deploying resource adapters in WebLogic Server. This functionality is consistent
with the equivalent weblogic-*.xml extensions for EJBs and Web applications in
WebLogic Server, which also add WebLogic-specific deployment descriptors to the
deployable archive. The basic RAR or deployment directory can be deployed to
WebLogic Server without a weblogic-ra.xml file. If a resource adapter is deployed
in WebLogic Server without a weblogic-ra.xml file, a template weblogic-ra.xml file
populated with default element values is automatically added to the resource adapter
archive. However, this automatically generated weblogic-ra.xml file is not
persisted to the RAR; the RAR remains unchanged.

The following summarizes the most significant features you can configure in the
weblogic-ra.xml deployment descriptor file.

■ Descriptive text about the connection factory.

■ JNDI name bound to a connection factory. (Resource adapters developed based on
the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/) are
bound in the JNDI as objects independently of their ConnectionFactory
objects.)

■ Reference to a separately deployed connection factory that contains resource
adapter components that can be shared with the current resource adapter.

■ Connection pool parameters that set the following behavior:

– Initial number of ManagedConnections that WebLogic Server attempts to
allocate at deployment time.

– Maximum number of ManagedConnections that WebLogic Server allows to
be allocated at any one time.

– Number of ManagedConnections that WebLogic Server attempts to allocate
when filling a request for a new connection.

– Whether WebLogic Server attempts to reclaim unused
ManagedConnections to save system resources.

– The time WebLogic Server waits between attempts to reclaim unused
ManagedConnections.

■ Logging properties to configure WebLogic Server logging for the
ManagedConnectionFactory or ManagedConnection.

■ Transaction support levels (XA, local, or no transaction support).

■ Principal names to use as security identities.

For detailed information about configuring the weblogic-ra.xml deployment
descriptor file, see the reference information in Appendix A, "weblogic-ra.xml
Schema." See also the configuration information in the following sections:

■ Chapter 5, "Connection Management"

■ Chapter 6, "Transaction Management"

Configuring the weblogic-ra.xml File

Creating and Configuring Resource Adapters 3-5

■ Chapter 7, "Message and Transactional Inflow"

■ Chapter 8, "Security"

3.4.1 Editing Resource Adapter Deployment Descriptors
To define or make changes to the XML descriptors used in the WebLogic Server
resource adapter archive, you must define or edit the XML elements in the
weblogic-ra.xml and ra.xml deployment descriptor files. You can edit the
deployment descriptor files with any plain text editor. However, to avoid introducing
errors, use a tool designed for XML editing.You can also edit most elements of the files
using the WebLogic Administration Console.

3.4.1.1 Editing Considerations
To edit XML elements manually:

■ If you use an ASCII text editor, make sure that it does not reformat the XML or
insert additional characters that could invalidate the file.

■ Use the correct case for file and directory names, even if your operating system
ignores the case.

■ To use the default value for an optional element, you can either omit the entire
element definition or specify a blank value. For example:
<max-config-property></max-config-property>

3.4.1.2 Schema Header Information
When editing or creating XML deployment files, it is critical to include the correct
schema header for each deployment file. The header refers to the location and version
of the schema for the deployment descriptor.

Although this header references an external URL at java.sun.com, WebLogic Server
contains its own copy of the schema, so your host server need not have access to the
Internet. However, you must still include this <?xml version...> element in your
ra.xml file, and have it reference the external URL because the version of the schema
contained in this element is used to identify the version of this deployment descriptor.

Table 3–1 shows the entire schema headers for the ra.xml and weblogic-ra.xml
files.

XML files with incorrect header information may yield error messages similar to the
following, when used with a utility that parses the XML (such as ejbc):

SAXException: This document may not have the identifier 'identifier_name'

Table 3–1 Schema Header

XML File Schema Header

ra.xml <?xml version="1.0" encoding="UTF-8"?>
<connector xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd"
version="1.5">

weblogic-ra.xml <?xml version = "1.0">
<weblogic-connector
xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector">

Configuring the weblogic-ra.xml File

3-6 Programming Resource Adapters for Oracle WebLogic Server

3.4.1.3 Conforming Deployment Descriptor Files to Schema
The contents and arrangement of elements in your deployment descriptor files must
conform to the schema for each file you use. The following links provide the public
schema locations for deployment descriptor files used with WebLogic Server:

■ connector_1_5.xsd contains the schema for the standard ra.xml deployment
file, required for all resource adapters. This schema is maintained as part of the
J2CA 1.5 Specification and is located at
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd.

■ weblogic-ra.xsd contains the schema used for creating weblogic-ra.xml,
which defines resource adapter properties used for deployment to WebLogic
Server. This schema is located at
http://xmlns.oracle.com/weblogic/weblogic-connector/1.0/weblo
gic-connector.xsd.

3.4.2 Dynamic Descriptor Updates: Console Configuration Tabs
You can use the Administration Console to view, modify, and (when necessary) persist
deployment descriptor elements. Some descriptor element changes take place
dynamically at runtime without requiring the resource adapter to be redeployed.
Other descriptor elements require redeployment after changes are made. To use the
Administration Console to configure a resource adapter, open Deployments and click
the name of the deployed resource adapter. Use the Configuration tab to change the
configuration of the resource adapter and the other tabs to control, test, or monitor the
resource adapter. For information about using the Administration Console, see
"Configure resource adapter properties" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

3.4.2.1 Dynamic Pool Parameters
Using the Administration Console, you can modify the following weblogic-ra.xml
pool parameters dynamically, without requiring the resource adapter to be
redeployed:

■ initial-capacity

■ max-capacity

■ capacity-increment

■ shrink-frequency-seconds

■ highest-num-waiters

■ highest-num-unavailable

■ connection-creation-retry-frequency-seconds

■ connection-reserve-timeout-seconds

■ test-frequency-seconds

Note: Your browser might not display the contents of files having
the .xsd extension. In that case, to view the schema contents in your
browser, save the links as text files and view them with a text editor.

Configuring the weblogic-ra.xml File

Creating and Configuring Resource Adapters 3-7

3.4.2.2 Dynamic Logging Parameters
Using the Administration Console, you can modify the following weblogic-ra.xml
logging parameters dynamically, without requiring the resource adapter to be
redeployed:

■ log-filename

■ file-count

■ file-size-limit

■ log-file-rotation-dir

■ rotation-time

■ file-time-span

3.4.3 Automatic Generation of the weblogic-ra.xml File
A resource adapter archive (RAR) deployed on WebLogic Server must include a
weblogic-ra.xml deployment descriptor file in addition to the ra.xml deployment
descriptor file specified in the J2CA 1.5 Specification
(http://java.sun.com/j2ee/connector/).

If a resource adapter is deployed in WebLogic Server without a weblogic-ra.xml
file, a template weblogic-ra.xml file populated with default element values is
automatically added to the resource adapter archive. However, this automatically
generated weblogic-ra.xml file is not persisted to the RAR; the RAR remains
unchanged. WebLogic Server instead generates internal data structures that
correspond to default information in the weblogic-ra.xml file.

For a 1.0 resource adapter that is a single connection factory definition, the JNDI name
will be eis/ModuleName. For example, if the RAR is named MySpecialRA.rar, the
JNDI name of the connection factory will be eis/MySpecialRA.

For a 1.5 resource adapter with a ResourceAdapter bean class specified, the JNDI
name of the bean would be MySpecialRA. Each connection factory would also have a
corresponding instance created with a JNDI name of eis/ModuleName,
eis/ModuleName_1, eis/ModuleName_2, and so on.

3.4.4 (Deprecated) Configuring the Link-Ref Mechanism
The Link-Ref mechanism was introduced in the 8.1 release of WebLogic Server to
enable the deployment of a single base adapter whose code could be shared by
multiple logical adapters with various configuration properties. For 1.5 resource
adapters in the current release, the Link-Ref mechanism is deprecated and is replaced
by the new J2EE libraries feature. However, the Link-Ref mechanism is still supported
in this release for 1.0 resource adapters. For more information on J2EE libraries, see
"Creating Shared J2EE Libraries and Optional Packages" in Oracle Fusion Middleware
Developing Applications for Oracle WebLogic Server. To use the Link-Ref mechanism, use
the <ra-link-ref> element in your resource adapter's weblogic-ra.xml file.

The deprecated and optional <ra-link-ref> element allows you to associate
multiple deployed resource adapters with a single deployed resource adapter. In other
words, it allows you to link (reuse) resources already configured in a base resource
adapter to another resource adapter, modifying only a subset of attributes. The
<ra-link-ref> element enables you to avoid - where possible - duplicating
resources (such as classes, JARs, image files, and so on). Any values defined in the
base resource adapter deployment are inherited by the linked resource adapter, unless
otherwise specified in the <ra-link-ref> element.

Configuring the weblogic-ra.xml File

3-8 Programming Resource Adapters for Oracle WebLogic Server

If you use the optional <ra-link-ref> element, you must provide either all or none
of the values in the <pool-params> element. The <pool-params> element values
are not partially inherited by the linked resource adapter from the base resource
adapter.

Do one of the following:

■ Assign the <max-capacity> element the value of 0 (zero). This allows the linked
resource adapter to inherit its <pool-params> element values from the base
resource adapter.

■ Assign the <max-capacity> element any value other than 0 (zero). The linked
resource adapter will inherit no values from the base resource adapter. If you
choose this option, you must specify all of the <pool-params> element values for
the linked resource adapter.

For further instructions on editing the weblogic-ra.xml file, see Appendix A,
"weblogic-ra.xml Schema."

4

Programming Tasks 4-1

4Programming Tasks

The following sections discuss programming tasks for WebLogic Server resource
adapters:

■ Required Classes for Resource Adapters

■ Programming a Resource Adapter to Perform as a Startup Class

■ Suspending and Resuming Resource Adapter Activity

■ Extended BootstrapContext

4.1 Required Classes for Resource Adapters
A resource adapter requires the following Java classes, in accordance with the J2CA 1.5
Specification:

■ ManagedConnectionFactory

■ ConnectionFactory interface

■ ConnectionFactory implementation

■ Connection interface

■ Connection implementation

These classes are specified in the ra.xml file. For example:

<managedconnectionfactory-class>
com.sun.connector.blackbox.LocalTxManagedConnectionFactory
</managedconnectionfactory-class>

<connectionfactory-interface>
javax.sql.DataSource
</connectionfactory-interface>

<connectionfactory-impl-class>
com.sun.connector.blackbox.JdbcDataSource
</connectionfactory-impl-class>

<connection-interface>
java.sql.Connection
</connection-interface>

<connection-impl-class>
com.sun.connector.blackbox.JdbcConnection
</connection-impl-class>

Programming a Resource Adapter to Perform as a Startup Class

4-2 Programming Resource Adapters for Oracle WebLogic Server

In addition, if the resource adapter supports inbound messaging, the resource adapter
will require an ActivationSpec class for each supported inbound message type. See
Chapter 7, "Message and Transactional Inflow."

The specifics of these resource adapter classes depend on the nature of the resource
adapter you are developing.

4.2 Programming a Resource Adapter to Perform as a Startup Class
As an alternative to using a WebLogic Server startup class, you can program a resource
adapter with a minimal resource adapter class that implements
javax.resource.ResourceAdapter, which defines a start() and stop()
method.

When the resource adapter is deployed, the start() method is invoked. When it is
undeployed, the stop() method is called. Any work that the resource adapter
initiates can be performed in the start() method as with a WebLogic Server startup
class.

Because resource adapters have access to the Work Manager through the
BootstrapContext in the start() method, they should submit Work instances
instead of using direct thread management. This enables WebLogic Server to manage
threads effectively through its self-tuning Work Manager.

Once a Work instance is submitted for execution, the start() method should return
promptly so as not to interfere with the full deployment of the resource adapter. Thus,
a scheduleWork() or startWork() method should be invoked on the Work
Manager rather than the doWork() method.

The following is an example of a resource adapter having a minimum resource adapter
class. It is the absolute minimum resource adapter that you can develop (other than
removing the println statements). In this example, the only work performed by the
start() method is to print a message to stdout (standard out).

Example 4–1 Minimum Resource Adapter

import javax.resource.spi.ResourceAdapter;
import javax.resource.spi.endpoint.MessageEndpointFactory;
import javax.resource.spi.ActivationSpec;
import javax.resource.ResourceException;
import javax.transaction.xa.XAResource;
import javax.resource.NotSupportedException;
import javax.resource.spi.BootstrapContext;
/**
* This resource adapter is the absolute minimal resource adapter that anyone can
build (other than removing the println's.)
*/
public class ResourceAdapterImpl implements ResourceAdapter
{
 public void start(BootstrapContext bsCtx)
 {
 System.out.println("ResourceAdapterImpl started");
 }
 public void stop()

Note: Because of the definition of the ResourceAdapter interface,
you must also define the endpointActivation(),
Deactivation() and getXAResource() methods.

Programming a Resource Adapter to Perform as a Startup Class

Programming Tasks 4-3

 {
 System.out.println("ResourceAdapterImpl stopped");
 }
 public void endpointActivation(MessageEndpointFactory messageendpointfactory,
ActivationSpec activationspec)
 throws ResourceException
 {
 throw new NotSupportedException();
 }
 public void endpointDeactivation(MessageEndpointFactory messageendpointfactory,
ActivationSpec activationspec)
 {
 }
 public XAResource[] getXAResources(ActivationSpec aactivationspec[])
 throws ResourceException
 {
 throw new NotSupportedException();
 }
}

The following is an example of a resource adapter that submits work instances to the
Work Manager. The resource adapter starts some work in the start() method, thus
serving as a J2EE-compliant startup class.

Example 4–2 Resource Adapter Using the Work Manager and Submitting Work
Instances

import javax.resource.NotSupportedException;
import javax.resource.ResourceException;
import javax.resource.spi.ActivationSpec;
import javax.resource.spi.BootstrapContext;
import javax.resource.spi.ResourceAdapter;
import javax.resource.spi.endpoint.MessageEndpointFactory;
import javax.resource.spi.work.Work;
import javax.resource.spi.work.WorkException;
import javax.resource.spi.work.WorkManager;
import javax.transaction.xa.XAResource;
/**
* This Resource Adapter starts some work in the start() method,
* thus serving as a J2EE compliant "startup class"
*/
public class ResourceAdapterWorker implements ResourceAdapter
{
 private WorkManager wm;
 private MyWork someWork;
 public void start(BootstrapContext bsCtx)
 {
 System.out.println("ResourceAdapterWorker started");
 wm = bsCtx.getWorkManager();
 try
 {
 someWork = new MyWork();
 wm.startWork(someWork);
 }
 catch (WorkException ex)
 {
 System.err.println("Unable to start work: " + ex);
 }
 }
 public void stop()

Suspending and Resuming Resource Adapter Activity

4-4 Programming Resource Adapters for Oracle WebLogic Server

 {
 // stop work that was started in the start() method
 someWork.release();
 System.out.println("ResourceAdapterImpl stopped");
 }
 public void endpointActivation(MessageEndpointFactory messageendpointfactory,
 ActivationSpec activationspec)
 throws ResourceException
 {
 throw new NotSupportedException();
 }
 public void endpointDeactivation(MessageEndpointFactory
 messageendpointfactory, ActivationSpec activationspec)
 {
 }
 public XAResource[] getXAResources(ActivationSpec activationspec[])
 throws ResourceException
 {
 throw new NotSupportedException();
 }
 // Work class
 private class MyWork implements Work
 {
 private boolean isRunning;
 public void run()
 {
 isRunning = true;
 while (isRunning)
 {
 // do a unit of work (e.g. listen on a socket, wait for an inbound msg,
 // check the status of something)
 System.out.println("Doing some work");
 // perhaps wait some amount of time or for some event
 try
 {
 Thread.sleep(60000); // wait a minute
 }
 catch (InterruptedException ex)
 {}
 }
 }
 public void release()
 {
 // signal the run() loop to stop
 isRunning = false;
 }
 }
}

4.3 Suspending and Resuming Resource Adapter Activity
You can program your resource adapter to use the suspend() method, which
provides custom behavior for suspending activity. For example, using the suspend()
method, you can queue up all incoming messages while allowing in-flight transactions
to complete, or you can notify the Enterprise Information System (EIS) that reception
of messages is temporarily blocked.

You then invoke the resume() method to signal that the inbound queue be drained
and messages be delivered, or notify the EIS that message receipt was re-enabled.

Suspending and Resuming Resource Adapter Activity

Programming Tasks 4-5

Basically, the resume() method allows the resource adapter to continue normal
operations.

You initiate the suspend() and resume() methods by making a call on the resource
adapter runtime MBeans programmatically, using WebLogic Scripting Tool, or from
the WebLogic Server Administration Console. See "Start and stop a resource adapter"
in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help for
more information.

The Suspendable.supportsSuspend() method determines whether a resource
adapter supports a particular type of suspension. The
Suspendable.isSuspended() method determines whether or not a resource
adapter is presently suspended.

