

SDK Guide for Oracle
Siebel eStatement
Manager

Version 4.7

May 31, 2007

Copyright © 1996, 2007 Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to
the extent required to obtain interoperability with other independently created software or as
specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement
for these Programs, no part of these Programs may be reproduced or transmitted in any form
or by any means, electronic or mechanical, for any purpose.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are
optional and for which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software implementation
may differ from descriptions in this guide. To find out more about the modules your
organization has purchased, see your corporate purchasing agent or your Siebel sales
representative.

If the Programs are delivered to the United States Government or anyone licensing or using
the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software"
or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification,
and adaptation of the Programs, including documentation and technical data, shall be subject
to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the
extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer
Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood
City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all
appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any
damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services
from third parties. Oracle is not responsible for the availability of, or any content provided on,
third-party Web sites. You bear all risks associated with the use of such content. If you choose
to purchase any products or services from a third party, the relationship is directly between
you and the third party. Oracle is not responsible for: (a) the quality of third-party products or
services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

3

Contents

1 Preface

About Customer Self-Service and eaSuite™ 11
About This Guide 12
Related Documentation 12

2 Overview of eaSuite SDK

Deploying and Customizing J2EE Applications 15
Implementing a User Management Framework 15
Content Access 16
Line Item Dispute and Annotation 17
Auditing Data Streams 18
Building Custom Jobs 19
Charting 19

3 The Sample J2EE Application

About Sample 21
Customizing Sample 21
eStatement Manager SDK Specification 22

User Management 22

Content Access 22

Audit to Verify 23

Shell Commands for Custom Jobs 23

Line Item Dispute and Annotation 23

Hierarchy 23

Charting 23

Other 24

Contents

4 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

4 User Management

Overview 25

What is a User Management Framework? 25

Goals of the Oracle User Management Framework 26

Planning Your User Management Framework 26

About the Sample J2EE Applications 28
APIs for User Management 31

Application Programming Interfaces (APIs) for User Management 31

IAccount and IAccount Resolver Packages 31

JNDI Packages for Common Directory Access (CDA) 32

Other User Management Packages 32

About IAccount 33

About IAccountResolver 36
Introduction to Directory Access 39

About Directory Access Services 39

Choosing a Directory Access Interface 41
Using the Common Directory Access (CDA) Framework 43

What is CDA? 43

Using Training as a Template 45

How does Training Use CDA? 48

Using IAccount with CDA for Other Tasks 56
Using the CDA Client 58

About the CDA Client 58

Starting the CDA Client 58

Command Parsing in the CDA Client 61

Creating and Populating a Directory Information Tree (DIT) 62

Navigating a Directory Information Tree 65

Working with Directory Contexts 65

Contents

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

5

Working with User Attributes 67

Integrating With Existing User Management Systems 68
Using a Non-Directory Access Implementation 69

Using UMFsample as a Template 69

How does UMFsample Do Enrollment? 71

Creating an Application Based on UMFsample 75
Additional Reading Sources 94

LDAP: Lightweight Directory Access Protocol 94

JSP: Java Server Pages 94

JNDI: Java Naming and Directory Interface 94

5 Content Access

Planning Your Content Access Interface 95

About Content Access 95

Goals of Content Access 95

About XML, XSL, and XSLT 95
Introduction to Oracle Content Access 96

XML Views and Jobs since eStatement Manager 3.0 96

New XML Templates for Views and Jobs 97
Command Line Interface (CLI) to Scheduler (PWC) 98

com.edocs.pwc.cli.CLIScheduler -start <DDN> <jobname> 99

com.edocs.pwc.cli.CLIScheduler -list 103

com.edocs.pwc.cli.CLIScheduler -schedules 104
XML and eStatement Manager 104

About XML and eStatement Manager 104

Mapping a DDF to XML 105

Additional Reading about XML, XSL, and XSLT 106
Extracting Detail Data to the Database 107

About the Detail Extractor Job 107

Contents

6 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

Customizing the Detail Extractor Job 108
Transforming Data with XSLT 111

About the XSLT View Type 111

Setting Up Your Environment for XSLT 112

Example: Downloading Data in Comma-Separated Values (CSV) Format 113
Extracting Data with XML Queries 114

About the XML Query View 114

Query Document Tag Definitions 115

Creating Custom XML Queries 115
Application Programming Interfaces for Content Access 117

Package com.edocs.app.user Description 117
Using Content Access APIs 118

Call User Methods in Correct Sequence 118

Retrieve and Present Statement Summaries 118

Retrieve and Present Statement Detail 121

Retrieve and Present XML 125

Record and Present Web-Time Activity 127
Element ID and Composition Hints 128

About Element ID 128

Syntax for Element ID 129

Tag Attributes for Element ID 130

Values for Composition Hints Language 131

DTD for Composition Hints Language 131
XML Templates for National Wireless 132

Detail Extractor 132

XSLT Download 136

XML Query View 137

Example DDF to XML Mapping 138

Contents

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

7

6 Line Item Dispute and Annotations

Introduction 141

Goals of Line Item Dispute and Annotation 141

Disputes and Annotations Compared 142
Components of Line Item Dispute and Annotation 143

Architectural Overview 143

Configuration Tasks 144

Composition Tasks 144

Production Tasks 144

Web Application Tasks 144

Viewing Disputes and Annotations in Sample 144
Configuring Dispute and Annotation Services 145

Configuring JMS Settings 145

Database Tables for Dispute and Annotation 146
Composition and Production for Dispute and Annotation 147

Composition and Production Architecture 147

Using Element ID 148

Compose XML and XSLT Templates for Detail Extractor 148

Compose XML Templates for XML Query Views 149

Create and Configure a Detail Extractor Job 151

Publish XML Query Dynamic Web Views 151
Web Application Components for Dispute and Annotation 152

Web Application Component Architecture 152

Manage Statement JSPs for Detail, Dispute, and Annotation 152

Using XTags with Dispute and Annotation JSPs 155
Application Programming Interfaces (API) for Dispute and Annotation 156

Data Flow for Annotation and Dispute Services 156

Package com.edocs.direct.annotation Description 156

Package com.edocs.direct.dispute Description 158

Contents

8 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

Using the Dispute and Annotation APIs 160

Retrieving Detail, Disputes, and Annotations with the Content Access API
(com.edocs.app.user) 161

Sample Files for Dispute and Annotation 161

Sample JSPs 161

XML Templates for National Wireless 185

7 Auditing Datastreams

Introduction to Auditing Data Streams 189

About Auditing Data for Presentment 189
APIs for Auditing Data Streams 190

Package com.edocs.app.verify Description 190

Process Flow for Verify Methods 190
Auditing Data Streams with the Verify API 192

Retrieve a List of All Applications 192

Retrieve a List of Indexed Volumes 193

Retrieve a List of Account Numbers 196

Retrieve Account Summary Information 198

Accept or Reject an Indexed Volume 200

Update Summary Information 202

8 Custom Jobs

About Custom Job Types 205

About Jobs and the Shell Command Task 205
Defining a New Job Type 205

Create the Job Type Script 206

Configuring Your New Job Type 213

Another Example of Defining a New Job Type 214

9 Charting

Introduction to Charting 217

Contents

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

9

About Charting in eStatement Manager 217

Components of Charting 218
Configuring Charting for Your Server 218

About Servers and Charting 218

About Fonts 219

Configuration Activity Diagram 219

Setting Display Devices and xvfb 219

Setting Display Permissions and xhost 220

Setting Display Awareness 221

Configuring a Headless Server for Charting 222
Composing Charts in Statements 222

About Charting in the Composer 222

Inserting a Chart Tag in the Composer 223

Naming Conventions for Charts 224

About Chart Tags in the ALF 224

About The Chart Properties File 224

About Simulating Charts 225
Customizing Chart Properties 225

About Customizing Charts 225

About Chart Attributes in the ALF 225

Customizing a Chart in the ALF 227

Customizing the Chart Properties File 227

Chart Type 228

Other Chart Properties 235

Default Chart Properties 241

Customizing Default Properties 245

Previewing Charts with com.edocs.app.chart.Simulator 245
Publishing Charts 247

Contents

10 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

About Publishing Charts 247

Before Publishing Charts 247

Publishing a Chart View 247

Viewing Charts in Statements 248
Designing Custom Charts with the Charting Servlet 248

About The Charting Servlet 248

Customizing Charter.java 249
Troubleshooting Charts 251

Charting Checklist 251

Common Problems and Known Issues 252

Troubleshooting Flowchart 254
Application Programming Interfaces (APIs) for Charting 255

Package com.edocs.app.chart Description 255

Class ChartClient 255

Class ChartData 257

Class Charter 258

Class Constants 259

Class PublisherCommon 259

Class PublisherWrapper 260

Class Simulator 260

Class Util 260
Default Properties and Attributes 261

ChartDefaults.properties 261

NW_LocSummary.ALF 273

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

11

 1 Preface

About Customer Self-Service and
eaSuite™
Oracle has developed the industry's most comprehensive software and services for deploying
Customer Self-Service solutions. eaSuite™ combines electronic presentment and payment (EPP),
order management, knowledge management, personalization and application integration technologies
to create an integrated, natural starting point for all customer service issues. eaSuite's unique
architecture leverages and preserves existing infrastructure and data, and offers unparalleled
scalability for the most demanding applications. With deployments across the healthcare, financial
services, energy, retail, and communications industries, and the public sector, eaSuite powers some of
the world's largest and most demanding customer self-service applications. eaSuite is a standards-
based, feature rich, and highly scalable platform, that delivers the lowest total cost of ownership of
any self-service solution available.

eaSuite consists of four product families:

 Electronic Presentment and Payment (EPP) Applications

 Advanced Interactivity Applications

 Enterprise Productivity Applications

 Development Tools

Electronic Presentment and Payment (EPP) Applications are the foundation of Oracle’s
Customer Self-Service solution. They provide the core integration infrastructure between
organizations’ backend transactional systems and end users, as well as rich e-billing, e-invoicing, and
e-statement functionality. Designed to meet the rigorous demands of the most technologically
advanced organizations, these applications power Customer Self-Service by managing transactional
data and by enabling payments and account distribution.

 eStatement Manager™ is the core infrastructure of enterprise Customer Self-Service solutions
for organizations large and small with special emphasis on meeting the needs of organizations
with large numbers of customers, high data volumes and extensive integration with systems and
business processes across the enterprise. Organizations use eStatement Manager with its data
access layer, composition engine, and security, enrollment and logging framework to power
complex Customer Self-Service applications.

 ePayment Manager™ is the electronic payment solution that decreases payment processing
costs, accelerates receivables and improves operational efficiency. EPayment Manager is a
complete payment scheduling and warehousing system with real-time and batch connections to
payment gateways for Automated Clearing House (ACH) and credit card payments, and payments
via various payment processing service providers.

Oracle’s Development Tools are visual development environments for designing and configuring
Oracle’s Customer Self-Service solutions. The Configuration Tools encompass data and rules

Preface About This Guide

12 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

management, workflow authoring, systems integration, and a software development kit that makes it
easy to create customer and employee-facing self-service applications leveraging eaSuite.

About This Guide
The Oracle Software Developers Kit allows developers to write custom code against Oracle
applications. This SDK guide is intended for Oracle system integrator partners, senior developers with
an Oracle client company, and Oracle Professional Services representatives.

This guide is intended for The SDK assumes you have:

 Completed a Statement Mastering Plan

 Installed and configured eStatement Manager and the sample application Sample

This SDK assumes in-depth understanding of and practical experience with:

 eStatement Manager system architecture, installation, deployment, application design, and
administration

 Java 2 Enterprise Edition (J2EE), Enterprise JavaBeans (EJBs), servlets, and JSPs

 Packaging and deploying J2EE applications for WebLogic or WebSphere

 Directory services including the Java Naming Directory Interface (JNDI) and the Lightweight
Directory Access Protocol (LDAP)

 HTML and XML, Web server administration, and Web browsers

Related Documentation
This guide is part of the eStatement Manager documentation set. For more information about
using eStatement Manager, see the following guides:

Print Document Description

Installation Guide for Oracle
Siebel eStatement Manager

How to install and configure eStatement
Manager in a distributed environment.

Migration Guide for Oracle Siebel
eaSuite

How to migrate an existing eStatement
implementation to the current version.

Deploying and Customizing J2EE
Applications Guide for Oracle
Siebel eStatement Manager

How to customize J2EE Web applications for
deployment with the eaSuite.

Data Definition (DefTool) Guide
for Oracle Siebel eStatement
Manager

How to create data extraction and definition rules
for an eStatement Manager application with the
DefTool.

Presentation Design (Composer
Guide) for Oracle Siebel
eStatement Manager

How to design data presentment for an
eStatement Manager application with the
Composer.

Preface Related Documentation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

13

▪

Print Document Description

Administration Guide for Oracle
Siebel eStatement Manager

How to set up and run a live eStatement Manager
application in a J2EE environment.

Reporting Guide for Oracle Siebel
eStatement Manager

Describes the tasks required to use the reporting
analytics feature to create reports.

Troubleshooting Guide for Oracle
Siebel eaSuite

How to initiate the troubleshooting process,
identify critical information about what was
happening in your system and applications when
the problem occurred, and suggests ways to
resolve the problem.

Preface Related Documentation

14 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

.

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

15

 2 Overview of eaSuite SDK

Deploying and Customizing J2EE
Applications
Information about deploying and customizing J2EE applications is contained in the Deploying and
Customizing J2EE Applications Guide for Oracle Siebel eStatement Manager. The guide contains details
about:

 The components of a J2EE Web application for eStatement Manager, which can include customized
JSPs, HTML pages, EJBs, and Java APIs and class files.

 The components of an eStatement Manager application (dataset), which includes a data source
file, data definition and application logic files, and HTML templates.

 Introduction to the customizable Web application Sample.

 How to build a custom Web application for eStatement Manager by customizing sample
components of Sample and Training.

 How to deploy your custom Web application to your application server.

Implementing a User Management
Framework
The Implementing a user management framework chapter describes:

 Concepts in naming services and directory access.

 Core decisions surrounding customer login and data access.

 How to plan and select a directory framework for user management.

 How to build and manage a hierarchical user profile schema with the Oracle Common Directory
Access (CDA) framework.

 How to implement non-directory access enrollment models.

About User Management

Defines the concepts and goals of the Oracle User Management Framework and identifies the core
decisions surrounding customer login and data access needed to plan and design your user
management framework. Describes components of the Sample J2EE Applications shipped with
eStatement Manager, particularly Java Server Pages (JSP) and servlets in the sample Web
applications. Describes how to authenticate user identity and add and modify user accounts using the
IAccount interface for Oracle enrollment. Also defines the core interfaces and methods in the
package com.edocs.enrollment.user, including IAccount and IAccountResolver, and
describes methods for contexts, objects and attributes, searching, and authentication.

Overview of eaSuite SDK Content Access

16 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Introduction to Directory Access

Provides basic concepts and definitions for directory access services, naming systems, naming
services, and namespaces, directory contexts, directory information trees (DIT), directory entries,
objects, and attributes, directory schema, and distinguished names. Choosing a Directory Access
Interface compares features of the Java Naming and Directory Interface™ (JNDI), Lightweight
Directory Access Protocol (LDAP), and Common Directory Access (CDA) Interface.

Using the Common Directory Access (CDA) Framework

Introduces the Oracle user management framework shipped with eStatement Manager, including the
Oracle default CDA schema and DIT used in the Training Web application. Discusses how to deploy
and configure Training as a template with National Wireless. Defines how Training uses CDA and
outlines the Training CDA process flow. Describes how to modify the CDA EJB for your application and
how to use IAccount with CDA to obtain attributes and their values, manage user levels, and search
for attributes.

Using the CDA Client

Using the CDA Client introduces the Oracle tool for creating and managing directory schemas.
Describes how to start the CDA Client and parse CDA commands, navigate within a DIT, and work with
directory contexts and user attributes. Also discusses how to integrate with existing user management
systems by exporting a schema as LDIF and importing an LDIF schema into CDA.

Using a Non-Directory Access Implementation

Discusses implementing the Oracle user management framework outside of CDA. Describes how to
deploy and configure UMFsample as a Template with National Wireless. Defines how UMFsample does
enrollment and outlines the UMFsample Enrollment Process Flow. Also discusses how to create a
custom an application based on UMFsample by modifying the enrollment source files, defining a
custom enrollment EJB, and building the new custom version of UMFSample

Two Appendices suggest additional background reading and describe the User Management
Framework API packages shipped with eStatement Manager.

Content Access
The content access chapter describes:

 How to plan and design data access for retrieving and presenting statements

 How to customize summary and detail Web views

 How to record and present Web-time activity, such as when a customer last viewed a statement

Planning Your Content Access Interface

Planning Your Content Access Interface defines the concepts and goals of content access and provides
basic concepts about XML, XSL, and XSLT as used with eStatement Manager.

Overview of eaSuite SDK Line Item Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

17

▪

Introduction to Oracle Content Access

Describes the new XML views and jobs for eStatement Manager and the XML Templates available to
customize input and output.

XML and eStatement Manager

Discusses how eStatement Manager uses XML, how to map a DDF to XML, and provides further
reading about XML, XSL, and XSLT.

Extracting Detail Data to the Database

Describes the Detail Extractor Job and how to customize the XML templates provided.

Transforming Data with XSLT

Describes the XSLT View Type and how to customize the XML templates provided.

Extracting Data with XML Queries

Describes the XML Query View and how to customize the XML templates provided.

Application Programming Interfaces (API) for Content Access

Provides a description of package com.edocs.app.user methods, including the User and UserMain
methods.

Using Content Access APIs

Describes how to use Content Access APIs by calling user methods in correct sequence to retrieve and
present statement summaries, retrieve and present statement detail, retrieve and present XML, and
record and present Web-time activity.

Element ID and Composition Hints

Defines Element ID and Composition Hints, the rich language of XML metadata provided with
eStatement Manager. Defines syntax and tag attributes for Element ID and defines values and DTD for
the Composition Hints language.

Appendix A lists sample code for the National Wireless XML Templates for Detail Extractor, XSLT View,
XML Query View, and an example DDF to XML Mapping.

Line Item Dispute and Annotation
The line item dispute and annotation chapter describes:

 How to extract and retrieve line item detail

 How to dispute all or part of a line item

Overview of eaSuite SDK Auditing Data Streams

18 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 How to add annotations to line items

Introduction to Line Item Dispute and Annotation

Defines goals of adding disputes and annotations to eStatement Manager statement data, and
compares the features of disputes with annotations.

Components of Line Item Dispute and Annotation

Provides an architectural overview of dispute and annotation features and components and outlines
the task flow of configuration, composition, production, and Web application tasks. Also gives step-by-
step procedures for viewing examples of National Wireless sample data in the Sample Web application,
both shipped with eStatement Manager.

Configuring Dispute and Annotation Services

Defines JMS settings and database tables required for dispute and annotation.

Composition and Production for Dispute and Annotation

Provides an architectural overview of composition and production components, including Element ID,
edit XSLT templates for Detail Extractor and XML Query views, how to create and configure a Detail
Extractor job and publish three required XML Query dynamic Web views.

Web Application Components for Dispute and Annotation

Provides an architectural overview of Web application components, including the Manage Statement
JSPs for line item detail, dispute, and annotation. Describes how to use Apache XTags with Dispute
and Annotation JSPs.

Application Programming Interfaces (API) for Dispute and Annotation

Gives an overview of data flow for Annotation and Dispute Services. Defines the main classes and
methods in the packages com.edocs.direct.dispute and com.edocs,direct.annotation,
including the submit and getDocument methods.

Using the Dispute and Annotation APIs

Implementing Line Item Dispute and Annotation discusses the APIs needed to submit, retrieve,
update, and delete disputes and annotations, including an overview of retrieving line item detail with
the Content Access API com.edocs.user.

Appendix A lists Sample JSPs and National Wireless XML templates for dispute and annotation.

Auditing Data Streams
The auditing data streams chapter describes:

Overview of eaSuite SDK Building Custom Jobs

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

19

▪

 How to create an audit trail to review, accept, or reject a volume of statement data before
presentment

 How to query which applications are deployed on an eStatement Manager server

Introduction to Auditing Data Streams

Describes when and why to audit data streams of online statements before presentment with the
Verify API.

Using the Verify API

Defines Verify methods and signatures to retrieve a list of all applications, retrieve a list of indexed
volumes, retrieve a list of account numbers, retrieve account summary information, accept or reject
an indexed volume, and update summary information.

Building Custom Jobs
Describes when and why to customize a Command Center job type with the Shell Command Task, and
provides examples of how to script and configure your new job type.

The custom jobs chapter describes:

 How to add custom job types to the Oracle Command Center with shell commands

 How to customize and schedule Command Center jobs and tasks

Charting
The charting chapter describes:

 How to present statement data as a graphical chart in a dynamic HTML page

 How to customize the eStatement Manager charting servlet

Introduction to Charting

Gives an overview of data flow and components for formatting statement data as a graphical chart in
a dynamic HTML page.

Configuring Charting for Your Server

Discusses the procedures for configuring display devices and permissions, including how to configure a
“headless” server (without a dedicated display) for charting.

Overview of eaSuite SDK Charting

20 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Composing Charts in Statements

Describes how to use the Composer to create an Application Logic File (ALF) and a chart properties file
to display charts in statements, and how to simulate the appearance of your published chart at
runtime with the Simulator tool.

Customizing Chart Properties

Describes how to adjust chart settings in ALF attributes and chart properties, and how to preview your
customized chart.

Publishing Charts

Describes how to create and configure a Chart view in the Command Center, and how to test chart
viewing in your Web application.

Designing Custom Charts with the Charting Servlet

Discusses the default charting servlet, charting.java, shipped with eStatement Manager and
provides suggestions and tips for writing your own custom chart servlet and integrating it into your
Web application.

Troubleshooting Charts

Lists solutions to common problems with charting.

Application Programming Interfaces (APIs) for Charting

Defines the main classes and methods in the package com.edocs.app.charting, including the
chartClient and chartData, Charter, Publisher, and Simulator classes.

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

21

3 The Sample J2EE Application
About Sample
The Sample EAR file contains sample code components to demonstrate the features of eStatement
Manager. For a list of the components in Sample, see the Deploying and Customizing J2EE
Applications Guide for Oracle Siebel eStatement Manager.

Customizing Sample
Depending on what you plan to customize, you will work with one or more of the JAR files shown in
this diagram.

The Sample J2EE Application eStatement Manager SDK Specification

22 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

eStatement Manager SDK Specification

User Management
com.edocs.app provides the interface LoginRequired and base servlet classes for eStatement
Manager. Class App is the base class for all eStatement Manager application servlets. Class
AppConstant holds string fields for request attributes. Class AppServlet is a servlet that extracts
and dispatches the name of the APP requested. Class LoginApp is the base class for login application
servlets, providing session-based management of IAccount.

com.edocs.app.enrollment provides utility classes for enrollment and default implementations of
Login and Logout servlets.

com.edocs.enrollment provides a set of utility classes and exceptions to support user
authentication with IAccount. Interface EnrollmentConstants supports implementation of the
class AccountUtils in com.edocs.enrollment.user. Class Encrypt provides a method to
encrypt a user ID with a password. Class NameValue represents an attribute as a name/value pair,
manipulated by the helper class Parameters.

com.edocs.enrollment.user provides interfaces and classes for Oracle user management
framework. Includes two primary interfaces. IAccount defines directory services for user enrollment
and authentication. IAccountResolver provides a batch interface for retrieving attributes for a
directory context, for example to return the e-mail address for an account number.

com.edocs.enrollment.user.jndi provides an implementation of the IAccount interface, which
accesses Oracle’s Common Directory Access (CDA). Includes the interface JNDIAccountAttributes
and classes JNDIAccount, Login, and JNDIAccountResolver. Intended for advanced application
development.

com.edocs.jndi.cda provides an interface and classes for implementations of Common Directory
Access (CDA), the Oracle limited implementation of an LDAP-like JNDI service provider. Includes the
interface CDAConstants and classes CDANameParser, CDAFactory, and cdaURLContextFactory.

com.edocs.jndi.cda.cli provides the command-line interface to CDA, Oracle’s Common Directory
Access. This tool provides the ability to create and manage directory schemas.

com.edocs.services.session provides the interface ISession and classes to obtain and return
the Oracle Session object of a servlet when com.edocs.app calls App.getSession.

Content Access
com.edocs.app.user provides classes User and UserMain for access to statement summary and
detail. The User class is the content access interface to the eStatement Manager core. Its methods
retrieve and send statement data for a given user account, as well as sorting, subtotaling, and
updating optional fields at presentment. Class UserMain implements two interfaces. The interface
com.edocs.app.LoginRequired informs the Oracle servlet framework that the requesting client
must authenticate itself before accessing UserMain. The interface Servlet defines basic methods that
any servlet must implement. Its methods doGet and doPost support, respectively, HTTP requests for
GET and POST.

The Sample J2EE Application eStatement Manager SDK Specification

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

23

▪

Audit to Verify
com.edocs.app.verify provides the Verify class and methods for auditing indexed volumes of data
before releasing them for presentment. getIndexedVolumeList retrieves a list of indexed volumes
available for audit, while getAccountList retrieves all the account numbers in a volume.
getDDNList retrieves all DDNs. Two signatures of getHitList retrieve all Description items either
for a given volume, or for a given account. acceptIndexedVolume or rejectIndexedVolume
respectively accept or reject a volume for presentment to customers. updateDescriptionInfo
supports updates to the optional information field (Y_#) on a statement page.

Shell Commands for Custom Jobs
com.edocs.tasks.shellcmd provides the ShellCmdTask class as a task that executes an external
shell command, for example to create custom Command Center jobs.

Line Item Dispute and Annotation
com.edocs.direct.annotation provides the Annotation class and methods submit and
getDocument to allow users to create, update, or cancel an annotation to line item detail, and to
retrieve annotation data from the database.

com.edocs.direct.dispute provides the Dispute class and methods submit and getDocument
to allow users to submit a dispute to line item detail, and to retrieve disputes from the database.

Hierarchy
com.edocs.hierarchy provides an interface to define the values of constants for hierarchy fields,
and utility classes for creating a hierarchy as a directory information tree (DIT).

com.edocs.hierarchy.app provides servlet classes to extend and override the example servlet
classes in com.edocs.app for user login and content access to account data mapped to the
hierarchy.

com.edocs.hierarchy.navigate provides an abstract interface and sample implementation class
to filter and display content in the Hierarchy Manager.

com.edocs.hierarchy.render provides an interface and classes to design and display the user
interface of the hierarchy console as HTML.

com.edocs.hierarchy.taglib provides a custom tag library of JSP tags for presenting hierarchy
data.

Charting
com.edocs.app.chart Charting in eStatement Manager is achieved using third party Kavachart's
charting utility, an Oracle wrapper to set and interpret chart properties, and by extending the
eStatement Manager publisher to accept chart views.

The Sample J2EE Application eStatement Manager SDK Specification

24 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Other
com.edocs.common.web.validation Implements the class ValidatorBean to support validation
of input to JSP pages. Bean methods capture, set, validate, and write the list of legal and illegal
parameter names and values in a ServletRequest object.

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

25

4 User Management

Overview

What is a User Management Framework?
Online account management provides users, or customers, with securely authenticated access to
online statements. Defining a framework for managing account and authentication information allows
eStatement Manager to present online statements independently of where statement data is stored or
how it is retrieved. This abstraction is the purpose of the user management framework (UMF).

The UMF defines accounts and authenticates login identity for customers who enroll with an On-Line
Account Management system, in this case eStatement Manager.

Some of the most popular approaches to user management are based on the concept of directory
access—programming interfaces to a flexibly structured database optimized for live retrieval. For
more information on directory access, see Chapter 4, “User Management.”

In deploying an Oracle solution, the user management framework integrates with the content access
framework to retrieve and present account data for each enrolled customer. For more information on
content access, see Chapter 5, Content Access.

As the foundation of each deployment, a user management framework is designed for customization.
The customized code of a properly implemented project will integrate seamlessly with Oracle core
software. The framework itself is not specific to any deployment, and should not be modified for any
specific project.

User Management Overview

26 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Goals of the Oracle User Management Framework
The Oracle user management framework supports these core features:

 Add, delete, modify, and search for user profiles

 Authenticate user identity at login

A customized user management framework can also integrate with existing systems, such as
importing or exporting directory schemas with an outside directory service such as LDAP.

Planning Your User Management Framework
This guide introduces the basic tools, concepts, and tasks for implementing a user management
framework for eStatement Manager using either its Common Directory Access (CDA) interface or a
simple non-directory interface. Both implementations described in this guide interact with the common
Oracle UMF interface called IAccount.

However, these implementations may not meet all of your client requirements. Fortunately, the open
design of Oracle user management allows an application designer or developer to modify or even
replace the UMF implementation for a deployed application without extensive recoding.

An application designer faces two main decisions when deciding to modify or replace the IAccount
interface: login and account access. Each set of requirements may involve business logic,
application design, and Web development tasks to customize the application.

Login Decisions
Login decisions include:

 Will eStatement Manager authenticate users without integrating with a separate client
authentication system?

 Must the user present a user ID and password at login?

 Will eStatement Manager use its own default encryption, without integrating with client encryption
systems?

User Management Overview

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

27

▪

Doesn't integrate with
existing authentication

infrastructure?

Replace Login
class files &

associated JSPs

Must use username/
password at login?

Can use eStatement's
default encryption?

Use CDA and
"brand" default

JSPs

No

No

No

If the answer to each of these login questions is YES, then the user management framework can use
IAccount and CDA “out of the box.” If the answer to any question is NO, then some or all of the login
logic must be replaced. This can involve login class files, any associated JSPs, the corresponding
account implementing EJBs, and any single sign-on implementations.

Access Decisions
Access decisions include:

 Is account data to be stored in eStatement Manager without integrating with an existing client
data source?

 Is the account data of small to medium volume and modeled in a hierarchical directory structure?

 Is there an easily definable schema and directory information tree?

If the answer to each of these access questions is YES, then the user management framework can use
IAccount and CDA “out of the box.” If the answer to any question is NO, then some or all of the
access logic must be replaced, involving a JNDI service provider interface (SPI) and any associated
JSPs.

User Management Overview

28 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Each of these decision trees may involve tasks in business logic, application design, or Web
development. For example, any implementation requires business logic skills to analyze and map
existing account structure to an x.500 directory schema. If the data structure is X.500 compatible, the
resulting schema must then be implemented using either CDA or LDAP. If not, IAccountand possibly
IAccountResolver must be implemented as interfaces to the custom data source.

Login decisions must also be analyzed, and login logic modified depending on the results. Finally, the
result of all of these processes determines the extent of custom JSP code and servlet configuration for
each Web application.

About the Sample J2EE Applications
Oracle provides several sample J2EE applications for deployment and as a base for customization.
Training is based on the default eStatement Manager CDA schema. UMFsample is based on
accessing a simple database table for enrollment information.

User Management Overview

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

29

▪

Generic Java Server Pages (JSPs)
The sample applications generally have the following main Java Server Pages (JSPs). These can, and
should, be modified and extended to customize your implementation.

 UserLogin.jsp takes customer input for login fields, for example user name and password, and
posts it to the User servlet for authentication.

 user_subscribe.jsp checks to see if the customer is logged in. If so, the page presents an
editable set of user data, for example user name and password, to view or to change. If the user
is not logged in, the page presents a login screen to create a new account.

 user_update.jsp is similar to user_subscribe.jsp, except it is used only to view or change
data.

 HistoryList.jsp retrieves summary data through the User servlet to present a customer with
a list of statement summaries. For more information, see Chapter 5, Content Access.

 Detail.jsp retrieves data through the User servlet to present a customer with a statement
detail. For more information, see Chapter 5, Content Access.

 Servlets in the Sample Web Applications

Two primary servlets support the JSPs of an eStatement Manager Web application. These servlets are
deployed in the web.xml file on the application server.

 UserServlet checks to see if the customer is already logged in when requesting a statement
summary (HistoryList.jsp) or detail (Detail.jsp). If so, the customer receives the
requested page directly; if not, the servlet redirects the request to the login page.

 UserEnrollmentServlet does not check login, allowing a new customer to go directly to the
enrollment page (user_subscribe.jsp) to sign up for online account management. This servlet
also supports customer updates to their existing profiles through user_update.jsp.

Authenticate User Identity
In the sample Web applications, the Java Server Page UserLogin.jsp authenticates the identity of a
user against the eStatement Manager database. The entry point for each Web application is the User
servlet in the web.xml file, which implements the interface com.edocs.app.LogInRequired to
present UserLogin.jsp.

When the customer enters login data (typically user ID and password), the LoginRoot of the User
servlet passes this information to the Login class for authentication against the eStatement Manager
user database. If the login data matches an existing user profile, UserLogin.jsp creates an
IAccount object so that an identification cookie can be placed on the user’s computer for the session.
If there is no match for the login data, LogInRequired throws an exception and UserLogin.jsp
presents an error message.

User Management Overview

30 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Retrieves data for
statement detail

view

Retrieves data for
statement

summary view

UserServlet

Yes NoIs user logged in?

URL using Detail.jspURL using HistoryList.jsp

What JSP did the URL
request?

Detail.jspHistoryList.jsp

Supports user
login

UserLogin.jsp

Add and Modify User Accounts
In the sample Web applications, the Java Server Page user_subscribe.jsp can add a new user to
the database. To add a new user, user_subscribe.jsp posts user input to the constructor
com.edocs.app.enrollment.SubscribeApp via the UserEnrollmentServlet. To modify an
existing user, user_update.jsp posts user input to the constructor
com.edocs.app.enrollment.UpdateApp via the UserEnrollmentServlet.

User Management APIs for User Management

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

31

▪

APIs for User Management

UserEnrollmentServlet

app class for changes
to enrollment

updateApp

app class for new
enrollment

subscribeApp

URL requesting
user_update.jsp

URL requesting
user_subscribe.jsp

Request subscribe or
update?

user_update,jsp user_subscribe,jsp

Application Programming Interfaces (APIs) for User Management
This section provides a package description summary for each of the APIs required for user
management. For more information on any package, see the Javadoc.

IAccount and IAccount Resolver Packages

Package com.edocs.enrollment.user Description
Provides interfaces and classes for Oracle enrollment and authentication in implementations of the
CDA user management framework. It includes two primary interfaces. IAccount defines directory
services for CDA user enrollment and authentication. IAccountResolver retrieves attributes from a
given match in the same directory context, for example to return the e-mail address for an account
number.

User Management APIs for User Management

32 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Also includes the classes AccountBean, AccountImpl, AccountNameParser,
AccountResolverBean, AccountResolverImpl, AccountUtils, IAccountFactory, and
IAccountResolverFactory.

JNDI Packages for Common Directory Access (CDA)

Package com.edocs.jndi.cda Description
Provides an interface and classes for implementations of Common Directory Access (CDA), the Oracle
emulation of an LDAP service provider. Includes the interface CDAConstants and classes
CDADataSourceFactory, CDANameParser, CDAOracleFactory, and cdaURLContextFactory.

Package com.edocs.jndi.cda.cli Description
Provides the command-line interface to the CDA Client, the Oracle tool for creating and managing
directory schemas. Includes the interfaces Command and LDIFParserConstants, and classes
ASCII_CharStream, LDIFParserTokenManager, Main, and Token. Also includes a
ParseException and the TokenMgrError.

Package com.edocs.enrollment.user.jndi Description
Provides an interface and classes for JNDI implementations of the CDA interface IAccount. Includes
the interface JNDIAccountAttributes and classes JNDIAccount, Login, and
JNDIAccountResolver. Intended for advanced application development.

Other User Management Packages

Package com.edocs.app Description
Provides the interface LoginRequired and base servlet classes for eStatement Manager. Class App is
the base class for all eStatement Manager application servlets. Class AppConstant holds string fields
for request attributes. Class AppServlet is an HTTP servlet that extracts and dispatches the name of
the App requested. LoginApp is the base class for login application servlets, providing session-based
management of IAccount.

TIP: IAccount is the primary interface for implementing a user management framework in the
eaSuite.

Package com.edocs.app.enrollment Description
Provides utility classes for enrollment. Includes classes EnrollmentAppConstants,
HttpRequestParameters, Login, Logout, SubscribeApp, UpdateApp.

Package com.edocs.enrollment Description
Provides a static interface and classes to store and manipulate user enrollment data, and to support
user authentication with IAccount. Interface EnrollmentConstants supports implementation of
the class AccountUtils in com.edocs.enrollment.user. Class Encrypt provides a method to
encrypt a user ID with a password. Class NameValue represents an attribute as a name/value pair,
manipulated by the helper class Parameters.

User Management APIs for User Management

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

33

▪

The method IAccount.authenticate takes a parameter of a NameValue result, and may throw
authentication errors of AccountNotFoundException, DuplicateEnrollmentException,
ExpiredAccountException, InvalidAccountException, InvalidLoginException, and
NoSuchAccountException.

Package com.edocs.services.session Description
Provides the interface ISession and classes to obtain and return the Session object of a servlet
when com.edocs.app calls App.getSession. Also includes NoSuchBindingException and
SessionExpiredException.

About IAccount
com.edocs.enrollment.user.IAccount is a public interface extending the Java public interface
javax.ejb.EJBObject. For example, the IAccount interface can support Oracle enrollment and
authentication using CDA as a JNDI interface to any X.500 type directory. It can also support access
to non-directory enrollment models. Oracle refers to an implementation of the IAccount interface as
an enrollment model, which requires:

 An implementation of IAccountImpl as an IAccount class object.

 An implementation of IAccountResolverImpl as an IAccountResolver class object.

 An implementation of a Login class to instantiate IAccount for a given user.

Developers working at this level need to understand the implementation of the underlying database or
directory service. For example, Training uses the CDA framework that requires the Oracle JNDI
implementation of IAccount, JNDIAccount, to access and modify the directory. Other customized
versions of IAccount may dispense with most or all of the methods to handle authentication on their
own, such as UMFsample which uses a separate implementation of IAccount called SampleAccount
to access and modify an enrollment table.

CAUTION: Custom implementations should not modify any attribute, string, or array object passed as
a parameter to any method.

The following are some of the features the IAccount methods support:

 Authenticate users

 Enroll and update users

 Manage user levels (if any are defined)

 Obtain attribute information for a user

 Search for users based on defined attributes

The IAccount methods you can use for these features are described in the sections that follow. For a
complete listing of IAccount methods, see the Javadoc. For more details on JNDI, see “Additional
Reading Sources” on page 94.

Required Imports
Any JSP using IAccount must import these base classes and packages:

java.util.*

User Management APIs for User Management

34 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

javax.naming.*

javax.naming.directory.*

com.edocs.app.App

com.edocs.enrollment.*

com.edocs.enrollment.user.*

com.edocs.app.enrollment.EnrollmentAppConstant

Names as Arguments
Each name passed as an argument to an IAccount method is relative to that context. The empty
name is used to name the context itself. The name parameter may never be null. Names are always
represented as String objects, so that each client application must create and parse names to be
consistent with any customized implementation.

Exceptions in IAccount
At a minimum, all IAccount methods throw NamingException or any of its subclasses or a
RemoteException. As for JNDI, API methods only define NamingException in the throw clause,
but when the clients can expect specific subclass exceptions thrown for certain conditions it is
documented in these subclass exceptions API's method comments.

Implementations may throw OperationNotSupportedException in any IAccount APIs such that
a working subset of methods remains.

CAUTION: CDA relies on database constraints when throwing exceptions. For example,
CreateSubcontext name may throw NamingException instead of
javax.naming.NameAlreadyBoundException.

Methods for Contexts
 String composeName(String name, String prefix)

Composes the name of this context with a name relative to this context.

 void rename(String oldName, String newName)

Renames and/or moves a context from oldName to newName.

 String getNameInNamespace()

Retrieves the full name of this context within its own namespace.

 void setContext(String name)

Sets the underlying context to the node identified by the name relative to the current context.

 void switchContext(String name)

Sets the underlying context to the node identified by the absolute name within a current
namespace.

 void resetContext()

Resets the underlying context to the home context.

 void createSubcontext(String name, Attributes attrs)

User Management APIs for User Management

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

35

▪

Creates and binds a new context, along with associated attributes.

 void destroySubcontext(String name)

Destroys the named context and removes it from the namespace.

 void close()

Releases all resources immediately, instead of waiting for the garbage collector.

