

Oracle® Fusion Middleware
Securing Oracle WebLogic Server

11g Release 1 (10.3.1)

E13707-01

May 2009

This document explains how to configure WebLogic Server
security, including settings for security realms, providers,
identity and trust, SSL, and Compatibility security.

Oracle Fusion Middleware Securing Oracle WebLogic Server, 11g Release 1 (10.3.1)

E13707-01

Copyright © 2007, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Documentation Accessibility ... xi
Conventions ... xi

1 Introduction and Roadmap

1.1 Document Scope.. 1-1
1.2 Document Audience... 1-1
1.3 Guide to This Document.. 1-2
1.4 Related Information.. 1-3
1.5 Security Samples and Tutorials .. 1-4
1.5.1 Security Examples in the WebLogic Server Distribution... 1-4
1.6 New and Changed Security Features... 1-4

2 Overview of Security Management

2.1 Security Realms in WebLogic Server ... 2-1
2.2 Security Providers... 2-2
2.3 Security Policies and WebLogic Resources ... 2-4
2.3.1 WebLogic Resources ... 2-4
2.3.2 Deployment Descriptors and the WebLogic Server Administration Console............ 2-5
2.4 The Default Security Configuration in WebLogic Server ... 2-5
2.5 Configuring WebLogic Security: Main Steps.. 2-6
2.6 Methods of Configuring Security ... 2-7
2.7 What Is Compatibility Security?... 2-8
2.7.1 Management Tasks Available in Compatibility Security .. 2-8

3 Customizing the Default Security Configuration

3.1 Why Customize the Default Security Configuration?... 3-1
3.2 Before You Create a New Security Realm... 3-2
3.3 Creating and Configuring a New Security Realm: Main Steps.. 3-2

4 Configuring WebLogic Security Providers

4.1 When Do You Need to Configure a Security Provider? ... 4-1
4.2 Reordering Security Providers.. 4-2
4.3 Configuring an Authorization Provider.. 4-2

iv

4.4 Configuring the WebLogic Adjudication Provider ... 4-3
4.5 Configuring a Role Mapping Provider .. 4-3
4.6 Configuring the WebLogic Auditing Provider... 4-4
4.6.1 Auditing ContextHandler Elements ... 4-6
4.6.2 Enabling Configuration Auditing ... 4-8
4.6.3 Configuration Auditing Messages .. 4-9
4.6.4 Audit Events and Auditing Providers... 4-11
4.7 Configuring a WebLogic Credential Mapping Provider ... 4-12
4.8 Configuring a PKI Credential Mapping Provider... 4-13
4.8.1 PKI Credential Mapper Attributes... 4-13
4.8.2 Credential Actions .. 4-13
4.9 Configuring a SAML Credential Mapping Provider for SAML 1.1 4-14
4.9.1 Configuring Assertion Lifetime.. 4-14
4.9.2 Relying Party Registry ... 4-15
4.10 Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0 4-15
4.10.1 SAML 2.0 Credential Mapping Provider Attributes ... 4-16
4.10.2 Service Provider Partners .. 4-16
4.10.2.1 Partner Lookup Strings Required for Web Service Partners............................... 4-17
4.10.2.1.1 Lookup String Syntax .. 4-17
4.10.2.1.2 Specifying Default Partners .. 4-18
4.10.2.2 Management of Partner Certificates ... 4-18
4.10.2.3 Java Interface for Configuring Service Provider Partner Attributes.................. 4-19
4.11 Configuring the Certificate Lookup and Validation Framework 4-19
4.11.1 CertPath Provider ... 4-20
4.11.2 Certificate Registry ... 4-20
4.12 Configuring a WebLogic Keystore Provider.. 4-20

5 Configuring Authentication Providers

5.1 Choosing an Authentication Provider ... 5-1
5.2 Using More Than One Authentication Provider.. 5-2
5.2.1 Setting the JAAS Control Flag Option .. 5-3
5.2.2 Changing the Order of Authentication Providers .. 5-3
5.3 Configuring the Default Authentication Provider... 5-3
5.4 Configuring LDAP Authentication Providers.. 5-4
5.4.1 Requirements for Using an LDAP Authentication Provider .. 5-5
5.4.2 Configuring an LDAP Authentication Provider: Main Steps 5-5
5.4.3 Accessing Other LDAP Servers ... 5-6
5.4.4 Dynamic Groups and WebLogic Server... 5-6
5.4.5 Configuring Users and Groups in the Oracle Internet Directory and Oracle Virtual

Directory Authentication Providers.. 5-6
5.4.5.1 Configuring User and Group Name Types .. 5-7
5.4.5.1.1 Changing the User Name Attribute Type.. 5-7
5.4.5.1.2 Changing the Group Name Attribute Type .. 5-8
5.4.5.2 Configuring Static Groups .. 5-8
5.4.6 Configuring Failover for LDAP Authentication Providers ... 5-9
5.4.6.1 LDAP Failover Example 1 .. 5-10
5.4.6.2 LDAP Failover Example 2 .. 5-10

v

5.4.7 Improving the Performance of WebLogic and LDAP Authentication Providers ... 5-10
5.4.7.1 Optimizing the Group Membership Caches ... 5-11
5.4.7.2 Configuring Dynamic Groups in the iPlanet Authentication Provider

to Improve Performance... 5-12
5.4.7.3 Optimizing the Principal Validator Cache... 5-12
5.4.7.4 Configuring the Active Directory Authentication Provider to Improve

Performance ... 5-13
5.5 Configuring RDBMS Authentication Providers.. 5-13
5.5.1 Common RDBMS Authentication Provider Attributes .. 5-14
5.5.1.1 Data Source Attribute ... 5-14
5.5.1.2 Group Searching Attributes ... 5-14
5.5.1.3 Group Caching Attributes.. 5-14
5.5.2 Configuring the SQL Authentication Provider .. 5-14
5.5.2.1 Password Attributes.. 5-14
5.5.2.2 SQL Statement Attributes... 5-15
5.5.3 Configuring the Read-Only SQL Authenticator .. 5-15
5.5.4 Configuring the Custom DBMS Authenticator.. 5-15
5.5.4.1 Plug-In Class Attributes ... 5-15
5.6 Configuring a Windows NT Authentication Provider... 5-15
5.6.1 Domain Controller Settings... 5-16
5.6.2 LogonType Setting.. 5-17
5.6.3 UPN Names Settings.. 5-17
5.7 Configuring the SAML Authentication Provider.. 5-17
5.8 Configuring the Password Validation Provider.. 5-18
5.8.1 Password Composition Rules for the Password Validation Provider...................... 5-19
5.8.2 Using the Password Validation Provider with the Default Authentication

Provider.. 5-20
5.8.3 Using WLST to Create and Configure the Password Validation Provider.............. 5-21
5.8.3.1 Creating an Instance of the Password Validation Provider 5-21
5.8.3.2 Specifying the Password Composition Rules.. 5-22
5.9 Configuring Identity Assertion Providers ... 5-22
5.9.1 How an LDAP X509 Identity Assertion Provider Works ... 5-24
5.9.2 Configuring an LDAP X509 Identity Assertion Provider: Main Steps 5-24
5.9.3 Configuring a Negotiate Identity Assertion Provider... 5-25
5.9.4 Configuring a SAML Identity Assertion Provider for SAML 1.1 5-26
5.9.4.1 Asserting Party Registry... 5-26
5.9.4.2 Certificate Registry .. 5-26
5.9.5 Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0 5-27
5.9.5.1 Identity Provider Partners.. 5-27
5.9.5.1.1 Partner Lookup Strings Required for Web Service Partners 5-28
5.9.5.1.2 Management of Partner Certificates.. 5-30
5.9.5.1.3 Java Interface for Configuring Identity Provider Partner Attributes 5-31
5.9.6 Ordering of Identity Assertion for Servlets .. 5-31
5.9.7 Configuring Identity Assertion Performance in the Server Cache............................ 5-32
5.9.8 Configuring a User Name Mapper .. 5-32
5.9.9 Configuring a Custom User Name Mapper ... 5-33

vi

6 Configuring Single Sign-On with Microsoft Clients

6.1 Overview of Single Sign-On with Microsoft Clients ... 6-1
6.2 System Requirements for SSO with Microsoft Clients .. 6-1
6.3 Single Sign-On with Microsoft Clients: Main Steps... 6-2
6.4 Configuring Your Network Domain to Use Kerberos .. 6-3
6.5 Creating a Kerberos Identification for WebLogic Server .. 6-4
6.6 Configuring Microsoft Clients to Use Windows Integrated Authentication..................... 6-5
6.6.1 Configuring a .NET Web Service .. 6-6
6.6.2 Configuring an Internet Explorer Browser .. 6-6
6.6.2.1 Configure Local Intranet Domains .. 6-6
6.6.2.2 Configure Intranet Authentication .. 6-6
6.6.2.3 Verify the Proxy Settings... 6-7
6.6.2.4 Set Integrated Authentication for Internet Explorer 6.0 ... 6-7
6.6.3 Configuring a Mozilla Firefox Browser.. 6-7
6.7 Creating a JAAS Login File.. 6-7
6.8 Configuring the Identity Assertion Provider.. 6-8
6.9 Using Startup Arguments for Kerberos Authentication with WebLogic Server............... 6-8
6.10 Verifying Configuration of SSO with Microsoft Clients ... 6-9

7 Configuring Single Sign-On with Web Browsers and HTTP Clients

7.1 Configuring SAML 1.1 Services.. 7-1
7.1.1 Enabling Single Sign-on with SAML 1.1: Main Steps... 7-2
7.1.1.1 Configuring a Source Site: Main Steps .. 7-2
7.1.1.2 Configuring a Destination Site: Main Steps.. 7-2
7.1.2 Configuring a SAML 1.1 Source Site for Single Sign-On ... 7-2
7.1.2.1 Configure the SAML 1.1 Credential Mapping Provider... 7-2
7.1.2.2 Configure the Source Site Federation Services... 7-3
7.1.2.3 Configure Relying Parties ... 7-3
7.1.2.3.1 Configure Supported Profiles.. 7-3
7.1.2.3.2 Assertion Consumer Parameters .. 7-4
7.1.2.4 Replacing the Default Assertion Store... 7-4
7.1.3 Configuring a SAML 1.1 Destination Site for Single Sign-On 7-4
7.1.3.1 Configure SAML Identity Assertion Provider ... 7-4
7.1.3.2 Configure Destination Site Federation Services... 7-4
7.1.3.2.1 Enable the SAML Destination Site.. 7-4
7.1.3.2.2 Set Assertion Consumer URIs ... 7-4
7.1.3.2.3 Configure SSL for the Assertion Consumer Service .. 7-5
7.1.3.2.4 Add SSL Client Identity Certificate .. 7-5
7.1.3.2.5 Configure Single-Use Policy and the Used Assertion Cache or Custom

Assertion Cache ... 7-5
7.1.3.2.6 Configure Recipient Check for POST Profile .. 7-5
7.1.3.3 Configuring Asserting Parties .. 7-5
7.1.3.3.1 Configure Supported Profiles.. 7-5
7.1.3.3.2 Configure Source Site ITS Parameters.. 7-5
7.1.4 Configuring Relying and Asserting Parties with WLST.. 7-5
7.2 Configuring SAML 2.0 Services.. 7-6
7.2.1 Configuring SAML 2.0 Services: Main Steps ... 7-6

vii

7.2.2 Configuring SAML 2.0 General Services.. 7-8
7.2.2.1 About SAML 2.0 General Services ... 7-8
7.2.2.2 Publishing and Distributing the Metadata File.. 7-9
7.2.3 Configuring an Identity Provider Site for SAML 2.0 Single Sign-On 7-10
7.2.3.1 Configure the SAML 2.0 Credential Mapping Provider...................................... 7-10
7.2.3.2 Configure SAML 2.0 Identity Provider Services... 7-10
7.2.3.2.1 Enable the SAML 2.0 Identity Provider Site... 7-11
7.2.3.2.2 Specify a Custom Login Web Application ... 7-11
7.2.3.2.3 Enable Binding Types ... 7-11
7.2.3.2.4 Publish Your Site's Metadata File .. 7-11
7.2.3.3 Create and Configure Web Single Sign-On Service Provider Partners 7-11
7.2.3.3.1 Obtain Your Service Provider Partner's Metadata File................................. 7-11
7.2.3.3.2 Create Partner and Enable Interactions ... 7-11
7.2.3.3.3 Configure How Assertions are Generated ... 7-12
7.2.3.3.4 Configure How Documents Are Signed ... 7-12
7.2.3.3.5 Configure Artifact Binding and Transport Settings...................................... 7-13
7.2.4 Configuring a Service Provider Site for SAML 2.0 Single Sign-On........................... 7-13
7.2.4.1 Configure the SAML 2.0 Identity Assertion Provider.. 7-13
7.2.4.2 Configure the SAML Authentication Provider ... 7-13
7.2.4.3 Configure SAML 2.0 General Services ... 7-14
7.2.4.4 Configure SAML 2.0 Service Provider Services .. 7-14
7.2.4.4.1 Enable the SAML 2.0 Service Provider Site .. 7-14
7.2.4.4.2 Specify How Documents Must Be Signed .. 7-14
7.2.4.4.3 Specify How Authentication Requests Are Managed 7-14
7.2.4.4.4 Enable Binding Types ... 7-14
7.2.4.4.5 Set Default URL .. 7-14
7.2.4.5 Create and Configure Web Single Sign-On Identity Provider Partners............ 7-14
7.2.4.5.1 Obtain Your Identity Provider Partner's Metadata File 7-15
7.2.4.5.2 Create Partner and Enable Interactions ... 7-15
7.2.4.5.3 Configure Authentication Requests and Assertions 7-15
7.2.4.5.4 Configure Redirect URIs ... 7-16
7.2.4.5.5 Configure Binding and Transport Settings .. 7-16
7.2.5 Viewing Partner Site, Certificate, and Service Endpoint Information 7-17
7.2.6 Web Application Deployment Considerations for SAML 2.0.................................... 7-17
7.2.6.1 Deployment Descriptor Recommendations .. 7-18
7.2.6.1.1 Use of relogin-enabled with CLIENT-CERT Authentication 7-18
7.2.6.1.2 Use of Non-default Cookie Name.. 7-18
7.2.6.2 Login Application Considerations for Clustered Environments 7-18

8 Migrating Security Data

8.1 Overview of Security Data Migration.. 8-1
8.2 Migration Concepts .. 8-2
8.3 Formats and Constraints Supported by WebLogic Security Providers 8-2
8.4 Migrating Data with WLST ... 8-4
8.5 Migrating Data Using weblogic.admin ... 8-5

viii

9 Managing the Embedded LDAP Server

9.1 Configuring the Embedded LDAP Server .. 9-1
9.2 Embedded LDAP Server Replication... 9-2
9.3 Viewing the Contents of the Embedded LDAP Server from an LDAP Browser 9-2
9.4 Exporting and Importing Information in the Embedded LDAP Server............................. 9-3
9.5 LDAP Access Control Syntax.. 9-4
9.5.1 The Access Control File... 9-5
9.5.2 Access Control Location ... 9-5
9.5.3 Access Control Scope .. 9-5
9.5.4 Access Rights.. 9-6
9.5.4.1 Attribute Permissions .. 9-6
9.5.4.2 Entry Permissions... 9-6
9.5.5 Attributes Types... 9-7
9.5.6 Subject Types.. 9-8
9.5.7 Grant/Deny Evaluation Rules... 9-8

10 Managing the RDBMS Security Store

10.1 Security Providers that Use the RDBMS Security Store... 10-1
10.2 Configuring the RDBMS Security Store ... 10-2
10.2.1 Create a Domain with the RDBMS Security Store ... 10-2
10.2.1.1 Specifying Database Connection Properties.. 10-3
10.2.1.1.1 Oracle Example... 10-3
10.2.1.1.2 MS-SQL Example ... 10-4
10.2.1.1.3 DB2 Example... 10-4
10.2.1.1.4 For More Information About Default Connection Properties 10-4
10.2.1.2 Testing the Database Connection.. 10-5
10.2.2 Create RDBMS Tables in the Security Datastore.. 10-5
10.2.3 Configure a JMS Topic for the RDBMS Security Store.. 10-5
10.2.3.1 Configuring JMS Connection Recovery in the Event of Failure 10-7
10.3 Upgrading a Domain to Use the RDBMS Security Store ... 10-8

11 Configuring Identity and Trust

11.1 Private Keys, Digital Certificates, and Trusted Certificate Authorities 11-1
11.2 Configuring Identity and Trust: Main Steps.. 11-2
11.3 Supported Formats for Identity and Trust... 11-2
11.4 Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities 11-3
11.4.1 Common Keytool Commands .. 11-4
11.4.2 Using the CertGen Utility.. 11-5
11.4.2.1 Command Syntax and Examples .. 11-6
11.4.2.2 Limitation on CertGen Usage ... 11-6
11.4.3 Using Your Own Certificate Authority ... 11-7
11.4.4 Converting a Microsoft p7b Format to PEM Format... 11-8
11.4.5 Obtaining a Digital Certificate for a Web Browser .. 11-8
11.4.6 Using Certificate Chains (Deprecated) .. 11-9
11.5 Storing Private Keys, Digital Certificates, and Trusted Certificate Authorities 11-10
11.5.1 Guidelines for Using Keystores .. 11-10

ix

11.5.2 Creating a Keystore and Loading Private Keys and Trusted Certificate
Authorities into the Keystore.. 11-11

11.5.3 Configuring Demo Certificates for Clients ... 11-11
11.6 How WebLogic Server Locates Trust.. 11-12
11.7 Configuring Keystores for Production ... 11-12

12 Configuring SSL

12.1 SSL: An Introduction ... 12-1
12.2 One-Way and Two-Way SSL.. 12-2
12.3 Setting Up SSL: Main Steps .. 12-2
12.4 Using Host Name Verification... 12-3
12.5 Enabling SSL Debugging .. 12-4
12.6 SSL Session Behavior... 12-5
12.7 Configuring RMI over IIOP with SSL... 12-5
12.8 SSL Certificate Validation... 12-6
12.8.1 Controlling the Level of Certificate Validation .. 12-6
12.8.2 Accepting Certificate Policies in Certificates .. 12-7
12.8.3 Checking Certificate Chains.. 12-7
12.8.4 Using Certificate Lookup and Validation Providers ... 12-8
12.8.5 How SSL Certificate Validation Works in WebLogic Server 12-8
12.8.6 Troubleshooting Problems with Certificate Validation .. 12-9
12.9 Using the nCipher JCE Provider with WebLogic Server ... 12-9
12.10 Specifying the Version of the SSL Protocol .. 12-11

13 Configuring Security for a WebLogic Domain

13.1 Important Information Regarding Cross-Domain Security Support 13-1
13.2 Enabling Trust Between WebLogic Server Domains.. 13-2
13.2.1 Enabling Cross Domain Security Between WebLogic Server Domains 13-2
13.2.1.1 Configuring Cross-Domain Security .. 13-2
13.2.1.2 Configuring a Cross-Domain User ... 13-3
13.2.1.3 Configure a Credential Mapping for Cross-Domain Security 13-3
13.2.2 Enabling Global Trust .. 13-4
13.3 Using Connection Filters... 13-5
13.4 Using the Java Authorization Contract for Containers .. 13-6
13.5 Viewing MBean Attributes ... 13-7
13.6 How Passwords Are Protected in WebLogic Server .. 13-7
13.7 Protecting User Accounts ... 13-7

14 Using Compatibility Security

14.1 Running Compatibility Security: Main Steps .. 14-1
14.2 Limited Visibility of Compatibility Security MBeans... 14-2
14.3 The Default Security Configuration in the CompatibilityRealm 14-2
14.4 Configuring a Realm Adapter Authentication Provider ... 14-3
14.5 Configuring the Identity Assertion Provider in the Realm Adapter Authentication

Provider ... 14-4
14.6 Configuring a Realm Adapter Auditing Provider .. 14-4

x

14.7 Protecting User Accounts in Compatibility Security.. 14-4
14.8 Accessing 6.x Security from Compatibility Security .. 14-5

15 Security Configuration MBeans

15.1 SSLMBean ... 15-1
15.2 ServerMBean... 15-1
15.3 EmbeddedLDAPMBean.. 15-2
15.4 RDBMSSecurityStoreMBean .. 15-2
15.5 SecurityMBean.. 15-2
15.6 SecurityConfigurationMBean .. 15-2
15.7 RealmMBean... 15-2
15.8 WindowsNTAuthenticatorMBean .. 15-3
15.9 CustomDBMSAuthenticatorMBean.. 15-3
15.10 ReadonlySQLAuthenticatorMBean... 15-3
15.11 SQLAuthenticatorMBean.. 15-3
15.12 DefaultAuditorMBean... 15-3
15.13 Compatibility Security MBeans ... 15-3
15.14 UserLockoutManagerMBean ... 15-4
15.15 Other Security Provider MBeans ... 15-4

xi

Preface

This preface describes the document accessibility features and conventions used in this
guide—Securing Oracle WebLogic Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Conventions
The following text conventions are used in this document:

xii

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

The following sections describe the contents and organization of this guide, Securing
WebLogic Server, as well as new and changed security features in this release.

■ Section 1.1, "Document Scope"

■ Section 1.2, "Document Audience"

■ Section 1.3, "Guide to This Document"

■ Section 1.4, "Related Information"

■ Section 1.5, "Security Samples and Tutorials"

■ Section 1.6, "New and Changed Security Features"

1.1 Document Scope
This document explains how to configure WebLogic Server security, including settings
for security realms, providers, identity and trust, SSL, and Compatibility security. See
Section 1.4, "Related Information" for a description of other WebLogic security
documentation.

1.2 Document Audience
This document is intended for the following audiences:

■ Application Architects—Architects who, in addition to setting security goals and
designing the overall security architecture for their organizations, evaluate
WebLogic Server security features and determine how to best implement them.
Application Architects have in-depth knowledge of Java programming, Java
security, and network security, as well as knowledge of security systems and
leading-edge, security technologies and tools.

■ Security Developers—Developers who define the system architecture and
infrastructure for security products that integrate with WebLogic Server and who
develop custom security providers for use with WebLogic Server. They work with
Application Architects to ensure that the security architecture is implemented
according to design and that no security holes are introduced, and work with
Server Administrators to ensure that security is properly configured. Security
Developers have a solid understanding of security concepts, including
authentication, authorization, auditing (AAA), in-depth knowledge of Java
(including Java Management eXtensions (JMX)), and working knowledge of
WebLogic Server and security provider functionality.

Guide to This Document

1-2 Securing Oracle WebLogic Server

■ Application Developers—Java programmers who focus on developing client
applications, adding security to Web applications and Enterprise JavaBeans (EJBs),
and working with other engineering, quality assurance (QA), and database teams
to implement security features. Application Developers have in-depth/working
knowledge of Java (including J2EE components such as servlets/JSPs and JSEE)
and Java security.

■ Server Administrators—Administrators work closely with Application Architects
to design a security scheme for the server and the applications running on the
server; to identify potential security risks; and to propose configurations that
prevent security problems. Related responsibilities may include maintaining
critical production systems; configuring and managing security realms,
implementing authentication and authorization schemes for server and
application resources; upgrading security features; and maintaining security
provider databases. Server Administrators have in-depth knowledge of the Java
security architecture, including Web services, Web application and EJB security,
Public Key security, SSL, and Security Assertion Markup Language (SAML).

■ Application Administrators—Administrators who work with Server
Administrators to implement and maintain security configurations and
authentication and authorization schemes, and to set up and maintain access to
deployed application resources in defined security realms. Application
Administrators have general knowledge of security concepts and the Java Security
architecture. They understand Java, XML, deployment descriptors, and can
identify security events in server and audit logs.

1.3 Guide to This Document
This document is organized as follows:

■ This chapter describes the audience, organization, and related information for this
guide.

■ Chapter 2, "Overview of Security Management," describes the default security
configuration in WebLogic Server; lists the configuration steps for security, and
describes Compatibility security.

■ Chapter 3, "Customizing the Default Security Configuration," explains when to
customize the default security configuration, the configuration requirements for a
new security realm, and how to set a security realm as the default security realm.

■ Chapter 4, "Configuring WebLogic Security Providers," describes the available
configuration options for the security providers supplied by WebLogic Server and
how to configure a custom security provider.

■ Chapter 5, "Configuring Authentication Providers," describes the Authentication
providers supplied by WebLogic Server, including information about how to
configure them.

■ Chapter 6, "Configuring Single Sign-On with Microsoft Clients," describes how to
configure authentication between a WebLogic Server domain and .NET Web
Service clients or browser clients (for example, Internet Explorer) in a Microsoft
domain, using Windows authentication based on the Simple and Protected
Negotiate (SPNEGO) mechanism.

■ Chapter 7, "Configuring Single Sign-On with Web Browsers and HTTP Clients,"
describes how to configure authentication between a WebLogic Server domain and
Web browsers or other HTTP clients, using authentication based on the Security
Assertion Markup Language (SAML).

Related Information

Introduction and Roadmap 1-3

■ Chapter 8, "Migrating Security Data," provides information about exporting and
importing security data between security realms and security providers.

■ Chapter 9, "Managing the Embedded LDAP Server," describes the management
tasks associated with the embedded LDAP server used by the WebLogic security
providers.

■ Chapter 10, "Managing the RDBMS Security Store," describes the steps required to
configure the RDBMS security store, which enables you to store the security data
managed by several security providers in an external RDBMS system rather than
in the embedded LDAP server. The use of the RDBMS security store is required for
SAML 2.0 services when configured on multiple servers in a domain, such as in a
cluster.

■ Chapter 11, "Configuring Identity and Trust," describes how to configure identity
and trust for WebLogic Server.

■ Chapter 12, "Configuring SSL," describes how to configure SSL for WebLogic
Server.

■ Chapter 13, "Configuring Security for a WebLogic Domain," describes how to set
security configuration options for a WebLogic Server domain.

■ Chapter 14, "Using Compatibility Security," describes how to use Compatibility
security, a security configuration mode designed for backwards compatibility with
security realms developed under WebLogic Server 6.x.

■ Chapter 15, "Security Configuration MBeans," describes which WebLogic Security
MBeans and MBean attributes are dynamic (can be changed without restarting the
server) and which are non-dynamic (changes require a server restart).

1.4 Related Information
The following Oracle Oracle Fusion Middleware documents contain information that
is relevant to the WebLogic Security Service:

■ Oracle Fusion Middleware Understanding Security for Oracle WebLogic
Server—Summarizes the features of the WebLogic Security Service, including an
overview of its architecture and capabilities. It is the starting point for
understanding WebLogic security.

■ Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic
Server—Provides security vendors and application developers with the
information needed to develop custom security providers that can be used with
WebLogic Server.

■ Oracle Fusion Middleware Securing a Production Environment for Oracle WebLogic
Server—Highlights essential security measures for you to consider before you
deploy WebLogic Server in a production environment.

■ Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle
WebLogic Server—Introduces the various types of WebLogic resources, and
provides information about how to secure these resources using WebLogic Server.
This document focuses primarily on securing URL (Web) and Enterprise JavaBean
(EJB) resources.

■ Oracle Fusion Middleware Programming Security for Oracle WebLogic
Server—Describes how to develop secure Web applications.

■ Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic
Server—Describes how to develop and configure secure Web Services.

Security Samples and Tutorials

1-4 Securing Oracle WebLogic Server

■ Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help—Many
security configuration tasks can be performed using the WebLogic Administration
Console. The console's online help describes configuration procedures and
provides a reference for configurable attributes.

■ Oracle Fusion Middleware Upgrade Guide for Oracle WebLogic Server—Provides
procedures and other information you need to upgrade from earlier versions of
WebLogic Server to this release. It also provides information about moving
applications from an earlier version of WebLogic Server to this release. For specific
information on upgrading WebLogic Server security, see "Upgrading a Security
Provider" in Oracle Fusion Middleware Upgrade Guide for Oracle WebLogic Server.

■ Oracle Fusion Middleware Oracle WebLogic Server API Reference—Provides reference
documentation for the WebLogic security packages that are provided with and
supported by this release of WebLogic Server.

1.5 Security Samples and Tutorials
In addition to the documents listed in Section 1.4, "Related Information", Oracle
provides a variety of code samples for developers, some packaged with WebLogic
Server and others available at the Oracle Technology Network (OTN) at
http://www.oracle.com/technology/community/welcome-bea/index.htm
l.

1.5.1 Security Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in WL_
HOME\samples\server\examples\src\examples\security, where WL_HOME
is the top-level directory of your WebLogic Server installation. You can start the
examples server, and obtain information about the samples and how to run them from
the WebLogic Server Start menu.

The following examples illustrate WebLogic security features:

■ Java Authentication and Authorization Service

■ Outbound and Two-way SSL

1.6 New and Changed Security Features
Two new LDAP authentication providers have been added to WebLogic Server—the
Oracle Internet Directory LDAP Authentication Provider and the Oracle Virtual
Directory LDAP Authentication Provider. For information about these new security
providers, see Section 5.4, "Configuring LDAP Authentication Providers".

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see Oracle Fusion Middleware What's New in Oracle WebLogic Server.

2

Overview of Security Management 2-1

2Overview of Security Management

The following sections provide an overview of the security system for WebLogic
Server. For a broader overview, see Oracle Fusion Middleware Understanding Security for
Oracle WebLogic Server.

■ Section 2.1, "Security Realms in WebLogic Server"

■ Section 2.2, "Security Providers"

■ Section 2.3, "Security Policies and WebLogic Resources"

■ Section 2.4, "The Default Security Configuration in WebLogic Server"

■ Section 2.5, "Configuring WebLogic Security: Main Steps"

■ Section 2.6, "Methods of Configuring Security"

■ Section 2.7, "What Is Compatibility Security?"

■ Section 2.7.1, "Management Tasks Available in Compatibility Security"

2.1 Security Realms in WebLogic Server
The security service in WebLogic Server simplifies the configuration and management
of security while offering robust capabilities for securing your WebLogic Server
deployment. Security realms act as a scoping mechanism. Each security realm consists
of a set of configured security providers, users, groups, security roles, and security
policies. You can configure multiple security realms in a domain; however, only one
can be the active security realm. WebLogic Server provides two default security
realms:

■ myrealm—Has the WebLogic Adjudication, Authentication, Identity Assertion,
Authorization, Role Mapping, and Credential Mapping providers configured by
default.

■ CompatibilityRealm—Provides backward compatibility for 6.x security
configurations. You can access an existing 6.x security configuration through the
CompatibilityRealm.

You can customize authentication and authorization functions by configuring a new
security realm to provide the security services you want and then set the new security
realm as the default security realm.

For information about the default security configuration in WebLogic Server, see
Section 2.4, "The Default Security Configuration in WebLogic Server".

Note: Throughout this document, the term 6.x refers to WebLogic
Server 6.0 and 6.1 and their associated service packs.

Security Providers

2-2 Securing Oracle WebLogic Server

For information about configuring a security realm and setting it as the default
security realm, see Chapter 3, "Customizing the Default Security Configuration."

For information about Compatibility security, see Chapter 14, "Using Compatibility
Security."

2.2 Security Providers
Security providers are modular components that handle specific aspects of security,
such as authentication and authorization. Although applications can leverage the
services offered by the default WebLogic security providers, the WebLogic Security
Service's flexible infrastructure also allows security vendors to write their own custom
security providers for use with WebLogic Server. WebLogic security providers and
custom security providers can be mixed and matched to create unique security
solutions, allowing organizations to take advantage of new technology advances in
some areas while retaining proven methods in others. The WebLogic Administration
Console allows you to administer and manage all your security providers through one
unified management interface.

The WebLogic Security Service supports the following types of security providers:

■ Authentication—Authentication is the process whereby the identity of users or
system processes are proved or verified. Authentication also involves
remembering, transporting, and making identity information available to various
components of a system when that information is needed. Authentication
providers supported by the WebLogic Security Service supply the following types
of authentication:

– Username and password authentication

– Certificate-based authentication directly with WebLogic Server

– HTTP certificate-based authentication proxied through an external Web server

■ Identity Assertion—An Authentication provider that performs perimeter
authentication—a special type of authentication using tokens—is called an
Identity Assertion provider. Identity assertion involves establishing a client's
identity through the use of client-supplied tokens that may exist outside of the
request. Thus, the function of an Identity Assertion provider is to validate and
map a token to a username. Once this mapping is complete, an Authentication
provider's LoginModule can be used to convert the username to a principal (an
authenticated user, group, or system process).

■ Authorization—Authorization is the process whereby the interactions between
users and WebLogic resources are limited to ensure integrity, confidentiality, and
availability. In other words, once a user's identity has been established by an
authentication provider, authorization is responsible for determining whether
access to WebLogic resources should be permitted for that user. An Authorization
provider supplies these services.

■ Role Mapping—You can assign one or more roles to multiple users and then
specify access rights for users who hold particular roles. A Role Mapping provider
obtains a computed set of roles granted to a requestor for a given resource. Role
Mapping providers supply Authorization providers with this information so that
the Authorization provider can answer the "is access allowed?" question for
WebLogic resources that use role-based security (for example, Web applications
and Enterprise JavaBeans (EJBs)).

■ Adjudication—When multiple Authorization providers are configured in a
security realm, each may return a different answer to the "is access allowed"

Security Providers

Overview of Security Management 2-3

question for a given resource. Determining what to do if multiple Authorization
providers do not agree is the primary function of an Adjudication provider.
Adjudication providers resolve authorization conflicts by weighing each
Authorization provider's answer and returning a final access decision.

■ Credential Mapping—A credential map is a mapping of credentials used by
WebLogic Server to credentials used in a legacy or remote system, which tell
WebLogic Server how to connect to a given resource in that system. In other
words, credential maps allow WebLogic Server to log into a remote system on
behalf of a subject that has already been authenticated. Credential Mapping
providers map credentials in this way.

■ Keystore—A keystore is a mechanism for creating and managing
password-protected stores of private keys and certificates for trusted certificate
authorities. The keystore is available to applications that may need it for
authentication or signing purposes. In the WebLogic Server security architecture,
the WebLogic Keystore provider is used to access keystores.

■ Certificate Lookup and Validation (CLV)—X.509 certificates need to be located
and validated for purposes of identity and trust. CLV providers receive
certificates, certificate chains, or certificate references, complete the certificate path
(if necessary), and validate all the certificates in the path. There are two types of
CLV providers:

– A CertPath Builder looks up and optionally completes the certificate path and
validates the certificates.

– A CertPath Validator looks up and optionally completes the certificate path,
validates the certificates, and performs extra validation (for example,
revocation checking).

■ Certificate Registry—A certificate registry is a mechanism for adding certificate
revocation checking to a security realm. The registry stores a list of valid
certificates. Only registered certificates are valid. A certificate is revoked by
removing it from the certificate registry. The registry is stored in the embedded
LDAP server. The Certificate Registry is both a CertPath Builder and a CertPath
Validator.

■ Auditing—Auditing is the process whereby information about security requests
and the outcome of those security requests is collected, stored, and distributed for
the purpose of non-repudiation. In other words, auditing provides an electronic
trail of computer activity. An Auditing provider supplies these services.

For information about the functionality provided by the WebLogic security providers,
see Chapter 4, "Configuring WebLogic Security Providers" and Chapter 5,
"Configuring Authentication Providers."

For information about the default security configuration, see Section 2.4, "The Default
Security Configuration in WebLogic Server".

For information about writing custom security providers, see Oracle Fusion Middleware
Developing Security Providers for Oracle WebLogic Server.

Note: The WebLogic Server Keystore provider is deprecated and is
only supported for backward compatibility. Use keystores instead. For
more information about configuring keystores, see Chapter 11,
"Configuring Identity and Trust.".

Security Policies and WebLogic Resources

2-4 Securing Oracle WebLogic Server

2.3 Security Policies and WebLogic Resources
WebLogic Server uses security policies (which replace the ACLs and permissions used
in WebLogic Server 6.x) to protect WebLogic resources. Security policies answer the
question "who has access" to a WebLogic resource. A security policy is created when
you define an association between a WebLogic resource and a user, group, or security
role. You can also optionally associate a time constraint with a security policy. A
WebLogic resource has no protection until you assign it a security policy.

Creating security policies is a multi-step process with many options. To fully
understand this process, read Oracle Fusion Middleware Securing Resources Using Roles
and Policies for Oracle WebLogic Server. That document should be used in conjunction
with Securing WebLogic Security to ensure security is completely configured for a
WebLogic Server deployment.

2.3.1 WebLogic Resources
A WebLogic resource is a structured object used to represent an underlying WebLogic
Server entity, which can be protected from unauthorized access. WebLogic Server
defines the following resources:

■ Administrative resources such as the WebLogic Server Administration Console
and WebLogic Scripting Tool.

■ Application resources that represent Enterprise applications. This type of resource
includes individual EAR (Enterprise Application aRchive) files and individual
components, such as EJB JAR files contained within the EAR.

■ Component Object Model (COM) resources that are designed as program
component objects according to Microsoft's framework. This type of resource
includes COM components accessed through the Oracle bidirectional COM-Java
(jCOM) bridging tool.

■ Enterprise Information System (EIS) resources that are designed as resource
adapters, which allow the integration of Java applications with existing enterprise
information systems. These resource adapters are also known as connectors.

■ Enterprise JavaBean (EJB) resources including EJB JAR files, individual EJBs
within an EJB JAR, and individual methods on an EJB.

■ Java DataBase Connectivity (JDBC) resources including groups of connection
pools, individual connection pools, and multipools.

■ Java Naming and Directory Interface (JNDI) resources.

■ Java Messaging Service (JMS) resources.

■ Server resources related to WebLogic Server instances, or servers. This type of
resource includes operations that start, shut down, lock, or unlock servers.

■ URL resources related to Web applications. This type of resource can be a Web
Application aRchive (WAR) file or individual components of a Web application
(such as servlets and JSPs).

■ Web Services resources related to services that can be shared by and used as
components of distributed, Web-based applications. This type of resource can be
an entire Web service or individual components of a Web service (such as a

Note: Web resources are deprecated. Use the URL resource instead.

The Default Security Configuration in WebLogic Server

Overview of Security Management 2-5

stateless session EJB, particular methods in that EJB, the Web application that
contains the web-services.xml file, and so on).

■ Remote resources.

2.3.2 Deployment Descriptors and the WebLogic Server Administration Console
WebLogic Server offers a choice of models for configuring security roles and policies.
Under the standard Java Enterprise Edition model, you define role mappings and
policies in the Web application or EJB deployment descriptors. The WebLogic Security
Service can use information defined in deployment descriptors to grant security roles
and define security policies for Web applications and EJBs. When WebLogic Server is
booted for the first time, security role and security policy information stored in
web.xml, weblogic.xml, ejb-jar.xml, or weblogic-ejb-jar.xml deployment
descriptors is loaded into the Authorization and Role Mapping providers configured
in the default security realm. You can then view the role and policy information from
the Administration Console. (Optionally, you may configure the security realm to use
a different security model that allows you to make changes to that information via the
Administration Console as well.)

To use information in deployment descriptors, at least one Authorization and Role
Mapping provider in the security realm must implement the
DeployableAuthorizationProvider and DeployableRoleProvider Security
Service Provider Interface (SSPI). This SSPI allows the providers to store (rather than
retrieve) information from deployment descriptors. By default, the WebLogic
Authorization and Role Mapping providers implement this SSPI.

If you change security role and security policy in deployment descriptors through the
Administration Console and want to continue to modify this information through the
Administration Console, you can set configuration options on the security realm to
ensure changes made through the Console are not overwritten by old information in
the deployment descriptors when WebLogic Server is rebooted.

For more information, see "Options for Securing Web Application and EJB Resources"
in Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle
WebLogic Server.

2.4 The Default Security Configuration in WebLogic Server
To simplify the configuration and management of security, WebLogic Server provides
a default security configuration. In the default security configuration, myrealm is set
as the default security realm and the WebLogic Adjudication, Authentication, Identity
Assertion, XACML Authorization, Credential Mapping, XACML Role Mapping, and
CertPath providers are defined as the security providers. WebLogic Server's embedded
LDAP server is used as the data store for these default security providers. To use the
default security configuration, you need to define users, groups, and security roles for
the security realm, and create security policies to protect the WebLogic resources in the
domain.

Configuring WebLogic Security: Main Steps

2-6 Securing Oracle WebLogic Server

For a description of the functionality provided by the WebLogic Security providers,
see Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server. If the
WebLogic security providers do not fully meet your security requirements, you can
supplement or replace them. See Oracle Fusion Middleware Developing Security Providers
for Oracle WebLogic Server.

If the default security configuration does not meet your requirements, you can create a
new security realm with any combination of WebLogic and custom security providers
and then set the new security realm as the default security realm. See Chapter 3,
"Customizing the Default Security Configuration."

2.5 Configuring WebLogic Security: Main Steps
Because WebLogic Server's security features are closely related, it is difficult to
determine where to start when configuring security. In fact, configuring security for
your WebLogic Server deployment may be an iterative process. Although more than
one sequence of steps may work, Oracle recommends the following procedure:

1. Determine whether or not to use the default security configuration by reading
Section 3.1, "Why Customize the Default Security Configuration?".

■ If you are using the default security configuration, begin at step 3.

■ If you are not using the default security configuration, begin at step 2.

2. Configure additional security providers (for example, configure an LDAP
Authentication provider instead of using the Default Authentication provider) or
configure custom security providers in the default security realm. This step is
optional. By default, WebLogic Server configures the WebLogic security providers
in the default security realm (myrealm). For information about the circumstances
that require you to customize the default security configuration, see Section 3.1,
"Why Customize the Default Security Configuration?". For information about
creating custom security providers, see Oracle Fusion Middleware Developing
Security Providers for Oracle WebLogic Server.

3. Optionally, configure the embedded LDAP server. WebLogic Server's embedded
LDAP server is configured with default options. However, you may want to
change those options to optimize the use of the embedded LDAP server in your
environment. See Chapter 9, "Managing the Embedded LDAP Server."

Note: WebLogic Server includes the WebLogic Authorization
provider, which is referred to in the Administration Console and
elsewhere as the Default Authorizer, and the WebLogic Role Mapping
provider, which is referred to in the Administration Console and
elsewhere as the Default RoleMapper. Beginning with WebLogic
Server 9.1, these providers are no longer the default providers in
newly-created security realms. Instead, the XACML Authorization
provider and the XACML Role Mapping provider are the default
providers.

Note: You can also create a new security realm, configure security
providers (either WebLogic or custom) in the security realm and set
the new security realm as the default security realm. See Chapter 3,
"Customizing the Default Security Configuration."

Methods of Configuring Security

Overview of Security Management 2-7

4. Ensure that user accounts are properly secured. WebLogic Server provides a set of
configuration options for protecting user accounts. By default, they are set for
maximum security. However, during the development and deployment of
WebLogic Server, you may need to weaken the restrictions on user accounts.
Before moving to production, check that the options on user accounts are set for
maximum protection. If you are creating a new security realm, you need to set the
user lockout options. See Section 13.6, "How Passwords Are Protected in WebLogic
Server" and Section 13.7, "Protecting User Accounts".

5. Protect WebLogic resources with security policies. Creating security policies is a
multi-step process with many options. To fully understand this process, read
Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle
WebLogic Server. Oracle Fusion Middleware Securing Oracle WebLogic Server should be
used in conjunction with Oracle Fusion Middleware Securing Resources Using Roles
and Policies for Oracle WebLogic Server to ensure security is completely configured
for a WebLogic Server deployment.

6. Configure identity and trust for WebLogic Server. (This step is optional but
recommended.) See Chapter 11, "Configuring Identity and Trust."

7. Enable SSL for WebLogic Server. (This step is optional but recommended.) See
Chapter 12, "Configuring SSL."

8. When you have moved to production, review and implement the additional
security options described in Oracle Fusion Middleware Securing a Production
Environment for Oracle WebLogic Server.

In addition, you can:

■ Configure a connection filter. See Section 13.3, "Using Connection Filters".

■ Enable interoperability between WebLogic domains. See Section 13.2.1, "Enabling
Cross Domain Security Between WebLogic Server Domains".

2.6 Methods of Configuring Security
In many cases, this document describes how to configure WebLogic security by using
the WebLogic Server Administration Console. Generally, any configuration task you
can accomplish through the Console you can also accomplish by using the WebLogic
Scripting Tool or the Java Management Extensions (JMX) APIs. For information about
using WLST to manage WebLogic security, see "Managing Security Data" in Oracle
Fusion Middleware Oracle WebLogic Scripting Tool. For information about using JMX
APIs, see "Choosing an MBean Server to Manage Security Realms" in Oracle Fusion
Middleware Developing Custom Management Utilities With JMX for Oracle WebLogic Server.

When you manage security realms, you must use two different MBean servers
depending on your task:

■ To set the value of a security MBean attribute, you must use the Edit MBean
Server.

■ To add users, groups, roles, and policies, or to invoke other operations in a
security provider MBean, you must use a Runtime MBean Server or the Domain
Runtime MBean Server.

In addition, to prevent the possibility of incompatible changes, you cannot invoke
operations in security provider MBeans if your client or another JMX client has an edit
session currently active. The Administration Console automatically enforces this
limitation and automatically accesses the proper MBean server. When you use the
Console, you can override this limitation by enabling Allow Security Management

What Is Compatibility Security?

2-8 Securing Oracle WebLogic Server

Operations if Non-dynamic Changes have been Made on the Domain > Security >
General page. Setting this attribute to true permits users to perform security
management operations without restarting the server. Note that this attribute is reset
to false when a new MBean edit session begins.

For example, the value of the MinimumPasswordLength attribute in
DefaultAuthenticatorMBean is stored in the domain's configuration document.
Because all modifications to this document are controlled by WebLogic Server, to
change the value of this attribute you must use the Edit MBean Server and acquire a
lock on the domain's configuration. The createUser operation in
DefaultAuthenticatorMBean adds data to an LDAP server, which is not
controlled by WebLogic Server. To prevent incompatible changes between the
DefaultAuthenticatorMBean's configuration and the data that it uses in the
LDAP server, you cannot invoke the createUser operation if you or other users are in
the process of modifying the MinimumPasswordLength attribute. In addition,
because changing this attribute requires you to restart WebLogic Server, you cannot
invoke the createUser operation until you have restarted the server.

2.7 What Is Compatibility Security?
Compatibility security refers to the capability to run security configurations developed
under WebLogic Server 6.x in this release of WebLogic Server. In Compatibility
security, you manage 6.x security realms, users, groups, and ACLs, protect user
accounts, and configure the Realm Adapter Auditing provider and optionally the
Identity Assertion provider in the Realm Adapter Authentication provider.

The only security realm available in Compatibility security is the
CompatibilityRealm. The Realm Adapter providers (Auditing, Adjudication,
Authorization, and Authentication) in the Compatibility realm allow backward
compatibility with the authentication, authorization, and auditing services in 6.x
security realms. For more information, see Chapter 14, "Using Compatibility Security."

2.7.1 Management Tasks Available in Compatibility Security
Because Compatibility security allows you to access only authentication,
authorization, and custom auditing implementations supported in WebLogic Server
6.x, not all 6.x security tasks are allowed in Compatibility security. Use Compatibility
security to:

■ Configure the Realm Adapter Auditing provider. For more information, see
Section 14.6, "Configuring a Realm Adapter Auditing Provider".

■ Configure the Identity Assertion provider in the Realm Adapter Authentication
provider so that implementations of the
weblogic.security.acl.CertAuthenticator class can be used. For more
information, see Section 14.5, "Configuring the Identity Assertion Provider in the
Realm Adapter Authentication Provider".

Note: Compatibility security is deprecated and will not be supported
in future major releases. Oracle strongly recommends upgrading your
WebLogic Server deployment to the security features in this release of
WebLogic Server. You should only use Compatibility security pending
such an upgrade.

What Is Compatibility Security?

Overview of Security Management 2-9

■ Change the password of the system user to protect your WebLogic Server
deployment.

■ Manage the security realm in the CompatibilityRealm.

■ Define additional users for the security realm in the CompatibilityRealm.
Organize users further by implementing groups in the security realm.