A resource adapter that supports suspend(), resume(), or production
redeployment must implement the Suspendable interface to inform WebLogic
Server that these operations are supported. These operations are invoked by WebLogic
Server when the following occurs:

■ Suspend is called by the suspend() method on the connector component MBean.

■ The production redeployment sequence of calls is invoked (when a new version of
the application is deployed that contains the resource adapter). See Section 9.2.3.1,
"Suspendable Interface and Production Redeployment."

Example 4–3 contains the Suspendable interface for resource adapters:

Example 4–3 Suspendable Interface

package weblogic.connector.extensions;
import java.util.Properties;
import javax.resource.ResourceException;
import javax.resource.spi.ResourceAdapter;
/**
* Suspendable may be implemented by a ResourceAdapter JavaBean if it
* supports suspend, resume or side-by-side versioning
* @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
* @since November 14, 2003
*/
public interface Suspendable
{
/**
* Used to indicate that inbound communication is to be suspended/resumed
*/
int INBOUND = 1;
/**
* Used to indicate that outbound communication is to be suspended/resumed
*/
int OUTBOUND = 2;
/**
* Used to indicate that submission of Work is to be suspended/resumed
*/
int WORK = 4;
/**
* Used to indicate that INBOUND, OUTBOUND & WORK are to be suspended/resumed
*/
int ALL = 7;
/**
* May be used to indicate a suspend() operation
*/
int SUSPEND = 1;

Suspending and Resuming Resource Adapter Activity

4-6 Programming Resource Adapters for Oracle WebLogic Server

/**
* May be used to indicate a resume() operation
*/
int RESUME = 2;
/**
* Request to suspend the activity specified. The properties may be null or
* specified according to RA-specific needs
* @param type An int from 1 to 7 specifying the type of suspension being
* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of one
* or more of these, or the value Suspendable.ALL)
* @param props Optional Properties (or null) to be used for ResourceAdapter
* specific purposes
* @exception ResourceException If the resource adapter can't complete the
* request
*/
void suspend(int type, Properties props) throws ResourceException;
/**
* Request to resume the activity specified. The Properties may be null or
* specified according to RA-specific needs
*
* @param type An int from 1 to 7 specifying the type of resume being
* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of
* one or more of these, or the value Suspendable.ALL)
* @param props Optional Properties (or null) to be used for ResourceAdapter
* specific purposes
* @exception ResourceException If the resource adapter can't complete the
* request
*/
void resume(int type, Properties props) throws ResourceException;
/**
*
* @param type An int from 1 to 7 specifying the type of suspend this inquiry
* is about (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of
* one or more of these, or the value Suspendable.ALL)
* @return true iff the specified type of suspend is supported
*/
boolean supportsSuspend(int type);
/**
*
* Used to determine whether the specified type of activity is
* currently suspended.
*
* @param type An int from 1 to 7 specifying the type of activity
* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of
* one or more of these, or the value Suspendable.ALL)
* @return true iff the specified type of activity is suspened by this
* resource adapter
*/
boolean isSuspended(int type);
/**
* Used to determine if this resource adapter supports the init() method used for
* resource adapter versioning (side-by-side deployment)
*
* @return true iff this resource adapter supports the init() method
*/
boolean supportsInit();
/**
* Used to determine if this resource adapter supports the startVersioning()
* method used for
* resource adapter versioning (side-by-side deployment)

Extended BootstrapContext

Programming Tasks 4-7

*
* @return true iff this resource adapter supports the startVersioning() method
*/
boolean supportsVersioning();
/**
* Used by WLS to indicate to the current version of this resource adapter that
* a new version of the resource adapter is being deployed. This method can
* be used by the old RA to communicate with the new RA and migrate services
* from the old to the new.
* After being called, the ResourceAdapter is responsible for notifying the
* Connector container via the ExtendedBootstrapContext.complete() method, that
* it is safe to be undeployed.
*
* @param ra The new ResourceAdapter JavaBean
* @param props Properties associated with the versioning
* when it can be undeployed
* @exception ResourceException If something goes wrong
*/
void startVersioning(ResourceAdapter ra,
Properties props) throws ResourceException;
/**
* Used by WLS to inform a ResourceAdapter that it is a new version of an already
* deployed resource adapter. This method is called prior to start() so that
* the new resource adapter may coordinate its startup with the resource adapter
* it is replacing.
* @param ra The old version of the resource adapter that is currently running
* @param props Properties associated with the versioning operation
* @exception ResourceException If the init() fails.
*/
void init(ResourceAdapter ra, Properties props) throws ResourceException;
}

4.4 Extended BootstrapContext
If, when a resource adapter is deployed, it has a resource adapter JavaBean specified in
the <resource-adapter-class> element of its ra.xml descriptor, the WebLogic
Server connector container calls the start() method on the resource adapter bean as
required by the J2CA 1.5 Specification
(http://java.sun.com/j2ee/connector/). The resource adapter code can use
the BootstrapContext object that is passed in by the start() method to:

■ Obtain a WorkManager object for submitting Work instances

■ Create a Timer

■ Obtain an XATerminator for use in transaction inflow

These capabilities are all prescribed by the J2CA 1.5 Specification.

In addition to implementing the required
javax.resource.spi.BootstrapContext, the BootstrapContext object
passed to the resource adapter start() method also implements
weblogic.connector.extensions.ExtendedBootstrapContext, which gives
the resource adapter access to some additional WebLogic Server-specific extensions
that enhance diagnostic capabilities. These extensions are described in the following
sections.

Extended BootstrapContext

4-8 Programming Resource Adapters for Oracle WebLogic Server

4.4.1 Diagnostic Context ID
In the WebLogic Server diagnostic framework, a thread may have an associated
diagnostic context. A request on the thread carries its diagnostic context throughout its
lifetime, as it proceeds along its path of execution. The
ExtendedBootstrapContext allows the resource adapter developer to set a
diagnostic context payload consisting of a String that can be used, for example, to trace
the execution of a request from an EIS all the way to a message endpoint. This
capability can serve a variety of diagnostic purposes. For example, you can set the
String to the client ID or session ID on an inbound message from an EIS. During
message dispatch, various diagnostics can be gathered to show the request flow
through the system. As you develop your resource adapter classes, you can make use
of the setDiagnosticContextID() and getDiagnosticContextID() methods
for this purpose. For more information about the diagnostic context, see Oracle Fusion
Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

4.4.2 Dye Bits
The WebLogic Server diagnostic framework also provides the ability to dye a request.
The ExtendedBootstrapContext allows you to set and retrieve four dye bits on
the current thread for whatever diagnostic purpose the resource adapter developer
chooses. For example, you might set priority of a request using the dye bits. For more
information about request dyeing, see Oracle Fusion Middleware Configuring and Using
the Diagnostics Framework for Oracle WebLogic Server

4.4.3 Callback Capabilities
You can use the ExtendedBootstrapContext.complete() method as a callback to
the connector container. For detailed information on this feature, see "Redeploying
Applications in a Production Environment" in Oracle Fusion Middleware Deploying
Applications to Oracle WebLogic Server.

5

Connection Management 5-1

5Connection Management

■ The following sections describe connection management in WebLogic Server
resource adapters. For more information on connection management, see Chapter
6, "Connection Management," of the J2CA 1.5 Specification
(http://java.sun.com/j2ee/connector/).

■ Section 5.1, "Connection Management Contract"

■ Section 5.2, "Configuring Outbound Connections"

■ Section 5.3, "Configuring Inbound Connections"

■ Section 5.4, "Configuring Connection Pool Parameters"

■ Section 5.5, "Connection Proxy Wrapper - 1.0 Resource Adapters"

■ Section 5.6, "Testing Connections"

5.1 Connection Management Contract
One of the requirements of the J2CA 1.5 Specification is the connection management
contract. The connection management contract between WebLogic Server and a
resource adapter:

■ Provides a consistent application programming model for connection acquisition
for both managed and non-managed (two-tier) applications.

■ Enables a resource adapter to provide a connection factory and connection
interfaces based on the common client interface (CCI) specific to the type of
resource adapter and EIS. This enables JDBC drivers to be aligned with the J2EE
1.5 Connector Architecture with minimum impact on the existing JDBC APIs.

■ Enables an application server to provide various services - transactions, security,
advanced pooling, error tracing/logging - for its configured set of resource
adapters.

■ Supports connection pooling.

The resource adapter's side of the connection management contract is embodied in the
resource adapter's Connection, ConnectionFactory, ManagedConnection, and
ManagedConnectionFactory classes.

5.1.1 Connection Factory and Connection
A J2EE application component uses a public interface called a connection factory to
access a connection instance, which the component then uses to connect to the
underlying EIS. Examples of connections include database connections and JMS (Java
Message Service) connections.

Connection Management Contract

5-2 Programming Resource Adapters for Oracle WebLogic Server

A resource adapter provides connection and connection factory interfaces, acting as a
connection factory for EIS connections. For example, thejavax.sql.DataSource
and java.sql.Connection interfaces are JDBC-based interfaces for connecting to a
relational database.

An application looks up a connection factory instance in the Java Naming and
Directory Interface (JNDI) namespace and uses it to obtain EIS connections. See
Section 5.1.3, "Obtaining the ConnectionFactory (Client-JNDI Interaction)."

5.1.2 Resource Adapters Bound in JNDI Tree
Version 1.5 resource adapters can be bound in the JNDI tree as independent objects,
making them available as system resources in their own right or as message sources
for message-driven beans (MDBs). In contrast, version 1.0 resource adapters are
identified by their ConnectionFactory objects bound in the JNDI tree.

In a version 1.5 resource adapter, at deployment time, the ResourceAdapter Bean (if
it exists) is bound into the JNDI tree using the value of the jndi-name element, shown
in the weblogic-ra.xml file. As a result, administrators can view resource adapters
as single deployable entities, and they can interact with resource adapter capabilities
publicly exposed by the resource adapter provider. For more information, see
jndi-name in Appendix A, "weblogic-ra.xml Schema."

5.1.3 Obtaining the ConnectionFactory (Client-JNDI Interaction)
The application assembler or component provider configures the Connection Factory
requirements for an application component in the application's deployment descriptor.
For example:

res-ref-name: eis/myEIS
res-type: javax.resource.cci.ConnectionFactory
res-auth: Application or Container

The resource adapter deployer provides the configuration information for the resource
adapter.

An application looks up a ConnectionFactory instance in the Java Naming and
Directory Interface (JNDI) namespace and uses it to obtain EIS connections. The
following events occur when an application in a managed environment obtains a
connection to an EIS instance from a Connection Factory, as specified in the res-type
variable.

1. The application server uses a configured resource adapter to create physical
connections to the underlying EIS.

2. The application component looks up a ConnectionFactory instance in the
component's environment by using the JNDI interface, as shown in Example 5–1.

Example 5–1 JNDI Lookup

//obtain the initial JNDI Naming context
Context initctx = new InitialContext();

// perform JNDI lookup to obtain the connection factory

Note: A managed application environment defines an operational
environment for a J2EE-based, multi-tier, Web-enabled application
that accesses EISes.

Configuring Outbound Connections

Connection Management 5-3

javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)
 initctx.lookup("java:comp/env/eis/MyEIS");

The JNDI name passed in the method NamingContext.lookup is the same as that
specified in the res-ref-name element of the deployment descriptor. The JNDI
lookup results in an instance of type java.resource.cci.ConnectionFactory as
specified in the res-type element.

3. The application component uses the returned connection to access the underlying
EIS.

4. The application component invokes the getConnection method on the
ConnectionFactory to obtain an EIS connection. The returned connection
instance represents an application level handle to an underlying physical
connection. An application component obtains multiple connections by calling the
method getConnection on the connection factory multiple times:

javax.resource.cci.Connection cx = cxf.getConnection();

5. After the component finishes with the connection, it closes the connection using
the close method on the Connection interface:

cx.close();

If an application component fails to close an allocated connection after its use, that
connection is considered an unused connection. The application server manages
the cleanup of unused connections.

5.2 Configuring Outbound Connections
Outbound resource adapters based on the J2CA 1.5 Specification can be configured to
have one or more outbound connections, each having its own WebLogic
Server-specific authentication and transaction support. You configure outbound
connection properties in the ra.xml and weblogic-ra.xml deployment descriptor
files.

5.2.1 Connection Pool Configuration Levels
You use the outbound-resource-adapter element and its subelements in the
weblogic-ra.xml deployment descriptor to describe the outbound components of a
resource adapter.

You can define outbound connection pools at three levels:

■ Global - Specify parameters that apply to all outbound connection groups in the
resource adapter using the default-connection-properties element. See
Section A.6.1, "default-connection-properties."

■ Group - Specify parameters that apply to all outbound connection instances
belonging to a particular connection factory specified in the ra.xml deployment
descriptor using the connection-definition-group element. A one-to-one
correspondence exists from a connection factory in ra.xml to a connection
definition group in weblogic-ra.xml. The properties specified in a group
override any parameters specified at the global level. See Section A.6.2,
"connection-definition-group."

The connection-factory-interface element (a subelement of the
connection-definition-group element) serves as a required unique element
(a key) to each connection-definition-group. There must be a one-to-one

Configuring Outbound Connections

5-4 Programming Resource Adapters for Oracle WebLogic Server

relationship between the connection-definition-interface element in
weblogic-ra.xml and the connectiondefinition-interface element in
ra.xml.

■ Instance - Under each connection definition group, you can specify connection
instances using the connection-instance element of the weblogic-ra.xml
deployment descriptor. These correspond to the individual connection pools for
the resource adapter. You can use the connection-properties subelement to
specify properties at the instance level too; properties specified at the instance
level override those provided at the group and global levels. See Section A.6.2.1,
"connection-instance."

5.2.2 Multiple Outbound Connections Example
Example 5–2 is an example of a weblogic-ra.xml deployment descriptor that
configures multiple outbound connections:

Example 5–2 weblogic-ra.xml Deployment Descriptor: Multiple Outbound Connections

<?xml version="1.0" ?>
<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector">
<jndi-name>900eisaNameOfBlackBoxXATx</jndi-name>
 <outbound-resource-adapter>
 <connection-definition-group>
 <connection-factory-interface>javax.sql.DataSource
 </connection-factory-interface>
 <connection-instance>
 <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME1
 </jndi-name>
 <connection-properties>
 <pool-params>
 <initial-capacity>2</initial-capacity>
 <max-capacity>10</max-capacity>
 <capacity-increment>1</capacity-increment>
 <shrinking-enabled>true</shrinking-enabled>
 <shrink-frequency-seconds>60</shrink-frequency-seconds>
 </pool-params>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>
 jdbc:oracle:thin:@bcpdb:1531:bay920;create=true;autocommit=false
 </value>
 </property>
 <property>
 <name>XADataSourceName</name>
 <value>OracleXAPool</value>
 </property>
 <property>
 <name>TestClassPath</name>
 <value>HelloFromsetTestClassPathGoodDay</value>
 </property>
 <property>
 <name>unique_ra_id</name>
 <value>eisablackbox-xa.oracle.900</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 <connection-instance>

Configuring Outbound Connections

Connection Management 5-5

 <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME2
 </jndi-name>
 <connection-properties>
 <pool-params>
 <initial-capacity>2</initial-capacity>
 <max-capacity>10</max-capacity>
 <capacity-increment>1</capacity-increment>
 <shrinking-enabled>true</shrinking-enabled>
 <shrink-frequency-seconds>60
 </shrink-frequency-seconds>
 </pool-params>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>
 jdbc:oracle:thin:@bcpdb:1531:bay920;create=true;autocommit=false
 </value>
 </property>
 <property>
 <name>XADataSourceName</name>
 <value>OracleXAPool</value>
 </property>
 <property>
 <name>TestClassPath</name>
 <value>HelloFromsetTestClassPathGoodDay</value>
 </property>
 <property>
 <name>unique_ra_id</name>
 <value>eisablackbox-xa.oracle.900</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 </connection-definition-group>
 <connection-definition-group>
 <connection-factory-interface>javax.sql.DataSourceCopy
 </connection-factory-interface>
 <connection-instance>
 <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME3</jndi-name>
 <connection-properties>
 <pool-params>
 <initial-capacity>2</initial-capacity>
 <max-capacity>10</max-capacity>
 <capacity-increment>1</capacity-increment>
 <shrinking-enabled>true</shrinking-enabled>
 <shrink-frequency-seconds>60</shrink-frequency-seconds>
 </pool-params>
 <properties>
 <property>
 <name>ConnectionURL</name>

<value>jdbc:oracle:thin:@bcpdb:1531:bay920;create=true;autocommit=false</value>
 </property>
 <property>
 <name>XADataSourceName</name>
 <value>OracleXAPoolB</value>
 </property>
 <property>
 <name>TestClassPath</name>
 <value>HelloFromsetTestClassPathGoodDay</value>

Configuring Inbound Connections

5-6 Programming Resource Adapters for Oracle WebLogic Server

 </property>
 <property>
 <name>unique_ra_id</name>
 <value>eisablackbox-xa-two.oracle.900</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 </connection-definition-group>
 </outbound-resource-adapter>
</weblogic-connector>

5.3 Configuring Inbound Connections
The J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/) permits
you to configure a resource adapter to support inbound message connections. The
following are the main steps for configuring an inbound connection:

1. Provide a JNDI name for the resource adapter in the weblogic-ra.xml
deployment descriptor. See jndi-name in Table A–1, " weblogic-connector
subelements"

2. Configure a message listener and ActivationSpec for each supported inbound
message type in the ra.xml deployment descriptor. For information about
requirements for an ActivationSpec class, see Chapter 12, "Message Inflow" in
the J2CA 1.5 Specification.