Methods for Objects and Attributes
 Attributes getAttributes(String name, String[] attrIds)

Retrieves selected attributes associated with a named object.

 void modifyAttributes(String name, int mod_op, Attributes attrs)

Modify specified attributes associated with a named object.

 void modifyAttributes(String name, ModificationItem[] mods)

Modify attributes associated with a named object in the specified order.

JNDIAccountAttributes for GetAttributes

JNDIAccountAttributes is a public interface in the package
com.edocs.enrollment.user.jndi. These attributes provide data retrieval parameters for the
getAttributes methods of IAccount.

Field Detail Description

JNDI_DN public static final
 JNDI_DNString

Retrieves the name value pair for the
attribute named dn.

JNDI_UID public static final
 JNDI_UIDString

Retrieves the name value pair for the
attribute named uid.

JNDI_USER_PASSWORD public static final

JNDI_USER_PASSWORD
String

Retrieves the name value pair for the
attribute named userPassword.

http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html

User Management APIs for User Management

36 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

JNDI_DDN public static final
 JNDI_DDNString

Retrieves the name value pair for the
attribute named ddn.

JNDI_ACCOUNT_NUMBER public static final

JNDI_ACCOUNT_NUMBER
String

Retrieves the name value pair for the
attribute named accountNumber.

JNDI_USER_EMAIL public static final

JNDI_USER_EMAIL
String

Retrieves the name value pair for the
attribute named mail.

Methods for Searching
 String[] list(String name)

Returns an array of object names bound in the named context.

 SearchResult[] search(String name, Attributes matchingAttributes, String[]
attributesToReturn)

Retrieves names and attributes for objects matching search criteria.

Methods for Authentication
 void authenticate(Hashtable env)

Authenticates an enrollment context.

 void reAuthenticate(Hashtable env)

Re-authenticates an IAccount object.

About IAccountResolver
IAccountResolver is the batch access interface to the enrollment information. IAccountResolver
can retrieve enrollment attributes from a given match in the same top-level context, for example to
return the e-mail address for an account number in order to send batch e-mail to users. Its IAccount
analogue is:

IAccount.search(java.lang.String, javax.naming.directory.Attributes,
java.lang.String[]).

IAccountResolver is useful when:

 The IAccount interface is otherwise not needed.

http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html

User Management APIs for User Management

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

37

▪

 A search is not possible without fixating a schema.

 The IAccountResolver implementation is easier to optimize by itself.

 The IAccountResolver implementation must return custom objects.

This method retrieves attributes from objects matching the search criteria, for example:

search(Attributes matchingAttributes, String[] attributesToReturn)

Note: This more general method is intended for advanced application developers. Rather than use
IAccount directly, advanced implementations can extend the IAccountResolver class to create
their own version of IAccount, or extend the base adapter class AccountResolverImpl.

Two examples of its use are the following job types in the eStatement Manager Command Center:

 Detail Extractor

 Email Notification

For each of these jobs, you need to specify the IAccountResolver enrollment model in the job
configuration. For more information about the Command Center and its jobs, see the Administration
Guide for Oracle Siebel eStatement Manager.

When the above Email Notification job is run, a routine is eventually called that gets the Email
addresses by the account numbers to send any notification emails.

Example
private void sendUnSentMails(MailQueueObject[]
mailQueueObject) throws Exception {

 if(emailResolver == null)

 throw new Exception("Email resolver bean is not
available");

 setup();

 InputStream is = null;

 IMerger merger = null;

 String _viewType="HTML";

 for(int i =0; i < mailQueueObject.length; i ++)

 {

 String[] emailList =
emailResolver.getEmailAddressesByAccountNumber(configProp.ddn,
 mailQueueObject[i].acctId);

 if(emailList != null && emailList.length != 0)

 {

 final String _ddn = configProp.ddn;

 final String _docid = mailQueueObject[i].docId;

User Management APIs for User Management

38 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 final String _ddfPath = ddfFilePath;

 final String _alfPath = alfFilePath;

 final String _hints =

 hints.urlDecode(_ddn,_docid,getHintsString(_ddn,_docid));

 final String _sessionId = new
 java.rmi.server.UID().toString();

 String[] _accounts = new String[1];

 _accounts[0] = mailQueueObject[i].acctId;

 merger =

IMergerFactory.createByViewType(_viewType,_sessionId);

 HashMap hm = new HashMap();

 hm.put(IConstants.HINTS,_hints);

 IDistributedInputStream dis = merger.getRawDocument(
 _ddn,

 _accounts,

 _docid,

 _sessionId,

 hm,

 _alfPath,

 _ddfPath);

 is = new RemoteInputStream(dis, true);

 handleResults(mailQueueObject[i], is, emailList);

 try {

 resultq.nReqs = 1;

 handleResults ();

 }

 catch (Exception e) {

 // handle it serious error for this batch

 // Log it

 System.out.println(" error occured at
handleResults
 in sendUnSentMail"+ e);

 throw e;

 }

 }

User Management Introduction to Directory Access

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

39

▪

 else {

 if (DEBUG)

 System.out.println("null/empty email list, continuing");

 continue;

 }

 } // end for-loop

 }

Introduction to Directory Access

About Directory Access Services
A directory is a special form of database, or a group of objects organized in a hierarchical framework.
However, while a database is often optimized for writing, or storing, data, a directory is optimized for
the directory access service of retrieving data quickly and flexibly. For those new to directory
access, this section defines common terms and core concepts including naming systems and
namespaces, contexts, schemas and information trees, and distinguished names.

Naming Systems, Naming Services, and Namespaces
A naming system is a connected set of contexts of the same type (they have the same naming
convention) and provides a common set of operations. For example, a system that communicates
using the LDAP is a naming system.

A naming system provides a naming service to its customers for naming-related operations. A
naming service is accessed through its own interface. For example, the LDAP offers a naming service
that maps LDAP names to LDAP entries. A file system offers a naming service that maps filenames to
files and directories.

A namespace is the set of names in a naming system. For example, the UNIX file system has a
namespace consisting of all of the names of files and directories in that file system. The LDAP
namespace contains names of LDAP entries. A directory information tree (DIT) is one example of a
namespace.

Directory Contexts
A context is a set of name-to-object bindings. Every context has an associated naming convention. A
context provides a lookup (resolution) operation that returns the object and may provide operations
such as those for binding names, unbinding names, and listing bound names. A name in one context
object can be bound to another context object (called a subcontext) that has the same naming
convention.

For example, a file directory, such as /usr, in the UNIX file system is a context. A file directory
named relative to another file directory is a subcontext (some UNIX users refer to this as a
subdirectory). That is, in a file directory /usr/bin, the directory bin is a subcontext of usr. In
another example, an LDAP entry, such as c=us, is a context. An LDAP entry named relative to another

User Management Introduction to Directory Access

40 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

LDAP entry is a subcontext. For example, in the LDAP entry o=sun, c=us, the entry o=sun is a
subcontext of c=us.

CAUTION: Unlike LDAP, CDA does not support transactional contexts (a transaction updates two
directories, such as a payroll transfer involving a withdrawal from one data source and a deposit to
another). If an update operation fails, the content of the directory is unknown, although the tree will
remain stable and useable.

Directory Information Tree (DIT)
Directories typically arrange their objects in a hierarchy. For example, LDAP arranges all directory
objects in a tree, called a directory information tree (DIT). Within the DIT, an organization object,
for example, might contain group objects that might in turn contain person objects. When directory
objects are arranged in this way, they serve as naming contexts as well as containers of attributes.

Directory Entries, Objects, and Attributes
A directory stores information as entries. Each entry is a named object containing one or more
attributes. Each attribute is a name/value pair of the syntax <name>=<value>, where the name
is a unique object identifier and the value has a defined syntax.

Directory Schema
A directory schema defines the rules for distinguished names, and for what attributes a directory
entry must or may not contain. A schema defines object classes of mandatory and optional
attributes, and every entry in the directory has an associated object class.

TIP: CDA does not enforce a directory schema as LDAP does. However, treating CDA like an LDAP
service minimizes code changes when migrating to LDAP. Oracle strongly recommends modeling a
CDA schema on LDAP and adhering to it.

Distinguished Names
A directory information tree organizes entries by distinguished name (DN). A distinguished name
concatenates attributes in a unique path from the named entry up to the root of the tree, separating
each attribute with a comma. For example, the distinguished name

cn=John Doe, ou=TS, o=edocs, c=us

implies the directory tree illustrated below.

User Management Introduction to Directory Access

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

41

▪

CAUTION: Distinguished names whose attributes contain a comma must be enclosed in either single
(') or double (") quotes.

Entries whose distinguished name contains the distinguished name of another entry as a suffix are
considered subentries in the hierarchy, making the namespace hierarchical.

Choosing a Directory Access Interface
Common directory access interfaces include the Microsoft Active Directory Service Interfaces (ADSI)
and the Lightweight Directory Access Protocol (LDAP). Oracle has developed its own directory
access interface, Common Directory Access (CDA), included with the eaSuite. All Oracle
applications use the Java Naming and Directory Interface™ (JNDI) to connect with directory
access. This section discusses JNDI, LDAP, and CDA and compares features to consider when choosing
a directory protocol.

The Java Naming and Directory Interface™

The Java Naming and Directory Interface™ (JNDI) is an industry standard extension to the Java™
platform, providing Java-enabled applications with a powerful and portable interface to enterprise
naming and directory services. As part of the Java Enterprise API set, JNDI can seamlessly connect
many and varied directory services. For more information about JNDI, see “Additional Reading
Sources” on page 94.

Lightweight Directory Access Protocol (LDAP)
The Lightweight Directory Access Protocol (LDAP) provides directory access to networked
databases. LDAP support is being implemented in Web browsers and e-mail programs that can query
an LDAP-compliant directory. LDAP is expected to provide a common method for searching e-mail

User Management Introduction to Directory Access

42 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

addresses on the Internet, eventually leading to global white pages. LDAP is a sibling protocol to HTTP
and FTP and uses the ldap:// prefix in its URL.

Based on the X.500 directory access model defined in 1988, LDAP improves performance by running
over TCP/IP or other “out-of-the-box” network transport; simplifying queries and other directory
operations; and encoding elements more efficiently to reduce code size and complexity. For more
information about LDAP, see “Additional Reading Sources” on page 94.

LDAP integrates with any existing infrastructure based on JNDI. To implement an LDAP solution for the
Oracle eaSuite, this SDK provides the APIs IAccount and JNDIAccountAttributes.

Common Directory Access (CDA) Interface
The Common Directory Access (CDA) interface was developed by Oracle as a self-contained subset
of LDAP that ships with eStatement Manager. Since LDAP servers are third-party solutions requiring
high cost and maintenance, CDA supports Oracle directory access for customers without an existing
directory access interface in place, or for deployments not requiring the advanced features available in
LDAP.

CDA allows developers to:

 Define a directory schema and attributes

 Create a hierarchical user management framework of small to medium volume

 Integrate customized Java Server Pages (JSPs) with your schema

Like LDAP, CDA integrates with any existing infrastructure based on JNDI. To implement a CDA
solution for the Oracle eaSuite, this SDK provides the APIs JNDIAccount and
JNDIAccountAttributes. For more information, see “Using the Common Directory Access (CDA)
Framework” on page 43.

User Management Using the Common Directory Access (CDA) Framework

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

43

▪

Comparing LDAP and CDA Features

Feature LDAP CDA CDA Notes

Add-on cost Yes No Ships with eStatement
Manager

Aliases Yes No Attributes can store
DirContext

APIs for read/write access Yes Yes

Attribute syntax Yes Limited

Character encoding of names Yes No

Directory information tree with
country at top, users at bottom

Yes Yes

Distinguished names Yes Yes

Enforced access control Yes No

Enforced schema Yes No

Entries as objects Yes No

Hierarchical enrollment model Yes Yes

LDAP extensions and referrals to
JNDI

Yes No

Map to hierarchical namespace Yes Yes

Native batch uploads (LDIF) Yes Yes

Replication Yes No

Search Filters Yes No Implements searches in
DirContext

Standalone directory protocol Yes No

Transactional context Yes No Ensure referential integrity

User authentication Yes No

Using the Common Directory Access
(CDA) Framework

What is CDA?
One part of the Oracle user management framework uses the Common Directory Access (CDA)
interface to emulate the core features of an LDAP service provider. CDA implements the JNDI public

User Management Using the Common Directory Access (CDA) Framework

44 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

interface DirContext to map a hierarchical namespace onto a directory. DirContext contains
methods for examining and updating attributes associated with objects, and for searching the
directory. For more information about DirContext, see the JNDI documentation provided by Sun at
http://java.sun.com .

Common Directory Access (CDA) supports hierarchical enrollment schemas that nest users in
subaccounts. The IAccount API emulates the JNDI interface DirContext to afford the flexibility and
power of JNDI and LDAP. The IAccount API replaces JNDI methods that return instances of
DirContext with similar methods that either return context names or reset context state inside the
account object.

The Default CDA Schema and DIT
The eStatement Manager default CDA schema extends the well-defined LDAP schema, in which each
object is a set of attributes. The DIT developer determines which attribute names the object, whether
objects may include themselves, and which attributes are required. Basic objects and their rules
include the following:

 Countries (c) may contain Organizations.

 Organizations (o) may contain Organization Units.

 Organization Units (ou) may nest three levels deep, and may not contain an Organization.

For more information on LDAP DIT rules, see “Additional Reading Sources” on page 94.

The CDA model supports attributes of the value types String and DirContext. CDA attribute and
value names are encoded to the ISO-8859-1 data standard only. Attribute names are limited to 255
characters and values are limited to 1024 characters, encoded according to the schema.

The Oracle default CDA schema is based on LDAP attributes defined by the RFC2256 standard, though
Oracle has added three attributes specific to eaSuite:

 accountNumber

 DDN

 status

For more information on default schema attributes, see the Javadoc.

Your schema will probably require additional attribute names, which you must add, or bind, to the
schema before giving a value to an attribute name. For more information about customizing schemas,
see “Using the CDA Client” on page 58.

When you first install eStatement Manager, it creates a default CDA DIT to handle the enrollment of
Admin users to the Command Center, and it provides a subcontext (cn=Users) to handle the
enrollment of users for the Training application. Initially, the entities under this node do not exist until
their specific enrollment using the user_subscribe.jsp. This process is described in more detail
later in this chapter.

http://java.sun.com/

User Management Using the Common Directory Access (CDA) Framework

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

45

▪

o =edocs.com

cn= Users
cn=Command

Center

uid=admin

Using Training as a Template
eStatement Manager provides several sample J2EE applications for you to deploy that use different
enrollment models. One of these, Training, you can use as a template to begin your own custom J2EE
application using the CDA user management framework with hierarchical levels of enrollment.

In addition to the JSPs described in Chapter 2: About User Management, Training provides the
following JSPs:

 ManageUsers.jsp provides links to add new users or add direct reports in the hierarchical
model.

 AddDirectReports.jsp provides search capabilities and can be used as a tool to build
hierarchical enrollment schemas.

How the JSPs interact with the CDA user management framework is described in the next major
section. By learning how they work should give you the understanding of how to create your own
custom CDA implementations. However, before you can use the Training JSPs to see how the
enrollment works, you need to deploy and configure Training and then run it through the National
Wireless sample application files.

Deploying and Configuring Training
Before you can use Training, you need to successfully install and configure eStatement Manager using
the instructions in the Installation Guide for Oracle Siebel eStatement Manager for your operating
system and application server.

The deployment instructions in that guide for the Sample.ear should work equally well for the
Training.ear application. You can find Training.ear along with the other sample EAR files in the
Samples directory where you installed eStatement Manager.

User Management Using the Common Directory Access (CDA) Framework

46 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

You also need to run the create_training_schema script provided by eStatement Manager in the
directory EDX_HOME/samples/Training/J2EEApps/weblogic/ (or /websphere), where
EDX_HOME is the location where you installed eStatement Manager. The create_training_schema
file contains the CDA Client Tool commands to modify the default CDA schema to run Training. It adds
the following attributes that are used to denote a hierarchy between users at the same context level:

 role: defines a user role such as “supervisor”

 supervisor: defines the DN (distinguished name in CDA) for a user’s supervisor

Configuring the CDA Client
UNIX users need to set environment variables in the create_training_schema script. Both UNIX
and Windows users then pass the script to the CDA Client Tool, using the correct JDBC and database
values for your platform.

TIP: The java command examples provided in this section and elsewhere in this guide presume the
location of your systems JDK bin directory is included in its PATH setting. If not, you should explicitly
specify the java command, for example \bea\jdk141_05\bin\java.

To configure CDA on UNIX:

1 Go to the location where the config_training_tool script and create_training_schema file reside on
your system (by default, EDX_HOME/samples/Training/schema).

2 Execute the config_training_tool:

./config_training_tool

This script prompts you for additional parameters (such as the DB port).

config_training_tool takes the create_training_schema file as a parameter inside the script. It
also takes all the environment-specific parameters from EDX_HOME/config/edx_env.

To configure CDA on Windows:

1 Go to the location where the create_training_schema script and config_training_tool.bat file reside
on your system (by default, EDX_HOME/samples/Training/schema).

2 Open an MS-DOS Command Prompt window.

3 Edit the config_training_tool.bat with the appropriate parameters. You must define the
environment variable necessary for your database:

For Microsoft SQL Server:

@set MSSQL_SVR_IP= <DB IP address>
@set MSSQL_SVR_PORT= <DB port> default is 1433
@set MSSQL_DB_USER =<DB user name>
@set MSSQL_DB__PASSWD= <DB password>

For Oracle:

@set ORACLE_SVR_IP=<DB IP address>
@set ORACLE_SVR_PORT=<DB port> default is 1521
@set ORACLE_DB_ALIAS=<SID / alias>

User Management Using the Common Directory Access (CDA) Framework

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

47

▪

@set ORACLE_DB_USER=<DB user name>
@set ORACLE_DB__PASSWD=<DB password>
@set ORACLE_HOME=<Oracle home>

4 Execute config_training_tool.bat:

config_training_tool.bat

config_training_tool.bat takes all additional environment-specific parameters from
EDX_HOME/config/edx_env.bat.

Using Training with National Wireless
After deploying and configuring Training, you can use it with the National Wireless sample application
input files provided with eStatement Manager. The eStatement Manager guides provide information
about how to process the National Wireless files using Training as the DDN.

However, for users to view their statements, you must enroll them into the CDA tables using the
Training JSPs as follows:

1 Enter the following URL in your browser:

http://your-server:port/Training/user/jsp/ index.jsp

Where your-server and port are the values you defined for eStatement Manager when you
installed and configured it.

2 Scroll down to the bottom of the screen where the Enroll User button is and click on it. Do not
specify a DDN.

3 Add the following super user to the CDA database:

User: super

Password: oracle

User Level: Supervisor

Email: super@oracle.com

Primary Account: 0331734

Secondary Account: 0331734

4 Exit the application.

5 Enter the following URL:

http://your-server:port/Training/User?app=UserMain
&jsp=/user/jsp/HistoryList.jsp&ddn=NatlWireless

6 Log in as User: super and Password: oracle.

7 Click on Manage Users and then on Enroll User.

8 Enroll the following users:

User Management Using the Common Directory Access (CDA) Framework

48 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

User Password User
Level

Email Primary
Account

Secondary
Account

0331734 oracle User <Name>@oracle.com 0331734 0331734

4191463 oracle User <Name>@oracle.com 4191463 4191463

8611250 oracle User <Name>@oracle.com 8611250 8611250

9001203 oracle User <Name>@oracle.com 9001203 9001203

0407200 oracle User <Name>@oracle.com 0407200 0407200

3069725 oracle User <Name>@oracle.com 3069725 3069725

4694878 oracle User <Name>@oracle.com 4694878 4694878

1710123 oracle User <Name>@oracle.com 1710123 1710123

9424090 oracle User <Name>@oracle.com 9424090 9424090

How this enrollment works is described in the next section.

How does Training Use CDA?
As mentioned earlier in this chapter, eStatement Manager provides a default CDA schema to be used
by Training for enrollment purposes. This structure is created upon installation and configuration of
eStatement Manager, and its primary purpose is to handle the enrollment of Admin users for the
Command Center. You can create your own enrollment DIT using the instructions provided in Using
the CDA Client.

However, creating a DIT using the CDA Client Tool provides a “static” environment to add contexts to
an enrollment system. What is required is a mechanism to invoke IAccount to enroll users
dynamically through JSPs and EJBs.

User Management Using the Common Directory Access (CDA) Framework

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

49

▪

o =edocs.com

cn= Users

uid=bob uid=bill

cn=Command
Center

uid=admin

eStatement Manager provides the SubscribeApp and UpdateApp class files along with the ejb-
enrollment-cda.jar EJB to handle this process. Through the sample EARs, it also provides servlets
and JSPs to interact with those class files and EJB; Training is just one implementation that uses these
files to support the enrollment of the National Wireless application and others.

It is expected that when you create your own J2EE application, you need to create custom JSPs and
Servlets. Also, it is likely that you will need to modify the ejb-enrollment-cda.jar to reflect a
new context root directory for any new DIT structure you define.

The SubscribeApp and UpdateApp files are not to be modified when using CDA, as they are flexible
enough to handle any DIT structure through the use of schema attributes. For example, Training
requires the use of two additional attributes to handle the use of User Roles in the ManageUsers,jsp
and AddDirectReports.jsp files. That is why it is required that you run the
create_training_schema file to modify the default CDA schema before using Training.

It is recommended that you look at the contents of the Training EAR (specifically the WAR file) as the
following sections describe how they work. You can extract the contents using the jar command
(UNIX) or WinZip utility (Windows). The Deploying and Customizing J2EE Applications Guide for Oracle
Siebel eStatement Manager provides several examples to do this, along with an explanation of the
basic elements inside the EAR.

Training CDA Process Flow
The enrollment process for Training can be broken down into two parts:

 Authenticate the user: Determine if the user is already logged in, and if not, ask the user to log in.
After the user provides the log in information, validate that information against the enrollment
information stored in the CDA database. If it is valid, assign an IAccount instance (stored in a
cookie) to the user and proceed to the requested page. If it is not valid, return an error to the
user.

User Management Using the Common Directory Access (CDA) Framework

50 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 Enroll the user: If they have the correct permissions, provide the user with a subscription page to
enter as their log in information and stored in the CDA database. The next time they attempt to
access Training, they will be authenticated against this enrollment information. Training also
provides a mechanism to update enrollment information.

Training checks the authentication of a user prior to showing them any page on their browser. As long
as the IAccount instance is still valid, the user can proceed as usual. The moment the instance
becomes invalid (such as through a session timeout), the user needs to log back in before proceeding.

The following diagram shows how the process works for the first part of authentication:

The user through the specified URL requests the User servlet and UserMain class file that determines
whether the user is already logged on. The following example URL (used previously in this chapter)
shows this request:

http://your-server:port/Training/User?app=UserMain
&jsp=/training/jsp/HistoryList.jsp&ddn=NatlWireless

Built into UserMain is the LoginRequired class file that indicates the user is not logged in and will
be given the UserLogin.jsp to do so. In the contents of the Training’s WAR file, you can find the
User servlet definition in the WEB-INF/web.xml file, and the UserLogin.jsp in the training/jsp
directory. UserMain.class resides in WEB-INF/classes/com/edocs/app/user directory.

The next diagram shows what happens after the user submits the log in information through
UserLogin.jsp:

User Management Using the Common Directory Access (CDA) Framework

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

51

▪

Basically, the User servlet and UserMain class file invokes the Login class file to validate the log in
information against the CDA database through a JDBC connection pool (established during installation
and configuration of eStatement Manager). Login.class resides in WEB-
INF/classes/com/edocs/app/enrollment directory.

TIP: When using CDA, the UserMain.class and Login.class files do not need to be modified.

If the information is valid, it returns the HistoryList.jsp (or other file that was requested by the
original URL request) to the user’s browser. Otherwise, it returns UserErrorMsg.jsp with any error
message generated by eStatement Manager.

The next two diagrams shows how the enrollment works in Training:

User Management Using the Common Directory Access (CDA) Framework

52 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Training handles the enrollment of new users through the ManageUsers.jsp page that is only
accessible by someone that is already enrolled and has the correct User Level permission (such as the
Supervisor role). This is the reason in the previous example that the step to create a Supervisor user
(Step 3) was done before adding any of the other users.

When you click on the Enroll User button, eStatement Manager returns the
user_subscribe.jsp to the user to enter the enrollment information. After the user submits the
information, the following diagram shows how the information is processed:

User Management Using the Common Directory Access (CDA) Framework

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

53

▪

The information of the new user is posted through the User servlet and UserMain class file to the
SubscribeApp class file. It in turn invokes the JNDIAccount implementation of CDA (called
CDAAccount in the EJB descriptor file) from the ejb-enrollment-cda.jar EJB to add the
enrollment information to the CDA tables in the database. If the enrollment is successful, eStatement
Manager returns the user_subscribe.jsp to the user in order to enroll another person. Otherwise,
it returns the error information through UserErrorMsg.jsp.

In addition to user_subscribe.jsp, Training provides the user_update.jsp that goes through
the same process described above to update the enrollment information for existing users, except it
uses the UpdateApp class file.

You can find the SubscribeApp.class and UpdateApp.class files in the WEB-
INF/classes/com/edocs/app/enrollment directory of the Training WAR file. However, like the
UserMain class file, these two files should not be modified when using CDA. In contrast, the
user_subscribe.jsp and user_update.jsp should be part of any customization, and you should
use the Training ones as template examples. You can find them at training/jsp.

Modifying the CDA EJB for Your Application
The ejb-enrollment-cda.jar EJB descriptor files will probably need to change when your
application implements your own DIT. See “Using the CDA Client” on page 58 for an example of
creating a new DIT. To modify these descriptor files, you need to unjar or unzip the ejb-
enrollment-cda.jar file into a temporary directory. For examples about extracting the contents of
a JAR file, see the Deploying and Customizing J2EE Applications Guide for Oracle Siebel eStatement
Manager.

The two descriptor files you modify are:

 ejb-jar.xml

User Management Using the Common Directory Access (CDA) Framework

54 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 weblogic-ejb-jar.xml (WebLogic) or ibm-ejb-jar-bnd.xmi (WebSphere)

The first descriptor file (ejb-jar.xml) is common across J2EE application servers and contains the
enterprise beans Session descriptors for the CDA enrollment model. Specifically, it defines the
CDAAccount EJB which is an implementation of JNDIAccount, and it defines the
CDAAccountResolver EJB which is an implementation of JNDIAccountResolver. Both
CDAAccount and CDAAccountResolver are configured specifically for Training.

For your own custom DIT, you should modify these Session descriptors to specify the new context root
value of it. The following code sample highlights the portion of CDAAccount that you change. If your
DIT contains many context levels in its enrollment hierarchy, you need to begin the entry description
with the lowest directory entry, followed by the next highest directory context, and so forth until you
reach the highest one (usually o=something.com). Remember that the lowest directory entry is
where you expect SubscribeApp to dynamically add the entries of users you want to enroll.

<session id="Session_1">
<description>CDA enrollment model account</description>
<display-name>CDAAccount</display-name>
<ejb-name>CDAAccount</ejb-name>
<home>com.edocs.enrollment.user.IAccountHome</home>
<remote>com.edocs.enrollment.user.IAccount</remote>
<ejb-class>com.edocs.enrollment.user.AccountBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Bean</transaction-type>
<env-entry id="EnvEntry_CDAAccount_1">
<env-entry-name>accountImpl</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>com.edocs.enrollment.user.jndi.JNDIAccount</env-entry-
value>
</env-entry>
<env-entry id="EnvEntry_CDAAccount_2">
<description>enrollment context root</description>
<env-entry-name>contextRoot</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>cn=Users,o=edocs.com</env-entry-value>
</env-entry>

User Management Using the Common Directory Access (CDA) Framework

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

55

▪

<env-entry id="EnvEntry_CDAAccount_3">
<description>javax.naming.Context.INITIAL_CONTEXT_FACTORY</description>
<env-entry-name>java_naming_factory_initial</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>com.edocs.jndi.cda.CDADataSourceFactory</env-entry-
value>
</env-entry>
<env-entry id="EnvEntry_CDAAccount_4">
<description>javax.naming.Context.PROVIDER_URL</description>
<env-entry-name>java_naming_provider_url</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>java:comp/env/jdbc/DataSource</env-entry-value>
</env-entry>
<resource-ref id="ResRef_CDAAccount_1">
<res-ref-name>jdbc/DataSource</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>
</session>

You also need to modify CDAAccountResolver in the same way.

The second descriptor file (weblogic-ejb-jar.xml for WebLogic or ibm-ejb-jar-bnd.xmi for
WebSphere) contains reference descriptors for CDAAccount and CDAAcountResolver that mention
Training. For example:

<ejb-name>CDAAccount</ejb-name>
<stateful-session-descriptor>
<stateful-session-cache>
<max-beans-in-cache>500</max-beans-in-cache>
<idle-timeout-seconds>900</idle-timeout-seconds>
</stateful-session-cache>
<stateful-session-clustering>
<home-is-clusterable>true</home-is-clusterable>
<replication-type>None</replication-type>
</stateful-session-clustering>
</stateful-session-descriptor>

<reference-descriptor>
<resource-description>
<res-ref-name>jdbc/DataSource</res-ref-name>
<jndi-name>edx.databasePool</jndi-name>
</resource-description>
</reference-descriptor>
<jndi-name>edx/Training/ejb/CDAAccount</jndi-name>

You need to change these entries to your new J2EE application name. Normally this is done as part of
the configuration and deployment of your custom application as described in the Deploying and
Customizing J2EE Applications Guide for Oracle Siebel eStatement Manager. In addition, after making
the changes to the above descriptor files, you must re-jar or re-zip the files you extracted back into a
new ejb-enrollment-cda.jar file and replace the previous one in your EAR.

User Management Using the Common Directory Access (CDA) Framework

56 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Using IAccount with CDA for Other Tasks
In addition to authenticating, enrolling, and updating users in the CDA database, the CDA
implementation of IAccount also provides directory-like services to perform the following tasks:

 Obtain attributes (name/value pairs) for a user context

 Manage user levels within a DIT structure

 Search for user contexts that match an attribute criteria

Each of these tasks can be implemented at the JSP layer of your application, and the following
sections provide code examples of how to do it.

Obtain Attributes and their Values
With IAccount, you can return the attributes in name/value pairs using the method
getAttributes. For example, the following code returns the rights for the current user in a
name/value pair:

account = (IAccount)request.getAttribute
("com.edocs.enrollment.user.IAccount");

Attributes attrs = account.getAttributes("", new String[] {
"rights", JNDIAccountAttributes.JNDI_USER_EMAIL
});

You can also return the name or value only using the method unescapeAttributeValue from the
Class CDANameParser. For example, continuing from the above code, you can obtain the individual
attributes as follows:

Attribute a = (Attribute)attrs.get("rights");

if(a != null && a.size() > 0)
String rights = CDANameParser.unescapeAttributeValue
((String)a.get(0));

If the authenticated user had rights that equal supervisor (“rights” = “supervisor”), the above
method call stores the string “supervisor” in the variable rights.

Manage User Levels
CDA through the use of attributes can further define a user hierarchy without changing the DIT
structure. The Training sample application already does this through the role attribute that defines
Supervisors from Users. You can use this functionality to manage user levels as follows:

1 Return the entire name/value pair for the attribute role of the current user

2 Extract only the value of the name/value pair

Based on that value, turn on or off any appropriate links

For example, the following code sample from Training allows only Supervisors to have the link
to the Manage Users page (and subsequently enroll new users):

// Return name value pair for role and extract the value only

User Management Using the Common Directory Access (CDA) Framework

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

57

▪

<%
Attribute a = (Attribute)attrs.get("role");
if(a != null && a.size() > 0)
 role = CDANameParser.unescapeAttributeValue((String)a.get(0));
%>

.

.

.

// Based on value turn on or off appropriate links

<%
if (role.equals("supervisor"))
{
%>
<td class="TDtext"><a href="User?app=UserMain
&jsp=/enrollment/jsp/ManageUsers.jsp&forwardto=<%= request.
getAttribute("FORWARDURL")%>&<%= returnInfo %>">Manage
Users</td>
<%
}
%>
logUser = URLEncoder.encode(logUser);

Search for Attributes
IAccount provides the search method that searches a CDA DIT for specific name/value pairs. The
search name can only search attributes in the tree that are not part of the distinguished name (DN).
For a template example that uses this feature, see the AddDirectReports.jsp in the Training
sample application.

The process to search for attributes is as follows:

1 Obtain the name of the attribute(s) you want to search based on some user input

2 Specify the attributes you want to return for any hit.

For example:

…//The name for the attribute/s you are searching by based on user
input or searchKey

String key = (String)request.getParameter("searchKey");

//The value for the attribute/s you want to search by based on user
input

String sValue = (String)request.getParameter("searchValue");

...

//The attributes you want to return for the hit (UID, ACCOUNT_NUMBER
and EMAIL)

String [] attrIds = {JNDIAccountAttributes.JNDI_UID,
JNDIAccountAttributes.JNDI_USER_EMAIL,
JNDIAccountAttributes.JNDI_ACCOUNT_NUMBER};

...

User Management Using the CDA Client

58 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

//Set up an Attributes variable to store the attributes you are
searching by //(In this case //based on user input)

Attributes matchAttrs = new BasicAttributes(true);

...

//Put the attribute name/value pair to search by into matchAttrs

if (sValue == null || sValue.equals(""))
matchAttrs.put(new BasicAttribute(key));
else
if (sType != null && sType.equals("ic"))
matchAttrs.put(new BasicAttribute(key, sValue.toLowerCase()));
else
matchAttrs.put(new BasicAttribute(key, sValue));

...

//Perform Search return UID , ACCOUNT_NUMBER and User mail (attrIds)

s = root.search("", matchAttrs, attrIds);

Using the CDA Client

About the CDA Client
The CDA Client is the Oracle utility for creating and managing CDA schemas and directory contexts.
Use the CDA Client to:

 Navigate within a directory tree

 Create, modify, or delete directory contexts

 Create or delete schema attributes

 Export nodes in a directory tree and import them into another database

For more information about the CDA Client, see the Javadoc.

Starting the CDA Client
Starting the CDA Client involves three steps at the command line interface:

1 Set up your environment for the CDA Client.

2 Run the command com.edocs.jndi.cda.cli.Main with appropriate parameters, or use a shell
script to start the CDA Client.

3 Troubleshoot your environment as necessary.

This section describes how to start the CDA Client using different J2EE application and database
servers and operating systems.

User Management Using the CDA Client

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

59

▪

Setting Your Environment for the CDA Client
Before you begin, review the procedures for defining your eStatement Manager environment in the
Installation Guide for Oracle Siebel eStatement Manager. That guide describes how to set environment
variables for your Oracle, application server, and database server home directories and your default
classpath. It also describes how to pass environment variables to your application server at server
startup.

To run the CDA Client, your classpath must include edx_common.jar. Java class files for CDA and the
CDA client are packaged and installed by default in EDX_HOME/lib/edx_common.jar. If you have
customized your installation directory, look for edx_common.jar in the /lib file of your Oracle home
directory (EDX_HOME).

The CDA Client also requires a database connection. This can be set either directly to the JDBC driver
or to one of the database connection pools you defined when configuring your application server.

To set your environment for the CDA Client:

1 Start your application server if it is not running.

2 Switch users to your application server owner.

3 Capture your environment with the edx_env shell script and pass it to your application server as
described in the Installation Guide for Oracle Siebel eStatement Manager.

Method Signatures
The CDA Client command Main has three “signatures,” shown here as they might be entered on the
command line. Your choice of signature depends on which variables you know for your environment.
Study the examples in this section for comparisons.

java com.edocs.jndi.cda.cli.Main jndi url

java com.edocs.jndi.cda.cli.Main jdbc url username password

java com.edocs.jndi.cda.cli.Main
java.naming.factory.initial=jdbc factory
java.naming.provider.url=jdbc url
java.naming.security.principal=username
java.naming.security.credentials=password

Parameters
Name Description Syntax

jdbc
factory

Initial naming factory for CDA
or for your application server.
See examples.

java.naming.factory.initial=jdbc factory

jdbc url The URL for your JDBC driver,
consisting of the database
instance, local host and port, and
username. See examples.

java.naming.provider.url=jdbc url

jndi url The JNDI name of a database
pool created when you
configured your application

User Management Using the CDA Client

60 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Name Description Syntax

server. See examples.

password The password of your database
administrator.

java.naming.security.credentials= password

username The user name of your database
administrator.

java.naming.security.principal= username

Running the CDA Client with a Shell Script
These examples follow the shell script create_training_schema, installed in
EDX_HOME/samples/Training/schema. Study this file to learn more about CDA Client options for
your platform. You can customize this script, substitute your own script, or omit the file and enter CDA
Client commands at the prompt.

To run the CDA client with a shell script:

1 Run the command line setup shell script.

2 Run the CDA client tool as shown in the examples below. You should receive a command prompt.

3 Test the CDA client by displaying the schema list:

sl

Example: Starting the CDA Client with a Direct Database Connection
TIP: For each example shown, enter the command entirely on one line without line breaks (shown
here for clarity). If you have already set your classpath as shown in the preceding section, you can
omit the
-classpath parameter.

This example for Oracle connects the CDA client directly to the database driver with the -
Djdbc.drivers parameter.

java -classpath $EDX_HOME/lib/edx_common.jar:$CLASSPATH
-Djdbc.drivers=oracle.jdbc.driver.OracleDriver
com.edocs.jndi.cda.cli.Main
java.naming.factory.initial=com.edocs.jndi.cda.CDAJDBCFactory
java.naming.provider.url=jdbc:oracle:thin:@localhost:1521:edx0
java.naming.security.principal=edx_dba
java.naming.security.credentials=edx

This example for Microsoft SQL Server connects the CDA client directly to the database driver with
the -Djdbc.drivers parameter.

java -classpath %EDX_HOME%\lib\edx_common.jar:%CLASSPATH%
-Djdbc.drivers= com.inet.pool.PoolDriver com.edocs.jndi.cda.cli.Main
java.naming.factory.initial=com.edocs.jndi.cda.CDAJDBCFactory
java.naming.provider.url=jdbc:inetpool:inetdae7://localhost:1433:edx0
java.naming.security.principal=edx_dba
java.naming.security.credentials=edx

This example for DB2 connects the CDA client directly to the database driver with the
-Djdbc.drivers parameter.

User Management Using the CDA Client

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

61

▪

java -classpath $EDX_HOME/lib/edx_common.jar:$DB2_HOME/sqllib/java12/
db2java.zip:$CLASSPATH
-Djdbc.drivers=COM.ibm.db2.jbdc.net.DB2Driver
com.edocs.jndi.cda.cli.Main
java.naming.factory.initial=com.edocs.jndi.cda.CDADB2Factory
java.naming.provider.url=jdbc:db2://localhost:6789/edx0
java.naming.security.principal=db2inst1
java.naming.security.credentials=db2inst1

Example: Starting the CDA Client with a Database Pool Connection
This example for WebLogic connects the CDA client to the database through a database connection
pool using a datasource EJB on the application server.

java -classpath $EDX_HOME/lib/edx_common.jar:$CLASSPATH
-Djava.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
-Djava.naming.provider.url=t3://localhost:7001
com.edocs.jndi.cda.cli.Main cda://edx.user.databasePool

This example for WebSphere connects the CDA client to the database through a database connection
pool using a datasource EJB on the application server.

java -classpath $EDX_HOME/lib/edx_common.jar:/usr/WebSphere/AppServer/lib/
websphere.jar:/export/home/db2inst1/sqllib/java12/db2java.zip:$WAS_CLASSPA
TH
-Djava.library.path=/export/home/db2inst1/sqllib/java12
-
java.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFact
ory
-Djava.naming.provider.url=iiop://10.2.1.99:900
com.edocs.jndi.cda.cli.Main cda://jdbc/Oracle

Command Parsing in the CDA Client
The CDA Client parser splits input lines into words at spaces and tabs. For example:

Raw Input Parsed Input

ls o="edocs.com" ls
o=edocs.com

ls o=edocs.com ls
o=edocs.com

The pound sign (#) begins a comment. The line after the pound sign is ignored. For example:

Raw Input Parsed Input

this is a comment
To parse a string containing special characters, enclose the string in single (') or double (") quotes. For
example:

User Management Using the CDA Client

62 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Raw Input Parsed Input

ls 'o="edocs.com"' ls
o="edocs.com"

Note that this returns the same output as the example below.