■ Manage ACLs and permissions for the resources in your WebLogic Server
deployment.

■ Create security roles and security policies for WebLogic resources you add to the
CompatibilityRealm. For more information, see Oracle Fusion Middleware
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

You can still configure identity and trust, use SSL, configure connection filters, and
enable interoperability between domains; however, you use the security features
available in this release of WebLogic Server to perform these tasks. See:

■ Chapter 11, "Configuring Identity and Trust"

■ Chapter 12, "Configuring SSL"

■ Chapter 13, "Configuring Security for a WebLogic Domain"

Note: The Realm Adapter Adjudication and Authorization providers
are configured by default in the CompatibilityRealm using
information in an 6.x existing config.xml file. These providers can only
be used in the CompatibilityRealm. The Realm Adapter
Authentication provider is also automatically configured in the
CompatibilityRealm. However, this provider can also be
configured in other realms to provide access to users and groups
stored in 6.x security realms. For more information, see Section 5.5,
"Configuring RDBMS Authentication Providers".

What Is Compatibility Security?

2-10 Securing Oracle WebLogic Server

3

Customizing the Default Security Configuration 3-1

3Customizing the Default Security
Configuration

The following sections provide information about customizing the default security
configuration by creating a new security realm:

■ Section 3.1, "Why Customize the Default Security Configuration?"

■ Section 3.2, "Before You Create a New Security Realm"

■ Section 3.3, "Creating and Configuring a New Security Realm: Main Steps"

For information about configuring security providers, see Chapter 4, "Configuring
WebLogic Security Providers" and Chapter 5, "Configuring Authentication Providers."

For information about migrating security data to a new security realm, see Chapter 8,
"Migrating Security Data."

3.1 Why Customize the Default Security Configuration?
To simplify the configuration and management of security, WebLogic Server provides
a default security configuration. In the default security configuration, myrealm is set
as the default (active) security realm, and the WebLogic Adjudication, Authentication,
Identity Assertion, Credential Mapping, CertPath, XACML Authorization and
XACML Role Mapping providers are defined as the security providers in the security
realm.

Customize the default security configuration if you want to do any of the following:

■ Replace one of the security providers in the default realm with a different security
provider.

■ Configure additional security providers in the default security realm. (For
example, if you want to use two Authentication providers, one that uses the
embedded LDAP server and one that uses a Windows NT store of users and
groups.)

■ Use an Authentication provider that accesses an LDAP server other than
WebLogic Server's embedded LDAP server.

■ Use an existing store of users and groups (for example, a DBMS database) instead
of defining users and groups in the Default Authentication provider.

■ Add an Auditing provider to the default security realm.

■ Use an Identity Assertion provider that handles SAML assertions or Kerberos
tokens.

■ Use the Certificate Registry to add certificate revocation to the security realm.

Before You Create a New Security Realm

3-2 Securing Oracle WebLogic Server

■ Change the default configuration settings of the security providers.

For information about configuring different types of security providers in a security
realm, see Chapter 4, "Configuring WebLogic Security Providers" and Chapter 5,
"Configuring Authentication Providers."

The easiest way to customize the default security configuration is to add the security
providers you want to the default security realm (myrealm). However, Oracle
recommends instead that you customize the default security configuration by creating
an entirely new security realm. This preserves your ability to revert more easily to the
default security configuration. You configure security providers for the new realm;
migrate any security data, such as users as groups, from the existing default realm;
and then set the new security realm as the default realm. See Section 3.3, "Creating and
Configuring a New Security Realm: Main Steps".

3.2 Before You Create a New Security Realm
Before creating a new security realm, you need to decide:

■ Which security providers you want to use. WebLogic Server includes a wide
variety of security providers and, in addition, allows you to create or obtain
custom security providers. A valid security realm requires an Authentication
provider, an Authorization provider, an Adjudication provider, a Credential
Mapping provider, a Role Mapping provider, and a CertPathBuilder. In addition, a
security realm can optionally include Identity Assertion, Auditing, and Certificate
Registry providers. If your new security realm includes two or more providers of
the same type (for example, more than one Authentication provider or more than
one Authorization provider), you need to determine how these providers should
interact with each other. See Section 5, "Configuring Authentication Providers".

■ What model to use to set security roles and security policies for Web application
and EJB resources. These security roles and policies can be set through
deployment descriptors or through the WebLogic Administration Console. See
"Options for Securing Web Application and EJB Resources" in Oracle Fusion
Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.

■ Whether or not to use the Web resource.

The Web resource is deprecated. If you are configuring a custom Authorization
provider that uses the Web resource (instead of the URL resource) in the new
security realm, enable Use Deprecated Web Resource on the new security realm.
This option changes the runtime behavior of the Servlet container to use a Web
resource rather than a URL resource when performing authorization.

For more information, see "Configure new security realms" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

3.3 Creating and Configuring a New Security Realm: Main Steps
To create a new security realm:

Note: When you create a new security realm, you must configure at
least one of the Authentication providers to return asserted
LoginModules. Otherwise, run-as tags defined in deployment
descriptors will not work.

Creating and Configuring a New Security Realm: Main Steps

Customizing the Default Security Configuration 3-3

1. Define a name and set the configuration options for the security realm. See
Section 3.2, "Before You Create a New Security Realm" and "Configure new
security realms" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

2. Configure the required security providers for the security realm. A valid security
realm requires an Authentication provider, an Authorization provider, an
Adjudication provider, a Credential Mapping provider, a Role Mapping provider,
and a CertPathBuilder. See Chapter 4, "Configuring WebLogic Security Providers"
and Chapter 5, "Configuring Authentication Providers."

3. Optionally, define Identity Assertion, Auditing, and Certificate Registry providers.
See Chapter 4, "Configuring WebLogic Security Providers" and Chapter 5,
"Configuring Authentication Providers."

4. If you configured the Default Authentication, Authorization, Credential Mapping
or Role Mapping provider or the Certificate Registry in the new security realm,
verify that the settings of the embedded LDAP server are appropriate. See
Chapter 9, "Managing the Embedded LDAP Server.".

5. Optionally, configure caches to improve the performance of the WebLogic or
LDAP Authentication providers in the security realm. See Section 5.4.6,
"Configuring Failover for LDAP Authentication Providers".

6. Protect WebLogic resources in the new security realm with security policies.
Creating security policies is a multi-step process with many options. To fully
understand this process, read Oracle Fusion Middleware Securing Resources Using
Roles and Policies for Oracle WebLogic Server in conjunction with Oracle Fusion
Middleware Securing Oracle WebLogic Server to ensure security is completely
configured for a WebLogic Server deployment.

7. If the security data (users and groups, roles and policies, and credential maps)
defined in the existing security realm will also be valid in the new security realm,
you can export the security data from the existing realm and import it into the new
security realm. See Chapter 8, "Migrating Security Data."

8. Protect user accounts in the new security realm from dictionary attacks by setting
lockout attributes. See Section 13.7, "Protecting User Accounts".

9. Set the new realm as the default security realm for the WebLogic domain. See
"Change the default security realm" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

Note: You can also use the WebLogic Scripting Tool or Java
Management Extensions (JMX) APIs to create a new security
configuration. See Oracle Fusion Middleware Oracle WebLogic Scripting
Tool.

Creating and Configuring a New Security Realm: Main Steps

3-4 Securing Oracle WebLogic Server

4

Configuring WebLogic Security Providers 4-1

4Configuring WebLogic Security Providers

The following sections describe how to configure the security providers supplied by
WebLogic Server.

■ Section 4.1, "When Do You Need to Configure a Security Provider?"

■ Section 4.2, "Reordering Security Providers"

■ Section 4.3, "Configuring an Authorization Provider"

■ Section 4.4, "Configuring the WebLogic Adjudication Provider"

■ Section 4.5, "Configuring a Role Mapping Provider"

■ Section 4.6, "Configuring the WebLogic Auditing Provider"

■ Section 4.7, "Configuring a WebLogic Credential Mapping Provider"

■ Section 4.8, "Configuring a PKI Credential Mapping Provider"

■ Section 4.9, "Configuring a SAML Credential Mapping Provider for SAML 1.1"

■ Section 4.10, "Configuring a SAML 2.0 Credential Mapping Provider for SAML
2.0"

■ Section 4.11, "Configuring the Certificate Lookup and Validation Framework"

4.1 When Do You Need to Configure a Security Provider?
By default, most WebLogic security providers are generally configured to run after
you install WebLogic Server. However, the following circumstances require you to
supply configuration information:

■ Before using the WebLogic Identity Assertion provider, define the active token
type. See Section 5.9, "Configuring Identity Assertion Providers".

■ To map tokens to a user in a security realm, configure the user name mapper in the
WebLogic Identity Assertion provider. See Section 4.7, "Configuring a WebLogic
Credential Mapping Provider".

■ To use auditing in the default (active) security realm, configure either the
WebLogic Auditing provider or a custom Auditing provider. See Section 4.6,
"Configuring the WebLogic Auditing Provider".

Note: WebLogic Server includes so many Authentication providers
and Identity Assertion providers that they are better handled in a
separate section. See Chapter 5, "Configuring Authentication
Providers."

Reordering Security Providers

4-2 Securing Oracle WebLogic Server

■ To use HTTP and Kerberos-based authentication in conjunction with WebLogic
Server. See Chapter 6, "Configuring Single Sign-On with Microsoft Clients."

■ To use identity assertion based on SAML assertions. See Chapter 7, "Configuring
Single Sign-On with Web Browsers and HTTP Clients."

■ To use certificate revocation. See Section 4.11.2, "Certificate Registry".

■ To use an LDAP server other than the embedded LDAP server, configure one of
the LDAP Authentication providers. An LDAP authentication provider can be
used instead of or in addition to the Default Authentication provider. See
Section 5.4, "Configuring LDAP Authentication Providers".

■ To access user, password, group, and group membership information stored in
databases for authentication purposes. See Section 5.5, "Configuring RDBMS
Authentication Providers" The RDBMS Authentication providers can be used to
upgrade from the RDBMS security realm.

■ To use Windows NT users and groups for authentication purposes. See Section 5.6,
"Configuring a Windows NT Authentication Provider". The Windows NT
Authentication provider is the upgrade path for the Window NT security realm.

■ When you create a new security realm, configure security providers for that realm.
See Section 3.3, "Creating and Configuring a New Security Realm: Main Steps".

■ When you add a custom security provider to a security realm or replace a
WebLogic security provider with a custom security provider, configure options for
the custom security provider. When you create a custom security provider, you
can implement options that are configurable through the Administration Console.
However, those options are implementation-specific and are not addressed in this
manual. See Oracle Fusion Middleware Extending the Administration Console for Oracle
WebLogic Server.

You can use either the WebLogic-supplied security providers or a custom security
provider in a security realm. To configure a custom security provider, see "Configure
custom security providers" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

4.2 Reordering Security Providers
You can configure more than one security provider of a given type in a security realm.
For example, you might use two or more different Role Mapping providers or
Authorization providers. If you have more than one security provider of the same type
in a security realm, the order in which these providers are called can affect the overall
outcome of the security processes. By default, security providers are called in the order
that they were added to the realm. You can use the Administration Console to change
the order of the providers. See "Re-order security providers" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

4.3 Configuring an Authorization Provider
Authorization is the process whereby the interactions between users and resources are
limited to ensure integrity, confidentiality, and availability. In other words,
authorization is responsible for controlling access to resources based on user identity
or other information. You should only need to configure an Authorization provider
when you create a new security realm.

By default, security realms in newly created domains include the XACML
Authorization provider. The XACML Authorization provider uses XACML, the

Configuring a Role Mapping Provider

Configuring WebLogic Security Providers 4-3

eXtensible Access Control Markup Language. For information about using the
XACML Authorization provider, see "Using XACML Documents to Secure WebLogic
Resources" in Oracle Fusion Middleware Securing Resources Using Roles and Policies for
Oracle WebLogic Server. WebLogic Server also includes the WebLogic Authorization
provider, which uses a proprietary policy language. This provider is named
DefaultAuthorizer, but is no longer the default authorization provider.

See "Configure Authorization providers" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

4.4 Configuring the WebLogic Adjudication Provider
When multiple Authorization providers are configured in a security realm, each may
return a different answer to the "is access allowed" question for a given resource. This
answer may be PERMIT, DENY, or ABSTAIN. Determining what to do if multiple
Authorization providers do not agree on the answer is the primary function of the
Adjudication provider. Adjudication providers resolve authorization conflicts by
weighting each Authorization provider's answer and returning a final decision.

Each security realm requires an Adjudication provider, and can have no more than one
active Adjudication provider. By default, a WebLogic security realm is configured with
the WebLogic Adjudication provider. You can use either the WebLogic Adjudication
provider or a custom Adjudication provider in a security realm.

By default, most configuration options for the WebLogic Adjudication provider are
defined. However, you can set the Require Unanimous Permit option to determine
how the WebLogic Adjudication provider handles a combination of PERMIT and
ABSTAIN votes from the configured Authorization providers.

■ If the option is enabled (the default), all Authorization providers must vote
PERMIT in order for the Adjudication provider to vote true.

■ If the option is disabled, ABSTAIN votes are counted as PERMIT votes.

4.5 Configuring a Role Mapping Provider
Role Mapping providers compute the set of roles granted to a subject for a given
resource. Role Mapping providers supply Authorization providers with this role
information so that the Authorization provider can answer the "is access allowed?"
question for WebLogic resources. By default, a WebLogic security realm is configured
with the XACML Role Mapping provider. The XACML Role Mapping provider uses
XACML, the eXtensible Access Control Markup Language. For information about
using the XACML Role Mapping provider, see "Using XACML Documents to Secure

Note: The WebLogic Authorization provider improves performance
by caching the roles, predicates, and resource data that it looks up. For
information on configuring these caches, see "Best Practices:
Configure Entitlements Caching When Using WebLogic Providers" in
Oracle Fusion Middleware Securing Resources Using Roles and Policies for
Oracle WebLogic Server. The XACML Authorization uses its own cache,
but this cache is not configurable.

Note: In the Administration Console, the WebLogic Adjudication
provider is referred to as the Default Adjudicator.

Configuring the WebLogic Auditing Provider

4-4 Securing Oracle WebLogic Server

WebLogic Resources" in Oracle Fusion Middleware Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

WebLogic Server also includes the WebLogic Role Mapping provider, which uses a
proprietary policy language. This provider is named DefaultRoleMapper, but is no
longer the default role mapping provider in newly-created security realms. You can
also use a custom Role Mapping provider in your security realm.

By default, most configuration options for the XACML Role Mapping provider are
already defined. However, you can set Role Mapping Deployment Enabled, which
specifies whether or not this Role Mapping provider imports information from
deployment descriptors for Web applications and EJBs into the security realm. This
setting is enabled by default.

In order to support Role Mapping Deployment Enabled, a Role Mapping provider
must implement the DeployableRoleProvider SSPI. Roles are stored by the
XACML Role Mapping provider in the embedded LDAP server.

For information about using, developing, and configuring Role Mapping providers,
see:

■ "Users, Groups, And Security Roles" in Oracle Fusion Middleware Securing Resources
Using Roles and Policies for Oracle WebLogic Server

■ "Role Mapping Providers" in Oracle Fusion Middleware Developing Security Providers
for Oracle WebLogic Server

■ "Configure Role Mapping providers" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help

4.6 Configuring the WebLogic Auditing Provider
Auditing is the process whereby information about operating requests and the
outcome of those requests are collected, stored, and distributed for the purposes of
non-repudiation. In other words, Auditing providers produce an electronic trail of
computer activity.

Configuring an Auditing provider is optional. The default security realm (myrealm)
does not have an Auditing provider configured. WebLogic Server includes a provider
named the WebLogic Auditing provider (referred to as DefaultAuditor in the
Administration Console). You can also develop custom Auditing providers, as
described in "Auditing Providers" in Oracle Fusion Middleware Developing Security
Providers for Oracle WebLogic Server.

The WebLogic Auditing provider can log the events described in Table 4–1. In
addition, if you enable configuration auditing (as described in Section 4.6.3,
"Configuration Auditing Messages"), the WebLogic Auditing provider can log the
events described in Table 4–4.

Note: The WebLogic Role Mapping provider improves performance
by caching the roles, predicates, and resource data that it looks up. For
information on configuring these caches, see "Best Practices:
Configure Entitlements Caching When Using WebLogic Providers" in
Oracle Fusion Middleware Securing Resources Using Roles and Policies for
Oracle WebLogic Server. The XACML Role Mapping provider uses its
own cache, but this cache is not configurable.

Configuring the WebLogic Auditing Provider

Configuring WebLogic Security Providers 4-5

By default, most configuration options for the WebLogic Auditing provider are
already defined and, once it is added to the active security realm, the WebLogic
Auditing provider will begin to record audit events. However, you need to define the
following settings, which you can do in the Administration Console on the
Configuration > Provider Specific page for the provider. You can also use WebLogic
Scripting tool or the Java Management Extensions (JMX) APIs to configure the
Auditing provider:

■ Rotation Minutes—Specifies how many minutes to wait before creating a new
DefaultAuditRecorder.log file. At the specified time, the audit file is closed
and a new one is created. A backup file named
DefaultAuditRecorder.YYYYMMDDHHMM.log (for example,
DefaultAuditRecorder.200405130110.log) is created in the same
directory.

■ Severity—Severity level appropriate for your WebLogic Server deployment. The
WebLogic Auditing provider audits security events of the specified severity, as
well as all events with a higher numeric severity rank. For example, if you set the
severity level to ERROR, the WebLogic Auditing provider audits security events of
severity level ERROR, SUCCESS, and FAILURE. You can also set the severity level
to CUSTOM, and then enable the specific severity levels you want to audit, such
as ERROR and FAILURE events only. Audit events include both the severity name
and numeric rank; therefore, a custom Auditing provider can filter events by
either the name or the numeric rank. Auditing can be initiated when the following
levels of security events occur.

Table 4–1 WebLogic Auditing Provider Events

Audit Event Indicates...

AUTHENTICATE Simple authentication (username and password)
occurred.

ASSERTIDENTITY Perimeter authentication (based on tokens) occurred.

USERLOCKED A user account is locked because of invalid login
attempts.

USERUNLOCKED The lock on a user account is cleared.

USERLOCKOUTEXPIRED The lock on a user account expired.

ISAUTHORIZED An authorization attempt occurred.

ROLEEVENT A getRoles event occurred.

ROLEDEPLOY A deployRole event occurred.

ROLEUNDEPLOY An undeployRole event occurred.

POLICYDEPLOY A deployPolicy event occurred.

POLICYUNDEPLOY An undeployPolicy event occurred.

START_AUDIT An Auditing provider has been started.

STOP_AUDIT An Auditing provider has been stopped.

Event Severity Rank

INFORMATION 1

WARNING 2

ERROR 3

Configuring the WebLogic Auditing Provider

4-6 Securing Oracle WebLogic Server

All auditing information recorded by the WebLogic Auditing provider is saved in WL_
HOME\yourdomain\yourserver\logs\DefaultAuditRecorder.log by
default. Although an Auditing provider is configured per security realm, each server
writes auditing data to its own log file in the server directory. You can specify a new
directory location for the DefaultAuditRecorder.log file on the command line
with the following Java startup option:

-Dweblogic.security.audit.auditLogDir=c:\foo

The new file location will be
c:\foo\yourserver\logs\DefaultAuditRecorder.log.

For more information, see "Security" in the Oracle Fusion Middleware Command Reference
for Oracle WebLogic Server.

For more information, see "Configure Auditing providers" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

4.6.1 Auditing ContextHandler Elements
An Audit Event includes a ContextHandler that can hold a variety of information or
objects. Set the WebLogic Auditing provider's Active ContextHandler Entries
attribute to specify which ContextElement entries in the ContextHandler are
recorded by the Auditing provider. By default, none of the ContextElements are
audited. Objects in the ContextHandler are in most cases logged using the toString
method. Table 4–2 lists the available ContextHandler entries.

SUCCESS 4

FAILURE 5

Note: Using an Auditing provider affects the performance of
WebLogic Server even if only a few events are logged.

Table 4–2 Context Handler Entries for Auditing

Context Element Name Description and Type

com.bea.contextelement.
servlet.HttpServletRequest

A servlet access request or SOAP message via HTTP

javax.http.servlet.HttpServletRequest

com.bea.contextelement.
servlet.HttpServletResponse

A servlet access response or SOAP message via HTTP

javax.http.servlet.HttpServletResponse

com.bea.contextelement.
wli.Message

A WebLogic Integration message. The message is
streamed to the audit log.

java.io.InputStream

com.bea.contextelement.
channel.Port

Internal listen port of the network channel accepting or
processing the request

java.lang.Integer

com.bea.contextelement.
channel.PublicPort

External listen port of the network channel accepting or
processing the request

java.lang.Integer

Event Severity Rank

Configuring the WebLogic Auditing Provider

Configuring WebLogic Security Providers 4-7

com.bea.contextelement.
channel.RemotePort

Port of the remote end of the TCP/IP connection of the
network channel accepting or processing the request

java.lang.Integer

com.bea.contextelement.
channel.Protocol

Protocol used to make the request of the network channel
accepting or processing the request

java.lang.String

com.bea.contextelement.
channel.Address

The internal listen address of the network channel
accepting or processing the request

java.lang.String

com.bea.contextelement.
channel.PublicAddress

The external listen address of the network channel
accepting or processing the request

java.lang.String

com.bea.contextelement.
channel.RemoteAddress

Remote address of the TCP/IP connection of the network
channel accepting or processing the request

java.lang.String

com.bea.contextelement.
channel.ChannelName

Name of the network channel accepting or processing the
request

java.lang.String

com.bea.contextelement.
channel.Secure

Whether the network channel is accepting or processing
the request using SSL

java.lang.Boolean

com.bea.contextelement.
ejb20.Parameter[1-N]

Object based on parameter

com.bea.contextelement.
wsee.SOAPMessage

javax.xml.rpc.handler.MessageContext

com.bea.contextelement.
entitlement.EAuxiliaryID

Used by a WebLogic Server internal process.

weblogic.entitlement.expression.EAuxiliary

com.bea.contextelement.
security.ChainPrevalidatedBySS
L

SSL framework has validated the certificate chain,
meaning that the certificates in the chain have signed
each other properly; the chain terminates in a certificate
that is one of the server's trusted CAs; the chain honors
the basic constraints rules; and the certificates in the chain
have not expired.

java.lang.Boolean

com.bea.contextelement.
xml.SecurityToken

Not used in this release of WebLogic Server.

weblogic.xml.crypto.wss.provider.SecurityToken

com.bea.contextelement.
xml.SecurityTokenAssertion

Not used in this release of WebLogic Server.

java.util.Map

com.bea.contextelement.
webservice.Integrity{id:XXXXX}

javax.security.auth.Subject

com.bea.contextelement.
saml.SSLClientCertificateChain

SSL client certificate chain obtained from the SSL
connection over which a sender-vouches SAML assertion
was received.

java.security.cert.X509Certificate[]

Table 4–2 (Cont.) Context Handler Entries for Auditing

Context Element Name Description and Type

Configuring the WebLogic Auditing Provider

4-8 Securing Oracle WebLogic Server

You can configure the Administration Server to emit log messages and generate audit
events when a user changes the configuration of any resource within a domain or
invokes management operations on any resource within a domain. For example, if a
user disables SSL on a Managed Server in a domain, the Administration Server emits
log messages. If you have enabled the WebLogic Auditing provider, it writes the audit
events to an additional security log. These messages and audit events provide an audit
trail of changes within a domain's configuration (configuration auditing).

The Administration Server writes configuration auditing messages to its local log file.
They are not written to the domain-wide message log by default.

Note that configuration audit information is contained in Authorization Events. As a
result, another approach to configuration auditing is to consume Authorization
Events. Note, however, that the information in an Authorization Event tells you
whether access was allowed to perform a configuration change; it does not tell you
whether the configuration change actually succeeded (for instance, it might have failed
because it was invalid).

4.6.2 Enabling Configuration Auditing
Enable configuration auditing by one of these methods:

■ Use the Administration Console. On the Configuration > General page for your
domain, set the Configuration Audit Type. See "Enable configuration auditing" in
the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

■ When you start the Administration Server, include one of the following Java
options in the weblogic.Server command:

– -Dweblogic.domain.ConfigurationAuditType="audit"

Causes the domain to emit Audit Events only.

– -Dweblogic.domain.ConfigurationAuditType="log"

Causes the domain to write configuration auditing messages to the
Administration Server log file only.

– -Dweblogic.domain.ConfigurationAuditType="logaudit"

Causes the domain to emit Audit Events and write configuration auditing
messages to the Administration Server log file.

See "weblogic.Server Command-Line Reference" in Oracle Fusion Middleware
Command Reference for Oracle WebLogic Server.

com.bea.contextelement.
saml.MessageSignerCertificate

Certificate used to sign a Web Services message.

java.security.cert.X509Certificate

com.bea.contextelement.
saml.subject.ConfirmationMetho
d

Type of SAML assertion: bearer, artifact, sender-vouches,
or holder-of-key.

java.lang.String

com.bea.contextelement.
saml.subject.dom.KeyInfo

 <ds:KeyInfo> element to be used for subject
confirmation with holder-of-key SAML assertions.

org.w3c.dom.Element

Table 4–2 (Cont.) Context Handler Entries for Auditing

Context Element Name Description and Type

Configuring the WebLogic Auditing Provider

Configuring WebLogic Security Providers 4-9

■ Use the WebLogic Scripting Tool to change the value of the
ConfigurationAuditType attribute of the DomainMBean. See Oracle Fusion
Middleware Oracle WebLogic Scripting Tool.

4.6.3 Configuration Auditing Messages
Configuration auditing messages are of the following severities:

Configuration auditing messages are identified by message IDs that fall within the
range of 159900-159910.

The messages use MBean object names to identify resources. Object names for
WebLogic Server MBeans reflect the location of the MBean within the hierarchical data
model. To reflect the location, object names contain name/value pairs from the parent
MBean. For example, the object name for a server's LogMBean is:
mydomain:Name=myserverlog,Type=Log,Server=myserver. See "WebLogic
Server MBean Data Model" in Oracle Fusion Middleware Developing Custom Management
Utilities With JMX for Oracle WebLogic Server.

Table 4–4 summarizes the messages.

Table 4–3 Configuration Auditing Message Severities

Severity Description

SUCCESS A successful configuration change occurred.

FAILURE An attempt to modify the configuration failed due to insufficient user
credentials.

ERROR An attempt to modify the configuration failed due to an internal error.

Table 4–4 Summary of Configuration Auditing Messages

When This Event
Occurs...

WebLogic Server
Generates a Message
With This ID... And This Message Text...

Authorized user creates a
resource.

159900 USER username CREATED MBean-name

where username identifies the WebLogic Server user who
logged in and created a resource.

Unauthorized user
attempts to create a
resource.

159901 USER username CREATED MBean-name
FAILED weblogic.management.
NoAccessRuntimeException:
exception-text stack-trace

where username identifies the unauthorized WebLogic
Server user.

Authorized user deletes
a resource.

159902 USER username REMOVED MBean-name
where username identifies the WebLogic Server user
who logged in and deleted a resource.

Unauthorized user
attempts to delete a
resource.

159903 USER username REMOVE MBean-name
FAILED weblogic.management.
NoAccessRuntimeException:
exception-text stack-trace
where username identifies the unauthorized
WebLogic Server user.

Configuring the WebLogic Auditing Provider

4-10 Securing Oracle WebLogic Server

Authorized user changes
a resource's
configuration.

159904 USER username MODIFIED MBean-name
ATTRIBUTE attribute-name
FROM old-value TO new-value

where username identifies the WebLogic Server user who
logged in and changed the resource's configuration.

Unauthorized user
attempts to change a
resource's configuration.

159905 USER username MODIFY MBean-name
ATTRIBUTE attribute-name
FROM old-value TO new-value
FAILED weblogic.management.
NoAccessRuntimeException:
exception-text stack-trace

where username identifies the unauthorized WebLogic
Server user.

Authorized user invokes
an operation on a
resource.

For example, a user
deploys an application or
starts a server instance.

159907 USER username INVOKED ON
MBean-name
METHOD operation-name
PARAMS specified-parameters

where username identifies the WebLogic Server user who
logged in and invoked a resource operation.

Unauthorized user
attempts to invoke an
operation on a resource.

159908 USER username INVOKED ON
MBean-name
METHOD operation-name
PARAMS specified-parameters
FAILED weblogic.management.
NoAccessRuntimeException:
exception-text stack-trace

where username identifies the unauthorized WebLogic
Server user.

Authorized user enables
configuration auditing.

159909 USER username, Configuration Auditing is enabled

where username identifies the WebLogic Server user who
enabled configuration auditing.

Authorized user disables
configuration auditing.

159910 USER username, Configuration Auditing is disabled

where username identifies the WebLogic Server user who
disabled configuration auditing.

Note: Each time an authorized user adds, modifies, or deletes a
resource, the Management subsystem also generates an Info message
with the ID 140009 regardless of whether configuration auditing is
enabled. For example:

<Sep 15, 2005 11:54:47 AM EDT> <Info> <Management> <140009>
<Configuration changes for domain saved to the repository.>

While the message informs you that the domain's configuration has
changed, it does not provide the detailed information that
configuration auditing messages provide. Nor does the Management
subsystem generate this message when you invoke operations on
resources.

Table 4–4 (Cont.) Summary of Configuration Auditing Messages

When This Event
Occurs...

WebLogic Server
Generates a Message
With This ID... And This Message Text...

Configuring the WebLogic Auditing Provider

Configuring WebLogic Security Providers 4-11

Table 4–5 lists additional message attributes for configuration auditing messages. All
configuration auditing messages specify the same values for these attributes.

4.6.4 Audit Events and Auditing Providers
An audit event is an object that Auditing providers can read and process in specific
ways. An Auditing provider is a pluggable component that the security realm uses to
collect, store, and distribute information about operating requests and the outcome of
those requests for the purposes of non-repudiation.

If you enable a domain to emit Audit Events, the domain emits the events described in
Table 4–6. All Auditing providers that are configured for the domain can handle these
events.

All of the events are of severity level SUCCESS and describe the security principal who
initiated the action, whether permission was granted, and the object (MBean or MBean
attribute) of the requested action.

Table 4–5 Common Message Attributes and Values

Message Attribute Attribute Value

Severity Info

Subsystem Configuration Audit

User ID kernel identity

This value is always kernel identity, regardless of which user
modified the resource or invoked the resource operation.

Server Name AdminServerName

Because the Administration Server maintains the configuration data
for all resources in a domain, this value is always the name of the
Administration Server.

Machine Name AdminServerHostName

Because the Administration Server maintains the configuration data
for all resources in a domain, this value is always the name of the
Administration Server's host machine.

Thread ID execute-thread

The value depends on the number of execute threads that are currently
running on the Administration Server.

Timestamp timeStamp at which the message is generated.

Table 4–6 Summary of Audit Events for Configuration Auditing

When This Event Occurs... WebLogic Server Generates This Audit Event Object...

A request to create a new
configuration artifact has been
allowed or prevented.

weblogic.security.spi.AuditCreateConfigurationEvent

A request to delete an existing
configuration artifact has been
allowed or prevented.

weblogic.security.spi.AuditDeleteConfigurationEvent

A request to modify an
existing configuration artifact
has been allowed or
prevented.

weblogic.security.spi.AuditInvokeConfigurationEvent

Configuring a WebLogic Credential Mapping Provider

4-12 Securing Oracle WebLogic Server

If you enable the default WebLogic Server Auditing provider, it writes all Audit Events
as log messages in its own log file.

Other Auditing providers that you create or purchase can filter these events and write
them to output repositories such as an LDAP server, database, or a simple file. In
addition, other types of security providers can request audit services from an Auditing
provider. See "Auditing Providers" in Oracle Fusion Middleware Developing Security
Providers for Oracle WebLogic Server.

4.7 Configuring a WebLogic Credential Mapping Provider
Credential mapping is the process whereby the authentication and authorization
mechanisms of a remote system (for example, a legacy system or application) obtain
an appropriate set of credentials to authenticate remote users to a target WebLogic
resource. The WebLogic Credential Mapping provider maps WebLogic Server subjects
to the username/password pairs to be used when accessing such resources.

By default, most configuration options for the WebLogic Credential Mapping provider
are defined.

In order to support Credential Mapping Deployment Enabled, a Credential Mapping
provider must implement the DeployableCredentialProvider SSPI. The
credential mapping information is stored in the embedded LDAP server.

For more information:

■ See "Credential Mapping Providers" in Oracle Fusion Middleware Developing
Security Providers for Oracle WebLogic Server.

■ See "Configure Credential Mapping Providers" and "Create credential mappings"
in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

■ For information about using credential maps, see Oracle Fusion Middleware
Programming Resource Adapters for Oracle WebLogic Server.

■ You can also use the WebLogic Scripting Tool or Java Management Extensions
(JMX) APIs to create a new security configuration.

■ For information about other credential mapping providers, see Section 4.8,
"Configuring a PKI Credential Mapping Provider" and Section 4.9, "Configuring a
SAML Credential Mapping Provider for SAML 1.1".

A invoke an operation on an
existing configuration artifact
has been allowed or
prevented.

weblogic.security.spi.AuditSetAttributeConfigurationE
vent

Note: WebLogic Server provides the option of setting Credential
Mapping Deployment Enabled, which specifies whether or not the
Credential Mapping provider imports credential maps from a resource
adapter's deployment descriptor (weblogic-ra.xml file) into the
security realm. However, this option is now deprecated. Deploying
credential maps from a weblogic-ra.xml file is no longer
supported by WebLogic Server.

Table 4–6 (Cont.) Summary of Audit Events for Configuration Auditing

When This Event Occurs... WebLogic Server Generates This Audit Event Object...

Configuring a PKI Credential Mapping Provider

Configuring WebLogic Security Providers 4-13

4.8 Configuring a PKI Credential Mapping Provider
The PKI (Public Key Infrastructure) Credential Mapping provider included in
WebLogic Server maps (a) a WebLogic Server subject (the initiator) and target resource
(and an optional credential action) to (b) a key pair or public certificate that can be
used by applications when accessing the targeted resource. The PKI Credential
Mapping provider uses the subject and resource name to retrieve the corresponding
credential from the keystore.

To use the PKI Credential Mapping provider, you need to:

1. Configure keystores with appropriate keys and distribute the keystores on all
machines in a WebLogic Server cluster. Setting up keystores is not a WebLogic
Server function. For information about setting up keystores, see the help for the
Java keytool utility at
http://java.sun.com/javase/6/docs/tooldocs/solaris/keytool.ht
ml. See also Chapter 11, "Configuring Identity and Trust," for information about
keystores and keys in WebLogic Server.

2. Configure a PKI Credential Mapping provider. A PKI Credential Mapping
provider is not already configured in the default security realm (myrealm). See
Section 4.8.1, "PKI Credential Mapper Attributes" and "Configure Credential
Mapping providers" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

3. Create credential mappings. See "Create PKI Credential Mappings" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help.

4.8.1 PKI Credential Mapper Attributes
To configure the PKI Credential Mapping provider, set values for these attributes. See
"Configure Credential Mapping Providers" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

■ Keystore Provider—A keystore provider for the Java Security API. If no value is
specified, the default provider class is used.

■ Keystore Type— JKS (the default) or PKCS12.

■ Keystore Pass Phrase—Password used to access the keystore

■ Keystore File Name—Location of the keystore relative to the directory where the
server was started.

In addition, two optional attributes determine how the PKI Credential Mapping
provider locates credential mappings in cases where the exact resource or subject may
not be available:

■ Use Resource Hierarchy—A credential is located by traversing up the resource
hierarchy for each type of resource. The search for all possible PKI credentials will
start from the specific resource and will walk up the resource hierarchy to find all
possible matches. This attribute is enabled by default.

■ Use Initiator Group Names—When a subject is passed to the PKI Credential
Mapper provider, a credential is located by examining the groups of which the
initiator is a member. This is enabled by default.

4.8.2 Credential Actions
Optionally, you can label a credential mapping with a credential action. You can do
this in the Administration Console when you create the credential mapping. The

Configuring a SAML Credential Mapping Provider for SAML 1.1

4-14 Securing Oracle WebLogic Server

credential action is an arbitrary string that distinguishes credential mappings used in
different circumstances. For example, one credential mapping could decrypt a message
from a remote resource and another credential mapping could sign messages to be
sent to the same resource. The subject initiator and the target resource are not sufficient
to distinguish these two credential mappings. You can use the credential action to label
one of these credential mappings something like decrypt and the other one sign.
Then, the container calling the PKI Credential Mapping provider can provide the
desired credential action value in the ContextHandler that is passed to the provider.

For information about adding credential actions to PKI credential mappings, see
"Create PKI Credential Mappings" in the Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

4.9 Configuring a SAML Credential Mapping Provider for SAML 1.1
This release of WebLogic Server includes two SAML Credential Mapping providers.
SAML Credential Mapping Provider Version 2 provides greatly enhanced
configuration options and is recommended for new deployments. SAML Credential
Mapping Provider Version 1 is deprecated in WebLogic Server 9.1. A security realm
can have not more than one SAML Credential Mapping provider, and if the security
realm has both a SAML Credential Mapping provider and a SAML Identity Assertion
provider, both must be of the same version. Do not use a Version 1 SAML provider in
the same security realm as a Version 2 SAML provider. For information about
configuring the SAML Credential Mapping Provider Version 1, see Configuring a
SAML Credential Mapping Provider at
http://edocs.bea.com/wls/docs90/secmanage/providers.html#SAML_
cred in the WebLogic Server 9.0 documentation.

For general information about WebLogic Server's support for SAML, see "Security
Assertion Markup Language (SAML)" and "Single Sign-On with the WebLogic
Security Framework" in Oracle Fusion Middleware Understanding Security for Oracle
WebLogic Server. For information about how to use the SAML Credential Mapping
provider in a SAML single sign-on configuration, see Chapter 7, "Configuring Single
Sign-On with Web Browsers and HTTP Clients."

4.9.1 Configuring Assertion Lifetime
A SAML Assertion's validity is typically time-limited. The default time-to-live for
assertions generated by the SAML Credential Mapping provider is specified by the
DefaultTimeToLive attribute. You can override the default time-to-live for
assertions generated for different SAML Relying Parties.

Normally, an assertion is valid from the NotBefore time, which defaults to (roughly)
the time the assertion was generated, until the NotOnOrAfter time, which is
calculated as (NotBefore + TimeToLive). To allow the Credential Mapper to
compensate for clock differences between the source and destination sites, you can
configure the SAML Credential Mapping provider's DefaultTimeToLiveDelta
attribute. This time-to-live offset value is a positive or negative integer indicating how
many seconds before or after "now" the assertion's NotBefore value should be set to.
If you set a value for DefaultTimeToLiveDelta, then the assertion lifetime is still
calculated as (NotBefore + TimeToLive), but the NotBefore value is set to (now +
TimeToLiveDelta). For example, given the following settings:

DefaultTimeToLive = 120
DefaultTimeToLiveDelta = -30

Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

Configuring WebLogic Security Providers 4-15

an assertion when generated would have a lifetime of two minutes (120 seconds),
starting 30 seconds before it is generated.

4.9.2 Relying Party Registry
When you configure WebLogic Server to act as a source of SAML security assertions,
you need to register the parties that may request SAML assertions to be generated. For
each SAML Relying Party, you can specify the SAML profile used, details about the
Relying Party, and the attributes expected in assertions for the Relying Party. For
information, see:

■ Section 7.1.2.3, "Configure Relying Parties".

■ "Configure a SAML 1.1 Relying Party" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

4.10 Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0
The SAML 2.0 Credential Mapping provider included with WebLogic Server generates
SAML 2.0 assertions that can be used to assert identity in the following use cases:

■ SAML 2.0 Web SSO Profile

■ WS-Security SAML Token Profile version 1.1

The SAML 2.0 Credential Mapping provider generates the assertion types listed and
described in Table 4–7.

For general information about WebLogic Server's support for SAML 2.0, see "Security
Assertion Markup Language (SAML)" and "Single Sign-On with the WebLogic
Security Framework" in Oracle Fusion Middleware Understanding Security for Oracle
WebLogic Server. For information about how to use the SAML 2.0 Credential Mapping
provider in a SAML 2.0 single sign-on configuration, see Chapter 7, "Configuring
Single Sign-On with Web Browsers and HTTP Clients." For information about
specifying the confirmation method for assertions generated for web service Service
provider partners, see "Using Security Assertion Markup Language (SAML) Tokens
For Identity" in Oracle Fusion Middleware Securing WebLogic Web Services for Oracle
WebLogic Server.

Table 4–7 Assertion Types Supported by the SAML 2.0 Credential Mapping Provider

Assertion Type Description

bearer The subject of the assertion is the bearer of the assertion, subject to
optional constraints on confirmation using attributes that may be
included in the <SubjectConfirmationData> element of the
assertion.

Used for all assertions generated for the SAML 2.0 Web Browser SSO
Profile and with the Web Service Security SAML Token Profile 1.1.

sender-vouches The Identity Provider (different from the subject) vouches for the
verification of the subject. The receiver must have a trust relationship
with the Identity Provider.

Used with the Web Service Security SAML Token Profile 1.1 only.

holder-of-key The subject represented in the assertion uses an X.509 certificate that may
not be trusted by the receiver to protect the integrity of the request
messages.

Used with the Web Service Security SAML Token Profile 1.1 only.

Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

4-16 Securing Oracle WebLogic Server

4.10.1 SAML 2.0 Credential Mapping Provider Attributes
Configuration of the SAML 2.0 Credential Mapping provider is controlled by setting
attributes on the SAML2CredentialMapperMBean. You can access the
SAML2CredentialMapperMBean using the WebLogic Scripting Tool (WLST), or
through the Administration Console by using the Security Realms > RealmName >
Providers > Credential Mapping page and creating or selecting
SAML2CredentialMapper. For details about the SAML2CredentialMapperMBean
attributes, see "SAML2CredentialMapperMBean" in the Oracle Fusion Middleware
Oracle WebLogic Server SAML 2.0 API Reference.

To configure the SAML 2.0 Credential Mapping provider, set the following attributes:

■ Issuer URI

Name of this security provider. The value that you specify should match the Entity
ID specified in the SAML 2.0 General page that configures the per-server SAML
2.0 properties.

■ Name Qualifier

Used by the Name Mapper class as the security or administrative domain that
qualifies the name of the subject. This provides a means to federate names from
disparate user stores while avoiding the possibility of subject name collision.

■ Assertion life time

Values that limit the life time of generated assertions during which they may be
used. Expired assertions cannot be made available for use.

■ Web service assertion signing key alias and passphrase

Used for signing generated assertions.

■ Custom name mapper class

The custom Java class that overrides the default SAML 2.0 Credential Mapping
provider name mapper class, which maps Subjects to identity information
contained in the assertion.

■ Generate attributes

Specifies whether group membership information associated with the
authenticated Subject is included in generated assertions.

4.10.2 Service Provider Partners
When you configure WebLogic Server to act as an Identity Provider, you need to create
and configure the Service Provider partners for whom SAML 2.0 assertions are
generated. When an Identity Provider site needs to generate an assertion, the SAML
2.0 Credential Mapping provider determines the Service Provider partner for whom
the assertion must be generated, and generates it according to the configuration of that
Service Provider partner.

The way in which you configure a Service Provider partner, and the specific
information you configure for that partner, depends upon whether the partner is used
for web single sign-on or web services. Configuring a web single sign-on Service
Provider partner consists of importing that partner's metadata file and establishing
additional basic information about that partner, such as the following:

■ Determining whether SAML documents, such as authentication responses, SAML
artifacts, and artifact requests, must be signed

■ Certificates used for validating signed documents received from this partner

Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

Configuring WebLogic Security Providers 4-17

■ The binding to be used for sending SAML artifacts to this partner

■ The client user name and password used by this partner when connecting to the
local site's binding

For details about configuring a Service Provider partner for web single sign-on, see:

■ Section 7.2.3.3, "Create and Configure Web Single Sign-On Service Provider
Partners"

■ "Create a SAML 2.0 Web Single Sign-on Service Provider partner" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help

Configuring a web service Service Provider partner does not use a metadata file, but
does consist of establishing the following information about that partner:

■ Audience URIs, which specify an audience restriction to be included in assertions
generated for this partner

In WebLogic Server, the Audience URI attribute is overloaded to also include the
partner lookup string, which is required by the web service run time to discover
the partner. See Section 4.10.2.1, "Partner Lookup Strings Required for Web Service
Partners".

■ Custom name mapper class that overrides the default name mapper and that is to
be used specifically with this partner

■ Values that specify the life span attributes of assertions generated for this partner

■ Confirmation method for assertions received from this partner

For more information about configuring web service Service Provider partners, see
"Create a SAML 2.0 Web Service Service Provider partner" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

4.10.2.1 Partner Lookup Strings Required for Web Service Partners
For web service Service Provider partners, you also configure Audience URIs. In
WebLogic Server, the Audience URI attribute is overloaded to perform two distinct
functions:

■ Specify an audience restriction that consists of the target service URL, per the
OASIS SAML 2.0 specification.

■ Contain a partner lookup string, which is required at run time by WebLogic Server
to discover the Service Provider partner for which a SAML 2.0 assertion needs to
be generated.

The partner lookup string specifies an endpoint URL, which is used for partner lookup
and can optionally also serve as an Audience URI restriction that is included in the
generated assertion. The ability to specify a partner lookup string that is also an
Audience URI eliminates the need to specify a given target URL twice: once for
lookup, and again for audience restriction.

4.10.2.1.1 Lookup String Syntax The partner lookup string has the following syntax:

[target:char:]<endpoint-url>

Note: You must configure a partner lookup string for a Service
Provider partner so that partner can be discovered at run time by the
web service run time.

Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

4-18 Securing Oracle WebLogic Server

In this syntax, target:char: is a prefix that designates the partner lookup string,
where char represents one of three special characters: a hyphen, plus sign, or asterisk
(-, +, or *). This prefix determines how partner lookup is performed, as described in
Table 4–8.

4.10.2.1.2 Specifying Default Partners To support the need for a default Service Provider
partner entry, one or more of the default partner's Audience URI entries may contain a
wildcard match that works for all targets. The actual wildcard URI may depend on the
specific format used by the web service run time. For example:

■ target:*:http://

■ target:*:https://

4.10.2.2 Management of Partner Certificates
The SAML 2.0 Credential Mapping provider manages a set of trusted certificates for
each partner configured for web single sign-on. Whenever a signed authentication or

Table 4–8 Service Provider Partner Lookup String Syntax

Lookup String Description

target:-:<endpoint-url> Specifies that partner lookup is conducted for an exact match of the URL,
<endpoint-url>. For example,
target:-:http://www.avitek.com:7001/myserver/myserviceconte
xt/myservice-endpoint specifies the endpoint that can be matched to this
Service Provider, for which an assertion should be generated.

This form of partner lookup string excludes the endpoint URL from being added
as an Audience URI in the generated assertion.

target:+:<endpoint-url> Specifies that partner lookup is conducted for an exact match of the URL,
<endpoint-url>.

Using the plus sign (+) in the lookup string results in the endpoint URL being
added as an Audience URI in the assertion generated for this Service Provider
partner.

target:*:<endpoint-url> Specifies that partner lookup is conducted for an initial-string pattern match of
the URL, <endpoint-url>. For example,
target:*:http://www.avitek.com:7001/myserver specifies that any
endpoint URL beginning with http://www.avitek.com:7001/myserver
can be matched to this Service Provider, such as:
http://www.avitek.com:7001/myserver/contextA/endpointA and
http://www.avitek.com:7001/myserver/contextB/endpointB.

If more than one Service Provider partner is discovered that is a match for the
initial string, the partner with the longest initial string match is selected.

This form of partner lookup string excludes the endpoint URL from being added
as an Audience URI in the generated assertion.

Note: Configuring one or more partner lookup strings for a Service
Provider partner is required in order for that partner to be discovered
at run time. If this partner cannot be discovered, no assertions for this
partner can be generated.