3. Within the packaged enterprise application, include a configured EJB
message-driven bean (MDB). In the resource-adapter-jndi-name element of
the weblogic-ejb-jar.xml deployment descriptor, provide the same JNDI
name assigned to the resource adapter in the previous step. Setting this value
enables the MDB and resource adapter to communicate with each other.

4. Configure the security identity to be used by the resource adapter for inbound
connections. When messages are received by the resource adapter, work must be
performed under a particular security identity. See Section 8.4, "Configuring
Security Identities for Resource Adapters."

5. Deploy the resource adapter as discussed in Oracle Fusion Middleware Deploying
Applications to Oracle WebLogic Server.

6. Deploy the MDB. For more information, see "Message-Driven EJBs" in Oracle
Fusion Middleware Programming Enterprise JavaBeans for Oracle WebLogic Server and
Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

Example 5–3 shows how an inbound connection with two message listener/activation
specs could be configured in the ra.xml deployment descriptor:

Example 5–3 Example of Configuring an Inbound Connection

<inbound-resourceadapter>
 <messageadapter>
 <messagelistener>
 <messagelistener-type>
 weblogic.qa.tests.connector.adapters.flex.InboundMsgListener
 </messagelistener-type>
 <activationspec>
 <activationspec-class>
 weblogic.qa.tests.connector.adapters.flex.ActivationSpecImpl
 </activationspec-class>

Configuring Connection Pool Parameters

Connection Management 5-7

 </activationspec>
 </messagelistener>
 <messagelistener>
 <messagelistener-type>
 weblogic.qa.tests.connector.adapters.flex.ServiceRequestMsgListener
 </messagelistener-type>
 <activationspec>
 <activationspec-class>
 weblogic.qa.tests.connector.adapters.flex.ServiceRequestActivationSpec
 </activationspec-class>
 </activationspec>
 </messagelistener>
 </messageadapter>
</inbound-resourceadapter>

5.4 Configuring Connection Pool Parameters
This section explains how to configure WebLogic Server resource adapter connection
pool parameters in the weblogic-ra.xml deployment descriptor. For more details,
see Appendix A, "weblogic-ra.xml Schema."

5.4.1 initial-capacity: Setting the Initial Number of ManagedConnections
Depending on the complexity of the Enterprise Information System (EIS) that the
ManagedConnection is representing, creating ManagedConnections can be
expensive. You may decide to populate the connection pool with an initial number of
ManagedConnections upon startup of WebLogic Server and therefore avoid creating
them at run time. You can configure this setting using the initial-capacity
element in the weblogic-ra.xml descriptor file. The default value for this element is
1 ManagedConnection.

Because no initiating security principal or request context information is known at
WebLogic Server startup, a server instance creates initial connections using a security
subject by looking up special credential mappings for the initial connection. See
Section 8.2.2.2, "Initial Connection: Requires a ManagedConnection from Adapter
Without Application's Request."

5.4.2 max-capacity: Setting the Maximum Number of ManagedConnections
As more ManagedConnections are created, they consume more system resources -
such as memory and disk space. Depending on the Enterprise Information System
(EIS), this consumption may affect the performance of the overall system. To control
the effects of ManagedConnections on system resources, you can specify a
maximum number of allocated ManagedConnections in the max-capacity
element of the weblogic-ra.xml descriptor file.

If a new ManagedConnection (or more than one ManagedConnection in the case
of capacity-increment being greater than one) needs to be created during a
connection request, WebLogic Server ensures that no more than the maximum number
of allowed ManagedConnections are created. Requests for newly allocated
ManagedConnections beyond this limit results in a
ResourceAllocationException being returned to the caller.

Note: WebLogic Server uses null as Subject if a mapping is not
found.

Configuring Connection Pool Parameters

5-8 Programming Resource Adapters for Oracle WebLogic Server

5.4.3 capacity-increment: Controlling the Number of ManagedConnections
In compliance with the J2CA 1.5 Specification
(http://java.sun.com/j2ee/connector/), when an application component
requests a connection to an EIS through the resource adapter, WebLogic Server first
tries to match the type of connection being requested with an existing and available
ManagedConnection in the connection pool. However, if a match is not found, a new
ManagedConnection may be created to satisfy the connection request.

Using the capacity-increment element in the weblogic-ra.xml descriptor file,
you can specify a number of additional ManagedConnections to be created
automatically when a match is not found. This feature provides give you the flexibility
to control connection pool growth over time and the performance hit on the server
each time this growth occurs.

5.4.4 shrinking-enabled: Controlling System Resource Usage
Although setting the maximum number of ManagedConnections prevents the
server from becoming overloaded by more allocated ManagedConnections than it
can handle, it does not control the efficient amount of system resources needed at any
given time. WebLogic Server provides a service that monitors the activity of
ManagedConnections in the connection pool of a resource adapter. If the usage
decreases and remains at this level over a period of time, the size of the connection
pool is reduced to the initial capacity or as close to this as possible to adequately
satisfy ongoing connection requests.

This system resource usage service is turned on by default. However, to turn off this
service, you can set the shrinking-enabled element in the weblogic-ra.xml
descriptor file to false.

5.4.5 shrink-frequency-seconds: Setting the Wait Time Between Attempts to Reclaim
Unused ManagedConnections

Use the shrink-frequency-seconds element in the weblogic-ra.xml
descriptor file to identify the amount of time (in seconds) the Connection Pool
Manager will wait between attempts to reclaim unused ManagedConnections. The
default value of this element is 900 seconds.

5.4.6 highest-num-waiters: Controlling the Number of Clients Waiting for a Connection
If the maximum number of connections has been reached and there are no available
connections, WebLogic Server retries until the call times out. The
highest-num-waiters element controls the number of clients that can be waiting at
any given time for a connection.

5.4.7 highest-num-unavailable: Controlling the Number of Unavailable Connections
When a connection is created and fails, the connection is placed on an unavailable list.
WebLogic Server attempts to recreate failed connections on the unavailable list. The
highest-num-unavailable element controls the number of unavailable
connections that can exist on the unavailable list at one time.

5.4.8 connection-creation-retry-frequency-seconds: Recreating Connections
To configure WebLogic Server to attempt to recreate a connection that fails while
creating additional ManagedConnections, enable the

Connection Proxy Wrapper - 1.0 Resource Adapters

Connection Management 5-9

connection-creation-retry-frequency-seconds element. By default, this
feature is disabled.

5.4.9 match-connections-supported: Matching Connections
A connection request contains parameter information. By default, the connector
container calls the matchManagedConnections() method on the
ManagedConnectionFactory to match the available connection in the pool to the
parameters in the request. The connection that is successfully matched is returned.

It may be that the ManagedConnectionFactory does not support the call to
matchManagedConnections(). If so, the matchManagedConnections() method
call throws a javax.resource.NotSupportedException. If the exception is
caught, the connector container automatically stops calling the
matchManagedConnections() method on the ManagedConnectionFactory.

You can set the match-connections-supported element to specify whether the
resource adapter supports connection matching. By default, this element is set to true
and the matchManagedConnections() method is called at least once. If it is set to
false, the method call is never made.

If connection matching is not supported, a new resource is created and returned if the
maximum number of resources has not been reached; otherwise, the oldest
unavailable resource is refreshed and returned.

5.4.10 test-frequency-seconds: Testing the Viability of Connections
The test-frequency-seconds element allows you to specify how frequently (in
seconds) connections in the pool are tested for viability.

5.4.11 test-connections-on-create: Testing Connections upon Creation
You can set the test-connections-on-create element to enable the testing of
connections as they are created. The default value is false.

5.4.12 test-connections-on-release: Testing Connections upon Release to Connection
Pool

You can set the test-connections-on-release element to enable the testing of
connections as they are released back into the connection pool. The default value is
false.

5.4.13 test-connections-on-reserve: Testing Connections upon Reservation
You can set the test-connections-on-reserve element to enable the testing of
connections as they are reserved from the connection pool. The default value is false.

5.5 Connection Proxy Wrapper - 1.0 Resource Adapters
The connection proxy wrapper feature is valid only for resource adapters that are
created based on the J2EE 1.0 Connector Architecture. When a connection request is
made, WebLogic Server returns to the client (by way of the resource adapter) a proxy
object that wraps the connection object. WebLogic Server uses this proxy to provide
the following features:

■ Connection leak detection capabilities

Connection Proxy Wrapper - 1.0 Resource Adapters

5-10 Programming Resource Adapters for Oracle WebLogic Server

■ Late XAResource enlistment when a connection request is made before starting a
global transaction that uses that connection

5.5.1 Possible ClassCastException
If the connection object returned from a connection request is cast as a Connection
implementation class (rather than an interface implemented by the Connection
class), a ClassCastException can occur. This exception is caused by one of the
following:

■ The resource adapter performing the cast

■ The client performing the cast during a connection request

An attempt is made by WebLogic Server to detect the ClassCastException caused
by the resource adapter. If the server detects that this cast is failing, it turns off the
proxy wrapper feature and proceeds by returning the unwrapped connection object
during a connection request. The server logs a warning message to indicate that proxy
generation has been turned off. When this occurs, connection leak detection and late
XAResource enlistment features are also turned off.

WebLogic Server attempts to detect the ClassCastException by performing a test
at resource adapter deployment time by acting as a client using container-managed
security. This requires the resource adapter to be deployed with security credentials
defined.

If the client is performing the cast and receiving a ClassCastException, the client
code can be modified, as in the following example.

Assume the client is casting the connection object to MyConnection.

1. Rather than having MyConnection be a class that implements the resource
adapter's Connection interface, modify MyConnection to be an interface that
extends Connection.

2. Implement a MyConnectionImpl class that implements the MyConnection
interface.

5.5.2 Turning Proxy Generation On and Off
If you know for sure whether or not a connection proxy can be used in the resource
adapter, you can avoid a proxy test by explicitly setting the
use-connection-proxies element in the WebLogic Server 8.1 version of
weblogic-ra.xml to true or false.

If set to true, the proxy test is not performed and connection properties are generated.

If set to false, the proxy test is not performed and connection proxies are generated.

If use-connection-proxies is unspecified, the proxy test is performed and proxies
are generated if the test passes. (The test passes if a ClassCastException is not
thrown by the resource adapter).

Note: WebLogic Server still supports J2CA 1.0 resource adapters. For
1.0 resource adapters, continue to use the WebLogic Server 8.1
deployment descriptors found in weblogic-ra.xml. It contains
elements that continue to accommodate 1.0 resource adapters.

Testing Connections

Connection Management 5-11

5.6 Testing Connections
If a resource adapter's ManagedConnectionFactory implements the
ValidatingManagedConnectionFactory interface, then the application server
can test the validity of existing connections. You can test either a specific outbound
connection or the entire pool of outbound connections for a particular
ManagedConnectionFactory. Testing the entire pool results in testing each
connection in the pool individually. For more information on this feature, see section
6.5.3.4 "Detecting Invalid Connections" in the J2CA 1.5 Specification
(http://java.sun.com/j2ee/connector/).

5.6.1 Configuring Connection Testing
The following optional elements in the weblogic-ra.xml deployment descriptor
allow you to control the testing of connections in the pool.

■ test-frequency-seconds - The connector container periodically tests all the
free connections in the pool. Use this element to specify the frequency with which
the connections are tested. The default is 0, which means the connections will not
be tested.

■ test-connections-on-create - Determines whether the connection should
be tested upon its creation. By default it is false.

■ test-connections-on-release - Determines whether the connection should
be tested upon its release. By default it is false.

■ test-connections-on-reserve - Determines whether the connection should
be tested upon its reservation. By default it is false.

5.6.2 Testing Connections in the Administration Console
To test a resource adapter's connection pools:

1. In the Administration Console, open the Deployments page and select the
resource adapter in the Deployments table.

2. Select the Test tab.

You will see a table of connection pools for the resource adapter and the test status
of each pool.

3. Select the connection pool you want to test and click Test.

See "Test outbound connections" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

Note: The test cannot detect a ClassCastException caused by the
client code.

Testing Connections

5-12 Programming Resource Adapters for Oracle WebLogic Server

6

Transaction Management 6-1

6Transaction Management

The following sections discuss the system-level transaction management contract that
is used for outbound communication from WebLogic Server to Enterprise Information
Systems (EISes):

■ Section 6.1, "Supported Transaction Levels"

■ Section 6.2, "Configuring Transaction Levels"

For more information on transaction management, see Chapter 7 "Transaction
Management" of the J2CA 1.5 Specification
(http://java.sun.com/j2ee/connector/). For information about transaction
management for inbound communication from EISes to WebLogic Server, see
Section 7.4, "Transactional Inflow."

6.1 Supported Transaction Levels
A transaction is a set of operations that must be committed together or not at all for the
data to remain consistent and to maintain data integrity. Transactional access to EISes
is an important requirement for business applications. The J2EE 1.5 Connector
Architecture supports the use of transactions.

WebLogic Server utilizes the WebLogic Server Transaction Manager implementation
and supports resource adapters having XA, local, or no transaction support. You
define the type of transaction support in the transaction-support element in the
ra.xml file; a resource adapter can support only one type. You can use the
transaction-support element in the weblogic-ra.xml deployment descriptor
to override the value specified in ra.xml. See Section 6.2, "Configuring Transaction
Levels," and transaction-support in Table A–13, " default-connection-properties
subelements"for details.

6.1.1 XA Transaction Support
XA transaction support allows a transaction to be managed by a transaction manager
external to a resource adapter (and therefore external to an EIS). When an application
component demarcates an EIS connection request as part of a transaction, the
application server is responsible for enlisting the XA resource with the transaction
manager. When the application component closes that connection, the application
server cleans up the EIS connection once the transaction has completed.

6.1.2 Local Transaction Support
Local transaction support allows WebLogic Server to manage resources that are local
to the resource adapter. Unlike XA transaction, local transaction generally cannot

Configuring Transaction Levels

6-2 Programming Resource Adapters for Oracle WebLogic Server

participate in a two-phase commit protocol (2PC). The only way a local transaction
resource adapter can be involved in a 2PC transaction is if it is the only local
transaction resource involved in the transaction and if the WebLogic Server Connector
container uses a Last Resource Commit Optimization whereby the outcome of the
transaction is governed by the resource adapter's local transaction.

A local transaction is normally started by using the API that is specific to that resource
adapter, or the CCI interface if it is supported for that adapter. When a resource
adapter connection that is configured to use local transaction support is created and
used within the context of an XA transaction, WebLogic Server automatically starts a
local transaction to be used for this connection. When the XA transaction completes
and is ready to commit, prepare is first called on the XA resources that are part of the
XA transaction. Next, the local transaction is committed.

If the commit fails on the local transaction, the XA transaction and all the XA resources
are rolled back. If the commit succeeds, all the XA resources for the XA transaction are
committed. When an application component closes the connection, WebLogic Server
cleans up the connection once the transaction has completed.

6.1.3 No Transaction Support
If a resource adapter is configured to use no transaction support, the resource adapter
can still be used in the context of a transaction. However, in this case, the connections
used for that resource adapter are never enlisted in a transaction and behave as if no
transaction was present. In other words, operations performed using these connections
are made to the underlying EIS immediately, and if the transaction is rolled back, the
changes are not undone for these connections.

6.2 Configuring Transaction Levels
You specify a transaction support level for a resource adapter in the J2EE standard
resource adapter deployment descriptor, ra.xml. To specify the transaction support
level:

■ For No Transaction, add the following entry to the ra.xml deployment descriptor
file: <transaction-support>NoTransaction</transaction-support>

■ For XA Transaction, add the following entry to the ra.xml deployment descriptor
file: <transaction-support>XATransaction</transaction-support>

■ For Local Transaction, add the following entry to the ra.xml deployment
descriptor file:
<transaction-support>LocalTransaction</transaction-support>

The transaction support value specified in the ra.xml deployment descriptor is the
default value for all Connection Factories of the resource adapter. You can override
this value for a particular Connection Factory by specifying a value in the
transaction-support element of the weblogic-ra.xml deployment descriptor.