A backslash (\) is the escape character for special characters, including quotes, pound signs, spaces,
and tabs. For example:

Raw Input Parsed Input

ls o=\"edocs.com\" ls
o="edocs.com"

A newline preceded by a backslash (\) without quotes is equivalent to a space. To return a newline
inside a string, place the string in quotes. For example:

Raw Input Parsed Input
ls \
o="edocs.\ com"

ls
o=edocs.\ com

The following topics discuss commands by task.

Creating and Populating a Directory Information Tree (DIT)

Creating a New DIT

This section provides an example of how to use the CDA Client to create the following
DIT:

User Management Using the CDA Client

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

63

▪

o =mycompany.com

cn= Users cn=CSRs

uid=admin

To create a new DIT:

This design is similar to the default DIT provided for Training (described above), and it should help
you understand that structure if you plan to emulate it with your own CDA DIT. Follow these steps:

1 Start the CDA Client.

2 Define any schema attributes to be used by your DIT before creating any contexts. Use
SchemaList to see all currently defined attributes:

sl

3 Enter any schema attributes using the SchemaBind command. For example, if the above DIT
requires a privilege attribute to define how much access a Customer Service Representative
needs and a groupid attribute if you plan to further classify CSR users, you can add them as
follows:

sb privilege syntax STRING
sb groupid

STRING is optional (it is the default value).

If you later decide that you do not need an attribute, you can remove it with SchemaUnbind:

su groupid
To verify your changes, you can always run SchemaList.

4 Make the root context node for the DIT with the CreateSubcontext command as follows:

mk o=mycompany.com

5 Add the next levels of the DIT as follows:

mk cn=Users,o=mycompany.com
mk cn=CSRs,o=mycompany.com

These commands use the full DIT pathname to create the subcontexts. You could also
navigate to the context o=mycompany.com using the pushd or cd commands and then omit
the o=mycompany.com part with the mk command.

User Management Using the CDA Client

64 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

6 The final subcontext is the Admin super user that will be used to log into the system initially to
add other CSR users, so this information must be pre-enrolled with CDA Client. It will also need
some additional attributes defined to distinguish it such as a password and privilege. For example:

mk uid=admin,cn=CSRs,o=mycompany.com uid admin userPassword
D2B71E9C2E21C5F2 privilege all mail admin@mycompany.com

Note that even though the uid attribute is specified in the context name, it is also included as
a subsequent attribute value in order to be searchable (see the find command above).

Adding a New User to a DIT
This section provides an example of how to use CDA Client to add a user context to the DIT used by
Training:

o =edocs.com

cn= Users

uid=bob uid=bill

cn=Command
Center

uid=admin

To add a new user to the eStatement Manager DIT:

1 Start the CDA Client tool as described in Chapter 3: Deploying and Configuring Training
for your platform.

2 Navigate to the DirContext that contains the user subcontexts:

cd o=edocs.com

cd cn=Users

3 Create the new subcontext for a user named “jack”:

mk uid=jack

4 At this point you could add any attributes to “jack”. For example, you could add the email and role
attribute values as follows:

User Management Using the CDA Client

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

65

▪

aa uid=jack email jack@boardwalk.com role user

Navigating a Directory Information Tree
The following table lists the CDA Client commands used to navigate a CDA directory information tree.

Command Description
exit
bye
quit

Terminates.

alias [<name>
[<word>]]

Without arguments, prints all aliases. With name, prints
alias name. With name and word, defines an alias.

unalias <name> Removes alias name.

path [<package>
...]

Without arguments, prints the current path.
With arguments, sets the path to the list of packages.

pushd <name>
cd <name>

Pushes the current working DirContext onto the
context stack and changes to name.

popd
cd..

Pops the context stack and changes to it.

dirs Prints the context stack.

time <command> Executes command and prints the elapsed time to
completion.

source <filename> Executes the commands in filename.

Working with Directory Contexts

CreateSubcontext
CreateSubcontext <name> [<attribute_name> <attribute_value> ...]

mk <name> [<attribute_name> <attribute_value> ...]

Creates a new subcontext name and associates all specified attribute names and values with the new
subcontext.

DestroySubcontext
DestroySubcontext <name>

rm <name>

User Management Using the CDA Client

66 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Removes subcontext name. Note: Removing the current working context results in undefined
behavior.

CAUTION: While CDA does not as a rule support features nonstandard to LDAP, it does support
deletion of contexts, or subtrees, containing data. In LDAP, DestroySubcontext throws a
ContextNotEmptyException unless the context is empty. In CDA, DestroySubcontext will
delete the context and all its subcontexts. Use this powerful feature with care.

List
List [<name>]

ls [<name>]

Prints the sub-contexts of name. If name is not specified, prints the top-level contexts.

ListBindings
ListBindings [<name>]

Prints the sub-bindings of name. If name is not specified, prints the top-level contexts.

GetAttributes
GetAttributes <name>

la <name>

Prints the attributes associated with a context name.

AddAttributes
AddAttributes <name> <attribute_name> <attribute_value> ...

aa <name> <attribute_name> <attribute_value> ...

Adds all specified attributes to the context name.

RemoveAttributes
RemoveAttributes <name> <attribute_name> [<attribute_value>]

ra <name> <attribute_name> [<attribute_value>]

Removes all attributes from context name. If an attribute value is not specified, removes all the values
of attribute name.

Rename
Rename <old_name> <new_name>

mv <old_name> <new_name>

Renames old name to new name.

User Management Using the CDA Client

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

67

▪

Working with User Attributes

Add New Attribute Names with SchemaBind
Before assigning a value to an attribute name in a directory, you must add, or bind, the attribute
name to the schema. In the CDA Client, add a new attribute name to the schema with the command
SchemaBind (sb).

sb <attribute_name> <syntax>

SchemaBind takes two parameters, attribute name and syntax. There are only two valid values for
the syntax parameter: String (default) and Distinguished Name (DN). You must specify syntax of
DN (upper case required) when adding an attribute of the Distinguished Name type.

To add an attribute named “employee” with the default syntax of string, issue the following
command:

sb employee

To add an attribute named “employee” with a syntax of distinguished name, issue the following
command:

sb employee syntax DN

CAUTION: Once added to the schema, an attribute name cannot be modified. It can then only be
deleted (unbound) from the schema if it is not used. Plan your schema carefully before assigning
attribute names.

Remove Attribute Names with SchemaUnbind
You can remove, or unbind, an attribute name from the schema in the CDA Client. In the CDA Client,
remove an attribute name from the schema with the command SchemaUnbind (su).

su <attribute_name>

For example, to remove the attribute named “employee,” issue the following command:

su employee

List Attribute Names with SchemaList
The CDA directory SchemaList contains the names of all attributes declared in the schema. In the CDA
Client, you can list all attribute names in the schema with the command SchemaList (sl).

TIP: You can make a schema more readable by associating a description with each attribute name.

List Attributes with SchemaGetAttributes
In the CDA Client, you can print all attributes associated with an attribute name in the schema with
the command SchemaGetAttributes (sga).

User Management Using the CDA Client

68 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Search for Attributes with Find
There are two ways to search for attributes in an Oracle schema. For simple searches, for example
when designing your schema, you can use the Find command in the CDA Client to print the matching
attributes to the screen. The Search method of IAccount provides more powerful searching, for
example when you need the results of a search as a parameter in a JSP. This method is described in
the previous chapter.

TIP: Although CDA does not support search filters, it does implement the search method
DirContext.search(javax.naming.
Name,javax.naming.directory.Attributes,String[]).

The Find command prints the contexts and their attributes that match the search.

find name [<attribute_name> [<attribute_value>] ...]

Integrating With Existing User Management Systems
You may need to exchange data with another directory service, for example an LDAP server. In the
CDA Client, you can export a directory schema and its attribute values in LDIF (LDAP Directory
Interchange Format), or import existing attributes into an LDAP directory.

Export a Schema as LDIF
The Export command exports attributes in LDIF format.

export <file_name>

The Export command takes two parameters, context and filename (optional). Context defines
the top-level directory context from which to export, so that you can export only a subcontext of a
tree. Omitting this parameter exports from the directory root. Filename defines the name of the
target export file. Oracle recommends the format *.ldif.

export o=edocs.com edocs.ldif

The example above exports all contexts of the current schema to the file edocs.ldif in the current
directory.

Import an LDIF Schema into CDA
The Import command imports attributes in LDIF format into CDA.

import <file_name>

TIP: If the LDIF file you import contains any attributes whose names are not defined in the target
directory schema, you must add them to the schema (with SchemaBind) before importing.

User Management Using a Non-Directory Access Implementation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

69

▪

In addition to the CDA interface, the Oracle user management framework is flexible enough for you to
modify when using other non-directory enrollment models. For example, you may have the enrollment
information already stored in a separate repository for your customers. In this case, your requirement
of the user management framework is to access this repository in order to authenticate existing
customers or even enroll new ones.

Using a Non-Directory Access
Implementation

This chapter describes how you can re-implement the IAccount interface to access such a repository.
Although it provides only one example, the framework it describes allows you to tailor it for your
specific application, as you will be able to supply the interface java code to interact with the repository
application, such as a separate database.

Using UMFsample as a Template
eStatement Manager provides another sample J2EE application for you to deploy that uses a non-
directory access enrollment models. It is called UMFsample, and you can use as a template to begin
your own custom J2EE application using the Oracle user management framework.

How the JSPs interact with the user management framework defined in UMFsample is described in the
next major section. By learning how they work should give you the understanding of how to create
your custom implementation. However, before you can use the UMFsample JSPs to see how the
enrollment works, you must deploy and configure UMFsample and then run it through the National
Wireless sample application files.

Deploying and Configuring UMFsample
Before you can use UMFsample, you must successfully install and configure eStatement Manager using
the instructions in the Installation Guide for Oracle Siebel eStatement Manager for your operating
system and application server. You also need to install the UMFsample application files provided by the
installation program supplied with the SDK.

After installing the UMFsample application, you can find its EAR file in the
<EDX_HOME>/Samples/umfsample/J2EEApps/weblogic (or /websphere) directory where you
installed eStatement Manager. To see how UMFsample works, you must deploy it. The deployment
instructions in the Deploying and Customizing J2EE Applications Guide for Oracle Siebel eStatement
Manager for the Sample.ear should work equally well for the UMFsample.ear application.

After deploying UMFsample, you must run the create_sample_table script located in the database
subdirectory for your platform in Samples/umfsample/db. This file contains the database commands
to add the sample repository enrollment information used by UMFsample.

The sections that follow describe how to run the script for a specific database.

For an Oracle Database:

As an Oracle user, run the following script in EDX_HOME/samples/umfsample/db/oracle and pass
it the parameter values for the database ID (ORACLE_SID), database user name, and database
password:

./create_sample_table.sh edx0 edx_dba edx

User Management Using a Non-Directory Access Implementation

70 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

After you enter the information, it connects to the database and executes
create_sample_table.sql.

For a DB2 Database:

As a DB2 user, run the following script in EDX_HOME/samples/umfsample/db/oracle and pass it
the parameter values for the database ID, database user name, and database password:

./create_sample_table.sh edx0 edx_dba edx

After you enter the information, it connects to the database and executes
create_sample_table.sql.

For a Microsoft SQL Server Database:

In EDX_HOME\samples\umfsample\db\oracle, run the following script and pass it the parameter
values for the database ID, database user name, and database password. For example:

create_sample_table.bat edx0 edx_dba edx

After you enter the information, it connects to the database and executes
create_sample_table.sql.

Using UMFsample with National Wireless
After deploying and configuring UMFsample, you can use it with the National Wireless sample
application input files provided with eStatement Manager. The eStatement Manager guides provide
information about how to process the National Wireless files.

Note: You must define UMFsample as the DDN in the Command Center and process the National
Wireless data files before performing the steps described below. A short example of how to do this is
provided in the Deploying and Customizing J2EE Applications Guide for Oracle Siebel eStatement
Manager for the Sample application.

For users to view their statements, you must enroll them into the database tables using the
UMFsample JSPs as follows:

1 Enter the following URL in your browser:

http://your-server:port/umfsample/user/jsp/index.jsp

Where your-server and port are the values you defined for eStatement Manager when you
installed and configured it.

2 Specify UMFsample as the DDN and click Submit.

3 Click on Enroll.

4 Enroll each user with the following information for the required enrollment fields:

http://your-server:port/umfsample/user/jsp/index.jsp

User Management Using a Non-Directory Access Implementation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

71

▪

Email SSN Account
Number

<Name>@oracle.com 0001 0331734

<Name>@oracle.com 0002 4191463

<Name>@oracle.com 0003 8611250

<Name>@oracle.com 0004 9001203

<Name>@oracle.com 0005 0407200

<Name>@oracle.com 0006 3069725

<Name>@oracle.com 0007 4694878

<Name>@oracle.com 0008 1710123

<Name>@oracle.com 0009 9424090

5 The other enrollment fields are optional. You can enter any information for these fields as part of
this example.

How this enrollment works is described in the next section.

How does UMFsample Do Enrollment?
As mentioned earlier in this chapter, eStatement Manager provides a generic IAccount user
management interface for enrollment purposes. What is required is a custom mechanism to invoke
IAccount to enroll users dynamically through JSPs and EJBs.

UMFsample provides revised SubscribeApp and UpdateApp class files along with the ejb-
enrollment-umfsample.jar EJB to handle this process. It also provides servlets and JSPs to
interact with those class files and EJB; UMFsample is just one implementation that uses these files to
support the enrollment of the National Wireless application and others.

It is expected that when you create your own J2EE application based on UMFsample, you must create
custom JSPs and Servlets. Plus, you must modify the ejb-enrollment-umfsample.jar to redefine
the new IAccount interface to the repository holding the enrollment information.

It is recommended that you look at the contents of the UMFsample EAR as the following sections
describe how they work. You can extract the contents using the jar command (UNIX) or WinZip
utility (Windows). The Deploying and Customizing J2EE Applications Guide for Oracle Siebel
eStatement Manager provides several examples to do this, along with an explanation of the basic
elements inside the EAR.

UMFsample Enrollment Process Flow
The enrollment process for UMFsample can be broken down into two parts:

 Authenticate the user: determine if the user is already logged in, and if not, ask the user to log in.
After the user provides the log in information, validate that information against the enrollment
information stored in the database. If it is valid, assign an IAccount instance (stored in a cookie)
to the user and proceed to the requested page. If it is not valid, return an error to the user.

User Management Using a Non-Directory Access Implementation

72 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 Enroll the user: if they have the correct permissions, provide the user with a subscription page to
enter as their log in information and stored in the database. The next time they attempt to access
UMFsample, they will be authenticated against this enrollment information. UMFsample also
provides a mechanism to update enrollment information.

UMFsample checks the authentication of a user prior to showing them any page on their browser. As
long as the IAccount instance is still valid, the user can proceed as usual. The moment the instance
becomes invalid (such as through a session timeout), the user needs to log back in before proceeding.

The following diagram shows how the process works for the first part of authentication:

The user through the specified URL requests the User servlet and UserMain class file that determines
whether the user is already logged on. The following example URL shows this request:

http://your-server:port/umfsample/User?app=UserMain
&jsp=/user/jsp/HistoryList.jsp&ddn=NatlWireless

Built into UserMain is the LoginRequired class file that indicates the user is not logged in and will
be given the UserLogin.jsp to do so. In the contents of the UMFsample WAR, you can find the User
servlet definition in the WEB-INF/web.xml file, and the UserLogin.jsp in the enrollment/jsp
directory. UserMain.class resides in WEB-INF/classes/com/edocs/app/user directory.

The next diagram shows what happens after the user submits the log in information through
UserLogin.jsp:

User Management Using a Non-Directory Access Implementation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

73

▪

Basically, the User servlet and UserMain class file invokes the Login class file to validate the log in
information against the repository database through a JDBC connection pool (established during
installation and configuration of eStatement Manager). Login.class resides in WEB-
INF/classes/com/edocs/app/enrollment directory.

TIP: When using UMFsample as a template, the UserMain.class file does not need to be modified,
but you need to define a new Login.class file.

If the information is valid, it returns the HistoryList.jsp (or other file that was requested by the
original URL request) to the user’s browser. Otherwise, it returns UserErrorMsg.jsp with any error
message generated by eStatement Manager.

The next two diagrams shows how the enrollment works in UMFsample:

User Management Using a Non-Directory Access Implementation

74 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

UMFsample handles the enrollment of new users through the user_subscribe.jsp page.

When a user clicks on the Enroll button on the UserLogin.jsp, eStatement Manager returns the
user_subscribe.jsp to the user to enter the enrollment information. After the user submits the
information, the following diagram shows how the information is processed:

User Management Using a Non-Directory Access Implementation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

75

▪

The information of the new user is posted through the User servlet and UserMain class file to the
SubscribeApp class file. It in turn invokes the custom IAccount implementation of UMFsample
called SampleAccount from the ejb-enrollment-umfsample.jar EJB to add the enrollment
information to the tables in the database repository. If the enrollment is successful, eStatement
Manager returns the user_subscribe.jsp to the user in order to enroll another person. Otherwise,
it returns the error information through UserErrorMsg.jsp.

In addition to user_subscribe.jsp, UMFsample provides the user_update.jsp that goes through
the same process described above to update the enrollment information for existing users, except it
uses the UpdateApp class file.

You can find the SubscribeApp.class and UpdateApp.class files in the WEB-
INF/classes/com/edocs/app/enrollment directory of the UMFsample WAR file. However, unlike
the versions in the Training EAR, you must modify these two files to communicate with your custom
enrollment EJB. The user_subscribe.jsp and user_update.jsp will also be part of any
customization, and you can use the UMFsample ones as template examples.

Creating an Application Based on UMFsample
When you install UMFsample, you also receive its enrollment Java source files, including the ones
mentioned in the previous section. They are packaged in the umf_src.jar file, and you can extract
its contents using the jar command (UNIX) or WinZip utility (Windows). The following files are
included in its enrollment directory:

 Login.java

User Management Using a Non-Directory Access Implementation

76 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 Logout.java

 SampleAccount.java

 SampleAccountResolver.java

 SubscribeApp.java

 UpdateApp.java

The SampleAccount.java and SampleAccountResolver.java source files are part of the ejb-
enrollment-umfsample.jar EJB, while the other four files are part of the UMFsample WAR file.
Although there are many other class files involved in the Oracle user management framework to
support enrollment, all the customization required to support your enrollment model can be
encapsulated in these six files.

You can choose to simply modify these existing files and re-build them using the utility supplied with
this SDK module (described later in this chapter), or you choose to replace and/or rename them using
your own Java build tools. However, in the latter case there is significantly more effort to make it work
as there are ample references to these files and UMFsample that must be changed in the EAR to
reflect the new files.

The sections that follow provide examples of how Login.java, SampleAccount.java, and
SubscribeApp.java work. The others are similar to these in function.

Modifying the Enrollment Source Files
This section describes parts of the UMFsample source Java files that are relevant to any modifications
you will need to make based on accessing your enrollment repository. However, entire source files are
not shown here as you can view them yourself. Many comments have been embedded in the source
files to help you understand the program logic.

As mentioned earlier, the enrollment process flow for UMFsample begins when UserLogin.jsp
prompts the user for login information. UMFsample requires the user’s email and last four social
security digits that are posted as hidden URL values, as shown below in UserLogin.jsp:

<%

 String appMethod = AppConstants.METHOD ;

 // Set required hidden values.

 Enumeration params = request.getParameterNames();

 while (params.hasMoreElements())

 {

 String nameStr = (String) params.nextElement();

 if (!(nameStr.equals("auth__email") ||

 nameStr.equals("auth__dn") ||

 nameStr.equals("auth__ssn") ||

 nameStr.equals("errforwardto") ||

User Management Using a Non-Directory Access Implementation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

77

▪

 nameStr.equals(appMethod) ||

 nameStr.equals("EDOCSLOGIN") ||

 nameStr.equals("MESSAGE")) &&

 !(queryParams != null &&
queryParams.containsKey(nameStr))) {

 out.println("<input type=hidden name=\""
+ nameStr +

 "\" value=\"" +
request.getParameter(nameStr) + "\">");

 }

 }

%>

 <input type=hidden name="errforwardto"
value="/enrollment/jsp/UserLogin.jsp">

 <input type=hidden name="<%= AppConstants.METHOD %>"
value="<%= request.getMethod()%>">

 <input type=hidden name="EDOCSLOGIN" value="EDOCSLOGIN">

 <input type=hidden name="edocs__re-login"
value="edocs__re-login">

<table width="500" border="1" cellspacing="0" cellpadding="3"
align="center">

 <tr>

 <td colspan="2" bgcolor="B1D0EE">

 <font size="-1" face="Verdana, Arial, Helvetica, sans-
serif">User Login...<font size="-2" face="Verdana,
Arial, Helvetica, sans-serif">

 Enter your email address, last four digits of your
social security number and click "Submit."
If you have not subscribed, <a
href="UserEnrollment?app=SubscribeApp&jsp=/umfsample/enrollmen
t/jsp/user_subscribe.jsp&<%= returnInfo %>">Enroll Now to
sign up for your electronic account.

 </td>

 </tr>

 <tr>

 <td align="right" class="label" width="400">

 Email Address:

User Management Using a Non-Directory Access Implementation

78 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 </td>

 <td width="400">

 <input type="text" name="auth__email" size="32"
maxLength="32" onBlur="setDN(this.form);">

 <input type=hidden name="auth__dn" value="default">

 </td>

 </tr>

 <tr>

 <td align="right" class="label" width="400">

 Last 4 digits of SSN:

 </td>

 <td width="400">

 <input type="password" name="auth__ssn" size="20"
maxLength="20">

 </td>

 </tr>

</table>
After submitting the login information, the UserMain class file redirects the input to the Login class
file for authentication. The following is part of the Java source file for Login, and it shows where it
maps the input parameters to the fields of the table used by UMFsample:

 /**

 * Set the key variables in the environment context.

 */

 private Hashtable createContext(HttpServletRequest req) {

 // Map the HTML input parameters to the fields in the
sample_account table.

 Hashtable env = new Hashtable();

 env.put(EnrollmentConstants.ACCOUNT_KEY,
_accountImpl);

 String email = req.getParameter("auth__email");

 String ssn = req.getParameter("auth__ssn");

 String ddn = req.getParameter("ddn");

 env.put("email", email);

 env.put("ssn", ssn);

 env.put("ddn", ddn);

 return env;

 }

User Management Using a Non-Directory Access Implementation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

79

▪

This is the only significant portion of Login.java that needs to change as the rest uses the default
IAccount implementation.

As shown in the following code sample for UserLogin.jsp, there is a link to Enroll new users though
the UserEnrollment servlet:

Enter your email address, last four digits of your social
security number and click "Submit." <font
size="-2">If you have not subscribed, <a
href="UserEnrollment?app=SubscribeApp&jsp=/umfsample/enrollmen
t/jsp/user_subscribe.jsp&<%= returnInfo %>">Enroll Now to
sign up for your electronic account.

The URL parameters defined in that link include the user_subscribe.jsp that accepts the input
values from the user and the SubscribeApp class file that calls the custom IAccount methods in
the enrollment EJB. The primary role of user_subscribe.jsp is to ensure all the values are
properly collected for insertion to the enrollment database repository. For example, the following code
sample from user_subscribe.jsp lists the values to be inserted:

<%

 // List of user attributes.

 String [] edocsAttr = {

 "email",

 "ssn",

 "ddn",

 "firstname",

 "lastname",

 "zipcode",

 "telephone",

 "address",

 "account"

 };

 Properties props = new Properties();

 for (int i = 0; i < edocsAttr.length; i++) {

 String previousEntry =
request.getParameter(edocsAttr[i]);

 if (previousEntry != null) {

 props.setProperty(edocsAttr[i], previousEntry);

 } else {

User Management Using a Non-Directory Access Implementation

80 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 props.setProperty(edocsAttr[i], "");

 }

 }

%>

As shown earlier, UMFsample uses the email and ssn values to validate the log in information, with
email listed first because it is the primary key value in the enrollment table. The other values of the
enrollment table are not required for authentication, but depending on your application needs could be
used for many other purposes, such as CSR validation of an account while dealing with the customer
directly over the phone.

After user_subscribe.jsp posts the enrollment input information, SubscribeApp begins the
process of inserting the information into the enrollment table using the following code:

/*

* Inserts new user into database using <i>IAccount<i>
createAccount

*/

protected void doPost(HttpServletRequest req,
HttpServletResponse res) {

 IAccount account = null;

 String forwardto = req.getParameter("returnTo");

 String contextPath = req.getContextPath();

 if (forwardto != null)

 forwardto = forwardto.replace(';', '&');

 else

 forwardto = contextPath + "/User?" +

 "app=" + req.getParameter("app2") +

 "&ddn=" + req.getParameter("ddn") +

 "&jsp=" + req.getParameter("jsp2");

 try {

 account = getAccountObj();

 NameValue[] nameValues = getNameValues(req,
"edocs__");

 req.setAttribute("NAMEVALUEPAIRS", nameValues);

User Management Using a Non-Directory Access Implementation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

81

▪

 createAccountCtx(account, nameValues);

 forwardto += "&" + EnrollmentAppConstants.MESSAGE
+ "=ACCOUNT_CREATED";

 doHttpRedirect(req, res, forwardto);

 } catch (DuplicateEnrollmentException dee) {

 // take them back to the current page and give
them another chance

 req.setAttribute(EnrollmentAppConstants.MESSAGE,
"DUPLICATE_USERID");

 String spath = req.getServletPath();

 if (spath.startsWith("/"))

 spath = spath.substring(1);

 forwardto = contextPath + "/" + spath + "?" +

 "app=" + req.getParameter("app") +

 "&jsp=" + req.getParameter("jsp") +

 "&appRoot2=" +
req.getParameter("appRoot2") +

 "&ddn=" + req.getParameter("ddn") +

 "&app2=" + req.getParameter("app2") +

 "&jsp2=" + req.getParameter("jsp2") + "&"
+

 EnrollmentAppConstants.MESSAGE +
"=DUPLICATE_USERID";

 try {

 doHttpRedirect(req, res, forwardto);

 } catch (Exception e) {

 doForwardException(req, res, e);

 }

 } catch (Exception e) {

 doForwardException(req, res, e);

 } finally {

 try {

 if (account != null) account.remove();

User Management Using a Non-Directory Access Implementation

82 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 } catch (Throwable t) {

 log("doPost", t);

 }

 }

 }

The above method in turn calls the createAccountCtx method that ensures the email address value
exists and then calls the SampleAccount EJB method createSubcontext:

/**

* Create the account record in the database.

*/

private void createAccountCtx(IAccount account, NameValue[]
nv)

 throws DuplicateEnrollmentException,

 NamingException,

 Exception {

 Attributes attrs = new BasicAttributes();

 String name = null;

 // Find primary key - email.

 for (int i = 0; i < nv.length; i++) {

 if (nv[i].name.equals("email")) {

 name = nv[i].value.trim();

 break;

 }

 }

 if (name == null) throw new NamingException("Account
parameters missing email address.");

 // Populate the account parameters.

 for (int i = 0; i < nv.length; i++) {

 Attribute attr = attrs.get(nv[i].name);

 if (attr != null) {

 attr.add(nv[i].value);

 } else {

User Management Using a Non-Directory Access Implementation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

83

▪

 attr = new BasicAttribute(nv[i].name,
nv[i].value);

 }

 attrs.put(attr);

 }

 try {

 // Create the account record in the database.

 account.createSubcontext("", attrs);

 } catch (NameAlreadyBoundException nabe) {

 throw new DuplicateEnrollmentException();

 }

 }

The createSubcontext method defined in SampleAccount is as
follows:

/**

* Insert an account into the DB.

*/

public void createSubcontext(String name, Attributes attrs)
throws NamingException {

 log("createSubcontext(String name, Attributes
attrs)");

 if (name == null || name.length() > 0)

 throw new IllegalArgumentException("Name is null
or not empty.");

 if (attrs == null)

 throw new IllegalArgumentException("Attributes is
null");

 BasicAttributes battrs = (BasicAttributes) attrs;

 BasicAttribute attr = (BasicAttribute)
(battrs.get(SSN));

 if (attr == null)

 throw new NamingException("Must provide a social
security number as password.");

 attr = (BasicAttribute) (battrs.get("account"));

 if (attr == null)

User Management Using a Non-Directory Access Implementation

84 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 throw new NamingException("Must provide an account
number.");

 attr = (BasicAttribute) (battrs.get("ddn"));

 if (attr == null)

 throw new NamingException("Must provide a ddn.");

 attr = (BasicAttribute) (battrs.get("email"));

 if (attr == null)

 throw new NamingException("Must provide a email
address.");

 String emailAddress = (String)attr.get(0);

 Connection cn = null;

 PreparedStatement stmt = null;

 try {

 // Find the account record.

 HashMap record =
retrieveAccountRecord(emailAddress);

 // If found, the account already exists.

 if (!record.isEmpty()) {

 throw new NameAlreadyBoundException();

 }

 // Otherwise, create the insert statement.

 cn = getConnection();

 stmt = cn.prepareStatement(INSERT);

 HashMap tempRecord = new HashMap();

 // Populate the parameters of the
PreparedStatement.

 for (int i = 0; i < accountFields.length; i++) {

 BasicAttribute battr = (BasicAttribute)
(battrs.get(accountFields[i]));

 if (battr == null) {

 stmt.setObject(i + 1, "");

User Management Using a Non-Directory Access Implementation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

85

▪

 continue;

 }

 stmt.setObject(i + 1, battr.get(0));

 tempRecord.put(accountFields[i],
battr.get(0));

 }

 // Create the account in database.

 stmt.execute();

 // Set the cache.

 accountRecord = tempRecord;

 } catch (NamingException ne) {

 log(ne);

 throw ne;

 } catch (SQLException se) {

 log(se);

 throw new NamingException(se.getMessage());

 } finally {

 try {

 if (stmt != null) stmt.close();

 } catch (SQLException e) {

 log(e);

 }

 try {

 if (cn != null) cn.close();

 } catch (SQLException e) {

 log(e);

 }

 }

 }

In SampleAccount, the primary purpose of createSubcontext is to add an entry into the
enrollment database table using the values initially supplied in user_subscribe.jsp and passed
down to this method. UMFsample uses a SQL database to store the enrollment information, so this
method begins to build the INSERT statement to accomplish the goal (as shown above in bold). The
structure of each SQL statement used by SampleAccount is defined later in the file:

User Management Using a Non-Directory Access Implementation

86 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

// SQL Statements

 private final static String SELECT_BY_EMAIL = "select *
from sample_account

 where email = ?";

 private final static String UPDATE_PREFIX = "update
sample_account set ";

 private final static String UPDATE_PRIMARY_KEY =
UPDATE_PREFIX + " email =

 ? where email = ?";

 private final static String WHERE_SUFFIX = " where email =
?";

 private final static String DELETE_BY_EMAIL = "delete from
sample_account

 where email = ?";

 private final static String INSERT = "insert into
t sample_accoun

(email,ddn,ssn,firstname,lastname,zipcode,telephone," +

 "address,accounttype,account,accountdesc,ddndesc)
" +

 "values (?,?,?,?,?,?,?,?,?,?,?,?)";

The createSubcontext method is just one of many defined in SampleAccount to support the
enrollment model required by UMFsample. Remember that SampleAccount is the custom
implementation of IAccount, so each method required by your enrollment model will need to change
these methods. UMFsample requires the following custom methods:

 authenticate: Used to verify the current log in information for a user in the enrollment table.

 reAuthenticate

 getAttributes: Used to retrieve the account information for an enrolled user.

 modifyAttributes: Used to update the account information for an enrolled user.

 destroySubcontext: Used to delete the enrollment information for a user.

 impersonate: Used by a CSR application to allow a representative to impersonate a user.

For examples of each, see the SampleAccount source file.

Defining Your Custom Enrollment EJB
If you choose to re-implement the UMFsample enrollment EJB by adding your own customizations to
the files but not changing the names of the files nor their structure, then the process is pretty simple.
This SDK module provides the build script to recreate the enrollment EJB and EAR using the source
files described earlier. The steps to do this are described in the next section.

User Management Using a Non-Directory Access Implementation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

87

▪

The only other major step would be to rename the modified EAR to another name and change the
J2EE Web and EJB descriptor files to that new name. This is described in the Deploying and
Customizing J2EE Applications Guide for Oracle Siebel eStatement Manager.

However, if you choose to rename the enrollment EJB class file from SampleAccount to another name,
or change the structure of where those enrollment EJB files reside, then the build environment
described in the next section will not work and you will need to use your own environment. This
section details some of the changes you will need to be aware of.

The EJB descriptor files will need to change to reflect the new enrollment class file name or file
structure. To access these descriptor files, you must unjar or unzip the ejb-enrollment-
umfsample.jar file into a temporary directory. For examples about extracting the contents of a JAR
file, see the Deploying and Customizing J2EE Applications Guide for Oracle Siebel eStatement
Manager.

The two descriptor files you modify are:

ejb-jar.xml

weblogic-ejb-jar.xml (WebLogic) or ibm-ejb-jar-bnd.xmi (WebSphere)

The first descriptor file (ejb-jar.xml) is common across J2EE application servers and contains the
enterprise beans Session descriptors for the UMFsample enrollment model. Specifically, it defines the
SampleAccount EJB and the SampleAccountResolver EJB, which is an implementation of
IAccountResolver.

The contents of the ejb-jar.xml are shown here, and indicate the parts that you need to change
based on your new EJB name and its location (com.edocs.samples.umf):

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 1.1//EN"
"http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar id="ejb-jar_ID">

<display-name>Sample Enrollment</display-name>

<enterprise-beans>

<session id="Session_1">

<description>Sample enrollment model account</description>

<display-name>SampleAccount</display-name>

<ejb-name>SampleAccount</ejb-name>

<home>com.edocs.enrollment.user.IAccountHome</home>

<remote>com.edocs.enrollment.user.IAccount</remote>

<ejb-class>com.edocs.enrollment.user.AccountBean</ejb-class>

<session-type>Stateful</session-type>

<transaction-type>Bean</transaction-type>

<env-entry id="EnvEntry_SampleAccount_1">

<env-entry-name>accountImpl</env-entry-name>

User Management Using a Non-Directory Access Implementation

88 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>com.edocs.samples.umf.SampleAccount</env-
entry-value>

</env-entry>

<resource-ref id="ResRef_SampleAccount_1">

<res-ref-name>jdbc/DataSource</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

</session>

<session id="Session_2">

<description>Sample enrollment model email
resolver</description>

<display-name>SampleAccountResolver</display-name>

<ejb-name>SampleAccountResolver</ejb-name>

<home>com.edocs.enrollment.user.IAccountResolverHome</home>

<remote>com.edocs.enrollment.user.IAccountResolver</remote>

<ejb-class>com.edocs.enrollment.user.AccountResolverBean</ejb-
class>

<session-type>Stateful</session-type>

<transaction-type>Bean</transaction-type>

<env-entry id="EnvEntry_SampleAccountResolver_1">

<env-entry-name>accountImpl</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-
value>com.edocs.samples.umf.SampleAccountResolver</env-entry-
value>

</env-entry>

<resource-ref id="ResRef_SampleAccountResolver_1">

<res-ref-name>jdbc/DataSource</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

</session>

</enterprise-beans>

</ejb-jar>

User Management Using a Non-Directory Access Implementation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

89

▪

The second descriptor file (weblogic-ejb-jar.xml for WebLogic or ibm-ejb-jar-bnd.xmi for
WebSphere) contains reference descriptors for SampleAccount and SampleAcountResolver that
mention UMFsample. For example:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE weblogic-ejb-jar PUBLIC "-//BEA Systems, Inc.//DTD
WebLogic 6.0.0 EJB//EN"
"http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd">

<weblogic-ejb-jar>

<weblogic-enterprise-bean>

<ejb-name>SampleAccount</ejb-name>

<stateful-session-descriptor>

<stateful-session-cache>

<max-beans-in-cache>500</max-beans-in-cache>

<idle-timeout-seconds>900</idle-timeout-seconds>

</stateful-session-cache>

<stateful-session-clustering>

<home-is-clusterable>true</home-is-clusterable>

<replication-type>None</replication-type>

</stateful-session-clustering>

</stateful-session-descriptor>

<reference-descriptor>

<resource-description>

<res-ref-name>jdbc/DataSource</res-ref-name>

<jndi-name>edx.databasePool</jndi-name>

</resource-description>

</reference-descriptor>

<jndi-name>edx/umfsample/ejb/SampleAccount</jndi-name>

</weblogic-enterprise-bean>

<weblogic-enterprise-bean>

<ejb-name>SampleAccountResolver</ejb-name>

<stateful-session-descriptor>

<stateful-session-cache>

<max-beans-in-cache>500</max-beans-in-cache>

<idle-timeout-seconds>900</idle-timeout-seconds>

</stateful-session-cache>

<stateful-session-clustering>

User Management Using a Non-Directory Access Implementation

90 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

<home-is-clusterable>true</home-is-clusterable>

<replication-type>None</replication-type>

</stateful-session-clustering>

</stateful-session-descriptor>

<reference-descriptor>

<resource-description>

<res-ref-name>jdbc/DataSource</res-ref-name>

<jndi-name>edx.databasePool</jndi-name>

</resource-description>

</reference-descriptor>

<jndi-name>edx/umfsample/ejb/SampleAccountResolver</jndi-name>

</weblogic-enterprise-bean>

</weblogic-ejb-jar>

In addition to these EJB descriptor files, you must modify any Web descriptor files that mention
SampleAccount: web.xml, weblogic.xml (for WebLogic) and ibm-web-bnd.xmi (for
WebSphere). For example, the following is a portion of the web.xml file included in the UMFsample
WAR:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.2//EN" "http://java.sun.com/j2ee/dtds/web-
app_2_2.dtd">

<web-app id="WebApp_1">

<display-name>umfsample</display-name>

<distributable/>

<servlet>

 <servlet-name>UserServlet</servlet-name>

 <display-name>UserServlet</display-name>

 <servlet-class>com.edocs.app.AppServlet</servlet-class>

 <init-param>

 <param-name>ServletRoot</param-name>

 <param-value>com.edocs.app.user</param-value>

 </init-param>

 <init-param>

 <param-name>ErrorPage</param-name>

 <param-value>/common/jsp/UserErrorMsg.jsp</param-value>

User Management Using a Non-Directory Access Implementation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

91

▪

 </init-param>

 <init-param>

 <param-name>LoginRoot</param-name>

 <param-value>com.edocs.samples.umf</param-value>

 </init-param>

 <init-param>

 <param-name>LoginPage</param-name>

 <param-value>/enrollment/jsp/UserLogin.jsp</param-value>

 </init-param>

 <init-param>

 <param-name>Account.name</param-name>

 <param-value>edx/umfsample/ejb/SampleAccount</param-
value>

 </init-param>

 <load-on-startup>1</load-on-startup>

 </servlet>

<servlet>

 <servlet-name>UserEnrollmentServlet</servlet-name>

 <display-name>UserEnrollmentServlet</display-name>

 <servlet-class>com.edocs.app.AppServlet</servlet-class>

 <init-param>

 <param-name>ServletRoot</param-name>

 <param-value>com.edocs.samples.umf</param-value>

 </init-param>

 <init-param>

 <param-name>ErrorPage</param-name>

 <param-value>/common/jsp/UserErrorMsg.jsp</param-value>

 </init-param>

 <init-param>

 <param-name>LoginRoot</param-name>

 <param-value>com.edocs.samples.umf</param-value>

 </init-param>

 <init-param>

 <param-name>LoginPage</param-name>

 <param-value>/enrollment/jsp/UserLogin.jsp</param-value>

 </init-param>

User Management Using a Non-Directory Access Implementation

92 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 <init-param>

 <param-name>Account.name</param-name>

 <param-value>edx/umfsample/ejb/SampleAccount</param-
value>

 </init-param>

 </servlet>

Even if you do not change the location of the files, you should change the entries to reflect your new
J2EE application name. Normally this is done as part of the configuration and deployment of your
custom application as described in the Deploying and Customizing J2EE Applications Guide for Oracle
Siebel eStatement Manager.