If you configure an endpoint URL without using the target lookup
prefix, it will be handled as a conventional Audience URI that must be
contained in assertions generated for this Service Provider partner.
(This also enables backwards-compatibility with existing Audience
URIs that may be configured for this partner.)

Configuring the Certificate Lookup and Validation Framework

Configuring WebLogic Security Providers 4-19

artifact request is received during a message exchange with a partner, the trusted
certificate is used to verify the partner's signature. Partner certificates are used for the
following purposes:

■ To validate trust when the SAML 2.0 Credential Mapping provider receives a
signed authentication request or artifact request.

■ To validate trust in a Service Provider partner that is retrieving a SAML artifact
from the Artifact Resolution Service (ARS) via an SSL connection.

From the Administration Console, you can view a web single sign-on Service Provider
partner's signing certificate and transport layer client certificate in the partner
management pages of the configured SAML 2.0 Credential Mapping provider.

4.10.2.3 Java Interface for Configuring Service Provider Partner Attributes
For details about the available operations on web service partners, see the
"com.bea.security.saml2.providers.registry.Partner Java" interface in the Oracle Fusion
Middleware Oracle WebLogic Server API Reference.

4.11 Configuring the Certificate Lookup and Validation Framework
WebLogic Server may receive digital certificates as part of Web Services requests,
two-way SSL, or other secure interactions. To validate these certificates, WebLogic
Server includes a Certificate Lookup and Validation (CLV) framework, whose function
is to look up and validate X.509 certificate chains. The key elements of the CLV
framework are the CertPathBuilder and the CertPathValidators. The CLV framework
requires one and only active CertPathBuilder which, given a reference to a certificate
chain, finds the chain and validates it, and zero or more CertPathValidators which,
given a certificate chain, validates it.

When WebLogic Server receives a certificate, the CLV framework uses the security
provider configured as the CertPathBuilder to look up and validate the certificate
chain. If the certificate chain is found and valid, the framework then calls each
configured CertPathValidator, in the order the administrator configured them, to
perform extra validation on the chain. The chain is only valid if the builder and all the
validators successfully validate it.

A chain is valid only if all of the following are true:

■ The certificates in the chain have signed each other properly.

■ The chain terminates in a certificate that is one of the server's trusted CAs.

■ The chain honors the basic constraints rules (for example, no certificate in the
chain has been issued by a certificate that is not allowed to issue certificates).

■ The certificates in the chain have not expired.

WebLogic Server includes two CLV security providers: the WebLogic CertPath
provider (which acts as both a CertPathBuilder and a CertPathValidator), described in
Section 4.11.1, "CertPath Provider", and the Certificate Registry, described in
Section 4.11.2, "Certificate Registry". Use just the WebLogic CertPath provider if you
want to use trusted CA-based validation of the full certificate chain. Use just the
Certificate Registry if you want only to validate that certificates are registered. Use
both, designating the Certificate Registry as the current builder, if you want to use
both types of validation.

For more information about certificate lookup and validation, see Chapter 11,
"Configuring Identity and Trust."

Configuring a WebLogic Keystore Provider

4-20 Securing Oracle WebLogic Server

4.11.1 CertPath Provider
The default security realm in WebLogic Server is configured with the WebLogic
CertPath provider. The CertPath provider serves two functions: CertPathBuilder and
CertPathValidator. The CertPath provider receives an end certificate or a certificate
chain. It uses the server's list of trusted CAs to complete the certificate chain, if
necessary. After building the chain, the CertPath provider validates the chain,
checking the signatures in the chain, ensuring that the chain has not expired, checking
the chain's basic constraints, and verifying that the chain terminates in a certificate
issued by one of the server's trusted CAs.

The WebLogic CertPath provider requires no configuration, other than its Current
Builder attribute, which indicates whether the CertPath provider should be used as the
active certificate chain builder.

4.11.2 Certificate Registry
The Certificate Registry is a security provider that allows you to explicitly register the
list of trusted certificates that are allowed to access WebLogic Server. If you configure a
Certificate Registry as part of your security realm, then only certificates that are
registered in the Certificate Registry will be considered valid. The Certificate Registry
provides an inexpensive mechanism for performing revocation checking. By removing
a certificate from the Certificate Registry, you can invalidate a certificate immediately.
The registry is stored in the embedded LDAP server.

The Certificate Registry is both a CertPath Builder and a CertPath Validator. In either
case, the Certificate Registry ensures that the chain's end certificate is stored in the
registry, but does no other validation. If you use the Certificate Registry as your
security realm's CertPath Builder and you also want to use the WebLogic CertPath
provider or another security provider to perform full chain validation, make sure that
you register the intermediate and root CAs in each server's trust keystore, and the end
certificates in the Certificate Registry.

The default security realm in WebLogic Server does not include a Certificate Registry.
Once you configure a Certificate Registry, you can use the WebLogic Administration
Console to add, remove, and view certificates in the registry. You can export a
certificate from a keystore to a file, using the Java keytool utility. You can import a
certificate that is a PEM or DER file in the file system into the Certificate Registry using
the console. You can also use the Console to view the contents of a certificate,
including its subject DN, issuer DN, serial number, valid dates, fingerprints, etc.

See "Configure Certification Path providers" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

4.12 Configuring a WebLogic Keystore Provider

For information about configuring the WebLogic Keystore provider, see "Configure
keystores" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Help.

Note: The WebLogic Keystore provider is deprecated. It is only
supported for backward compatibility. Use Java KeyStores (JKS)
instead. All of the functionality that was supported by the WebLogic
Keystore provider is available through use of Java KeyStores.

5

Configuring Authentication Providers 5-1

5Configuring Authentication Providers

WebLogic Server includes numerous Authentication security providers. Most of them
work in similar fashion: given a username and password credential pair, the provider
attempts to find a corresponding user in the provider's data store. These
Authentication providers differ primarily in what they use as a data store: one of many
available LDAP servers, a SQL database, or other data store. In addition to these
username/password based security providers, WebLogic Server includes identity
assertion Authentication providers, which use certificates or security tokens, rather
than username/password pairs, as credentials.

The following sections describe how to configure the Authentication security
providers supplied by WebLogic Server.

■ Section 5.1, "Choosing an Authentication Provider"

■ Section 5.2, "Using More Than One Authentication Provider"

■ Section 5.3, "Configuring the Default Authentication Provider"

■ Section 5.4, "Configuring LDAP Authentication Providers"

■ Section 5.5, "Configuring RDBMS Authentication Providers"

■ Section 5.6, "Configuring a Windows NT Authentication Provider"

■ Section 5.7, "Configuring the SAML Authentication Provider"

■ Section 5.8, "Configuring the Password Validation Provider"

■ Section 5.9, "Configuring Identity Assertion Providers"

■ Section 5.9.1, "How an LDAP X509 Identity Assertion Provider Works"

■ Section 5.9.6, "Ordering of Identity Assertion for Servlets"

5.1 Choosing an Authentication Provider
Authentication is the process whereby the identity of users and system processes are
proved or verified. Authentication also involves remembering, transporting, and
making identity information available to various components of a system when that
information is needed.

The WebLogic Server security architecture supports: password-based and
certificate-based authentication directly with WebLogic Server; HTTP certificate-based
authentication proxied through an external Web server; perimeter-based
authentication (Web server, firewall, VPN); and authentication based on multiple
security token types and protocols.

WebLogic Server offers the following types of Authentication providers:

Using More Than One Authentication Provider

5-2 Securing Oracle WebLogic Server

■ The Default Authentication provider, also known as the WebLogic Authentication
provider, accesses user and group information in WebLogic Server's embedded
LDAP server.

■ The Oracle Internet Directory Authentication provider accesses users and groups in
Oracle Internet Directory, an LDAP version 3 directory.

■ The Oracle Virtual Directory Authentication provider accesses users and groups in
Oracle Virtual Directory, an LDAP version 3 enabled service.

■ LDAP Authentication providers access external LDAP stores. You can use an LDAP
Authentication provider to access any LDAP server. WebLogic Server provides
LDAP Authentication providers already configured for Open LDAP, Sun iPlanet,
Microsoft Active Directory and Novell NDS LDAP servers.

■ RDBMS Authentication providers access external relational databases. WebLogic
Server provides three RDBMS Authentication providers: SQL Authenticator,
Read-only SQL Authenticator, and Custom RDBMS Authenticator.

■ The WebLogic Identity Assertion provider validates X.509 and IIOP-CSIv2 tokens and
optionally can use a user name mapper to map that token to a user in a WebLogic
Server security realm.

■ The SAML Authentication provider, which authenticates users based on Security
Assertion Markup Language 1.1 (SAML) assertions.

■ The Negotiate Identity Assertion provider, which uses Simple and Protected
Negotiate (SPNEGO) tokens to obtain Kerberos tokens, validates the Kerberos
tokens, and maps Kerberos tokens to WebLogic users.

■ The SAML Identity Assertion provider, which acts as a consumer of SAML security
assertions. This enables WebLogic Server to act as a SAML destination site and
supports using SAML for single sign-on.

In addition, you can use:

■ Custom (non-WebLogic) Authentication providers, which offer different types of
authentication technologies.

■ Custom (non-WebLogic) Identity Assertion providers, which support different
types of tokens.

5.2 Using More Than One Authentication Provider
Each security realm must have at least one Authentication provider configured. The
WebLogic Security Framework supports multiple Authentication providers (and thus
multiple LoginModules) for multipart authentication. Therefore, you can use multiple
Authentication providers as well as multiple types of Authentication providers in a
security realm. For example, if you want to use both a retina-scan and a
username/password-based form of authentication to access a system, you configure
two Authentication providers.

How you configure multiple Authentication providers can affect the overall outcome
of the authentication process. Configure the JAAS Control Flag for each
Authentication provider to set up login dependencies between Authentication
providers and allow single-sign on between providers. See Section 5.2.1, "Setting the
JAAS Control Flag Option".

Authentication providers are called in the order in which they were configured in the
security realm. Therefore, use caution when configuring Authentication providers.
You can use the WebLogic Administration Console to re-order the configured

Configuring the Default Authentication Provider

Configuring Authentication Providers 5-3

Authentication providers, thus changing the order in which they are called. See
Section 5.2.2, "Changing the Order of Authentication Providers".

5.2.1 Setting the JAAS Control Flag Option
When you configure multiple Authentication providers, use the JAAS Control Flag for
each provider to control how the Authentication providers are used in the login
sequence. You can set the JAAS Control Flag in the WebLogic Administration Console.
See "Set the JAAS control flag" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help. You can also use the WebLogic Scripting Tool or Java
Management Extensions (JMX) APIs to set the JAAS Control Flag for an
Authentication provider.

JAAS Control Flag values are:

■ REQUIRED—The Authentication provider is always called, and the user must
always pass its authentication test. Regardless of whether authentication succeeds
or fails, authentication still continues down the list of providers.

■ REQUISITE—The user is required to pass the authentication test of this
Authentication provider. If the user passes the authentication test of this
Authentication provider, subsequent providers are executed but can fail (except
for Authentication providers with the JAAS Control Flag set to REQUIRED).

■ SUFFICIENT—The user is not required to pass the authentication test of the
Authentication provider. If authentication succeeds, no subsequent Authentication
providers are executed. If authentication fails, authentication continues down the
list of providers.

■ OPTIONAL—The user is allowed to pass or fail the authentication test of this
Authentication provider. However, if all Authentication providers configured in a
security realm have the JAAS Control Flag set to OPTIONAL, the user must pass
the authentication test of one of the configured providers.

When additional Authentication providers are added to an existing security realm, by
default the Control Flag is set to OPTIONAL. If necessary, change the setting of the
Control Flag and the order of Authentication providers so that each Authentication
provider works properly in the authentication sequence.

5.2.2 Changing the Order of Authentication Providers
The order in which WebLogic Server calls multiple Authentication providers can affect
the overall outcome of the authentication process. The Authentication Providers table
lists the authentication providers in the order in which they will be called. By default,
Authentication providers are called in the order in which they were configured. You
can use the Administration Console to change the order of Authentication providers.
Use the Reorder button on the Security Realms > Providers > Authentication page in
the Administration Console to change the order in which Authentication providers are
called by WebLogic Server and listed in the console.

See "Re-order Authentication Providers" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

5.3 Configuring the Default Authentication Provider
The Default Authentication provider (also called the WebLogic Authentication
provider) uses WebLogic Server's embedded LDAP server to store user and group
membership information. This provider allows you to edit, list, and manage users and

Configuring LDAP Authentication Providers

5-4 Securing Oracle WebLogic Server

group membership. By default, most configuration options for the Default
Authentication provider are already defined. You should need to configure a Default
Authentication provider only when creating a new security realm. However, note the
following:

■ The Default Authentication provider is configured in the default security realm
with the name DefaultAuthenticator.

■ User and group names in the Default Authentication provider are case insensitive.

■ Ensure that all user names are unique.

■ Use the Minimum Password Length option on the Configuration > Provider
Specific page to specify the length of passwords defined for users that are stored
in the embedded LDAP server.

■ If you are using multiple Authentication providers, set the JAAS Control Flag to
determine how the Default Authentication provider is used in the authentication
process. See Section 5.2, "Using More Than One Authentication Provider".

5.4 Configuring LDAP Authentication Providers
WebLogic Server includes the following LDAP Authentication providers:

■ Oracle Internet Directory Authentication provider

■ Oracle Virtual Directory Authentication provider

■ iPlanet Authentication provider

■ Active Directory Authentication provider

■ Open LDAP Authentication provider

■ Novell Authentication provider

■ generic LDAP Authentication provider

Each LDAP Authentication provider stores user and group information in an external
LDAP server. They differ primarily in how they are configured by default to match
typical directory schemas for their corresponding LDAP server. For information about
configuring the Oracle Internet Directory and Oracle Virtual Directory Authentication
providers to match the LDAP schema for user and group attributes, see Section 5.4.5,
"Configuring Users and Groups in the Oracle Internet Directory and Oracle Virtual
Directory Authentication Providers".

WebLogic Server does not support or certify any particular LDAP servers. Any LDAP
v2 or v3 compliant LDAP server should work with WebLogic Server. The following
LDAP directory servers have been tested:

■ Oracle Internet Directory

■ Oracle Virtual Directory

■ Sun iPlanet version 4.1.3

■ Active Directory shipped as part of Windows 2000

■ Open LDAP version 2.0.7

■ Novell NDS version 8.5.1

An LDAP Authentication provider can also be used to access other LDAP servers.
However, you must either use the LDAP Authentication provider

Configuring LDAP Authentication Providers

Configuring Authentication Providers 5-5

(LDAPAuthenticator) or choose a pre-defined LDAP provider and customize it. See
Section 5.4.3, "Accessing Other LDAP Servers".

5.4.1 Requirements for Using an LDAP Authentication Provider
If an LDAP Authentication provider is the only configured Authentication provider
for a security realm, you must have the Admin role to boot WebLogic Server and use a
user or group in the LDAP directory. Do one of the following in the LDAP directory:

■ By default in WebLogic Server, the Admin role includes the Administrators
group. Create an Administrators group in the LDAP directory, if one does not
already exist. Make sure the LDAP user who will boot WebLogic Server is
included in the group.

The Active Directory LDAP directory has a default group called
Administrators. Add the user who will be booting WebLogic Server to the
Administrators group and define Group Base Distinguished Name (DN) so
that the Administrators group is found.

■ If you do not want to create an Administrators group in the LDAP directory
(for example, because the LDAP directory uses the Administrators group for a
different purpose), create a new group (or use an existing group) in the LDAP
directory and include the user from which you want to boot WebLogic Server in
that group. In the WebLogic Administration Console, assign that group the Admin
role.

5.4.2 Configuring an LDAP Authentication Provider: Main Steps
To configure an LDAP Authentication provider:

1. Choose an LDAP Authentication provider that matches your LDAP server and
create an instance of the provider in your security realm. See "Configure
Authentication and Identity Assertion providers" in the Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Help.

2. Configure the provider-specific attributes of the LDAP Authentication provider,
which you can do through the Administration Console. For each LDAP
Authentication provider, there are attributes that:

a. Enable communication between the LDAP server and the LDAP
Authentication provider. For a more secure deployment, Oracle recommends
using the SSL protocol to protect communications between the LDAP server
and WebLogic Server. Enable SSL with the SSLEnabled attribute.

b. Configure options that control how the LDAP Authentication provider
searches the LDAP directory.

c. Specify where in the LDAP directory structure users are located.

d. Specify where in the LDAP directory structure groups are located.

e. Define how members of a group are located.

Note: If the LDAP user who boots WebLogic Server is not properly
added to a group that is assigned to the Admin role, and the LDAP
authentication provider is the only authentication provider with
which the security realm is configured, WebLogic Server cannot be
booted.

Configuring LDAP Authentication Providers

5-6 Securing Oracle WebLogic Server

3. Configure performance options that control the cache for the LDAP server. Use the
Configuration > Provider Specific and Performance pages for the provider in the
Administration Console to configure the cache. See Section 5.4.7, "Improving the
Performance of WebLogic and LDAP Authentication Providers".

For more information, see:

■ Section 5.4.3, "Accessing Other LDAP Servers"

■ Section 5.4.6, "Configuring Failover for LDAP Authentication Providers"

■ Section 5.4.7, "Improving the Performance of WebLogic and LDAP Authentication
Providers"

5.4.3 Accessing Other LDAP Servers
The LDAP Authentication providers in this release of WebLogic Server are configured
to work readily with the Oracle Internet Directory, Oracle Virtual Directory, SunONE
(iPlanet), Active Directory, Open LDAP, and Novell NDS LDAP servers. You can use
an LDAP Authentication provider to access other types of LDAP servers. Choose
either the LDAP Authentication provider (LDAPAuthenticator) or the existing
LDAP provider that most closely matches the new LDAP server and customize the
existing configuration to match the directory schema and other attributes for your
LDAP server.

5.4.4 Dynamic Groups and WebLogic Server
Many LDAP servers have a concept of dynamic groups or virtual groups. These are
groups that, rather than consisting of a list of users and groups, contain some policy
statements, queries, or code that define the set of users that belong to the group. Even
if a group is marked dynamic, users must log out and log back in before any changes
in their group memberships take effect. The term dynamic describes the means of
defining the group and not any runtime semantics of the group within WebLogic
Server.

5.4.5 Configuring Users and Groups in the Oracle Internet Directory and Oracle Virtual
Directory Authentication Providers

The following sections explain how to change default values in the Oracle Internet
Directory and Oracle Virtual Directory Authentication providers that specify how
users and groups are located in the LDAP server:

Note: If you are configuring either the Oracle Internet Directory or
Oracle Virtual Directory Authentication provider, see Section 5.4.5,
"Configuring Users and Groups in the Oracle Internet Directory and
Oracle Virtual Directory Authentication Providers". This section
explains how to match the authentication provider attributes for users
and groups to the LDAP directory structure.

Note: If the LDAP Authentication provider fails to connect to the
LDAP server, or throws an exception, check the configuration of the
LDAP Authentication provider to make sure it matches the
corresponding settings in the LDAP server.

Configuring LDAP Authentication Providers

Configuring Authentication Providers 5-7

■ Section 5.4.5.1, "Configuring User and Group Name Types"

■ Section 5.4.5.2, "Configuring Static Groups"

5.4.5.1 Configuring User and Group Name Types
By default, the Oracle Internet Directory and Oracle Virtual Directory Authentication
providers are configured to search users and groups in the LDAP directory using the
class attribute types identified in Table 5–1:

If the user name attribute type, or group name attribute type, defined in the LDAP
directory structure differs from the default settings for the Authentication provider
you are using, you must change those provider settings. The following sections
explain how to make those changes.

5.4.5.1.1 Changing the User Name Attribute Type By default, the Oracle Internet Directory
and Oracle Virtual Directory Authentication providers are configured with the user
name attribute set to type cn. If the user name attribute type in the LDAP directory
structure uses a different type — for example, uid — you must change the following
Authentication provider attributes:

■ AllUsersFilter

■ UserFromNameFilter

■ UserNameAttribute

For example, if the LDAP directory structure has the user name attribute type uid, the
preceding Authentication provider attributes must be changed as shown in Table 5–2.
The required changes are shown in bold.

Table 5–1 Default User Name and Group Name Attribute Types

Class Attribute Type

User object class user name cn

Group object class group name cn

Note: Neither the Oracle Internet Directory Authentication provider
nor Oracle Virtual Directory Authentication provider can read the
name of a user or group from the LDAP server if the name contains an
invalid character. Invalid characters are:

■ Comma (,)

■ Plus sign (+)

■ Quotes (")

■ Backslash (\)

■ Angle brackets (< or >)

■ Semicolon (;)

If either of these providers encounters a group or user name
containing an invalid character, the name is ignored.

Configuring LDAP Authentication Providers

5-8 Securing Oracle WebLogic Server

For information about configuring the user name attribute type, see the following
topics in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Help:

■ "Configure the Oracle Internet Directory Authentication provider"

■ "Configure the Oracle Virtual Directory Authentication provider"

5.4.5.1.2 Changing the Group Name Attribute Type By default, the Oracle Internet
Directory and Oracle Virtual Directory Authentication providers are configured with
the group name attribute type of cn for the static group object class and dynamic
group object class. If the group name attribute type in the LDAP directory structure is
different — for example, type uid is used — you must change the following
Authention provider attributes:

■ AllGroupsFilter

■ GroupFromNameFilter

■ StaticGroupNameAttribute (for static groups)

■ DynamicGroupNameAttribute (for dynamic groups)

For example, if the LDAP directory structure of the group object class uses a group
name attribute of type uid, you must change the Authentication provider attributes as
shown in Table 5–3. The required changes are shown in bold.

For more information about configuring group name attributes, see the following
topics in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Help

■ "Configure the Oracle Internet Directory Authentication provider"

■ "Configure the Oracle Virtual Directory Authentication provider"

5.4.5.2 Configuring Static Groups
The Oracle Internet Directory and Oracle Virtual Directory Authentication providers
are configured by default with the following settings for static groups:

■ Static group object class name of groupofuniquenames

Table 5–2 Changing the User Name Attribute Type for the User Object Class

Attribute Name Default Setting Required New Setting

UserNameAttribute cn uid

AllUsersFilter (&(cn=*)(objectclass=person)) (&(uid=*)(objectclass=person))

UserFromNameFilter (&(cn=%u)(objectclass=person)) (&(uid=%u)(objectclass=person))

Table 5–3 Required Changes for the Group Name Attribute Type

Attribute Name Default Setting Required Changes

StaticGroupNameAttribute cn uid

DynamicGroupNameAttribute cn uid

AllGroupsFilter (&(cn=*)(|(objectclass=groupofU
niqueNames)(objectclass=orcldyn
amicgroup)))

(&(uid=*)(|(objectclass=groupofUni
queNames)(objectclass=orcldynamicg
roup)))

GroupFromNameFilter (|(&(cn=%g)(objectclass=groupof
UniqueNames))(&(cn=%g)(objectcl
ass=orcldynamicgroup)))

(|(&(uid=%g)(objectclass=groupofUn
iqueNames))(&(uid=%g)(objectclass=
orcldynamicgroup)))

Configuring LDAP Authentication Providers

Configuring Authentication Providers 5-9

■ Static member DN attribute of type uniquemember

However, the directory structure of the Oracle Internet Directory or Oracle Virtual
Directory LDAP server with which you are configuring either of these Authentication
providers may instead define the following for static groups:

■ Static group object class name of groupofnames

■ Static member DN attribute of type member

If the LDAP database schema contains the static group object class name of
groupofnames, and the static member DN attribute of type member, you need to
change the Oracle Internet Directory or Oracle Virtual Directory Authentication
provider attribute settings as shown in Table 5–4. The required changes are shown in
bold.

For more information about configuring static groups, see the following topics in the
Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help:

■ "Configure the Oracle Internet Directory Authentication provider"

■ "Configure the Oracle Virtual Directory Authentication provider"

5.4.6 Configuring Failover for LDAP Authentication Providers
You can configure an LDAP provider to work with multiple LDAP servers and enable
failover if one LDAP server is not available. Use the Host attribute (found in the
Administration Console on the Configuration > Provider Specific page for the LDAP
Authentication provider) to specify the names of the additional LDAP servers. Each
host name may include a trailing comma and a port number. In addition, set the
Parallel Connect Delay and Connection Timeout attributes for the LDAP
Authentication provider:

■ Parallel Connect Delay—Specifies the number of seconds to delay when making
concurrent attempts to connect to multiple servers. An attempt is made to connect
to the first server in the list. The next entry in the list is tried only if the attempt to
connect to the current host fails. This setting might cause your application to block
for an unacceptably long time if a host is down. If the value is greater than 0,
another connection setup thread is started after the specified number of delay
seconds has passed. If the value is 0, connection attempts are serialized.

■ Connection Timeout—Specifies the maximum number of seconds to wait for the
connection to the LDAP server to be established. If the set to 0, there is no
maximum time limit and WebLogic Server waits until the TCP/IP layer times out
to return a connection failure. Set to a value over 60 seconds depending upon the
configuration of TCP/IP.

Table 5–4 Attribute Settings for Static Groups in the Oracle Internet Directory and Oracle Virtual Directory
Authentication Providers

Attribute Default Setting Required Changes

StaticGroupObjectClass groupofuniquenames groupofnames

StaticMemberDNAttribute uniquemember member

AllGroupsFilter (&(cn=*)(|(objectclass=groupofU
niqueNames)(objectclass=orcldyn
amicgroup)))

(&(cn=*)(|(objectclass=groupofnames)(o
bjectclass=orcldynamicgroup)))

GroupFromNameFilter (|(&(cn=%g)(objectclass=groupof
UniqueNames))(&(cn=%g)(objectcl
ass=orcldynamicgroup)))

(|(&(cn=%g)(objectclass=groupofnames))
(&(cn=%g)(objectclass=orcldynamicgroup
)))

Configuring LDAP Authentication Providers

5-10 Securing Oracle WebLogic Server

The following examples present scenarios that occur when an LDAP Authentication
provider is configured for LDAP failover.

5.4.6.1 LDAP Failover Example 1
In the following scenario, an LDAP Authentication provider is configured with three
servers in its Host attribute: directory.knowledge.com:1050,
people.catalog.com, and 199.254.1.2. The status of the LDAP servers is as
follows:

■ directory.knowledge.com:1050 is down

■ people.catalog.com is up

■ 199.254.1.2 is up

WebLogic Server attempts to connect to directory.knowledge.com. After 10
seconds, the connect attempt times out and WebLogic Server attempts to connect to
the next specified host (people.catalog.com). WebLogic Server then uses
people.catalog.com as the LDAP Server for this connection.

5.4.6.2 LDAP Failover Example 2
In the following scenario, WebLogic Server attempts to connect to
directory.knowledge.com. After 1 second (specified by the Parallel Connect
Delay attribute), the connect attempt times out and WebLogic Server tries to connect to
the next specified host (people.catalog.com) and directory.knowledge.com
at the same time. If the connection to people.catalog.com succeeds, WebLogic Server
uses people.catalog.com as the LDAP Server for this connection.WebLogic Server
cancels the connection to directory.knowledge.com after the connection to
people.catalog.com succeeds.

5.4.7 Improving the Performance of WebLogic and LDAP Authentication Providers
To improve the performance of WebLogic and LDAP Authentication providers:

■ Optimize the group membership caches used by the WebLogic and LDAP
Authentication providers. See Section 5.4.7.1, "Optimizing the Group Membership
Caches".

Table 5–5 LDAP Configuration Example 1

LDAP Option Value

Host directory.knowledge.com:1050
people.catalog.com
199.254.1.2

Parallel Connect Delay 0

Connect Timeout 10

Table 5–6 LDAP Configuration Example 2

LDAP Option Value

Host directory.knowledge.com:1050
people.catalog.com
199.254.1.2

Parallel Connect Delay 1

Connect Timeout 10

Configuring LDAP Authentication Providers

Configuring Authentication Providers 5-11

■ Expose the Principal Validator cache for the security realm and increase its
thresholds. See Section 5.4.7.3, "Optimizing the Principal Validator Cache".

■ If you are using the Active Directory Authentication provider, configure it to
perform group membership lookups using the tokenGroups option. The
tokenGroups option holds the entire flattened group membership for a user as
an array of system ID (SID) values. The SID values are specially indexed in the
Active Directory and yield extremely fast lookup response. See Section 5.4.7.4,
"Configuring the Active Directory Authentication Provider to Improve
Performance".

5.4.7.1 Optimizing the Group Membership Caches
To optimize the group membership caches for WebLogic and LDAP Authentication
providers, set the following attributes (found in the Administration Console on the
LDAP Authentication provider's Configuration > Provider Specific and Performance
pages):

■ Group Membership Searching—Controls whether group searches are limited or
unlimited in depth. This option controls how deeply to search into nested groups.
For configurations that use only the first level of nested group hierarchy, this
option allows improved performance during user searches by limiting the search
to the first level of the group.

– If a limited search is defined, Max Group Membership Search Level must be
defined.

– If an unlimited search is defined, Max Group Membership Search Level is
ignored.

■ Max Group Membership Search Level—Controls the depth of a group
membership search if Group Membership Searching is defined. Possible values
are:

– 0—Indicates only direct groups will be found. That is, when searching for
membership in Group A, only direct members of Group A will be found. If
Group B is a member of Group A, the members will not be found by this
search.

– Any positive number—Indicates the number of levels to search. For example,
if this option is set to 1, a search for membership in Group A will return direct
members of Group A. If Group B is a member of Group A, the members of
Group B will also be found by this search. However, if Group C is a member of
Group B, the members of Group C will not be found by this search.

■ Enable Group Membership Lookup Hierarchy Caching—Indicates whether group
membership hierarchies found during recursive membership lookup are cached.
Each subtree found will be cached. The cache holds the groups to which a group is
a member. This setting only applies if Group Membership is enabled. By default, it
is disabled.

■ Max Group Hierarchies in Cache—The maximum size of the Least Recently Used
(LRU) cache that holds group membership hierarchies. This setting only applies if
Enable Group Membership Lookup Hierarchy Caching is enabled.

■ Group Hierarchy Cache TTL—The number of seconds cached entries stay in the
cache. The default is 60 seconds.

In planning your cache settings, bear in mind the following considerations:

Configuring LDAP Authentication Providers

5-12 Securing Oracle WebLogic Server

■ Enabling a cache involves a trade-off of performance and accuracy. Using a cache
means that data is retrieved faster, but runs the risk that the data may not be the
latest available.

■ The time-to-live (TTL) setting how long you are willing to accept potentially stale
data. This depends a lot on your particular business needs. If you frequently
changes group memberships for users, then a long TTL could mean that group
related changes won't show up for a while, and you may want a short TTL. If
group memberships almost never change after a user is added, a longer TTL may
be fine.

■ The cache size is related to the amount of memory you have available, as well as
the cache TTL. Consider the number of entries that might be loaded in the span of
the TTL, and size the cache in relation to that number. A longer TTL will tend to
require a larger cache size.

5.4.7.2 Configuring Dynamic Groups in the iPlanet Authentication Provider to
Improve Performance
Dynamic groups do not list the names of their members. Instead, the membership of
the dynamic group is constructed by matching user attributes. Because group
membership needs to be computed dynamically for dynamic groups, there is a risk of
performance problems for large groups. Configuring the iPlanet Authentication
provider appropriately can improve performance where dynamic groups are involved.

In the iPlanet Authentication provider, the User Dynamic Group DN Attribute
attribute specifies the attribute of an LDAP user object that specifies the distinguished
names (DNs) of dynamic groups to which this user belongs. If such an attribute does
not exist, WebLogic Server determines if a user is a member of a group by evaluating
the URLs on the dynamic group. By default, User Dynamic Group DN Attribute is
null. If you set User Dynamic Group DN Attribute to some other value, to improve
performance set the following attributes for the iPlanet Authentication provider:

UserDynamicGroupDNAttribute="wlsMemberOf"
DynamicGroupNameAttribute="cn"
DynamicGroupObjectClass=""
DynamicMemberURLAttribute=""

To set these attributes in the Administration Console:

1. Expand Security Realms > realm name > Providers > Authentication.

2. On the Provider Specific tab for your iPlanet Authentication provider, set User
Dynamic Group DN Attribute. Set Dynamic Group Object Class and Dynamic
Member URL Attribute to null (delete anything in the fields) and leave Dynamic
Group Name Attribute set to cn.

5.4.7.3 Optimizing the Principal Validator Cache
To improve the performance of a WebLogic or LDAP Authentication provider, the
settings of the cache used by the WebLogic Principal Validation provider can be
increased as appropriate. The Principal Validator cache used by the WebLogic
Principal Validation provider caches signed WLSAbstractPrincipals. To optimize the
performance of the Principal Validator cache, set these attributes for your security
realm (found in the Administration Console on the Configuration > Performance
page for the security realm):

■ Enable WebLogic Principal Validator Cache—Indicates whether the WebLogic
Principal Validation provider uses a cache. This setting only applies if

Configuring RDBMS Authentication Providers

Configuring Authentication Providers 5-13

Authentication providers in the security realm use the WebLogic Principal
Validation provider and WLSAbstractPrincipals. By default, it is enabled.

■ Max WebLogic Principals In Cache—The maximum size of the Last Recently Used
(LRU) cache used for validated WLSAbstractPrincipals. The default setting is 500.
This setting only applies if Enable WebLogic Principal Validator Cache is enabled.

5.4.7.4 Configuring the Active Directory Authentication Provider to Improve
Performance
To configure an Active Directory Authentication provider to use the tokenGroups
option, set the following attributes (found in the Administration Console on the Active
Directory Authentication provider's Configuration > Provider Specific page):

■ Use Token Groups for Group Membership Lookup—Indicates whether to use the
Active Directory tokenGroups lookup algorithm instead of the standard
recursive group membership lookup algorithm. By default, this option is not
enabled.

■ Enable SID to Group Lookup Caching—Indicates whether or not SID-to-group
name lookup results are cached. This setting only applies if the Use Token Groups
for Group Membership Lookup option is enabled.

■ Max SID To Group Lookups In Cache—The maximum size of the Least Recently
Used (LRU) cache for holding SID to group lookups. This setting applies only if
both the Use Token Groups for Group Membership Lookup and Enable SID to
Group Lookup Caching options are enabled.

5.5 Configuring RDBMS Authentication Providers
In WebLogic Server, an RDBMS Authentication provider is a username/password
based Authentication provider that uses a relational database (rather than an LDAP
directory) as its data store for user, password, and group information. WebLogic
Server includes these RDBMS Authentication providers:

■ SQL Authenticator—Uses a SQL database and allows both read and write access
to the database. This Authentication provider is configured by default with a
typical SQL database schema, which you can configure to match your database's
schema. See Section 5.5.2, "Configuring the SQL Authentication Provider".

■ Read-only SQL Authenticator—Uses a SQL database and allows only read access
to the database. For write access, you use the SQL database's own interface, not the
WebLogic security provider. See Section 5.5.3, "Configuring the Read-Only SQL
Authenticator".

■ Custom RDBMS Authenticator—Requires you to write a plug-in class. This may
be a better choice if you want to use a relational database for your authentication
data store, but the SQL Authenticator's schema configuration is not a good match
for your existing database schema. See Section 5.5.4, "Configuring the Custom
DBMS Authenticator".

Note: Access to the tokenGroups option is required (meaning, the
user accessing the LDAP directory must have privileges to read the
tokenGroups option and the tokenGroups option must be in the
schema for user objects).

Configuring RDBMS Authentication Providers

5-14 Securing Oracle WebLogic Server

For information about adding an RDBMS Authentication provider to your security
realm, see "Configure Authentication and Identity Assertion providers" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help. Once you have
created an instance of the RDBMS Authentication provider, configure it on the RDBMS
Authentication provider's Configuration > Provider Specific page in the
Administration Console.

5.5.1 Common RDBMS Authentication Provider Attributes
All three RDBMS Authentication providers include these configuration options.

5.5.1.1 Data Source Attribute
The Data Source Name specifies the WebLogic Server data source to use to connect to
the database.

5.5.1.2 Group Searching Attributes
The Group Membership Searching and Max Group Membership Search Level
attributes specify whether recursive group membership searching is unlimited or
limited, and if limited, how many levels of group membership can be searched. For
example, if you specify that Group Membership Searching is LIMITED, and the Max
Group Membership Search Level is 0, then the RDBMS Authentication providers will
find only groups that the user is a direct member of. Specifying a maximum group
membership search level can greatly increase authentication performance in certain
scenarios, since it may reduce the number of DBMS queries executed during
authentication. However, you should only limit group membership search if you can
be certain that the group memberships you require are within the search level limits
you specify.

5.5.1.3 Group Caching Attributes
You can improve the performance of RDBMS Authentication providers by caching the
results of group hierarchy lookups. Use of this cache can reduce the frequency with
which the RDBMS Authentication provider needs to access the database. In the
Administration Console, you can use the Performance page for your Authentication
provider to configure the use, size, and duration of this cache. See "Security Realms:
Security Providers: SQL Authenticator: Performance" in the Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Help.

5.5.2 Configuring the SQL Authentication Provider
For detailed information about configuring a SQL Authentication provider, see
"Security Realms: Security Providers: SQL Authenticator: Provider Specific" in the
Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help. In addition
to the attributes described in Section 5.5.1, "Common RDBMS Authentication Provider
Attributes", the SQL Authentication provider has the following configurable attributes.

5.5.2.1 Password Attributes
The following attributes govern how the RDBMS Authentication provider and its
underlying database handle user passwords:

■ Plaintext Passwords Enabled

■ Password Style Retained

■ Password Style

Configuring a Windows NT Authentication Provider

Configuring Authentication Providers 5-15

■ Password Algorithm

5.5.2.2 SQL Statement Attributes
SQL statement attributes specify the SQL statements used by the provider to access
and edit the username, password, and group information in the database. With the
default values in the SQL statement attributes, it is assumed that the database schema
includes the following tables:

■ users (username, password, [description])

■ groupmembers (group name, group member)

■ groups (group name, group description)

5.5.3 Configuring the Read-Only SQL Authenticator
For detailed information about configuring a Read-Only SQL Authentication provider,
see "Security Realms: Security Providers: Read-Only SQL Authenticator: Provider
Specific" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Help. In addition to the attributes described in Section 5.5.1, "Common RDBMS
Authentication Provider Attributes", the Read-Only SQL Authentication provider's
configurable attributes include attributes that specify the SQL statements used by the
provider to list the username, password, and group information in the database. You
can modify these attributes as needed to match the schema of your database.

5.5.4 Configuring the Custom DBMS Authenticator
The Custom DBMS Authentication provider, like the other RDBMS Authentication
providers, uses a relational database as its data store for user, password, and group
information. Use this provider if your database schema does not map well to the SQL
schema expected by the SQL Authenticator. In addition to the attributes described in
Section 5.5.1, "Common RDBMS Authentication Provider Attributes", the Custom
DBMS Authentication provider's configurable attributes include the following.

5.5.4.1 Plug-In Class Attributes
A Custom DBMS Authentication provider requires that you write a plug-in class that
implements the
weblogic.security.providers.authentication.CustomDBMSAuthenticat
orPlugin interface. The class must exist in the CLASSPATH and must be specified in
the Plug-in Class Name attribute for the Custom DBMS Authentication provider.
Optionally, you can use the Plugin Properties attribute to specify values for properties
defined by your plug-in class.

5.6 Configuring a Windows NT Authentication Provider
The Windows NT Authentication provider uses account information defined for a
Windows NT domain to authenticate users and groups and to permit Windows NT
users and groups to be listed in the WebLogic Server Administration Console.

Note: The tables referenced by the SQL statements must exist in the
database; the provider will not create them. You can modify these
attributes as needed to match the schema of your database. However,
if your database schema is radically different from this default
schema, you may need to use a Custom DBMS Authentication
provider instead.

Configuring a Windows NT Authentication Provider

5-16 Securing Oracle WebLogic Server

To use the Windows NT Authentication provider, create the provider in the
Administration Console. In most cases, you should not need to do anything more to
configure this Authentication provider. Depending on how your Windows NT
domains are configured, you may want to set the Domain Controllers and Domain
Controller List attributes, which control how the Windows NT Authentication
provider interacts with the Windows NT domain.

5.6.1 Domain Controller Settings
Usernames in a Windows NT domain can take several different forms. You may need
to configure the Windows NT Authentication provider to match the form of
usernames you expect your users to sign on with. A simple username is one that gives
no indication of the domain, such as smith. Compound usernames combine a
username with a domain name and may take a form like domain\smith or
smith@domain.

If the local machine is not part of a Microsoft domain, then no changes to the Domain
Controllers and Domain Controller List attributes are needed. On a stand-alone
machine, the users and groups to be authenticated are defined only on that machine.

If the local machine is part of a Microsoft domain and is the domain controller for the
local domain, then no changes are needed to the Domain Controller List attribute.
Users defined on the local machine and the domain are the same in this case, so you
can use the default Domain Controllers setting.

If the local machine is part of a Microsoft domain, but is not the domain controller for
the local domain, then a simple username might be found on either the local machine
or in the domain. In this case, consider the following:

■ Do you want to prevent the users and groups from the local machine from being
displayed in the Console when the local machine is part of a Microsoft domain?

■ Do you want users from the local machine to be found and authenticated when a
simple username is entered?

If the answer to either question is yes, then set the Domain Controller attribute to
DOMAIN.

If you have multiple trusted domains, you may need to set the Domain Controller
attribute to LIST and specify a Domain Controller List. Do this if:

■ You require the users and groups for other trusted domains to be visible in the
Console, or

■ You expect that your users will be entering simple usernames and expect them to
be located in the trusted domains (that is, users will sign on with a simple
username like smith, not smith@domain or domain\Smith).

If either of these situations is the case, then set the Domain Controllers attribute to
LIST and specify the names of the domain controllers in the Domain Controller List
attribute for the trusted domains that you want to be used. Consider also whether to
use explicit names for the local machine and local domain controller or if you want to
use placeholders in the list for those. You can use the following placeholders in the
Domain Controller List attribute:

■ [Local]

Note: The Windows NT Authentication provider is deprecated as of
WebLogic Server 10.0. Use one or more other supported
authentication providers instead.

Configuring the SAML Authentication Provider

Configuring Authentication Providers 5-17

■ [LocalAndDomain]

■ [Domain]

5.6.2 LogonType Setting
The proper value of the LogonType attribute in the Windows NT Authentication
provider depends on the Windows NT logon rights of the users that you want to be
able to authenticate:

■ If users have the "logon locally" right assigned to them on the machines that will
run WebLogic Server, then use the default value, interactive.

■ If users have the "Access this computer from the Network" right assigned to them,
then change the LogonType attribute to network.

You must assign one of these rights to users in the Windows NT domain or else the
Windows NT Authentication provider will not be able to authenticate any users.

5.6.3 UPN Names Settings
UPN style usernames can take the form user@domain. You can configure how the
Windows NT Authentication provider handles usernames that include the @ character,
but which may not be UPN names, by setting the mapUPNNames attribute in the
Windows NT Authentication provider.

If none of your Windows NT domains or local machines have usernames that contain
the @ character other than UPN usernames, then you can use the default value of the
mapUPNNames attribute, FIRST. However, you may want to consider changing the
setting to ALWAYS in order to reduce the amount of time it takes to detect
authentication failures. This is especially true if you have specified a long domain
controller list.

If your Windows NT domains do permit non-UPN usernames with the @ character in
them, then:

■ if a username with the @ character is more likely to be a UPN username than a
simple username, set the mapUPNNames attribute to FIRST.

■ if a username with the @ character is more likely to be a simple username than a
UPN username, set the mapUPNNames attribute to LAST.

■ if a username is never in UPN format, set the mapUPNNames attribute to NEVER.

5.7 Configuring the SAML Authentication Provider
The SAML Authentication provider may be used in conjunction with the SAML 1.1 or
SAML 2.0 Identity Assertion provider to do the following:

■ Allow virtual users to log in via SAML

If true, the SAML Identity Asserter will create user/group principals, with the
possible result that the user is logged in as a virtual user — a user that does not
correspond to any locally-known user.

■ If the SAML Authentication provider is configured to run before other
authentication providers, and has a JAAS Control Flag set to SUFFICIENT, this
provider creates an authenticated subject using the user name and groups
retrieved from a SAML assertion by the SAML Identity Assertion provider V2 or
the SAML 2.0 Identity Assertion provider.

Configuring the Password Validation Provider

5-18 Securing Oracle WebLogic Server

If the SAML Authentication provider is not configured, or if another authentication
provider (e.g., the default LDAP Authentication provider) is configured before it and
its JAAS Control Flag set is set to SUFFICIENT, then the user name returned by the
SAML Identity Assertion provider is validated by the other authentication provider. In
the case of the default LDAP Authentication provider, authentication fails if the user
does not exist in the identity directory.

If you want groups from a SAML assertion, you must configure the SAML
Authentication provider even if you want the LDAP Authentication provider to verify
the user's existence. Otherwise, the groups with which the user is associated is derived
from the LDAP directory and not with the groups in the assertion.

The SAML Authentication provider creates a subject only for users whose identities
are asserted by either the SAML Identity Assertion provider V2 or SAML 2.0 Identity
Assertion provider. The SAML Authentication provider ignores all other
authentication or identity assertion requests.

5.8 Configuring the Password Validation Provider
WebLogic Server includes a Password Validation provider, which manages and
enforces a set of configurable password composition rules. When configured in a
security realm, the Password Validation provider is automatically invoked by a
supported authentication provider whenever a password is created or updated for a
user in that realm. The Password Validation provider then performs a check to
determine whether the password meets the criteria established by the composition
rules, and the password is accepted or rejected as appropriate.

The following authentication providers can be used with the Password Validation
provider:

■ Default Authentication provider

■ SQL Authenticator provider

■ LDAP Authentication provider

■ Oracle Internet Directory Authentication Provider

■ Oracle Virtual Directory Authentication Provider

■ Active Directory Authentication provider

■ iPlanet Authentication provider

■ Novell Authentication provider

■ Open LDAP Authentication provider

The Password Validation provider may be configured only via the WebLogic Scripting
Tool (WLST). This provider cannot be configured via the WebLogic Administration
Console. The following sections describe the composition rules that may be configured
and explain how to create and configure an instance of the Password Validation
provider in a security realm:

■ Section 5.8.1, "Password Composition Rules for the Password Validation Provider"

■ Section 5.8.2, "Using the Password Validation Provider with the Default
Authentication Provider"

■ Section 5.8.3, "Using WLST to Create and Configure the Password Validation
Provider"

Configuring the Password Validation Provider

Configuring Authentication Providers 5-19

5.8.1 Password Composition Rules for the Password Validation Provider
The password composition rules you can configure for the Password Validation
provider include the following:

■ Whether the password may contain the user's name, or the reverse of that name

■ A minimum or maximum password length (composition rules may specify both a
minimum and maximum length)

■ Whether and how many of the following characters must be in the password:

– Numeric characters

– Lowercase alphabetic characters

– Uppercase alphabetic characters

– Non-alphanumeric characters (e.g., parentheses or asterisks)

Table 5–7 describes each of the password composition rules you can configure,
identifies the default values of those rules, and recommends settings you can use to
create strong passwords that cannot be easily determined.

Caution: Setting password composition rules is only one component
of hardening the WebLogic Server environment against brute-force
password attacks. To protect user accounts, you should also configure
user lockout. User lockout specifies the number of incorrect
passwords that may be entered within a given interval of time before
the user is locked out of his or her account. For more information, see
Section 13.7, "Protecting User Accounts".

Table 5–7 Password Composition Rules and Default Values

The following rule name . . . Specifies the following composition rule . . . Default Value

RejectEqualOrContainUsername Whether the password may contain the username.
Validation is not case sensitive. If the value is set to
true, the password may not consist of, nor contain, the
username.

Recommendation: true

false

RejectEqualOrContainReverseUsern
ame

Whether the password may contain a reverse of the
username (e.g., Ramgad instead of Dagmar). If the
value is set to true, the password may not consist of,
nor contain, a reverse of the username.