The value of transaction-support must be one of the following:

■ NoTransaction

■ LocalTransaction

■ XATransaction

For more information on specifying the transaction level in the ra.xml deployment
descriptor, see Section 17.6 "Resource Adapter XML Schema Definition" of the J2CA
1.5 Specification (http://java.sun.com/j2ee/connector/). For more

Configuring Transaction Levels

Transaction Management 6-3

information on specifying the transaction level in the weblogic-ra.xml deployment
descriptor, see Appendix A, "weblogic-ra.xml Schema."

6.2.1 Configure XA Transaction Recovery Credential Mapping
For pools which support XA Transactions, WLS may try to perform transaction
recovery for the JCA connection pool if WLS finds pending transactions in the pool
during a server startup. If pending transactions are found, WLS gets a
ManagedConnection to EIS during recovery using
ManagedConnectionFactory.createManagedConnection(javax.security.
auth.Subject subject, ConnectionRequestInfo cxRequestInfo).

If EIS requires explicit credentials (such as user name and password) to sign-on, the
you need to configure WLS with appropriate credentials by configuring a special
credential mapping for the initial connection. See Section 8.2.2.2, "Initial Connection:
Requires a ManagedConnection from Adapter Without Application's Request." WLS
uses null as Subject if a mapping is not found.

Note: You don't need to configure this special credential mapping if
the EIS doesn't require explicit credentials.

Configuring Transaction Levels

6-4 Programming Resource Adapters for Oracle WebLogic Server

7

Message and Transactional Inflow 7-1

7Message and Transactional Inflow

This section discusses how WebLogic resource adapters use inbound connections to
handle message inflow and transactional inflow.

■ Overview of Message and Transactional Inflow

■ How Message Inflow Works

■ Message Inflow to Message Endpoints (Message-driven Beans)

■ Transactional Inflow

7.1 Overview of Message and Transactional Inflow
Message inflow refers to inbound communication from an EIS to the application
server, using a resource adapter. Inbound messages can be part of a transaction that is
governed by a Transaction Manager that is external to WebLogic Server and the
resource adapter, as described in Section 7.4, "Transactional Inflow."

The following diagram provides an overview of how messaging and transaction
inflow occurs within a resource adapter and the role played by the Work Manager.

Overview of Message and Transactional Inflow

7-2 Programming Resource Adapters for Oracle WebLogic Server

Figure 7–1 Messaging and Transactional Inflow Architecture

7.1.1 Architecture Components
Figure 7–1 contains the following components:

■ A client application, which connects to an application running on WebLogic
Server, but which also needs to connect to an EIS

■ An external system (in this case, an EIS or Enterprise Information System)

■ An application component (an EJB) that the client application uses to submit
outbound requests to the EIS through the resource adapter

■ A message endpoint application (a message-driven bean and possibly other J2EE
components) used for the receipt of inbound messages from the EIS through the
resource adapter

■ The WebLogic Server Work Manager and an associated thread (or threads) to
which the resource adapter submits Work instances to process inbound messages
and possibly process other actions.

■ An external Transaction Manager, to which the WebLogic Server Transaction
Manager is subordinate for transactional inflow of messages from the EIS

■ The WebLogic Server Connector container in which the resource adapter is
deployed. The container manages the following:

– A deployed resource adapter that provides bi-directional (inbound and
outbound) communication to and from the EIS.

– An active Work instance.

Overview of Message and Transactional Inflow

Message and Transactional Inflow 7-3

– Multiple managed connections (MC1, ..., MCn), which are objects representing
the outbound physical connections from the resource adapter to the EIS.

– Connection handles (C-handle) returned to the application component from
the connection factory of the resource adapter and used by the application
component for communicating with the EIS.

– One of perhaps many activation specifications. There is an activation
specification (ActivationSpec) that corresponds to each specific message
listener type, MLT-j. For information about requirements for an
ActivationSpec class, see Chapter 12, "Message Inflow" in the J2CA 1.5
Specification (http://java.sun.com/j2ee/connector/).

– One of the connection pools maintained by the container for the management
of managed connections for a given ManagedConnectionFactory (in this
case, MCF-2. A Connector container could include multiple connection pools,
each corresponding to a different type of connections to a single EIS or even
different EISes).

– A MessageEndpointFactory created by the EJB container and used by the
resource adapter to create proxies to MessageEndpoint instances (MDB
instances from the MDB pool).

■ An external message source, which could be an EIS or Message Provider

7.1.2 Inbound Communication Scenario
This section describes a basic inbound communication scenario that may be described
using the diagram, showing how inbound messages originate in an EIS, flow into the
resource adapter, and are handled by a Message-driven Bean. For related information,
see Figure 2–1.

A typical simplified inbound sequence involves the following steps:

1. The EIS sends a message to the resource adapter.

2. The resource adapter inspects the message and determines what type of message it
is.

3. The resource adapter may create a Work object and submit it to the Work Manager.
The Work Manager performs the succeeding work in a separate Thread, while the
resource adapter can continue waiting for other incoming messages.

4. Based on the message type, the resource adapter (either directly or as part of a
Work instance) looks up the correct message endpoint to which it will send the
message.

5. Using the message endpoint factory corresponding to the type of message
endpoint it needs, the resource adapter creates a message endpoint (which is a
proxy to a message-driven bean instance from the MDB pool).

6. The resource adapter invokes the message listener method on the endpoint,
passing it message content based on the message it received from the EIS.

7. The message is handled by the MDB in one of several possible ways:

a. the MDB may handle the message directly and possibly return a result to the
EIS through the resource adapter

b. the MDB may distribute the message to some other application component

c. the MDB may place the message on a queue to be picked up by the client

d. the MDB may directly communicate with the client application.

How Message Inflow Works

7-4 Programming Resource Adapters for Oracle WebLogic Server

7.2 How Message Inflow Works
A resource adapter that supports inbound communication from an EIS to the
application server typically includes the following:

■ A proprietary communications channel and protocol for connecting to and
communicating with an EIS. The communications channel and protocol are not
visible to the application server in which the resource adapter is deployed. See
Appendix 7.2.2, "Proprietary Communications Channel and Protocol."

■ One or more message types recognized by the resource adapter.

■ A dispatching mechanism to dispatch a message of a given type to another
component in the application server.

7.2.1 Handling Inbound Messages
A resource adapter may handle an inbound message in a variety of ways. For
example, it may:

■ Handle the message locally, that is, within the ResourceAdapter bean, without
involving other components.

■ Pass the message off to another application component. For example, it may look
up an EJB and invoke a method on it.

■ Send the message to a message endpoint. Typically, a message endpoint is a
message-driven bean (MDB). For more information, see Appendix 7.3, "Message
Inflow to Message Endpoints (Message-driven Beans)."

Inbound messages may return a result to the EIS that is sending the message. A
message requiring an immediate response is referred to as synchronous (the sending
system waits for a response). This is also referred to as request-response messaging. A
message that does not expect a response as part of the same exchange with the
resource adapter is referred to as asynchronous or event notification-based
communication. A resource adapter can support asynchronous or synchronous
communications for all three destinations listed above.

Depending upon the transactional capabilities of the resource adapter and the EIS,
inbound messages can be either part of a transaction (XA) or not (non-transactional). If
the messages are XA, the controlling transaction may be coordinated by an external
Transaction Manager (transaction inflow) or by the application server's Transaction
Manager. See Appendix 7.4, "Transactional Inflow."

In most cases, inbound messages in a resource adapter are dispatched through a Work
instance in a separate thread. The resource adapter wraps the work to be done in a
Work instance and submits it to the application server's Work Manager for execution
and management. A resource adapter can submit a Work instance using the
doWork(), startWork(), or scheduleWork() methods depending upon the
scheduling requirements of the work.

7.2.2 Proprietary Communications Channel and Protocol
The resource adapter can expose connection configuration information to the deployer
by various means; for example, as properties on the ResourceAdapter bean or
properties on the ActivationSpec object. An alternative is to use the same
communication channel for inbound as well as outbound traffic. Thus you can also set
configuration information on the outbound connection pool.

Message Inflow to Message Endpoints (Message-driven Beans)

Message and Transactional Inflow 7-5

7.3 Message Inflow to Message Endpoints (Message-driven Beans)
Prior to EJB 2.1, a message-driven bean (MDB) supported only Java Message Service
(JMS) messaging. That is, an MDB had to implement the
javax.jms.MessageListener interface, including the
onMessage(javax.jms.Message) message listener method. MDBs were bound to
JMS components and the JMS subsystem delivered the messages to MDBs by invoking
the onMessage() method on an instance of the MDB.

With EJB 2.1, the JMS-only MDB restriction has been lifted to accommodate the
delivery of messages from inbound resource adapters. The main ingredients for
message delivery to an MDB by way of a resource adapter are:

■ An inbound message of a certain type (determined by the resource adapter/EIS
contract)

■ An ActivationSpec object implemented by the resource adapter

■ A mapping between message types and message listener interfaces

■ An MDB that implements a given message listener interface

■ A deployment-time binding between an MDB and a resource adapter

For more information about message-driven Beans, see "Message-Driven EJBs" in
Oracle Fusion Middleware Programming Enterprise JavaBeans for Oracle WebLogic Server.

7.3.1 Deployment-Time Binding Between an MDB and a Resource Adapter
A resource adapter can be deployed independently (as a standalone RAR) or as part of
an enterprise application (EAR). An MDB can also be deployed independently (as a
standalone JAR) or as part of an enterprise application (EAR). In either case, an MDB
whose messages are derived from a resource adapter must be bound to the resource
adapter. The following sections describe binding the MDB and resource adapter and
subsequent messaging operations.

7.3.1.1 Binding an MDB and a Resource Adapter
To bind an MDB and a resource adapter, you must:

1. Set the jndi-name element in the weblogic-ra.xml deployment descriptor for
the resource adapter. See jndi-name in Appendix A, "weblogic-ra.xml Schema."

2. Set the adapter-jndi-name element in the weblogic-ejb-jar.xml
deployment descriptor to match the value set in the corresponding jndi-name
element in the resource adapter.

3. Assume that the resource adapter is deployed prior to the MDB. (The MDB could
be deployed before the resource adapter is deployed; in that case, the deployed
MDB polls until the resource adapter is deployed.) When the resource adapter is
deployed, the ResourceAdapter bean is bound into JNDI using the name
specified.

4. The MDB is deployed, and the MDB container invokes an application
server-specific API that looks up the resource adapter by its JNDI name and
invokes the specification-mandated
endpointActivation(MessageEndpointFactory, ActivationSpec)
method on the resource adapter.

5. The MDB container provides the resource adapter with a configured
ActivationSpec (containing configuration information) and a factory for the
creation of message endpoint instances.

Message Inflow to Message Endpoints (Message-driven Beans)

7-6 Programming Resource Adapters for Oracle WebLogic Server

6. The resource adapter saves this information for later use in message delivery. The
resource adapter thereby knows what message listener interface the MDB
implements. This information is important for determining what kind of messages
to deliver to the MDB.

7.3.2 Dispatching a Message
When a message arrives from the EIS to the resource adapter, the resource adapter
determines where to dispatch it. The following is a possible sequence of events:

1. A message arrives from the EIS to the resource adapter.

2. The resource adapter examines the message and determines its type by looking it
up in an internal table. The resource adapter determines the message type
corresponds to a particular pair (MessageEndpointFactory,
ActivationSpec).

3. The resource adapter determines the message should be dispatched to an MDB.

4. Using the MessageEndpointFactory for that type of message endpoint (one to
be dispatched to an MDB), the resource adapter creates an MDB instance by
invoking createEndpoint() on the factory.

5. The resource adapter then invokes the message listener method on the MDB
instance, passing any required information (such as the body of the incoming
message) to the MDB.

6. If the message listener does not return a value, the message dispatching process is
complete.

7. If the message listener returns a value, the resource adapter determines how to
handle that value. This may or may not result in further communication with the
EIS, depending upon the contract with the EIS.

7.3.3 Activation Specifications
A resource adapter is configured with a mapping of message types and activation
specifications. The activation specification is a JavaBean that implements
javax.resource.spi.ActivationSpec. The resource adapter has an
ActivationSpec class for each supported message type. The mapping of message
types and activation specifications is configured in the ra.xml deployment descriptor,
as described in Section 5.3, "Configuring Inbound Connections," For more information
about ActivationSpecs, see Chapter 12, "Message Inflow" in the J2CA 1.5
Specification (http://java.sun.com/j2ee/connector/).

7.3.4 Administered Objects
As described in section 12.4.2.3 of the J2CA 1.5 Specification
(http://java.sun.com/j2ee/connector/), a resource adapter may provide the
Java class name and the interface type of an optional set of JavaBean classes
representing administered objects that are specific to a messaging style or message
provider. You configure administered objects in the admin-objects elements of the
ra.xml and weblogic-ra.xml deployment descriptor files. As with outbound
connections and other WebLogic resource adapter configuration elements, you can
define administered objects at three configuration scope levels:

■ Global - Specify parameters that apply to all administered objects in the resource
adapter using the default-properties element. See default-properties in
Table A–10, " admin-object-group"

Transactional Inflow

Message and Transactional Inflow 7-7

■ Group - Specify parameters that apply to all administered objects belonging to a
particular administered object group specified in the ra.xml deployment
descriptor using the admin-object-group element. The properties specified in
a group override any parameters specified at the global level. See Section A.5.1,
"admin-object-group."

The admin-object-interface element (a subelement of the
admin-object-group element) serves as a required unique element (a key) to
each admin-object-group. There must be a one-to-one relationship between
the admin-object-interface element in weblogic-ra.xml and the
admin-object-interface element in ra.xml.

■ Instance - Under each admin object group, you can specify administered object
instances using the admin-object-instance element of the
weblogic-ra.xml deployment descriptor. These correspond to the individual
administered objects for the resource adapter. You can use the
admin-object-properties subelement to specify properties at the instance
level too; properties specified at the instance level override those provided at the
group and global levels. See Section A.5.1.1, "admin-object-instance."

7.4 Transactional Inflow
This section discusses how transactions flow into WebLogic Server from an EIS and a
resource adapter. A transaction inflow contract allows the resource adapter to handle
transaction completion and crash recovery calls initiated by an EIS. It also ensures that
ACID properties of the imported transaction are preserved. For more information on
transaction inflow, see Chapter 14, "Transaction Inflow" of the J2CA 1.5 Specification
(http://java.sun.com/j2ee/connector/).

When an EIS passes a message through a resource adapter to the application server, it
may pass a transactional context under which messages are delivered or work is
performed. The inbound transaction will be controlled by a transaction manager
external to the resource adapter and application server. See Section 7.3, "Message
Inflow to Message Endpoints (Message-driven Beans)."

A resource adapter may act as a bridge between the EIS and the application server for
transactional control. That is, the resource adapter receives messages that it interprets
as XA callbacks for participating in a transaction with a external Transaction Manager.

WebLogic Server can function as an XA resource to a external Transaction Manager
through its interposed Transaction Manager. The WebLogic Server Transaction
Manager maps external transaction IDs to WebLogic Server-specific transaction IDs for
such transactions.

The WebLogic Server Transaction Manager is subordinate to the external Transaction
Manager, which means that the external Transaction Manager ultimately determines
whether the transaction succeeds or is rolled back. See "Participating in Transactions
Managed by a Third-Party Transaction Manager" in Oracle Fusion Middleware
Programming JTA for Oracle WebLogic Server. As part of the J2EE 1.5 Connector
Architecture, the ability for a resource adapter to participate in such a transaction is
now exposed through a J2EE standard API.

The following illustrates how a resource adapter would participate in a external
transaction. For more information, see section 14.4, "Transaction Inflow Model" of the
J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/).

1. The resource adapter receives an inbound message with a new external transaction
ID.

@LongRunning

7-8 Programming Resource Adapters for Oracle WebLogic Server

2. The resource adapter decodes the external transaction ID and constructs an Xid
(javax.transaction.xa.Xid).

3. The resource adapter creates an instance of an ExecutionContext
(javax.resource.spi.work.ExecutionContext), setting the Xid it created
and also setting a transaction timeout value.

4. The resource adapter creates a new Work object to process the incoming message
and deliver it to a message endpoint.

5. The resource adapter submits the Work object and the ExecutionContext to the
Work Manager for processing. At this point, the Work Manager performs the
necessary work to enlist the transaction and start it with the WebLogic Server
Transaction Manager.

6. Subsequent XA calls from the external Transaction Manager are sent through the
resource adapter and communicated to the WebLogic Server Transaction Manager.
In this way, the resource adapter acts as a bridge for the XA calls between the
external Transaction Manager and the WebLogic Server Transaction Manager,
which is acting as a resource manager.

7.4.1 Using the Transactional Inflow Model for Locally Managed Transactions
When the resource adapter receives requests from application components running in
the same server instance as the resource adapter that need to be delivered to an MDB
as part of the same transaction as the resource adapter request, the transaction ID must
be obtained from the transaction on the current thread and placed in an
ExecutionContext.

In this case, WebLogic Server does not use the Interposed Transaction Manager but
simply passes the transaction on to the Work Thread used for message delivery to the
MDB.