After making the changes to the above descriptor files, you must re-jar or re-zip the files you
extracted back into new EJB JAR and WAR files to replace the previous ones in your EAR. This is also
described in the above guide.

Building Your Version of UMFSample
The User Management Framework SDK module ships with editable Java source files for building your
own custom solution. Source code is packaged in a JAR file in the
EDX_HOME/samples/umfsample/src directory after you install the UMFsample application.

To build custom enrollment EJBs from this source, Oracle uses the free and platform-independent tool
Ant from Apache. Install Ant to build your customized order capture solution. You can extract example
source code, customize it for your Web application, build with Ant, and then package and deploy as
usual. This build procedure is the same for Solaris, AIX, and Windows 2000.

To set up the UMFsample source environment:

1 Download and install the JDK 1.3.1 for your system (if it is not already installed).

2 Download and install ANT 1.4.1 from:

http://ant.apache.org/index.html

3 Create a working directory for your new enrollment files, for example umf_working.

4 Navigate to EDX_HOME/samples/umfsample/src and copy the umf_src.jar file to your
working directory.

5 Navigate to EDX_HOME/samples/umfsample/J2EEApps/weblogic (or /websphere) and copy
the ear-umfsample.ear file to your working directory.

6 In your working directory, extract the source JAR as follow (to use the jar command, your PATH
environment must have JAVA_HOME/bin defined):

jar xvf umf_src.jar
You see two new directories (umf_src and META-INF) along with a build.xml file that is
used to define the build environment. The META-INF directory contains a manifest file, while
the umf_src directory contains source files for the application Web server and enrollment
bean. The Web server source JSP files for enrollment are located in
umf_src/web/enrollment/jsp. The enrollment bean java files are in
umf_src/enrollment.

User Management Using a Non-Directory Access Implementation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

93

▪

After you have finished customizing these Java source files, you can use Ant to compile your class
files, package your JARs, and create an EAR file ready to deploy. Make sure to study the build.xml
script file carefully, and to customize any elements required for your environment. For example, you
may decide to change the EAR name from ear-umfsample.ear to something like ear-myapp.ear.
The Deploying and Customizing J2EE Applications Guide for Oracle Siebel eStatement Manager
describes how to do this for the ear-umfsample.ear you copied to your working directory. You also
need to change the build.xml file to reflect those new names in the following entries:

<property name="ear-name" value="ear-umfsample.ear"/>

<property name="war-name" value="war-umfsample.war"/>

<property name="ejb-name" value="ejb-enrollment-
umfsample.jar"/>

To build the custom version of UMFsample:

1 In the build.xml file, edit the app-server-jar property to the name and location of your app
server jar. The following are examples of what you can specify for that property entry; it varies
depending on where you install WebLogic or WebSphere.

On Windows 2000 you can specify:

<property name="app-server-jar"
value="C:\pub\weblogic6\wlserver6.1\lib\weblogic.jar" />

On Solaris with WebLogic you can specify:

<property name="app-server-jar"
value="/pub/weblogic6/wlserver6.1/lib/weblogic.jar"/>

On Solaris or AIX with WebSphere you can specify:

<property name="app-server-jar"
value="/opt/WebSphere/AppServer/lib/j2ee.jar"/>

2 In your working directory, run the command:

ant build-all

3 The system places the new custom EAR file in the deploy subdirectory of your working directory.

CAUTION: Move this EAR file to the location where you will deploy it BEFORE proceeding to the
next step; cleaning up your working directory will remove the deploy subdirectory and any files it
contains.

4 After the EAR file is build, clean up your working directory as follows:

ant very-clean

User Management Additional Reading Sources

94 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Additional Reading Sources

LDAP: Lightweight Directory Access Protocol
The Lightweight Directory Access Protocol: X.500 Lite, CITI Technical Report 95-8, Timothy A.
Howes, Center for Information Technology Integration, University of Michigan, 1995.
http://www.stanford.edu/group/networking/directory/doc/ldap/ldap.html (Requires Login.)

Understanding LDAP – Design and Implementation, SG24-4986-01, Redbooks, June-29-1998,
published 16 June 2004, last updated 19 July 2006

http://publib-b.boulder.ibm.com/cgi-bin/searchsite.cgi?query=LDAP

Using LDAP for Directory Integration, SG24-6163-01, published 12 February 2004
http://publib-b.boulder.ibm.com/cgi-bin/searchsite.cgi?query=LDAP

Introduction to Directories and LDAP, Jeff Hodges, June 1997

LDAP FAQ, Mark Wahl. RFC2251: Lightweight Directory Access Protocol (v3), M. Wahl, T.
Howes, and S. Kille. December 1997

RFC2252: Lightweight Directory Access Protocol (v3) Attribute Syntax Definitions, M. Wahl,
A. Coulbeck, T. Howes, and S. Kille. December 1997

JSP: Java Server Pages
Java Server Pages, http://java.sun.com/products/jsp/index.html

JNDI: Java Naming and Directory Interface
Java Naming and Directory Interface™, http://java.sun.com/products/jndi/

JNDI API Tutorial and Reference: Building Directory-Enabled Java Applications (The Java
Series), by Rosanna Lee, Scott Seligman. May 2001. http://java.sun.com/products/jndi/tutorial/

http://www.stanford.edu/group/networking/directory/doc/ldap/ldap.html
http://publib-b.boulder.ibm.com/cgi-bin/searchsite.cgi?query=LDAP
http://publib-b.boulder.ibm.com/cgi-bin/searchsite.cgi?query=LDAP
http://java.sun.com/products/jsp/index.html
http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/tutorial/

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

95

5 Content Access

Planning Your Content Access Interface

About Content Access
The Oracle content access interface retrieves customer content, for example statement summary or
detail data, from a database or data stream and presents it in the customer’s Web browser. Content
access methods also support data post-processing and dynamic presentation of a user’s activity on the
Web, for example the date and time the user last viewed a statement. The content access interface
consists of methods that extend the Java 2 Enterprise Edition (J2EE) language in an Enterprise
JavaBeans (EJB) environment.

In deploying an Oracle solution, the content access interface integrates with the user management
framework to retrieve and present account data for each enrolled customer. For more information, see
Chapter 4, User Management.

As the foundation of each deployment, any content access implementation is designed for
customization. The customized code of a properly implemented project will integrate seamlessly with
Oracle core software.

Goals of Content Access
 Retrieve and present statement summaries and detail data

 Sort statement detail

 Record and present Web-time activity

 Extract and transform data as XML

About XML, XSL, and XSLT
eStatement Manager adds the ability to extract and transform XML data with XSL and XSLT
stylesheets. The Extensible Markup Language (XML) is the universal format for structured documents
and data on the Web, developed by the WorldWide Web Consortium (W3C). According to the W3C:

“XSL is a language for expressing stylesheets. It consists of three parts:

 XSL Transformations (XSLT): a language for transforming XML documents

 XML Path Language (XPath), an expression language used by XSLT to access or refer to parts of
an XML document. (XPath is also used by the XML Linking specification

Content Access Introduction to Oracle Content Access

96 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 XSL Formatting Objects: an XML vocabulary for specifying formatting semantics.

An XSL stylesheet specifies the presentation of a class of XML documents by describing how an
instance of the class is transformed into an XML document that uses the formatting vocabulary.”

For more information, see W3C, The Extensible Stylesheet Language (XSL),
http://www.w3.org/Style/XSL/

Introduction to Oracle Content Access
An Oracle Web application designer uses the content access interface to customize live data retrieval
for the eStatement Manager production process. This SDK module requires a thorough understanding
of the terms, processes, and workflows presented in the Administration Guide for Oracle Siebel
eStatement Manager.

More specifically, the Oracle content access interface allows a Web application designer to control how
eStatement Manager dynamically retrieves and presents data configured in version sets of dynamic
Web views and batch jobs.

XML Views and Jobs since eStatement Manager 3.0
eStatement Manager 2.x could retrieve XML dynamically with the XML Web view for processing at the
JSP layer. In eStatement Manager 3.0 and later versions, you can now transform XML data directly in
the Command Center. You can transform extracted data with a custom XSLT stylesheet in the new
XSLT Web view, or present detail, annotation, or dispute data with an XML query document in the new
XML Query Web view.

eStatement Manager 2.x could also create static XML with the XML Output batch job. Since 3.0,
eStatement Manager has a more compact and intuitive DTD structure for Mapping a DDF to XML for
the XML Output job. You can also extract recurring data such as detail, disputes, or annotations, as
XML with the Detail Extractor job.

About Views, Jobs, and Version Sets
A Web view is a set of design files that result in a particular presentation of statement data. A view
can dynamically display formatted statements live on the Web or present other account data in
various formats.

An eStatement Manager application can have one or more views, customized for an organization's
online presentment needs. Multiple views can present different levels of statement information such as
a summary page and statement detail pages.

A version set is a set of design files which eStatement Manager uses to present a user with an online
view of a statement. When you publish a version set for the Indexer job, the eStatement Manager
Publisher tool (in the Command Center) identifies each design file belonging to a particular view and
moves the files from the design environment to your application server. You give the view a name,
and Publisher creates the version set for further identification.

Publishing a version set of a Web view requires you to specify values for:

 DDN (same as Application)

http://www.w3.org/Style/XSL/

Content Access Introduction to Oracle Content Access

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

97

▪

 View Type (not required for Indexer job)

 View Name

These values must exactly match the values passed as parameters ddn, viewName, and viewType of
any User methods on any JSP associated with that view.

For more information about views, jobs, and version sets, see the Administration Guide for Oracle
Siebel eStatement Manager.

TIP: You must index your data by running an Indexer job at least once before you can view online
statements in sample Web applications.

New XML Templates for Views and Jobs
eStatement Manager allows you to customize data extraction and presentment with powerful XML
tools as well as with APIs. Two new dynamic Web views (XSLT View and XML Query View) and a new
batch job (Detail Extractor) accept input from XML templates that can transform content during
extraction, execute a SQL query, or format data, for example for download as comma-separated
values (CSV).

TIP: For downloading data, use the XSLT View with XSL stylesheets instead of the CSV view with a
TOK file. See Transforming Data with XSLT for details.

The following table lists the input file types for each eStatement Manager dynamic view and batch job.
Use these files with the data source for the National Wireless application, Data/NatlWireless.txt,
to practice creating your own views and jobs.

Dynamic Web Views

Job Type View Name NatlWireless Sample Files

HTML User-provided

NatlWireless.DDF
NatlWireless.ALF
NatlWireless.htm
NW_LocSummary.htm

CSV User-provided
NatlWireless.DDF
NatlWireless.tok

XML User-provided NatlWireless.DDF

CHART User-provided None

XSLT XSLTDetail
NatlWireless.DDF
XSLTDownload/summary_info_csv.xsl

XMLQuery DetailQuery
XMLQuery/annot_sql.xml
XMLQuery/detail_sql.xml
XMLQuery/dispute_sql.xml

Content Access Command Line Interface (CLI) to Scheduler (PWC)

98 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Batch Jobs

Job Type View Name National Wireless Example

Detail
Extractor dtlextr

NatlWireless.DDF
DetailExtractor/summary_info.xml
DetailExtractor/summary_info.xsl

Email
Notification User-provided

NatlWireless.DDF
NW_Email.ALF
NWEmail.htm
NWEmailAlternate.htm

HTML
Output User-provided

NatlWireless.DDF
NatlWireless.ALF
NatlWireless.htm

Indexer User-provided NatlWireless.DDF

Purge App User-provided None

Purge Logs User-provided None

XML Output
(XMLDetail User provided

NatlWireless.DDF

For a complete listing of National Wireless sample files, see the Deploying and Customizing J2EE
Applications Guide for Oracle Siebel eStatement Manager.

For information on creating custom data definition files (DDF) and application logic files (ALF) for your
dataset, see the Data Definition (DefTool) Guide for Oracle Siebel eStatement Manager and the
Presentation Design (Composer Guide) for Oracle Siebel eStatement Manager.

For information on creating and configuring each view type, see the Administration Guide for Oracle
Siebel eStatement Manager.

Command Line Interface (CLI) to
Scheduler (PWC)

com.edocs.pwc.cli.CLIScheduler is a command line interface to the PWC. You can use it to
start PWC jobs from the command line to allow the use of external (third-party) schedulers like cron
on UNIX, or CA Unicenter. It can also list all the DDNs, job names and the schedules defined.

To run the job in a particular DDN:

java com.edocs.pwc.cli.CLIScheduler -start <DDN> <jobname>

To list all the DDNs and the job names defined for each DDN:

Content Access Command Line Interface (CLI) to Scheduler (PWC)

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

99

▪

java com.edocs.pwc.cli.CLIScheduler -list

To list all the DDNs, the job names defined for each DDN, and the schedules defined for each job
name:

java com.edocs.pwc.cli.CLIScheduler –schedules

Return Codes Status

0 The job ran successfully.

1 The job resulted in a NoOp.
2 The job Failed.
3 An instance of this job is in Failed, Processing, Reprocessing, or Reprocess state.
-1 If the DDN, job name are unknown.

Examples of each command are described below.

com.edocs.pwc.cli.CLIScheduler -start <DDN> <jobname>
This command lets you start PWC jobs, where <DDN> is the DDN name and <jobname> is the name
of the job.

WebLogic/Solaris Example:

EDX_HOME=/opt/estatement

WL_HOME=<BEA Home Directory>

CLASSPATH=$CLASSPATH:$EDX_HOME/lib/edx_client.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/edx_common.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/commons-logging-1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/log4j-1.2.13.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/concurrent-1.3.3.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/spring.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/api-1.1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/configuration-1.1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/platform-1.1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/xma-1.1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/xma-config.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/config

CLASSPATH=$CLASSPATH:$EDX_HOME/lib/weblogic/app-scheduler.jar

LOG_OPTS="-
Dorg.apache.commons.logging.Log=org.apache.commons.logging.imp
l.SimpleLog"

LOG_OPTS="$LOG_OPTS -
Dorg.apache.commons.logging.simplelog.defaultlog=debug"

Content Access Command Line Interface (CLI) to Scheduler (PWC)

100 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

LOG_OPTS="$LOG_OPTS -
Dorg.apache.commons.logging.simplelog.log.com.edocs.jndi.cda=d
ebug"

java -classpath $CLASSPATH:$WL_HOME/server/lib/weblogic.jar
$LOG_OPTS -Dedx.home=$EDX_HOME -
Djava.naming.factory.initial=weblogic.jndi.WLInitialContextFac
tory -Djava.naming.provider.url=iiop://<localhost>:7001 -
DUserTransaction.name=javax.transaction.UserTransaction -
DnoTransaction=true -
DPWCDataManager.name=edx/ejb/PWCDataManager -
DLogWriter.name=edx/ejb/LogWriter
com.edocs.pwc.cli.CLIScheduler -start <DDN> <jobname>

Where <BEA Home Directory> is the directory where you installed the application server, <DDN> is
the name of the DDN, and <jobname> is the job name.

Also provide the correct URL with Application Server IP and bootstrap port for JAVA options:

-Djava.naming.provider.url=iiop://<localhost>:7001

Note that Windows uses the same WebLogic commands.

Oracle Application Server/Linux Example:

EDX_HOME=/opt/eStatement

export
ORACLE_J2EE_HOME=/opt/oracle/product/10.1.3/OracleAS_1/j2ee/ho
me

export JAVA_HOME=/opt/oracle/product/10.1.3/OracleAS_1/jdk

CLASSPATH=$CLASSPATH:$ORACLE_J2EE_HOME/oc4jclient.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/edx_common.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/edx_client.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/commons-logging-1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/log4j-1.2.13.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/spring.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/concurrent-1.3.3.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/api-1.1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/configuration-1.1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/platform-1.1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/xma-1.1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/xma-config.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/oracleAS/app-scheduler.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/config

LOG_OPTS="-
Dorg.apache.commons.logging.Log=org.apache.commons.logging.imp
l.SimpleLog"

LOG_OPTS="$LOG_OPTS -
Dorg.apache.commons.logging.simplelog.defaultlog=info"

Content Access Command Line Interface (CLI) to Scheduler (PWC)

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

101

▪

LOG_OPTS="$LOG_OPTS -
Dorg.apache.commons.logging.simplelog.log.com.edocs.jndi.cda=i
nfo"

$JAVA_HOME/bin/java -classpath $CLASSPATH: $LOG_OPTS -
Dedx.home=$EDX_HOME -
Djava.naming.factory.initial=oracle.j2ee.naming.ApplicationCli
entInitialContextFactory -
Djava.naming.security.principal=admin -
Djava.naming.security.credentials=welcome -
Djava.naming.provider.url=opmn:ormi://<localhost>:<oc4j_instan
cename>/<application-name> -
DUserTransaction.name=javax.transaction.UserTransaction -
DnoTransaction=true -
DPWCDataManager.name=edx/ejb/PWCDataManager -
DLogWriter.name=edx/ejb/LogWriter
com.edocs.pwc.cli.CLIScheduler -start <DDN> <jobname>

In the URL, provide the correct Application Server IP for <localhost>, the name of the instance you
created in Oracle Application Server for <instancename>, and the name of the application you
provided during eStatement.ear deployment for <application-name>:

Djava.naming.provider.url=opmn:ormi://<localhost>:<oc4j_instan
cename>/<application-name> -

Also replace <DDN> with the name of the DDN and <jobname> with the name of the job.

WebSphere/Solaris Example:

For WebSphere, before running the script you must first extract the app-scheduler.jar in the
eStatement ear file ($EDX_HOME/J2EEApps/websphere/Deployed_ear-eStatement.ear) to a folder
called websphere in the lib ($EDX_HOME/lib/websphere).

Sample CLI Scheduler script:

export WAS_HOME=/usr/IBM/WebSphere/AppServer/profiles/XMATEST

export EDX_HOME=/edx/eStatement

. $WAS_HOME/bin/setupCmdLine.sh

WAS_INSTALL_HOME=/opt/IBM/WebSphere/AppServer

LOG_OPTS="-
Dorg.apache.commons.logging.Log=org.apache.commons.logging.imp
l.SimpleLog"

Content Access Command Line Interface (CLI) to Scheduler (PWC)

102 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

LOG_OPTS="$LOG_OPTS -
Dorg.apache.commons.logging.simplelog.defaultlog=error"

LOG_OPTS="$LOG_OPTS -
Dorg.apache.commons.logging.simplelog.log.com.edocs.jndi.cda=e
rror"

CLASSPATH=$CLASSPATH:$WAS_INSTALL_HOME/runtimes/com.ibm.ws.adm
in.client_6.1.0.jar
CLASSPATH=$CLASSPATH:$WAS_INSTALL_HOME/java/jre/lib/endorsed/i
bmorb.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/edx_common.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/edx_client.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/commons-logging-1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/log4j-1.2.13.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/spring.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/lib/concurrent-1.3.3.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/api-1.1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/configuration-1.1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/platform-1.1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/xma-1.1.1.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/xma/xma-config.jar
CLASSPATH=$CLASSPATH:$EDX_HOME/config

CLASSPATH=$CLASSPATH:"$EDX_HOME/lib/websphere/app-
scheduler.jar":$WAS_CLASSPATH

CLASSPATH=$CLASSPATH:"/usr/IBM/WebSphere/AppServer/profiles/XM
ATEST/installedApps/pandoraNode04Cell/eStatement.ear/ejb-
pwc.jar"

CLASSPATH=$CLASSPATH:"/usr/IBM/WebSphere/AppServer/profiles/XM
ATEST/installedApps/pandoraNode04Cell/eStatement.ear/ejb-
alert-service.jar"

NAMING_FACTORY=com.ibm.websphere.naming.WsnInitialContextFacto
ry

ORB_RAS_MGR=-
Dcom.ibm.CORBA.RasManager=com.ibm.websphere.ras.WsOrbRasManage
r

CMD="$JAVA_HOME/bin/java \

-Xbootclasspath/p:$WAS_BOOTCLASSPATH \

$CLIENTSAS \

$CLIENTSOAP \

$JAASSOAP \

$CLIENTSSL \

$ORB_RAS_MGR \

$USER_INSTALL_PROP \

Content Access Command Line Interface (CLI) to Scheduler (PWC)

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

103

▪

$EDX_OPTS \

$LOG_OPTS \

$DEBUG_MODE \

-Dedx.home=$EDX_HOME \

-Dwas.install.root=$WAS_HOME \

-Dws.ext.dirs=$WAS_EXT_DIRS \

-
Djava.security.auth.login.config=$WAS_HOME/properties/wsjaas_c
lient.conf \

-Dcom.ibm.CORBA.BootstrapHost=$DEFAULTSERVERNAME \

-Dcom.ibm.CORBA.BootstrapPort=$SERVERPORTNUMBER \

-
Djava.naming.factory.initial=com.ibm.websphere.naming.WsnIniti
alContextFactory \

-Djava.naming.provider.url=iiop://<localhost>:2812 \

-DUserTransaction.name=jta/usertransaction \

-classpath $CLASSPATH com.ibm.ws.bootstrap.WSLauncher

com.edocs.pwc.cli.CLIScheduler -start <DDN> <jobname>"

$CMD

Provide the correct URL with Application Server IP and bootstrap port for JAVA options:

-Djava.naming.provider.url=iiop://<localhost>:2812 \

Also replace <DDN> with the name of the DDN and <jobname> with the name of the job.

Other variables used in the script:

WAS_HOME = <Your WebSphere Profile Home Directory>
EDX_HOME = <eStatement Installation Home Directory>
WAS_INSTALL_HOME = <WebSphere Application Server Home Directory>
LOG_OPTS = <Simple Log Information>

com.edocs.pwc.cli.CLIScheduler -list
This command lists all the DDNs and the job names defined for each DDN, for example:

Content Access XML and eStatement Manager

104 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 TestChart
 index
 test_app
 Email
 index
 test1
 emailN
 indexer
 cl_sp9
 indexer
 htmlOutput

com.edocs.pwc.cli.CLIScheduler -schedules
This command lists all the DDNs, the job names defined for each DDN, and the schedules defined for
each job name, for example:

 schedulertest8
 indexer
 StartDate : 06/12/2001
 StartTime : 7 pm:00
 Try Every 15mins
 EndTime : 2 pm:0
 Repeat : on day 5 of the month every
other month
 EndDate : Forever
 schedulertest9
 emailN
 StartDate : 06/11/2001
 StartTime : 5 pm:00
 Try Every 5mins
 EndTime : 12 pm:15
 Repeat : Every
Monday,Tuesday,Wednesday,Thursday,Friday
 EndDate : Until 06/30/2001
 indexer
 No Schedules defined for this jobName
 test
 indexer
 No Schedules defined for this jobName

XML and eStatement Manager

About XML and eStatement Manager
In eStatement Manager, you can use XML throughout the design process: for data definition,
composition, extraction, and live presentment. A DDF mapped to an XML DTD can transform data in

Content Access XML and eStatement Manager

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

105

▪

almost unlimited ways, replacing many complex customizations and post-processing tasks with
automated Command Center views and jobs. By mapping your DDF fields to XML elements, you can
apply XML templates that:

 Extract recurring detail data to the eStatement Manager database

 Transform data for download, for example as CSV or QIF

 Wrap a SQL query as XML to extract database data without an API

 Format data with XSL stylesheets

 Use XTags, XPath, and other emerging XML tools

Mapping a DDF to XML
Mapping a DDF to XML is the first step in the process of applying these powerful new tools. You need
to create an XML Document Type Definition (DTD) to reflect the structure of your Data Definition File
(DDF). To learn about DTDs, which are a core feature of XML, see “Additional Reading about XML,
XSL, and XSLT” on page 106.

About XML DTDs for eStatement Manager
The eStatement Manager format for XML output uses DDF names as XML element names. For
example, if the DDF contains a FIELD named AccountNumber, the DTD will have an element name
AccountNumber, with the value of the extracted FIELD appearing in a CDATA section of that XML
element.

Therefore, there is no “standard” DTD for XML in eStatement Manager—each DDF defines its own
DTD. However, all eStatement Manager DTDs contain a common element, shown in this example
fragment:

<!ELEMENT doc (view)>

<!ATTLIST doc docid ID #required>

The <view> element contains the complete extracted document content. The required attribute
docid is the standard docid which uniquely identifies the document within the system.

These XML conventions provide a more compact and intuitive reflection of the underlying document
structure, improving performance and ease of use.

Standard Elements
 If there is no data extracted for some DDF-defined item, no XML is generated.

 Space characters (‘ ‘) in DDF item names are mapped to the dash (‘-‘) character.

 eStatement Manager does not prevent collisions among FIELD, TABLE, and GROUP names.
eStatement Manager constrains DDF item names to be unique within the DDF.

The following topics describe the XML representations of common DDF object types in eStatement
Manager.

Content Access XML and eStatement Manager

106 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

FIELD Elements
A FIELD defined in a DDF is represented as an XML element with the same name as the FIELD. The
extracted content is wrapped in a CDATA section of the FIELD element.

Within the DDF, one FIELD is designated as the “primary key” for the document. In the generated
XML, this element has an attribute “role” with the value “PRIMARYKEY”.

No other attributes are supplied. In particular, no “type” information is presented.

TABLE Elements
A TABLE defined in a DDF is represented as an XML element with the same name as the TABLE. It is a
collection of rows, each of which is a collection of the columns. The element name of the columns is
the same as the DDF name of the column, and the extracted data is within a CDATA section, just as a
FIELD.

However, there is no DDF name for a row, so adding the string “-row” to the TABLE name creates a
name for the rows. Thus, a TABLE named Detail with columns Name, Date, and Amount becomes:

<Detail>

<Detail-row>

<Name><![CDATA[Joe the Lion]]></Name>

<Date><![CDATA[June 1, 1974]]></Date>

<Amount><![CDATA[801]]></Amount>

</Detail-row>

</Detail>

GROUP Elements
A GROUP defined in a DDF is represented as an XML element with the same name as the GROUP.

Additional Reading about XML, XSL, and XSLT
Bradley, Neil, The XSL Companion, Addison Wesley, 2000

Burke, Eric M., Developing, Applying and Optimizing XSLT with Java Servlets, 12/15/2000
http://www.onjava.com/pub/a/onjava/2000/12/15/xslt_servlets.html

Fung, Khun Yee, XSLT: Working with XML and HTML, Addison Wesley, 2001

Holzner, Steven, Inside XSLT, New Riders, 201 West 103rd Street, Indiana 46290, July 2001

Sun Microsystems, Tutorial for the Java™/ API for XML Parsing (JAXP) version 1.1,
http://java.sun.com/xml/tutorial_intro.html

W3C, The Extensible Stylesheet Language (XSL), http://www.w3.org/Style/XSL/

http://www.onjava.com/pub/a/onjava/2000/12/15/xslt_servlets.html
http://java.sun.com/xml/tutorial_intro.html
http://www.w3.org/Style/XSL/

Content Access Extracting Detail Data to the Database

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

107

▪

Extracting Detail Data to the Database

About the Detail Extractor Job
The Detail Extractor job extracts recurring data from the data stream and loads it into a database
table. This feature supports

 Retrieving recurring data as XML

 XML transformations with XSLT, for example to WML, CSV, or QIF

 Integrating line item disputes and annotations

 Data mining and analysis

For information on creating and configuring a Detail Extractor job, see the Administration Guide for
Oracle Siebel eStatement Manager. To use the Detail Extractor with disputes and annotations, see
Chapter 6, “Line Item Disputes and Annotations.”

This job takes several types of XML input files. Each is discussed in the following sections.

Job Type Input Files National Wireless Example

DDF NatlWireless.DDF

Database Table
XML File

DetailExtractor/summary_info.xml

Detail
Extractor

Statement XSLT
File

DetailExtractor/summary_info.xsl

Content Access Extracting Detail Data to the Database

108 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Sequence Diagram for Detail Extractor Job

Detail Extractor Job for National Wireless
The samples provided extract and upload the SummaryInfo table from NatlWireless.ddf to the
Detail table using the Detail Extractor job, and then access this Detail table using an XMLQuery
dynamic view and the method User.getDocumentReader.

Customizing the Detail Extractor Job
The Detail Extractor feature requires two new tablespaces, EDX_LOAD_DATA and
EDX_LOAD_DATA_IDX, which hold detail data and indexes. These are huge tablespaces requiring
additional disk space. Each Command Center job adds one LOAD_DATA table to the database. To add
multiple tables, you can create additional jobs.

For more information on database tables, see the Installation Guide for Oracle Siebel eStatement
Manager.

For National Wireless, the XML templates for this view are:

 summary_info.xml (Database Table XML File)

 summary_info.xsl (Statement XSLT File)

To customize this job for your own data, you must edit these two XML templates.

Content Access Extracting Detail Data to the Database

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

109

▪

Edit summary_info.xml
The summary_info.xml template specifies the DDF Table name and the table field names as they
appear in your database. Here you can also add columns to the detail table by specifying new XML
field elements.

The summary_info.xml template also defines the parameters of the detail_id field, as shown in
this example.

 <field>

 <name>detail_id</name>

 <type>VARCHAR</type>

 <length>20</length>

 <allow-nulls>Y</allow-nulls>

 </field>

TIP: The detail_id can grow beyond the default length of 20 characters for very large statements.
If the Detail Extractor job fails when processing a large statement, it may be because the detail_id
database field was not large enough. Try increasing the length of detail_id to varchar(40) in
summary_info.xml.

About edx-DE-table.xsd
The summary_info.xml template uses a schema, edx-DE-table.xsd, to define the table data
types. This file should not be modified, but you should update summary_info.xml to point to its
correct location in your environment.

CAUTION: edx-DE-table.xsd does not use the most current version of the XML Schema
declaration: http://www.w3.org/2000/10/XMLSchema is the only version supported by WebLogic
6.1sp2. WebLogic users should not update this schema declaration to a newer version, as this version
is required by the WebLogic XML parser. WebSphere supports newer schema declarations, but Oracle
will not support implementations using newer schemas.

http://www.w3.org/2000/10/XMLSchema

Content Access Extracting Detail Data to the Database

110 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Edit summary_info.xsl
The summary_info.xsl template is a stylesheet that matches the requested docID and detailID
with the data from the requested database table.

Content Access Transforming Data with XSLT

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

111

▪

Transforming Data with XSLT

About the XSLT View Type
eStatement Manager uses XML to read, write, and transform data using the universal standard of
XSLT. eStatement Manager applications use the XML dynamic Web view and an XSLT stylesheet to
transform data into the desired format. For example, an XSLT View could transform one XML format to
another, to comma-separated values (CSV) for download, or to a proprietary format such as Quicken
QIF (in text or HTML format).

The advantage of using the XSLT View is quick and easy output of different data formats from the
same DDF, using the existing functionality of eStatement Manager.

Content Access Transforming Data with XSLT

112 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Setting Up Your Environment for XSLT
dom4j.jar contains the Document Object Model (DOM) Java interface for dynamic access to HTML
documents. For more information, see http://www.w3.org/DOM/.

xalan.jar contains Apache’s Java implementation of the DOM API as an XSLT stylesheet processor.
eStatement Manager uses xalan-Java-2.2 D12 to process XSLT. For more information, see
http://xml.apache.org/.

xalanj1compat.jar contains the xalan-Java-1 XSLT processor, which is no longer supported by
Apache but is required by the DOM4 API.

Sequence Diagram for XSLT View

Using the extracted details, eStatement Manager renders the XML. The extracted XML is fed into the
XSL transformer Apache Xalan, which converts the data into the desired output. The transformed
output is then sent to the client browser.

Input Files for XSLT View

Job Type Input Files National Wireless Example

DDF NatlWireless.DDF
XSLT

XSLT XSLTDownload/summary_info_csv.xsl

Content Access Transforming Data with XSLT

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

113

▪

Example: Downloading Data in Comma-Separated Values (CSV)
Format
The National Wireless application includes an example of an XSLT template and data to download local
call detail in comma-separated values (CSV) format. To view examples, see “XML Templates for
National Wireless” on page 132, and “summary_info_csv.xsl” on page 136.

Edit summary_info_csv.xsl
This template processes the elements in the specified table, in this example SummaryInfo. It selects
the docID specified, inserts a unique detailID, retrieves the column data and trims any white
space, and inserts a comma between values and a line feed between rows.

Sample output: summary_info_csv.txt
ivn-1/po-0/bc-17152/pc-7/dd-20011214,1,PREVIOUS BALANCE,285.12

ivn-1/po-0/bc-17152/pc-7/dd-20011214,2,LESS PAYMENTS APPLIED
THROUGH 03/24/01,158.37CR

Content Access Extracting Data with XML Queries

114 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

ivn-1/po-0/bc-17152/pc-7/dd-20011214,3,MISCELLANEOUS
CREDIT,19.19CR

ivn-1/po-0/bc-17152/pc-7/dd-20011214,4,BEGINNING
BALANCE,107.56

ivn-1/po-0/bc-17152/pc-7/dd-20011214,5,CURRENT USAGE,.07

ivn-1/po-0/bc-17152/pc-7/dd-20011214,6,PRODUCT MONTHLY
FEES,4.95

ivn-1/po-0/bc-17152/pc-7/dd-20011214,7,CORPORATE CONNECTIONS
WAIVER,4.95CR

ivn-1/po-0/bc-17152/pc-7/dd-20011214,8,LIFELINE ASST/TELE
RELAY,0.80

ivn-1/po-0/bc-17152/pc-7/dd-20011214,9,FEDERAL ACCESS
CHARGE,8.62

ivn-1/po-0/bc-17152/pc-7/dd-20011214,10,LOCAL USAGE
CHARGE,13.68

ivn-1/po-0/bc-17152/pc-7/dd-20011214,11,LOCAL SERVICE
CHARGE,83.75

ivn-1/po-0/bc-17152/pc-7/dd-20011214,12,FEDERAL TAXES - LOCAL
SERVICE,2.62

ivn-1/po-0/bc-17152/pc-7/dd-20011214,13,STATE TAXES - LOCAL
SERVICE,2.15

ivn-1/po-0/bc-17152/pc-7/dd-20011214,14,LATE FEE,1.61

ivn-1/po-0/bc-17152/pc-7/dd-20011214,15,TOTAL CURRENT
AMOUNT,117.17

Extracting Data with XML Queries

About the XML Query View
The XMLQuery View Type allows you to extract data from the Detail, Dispute, and Annotation tables.

The version set for the XMLQuery View requires a View Name and an XML Query document, which
contains the query definition for accessing Detail, Dispute or Annotation content. The National Wireless
sample application dataset contains example XML Query documents for retrieving detail, dispute, and
annotation data.

Content Access Extracting Data with XML Queries

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

115

▪

Job Type Input Files National Wireless Example

XMLQuery XML Query

XMLQuery/annot_sql.xml
XMLQuery/detail_sql.xml
XMLQuery/dispute_sql.xml

Query Document Tag Definitions
The column names in the ResultSet are the tag names. All date values are converted to a Java type
long (the number of milliseconds since the epoch).

Tag Attribute Required Description Valid values

sql-stmt None No The SQL statement User defined

query Name Yes Query name User defined

table Name Yes Name of the parameter
used by the caller.

User defined

table Position Yes Describes the parameter
position in the SQL
statement.

1 to N

table Type Yes Determines how to
resolve the table name.

Detail, dispute,
annotations

table Viewname Yes for detail
No for D &A

Determines how to
resolve the detail table
name.

The name of
the detail
extractor view.

param Name Yes Parameter name used by
the caller.

User defined

param type Yes Java type used to validate
the input parameters

User defined

param Position Yes Describes the parameter
position in the SQL
statement.

1 to N

Creating Custom XML Queries

Sample XML Query for Detail: detail_sql.xml
 <query name="detail_search">

 <sql-stmt>select * from ? where z_doc_id= ?</sql-
stmt>

Content Access Extracting Data with XML Queries

116 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 <table name="detail" position="1" type="detail"
viewname="dtlextr"/>

 <param name="docid" type="java.lang.String"
position="1"/>

 </query>
There must be a parameter tag that contains the attribute name docid.

The view name attribute must be declared and the value must point to the ‘detail Extractor’ view
name.

CAUTION: In the DBDetail.jsp for Sample, the XMLQuery view name has been hard coded as
'DetailQuery'. Therefore, the XMLQuery view name must be specified as 'DetailQuery' in the Publisher
when creating an XMLQuery dynamic view for Sample.

Method Signature for Detail
User.getDocumentReader(userid, account[], ddn, view type, view
name, docid, HttpServletRequest, parameters)

 Map hm = new HashMap();

 hm.put(User.QUERY,"detail_search");

 Reader reader = User.getDocumentReader(“userid”, new
String[]{“0331734”, ddn, "XMLQuery",
"DetailQuery",docId,null,hm);

The Map object is used to hold the parameters for the query as well as the query name. (The query
name is used to find the query in the query definition document.)

The User class contains a static String called ‘QUERY’. The docId parameter is used to map to the
parameter tag defined in the query definition document. The ‘docid’ value from the parameter is
mapped to the ‘docid’ query definition parameter.

Paging in XML Queries
For large result sets, you typically want to retrieve XML data one page at a time rather than in a single
large file. You can implement paging in XML query definitions by defining a page set element as part
of your query spec, as shown in this example.

<query-spec>

 <paging num_of_pages="4" rows_per_page="5"/>
A page set is the maximum number of pages to be displayed from a given result set. For example, if
your result set contained 20 pages of statement data, but you wanted to display only 4 pages at a
time, you would set the num_of_pages attribute to 4. The rows_per_page attribute defines the
number of rows to display per page.

Next, you must pass a page parameter into the Map passed into the User.getDocumentReader
method. The value for this key is the page number. The value type should be a java.lang.String.

Map hm = new HashMap();

hm.put(User.QUERY,"detail_search");

hm.put(User.PAGE,"3");

Content Access Application Programming Interfaces for Content Access

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

117

▪

Reader reader = User.getDocumentReader(“userid”, new
String[]{“0331734”, ddn, "XMLQuery",
"DetailQuery",docId,null,hm);

Your XML output now contains an extra section of page information.

<meta-view>

 <pageset>

 <current_page><![CDATA[3]]></current_page>

 <first_page><![CDATA[1]]></first_page>

 <last_page><![CDATA[5]]></last_page>

 <next><![CDATA[false]]></next>

 </pageset>

</meta-view>

The following table describes the valid values of Tag Definitions for paging.

Tag Name Description Value
first_page The first page of set range. First page number

current_page The request page Requested page number

next Test for more pages true if there are more pages,
false if not.

last_page The last page of set range. Last page number

Application Programming Interfaces for
Content Access

Package com.edocs.app.user Description
Provides classes User and UserMain for access to statement summary and detail data. The User
class is the content access interface to the eStatement Manager core. Its methods retrieve and send
statement data for a given user account, as well as sorting the retrieved data and updating optional
fields at presentment.

TIP: eStatement Manager includes powerful XML tools for extracting, processing, and formatting data
for presentment. Instead of, or in addition to, transforming or post-processing data at the JSP layer,
consider customizing one of the new XML views discussed in this guide to see if XML can meet your
design needs.

Content Access Using Content Access APIs

118 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 Methods getDocumentInputStream (bytes) and getDocumentReader (characters) each
compose a document. Each method has two signatures.

 Method getSummary retrieves statement summary data for a given account. This method has
three signatures.

 Method sendDocument has four signatures that can retrieve statement data as an output stream
of bytes or characters and pass it to a java.io.writer, for example to send the data directly to
a Web browser.

 Method updateSummaryInfo updates live data for an optional field.

Class UserMain implements two interfaces. The interface com.edocs.app.LoginRequired asks for
an account number when a customer logs in. The interface Servlet defines basic methods that any
servlet must implement. Its methods DoGet and DoPost support, respectively, HTTP requests for GET
and POST.