Recommendation: true

false

MaxPasswordLength The maximum number of characters that the
password may contain. In order to be accepted, the
password may not contain a greater number of
characters than the value specified. Specifying 0
results in no restriction on password length.

Recommendation: 12

0 (zero)

Configuring the Password Validation Provider

5-20 Securing Oracle WebLogic Server

For information about setting these composition rules, see Section 5.8.3, "Using WLST
to Create and Configure the Password Validation Provider".

5.8.2 Using the Password Validation Provider with the Default Authentication Provider
By default, the Default Authentication provider requires a minimum password length
of 8 characters. However, the minimum password length enforced by this provider can

MinPasswordLength The minimum number of characters that the password
must contain. In order to be accepted, the password
must contain at least as many characters as the value
specified.

Recommendation: 6

Note: If the Default Authentication provider is
configured in the realm, make sure that this number is
consistent with the one configured for that provider.
See Section 5.8.2, "Using the Password Validation
Provider with the Default Authentication Provider".

0 (zero)

MaxInstancesOfAnyCharacter The maximum instances that any one character may
appear in the password. For example, if this value is
set to 2, the password alabaster is rejected.
Specifying 0 results in no restriction.

Recommendation: 4

0 (zero)

MaxConsecutiveCharacters The maximum number of characters that may appear
consecutively in the password. Specifying 0 results in
no restriction.

Recommendation: 3

0 (zero)

MinAlphabeticCharacters The minimum number of alphabetic characters that
must appear in the password. A valid value for this
rule must be greater than or equal to 0 (zero).

Recommendation: 1

0 (zero)

MinNumericCharacters The minimum number of numeric characters that
must appear in the password. A valid value for this
rule must be greater than or equal to 0 (zero).

Recommendation: 1

0 (zero)

MinLowercaseCharacters The minimum number of lowercase alphabetic
characters that must appear in the password. A valid
value for this rule must be greater than or equal to 0
(zero).

Recommendation: 1

0 (zero)

MinUppercaseCharacters The minimum number of uppercase alphabetic
characters that must appear in the password. A valid
value for this rule must be greater than or equal to 0
(zero).

Recommendation: 1

0 (zero)

MinNonAlphanumericCharacters The minimum number of non-alphanumeric
characters (also known as special characters, such as %,
*, #, or }) that must appear in the password. A valid
value for this rule must be greater than or equal to 0
(zero).

Recommendation: 1

0 (zero)

Table 5–7 (Cont.) Password Composition Rules and Default Values

The following rule name . . . Specifies the following composition rule . . . Default Value

Configuring the Password Validation Provider

Configuring Authentication Providers 5-21

be customized. If the Default Authentication provider and Password Validation
provider are both configured in the security realm, and you attempt to create a
password that does not meet the minimum length enforced by the Default
Authentication provider, an error is generated. For example, the following message is
displayed in the Administration Console:

Error [Security:090285]password must be at least 8 characters long
Error Errors must be corrected before proceeding.

If the Default Authentication provider rejects a password because it does not meet the
minimum length requirement, the Password Validation provider is not called. To
ensure that the Password Validator is always used in conjunction with the Default
Authentication provider, make sure that the minimum password length is the same for
both providers.

Using the Administration Console, you can set the minimum password length for
Default Authentication provider by completing the following steps:

1. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

2. In the left pane, select Security Realms and click the name of the realm you are
configuring (for example, myrealm).

3. Select Providers > Authentication and click DefaultAuthenticator.

4. Select Configuration > Provider Specific and enter the minimum password
length in the field labeled Minimum Password Length.

5. Click Save to save your changes.

6. To activate these changes, in the Change Center, click Activate Changes.

For information about how to set the minimum password length in the Password
Validation provider, see Section 5.8.3, "Using WLST to Create and Configure the
Password Validation Provider".

5.8.3 Using WLST to Create and Configure the Password Validation Provider
The Password Validation provider can be administered in the security realm only via
WLST. You may create and configure the Password Validation provider from a single
WLST script, or you may have separate scripts that perform these functions separately.
The following topics explain how to do this, providing sample WLST code snippets:

■ Section 5.8.3.1, "Creating an Instance of the Password Validation Provider"

■ Section 5.8.3.2, "Specifying the Password Composition Rules"

5.8.3.1 Creating an Instance of the Password Validation Provider
Example 5–1 shows an example of WLST code that creates an instance of the Password
Validation provider in the security realm. This code does the following:

1. Gets the current realm and Password Validation provider.

2. Determines whether an instance of the Password Validator provider has been
created:

■ If the provider has been created, the script displays a message confirming its
presence.

■ If the provider has not been created, the script creates it in the security realm
and displays a message indicating that it has been created.

Configuring Identity Assertion Providers

5-22 Securing Oracle WebLogic Server

Example 5–1 Creating the System Password Validator

edit()
startEdit()
realm = cmo.getSecurityConfiguration().getDefaultRealm()
pwdvalidator = realm.lookupPasswordValidator('systemPasswordValidator')

if pwdvalidator:
 print 'Password Validator provider is already created'

else:
Create SystemPasswordValidator
 syspwdValidator = realm.createPasswordValidator('systemPasswordValidator',

'com.bea.security.providers.authentication.passwordvalidator.SystemPasswordValidat
or')
 print "--- Creation of system Password Validator succeeded!"
save()
activate()

5.8.3.2 Specifying the Password Composition Rules
Example 5–2 shows an example of WLST code that sets the composition rules for the
Password Validation provider. For information about the rules attributes set in this
script, see Table 5–7.

Example 5–2 Configuring the Password Composition Rules

edit()
startEdit()
Configure SystemPasswordValidator
try:
 pwdvalidator.setMinPasswordLength(8)
 pwdvalidator.setMaxPasswordLength(12)
 pwdvalidator.setMaxConsecutiveCharacters(3)
 pwdvalidator.setMaxInstancesOfAnyCharacter(4)
 pwdvalidator.setMinAlphabeticCharacters(1)
 pwdvalidator.setMinNumericCharacters(1)
 pwdvalidator.setMinLowercaseCharacters(1)
 pwdvalidator.setMinUppercaseCharacters(1)
 pwdvalidator.setMinNonAlphanumericCharacters(1)
 pwdvalidator.setRejectEqualOrContainUsername(true)
 pwdvalidator.setRejectEqualOrContainReverseUsername(true)
 print " --- Configuration of SystemPasswordValidator complete ---"
except Exception,e:
 print e
save()
activate()

5.9 Configuring Identity Assertion Providers
If you are using perimeter authentication, you need to use an Identity Assertion
provider. In perimeter authentication, a system outside of WebLogic Server establishes
trust through tokens (as opposed to simple authentication, where WebLogic Server
establishes trust through usernames and passwords). An Identity Assertion provider
verifies the tokens and performs whatever actions are necessary to establish validity
and trust in the token. Each Identity Assertion provider is designed to support one or
more token formats.

WebLogic Server includes the following Identity Assertion providers:

Configuring Identity Assertion Providers

Configuring Authentication Providers 5-23

■ WebLogic Identity Asserter

■ LDAP X.509 Identity Asserter

■ Negotiate Identity Asserter

■ SAML Identity Asserter (for SAML 1.1)

■ SAML 2.0 Identity Asserter

Multiple Identity Assertion providers can be configured in a security realm, but none
are required. Identity Assertion providers can support more than one token type, but
only one token type per Identity Assertion provider can be active at a given time. In
the Active Type field on the Provider Specific configuration page in the
Administration Console, define the active token type. The WebLogic Identity
Assertion provider supports identity assertion with X.509 certificates and CORBA
Common Secure Interoperability version 2 (CSI v2). If you are using CSI v2 identity
assertion, define the list of client principals in the Trusted Principals field.

If multiple Identity Assertion providers are configured in a security realm, they can all
support the same token type. However, the token can be active for only one provider
at a time.

With the WebLogic Identity Assertion provider, you can use a user name mapper to
map the tokens authenticated by the Identity Assertion provider to a user in the
security realm. For more information about configuring a user name mapper, see
Section 4.7, "Configuring a WebLogic Credential Mapping Provider".

If the authentication type in a Web application is set to CLIENT-CERT, the Web
Application container in WebLogic Server performs identity assertion on values from
request headers and cookies. If the header name or cookie name matches the active
token type for the configured Identity Assertion provider, the value is passed to the
provider.

The Base64 Decoding Required value on the Provider Specific page determines
whether the request header value or cookie value must be Base64 Decoded before
sending it to the Identity Assertion provider. The setting is enabled by default for
purposes of backward compatibility; however, most Identity Assertion providers will
disable this option.

For more information see "Configure Authentication and Identity Assertion providers"
in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help. In
addition, see the following sections:

■ Section 5.9.1, "How an LDAP X509 Identity Assertion Provider Works"

■ Section 5.9.2, "Configuring an LDAP X509 Identity Assertion Provider: Main
Steps"

■ Section 5.9.3, "Configuring a Negotiate Identity Assertion Provider"

■ Section 5.9.4, "Configuring a SAML Identity Assertion Provider for SAML 1.1"

■ Section 5.9.5, "Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0"

■ Section 5.9.6, "Ordering of Identity Assertion for Servlets"

■ Section 5.9.7, "Configuring Identity Assertion Performance in the Server Cache"

■ Section 5.9.8, "Configuring a User Name Mapper"

■ Section 5.9.9, "Configuring a Custom User Name Mapper"

Configuring Identity Assertion Providers

5-24 Securing Oracle WebLogic Server

5.9.1 How an LDAP X509 Identity Assertion Provider Works
The LDAP X509 Identity Assertion provider receives an X509 certificate, looks up the
LDAP object for the user associated with that certificate, ensures that the certificate in
the LDAP object matches the presented certificate, and then retrieves the name of the
user from the LDAP object.

The LDAP X509 Identity Assertion provider works in the following manner:

1. An application is set up to use perimeter authentication (in other words, users or
system process use tokens to assert their identity).

2. As part of the SSL handshake, the application presents it certificate. The Subject
DN in the certificate can be used to locate the object that represents the user in the
LDAP server. The object contains the user's certificate and name.

3. The LDAP X509 Identity Assertion provider uses the certificate in the Subject DN
to construct an LDAP search to find the LDAP object for the user in the LDAP
server. It gets the certificate from that object, ensures it matches the certificate it
holds, and retrieves the name of the user.

4. The username is passed to the authentication providers configured in the security
realm. The authentication providers ensure the user exists and locates the groups
to which the user belongs.

5.9.2 Configuring an LDAP X509 Identity Assertion Provider: Main Steps
Typically, if you use the LDAP X509 Identity Assertion provider, you also need to
configure an LDAP Authentication provider that uses an LDAP server. The
authentication provider ensures the user exists and locates the groups to which the
user belongs. You should ensure both providers are properly configured to
communicate with the same LDAP server.

To use an LDAP X509 Identity Assertion provider:

1. Obtain certificates for users and put them in an LDAP Server. See Chapter 11,
"Configuring Identity and Trust."

A correlation must exist between the Subject DN in the certificate and the location
of the object for that user in the LDAP server. The LDAP object for the user must
also include configuration information for the certificate and the username that
will be used in the Subject.

2. In your security realm, configure an LDAP X509 Identity Assertion provider. See
"Configure Authentication and Identity Assertion providers" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

3. In the WebLogic Server Administration Console, configure the LDAP X509
Identity Assertion provider to find the LDAP object for the user in the LDAP
directory given the certificate's Subject DN.

4. Configure the LDAP X509 Identity Assertion provider to search the LDAP server
to locate the LDAP object for the user. This requires the following pieces of data.

■ A base LDAP DN from which to start searching. The Certificate Mapping
option for the LDAP X509 Identity Assertion provider tells the identity
assertion provider how to construct the base LDAP DN from the certificate's
Subject DN. The LDAP object must contain an attribute that holds the
certificate.

Configuring Identity Assertion Providers

Configuring Authentication Providers 5-25

■ A search filter that only returns LDAP objects that match a defined set of
options. The filter narrows the LDAP search. Configure User Filter Search to
construct a search filter from the certificate's Subject DN.

■ Where in the LDAP directory to search for the base LDAP DN. The LDAP
X509 Identity Assertion provider searches recursively (one level down). This
value must match the values in the certificate's Subject DN.

5. Configure the Certificate Attribute attribute of the LDAP X509 Identity Assertion
provider to specify how the LDAP object for the user holds the certificate. The
LDAP object must contain an attribute that holds the certificate.

6. Configure the User Name Attribute attribute of the LDAP X509 Identity Assertion
provider to specify which of the LDAP object's attributes holds the username that
should appear in the Subject DN.

7. Configure the LDAP server connection for the LDAP X509 Identity Assertion
provider. The LDAP server information should be the same as the information
defined for the LDAP Authentication provider configured in this security realm.

8. Configure an LDAP Authentication provider for use with the LDAP X509 Identity
Assertion provider. The LDAP server information should be the same the
information defined for the LDAP X509 Identity Assertion provider configured in
Step 7. See Section 5.4, "Configuring LDAP Authentication Providers".

5.9.3 Configuring a Negotiate Identity Assertion Provider
The Negotiate Identity Assertion provider enables single sign-on (SSO) with Microsoft
clients. The identity assertion provider decodes Simple and Protected Negotiate
(SPNEGO) tokens to obtain Kerberos tokens, validates the Kerberos tokens, and maps
Kerberos tokens to WebLogic users. The Negotiate Identity Assertion provider utilizes
the Java Generic Security Service (GSS) Application Programming Interface (API) to
accept the GSS security context via Kerberos.

The Negotiate Identity Assertion provider is an implementation of the Security Service
Provider Interface (SSPI) as defined by the WebLogic Security Framework and
provides the necessary logic to authenticate a client based on the client's SPNEGO
token.

For information about adding a Negotiate Identity Assertion provider to a security
realm, see "Configure Authentication and Identity Assertion providers" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help. For information
about using the Negotiate Identity Assertion provider with Microsoft client SSO, see
Chapter 6, "Configuring Single Sign-On with Microsoft Clients."

Table 5–8 Negotiate Identity Asserter Attributes

Attribute Description

Form Based Negotiation
Enabled

Indicates whether the Negotiate Identity Assertion provider
and servlet filter should negotiate when a Web application is
configured for FORM authentication.

Active Types The token type this Negotiate Identity Assertion provider
uses for authentication. Available token types are
Authorization.Negotiate and
WWW-Authenticate.Negotiate.

Ensure no other identity assertion provider configured in the
same security realm has this attribute set to X509.

Configuring Identity Assertion Providers

5-26 Securing Oracle WebLogic Server

5.9.4 Configuring a SAML Identity Assertion Provider for SAML 1.1
The SAML Identity Assertion provider acts as a consumer of SAML 1.1 security
assertions, allowing WebLogic Server to act as a destination site for using SAML 1.1 for
single sign-on. The SAML Identity Assertion provider validates SAML 1.1 assertions
by checking the signature and validating the certificate for trust in the certificate
registry maintained by the provider. If so, identity is asserted based on the
AuthenticationStatement contained in the assertion. The SAML Identity
Assertion provider can also ensure that the assertion has not been previously used.
The SAML Identity Assertion provider must be configured if you want to deploy a
SAML Assertion Consumer Service on a server instance.

This release of WebLogic Server includes two SAML Identity Assertion providers for
SAML 1.1. SAML Identity Asserter Version 2 provides greatly enhanced configuration
options and is recommended for new deployments. SAML Identity Asserter Version 1
has been deprecated in WebLogic Server 9.1. A security realm can have not more than
one SAML Identity Assertion provider, and if the security realm has both a SAML
Identity Assertion provider and a SAML Credential Mapping provider, both must be
of the same version. Do not use a Version 1 SAML provider in the same security realm
as a Version 2 SAML provider. For information about configuring the SAML Identity
Assertion provider Version 1, see Configuring a SAML Identity Assertion Provider at
http://edocs.bea.com/wls/docs90/secmanage/providers.html#SAML_ID
in the WebLogic Server 9.0 documentation.

For information about how to use the SAML Identity Assertion provider in a SAML
single sign-on configuration, see Chapter 7, "Configuring Single Sign-On with Web
Browsers and HTTP Clients." For general information about SAML support in
WebLogic Server, see "Security Assertion Markup Language (SAML)" in Oracle Fusion
Middleware Understanding Security for Oracle WebLogic Server.

5.9.4.1 Asserting Party Registry
When you configure WebLogic Server to act as a consumer of SAML security
assertions, you need to register the parties whose SAML assertions will be accepted.
For each SAML Asserting Party, you can specify the SAML profile used, details about
the Asserting Party, and the attributes expected in assertions received from the
Asserting Party. For information, see:

■ Section 7.1.3.3, "Configuring Asserting Parties" in Chapter 7, "Configuring Single
Sign-On with Web Browsers and HTTP Clients" in this guide.

■ "Configure a SAML 1.1 Asserting Party" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

5.9.4.2 Certificate Registry
The SAML Identity Assertion provider maintains a registry of trusted certificates.
Whenever a certificate is received, it is checked against the certificates in the registry
for validity. For each Asserting Party, the following certificates from that partner are
contained in this registry:

■ The certificate used for validating the signature of assertions received from this
Asserting Party.

■ The certificate used for verifying signatures on SAML protocol elements from this
Asserting Party. This certificate must be set for the Browser/POST profile.

■ The TLS/SSL certificate used for verifying trust in the Asserting Party when that
partner is retrieving an artifact from the Assertion Retrieval Service (ARS) via an
SSL connection.

Configuring Identity Assertion Providers

Configuring Authentication Providers 5-27

You can add trusted certificates to the certificate registry through the Administration
Console:

1. In the Console, navigate to the Security Realms > your realm > Providers >
Authentication page.

2. Click the name of the SAML Identity Assertion provider and open the
Management > Certificates page.

On the Management > Certificates page, you can add, view, or delete certificates from
the registry.

5.9.5 Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0
The SAML 2.0 Identity Assertion provider acts as a consumer of SAML 2.0 security
assertions, allowing WebLogic Server to act as a Service Provider for the following:

■ Web single sign-on

■ WebLogic Web Services Security: accepting SAML tokens for identity through the
use of the appropriate WS-SecurityPolicy assertions

The SAML 2.0 Identity Assertion provider does the following:

■ Validates SAML 2.0 assertions by checking the signature and validating the
certificate for trust based on data configured for the partner. The SAML 2.0
Identity Assertion provider then extracts the identity information contained in the
assertion, and maps it to a local subject in the security realm.

■ Optionally, extracts attribute information contained in an assertion that the SAML
Authentication provider, if configured in the security realm, can use to determine
the local groups in which the mapped subject belongs. (For more information, see
Section 5.7, "Configuring the SAML Authentication Provider".)

■ Optionally, verifies that an assertion's specified lifespan and re-use settings are
properly valid, rejecting the assertion if it is expired or is not available for reuse.

Configuration of the SAML 2.0 Identity Assertion provider is controlled by setting
attributes on the SAML2IdentityAsserterMBean. You can access the
SAML2IdentityAsserterMBean using the WebLogic Scripting Tool (WLST), or
through the Administration Console by using the Security Realms > RealmName >
Providers > Authentication page and creating or selecting
SAML2IdentityAsserter. For details, see SAML2IdentityAsserterMBean in the
Oracle Fusion Middleware Oracle WebLogic Server SAML 2.0 API Reference.

For information about how to use the SAML 2.0 Identity Assertion provider in a
SAML single sign-on configuration, see Chapter 7, "Configuring Single Sign-On with
Web Browsers and HTTP Clients." For general information about SAML support in
WebLogic Server, see "Security Assertion Markup Language (SAML)" in Oracle Fusion
Middleware Understanding Security for Oracle WebLogic Server. For information about
using the SAML 2.0 Identity Assertion provider in Web Service Security, see "Using
Security Assertion Markup Language (SAML) Tokens For Identity" in Oracle Fusion
Middleware Securing WebLogic Web Services for Oracle WebLogic Server.

5.9.5.1 Identity Provider Partners
When you configure WebLogic Server to act as a Service Provider, you create and
configure the Identity Provider partners from whom SAML 2.0 assertions are received
and validated. Configuring an Identity Provider partner consists of establishing basic
information about that partner, such as the following:

■ Partner name and general description

Configuring Identity Assertion Providers

5-28 Securing Oracle WebLogic Server

■ Name mapper class to be used with this partner

■ Whether to consume attribute statements included in assertions received from this
partner

■ Whether the identities contained in assertions received from this partner should be
mapped to virtual users

■ Certificates used for validating signed assertions received from this partner

The specific information you establish depends upon whether you are configuring the
partner for web single sign-on or web services. Configuring a web single sign-on
Identity Provider partner also involves importing that partner's metadata file and
establishing additional basic information about that partner, such as the following:

■ Redirect URIs, which are URLs that, when invoked by an unauthenticated user,
cause the user request to be redirected to that Identity Provider partner for
authentication

■ Whether SAML artifact requests received from this partner must be signed

■ How SAML artifacts should be delivered to this partner

For details about configuring web single sign-on Identity Provider partners, see:

■ Section 7.2.4.5, "Create and Configure Web Single Sign-On Identity Provider
Partners"

■ "Create a SAML 2.0 Web Single Sign-on Identity Provider partner" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help

Configuring a web service Identity Provider partner does not use a metadata file, but
does consist of establishing the following information about that partner:

■ Issuer URI, which is a string that uniquely identifies this Identity Provider partner,
distinguishing it from other partners in your SAML federation

■ Audience URIs, which specify an audience restriction to be included in assertions
received from this partner

In WebLogic Server, the Audience URI attribute is overloaded to also include the
partner lookup string, which is required by the web service run time to discover
the partner. See Section 5.9.5.1.1, "Partner Lookup Strings Required for Web
Service Partners".

■ Custom name mapper class that overrides the default name mapper and that is to
be used specifically with this partner

For more information about configuring web service Service Provider partners, see
"Create a SAML 2.0 Web Service Identity Provider partner" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

5.9.5.1.1 Partner Lookup Strings Required for Web Service Partners For web service Identity
Provider partners, you also configure Audience URIs. In WebLogic Server, the
Audience URI attribute is overloaded to perform two distinct functions:

■ Specify an audience restriction consisting of a target URL, per the OASIS SAML
2.0 specification.

■ Contain a partner lookup string, which is required at run time by WebLogic Server
to discover the Identity Provider partner for which a SAML 2.0 assertion needs to
be validated.

Configuring Identity Assertion Providers

Configuring Authentication Providers 5-29

The partner lookup string specifies an endpoint URL, which is used for partner lookup
and can optionally also serve as an Audience URI restriction that must be included in
the assertion received from this Identity Provider partner.

Lookup String Syntax

The partner lookup string has the following syntax:

[target:char:]<endpoint-url>
In this syntax, target:char: is a prefix that designates the partner lookup string,
where char represents one of three special characters: a hyphen, plus sign, or asterisk
(-, +, or *). This prefix determines how partner lookup is performed, as described in
Table 5–9.

Note: You must configure a partner lookup string for an Identity
Provider partner so that partner can be discovered at run time by the
web service run time.

Note: A WebLogic Server instance that is configured in the role of
Service Provider always strips off the transport, host, and port
portions of an endpoint URL that is passed in to the SAML 2.0
Identity Assertion provider. Therefore, the endpoint URLs you
configure in any lookup string for an Identity Provider partner should
contain only the portion of the URL that follows the host and port. For
example, target:*:/myserver/xxx.

When you configure a Service Provider site, this behavior enables you
to configure a single Identity Provider partner that can be used to
validate all assertions for the same web service, regardless of the
variations in the transport protocol (i.e., HTTP vs. HTTPS), host name,
IP address, and port information across all the machines in a domain
that host that web service.

Table 5–9 Identity Provider Partner Lookup String Syntax

Lookup String Description

target:-:<endpoint-url> Specifies that partner lookup is conducted for an exact match
of the URL, <endpoint-url>. For example,
target:-:/myserver/myservicecontext/my-endpoin
t specifies the endpoint that can be matched to this Identity
Provider partner, for which an assertion should be validated.

This form of partner lookup string excludes the endpoint URL
from being added as an Audience URI for this Identity
Provider partner.

target:+:<endpoint-url> Specifies that partner lookup is conducted for an exact match
of the URL, <endpoint-url>.

Note: Using the plus sign (+) in the lookup string results in
the endpoint URL being added as an Audience URI in the
assertion received from this Identity Provider partner. Because
this form of lookup string is unlikely to produce a match for
an Identity Provider partner, it should be avoided.

Configuring Identity Assertion Providers

5-30 Securing Oracle WebLogic Server

Specifying Default Partners

To support the need for a default Identity Provider partner entry, one or more of the
default partner's Audience URI entries may contain a wildcard match that works for
all targets. For example, target:*:/.

5.9.5.1.2 Management of Partner Certificates The SAML 2.0 Identity Assertion provider
manages the trusted certificates for configured partners. Whenever a certificate is
received during an exchange of partner messages, the certificate is checked against the
certificates maintained for the partner. Partner certificates are used for the following
purposes:

■ To validate trust when the Service Provider site receives a signed assertion or a
signed SAML artifact request.

■ To validate trust in an Identity Provider partner that is retrieving a SAML artifact
from the Artifact Resolution Service (ARS) via an SSL connection.

The following certificates, which are obtained from each configured Identity Provider
partner, are required:

■ The certificate used to verify signed SAML documents received from the partner,
such as assertions and artifact requests

The certificate used to verify signed SAML documents in web single sign-on is
included in the metadata file received from the Identity Provider partner. When
configuring web service Identity Provider partners, you obtain this certificate from
your partner and import it into this partner's configuration via the Assertion
Signing Certificate tab of the partner management page in the Administration
Console.

target:*:<endpoint-url> Specifies that partner lookup is conducted for an initial-string
pattern match of the URL, <endpoint-url>. For example,
target:*:/myserver specifies that any endpoint URL
beginning with /myserver can be matched to this Identity
Provider, such as: /myserver/contextA/endpointA and
/myserver/contextB/endpointB.

If more than one Identity Provider partner is discovered that
is a match for the initial string, the partner with the longest
initial string match is selected.

This form of partner lookup string excludes the endpoint URL
from being added as an Audience URI for this Identity
Provider partner.

Notes: Configuring one or more partner lookup strings for an
Identity Provider partner is required in order for that partner to be
discovered at run time. If this partner cannot be discovered, no
assertions for this partner can be validated.

If you configure an endpoint URL without using the target lookup
prefix, it will be handled as a conventional Audience URI that must be
contained in assertions received from this Identity Provider partner.
(This also enables backwards-compatibility with existing Audience
URIs that may be configured for this partner.)

Table 5–9 (Cont.) Identity Provider Partner Lookup String Syntax

Lookup String Description

Configuring Identity Assertion Providers

Configuring Authentication Providers 5-31

■ The Transport Layer Security (TLS) client certificate that is used to verify the
connection made by the partner to the local site's SSL binding for retrieving SAML
artifacts (used in web single sign-on only)

When configuring a web single sign-on Identity Provider partner, you must obtain
the TLS client certificate directly from the partner. It is not automatically included
in the metadata file. You can import this certificate into the configuration data for
this partner via the Transport Layer Client Certificate tab of the partner
management page in the Administration Console.

5.9.5.1.3 Java Interface for Configuring Identity Provider Partner Attributes Operations on
web service partners are available in the
com.bea.security.saml2.providers.registry.Partner Java interface.

5.9.6 Ordering of Identity Assertion for Servlets
When an HTTP request is sent, there may be multiple matches that can be used for
identity assertion. However, identity assertion providers can only consume one active
token type at a time. As a result there is no way to provide a set of tokens that can be
consumed with one call. Therefore, the servlet contained in WebLogic Server is forced
to choose between multiple tokens to perform identity assertion. The following
ordering is used:

1. An X.509 digital certificate (signifies two-way SSL to client or proxy plug-in with
two-way SSL between the client and the Web server) if X.509 is one of the active
token types configured for the Identity Assertion provider in the default security
realm.

2. Headers with a name in the form WL-Proxy-Client-<TOKEN> where <TOKEN>
is one of the active token types configured for the Identity Assertion provider in
the default security realm.

3. Headers with a name in the form <TOKEN> where <TOKEN> is one of the active
tokens types configured for the Identity Assertion provider in the default security
realm.

4. Cookies with a name in the form <TOKEN> where <TOKEN> is one of the active
tokens types configured for the Identity Assertion provider in the default security
realm.

For example, if an Identity Assertion provider in the default security realm is
configured to have the FOO and BAR tokens as active token types (for the following
example, assume the HTTP request contains nothing relevant to identity assertion
except active token types), identity assertion is performed as follows:

■ If a request comes in with a FOO header over a two-way SSL connection, X.509 is
used for identity assertion.

■ If a request comes in with a FOO header and a WL-Proxy-Client-BAR header,
the BAR token is used for identity assertion.

■ If a request comes in with a FOO header and a BAR cookie, the FOO token will be
used for identity assertion.

The ordering between multiple tokens at the same level is undefined, therefore:

Note: This method is deprecated and should only be used for the
purpose of backward compatibility.

Configuring Identity Assertion Providers

5-32 Securing Oracle WebLogic Server

■ If a request comes in with a FOO header and a BAR header, then either the FOO or
BAR token is used for identity assertion, however, which one is used is
unspecified.

■ If a request comes in with a FOO cookie and a BAR cookie, then either the FOO or
BAR token is used for identity assertion, however, which one is used is
unspecified.

5.9.7 Configuring Identity Assertion Performance in the Server Cache
When you use an Identity Assertion provider, either for an X.509 certificate or some
other type of token, subjects are cached within the server. (A subject is a grouping of
related information for a single entity (such as a person), including an identity and its
security-related configuration options.) Caching subjects within the server greatly
enhances performance for servlets and EJB methods with <run-as> tags as well as in
other situations where identity assertion is used but not cached in the HTTPSession,
for example, in signing and encrypting XML documents).

You can change the lifetime of items in this cache by setting the maximum number of
seconds a subject can live in the cache via the
-Dweblogic.security.identityAssertionTTL command-line argument. The
default for this command-line argument is 300 seconds (that is, 5 minutes). Possible
values for the command-line argument are:

■ Less than 0—Disables the cache.

■ 0—Caching is enabled and the identities in the cache never time out so long as the
server is running. Any changes in the user database of cached entities requires a
server reboot in order for the server to pick them up.

■ Greater than 0—Caching is enabled and the cache is reset at the specified number
of seconds.

To improve the performance of identity assertion, specify a higher value for this
command-line argument.

5.9.8 Configuring a User Name Mapper
WebLogic Server verifies the digital certificate of the Web browser or Java client when
establishing a two-way SSL connection. However, the digital certificate does not
identify the Web browser or Java client as a user in the WebLogic Server security
realm. If the Web browser or Java client requests a WebLogic Server resource protected
by a security policy, WebLogic Server requires the Web browser or Java client to have
an identity. The WebLogic Identity Assertion provider allows you to enable a user
name mapper that maps the digital certificate of a Web browser or Java client to a user
in a WebLogic Server security realm.

Note: Caching can violate the desired semantics.

Note: As identity assertion performance improves, the Identity
Assertion provider is less responsive to changes in the configured
Authentication provider. For example, a change in the user's group
will not be reflected until the subject is flushed from the cache and
recreated. Setting a lower value for the command-line argument
makes authentication changes more responsive at a cost for
performance.

Configuring Identity Assertion Providers

Configuring Authentication Providers 5-33

The user name mapper must be an implementation of the
weblogic.security.providers.authentication.UserNameMapper
interface. This interface maps a token to a WebLogic Server user name according to
whatever scheme is appropriate for your needs. By default, WebLogic Server provides
a default implementation of the
weblogic.security.providers.authentication.UserNameMapper
interface. You can also write your own implementation.

The WebLogic Identity Assertion provider calls the user name mapper for the
following types of identity assertion token types:

■ X.509 digital certificates passed via the SSL handshake

■ X.509 digital certificates passed via CSIv2

■ X.501 distinguished names passed via CSIv2

The default user name mapper uses the subject DN of the digital certificate or the
distinguished name to map to the appropriate user in the WebLogic Server security
realm. For example, the user name mapper can be configured to map a user from the
Email attribute of the subject DN (smith@example.com) to a user in the WebLogic
Server security realm (smith). Use Default User Name Mapper Attribute Type and
Default Username Mapper Attribute Delimiter attributes of the WebLogic Identity
Assertion provider to define this information:

■ Default User Name Mapper Attribute Type—The subject distinguished name (DN)
in a digital certificate used to calculate a username. Valid values are: C, CN, E, L, O,
OU, S and STREET.

■ Default User Name Mapper Attribute Delimiter—Ends the username. The user
name mapper uses everything to the left of the value to calculate a username. The
default delimiter is @.

For more information, see "Configure a user name mapper" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

5.9.9 Configuring a Custom User Name Mapper
You can also write a custom user name mapper to map a token to a WebLogic Server
user name according to whatever scheme is appropriate for your needs. The custom
user name mapper must be an implementation of the
weblogic.security.providers.authentication.UserNameMapper
interface. You then configure the custom user name mapper in the active security
realm, using the User Name Mapper Class Name attribute of the WebLogic Identity
Assertion provider.

For more information, see "Configure a custom user name mapper" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

Configuring Identity Assertion Providers

5-34 Securing Oracle WebLogic Server

6

Configuring Single Sign-On with Microsoft Clients 6-1

6Configuring Single Sign-On with Microsoft
Clients

The following sections explain how to set up single sign-on (SSO) with Microsoft
clients, using Windows authentication based on the Simple and Protected Negotiate
(SPNEGO) mechanism and the Kerberos protocol, together with the WebLogic
Negotiate Identity Assertion provider.

■ Section 6.1, "Overview of Single Sign-On with Microsoft Clients"

■ Section 6.2, "System Requirements for SSO with Microsoft Clients"

■ Section 6.3, "Single Sign-On with Microsoft Clients: Main Steps"

■ Section 6.5, "Creating a Kerberos Identification for WebLogic Server"

■ Section 6.6, "Configuring Microsoft Clients to Use Windows Integrated
Authentication"

■ Section 6.7, "Creating a JAAS Login File"

■ Section 6.8, "Configuring the Identity Assertion Provider"

■ Section 6.9, "Using Startup Arguments for Kerberos Authentication with WebLogic
Server"

■ Section 6.10, "Verifying Configuration of SSO with Microsoft Clients"

6.1 Overview of Single Sign-On with Microsoft Clients
Single sign-on (SSO) with Microsoft clients allows cross-platform authentication
between Web applications or Web Services running in a WebLogic Server domain and
.NET Web Service clients or browser clients (for example, Internet Explorer) in a
Microsoft domain. The Microsoft clients must use Windows authentication based on
the Simple and Protected Negotiate (SPNEGO) mechanism.

Cross-platform authentication is achieved by emulating the negotiate behavior of
native Windows-to-Windows authentication services that use the Kerberos protocol. In
order for cross-platform authentication to work, non-Windows servers (in this case,
WebLogic Server) need to parse SPNEGO tokens in order to extract Kerberos tokens
which are then used for authentication.

For more information about Windows and Kerberos, see
http://technet.microsoft.com/en-us/library/bb742431.aspx.

6.2 System Requirements for SSO with Microsoft Clients
To use SSO with Microsoft clients you need:

Single Sign-On with Microsoft Clients: Main Steps

6-2 Securing Oracle WebLogic Server

A host computer with:

■ Windows 2000 or later installed

■ Fully-configured Active Directory authentication service. Specific Active Directory
requirements include:

– User accounts for mapping Kerberos services

– Service Principal Names (SPNs) for those accounts

– Key tab files created and copied to the start-up directory in the WebLogic
Server domain

■ WebLogic Server installed and configured properly to authenticate through
Kerberos, as described in this chapter

Client systems with:

■ Windows 2000 Professional SP2 or later installed

■ One of the following types of clients:

– A properly configured Internet Explorer browser. Internet Explorer 6.01 or
later is supported.

– .NET Framework 1.1 and a properly configured Web Service client.

Clients must be logged on to a Windows 2000 domain and have Kerberos
credentials acquired from the Active Directory server in the domain. Local logins
will not work.

6.3 Single Sign-On with Microsoft Clients: Main Steps
Configuring SSO with Microsoft clients requires set-up procedures in the Microsoft
Active Directory, the client, and the WebLogic Server domain. (These procedures are
detailed in the sections that follow.)

■ Define a principal in Active Directory to represent the WebLogic Server. The
Kerberos protocol uses the Active Directory server in the Microsoft domain to
store the necessary security information.

■ Any Microsoft client you want to access in the Microsoft domain must be set up to
use Windows Integrated authentication, sending a Kerberos ticket when available.

■ In the security realm of the WebLogic Server domain, configure a Negotiate
Identity Assertion provider. The Web application or Web Service used in SSO
needs to have authentication set in a specific manner. A JAAS login file that
defines the location of the Kerberos identification for WebLogic Server must be
created.

To configure SSO with Microsoft clients:

1. Configure your network domain to use Kerberos. See Section 6.4, "Configuring
Your Network Domain to Use Kerberos".

2. Create a Kerberos identification for WebLogic Server.

a. Create a user account in the Active Directory for the host on which WebLogic
Server is running.

b. Create a Service Principal Name for this account.

c. Create a user mapping and keytab file for this account.

See Section 6.5, "Creating a Kerberos Identification for WebLogic Server".

Configuring Your Network Domain to Use Kerberos

Configuring Single Sign-On with Microsoft Clients 6-3

3. Choose a Microsoft client (either a Web Service or a browser) and configure it to
use Windows Integrated authentication. See Section 6.6, "Configuring Microsoft
Clients to Use Windows Integrated Authentication".

4. Set up the WebLogic Server domain to use Kerberos authentication.

a. Create a JAAS login file that points to the Active Directory server in the
Microsoft domain and the keytab file created in Step 1. See Section 6.7,
"Creating a JAAS Login File".

b. Configure a Negotiate Identity Assertion provider in the WebLogic Server
security realm. See Section 5.9.3, "Configuring a Negotiate Identity Assertion
Provider".

5. Start WebLogic Server using specific start-up arguments. See Section 6.9, "Using
Startup Arguments for Kerberos Authentication with WebLogic Server".

The following sections describe these steps in detail.

6.4 Configuring Your Network Domain to Use Kerberos
A Windows domain controller can serve as the Kerberos Key Distribution Center
(KDC), using the Active Directory and the Kerberos services. On any domain
controller, the Active Directory and the Kerberos services are running automatically.

Java GSS requires a Kerberos configuration file. The default name and location of the
Kerberos configuration file depends on the operating system being used. Java GSS
uses the following order to search for the default configuration file:

1. The file referenced by the Java property java.security.krb5.conf.

2. ${java.home}/lib/security/krb5.conf.

3. %windir%\krb5.ini on Microsoft Windows platforms.

4. /etc/krb5/krb5.conf on Solaris platforms.

5. /etc/krb5.conf on other Unix platforms.

To configure Kerberos in your Windows domain controller, you need to configure each
machine that will access the KDC to locate the Kerberos realm and available KDC
servers. For example:

Example 6–1 Sample krb5.ini File

[libdefaults]
default_realm = MYDOM.COM (Identifies the default realm. Set its value to your
Kerberos realm)
default_tkt_enctypes = des-cbc-crc
default_tgs_enctypes = des-cbc-crc
ticket_lifetime = 600
[realms]
MYDOM.COM = {
kdc = <IP address for MachineA> (host running the KDC)
(For Unix systems, you need to specify port 88, as in <IP-address>:88)
admin_server = MachineA
default_domain = MYDOM.COM
}
[domain_realm]
.mydom.com = MYDOM.COM

[appdefaults]
autologin = true

Creating a Kerberos Identification for WebLogic Server

6-4 Securing Oracle WebLogic Server

forward = true
forwardable = true
encrypt = true

6.5 Creating a Kerberos Identification for WebLogic Server
Active Directory provides support for service principal names (SPN), which are a key
component in Kerberos authentication. SPNs are unique identifiers for services
running on servers. Every service that uses Kerberos authentication needs to have an
SPN set for it so that clients can identify the service on the network. An SPN usually
looks something like name@YOUR.REALM. You need to define an SPN to represent
your WebLogic Server in the Kerberos realm. If an SPN is not set for a service, clients
have no way of locating that service. Without correctly set SPNs, Kerberos
authentication is not possible. Keytab files are the mechanism for storing the SPNs.
Keytab files are copied to the WebLogic Server domain and are used in the login
process. This configuration step describes how to create an SPN, user mapping, and
keytab file for WebLogic Server.

This configuration step requires the use of the following Active Directory utilities:

■ setspn—Windows 2000 Resource Kit

■ ktpass—Windows 2000 distribution CD in Program Files\Support Tools

To create a Kerberos identification for WebLogic Server:

1. In the Active Directory server, create a user account for the host computer on
which WebLogic Server runs. (Select New > User, not New > Machine.)

When creating the user account, use the simple name of the computer. For
example, if the host is named myhost.example.com, create a user in Active
Directory called myhost.

Note the password you defined when creating the user account. You will need it in
step 3. Do not select the User must change password at next logon option, or any
other password options.

2. Configure the new user account to comply with the Kerberos protocol. The user
account's encryption type must be DES and the account must require Kerberos
pre-authentication.

a. Right-click the name of the user account in the Users tree in the left pane and
select Properties.

b. Select the Account tab and check the box "Use DES encryption types for this
account." Make sure no other boxes are checked, particularly the box "Do not
require Kerberos pre-authentication."

c. Setting the encryption type may corrupt the password. Therefore, reset the
user password by right-clicking the name of the user account, selecting Reset
Password, and re-entering the same password specified earlier.

3. Use the setspn utility to create the Service Principal Names (SPNs) for the user
account created in step 1. Enter the following commands:

Note: The setspn and ktpass Active Directory utilities are products
of Microsoft. Therefore, Oracle does not provide complete
documentation for this utilities. For more information, see the
appropriate Microsoft documentation.

Configuring Microsoft Clients to Use Windows Integrated Authentication

Configuring Single Sign-On with Microsoft Clients 6-5

setspn -a host/myhost.example.com myhost
setspn -a HTTP/myhost.example.com myhost

4. Check which SPNs are associated with your user account, using the following
command:

setspn -L account name

This is an important step. If the same service is linked to a different account in the
Active Directory server, the client will not send a Kerberos ticket to the server.

5. Create a user mapping using the ktpass utility. For example, on Windows systems:

ktpass -princ host/myhost@Example.CORP -pass password -mapuser myhost -out
c:\temp\myhost.host.keytab

6. Create a keytab file. On Windows, the ktab utility manages principal name and
key pairs in the key table and allows you to list, add, update, or delete principal
names and key pairs. On UNIX, it is preferable to use the ktpass utility.

Windows

a. Run the ktab utility on the host on which WebLogic Server is running to create
the keytab file:

ktab -k keytab-filename -a myhost@Example.CORP

b. Copy the keytab file to the startup directory in the WebLogic Server domain.

UNIX

a. Create a user mapping using the ktpass utility, using a command like this,
where password is the password for the user account created in step 1:

ktpass -princ HTTP/myhost@Example.CORP -pass password -mapuser myhost -out
c:\temp\myhost.HTTP.keytab

b. Copy the keytab file created in Step a to the startup directory in the WebLogic
Server domain.

c. Login as root and then merge them into a single keytab using the ktutil utility
as follows:

ktutil: "rkt myhost.host.keytab"
ktutil: "rkt myhost.HTTP.keytab"
ktutil: "wkt mykeytab"
ktutil: "q"

7. Run the kinit utility to verify Kerberos authentication is working properly.

kinit -k -t keytab-file account-name

The output should be something similar to:

New ticket is stored in cache file C:\Documents and Settings\Username\krb5cc_
MachineB

6.6 Configuring Microsoft Clients to Use Windows Integrated
Authentication

Ensure the Microsoft client you want to use for single sign-on is configured to use
Windows Integrated authentication. The following sections describe how to configure

Configuring Microsoft Clients to Use Windows Integrated Authentication

6-6 Securing Oracle WebLogic Server

a .NET Web server, an Internet Explorer browser client, and a Mozilla Firefox client to
use Windows Integrated authentication:

6.6.1 Configuring a .NET Web Service
To configure a .NET Web Service to use Windows authentication:

1. In the web.config file for the Web Service, set the authentication mode to
Windows for IIS and ASP.NET as follows:

<authentication mode="Windows" />

This setting is usually the default.

2. Add the statement needed for the Web Services client to pass to the proxy Web
Service object so that the credentials are sent through SOAP.

For example, if you have a Web Service client for a Web Service that is represented
by the proxy object conv, the syntax is as follows:

/*
* Explicitly pass credentials to the Web Service
*/
conv.Credentials =
System.Net.CredentialCache.DefaultCredentials;

6.6.2 Configuring an Internet Explorer Browser
To configure an Internet Explorer browser to use Windows authentication, follow these
procedures in Internet Explorer.

6.6.2.1 Configure Local Intranet Domains
1. In Internet Explorer, select Tools > Internet Options.

2. Select the Security tab.

3. Select Local intranet and click Sites.

4. In the Local intranet popup, ensure that the "Include all sites that bypass the proxy
server" and "Include all local (intranet) sites not listed in other zones" options are
checked.

5. Click Advanced.

6. In the Local intranet (Advanced) dialog box, add all relative domain names that
will be used for WebLogic Server instances participating in the SSO configuration
(for example, myhost.example.com) and click OK.

6.6.2.2 Configure Intranet Authentication
1. Select Tools > Internet Options.

2. Select the Security tab.

3. Select Local intranet and click Custom Level... .

4. In the Security Settings dialog box, scroll to the User Authentication section.

5. Select Automatic logon only in Intranet zone. This option prevents users from
having to re-enter logon credentials, which is a key piece to this solution.

6. Click OK.

Creating a JAAS Login File

Configuring Single Sign-On with Microsoft Clients 6-7

6.6.2.3 Verify the Proxy Settings
If you have a proxy server enabled:

1. Select Tools > Internet Options.

2. Select the Connections tab and click LAN Settings.

3. Verify that the proxy server address and port number are correct.

4. Click Advanced.

5. In the Proxy Settings dialog box, ensure that all desired domain names are entered
in the Exceptions field.

6. Click OK to close the Proxy Settings dialog box.

6.6.2.4 Set Integrated Authentication for Internet Explorer 6.0
In addition to the settings already described, one additional setting is required if you
are running Internet Explorer 6.0.

1. In Internet Explorer, select Tools > Internet Options.

2. Select the Advanced tab.

3. Scroll to the Security section.

4. Make sure that Enable Integrated Windows Authentication option is checked and
click OK.

5. If this option was not checked, restart the computer.

6.6.3 Configuring a Mozilla Firefox Browser
To configure a Firefox browser to use Windows Integrated authentication, complete
the following steps:

1. Start Firefox.

2. Enter about:config in the Location Bar.

3. Enter the filter string network.negotiate.

4. Set the preferences as shown in Table 6–1.

6.7 Creating a JAAS Login File
If you are running WebLogic Server on either the Windows or UNIX platforms, you
need a JAAS login file. The JAAS login file tells the WebLogic Security Framework to
use Kerberos authentication and defines the location of the keytab file which contains
Kerberos identification information for WebLogic Server. You specify the location of

Table 6–1 Preferences Required in Firefox for Windows Integrated Authentication

Preference Name Status Type Value

network.negotiate-auth.allow-proxies default boolean true

network.negotiate-auth.delegation-uris user set string http://,https://

network.negotiate-auth.gsslib default string <blank>1

1 The value for the network.negotiate-auth.gsslib preference should be kept blank.

network.negotiate-auth.trusted-uris user set string http://,https://

network.negotiate-auth.using-native-gsslib default boolean true

Configuring the Identity Assertion Provider

6-8 Securing Oracle WebLogic Server

the JAAS login file in the java.security.auth.login.config startup argument
for WebLogic Server, as described in Section 6.9, "Using Startup Arguments for
Kerberos Authentication with WebLogic Server".

Example 6–2 contains a sample JAAS login file for Kerberos authentication. Significant
sections are shown in bold.