7.5 @LongRunning
This release introduces the WLS extension annotation @LongRunning. Apply this
annotation to the work class if the work is a long running work item. When used, the
WLS JCA work manager schedules this work in a daemon thread, not in a Work
Thread.

Try to minimize the number of long running works executing concurrently since each
long running work runs in its own daemon thread. Too many concurrent long running
works may exhaust thread resources of application server and have negative impact
on server performance and stability. WLS may introduce restrictions on maximum
concurrent long running works allowed in a future release.

See "Annotation Type LongRunning" in "Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help."

8

Security 8-1

8Security

Since a resource adapter needs to be able to establish connections with external
systems, it needs to be configured with authentication and other security information
necessary to make the connections. The following sections discuss WebLogic Server
resource adapter security for outbound communication:

■ Section 8.1, "Container-Managed and Application-Managed Sign-on"

■ Section 8.2, "Password Credential Mapping"

■ Section 8.3, "Security Policy Processing"

■ Section 8.4, "Configuring Security Identities for Resource Adapters"

■ Section 8.5, "Configuring Connection Factory-Specific Authentication and
Re-authentication Mechanisms"

For more information about WebLogic security, see Oracle Fusion Middleware
Understanding Security for Oracle WebLogic Server and Oracle Fusion Middleware Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

8.1 Container-Managed and Application-Managed Sign-on
When a resource adapter makes an outbound connection to an Enterprise Information
System (EIS), it needs to sign on with valid security credentials. In accordance with the
J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/), WebLogic
Server supports both container-managed and application-managed sign-on for
outbound connections. At runtime, WebLogic Server determines the chosen sign-on
mechanism, based on the information specified in either the invoking client
component's deployment descriptor or the res-auth element of the resource adapter
deployment descriptor. A sign-on mechanism specified in a resource adapter's
deployment descriptor takes precedence over one specified in the calling component's
deployment descriptor. Even when using container-managed sign-on, any security
information explicitly specified by the client component is presented on the call to
obtain the connection.

If the WebLogic Server J2EE 1.5 Connector Architecture implementation cannot
determine which sign-on mechanism is being requested by the client component, the
connector container attempts container-managed sign-on.

8.1.1 Application-Managed Sign-on
With application-managed sign-on, the client component supplies the necessary
security credentials (typically a user name and password) when making the call to
obtain a connection to an EIS. In this scenario, the application server provides no

Password Credential Mapping

8-2 Programming Resource Adapters for Oracle WebLogic Server

additional security processing other than to pass along this information in the request
for the connection.

8.1.2 Container-Managed Sign-on
WebLogic Server and an EIS each maintain independent security realms. A goal of
container-managed sign-on is to permit a user to sign on to WebLogic Server and be
able to use applications that access an EIS through a resource adapter without having
to sign on separately to the EIS. Container-managed sign-on in WebLogic Server uses
credential mappings, which map credentials (either username/password pairs or
security tokens) of WebLogic security principals (which may be either authenticated
individual users or client applications) to the corresponding credentials required to
access the EIS. For any deployed resource adapter, you can configure credential
mappings for applicable security principals. For related information, see Section 8.2.2,
"Credential Mappings."

8.2 Password Credential Mapping
The J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/) requires
storage of credentials in a javax.security.auth.Subject. The credentials are
passed to either the createManagedConnection() or the
matchManagedConnection() methods of the ManagedConnectionFactory
object. Credential mapping information is stored in the WebLogic Server embedded
LDAP storage. Credential mappings are specific to outbound resource adapters.

8.2.1 Authentication Mechanisms
WebLogic Server users must be authenticated whenever they request access to a
protected WebLogic Server resource. For this reason, each user is required to provide a
credential (a username/password pair or a digital certificate) to WebLogic Server.

Password authentication is the only authentication mechanism supported by
WebLogic Server out of the box. Password authentication consists of a user ID and
password. Based on the configured mappings, when a user requests connection to a
resource adapter, the appropriate credentials for that user are supplied to the resource
adapter.

The SSL (or HTTPS) protocol can be used to provide an additional level of security to
password authentication. Because the SSL protocol encrypts the data transferred
between the client and WebLogic Server, the user ID and password of the user do not
flow in clear text. Using SSL, WebLogic Server can authenticate the user without
compromising the confidentiality of the user's ID and password. For more
information, see "Configuring SSL" in Oracle Fusion Middleware Securing Oracle
WebLogic Server.

8.2.2 Credential Mappings
Credential mappings are specific to outbound resource adapters. You configure
credential mappings using the WebLogic Server Administration Console. Before you
can configure credential mappings, you must successfully deploy the resource adapter.

Note: The first time you deploy a resource adapter, it has no
configured credential mappings and the initial connections will fail
until they are configured.

Password Credential Mapping

Security 8-3

If the resource adapter requires credentials and is configured to create connections at
deployment time (meaning the initial-capacity element in the
weblogic-ra.xml is set to greater than 0), the initial connection may fail. To prevent
initial connection failure, Oracle recommends you set the initial-capacity
element the connection pool to 0 for its connection pool for the initial installation and
deployment of a resource adapter. Once the resource adapter is deployed for the first
time, you can change the value of the initial-capacity element. For more
information, see Section 5.4.1, "initial-capacity: Setting the Initial Number of
ManagedConnections."

You can configure credential mappings for individual outbound connection pools or
globally for all the connection pools in the resource adapter. When the resource
adapter receives a request for a connection, WebLogic Server searches for credential
mappings configured for a specific connection pool and then checks the mappings
configured globally for the resource adapter.

Review the following situations:

■ Section 8.2.2.1, "Non-initial Connection: Requires ManagedConnection from
Adapter Upon Application's Request"

■ Section 8.2.2.2, "Initial Connection: Requires a ManagedConnection from Adapter
Without Application's Request"

■ Section 8.2.2.3, "Special Users"

8.2.2.1 Non-initial Connection: Requires ManagedConnection from Adapter Upon
Application's Request
WebLogic Server requires a ManagedConnection from the adapter upon an
application's request. For example, an application wants to get a connection from a
pool but there is no available ManagedConnection in the pool so WebLogic Server
needs to make a request to the adapter to create a new ManagedConnection.

The server searches for mappings in the following order:

1. Specific mappings (or anonymous mapping if unauthenticated) at the connection
factory level.

2. Specific mappings (or anonymous mapping if unauthenticated) at the global level.

3. Default mappings at the connection factory level.

4. Default mappings at the global level.

For example, in Example 8–1, consider two connection pools with the following
credential mappings:

Example 8–1 Credential Mapping Examples

poolA
 system user name: admin
 system password: adminpw
 default user name: guest1
 default password: guest1pw1

poolB
 wlsjoe user name: harry

Note: Applies only to Container-Managed sign-on.

Password Credential Mapping

8-4 Programming Resource Adapters for Oracle WebLogic Server

 wlsjoe password: harrypw

global
 system user name: sysman
 system password: sysmanpw
 wlsjoe user name: scott
 wlsjoe password: tiger
 default user name: viewer
 default password: viewerpw
 anonymous user name: foo
 anonymous password: bar

Referring to the example provided in Example 8–1, consider an application
authenticated as system that makes a connection request against poolA. Because a
specific credential mapping is defined for system for poolA, the resource adapter
uses this mapping (admin/adminpw).

If the application makes the same request against poolB as system, there is no
corresponding specific credential mapping for system. Therefore, the server searches
for the credential mapping at the global level where it finds a mapping
(sysman/sysmanpw).

If another application authenticates as wlsjoe and makes a request against poolA, it
finds no mapping for wlsjoe defined for poolA. It then searches at the global level
and finds a mapping for wlsjoe (scott/tiger). Against poolB, the application
would find the mapping defined for poolB (harry/harrypw).

If an application authenticated as user1 makes a request against poolA, it finds no
mapping for user1 for poolA. The following sequence occurs:

1. The application searches at the global level, which also has no mapping for user1.

2. The application searches the poolA mappings for a default mapping and finds a
default mapping.

If an application doesn't authenticate to WLS and makes a request against poolA, it
finds no mapping for anonymous user for poolA. It then searches at the global level
and finds a mapping for the anonymous user (foo/bar).

8.2.2.2 Initial Connection: Requires a ManagedConnection from Adapter Without
Application's Request
WebLogic Server requires a ManagedConnection from adapter without application's
request. This can either be when WebLogic Server creates initial connections at
deployment time (meaning the initial-capacity element in the weblogic-ra.xml is set to
greater than 0), or when WebLogic needs to get a ManagedConnection specifically for
XA recovery.

The server searches for mappings in the following order:

1. Initial mappings at the connection factory level.

2. Initial mappings at the global level.

3. Default mappings at the connection factory level.

4. Default mappings at the global level.

Note: Applies to both Container-Managed sign-on and
Application-Managed sign-on.

Password Credential Mapping

Security 8-5

If neither initial nor default mapping is defined, WebLogic Server uses null as
Subject when calls to adapter to create a ManagedConnection.

For example, consider two connection pools with the following credential mappings:

Example 8–2 Credential Mapping Examples

poolA
 initial user name: admin
 initial password: adminpw

poolB
 wlsjoe user name: harry
 wlsjoe password: harrypw

global
 system user name: sysman
 system password: sysmanpw

Referring to the example provided in Example 8–2, WebLogic Server needs to perform
XA Recovery for poolA and so makes a connection request against poolA. Because the
initial credential mapping is defined for system for poolA, the resource adapter uses
this mapping (admin/adminpw).

If WebLogic Server makes the same request against poolB, there is no corresponding
initial credential mapping for poolB. WebLogic Server then searches for the initial
credential mapping at the global level where it finds a mapping (sysman/sysmanpw).

8.2.2.3 Special Users
Three special users are provided for use by resource adapters:

■ Initial User (User for creating initial connections)—If you define a mapping for
this user, the specified credentials are used for the initial connections created
when:

– Starting the connection pool for this resource adapter

– Doing XA transaction recovery for the connection pool

The InitialCapacity parameter on the pool specifies the number of initial
connections. If you do not define a mapping for this user the default mapping (if
provided) is used. Otherwise, no credentials are provided for the initial
connections.

■ Anonymous User (Unauthenticated WLS User)—If you define a mapping for this
user, the specified credentials are used when no user is authenticated for the
connection request on the resource adapter.

■ Default User—If you define a mapping for this user, the specified credentials are
used when:

– No other mapping applies for the current user

– No anonymous mapping is provided in the case where there is no
authenticated user.

8.2.3 Creating Credential Mappings Using the Console
You can create credential maps with the WebLogic Server Administration Console. If
you are using the WebLogic Credential Mapping provider, the credential maps are
stored in the embedded LDAP server. For information about how to create a credential

Security Policy Processing

8-6 Programming Resource Adapters for Oracle WebLogic Server

map, see "Create credential mappings" in the Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

8.3 Security Policy Processing
A security policy is an association between a WebLogic resource and one or more
users, groups, or security roles and is designed to protect the WebLogic resource
against unauthorized access. The J2CA 1.5 Specification
(http://java.sun.com/j2ee/connector/) defines default security policies for
resource adapters running in an application server. It also defines how resource
adapters can provide their own specific security policies overriding the default. The
weblogic.policy file that ships with WebLogic Server establishes the default
security policies as specified in the J2CA 1.5 Specification.

If the resource adapter does not have a specific security policy defined, WebLogic
Server establishes the runtime environment for the resource adapter with the default
security policies specified in the weblogic.policy file, which conforms to the
defaults specified by the J2CA 1.5 Specification. If the resource adapter has defined
specific security policies, WebLogic Server establishes the runtime environment for the
resource adapter with a combination of the default security policies for resource
adapters and the specific policies defined for the resource adapter. You define specific
security policies for resource adapters using the security-permission-spec
element in the ra.xml deployment descriptor file.

For more information on security policy processing requirements, see the "Security
Permissions" section of Chapter 18, "Runtime Environment" in the J2CA 1.5
Specification. For more information about security policies and the WebLogic security
framework, see "Security Policies" in Securing WebLogic Resources Using Roles and
Policies.

8.4 Configuring Security Identities for Resource Adapters
This section describes how to configure various security identities for WebLogic Server
resource adapters in the weblogic-ra.xml deployment descriptor. Security
identities determine which security principals can perform particular resource adapter
functions. In a WebLogic resource adapter, you can either have a single security
identity that can perform all functions, or use separate identities for separate classes of
functions. You can define the following four types of security identities in the
weblogic-ra.xml deployment descriptor:

■ default principal - a security principal that can perform all resource adapter tasks.

■ run-as principal - a security principal used by calls from the connector container
into the resource adapter code during connection requests.

■ run-work-as principal - a security principal used for Work instances launched by
the resource adapter.

■ manage-as principal - a security principal used for resource adapter management
tasks, such as startup, shutdown, testing, and transaction management.

Example 8–3 is an excerpt from a weblogic-ra.xml deployment descriptor that
illustrates how you would configure all four of these available security identities for
performing different resource adapter tasks.

Example 8–3 Configuring All Security Identities for Resource Adapters

<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector">
 <jndi-name>900blackbox-notx</jndi-name>

Configuring Security Identities for Resource Adapters

Security 8-7

 <security>
 <default-principal-name>
 <principal-name>system</principal-name>
 </default-principal-name>
 <run-as-principal-name>
 <principal-name>raruser</principal-name>
 </run-as-principal-name>
 <run-work-as-principal-name>
 <principal-name>workuser</principal-name>
 </run-work-as-principal-name>
 <manage-as-principal-name>
 <principal-name>raruser</principal-name>
 </manage-as-principal-name>
 </security>
</weblogic-connector>

Example 8–4 illustrates how you could use the <default-principal-name>
element to configure a single default principal security identity for performing all
resource adapter tasks.

Example 8–4 Configuring a Single Default Principal Identity for a Resource Adapter

<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector">
 <jndi-name>900blackbox-notx</jndi-name>
 <security>
 <default-principal-name>
 <principal-name>system</principal-name>
 </default-principal-name>
 </security>
</weblogic-connector>

For more information on setting security identity properties, see Section A.3, "security."

8.4.1 default-principal-name: Default Identity
You can define a single security identity that can be used for all resource adapter
purposes using the default-principal-name element. If values are not specified
for run-as-principal-name, manage-as-principal-name, and
run-work-as-principal-name, they default to the value set for
default-principal-name.

The value of default-principal-name can be set to a defined WebLogic Server
user name such as system or to use an anonymous identity (which is the equivalent
of having no security identity).

For example, you can create a single security identity that makes all calls from
WebLogic Server into the resource adapter and manages all resource adapter
management tasks with a default system identity as shown in Example 8–6:

Example 8–5 Using a Defined WebLogic Server Name

<security>
 <default-principal-name>
 <principal-name>system</principal-name>
 </default-principal-name>
</security>

You can set the default-principal-name element to anonymous as follows:

Configuring Security Identities for Resource Adapters

8-8 Programming Resource Adapters for Oracle WebLogic Server

Example 8–6 Setting Up an Anonymous Identity

<security>
 <default-principal-name>
 <use-anonymous-identity>true</use-anonymous-identity>
 </default-principal-name>
</security>

8.4.2 manage-as-principal-name: Identity for Running Management Tasks
You can define a management identity that is used for running various resource
adapter management tasks such as startup, shutdown, testing, shrinking, and
transaction management using the manage-as-principal-name element.

As with default-principal-name, the value of manage-as-principal-name
can be set to a defined WebLogic Server user name such as system or to use an
anonymous identity (which is the equivalent of having no security identity). If you do
not set up a value for the manage-as-principal-name element, it defaults to the
value set up for default-principal-name. If no value is set up for
default-principal-name, it defaults to the anonymous identity.

Example 8–7 illustrates how you can configure a resource adapter to run management
calls using the WebLogic Server-defined user name system.

Example 8–7 Using a Defined WebLogic Server Name

<security>
 <manage-as-principal-name>
 <principal-name>system</principal-name>
 </manage-as-principal-name>
</security>

Example 8–8 illustrates how you can configure a resource adapter to run management
calls using an anonymous identity.

Example 8–8 Setting Up an Anonymous Identity

<security>
 <manage-as-principal-name>
 <use-anonymous-identity>true</use-anonymous-identity>
 </manage-as-principal-name>
</security>

8.4.3 run-as-principal-name: Identity Used for Connection Calls from the Connector
Container into the Resource Adapter

You define the principal name that should be used by all calls from the connector
container into the resource adapter code during connection requests in the
run-as-principal-name element. This principal name is used, for example, when
resource adapter objects such as the ManagedConnectionFactory are instantiated -
in other words, when the WebLogic Server connector container makes calls to the
resource adapter, the identity defined in the run-as-principal-name element is
used. This may include calls as part of either inbound or outbound requests or setup,
or as part of initialization not specific to either inbound or outbound resource adapters
(for example, ResourceAdapter.start()).