Using Content Access APIs

Call User Methods in Correct Sequence
User.getSummary returns docId, required by all other content access methods. DocId is then
passed as an URL parameter value to sendDocument, getDocumentInputStream, and/or
getDocumentReader. User.getSummary also returns docDate, required for
updateSummaryInfo. A typical implementation invokes User.getSummary first and retrieves its
results before calling other methods.

Retrieve and Present Statement Summaries

About getSummary
The method User.getSummary retrieves statement data from the list of fields defined in the DefTool
and indexed when the Indexer job processes a data volume. In the Sample Web application (and in
typical implementations of eStatement Manager), the Java Server Page HistoryList.jsp uses
getSummary for live retrieval of statement summaries.

getSummary can retrieve data from an indexed volume as soon as the Indexer job completes
successfully for that eStatement Manager application. The Indexer job flags the volume accepted by
default unless the Indexer job has specified Intercept to Verify.

CAUTION: You should only choose Intercept to Verify when the application has implemented
the Verify interface for auditing data volumes.

For more information on the Intercept to Verify option of the AutoIndexVolAccept task, see
the Administration Guide for Oracle Siebel eStatement Manager.

For more information on implementing the Verify interface, see Chapter 7, “Auditing Datastreams,”

Content Access Using Content Access APIs

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

119

▪

getSummary Signatures
Four signatures of getSummary support live retrieval of all available statement summary data
(default), or allow you to limit retrieval by number of volume(s) and/or by date range. Each signature
is discussed in more detail below.

TIP: When retrieving composite or compound account numbers, for example when working with
subaccounts, you can use the javax.naming interface to specify the account parameter as type
Name instead of type String. For more information about the Name interface, see the Javadoc.

getSummary(String userId, String account, String ddn)

getSummary(String userId, String account, String ddn,
short count)

getSummary(String userId, Name account, String ddn,
short count,long from,long to)

getSummary(String userId, String account, String ddn,
short count,long from,long to)

getSummary Parameters
All signatures of getSummary take the three base parameters in the table below.

Parameter Description
account The account numbers this customer is authorized to view. Data type

may be either String or Name.

ddn The DDN (Data Definition Name) of the eStatement Manager
application used by a JSP that calls getSummary

userId The unique user identifier obtained at login by the user management
interface.

The signature to return summaries by data volume also takes the parameter count.

Parameter Description
count The maximum number of rows to return: one row for each of [n]

indexed volumes of statement data.

The signature to return summaries by date range also takes the parameters from and to.

Parameter Description
from The earliest date for which to retrieve statement summaries (which is

the number of milliseconds since "the epoch" beginning January 1,
1970).

to The latest date for which to retrieve statement summaries (which is the
number of milliseconds since "the epoch" beginning January 1, 1970).

Content Access Using Content Access APIs

120 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

getSummary Results
getSummary returns a table of statement summaries. The first row of the primary array (row zero)
returns the names of the column headings. Each of the remaining rows (rows 1 to [count]) contains a
secondary array with the column values of summary data for a single indexed volume (typically, one
statement cycle).

The secondary array returns the summary column data. For each row, the first column returned is the
ID for the indexed volume (docId) and the date it was indexed (docDate). These two unique
identifiers are input parameters for all other content access methods. Each of the remaining columns
(columns 3 to [count]) contains the data for one indexed field, followed by data for any optional
fields specified (Y_1 etc.)

When configuring an Indexer job in the Command Center, the IXLoader task allows you to specify
the number of optional fields to be included as columns in the summary table. These fields are in
addition to the number of indexed fields, and appear at the end of each row. For more information
about the IXLoader task, see the Administration Guide for Oracle Siebel eStatement Manager.

Typically, each data volume corresponds to an account processing cycle, so that each row presents
summary data for one cycle. Different signatures of getSummary can limit retrieval by data volume
with the [count] parameter, and/or by date range with the [from] and [to] parameters, discussed
below.

Retrieve All Statement Summaries
This default signature of getSummary is provided in the HistoryList.jsp page of Sample. It
returns summary information for a given user account for all data volumes processed by a DDN.

getSummary(String userId, String account, String ddn)

This code snippet shows an example from HistoryList.jsp.

…//Declare multidimensional string array to hold return of
getSummary

String[][] summary = null;

 //Declare string array to hold column headings

String[] colName = null;

//declare variables to hold the total number of rows and
columns returned

//from the multidimensional array.

 int cols = 1;

 int rows = 0;

…//Call get summary

summary = User.getSummary(userId, accountNumber, ddn);

 colName = summary[0];

 cols = colName.length;

 rows = summary.length;

Content Access Using Content Access APIs

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

121

▪

Retrieve Statement Summaries By Data Volume
Real-world applications produce many account processing cycles, and the number of rows returned by
getSummary could grow enormous. An online account application can serve the customer better by
retrieving a subset of data and loading it quickly for presentment. The signature

getSummary(String userId, String account, String ddn, short count)

returns [n] statements, where count=n. This signature also takes the parameter count, described
in getSummary Parameters. To return all statements, set count=0.

Retrieve Statement Summaries by Date Range
A developer may also need to limit the summaries presented by date range, for example to allow a
customer, or a customer service representative, to search for statements before or after a certain
date. The signature

getSummary (String userId, String account, String ddn,
short count,long from,long to)

Returns summaries within a given date range specified by from and to. This signature also takes the
parameters from and to, described in getSummary Parameters. This code snippet shows an example
of how to retrieve statements by date range.

short countNum =0;

 java.util.Date now = new java.util.Date();

 DateFormat myformat = new
SimpleDateFormat("yyyy.MM.dd");

 java.util.Date mydate=
myformat.parse("2002.02.11");

 long from= mydate.getTime();

 long to = now.getTime();

 summary = User.getSummary(userId, accountNumber,
ddn, countNum, from, to);

 colName = summary[0];

 cols = colName.length;

 rows = summary.length;

Retrieve and Present Statement Detail
Once a statement summary is presented, a logical next step is to allow the customer to select that
statement and drill down to view statement detail. The content access method User.sendDocument
supports live retrieval of statement detail.

CAUTION: sendSortedDocument is deprecated in 3.0 and later versions.

The eStatement Manager Composer has powerful sorting and subtotaling tools for tables and groups,
and the Command Center can retrieve and present line item detail with customizable XML and XSLT
templates.

Content Access Using Content Access APIs

122 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

For more information about sorting statement data, see the Presentation Design (Composer Guide) for
Oracle Siebel eStatement Manager.

For more information about retrieving statement detail, see the XML chapters of this chapter and
Chapter 6, “Line Item Dispute and Annotations.”

About sendDocument
SendDocument\ retrieves detail for presentment as it appears in the source file, without sorting or
post-processing.

sendDocument Signatures
Eight signatures of sendDocument can return data as an output stream of bytes or characters and
pass it to a java.io.writer, for example to send the data directly to a Web browser. Signatures
may be used with or without an HTTP servlet request object and with or without map parameters.

TIP: When retrieving composite or compound account numbers, for example when working with
subaccounts, you can use the javax.naming interface to specify the accounts parameter as type
Name instead of type String. For more information about the Name interface, see the Javadoc.

sendDocument(String userId, Name[] accounts, String ddn,
String viewType, String viewName, String docId,
HttpServletRequest req, OutputStream out, Map parameters)

sendDocument(String userId, Name[] accounts, String ddn,
String viewType, String viewName, String docId,
HttpServletRequest req, Writer out, Map parameters)

sendDocument(String userId, String[] accounts, String ddn,
String viewType, String viewName, String docId,
HttpServletRequest req, OutputStream out)

sendDocument(String userId, String[] accounts, String ddn,
String viewType, String viewName, String docId,
HttpServletRequest req, OutputStream out, Map parameters)

sendDocument(String userId, String[] accounts, String ddn,
String viewType, String viewName, String docId,
HttpServletRequest req, Writer out)

sendDocument(String userId, String[] accounts, String ddn,
String viewType, String viewName, String docId,
HttpServletRequest req, Writer out, Map parameters)

sendDocument(String userId, String[] accounts, String ddn,
String viewType, String viewName, String docId, OutputStream
out)

sendDocument(String userId, String[] accounts, String ddn,
String viewType, String viewName, String docId, Writer out)

Content Access Using Content Access APIs

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

123

▪

 SendDocument Parameters

Parameter Description
accounts The account numbers this customer is authorized to view. Data type

may be either String or Name.

ddn The DDN (Data Definition Name) of the eStatement Manager
application used by a JSP that calls getSummary

userId The unique user identifier obtained at login by the user management
interface, for example IAccount.

viewType As specified in the Indexer job for the DDN you are using. Includes:
CSV, XML and HTML.

viewName As specified in the Indexer job for the DDN you are using.

docId The unique identifier for the document, used to retrieve it from the
source data stream.

req The HTTP Servlet Request object from a servlet or JSP.

map Map object holding the parameters for an XML query as well as the
query name in the XML Query definition document.

DocId is obtained from a getSummary call in a separate JSP and passed as an URL parameter value
to sendDocument. Also, the parameters ddn, viewType, and viewName specified in sendDocument
must exactly match the values defined in the Publisher when creating the Web view, or the method
throws an unspecified exception.

SendDocument Results
This default signature of sendDocument is provided in the Detail.jsp page of Sample.

String viewType = request.getParameter("viewType");

 String viewName = request.getParameter("viewName");

 String docId = request.getParameter("docId");

 if (viewType == null)

 viewType = "HTML";

 if (viewName == null)

 viewName = "HtmlDetail";

 if (viewType.equals("CSV"))

 response.setContentType("application/x-msexcel");

 else if (viewType.equals("XML"))

 response.setContentType("text/xml");

 User.sendDocument(userId,

 accounts,

Content Access Using Content Access APIs

124 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 ddn,

 viewType,

 viewName,

 docId,

 request,

 out);

About getDocumentInputStream and getDocumentReader
Two content access methods allow you to retrieve statement data as a byte or character stream that
can then be modified before presentment in the JSP. getDocumentInputStream returns a byte
stream, while getDocumentReader returns a character stream, or reader object. Each method has
three signatures, with or without an HTTP servlet request object and with or without map parameters.

TIP: When retrieving composite or compound account numbers, for example when working with
subaccounts, you can use the javax.naming interface to specify the account parameter as type
Name instead of type String. For more information about the Name interface, see the Javadoc.

getDocumentInputStream Signatures
getDocumentInputStream(String userId, Name[] accounts, String
ddn, String viewType, String viewName, String docId,
HttpServletRequest req, Map parameters)

getDocumentInputStream(String userId, String[] accounts,
String ddn, String viewType, String viewName, String docId)

getDocumentInputStream(String userId, String[] accounts,
String ddn, String viewType, String viewName, String docId,
HttpServletRequest req)

getDocumentInputStream(String userId, String[] accounts,
String ddn, String viewType, String viewName, String docId,
HttpServletRequest req, Map parameters)

Parameter Description
accounts The account numbers this customer is authorized to view. Data type

may be either String or Name.

ddn The DDN (Data Definition Name) of the eStatement Manager
application used by a JSP that calls getSummary

userId The unique user identifier obtained at login by the user management
interface, for example IAccount.

viewType As specified in the Indexer job for the DDN you are using. Includes:
CSV, XML and HTML.

viewName As specified in the Indexer job for the DDN you are using.

docId The unique identifier for the document, used to retrieve it from the
source data stream.

Content Access Using Content Access APIs

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

125

▪

req The HTTP Servlet Request object from a servlet or JSP.

map Map object holding the parameters for an XML query as well as the
query name in the XML Query definition document.

getDocumentReader Signatures
getDocumentReader(String userId, Name[] accounts, String ddn,
String viewType, String viewName, String docId,
HttpServletRequest req, Map parameters)

getDocumentReader(String userId, String[] accounts, String
ddn, String viewType, String viewName, String docId)

getDocumentReader(String userId, String[] accounts, String
ddn, String viewType, String viewName, String docId,
HttpServletRequest req)

getDocumentReader(String userId, String[] accounts, String
ddn, String viewType, String viewName, String docId,
HttpServletRequest req, Map parameters) getDocumentInputStream
Parameters

getDocumentReader Parameters

Parameter Description
accounts The account numbers this customer is authorized to view. Data type

may be either String or Name.

ddn The DDN (Data Definition Name) of the eStatement Manager
application used by a JSP that calls getSummary

userId The unique user identifier obtained at login by the user management
interface, for example IAccount.

viewType As specified in the Indexer job for the DDN you are using. Includes:
CSV, XML and HTML.

viewName As specified in the Indexer job for the DDN you are using.

docId The unique identifier for the document, used to retrieve it from the
source data stream.

req The HTTP Servlet Request object from a servlet or JSP.

map Map object holding the parameters for an XML query as well as the
query name in the XML Query definition document.

Retrieve and Present XML
eStatement Manager includes powerful XML tools for extracting, processing, and formatting data for
presentment. Instead of, or in addition to, modifying or post-processing data at the JSP layer,
consider customizing one of the new XML views discussed in this guide to see if XML can meet your
design needs.

Content Access Using Content Access APIs

126 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Method Signatures for XML
The com.edocs.user.User class contains a static String called ‘QUERY’. The docId parameter
maps to the parameter tag defined in the XML Query definition document. The Map object holds the
parameters for the query as well as the query name, used to find the query in the XML Query
definition document.

New signatures of three Content Access methods use Map parameters:

public static Reader getDocumentReader(String userId, String[]
accounts, String ddn, String viewType, String viewName, String
docId, HttpServletRequest req, Map parameters) throws
Exception

public static InputStream getDocumentInputStream(String
userId, String[] accounts, String ddn, String viewType, String
viewName, String docId, HttpServletRequest req, Map
parameters), throws Exception ,

public static void sendDocument(String userId, String[]
accounts, String ddn, String viewType, String viewName, String
docId, HttpServletRequest req, Writer out, Map parameters)

user.getDocumentReader Example to Retrieve Detail Data
User.getDocumentReader(userid, account[], ddn, view type, view
name, docid, HttpServletRequest, parameters)

 Map hm = new HashMap();

 hm.put(User.QUERY,"detail_search");

 Reader reader = User.getDocumentReader(“userid”, new
String[]{“0331734”, ddn, "XMLQuery",
"DetailQuery",docId,null,hm);

user.getDocumentReader Signature to Retrieve Annotation Data
 Map hm = new HashMap();

 hm.put(User.QUERY,”annote_search ");

 Reader reader = User.getDocumentReader(“userid”, new
String[]{“0331734”, ddn, "XMLQuery",
"DetailQuery",docId,null,hm);

user.getDocumentReader Example to Retrieve Dispute Data
User.getDocumentReader(userid, account[], ddn, view type, view
name, docid, HttpServletRequest, parameters)

 Map hm = new HashMap();

 hm.put(User.QUERY,"dispute_search");

 Reader reader = User.getDocumentReader(“userid”, new
String[]{“0331734”, ddn, "XMLQuery",
"DetailQuery",docId,null,hm);

Content Access Using Content Access APIs

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

127

▪

Record and Present Web-Time Activity
Making a Web view dynamic usually includes more than live retrieval of statement data. eStatement
Manager can record and present information captured directly from a customer’s activity on the
Website, for example the last time the customer viewed a bill. This optional information, which must
be a string, is stored in optional fields of the eStatement Manager database, which you can specify in
the IXLoader task of the Indexer job. For more information about IXLoader and the Indexer job,
see the Administration Guide for Oracle Siebel eStatement Manager.

About UpdateSummaryInfo
updateSummaryInfo provides a user interface to update optional fields through an HTML form in a
JSP. By default, these optional fields are named Y_1, Y_2, …Y_[n], where [n] is the Optional Field
Count specified in the IXLoader task.

Z_DOC_ID Z_DOC_DATE Due Date Amount View Status (Y_1) Y_2

ABD983 01/01/00 01/28/00 $21.86 Viewed true
This code snippet shows an example of how to update the database Y-1 field to “Updated.”

TIP: Y_1 fields cannot be renamed in the database. However, you can (and should) modify a JSP to
present the appropriate HTML, such as “Date Viewed,” “Date Paid,” or “Updated,” for the
corresponding Y_1 field.

/*Make a call to updateSummaryInfo to stamp “Updated” in Y_1
field*/

User.updateSummaryInfo(userId,

 accounts[0],

 DDN,

 docId,

 docDate,

 “Y_1”,

 “Updated”)

Another use of an optional field would be to store user comments from a form.

/*Make a call to updateSummaryInfo to update optional field
with user's comments entered into an HTML form and stored in a
string variable called strComments */

Content Access Element ID and Composition Hints

128 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

User.updateSummaryInfo(userId,

 accounts[0],

 DDN,

 docId,

 docDate,

 “Y_1”,

 strComments)

Both column_name and value must be string values. You must, for example, convert a date value to
a string in order to store it in a Y_1 field.

UpdateSummaryInfo Signature
updateSummaryInfo (String userId, String account, String ddn,
String docId, String docDate, String name, String value)

updateSummaryInfo takes two parameters, column_name and value, described below.

UpdateSummaryInfo Parameters

Parameter Description
column_name Name of column to be updated. (example: Y_1)

value The value with which to update column_name.

updateSummaryInfo requires the two parameters DocId and DocDate. DocId is returned from
getSummary and passed by default in the URL. DocDate is returned from getSummary but is not
passed by default in the URL. docId is the zeroth column element of a row, and docDate is the first
column element of the row. Y_1 is the first of the optional fields.

Element ID and Composition Hints

About Element ID
eStatement Manager includes a rich layer of metadata called Composition Hints to influence the
extraction and composition of document data. This XML-based “language” passes context and data
through the eStatement Manager composition layer, from the eStatement Manager core classes
through a dynamic URL to the composed HTML in a Web browser. One of these Hints is the unique
identifier element ID. This metadata flag links live data entry to individual elements in a browser page,
and retrieves that data again when the page is dynamically composed.

Element ID is a Composition Hints flag that determines whether individual elements of a Data
Definition File (DDF), are assigned a unique ID when the data is extracted at runtime. The element ID

http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html

Content Access Element ID and Composition Hints

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

129

▪

of an individual FIELD, TABLE or ROW, or GROUP element can then be correctly identified and reliably
retrieved from the data store. Additional data, for example the “note” text of a dispute or annotation,
can then be associated with the Element ID of a line item. At runtime, the “note” is retrieved and
presented along with the detail. In dynamic database tables, using Element ID as a foreign key
between detail elements and their disputes and annotations improves performance by reducing file
size in the database, in the XML, and in the composed HTML.

Each Element ID is unique within its Document Definition Name (DDN). When the document is
composed, an eStatement Manager application applies ALF application, or business, logic rules (ALF)
to a data definition file (DDF), and assigns the resulting data a unique DOCID. This unique
combination of DOCID and Element ID ensures, for example, that an annotation on the third line of a
March statement will continue to appear on the March statement and not appear on the third line of
the April statement, even when eStatement Manager runs again in April.

For each DDF, Generate Element ID is turned on or off in the Edit Properties dialog of the DefTool.
This assures that the ID remains unique and stable for each DDF, regardless of the view used or the
composition tools (paging, sorting, filtering, dynamic pattern matching) used for presentment.

Syntax for Element ID
Element IDs contain metadata that uniquely identifies each element by its location within a document
and its element type. Element ID fields are text strings, which may not have leading zeroes, are of
varying width, and may contain no embedded blanks. They are composed of up to five possible
values:

Value Description

P Page number within the document

X Column number of the element within the page

Y Row number of the element within the page

Z Index of element in list of that element type in DDF.

A Index of row within table. Unique, but not necessarily zero or incremented.

The eStatement Manager core classes maintain a separate list of Fields, Records, and RecordGroups in
each DDF. The Z value is the index in that list for each Field, Record, and RecordGroup.

Element ID Syntax Example

RecordGroup P-X-Y-GZ 1-23-4-G4

Record P-X-Y-TZ 2-2-14-T0

Record Line P-X-Y-TZ-A 2-2-14-T0-4

Field P-X-Y-FZ 4-13-4-F1

Note that RecordLine has the same format as Record, with row number appended.

Content Access Element ID and Composition Hints

130 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Tag Attributes for Element ID

Tag Attributes in composed HTML

Element Tag Example Since 3.0
RecordGroup edx_group <edx_group

name="Registration"
ID="1-23-4-G4">

Added attribute “ID”

Record edx_table <edx_table
name="Registration"
ID="2-2-14-T0">

Added attribute “ID”

RecordLine HTML rows
as <tr>

<tr ID="2-2-14-T0-4"> Modified <tr> tag;
added attribute “ID”for
each row within
edx_table tag

Field FIELD <SPAN ID="4-223-36-
F195">2000

Added tag with
attribute ID (innermost
tag for any formatting)

To use HTML Formatting with Tags:

The tag for Element ID becomes the innermost tag, in addition to any other formatting for the
field. The following HTML table formatting:

<TD width=440>2000</TD>
becomes, for example:

<TD width=440><SPAN ID="4-3-3-
F1">2000</TD>

Tag Attributes in composed XML

Element Tag Example Since 3.0
RecordGroup GROUP <GROUP name="Registration"

ID="1-23-4-G4">
Added attribute
“ID”

Record TABLE <TABLE name="Registration"
number="0" ID="2-2-14-T0">

Added attribute
“ID”

RecordLine ROW <ROW ID="2-2-14-T0-4"> Added attribute
“ID” for each
row within the
TABLE tag

Field FIELD <FIELD name="Registration"
ID="1-23-4-F4">

Added attribute
“ID”

Content Access Element ID and Composition Hints

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

131

▪

Values for Composition Hints Language

Hint Description
docid Unique document identifier associated with the document.

ddn Document Definition Name associated with the data stream.

elink Value used to compose the email notification link.

pattern Name/value pairs used to assign values to “variable fields” during
extraction for Dynamic Pattern Matching.

env Name/value pairs used to pass values from the JSP environment to
the composition layer of the core classes.

table Specifies that the indicated table only is to be composed, regardless
of ALF or other composition logic. May be null.

delimiter Specifies a delimiter value to separate columns in a selected table.
May be null.

page Identifies the page to be composed. May be null (defaults to 1).

elementid Determines whether to generate IDs for detail elements (fields,
tables, groups).

DTD for Composition Hints Language
<!-- DTD for composition-hints language -->

<!-- Version 1.0 rla 10/3/00 -->

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE composition-hints [

<!ELEMENT composition-hints
(docid,ddn,elink?,page?,subview?,elementid?,pattern*)>

<!ELEMENT docid EMPTY>

<!ATTLIST docid value CDATA #REQUIRED>

<!ELEMENT elink (#PCDATA)>

<!ELEMENT chartpath (#PCDATA)>

<!ELEMENT imagepath (#PCDATA)>

<!ELEMENT env EMPTY>

<!ATTLIST env name ID #REQUIRED>

<!ATTLIST env value CDATA #REQUIRED>

<!ELEMENT ddn EMPTY>

<!ATTLIST ddn value ID #REQUIRED>

<!ELEMENT pattern EMPTY>

Content Access XML Templates for National Wireless

132 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

<!ATTLIST pattern name ID #REQUIRED

 value CDATA #REQUIRED>

<!ELEMENT table (#PCDATA)>

<!ELEMENT delimiter (#PCDATA)>

<!ELEMENT page (#PCDATA)>

<!ELEMENT elementid>

<!ATTLIST elementid value (on|off) #REQUIRED>

]>

XML Example of Composition Hint
<composition-hints>

 <elink>
<![CDATA[http://www.edocs.com/eBills/stuff.jsp&bing=bang]]></e
link>

 <docid value="ivn-33/po=1034/pc=3/dd-20000429"/>

 <ddn value="beco"/>

 <pattern name="zzz" value="yyy"/>

 <pattern name="abc" value="xyz"/>

 <table value = “CallDetail”/>

 <delimiter value = “”/>

 <page value = “1”/>

 <elementid value="on"></elementid>

</composition-hints>

TIP: Note that the Composition Hints DTD does not use a validating parser—the generated hint text
must merely be well formed XML. Although in this example the elink element is out of order, the
Hint is still valid.

XML Templates for National Wireless

Detail Extractor
Files are located in eStatement/samples/NatlWireless/DetailExtractor.

summary_info.xsl
<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

Content Access XML Templates for National Wireless

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

133

▪

 <!-- Instructs the XSLT processor to produce text not XML -
->

 <xsl:output method="text"/>

 <!-- This template matches the root of the XML document -->

 <xsl:template match="/">

 <!-- Only process elements in the Summary Info table
-->

 <xsl:apply-templates
select="/doc/view/SummaryInfo/SummaryInfo-row"/>

 </xsl:template>

 <xsl:template match="SummaryInfo-row">

 <!-- Inserts the Document ID -->

 <xsl:value-of select="/doc/@docid"/>

 <xsl:text>	</xsl:text>

 <!-- Inserts a unique id for the detail -->

 <xsl:value-of select="@id"/>

 <xsl:text>	</xsl:text>

 <!-- Inserts the column data -->

 <!-- Trims any extra whitespace from the data value
in the column -->

 <xsl:value-of select="normalize-
space(SummaryInfoLab)"/>

 <xsl:text>	</xsl:text>

 <xsl:value-of select="normalize-
space(SummaryInfoAmt)"/>

 <!-- Inserts a HEX line terminator (CR LF)-->

 <xsl:text>
</xsl:text>

 </xsl:template>

</xsl:stylesheet>

summary_info.xml
<?xml version="1.0"?>

Content Access XML Templates for National Wireless

134 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

<create-table xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-
instance" xsi:noNamespaceSchemaLocation="edx-DE-table.xsd">

 <table>

 <field>

 <name>detail_id</name>

 <type>VARCHAR</type>

 <length>20</length>

 <allow-nulls>Y</allow-nulls>

 </field>

 <field>

 <name>SummaryInfoDesc</name>

 <type>VARCHAR</type>

 <length>255</length>

 <allow-nulls>Y</allow-nulls>

 </field>

 <field>

 <name>SummaryInfoAmount</name>

 <type>VARCHAR</type>

 <length>255</length>

 <allow-nulls>Y</allow-nulls>

 </field>

 </table>

</create-table>

edx-DE-table.xsd
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2000/10/XMLSchema"
elementFormDefault="qualified">

 <xs:element name="create-table">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="table"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="field">

Content Access XML Templates for National Wireless

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

135

▪

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="name"/>

 <xs:element ref="type"/>

 <xs:element ref="length"/>

 <xs:element ref="allow-nulls"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="length" type="xs:short"/>

 <xs:element name="name">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="allow-nulls">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="N"/>

 <xs:enumeration value="Y"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="table">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="field"
maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="type">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="VARCHAR"/>

Content Access XML Templates for National Wireless

136 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 <xs:enumeration value="NUMBER"/>

 <xs:enumeration value="DATE"/>

 <xs:enumeration value="FLOAT"/>

 <xs:enumeration value="CURRENCY"/>

 <xs:enumeration value="DATETIME"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

</xs:schema>

XSLT Download
sampleapplication/NatlWireless/XSLTDownload/summary_info_csv.xsl

summary_info_csv.xsl
<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Instructs the XSLT processor to produce text not XML -
->

 <xsl:output method="text"/>

 <!-- This template matches the root of the XML document -->

 <xsl:template match="/">

 <!-- Only process elements in the Summary Info
table -->

 <xsl:apply-templates
select="/doc/view/SummaryInfo/SummaryInfo-row"/>

 </xsl:template>

 <xsl:template match="SummaryInfo-row">

 <!-- Insert the Document ID -->

 <xsl:value-of select="/doc/@docid"/>

 <xsl:text>,</xsl:text>

Content Access XML Templates for National Wireless

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

137

▪

 <!-- Insert a unique id for the detail -->

 <xsl:value-of select="@id"/>

 <xsl:text>,</xsl:text>

 <!-- Insert the column data -->

 <!-- Trim any extra whitespace from the data value in
the column -->

 <xsl:value-of select="normalize-
space(SummaryInfoLab)"/>

 <xsl:text>,</xsl:text>

 <xsl:value-of select="normalize-
space(SummaryInfoAmt)"/>

 <!-- Insert a HEX line terminator (CR LF)-->

 <xsl:text>
</xsl:text>

 </xsl:template>

</xsl:stylesheet>

XML Query View

detail_sql.xml
<?xml version="1.0" encoding="UTF-8"?>

<query-spec>

 <data_source_type>SQL</data_source_type>

 <paging num_of_pages="4" rows_per_page="5"/>

 <query name="detail_search">

 <sql-stmt>select * from ? where z_doc_id = ?</sql-
stmt>

 <table name="detail" position="1" type="detail"
viewname="dtlextr"/>

 <param name="docid" type="java.lang.String"
position="1"/>

 </query>

</query-spec>

Content Access XML Templates for National Wireless

138 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Example DDF to XML Mapping
The following example is the XML output format from the National Wireless application.

<?xml version="1.0" encoding="UTF-8"?>

<doc docid="ivn-101/po-0/bc-0/pc-27/dd-20000101" >

<view>

<AcctNum role="PRIMARYKEY" id="1-73-2-
F0"><![CDATA[0331734]]></AcctNum>

<CurrentCharges id="2-4-25-F2"
><![CDATA[117.17]]></CurrentCharges>

<PymtTxt id="2-38-26-F3" ><![CDATA[PLEASE PAY THIS
AMOUNT]]></PymtTxt>

<CustName id="1-4-0-F6" ><![CDATA[BILLS BICYCLES]]></CustName>

<LateFee id="3-26-4-F8" ><![CDATA[1.50%]]></LateFee>

<AmountDue id="1-4-28-F10" ><![CDATA[224.73]]></AmountDue>

<EastState id="1-15-2-F13" ><![CDATA[MA]]></EastState>

<CustType id="1-8-48-F20" ><![CDATA[B2C]]></CustType>

<DueDate id="1-37-25-F21" ><![CDATA[04/19/01]]></DueDate>

<CustAddress id="1-0-0-T0" >

<CustAddress-row id="1-0-0-T0-0">

<CustAddressLine><![CDATA[BILLS BICYCLES]]></CustAddressLine>

</CustAddress-row>

<CustAddress-row id="1-0-0-T0-1">

<CustAddressLine><![CDATA[44 HOLLY ST]]></CustAddressLine>

</CustAddress-row>

<CustAddress-row id="1-0-0-T0-2">

<CustAddressLine><![CDATA[WRENTHAM MA
02037]]></CustAddressLine>

</CustAddress-row>

</CustAddress>

<SummaryInfo id="2-33-2-T1" >

<SummaryInfo-row id="2-33-2-T1-3">

<SummaryInfoLab><![CDATA[PREVIOUS BALANCE]]></SummaryInfoLab>

<SummaryInfoAmt><![CDATA[285.12]]></SummaryInfoAmt>

</SummaryInfo-row>

<SummaryInfo-row id="2-33-2-T1-4">

<SummaryInfoLab><![CDATA[LESS PAYMENTS APPLIED THROUGH
03/24/01]]></SummaryInfoLab>

Content Access XML Templates for National Wireless

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

139

▪

<SummaryInfoAmt><![CDATA[158.37]]></SummaryInfoAmt>

<SummaryInfoCR><![CDATA[CR]]></SummaryInfoCR>

</SummaryInfo-row>

<SummaryInfo-row id="2-33-2-T1-7">

<SummaryInfoLab><![CDATA[MISCELLANEOUS
CREDIT]]></SummaryInfoLab>

<SummaryInfoAmt><![CDATA[19.19]]></SummaryInfoAmt>

<SummaryInfoCR><![CDATA[CR]]></SummaryInfoCR>

</SummaryInfo-row>

<SummaryInfo-row id="2-33-2-T1-8">

<SummaryInfoLab><![CDATA[BEGINNING BALANCE]]></SummaryInfoLab>

<SummaryInfoAmt><![CDATA[107.56]]></SummaryInfoAmt>

</SummaryInfo-row>

<SummaryInfo-row id="2-33-2-T1-9">

<SummaryInfoLab><![CDATA[CURRENT USAGE]]></SummaryInfoLab>

<SummaryInfoAmt><![CDATA[.07]]></SummaryInfoAmt>

</SummaryInfo-row>

<SummaryInfo-row id="2-33-2-T1-11">

<SummaryInfoLab><![CDATA[PRODUCT MONTHLY
FEES]]></SummaryInfoLab>

<SummaryInfoAmt><![CDATA[4.95]]></SummaryInfoAmt>

</SummaryInfo-row>

<SummaryInfo-row id="2-33-2-T1-12">

<SummaryInfoLab><![CDATA[CORPORATE CONNECTIONS
WAIVER]]></SummaryInfoLab>

<SummaryInfoAmt><![CDATA[4.95]]></SummaryInfoAmt>

<SummaryInfoCR><![CDATA[CR]]></SummaryInfoCR>

</SummaryInfo-row>

<SummaryInfo-row id="2-33-2-T1-14">

<SummaryInfoLab><![CDATA[LIFELINE ASST/TELE
RELAY]]></SummaryInfoLab>

<SummaryInfoAmt><![CDATA[0.80]]></SummaryInfoAmt>

</SummaryInfo-row>

<SummaryInfo-row id="2-33-2-T1-15">

<SummaryInfoLab><![CDATA[FEDERAL ACCESS
CHARGE]]></SummaryInfoLab>

<SummaryInfoAmt><![CDATA[8.62]]></SummaryInfoAmt>

Content Access XML Templates for National Wireless

140 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

</SummaryInfo-row>

<SummaryInfo-row id="2-33-2-T1-17">

<SummaryInfoLab><![CDATA[LOCAL USAGE
CHARGE]]></SummaryInfoLab>

<SummaryInfoAmt><![CDATA[13.68]]></SummaryInfoAmt>

</SummaryInfo-row>

<SummaryInfo-row id="2-33-2-T1-18">

<SummaryInfoLab><![CDATA[LOCAL SERVICE
CHARGE]]></SummaryInfoLab>

<SummaryInfoAmt><![CDATA[83.75]]></SummaryInfoAmt>

</SummaryInfo-row>

<SummaryInfo-row id="2-33-2-T1-19">

<SummaryInfoLab><![CDATA[FEDERAL TAXES - LOCAL
SERVICE]]></SummaryInfoLab>

<SummaryInfoAmt><![CDATA[2.62]]></SummaryInfoAmt>

</SummaryInfo-row>

<SummaryInfo-row id="2-33-2-T1-20">

<SummaryInfoLab><![CDATA[STATE TAXES - LOCAL
SERVICE]]></SummaryInfoLab>

<SummaryInfoAmt><![CDATA[2.15]]></SummaryInfoAmt>

</SummaryInfo-row>

<SummaryInfo-row id="2-33-2-T1-21">

<SummaryInfoLab><![CDATA[LATE FEE]]></SummaryInfoLab>

<SummaryInfoAmt><![CDATA[1.61]]></SummaryInfoAmt>

</SummaryInfo-row>

<SummaryInfo-row id="2-33-2-T1-22">

<SummaryInfoLab><![CDATA[TOTAL CURRENT
AMOUNT]]></SummaryInfoLab>

<SummaryInfoAmt><![CDATA[117.17]]></SummaryInfoAmt>

</SummaryInfo-row>

</SummaryInfo>

</view>

</doc>

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

141

6 Line Item Dispute and Annotations

 Introduction

Goals of Line Item Dispute and Annotation

Attach data to line items on a statement
Line item detail is a powerful tool for Web application designers. Using a full suite of transparent J2EE
tools, data can be attached directly to a line item and dynamically retrieved with that line item when
the statement is refreshed. Dispute or annotation data is stored with the statement detail and can be
retrieved whenever the data is dynamically presented.

You can design your Web applications to attach disputes or annotations to a row in a table or a
summary record in a dynamic Web view. Disputed or annotated items can be displayed with a wide
range of indicators, from check boxes or other standard HTML true/false flags to a GIF image in the
disputed column or field. This example shows a credit card statement with multiple disputed items.

Disputes and annotations can apply to all or part of a line item, or to an entire statement or group of
invoices. In B2B applications, dispute flags may indicate a line item, the invoice for a specific
department or sub-account, or the entire invoice for a group of accounts or sub-accounts.

Annotate a statement
Your customers can attach annotations to line items, such as a category or note for future reference.
For example, a credit card company could allow customers to mark each line item as a business
expense. Annotations are stored with the statement detail and can be retrieved whenever the data is
dynamically presented.

Dispute all or part of a line item
In industries like telecommunications, when the customer disputes a line item, the dispute usually
means they are challenging an entire call. In other industries like manufacturing, a customer may

Line Item Dispute and Annotations Introduction

142 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

want to dispute only part of a line item, such as either the quantity or price. For example, in
manufacturing, partial shipments are common, when the customer orders 60 girders and the
manufacturer ships only 40. The customer could dispute the invoice to pay only for the 40 items
received.

Delete a dispute or annotation
Once a dispute has been resolved, a customer or CSR will want to delete the dispute data. The system
records the deletion in the dispute or annotation table, but the line item reverts to its original display.
Deleting a dispute overrides all other states and “freezes” the dispute, which can then be purged from
the database as the designer allows. eStatement Manager can support reopening of deleted disputes
as long as the dispute data has not been purged from the data store.

Add Reason Codes to explain disputed item(s)
It is common to attach a reason code to a disputed line item as an explanation of why the item is
disputed. This is similar to an annotation, for example to categorize expenses in a credit card
statement. This example shows reason codes indicating why a customer is disputing a statement line
item that was received damaged.

Default reason codes can be presented as a dropdown list on a JSP page, and the examples shipped
with eStatement Manager are configurable. Reason codes are stored in a lookup table which may be
customized by the application designer.

Disputes and Annotations Compared
Both disputes and annotations use the parameters accounts, ddn, docId, and userId to store
data (submit) and retrieve data (getDocument). userID and accounts uniquely identify the
customer, while docID and ddn uniquely identify the statement.

Both submit methods also record the detailID of the line item being disputed or annotated, the
annotationID or disputeID of the record submitted, and the name (createdBy) of the user
submitting the record These ID fields uniquely identify the line item detail to which data is being
attached, and permit it to be retrieved when the data is next dynamically composed.

Both getDocument methods define the data to be retrieved by specifying parameters, the names
of the XML queries (queryName) and Web views (viewName) used to extract and publish the detail
data, and the HTTP req.

Line Item Dispute and Annotations Components of Line Item Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

143

▪

An annotation holds text, usually for the body of the annotation itself, and a code, typically to
assign a customizable reason code or other category information.

A dispute holds the name of the disputedColumn and the adjustedValue to which the customer
wishes the line item resolved. Disputes include a state field, which can be used to resolve a dispute
by setting its state to cancel. Disputes can also hold text in the comments field.

Components of Line Item Dispute and
Annotation

Architectural Overview
Two Web applications work together for dispute and annotation: the eStatement Manager Command
Center and your client Web application. In the Web and application tiers, APIs leverage the speed and
scalability of J2EE through the Java Messaging Service to send disputes and annotations as messages
through the system. The database tier enhances the familiar ease of use of the eStatement Manager
Command Center with the power and flexibility of XML, using tools like XSLT, XTags, and metadata to
capture, store, retrieve, and present data on the fly from your customer’s Web browser to your
database.

Design is integrated into composition and production with Command Center XML. An application
designer composes custom XML and XSL templates to extract and transform data to be uploaded to
the database, and formulates SQL queries as XML to retrieve the data once it has been processed.
During production, these XML files become the inputs to Command Center jobs and Web views.

Once detail data has been published to the Web, customers or customer service representatives can
view line item detail and add disputes or annotations. These transactions travel through the
application tier as JMS messages, and are stored by default in the eStatement Manager database.

Implementing dispute and annotation requires that all of these pieces work together. The next
sections define the required tasks in terms of an eStatement Manager workflow. Following chapters
discuss each topic in detail.

Line Item Dispute and Annotations Components of Line Item Dispute and Annotation

144 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Configuration Tasks
1 Configure JMS settings to transport data from Web to database tiers.

2 Create Database Tables to store Dispute and Annotation data.

Composition Tasks
1 Enable Element ID in your DDF to identify recurring detail elements.

2 Customize XML and XSLT templates for input to Command Center jobs and views.

Production Tasks
1 Index/extract detail data in the Command Center with a Detail Extractor Job.