Example 6–2 Sample JAAS Login File for Kerberos Authentication

com.sun.security.jgss.initiate {

 com.sun.security.auth.module.Krb5LoginModule required
 principal="myhost@Example.CORP" useKeyTab=true
 keyTab=mykeytab storeKey=true;
};

com.sun.security.jgss.accept {

 com.sun.security.auth.module.Krb5LoginModule required
 principal="myhost@Example.CORP" useKeyTab=true
 keyTab=mykeytab storeKey=true;

};

For the principal option, specify the value of the userPrincipalName attribute of
the account under which the service is running. (Incorrectly specifying the user
principal name results in an error such as "Unable to obtain password from user.")

The keytab file specified in the keytab option must be accessible by the WebLogic
Server process. Ensure that the appropriate permissions are set. If you are unsure of
the search path WebLogic Server is using, provide the absolute path to the file.

6.8 Configuring the Identity Assertion Provider
WebLogic Server includes a security provider, the Negotiate Identity Assertion
provider, to support single sign-on (SSO) with Microsoft clients. This identity assertion
provider decodes Simple and Protected Negotiate (SPNEGO) tokens to obtain
Kerberos tokens, validates the Kerberos tokens, and maps Kerberos tokens to
WebLogic users. You need to configure a Negotiate Identity Assertion provider in your
WebLogic security realm in order to enable SSO with Microsoft clients. See
Section 5.9.3, "Configuring a Negotiate Identity Assertion Provider" and "Configure
Authentication and Identity Assertion providers" in the Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Help.

6.9 Using Startup Arguments for Kerberos Authentication with WebLogic
Server

To use Kerberos authentication with WebLogic Server, use the following start-up
arguments when you start WebLogic Server:

Notes: For JDK 1.5 and JDK 1.4, the JAAS Login Entry name is
com.sun.security.jgss.accept.

For JDK 1.6, the JAAS Login Entry name was changed to
com.sun.security.jgss.krb5.accept.

Verifying Configuration of SSO with Microsoft Clients

Configuring Single Sign-On with Microsoft Clients 6-9

-Djavax.security.auth.useSubjectCredsOnly=false
-Djava.security.auth.login.config=krb5Login.conf
-Djava.security.krb5.realm=Example.CORP
-Djava.security.krb5.kdc=ADhostname

where

■ javax.security.auth.useSubjectCredsOnly specifies that it is permissible
to use an authentication mechanism other than Subject credentials.

■ java.security.auth.login.config specifies the JAAS login file,
krb5Login.conf, described in Section 6.7, "Creating a JAAS Login File."

■ java.security.krb5.realm defines the Microsoft domain in which the Active
Directory server runs.

■ java.security.krb5.kdc defines the host name on which the Active
Directory server runs.

Java GSS messages are often very useful during troubleshooting, so you might want to
add -Dsun.security.krb5.debug=true as part of the initial setup.

6.10 Verifying Configuration of SSO with Microsoft Clients
To verify that SSO with Microsoft clients is configured properly, point a browser (that
you have configured as described in Section 6.6.2, "Configuring an Internet Explorer
Browser") to the Microsoft Web application or Web Service you want to use. If you are
logged on to a Windows domain and have Kerberos credentials acquired from the
Active Directory server in the domain, you should be able to access the Web
application or Web Service without providing a username or password.

Verifying Configuration of SSO with Microsoft Clients

6-10 Securing Oracle WebLogic Server

7

Configuring Single Sign-On with Web Browsers and HTTP Clients 7-1

7Configuring Single Sign-On with Web
Browsers and HTTP Clients

The Security Assertion Markup Language (SAML) enables cross-platform
authentication between Web applications or Web Services running in a WebLogic
Server domain and Web browsers or other HTTP clients. WebLogic Server supports
single sign-on (SSO) based on SAML. When users are authenticated at one site that
participates in a single sign-on (SSO) configuration, they are automatically
authenticated at other sites in the SSO configuration and do not need to log in
separately.

The following sections describe how to set up single sign-on (SSO) with Web browsers
or other HTTP clients by using authentication based on the Security Assertion Markup
Language (SAML) versions 1.1 and 2.0.

■ Section 7.1, "Configuring SAML 1.1 Services"

■ Section 7.2, "Configuring SAML 2.0 Services"

For an overview of SAML-based single sign on, see the following topics in Oracle
Fusion Middleware Understanding Security for Oracle WebLogic Server:

■ "Security Assertion Markup Language (SAML)"

■ "Web Browsers and HTTP Clients via SAML"

■ "Single Sign-On with the WebLogic Security Framework"

7.1 Configuring SAML 1.1 Services
This topic includes the following sections:

■ Section 7.1.1, "Enabling Single Sign-on with SAML 1.1: Main Steps"

■ Section 7.1.2, "Configuring a SAML 1.1 Source Site for Single Sign-On"

■ Section 7.1.3, "Configuring a SAML 1.1 Destination Site for Single Sign-On"

■ Section 7.1.4, "Configuring Relying and Asserting Parties with WLST"

Note: A WebLogic Server instance that is configured for SAML 2.0
SSO cannot sent a request to a server instance configured for SAML
1.1, and vice-versa.

Configuring SAML 1.1 Services

7-2 Securing Oracle WebLogic Server

7.1.1 Enabling Single Sign-on with SAML 1.1: Main Steps
To enable single sign-on with SAML, configure WebLogic Server as either a source site
or destination site as described in the sections that follow.

7.1.1.1 Configuring a Source Site: Main Steps
To configure a WebLogic Server instance in the role of a source site, complete the
following main steps:

1. Create and configure a SAML Credential Mapping provider V2 in your security
realm.

2. Configure the federation services for the server instance in the realm that will
serve as a source site.

3. Create and configure the relying parties for which SAML assertions will be
produced.

4. If you want to require relying parties to use SSL certificates to connect to the
source site, add any such certificates to the SAML credential mapping provider's
Certificate Registry.

7.1.1.2 Configuring a Destination Site: Main Steps
To configure a WebLogic Server instance in the role of a destination site, complete the
following main steps:

1. Create and configure a SAML Identity Assertion provider V2 in your security
realm.

2. Configure the federation services for the server instance realm that will serve as a
destination site.

3. Create and configure the asserting parties from which SAML assertions will be
consumed.

4. Establish trust by registering the asserting parties' SSL certificates in the certificate
registry maintained by the SAML Identity Assertion provider.

7.1.2 Configuring a SAML 1.1 Source Site for Single Sign-On
The following topics explain how to configure a WebLogic Server instance as a SAML
1.1 source site:

■ Section 7.1.2.1, "Configure the SAML 1.1 Credential Mapping Provider"

■ Section 7.1.2.2, "Configure the Source Site Federation Services"

■ Section 7.1.2.3, "Configure Relying Parties"

■ Section 7.1.2.4, "Replacing the Default Assertion Store"

7.1.2.1 Configure the SAML 1.1 Credential Mapping Provider
In your security realm, create a SAML Credential Mapping Provider V2 instance. The
SAML Credential Mapping provider is not part of the default security realm. See
Section 4.9, "Configuring a SAML Credential Mapping Provider for SAML 1.1."

Configure the SAML Credential Mapping provider as a SAML authority, using the
Issuer URI, Name Qualifier, and other attributes.

Configuring SAML 1.1 Services

Configuring Single Sign-On with Web Browsers and HTTP Clients 7-3

7.1.2.2 Configure the Source Site Federation Services
Configuration of a WebLogic Server instance as a SAML 1.1 source site is controlled by
the FederationServicesMBean. Access the FederationServicesMBean with
the WebLogic Scripting Tool or through the Administration Console, on the
Environment > Servers > ServerName > Configuration > Federation Services > SAML
1.1 Source Site page. See "Configure SAML 1.1 source services" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

Configure SAML source site attributes as follows:

■ Enable the SAML Source Site. Allow the WebLogic server instance to serve as a
SAML source site by setting Source Site Enabled to true.

■ Set Source Site URL and Service URIs. Set the URL for the SAML source site.
This is the URL that hosts the Intersite Transfer Service and Assertion Retrieval
Service. The source site URL is encoded as a source ID in hex and Base64. When
you configure a SAML Asserting Party for Browser/Artifact profile, you specify
the encoded source ID.

Also specify the URIs for the Intersite Transfer Service and (to support
Browser/Artifact profile) the Assertion Retrieval Service. These URIs are also
specified in the configuration of an Asserting Party.

■ Add signing certificate. The SAML source site requires a trusted certificate with
which to sign assertions. Add this certificate to the keystore and enter the
credentials (alias and passphrase) to be used to access the certificate. The server's
SSL identity key/certificates will be used by default if a signing alias and
passphrase are not supplied.

■ Configure SSL for the Assertion Retrieval Service. You can require all access to
the Assertion Retrieval Service to use SSL by setting
FederationServicesMBean.arsRequiresSSL to true. You can require
two-way SSL authentication for the Assertion Retrieval Service by setting both
arsRequiresSSL and ARSRequiresTwoWaySSL to true.

7.1.2.3 Configure Relying Parties
A SAML Relying Party is an entity that relies on the information in a SAML assertion
produced by the SAML source site. You can configure how WebLogic Server produces
SAML assertions separately for each Relying Party or use the defaults established by
the Federation Services source site configuration for producing assertion.

You configure a Relying Party in the Administration Console, on the Security Realms
> RealmName > Providers > Credential Mapper > SAMLCredentialMapperName >
Management > Relying Parties page. See "Create a SAML 1.1 Relying Party" and
"Configure a SAML 1.1 Relying Party" in the Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

You can also configure a Relying Party with the WebLogic Scripting Tool. See
Section 7.1.4, "Configuring Relying and Asserting Parties with WLST".

7.1.2.3.1 Configure Supported Profiles When you configure a SAML Relying Party, you
can specify support for Artifact profile or POST profile, for the purposes of SAML
SSO. As an alternative configure a Relying Party to support WSS/Holder-of-Key or
WSS/Sender-Vouches profiles for Web Services Security purposes. Be sure to configure
support for the profiles that the SAML destination sites support.

If you support the POST profile, optionally create a form to use in POST profile
assertions for the Relying Party and set the pathname of that form in the POST Form
attribute.

Configuring SAML 1.1 Services

7-4 Securing Oracle WebLogic Server

7.1.2.3.2 Assertion Consumer Parameters For each SAML Relying Party, you can
configure one or more optional query parameters (such as a partner ID) that will be
added to the ACS URL when redirecting to the destination site. In the case of POST
profile, these parameters will be included as form variables when using the default
POST form. If a custom POST form is in use, the parameters will be made available as
a Map of names and values, but the form may or may not constructed to include the
parameters in the POSTed data.

7.1.2.4 Replacing the Default Assertion Store
WebLogic Server uses a simple assertion store to maintain persistence for produced
assertions. You can replace this assertion store with a custom assertion store class that
implements weblogic.security.providers.saml.AssertionStoreV2.
Configure WebLogic Server to use your custom assertion store class, rather than the
default class, using the
FederationServicesMBean.AssertionStoreClassName attribute. You can
configure properties to be passed to the initStore() method of your custom
assertion store class by using the
FederationServicesMBean.AssertionStoreProperties attribute. Configure
these attributes in the Administration Console on the Environment: Servers >
ServerName > Configuration > Federation Services > SAML 1.1 Source Site page.

7.1.3 Configuring a SAML 1.1 Destination Site for Single Sign-On
The following topics describe how to configure WebLogic Server as a SAML
destination site:

■ Section 7.1.3.1, "Configure SAML Identity Assertion Provider"

■ Section 7.1.3.2, "Configure Destination Site Federation Services"

■ Section 7.1.3.3, "Configuring Asserting Parties"

7.1.3.1 Configure SAML Identity Assertion Provider
In your security realm, create and configure a SAML Identity Assertion Provider V2
instance. The SAML Identity Assertion provider is not part of the default security
realm. See Section 5.9.4, "Configuring a SAML Identity Assertion Provider for SAML
1.1".

7.1.3.2 Configure Destination Site Federation Services
Before you configure WebLogic as a SAML destination site, you must first create a
SAML Identity Assertion Provider V2 instance in your security realm. Configuration
of a WebLogic Server instance as a SAML destination site is controlled by the
FederationServicesMBean. You can access the FederationServicesMBean
using the WebLogic Scripting Tool or through the Administration Console, using the
Environment: Servers > ServerName > Configuration > Federation Services > SAML
1.1 Destination Site page.

Configure the SAML destination site attributes as follows.

7.1.3.2.1 Enable the SAML Destination Site Allow the WebLogic Server instance to serve
as a SAML destination site by setting Destination Site Enabled to true.

7.1.3.2.2 Set Assertion Consumer URIs Set the URIs for the SAML Assertion Consumer
Service. This is the URL that receives assertions from source sites, so that the
destination site can use the assertions to authenticate users. The Assertion Consumer
URI is also specified in the configuration of a Relying Party.

Configuring SAML 1.1 Services

Configuring Single Sign-On with Web Browsers and HTTP Clients 7-5

7.1.3.2.3 Configure SSL for the Assertion Consumer Service You can require all access to
the Assertion Consumer Service to use SSL by setting
FederationServicesMBean.acsRequiresSSL to true.

7.1.3.2.4 Add SSL Client Identity Certificate The SSL client identity is used to contact the
ARS at the source site for Artifact profile. Add this certificate to the keystore and enter
the credentials (alias and passphrase) to be used to access the certificate.

7.1.3.2.5 Configure Single-Use Policy and the Used Assertion Cache or Custom Assertion
Cache Optionally, you can require that each POST profile assertion be used no more
than once. WebLogic Server maintains a cache of used assertions so that it can support
a single-use policy for assertions. You can replace this assertion cache with a custom
assertion cache class that implements
weblogic.security.providers.saml.SAMLUsedAssertionCache. Configure
WebLogic Server to use your custom assertion cache class, rather than the default
class, using the FederationServicesMBean.SAMLUsedAssertionCache
attribute. You can configure properties to be passed to the initCache() method of
your custom assertion cache class using the
FederationServicesMBean.UsedAssertionCacheProperties attribute. You
can configure these attributes in the Administration Console on the Environment >
Servers > ServerName > Configuration > Federation Services > SAML 1.1 Destination
Site page.

7.1.3.2.6 Configure Recipient Check for POST Profile Optionally, you can require that the
recipient of the SAML Response must match the URL in the HTTP Request. Do this by
setting the POST Recipient Check Enabled attribute.

7.1.3.3 Configuring Asserting Parties
A SAML Asserting Party is a trusted SAML Authority (an entity that can
authoritatively assert security information in the form of SAML Assertions). Configure
an Asserting Party in the Administration Console, using the Security Realms >
RealmName > Providers > Credential Mapper > SAMLCredentialMapperName >
Management: Asserting Parties page. See "Create a SAML 1.1 Asserting Party" and
"Configure a SAML 1.1 Asserting Party" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

You can also configure an Asserting Party with the WebLogic Scripting Tool. See
Section 7.1.4, "Configuring Relying and Asserting Parties with WLST".

7.1.3.3.1 Configure Supported Profiles When you configure a SAML Asserting Party, you
can specify support for Artifact profile or POST profile, for the purposes of SAML
SSO. Alternatively, configure an Asserting Party to support WSS/Holder-of-Key or
WSS/Sender-Vouches profiles for Web Services Security purposes.

7.1.3.3.2 Configure Source Site ITS Parameters For each SAML Asserting Party, configure
zero or more optional query parameters (such as a partner ID) that will be added to
the ITS URL when redirecting to the source site.

7.1.4 Configuring Relying and Asserting Parties with WLST
SAML partners (Relying Parties and Asserting Parties) are maintained in a registry.
You can configure SAML partners using the WebLogic Administration Console or
using WebLogic Scripting Tool. The following example shows how you might
configure two Relying Parties using WLST in online mode.

Configuring SAML 2.0 Services

7-6 Securing Oracle WebLogic Server

Example 7–1 Creating Relying Parties with WLST

connect('weblogic','weblogic','t3://localhost:7001')
rlm=cmo.getSecurityConfiguration().getDefaultRealm()
cm=rlm.lookupCredentialMapper('samlv2cm')

rp=cm.newRelyingParty()
rp.setDescription('test post profile')
rp.setProfile('Browser/POST')
rp.setAssertionConsumerURL('http://domain.example.com:7001/saml_destination/acs')
rp.setAssertionConsumerParams(array(['APID=ap_00001'],String))
rp.setSignedAssertions(true)
rp.setEnabled(true)
cm.addRelyingParty(rp)

rp=cm.newRelyingParty()
rp.setDescription('test artifact profile')
rp.setProfile('Browser/Artifact')
rp.setAssertionConsumerURL('http://domain.example.com:7001/saml_destination/acs')
rp.setAssertionConsumerParams(array(['APID=ap_00002'],String))
rp.setARSUsername('foo')
rp.setARSPassword('bar')
rp.setSSLClientCertAlias('demoidentity')
rp.setEnabled(true)
cm.addRelyingParty(rp)

disconnect()
exit()

The following example shows how you might edit an existing Asserting Party. The
example gets the Asserting Party, using its Asserting Party ID, and sets the Assertion
Retrieval URL.

Example 7–2 Editing an Asserting Party with WLST

connect('weblogic','weblogic','t3://localhost:7001')
rlm=cmo.getSecurityConfiguration().getDefaultRealm()
ia=rlm.lookupAuthenticationProvider('samlv2ia')
ap=ia.getAssertingParty('ap_00002')
ap.setAssertionRetrievalURL('https://hostname:7002/samlars/ars')
ia.updateAssertingParty(ap)
disconnect()
exit()

7.2 Configuring SAML 2.0 Services
This topic includes the following sections:

■ Section 7.2.1, "Configuring SAML 2.0 Services: Main Steps"

■ Section 7.2.2, "Configuring SAML 2.0 General Services"

■ Section 7.2.3, "Configuring an Identity Provider Site for SAML 2.0 Single Sign-On"

■ Section 7.2.4, "Configuring a Service Provider Site for SAML 2.0 Single Sign-On"

■ Section 7.2.6, "Web Application Deployment Considerations for SAML 2.0"

7.2.1 Configuring SAML 2.0 Services: Main Steps
A summary of the main steps you take to configure SAML 2.0 services are as follows:

Configuring SAML 2.0 Services

Configuring Single Sign-On with Web Browsers and HTTP Clients 7-7

1. Determine whether you plan to have SAML 2.0 services running in more than one
WebLogic Server instance in the domain. If so, do the following:

a. Create a domain in which the RDBMS security store is configured.

The RDBMS security store is required by the SAML 2.0 security providers so
that the data they manage can be synchronized across all the WebLogic Server
instances that share that data.

Note that Oracle does not recommend upgrading an existing domain in place
to use the RDBMS security store. If you want to use the RDBMS security store,
you should configure the RDBMS security store at the time of domain
creation. If you have an existing domain with which you want to use the
RDBMS security store, create the new domain and migrate your existing
security realm to it.

For information, see Chapter 10, "Managing the RDBMS Security Store."

b. Ensure that all SAML 2.0 services are configured identically in each WebLogic
Server instance. If you are configuring SAML 2.0 services in a cluster, each
Managed Server in that cluster must be configured individually.

c. Note the considerations described in Section 7.2.6, "Web Application
Deployment Considerations for SAML 2.0".

2. If you are configuring a SAML 2.0 Identity Provider site:

a. Create and configure an instance of the SAML 2.0 Credential Mapping
provider in the security realm.

b. Configure the SAML 2.0 general services identically and individually in each
WebLogic Server instance in the domain that will run SAML 2.0 services.

c. Configure the SAML 2.0 Identity Provider services identically and
individually in each WebLogic Server instance in the domain that will run
SAML 2.0 services.

d. Publish the metadata file describing your site, and manually distribute it to
your Service Provider partners.

e. Create and configure your Service Provider partners.

3. If you are configuring a SAML 2.0 Service Provider site:

a. Create and configure an instance of the SAML 2.0 Identity Assertion provider
in the security realm.

If you are allowing virtual users to log in via SAML, you need to create and
configure an instance of the SAML Authentication provider. For information,
see Section 5.7, "Configuring the SAML Authentication Provider."

b. Configure the SAML 2.0 general services identically and individually in each
WebLogic Server instance in the domain that will run SAML 2.0 services.

c. Configure the SAML 2.0 Service Provider services identically and individually
in each WebLogic Server instance in the domain that will run SAML 2.0
services.

d. Publish the metadata file describing your site, and manually distribute it to
your Identity Provider partners.

e. Create and configure your Identity Provider partners.

The sections that follow provide details about each set of main steps.

Configuring SAML 2.0 Services

7-8 Securing Oracle WebLogic Server

7.2.2 Configuring SAML 2.0 General Services
Regardless of the SAML 2.0 role in which you wish to configure a WebLogic Server
instance — that is, as either a Service Provider or Identity Provider — you need to
configure the server's general SAML 2.0 services. Configuration of the SAML 2.0
general services for a WebLogic Server instance is controlled by the
SingleSignOnServicesMBean. You can access the
SingleSignOnServicesMBean with the WebLogic Scripting Tool or through the
Administration Console, on the Environment > Servers > ServerName > Configuration
> Federation Services > SAML 2.0 General page.

The following sections describe SAML 2.0 general services:

■ Section 7.2.2.1, "About SAML 2.0 General Services"

■ Section 7.2.2.2, "Publishing and Distributing the Metadata File"

7.2.2.1 About SAML 2.0 General Services
The general SAML 2.0 services you configure include the following:

■ Whether you wish to enable the replicated cache

Enabling the replicated cache is required if you are configuring SAML 2.0 services
on two or more WebLogic Server instances in a domain, such as in a cluster. The
replicated cache enables server instances to share and be synchronized with the
data that is managed by the SAML 2.0 security providers; that is, either or both the
SAML 2.0 Identity Assertion provider and the SAML 2.0 Credential Mapping
provider.

Note that the RDBMS security store is strongly recommended if you enable the
replicated cache. Therefore prior to configuring SAML 2.0 services, the preferred
approach is first to create a domain that is configured to use the RDBMS security
store. For more information, see Chapter 10, "Managing the RDBMS Security
Store."

■ Information about the local site

The site information you enter is primarily for the benefit of the business partners
in the SAML federation with whom you share it. Site information includes details
about the local contact person who is your partners' point of contact, your
organization name, and your organization's URL.

■ Published site URL

This URL specifies the base URL that is used to construct endpoint URLs for the
various SAML 2.0 services. The published site URL should specify the host name
and port at which the server is visible externally, which might not be the same at
which the server is accessed locally. For example, if SAML 2.0 services are
configured in a cluster, the host name and port may correspond to the load
balancer or proxy server that distributes client requests to the Managed Servers in
that cluster.

The published site URL should be appended with /saml2. For example:

Note: You cannot configure SAML 2.0 general services in a WebLogic
Server instance until you have first configured either the SAML 2.0
Identity Assertion or SAML 2.0 Credential Mapping provider and
restarted the server instance.

Configuring SAML 2.0 Services

Configuring Single Sign-On with Web Browsers and HTTP Clients 7-9

https://www.avitek.com:7001/avitek-domain/aviserver/saml2
■ Entity ID

The entity ID is a human-readable string that uniquely distinguishes your site
from the other partner sites in your federation. When your partners need to
generate or consume an assertion, the SAML 2.0 services use the entity ID as part
of the process of identifying the partner that corresponds with that assertion.

■ Whether recipient check is enabled

If enabled, the recipient of the authentication request or response must match the
URL in the HTTP Request.

■ Whether TLS/SSL client authentication is required for invocations on the Artifact
Resolution Service. If enabled, SAML artifacts are encrypted when transmitted to
partners.

■ Transport Layer Security keystore alias and passphrase, the values used for
securing outgoing communications with partners.

■ Whether Basic authentication client authentication is required when your partners
invoke the HTTPS bindings of the local site.

If you enable this setting, you also specify the client username and password to be
used. These credentials are then included in the published metadata file that you
share with your federated partners.

■ Whether requests for SAML artifacts received from your partners must be signed.

■ Configuration settings for the SAML artifact cache.

■ Keystore alias and passphrase for the key to be used when signing documents sent
to your federated partners, such as authentication requests or responses.

For information about the steps for configuring SAML 2.0 general services, see
"Configure SAML 2.0 general services" in the Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

7.2.2.2 Publishing and Distributing the Metadata File
The local site information that is needed by your federated partners — such as the
local site contact information, entity ID, published site URL, whether TLS/SSL client
authentication is required, and so on — is published to a metadata file by clicking
Publish Meta Data in the SAML 2.0 General console page.

When you publish the metadata file, you specify an existing directory on the local
machine in which the file can be created. The process of distributing the metadata file
to your federated partners is a detail that is not implemented by WebLogic Server.
However, you may send this file via a number of commonly used mechanisms suitable
for securely transferring electronic documents, such as encrypted email or secure FTP.

Keep the following in mind regarding the metadata file:

■ Before you publish the metadata file, you should configure the Identity Provider
and/or Service Provider services for the SAML 2.0 roles in which the WebLogic
Server instances in your domain are enabled to function.

The configuration data for the SAML 2.0 services your site offers that is needed by
your federated partners is included in this metadata file, greatly simplifying the
tasks your partners perform to import your signing certificates, identify your site's
SAML 2.0 service endpoints, and use the correct binding types for connecting to
your site's services, and so on.

Configuring SAML 2.0 Services

7-10 Securing Oracle WebLogic Server

■ You should have only a single version of the metadata file that you share with
your federated partners, even if your site functions in the role of Service Provider
with some partners and Identity Provider with others. By having only a single
version of the metadata file, you reduce the likelihood that your configuration
settings might become incompatible with those of a partner.

■ If you change the local site's SAML 2.0 configuration, you should update your
metadata file. Because the metadata file is shared with your partners, it will be
convenient to minimize the frequency with which you update your SAML 2.0
configuration so that your partners can minimize the need to make concomitant
updates to their own partner registries.

■ When you receive a metadata file from a federated partner, place it in a location
that can be accessed by all the nodes in your domain in which SAML 2.0 services
are configured. At the time you create a partner, you bring the contents the
partner's metadata file into the partner registry.

Operations on the metadata file are available via the
com.bea.security.saml2.providers.registry.Partner Java interface.

7.2.3 Configuring an Identity Provider Site for SAML 2.0 Single Sign-On
This section presents the following topics:

■ Section 7.2.3.1, "Configure the SAML 2.0 Credential Mapping Provider"

■ Section 7.2.3.2, "Configure SAML 2.0 Identity Provider Services"

■ Section 7.2.3.3, "Create and Configure Web Single Sign-On Service Provider
Partners"

7.2.3.1 Configure the SAML 2.0 Credential Mapping Provider
In your security realm, create a SAML 2.0 Credential Mapping provider instance. The
SAML 2.0 Credential Mapping provider is not part of the default security realm. See
Section 4.10, "Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0".

Configure the SAML 2.0 Credential Mapping provider as a SAML authority. Attributes
you specify include the following:

■ Issuer URI

■ Name Qualifier

■ Life span attributes for generated SAML 2.0 assertions

■ Name mapper class name

■ Whether generated assertions should include attribute information, which specify
the groups to which the identity contained in the assertion belongs

After you configure the SAML 2.0 Credential Mapping provider, configure SAML 2.0
general services, as described in Section 7.2.2, "Configuring SAML 2.0 General
Services".

7.2.3.2 Configure SAML 2.0 Identity Provider Services
Configuration of a WebLogic Server instance as a SAML 2.0 Identity Provider site is
controlled by the SingleSignOnServicesMBean. You can access the
SingleSignOnServicesMBean using the WebLogic Scripting Tool (WLST), or
through the Administration Console by using the Environment > Servers >
ServerName > Configuration > Federation Services > SAML 2.0 Identity Provider
page.

Configuring SAML 2.0 Services

Configuring Single Sign-On with Web Browsers and HTTP Clients 7-11

The sections that follow summarize the configuration tasks. For more information
about performing these tasks, see "Configure SAML 2.0 Identity Provider services" in
the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

7.2.3.2.1 Enable the SAML 2.0 Identity Provider Site From the SAML 2.0 Identity Provider
page in the console, allow the WebLogic Server instance to serve as an Identity
Provider site by setting the Enabled attribute to true.

7.2.3.2.2 Specify a Custom Login Web Application Optionally, you may use a custom login
web application to authenticate users into the Identity Provider site. To configure a
custom login web application, enable the Login Customized attribute and specify the
URL of the web application.

7.2.3.2.3 Enable Binding Types Oracle recommends enabling all the available binding
types for the endpoints of the Identity Provider services; namely, POST, Redirect, and
Artifact. Optionally you may select a preferred binding type.

7.2.3.2.4 Publish Your Site's Metadata File After you have configured the SAML 2.0
general services and Identity Provider services, publish your site's metadata file and
distribute it to your federated partners, as described in Section 7.2.2.2, "Publishing and
Distributing the Metadata File".

7.2.3.3 Create and Configure Web Single Sign-On Service Provider Partners
A SAML 2.0 Service Provider partner is an entity that consumes the SAML 2.0
assertions generated by the Identity Provider site. The configuration of Service
Provider partners is available from the Administration Console, using the Security
Realms > RealmName > Providers > Credential Mapper >
SAML2CredentialMapperName > Management page.

The attributes that can be set on this console page can also be accessed
programmatically via a set of Java interfaces, which are identified in the sections that
follow.

See "Create a SAML 2.0 Web Single Sign-on Service Provider partner" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help for complete
details about the specific steps for configuring a Service Provider partner. For a
summary of the site information, signing certificates, and service endpoint information
available when you configure a web single sign-on partner, see Section 7.2.5, "Viewing
Partner Site, Certificate, and Service Endpoint Information".

7.2.3.3.1 Obtain Your Service Provider Partner's Metadata File Before you configure a
Service Provider partner for web single sign-on, you need to obtain the partner's
SAML 2.0 metadata file via a trusted and secure mechanism, such as encrypted email
or an SSL-enabled FTP site. Your partner's metadata file describes the partner site and
binding support, includes the partner's certificates and keys, contains your partner's
SAML 2.0 service endpoints, and more. Copy the partner's metadata file into a location
that can be accessed by each node in your domain configured for SAML 2.0.

The SAML 2.0 metadata file is described in Section 7.2.2.2, "Publishing and
Distributing the Metadata File".

7.2.3.3.2 Create Partner and Enable Interactions To create and enable a Service Provider
partner for web single sign-on:

1. From the Management tab of the SAML 2.0 Credential Mapping provider page,
specify the partner's name and metadata file.

Configuring SAML 2.0 Services

7-12 Securing Oracle WebLogic Server

2. From the General tab of the partner configuration page, enable interactions
between the partner and the WebLogic Server instance.

WebLogic Server provides the
com.bea.security.saml2.providers.registry.Partner Java interface for
configuring these attributes.

7.2.3.3.3 Configure How Assertions are Generated Optionally from the General tab of the
partner configuration page in the console, you can configure the following attributes
of the SAML 2.0 assertions generated specifically for this Service Provider partner:

■ The Service Provider Name Mapper Class name

This is the Java class that overrides the default username mapper class with which
the SAML 2.0 Credential Mapping provider is configured in this security realm.

■ Time to Live attributes

The Time to Live attributes specify the interval of time during which the assertions
generated for this partner are valid. These attributes prevent expired assertions
from being used.

■ Whether to generate attribute information that is included in assertions

If enabled, the SAML 2.0 Credential Mapping provider adds, as attributes in the
assertion, the groups to which the corresponding user belongs.

■ Whether the assertions sent to this partner must be disposed of immediately after
use

■ Whether this server's signing certificate is included in assertions generated for this
partner

WebLogic Server provides the
com.bea.security.saml2.providers.registry.SPPartner Java interface for
configuring these attributes.

7.2.3.3.4 Configure How Documents Are Signed You can use the General tab of the Service
Provider partner configuration page to determine how the following documents
exchanged with this partner must be signed:

■ Assertions

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.SPPartner interface.

■ Authentication requests

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOSPPartner
interface.

■ Artifact requests

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOPartner
interface.

The attributes for specifying whether this partner accepts only signed assertions, or
whether authentication requests must be signed, are read-only: they are derived from
the partner's metadata file.

Configuring SAML 2.0 Services

Configuring Single Sign-On with Web Browsers and HTTP Clients 7-13

7.2.3.3.5 Configure Artifact Binding and Transport Settings Optionally, you also use the
General tab of the Service Provider partner configuration page to configure the
following:

■ Whether SAML artifacts are delivered to this partner via the HTTP POST binding.
If so, you may also specify the URI of a custom web application that generates the
HTTP POST form for sending the SAML artifact.

■ The URI of a custom web application that generate the HTTP POST form for
sending request or response messages via the POST binding.

Operations on these attributes are available via the
com.bea.security.saml2.providers.registry.WebSSOPartner Java
interface.

For added security in the exchange of documents with this partner, you can also
specify a client user name and password to be used by the Service Provider partner
when connecting to the local site's binding using Basic authentication. This attribute is
available via the
com.bea.security.saml2.providers.registry.BindingClientPartner
Java interface.

7.2.4 Configuring a Service Provider Site for SAML 2.0 Single Sign-On
This section presents the following topics:

■ Section 7.2.4.1, "Configure the SAML 2.0 Identity Assertion Provider"

■ Section 7.2.4.2, "Configure the SAML Authentication Provider"

■ Section 7.2.4.4, "Configure SAML 2.0 Service Provider Services"

■ Section 7.2.4.5, "Create and Configure Web Single Sign-On Identity Provider
Partners"

7.2.4.1 Configure the SAML 2.0 Identity Assertion Provider
In your security realm, create an instance of the SAML 2.0 Identity Assertion provider.
The SAML 2.0 Identity Assertion provider is not part of the default security realm. The
attributes you specify for the SAML 2.0 Identity Assertion provider include the
following:

■ Whether the replicated cache is enabled

If you are configuring SAML 2.0 Identity Provider services in two or more server
instances in the domain, this attribute must be enabled.

■ A custom name mapper class that overrides the default SAML 2.0 assertion name
mapper class

For more information about this security provider, see Section 5.9.5, "Configuring a
SAML 2.0 Identity Assertion Provider for SAML 2.0".

7.2.4.2 Configure the SAML Authentication Provider
If you plan to enable virtual users, or consume attribute statements contained in
assertions that you receive from your Identity Provider partners, you need to create
and configure an instance of the SAML Authentication provider. For more
information, see Section 5.7, "Configuring the SAML Authentication Provider".

Configuring SAML 2.0 Services

7-14 Securing Oracle WebLogic Server

7.2.4.3 Configure SAML 2.0 General Services
After configuring the SAML 2.0 Identity Assertion provider, and optionally the SAML
Authentication provider, configure the SAML 2.0 general services, as described in
Section 7.2.2, "Configuring SAML 2.0 General Services".

7.2.4.4 Configure SAML 2.0 Service Provider Services
Configuration of a WebLogic Server instance as a SAML 2.0 Service Provider site is
controlled by the SingleSignOnServicesMBean. You can access the
SingleSignOnServicesMBean using the WebLogic Scripting Tool (WLST), or
through the Administration Console using the Environment > Servers > ServerName >
Configuration > Federation Services > SAML 2.0 Service Provider page.

You configure the SAML 2.0 Service Provider site attributes as summarized in the
sections that follow. For more information about these configuration tasks, see
"Configure SAML 2.0 Service Provider services" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

7.2.4.4.1 Enable the SAML 2.0 Service Provider Site From the Federation Services: SAML
2.0 Identity Provider page in the console, allow the WebLogic Server instance to serve
as a Service Provider site by setting the Enabled attribute to true.

7.2.4.4.2 Specify How Documents Must Be Signed Optionally you may enable the
attributes that set the following document signing requirements:

■ Whether authentication requests sent to Identity Provider partners are signed

■ Whether assertions received from Identity Provider partners are signed

7.2.4.4.3 Specify How Authentication Requests Are Managed Optionally you may enable
the following attributes of the authentication request cache:

■ Maximum cache size

■ Time-out value for authentication requests, which establishes the time interval
beyond which stored authentication requests are expired

7.2.4.4.4 Enable Binding Types Oracle recommends enabling all the available binding
types for the endpoints of the Service Provider services; namely, POST, and Artifact.
Optionally you may specify a preferred binding type.

7.2.4.4.5 Set Default URL Optionally, you may specify the URL to which unsolicited
authentication responses are sent if they do not contain an accompanying target URL.

7.2.4.5 Create and Configure Web Single Sign-On Identity Provider Partners
A SAML 2.0 Identity Provider partner is an entity that generates SAML 2.0 assertions
consumed by the Service Provider site. The configuration of Identity Provider partners
is available from the Administration Console, using the Security Realms > RealmName
> Providers > Authentication > SAML2IdentityAsserterName > Management page.

The attributes that can be set on this console page can also be accessed
programmatically via a set of Java interfaces, which are identified in the sections that
follow.

See "Create a SAML 2.0 Web Single Sign-on Identity Provider partner" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help for complete
details about the specific steps for configuring a Service Provider partner.

Configuring SAML 2.0 Services

Configuring Single Sign-On with Web Browsers and HTTP Clients 7-15

For a summary of the site information, signing certificates, and service endpoint
information available when you configure a web single sign-on partner, see
Section 7.2.5, "Viewing Partner Site, Certificate, and Service Endpoint Information".

The following sections summarize tasks for configuring an Identity Provider partner.

7.2.4.5.1 Obtain Your Identity Provider Partner's Metadata File Before you configure an
Identity Provider partner for web single sign-on, you need to obtain the partner's
SAML 2.0 metadata file via a trusted and secure mechanism, such as encrypted email
or an SSL-enabled FTP site. Your partner's metadata file describes that partner site and
binding support, includes the partner's certificates and keys, and so on. Copy the
partner's metadata file into a location that can be accessed by each node in your
domain configured for SAML 2.0.

The SAML 2.0 metadata file is described in Section 7.2.2.2, "Publishing and
Distributing the Metadata File".

7.2.4.5.2 Create Partner and Enable Interactions To create an Identity Provider partner
and enable interactions for web single sign-on:

■ From the Management tab of the SAML 2.0 Identity Assertion configuration page,
specify the partner's name and metadata file.

■ From the General tab of the partner configuration page, enable interactions
between the partner and the WebLogic Server instance.

WebLogic Server provides the
com.bea.security.saml2.providers.registry.Partner Java interface for
configuring these attributes.

7.2.4.5.3 Configure Authentication Requests and Assertions Optionally, you can configure
the following attributes of the authentication requests generated for, and assertions
received from, this Identity Provider partner:

■ The Identity Provider Name Mapper Class name

This is the custom Java class that overrides the default username mapper class
with which the SAML 2.0 Identity Assertion provider is configured in this security
realm. The custom class you specify is used only for identities contained in
assertions received from this particular partner.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.IdPPartner Java
interface.

■ Whether the identities contained in assertions received from this partner are
mapped to virtual users in the security realm

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.IdPPartner Java
interface.

■ Whether to consume attribute information contained in assertions received from
this partner

Note: To use this attribute, you must have a SAML Authentication
provider configured in the realm.

Configuring SAML 2.0 Services

7-16 Securing Oracle WebLogic Server

If enabled, the SAML 2.0 Identity Assertion provider extracts attribute information
from the assertion, which it uses in conjunction with the SAML Authentication
provider (which must be configured in the security realm) to determine the groups
in the security realm to which the corresponding user belongs.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.IdPPartner Java
interface.

■ Whether authentication requests sent to this Identity Provider partner must be
signed. This is a read-only attribute that is derived from the partner's metadata
file.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner
Java interface.

■ Whether SAML artifact requests received from this Identity Provider partner must
be signed.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner
Java interface.

7.2.4.5.4 Configure Redirect URIs You can configure a set of URIs that, if invoked by an
unauthenticated user, cause the user request to be redirected to the Identity Provider
partner where the user can be authenticated.

WebLogic Server provides the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner Java
interface for configuring this attribute.

7.2.4.5.5 Configure Binding and Transport Settings Optionally, you also use the General
tab of the Service Provider partner configuration page to configure the following:

■ Whether SAML artifacts are delivered to this partner via the HTTP POST method.
If so, you may also specify the URI of a custom web application that generates the
HTTP POST form for sending the SAML artifact.

■ The URL of the custom web application that generates the POST form for carrying
the SAML response for POST bindings to this Identity Provider partner.

■ The URL of the custom web application that generates the POST form for carrying
the SAML response for Artifact bindings to this Identity Provider partner.

Operations on these attributes are available via the
com.bea.security.saml2.providers.registry.WebSSOPartner Java
interface.

For added security in the exchange of documents with this partner, you can also
specify a client user name and password to be used by this Identity Provider partner
when connecting to the local site's binding using Basic authentication. This attribute is
available via the

Note: If you configure one or more redirect URIs, remember to set a
security policies on them as well; otherwise the web container will not
attempt to authenticate the user and, consequently, not redirect the
user’s request to the Identity Provider partner.

Configuring SAML 2.0 Services

Configuring Single Sign-On with Web Browsers and HTTP Clients 7-17

com.bea.security.saml2.providers.registry.BindingClientPartner
Java interface.

7.2.5 Viewing Partner Site, Certificate, and Service Endpoint Information
When you configure SAML 2.0 partners, the partner configuration pages displayed by
the Administration Console include tabs for viewing and configuring the following
additional information about the partner:

■ The Site tab displays information about the Service Provider partner, which is
derived from the partner's metadata file. The data in this tab is read-only.

WebLogic Server provides the
com.bea.security.saml2.providers.registry.MetadataPartner Java
interface for partner site information.

■ The Single Sign-On Signing Certificate tab displays details about the partner's
signing certificate, which are also derived from the partner's metadata file. The
data in this tab is read-only.

Operations on these attributes are available from the
com.bea.security.saml2.providers.registry.WebSSOPartner Java
interface.

■ The Transport Layer Client Certificate tab displays partner's transport layer client
certificate. You can optionally import this certificate by clicking Import Certificate
from File.

Operations on this attribute are available from the
com.bea.security.saml2.providers.registry.BindingClientPartne
r Java interface.

■ When configuring Service Provider partners, the Assertion Consumer Service
Endpoints tab is available, which displays the Service Provider partner's ACS
endpoints. This data is also available from the
com.bea.security.saml2.providers.registry.WebSSOSPPartner Java
interface.

■ When configuring Identity Provider partners, the Single Sign-On Service
Endpoints tab is available, which displays the Identity Provider partner's single
sign-on service endpoints. This data is also available from the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner
Java interface.

■ The Artifact Resolution Service Endpoints tab displays the partner's ARS
endpoints. This data is also available from the
com.bea.security.saml2.providers.registry.WebSSOPartner Java
interface.

7.2.6 Web Application Deployment Considerations for SAML 2.0
When deploying web applications for SAML-based SSO in a clustered environment,
note the following considerations to prevent SAML-based single sign-on from failing:

■ Section 7.2.6.1, "Deployment Descriptor Recommendations"

■ Section 7.2.6.2, "Login Application Considerations for Clustered Environments"

Configuring SAML 2.0 Services

7-18 Securing Oracle WebLogic Server

7.2.6.1 Deployment Descriptor Recommendations
Note the following recommendations regarding the use of the following elements in
deployment descriptor files:

■ relogin-enabled

■ cookie-name

7.2.6.1.1 Use of relogin-enabled with CLIENT-CERT Authentication If a user logs in to a web
application and tries to access a resource for which that user is not authorized, an
HTTP FORBIDDEN (403) response is generated. This is standard web application
behavior. However, for backwards compatibility with earlier releases, WebLogic Server
permits web applications to use the relogin-enabled element in the
weblogic.xml deployment descriptor file, so that the response to an access failure
results in a request to authenticate. In certain circumstances, it can cause SAML 2.0
based web single sign-on to fail.

Normally, the SAML 2.0 Assertion Consumer Service (ACS) logs the user into the
application and redirects the user request to the target web application. However, if
that web application is enabled for SAML 2.0 single sign-on, is protected by
CLIENT-CERT authentication, and has the relogin-enabled deployment
descriptor element set to true, an infinite loop can occur in which a request to
authenticate a user is issued repeatedly. This loop can occur when a user is logged in
to the web application and attempts to access a resource for which the user is not
permitted: instead of generating a FORBIDDEN message, a new authentication
request is generated that triggers another SAML 2.0 based web single sign-on attempt.

To prevent this situation from occurring in a web application that is protected by
CLIENT-CERT authentication, either remove the relogin-enabled deployment
descriptor element for the web application, or set the element to false. This enables
standard web application authentication behavior.

7.2.6.1.2 Use of Non-default Cookie Name When the Assertion Consumer Service logs in
the Subject contained in an assertion, an HTTP servlet session is created using the
default cookie name JSESSIONID. After successfully processing the assertion, the
ACS redirects the user's request to the target web application. If the target web
application uses a cookie name other than JSESSIONID, the Subject's identity is not
propagated to the target web application. As a result, the servlet container treats the
user as if unauthenticated, and consequently issues an authentication request.

To avoid this situation, do not change the default cookie name when deploying web
applications in a domain that are intended to be accessed by SAML 2.0 based single
sign-on.

7.2.6.2 Login Application Considerations for Clustered Environments
Note the following two login limitations that are rare in clustered environments, but if
they occur, they may prevent a single sign-on session from succeeding.

■ When an Identity Provider's single sign-on service receives an authentication
request, it redirects that request to the login application to authenticate the user.
The login application must execute on the same cluster node as that single sign-on
service. If not, the Identity Provider is unable to produce a SAML 2.0 assertion
even if the authentication succeeds.

Under normal circumstances, the login application executes on the same node as
the single sign-on service, so likelihood of the authentication request being
redirected to a login application executing on a different node in the domain is
very small. However, it may happen if an authentication request is redirected by a

Configuring SAML 2.0 Services

Configuring Single Sign-On with Web Browsers and HTTP Clients 7-19

cluster node different than the one hosting the login application. You can almost
always prevent this situation from occurring if you configure the Identity Provider
to use the default login URI with Basic authentication.

■ When the SAML 2.0 Assertion Consumer Service (ACS) successfully consumes an
assertion, it logs in the Subject represented by the assertion. The ACS then
redirects the user request to the target application. Normally, the target application
executes on the same node as the ACS. However, in rare circumstances, the target
application to which is the user request is redirected executes on a cluster node
other than the one hosting the ACS on which the login occurred. When this
circumstance occurs, the identity represented by the assertion is not propagated to
the target application node. The result is either another attempt at the single
sign-on process, or denied access.

Because the target application executes on the same node as the ACS, this situation
is expected to occur very rarely.

Configuring SAML 2.0 Services

7-20 Securing Oracle WebLogic Server

8

Migrating Security Data 8-1

8Migrating Security Data

You can export security data from one security realm or security provider and import
the data into another realm or provider. The following sections provide information
about exporting and importing security data.

■ Section 8.1, "Overview of Security Data Migration"

■ Section 8.2, "Migration Concepts"

■ Section 8.3, "Formats and Constraints Supported by WebLogic Security Providers"

■ Section 8.4, "Migrating Data with WLST"

8.1 Overview of Security Data Migration
WebLogic security realms persist different kinds of security data — for example, users
and groups (for the Default Authentication provider), security policies (for the
XACML Authorization provider), security roles (for the XACML Role Mapping
provider), and credential maps (for the WebLogic Credential Mapping provider).
When you configure a new security realm or a new security provider, you may prefer
to use the security data from your existing realm or provider, rather than recreate all
the users, groups, policies, roles, and credential maps. Several WebLogic security
providers support security data migration. This means you can export security data
from one security realm, and import it into a new security realm. You can migrate
security data for each security provider individually, or migrate security data for all
the WebLogic security providers at once (that is, security data for an entire security
realm). Note that you can only migrate security data from one provider to another if
the providers use the same data format. SeeSection 8.3, "Formats and Constraints
Supported by WebLogic Security Providers". You migrate security data through the
WebLogic Administration Console or by using the WebLogic Scripting Tool (WLST).

Migrating security data may be helpful when you:

■ Transition from development to production mode.

■ Copy production mode security configurations to security realms in new
WebLogic Server domains.

■ Move data from one security realm to a new security realm in the same WebLogic
Server domain, where one or more of the default WebLogic security providers will
be replaced with new security providers.