The value of the run-as-principal-name element can be set in one of three ways:

■ To a defined WebLogic Server name

Configuring Connection Factory-Specific Authentication and Re-authentication Mechanisms

Security 8-9

■ To use an anonymous identity

■ To use the security identity of the calling code.

If the value of the run-as-principal-name element is not defined, it defaults to the
value of the default-principal-name element. If the
default-principal-name element is not defined, it defaults to the identity of the
requesting caller.

8.4.4 run-work-as-principal-name: Identity Used for Performing Resource Adapter
Management Tasks

For inbound resource adapters, Oracle recommends that you use Work instances to
execute inbound requests. To establish the security identity for Work instances
launched by a resource adapter, you specify this value using the
run-work-as-principal-name element. However, Work instances can also be
created as part of outbound resource adapters to execute outbound requests. If an
adapter does not use Work instances to handle inbound requests, then inbound
requests are either run with no security context established (anonymous) or the
resource adapter can make WebLogic Server-specific calls to authenticate as a
WebLogic Server user. In this case, the WebLogic Server user security context is used.

The value of the run-work-as-principal-name element can be set in one of three
ways:

■ To a defined WebLogic Server name

■ To use an anonymous identity

■ To use the security identity of the calling code

If the value of the run-work-as-principal-name element is not defined, it
defaults to the value of the default-principal-name element. If the
default-principal-name element is not defined, it defaults to the identity of the
requesting caller.

To run work using the requesting caller's identity, you specify the
run-work-as-principal-name element as shown in Example 8–9:

Example 8–9 Using the Requesting Caller's Identity

<security>
 <run-work-as-principal-name>
 <use-caller-identity>true</use-caller-identity>
 </run-work-as-principal-name>
</security>

8.5 Configuring Connection Factory-Specific Authentication and
Re-authentication Mechanisms

You specify authentication and re-authentication mechanisms for a resource adapter in
the J2EE standard resource adapter deployment descriptor, ra.xml. These settings
apply to all outbound connection factories.

■ The authentication-mechanism element specifies an authentication
mechanism to be used by all outbound connection factories.

■ The reauthentication-support element specifies whether outbound
connection factories support re-authentication of existing Managed-Connection

Configuring Connection Factory-Specific Authentication and Re-authentication Mechanisms

8-10 Programming Resource Adapters for Oracle WebLogic Server

instances. This is intended to be the default value for all connection factories of the
resource adapter.

You can override the authentication-mechanism and
reauthentication-support values in the ra.xml deployment descriptor by
specifying them in the weblogic-ra.xml deployment descriptor. Doing so allows
you to apply these settings to a specific connection factory rather than to all connection
factories. See authentication-mechanism and reauthentication-support in Table A–13,
" default-connection-properties subelements".

9

Packaging and Deploying Resource Adapters 9-1

9Packaging and Deploying Resource
Adapters

The following sections describe how to package and deploy resource adapters:

■ Section 9.1, "Packaging Resource Adapters,"

■ Section 9.2, "Deploying Resource Adapters,"

Deploying applications on WebLogic Server is covered in more detail in "Deploying
and Packaging from a Split Development Directory" in Oracle Fusion Middleware
Developing Applications for Oracle WebLogic Server.

9.1 Packaging Resource Adapters
For production and development purposes, Oracle recommends packaging your
assembled resource adapter (RAR) as part of an enterprise application (EAR).

9.1.1 Packaging Directory Structure
A resource adapter is a WebLogic Server component contained in a resource adapter
archive (RAR) within the applications/ directory. The deployment process begins
with the RAR or a deployment directory, both of which contain the compiled resource
adapter interfaces and implementation classes created by the resource adapter
provider. Regardless of whether the compiled classes are stored in a RAR or a
deployment directory, they must reside in subdirectories that match their Java package
structures.

Resource adapters use the same directory format, whether the resource adapter is
packaged in an exploded directory format or as a RAR. A typical directory structure of
a resource adapter is shown in Example 9–1:

Example 9–1 Resource Adapter Directory Structure

/META-INF/ra.xml
/META-INF/weblogic-ra.xml
/META-INF/MANIFEST.MF (optional)
/images/ra.jpg
/readme.html
/eis.jar
/utilities.jar
/windows.dll
/unix.so

Packaging Resource Adapters

9-2 Programming Resource Adapters for Oracle WebLogic Server

9.1.2 Packaging Considerations
The following are packaging requirements for resource adapters:

■ Deployment descriptors (ra.xml and weblogic-ra.xml) must be in a directory
called META-INF.

■ An optional MANIFEST.MF also resides in META-INF. A manifest file is
automatically generated by the JAR tool and is always the first entry in the JAR
file. By default, it is named META-INF/MANIFEST.MF. The manifest file is the
place where any meta-information about the archive is stored.

■ A resource adapter deployed in WebLogic Server supports the class-path entry
in MANIFEST.MF to reference a class or resource such as a property.

■ The resource adapter can contain multiple JARs that contain the Java classes and
interfaces used by the resource adapter. (For example, eis.jar and
utilities.jar.) Ensure that any dependencies of a resource adapter on
platform-specific native libraries are resolved.

■ The resource adapter can contain native libraries required by the resource adapter
for interacting with the EIS. (For example, windows.dll and unix.so.)

■ The resource adapter can include documentation and related files not directly
used by the resource adapter. (For example, readme.html and
/images/ra.jpg.)

■ When a standalone resource adapter RAR is deployed, the resource adapter must
be made available to all J2EE applications in the application server.

■ When a resource adapter RAR packaged within a J2EE application EAR is
deployed, the resource adapter must be made available only to the J2EE
application with which it is packaged. This specification-compliant behavior may
be overridden if required.

9.1.3 Packaging Limitation
If you reload a standalone resource adapter without reloading the client that is using
it, the client may cease to function properly. This limitation is due to the J2CA 1.5
Specification (http://java.sun.com/j2ee/connector/) limitation of not
providing a remotable interface.

9.1.4 Packaging Resource Adapter Archives (RARs)
After you stage one or more resource adapters in a directory, you package them in a
Java Archive (JAR) with a .rar file extension.

To stage and package a resource adapter:

1. Create a temporary staging directory anywhere on your hard drive.

Note: Once you have assembled the resource adapter, Oracle
recommends that you package it as part of an enterprise application.
This allows you to take advantage of the split development directory
structure, which provides a number of benefits over the traditional
single directory structure. See "Creating a Split Development
Directory Environment" in Oracle Fusion Middleware Developing
Applications for Oracle WebLogic Server.

Deploying Resource Adapters

Packaging and Deploying Resource Adapters 9-3

2. Compile or copy the resource adapter Java classes into the staging directory.

3. Create a JAR to store the resource adapter Java classes. Add this JAR to the top
level of the staging directory.

4. Create a META-INF subdirectory in the staging directory.

5. Create an ra.xml deployment descriptor in the META-INF subdirectory and add
entries for the resource adapter.

6. Create a weblogic-ra.xml deployment descriptor in the META-INF
subdirectory and add entries for the resource adapter.

7. When the resource adapter classes and deployment descriptors are set up in the
staging directory, you can create the RAR with a JAR command such as:

jar cvf jar-file.rar -C staging-dir

This command creates a RAR that you can deploy on a WebLogic Server or
package in an enterprise application archive (EAR).

The -C staging-dir option instructs the JAR command to change to the
staging-dir directory so that the directory paths recorded in the JAR are
relative to the directory where you staged the resource adapters.

For more information on this topic, see Section 3.1, "Creating and Configuring
Resource Adapters: Main Steps."

9.2 Deploying Resource Adapters
Deployment of a resource adapter is similar to deployment of Web Applications, EJBs,
and Enterprise Applications. Like these deployment units, you can deploy a resource
adapter in an exploded directory format or as an archive file.

9.2.1 Deployment Options
You can deploy a stand-alone resource adapter (or a resource adapter packaged as part
of an enterprise application) using any one of these tools:

■ WebLogic Server Administration Console

■ weblogic.Deployer tool

■ wldeploy Ant task

■ WebLogic Scripting Tool (WLST)

For information about these application deployment techniques, see "Deploying
Applications and Modules with weblogic.deployer" in Oracle Fusion Middleware
Deploying Applications to Oracle WebLogic Server.

Note: Refer to the following Sun Microsystems documentation for
information on the ra.xml document type definition at
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd.

Note: Refer to Appendix A, "weblogic-ra.xml Schema" for
information on the contents of the weblogic-ra.xml file.

Deploying Resource Adapters

9-4 Programming Resource Adapters for Oracle WebLogic Server

You can use a deployment plan to deploy a resource adapter deployment. For a
resource adapter, a WebLogic Server deployment plan is an optional XML document
that resides outside of the RAR and configures the resource adapter for deployment to
a specific WebLogic Server environment. A deployment plan works by setting
deployment property values that would normally be defined in the resource adapter's
deployment descriptors, or by overriding property values that are already defined in
the deployment descriptors. For information on deployment plans, see "Configuring
Applications for Production Deployment" in Oracle Fusion Middleware Deploying
Applications to Oracle WebLogic Server.

You can also deploy a resource adapter using auto-deployment. This may be useful
during development and early testing. For more information, see "Auto-Deploying
Applications in Development Domains" in Oracle Fusion Middleware Deploying
Applications to Oracle WebLogic Server

9.2.2 Resource Adapter Deployment Names
When you deploy a resource adapter archive (RAR) or deployment directory, you
must specify a name for the deployment unit, for example, myResourceAdapter.
This name provides a shorthand reference to the resource adapter deployment that
you can later use to undeploy or update the resource adapter.

When you deploy a resource adapter, WebLogic Server implicitly assigns a
deployment name that matches the path and filename of the RAR or deployment
directory. You can use this assigned name to undeploy or update the resource adapter
after the server has started.

The resource adapter deployment name remains active in WebLogic Server until the
server is rebooted. Undeploying a resource adapter does not remove the associated
deployment name; you can use the same deployment name to redeploy the resource
adapter at a later time.

9.2.3 Production Redeployment
Using WebLogic Server's production redeployment feature, you can redeploy a new
version of a WebLogic Server application alongside an older version of the same
application. By default, WebLogic Server immediately routes new client requests to the
new version of the application, while routing existing client connections to the older
version. After all clients using the older application version complete their work,
WebLogic Server retires the older application so that only the new application version
is active.

9.2.3.1 Suspendable Interface and Production Redeployment
Typically, a resource adapter bean implements the
javax.resource.spi.ResourceAdapter interface. This interface defines
start() and stop() methods. This type of resource adapter is not eligible for
production redeployment. Resource adapters connect to one or more EISes for
incoming/outgoing communication. All communication is performed in a resource
adapter-proprietary way with no knowledge of the application server. If on-the-fly
production redeployment is attempted, the application server can only provide
notifications to the resource adapter to manage the migration of connections from the
existing resource adapter to a new instance. However, the resource adapter can
implement the Suspendable interface, which provides the capability to allow
resource adapters to participate in production redeployment. For information about
implementing the Suspendable interface, see Section 4.3, "Suspending and
Resuming Resource Adapter Activity."

Deploying Resource Adapters

Packaging and Deploying Resource Adapters 9-5

9.2.3.2 Production Redeployment Requirements
All of the following requirements must be met by both the old and new version of the
resource adapter in order for production redeployment to work; otherwise, the
redeployment fails.

■ The resource adapter must be based on the J2CA 1.5 Specification. (Support for
production redeployment of 1.0 resource adapters is not available.)

■ The resource adapter must implement the Suspendable interface (see
Example 4–3).

■ The resource adapter must be packaged inside an enterprise application (EAR
file). Production redeployment of standalone resource adapters is not supported.

■ The Suspendable.supportsVersioning() method must return true when
invoked by WebLogic Server.

■ The enable-access-outside-app element in the weblogic-ra.xml
descriptor must be set to false.

9.2.3.3 Production Redeployment Process
The following process assumes the older version of the resource adapter is deployed
and running. It also assumes that the older version (named old) as well as the newer
version (named new) of the resource adapter meet all of the requirements mentioned
in Section 9.2.3.2, "Production Redeployment Requirements," as well as the application
requirements described in "Redeploying Applications in a Production Environment" in
Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

The following calls are made into the resource adapters during production
redeployment:

1. WebLogic Server calls new.init(old, null) to inform the new resource
adapter that it is replacing the old resource adapter.

2. WebLogic Server calls old.startVersioning(new, null) to inform the old
resource adapter to start its production redeployment operation with the new
resource adapter.

3. WebLogic Server calls new.start(extendedBootstrapContext). See
Section 4.4, "Extended BootstrapContext".

4. When the old resource adapter is "finished" (meaning it has succeeded in
migrating all clients and inbound connections to the new resource adapter), it calls
(ExtendedBootstrapContext)bsCtx.complete(). This informs WebLogic
Server that it is safe to undeploy the old resource adapter.

5. When undeployment occurs, WebLogic Server calls old.stop() and production
redeployment is complete.

The calls to new.init() and old.startVersioning() give the old and new
resource adapters an opportunity to migrate inbound or outbound communications
from the old to the new resource adapter. How this is done is up to the individual
resource adapter developer.

Deploying Resource Adapters

9-6 Programming Resource Adapters for Oracle WebLogic Server

A

weblogic-ra.xml Schema A-1

Aweblogic-ra.xml Schema

The following sections in this appendix describe the deployment descriptor elements
that can be defined in the WebLogic Server-specific deployment descriptor
weblogic-ra.xml. The schema for weblogic-ra.xml is
http://xmlns.oracle.com/weblogic/weblogic-connector/1.0/weblogic
-connector.xsd. If your resource adapter archive (RAR) does not contain a
weblogic-ra.xml deployment descriptor, WebLogic Server automatically selects the
default values of the deployment descriptor elements.

■ Section A.1, "weblogic-connector"

■ Section A.2, "work-manager"

■ Section A.3, "security"

■ Section A.4, "properties"

■ Section A.5, "admin-objects"

■ Section A.6, "outbound-resource-adapter"

A.1 weblogic-connector
The weblogic-connector element is the root element of the WebLogic-specific
deployment descriptor for the deployed resource adapter. You can define the
following elements within the weblogic-connector element.

Table A–1 weblogic-connector subelements

Element
Required/
Optional Description

native-libdir Required if
native
libraries are
present.

Specifies the directory where all the native
libraries exist that are required by the
resource adapter.

jndi-name Required
only if a
resource
adapter
bean is
specified.

Specifies the JNDI name for the resource
adapter. The resource adapter bean is
registered into the JNDI tree with this
name. It is not a required element if no
resource adapter bean is specified. It is not
a functional element if a JNDI name is
specified for a resource adapter without a
resource adapter bean.

weblogic-connector

A-2 Programming Resource Adapters for Oracle WebLogic Server

enable-access-outside-app Optional As stated by the J2CA 1.5 Specification, if
the resource adapter is packaged within an
application (in other words, within an
EAR), only components within the
application should have access to the
resource adapter. This element allows you
to override this functionality.

Note: This element does not apply for
stand-alone resource adapters.

Default Value: false

Note: When set to false, the resource
adapter can only be accessed by clients that
reside within the same application in which
the resource adapter resides.

For version 1.0 resource adapters
(supported in this release), the default
value for this element is set to true.

enable-global-access-to-
classes

Optional When set to false (default), the resource
adapter allows global access to its classes.

work-manager Optional This complex element is used to specify all
the configurable elements for creating the
Work Manager that will be used by the
resource adapter bean. The work-manager
element is imported from the
weblogic-j2ee.xsd schema.

The Work Manager dynamically adjusts the
number of work threads to avoid deadlocks
and achieve optimal throughput subject to
concurrency constraints. It also meets
objectives for response time goals, shares,
and priorities.

For subelements of work-manager, see
Section A.2, "work-manager."

security Optional This complex element is used to specify all
the security parameters for the operation of
the resource adapter.

See Section A.3, "security," for information
on the security defaults that will be taken
by the connector container.

properties Optional This complex element is used to override
any properties that have been specified for
the resource adapter bean in the ra.xml
file.

For subelements of properties, see
Section A.4, "properties."

Table A–1 (Cont.) weblogic-connector subelements

Element
Required/
Optional Description

weblogic-connector

weblogic-ra.xml Schema A-3

admin-objects Optional This complex element defines all of the
admin objects in a resource adapter. As
with the outbound-resource-adapter
complex element (see Section A.6,
"outbound-resource-adapter"), the
admin-objects complex element has
three hierarchical property levels that
specify the configuration scope:

1. Global level - at this level, you specify
parameters that apply to all admin
objects in the resource adapter; you do
so using the default-properties
element. See default-properties in
Table A–9, " admin-objects
subelements"

2. Group level - at this level, you specify
parameters that apply to all admin
objects belonging to a particular admin
object group specified in the ra.xml
deployment descriptor; you do so
using the admin-object-group
element. The properties specified in
the group override any parameters
that are specified at the global level.
See Section A.5.1,
"admin-object-group"

3. Instance level - Under each admin
object group, you can use the
admin-object-instance element
to specify admin object instances.
These correspond to the admin object
instances for the resource adapter. You
can specify properties at the instance
level and override those properties
provided in the group and global
levels. See Section A.5.1.1,
"admin-object-instance."