2 Publish detail data to be disputed or annotated with XML Query detail view.

3 Publish dispute and annotation data with XML Query dispute and annotation views.

Web Application Tasks
1 Present dynamic “Manage Statement” JSPs to allow customers to view recurring detail data

and add disputes and annotations.

2 Customize disputes and annotations with direct.dispute and direct.annotation APIs.

3 Use XTags in JSPs to transform and format the XML data retrieved.

Viewing Disputes and Annotations in Sample
Here is a short checklist of how to view the example dispute and annotation solution shipped with
eStatement Manager. If you have trouble, consult the required chapter of this guide or the relevant
eStatement Manager documentation.

CAUTION: The Sample implementation is intended as a demonstration only. It is not production-
ready code and must be customized.

1 Configure JMS settings on your application server.

2 Create an eStatement Manager application for National Wireless and run an Indexer job. Element
ID is already enabled in the National Wireless DDF.

3 Create and run a Detail Extractor job named dtlxtr with the XML templates provided.

4 Publish three XML Query views named DetailQuery for detail data, DisputeQuery for dispute
data, and AnnotationQuery for annotation data.

5 In Sample, enroll a user and view statement summaries (historyList.jsp).

6 From the statement summary page, click Manage Statement.

Line Item Dispute and Annotations Configuring Dispute and Annotation Services

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

145

▪

TIP: DO NOT click View Detail, as Detail.jsp does not implement disputes and annotations.
These features are implemented in DBDetail.jsp, which is linked to Manage Statement.

7 Follow the links provided to submit an annotation or dispute.

8 To view data you have entered, refresh the Manage Statement page.

Configuring Dispute and Annotation
Services

Configuring JMS Settings

About Java Messaging Services (JMS)
The Java Messaging Service is a messaging service available on J2EE platforms. eStatement Manager
uses JMS to transport messages, for example customer inputs of dispute and annotation data, from
producer applications to consumer or listener applications. For more information about JMS, see
http://java.sun.com/products/jms/.

You must create and configure JMS servers, JMS Stores, JMS topics, and JMS connection factories for
both dispute and annotation. Use the parameters listed here to configure JMS services. For details on
configuring JMS Services, see the Installation Guide for Oracle Siebel eStatement Manager.

TIP: If your eStatement Manager solution does not implement Dispute and Annotation features,
you need not configure these JMS settings.

JDBC TX Data Source
Name: edxCommonDataSource
JNDI Name: edx.databasePool
Pool Name: edxCommonConnectionPool

JMS Connection Factories
Name JNDIName
edxDisputeTCF edx/tcf/dispute

edxAnnotationTCF edx/tcf/annotate

JMS Stores
Name Connection Pool
edxAnnotationStore edxCommonConnectionPool

edxDisputeStore edxCommonConnectionPool

http://java.sun.com/products/jms/

Line Item Dispute and Annotations Configuring Dispute and Annotation Services

146 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

JMS Servers
Name Store
edxAnnotationServer edxAnnotationStore

edxDisputeServer edxDisputeStore

JMS Destinations
Destination JNDIName
edxAnnotationTopic edx/jms/annotate

edxDisputeTopic edx/jms/dispute

Further Reading About JMS
“Managing JMS for BEA WebLogic Server 6.1,” WebLogic 6.1 Admin Guide, 2001 BEA Systems, Inc.
http://e-docs.bea.com/wls/docs61/adminguide/jms.html#jms001

Database Tables for Dispute and Annotation
Data for each disputed or annotated line item is stored in database tables. Detail tables are dynamic.
Dispute and annotation tables are static for each DDN, though each Detail Extractor populates them
dynamically at runtime.

For detailed information on the eStatement Manager database, see the Installation Guide for Oracle
Siebel eStatement Manager.

JDBC Drivers for Dispute and Annotation
Line Item Dispute and Annotation requires the database connectivity features of JDBC 2.0.
eStatement Manager ships with the i-net OPTA™ 2000 driver for Windows, which replaces the BEA
WebLogic JDBC driver for SQL Server. i-net OPTA 2000 is a Type 4 JDBC 2.0 Driver that supports
Microsoft SQL Server 2000/7.0/6.5. eStatement Manager also uses the Oracle JDBC driver for Oracle
database connectivity. All necessary drivers are installed with eStatement Manager.

http://e-docs.bea.com/wls/docs61/adminguide/jms.html#jms001

Line Item Dispute and Annotations Composition and Production for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

147

▪

For more information about the OPTA JDBC driver, see
http://www.inetsoftware.de/English/produkte/OPTA/default.htm.

For more information about Oracle JDBC drivers, see http://www.orafaq.com/faqjdbc.htm#JDBC.

For what’s new in JDBC 2.0 and a comparison of driver features, see
http://java.sun.com/j2se/1.3/docs/guide/jdbc/spec2/jdbc2.1.frame4.html#283844.

Composition and Production for Dispute
and Annotation
The Oracle Command Center uses XML to define, extract, upload, and publish recurring detail data.
This chapter describes composition and production components and tasks in detail.

Composition and Production Architecture

XML is the core of composition and production for line item detail, dispute, and annotation. Many tasks
formerly associated with the DefTool, Composer, or custom JSP development are now handled with
XML templates.

1 Enable Element ID in your DDF to identify recurring detail elements.

http://www.inetsoftware.de/English/produkte/OPTA/default.htm
http://www.orafaq.com/faqjdbc.htm#JDBC
http://java.sun.com/j2se/1.3/docs/guide/jdbc/spec2/jdbc2.1.frame4.html#283844

Line Item Dispute and Annotations Composition and Production for Dispute and Annotation

148 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

2 Customize XML and XSLT templates for input to Command Center jobs and views.

3 Index/extract detail data in the Command Center with a Detail Extractor Job.

4 Publish detail data to be disputed or annotated with XML Query detail view.

5 Publish dispute and annotation data with XML Query dispute and annotation views.

Using Element ID

About Element ID
eStatement Manager includes a rich layer of metadata called Composition Hints to influence the
extraction and composition of document data. This XML-based “language” passes context and data
through the eStatement Manager composition layer, from the eStatement Manager core classes
through a dynamic URL to the composed HTML in a Web browser. One of these Hints is the unique
identifier element ID. This metadata flag links live data entry to individual elements in a browser
page, and retrieves that data again when the page is dynamically composed.

For more information on Element ID syntax and the Composition Hints language, see Chapter 5,
Content Access.

Enable Element ID in the DefTool
In order to implement dispute or annotation, you must enable element ID generation in a new or
existing DDF. Also, whenever you turn the element ID feature on or off in an existing DDF, you must
republish the version set.

For more information on creating a DDF with the DefTool and other eStatement Manager composition
tools, see the Data Definition (DefTool) Guide for Oracle Siebel eStatement Manager and the
Presentation Design (Composer Guide) for Oracle Siebel eStatement Manager.

Generate Element IDs with Detail Extractor
The Detail Extractor job assigns a unique ID number to each element in the DDF tree, and retrieves
the location of the element within the document. Element IDs are generated from the DDF number
and this location information. Each element ID is stored with its element in the data store.

At composition, each element ID is extracted and composed with the detail data. An Element ID is
added as an ID attribute for XML, and as a tag surrounding the element for HTML. To see
Element IDs in a composed JSP, select View HTML Source.

TIP: A given element ID is unique only within a document (indexed volume). Use element ID
together with document ID to ensure a globally unique identifier.

For details about jobs, views, and version sets, see the Administration Guide for Oracle Siebel
eStatement Manager.

Compose XML and XSLT Templates for Detail Extractor
First, the designer decides on the fields to be extracted, for example the summary information for a
particular customer, and creates an XML file. Another decision is the XML format of the data, for which
the designer creates an XSL stylesheet.

Line Item Dispute and Annotations Composition and Production for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

149

▪

These XML templates, along with the DDF for your application, become the input to the Detail
Extractor Job that extracts recurring detail data from your input file and uploads it to the Detail Tables
for Disputes and Annotations in the eStatement Manager database.

These XML files are validated with the XML definition file DetailExtractor/edx-DE-table.xsd. This file
ensures that eStatement Manager processes the XML correctly for the Detail Extractor tables. Your
custom XML files must also validate against edx-DE-table.xsd.

CAUTION: edx-DE-table.xsd does not use the most current version of the XML Schema
declaration: The schema it uses, http://www.w3.org/2000/10/XMLSchema, is the only version
supported by WebLogic 6.1sp2. WebLogic users should not update this schema declaration to a newer
version, as this version is required by the WebLogic XML parser. WebSphere supports newer schema
declarations, but Oracle will not support implementations using newer schemas.

Edit summary_info.xml
The summary_info.xml template specifies the DDF Table name and the table field names as they
appear in your database. Here you can also add columns to the detail table by specifying new XML
field elements.

Customize summary_info.xml to define the detail IDs and names of the fields that you wish to
extract from the database at runtime. DO NOT CHANGE the XML namespace definition in this file.

Edit summary_info.xsl
The summary_info.xsl template is a stylesheet that matches the requested docID and detailID
with the data from the requested database table. Customize summary_info.xsl to define the
transformations you want applied to the data at runtime. DO NOT CHANGE the XML namespace
definition in this file.

TIP: XML is a purposely open-ended standard for extensible data markup. The examples given with
eStatement Manager are intended only as a starting point for building your own flexible custom
solutions.

For more information about customizing XML templates for eStatement Manager, see Chapter 5,
Content Access. For details about creating and configuring a Detail Extractor job, see Create and
Configure a Detail Extractor Job and the Administration Guide for Oracle Siebel eStatement Manager.

Compose XML Templates for XML Query Views
Once the data is in the database, you can extract it using standard SQL statements embedded in XML
templates. See the National Wireless examples XMLQuery/detail_sql.xml for detail,
XMLQuery/dispute_sql.xml for dispute, and XMLQuery/annot_sql.xml for annotation. Each of these
XML templates becomes the input to the dynamic XML query views that publish your extracted data
dynamically to the client Web application.

http://www.w3.org/2000/10/XMLSchema

Line Item Dispute and Annotations Composition and Production for Dispute and Annotation

150 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Edit annot_sql.xml

Edit dispute_sql.xml

Edit detail_sql.xml

Line Item Dispute and Annotations Composition and Production for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

151

▪

Create and Configure a Detail Extractor Job
You must configure and run a separate Detail Extractor job for each set of data (table or group of
tables) you want to upload to a database table.

For Sample, the name of the Detail Extractor job must be dtlextr. This name is hard-coded in
several of the JSPs for detail, dispute, and annotation.

For details about creating and configuring a Detail Extractor job, see Create and Configure a Detail
Extractor Job. For more information on the Detail Extractor job and other eStatement Manager jobs,
see the Administration Guide for Oracle Siebel eStatement Manager.

TIP: If you have trouble running the Detail Indexer job, check with your installation team to make
sure that detail tables and XML inputs are correctly created and configured.

Publish XML Query Dynamic Web Views
After creating and configuring your Detail Extractor job, you must publish three XML Query dynamic
Web views in your application. Each XML Query view uses SQL statements as XML Templates for
Disputes and Annotations to extract recurring data from Detail Tables for Dispute and Annotation and
publish it to the Web application through the Manage Statement JSPs. The Sample JSPs integrate
these three views for live retrieval and presentment.

For National Wireless and Sample, these views must be named:

1 DetailQuery for detail data.
2 DisputeQuery for dispute data.

3 AnnotationQuery for annotation data.

For more information about publishing XML Query views, see the Administration Guide for Oracle
Siebel eStatement Manager.

Line Item Dispute and Annotations Web Application Components for Dispute and Annotation

152 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Web Application Components for Dispute
and Annotation

Web Application Component Architecture

Manage Statement JSPs for Detail, Dispute, and Annotation
In Sample, clicking the Manage Statement link on a statement summary (HistoryList.jsp)
brings you to the Line Item Dispute and Annotation page, DBDetail.jsp. This page presents line
item detail for dispute or annotation by merging the output of all three XML Query views for your
version set.

From the detail page, a customer or CSR can:

 Click Dispute Item to enter a new dispute in dbdispute.jsp

 Click Annotate Item to enter a new annotation in dbannotation.jsp

 Click View Disputes to view all existing disputes in ViewDisputes.jsp

These JSP pages integrate the content access, user management, and annotation APIs with standard
Java and XTags libraries. This example makes extensive use of XTags for data formatting; study the
sample code for examples and ideas.

Line Item Dispute and Annotations Web Application Components for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

153

▪

CAUTION: For National Wireless and Sample, the XML Query views must be named DetailQuery for
detail data, DisputeQuery for dispute data, and AnnotationQuery for annotation data. These view
names are hard-coded into the Manage Statement JSPs.

Use care and attention to detail when customizing these pages. Replace any hard-coded references
with variables as needed, test custom JSPs by publishing new version sets, and document changes for
your production and presentment team.

DBDetail.jsp
This is the home page in the Sample implementation of dispute and annotation. This JSP specifies the
ReturnTo value for the page to which the customer returns after the annotation is submitted.

It gets the ddn, docId, and detailId as unique identifiers for this annotation, and uses the
IAccount object from the session to get the user ID and list of accounts.

The User, Dispute, and Annotation APIs then query the database to retrieve any existing line item
detail, disputes, or annotations for this customer, using the three XML Query views published for this
application.

 // User API

 Map detailParameters = new HashMap();

 detailParameters.put(User.QUERY,"detail_search");

 detailReader = User.getDocumentReader(userId, accounts, ddn,
"XMLQuery", "DetailQuery",docId,null,detailParameters);

 // Dispute API

 Map disputeParameters = new HashMap();

 disputeReader =
Dispute.getDocument(userId,accounts,ddn,"DisputeQuery",docId,n
ull,"dispute_search",disputeParameters);

 // Annotation API

 Map annotationParameters = new HashMap();

 annoteReader =
Annotation.getDocument(userId,accounts,ddn,"AnnotationQuery",d
ocId,null,"annote_search",annotationParameters);

The JSP formats the retrieved XML data with XTags.

DBAnnotation.jsp
This page gets and validates request parameters, which are specific to the Web application (in this
case Sample) and may not be explicitly required by the Annotation API.

The JSP next specifies the page to which the customer returns after the annotation is submitted. A
valid ReturnTo value is required.

It then requests the field title (for display purposes). If the user is adding a new annotation, this
value is Add. If the user is updating an existing annotation, this value is Edit. It also requests the
parameter description, which is required.

Line Item Dispute and Annotations Web Application Components for Dispute and Annotation

154 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

The JSP gets the ddn, docId, and detailId as unique identifiers for this annotation, and uses the
IAccount object from the session to get the user ID and list of accounts.

It then populates the detailId field in the annote_search_by_detail_id query defined in the
AnnotationQuery view.

The Annotation API then retrieves the annotation data for this detail record as an XML document and
formats it with XTags.

This JSP also presents an input form for the customer to enter annotation data. This example sets the
detail ID to the current detailID, sets the doc ID to the current docID, sets the createdBy field to
the current userID, and sets the annotationId value to zero.

It presents the description as read-only, provides a choice of Personal or Business category code, and
provides a text field to enter the annotation body. The form posts this data to the database.

DBDispute.jsp
This page gets and validates request parameters, which are specific to the Web application (in this
case Sample) and may not be explicitly required by the Annotation API.

The JSP next specifies the page to which the customer returns after the annotation is submitted.

The example page presents the current amount being disputed; this is only one possible
implementation and is not required by the API.

The JSP gets the ddn, docId, detailId, and disputedColumn as unique identifiers for this
dispute, and uses the IAccount object from the session to get the user ID (unlike Annotation, this
page does not request the list of accounts).

The JSP presents an input form for the customer to enter dispute data. This example sets the detail ID
to the current detailID, sets the createdBy field to the current userID, and sets the disputeId
value to zero. It sets the dispute state to Open, presents the current amount to be disputed as read-
only, and provides two text fields to enter the adjusted amount and any comments. The form posts
this data to the database.

ViewDisputes.jsp
This JSP sets the ReturnTo value of the page to which the customer returns after the annotation is
submitted. In this example, the ReturnTo page is DBDetail.jsp.

The example page presents the current amount being disputed; this is only one possible
implementation and is not required by the API.

It then retrieves the docId, detailId, and disputedColumn, and uses the IAccount object from
the session to get the user ID and list of accounts.

The JSP then populates the detailId field in the dispute_search_by_detail_id query defined
in the DisputeQuery view.

The Dispute API then retrieves the dispute data for this detail record as an XML document and formats
it with XTags.

Line Item Dispute and Annotations Web Application Components for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

155

▪

Using XTags with Dispute and Annotation JSPs

About XTags
XTags is a JSP custom tag library for working with XML. XTags implements an XSLT-like language that
allows you to style and process XML directly within a JSP page, using familiar XSLT and XPath
techniques. For more information about XTags, see http://jakarta.apache.org/taglibs/doc/xtags-
doc/intro.html.

XTags Example
The JSPs for annotation and dispute make extensive use of XTags. This example from
viewDisputes.jsp uses an XTags stylesheet to format dispute data for presentment in the JSP. See
the Sample code for more ideas on using XTags.

<xtags:stylesheet>

 <xtags:template match="/">

 <TABLE cellSpacing="0" cellPadding="5" align="center"
border="1">

 <tr>

 <td class="tableHead">Disputed Item</td>

 <td class="tableHead">Adjusted Amount</td>

 <td class="tableHead">Comments</td>

 </tr>

 <xtags:applyTemplates
select="/doc/view"></xtags:applyTemplates>

 </table>

 </xtags:template>

 <xtags:template match="row">

 <tr>

 <td class="text">

 <xtags:valueOf select="disputed_column"/>

 </td>

 <td class="text" align="right">

 <xtags:valueOf select="adjusted_value"/>

 </td>

 <td class="text">

 <xtags:valueOf select="comments"/>

 </td>

 </tr>

 </xtags:template>

 </xtags:stylesheet>

http://jakarta.apache.org/taglibs/doc/xtags-doc/intro.html
http://jakarta.apache.org/taglibs/doc/xtags-doc/intro.html

Line Item Dispute and Annotations Application Programming Interfaces (API) for Dispute and
Annotation

156 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Application Programming Interfaces
(API) for Dispute and Annotation

Data Flow for Annotation and Dispute Services
The annotation and dispute APIs are responsible for collecting all the data attached to a specific line
item element and transporting it from the Web browser to the back end, which is typically, but not
necessarily, a RDBMS data store.

The use of JMS and JDBC creates a flexible J2EE framework that allows client and partner designers
great freedom to customize the storage and retrieval of dispute and annotation data. This section
describes the sequence of data flow for annotation and dispute services.

The process for Dispute, shown below and described in the following sections, is identical for
Annotation.

API Data Flow
1 The static Dispute class creates a Dispute object. This object is one of the parameters of the

submit method call.

2 When a JSP calls submit with the Dispute object as the argument, the eStatement Manager core
classes transform the Dispute object into a JMS message and broadcast (publish) the message
with a preset message type.

3 The JMS service then broadcasts the JMS message.

CAUTION: This step requires that JMS be correctly configured. See Java Messaging Service for
Disputes and Annotations.

4 When the J2EE application server is started, the JMS service starts any subscribers. These
subscribers create a JMS listener, whose class name is given in the property file.

5 When the JMS listener receives a message, it calls the 'onMessage' method of the listener for
DBAccess.

6 The default listener for eStatement Manager uploads the details of Dispute into a database table
called <DDN>Dispute. All Disputes for a single DDN are stored in this table.

TIP: Advanced developers familiar with EJB customization and JMS can write a custom JMS listener
to change the final destination of the message. For details of EJB components, see Javadoc.

Package com.edocs.direct.annotation Description

About the Annotation API
The Annotation API allows users to submit, update, or cancel an annotation to line item detail.
Typically, this data is stored in a relational database, usually the eStatement Manager database, as in
the Sample implementation shipped with eStatement Manager. However, annotation data may also be

Line Item Dispute and Annotations Application Programming Interfaces (API) for Dispute and
Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

157

▪

stored in an external data source, usually customized by Oracle Professional Services or client
developers.

TIP: This EJB component architecture provides an industry standard framework for expanding the
Annotation framework, for example to post-process incoming data to a file system.

To submit an annotation, the submit method of the abstract Annotation class collects required
information about the annotation as parameters, and submits the annotation and its metadata to the
data store through the IAnnotationBean EJB interface.

To retrieve an annotation, the getDocument method of the abstract Annotation class requests the
specified information about the annotation as parameters, and retrieves the annotation and its
metadata from the data store through the IAnnotationBean EJB interface.

For information on related EJB classes and interfaces, see the Javadoc.

submit signature
public static submit(String ddn, String[] accounts, String
docId, String detailID, String userID, String code, String
text, String createdBy)

TIP: When retrieving composite or compound account numbers, for example when working with
subaccounts, you can use the javax.naming interface to specify the accounts parameter as type
Name instead of type String. For more information about the Name interface, see the Javadoc.

submit Parameters

Name Description
accounts The account numbers this customer is authorized to view. Data

type may be either String or Name.

annotationID ID that uniquely identifies the annotation, to be created by the
statement provider. Incrementing this ID inserts a new record;
supplying an existing ID updates the record. Required.

code Customizable reason codes, to be created by the statement
provider. Customer selects from allowable values. May be
NULL.

createdBy Name of the user submitting the annotation.

ddn The Document Definition Name (DDN) of the parent document
containing the detail line item.

detailID An ID that uniquely identifies the detail line item. Used with
HTML composed from Detail Extractor tables. Required.

docId The DOC_ID of the parent document containing the detail im.
Required.

text Text body of the annotation.

userID The user ID of the customer submitting the annotation.

Line Item Dispute and Annotations Application Programming Interfaces (API) for Dispute and
Annotation

158 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

getDocument Signature
public static Reader getDocument(String ddn, String docId,
String [] accounts, String userID, String queryName, HashMap
params, HttpServletRequest req)

TIP: When retrieving composite or compound account numbers, for example when working with
subaccounts, you can use the javax.naming interface to specify the accounts parameter as type
Name instead of type String. For more information about the Name interface, see the Javadoc.

getDocument Parameters

Name Description
accounts The account numbers this customer is authorized to view. Data

type may be either String or Name.

ddn The Document Definition Name (DDN) of the parent document
containing the detail line item.

docId The DOC_ID of the parent document containing the detail item.
Required.

parameters Hashmap containing name-value pairs of parameters for the XML
query.

queryName The name of the XML Query used in the Detail Extractor job to
extract the detail data.

req HTTP Servlet Request object from the Web tier, used to implement
paging. May be NULL.

userId The user ID of the customer submitting the annotation.

GetDocument Results
getDocument returns the requested annotation(s) as a reader object which streams XML (but not an
actual XML reader object).

Package com.edocs.direct.dispute Description
The Dispute API allows users to submit, update, or cancel a dispute to line item detail. Typically, this
data is stored in a relational database, usually the eStatement Manager database, as in the Sample
implementation shipped with eStatement Manager. It may also be stored in an external data source,
usually customized by Oracle Professional Services or client developers.

TIP: This EJB component architecture provides an industry standard framework for expanding the
Dispute framework, for example to post-process incoming data to a file system.

To submit a dispute, the submit method of the abstract Dispute class collects required information
about the dispute as parameters, and submits the dispute and its metadata to the data store through
the IDisputeBean EJB interface.

Line Item Dispute and Annotations Application Programming Interfaces (API) for Dispute and
Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

159

▪

To retrieve a dispute, the getDocument method of the abstract Dispute class requests the specified
information about the dispute as parameters, and retrieves the dispute and its metadata from the
data store through the IDisputeBean EJB interface.

For information on related EJB classes and interfaces, see the Javadoc.

submit Signature
public static void submit(String ddn, String[] accounts,
String docId, String detailID, String userID, String state,
String comments, String adjustedValue, String disputedColumn,
String createdBy)

TIP: When retrieving composite or compound account numbers, for example when working with
subaccounts, you can use the javax.naming interface to specify the accounts parameter as type
Name instead of type String. For more information about the Name interface, see the Javadoc.

submit Parameters

Name Description
accounts The account numbers this customer is authorized to view.

Data type may be either String or Name.

adjustedValue The new value to which the disputed line item should be
adjusted.

comments Text body of the dispute.

createdBy Name of the user submitting the dispute.

ddn The Document Definition Name (DDN) of the parent
document containing the detail line item.

detailID An ID that uniquely identifies the detail line item. Used with
HTML composed from Detail Extractor tables. Required.

disputedColumn Name of the column being disputed.

disputeID ID that uniquely identifies the dispute, to be created by the
statement provider. Incrementing this ID inserts a new
record; supplying an existing ID updates the record.
Required.

docId The DOC_ID of the parent document containing the detail
item. Required.

state State of the dispute

userID The user ID of the customer submitting the annotation.

getDocument Signature
getDocument(String userId, String[] accounts, String ddn,
String viewName, String docId, HttpServletRequest req, String
queryName, Map parameters)

Line Item Dispute and Annotations Application Programming Interfaces (API) for Dispute and
Annotation

160 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

TIP: When retrieving composite or compound account numbers, for example when working with
subaccounts, you can use the javax.naming interface to specify the accounts parameter as type
Name instead of type String. For more information about the Name interface, see the Javadoc.

getDocument Parameters

Name Description
accounts The account numbers this customer is authorized to view. Data type

may be either String or Name.

ddn The Document Definition Name (DDN) of the parent document
containing the detail line item.

docId DOC_ID of the parent document containing the detail item.
Required.

parameters Hashmap containing name-value pairs of parameters for the XML
query.

queryName The name of the XML Query used in the Detail Extractor job to
extract the detail data.

req HTTP Servlet Request object from the Web tier, used to implement
paging. May be NULL.

state The state of the dispute.

userId The user ID of the customer submitting the annotation.

GetDocument Results
getDocument returns the requested dispute(s) as a reader object which streams XML (but not an
actual XML reader object).

Using the Dispute and Annotation APIs

Submit a dispute
To submit a new dispute, use the dispute.submit Signature with required dispute.submit Parameters
and increment the disputeID by 1.

Submit an annotation
To submit a new annotation, use the annotation.submit signature with required annotation.submit
Parameters and increment the annotationID by 1.

Update an existing dispute
To update an existing dispute, submit a new entry for that disputeID with new data for any of the
parameters userID, State, Comments, AdjustedValue, disputedColumn, createdBy.

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

161

▪

Update an existing annotation
To update an existing annotation, submit a new entry for that annotationID with new data for any
of the parameters code, text, createdBy.

Cancel a dispute
To cancel a dispute, submit a new entry for that disputeID with the state set to cancel.

CAUTION: The dispute and annotation APIs throws an exception on failure of any step, but these
exceptions are not written to the log file for eStatement Manager.

Retrieving Detail, Disputes, and Annotations with the Content
Access API (com.edocs.app.user)
Sometimes it may be more convenient to retrieve detail, dispute, or annotation data along with other
content instead of using the Detail and Annotation APIs. Special signatures of the Content Access API,
com.edocs.user, use a Map object parameters to retrieve line item detail, dispute, or annotation
data.

Calling one of these methods returns the data as XML in a java.io.Reader reference. The column
names in the ResultSet are the tag names. All date values are converted to a Java type long.

For example implementations of these methods and signatures, see the sample files in the next
section.

For more information on XML methods in com.edocs.app.user, see Chapter 5, Content Access.

Sample Files for Dispute and Annotation

Sample JSPs

dbannotation.jsp
<%@ page session="false"

 import="java.io.*,

 java.util.*,

 javax.naming.*,

 javax.naming.directory.*,

 com.edocs.app.user.*,

 com.edocs.enrollment.user.IAccount,

com.edocs.enrollment.user.jndi.JNDIAccountAttributes,

 com.edocs.direct.annotation.Annotation"

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

162 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

%>

<%@ taglib uri="http://jakarta.apache.org/taglibs/xtags-1.0"
prefix="xtags" %>

<%

 // Get request parameters and validate that they are all
here.

 // The following request parameters are used in this sample
and

 // are not required by the Annotation API.

 // The returnTo parameter is JSP page that the user should
return

 // to once the annotation is submitted.

 String returnTo = request.getParameter("returnTo");

 if(returnTo == null)

 throw new NullPointerException("returnTo is null");

 // If the user is adding a new annotation, this value is Add.

 // If the user is updating an existing annotation, this value
is Edit.

 String title = request.getParameter("title");

 // The name of the field to annotate. This is only used for
display purposes.

 String description = request.getParameter("description");

 if(description == null)

 throw new NullPointerException("description is null");

 // This information is necesasry to submit an annotation

 // The ddn is the application that the user is submitting the
dispute for.

 String ddn = request.getParameter("ddn");

 if(ddn == null)

 throw new NullPointerException("ddn is null");

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

163

▪

 // The docId uniquely identifies a statment

 String docId = request.getParameter("docId");

 if(docId == null)

 throw new NullPointerException("docId is null");

 // The detailId uniquely identifies a detail row (record) in
a statment

 String detailId = request.getParameter("detailId");

 if(detailId == null)

 throw new NullPointerException("detailId is null");

 // Get the IAccount object from the users session to access
user attributes

 IAccount account =
(IAccount)request.getAttribute("com.edocs.enrollment.user.IAcc
ount");

 if(account == null) {

 throw new Exception("You are not logged in.");

 }

 // Get user id and the list of accounts from the IAccount
object

 String userId = getUserId(account);

 String[] accounts = getAccounts(account);

 // Populate the value of the detailid for the
annote_search_by_detail_id query defined in the
AnnotationQuery view.

 // select * from annotation table where docId='docid' and
detailId =value

 Map annotationParameters = new HashMap();

 annotationParameters.put("detailid",detailId);

 // Use the Annotation API to retreive the annotations for
this detail record

 // The reader will contain an XML document

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

164 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 Reader annoteReader =
Annotation.getDocument(userId,accounts,ddn,"AnnotationQuery",d
ocId,request,"annote_search_by_detail_id",annotationParameters
);

%>

<xtags:parse id ="annoteDocument" reader="<%=annoteReader%>">

</xtags:parse>

<html>

<%@ include file="/enrollment/html/userHead.htm" %>

 <!-- Input Form -->

 <form name="inputForm"
action="UserAnnotation?app=AnnotationApp&returnTo=<%=returnTo%
>&ddn=<%=ddn%>&docId=<%=docId%>" method="POST">

 <input type=hidden name="detailId"
value="<%=detailId%>">

 <input type=hidden name="docId" value="<%=docId%>">

 <input type=hidden name="annotationId" value="<%=0%>">

 <input type=hidden name="createdBy" value="<%=userId%>">

 <center>

 <table width="320" border="1" cellspacing="0"
cellpadding="3">

 <tr>

 <td colspan="2" class="tableHead"><%= title %>
note:</td>

 </tr>

 <tr>

 <td align="right" class="label">Description:</td>

 <td class="readonly"><%= description %></td>

 </tr>

 <tr>

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

165

▪

 <td align="right" class="label">Category:</td>

 <td class="text">

 <select name="code">

 <%

 String code = "//doc/view/row/code='Personal'";

 boolean isBusiness = true;

 %>

 <xtags:if context="<%= annoteDocument %>" test="<%= code
%>">

 <% isBusiness = false; %>

 </xtags:if>

 <% if(isBusiness) { %>

 <option selected>Business</option>

 <option>Personal</option>

 <% } else { %>

 <option>Business</option>

 <option selected>Personal</option>

 <% } %>

 </select>

 </td>

 </tr>

 <tr>

 <td align="right" class="label">Comment:</td>

 <td><textarea rows="5" cols="25" name="text"
maxlength="255"><xtags:valueOf context="<%= annoteDocument %>"
select="//doc/view/row/text"/></textarea></td>

 </tr>

 </table>

 <table width="320" border="0" cellspacing="0"
cellpadding="3">

 <tr>

 <td align="center">

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

166 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 <input type="submit" value="Submit"
name="submit">

 <input type="reset" value="Reset" name="reset">

 </td>

 </tr>

 </table>

 </center>

 </form>

<%@ include file="/enrollment/html/userFoot.htm" %>

</html>

<%!

 private Attributes getAttributes(IAccount account) throws
Exception {

 return account.getAttributes("", new String[] {

 JNDIAccountAttributes.JNDI_UID,

 JNDIAccountAttributes.JNDI_ACCOUNT_NUMBER});

 }

 private String getUserId(IAccount account) throws Exception {

 Attributes attrs = getAttributes(account);

 Attribute a =
(Attribute)attrs.get(JNDIAccountAttributes.JNDI_UID);

 String uid = null;

 if(a.size() > 0)

 uid = (String)a.get(0);

 return uid;

 }

 private String[] getAccounts(IAccount account) throws
Exception {

 Attributes attrs = getAttributes(account);

 Attribute a =
(Attribute)attrs.get(JNDIAccountAttributes.JNDI_ACCOUNT_NUMBER
);

 ArrayList values = new ArrayList(a.size());

 String[] accts = null;

 for (NamingEnumeration an = a.getAll(); an.hasMore();)

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

167

▪

 values.add((String)an.next());

 accts = (String [])values.toArray(new String [] {});

 return accts;

 }

%>

DBDetail.jsp
<html>

<%@ page session="false"

 import="java.io.*,

 java.util.*,

 javax.naming.*,

 javax.naming.directory.*,

 java.net.URLEncoder,

 com.edocs.app.AppConstants,

 com.edocs.enrollment.user.IAccount,

 com.edocs.jndi.cda.CDANameParser,

 com.edocs.enrollment.user.jndi.JNDIAccountAttributes,

 com.edocs.direct.dispute.Dispute,

 com.edocs.direct.annotation.Annotation,

 com.edocs.services.merger.MergerDataAccessException,

 com.edocs.app.user.User"

 contentType="text/html"

%>

<%@ taglib uri="http://jakarta.apache.org/taglibs/xtags-1.0"
prefix="xtags" %>

<%@ include file="/enrollment/html/userHead.htm" %>

<%

 String returnTo = "/user/jsp/DBDetail.jsp" ;

 String ddn = request.getParameter("ddn");

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

168 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 if (ddn == null)

 throw new IllegalArgumentException("ddn");

 String docId = request.getParameter("docId");

 if (docId == null)

 throw new IllegalArgumentException("docId");

 // Get the IAccount object from the users session to access
user attributes

 IAccount account =
(IAccount)request.getAttribute("com.edocs.enrollment.user.IAcc
ount");

 if(account == null) {

 throw new Exception("You are not logged in.");

 }

 // Get user id and the list of accounts from the IAccount
object

 String userId = getUserId(account);

 String[] accounts = getAccounts(account);

 Reader detailReader = null;

 Reader disputeReader = null;

 Reader annoteReader = null;

 try {

 // User API

 Map detailParameters = new HashMap();

 detailParameters.put(User.QUERY,"detail_search");

 detailReader = User.getDocumentReader(userId, accounts, ddn,
"XMLQuery", "DetailQuery",docId,null,detailParameters);

 // Dispute API

 Map disputeParameters = new HashMap();

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

169

▪

 disputeReader =
Dispute.getDocument(userId,accounts,ddn,"DisputeQuery",docId,n
ull,"dispute_search",disputeParameters);

 // Annotation API

 Map annotationParameters = new HashMap();

 annoteReader =
Annotation.getDocument(userId,accounts,ddn,"AnnotationQuery",d
ocId,null,"annote_search",annotationParameters);

 } catch (MergerDataAccessException mde) {

 request.setAttribute("UserMsg", "This statement is currently
unavailable!"

 + "
Please try again later or "

 + " contact technical support for assistance.");

 throw mde;

 } catch (Exception e) {

 String returnInfo = "appRoot2=User&ddn=" + ddn

 + "&app2=UserMain&jsp2=/user/jsp/HistoryList.jsp";

 request.setAttribute("UserMsg",

 "There has been an error processing your request. "

 + "
Please try your request again or contact
technical"

 + " support for assistance.
 Please <a href="

 +"/"UserEnrollment?app=Logout&"

 + "forwardto=/enrollment/jsp/UserLogout.jsp&"

 + returnInfo + "/">logout and Retry");

 throw e;

 }

%>

<%-- Get Documents --%>

<xtags:parse id ="disputeDocument"
reader="<%=disputeReader%>">

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

170 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

</xtags:parse>

<xtags:parse id ="annoteDocument" reader="<%=annoteReader%>">

</xtags:parse>

<xtags:parse id ="detailDocument" reader="<%=detailReader%>">

</xtags:parse>

<%

 String reqURI = (String)
request.getAttribute("FORWARDURL");

 String returnInfo = "appRoot2=" + reqURI + "&ddn=" + ddn +
"&app2=UserMain&jsp2=/user/jsp/HistoryList.jsp";

 // get eaPay's Servlet context

 ServletContext payContext =
getServletConfig().getServletContext().getContext("/eaPay/Paym
ent");

%>

<table border="0" cellpadding="0" cellspacing="0" width="625"
align="center">

 <tr align="center" class="text">

 <td><a
href="User?app=UserMain&jsp=/user/jsp/HistoryList.jsp&ddn=<%=
ddn %>"><img border=0
src="enrollment/images/his_summary.gif"></td>

 <%if (payContext != null) {%>

 <td><a href="/eaPay/Payment?app=Payment&ddn="<%=ddn %>"><img
border=0 src="enrollment/images/his_pay.gif"></td>

 <% } else { %>

 <td></td>

 <% }%>

 <td><a
href="User?app=UserMain&jsp=/samples/oc/telco/home.jsp&ddn=<%=
ddn %>"><img border=0
src="enrollment/images/his_order.gif"></td>

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

171

▪

 <td><a
href="UserEnrollment?app=UpdateApp&jsp=/enrollment/jsp/user_ge
t_subscribe.jsp&forwardto=<%= reqURI %>&<%= returnInfo
%>"><img border=0
src="enrollment/images/his_profile.gif"></td>

 <td><a
href="User?app=UserMain&jsp=/user/jsp/DBDetail.jsp&ddn=<%= ddn
%>&docId=<%= docId %>"><img border=0
src="enrollment/images/his_refresh.gif"></td>

 <td><a
href="UserEnrollment?app=Logout&forwardto=/enrollment/jsp/User
Logout.jsp&<%= returnInfo %>"><img border=0
src="enrollment/images/his_logout.gif"></td>

 </tr>

</table>

<xtags:stylesheet>

 <xtags:template match="/">

 <TABLE cellSpacing="0" cellPadding="5" align="center"
border="1">

 <tr>

 <td class="tableHead">Comments</td>

 <td class="tableHead">Summary Info Description</td>

 <td class="tableHead">Summary Info Amount</td>

 <% // Display Dispute Amount Header if there is at
least 1 dispute %>

 <xtags:if context="<%= disputeDocument %>"
test="count(/doc/view/row) > 0">

 <td class="tableHead">Disputed Amount</td>

 </xtags:if>

 <td class="tableHead">Dispute</td>

 </tr>

 <xtags:applyTemplates
select="/doc/view"></xtags:applyTemplates>

 </table>

 </xtags:template>

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

172 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 <xtags:template match="row">

 <xtags:variable id="Z_DOC_ID" select="z_doc_id"/>

 <xtags:variable id="detail_id" select="detail_id"/>

 <xtags:variable id="SummaryInfoAmount"
select="summaryinfoamount"/>

 <xtags:variable id="SummaryInfoDesc"
select="summaryinfodesc"/>

 <tr>

 <td align="center" class="text">

 <%

/***

 Annotation lookup.

**
*******/

 String annoteLookup = "//doc/view/row/detail_id='" +
detail_id + "'";

 boolean annoteExists = false;

 %>

 <xtags:if context="<%= annoteDocument %>" test="<%=
annoteLookup %>">

 <%

 annoteExists = true;

 %>

 </xtags:if>

 <% // If annotation exists then display 'view
annotation'

 if(annoteExists) { %>

 <a
href="User?app=UserMain&jsp=/user/jsp/dbannotation.jsp&ddn=<%=
ddn%>&title=Edit&returnTo=<%= returnTo %>&docId=<%=
java.net.URLEncoder.encode(Z_DOC_ID) %>&detailId=<%=
java.net.URLEncoder.encode(detail_id) %>&description=<%=
java.net.URLEncoder.encode(SummaryInfoDesc) %>"><img border=0
src="enrollment/images/annotate_black.gif"/>

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

173

▪

 <% } else {%>

 <a
href="User?app=UserMain&jsp=/user/jsp/dbannotation.jsp&ddn=<%=
ddn%>&title=Add&returnTo=<%= returnTo %>&docId=<%=
java.net.URLEncoder.encode(Z_DOC_ID) %>&detailId=<%=
java.net.URLEncoder.encode(detail_id) %>&description=<%=
java.net.URLEncoder.encode(SummaryInfoDesc) %>"><img border=0
src="enrollment/images/annotate_white.gif"/>

 <% }%>

 </td>

 <td class="text">

 <%= SummaryInfoDesc %>

 </td>

 <td class="text" align="right">

 <xtags:valueOf select="summaryinfoamount"/>

 </td>

 <%

/***

 Dispute lookup.