The remainder of this section describes security migration concepts, the formats and
constraints supported by the WebLogic security providers, and steps for migrating
security data with WLST.

Migration Concepts

8-2 Securing Oracle WebLogic Server

To migrate security data with the WebLogic Administration Console, see the following
topics in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Help:

■ "Export data from security realms"

■ "Import data into security realms"

■ "Export data from a security provider"

■ "Import data into a security provider"

8.2 Migration Concepts
A format is a data format that specifies how security data should be exported or
imported. Supported formats are the list of data formats that a given security provider
understands how to process.

Constraints are key/value pairs that specify options to the export or import process.
Use constraints to control which security data is exported to or imported from the
security provider's database (in the case of the WebLogic Server security providers, the
embedded LDAP server). For example, you may want to export only users (not
groups) from an Authentication provider's database. Supported constraints are the list
of constraints you can specify during the migration process for a particular security
provider. For example, you can specify that an Authentication provider's database be
used to import users and groups, but not security policies.

Export files are the files to which security data is written (in the specified format)
during the export portion of the migration process. Import files are files from which
security data is read (also in the specified format) during the import portion of the
migration process. Both export and import files are simply temporary storage locations
for security data as it is migrated from one security provider's data store to another
security provider's data store.

8.3 Formats and Constraints Supported by WebLogic Security Providers
In order for security data to be exported and imported between security providers,
both security providers must process the same format. Some data formats used for the
WebLogic Server security providers are unpublished; therefore, you cannot currently
migrate security data from a WebLogic security provider to a custom security
provider, or vice versa, using the unpublished formats.

WebLogic security providers support the following import and export formats.

Table 8–1 Import and Export Formats Supported by the WebLogic Security Providers

WebLogic Provider Supported Format

Default Authentication Provider DefaultAtn—unpublished format

XACML Authorization Provider XACML—standard XACML 2.0 format

DefaultAtz—unpublished format

WebLogic Authorization Provider DefaultAtz—unpublished format

XACML Role Mapping Provider XACML—standard XACML 2.0 format

DefaultRoles—unpublished format

WebLogic Role Mapping Provider DefaultRoles—unpublished format

WebLogic Credential Mapping
Provider

DefaultCreds—unpublished format

Formats and Constraints Supported by WebLogic Security Providers

Migrating Security Data 8-3

WebLogic security providers support the following import and export constraints.

SAML Identity Asserter V2

SAML Credential Mapping Provider
V2

XML Partner Registry—An XML format defined by the
SAML partner registry schema

JKS Key Store—A key store file format for importing
and exporting partner certificates only

LDIF Template—LDIF format

Table 8–2 Constraints Supported by the WebLogic Security Providers

WebLogic Security Provider
Supported
Constraints Description

Default Authentication users

groups

Export all users or all groups

■ XACML Authorization

■ WebLogic Authorization

■ XACML Role Mapping

■ WebLogic Role Mapping

none N/A

WebLogic Credential Mapping passwords With the constraint
passwords=cleartext, passwords will
be exported in clear text. Otherwise,
they will be exported in encrypted
form.

■ SAML Identity Asserter V2

■ SAML Credential Mapping
V2

partners Which partners to import or export.
The constraint value can be one of:

■ all—all partners

■ none—no partners

■ list—only listed partners

■ enabled—only enabled partners

■ disabled—only disabled
partners

■ SAML Identity Asserter V2

■ SAML Credential Mapping
V2

certificates Which certificates to import or
export. The constraint value can be
one of the following:

■ all—all certificates

■ none—no certificates

■ list—only listed certificates

■ referenced—only certificates
referenced by a partner

■ SAML Identity Asserter V2

■ SAML Credential Mapping
V2

passwords With the constraint
passwords=cleartext, passwords will
be exported in clear text. Otherwise,
they will be exported in encrypted
form.

Table 8–1 (Cont.) Import and Export Formats Supported by the WebLogic Security

WebLogic Provider Supported Format

Migrating Data with WLST

8-4 Securing Oracle WebLogic Server

When exporting from the WebLogic Credential Mapping provider, SAML Credential
Mapping provider, or SAML Identity Asserter, you need to specify whether or not the
passwords for the credentials are exported in clear text. The constraint
passwords=cleartext specifies that passwords will be exported in clear text.
Otherwise, they will be exported in encrypted form. The mechanism used to encrypt
passwords in each WebLogic Server domain is different; therefore, you want to export
passwords in clear text if you plan to use them in a different WebLogic Server domain.
After the credential maps are imported into the new WebLogic Server domain, the
passwords are encrypted. Carefully protect the directory and file in which you export
credential maps in clear text as secure data is available on your system during the
migration process.

8.4 Migrating Data with WLST
You can use the WebLogic Scripting Tool (WLST) to export and import data from a
security provider. Access the Runtime MBean for the security provider and use its
importData or exportData operation. For example, you might use WLST to import
data using commands like these:

domainRuntime()
cd('DomainServices/DomainRuntimeService/DomainConfiguration/mydomain
/SecurityConfiguration/mydomain/DefaultRealm/myrealm/path-to-MBean/mbeanname')
cmo.importData(format,filename,constraints)

where:

■ mbeanname—Name of the security provider MBean.

■ format—A format that is valid for the particular security provider. See Table 8–1.

■ SAML Identity Asserter V2

■ SAML Credential Mapping
V2

importMode Specifies how to resolve name
conflicts between the imported data
and existing data in the SAML
registry. The constraint value can be
one of the following:

■ fail—the import operation will
fail if conflicts are detected
(default)

■ rename—rename the imported
entry that conflicts

■ replace—replace the existing
entry with the conflicting
imported entry

Note: By default, the Default Authentication provider stores
passwords using a one-way hash. Passwords that have been
encrypted by this provider cannot be unencrypted when you export
data even if you use the passwords=cleartext constraint. If you
want to be able to export passwords in clear text from this provider,
you must set the Enable Password Digests attribute to true prior to
creating or updating those passwords. For more information, see
"Default Authentication Provider: Provider Specific" in Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

Table 8–2 (Cont.) Constraints Supported by the WebLogic Security Providers

WebLogic Security Provider
Supported
Constraints Description

Migrating Data Using weblogic.admin

Migrating Security Data 8-5

■ filename—The directory location and filename in which to export or import the
security data. Remember that, regardless of whether you are using a UNIX or
Windows operating system, you need to use a forward slash, not a back slash, as a
path separator for pathname arguments in WLST commands.

■ constraints—The constraints that limit the data to be exported or imported

For more information, see Oracle Fusion Middleware Oracle WebLogic Scripting Tool.

8.5 Migrating Data Using weblogic.admin

You can also use the weblogic.Admin utility to export and import security data
between security realms and security providers. The format of the command is:

java weblogic.Admin -username username -password password \
INVOKE -mbean mbeanname \
-method methodname dataformat filename constraints

where:

■ username—Name of the Admin user

■ password—Password of the Admin user

■ mbeanname—Name of the security provider MBean.

■ methodname—exportData or importData

■ dataformat—DefaultAtn, DefaultAtz, DefaultRoles, or DefaultCreds

■ filename—The directory location and filename in which to export or import the
security data

■ constraints—The constraints that limit the data to be exported or imported

For example:

java weblogic.Admin -username system -password weblogic INVOKE -mbean
Security:Name=myrealmDefaultAuthenticator -method importData
DefaultAtn d:\temp\security.info ""

Note: The weblogic.Admin utility is deprecated. Use WLST instead.

Note: The directory and file into which you export the security data
should be carefully protected with operating system security as they
contain secure information about your deployment.

Migrating Data Using weblogic.admin

8-6 Securing Oracle WebLogic Server

9

Managing the Embedded LDAP Server 9-1

9Managing the Embedded LDAP Server

WebLogic Server includes an embedded LDAP server that acts as the default security
provider data store for the Default Authentication, Authorization, Credential
Mapping, and Role Mapping providers.The following sections explain how to manage
the embedded LDAP server:

■ Section 9.1, "Configuring the Embedded LDAP Server"

■ Section 9.2, "Embedded LDAP Server Replication"

■ Section 9.3, "Viewing the Contents of the Embedded LDAP Server from an LDAP
Browser"

■ Section 9.4, "Exporting and Importing Information in the Embedded LDAP Server"

■ Section 9.5, "LDAP Access Control Syntax"

9.1 Configuring the Embedded LDAP Server
The embedded LDAP server contains user, group, group membership, security role,
security policy, and credential map information. By default, each WebLogic Server
domain has an embedded LDAP server configured with the default values set for each
type of information. The Default Authentication, Authorization, Credential Mapping,
and Role Mapping providers use the embedded LDAP server as their data store. If you
use any of these providers in a new security realm, you may want to change the
default values for the embedded LDAP server to optimize its use in your environment.

See "Configure the embedded LDAP server" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

The data file and change log file used by the embedded LDAP server can potentially
grow quite large. You can configure maximum sizes for these files with the following
weblogic.Server command line arguments:

■ -Dweblogic.security.ldap.maxSize=<max bytes>, which limits the size
of the data file used by the embedded LDAP server. When the data file exceeds the
specified size, WebLogic Server eliminates from the data file space occupied by
deleted entries.

■ -Dweblogic.security.ldap.changeLogThreshold=<number of
entries>, which limits the size of the change log file used by the embedded

Note: The performance of the embedded LDAP server is best with
fewer than 10,000 users. If you have more users, consider using a
different LDAP server and Authentication provider.

Embedded LDAP Server Replication

9-2 Securing Oracle WebLogic Server

LDAP server. When the change log file exceeds the specified number of entries,
WebLogic Server truncates the change log by removing all entries that have been
sent to all managed servers.

9.2 Embedded LDAP Server Replication
The WebLogic Server embedded LDAP server for a domain consists of a master LDAP
server, maintained in the domain's Administration Server, and a replicated LDAP
server maintained in each Managed Server in the domain. When changes are made
using a Managed Server, updates are sent to the embedded LDAP server on the
Administration Server. The embedded LDAP server on the Administration Server
maintains a log of all changes. The embedded LDAP server on the Administration
Server also maintains a list of Managed Servers and the current change status for each
one. The embedded LDAP server on the Administration Server sends appropriate
changes to each Managed Server and updates the change status for each server. This
process occurs when an update is made to the embedded LDAP server on the
Administration Server. However, depending on the number of updates, it may take
several seconds or more for the change to be replicated to the Managed Server.

You can configure the behavior of the embedded LDAP server on the Administration
Server and the Managed Servers in a domain using the Administration Console. On
the Domain > Security > Embedded LDAP Server page in the Administration Console,
you can set these attributes:

■ Refresh Replica At Startup—Specifies whether the embedded LDAP server in a
Managed Server should refresh all replicated data at boot time. This setting is
useful if you have made many changes when the Managed Server was not active,
and you want to download the entire replica instead of having the Administration
Server push each change to the Managed Server.

■ Master First—Specifies whether a Managed Server should always connect to the
embedded LDAP server on the Administration Server, instead of connecting to the
local replicated LDAP server.

See "Configure the embedded LDAP server" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

9.3 Viewing the Contents of the Embedded LDAP Server from an LDAP
Browser

To view the contents of the embedded LDAP server through an LDAP browser:

1. Download and install an external LDAP browser. You can find one LDAP browser
at the following location:

http://www.openldap.org/

In this procedure it is assumed that you are using this LDAP browser; other LDAP
browsers may differ in detail.

2. In the WebLogic Server Administration Console, change the credential for the
embedded LDAP server:

Note: Deleting and modifying the configured security providers
through the WebLogic Administration Console may require manual
clean up of the embedded LDAP server. Use an external LDAP
browser to delete unnecessary information.

Exporting and Importing Information in the Embedded LDAP Server

Managing the Embedded LDAP Server 9-3

a. Expand Domain > Security > Embedded LDAP.

b. In the Credential field, enter the new credential.

c. In the Confirm Credential field, enter the new credential again.

d. Click Save.

e. Reboot WebLogic Server.

3. Start the LDAP browser. To start the LDAP Browser/Editor mentioned in step 1,
use this command:

lbe.sh

4. In the LDAP browser, configure a new connection in the LDAP browser:

a. Select the QuickConnect tab.

b. Set the host field to localhost.

c. Set the port field to 7001 (7002 if SSL is being used).

d. Set the Base DN field to dc=mydomain where mydomain is the name of the
WebLogic Server domain you are using.

e. Uncheck the Anonymous Bind option.

f. Set the User DN field to cn=Admin.

g. Set the Password field to the credential you specified in Step 2.

5. Click the new connection.

Use the LDAP browser to navigate the hierarchy of the embedded LDAP server.

9.4 Exporting and Importing Information in the Embedded LDAP Server
You can export and import data from the embedded LDAP server using either the
WebLogic Server Administration Console or an LDAP browser. To export and import
data with the Console, use the Migration page of each security provider. See "Export
data from a security provider" and "Import data into a security provider" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help.

Caution: Changing the credential can affect the operation of the
domain. Do not perform this step on a production server.

Note: You can also view the contents of the embedded LDAP server
by exporting its data and reviewing the exported file. See Section 9.4,
"Exporting and Importing Information in the Embedded LDAP
Server".

Caution: When you use the Administration Console Migration tab to
export security data, the export process deletes any existing files in the
target directory with the .dat extension. Always export security data
to an empty directory.

LDAP Access Control Syntax

9-4 Securing Oracle WebLogic Server

This section describes how to use an LDAP browser to export and import data stored
in the embedded LDAP server. Table 9–1 summarizes where data is stored in the
hierarchy of the embedded LDAP server.

To export security data from the embedded LDAP server using the LDAP
Browser/Editor:

1. Enter the following command at a command prompt to start the LDAP
Browser/Editor:

lbe.sh

2. Specify the data to be exported (for example, to export users specify
ou=people,ou=myrealm,dc=mydomain).

3. Select the LDIF > Export option.

4. Select Export all children.

5. Specify the name of the file into which the data will be exported.

To import security data into the embedded LDAP server using the LDAP
Browser/Editor:

1. Enter the following command at a command prompt to start the LDAP browser:

lbe.sh

2. Specify the data to be imported (for example, to import users, specify
ou=people,ou=myrealm,dc=mydomain).

3. In the LDAP Browser/Editor, select the LDIF > Import option.

4. Select Update/Add.

5. Specify the name of the file from which the data will be imported.

9.5 LDAP Access Control Syntax
The embedded LDAP server supports the IETF LDAP Access Control Model for
LDAPv3. This section describes how that access control is implemented within the
embedded LDAP server. You can apply these rules directly to entries within the
directory as intended by the standard or you can configure and maintain them by
editing the access control file (acls.prop).

Table 9–1 Location of Security Data in the Embedded LDAP Server

Security Data Embedded LDAP Server DN

Users ou=people,ou=myrealm,dc=mydomain

Groups ou=groups,ou=myrealm,dc=mydomain

Security roles ou=ERole,ou=myrealm,dc=mydomain

Security policies ou=EResource,ou=myrealm,dc=mydomain

LDAP Access Control Syntax

Managing the Embedded LDAP Server 9-5

9.5.1 The Access Control File
The access control file (acls.prop) maintained by the embedded LDAP server
contains the complete list of access control lists (ACLs) for an entire LDAP directory.
Each line in the access control file contains a single access control rule. An access
control rule is made up of the following components:

■ Location in the LDAP directory where the rule applies. See Section 9.5.2, "Access
Control Location".

■ Scope within that location to which the rule applies. See Section 9.5.3, "Access
Control Scope".

■ Access rights (either grant or deny). See Section 9.5.4, "Access Rights".

■ Permissions (either grant or deny). See Section 9.5.4.1, "Attribute Permissions" and
Section 9.5.4.2, "Entry Permissions".

■ Attributes to which the rule applies. See Section 9.5.5, "Attributes Types".

■ Subject being granted or denied access. See Section 9.5.6, "Subject Types".

Example 9–1 shows a sample access control file.

Example 9–1 Sample acl.props File

[root]|entry#grant:r,b,t#[all]#public
ou=Employees,dc=octetstring,dc=com|subtree#grant:r,c#[all]#public:
ou=Employees,dc=octetstring,dc=com|subtree#grant:b,t#[entry]#public:
ou=Employees,dc=octetstring,dc=com|subtree#deny:r,c#userpassword#public:
ou=Employees,dc=octetstring,dc=com|subtree#grant:r#userpassword#this:
ou=Employees,dc=octetstring,dc=com|subtree#grant:w,o#userpassword,title,
description,
postaladdress,telephonenumber#this:
cn=schema|entry#grant:r#[all]#public:

9.5.2 Access Control Location
Each access control rule is applied to a given location in the LDAP directory. The
location is normally a distinguished name (DN) but the special location [root] can be
specified in the acls.prop file if the access control rule applies to the entire directory.

If an entry being accessed or modified on the LDAP server does not equal or reside
below the location of the access control rule, the given access control rule is not
evaluated further.

9.5.3 Access Control Scope
The following access control scopes are defined:

■ Entry—An ACL with a scope of Entry is only evaluated if the entry in the LDAP
directory shares the same DN as the location of the access control rule. Such rules

Note: The default behavior of the embedded LDAP server is to allow
access only from the Admin account in WebLogic Server. The
WebLogic security providers use only the Admin account to access the
embedded LDAP server. If you are not planning to access the
embedded LDAP server from an external LDAP browser or if you are
planning only to use the Admin account, you do not need to edit the
acls.prop file and can ignore the information in this section.

LDAP Access Control Syntax

9-6 Securing Oracle WebLogic Server

are useful when a single entry contains more sensitive information than parallel or
subentries entries.

■ Subtree—A scope of Subtree is evaluated if the entry in the LDAP directory equals
or ends with the location of this access control. This scope protects means the
location entry and all subentries.

If an entry in the directory is covered by conflicting access control rules (for example,
where one rule is an Entry rule and the other is a Subtree rule), the Entry rule takes
precedence over rules that apply because of the Subtree rule.

9.5.4 Access Rights
Access rights apply to an entire object or to attributes of the object. Access can be
granted or denied. Either of the actions grant or deny may be used when you create
or update the access control rule.

Each LDAP access right is discrete. One right does not imply another right. The rights
specify the type of LDAP operations that can be performed.

9.5.4.1 Attribute Permissions
The following permissions apply to actions involving attributes.

The m permission is required for all attributes placed on an object when it is created.
Just as the w and o permissions are used in the Modify operation, the m permission is
used in the Add operation. The w and o permissions have no bearing on the Add
operation and m has no bearing on the Modify operation. Since a new object does not
yet exist, the a and m permissions needed to create it must be granted to the parent of
the new object. This requirement differs from w and o permissions which must be
granted on the object being modified. The m permission is distinct and separate from
the w and o permissions so that there is no conflict between the permissions needed to
add new children to an entry and the permissions needed to modify existing children
of the same entry. In order to replace values with the Modify operation, a user must
have both the w and o permissions.

9.5.4.2 Entry Permissions
The following permissions apply to entire LDAP entries.

Table 9–2 Attribute Permissions

Permission Description

r Read Read attributes. If granted, permits attributes and values to be
returned in a Read or Search operation.

w Write Modify or add attributes. If granted, permits attributes and values
to be added in a Modify operation.

o Obliterate Modify and delete attributes. If granted, permits attributes and
values to be deleted in a Modify operation.

s Search Search entries with specified attributes. If granted, permits
attributes and values to be included in a Search operation.

c Compare Compare attribute values. If granted, permits attributes and values
to be included in a Compare operation.

m Make Make attributes on a new LDAP entry below this entry.

LDAP Access Control Syntax

Managing the Embedded LDAP Server 9-7

9.5.5 Attributes Types
The attribute types to which an access control rule applies should be listed in the ACL
where necessary. The following keywords are available:

■ [entry] indicates the permissions apply to the entire object. This could mean
actions such as delete the object, or add a child object.

■ [all] indicates the permissions apply to all attributes of the entry.

If the keyword [all] and another attribute are both specified within an ACL, the
more specific permission for the attribute overrides the less specific permission
specified by the [all] keyword.

Table 9–3 Entry Permissions

Permission Description

a Add Add an entry below this LDAP entry. If granted, permits creation of an entry
in the DIT subject to control on all attributes and values placed on the new
entry at the time of creation. In order to add an entry, permission must also
be granted to add at least the mandatory attributes.

d Delete Delete this entry. If granted, permits the entry to be removed from the DIT
regardless of controls on attributes within the entry.

e Export Export entry and all subentries to new location.

If granted, permits an entry and its subentries (if any) to be exported; that is,
removed from the current location and placed in a new location subject to the
granting of suitable permission at the destination.

If the last RDN is changed, Rename permission is also required at the current
location.

In order to export an entry or its subentries, there are no prerequisite
permissions to the contained attributes, including the RDN attribute. This is
true even when the operation causes new attribute values to be added or
removed as the result of the changes to the RDN.

i Import Import entry and subentries from specified location.

If granted, permits an entry and its subentries (if any) to be imported; that is,
removed from one location and placed at the specified location (if suitable
permissions for the new location are granted).

When you import an entry or its subentries, the contained attributes,
including the RDN attributes, have no prerequisite permissions. This is true
even when the operation causes new attribute values to be added or
removed as the result of the changes to RDN.

n RenameDN Change the DN of an LDAP entry. Granting the Rename permission is
necessary for an entry to be renamed with a new RDN, taking into account
consequential changes to the DN of subentries. If the name of the superior
entry is unchanged, the grant is sufficient.

When you rename an entry, there are no prerequisite permissions for the
contained attributes, including the RDN attributes. This is true even when
the operation causes new attribute values to be added or removed as the
result of the changes of RDN.

b BrowseDN Browse the DN of an entry. If granted, this permission permits entries to be
accessed using directory operations that do not explicitly provide the name
of the entry.

t ReturnDN Allows DN of entry to be disclosed in an operation result. If granted, this
permission allows the distinguished name of the entry to be disclosed in the
operation result.

LDAP Access Control Syntax

9-8 Securing Oracle WebLogic Server

9.5.6 Subject Types
Access control rules can be associated with a number of subject types. The subject of
an access control rule determines whether the access control rule applies to the
currently connected session.

The following subject types are defined:

■ authzID—Applies to a single user that can be specified as part of the subject
definition. The identity of that user in the LDAP directory is typically defined as a
DN.

■ Group—Applies to a group of users specified by one of the following object
classes:

– groupOfUniqueNames

– groupOfNames

– groupOfUniqueURLs

The first two types of groups contain lists of users, and the third type allows users
to be included in the group automatically based on defined criteria.

■ Subtree—Applies to the DN specified as part of the subject and all subentries in
the LDAP directory tree.

■ IP Address—Applies to a particular Internet address. This subject type is useful
when all access must come through a proxy or other server. Applies only to a
particular host, not to a range or subnet.

■ Public—Applies to anyone connected to the directory, whether they are
authenticated or not.

■ This—Applies to the user whose DN matches that of the entry being accessed.

9.5.7 Grant/Deny Evaluation Rules
The decision whether to grant or deny a client access to the information in an entry is
based on many factors related to the access control rules and the entry being protected.
Throughout the decision making process, these guiding principles apply:

■ More specific rules override less specific ones (for example, individual user entries
in an ACL take precedence over a group entry).

■ If a conflict still exists in spite of the specificity of the rule, the subject of the rule
determines which rule will be applied. Rules based on an IP Address subject
are given the highest precedence, followed by rules that are applied to a specific
AuthzID or This subject. Next in priority are rules that apply to Group subjects.
Last priority is given to rules that apply to Subtree and Public subjects.

■ When there are conflicting ACL values, Deny takes precedence over Grant.

■ Deny is the default when there is no access control information. Additionally, an
entry scope takes precedence over a subtree scope.

10

Managing the RDBMS Security Store 10-1

10Managing the RDBMS Security Store

WebLogic Server provides the option of using an external RDBMS as a datastore that is
used by authorization, role mapping, credential mapping, and certificate registry
providers. This datastore, called the RDBMS security store, is strongly recommended
for the use of SAML 2.0 services in two or more WebLogic Server instances in that
domain, such as in a cluster.

The following sections explain how to configure and manage the RDBMS security
store:

■ Section 10.1, "Security Providers that Use the RDBMS Security Store"

■ Section 10.2, "Configuring the RDBMS Security Store"

■ Section 10.3, "Upgrading a Domain to Use the RDBMS Security Store"

For the most up-to-date details about the specific database systems that are supported
for use as the RDBMS security store for WebLogic Server, see the Oracle Fusion
Middleware Supported System Configurations page at
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html.

10.1 Security Providers that Use the RDBMS Security Store
The following security providers use the RDBMS security store if that store is
configured in a domain:

■ XACML Authorization provider

■ XACML Role Mapping provider

■ The following providers for SAML 1.1:

– SAML Identity Assertion provider V2

– SAML Credential Mapping provider V2

■ The following providers for SAML 2.0:

– SAML 2.0 Identity Assertion provider

Note: In order to use the RDBMS security store, the preferred
approach is first to create a domain in which the external RDBMS
server is configured. Prior to booting the domain, you create the tables
in the datastore that are required by the RDBMS security store. The
WebLogic Server installation directory contains a set of SQL scripts
that create these tables for each supported database.

Configuring the RDBMS Security Store

10-2 Securing Oracle WebLogic Server

– SAML 2.0 Credential Mapping provider

■ WebLogic Credential Mapping provider

■ PKI Credential Mapping provider

■ Certificate Registry

When the RDBMS security store is configured in a domain, an instance of any of the
preceding security providers that has been created in the security realm automatically
uses only the RDBMS security store as a datastore, and not the embedded LDAP
server. WebLogic security providers configured in the domain that are not among
those in the preceding list continue to use their respective default stores; for example,
the Default Authentication provider continues to use the embedded LDAP server.

Oracle recommends that you configure the RDBMS security store at the time of
domain creation. The Configuration Wizard has been enhanced to simplify this
process. This utility includes an option for testing the RDBMS connection to help
ensure that when the domain is booted, the security policies required to access the
domain can be retrieved.

In addition to the Configuration Wizard, WebLogic Server also contains the
RDBMSSecurityStoreMBean, which is the interface for configuring the RDBMS
security store via the WebLogic Scripting Tool (WLST).

10.2 Configuring the RDBMS Security Store
To create and configuring the RDBMS security store in a domain, complete the tasks
described in the following sections:

■ Section 10.2.1, "Create a Domain with the RDBMS Security Store"

■ Section 10.2.2, "Create RDBMS Tables in the Security Datastore"

■ Section 10.2.3, "Configure a JMS Topic for the RDBMS Security Store"

10.2.1 Create a Domain with the RDBMS Security Store
To use the RDBMS security store in a domain, Oracle recommends that you configure
the RDBMS security store at the time you create that domain. Modifying an existing
domain in place to use the RDBMS security store is possible; however, it is not
recommended because if the database connection is not configured correctly, the
policies necessary for granting access to the domain could become unavailable,
resulting in a domain that cannot be used.

WebLogic Server provides two ways to create a domain in which the RDBMS security
store may be configured:

■ By using the Configuration Wizard, which includes an option to configure the
RDBMS security store. This option is available from the Customize Environment
and Services Settings page.

If you choose this option, the Configuration Wizard displays subsequent windows
in which you can:

a. Select the specific database system you wish to use as the RDBMS security
store

b. Configure the database connection settings

c. Test the database connection

Configuring the RDBMS Security Store

Managing the RDBMS Security Store 10-3

■ By using the WebLogic Scripting Tool (WLST) Offline. Operations for creating and
configuring the RDBMS security store are available via the
RDBMSSecurityStoreMBean.

Regardless of the method you choose to create the domain, be sure to configure the
connection properties for the database that serves as the RDBMS security store as
explained in the following sections.

10.2.1.1 Specifying Database Connection Properties
When configuring the RDBMS security store in either the Configuration Wizard or
WLST, you need to specify or configure the following:

■ RDBMS type

The following RDBMS systems are supported for containing the RDBMS security
store:

– Oracle 9i, 10g, and 11g

– MS-SQL 2000 and 2005

– DB2 9.2 and 9.5

– PointBase RDBMS 5.7, included with WebLogic Server

■ JDBC driver and class name for connecting to the RDBMS

■ RDBMS name, host, port, and URL

■ Username and password of the domain user who can access the RDBMS system

■ Optionally, any properties that need to be passed to the RDBMS system

The parameters that you specify in the JDBC driver connection properties attribute
must be a comma-separated list. The following examples show the use of WLST to
configure the database connection properties for Oracle, MS-SQL, and DB2.

10.2.1.1.1 Oracle Example Example 10–1 shows an example of configuring Oracle for
the RDBMS security store.

Example 10–1 Configuring Oracle for the RDBMS Security Store

create('base_domain','SecurityConfiguration')
cd('/SecurityConfiguration/base_domain')
a=get('DefaultRealm')
cd('Realm/myrealm')
rdbms = create("myRDBMSSecurityStore", "RDBMSSecurityStore")
rdbms.setUsername('ortiz')
rdbms.setPassword('weblogic')

Note: When you use the Configuration Wizard to configure the
RDBMS security store, the Configuration Wizard provides a
drop-down list for selecting the database you want to use. The
databases appearing in this drop-down list are not exclusive to only
those supported for the RDBMS security store. Make sure you choose
a database that is supported for this purpose. (See Oracle Fusion
Middleware Supported System Configurations at
http://www.oracle.com/technology/software/products/i
as/files/fusion_certification.html for the most up-to-date
list.)

Configuring the RDBMS Security Store

10-4 Securing Oracle WebLogic Server

rdbms.setConnectionURL('jdbc:bea:oracle://avitek21:1521')
rdbms.setDriverName('weblogic.jdbc.oracle.OracleDriver')
rdbms.setConnectionProperties('user=ortiz,portNumber=1521,SID=pint101a,serverName=
avitek21')

10.2.1.1.2 MS-SQL Example Example 10–2 shows an example of configuring MS-SQL
for the RDBMS security store.

Example 10–2 Configuring MS-SQL for the RDBMS Security Store

create('base_domain','SecurityConfiguration')
cd('/SecurityConfiguration/base_domain')
a=get('DefaultRealm')
cd('Realm/myrealm')
rdbms = create("myRDBMSSecurityStore", "RDBMSSecurityStore")
rdbms.setUsername('garnett')
rdbms.setPassword('weblogic')
rdbms.setConnectionURL('jdbc:bea:sqlserver://avitek6:1433')
rdbms.setDriverName('weblogic.jdbc.sqlserver.SQLServerDriver')
rdbms.setConnectionProperties('user=garnett,portNumber=1433,databaseName=wls3,serv
erName=avitek6')

10.2.1.1.3 DB2 Example Example 10–3 shows an example of configuring DB2 for the
RDBMS security store.

Example 10–3 Configuring DB2 for the RDBMS Security Store

create('base_domain','SecurityConfiguration')
cd('/SecurityConfiguration/base_domain')
a=get('DefaultRealm')
cd('Realm/myrealm')
rdbms = create("myRDBMSSecurityStore", "RDBMSSecurityStore")
rdbms.setUsername('brady')
rdbms.setPassword('weblogic')
rdbms.setConnectionURL('jdbc:bea:db2://avitek3:50000')
rdbms.setDriverName('weblogic.jdbc.db2.DB2Driver')
rdbms.setConnectionProperties('user=brady,portNumber=50000,databaseName=wls,server
Name=avitek3,batchPerformanceWorkaround=true')

For more information about specifying connection properties for the WebLogic Type 4
JDBC driver for DB2, see "The DB2 Driver" in Oracle Fusion Middleware Type 4 JDBC
Drivers for Oracle WebLogic Server.

10.2.1.1.4 For More Information About Default Connection Properties Internally, the RDBMS
security store uses Oracle Kodo to connect to and interoperate with the database using
the WebLogic Type 4 JDBC driver for DB2. The attributes set on the
RDBMSSecurityStoreMBean are converted into attributes set on the properties of
Kodo's javax.sql.DataSource implementation.

For more information about these attributes, see the following topics:

Note: If you choose DB2, you have the option of selecting the
WebLogic Type 4 JDBC driver for DB2 that is provided in WebLogic
Server. However, if you use this JDBC driver, you must also specify
the additional property BatchPerformanceWorkaround and set it
to true. If you do not set the BatchPerformanceWorkaround to
true in this configuration, WebLogic Server may fail to boot,
generating a SecurityServiceException message.

Configuring the RDBMS Security Store

Managing the RDBMS Security Store 10-5

■ For more information about the attributes you can set on the
RDBMSSecurityStoreMBean, see "RDBMSSecurityStoreMBean" in the Oracle
Fusion Middleware Oracle WebLogic Server MBean Reference.

■ For information about the default database connection properties in the Kodo
DataDource, see "Using the Kodo DataSource" in the JDBC chapter of the Kodo
JPA/JDO Reference Guide, available at the following URL:

http://e-docs.bea.com/kodo/docs41/full/html/ref_guide_
dbsetup.html#ref_guide_dbsetup_builtin

10.2.1.2 Testing the Database Connection
During the process of configuring the RDBMS security store via the Configuration
Wizard, you are presented with the option of testing the database connection. Oracle
strongly recommends using this option because it can verify that the connection is set
up properly. If there were a problem with the database connection, you might not be
able subsequently to boot the domain if the security providers that control access to
that domain are unable to obtain the necessary security policies.

For information about configuring the RDBMS security store via the Configuration
Wizard, see "Customizing the Environment" in Oracle WebLogic Server Creating
WebLogic Domains Using the Configuration Wizard.

10.2.2 Create RDBMS Tables in the Security Datastore
Prior to booting the domain, the database administrator needs to run the SQL script
that creates the RDBMS tables in the datastore used by the RDBMS security store. A set
of SQL scripts for creating these tables for, and also removing them from, each
supported RDBMS system is available in the following WebLogic Server installation
directory:

WL_HOME/server/lib

When running the appropriate SQL script for the database serving as the RDBMS
security store, be sure to specify the same connection properties, including the
credentials of the user who has access, the database URL, etc., as specified for that
RDBMS during domain creation.

Table 10–1 identifies the name of each of these SQL scripts.

10.2.3 Configure a JMS Topic for the RDBMS Security Store
If the RDBMS security store is configured in a domain that includes two or more
WebLogic Server instances, or a cluster, Oracle strongly recommends that you also
perform the following tasks:

1. Enable JMS notifications for that domain.

Table 10–1 SQL Scripts for Creating and Removing RDBMS Datastore Tables

RDBMS Script for Creating Datastore Tables Script for Removing Datastore Tables

Oracle 9i, 10g,
11g

rdbms_security_store_oracle.sql rdbms_security_store_oracle_remove.sql

MS-SQL 2000,
2005

rdbms_security_store_sqlserver.sql rdbms_security_store_sqlserver_remove.sql

DB2 9.2, 9.5 rdbms_security_store_db2.sql rdbms_security_store_db2_remove.sql

PointBase 5.7 rdbms_security_store_pointbase.sql rdbms_security_store_pointbase_remove.sql

Configuring the RDBMS Security Store

10-6 Securing Oracle WebLogic Server

2. Configure a JMS topic that can be used by the RDBMS security store.

JMS notifications enable the security data that is contained in the RDBMS security
store, and that is managed by security providers in the realm, to be synchronized
among all server instances in the domain.

You can enable JMS notifications by booting the domain in which the RDBMS security
store has been configured, and configuring attributes on the
RDBMSSecurityStoreMBean via either of the following mechanisms:

■ WebLogic Scripting Tool

■ The Security Realms > RealmName > RDBMS Security Store page in the
Administration Console

The attributes of the RDBMSSecurityStoreMBean that must be set to enable JMS
notifications are listed and described in Table 10–2.

Caution: If you do not configure a JMS topic that can be used by the
RDBMS security store when configured in a multi-server or clustered
domain, care should be taken when making security policy or security
configuration updates. If no JMS topic is configured, it may be
necessary to reboot the domain to ensure that all server instances
function consistently with regards to those security updates.

Table 10–2 RDBMSSecurityStoreMBean Attributes for Configuring a JMS Topic

Attribute Name Description

JMSTopic The JMS topic to which the Kodo remote commit provider should publish
notifications and subscribe for notifications sent from other JVMs. The
target JMS topic needs to be pre-deployed.

JMSTopicConnectionFactory The JNDI name of a javax.jms.TopicConnectionFactory instance
to use for finding JMS topics.

The topic "Connection Factory Configuration" in Oracle Fusion Middleware
Configuring and Managing JMS for Oracle WebLogic Server describes the
WebLogic JMS connection factory,
weblogic.jms.ConnectionFactory, which is a
javax.jms.TopicConnectionFactory instance. Refer to this topic
for information about configuring a connection factory.

NotificationProperties A comma-delimited list of key-value properties to pass to the JNDI
InitialContext on construction, in the form of xxKey=xxValue,
xxKey=xxValue. The following properties must be specified:

■ java.naming.provider.url — Property for specifying
configuration information for the service provider to use. The value
of the property should contain a URL string. For example:

iiops://localhost:7002

■ java.naming.factory.initial — Property for specifying the
initial context factory to use. The value of the property should be the
fully-qualified class name of the factory class that will create an initial
context. For example:

weblogic.jndi.WLInitialContextFactory

Configuring the RDBMS Security Store

Managing the RDBMS Security Store 10-7

For more information, see the following topics:

■ "Configure topics" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help

■ "Configuring Basic JMS System Resources" in Oracle Fusion Middleware Configuring
and Managing JMS for Oracle WebLogic Server

■ "Configure the RDBMS security store" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help

■ "RDBMSSecurityStoreMBean" in the Oracle Fusion Middleware Oracle WebLogic
Server MBean Reference

10.2.3.1 Configuring JMS Connection Recovery in the Event of Failure
Normally, the WebLogic Security Service contained in each WebLogic Server instance
in a multi-node domain connects at startup to the JMS server. If a security provider
that uses the RDBMS security store makes a change to its security data, all WebLogic
Server instances are notified via JMS, and the local caches used by the WebLogic
Security Service in each server instance are synchronized to that change.

If the JMS connection fails in a WebLogic Server instance that has been successfully
started, the WebLogic Security Service associated with that server instance starts the
JMS connection recovery process. The recovery process sleeps one second between
reconnect attempts. The recovery process is stopped if the JMS connection failure
persists after the number of reconnect attempts with which the
JMSExceptionReconnectAttempts property has been configured is reached. No
further reconnect attempts are made: If a change is made to the security data in one
WebLogic Server instance, the local caches managed by the WebLogic Security Service
in other WebLogic Server instances are not synchronized to that change. However, if
the JMS connection is successfully recovered by other means (such as a server reboot),
those caches become synchronized.

If the JMS connection is not successfully started at the time a WebLogic Server instance
is booted, a timer task that makes reconnect attempts is automatically started. The
timer task is cancelled once the connection is successfully made. Two system
properties may be configured for this timer task:

■ com.bea.common.security.jms.initialConnectionRecoverInterval

Specifies the delay, in milliseconds, before the connection recovery task is
executed. The default value is 1000, which causes the connection recovery process
to be executed after a delay of one second.

■ com.bea.common.security.jms.initialConnectionRecoverAttempts

Specifies the maximum number of reconnect attempts that can be made prior to
cancelling the timer task. The default value is 3600, which causes the timer task to

JNDIUserName The identity of any valid user in the security realm who has access to
JNDI.

JNDIPassword The password of the user specified in the JNDIUserName attribute.

JMSExceptionReconnectAttempts The number of reconnect attempts to be made if the JMS system notifies
Kodo of a serious connection error. The default is 0, which causes an error
to be logged, but does not result in a reconnect attempt.

Table 10–2 (Cont.) RDBMSSecurityStoreMBean Attributes for Configuring a JMS Topic

Attribute Name Description

Upgrading a Domain to Use the RDBMS Security Store

10-8 Securing Oracle WebLogic Server

be cancelled once 3600 reconnect attempts have been made. No further reconnect
attempts are made.

You can calculate the maximum connection polling duration by multiplying the values
specified by each of the preceding system properties. For example, multiplying the
default values of these two properties yields a maximum polling duration of one hour
(1000 millisecond delay multiplied by 3600 reconnect attempts).

10.3 Upgrading a Domain to Use the RDBMS Security Store
To upgrade a domain to use the RDBMS security store, Oracle recommends creating a
new domain in which the RDBMS security store is configured. After you create the
new domain, you should export the security data from the security realm of the old
domain, and import it into a security realm of the new domain. When you import
security data into a security realm in a domain that uses the RDBMS security store, the
data for the security providers that use the RDBMS security store is automatically
loaded into that datastore. Data for security providers that do not use the RDBMS
security store is automatically imported into the stores that those providers normally
use by default.

It is possible to selectively migrate security providers individually from one security
realm to another. However, when migrating security data to a domain that uses the
RDBMS security store, Oracle recommends migrating the security realm's data in a
single operation.

For information about migrating security realms, see the following topics:

■ Chapter 8, "Migrating Security Data"

■ "Export data from security realms" and "Import data into security realms" in the
Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help

11

Configuring Identity and Trust 11-1

11Configuring Identity and Trust

This following sections describe how to configure identity and trust for WebLogic
Server:

■ Section 11.1, "Private Keys, Digital Certificates, and Trusted Certificate
Authorities"

■ Section 11.2, "Configuring Identity and Trust: Main Steps"

■ Section 11.3, "Supported Formats for Identity and Trust"

■ Section 11.4, "Obtaining Private Keys, Digital Certificates, and Trusted Certificate
Authorities"

■ Section 11.5, "Storing Private Keys, Digital Certificates, and Trusted Certificate
Authorities"

■ Section 11.6, "How WebLogic Server Locates Trust"

■ Section 11.7, "Configuring Keystores for Production"

Before performing the steps in this chapter, review the "Identity and Trust" section in
Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server.

11.1 Private Keys, Digital Certificates, and Trusted Certificate Authorities
Private keys, digital certificates, and trusted certificate authorities establish and verify
server identity and trust.

SSL uses public key encryption technology for authentication. With public key
encryption, a public key and a private key are generated for a server. Data encrypted
with the public key can only be decrypted using the corresponding private key and
data encrypted with the private key can only be decrypted using the corresponding
public key. The private key is carefully protected so that only the owner can decrypt
messages that were encrypted using the public key.

The public key is embedded in a digital certificate with additional information
describing the owner of the public key, such as name, street address, and e-mail
address. A private key and digital certificate provide identity for the server.

The data embedded in a digital certificate is verified by a certificate authority and
digitally signed with the certificate authority's digital certificate. Well-know certificate
authorities include Verisign and Entrust.net. The trusted certificate authority (CA)
certificate establishes trust for a certificate.

An application participating in an SSL connection is authenticated when the other
party evaluates and accepts the application's digital certificate. Web browsers, servers,
and other SSL-enabled applications generally accept as genuine any digital certificate

Configuring Identity and Trust: Main Steps

11-2 Securing Oracle WebLogic Server

that is signed by a trusted certificate authority and is otherwise valid. For example, a
digital certificate can be invalidated because it has expired or the digital certificate of
the certificate authority used to sign it expired. A server certificate can be invalidated
if the host name in the digital certificate of the server does not match the URL specified
by the client.

11.2 Configuring Identity and Trust: Main Steps
To create identity and trust for a server:

1. Obtain digital certificates, private keys, and trusted CA certificates from the
CertGen utility, Sun Microsystem's keytool utility, or a reputable vendor such as
Entrust or Verisign. You can also use the digital certificates, private keys, and
trusted CA certificates provided by the WebLogic Server kit. The demonstration
digital certificates, private keys, and trusted CA certificates should be used in a
development environment only.

2. Store the private keys, digital certificates, and trusted CA certificates. Private keys
and trusted CA certificates are stored in a keystore.

3. Configure the identity and trust keystores for WebLogic Server in the WebLogic
Server Administration Console. See "Configure keystores" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

The remaining sections describe these steps.

11.3 Supported Formats for Identity and Trust
The PEM (Privacy Enhanced Mail) format is the preferred format for private keys,
digital certificates, and trusted certificate authorities (CAs). The preferred keystore
format is the JKS (Java KeyStore) format.

A .pem format file begins with this line:

----BEGIN CERTIFICATE----

and ends with this line:

----END CERTIFICATE----

A .pem format file supports multiple digital certificates (for example, a certificate
chain can be included). The order of certificates within the file is important. The
server's digital certificate should be the first digital certificate in the file, followed by
the issuer certificate, and so on. Each certificate in the chain is followed by its issuer
certificate. If the last certificate in the chain is the self-signed (self-issued) root
certificate of the chain, the chain is considered complete. Note that the chain does not
have to be complete.

When using the deprecated file-based private keys, digital certificates, and trusted
CAs, WebLogic Server can use digital certificates in either PEM or distinguished
encoding rules (DER) format.

Note: The preferred keystore format is JKS (Java KeyStore).
WebLogic Server supports private keys and trusted CA certificates
stored in files or in the WebLogic Keystore provider for the purpose of
backward compatibility only.

Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities

Configuring Identity and Trust 11-3

A .der format file contains binary data for a single certificate. Thus, a .der file can be
used only for a single certificate, while a .pem file can be used for multiple certificates.

Microsoft is often used as a certificate authority. Microsoft issues trusted CA
certificates in p7b format, which must be converted to PEM before they can be used
with WebLogic Server. For more information, see Section 11.4.4, "Converting a
Microsoft p7b Format to PEM Format".

Private key files (meaning private keys not stored in a keystore) must be in
PKCS#5/PKCS#8 PEM format.

You can still use private keys and digital certificates used with other versions of
WebLogic Server with this version of WebLogic Server. Convert the private key and
digital certificate from distinguished encoding rules (DER) format to
privacy-enhanced mail (PEM) format. For more information, see the description of the
"der2pem" utility in "Using the WebLogic Server Java Utilities" in Oracle Fusion
Middleware Command Reference for Oracle WebLogic Server.

After converting the files, ensure the digital certificate file has the -----BEGIN
CERTIFICATE----- header and the -----END CERTIFICATE----- footer.
Otherwise, the digital certificate will not work.

11.4 Obtaining Private Keys, Digital Certificates, and Trusted Certificate
Authorities

Servers need a private key, a digital certificate containing the matching public key, and
a certificate for at least one trusted certificate authority. WebLogic Server supports
private keys, digital certificates, and trusted CA certificates from the following
sources:

■ The demonstration digital certificates, private keys, and trusted CA certificates in
the WL_HOME\server\lib directory and the JAVA_HOME\jre\lib\security
directory.

The demonstration digital certificates, private keys, and trusted CA certificates
should be used in a development environment only.

■ Sun Microsystem's keytool utility can also be used to generate a private key, a
self-signed digital certificate for WebLogic Server, and a Certificate Signing
Request (CSR).

– Submit the CSR to a certificate authority to obtain a digital certificate for
WebLogic Server.

– Use the keytool utility to update the self-signed digital certificate with a new
digital certificate.

– Use the keytool utility to obtain trust and identity when using WebLogic
Server in a production environment.

For more information about Sun's keytool utility, see the keytool-Key and
Certificate Management Tool description at
http://java.sun.com/javase/6/docs/tooldocs/windows/keytool.ht
ml.

Note: OpenSSL can add a header to the PEM certificate it generates.
In order to use such certificates with WebLogic Server, everything in
front of "-----BEGIN CERTIFICATE-----" should be removed
from the certificate, which you can do with a text editor.

Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities

11-4 Securing Oracle WebLogic Server

■ The CertGen utility generates digital certificates and private keys that should be
used only for demonstration or testing purposes in a development environment,
and not in a production environment. Use the CertGen utility if you want to set an
expiration date in the digital certificate or specify a correct host name in the digital
certificate so that you can use host name verification. (The demonstration digital
certificate provided by WebLogic Server uses the machine's default host name as
the host name.) For more information about using the CertGen utility to obtain
private keys and digital certificates, see Section 11.4.2, "Using the CertGen Utility".

11.4.1 Common Keytool Commands
Table 11–1 lists keytool commands you use when creating and using JKS keystores
with WebLogic Server.

Note: When you use the keytool utility, the default key pair
generation algorithm is Digital Signature Algorithm (DSA). WebLogic
Server does not support DSA. Specify another key pair generation and
signature algorithm when using WebLogic Server.