For admin-objects subelements, see
Section A.5, "admin-objects.".

Table A–1 (Cont.) weblogic-connector subelements

Element
Required/
Optional Description

work-manager

A-4 Programming Resource Adapters for Oracle WebLogic Server

A.2 work-manager
The work-manager element is a complex element that is used to specify all the
configurable elements for creating the Work Manager that will be used by the resource
adapter bean. The work-manager element is imported from the
weblogic-j2ee.xsd schema. The following subelements can be configured in the
work-manager element.

outbound-resource-adapter Optional This complex element is used to describe
the outbound components of a resource
adapter. As with the admin-objects
complex element, this element has three
hierarchical property levels that specify the
configuration scope for defining outbound
connection pools:

1. Global level - at this level, you specify
parameters that apply to all outbound
connection pools in the resource
adapter using the
default-connection-properties
element. See Section A.6.1,
"default-connection-properties."

2. Group level - at this level, you specify
parameters that apply to all outbound
connections belonging to a particular
connection factory specified in the
ra.xml deployment descriptor using
the
connection-definition-group
element. A one-to-one correspondence
exists from a connection factory in
ra.xml to a connection definition
group in weblogic-ra.xml. The
properties specified in a group
override any parameters specified at
the global level. See Section A.6.2,
"connection-definition-group."

3. The instance level - Under each
connection definition group, you can
specify connection instances. These
correspond to the individual
connection pools for the resource
adapter. Parameters can be specified at
this level too and these override those
provided at the group and global
levels. See Section A.6.2.1,
"connection-instance."

For outbound-resource-adapter
subelements, see Section A.6,
"outbound-resource-adapter.".

Table A–1 (Cont.) weblogic-connector subelements

Element
Required/
Optional Description

work-manager

weblogic-ra.xml Schema A-5

Table A–2 work-manager subelements

Element
Required/
Optional Description

name Required Specifies the name of the Work Manager.

The J2CA 1.5 Specification describes how a
resource adapter can submit work threads to
the application server. These work threads are
managed by the WebLogic Server Work
Manager. The Work Manager dynamically
adjusts the number of work threads to avoid
deadlocks and achieve optimal throughput
subject to concurrency constraints. It also meets
objectives for response time goals, shares, and
priorities.

response-time-request-class
fair-share-request-class
context-request-class
request-class-name

Optional A work-manager element can include one and
only one of the following four elements:

response-time-request-class - Defines
the response time request class for the
application. Response time is defined with
attribute goal-ms in milliseconds. The increment
is ((goal - T) Cr)/R, where T is the average
thread use time, R the arrival rate, and Cr a
coefficient to prioritize response time goals over
fair shares.

fair-share-request-class - Defines the
fair share request class. Fair share is defined
with attribute percentage of default share.
Therefore, the default is 100. The increment is
Cf/(P R T), where P is the percentage, R the
arrival rate, T the average thread use time, and
Cf a coefficient for fair shares to prioritize them
lower than response time goals.

context-request-class - Defines the
context class. Context is defined with multiple
cases mapping contextual information, like
current user or its role, cookie, or work area
fields to named service classes.

request-class-name - Defines the request
class name.

min-threads-constraint
min-threads-constraint-name

Optional You can choose between the following two
elements:

min-threads-constraint - Used to
guarantee a number of threads the server
allocates to requests of the constrained work set
to avoid deadlocks. The default is zero. A
min-threads value of one is useful, for example,
for a replication update request, which is called
synchronously from a peer.

min-threads-constraint-name - Defines a
name for the min-threads-constraint
element.

security

A-6 Programming Resource Adapters for Oracle WebLogic Server

A.3 security
The security complex element contains default security information that can be
configured for the connector container. For more information, see Section 8.4,
"Configuring Security Identities for Resource Adapters."

max-threads-constraint
max-threads-constraint-name

Optional You can choose between the following two
elements:

max-threads-constraint - Limits the
number of concurrent threads executing
requests from the constrained work set. The
default is unlimited. For example, consider a
constraint defined with maximum threads of 10
and shared by 3 entry points. The scheduling
logic ensures that not more than 10 threads are
executing requests from the three entry points
combined.

max-threads-constraint-name - Defines a
name for the max-threads-constraint
element.

capacity
capacity-name

Optional You can choose between the following two
elements:

capacity - Constraints can be defined and
applied to sets of entry points, called
constrained work sets. The server starts
rejecting requests only when the capacity is
reached. The default is zero. Note that the
capacity includes all requests, queued or
executing, from the constrained work set. This
constraint is primarily intended for subsystems
like JMS, which do their own flow control. This
constraint is independent of the global queue
threshold.

capacity-name - Defines a name for the
capacity element.

Table A–3 security subelements

Element
Required/
Optional Description

default-principal-name Optional Specifies the default secure ID to be used for
calls into the resource adapter.

If this value is not specified, the default is the
anonymous identity, which is the same as no
security identity.

See Section A.3.1, "default-principal-name" for
subelements of this element.

Table A–2 (Cont.) work-manager subelements

Element
Required/
Optional Description

security

weblogic-ra.xml Schema A-7

A.3.1 default-principal-name
The default-principal-name element contains the following subelements.

A.3.2 manage-as-principal-name
The manage-as-principal-name element contains the following subelements.

manage-as-principal-name Optional Specifies the secure ID to be used for running
various resource adapter management tasks,
including startup, shutdown, testing, shrinking,
and transaction management.

If not specified, it defaults to the
default-principal-name value. If
default-principal-name is not specified, it
defaults to the anonymous identity.

See Section A.3.2, "manage-as-principal-name"
for subelements of this element.

run-as-principal-name Optional Specifies the secure ID to be used by all calls
from the connector container into the resource
adapter code during connection requests. (This
element currently applies only to outbound
functions.)

If not specified, it defaults to the
default-principal-name value. If
default-principal-name is not specified, it
uses the identity of the requesting caller.

See Section A.3.3, "run-as-principal-name" for
subelements of this element.

run-work-as-principal-name Optional Specifies the secure ID to be used to run all
work instances started by the resource adapter.

If not specified, it defaults to the
default-principal-name value. If
default-principal-name is not specified, it
uses the identity that was used to start the
work.

See Section A.3.4, "run-work-as-principal-name"
for subelements of this element.

Table A–4 default-principal-name subelements

Element
Required/
Optional Description

use-anonymous-identity Required Specifies that the anonymous identity
should be used.

principal-name Required Specifies that the principal name should
be used. This should match a defined
WebLogic Server user name.

Table A–3 (Cont.) security subelements

Element
Required/
Optional Description

properties

A-8 Programming Resource Adapters for Oracle WebLogic Server

A.3.3 run-as-principal-name
The run-as-principal-name element contains the following subelements.

A.3.4 run-work-as-principal-name
The run-work-as-principal-name element contains the following subelements.

A.4 properties
The properties element, a subelement of weblogic-connector, is a container for
properties specified for the resource adapter bean in ra.xml. It holds one more or
more property elements.

You define property elements within the properties element as follows.

Table A–5 manage-as-principal-name subelements

Element
Required/
Optional Description

use-anonymous-identity Required Specifies that the anonymous identity should be
used.

principal-name Required Specifies that the principal name should be used.
This should match a defined WebLogic Server user
name.

Table A–6 run-as-principal-name subelements

Element
Required/
Optional Description

use-anonymous-identity Required Specifies that the anonymous identity should be
used.

principal-name Required Specifies that the principal name should be used.
This should match a defined WebLogic Server user
name.

use-caller-identity Required Specifies that the caller's identity should be used.

Table A–7 run-work-as-principal-name subelements

Element
Required/
Optional Description

use-anonymous-identity Required Specifies that the anonymous identity should be
used.

principal-name Required Specifies that the principal name should be used.
This should match a defined WebLogic Server user
name.

use-caller-identity Required Specifies that the caller's identity should be used.

admin-objects

weblogic-ra.xml Schema A-9

A.5 admin-objects
The admin-objects complex element defines all of the admin objects in the resource
adapter. As with the outbound-resource-adapter complex element, the
admin-objects complex element has three hierarchical property levels that you can
specify.

The admin-objects element is a sub-element of the weblogic-connector
element. You can define the following elements within the admin-objects element.

A.5.1 admin-object-group
The admin-object-group element is used to define an admin object group. At the
group level, you specify parameters that apply to all admin objects belonging to a
particular admin object group specified in the ra.xml deployment descriptor. The
properties specified in the group override any parameters that are specified at the
global level.

The admin-object-interface element (a subelement of the
admin-object-group element) serves as a required unique element (a key) to each
admin-object-group. There must be a one-to-one relationship between the

Table A–8 properties subelements

Element
Required/
Optional Description

property Required The property element is used to override a property that
has been specified for the resource adapter bean in the
ra.xml file.

It holds two subelements:

name - Specifies the same name as the
config-property-name element (a subelement of
config-property in the ra.xml deployment descriptor).
Setting this parameter causes the associated
config-property-value element in ra.xml to be
overridden. This is a required element.

value - Specifies the value that overrides
config-property-value element (a subelement of
config-property in the ra.xml deployment descriptor).
This is an optional element.

Table A–9 admin-objects subelements

Element
Required/
Optional Description

default-properties Optional Specifies the default properties that apply to all admin
objects (at the global level) in the resource adapter.

The default-properties element can contain one or
more property elements, each holding a name and
value pair. See Section A.4, "properties.".

admin-object-group One or
more

Specifies the default parameters that apply to all admin
objects belonging to a particular admin object group
specified in the ra.xml deployment descriptor. The
properties specified in the group override any
parameters that are specified at the global level.

For admin-object-group subelements, see
Section A.5.1, "admin-object-group".

admin-objects

A-10 Programming Resource Adapters for Oracle WebLogic Server

weblogic-ra.xml admin-object-interface element and the ra.xml
adminobject-interface element.

The admin-object-group element is a sub-element of the weblogic-connector
element. You can define the following elements within the admin-object-group
element

A.5.1.1 admin-object-instance
You can define the following subelements under admin-object-instance.

Table A–10 admin-object-group

Element
Required/
Optional Description

admin-object-interface Required The admin-object-interface element serves as a
required unique element (a key) to each
admin-object-group. There must be a one-to-one
relationship between the weblogic-ra.xml
admin-object-interface element and the
ra.xml adminobject-interface element.

default-properties Optional Specifies all the default properties that apply to all
admin objects in this admin object group.

The default-properties element can contain one
or more property elements, each holding a name
and value pair. See Section A.4, "properties.".

admin-object-instance One or
more

Specifies one or more admin object instances within
the admin object group, corresponding to the admin
object instances for the resource adapter. You can
specify properties at the instance level and override
those provided in the group and global levels. For
subelements, see Section A.5.1.1,
"admin-object-instance."

Table A–11 admin-object-instance subelements

Element
Required/
Optional Description

jndi-name / resource-link Required The admin object group that defines the
reference name for the admin object instance.
You can specify the reference name to be the
JNDI name or resource link of the connection
instance.

If the JNDI name is specified (by specifying the
jndi-name element), the connection pool is
bound into a JNDI that clients outside the
application can see.

Note: In order for this to work, the
enable-access-outside-app element must be set to
true.

For resource adapters that do not need to be
externally visible to other applications, you
would specify the resource-link value.

admin-object-properties Optional Defines all the properties that apply to the admin
object instance.

The admin-object-properties element can
contain one or more property elements, each
holding a name and value pair. See Section A.4,
"properties.".

outbound-resource-adapter

weblogic-ra.xml Schema A-11

A.6 outbound-resource-adapter
The outbound-resource-adapter element is a sub-element of the
weblogic-connector element. You can define the following elements within the
outbound-resource-adapter element.

A.6.1 default-connection-properties
The default-connection-properties element is a sub-element of the
outbound-resource-adapter element. You can define the following elements
within the default-connection-properties element.

Table A–12 outbound-resource-adapter subelements

Element
Required/
Optional Description

default-connection-properties Optional This complex element is used to specify
the properties at an global level. At this
level, the user is able to specify
parameters that apply to all outbound
connection pools in the resource adapter.

For subelements, see Section A.6.1,
"default-connection-properties."

connection-definition-group One or
more

This element is used to specify all the
connection definition groups. There must
be a one-to-one correspondence
relationship between the connection
factories in the ra.xml deployment
descriptor and the groups in the
weblogic-ra.xml deployment
descriptor. A group does not have to exist
in the weblogic-ra.xml deployment
descriptor for every connection factory in
ra.xml. However, if a group exists, there
must be at least one connection instance
in the group.

The properties specified in the group
override any parameters that are specified
at the global level using
default-connection-properties.

For subelements, see Section A.6.2,
"connection-definition-group."

Table A–13 default-connection-properties subelements

Element
Required/
Optional Description

pool-params Optional Serves as the root element for providing
connection pool-specific parameters for this
connection factory. WebLogic Server uses these
specifications to control the behavior of the
maintained pool of ManagedConnections.

This is an optional element. Failure to specify this
element or any of its specific element items results
in default values being assigned. Refer to the
description of each individual element for the
designated default value.

For subelements, see Section A.6.1.1,
"pool-params."

outbound-resource-adapter

A-12 Programming Resource Adapters for Oracle WebLogic Server

A.6.1.1 pool-params
The pool-params element is a sub-element of the
default-connection-properties element. You can define the following
elements within the pool-params element.

logging Optional Contains parameters for configuring logging of the
ManagedConnectionFactory and
ManagedConnection objects of the resource
adapter.

For subelements, see Section A.6.1.2, "logging."

transaction-support Optional Specifies the level of transaction support for a
particular Connection Factory. It provides the
ability to override the transaction-support value
specified in the ra.xml deployment descriptor
that is intended to be the default value for all
Connection Factories of the resource adapter.

The value of transaction-support must be one of
the following:

NoTransaction
LocalTransaction
XATransaction

For related information, see Chapter 5,
"Connection Management."

authentication-mechanism Optional The authentication-mechanism element
specifies an authentication mechanism supported
by a particular Connection Factory in the resource
adapter. It provides the ability to override the
authentication-mechanism value specified in
the ra.xml deployment descriptor that is
intended to be the default value for all Connection
Factories of the resource adapter.

Note that BasicPassword mechanism type
should support the
javax.resource.spi.security.PasswordC
redential interface.

reauthentication-support Optional A Boolean that specifies whether a particular
connection factory supports re-authentication of an
existing ManagedConnection instance. It
provides the ability to override the
reauthentication-support value specified in
the ra.xml deployment descriptor that is
intended to be the default value for all Connection
Factories of the resource adapter.

properties Optional The properties element includes one or more
property elements, which define name and value
subelements that apply to the default connections.

res-auth Optional Specifies whether to use container- or
application-managed security. The values for this
element can be one of Application or
Container. The default value is Container.

Table A–13 (Cont.) default-connection-properties subelements

Element
Required/
Optional Description

outbound-resource-adapter

weblogic-ra.xml Schema A-13

Table A–14 pool-params subelements

Element
Required/
Optional Description

initial-capacity Optional Specifies the initial number of
ManagedConnections, which WebLogic
Server attempts to create during
deployment.

Default Value: 1

max-capacity Optional Specifies the maximum number of
ManagedConnections, which WebLogic
Server will allow. Requests for newly
allocated ManagedConnections beyond
this limit results in a
ResourceAllocationException
being returned to the caller.

Default Value: 10

capacity-increment Optional Specifies the maximum number of
additional ManagedConnections that
WebLogic Server attempts to create
during resizing of the maintained
connection pool.

Default Value: 1

shrinking-enabled Optional Specifies whether unused
ManagedConnections will be destroyed
and removed from the connection pool
as a means to control system resources.

Default Value: true

shrink-frequency-seconds Optional Specifies the amount of time (in seconds)
the Connection Pool Management waits
between attempts to destroy unused
ManagedConnections.

Default Value: 900 seconds

highest-num-waiters Optional Specifies the maximum number of
threads that can concurrently block
waiting to reserve a connection from the
pool.

Default Value: 0

highest-num-unavailable Optional Specifies the maximum number of
ManagedConnections in the pool that
can be made unavailable to the
application for purposes such as
refreshing the connection.

Note that in cases like the backend
system being unavailable, this specified
value could be exceeded due to factors
outside the pool's control.

Default Value: 0

connection-creation-retry-
frequency-seconds

Optional The periodicity of retry attempts by the
pool to create connections.

Default Value: 0

outbound-resource-adapter

A-14 Programming Resource Adapters for Oracle WebLogic Server

A.6.1.2 logging
The logging element is a sub-element of the default-connection-properties
element. You can define the following elements within the logging element.

connection-reserve-timeout-seconds Optional Sets the number of seconds after which
the call to reserve a connection from the
pool will timeout.