**
*******/

 String disputeLookup = "//doc/view/row/detail_id='" +
detail_id + "'";

 boolean disputeExists = false;

 %>

 <xtags:if context="<%= disputeDocument %>" test="<%=
disputeLookup %>">

 <% disputeExists = true; %>

 </xtags:if>

 <% // If there is a dispute, display either the value (if
any) or just an empty cell. %>

 <xtags:if context="<%= disputeDocument %>"
test="count(/doc/view/row) > 0">

 <td class="text" align="right">

 <% // If dispute exists then display 'view dispute'

 if(disputeExists) { %>

 <%

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

174 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 String findAdjValue =
"//doc/view/row[detail_id='" + detail_id +
"']/adjusted_value";

 %>

 <xtags:valueOf context="<%= disputeDocument %>"
select="<%=findAdjValue%>"/>

 <% } else {

 out.println(" ");

 }%>

 </td>

 </xtags:if>

 <td align="center" class="text">

 <% // If dispute exists then display 'view dispute'

 if(disputeExists) { %>

 <a
href="User?app=UserMain&jsp=/user/jsp/ViewDisputes.jsp&ddn=<%=
ddn%>&returnTo=<%= returnTo %>&docId=<%=
java.net.URLEncoder.encode(Z_DOC_ID) %>&detailId=<%=
java.net.URLEncoder.encode(detail_id) %>&disputedColumn=<%=
java.net.URLEncoder.encode("Summary Info Amount"
)%>¤tAmount=<%= java.net.URLEncoder.encode(
SummaryInfoAmount)%>"><img border=0
src="enrollment/images/dispute_red.gif"/>

 <% } else {%>

 <a
href="User?app=UserMain&jsp=/user/jsp/dbdispute.jsp&ddn=<%=ddn
%>&returnTo=<%= returnTo %>&docId=<%=
java.net.URLEncoder.encode(Z_DOC_ID) %>&detailId=<%=
java.net.URLEncoder.encode(detail_id) %>&disputedColumn=<%=
java.net.URLEncoder.encode("Summary Info Amount"
)%>¤tAmount=<%= java.net.URLEncoder.encode(
SummaryInfoAmount)%>"><img border=0
src="enrollment/images/dispute_green.gif"/>

 <% }%>

 </td>

 </tr>

 </xtags:template>

</xtags:stylesheet>

<%@ include file="/enrollment/html/userFoot.htm" %>

</html>

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

175

▪

<%!

 private Attributes getAttributes(IAccount account) throws
Exception {

 return account.getAttributes("", new String[] {

 JNDIAccountAttributes.JNDI_UID,

 JNDIAccountAttributes.JNDI_ACCOUNT_NUMBER});

 }

 private String getUserId(IAccount account) throws Exception {

 Attributes attrs = getAttributes(account);

 Attribute a =
(Attribute)attrs.get(JNDIAccountAttributes.JNDI_UID);

 String uid = null;

 if(a.size() > 0)

 uid = (String)a.get(0);

 return uid;

 }

 private String[] getAccounts(IAccount account) throws
Exception {

 Attributes attrs = getAttributes(account);

 Attribute a =
(Attribute)attrs.get(JNDIAccountAttributes.JNDI_ACCOUNT_NUMBER
);

 ArrayList values = new ArrayList(a.size());

 String[] accts = null;

 for (NamingEnumeration an = a.getAll(); an.hasMore();)

 values.add((String)an.next());

 accts = (String [])values.toArray(new String [] {});

 return accts;

 }

%>

dbdispute.jsp
<%@ page session="false"

 import="java.io.*,

 java.util.*,

 javax.naming.*,

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

176 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 javax.naming.directory.*,

 com.edocs.app.user.*,

 com.edocs.enrollment.user.IAccount,

 com.edocs.enrollment.user.jndi.JNDIAccountAttributes"

%>

<html>

<%@ include file="/enrollment/html/userHead.htm" %>

<SCRIPT language=javascript
src="user/scripts/script.js"></SCRIPT>

<%

 // Get request parameters and validate that they are all
here.

 // The following request parameters are used in this sample
and

 // are not required by the Dispute API.

 // The returnTo parameter is JSP page that the user should
return

 // to once the dispute is submitted.

 String returnTo = request.getParameter("returnTo");

 if(returnTo == null)

 throw new NullPointerException("returnTo is null");

 // The currentAmount is the current amount the user is
disputing.

 String currentAmount = request.getParameter("currentAmount");

 if(currentAmount == null)

 throw new NullPointerException("currentAmount is null");

 // This information is necesasry to submit a dispute

 // The ddn is the application that the user is submitting the
dispute for.

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

177

▪

 String ddn = request.getParameter ("ddn");

 if(ddn == null)

 throw new NullPointerException("ddn is null");

 // The docId uniquely identifies a statment

 String docId = request.getParameter("docId");

 if(docId == null)

 throw new NullPointerException("docId is null");

 // The detailId uniquely identifies a detail row (record) in
a statment

 String detailId = request.getParameter("detailId");

 if(detailId == null)

 throw new NullPointerException("detailId is null");

 // The disputedColumn identifies the field the user wishes to
dispute.

 // Examples of a disputedColumn would be amount, finance
charge, or phone number.

 String disputedColumn =
request.getParameter("disputedColumn");

 if(disputedColumn == null)

 throw new NullPointerException("disputedColumn is null");

 // Get the IAccount object from the users session to access
user attributes

 IAccount account =
(IAccount)request.getAttribute("com.edocs.enrollment.user.IAcc
ount");

 if(account == null) {

 throw new Exception("You are not logged in.");

 }

 // Get user id from the IAccount object

 String userId = getUserId(account);

%>

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

178 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 <!-- Input Form -->

 <form name="inputForm" onSubmit="return
processForm(this);"
action="UserDispute?app=DisputeApp&returnTo=<%=returnTo%>&ddn=
<%=ddn%>&docId=<%=docId%>" method="POST">

 <input type=hidden name="detailId"
value="<%=detailId%>">

 <input type=hidden name="createdBy" value="<%=userId%>">

 <input type=hidden name="disputeId" value="0">

 <!-- State of the dispute -->

 <input type=hidden name="state" size="20" value="Open">

 <center>

 <table width="500" border="1" cellspacing="0"
cellpadding="3" align="center">

 <tr>

 <td colspan="2" class="tableHead">Dispute your
statement:</td>

 </tr>

 <tr>

 <td align="right" class="label">Disputed Item:</td>

 <td class="readonly"><%=disputedColumn%></td>

 <input type=hidden name="disputedColumn"
value="<%=disputedColumn%>">

 </tr>

 <tr>

 <td align="right" class="label">Current
Amount:</td>

 <td class="readonly"><%=currentAmount%></td>

 </tr>

 <tr>

 <td align="right" class="label">Adjusted
Amount:</td>

 <td class="text"><input type="text"
name="adjustedAmount" size="25" maxLength="10"></td>

 </tr>

 <tr>

 <td align="right" class="label">Comments:</td>

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

179

▪

 <td class="text"><textarea rows="5" name="comment"
size="25" maxlength="255"></textarea></td>

 </tr>

 </table>

 <table width="500" cellspacing="0" cellpadding="3">

 <tr>

 <td align="center">

 <input type="submit" value="Submit"
name="submit">

 <input type="reset" value="Reset"
name="submit2">

 </td>

 </tr>

 </table>

 </center>

 </form>

<%!

 private Attributes getAttributes(IAccount account) throws
Exception {

 return account.getAttributes("", new String[] {

 JNDIAccountAttributes.JNDI_UID,

 JNDIAccountAttributes.JNDI_ACCOUNT_NUMBER});

 }

 private String getUserId(IAccount account) throws Exception {

 Attributes attrs = getAttributes(account);

 Attribute a =
(Attribute)attrs.get(JNDIAccountAttributes.JNDI_UID);

 String uid = null;

 if(a.size() > 0)

 uid = (String)a.get(0);

 return uid;

 }

%>

<%@ include file="/enrollment/html/userFoot.htm" %>

</html>

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

180 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

viewdisputes.jsp
<html>

<%@ page session="false"

 import="java.io.*,

 java.util.*,

 javax.naming.*,

 javax.naming.directory.*,

 java.net.URLEncoder,

 com.edocs.app.user.*,

 com.edocs.app.AppConstants,

 com.edocs.enrollment.user.IAccount,

 com.edocs.jndi.cda.CDANameParser,

 com.edocs.enrollment.user.jndi.JNDIAccountAttributes,

 com.edocs.direct.dispute.Dispute"

 contentType="text/html"

%>

<%@ taglib uri="http://jakarta.apache.org/taglibs/xtags-1.0"
prefix="xtags" %>

<%@ include file="/enrollment/html/userHead.htm" %>

<%

 // Get request parameters and validate that they are all
here.

 // The following request parameters are used in this sample
and

 // are not required by the Dispute API.

 // The returnTo parameter is JSP page that the user should
return

 // to once the dispute is submitted.

 String returnTo = "/user/jsp/DBDetail.jsp" ;

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

181

▪

 // The currentAmount is the current amount the user is
disputing.

 String currentAmount = request.getParameter("currentAmount");

 if(currentAmount == null) {

 throw new NullPointerException("currentAmount is null");

 }

 // This information is necesasry to submit a dispute

 // The ddn is the application that the user is submitting the
dispute for.

 String ddn = request.getParameter ("ddn");

 if(ddn == null)

 throw new NullPointerException("ddn is null");

 // The docId uniquely identifies a statment

 String docId = request.getParameter("docId");

 if(docId == null)

 throw new NullPointerException("docId is null");

 // The detailId uniquely identifies a detail row (record) in
a statment

 String detailId = request.getParameter("detailId");

 if(detailId == null)

 throw new NullPointerException("detailId is null");

 // The disputedColumn identifies the field the user wishes to
dispute.

 // Examples of a disputedColumn would be amount, finance
charge, or phone number.

 String disputedColumn =
request.getParameter("disputedColumn");

 if(disputedColumn == null)

 throw new NullPointerException("disputedColumn is null");

 // Get the IAccount object from the users session to access
user attributes

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

182 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 IAccount account = (IAccount)
request.getAttribute("com.edocs.enrollment.user.IAccount");

 // Get user id and the list of accounts from the IAccount
object

 String userId = getUserId(account);

 String [] accounts = getAccounts(account);

 // Populate the detailId for the dispute_search_by_detail_id
query defined in the DisputeQuery view.

 Map disputeParameters = new HashMap();

 disputeParameters.put("detailid",detailId);

 // Use the Dispute API to retreive the disputes for this
detail record

 // The reader will contain an XML document

 Reader disputeReader =
Dispute.getDocument(userId,accounts,ddn,"DisputeQuery",docId,r
equest,"dispute_search_by_detail_id",disputeParameters);

%>

<xtags:parse id ="disputeDocument"
reader="<%=disputeReader%>">

</xtags:parse>

<%

 String reqURI = (String)
request.getAttribute("FORWARDURL");

 String returnInfo = "appRoot2=" + reqURI + "&ddn=" + ddn +
"&app2=UserMain&jsp2=/user/jsp/HistoryList.jsp";

 // get eaPay's Servlet context

 ServletContext payContext =
getServletConfig().getServletContext().getContext("/eaPay/Paym
ent");

%>

<html>

<table border="0" cellpadding="0" cellspacing="0" width="625"
align="center">

 <tr align="center" class="text">

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

183

▪

 <td><a
href="User?app=UserMain&jsp=/user/jsp/HistoryList.jsp&ddn=<%=
ddn %>"><img border=0
src="enrollment/images/his_summary.gif"></td>

 <%if (payContext != null) {%>

 <td><a href="/eaPay/Payment?app=Payment&ddn="<%=ddn %>"><img
border=0 src="enrollment/images/his_pay.gif"></td>

 <% } else { %>

 <td></td>

 <% }%>

 <td><a
href="User?app=UserMain&jsp=/samples/oc/telco/home.jsp&ddn=<%=
ddn %>"><img border=0
src="enrollment/images/his_order.gif"></td>

 <td><a
href="UserEnrollment?app=UpdateApp&jsp=/enrollment/jsp/user_ge
t_subscribe.jsp&forwardto=<%= reqURI %>&<%= returnInfo
%>"><img border=0
src="enrollment/images/his_profile.gif"></td>

 <td><a
href="UserEnrollment?app=Logout&forwardto=/enrollment/jsp/User
Logout.jsp&<%= returnInfo %>"><img border=0
src="enrollment/images/his_logout.gif"></td>

 </tr>

</table>

 <body>

 <table align="center" border="0">

 <tr>

 <td>

 <a
href="User?app=UserMain&jsp=/user/jsp/dbdispute.jsp&returnTo=<
%= returnTo %>&ddn=<%= ddn %>&disputedColumn=<%=
java.net.URLEncoder.encode(disputedColumn)
%>¤tAmount=<%= java.net.URLEncoder.encode(currentAmount)
%>&docId=<%= docId %>&detailId=<%= detailId%>">Add Dispute

 </td>

 </tr>

 </table>

 <xtags:stylesheet>

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

184 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 <xtags:template match="/">

 <TABLE cellSpacing="0" cellPadding="5" align="center"
border="1">

 <tr>

 <td class="tableHead">Disputed Item</td>

 <td class="tableHead">Adjusted Amount</td>

 <td class="tableHead">Comments</td>

 </tr>

 <xtags:applyTemplates
select="/doc/view"></xtags:applyTemplates>

 </table>

 </xtags:template>

 <xtags:template match="row">

 <tr>

 <td class="text">

 <xtags:valueOf select="disputed_column"/>

 </td>

 <td class="text" align="right">

 <xtags:valueOf select="adjusted_value"/>

 </td>

 <td class="text">

 <xtags:valueOf select="comments"/>

 </td>

 </tr>

 </xtags:template>

 </xtags:stylesheet>

<%!

 private Attributes getAttributes(IAccount account) throws
Exception {

 return account.getAttributes("", new String[] {

 JNDIAccountAttributes.JNDI_UID,

 JNDIAccountAttributes.JNDI_ACCOUNT_NUMBER});

 }

 private String getUserId(IAccount account) throws Exception {

 Attributes attrs = getAttributes(account);

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

185

▪

 Attribute a =
(Attribute)attrs.get(JNDIAccountAttributes.JNDI_UID);

 String uid = null;

 if(a.size() > 0)

 uid = (String)a.get(0);

 return uid;

 }

 private String[] getAccounts(IAccount account) throws
Exception {

 Attributes attrs = getAttributes(account);

 Attribute a =
(Attribute)attrs.get(JNDIAccountAttributes.JNDI_ACCOUNT_NUMBER
);

 ArrayList values = new ArrayList(a.size());

 String[] accts = null;

 for (NamingEnumeration an = a.getAll(); an.hasMore();)

 values.add((String)an.next());

 accts = (String [])values.toArray(new String [] {});

 return accts;

 }

%>

<%@ include file="/enrollment/html/userFoot.htm" %>

</html>

XML Templates for National Wireless

XMLQuery/annot_sql.xml
<?xml version="1.0" encoding="UTF-8"?>

<query-spec>

 <data_source_type>SQL</data_source_type>

 <paging num_of_pages="4" rows_per_page="5"/>

 <query name="annote_search">

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

186 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 <sql-stmt>select * from "?" where z_doc_id = ?</sql-
stmt>

 <table name="annote" position="1"
type="annotations"/>

 <param name="docid" type="java.lang.String"
position="1"/>

 </query>

 <query name="annote_search_by_detail_id">

 <sql-stmt>select * from "?" where z_doc_id = ? and
detail_id = ?</sql-stmt>

 <table name="annote" position="1"
type="annotations"/>

 <param name="docid" type="java.lang.String"
position="1"/>

 <param name="detailid" type="java.lang.String"
position="2"/>

 </query>

</query-spec>

XMLQuery/detail_sql.xml
<?xml version="1.0" encoding="UTF-8"?>

<query-spec>

 <data_source_type>SQL</data_source_type>

 <paging num_of_pages="4" rows_per_page="5"/>

 <query name="detail_search">

 <sql-stmt>select * from ? where z_doc_id = ?</sql-
stmt>

 <table name="detail" position="1" type="detail"
viewname="dtlextr"/>

 <param name="docid" type="java.lang.String"
position="1"/>

 </query>

</query-spec>

XMLQuery/dispute_sql.xml
<?xml version="1.0" encoding="UTF-8"?>

<query-spec>

 <data_source_type>SQL</data_source_type>

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

187

▪

 <paging num_of_pages="4" rows_per_page="5"/>

 <query name="dispute_search">

 <sql-stmt>select * from "?" where z_doc_id = ? order
by detail_id desc, create_date desc</sql-stmt>

 <table name="dispute" position="1" type="dispute"/>

 <param name="docid" type="java.lang.String"
position="1"/>

 </query>

 <query name="dispute_search_by_detail_id">

 <sql-stmt>select * from "?" where z_doc_id = ? and
detail_id = ? order by create_date desc</sql-stmt>

 <table name="dispute" position="1" type="dispute"/>

 <param name="docid" type="java.lang.String"
position="1"/>

 <param name="detailid" type="java.lang.String"
position="2"/>

 </query>

</query-spec>

Line Item Dispute and Annotations Sample Files for Dispute and Annotation

188 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

.

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

189

 7 Auditing Datastreams

Introduction to Auditing Data Streams
This module describes the Verify API, made available to help administrators verify whether a data
stream has been correctly processed in eStatement Manager. Code examples are provided to illustrate
the use of the various methods. (Note: this document uses the terms data stream, data stream, and
volume interchangeably.)

About Auditing Data for Presentment
Before online statements are released for public access, it may be necessary to validate the input data
stream. Various verification criteria may be defined depending on the information available about the
data stream.

The methods in the Verify API only provide the means to manipulate an input stream as a whole,
including the ability to mark the volume as accepted or rejected for online presentment.

Alternatively, the Content Access API operates at the statement level. If Verify is enabled, the Content
Access API can only access statements in a volume that has been accepted.

Typical uses include:

 Add an audit level so administrators can ensure the print files are error free before making
statements available to end-users.

 Confirm that the data delivered to eStatement Manager is compliant with the data definition
specified.

 Define various verification criteria depending on information available about the data stream, such
as number of accounts present in the data stream or account numbers known to be present in the
data stream.

 Compare the number of extracted accounts to the number supposed to be present.

 Check to see if the account numbers known to be present in the data stream have actually been
extracted (dummy accounts can be inserted in a data stream to facilitate such tests).

 Examine a random set of accounts more closely to determine whether line item values total up
correctly.

 Test whether totals tally across all accounts to match some data stream total.

Verify API methods allow you to:

 Query which applications (DDNs) are deployed on an eStatement Manager server

 Obtain a list of accounts extracted from a single data stream

 Examine account summary information (via the Content Access API)

Auditing Datastreams APIs for Auditing Data Streams

190 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 Examine detailed account information (via the Content Access API)

 Accept or reject a processed data stream for online presentment

CAUTION: Once an indexed volume has been rejected, it cannot later be accepted. The same
applies for one that has been accepted; it cannot later be rejected.

APIs for Auditing Data Streams

Package com.edocs.app.verify Description

About the Verify API
Provides the Verify class and methods for auditing indexed volumes of data before releasing them
for presentment. Verify method getIndexedVolumeList retrieves a list of indexed volumes
available for audit, while getAccountList retrieves all the account numbers in a volume.
GetDDNList retrieves all DDNs. Two signatures of GetHitList retrieve all Description items either
for a given volume, or for a given account. acceptIndexedVolume or rejectIndexedVolume
respectively accept or reject a volume for presentment to customers. Finally,
updateDescriptionInfo supports updates to the optional information field (Y_#) on a statement
page.

Process Flow for Verify Methods
The following table summarizes the Verify methods; the Javadoc file provided with this module
contains the reference information to provide detailed programming usage.

Method Name Description
acceptIndexedVolume Mark a processed data stream as valid.

getAccountList Returns a list of account numbers associated with a
processed print (data) file.

getDDNList Returns a list of the DDNs defined.

getHitList Returns account summary information.

getIndexedVolumeList Returns a list of the processed data streams, identified
by their indexed volume number (IVN).

rejectIndexedVolume Marks as rejected an indexed volume

updateSummaryInfo Enables updating of optional data fields

While the above list is in alphabetical order, Verify methods are typically called more or
less in a fixed order, because the results of one call are often times necessary as input for
another. The following diagram shows a possible process flow from one set of calls to the
next. Methods listed in a single box or on the same level may be called in any order.

Auditing Datastreams APIs for Auditing Data Streams

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

191

▪

By default, when one runs an indexer job on a data stream in eStatement Manager, one has the
option of requesting automatic verification (by selecting AutoIndexVolAccept) or intercepting to apply
customized or manual verification. Interception requires that one select the Intercept to Verify
option in the indexer job specification as shown below.

This task is initially set to Auto Accept, which automatically verifies each volume processed by the
Indexer job. If you set this value to Intercept to Verify, it does not return summary items for that
print file until it is marked as accepted. Using the Verify API, you can define the parameters to accept
or reject a volume based on the analysis results. If they are marked as accepted, getSummary
returns the summary items in that print file and end users may have access to them.

Auditing Datastreams Auditing Data Streams with the Verify API

192 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Auditing Data Streams with the Verify
API
The following sections discuss the individual methods of the Verify API. It begins with getDDNList,
which allows you to determine which applications have been defined on an eStatement Manager
server.

These methods require the import of the com.edocs.app.verify.* into the JSP to access them
(see the example below).

Retrieve a List of All Applications

About getDDNList
To obtain the list of applications (DDNs) defined on an eStatement Manager server, the Verify API
provides the getDDNList method that takes no arguments. Often one may already know the
application one is interested in.

getDDNList is provided to facilitate the building of tools or user interfaces that enable dynamic
selection of the application name. This method returns a string array (String []).

Example

The following example returns a list of DDNs deployed on the server you execute it on.
You could use the return to populate a drop down list box or an HTML table to enable the
user to pick which application he/she wishes to verify print files from.

<HTML>

<HEAD>

<TITLE>Applications List Example</TITLE>

</HEAD>

<%@

 page import ="

java.util.Properties,

java.text.*,

com.edocs.app.verify.*,

com.edocs.app.util.*" %>

<%

try

{

 String[] DDNList = Verify.getDDNList();

 out.print("
" + "DDN List on this Server: " + "
")

 for (int i = 0; i < DDNList.length ; i++)

 out.print(DDNList[i] + "
")

Auditing Datastreams Auditing Data Streams with the Verify API

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

193

▪

}

catch (Exception e)

{

}

%>

</TABLE>

</HTML>

Retrieve a List of Indexed Volumes

About getIndexedVolumeList
Each time a data stream is processed, it returns an indexed volume identified by a unique number,
the index volume number (IVN). The method getIndexedVolumeList returns information about all
the data streams processed. The information returned contains particulars such as date of processing
and number of accounts extracted.

Parameters
getIndexedVolumeList accepts the following input parameters:

Name Description
count Used to indicate the maximum number of rows to be returned. Zero

returns all. Data type is short.

ddn The application name (DDN). Data type is string.

Results
getIndexedVolumeList returns a table. Row zero contains the column headings. Row one and
onwards contain information about each of the indexed volumes. The number of rows retrieved is
controlled using the “count” argument. Information about the last “count” number of indexed volumes
processed is returned. If count is specified to be zero, information about all indexed volumes is
returned. The column values in row one and beyond capture the value specified by the column
heading (column value of the row zero element).

CAUTION: Note the zero-based counting for rows and columns. Row [0] contains the column
headings; data starts at row [1].

Row Name Description

Row[0] Column headings

Row[1], Row [2]... Row[count] Information about an indexed volume.

Auditing Datastreams Auditing Data Streams with the Verify API

194 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Column # Column Name Description

0 Z_IVN Index volume number

1 Z_FILE_NAME Original file name

2 Z_FILE_PATH Current file path

3 Z_DATE_CREATED Date file was used as input. (long as
string)

4 Z_DATE_ACCEPTED Date file was accepted. Empty if file
not accepted.

5 Z_DATE_REJECTED Date file was rejected. Empty if file
not rejected.

6 Z_DATE_EXPIRED Date the file expired. Empty if it has
not expired.

7 Z_DOC_COUNT Number of documents in file

Date values returned as a string are really a single long value indicating the number of milliseconds
since the epoch (January 1, 1970, 00:00:00 GMT).

When the indexer job runs with the selection Intercept to Verify, the Z_DATE_ACCEPTED and
Z_DATE_REJECTED fields are left empty; it is neither accepted nor rejected. By contrast, the
AutoIndexVolAccept task is used to automatically mark the IVN as accepted. Using the other Verify
API methods, you can analyze the indexed volume before marking it accepted or rejected.

Example
The code sample below demonstrates one use of getIndexedVolumeList:

<%

 String ddn = "Training"; // any deployed application

 short count = 5;

 String[][] ivnList = getIndexVolumeList(ddn, count);

 String[] columnHeadings = invList[0];

 int numCols = columnHeadings.length;

 int numRows = ivnList.length;

<table>

<tr>

<% // output column headings in BOLD

 for (int i = 0; i< numCols; i++) { %>

 <td> <%= columnHeadings[i] %> </td>

<% } %>

</tr>

Auditing Datastreams Auditing Data Streams with the Verify API

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

195

▪

<% for (int i = 1; i< numRows; i++) {

%>

<tr>

 <% for (int j = 0; j< numCols; j++) { %>

 <td> <%= ivnList[i][j] %> </td>

 <% }

 } %>

</tr>

<% }

</table>
The other Verify API methods deal for the most part with a single IVN. They allow a more detailed
examination of the processing results and finally enable one to accept or reject such processing.

Example
The following example retrieves all files processed for the DDN training.

<HTML>

<HEAD>

<TITLE>IVN List Example</TITLE>

</HEAD>

<%@ page import ="

java.util.Properties,

java.text.*,

com.edocs.app.verify.*,

com.edocs.app.util.*" %>

<% short count = 0

String DDN = "training"

/*Declare multidimensional array to hold

return of getIndexVolumeList*/

String[][] ivlArr

//Declare a string called ivn and initialize to null

String ivn = null

/*Make a call to getIndexVolumeList and set

return equal to ivlArr*/

ivlArr = Verify.getIndexedVolumeList(DDN, count)

int rows = ivlArr.length

out.print("" + "ivns for " + DDN + "

application"+ "" + "
")

for (int i = 1; i < rows; i++)

Auditing Datastreams Auditing Data Streams with the Verify API

196 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

{

ivn = ivlArr[i][0]

out.print("ivn= " + ivn + "
")

}

%>

</HTML>

Retrieve a List of Account Numbers

About getAccountList
You have selected an indexed volume identified by its IVN (indexed volume number). What’s next?
You might be interested in finding out the account (or subaccount) numbers for which information was
extracted. Three signatures of getAccountList return a list of account numbers:

getAccountList (string ivn, long offset, short count)

getAccountList (string ivn, name context, long offset, short count)

getAccountList(string ivn, long offset, short count, String pattern)

The length of the list returned can be tuned by selecting values for the input arguments offset,
count and pattern.

When retrieving composite or compound account numbers, for example when working with
subaccounts, use the javax.naming interface to specify the context parameter as type Name. For
more information about the Name interface, see the Javadoc.

Parameters

Name Description
ivn The index volume number (IVN). It is unique to a processed data

stream. Data type is string.

context The account number for which to retrieve subaccount data. Data type is
name. See the Javadoc.

offset Determines the starting point to process account numbers in the data
stream. Data type is long.

count Used to indicate the maximum number of rows to be returned. Zero
returns all. Data type is short.

pattern A string used to filter the account numbers with a SQL command in a
LIKE clause. Data type is string.

Using the offset parameter
Consider the data stream as a long list of statement records. getAccountList allows you to specify
beyond which point in that data stream to look and retrieve account numbers. The offset acts as a
bookmark, letting you home in on where you last left off. You may seek to examine the processing

Auditing Datastreams Auditing Data Streams with the Verify API

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

197

▪

results chunk by chunk, sliding your view window perhaps by some fixed amount each time. This start
position for viewing is the “offset.” Often all account information may be accurately retrieved up to
some point either because the data stream from that point on got corrupted or because the parsing
rules failed to handle some situation at that point. By remembering the offset where the problem lay,
the next time you could home in to see if the problem was resolved by selecting the same offset.

Example
String pattern = “2300%”;

String ivn = request.getParameter(“ivn”);

// Z_IVN from a previous call to getIndexedVolumeList

short count = 10;

long offset = 0;

String[] accountNumbers = null;

 accountNumbers = Verify.getAccountList(ivn,

 offset,

 count,

 pattern);

 // do some further processing of these accounts
The account number in conjunction with the IVN number can be used to retrieve statement summary
and detail information. By examining them closely, one may determine whether the account
information extraction from the data stream is accurate.

Example
The following example returns all accounts for the IVN with a Z_IVN of “2” which maps back to the
training application as depicted in the prior JSP example.

<HTML>

<HEAD>

<TITLE>Account List Example</TITLE>

</HEAD>

<%@ page import =" java.util.Properties, java.text.*,
com.edocs.app.verify.*, com.edocs.app.util.*" %>

<%

long l = 0; short s = 0

/*Start at the beginning of the file and return all accounts for ivn
passed in using getAccountList*/

String ivn = "2";

String[] acctList =

Verify.getAccountList(ivn, l, s);

out.print("
" + "" + "Account List" + "" + "
")

 for (int i = 0; i < acctList.length ; i++)

 out.print(acctList[i] + "
")

%>

Auditing Datastreams Auditing Data Streams with the Verify API

198 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

</HTML>

Retrieve Account Summary Information

About getHitList
Two signatures of the getHitList method retrieve account summary information. It is similar to the
Content Access API method getSummary, but it also returns summary information for statements that
have not been accepted. One signature retrieves summary information for all accounts within a single
indexed volume. The other signature operates across all indexed volumes for a single account
number. The sections that follow discuss each in detail.

getHitList Signature For All Accounts In A Single IVN
Typically, use getHitList(String ivn, long offset, short count) to present an
administrator with account summaries for accounts extracted from the processing of a single data
stream. The purpose is to facilitate a closer inspection of one or more accounts to ensure accuracy.

Parameters
This signature of getHitList accepts the following input parameters:

Name Description
offset Determines the starting point to process account numbers in the data

stream. Data type is long.

count Used to indicate the maximum number of rows to be returned. Zero
returns all. Data type is short.

The offset argument determines the point beyond which account numbers in the data stream are
returned. Typically, one marches down the list of account numbers, retrieving a set of them, examines
them carefully, and then moves on to the next set. The count argument determines the set size. The
number of account summaries retrieved is the smaller of the two values: number of account numbers
available beyond “offset,” and the set size.

Results
The signature getHitList(String ivn, long offset, short count) returns a table. The
first row of the table contains the column headings and the remainder of the rows, one per account
summary retrieved, contains column values. The tables below summarize the result set structure and
column contents.

Row Name Description

Row[0] Column headings

Row[1]...Row[count] Summary information for accounts

n Number of columns

k Number of optional fields as defined in indexer job.

Auditing Datastreams Auditing Data Streams with the Verify API

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

199

▪

Column # Heading Description

0 Z_PRIMARY_KEY Account number

1 Z_DOC_ID Document identifier

2 Z_DOC_DATE Document date

3 Z_IVN Indexed volume number

4 .. (n-k –1) Indexed field names Value of indexed fields

(n-k)...(n-1) Optional field names (Y_1 to Y_k) Values of optional fields

This method is also useful for customer service representative applications in navigating to an account
in question.

getHitList Signature For One Account Across All IVNs
The signature getHitList (String account, String ddn, short count, long from,
long to) provides summary information across all processed data streams for a given application
(DDN) for a given account number. The “from” and “to” values indicate the range of processing dates
from which to retrieve IVNs.

Typically, this method is used to test changes in parsing rules for the data stream. In particular, one
tests that an account summary originally extracted correctly remains so and that problematic accounts
cease to be so.

TIP: When retrieving composite or compound account numbers, for example when working with
subaccounts, you can use the javax.naming interface to specify the account parameter as type
Name instead of type String. For more information about the Name interface, see the Javadoc.

Parameters
This signature of getHitList accepts the following input parameters:

Name Description
account The list of accounts this user is allowed to view. Data type may be either

String or Name.

ddn The application name (DDN). Data type is string.

count Used to indicate the maximum number of rows of summary information
to be returned. Zero returns all. Data type is short.

from The “from” date determines from how far back in time to retrieve
information. “from” is used in conjunction with the “to” date to control
the amount of account summary information to retrieve. Data type is
long.

to The upper bound date used in retrieving information. Data type is long.

Auditing Datastreams Auditing Data Streams with the Verify API

200 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Results
This signature of getHitList returns the following table information:

Row Name Description

Row[0] Column headings

Row[1] .. Row[count] Summary information for accounts

n Number of columns

k Number of optional fields

Column # Column Heading Description

0 Z_DOC_ID Document identifier

1 Z_DOC_DATE Document date

2 Z_IVN Indexed volume number

3 .. (n-k –1) Indexed field names Value of indexed fields

n-k .. n-1 Optional field names
(Y_1 to Y_n)

Value of optional fields

This method is very similar to the Content Access API method getSummary. The only difference is
that it provides summary information for an account regardless of whether the IVN was accepted or
rejected, while the app.user method restricts itself to accepted IVNs only. The app.verify method
allows comparison of the information extracted, which is handy in determining the effect of changes in
data stream parsing rules.

The above methods work together to help make a decision whether to accept or reject the processing
results of an indexed volume. The next step is to actually accept or reject an indexed volume.

Accept or Reject an Indexed Volume

About acceptIndexedVolume and rejectIndexedVolume
After careful inspection, one makes a decision to accept or reject an indexed volume. Accordingly, one
invokes the acceptIndexedVolume or rejectIndexedVolume method. Both methods take as their sole
input the IVN number. Only accepted indexed volumes become available to the end-user. The code
sample below illustrates one usage:

String ivn = request.getParameter(“ivn”);

 Verify.acceptIndexedVolume(ivn);

 System.out.println(“Accepted indexed volume: “ + ivn);
To ascertain whether you have accepted or rejected an indexed volume, invoke the
getIndexedVolumeList method again and examine the Z_DATE_ACCEPTED and/or
Z_DATE_REJECTED fields for the IVN of interest. For an accepted IVN, the Z_DATE_ACCEPTED field

Auditing Datastreams Auditing Data Streams with the Verify API

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

201

▪

reflects the date on which you accepted it (the date itself is represented as a java long integer) and
the Z_DATE_REJECTED field would be empty.

For example, the following fields would contain values for a DDN that has been accepted (the date
values shown in these examples are only a “visual” representation of the actual values, which are
number values):

Z_DATE_ACCEPTED Z_DATE_REJECTED Z_DATE_CREATED

2001-03-22 2001-03-21
If the method rejectIndexedVolume were subsequently called for this IVN then the fields would
contain the following values:

Z_DATE_ACCEPTED Z_DATE_REJECTED Z_DATE_CREATED

 2001-03-22 2001-03-21
The reverse is true as well. Calling acceptIndexedVolume causes eStatement Manager to clear the
Z_DATE_REJECTED value and add a Z_DATE_ACCEPTED value.

TIP: The above calls might used with an HTML form submission if a user interface implements the
Verify API methods.

Example
In the following example, one IVN is rejected, stamping the Z_DATE_REJECTED field with the current
date and rendering the IVN or data stream unavailable for customer viewing:

<HTML>

<HEAD>

<TITLE>Reject IVN Example</TITLE>

</HEAD>

<%@ page import ="java.util.Properties, java.text.*,
com.edocs.app.verify.*, com.edocs.app.util.*" %>

<%

String ivn = "2"; Verify.rejectIndexedVolume(ivn); out.print("" +
"ivn: " + ""+ ivn + " was marked as Rejected!" + "
")

%>

</HTML>

Example
The following example accepts the IVN passed in, stamping the Z_DATE_ACCEPTED field with the
current date and thus enabling end users to retrieve information from the billing cycle that IVN
represents:

<HTML>

<HEAD>

<TITLE>Accept IVN Example</TITLE> </HEAD>

Auditing Datastreams Auditing Data Streams with the Verify API

202 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

<%@ page import ="java.util.Properties, java.text.*,
com.edocs.app.verify.*, com.edocs.app.util.*" %>

<%

String ivn = "2"; Verify.acceptIndexedVolume(ivn); out.print("" +
"ivn: " + ""+ ivn + " was marked as accepted and is ready for end
users!" + "
")

%>

</HTML>

Update Summary Information

About updateSummaryInfo
An account may have information that is not extracted from the data stream. Such pieces of
information, saved in optional fields in the eStatement Manager database, can be accessed using the
methods user.getSummary and verify.getHitList.

These optional fields are defined in the Command Center as part of the IXLoader task of a job that
allows you to enter a value for the Optional Field Count parameter. For example, if you want five
optional fields you would enter 5 in the Optional Field Count parameter.

An optional field may be DueDate. The application business rules may stipulate that the statement is
payable twenty days from the date it is posted. That is a fixed length of time, and perhaps not one
necessarily captured in the data stream. The due date in this case would be a function of the date the
indexed volume is accepted.

Optional fields of this nature, and for that matter all of the optional fields, can be updated using the
Verify API updateSummaryInfo method. (The Content Access API method updateSummaryInfo is
similar.)

Parameters

Name Description
ivn The index volume number (IVN). It is unique to a processed data

stream.

docId The document identifier of the IVN. Obtain docId by calling
getHitList.

name The name of an optional field column, such as Y_1 or Y_2. The
number selected during the IXLoader task determines the number of
optional fields available. If you specify five optional fields, the names
would range from Y_1 to Y_5.

value The string value to assign to an optional field.

Verify.updateSummaryInfo(String ivn, String docId, String name, String value)
requires the index volume number and the docId. Obtain these with one of the getHitList
signatures. It also requires the name of the optional field and the value that must be assigned.

Auditing Datastreams Auditing Data Streams with the Verify API

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

203

▪

Example: Update Optional Field “Due Date”
The code sample below illustrates how it can be used in the context of an IVN that has the optional
field “Y_1” that is associated with the semantics of a DueDate.

String ivn = “IVN_of_interest”;

Date today = Date();

long 20DaysForward = 20*24*60*60*1000; // in milliseconds

String dueDate = “” + (new Date(today.getTime() +

20DaysForward)).getTime();

String docId = null; Verify.acceptIndexVolume(ivn);

// lets accept it today!

 String[][] acctSummrys = Verify.getHitList(ivn, 0L, 0S);

// count == 0 => all accounts

 for (int i = 1; i< acctSummrys.length; i++) {

 docId = acctSummrys [i][0];

 Verify.updateSummaryInfo(ivn,

 docId,

 “Y_1”, // optional field

 dueDate);

 }

Example: Update Optional Field to Accept Accounts
Another use for updateSummaryInfo is to update an optional field AcceptAccount. Its default
value could be true, and if closer inspection of the account summary or detail indicates otherwise, it
could be marked false. This can give you fine-grained control over processing results: acceptance or
rejection at the account level. Application business logic may be specified that programmatically totals
the number of account level rejects, determines whether it is within some acceptable threshold, and if
so, accepts the whole IVN.

Auditing Datastreams Auditing Data Streams with the Verify API

204 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

.