Note: The Certificate Request Generator servlet is deprecated. Use
the keytool utility from Sun Microsystems in place of the Certificate
Request Generator servlet. For more information about keytool, see
Section 11.4.1, "Common Keytool Commands".

Note: The keytool utility is a product of Sun Microsystems.
Therefore, Oracle does not provide complete documentation on the
utility. For more information, see the keytool-Key and Certificate
Management Tool description at
http://java.sun.com/javase/6/docs/tooldocs/windows/k
eytool.html.

Caution: Although the keytool command includes parameters for
specifying passwords, you should never include unencrypted
passwords in command lines. Instead, you should allow keytool to
prompt you for the password after you enter the command, as in the
following example. User input is shown in bold.

C:\DOMAIN_NAME>keytool -genkey -keystore MyKeyStore
Enter keystore password:
Re-enter new password:

Note that passwords are not echoed in the command window when
entered in response to prompts, which allows for secure password
input.

Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities

Configuring Identity and Trust 11-5

11.4.2 Using the CertGen Utility

The CertGen utility provides command line options to specify a CA certificate and key
to be used for issuing generated certificates. The digital certificates generated by the
CertGen utility by default have only the host name of the machine on which they were
generated, and not the fully-qualified DNS name, as the value for its common name
field (cn). Command line options let you specify values for the cn and other Subject
domain name (DN) fields, such as orgunit, organization, locality, state, and
countrycode.

Table 11–1 Commonly Used keytool Commands

Command Description

keytool -genkey -keystore keystorename

-storepass keystorepassword

Generates a new private key entry and self-signed
digital certificate in a keystore. If the keystore does
not exist, it is created.

keytool -import -alias aliasforprivatekey
-file privatekeyfilename.pem
-keyfilepass privatekeypassword
-keystore keystorename -storepass keystorepassword

Updates the self-signed digital certificate with one
signed by a trusted CA.

keytool -import -alias rootCA
-trustcacerts -file RootCA.pem
-keystore trust.jks -storepass keystorepassword

keytool -import -alias intermediate
-trustcacerts -file Intermediate.pem
-keystore keystorename -storepass keystorepassword

Creates a custom keystore to be used for holding an
intermediate CA certificate.

■ The first keytool command creates the keystore,
trust.jks, which holds the root CA certificate.

■ The second keytool command imports the
intermediate CA certificate into trust.jks.

This enables WebLogic Server's SSL implementation
to transmit the intermediate certificate with the
server's public certificate to the client during the SSL
handshake.

keytool -import -alias aliasfortrustedca
-trustcacerts -file trustedcafilename.pem
-keystore keystorename -storepass keystorepassword

Loads a trusted CA certificate into a keystore. If the
keystore does not exist, it is created.

keytool -certreq -alias alias
-sigalg sigalg
-file certreq_file
-keyfilepass privatekeypassword
-storetype keystoretype
-keystore keystorename
-storepass keystorepassword

Generates a Certificate Signing Request (CSR), using
the PKCS#10 format, and a self-signed certificate with
a private key.

Stores the CSR in the specified certreq_file, and
the certificate/private key pair as a key entry in the
specified keystore under the specified alias.

keytool -list -keystore keystorename Displays what is in the keystore.

keytool -delete -keystore keystorename
-storepass keystorepassword -alias
privatekeyalias

Deletes the entry identified by the specified alias from
the keystore.

keytool -help Provides online help for keytool.

Note: The CertGen utility generates digital certificates and private
keys that should only be used for demonstration or testing purposes,
not in a production environment. For important information about
limitations on its use, see Section 11.4.2.2, "Limitation on CertGen
Usage."

Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities

11-6 Securing Oracle WebLogic Server

The CertGen utility generates public certificate and private key files in PEM and DER
formats. On Windows, double-click .der files to view the details of the generated
digital certificate. The .pem files can be used when you boot WebLogic Server or use
the digital certificates with a client.

By default, the CertGen utility uses the following demonstration digital certificate and
private-key files: CertGenCA.der and CertGenCAKey.der. CertGen looks for these
files in the current directory, or in the WL_HOME/server/lib directory, as
specified in the weblogic.home system property or the CLASSPATH. If you want to
use these files, you need not specify CA files on the command line. Alternatively, you
can specify CA files on the command line.

11.4.2.1 Command Syntax and Examples
For information about the CertGen utility's syntax and arguments, see "CertGen" in
the Oracle Fusion Middleware Command Reference for Oracle WebLogic Server.

For an example that generates a certificate and private key using the CertGen utility,
and then creates a keystore and stores a private key using the ImportPrivateKey utility,
see "ImportPrivateKey" in the Oracle Fusion Middleware Command Reference for Oracle
WebLogic Server.

11.4.2.2 Limitation on CertGen Usage
By default, WebLogic Server is installed and configured with the DemoIdentity.jks
keystore, which contains a demonstration public certificate and private key for
WebLogic Server. This certificate and key are created by CertGen with the default
options of containing only the host name in the common name field (cn), and not the
fully-qualified DNS name. As a result, attempts to establish SSL connections may fail
in some situations due to a host name verification exception. This section describes
this limitation and provides some workarounds.

If you are using the demo certificates in a multi-server domain, Managed Server
instances will fail to boot if they cannot establish an SSL connection with the
Administration Server. An error message similar to the following may be generated:

BAD_CERTIFICATE alert was
received from node-name.oracle.com - xxx.yy.zzz.yyy. Check the peer to
determine why it rejected the certificate chain (trusted CA configuration,
hostname verification). SSL debug tracing may be required to determine the
exact reason the certificate was rejected.

Note: If you do not explicitly specify a hostname with the -cn option,
CertGen uses the JDK InetAddress.getHostname() method to
get the hostname that it puts in the Subject common name. The
getHostName() method works differently on different platforms. It
returns a fully qualified domain name (FQDN) on some platforms (for
example, Solaris) and a short host name on other platforms (for
example, Windows NT). On Solaris, the result of
InetAddress.getHostname() depends on how the hosts entry is
configured in the /etc/nsswitch.conf file.

If WebLogic Server is acting as a client (and by default host name
verification is enabled), you need to ensure that the host name
specified in the URL matches the Subject common name in the server
certificate. Otherwise, connections will fail because the host names do
not match.

Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities

Configuring Identity and Trust 11-7

This error occurs because the host name verifier, which is enabled by default in all
WebLogic domains and which is used during the SSL handshake, compares the value
of the cn field in the certificate with the fully-qualified DNS name of the SSL server
that accepts the SSL connection. If these names do not match, the SSL connection is
dropped.

If you use the demo identity certificates in a WebLogic domain, you can use the
following workarounds:

■ When specifying the SSL listening address of a WebLogic Server instance, make
sure the URL matches the host name in the certificate’s cn field. For example, if the
host name in the certificate is avitek01, the URL should specify only the host
name and SSL listening port, and not the fully-qualified DNS name, as follows:

https://avitek01:7002

■ To start a Managed Server instance, pass the URL of the Administration Server’s
SSL listening address as a parameter to the startManagedWebLogic script. The
URL should be specified in a form that excludes the domain suffix. For example:

C:\mydomain\bin> startManagedWebLogic.cmd https://admin01:7002

■ Disable host name verification. This causes WebLogic Server to skip the
verification check of ensuring that the host name in the URL to which a connection
is made matches the host name in the digital certificate that the server sends back
as part of the SSL connection.

You can disable host name verification by including a command similar to the
following in the setDomainEnv script:

set JAVA_OPTIONS=%JAVA_OPTIONS%
-Dweblogic.security.SSL.ignoreHostnameVerification=true

For information about configuring host name verification, see Section 12.4, "Using
Host Name Verification."

11.4.3 Using Your Own Certificate Authority
Many companies act as their own certificate authority. To use those trusted CA
certificates with WebLogic Server:

1. Ensure the trusted CA certificates are in PEM format.

■ If the trusted CA certificate is in DER format, use the der2pem utility to
convert them.

■ If the trusted CA certificate was issued by Microsoft, see Section 11.4.4,
"Converting a Microsoft p7b Format to PEM Format".

■ If the trusted CA certificate has a custom file type, use the steps in
Section 11.4.4, "Converting a Microsoft p7b Format to PEM Format" to convert
the trusted CA certificate to PEM format.

2. Create a trust keystore. For more information, see Section 11.6, "How WebLogic
Server Locates Trust".

3. Store the trusted CA certificate in the trust keystore. For more information, see
Section 11.6, "How WebLogic Server Locates Trust".

Note: Oracle does not recommend using the demo certificates or
turning off host name verification in a production environment.

Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities

11-8 Securing Oracle WebLogic Server

4. Configure WebLogic Server to use the trust keystore. For more information, see
Section 11.7, "Configuring Keystores for Production".

11.4.4 Converting a Microsoft p7b Format to PEM Format
Digital certificates issued by Microsoft are in a format (p7b) that cannot be used by
WebLogic Server. The following example converts a digital certificate in p7b (PKCS#7)
format to PEM format on Windows XP:

1. In Windows Explorer, select the file (filename.p7b) you want to convert.
Double-click on the file to display a Certificates window.

2. In the left pane of the Certificates window, expand the file.

3. Expand the Certificates folder to display a list of certificates.

4. Select a certificate to convert to PEM format. Right-click on the certificate, then
choose All Tasks > Export to display the Certificate Export Wizard.

5. In the wizard, click Next.

6. Select the Base-64 encoded X.509 (.CER) option. Then click Next. (Base-64
encoded is the PEM format.)

7. In the File name: field, enter a name for the converted digital certificate; then click
Next.

8. Verify that the settings are correct. If the settings are correct, click Finish; if they are
not correct, click Back and make any necessary modifications.

11.4.5 Obtaining a Digital Certificate for a Web Browser
Low-security browser certificates are easy to acquire and can be done from within the
Web browser, usually by selecting the Security menu item in Options or Preferences.
Go to the Personal Certificates item and ask to obtain a new digital certificate. You will
be asked for some information about yourself.

The digital certificate you receive contains public information, including your name
and public key, and additional information you would like authenticated by a third
party, such as your E-mail address. Later you will present the digital certificate when
authentication is requested.

As part of the process of acquiring a digital certificate, the Web browser generates a
public-private key pair. The private key should remain secret. It is stored on the local
file system and should never leave the Web browser's machine, to ensure that the
process of acquiring a digital certificate is itself safe. With some browsers, the private
key can be encrypted using a password, which is not stored. When you encrypt your
private key, you will be asked by the Web browser for your password at least once per
session.

Note: The wizard appends a.cer extension to the output file The
.cer extension is a generic extension which is appended to both
base-64 encoded certificates and DER certificates. You can change the
extension to .pem after you exit the wizard.

Note: For p7b certificate files that contain certificate chains, you need
to concatenate the issuer PEM digital certificates to the certificate file.
The resulting certificate file can be used by WebLogic Server.

Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities

Configuring Identity and Trust 11-9

11.4.6 Using Certificate Chains (Deprecated)

To use certificate chains with WebLogic Server:

1. Ensure that all the digital certificates are in PEM format. If they are in DER format,
you can convert them using the "der2pem" utility. If you are using a digital
certificate issued by Microsoft, see Section 11.4.4, "Converting a Microsoft p7b
Format to PEM Format". You can use the steps in the section to convert other types
of digital certificates. Save the digital certificate in Base 64 format.

2. Open a text editor and include all the digital certificate files into a single file. The
order is important. The server digital certificate should be the first digital
certificate in the file. The issuer of that digital certificate should be the next in the
file and so on until you get to the self-signed root certificate authority certificate.
This digital certificate should be the last certificate in the file.

You cannot have blank lines between digital certificates.

3. Specify the file in the Server Certificate File Name field on the Configuration > SSL
page in the WebLogic Server Administration Console.

Example 11–1 shows a sample certificate chain.

Example 11–1 Sample File with Certificate Chain

-----BEGIN CERTIFICATE-----
MIICyzCCAjSgAwIBAgIBLDANBgkqhkiG9w0BAQQFADCBtjELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUB
gNVBAcTDVNhbiBGcmFuY2lzY28xFTATBgNVBAoTDEJFQSBXZWJMb2dpYzERMA8GA1UECxMIU2VjdXJpdHkxLzAtBgNVBAMTJk
RlbW8gQ2VydGlmaWNhdGUgQXV0aG9yaXR5IENvbnN0cmFpbnRzMR8wHQYJKoZIhvcNAQkBFhBzZWN1cml0eUBiZWEuY29tMB4
XDTAyMTEwMTIwMDIxMloXDTA2MTAxNTIwMDIxMlowgZ8xCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYD
VQQHEw1TYW4gRnJhbmNpc2NvMRUwEwYDVQQKEwxCRUEgV2ViTG9naWMxETAPBgNVBAsTCFNlY3VyaXR5MRkwFwYDVQQDExB3Z
WJsb2dpYy5iZWEuY29tMR4wHAYJKoZIhvcNAQkBFg9zdXBwb3J0QGJlYS5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAo
GBAMJX8nKUgsFej8pEu/1IVcHUkwY0c2JbBzOryu3sce4QjX+rGxiCjoPm2MY=yts2BvonuJ6CztdZf8B/LBEWCz+qRrtdFn9
mKSZWGvrAkmMPz2RhXEOThpoRo5kZz2FQ9XF/PxIJXTYCM7yooRBwXoKYjquRwiZNtUiU9kYi6Z3prAgMBAAEwDQYJKoZIhvc
NAQEEBQADgYEAh2eqQGxEMUnNTwEUD

0tBq+7YuAkjecEocGXvi2G4YSoWVLgnVzJoJuds3c35KE6sxBe1luJQuQkE9SzALG/6lDIJ5ctPsHFmZzZxY7scLl6hWj5ON8
oN2YTh5Jo/ryqjvnZvqiNIWe/gqr2GLIkajC0mz4un1LiYORPig3fBMH0=

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

MIIC+jCCAmOgAwIBAgIBADANBgkqhkiG9w0BAQQFADCBtjELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUB
gNVBAcTDVNhbiBGcmFuY2lzY28xFTATBgNVBAoTDEJFQSBXZWJMb2dpYzERMA8GA1UECxMIU2VjdXJpdHkxLzAtBgNVBAMTJk
RlbW8gQ2VydGlmaWNhdGUgQXV0aG9yaXR5IENvbnN0cmFpbnRzMR8wHQYJKoZIhvcNAQkBFhBzZWN1cml0eUBiZWEuY29tMB4
XDTAyMTEwMTIwMDIxMVoXDTA2MTAxNjIwMDIxMVowgbYxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYD
VQQHEw1TYW4gRnJhbmNpc2NvMRUwEwYDVQQKEwxCRUEgV2ViTG9naWMxETAPBgNVBAsTCFNlY3VyaXR5MS8wLQYDVQQDEyZEZ
W1vIENlcnRpZmljYXRlIEF1dGhvcml0eSBDb25zdHJhaW50czEfMB0GCSqGSIb3DQEJARYQc2VjdXJpdHlAYmVhLmNvbTCBnz

Note: Digital certificates obtained from Web browsers do not work
with other types of Web browsers or on different versions of the same
Web browser.

Note: The use of file-based certificate chains is deprecated. Now the
whole certificate chain is imported into a keystore. The steps in this
section are provided for the purpose of backward compatibility only.

Storing Private Keys, Digital Certificates, and Trusted Certificate Authorities

11-10 Securing Oracle WebLogic Server

ANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA3ynD8l5JfLob4g6d94dNtI0Eep6QNl9bblmswnrjIYz1BVjjRjNVal9fRs+8jvm
85kIWlerKzIMJgiNsj50WlXzNX6orszggSsW15pqV0aYE9Re9K

CNNnORlsLjmRhuVxg9rJFEtjHMjrSYr2IDFhcdwPgIt0meWEVnKNObSFYcCAwEAAaMWMBQwEgYDVR0TAQH/BAgwBgEB/wIBAT
ANBgkqhkiG9w0BAQQFAAOBgQBS+0oqWxGyqbZO028zf9tQT2RKojfuwywrDoGW96Un5IqpFnBHIu5atliJo3OUpiH18KkwLN8
DVP/3t3K3O3kXdIuLbqAL0i5xyBlAhr7gE5eVhIyeMg7ETBPLyGO2BF13Y24LlsO+MX9jW7fxMraPN608QeJXkZw0E0cGwrw2AQ
==

-----END CERTIFICATE-----

11.5 Storing Private Keys, Digital Certificates, and Trusted Certificate
Authorities

Once you have obtained private keys, digital certificates, and trusted CA certificates,
you need to store them so that WebLogic Server can use them to find and verify
identity. Private keys, their associated digital certificates, and trusted CA certificates
are stored in keystores. The keystores can be configured through the WebLogic Server
Administration Console or specified on the command line. Use the Configuration >
Keystore page in the WebLogic Server Administration Console to configure identity
and trust keystores for WebLogic Server. See "Configure keystores" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

For the purpose of backward compatibility, private keys and trusted CA certificates
can be stored in a file or in a JKS keystore accessed via the WebLogic Keystore
provider. In addition, trusted CA certificates can be stored in a JKS keystore. Use the
Configuration > SSL page of the WebLogic Server Administration Console to specify
identity and trust options when using a file or a JKS keystore accessed via the
WebLogic Keystore provider.

11.5.1 Guidelines for Using Keystores
When you configure SSL, you have to decide how identity and trust will be stored.
Although one keystore can be used for both identity and trust, Oracle recommends
using separate keystores for both identity and trust because the identity keystore
(private key/digital certificate pairs) and the trust keystore (trusted CA certificates)
may have different security requirements. For example:

■ For trust, you only have to put the certificates (non-sensitive data) in the keystore
while for identity, you have to put the certificate and private key (sensitive data) in
the keystore.

■ The identity keystore may be prohibited by company policy from ever being put
in the network while the trust keystore can be distributed over the network.

■ The identity keystore may be protected by the operating system for both reading
and writing by non-authorized users while the trust keystore only needs to be
write protected.

■ The identity keystore password is generally known to fewer people than the
password for the trust keystore.

In general, systems within a domain have the same trust rules (use the same set of
trusted CAs), while they tend to have per-server identity. Identity requires a private
key, and private keys should not be copied from one system to another. Therefore, you
should maintain separate identity keystores for each system, each keystore containing
only the server identity needed for that system. However, trust keystores can be
copied from system to system; thus making it easier to standardize trust rules.

Storing Private Keys, Digital Certificates, and Trusted Certificate Authorities

Configuring Identity and Trust 11-11

Identity is more likely to be stored in hardware keystores such as nCipher. Trust can be
stored in a file-based JDK keystore without having security issues because a trust store
contains only certificates, not private keys.

11.5.2 Creating a Keystore and Loading Private Keys and Trusted Certificate
Authorities into the Keystore

A keystore is for the secure storage and management of private keys/digital certificate
pairs and trusted CA certificates. Use the following mechanisms to create a keystore
and load private keys and trusted CA certificates into the keystore:

■ The WebLogic ImportPrivateKey utility. The ImportPrivateKey utility allows you
to take private key and digital certificate files and load them into a keystore. For
more information, see "ImportPrivateKey" in the Oracle Fusion Middleware
Command Reference for Oracle WebLogic Server.

■ Sun Microsystem's keytool utility. Use the keytool utility to generate a private
key/digital certificate pair and then import the signed private key into the
keystore. For more information, see Section 11.6, "How WebLogic Server Locates
Trust". While you can use the keytool utility to generate new private keys and
digital certificates and add them to a keystore, the utility does not allow you to
take an existing private key from a file and import it into the keystore. Instead, use
the WebLogic ImportPrivateKey utility.

■ Custom utilities. WebLogic Server can use keystores created with custom tools or
utilities. How to create and use these utilities is outside the scope of this
document.

All private key entries in a keystore are accessed by WebLogic Server via unique
aliases. You specify the alias when loading the private key into the keystore. Aliases
are case-insensitive; the aliases Hugo and hugo would refer to the same keystore entry.
Aliases for private keys are specified in the Private Key Alias field on the
Configuration > SSL page in the WebLogic Server Administration Console. Although
WebLogic Server does not use the alias to access trusted CA certificates, the keystore
does require an alias when loading a trusted CA certificate into the keystore.

All certificate authorities in a keystore identified as trusted by WebLogic Server are
trusted.

11.5.3 Configuring Demo Certificates for Clients
To use SSL in development mode between a client such as Eclipse and WebLogic
Server, configure the demo certificates in the JVM for both the client and the server:

1. Copy MW_HOME/wlserver_10.3/server/lib/cacerts to the
jre/lib/security directory of the client's JVM. For example, if you are using
Eclipse with its default JDK, copy cacerts to MW_HOME/jdk160_
11/jre/lib/security.

2. Copy MW_HOME/wlserver_10.3/server/lib/cacerts to the
jre/lib/security directory of the WebLogic Server's JVM. For a domain using
JRockit, copy cacerts to MW_HOME/jrockit_160_05/jre/lib/security.

3. Restart both WebLogic Server and the client.

Note: The keytool utility does allow you to import trusted CA
certificates from a file into a keystore.

How WebLogic Server Locates Trust

11-12 Securing Oracle WebLogic Server

As an alternative, you can import the certificates, rather than copying the cacerts
files.

11.6 How WebLogic Server Locates Trust
WebLogic Server uses the following algorithm when it loads its trusted CA certificates:

1. If the keystore is specified by the
-Dweblogic.security.SSL.trustedCAkeystore command-line argument,
load the trusted CA certificates from that keystore.

2. Else if the keystore is specified in the configuration file (config.xml), load
trusted CA certificates from the specified keystore. If the server is configured with
DemoTrust, trusted CA certificates will be loaded from the WL_
HOME\server\lib\DemoTrust.jks and the JDK cacerts keystores.

3. Else if the trusted CA file is specified in the configuration file (config.xml), load
trusted CA certificates from that file (this is only for compatibility with 6.x SSL
configurations).

4. Else load trusted CA certificates from WL_HOME\server\lib\cacerts keystore.

11.7 Configuring Keystores for Production
By default, WebLogic Server is configured with two keystores:

■ DemoIdentity.jks—Contains a demonstration private key for WebLogic
Server. This keystore contains the identity for WebLogic Server.

■ DemoTrust.jks—Contains the trusted certificate authorities from the WL_
HOME\server\lib\DemoTrust.jks and the JDK cacerts keystores. This
keystore establishes trust for WebLogic Server.

These keystores are located in the WL_HOME\server\lib directory. For testing and
development purposes, the keystore configuration is complete. However, do not use
the demonstration keystores in a production environment. Because the digital
certificates and trusted CA certificates in the demonstration keystores are signed by a
WebLogic Server demonstration certificate authority, a WebLogic Server installation
using the demonstration keystores will trust any WebLogic Server installation that also
uses the demonstration keystores. You want to create a secure environment where only
your installations trust each other.

To configure keystores for use in a production environment:

1. Obtain private keys and digital certificates from a reputable certificate authority
such as Verisign, Inc. or Entrust.net. See Section 11.4, "Obtaining Private Keys,
Digital Certificates, and Trusted Certificate Authorities".

2. Create identity and trust keystores. See Section 11.5.2, "Creating a Keystore and
Loading Private Keys and Trusted Certificate Authorities into the Keystore".

3. Load the private keys and trusted CAs into the identity and trust keystores. See
Section 11.5.2, "Creating a Keystore and Loading Private Keys and Trusted
Certificate Authorities into the Keystore".

4. Use the WebLogic Server Administration Console to configure the identity and
trust keystores. See "Configure keystores" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

You can also use the WebLogic Scripting Tool or Java Management Extensions (JMX)
APIs to create a new security configuration. For more information see the Oracle Fusion

Configuring Keystores for Production

Configuring Identity and Trust 11-13

Middleware Oracle WebLogic Scripting Tool and Oracle Fusion Middleware Developing
Custom Management Utilities With JMX for Oracle WebLogic Server manuals.

Configuring Keystores for Production

11-14 Securing Oracle WebLogic Server

12

Configuring SSL 12-1

12Configuring SSL

Configuring SSL is an optional step; however, Oracle recommends SSL for production
environments. The following sections describe how to configure SSL for WebLogic
Server.

■ Section 12.1, "SSL: An Introduction"

■ Section 12.2, "One-Way and Two-Way SSL"

■ Section 12.3, "Setting Up SSL: Main Steps"

■ Section 12.4, "Using Host Name Verification"

■ Section 12.5, "Enabling SSL Debugging"

■ Section 12.6, "SSL Session Behavior"

■ Section 12.8, "SSL Certificate Validation"

■ Section 12.9, "Using the nCipher JCE Provider with WebLogic Server"

■ Section 12.10, "Specifying the Version of the SSL Protocol"

12.1 SSL: An Introduction
Secure Sockets Layer (SSL) provides secure connections by allowing two applications
connecting over a network to authenticate each other's identity and by encrypting the
data exchanged between the applications. Authentication allows a server and
optionally a client to verify the identity of the application on the other end of a
network connection. Encryption makes data transmitted over the network intelligible
only to the intended recipient.

SSL in WebLogic Server is an implementation of the SSL 3.0 and Transport Layer
Security (TLS) 1.0 specifications.

WebLogic Server supports SSL on a dedicated listen port which defaults to 7002. To
establish an SSL connection, a Web browser connects to WebLogic Server by supplying
the SSL listen port and the HTTPs protocol in the connection URL, for example,
https://myserver:7002.

Note: The following sections apply to WebLogic Server deployments
that use the security features in this release of WebLogic Server as well
as deployments that use Compatibility Security.

All machines must be kept up to date with the current set of
recommended patches from the operating system vendors.

One-Way and Two-Way SSL

12-2 Securing Oracle WebLogic Server

Using SSL is compute intensive and adds overhead to a connection. Avoid using SSL
in development environments when it is not necessary. However, always use SSL in a
production environment.

12.2 One-Way and Two-Way SSL
SSL can be configured one-way or two-way:

■ With one-way SSL, the server is must present a certificate to the client, but the
client is not required to present a certificate to the server. The client must
authenticate the server, but the server accepts a connection from any client.
One-way SSL is common on the Internet where customers want to create secure
connections before they share personal data. Often, clients will also use SSL to log
on in order that the server can authenticate them.

■ With two-way SSL (SSL with client authentication), the server presents a certificate
to the client and the client presents a certificate to the server. WebLogic Server can
be configured to require clients to submit valid and trusted certificates before
completing the SSL connection.

12.3 Setting Up SSL: Main Steps
To set up SSL:

1. Obtain an identity (private key and digital certificates) and trust (certificates of
trusted certificate authorities) for WebLogic Server. Use the digital certificates,
private keys, and trusted CA certificates provided by the WebLogic Server kit, the
CertGen utility, Sun Microsystem's keytool utility, or a reputable vendor such as
Entrust or Verisign to perform this step.

2. Store the identity and trust. Private keys and trusted CA certificates which specify
identity and trust are stored in a keystore.

3. Configure the identity and trust keystores for WebLogic Server in the WebLogic
Server Administration Console. See "Configure keystores" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

4. Set SSL configuration options for the private key alias and password in the
WebLogic Server Administration Console. Optionally, set configuration options
that require the presentation of client certificates (for two-way SSL). See "Servers:
Configuration: SSL" and "Configure two-way SSL" in the Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Help.

Note: If you use the CertGen utility to generate certificates, see
Section 11.4.2.2, "Limitation on CertGen Usage," for information about
limitations on its use. Certificates generated by CertGen are for demo
purposes only and should not be used in a production environment.

Note: This release of WebLogic Server supports private keys and
trusted CA certificates stored in files, or in the WebLogic Keystore
provider for the purpose of backward compatibility only.

Using Host Name Verification

Configuring SSL 12-3

For information on configuring identity and trust for WebLogic Server, see
Section 11.4, "Obtaining Private Keys, Digital Certificates, and Trusted Certificate
Authorities" and Section 11.5, "Storing Private Keys, Digital Certificates, and Trusted
Certificate Authorities".

12.4 Using Host Name Verification
A host name verifier ensures the host name in the URL to which the client connects
matches the host name in the digital certificate that the server sends back as part of the
SSL connection. A host name verifier is useful when an SSL client (or a WebLogic
Server acting as an SSL client) connects to an application server on a remote host. It
helps to prevent man-in-the-middle attacks.

By default, WebLogic Server has host name verification enabled. As a function of the
SSL handshake, WebLogic Server compares the common name in the SubjectDN in the
SSL server's digital certificate with the host name of the SSL server used to accept the
SSL connection. If these names do not match, the SSL connection is dropped. The SSL
client is the actual party that drops the SSL connection if the names do not match.

If anything other than the default behavior is desired, either turn off host name
verification or configure a custom host name verifier. Turning off host name
verification leaves WebLogic Server vulnerable to man-in-the-middle attacks. Oracle
recommends leaving host name verification on in production environments.

In this release of WebLogic Server, the host name verification feature is updated so that
if the host name in the certificate matches the local machine's host name, host name
verification passes if the URL specifies localhost, 127.0.01, or the default IP
address of the local machine.

For more information about using host name verification, see the following topics in
the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help:

■ "Verify host name verification is enabled"

■ "Disable host name verification"

■ "Configure a custom host name verifier"

Note: To enable a WebLogic Server instance to use a FIPS-compliant
(FIPS 140-2) crypto module in the server's SSL implementation, make
sure that the server start script (for example, startWebLogic.cmd/sh)
contains the following:

■ jsafeFIPS.jar is added to the PRE_CLASSPATH variable.

■ The command line argument
-Dweblogic.security.SSL.nojce=true is specified.

FIPS 140-2 is a standard that describes U.S. Federal government
requirements for sensitive, but unclassified use.

Note: If you are using the demo identity certificates in a multi-server
domain, Managed Server instances will fail to boot if they are started
using the fully-qualified DNS name of the Administration Server. For
information about this limitation and suggested workarounds, see
Section 11.4.2.2, "Limitation on CertGen Usage."

Enabling SSL Debugging

12-4 Securing Oracle WebLogic Server

■ "Servers: Configuration: SSL"

12.5 Enabling SSL Debugging
SSL debugging provides more detailed information about the SSL events that occurred
during an SSL handshake. The SSL debug trace displays information about:

■ Trusted certificate authorities

■ SSL server configuration information

■ Server identity (private key and digital certificate)

■ The encryption strength that is allowed

■ Enabled ciphers

■ SSL records that were passed during the SSL handshake

■ SSL failures detected by WebLogic Server (for example, trust and validity checks
and the default host name verifier)

■ I/O related information

Use the following command-line properties to enable SSL debugging:

-Dssl.debug=true -Dweblogic.StdoutDebugEnabled=true

You can include SSL debugging properties in the start script of the SSL server, the SSL
client, and the Node Manager. For a Managed Server started by the Node Manager,
specify this command-line argument on the Remote Start page for the Managed
Server.

SSL debugging dumps a stack trace whenever an ALERT is created in the SSL process.
The types and severity of the ALERTS are defined by the Transport Layer Security
(TLS) specification.

The stack trace dumps information into the log file where the ALERT originated.
Therefore, when tracking an SSL problem, you may need to enable debugging on both
sides of the SSL connection (on both the SSL client or the SSL server). The log file
contains detailed information about where the failure occurred. To determine where
the ALERT occurred, confirm whether there is a trace message after the ALERT. An
ALERT received after the trace message indicates the failure occurred on the peer. To
determine the problem, you need to enable SSL debugging on the peer in the SSL
connection.

When tracking an SSL problem, review the information in the log file to ensure:

■ The correct config.xml file was loaded

■ The setting for domestic, or export, is correct

■ The trusted certificate authority was valid and correct for this server.

■ The host name check was successful

■ The certificate validation was successful

Note: Sev 1 type 0 is a normal close ALERT, not a problem.

Configuring RMI over IIOP with SSL

Configuring SSL 12-5

12.6 SSL Session Behavior
WebLogic Server allows SSL sessions to be cached. Those sessions live for the life of
the server.

Clients that use SSL sockets directly can control the SSL session cache behavior. The
SSL session cache is specific to each SSL context. All SSL sockets created by SSL socket
factory instances returned by a particular SSL context can share the SSL sessions.

Clients default to resuming sessions at the same IP address and port. Multiple SSL
sockets that use the same host and port share SSL sessions by default, assuming the
SSL sockets are using the same underlying SSL context.

Clients that are not configured to use SSL sessions must call
setEnableSessionCreation(false) on the SSL socket to ensure that no SSL
sessions are cached. This setting only controls whether an SSL session is added to the
cache; it does not stop an SSL socket from finding an SSL session that was already
cached. For example, SSL socket 1 caches the session, SSL socket 2 sets
setEnableSessionCreation to false but it can still reuse the SSL session from SSL
socket 1 because that session was put in the cache.

SSL sessions exist for the lifetime of the SSL context; they are not controlled by the
lifetime of the SSL socket. Therefore, creating a new SSL socket and connecting to the
same host and port used by a previous session can resume a previous session as long
as you create the SSL socket using an SSL socket factory from the SSL context that has
the SSL session in its cache.

By default, clients that use HTTPS URLs get a new SSL session for each URL because
each URL uses a different SSL context and therefore SSL sessions can not be shared or
reused. You can retrieve the SSL session by using the
weblogic.net.http.HttpsClient class or the
weblogic.net.http.HttpsURLConnection class. Clients can also resume URLs
by sharing a SSLSocket Factory between them.

Session caching is maintained by the SSL context, which can be shared by threads. A
single thread has access to the entire session cache, not just one SSL session, so
multiple SSL sessions can be used and shared in a single (or multiple) thread.

The following command-line arguments are ignored:

■ weblogic.security.SSL.sessionCache.size

■ weblogic.security.SSL.sessionCache.ttl

12.7 Configuring RMI over IIOP with SSL
Use SSL to protect Internet Interop-Orb-Protocol (IIOP) connections to Remote Method
Invocation (RMI) remote objects. SSL secures connections through authentication and
encrypts the data exchanged between objects.

To use SSL to protect RMI over IIOP connections:

1. Configure WebLogic Server to use SSL.

2. Configure the client Object Request Broker (ORB) to use SSL. Refer to the product
documentation for your client ORB for information about configuring SSL.

3. Use the host2ior utility to print the WebLogic Server IOR to the console. The
host2ior utility prints two versions of the interoperable object reference (IOR), one
for SSL connections and one for non-SSL connections. The header of the IOR
specifies whether or not the IOR can be used for SSL connections.

SSL Certificate Validation

12-6 Securing Oracle WebLogic Server

4. Use the SSL IOR when obtaining the initial reference to the CosNaming service
that accesses the WebLogic Server JNDI tree.

For more information about using RMI over IIOP, see Oracle Fusion Middleware
Programming RMI for Oracle WebLogic Server.

12.8 SSL Certificate Validation
WebLogic Server ensures that each certificate in a certificate chain was issued by a
certificate authority. All X509 V3 CA certificates used with WebLogic Server must have
the Basic Constraint extension defined as CA, thus ensuring that all certificates in a
certificate chain were issued by a certificate authority. By default, any certificates for
certificate authorities not meeting this criteria are rejected. This section describes the
command-line argument that controls the level of certificate validation.

12.8.1 Controlling the Level of Certificate Validation
By default WebLogic Server rejects any certificates in a certificate chain that do not
have the Basic Constraint extension defined as CA. However, you may be using
certificates that do not meet this requirement or you may want to increase the level of
security to conform to the IETF RFC 2459 standard. Use the following command-line
argument to control the level of certificate validation performed by WebLogic Server:

-Dweblogic.security.SSL.enforceConstraints=option

Table 12–1 describes the options for the command-line argument.

Note: If WebLogic Server is booted with a certificate chain that will
not pass the certificate validation, an information message is logged
noting that clients could reject it.

Table 12–1 Options for -Dweblogic.security.SSL.enforceConstraints

Option Description

strong or true Use this option to ensure that the Basic Constraints extension on the CA
certificate is defined as CA.

For example:

-Dweblogic.security.SSL.enforceConstraints=strong

or

-Dweblogic.security.SSL.enforceConstraints=true

By default, WebLogic Server performs this level of certificate validation.

strict Use this option to ensure the Basic Constraints extension on the CA
certificate is defined as CA and set to critical. This option enforces the IETF
RFC 2459 standard.

For example:

-Dweblogic.security.SSL.enforceConstraints=strict

This option is not the default because a number of commercially available
CA certificates do not conform to the IETF RFC 2459 standard.

SSL Certificate Validation

Configuring SSL 12-7

12.8.2 Accepting Certificate Policies in Certificates
WebLogic Server offers limited support for Certificate Policy Extensions in X.509
certificates. Use the weblogic.security.SSL.allowedcertificatepolicyids
argument to provide a comma separated list of Certificate Policy IDs. When WebLogic
Server receives a certificate with a critical Certificate Policies Extension, it verifies
whether any Certificate Policy is on the list of allowed certificate policies and whether
there are any unsupported policy qualifiers. This release of WebLogic Server supports
Certification Practice Statement (CPS) Policy qualifiers and does not support User
Notice qualifiers. A certificate is also accepted if it contains a special policy
anyPolicy with the ID 2.5.29.32.0, which indicates that the CA does not wish to limit
the set of policies for this certificate.

To enable acceptance of Certificate Policies, start WebLogic Server with the following
argument:

-Dweblogic.security.SSL.allowedcertificatepolicyids
<identifier1>,<identifier2>,...

This argument should contain a comma-separated list of Certificate Policy identifiers
for all the certificates with critical extensions that might be present in the certificate
chain, back to the root certificate, in order for WebLogic Server to accept such a
certificate chain.

12.8.3 Checking Certificate Chains
Use the WebLogic Server ValidateCertChain command-line utility to confirm whether
an existing certificate chain will be rejected by WebLogic Server. The utility validates
certificate chains from PEM files, PKCS-12 files, PKCS-12 keystores, and JKS keystores.
A complete certificate chain must be used with the utility. The following is the syntax
for the ValidateCertChain command-line utility:

java utils.ValidateCertChain -file pemcertificatefilename
java utils.ValidateCertChain -pem pemcertificatefilename
java utils.ValidateCertChain -pkcs12store pkcs12storefilename
java utils.ValidateCertChain -pkcs12file pkcs12filename password
java utils.ValidateCertChain -jks alias storefilename [storePass]

Example of valid certificate chain:

java utils.ValidateCertChain -pem zippychain.pem

Cert[0]: CN=zippy,OU=FOR TESTING
ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Cert[1]: CN=CertGenCAB,OU=FOR TESTING
ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

off Use this option to turn off checking for the Basic Constraints extension. The
rest of the certificate is still validated.

For example:

-Dweblogic.security.SSL.enforceConstraints=off

Oracle does not recommend using this option in a production environment.
Instead, purchase new CA certificates that comply with the IETF RFC 2459
standard. CA certificates from most commercial certificate authorities
should work with the default strong option.

Table 12–1 (Cont.) Options for -Dweblogic.security.SSL.enforceConstraints

Option Description

SSL Certificate Validation

12-8 Securing Oracle WebLogic Server

Certificate chain appears valid
Example of invalid certificate chain:

java utils.ValidateCertChain -jks mykey mykeystore

Cert[0]: CN=corba1,OU=FOR TESTING ONLY, O=MyOrganization,L=MyTown,ST=MyState,C=US
CA cert not marked with critical BasicConstraint indicating it is a CA
Cert[1]: CN=CACERT,OU=FOR TESTING ONLY, O=MyOrganization,L=MyTown,ST=MyState,C=US

Certificate chain is invalid

12.8.4 Using Certificate Lookup and Validation Providers
WebLogic Server SSL has built-in certificate validation. Given a set of trusted CAs, this
validation:

■ Verifies that the last certificate in the chain is either a trusted CA or is issued by a
trusted CA.

■ Completes the certificate chain with trusted CAs.

■ Verifies the signatures in the chain.

■ Ensures that the chain has not expired.

You can use certificate lookup and validation (CLV) providers to perform additional
validation on the certificate chain. In this release, WebLogic Server has added two CLV
providers:

■ WebLogic CertPath Provider—Completes certificate paths and validates
certificates using the trusted CA configured for a particular server instance,
providing the same functionality as the built-in SSL certificate validation. This is
configured by default.

■ Certificate Registry—The system administrator makes a list of trusted CA
certificates that are allowed access to the server; a certificate is valid if the end
certificate is in the registry. The administrator revokes a certificate by removing it
from the certificate registry, which is an inexpensive mechanism for performing
revocation checking. This is not configured by default.

Alternatively, you can write a custom CertPathValidator to provide additional
validation on the certificate chain. See "CertPath Providers" in Oracle Fusion Middleware
Developing Security Providers for Oracle WebLogic Server.

12.8.5 How SSL Certificate Validation Works in WebLogic Server
Outbound SSL and two-way inbound SSL in a WebLogic Server instance receive
certificate chains during the SSL handshake that must be validated. An example of
two-way inbound SSL is a browser connecting to a Web application over HTTPS
where the browser sends the client's certificate chain to the Web application. The
inbound certificate validation setting is used for all two-way client certificate
validation in the server.

Examples of WebLogic Server using outbound SSL (that is, acting as an SSL client)
include:

■ Connecting to the Node Manager

■ Connecting to another WebLogic Server instance over the Administration port

■ Connecting to an external LDAP server, such as the LDAPAuthenticator

Using the nCipher JCE Provider with WebLogic Server

Configuring SSL 12-9

Using the Administration Console or WLST, you can independently configure
inbound and outbound SSL certificate validation using these SSLMBean attributes:
InboundCertificateValidation and OutboundCertificateValidation.

Legal values for both attributes are:

■ BUILTIN_SSL_VALIDATION: Use the built-in SSL certificate validation code to
complete and validate the certificate chain. That is, configure SSL to work as it has
in previous releases. This is the default behavior.

■ BUILTIN_SSL_VALIDATION_AND_CERT_PATH_VALIDATORS: Use the built-in
trusted CA-based validation and the configured CertPathValidator providers to
perform additional validation. That is, configure SSL to work as it has in previous
releases and to do extra validation.

See:

■ "SSLMBean" in the Oracle Fusion Middleware Oracle WebLogic Server MBean Reference

■ "Set Up SSL" in the Oracle Fusion Middleware Oracle WebLogic Server Administration
Console Help

12.8.6 Troubleshooting Problems with Certificate Validation
If SSL communications that worked properly in a previous release of WebLogic Server
start failing unexpectedly, the likely problem is that the certificate chain is failing the
validation.

Determine where the certificate chain is being rejected, and decide whether to update
the certificate chain with one that will be accepted, or change the setting of the
-Dweblogic.security.SSL.enforceConstraints command-line argument.

To troubleshoot problems with certificates, use one of the following methods:

■ If you know where the certificate chains for the processes using SSL
communication are located, use the ValidateCertChain command-line utility to
check whether the certificate chains will be accepted.

■ Turn on SSL debug tracing on the processes using SSL communication. The syntax
for SSL debug tracing is:

-Dssl.debug=true -Dweblogic.StdoutDebugEnabled=true

The following message indicates the SSL failure results from problems in the
certificate chain:

<CA certificate rejected. The basic constraints for a CA certificate were not
marked for being a CA, or were not marked as critical>

When you use one-way SSL, look for this error in the client log. With two-way
SSL, look for this error in the client and server logs.

12.9 Using the nCipher JCE Provider with WebLogic Server

Note: Java Cryptography Extension (JCE) providers are written
using the application programming interfaces (APIs) in the JCE
available in JDK 5.0. This type of provider is different from the
providers written using the WebLogic Security Service Provider
Interfaces (SSPIs). WebLogic Server does not provide a JCE provider
by default.

Using the nCipher JCE Provider with WebLogic Server

12-10 Securing Oracle WebLogic Server

SSL is a key component in the protection of resources available in Web servers.
However, heavy SSL traffic can cause bottlenecks that affect the performance of Web
servers. JCE providers like nCipher that use a hardware card for encryption offload
SSL processing from Web servers, which frees the servers to process more transactions.
They also provide strong encryption and cryptographic processes to preserve the
integrity and secrecy of keys.

WebLogic Server supports the use of the following JCE providers:

■ The JDK JCE provider (SunJCE) in the JDK 5.0. For more information about the
features in the JDK JCE provider, see
http://java.sun.com/products/archive/jce/.

By default, the JCE provider in the JDK 5.0 has export strength jurisdiction policy
files. After filling out the appropriate forms, the domestic strength jurisdiction
policy files are downloadable from Sun Microsystems at
http://java.sun.com/javase/technologies/security/#UnlimitedDo
wnload.

WebLogic Server will continue to control the strength of the cryptography used by
the WebLogic Server Application Programming Interfaces (APIs). Client code
without the appropriate domestic strength cryptography setting will only be able
to use the J2SE export strength default cryptography. On the server, WebLogic
Server will enable either export or domestic strength cryptography.

■ The nCipher JCE provider. See http://www.ncipher.com.

To install the nCipher JCE provider:

1. Install and configure the hardware for the nCipher JCE provider according to the
product's documentation.

2. Install the files for the nCipher JCE provider. The following files are required:

■ Jurisdiction policy files—The JDK installs these files by default but they are of
limited export strength.

■ Certificate that signed the JAR file

■ The JCE provider JAR files

Choose an installation method for the files:

■ Install files as an extension. Copy the files to one of the following locations:

JAVA_HOME/jre/lib/ext

For example:

MW_HOME/jdk150_03/jre/lib/ext

■ Install files in the CLASSPATH of the server.

3. Edit the Java security properties file (java.security) to add the nCipher JCE
provider to the list of approved JCE providers for WebLogic Server. The Java
security properties file is located in:

JAVA_HOME/jre/lib/security/java.security

Note: This step may have been performed as part of installing the
hardware for nCipher JCE provider. In that case, verify that the files
are correctly installed.

Specifying the Version of the SSL Protocol

Configuring SSL 12-11

Specify the nCipher JCE provider as:

security.provider.n=com.ncipher.provider.km.mCipherKM

where n specifies the preference order that determines the order in which
providers are searched for requested algorithms when no specific provider is
requested. The order is 1-based; 1 is the most preferred, followed by 2, and so on.

The nCipher JCE provider must follow the RSA JCA provider in the security
properties file. For example:

security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.rsajca.Provider
security.provider.3=com.ncipher.provider.km.mCipherKM

4. Boot WebLogic Server.

5. To ensure the nCipher JCE provider is working properly, enable debugging
according to the nCipher product documentation.

12.10 Specifying the Version of the SSL Protocol
WebLogic Server supports both the SSL V3.0 and TLS V1.0 protocols. When WebLogic
Server is acting as an SSL server, the protocol that the client specifies as preferred in its
client hello message. When WebLogic Server is acting as an SSL client, it specifies
TLS1.0 as the preferred protocol in its SSL V2.0 client hello message, but can use SSL
V3.0 as well, if that is the highest version that the SSL server on the other end
supports. The peer must respond with an SSL V3.0 or TLS V1.0 message or the SSL
connection is dropped.

While in most cases the SSL V3.0 protocol is acceptable some circumstances
(compatibility, SSL performance, and environments with maximum security
requirements) make the TLS V1.0 protocol more desirable. The
weblogic.security.SSL.protocolVersion command-line argument lets you
specify which protocol is used for SSL connections.

The following command-line argument can be specified so that WebLogic Server
supports only SSL V3.0 or TLS V1.0 connections:

■ -Dweblogic.security.SSL.protocolVersion=SSL3—Only SSL V3.0
messages are sent and accepted.

■ -Dweblogic.security.SSL.protocolVersion=TLS1—Only TLS V1.0
messages are sent and accepted.

■ -Dweblogic.security.SSL.protocolVersion=ALL—This is the default
behavior.

Note: The SSL V3.0 and TLS V1.0 protocols can not be interchanged.
Only use the TLS V1.0 protocol if you are certain all desired SSL
clients are capable of using the protocol.