Default Value: -1 (do not block when
reserving resources)

test-frequency-seconds Optional The frequency with which connections
in the pool are tested.

Default Value: 0

test-connections-on-create Optional Enables the testing of newly created
connections.

Default Value: false

test-connections-on-release Optional Enables testing of connections when
they are being released back into the
pool.

Default Value: false

test-connections-on-reserve Optional Enables testing of connections when
they are being reserved.

Default Value: false

profile-harvest-frequency-seconds Optional Specifies how frequently the profile for
the connection pool is being harvested.

ignore-in-use-connections-enabled Optional When the connection pool is being shut
down, this element is used to specify
whether it is acceptable to ignore
connections that are in use at that time.

match-connections-supported Optional Indicates whether the resource adapter
supports the
ManagedConnectionFactory.match
ManagedConnections() method. If
the resource adapter does not support
this method (always returns null for this
method), then WebLogic Server
bypasses this method call during a
connection request.

Default Value: true

Table A–15 logging subelements

Element
Required/
Optional Description

log-filename Optional Specifies the name of the log file from which
output generated from the
ManagedConnectionFactory or a
ManagedConnection is sent.

The full address of the filename is required.

Table A–14 (Cont.) pool-params subelements

Element
Required/
Optional Description

outbound-resource-adapter

weblogic-ra.xml Schema A-15

logging-enabled Optional Indicates whether or not the log writer is set for
either the ManagedConnectionFactory or
ManagedConnection. If this element is set to
true, output generated from either the
ManagedConnectionFactory or
ManagedConnection will be sent to the file
specified by the log-filename element.

Default Value: false

rotation-type Optional Sets the file rotation type.

Possible values are bySize, byName, none

bySize - When the log file reaches the size that
you specify in file-size-limit, the server
renames the file as FileName.n.

byName - At each time interval that you specify in
file-time-span, the server renames the file as
FileName.n. After the server renames a file,
subsequent messages accumulate in a new file
with the name that you specified in
log-filename.

none - Messages accumulate in a single file. You
must erase the contents of the file if the log size
becomes unwieldy.

Default Value: bySize

number-of-files-limited Optional Specifies whether to limit the number of files that
this server instance creates to store old log
messages. (Requires that you specify a
rotation-type of bySize). After the server reaches
this limit, it overwrites the oldest file. If you do
not enable this option, the server creates new files
indefinitely and you must clean up these files as
you require.

If you enable number-of-files-limited by
setting it to true, the server refers to your
rotationType variable to determine how to
rotate the log file. Rotate means that you override
your existing file instead of creating a new file. If
you specify false for
number-of-files-limited, the server creates
numerous log files rather than overriding the
same one.

Default Value: false

file-count Optional The maximum number of log files that the server
creates when it rotates the log. This number does
not include the file that the server uses to store
current messages. (Requires that you enable
number-of-files-limited.)

Default Value: 7

Table A–15 (Cont.) logging subelements

Element
Required/
Optional Description

outbound-resource-adapter

A-16 Programming Resource Adapters for Oracle WebLogic Server

A.6.2 connection-definition-group
The connection-definition-group element is used to define a connection
definition group. At the group level, you specify parameters that apply to all
outbound connections belonging to a particular connection factory specified in the
ra.xml deployment descriptor using the connection-definition-group
element. A one-to-one correspondence exists from a connection factory in ra.xml to a
connection definition group in weblogic-ra.xml. The properties specified in a
group override any parameters specified at the global level.

The connection-factory-interface element (a subelement of the
connection-definition-group element) serves as a required unique element (a
key) to each connection-definition-group. There must be a one-to-one
relationship between the weblogic-ra.xml
connection-definition-interface element and the ra.xml
connectiondefinition-interface element.

The connection-definition-group element is a sub-element of the
outbound-resource-adapter element. You can define the following elements
within the connection-definition-group element.

file-size-limit Optional The size that triggers the server to move log
messages to a separate file. (Requires that you
specify a rotation-type of bySize.) After the log
file reaches the specified minimum size, the next
time the server checks the file size, it will rename
the current log file as FileName.n and create a
new one to store subsequent messages.

Default Value: 500

rotate-log-on-startup Optional Specifies whether a server rotates its log file
during its startup cycle.

Default Value: true

log-file-rotation-dir Optional Specifies the directory path where the rotated log
files will be stored.

rotation-time Optional The start time for a time-based rotation sequence
of the log file, in the format k:mm, where k is 1-24.
(Requires that you specify a rotation-type of
byTime.) At the specified time, the server renames
the current log file. Thereafter, the server renames
the log file at an interval that you specify in
file-time-span.

If the specified time has already past, then the
server starts its file rotation immediately.

By default, the rotation cycle begins immediately.

file-time-span Optional The interval (in hours) at which the server saves
old log messages to another file. (Requires that
you specify a rotation-type of byTime.)

Default Value: 24

Table A–15 (Cont.) logging subelements

Element
Required/
Optional Description

outbound-resource-adapter

weblogic-ra.xml Schema A-17

A.6.2.1 connection-instance
You can define the following subelements under connection-instance.

Post-conversion note: handle the x-refs to table.

Table A–16 connection-definition-group subelements

Element Description

connection-factory-interface Every connection definition group has a key (a
required unique element). This key is the
connection-factory-interface.

The value specified for
connection-factory-interface must be
equal to the value specified for
connection-factory-interface in ra.xml.

default-connection-properties This complex element is used to define properties for
outbound connections at the group level.

See Section A.6.1, "default-connection-properties."

connection-instance Under each connection definition group, the user can
specify connection instances. These correspond to the
individual connection pools for the resource adapter.
Parameters can be specified at this level too and
these override those provided in the group and
global levels.

This element specifies a description of the connection
pool. (A connection instance is equivalent to a
connection pool.) It is used to document the
connection pool.

See Section A.6.2.1, "connection-instance."

Table A–17 connection-instance subelements

Element
Required/
Optional Description

description Optional Specifies a description of the connection instance.

jndi-name
resource-link

Required The connection definition group that defines the
reference name for the connection instance. The
reference name can be a JNDI name or a resource
link.

connection-properties Optional Defines all the properties that apply to the
connection instance.

The connection-properties element can
contain one or more property elements, each
holding a name and value pair. See Section A.4,
"properties.".

outbound-resource-adapter

A-18 Programming Resource Adapters for Oracle WebLogic Server

B

Resource Adapter Best Practices B-1

BResource Adapter Best Practices

This appendix describes some best practices for resource adapter developers.

■ Classloading Optimizations for Resource Adapters

■ Connection Optimizations

■ Thread Management

■ InteractionSpec Interface

B.1 Classloading Optimizations for Resource Adapters
You can package resource adapter classes in one or more JAR files, and then place the
JAR files in the RAR file. These are called nested JARs. When you nest JAR files in the
RAR file, and classes need to be loaded by the classloader, the JARs within the RAR
file must be opened and closed and iterated through for each class that must be
loaded.

If there are very few JARs in the RAR file and if the JARs are relatively small in size,
there will be no significant performance impact. On the other hand, if there are many
JARs and the JARs are large in size, the performance impact can be great.

To avoid such performance issues, you can do either of the following:

1. Deploy the resource adapter in an exploded format. This eliminates the nesting of
JARs and hence reduces the performance hit involved in looking for classes.

2. If deploying the resource adapter in exploded format is not an option, the JARs
can be exploded within the RAR file. This also eliminates the nesting of JARs and
thus improves the performance of classloading significantly.

B.2 Connection Optimizations
Oracle recommends that resource adapters implement the optional enhancements
described in sections 7.14.2 and 7.14.2 of the J2CA 1.5 Specification. Implementing
these interfaces allows WebLogic Server to provide several features that will not be
available without them.

Lazy Connection Association, as described in section 7.14.1, allows the server to
automatically clean up unused connections and prevent applications from hogging
resources. Lazy Transaction Enlistment, as described in 7.14.2, allows applications to
start a transaction after a connection is already opened.

Thread Management

B-2 Programming Resource Adapters for Oracle WebLogic Server

B.3 Thread Management
Resource adapter implementations should use the WorkManager (as described in
Chapter 10, "Work Management" in the J2CA 1.5 Specification, at
http://java.sun.com/j2ee/connector/) to launch operations that need to run
in a new thread, rather than creating new threads directly. This allows WebLogic
Server to manage and monitor these threads.

B.4 InteractionSpec Interface
WebLogic Server supports the Common Client Interface (CCI) for EIS access, as
defined in Chapter 15, "Common Client Interface" in the J2CA 1.5 Specification, at
http://java.sun.com/j2ee/connector/. The CCI defines a standard client API
for application components that enables application components and EAI frameworks
to drive interactions across heterogeneous EISes.

As a best practice, you should not store the InteractionSpec class that the CCI
resource adapter is required to implement in the RAR file. Instead, you should
package it in a separate JAR file outside of the RAR file, so that the client can access it
without having to put the InteractionSpec interface class in the generic
CLASSPATH.

With respect to the InteractionSpec interface, it is important to note that when all
application components (EJBs, resource adapters, Web applications) are packaged in
an EAR file, all common classes can be placed in the APP-INF/lib directory. This is
the easiest possible scenario.

This is not the case for standalone resource adapters (packaged as RAR files). If the
interface is serializable (as is the case with InteractionSpec), then both the client
and the resource adapter need access to the InteractionSpec interface as well as
the implementation classes. However, if the interface extends java.io.Remote, then
the client only needs access to the interface class.

	Contents
	1 Introduction and Roadmap
	2 Understanding Resource Adapters
	3 Creating and Configuring Resource Adapters
	4 Programming Tasks
	5 Connection Management
	6 Transaction Management
	7 Message and Transactional Inflow
	8 Security
	9 Packaging and Deploying Resource Adapters
	A weblogic-ra.xml Schema
	B Resource Adapter Best Practices
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 Examples for the Resource Adapter Developer
	1.5 New and Changed Features in This Release

	2 Understanding Resource Adapters
	2.1 Overview of Resource Adapters
	2.1.1 Comparing WebLogic Server and WebLogic Integration Resource Adapters
	2.1.2 Inbound, Outbound, and Bidirectional Resource Adapters
	2.1.3 Comparing 1.0 and 1.5 Resource Adapters

	2.2 J2EE Connector Architecture
	2.2.1 J2EE Architecture Diagram and Components
	2.2.2 System-Level Contracts

	2.3 Resource Adapter Deployment Descriptors

	3 Creating and Configuring Resource Adapters
	3.1 Creating and Configuring Resource Adapters: Main Steps
	3.2 Modifying an Existing Resource Adapter
	3.3 Configuring the ra.xml File
	3.4 Configuring the weblogic-ra.xml File
	3.4.1 Editing Resource Adapter Deployment Descriptors
	3.4.1.1 Editing Considerations
	3.4.1.2 Schema Header Information
	3.4.1.3 Conforming Deployment Descriptor Files to Schema

	3.4.2 Dynamic Descriptor Updates: Console Configuration Tabs
	3.4.2.1 Dynamic Pool Parameters
	3.4.2.2 Dynamic Logging Parameters

	3.4.3 Automatic Generation of the weblogic-ra.xml File
	3.4.4 (Deprecated) Configuring the Link-Ref Mechanism

	4 Programming Tasks
	4.1 Required Classes for Resource Adapters
	4.2 Programming a Resource Adapter to Perform as a Startup Class
	4.3 Suspending and Resuming Resource Adapter Activity
	4.4 Extended BootstrapContext
	4.4.1 Diagnostic Context ID
	4.4.2 Dye Bits
	4.4.3 Callback Capabilities

	5 Connection Management
	5.1 Connection Management Contract
	5.1.1 Connection Factory and Connection
	5.1.2 Resource Adapters Bound in JNDI Tree
	5.1.3 Obtaining the ConnectionFactory (Client-JNDI Interaction)

	5.2 Configuring Outbound Connections
	5.2.1 Connection Pool Configuration Levels
	5.2.2 Multiple Outbound Connections Example

	5.3 Configuring Inbound Connections
	5.4 Configuring Connection Pool Parameters
	5.4.1 initial-capacity: Setting the Initial Number of ManagedConnections
	5.4.2 max-capacity: Setting the Maximum Number of ManagedConnections
	5.4.3 capacity-increment: Controlling the Number of ManagedConnections
	5.4.4 shrinking-enabled: Controlling System Resource Usage
	5.4.5 shrink-frequency-seconds: Setting the Wait Time Between Attempts to Reclaim Unused ManagedConnections
	5.4.6 highest-num-waiters: Controlling the Number of Clients Waiting for a Connection
	5.4.7 highest-num-unavailable: Controlling the Number of Unavailable Connections
	5.4.8 connection-creation-retry-frequency-seconds: Recreating Connections
	5.4.9 match-connections-supported: Matching Connections
	5.4.10 test-frequency-seconds: Testing the Viability of Connections
	5.4.11 test-connections-on-create: Testing Connections upon Creation
	5.4.12 test-connections-on-release: Testing Connections upon Release to Connection Pool
	5.4.13 test-connections-on-reserve: Testing Connections upon Reservation

	5.5 Connection Proxy Wrapper - 1.0 Resource Adapters
	5.5.1 Possible ClassCastException
	5.5.2 Turning Proxy Generation On and Off

	5.6 Testing Connections
	5.6.1 Configuring Connection Testing
	5.6.2 Testing Connections in the Administration Console

	6 Transaction Management
	6.1 Supported Transaction Levels
	6.1.1 XA Transaction Support
	6.1.2 Local Transaction Support
	6.1.3 No Transaction Support

	6.2 Configuring Transaction Levels
	6.2.1 Configure XA Transaction Recovery Credential Mapping

	7 Message and Transactional Inflow
	7.1 Overview of Message and Transactional Inflow
	7.1.1 Architecture Components
	7.1.2 Inbound Communication Scenario

	7.2 How Message Inflow Works
	7.2.1 Handling Inbound Messages
	7.2.2 Proprietary Communications Channel and Protocol

	7.3 Message Inflow to Message Endpoints (Message-driven Beans)
	7.3.1 Deployment-Time Binding Between an MDB and a Resource Adapter
	7.3.1.1 Binding an MDB and a Resource Adapter

	7.3.2 Dispatching a Message
	7.3.3 Activation Specifications
	7.3.4 Administered Objects

	7.4 Transactional Inflow
	7.4.1 Using the Transactional Inflow Model for Locally Managed Transactions

	7.5 @LongRunning

	8 Security
	8.1 Container-Managed and Application-Managed Sign-on
	8.1.1 Application-Managed Sign-on
	8.1.2 Container-Managed Sign-on

	8.2 Password Credential Mapping
	8.2.1 Authentication Mechanisms
	8.2.2 Credential Mappings
	8.2.2.1 Non-initial Connection: Requires ManagedConnection from Adapter Upon Application's Request
	8.2.2.2 Initial Connection: Requires a ManagedConnection from Adapter Without Application's Request
	8.2.2.3 Special Users

	8.2.3 Creating Credential Mappings Using the Console

	8.3 Security Policy Processing
	8.4 Configuring Security Identities for Resource Adapters
	8.4.1 default-principal-name: Default Identity
	8.4.2 manage-as-principal-name: Identity for Running Management Tasks
	8.4.3 run-as-principal-name: Identity Used for Connection Calls from the Connector Container into the Resource Adapter
	8.4.4 run-work-as-principal-name: Identity Used for Performing Resource Adapter Management Tasks

	8.5 Configuring Connection Factory-Specific Authentication and Re-authentication Mechanisms

	9 Packaging and Deploying Resource Adapters
	9.1 Packaging Resource Adapters
	9.1.1 Packaging Directory Structure
	9.1.2 Packaging Considerations
	9.1.3 Packaging Limitation
	9.1.4 Packaging Resource Adapter Archives (RARs)

	9.2 Deploying Resource Adapters
	9.2.1 Deployment Options
	9.2.2 Resource Adapter Deployment Names
	9.2.3 Production Redeployment
	9.2.3.1 Suspendable Interface and Production Redeployment
	9.2.3.2 Production Redeployment Requirements
	9.2.3.3 Production Redeployment Process

	A weblogic-ra.xml Schema
	A.1 weblogic-connector
	A.2 work-manager
	A.3 security
	A.3.1 default-principal-name
	A.3.2 manage-as-principal-name
	A.3.3 run-as-principal-name
	A.3.4 run-work-as-principal-name

	A.4 properties
	A.5 admin-objects
	A.5.1 admin-object-group
	A.5.1.1 admin-object-instance

	A.6 outbound-resource-adapter
	A.6.1 default-connection-properties
	A.6.1.1 pool-params
	A.6.1.2 logging

	A.6.2 connection-definition-group
	A.6.2.1 connection-instance

	B Resource Adapter Best Practices
	B.1 Classloading Optimizations for Resource Adapters
	B.2 Connection Optimizations
	B.3 Thread Management
	B.4 InteractionSpec Interface