Specifying the Version of the SSL Protocol

12-12 Securing Oracle WebLogic Server

13

Configuring Security for a WebLogic Domain 13-1

13Configuring Security for a WebLogic Domain

The following sections describe how to set security configuration options for a
WebLogic domain:

■ Section 13.1, "Important Information Regarding Cross-Domain Security Support"

■ Section 13.2, "Enabling Trust Between WebLogic Server Domains"

■ Section 13.3, "Using Connection Filters"

■ Section 13.4, "Using the Java Authorization Contract for Containers"

■ Section 13.5, "Viewing MBean Attributes"

■ Section 13.6, "How Passwords Are Protected in WebLogic Server"

■ Section 13.7, "Protecting User Accounts"

13.1 Important Information Regarding Cross-Domain Security Support
This section describes important information regarding support for the cross-domain
security solution.

As described in Section 13.2, "Enabling Trust Between WebLogic Server Domains",
cross-domain security establishes trust between domains such that principals in a
subject from one WebLogic Server domain can make calls in another domain.
WebLogic Server establishes a security role for cross-domain users, and uses the
WebLogic Credential Mapping security provider in each domain to store the
credentials to be used by the cross-domain users.

In this release of WebLogic Server, subsystems such as JMS, JTA, MDB, and WAN
replication implement cross-domain security. These subsystems can authenticate and
send the required credentials across domains.

However, the EJB container does not implement the solution for cross-domain security.
As a result, the WLS cross-domain security feature does not work in the following
situations:

■ WLI domain

■ With ALSB, when ALSB is configured to use the SB and DSP transports.

■ ALDSP domain

Note: These sections apply to WebLogic Server deployments using
the security features in this release of WebLogic Server as well as
deployments using Compatibility Security.

Enabling Trust Between WebLogic Server Domains

13-2 Securing Oracle WebLogic Server

For these domain types, the alternative is to use the global trust feature, in which
global trust is established between two domains by using the same domain credential
in each domain. For information about the global trust approach in WLS, see
Section 13.2.2, "Enabling Global Trust".

13.2 Enabling Trust Between WebLogic Server Domains
Trust between domains is established so that principals in a Subject from one
WebLogic Server domain can make calls in another domain. In previous releases of
WebLogic Server, there was only one type of domain trust which is now referred to as
Global Trust. WebLogic Server now supports a type of domain trust that is referred to
as Cross Domain Security.

■ Section 13.2.1, "Enabling Cross Domain Security Between WebLogic Server
Domains"

■ Section 13.2.2, "Enabling Global Trust"

13.2.1 Enabling Cross Domain Security Between WebLogic Server Domains

Cross Domain Security establishes trust between two WebLogic Server domain pairs
by using a credential mapper to configure communication between these WebLogic
Server domains. Configuration and use of cross-domain security is described in the
following sections:

■ Section 13.2.1.1, "Configuring Cross-Domain Security"

■ Section 13.2.1.2, "Configuring a Cross-Domain User"

■ Section 13.2.1.3, "Configure a Credential Mapping for Cross-Domain Security"

In addition to the approach that uses a Credential Mapping security provider for
cross-domain security, WebLogic Server also enables a different approach, under
which global trust is established between two or more domains by using the same
domain credential in each domain. If you enable global trust between two or more
domains, the trust relationship is transitive and symmetric. In other words, if Domain
A trusts Domain B and Domain B trusts Domain C, then Domain A will also trust
Domain C and Domain B and Domain C will both trust Domain A. In most cases, the
Cross Domain Security approach is preferable to the global trust approach, because its
use of a specific user group and role for cross-domain actions allows for finer grained
security. For information about the global trust approach in WebLogic Server, see
Section 13.2.2, "Enabling Global Trust".

13.2.1.1 Configuring Cross-Domain Security
To configure cross-domain security in a WebLogic Server domain, set the
SecurityConfigurationMBean.CrossDomainSecurityEnabled attribute to
true. To do this in the WebLogic Server Administration Console:

1. Click the name of the domain in the Domain Configuration panel.

2. Open the Security: General tab in the console.

3. Check Cross Domain Security Enabled.

Note: Please see Section 13.1, "Important Information Regarding
Cross-Domain Security Support" before enabling cross domain
security.

Enabling Trust Between WebLogic Server Domains

Configuring Security for a WebLogic Domain 13-3

If you maintain any WebLogic Server domains that have not enabled cross-domain
security, you need to add their domain names to the list of excluded domains, in the
SecurityConfigurationMBean.ExcludedDomainNames attributes. To do this in
the WebLogic Server Administration Console:

1. Click the name of the domain in the Domain Configuration panel.

2. Open the Security: General tab in the console.

3. In the Excluded Domain Names field, enter the names of any domains that do not
have cross-domain security enabled. Enter the names of these domains separated
either by semicolons or line breaks.

13.2.1.2 Configuring a Cross-Domain User
Cross-domain security in WebLogic Server uses a global security role named
CrossDomainConnector with resource type remote and a group named
CrossDomainConnectors, which is assigned the CrossDomainConnector role.
Invocation requests from remote domains are expected to be from users with the
CrossDomainConnector role. By default, the CrossDomainConnectors group
has no users as members. You need to create one or more users and add them to the
group CrossDomainConnectors. Typically, such a user will be a virtual system user
and preferably should have no privileges other than those granted by the
CrossDomainConnector security role.

13.2.1.3 Configure a Credential Mapping for Cross-Domain Security

In each WebLogic Server domain, you need to specify a credential to be used by each
user on each remote domain that needs to be trusted. Do this by configuring credential
mappings for each domain in the connection. Each credential mapping needs to
specify:

■ The resource protocol, which is named cross-domain-protocol

■ The name of the remote domain that needs to interact with the local domain

■ The name of the user in the remote domain that will be authorized to interact with
the local domain

■ The password of the user in the remote domain that will be authorized to interact
with the local domain

To configure a cross-domain security credential mapping in the WebLogic Server
Administration Console, click Security Realms in the left panel.

1. Click the name of your security realm (default is myrealm).

2. On the Credential Mappings > Default tab, click New.

3. On the Creating the Remote Resource for the Security Credential Mapping:

■ Select Use cross-domain protocol.

■ In the Remote Domain field, enter the name of the remote domain that needs
to interact with the local domain.

4. Click Next.

Note: The Credential Mapper identifies domains by their names.
Therefore, it is important that the domains involved have unique
names.

Enabling Trust Between WebLogic Server Domains

13-4 Securing Oracle WebLogic Server

5. On the Create a New Security Credential Map Entry page, enter the following:

■ Local User: cross-domain

■ Remote User: User configured in the Remote Domain that is authorized to
interact with the Local Domain.

■ Password: The password for the Remote User.

6. Click Finish.

See "Create a Cross-Domain Security Credential Mapping" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

13.2.2 Enabling Global Trust

WebLogic Server enables you to establish global trust between two or more domains.
You do this by specifying the same Domain Credential for each of the domains. By
default, the Domain Credential is randomly generated and therefore, no two domains
will have the same Domain Credential. If you want two WebLogic Server domains to
interoperate, you need to replace the generated credential with a credential you select,
and set the same credential in each of the domains. For configuration information, see
"Enable global trust between domains" in the Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

If you enable global trust between two domains, the trust relationship is transitive and
symmetric. In other words, if Domain A trusts Domain B and Domain B trusts Domain
C, then Domain A will also trust Domain C and Domain B and Domain C will both
trust Domain A. In most cases, the credential mapper approach, described in
Section 13.2.1, "Enabling Cross Domain Security Between WebLogic Server Domains",
is preferable to the global trust approach, because it is provides closer control over
access.

Global trust between domains is established so that principals in a Subject from one
WebLogic Server domain are accepted as principals in another domain. When this
feature is enabled, identity is passed between WebLogic Server domains over an RMI
connection without requiring authentication in the second domain (for example: log in
to Domain 1 as Joe, make an RMI call to Domain 2 and Joe is still authenticated).
WebLogic Server signs Principals with the Domain Credential as Principals are
created. When a Subject is received from a remote source, its Principals are validated
(the signature is recreated and if it matches, the remote domain has the same Domain
Credential). If validation fails, an error is generated. If validation succeeds, the
Principals are trusted as if they were created locally.

Caution: Enabling Global Trust between WebLogic Server domains
has the potential to open the servers up to man-in-the-middle attacks.
Great care should be taken when enabling trust in a production
environment. Oracle recommends having strong network security
such as a dedicated communication channel or protection by a strong
firewall.

Note: Any credentials in clear text are encrypted the next time the
config.xml file is persisted to disk.

Using Connection Filters

Configuring Security for a WebLogic Domain 13-5

If you are enabling global trust between domains in a Managed Server environment,
you must stop the Administration Server and all the Managed Servers in both
domains and then restart them. If this step is not performed, servers that were not
rebooted will not trust the servers that were rebooted.

Keep the following points in mind when enabling global trust between WebLogic
Server domains:

■ Because a domain will trust remote Principals without requiring authentication, it
is possible to have authenticated users in a domain that are not defined in the
domain's authentication database. This situation can cause authorization
problems.

■ Any authenticated user in a domain can access any other domain that has trust
enabled with the original domain without re-authenticating. There is no auditing
of this login and group membership is not validated. Therefore, if Joe is a member
of the Administrators group in the original domain where he authenticated, he is
automatically a member of the Administrators group for all trusted domains to
which he makes RMI calls.

■ If Domain 2 trusts both Domain 1 and Domain 3, Domain 1 and Domain 3 now
implicitly trust each other. Therefore, members of the Administrators Group in
Domain 1 are members of the Administrators group in Domain 3. This may not be
a desired trust relationship.

■ If you extended the WLSUser and WLSGroup Principal classes, the custom
Principal classes must be installed in the server's classpath in all domains that
share trust.

To avoid these issues, Oracle recommends that rather than enabling global trust
between two domains, you should instead configure users with the
CrossDomainConnector role and use the credential mapping approach described in
Section 13.2.1, "Enabling Cross Domain Security Between WebLogic Server Domains".

13.3 Using Connection Filters
Connection filters allow you to deny access at the network level. They can be used to
protect server resources on individual servers, server clusters, or an entire internal
network or intranet. For example, you can deny any non-SSL connections originating
outside of your corporate network. Network connection filters are a type of firewall in
that they can be configured to filter on protocols, IP addresses, and DNS node names.

Connection filters are particularly useful when using the Administration port.
Depending on your network firewall configuration, you may be able to use a
connection filter to further restrict administration access. A typical use might be to
restrict access to the Administration port to only the servers and machines in the
domain. An attacker who gets access to a machine inside the firewall, still cannot
perform administration operations unless the attacker is on one of the permitted
machines.

WebLogic Server provides a default connection filter called
weblogic.security.net.ConnectionFilterImpl. This connection filter
accepts all incoming connections and also provides static factory methods that allow
the server to obtain the current connection filter. To configure this connection filter to
deny access, simply enter the connection filters rules in the WebLogic Administration
Console.

You can also use a custom connection filter by implementing the classes in the
weblogic.security.net package. For information about writing a connection

Using the Java Authorization Contract for Containers

13-6 Securing Oracle WebLogic Server

filter, see "Using Network Connection Filters" in Oracle Fusion Middleware Programming
Security for Oracle WebLogic Server. Like the default connection filter, custom connection
filters are configured in the WebLogic Administration Console.

To configure a connection filter:

1. Enable the logging of accepted messages. This Connection Logger Enabled option
logs successful connections and connection data in the server. This information can
be used to debug problems relating to server connections.

2. Choose which connection filter is to be used in the domain.

■ To configure the default connection filter, specify
weblogic.security.net.ConnectionFilterImpl in Connection Filter.

■ To configure a custom connection filter, specify the class that implements the
network connection filter in Connection Filter. This class must also be
specified in the CLASSPATH for WebLogic Server.

3. Enter the syntax for the connection filter rules.

For more information:

■ See "Configure connection filtering" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

■ For information about connection filter rules and writing a custom connection
filter, see "Using Network Connection Filters" and "Developing Custom
Connection Filters" in Oracle Fusion Middleware Programming Security for Oracle
WebLogic Server.

■ You can also use the WebLogic Scripting Tool or Java Management Extensions
(JMX) APIs to create a new security configuration.

13.4 Using the Java Authorization Contract for Containers
The Java Authorization Contract for Containers (JACC) Standard can replace the EJB
and Servlet container deployment and authorization provided by WebLogic Server.
When you configure a WebLogic Server domain to use JACC, EJB and servlet
authorization decisions are made by the classes in the JACC framework. All other
authorization decisions within WebLogic Server are still determined by the WebLogic
Security Framework. For information about the WebLogic JACC provider, see "Using
the Java Authorization Contract for Containers" in Oracle Fusion Middleware
Programming Security for Oracle WebLogic Server.

You configure WebLogic Server to use JACC with a command line start option. For
more information, see the description of the -Djava.security.manager option in
the "weblogic.Server Command-Line Reference" in Oracle Fusion Middleware Command
Reference for Oracle WebLogic Server.

Note that an Administration Server and all Managed Servers in a domain need to have
the same JACC configuration. If you change the JACC setting on the Administration
Server, you should shut down the Managed Server and reboot them with the same
settings as the Administration Server to avoid creating a security vulnerability.
Otherwise, it may appear that EJBs and servlets in your domain are protected by
WebLogic Security Framework roles and policies, when in fact the Managed Servers
are still operating under JACC.

Protecting User Accounts

Configuring Security for a WebLogic Domain 13-7

13.5 Viewing MBean Attributes
The Anonymous Admin Lookup Enabled option specifies whether anonymous,
read-only access to WebLogic Server MBeans should be allowed from the MBean API.
With this anonymous access, you can see the value of any MBean attribute that is not
explicitly marked as protected by the WebLogic Server MBean authorization process.
This option is enabled by default to assure backward compatibility. For greater
security, you should disable this anonymous access.

To verify the setting of the Anonymous Admin Lookup Enabled option through the
WebLogic Administration Console, see the Domain > Security > General page in the
Administration Console or the
SecurityConfigurationMBean.AnonymousAdminLookupEnabled attribute.

13.6 How Passwords Are Protected in WebLogic Server
It is important to protect passwords that are used to access resources in a WebLogic
Server domain. In the past, usernames and passwords were stored in clear text in a
WebLogic security realm. Now all the passwords in a WebLogic Server domain are
hashed. The SerializedSystemIni.dat file contains the hashes for the passwords.
It is associated with a specific WebLogic Server domain so it cannot be moved from
domain to domain.

If the SerializedSystemIni.dat file is destroyed or corrupted, you must
reconfigure the WebLogic Server domain. Therefore, you should take the following
precautions:

■ Make a backup copy of the SerializedSystemIni.dat file and put it in a safe
location.

■ Set permissions on the SerializedSystemIni.dat file such that the system
administrator of a WebLogic Server deployment has write and read privileges and
no other users have any privileges.

13.7 Protecting User Accounts
WebLogic Server defines a set of configuration options to protect user accounts from
intruders. In the default security configuration, these options are set for maximum
protection. You can use the Administration Console to modify these options on the
Configuration > User Lockout page.

As a system administrator, you have the option of turning off all the configuration
options, increasing the number of login attempts before a user account is locked,
increasing the time period in which invalid login attempts are made before locking the
user account, and changing the amount of time a user account is locked. Remember
that changing the configuration options lessens security and leaves user accounts
vulnerable to security attacks. See "Set user lockout attributes" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

Protecting User Accounts

13-8 Securing Oracle WebLogic Server

For information about unlocking a locked user account on the Administration Server,
see "Unlock user accounts" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help. Unlocking a locked user account on a Managed Server
cannot be done through the WebLogic Administration Console. The unlock
information is propagated through a multicast message which is only configured in a
cluster environment. Use the following command instead:

java weblogic.Admin -url url -username adminuser
-password passwordforadminuser -type
weblogic.management.security.authentication.UserLockoutManager -method
clearLockout lockedusername

You can also wait the time specified in the Lockout Duration attribute: the user
account will be unlocked after the specified time.

Notes: The User Lockout options apply to the default security realm
and all its security providers. The User Lockout options do not work
with custom security providers in a security realm other than the
default security realm. To use the User Lockout options with custom
security providers, configure the custom security providers in the
default security realm. Include the customer providers in the
authentication process after the Default Authentication provider and
the WebLogic Identity Assertion provider. This ordering may cause a
small performance hit.

If you are using an Authentication provider that has its own
mechanism for protecting user accounts, disable Lockout Enabled.

If a user account becomes locked and you delete the user account and
add another user account with the same name and password, the User
Lockout configuration options will not be reset.

14

Using Compatibility Security 14-1

14Using Compatibility Security

Compatibility security is the capability to run security configurations developed with
WebLogic Server 6.x in this release of WebLogic Server. In Compatibility security, you
manage 6.x security realms, users, groups, and ACLs, protect user accounts, and
configure the Realm Adapter Auditing provider and optionally the Identity Assertion
provider in the Realm Adapter Authentication provider. The following sections
describe how to configure Compatibility security:

■ Section 14.1, "Running Compatibility Security: Main Steps"

■ Section 14.2, "Limited Visibility of Compatibility Security MBeans"

■ Section 14.3, "The Default Security Configuration in the CompatibilityRealm"

■ Section 14.4, "Configuring a Realm Adapter Authentication Provider"

■ Section 14.5, "Configuring the Identity Assertion Provider in the Realm Adapter
Authentication Provider"

■ Section 14.6, "Configuring a Realm Adapter Auditing Provider"

■ Section 14.7, "Protecting User Accounts in Compatibility Security"

■ Section 14.8, "Accessing 6.x Security from Compatibility Security"

14.1 Running Compatibility Security: Main Steps
To set up Compatibility security:

1. Make a backup copy of your 6.x WebLogic domain (including your config.xml
file) before using Compatibility security.

2. Add the following to the 6.x config.xml file if it does not exist, replacing the
values with the actual names of your domain, security realm, and FileRealm:

<Security Name="mydomain" Realm="mysecurity"/>
<Realm Name="mysecurity" FileRealm="myrealm"/>
<FileRealm Name="myrealm"/>

Note: Compatibility security is deprecated in this release of
WebLogic Server and will not be supported in future major releases.
Oracle strongly recommends upgrading your WebLogic Server
deployment to the security features in this release of WebLogic Server.
You should only use Compatibility security pending such an upgrade.

Limited Visibility of Compatibility Security MBeans

14-2 Securing Oracle WebLogic Server

3. Install the current version of WebLogic Server in a new directory location. Do not
overwrite your existing 6.x installation directory. For more information, see Oracle
WebLogic Server Installation Guide.

4. Modify the start script for your 6.x server to point to the new WebLogic Server
installation. Specifically, you need to modify:

■ The classpath to point to the weblogic.jar file in the new WebLogic Server
installation.

■ The JAVA_HOME variable to point to the new WebLogic Server installation.

5. Use the start script for your 6.x server to boot the new version of WebLogic Server.

To verify whether you are running Compatibility security correctly, open the new
WebLogic Server Administration Console. If you are running Compatibility security, a
Compatibility Security node is displayed on the left in the Domain Structure pane.

14.2 Limited Visibility of Compatibility Security MBeans
All Compatibility security MBeans are marked excluded and therefore have limited
visibility in the WebLogic Scripting Tool. For example, if you use a command like this:

java weblogic.WLST
connect()
ls()

then the attributes of the DomainMBean will be listed, excluding Compatibility
security attributes such as FileRealmMBean. However, if you address a
Compatibility MBean directly, you can access it, as in this example:

java weblogic.WLST
connect()
cmo.getFileRealms()

14.3 The Default Security Configuration in the CompatibilityRealm
By default, the CompatibilityRealm is configured with a Realm Adapter
Adjudication provider, a Realm Adapter Authentication provider, a WebLogic
Authorization provider, a Realm Adapter Authorization provider, a WebLogic
Credential Mapping provider, and a WebLogic Role Mapping provider.

■ In the CompatibilityRealm, the Realm Adapter Authentication provider is
populated with users and groups from the 6.x security realm defined in the
config.xml file.

– If you used the File realm in your 6.x security configuration, you can manage
the users and groups in the Realm Adapter Authentication provider following
the steps in "Define users" and "Define groups" topics of the Compatibility
security section of the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

– If you are using an alternate security realm (LDAP, Windows NT, RDBMS, or
custom), you must use the administration tools provided by that realm to
manage users and groups.

For information about configuring a Realm Adapter Authentication provider, see
Section 14.4, "Configuring a Realm Adapter Authentication Provider"

You can use implementations of the
weblogic.security.acl.CertAuthenticator class in Compatibility

Configuring a Realm Adapter Authentication Provider

Using Compatibility Security 14-3

security by configuring the Identity Assertion provider in the Realm Adapter
Authentication provider. For more information, see Section 14.5, "Configuring the
Identity Assertion Provider in the Realm Adapter Authentication Provider".

■ Access Control Lists (ACLs) in the 6.x security realm are used to populate the
Realm Adapter Authorization provider.

■ The Realm Adapter Adjudication provider enables the use of both ACLs and
security roles and security policies in Compatibility security. The Realm Adapter
Adjudication provider can be used only with the Realm Adapter Authentication
provider and the WebLogic Authorization provider. It resolves access decision
conflicts between ACLs and new security policies set through the Administration
Console. The Realm Adapter Adjudication provider permits access if the one
authorization provider votes PERMIT and the other authorization provider votes
DENY.

■ The WebLogic Credential Mapping provider allows the use of credential maps in
Compatibility security. For more information, see Oracle Fusion Middleware
Programming Resource Adapters for Oracle WebLogic Server.

■ You can add a Realm Adapter Auditing provider to access implementations of the
weblogic.security.audit.AuditProvider class from the
CompatibilityRealm. For more information, see "Configure a Realm Adapter
Auditing Provider" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

14.4 Configuring a Realm Adapter Authentication Provider
When using Compatibility security, a Realm Adapter Authentication provider is by
default configured for the CompatibilityRealm. For information about using the
Realm Adapter Authentication provider in the CompatibilityRealm, see
Section 14.3, "The Default Security Configuration in the CompatibilityRealm".

The Realm Adapter Authentication provider also allows use of implementations of the
weblogic.security.acl.CertAuthenticator class with this release of
WebLogic Server. The Realm Adapter Authentication provider includes an Identity
Assertion provider that asserts identity based on X.509 tokens. For information about
using a CertAuthenticator with WebLogic Server, Section 14.5, "Configuring the
Identity Assertion Provider in the Realm Adapter Authentication Provider".

When you add a Realm Adapter Authentication provider to a security realm with an
Authentication provider already configured, WebLogic Server sets the JAAS Control
Flag on the Realm Adapter Authentication provider to OPTIONAL and checks for the
presence of a fileRealm.properties file in the domain directory. WebLogic Server
will not add the Realm Adapter Authentication provider to the security realm if the
fileRealm.properties file does not exist.

Note: The subjects produced by the Realm Adapter Authentication
provider do not contain principals for the groups to which a user
belongs. Use the
weblogic.security.SubjectUtils.isUserInGroup()
method to determine whether a user is in a group. When you use
subjects produced by the Realm Adapter Authentication provider, you
cannot iterate the complete set of groups to which a user belongs.

Configuring the Identity Assertion Provider in the Realm Adapter Authentication Provider

14-4 Securing Oracle WebLogic Server

14.5 Configuring the Identity Assertion Provider in the Realm Adapter
Authentication Provider

The Realm Adapter Authentication provider includes an Identity Assertion
provider.The Identity Assertion provider provides backward compatibility for
implementations of the deprecated
weblogic.security.acl.CertAuthenticator class. The identity assertion is
performed on X.509 tokens. By default, the Identity Assertion provider is not enabled
in the Realm Adapter Authentication provider.

For information about how to enable the Identity Assertion provider, see "Enable the
Identity Assertion provider" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

14.6 Configuring a Realm Adapter Auditing Provider
The Realm Adapter Auditing provider allows you to use implementations of the
weblogic.security.audit.AuditProvider interface when using Compatibility
security. In order for the Realm Adapter Auditing provider to work properly, the
implementation of the AuditProvider interface must have been defined. You can
define the AuditProvider class using the Administration Console, in the Audit
Provider Class field on the Domain: Compatibility Security > General page.

For information, see "Configure a Realm Adapter Auditing provider" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help.

14.7 Protecting User Accounts in Compatibility Security
Password guessing is a common type of security attack. In this type of attack, a hacker
attempts to log in to a computer using various combinations of usernames and
passwords. WebLogic Server provides a set of lockout configuration options to protect
user accounts from this kind of attack. By default, these options are set for maximum
protection. As a system administrator, you have the option of turning off all the
options, increasing the number of login attempts before a user account is locked,
increasing the time period in which invalid login attempts are made before locking the
user account, and changing the amount of time a user account is locked. Remember
that changing the configuration options lessens security and leaves user accounts
vulnerable to security attacks.

There are two sets of configuration options available to protect user accounts, one set
at the domain and one set at the security realm. You may notice that if you set one set
of configuration options (for example, the options for the security realm) and exceed
any of the values, the user account is not locked. This happens because the user
account lockout options at the domain override the user account options at the
security realm. To avoid this situation, disable the user account lockout options at the
security realm.

For information, see "Protect user accounts" and "Unlock user accounts" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help.

Caution: If you disable the user lockout configuration option at the
security realm, you must set the user lockout configuration options on
the domain otherwise the user accounts will not be protected.

Accessing 6.x Security from Compatibility Security

Using Compatibility Security 14-5

14.8 Accessing 6.x Security from Compatibility Security
Using Compatibility security assumes that you have an existing config.xml file with a
security realm that defines users and groups and ACLs that protect the resources in
your WebLogic Server domain. WebLogic Server 6.x security management tasks such
as configuring a security realm or defining ACLs should not be required and therefore
those management tasks are not described in this section. However, if you corrupt an
existing 6.x security realm and have no choice but to restore it, the following 6.x
security management tasks are described in the Compatibility Security topic of the
Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help:

■ "Configure LDAP V1 security realms"

■ "Configure LDAP V2 security realms"

■ "Configure RDBMS security realms"

■ "Configure Windows NT security realms"

■ "Configure wlauth for UNIX security realms"

■ "Configure UNIX security realms"

■ "Configure Custom security realms"

■ "Configure Caching realms"

■ "Configure the File realm"

■ "Define ACLs"

■ "Define groups"

■ "Delete groups"

■ "Define users"

■ "Delete users"

■ "Change user passwords"

■ "Change the system password"

■ "Disable the Guest user"

Caution: Compatibility security provides backward compatibility
only and should not be considered a long-term security solution.

Accessing 6.x Security from Compatibility Security

14-6 Securing Oracle WebLogic Server

15

Security Configuration MBeans 15-1

15Security Configuration MBeans

This section describes MBeans used in configuring the WebLogic Security Framework.
Each MBean attribute is marked either dynamic, meaning that the attribute value can
be changed without requiring a server restart, or non-dynamic, meaning that if you
change the attribute value, you need to restart the server for the change to take effect.
Note also that if an edit is made to a non-dynamic attribute, no edits to dynamic
attributes will take effect until after restart. This is to assure that a batch of updates
having a combination of dynamic and non-dynamic attribute edits will not be partially
activated.

Any security MBeans not listed are completely non-dynamic (create or destroy MBean,
change any attribute).

For more information about WebLogic Security MBeans, see:

■ "Managing Security Realms with JMX" in Oracle Fusion Middleware Developing
Custom Management Utilities With JMX for Oracle WebLogic Server

■ "Security MBeans" in the Oracle Fusion Middleware Oracle WebLogic Server MBean
Reference

15.1 SSLMBean
Creating or destroying this bean is dynamic.

Dynamic attributes:

Enabled, TwoWaySSLEnabled, ClientCertificateEnforced, ListenPort

Ciphersuites, ExportKeyLifespan, SSLRejectionLoggingEnabled, LoginTimeoutMillis

ServerCertificateChainFileName, ServerKeyFileName, ServerCertificateFileName,
TrustedCAFileName

ServerPrivateKeyAlias, ServerPrivateKeyPassPhrase

IdentityAndTrustLocations

InboundCertificateValidation, OutboundCertificateValidation

All other attributes are non-dynamic.

15.2 ServerMBean
Creating or destroying this bean is dynamic.

Dynamic attributes:

KeyStores

EmbeddedLDAPMBean

15-2 Securing Oracle WebLogic Server

CustomIdentityKeyStoreFileName, CustomIdentityKeyStoreType,
CustomIdentityKeyStorePassPhrase

CustomTrustKeyStoreFileName, CustomTrustKeyStoreType,
CustomTrustKeyStorePassPhrase

JavaStandardTrustKeyStorePassPhrase

All other attributes are non-dynamic.

15.3 EmbeddedLDAPMBean
Dynamic attributes:

Credential

All other attributes are non-dynamic

15.4 RDBMSSecurityStoreMBean
Creating or destroying this MBean is non-dynamic.

All attributes are non-dynamic.

15.5 SecurityMBean
Dynamic attributes:

ConnectionFilterRules

ConnectionLoggerEnabled

All other attributes are non-dynamic

15.6 SecurityConfigurationMBean
Dynamic attributes:

Credential

ConnectionFilterRules, ConnectionLoggerEnabled,
CompatibilityConnectionFiltersEnabled

NodeManagerUsername, NodeManagerPassword

All other attributes are non-dynamic.

15.7 RealmMBean
Creating or destroying this MBean is non-dynamic.

Dynamic attributes:

DeployRoleIgnored, DeployPolicyIgnored, DeployCredentialMappingIgnored

FullyDelegateAuthorization

ValidateDDSecurityData, SecurityDDModel

CombinedRoleMappingEnabled

All other attributes are non-dynamic

Compatibility Security MBeans

Security Configuration MBeans 15-3

15.8 WindowsNTAuthenticatorMBean
Creating or destroying this MBean is non-dynamic.

Dynamic attributes:

BadDomainControllerRetryInterval

MapUPNNames, LogonType

MapNTDomainName

All other attributes are non-dynamic.

15.9 CustomDBMSAuthenticatorMBean
Creating or destroying this MBean is non-dynamic. The ControlFlag and read-only
provider attributes (such as ProviderClassName and Description) are non-dynamic.
All other attributes are dynamic.

15.10 ReadonlySQLAuthenticatorMBean
Creating or destroying this MBean is non-dynamic.

The ControlFlag and read-only provider attributes (such as ProviderClassName and
Description) are non-dynamic. All other attributes are dynamic.

15.11 SQLAuthenticatorMBean
Creating or destroying this MBean is non-dynamic.

The ControlFlag and read-only provider attributes (such as ProviderClassName and
Description) are non-dynamic. All other attributes are dynamic.

15.12 DefaultAuditorMBean
Creating or destroying this MBean is non-dynamic.

Dynamic attributes:

Severity

All other attributes are non-dynamic

15.13 Compatibility Security MBeans
All MBeans used for Compatibility security are completely non-dynamic (create or
destroy MBean, change any attribute). These MBeans include:

■ RealmMBean

■ FileRealmMBean

■ BasicRealmMBean

■ CachingRealmMBean

■ PasswordPolicyMBean

■ CustomRealmMBean

■ LDAPRealmMBean

UserLockoutManagerMBean

15-4 Securing Oracle WebLogic Server

■ NTRealmMBean

■ RDBMSRealmMBean

■ UnixRealmMBean

15.14 UserLockoutManagerMBean
This MBean is completely non-dynamic (create or destroy MBean, change any
attribute).

15.15 Other Security Provider MBeans
All other security MBeans are completely non-dynamic (create or destroy MBean,
change any attribute).

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope
	1.2 Document Audience
	1.3 Guide to This Document
	1.4 Related Information
	1.5 Security Samples and Tutorials
	1.5.1 Security Examples in the WebLogic Server Distribution

	1.6 New and Changed Security Features

	2 Overview of Security Management
	2.1 Security Realms in WebLogic Server
	2.2 Security Providers
	2.3 Security Policies and WebLogic Resources
	2.3.1 WebLogic Resources
	2.3.2 Deployment Descriptors and the WebLogic Server Administration Console

	2.4 The Default Security Configuration in WebLogic Server
	2.5 Configuring WebLogic Security: Main Steps
	2.6 Methods of Configuring Security
	2.7 What Is Compatibility Security?
	2.7.1 Management Tasks Available in Compatibility Security

	3 Customizing the Default Security Configuration
	3.1 Why Customize the Default Security Configuration?
	3.2 Before You Create a New Security Realm
	3.3 Creating and Configuring a New Security Realm: Main Steps

	4 Configuring WebLogic Security Providers
	4.1 When Do You Need to Configure a Security Provider?
	4.2 Reordering Security Providers
	4.3 Configuring an Authorization Provider
	4.4 Configuring the WebLogic Adjudication Provider
	4.5 Configuring a Role Mapping Provider
	4.6 Configuring the WebLogic Auditing Provider
	4.6.1 Auditing ContextHandler Elements
	4.6.2 Enabling Configuration Auditing
	4.6.3 Configuration Auditing Messages
	4.6.4 Audit Events and Auditing Providers

	4.7 Configuring a WebLogic Credential Mapping Provider
	4.8 Configuring a PKI Credential Mapping Provider
	4.8.1 PKI Credential Mapper Attributes
	4.8.2 Credential Actions

	4.9 Configuring a SAML Credential Mapping Provider for SAML 1.1
	4.9.1 Configuring Assertion Lifetime
	4.9.2 Relying Party Registry

	4.10 Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0
	4.10.1 SAML 2.0 Credential Mapping Provider Attributes
	4.10.2 Service Provider Partners
	4.10.2.1 Partner Lookup Strings Required for Web Service Partners
	4.10.2.1.1 Lookup String Syntax
	4.10.2.1.2 Specifying Default Partners

	4.10.2.2 Management of Partner Certificates
	4.10.2.3 Java Interface for Configuring Service Provider Partner Attributes

	4.11 Configuring the Certificate Lookup and Validation Framework
	4.11.1 CertPath Provider
	4.11.2 Certificate Registry

	4.12 Configuring a WebLogic Keystore Provider

	5 Configuring Authentication Providers
	5.1 Choosing an Authentication Provider
	5.2 Using More Than One Authentication Provider
	5.2.1 Setting the JAAS Control Flag Option
	5.2.2 Changing the Order of Authentication Providers

	5.3 Configuring the Default Authentication Provider
	5.4 Configuring LDAP Authentication Providers
	5.4.1 Requirements for Using an LDAP Authentication Provider
	5.4.2 Configuring an LDAP Authentication Provider: Main Steps
	5.4.3 Accessing Other LDAP Servers
	5.4.4 Dynamic Groups and WebLogic Server
	5.4.5 Configuring Users and Groups in the Oracle Internet Directory and Oracle Virtual Directory Authentication Providers
	5.4.5.1 Configuring User and Group Name Types
	5.4.5.1.1 Changing the User Name Attribute Type
	5.4.5.1.2 Changing the Group Name Attribute Type

	5.4.5.2 Configuring Static Groups

	5.4.6 Configuring Failover for LDAP Authentication Providers
	5.4.6.1 LDAP Failover Example 1
	5.4.6.2 LDAP Failover Example 2

	5.4.7 Improving the Performance of WebLogic and LDAP Authentication Providers
	5.4.7.1 Optimizing the Group Membership Caches
	5.4.7.2 Configuring Dynamic Groups in the iPlanet Authentication Provider to Improve Performance
	5.4.7.3 Optimizing the Principal Validator Cache
	5.4.7.4 Configuring the Active Directory Authentication Provider to Improve Performance

	5.5 Configuring RDBMS Authentication Providers
	5.5.1 Common RDBMS Authentication Provider Attributes
	5.5.1.1 Data Source Attribute
	5.5.1.2 Group Searching Attributes
	5.5.1.3 Group Caching Attributes

	5.5.2 Configuring the SQL Authentication Provider
	5.5.2.1 Password Attributes
	5.5.2.2 SQL Statement Attributes

	5.5.3 Configuring the Read-Only SQL Authenticator
	5.5.4 Configuring the Custom DBMS Authenticator
	5.5.4.1 Plug-In Class Attributes

	5.6 Configuring a Windows NT Authentication Provider
	5.6.1 Domain Controller Settings
	5.6.2 LogonType Setting
	5.6.3 UPN Names Settings

	5.7 Configuring the SAML Authentication Provider
	5.8 Configuring the Password Validation Provider
	5.8.1 Password Composition Rules for the Password Validation Provider
	5.8.2 Using the Password Validation Provider with the Default Authentication Provider
	5.8.3 Using WLST to Create and Configure the Password Validation Provider
	5.8.3.1 Creating an Instance of the Password Validation Provider
	5.8.3.2 Specifying the Password Composition Rules

	5.9 Configuring Identity Assertion Providers
	5.9.1 How an LDAP X509 Identity Assertion Provider Works
	5.9.2 Configuring an LDAP X509 Identity Assertion Provider: Main Steps
	5.9.3 Configuring a Negotiate Identity Assertion Provider
	5.9.4 Configuring a SAML Identity Assertion Provider for SAML 1.1
	5.9.4.1 Asserting Party Registry
	5.9.4.2 Certificate Registry

	5.9.5 Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0
	5.9.5.1 Identity Provider Partners
	5.9.5.1.1 Partner Lookup Strings Required for Web Service Partners
	5.9.5.1.2 Management of Partner Certificates
	5.9.5.1.3 Java Interface for Configuring Identity Provider Partner Attributes

	5.9.6 Ordering of Identity Assertion for Servlets
	5.9.7 Configuring Identity Assertion Performance in the Server Cache
	5.9.8 Configuring a User Name Mapper
	5.9.9 Configuring a Custom User Name Mapper

	6 Configuring Single Sign-On with Microsoft Clients
	6.1 Overview of Single Sign-On with Microsoft Clients
	6.2 System Requirements for SSO with Microsoft Clients
	6.3 Single Sign-On with Microsoft Clients: Main Steps
	6.4 Configuring Your Network Domain to Use Kerberos
	6.5 Creating a Kerberos Identification for WebLogic Server
	6.6 Configuring Microsoft Clients to Use Windows Integrated Authentication
	6.6.1 Configuring a .NET Web Service
	6.6.2 Configuring an Internet Explorer Browser
	6.6.2.1 Configure Local Intranet Domains
	6.6.2.2 Configure Intranet Authentication
	6.6.2.3 Verify the Proxy Settings
	6.6.2.4 Set Integrated Authentication for Internet Explorer 6.0

	6.6.3 Configuring a Mozilla Firefox Browser

	6.7 Creating a JAAS Login File
	6.8 Configuring the Identity Assertion Provider
	6.9 Using Startup Arguments for Kerberos Authentication with WebLogic Server
	6.10 Verifying Configuration of SSO with Microsoft Clients

	7 Configuring Single Sign-On with Web Browsers and HTTP Clients
	7.1 Configuring SAML 1.1 Services
	7.1.1 Enabling Single Sign-on with SAML 1.1: Main Steps
	7.1.1.1 Configuring a Source Site: Main Steps
	7.1.1.2 Configuring a Destination Site: Main Steps

	7.1.2 Configuring a SAML 1.1 Source Site for Single Sign-On
	7.1.2.1 Configure the SAML 1.1 Credential Mapping Provider
	7.1.2.2 Configure the Source Site Federation Services
	7.1.2.3 Configure Relying Parties
	7.1.2.3.1 Configure Supported Profiles
	7.1.2.3.2 Assertion Consumer Parameters

	7.1.2.4 Replacing the Default Assertion Store

	7.1.3 Configuring a SAML 1.1 Destination Site for Single Sign-On
	7.1.3.1 Configure SAML Identity Assertion Provider
	7.1.3.2 Configure Destination Site Federation Services
	7.1.3.2.1 Enable the SAML Destination Site
	7.1.3.2.2 Set Assertion Consumer URIs
	7.1.3.2.3 Configure SSL for the Assertion Consumer Service
	7.1.3.2.4 Add SSL Client Identity Certificate
	7.1.3.2.5 Configure Single-Use Policy and the Used Assertion Cache or Custom Assertion Cache
	7.1.3.2.6 Configure Recipient Check for POST Profile

	7.1.3.3 Configuring Asserting Parties
	7.1.3.3.1 Configure Supported Profiles
	7.1.3.3.2 Configure Source Site ITS Parameters

	7.1.4 Configuring Relying and Asserting Parties with WLST

	7.2 Configuring SAML 2.0 Services
	7.2.1 Configuring SAML 2.0 Services: Main Steps
	7.2.2 Configuring SAML 2.0 General Services
	7.2.2.1 About SAML 2.0 General Services
	7.2.2.2 Publishing and Distributing the Metadata File

	7.2.3 Configuring an Identity Provider Site for SAML 2.0 Single Sign-On
	7.2.3.1 Configure the SAML 2.0 Credential Mapping Provider
	7.2.3.2 Configure SAML 2.0 Identity Provider Services
	7.2.3.2.1 Enable the SAML 2.0 Identity Provider Site
	7.2.3.2.2 Specify a Custom Login Web Application
	7.2.3.2.3 Enable Binding Types
	7.2.3.2.4 Publish Your Site's Metadata File

	7.2.3.3 Create and Configure Web Single Sign-On Service Provider Partners
	7.2.3.3.1 Obtain Your Service Provider Partner's Metadata File
	7.2.3.3.2 Create Partner and Enable Interactions
	7.2.3.3.3 Configure How Assertions are Generated
	7.2.3.3.4 Configure How Documents Are Signed
	7.2.3.3.5 Configure Artifact Binding and Transport Settings

	7.2.4 Configuring a Service Provider Site for SAML 2.0 Single Sign-On
	7.2.4.1 Configure the SAML 2.0 Identity Assertion Provider
	7.2.4.2 Configure the SAML Authentication Provider
	7.2.4.3 Configure SAML 2.0 General Services
	7.2.4.4 Configure SAML 2.0 Service Provider Services
	7.2.4.4.1 Enable the SAML 2.0 Service Provider Site
	7.2.4.4.2 Specify How Documents Must Be Signed
	7.2.4.4.3 Specify How Authentication Requests Are Managed
	7.2.4.4.4 Enable Binding Types
	7.2.4.4.5 Set Default URL

	7.2.4.5 Create and Configure Web Single Sign-On Identity Provider Partners
	7.2.4.5.1 Obtain Your Identity Provider Partner's Metadata File
	7.2.4.5.2 Create Partner and Enable Interactions
	7.2.4.5.3 Configure Authentication Requests and Assertions
	7.2.4.5.4 Configure Redirect URIs
	7.2.4.5.5 Configure Binding and Transport Settings

	7.2.5 Viewing Partner Site, Certificate, and Service Endpoint Information
	7.2.6 Web Application Deployment Considerations for SAML 2.0
	7.2.6.1 Deployment Descriptor Recommendations
	7.2.6.1.1 Use of relogin-enabled with CLIENT-CERT Authentication
	7.2.6.1.2 Use of Non-default Cookie Name

	7.2.6.2 Login Application Considerations for Clustered Environments

	8 Migrating Security Data
	8.1 Overview of Security Data Migration
	8.2 Migration Concepts
	8.3 Formats and Constraints Supported by WebLogic Security Providers
	8.4 Migrating Data with WLST
	8.5 Migrating Data Using weblogic.admin

	9 Managing the Embedded LDAP Server
	9.1 Configuring the Embedded LDAP Server
	9.2 Embedded LDAP Server Replication
	9.3 Viewing the Contents of the Embedded LDAP Server from an LDAP Browser
	9.4 Exporting and Importing Information in the Embedded LDAP Server
	9.5 LDAP Access Control Syntax
	9.5.1 The Access Control File
	9.5.2 Access Control Location
	9.5.3 Access Control Scope
	9.5.4 Access Rights
	9.5.4.1 Attribute Permissions
	9.5.4.2 Entry Permissions

	9.5.5 Attributes Types
	9.5.6 Subject Types
	9.5.7 Grant/Deny Evaluation Rules

	10 Managing the RDBMS Security Store
	10.1 Security Providers that Use the RDBMS Security Store
	10.2 Configuring the RDBMS Security Store
	10.2.1 Create a Domain with the RDBMS Security Store
	10.2.1.1 Specifying Database Connection Properties
	10.2.1.1.1 Oracle Example
	10.2.1.1.2 MS-SQL Example
	10.2.1.1.3 DB2 Example
	10.2.1.1.4 For More Information About Default Connection Properties

	10.2.1.2 Testing the Database Connection

	10.2.2 Create RDBMS Tables in the Security Datastore
	10.2.3 Configure a JMS Topic for the RDBMS Security Store
	10.2.3.1 Configuring JMS Connection Recovery in the Event of Failure

	10.3 Upgrading a Domain to Use the RDBMS Security Store

	11 Configuring Identity and Trust
	11.1 Private Keys, Digital Certificates, and Trusted Certificate Authorities
	11.2 Configuring Identity and Trust: Main Steps
	11.3 Supported Formats for Identity and Trust
	11.4 Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities
	11.4.1 Common Keytool Commands
	11.4.2 Using the CertGen Utility
	11.4.2.1 Command Syntax and Examples
	11.4.2.2 Limitation on CertGen Usage

	11.4.3 Using Your Own Certificate Authority
	11.4.4 Converting a Microsoft p7b Format to PEM Format
	11.4.5 Obtaining a Digital Certificate for a Web Browser
	11.4.6 Using Certificate Chains (Deprecated)

	11.5 Storing Private Keys, Digital Certificates, and Trusted Certificate Authorities
	11.5.1 Guidelines for Using Keystores
	11.5.2 Creating a Keystore and Loading Private Keys and Trusted Certificate Authorities into the Keystore
	11.5.3 Configuring Demo Certificates for Clients

	11.6 How WebLogic Server Locates Trust
	11.7 Configuring Keystores for Production

	12 Configuring SSL
	12.1 SSL: An Introduction
	12.2 One-Way and Two-Way SSL
	12.3 Setting Up SSL: Main Steps
	12.4 Using Host Name Verification
	12.5 Enabling SSL Debugging
	12.6 SSL Session Behavior
	12.7 Configuring RMI over IIOP with SSL
	12.8 SSL Certificate Validation
	12.8.1 Controlling the Level of Certificate Validation
	12.8.2 Accepting Certificate Policies in Certificates
	12.8.3 Checking Certificate Chains
	12.8.4 Using Certificate Lookup and Validation Providers
	12.8.5 How SSL Certificate Validation Works in WebLogic Server
	12.8.6 Troubleshooting Problems with Certificate Validation

	12.9 Using the nCipher JCE Provider with WebLogic Server
	12.10 Specifying the Version of the SSL Protocol

	13 Configuring Security for a WebLogic Domain
	13.1 Important Information Regarding Cross-Domain Security Support
	13.2 Enabling Trust Between WebLogic Server Domains
	13.2.1 Enabling Cross Domain Security Between WebLogic Server Domains
	13.2.1.1 Configuring Cross-Domain Security
	13.2.1.2 Configuring a Cross-Domain User
	13.2.1.3 Configure a Credential Mapping for Cross-Domain Security

	13.2.2 Enabling Global Trust

	13.3 Using Connection Filters
	13.4 Using the Java Authorization Contract for Containers
	13.5 Viewing MBean Attributes
	13.6 How Passwords Are Protected in WebLogic Server
	13.7 Protecting User Accounts

	14 Using Compatibility Security
	14.1 Running Compatibility Security: Main Steps
	14.2 Limited Visibility of Compatibility Security MBeans
	14.3 The Default Security Configuration in the CompatibilityRealm
	14.4 Configuring a Realm Adapter Authentication Provider
	14.5 Configuring the Identity Assertion Provider in the Realm Adapter Authentication Provider
	14.6 Configuring a Realm Adapter Auditing Provider
	14.7 Protecting User Accounts in Compatibility Security
	14.8 Accessing 6.x Security from Compatibility Security

	15 Security Configuration MBeans
	15.1 SSLMBean
	15.2 ServerMBean
	15.3 EmbeddedLDAPMBean
	15.4 RDBMSSecurityStoreMBean
	15.5 SecurityMBean
	15.6 SecurityConfigurationMBean
	15.7 RealmMBean
	15.8 WindowsNTAuthenticatorMBean
	15.9 CustomDBMSAuthenticatorMBean
	15.10 ReadonlySQLAuthenticatorMBean
	15.11 SQLAuthenticatorMBean
	15.12 DefaultAuditorMBean
	15.13 Compatibility Security MBeans
	15.14 UserLockoutManagerMBean
	15.15 Other Security Provider MBeans