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

205

 8 Custom Jobs

About Custom Job Types

This guide describes how to create custom job types that include the Shell Command Task. This task
allows you to run an external command script to process the output files from other tasks within the
job. You can use this guide to:

 Define a custom job type for the Command Center and create a SQL script, containing job type
and task information, to add the new job type.

 View and configure the new job type in the Command Center.

About Jobs and the Shell Command Task
eStatement Manager has several predefined job types available in its Command Center. Each job is
made up of one or more tasks. For complete listing of jobs and tasks, see the Administration Guide for
Oracle Siebel eStatement Manager.

However, there may be times when you want to expand these predefined Jobs to fit your needs. For
cases like this eStatement Manager has the ability to define your own custom Job Type that you can
make up from a combination of the predefined tasks that come with eStatement Manager and/or your
own custom task by defining what is referred to in eStatement Manager as a Shell Command Task.

A Shell Command Task is a way of invoking a shell script, executable, or other program that was
written to perform a task specific to your requirements. It enables you to run custom scripts or
programs, such as pre- or post- processors as part of a user-defined job. You can create your own Job
Type by creating a SQL script that updates the database. Once the database is updated this Job Type
becomes available to you via the Command Center. The new Job Type can then be configured,
scheduled, and run from within the Command Center.

For example, you could create a new custom job called Preprocess to run a pre-processor on the
input file in an Indexer job. At runtime, the Preprocess task would be inserted between the Scanner
and the Indexer tasks. Another use would be to create a job to run a validation engine (sum all
amount due, for example) on the output of the Indexer task. At runtime, the SumAllDue task would
be inserted between the Indexer and the IXLoader tasks.

Defining a New Job Type
This chapter includes information about:

 Creating the job type script

 Configuring the new job type

Custom Jobs Defining a New Job Type

206 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 Examples of the job type script

Create the Job Type Script
To create a job type you create a single SQL script to run in the eStatement Manager database using
the Oracle utility sqlplus. Within this SQL script you define:

 The job name

 The tasks and the order in which they run

 The input arguments

The following sections provide a detailed topic description of each part. Each section uses the example
of specifying a new job type that is similar to the current Indexer job, except that between scanning
for an input file (Scanner Task) and actually indexing the file (Indexer Task) you need to invoke a
preprocessor to modify the input file. This is the situation where you need to insert the
ShellCmdTask between the other tasks.

Example sqlplus script for Oracle
DECLARE jtid NUMBER;
BEGIN

 -- Define the job name
 jtid := pwc_job_types.create_job_type ('myIndexer');

 -- Specify the job tasks and their order

 pwc_job_types.create_job_type_task(jtid,'Scanner', 1);

 pwc_job_types.create_job_type_task(jtid,'ShellCmdTask', 2);

 pwc_job_types.create_job_type_task(jtid,'Indexer', 3);

 pwc_job_types.create_job_type_task(jtid,'IXLoader', 4);

 pwc_job_types.create_job_type_task(jtid,
'AutoIndexVolAccept', 5);

 -- Define the tasks input arguments

 pwc_job_types.create_job_type_io(jtid,'ShellCmdTask', 'input
params', 'INPUT', 2,'Scanner', 'output file name', 'OUTPUT',
1);

 pwc_job_types.create_job_type_io(jtid, 'Indexer','data file
name', 'INPUT', 3, 'ShellCmdTask','shell output', 'OUTPUT',
2);

 pwc_job_types.create_job_type_io(jtid, 'Indexer', 'ddn
volume number', 'INPUT', 3,'Scanner', 'ddn volume number',
'OUTPUT', 1);

 pwc_job_types.create_job_type_io(jtid, 'IXLoader', 'index
volume number', 'INPUT', 4,'Scanner', 'ddn volume number',
'OUTPUT', 1);

Custom Jobs Defining a New Job Type

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

207

▪

 pwc_job_types. create_job_type_io (jtid, 'IXLoader', 'ir
file name', 'INPUT', 4, 'Indexer', 'ir file name', 'OUTPUT',
3);

 pwc_job_types.create_job_type_io(jtid, 'AutoIndexVolAccept',
'index volume number', 'INPUT', 5, 'Scanner', 'ddn volume
number, 'OUTPUT', 1);

END;

Example script for AIX/DB2
To create a DB2 shell command for a custom job in AIX, run the following command:

 db2 -td@ -vf customjob.sh

Where customjob.sh is the name of a shell script customized for your job, platform, and
environment. See the example below for a sample script to customize.

DROP PROCEDURE db2inst1.tmp_pwc_jtt_sp() @

CREATE PROCEDURE db2inst1.tmp_pwc_jtt_sp()

 LANGUAGE SQL

BEGIN

 DECLARE jtid INTEGER;

 DECLARE l_job_type_name VARCHAR(32);

 DECLARE l_task_name VARCHAR(32);

 DECLARE l_task_order INTEGER;

 DECLARE l_i_task_name VARCHAR(32);

 DECLARE l_i_task_io_name VARCHAR(32);

 DECLARE l_i_task_io_type VARCHAR(32);

 DECLARE l_i_task_order INTEGER;

 DECLARE l_o_task_name VARCHAR(32);

 DECLARE l_o_task_io_name VARCHAR(32);

 DECLARE l_o_task_io_type VARCHAR(32);

 DECLARE l_o_task_order INTEGER;

 -- job type with
'Scanner':'ShellCmdTask':'Indexer':'IXLoader':'AutoIndexVolAcc
ept'

 SET l_job_type_name = 'Custom_Indexer';

 CALL pwc_job_types.create_job_type(jtid, l_job_type_name);

 SET l_task_name = 'Scanner';

Custom Jobs Defining a New Job Type

208 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 SET l_task_order = 1;

 CALL pwc_job_types.create_job_type_task(jtid, l_task_name,
l_task_order);

 SET l_task_name = 'ShellCmdTask';

 SET l_task_order = 2;

 CALL pwc_job_types.create_job_type_task(jtid, l_task_name,
l_task_order);

 SET l_task_name = 'Indexer';

 SET l_task_order = 3;

 CALL pwc_job_types.create_job_type_task(jtid, l_task_name,
l_task_order);

 SET l_task_name = 'IXLoader';

 SET l_task_order = 4;

 CALL pwc_job_types.create_job_type_task(jtid, l_task_name,
l_task_order);

 SET l_task_name = 'AutoIndexVolAccept';

 SET l_task_order = 5;

 CALL pwc_job_types.create_job_type_task(jtid, l_task_name,
l_task_order);

 SET l_i_task_name = 'ShellCmdTask';

 SET l_i_task_io_name = 'input params';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 2;

 SET l_o_task_name = 'Scanner';

 SET l_o_task_io_name = 'output file name';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 1;

CALL pwc_job_types.create_job_type_io(jtid, l_i_task_name,
l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name,
l_o_task_io_name, l_o_task_io_type,

l_o_task_order);

 SET l_i_task_name = 'Indexer';

 SET l_i_task_io_name = 'data file name';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 3;

 SET l_o_task_name = 'ShellCmdTask';

Custom Jobs Defining a New Job Type

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

209

▪

 SET l_o_task_io_name = 'shell output';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 2;

CALL pwc_job_types.create_job_type_io(jtid, l_i_task_name,
l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name,
l_o_task_io_name, l_o_task_io_type,

l_o_task_order);

 SET l_i_task_name = 'Indexer';

 SET l_i_task_io_name = 'ddn volume number';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 3;

 SET l_o_task_name = 'Scanner';

 SET l_o_task_io_name = 'ddn volume number';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 1;

CALL pwc_job_types.create_job_type_io(jtid, l_i_task_name,
l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name,
l_o_task_io_name, l_o_task_io_type,

l_o_task_order);

 SET l_i_task_name = 'IXLoader';

 SET l_i_task_io_name = 'index volume number';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 4;

 SET l_o_task_name = 'Scanner';

 SET l_o_task_io_name = 'ddn volume number';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 1;

CALL pwc_job_types.create_job_type_io(jtid, l_i_task_name,
l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name,
l_o_task_io_name, l_o_task_io_type,

l_o_task_order);

 SET l_i_task_name = 'IXLoader';

 SET l_i_task_io_name = 'ir file name';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 4;

Custom Jobs Defining a New Job Type

210 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 SET l_o_task_name = 'Indexer';

 SET l_o_task_io_name = 'ir file name';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 3;

CALL pwc_job_types.create_job_type_io(jtid, l_i_task_name,
l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name,
l_o_task_io_name, l_o_task_io_type,

l_o_task_order);

 SET l_i_task_name = 'AutoIndexVolAccept';

 SET l_i_task_io_name = 'index volume number';

 SET l_i_task_io_type = 'INPUT';

 SET l_i_task_order = 5;

 SET l_o_task_name = 'Scanner';

 SET l_o_task_io_name = 'ddn volume number';

 SET l_o_task_io_type = 'OUTPUT';

 SET l_o_task_order = 1;

CALL pwc_job_types.create_job_type_io(jtid, l_i_task_name,
l_i_task_io_name,

l_i_task_io_type, l_i_task_order, l_o_task_name,
l_o_task_io_name, l_o_task_io_type,

l_o_task_order);

END @

CALL db2inst1.tmp_pwc_jtt_sp() @

DROP PROCEDURE db2inst1.tmp_pwc_jtt_sp() @

Name the Job
The first part of the script is to give your new task a name. The syntax to do this is:

jtid := pwc_job_types.create_job_type ('<new_job_name>');

In the script, the create_job_type call defines a unique job type ID (jtid) for the new Indexer1
job type.

So if your new job name is myIndexer, then the code script would be:

jtid := pwc_job_types.create_job_type ('myIndexer');

Specify Job Tasks
The next step is to specify what tasks are part of the new job, and in what order they execute. The
syntax is:

Custom Jobs Defining a New Job Type

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

211

▪

pwc_job_types.create_job_type_task(jtid,'<task_name>', n);

where n equals the order number of the task and jtid is the job type id – created with
pwc_job_types.create_job_type() function. The create_job_type_task call defines the
order of the tasks in the job.

In the above example, the plan is to create a new job type based on the current Indexer job type. The
tasks included in the Indexer Job are (in their order of execution):

Job Tasks
Scanner

Indexer

IXLoader

Indexer

AutoIndexVolAccept

If you insert the ShellCmdTask after the Scanner Task, it will become task 2, and the others will be
incremented by one. The code example is:

pwc_job_types.create_job_type_task(jtid,'Scanner', 1);

pwc_job_types.create_job_type_task(jtid,'ShellCmdTask', 2);

pwc_job_types.create_job_type_task(jtid,'Indexer', 3);

pwc_job_types.create_job_type_task(jtid,'IXLoader', 4);

pwc_job_types.create_job_type_task(jtid, 'AutoIndexVolAccept',
5);

Define Input Arguments
Each task has input and output arguments, and a particular task may require the output arguments
from a previous task to function properly. For example, in the default Indexer job, its Indexer task
takes two input arguments from the Scanner Task. In the SQL Script you define which specific input
arguments for a task are used from the specific output arguments from another task.

For a list of arguments, see the Javadoc.

To define the input and output parameters, the following is the syntax of the function of the call that
uses nine arguments:

pwc_job_types.create_job_type_io(jtid,
 '<input_task_name>',
 '<input_argument>',
 'INPUT',
 x,
 '<output_task_name>',
 '<output_argument>',
 'OUTPUT',
 y);

where x is the order number of the input task and y is the order number of the output task. The
create_job_type_io calls define the input values for each job task. It accepts the following
parameter values:

Custom Jobs Defining a New Job Type

212 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 The job type ID (jtid)

 The task name receiving the input value

 The input parameter name

 The I/O type (INPUT)

 The order number for the task receiving the input value (defined earlier in the script)

 The previous task name dispensing the output to be used for input

 The output parameter name from the previous task

 The I/O type (OUTPUT)

 The order number of the task dispensing the output value (defined earlier in the script)

The following breaks down the input arguments used in the above example script:

pwc_job_types.create_job_type_io(jtid,
 'ShellCmdTask',
 'input params',
 'INPUT',
 2,
 'Scanner',
 'output file name',
 'OUTPUT',
 1);

The input argument input params for the ShellCmdTask uses the output argument output file name
from the Scanner task.

pwc_job_types.create_job_type_io(jtid,
 'Indexer',
 'data file name',
 'INPUT',
 3,
 'ShellCmdTask',
 'shell output',
 'OUTPUT',
 2);

pwc_job_types.create_job_type_io(jtid,
 'Indexer',
 'ddn volume number',
 'INPUT',
 3,
 'Scanner',
 'ddn volume number',
 'OUTPUT',
 1);

The input arguments data file name and ddn volume number for the Indexer task uses the output
arguments shell output from the ShellCmdTask and ddn volume number from the Scanner task
respectively.

Custom Jobs Defining a New Job Type

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

213

▪

pwc_job_types.create_job_type_io(jtid,
 'IXLoader',
 'index volume number',
 'INPUT',
 4,
 'Scanner',
 'ddn volume number',
 'OUTPUT',
 1);

pwc_job_types. create_job_type_io (jtid,
 'IXLoader',
 'ir file name',

 'INPUT',
 4,
 'Indexer',
 'ir file name',
 'OUTPUT',
 3);

The input arguments index volume number and ir file name for the IXLoader task uses the output
arguments ddn volume number from the Scanner and ir file name from the Indexer respectively.

pwc_job_types.create_job_type_io(jtid,
 'AutoIndexVolAccept',
 'index volume number',
 'INPUT',
 5,
 'Scanner',
 'ddn volume number,
 'OUTPUT',
 1);

The input argument index volume number for the AutoIndexVolAccept task uses the output
argument ddn volume number from the Scanner task.

Configuring Your New Job Type
After creating the script, you run it against the Oracle database used by eStatement Manager (as
described in the Installation Guide for Oracle Siebel eStatement Manager). For example, if the script is
named myindexer.sql and placed in /opt/eStatement/db (the default database location for
eStatement Manager), you could run the following in SQL*Plus:

$ sqlplus -s edx_dba/edx@edx.db @ /opt/eStatement/db/myindexer.sql

The above command presumes you are using the default names for the eStatement Manager database
(edx0) and database administrator/password (edx_dba/edx).

TIP: Before the new job type is available in the Command Center, you have to stop and start your
application server after running the script.

Once the new job type is available to you from the Command Center, you can define the new job
using that new job type.

Custom Jobs Defining a New Job Type

214 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Define the Shell Command Task
If you have included the ShellCmdTask with your new job type, it has 2 input fields to define:

 Shell Command

 Environment variables

The Shell Command field defines the location of the shell script to execute on your system. Note that
the user that starts the application server must have read/execute permissions for that location.

The shell command must output, on its standard output, the name of its output file that is the input
file to be processed by the next task in the job. If the shell command doesn't output any file name,
the job stops as a no-op. If it is successful, the shell command must set its exit code to 0.

If the shell command fails, it must set its exit code to a non-zero value. Additionally, it may output, on
its standard error, a message describing the failure. eStatement Manager adds the error message to
the log file. However, eStatement Manager does not log any errors that occur within the shell
command; these must be handled separately.

For example, the following shell command would be useful after the Scanner task to ensure Windows
files have the correct format for UNIX:

#!/bin/csh
Preprocessor to run dos2unix on the input file

dos2unix $SHELL_INPUT $SHELL_INPUT.ux >& /dev/null
if ($status != 0) exit $status # failure
echo $SHELL_INPUT.ux # new input file
exit 0 # success

The Environment variables field specifies the environment variables for the shell command. By default,
the external command is passed the following environment variables:

 DDN - the name of the application to which the job belongs

 JOB_NAME - the name of the job to which the task is a part of.

 STATUS - the status of the job (has it been started, did it succeed/fail, etc).

 PREVIOUS_STATUS

 SHELL_INPUT - any input from a previous task. The SHELL_INPUT variable is only set if the shell
command task is linked with another task in the context of a job. Otherwise it is null.

If your shell command requires any other environment variables, you’ll need to specify them in this
field.

Another Example of Defining a New Job Type
The following is another example that defines an index job called Indexer2 with the following tasks:

Custom Jobs Defining a New Job Type

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

215

▪

Job Tasks
Scanner

Indexer

ShellCmdTask

IXLoader

Indexer2

AutoIndexVolAccept

As mentioned in the previous chapter, a reason for this new job type could be to run a validation
engine (sum all amount due for example) on the output of the Indexer task. If the amount due
exceeds a certain amount, it may require a careful verification of the input data stream as described in
the SDK Module: Auditing Data Streams with the Verify API.

For this case you can create the following SQL script:

DECLARE jtid NUMBER;
BEGIN

 jtid := pwc_job_types.create_job_type('Indexer2');

 pwc_job_types.create_job_type_task(jtid, 'Scanner', 1);

 pwc_job_types.create_job_type_task(jtid, 'Indexer', 2);

 pwc_job_types.create_job_type_task(jtid, 'ShellCmdTask', 3);

 pwc_job_types.create_job_type_task(jtid, 'IXLoader', 4);

 pwc_job_types.create_job_type_task(jtid,
'AutoIndexVolAccept', 5);

 pwc_job_types.create_job_type_io(jtid, 'Indexer', 'data file
name', 'INPUT', 2, 'Scanner', 'output file name', 'OUTPUT',
1);

 pwc_job_types.create_job_type_io(jtid, 'Indexer', 'ddn volume
number', 'INPUT', 2, 'Scanner', 'ddn volume number', 'OUTPUT',
1);

 pwc_job_types.create_job_type_io(jtid, 'ShellCmdTask', 'input
params', 'INPUT', 3, 'Indexer', 'ir file name', 'OUTPUT', 2);

 pwc_job_types.create_job_type_io(jtid, 'IXLoader', 'index
volume number', 'INPUT', 4, 'Scanner', 'ddn volume number',
'OUTPUT', 1);

 pwc_job_types.create_job_type_io(jtid, 'IXLoader', 'ir file
name', 'INPUT', 4, 'Indexer', 'ir file name', 'OUTPUT', 2);

 pwc_job_types.create_job_type_io(jtid, 'AutoIndexVolAccept',
'index volume number', 'INPUT', 5, 'Scanner', 'ddn volume
number', 'OUTPUT', 1);

END;

Custom Jobs Defining a New Job Type

216 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

.

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

217

9 Charting

Introduction to Charting

About Charting in eStatement Manager
eStatement Manager can format statement data as a graphical chart in a dynamic HTML page. Charts
consist of the chart data, which must be a table or group with at least two data rows, and the chart
properties, which specify the type, design, and layout of the chart graphic.

Charting can involve most of the actors in a typical eStatement Manager workflow. The following
overview diagram highlights the main tasks in the charting process.

Charting Use Case Overview Diagram

System
Administrator

Web Dev eloper

Designer/Presentment
Consultant

Production
Manager

configure
serv er for

charting

compose
chart data
and logic

customize
chart

properties

publish
chart v iew

v iew chart
in statement

Customer

prev iew
chart in

Simulator

To present charts in online statements:

1 The system administrator follows the steps in Configuring Charting for Your Server to set up the
display device, permissions, and awareness on the application server rendering the charts, and to
install any specified fonts.

Charting Configuring Charting for Your Server

218 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

2 The eStatement Manager application designer follows the steps in Composing Charts in
Statements to insert a chart placeholder in the Application Logic File (ALF) with the Composer.

3 The Web application developer or the designer follows the steps in Customizing Chart Properties
to fine-tune the design, layout, and data presentation of the chart in the ALF and the chart
properties file. Advanced designers and developers may extend the available chart properties for
Designing Custom Charts with the Charting Servlet.

4 During the design process, the designer or developer can follow the steps in Simulating Charts
to preview the chart in a simulated online statement with the Simulator API.

5 When the chart data and design are finalized, the production manager follows the steps in
Publishing Charts to include the chart(s) in any dynamic online statements processed through the
eaSuite Command Center.

6 Once the chart view and any associated views are published, the customer can view the chart as
part of an online statement, so that charts refresh dynamically with each new version set of
statement data.

Components of Charting
 Indexed data source (DDN and Indexer job)

 Application Logic File (ALF)

 Chart Properties File (*.properties)

 Simulator API

 HTML Web View for a Charting ALF

 Chart View for each Chart

Configuring Charting for Your Server

About Servers and Charting
The server rendering the charts, not the machine viewing the statement, determines font sizes and
styles in charts. The server displaying charts must also have access permissions set to display
charts, and requires awareness of an actual or virtual display device. This chapter discusses:

Fonts

Configuring a Headless Server for Charting

Display Devices and xvfb

Display Permissions and xhost

Display Awareness

Charting Configuring Charting for Your Server

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

219

▪

CAUTION: The configuration steps in this chapter apply primarily to deployment servers. Servers in
a production environment often have physical display devices with graphics support, so that
configuration may not be an issue. Always test charts (with the rest of your Web application) on
your deployment platform, and make any needed configurations for your charts to display properly
with the correct fonts and styles.

About Fonts
Charts require graphics utilities and fonts that vary across platforms. Windows NT/2000 has rich
support for both graphics and fonts. UNIX systems like Solaris and AIX support graphics with an X
server, or by using a virtual display, for example xvfb. Either option can offer rich font and style
support, depending on fonts installed.

Any fonts you reference in your chart properties must be available on your deployment server, not on
the machine where your browser views the charts. If you receive “font not found” or similar error
messages when charting, check the fonts and styles available on your X server against those in your
chart properties file.

Configuration Activity Diagram

configure
serv er for

charting

server
configured

for
charting

set display
permissions

set display
awareness

set display
dev ice

server
has

physical
display

install and
configure

v irtual display
(xfv b)

install X
libraries

run xhost +

server
has X

libraries

grant
access

to all
hosts
and
users

run xhost
[serv ername]

change
default
startup
display

setenv
DISPLAY

[serv ername]

export
DISPLAY

[serv ername]

NO

NO

YES

NO

NO

YES

YES

YES

Setting Display Devices and xvfb
Like other Java graphics packages, Oracle charting extends the java.awt interface, which contains all
of the classes for creating user interfaces and for painting graphics and images. These classes in turn
require X libraries and access to an X display. To display charts properly, the Web server rendering the
charts must have a real or virtual X display device and the necessary X libraries.

http://java.sun.com/j2se/1.3/docs/api/java/awt/package-summary.html

Charting Configuring Charting for Your Server

220 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

In a development environment, the Web server may have a real physical display device attached and
have X Libraries loaded. However, at a typical server host site, few if any of the racks of server
machines are connected to a display, and system administrators may hesitate to load X libraries if
they are not installed.

If your deployment environment does not have a physical display and X libraries, your “headless”
server needs a virtual X display like xvfb. The X Virtual Frame Buffer (xvfb) is an X server that can
run on machines without display hardware or input devices. It emulates a dumb framebuffer using
virtual memory.

xvfb may already be installed on your UNIX system, in /usr/X11R6. If not, you need to obtain and
install a copy.

TIP: Documentation for xvfb (man xvfb) is hard to find. Many versions of UNIX have no manual
entry for xvfb or have it in the wrong place. The University of Texas has posted man xvfb version 1
at http://dell5.ma.utexas.edu/cgi-bin/man-cgi?xvfb+1. NOAA also has an excellent README.xvfb
and a binary of xvfb at ftp://ferret.wrc.noaa.gov/special_request/xvfb/solaris.

Setting Display Permissions and xhost
You can control access to your X server with the UNIX program xhost. This access control program
can add and delete host names or user names to the list permitted to connect to the X server.

TIP: The privacy and security controls in xhost are generally sufficient for a single-user
workstation environment. You may prefer to use a custom authentication system for stronger access
control.

xhost is located in different places on different systems. Look in /usr/openwin/bin or
/usr/local/share to start. Oracle recommends that you add xhost to your environment PATH
variable.

To grant X server display access to all available hosts and users, type:

xhost +

xhost Syntax and Parameters
Security requires that xhost be run only from the controlling host. For workstations, this is the server
machine. For X terminals, it is the login host. The command syntax is:

xhost [[+-]name ...]

Parameter Description

 [+]name Adds the given host name or user name to the list allowed to connect to
the X server. The plus sign is optional.

-name Removes the given host name or user name from the list allowed to
connect to the X server. Existing connections are not broken, but new
connection attempts are denied.

+ Turns off access control; grants access to all host names and user
names, even if not on the X server list.

http://www.linuxcentral.com/linux/man-pages/Xvfb.1x.html
http://dell5.ma.utexas.edu/cgi-bin/man-cgi?Xvfb+1
http://dell5.ma.utexas.edu/cgi-bin/man-cgi?Xvfb+1
http://dell5.ma.utexas.edu/cgi-bin/man-cgi?Xvfb+1
ftp://ferret.wrc.noaa.gov/special_request/xvfb/solaris
ftp://ferret.wrc.noaa.gov/special_request/xvfb/solaris
ftp://ferret.wrc.noaa.gov/special_request/xvfb/solaris

Charting Configuring Charting for Your Server

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

221

▪

Parameter Description

- Turns on access control; restricts access to only those host names and
user names on the X server list.

nothing Typing xhost without arguments prints a message indicating whether
access control is enabled and listing those allowed to connect. This is
the only option available to machines other than the controlling host.

CAUTION: Use care in removing hosts and users. xhost allows you to remove the current machine,
but then will not permit further connections, including attempts to add it back. You must then reset
the server in order to allow local connections again.

Setting Display Awareness
When you use X Windows tools, you must assign the environment variable DISPLAY to point to your
local workstation, or wherever you would like the windows from the X Windows application displayed.
When you run an application or Web server from the command line, your server uses the current
DISPLAY environment variable.

TIP: If you are running an X server on a remote machine, and displaying the windows on your local
machine, you may also have to run xhost on your local machine to allow windows to be opened
there: xhost +remote_machine.

UNIX users can change where windows are displayed with the shell commands setenv DISPLAY or
export DISPLAY.

To change the default display awareness and permissions:

1 Advanced users can modify the startup script for your application server.

For WebLogic, the startup script is located at:

<WL_HOME>/config/mydomain/startWebLogic.sh
For WebSphere, the startup script is located at:

<WS_HOME>/bin/startupServer.sh

2 Insert the following lines in your startup script, where MyServer:2.0 is the name of your display:

DISPLAY=MyServer:2.0

export DISPLAY

/usr/openwin/bin/xhost + webservername

3 Specifying the Web server name limits the X DISPLAY 2.0 to connections from the specified
server. If the Web server name is omitted (xhost +), then any host machine can connect to X on
the server.

For more information on working with application server scripts, see the Installation Guide for Oracle
Siebel eStatement Manager.

Charting Composing Charts in Statements

222 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Configuring a Headless Server for Charting
If your deployment environment does not have a physical display and X libraries, your “headless”
server needs a virtual X display like xvfb. For more information on display devices, permissions, and
awareness, see the previous sections.

TIP: The X Windows client for AIX systems requires the X11 package, which comes with the O/S
but is not installed by default. To check whether X11 is installed, run smit and check the installed
packages option for AIX Windows X11 libraries, or look in the default directory /usr/lpp/X11.

To enable charting on a “headless” server (Solaris):

Download xvfb from ftp://www.ferret.noaa.gov/special_request/xvfb/solaris/

Install to /usr/X11R6. xvfb will be installed in the /bin directory.

Enable X display permission on your Web server with the command xhost +.

To set the current display to use the frame buffer for graphics display, set your DISPLAY variable, for
example:

DISPLAY=ella:1; export DISPLAY

This sends any graphics output going to display 1 to shared memory.

Run xvfb as a background process.

/usr/X11R6/bin/xvfb :1 -screen 0 800x600x24 &

The "&" closes the command window and leave the task running in the background.

This procedure creates a virtual display at :1.0 with a size of 800x600 pixels and a color depth of 24
bits. To ensure that your Java environment draws to this display, you must set the DISPLAY
environment variable to :1.0 before invoking Java. If you receive an environment exception, try
changing the color depth or screen size.

CAUTION: xvfb must be installed in the directory /usr/X11R6, as it looks in this directory for
needed fonts. If these fonts are not found under /usr/X11R6, xvfb will fail.

Composing Charts in Statements

About Charting in the Composer
Web designers and developers can use the eStatement Manager Composer tool to define data objects
and custom tags in HTML templates for eStatement Manager applications. Defining a chart tag for a
table or group displays that data object as a graphical chart in the online statement.

The Composer GUI allows you to define only a few basic chart properties: a chart type of Pie, the X
and Y-axes for data, and the width and height of the chart. Once you have created this “placeholder
chart” in the Composer, you customize the look and feel of the chart by customizing chart properties
in the ALF or the chart properties file.

http://www.linuxcentral.com/linux/man-pages/Xvfb.1x.html

Charting Composing Charts in Statements

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

223

▪

For more information on working with the Composer, see the Presentation Design (Composer Guide)
for Oracle Siebel eStatement Manager.

Inserting a Chart Tag in the Composer
To chart data for any table in the DDF, you can drag and drop tables into the HTML template using the
WYSIWYG or the HTML editor. You can represent a table as either a text table or as a chart.

TIP: Tables to be charted must have at least two fields, one of which must contain numeric
values. The Composer converts any values in non-numeric field types to numbers.

To insert a chart tag in the Composer:

1 Open an ALF in the Composer. For this example, open NatlWireless\NW_LocSummary.alf.

2 Click the WYSIWYG tab or HTML tab.

3 Click the Definition tab in the Tree.

4 Click to open Tables in the Tree.

5 Drag and drop the table definitions into the HTML template. The table assumes the properties
of the area in which it is placed. (Drag and drop the LocalChargeSummary table to the HTML
template.)

6 Select Add Chart.

7 Select a field for the X-axis of the chart. (Select LocalChargeAmount.)

8 Select a field for the Y-axis of the chart. (Select LocalChargeDesc.)

9 Select the type of chart. (Select Pie.)

CAUTION: Pie charts are the only chart type available through the Composer Selecting Bar or
Line still generates a Chart Type of Pie in the ALF and the chart properties file. For how to create
chart types other than pie charts, see “Customizing Chart Properties” on page 225.

10 Select the width and height settings for the chart. (Leave at 400 and 300 respectively.)

11 Enter the URL path to your Web application root, for example \Sample.

12 Click OK. (The tag [E]LocalChargeSummary_0,U[/E] appears.) This chart tag adds a
placeholder for the chart to the HTML template.

TIP: Make a note of the name of the table you are charting, which appears in the chart tag.
When you publish a chart view, you must name the view with this table name, in this example
LocalChargeSummary_0. This name will also match the name of the chart properties file created
by the Composer.

13 Delete any temporary placeholders in the HTML template, for example “XX.”

14 Click the Save Template icon.

15 Save the ALF by clicking the Save ALF icon.

Charting Composing Charts in Statements

224 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

TIP: When mapping a table to a template in the Composer, it is not necessary to encapsulate
the table with HTML table row <TR> and table data <TD> (cell) tags. The table rows and table
data (cells) are generated when the data is dynamically pulled from the data file and passed to the
Oracle WebComposer object. This object formats the table rows, cells, and font characteristics of
the data based on the settings defined in the Composer.

Naming Conventions for Charts
The Composer names each chart tag and properties file with the name of the table being charted, plus
an incremental counter. For example, the first chart for the table LocalChargeSummary would
generate the chart tag [E]LocalChargeSummary_0,U[/E] and the properties file
LocalChargeSummary_0.properties.

If you created a second chart for the same table, the Composer would generate the chart tag
[E]LocalChargeSummary_1,U[/E] and the properties file
LocalChargeSummary_1.properties.

When you publish an HTML view, you select the application name (NatlWireless) and specify a view
name (LocSummary). For each chart in your HTML view, you must give the matching view name
(LocSummary) and name the Chart view name with the chart tag (LocalChargeSummary_0). This
name allows eStatement Manager to match each published chart properties view with the correct
chart tag in the ALF.

CAUTION: The chart properties file overrides ALF attributes. Do not rename charts in the Composer,
the ALF, or the HTML template. Use the chart properties X.Axis.Title.String and
X.Axis.Title.String to define more user-friendly names for chart titles and legends.

About Chart Tags in the ALF
The Composer writes the chart tag and properties into the ALF, which is an XML file.

The Composer creates many more default chart properties in the ALF than those you edit in the Chart
dialog window. You can edit these properties directly in the ALF, or override them by editing the chart
properties file. For tables of available properties and values in the ALF and in the chart properties file,
see “Customizing Chart Properties” on page 225.

About The Chart Properties File
The Composer also stores your chart definition in a chart properties file, for example
LocalLineSummary_0.properties. This file has the same name as the table data being charted, with a
counter appended. The Composer creates the properties file in the same folder as the ALF and HTML
template files. You must edit these properties directly in the chart properties file. For tables of
available properties and values in the ALF and in the chart properties file, see “Customizing Chart
Properties” on page 225.

TIP: You can chart the same data table in two different charts. This increments the counter in the
chart tag and properties files, for example LocalLineSummary_0.properties and
LocalLineSummary_1.properties.

Charting Customizing Chart Properties

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

225

▪

About Simulating Charts
The Composer has a Simulator tool that allows you to view your sample data as published with the
current HTML template. However, Composer simulation does not render charts. You use the Chart
Simulator API, which is a command-line Java tool.

Before you simulate your chart, you probably want to edit the ALF and properties files to get a closer
first approximation of your desired chart look and feel. You can then simulate, edit, and simulate again
until you are satisfied with the final design and layout.

For more information, see “Customizing Chart Properties” on page 225; this includes procedures for
using com.edocs.app.chart.Simulator.

Customizing Chart Properties

About Customizing Charts
The Composer allows you to set only a few chart properties directly. To customize the format and
design of your charts, edit chart properties in the ALF file itself; in the chart properties file; and/or in
the HTML template. Any of these files can be edited with the text editor of your choice.

CAUTION: When you make any manual edits to ALF files, make sure to validate the XML and check to
see that it is well formed.

This chapter discusses how to customize chart properties in the ALF and in the chart properties file. It
also describes how to simulate, or preview, charts.

About Chart Attributes in the ALF
The ALF, or Application Logic File, is an XML document that defines business logic and formatting for
presenting statement data. An element of type ALF must contain certain required sub-elements:

<!ELEMENT ALF (VERSION, DATA_GROUP, DDF, SWITCH, HOME,
TEMPLATES, CONTENTS, CONDITIONS, PROFILES, BUSINESSCONDITIONS,
RECORDS, PAGE_ELEMENTS, composition-specs)>

Charts are defined as a subelement of the TEMPLATES element.

<!ELEMENT TEMPLATES (Template)+>

 <!ELEMENT Template (SECTIONS, CHARTS, GROUPS,
GroupTemplate*)>

 <!ATTLIST Template
The CHART element in its turn defines a list of chart attributes, listed in the Table of ALF Chart
Attributes.

 <!ELEMENT CHARTS (Chart*)>

 <!ELEMENT Chart EMPTY>

Charting Customizing Chart Properties

226 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 <!ATTLIST Chart

Table of ALF Chart Attributes

Attribute Name Description Example

Name Table name in Composer LocalLineSummary_0

XField X axis of chart LocalLinePhNo

YField Y axis of chart LocalLineAmt

Type Chart Type (pie, bar, &c) Pie

HidePieLegend Set to 1 only if Type=5 (pie) 0

AddValueToLegend Displays the percentage in the chart
legend 1=yes, 0=no

0

Height Total height of the canvas in pixels 300

Width Total width of the canvas in pixels 400

HidePieLegend Toggles the display of legends for
Pie charts

BaseURL Points to the Web application
associated with the chart data. This
property writes only to an existing
directory, and does not create one if
none exists.

/Sample

UnixChart By default, the Composer sets
UNIXChart=Pie. To create other
types of charts, set the chart type in
the properties file.

Pie

You may notice other attributes listed in the ALF. These attributes are placed in the ALF for backward
compatibility with previous versions of eStatement Manager and have no effect on the current version
of eStatement Manager.

The following XML example shows the default chart properties written to NatlWireless.alf after
creating a chart tag for the LocalLineSummary table.

XML Example of Chart Attributes
<TEMPLATES>

 <Template Name="Default_Template">

 <SECTIONS/>

 <CHARTS>

Charting Customizing Chart Properties

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

227

▪

 <Chart Name=" _0"
RecordName="LocalLineSummary" TopTitle="Top Lable"
BottomTitle="Bottom Lable" LeftTitle="" RightTitle=""
XField="LocalLinePhNo" YField="LocalLineAmt" Key="0"
StackedStyle="0" ColorScheme="0" GridLines="0" Full3D="0"
AngleX="0" AngleY="0" Atribute="0" MarkerVolume="0" Shadow="0"
MultiShape="0" Dimension_3D="0" View3DDepth="0" Type="1"
CGITimeSpan="" BackgroundColor="White" ForgroundColor="Black"
Height="300" Width="400" LegendShow="1" LegendToolSize="100"
LegendToolStyle="167116800" HidePieLegend="0" SeriesColor=""
LeftGap="40" RightGap="40" ImgQuality="75" ImgSmooth="0"
AddValueToLegend="0" BaseURL="/Chart" UNIXChart="Pie"/>

 </CHARTS>

 <GROUPS/>

 </Template>

 </TEMPLATES>

Customizing a Chart in the ALF

Adding Percentages or Values to Labels
To display the chart with data values as labels, set AddValueToLegend=1.

To display the chart without data values, set AddValueToLegend=0.

Changing Axis Titles
By default, the Composer allows you to select from the names of table rows as titles for the X- and Y-
axes. Usually, these titles are not suitable for presentment to end customers. Modify the text of axis
titles in the chart properties file. Do not modify titles in the ALF as your changes will not stick.

CAUTION: Title values defined in the chart properties file (X.Axis.TitleString and
Y.Axis.TitleString) take precedence over those defined in the ALF (XField and YField.

Suppressing Percentage Values in Pie Charts
Pie charts (type=5) have percentage values for each slice set as the default. To suppress these
values, set the URL T/F flag in the ALF for HidePieLegend attribute to 1. This applies to pie charts
only.

Customizing the Chart Properties File
The chart properties file is a list of name-value pairs that control the graphic look and feel of the
chart: its type, legend, labels, axes, et cetera.

 The first and most important property is Type. This determines whether the data appears as a pie,
line, bar, or other type of chart. Note that this property name and its value are both case
sensitive. All the remaining property names and their values are case insensitive.

Charting Customizing Chart Properties

228 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 The naming convention of a chart property indicates its scope. For example, properties Chart.*
affect the entire chart, while properties X.Axis.* affect the X-axis only. The final element of the
property name indicates the property being set.

 Color and font properties have three sub-properties each. To define a color, specify individual RGB
values between 0 and 255. To define a font, specify its name, style, and size.

 Most display properties are Boolean (true/false); for example, whether to display axis title or
gridlines, or to display the legend vertically.

 Do not set properties that are not applicable to a chart type. For example, do not set Axis
properties when requesting a Pie chart. Do not set Bar properties while rendering a Pie chart.

 For charts created using the Composer tool, the chart types: HiLoBar, HorizHiLoBar, and
Speedo are not available, as these charts typically require additional data.

Chart Type
The primary chart property is Type, which defines the visual representation of the data. To create a
pie chart, set Type=Pie. To create a bar chart, set Type=Bar.

CAUTION: Both the Type property and its value are case-sensitive, unlike other chart properties in
the properties file.

This section illustrates each available chart type for this example dataset.

 X-axis label = {"Jan-Feb", "Mar-Apr", "May-Jun",

 "Jul-Aug", "Sep-Oct", "Nov-Dec"};

 DataSet for 1999 = {1000.0, 1200.0, 1400, 1900.0, 1800.0,
1700.0};

 DataSet for 2000 = {900.0, 1100.0, 1300, 1800.0, 1700.0,
1600.0};

 X-Axis = Months

 Y-Axis = Fuel Consumption;

Pie

Charting Customizing Chart Properties

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

229

▪

Pie chart with one slice per data point.

To define pie properties:

Pie.* properties should be defined only when Type=Pie. These properties control the aspect ratio
(height and width) of the pie; the angle, size, and colors of the slices; and the labels and legends. For
a round pie, set Pie.Height and Pie.Radius based on the height and width of the chart in pixels.

Property Default Description

PieLabelPosition =2 Defines the position of the pie slice
labels.

PieStartDegrees =0 Defines the angle of the first pie slice.

PieTextLabelsOn =false true displays pie slice name, for
example College Fund

PieValueLabelsOn =false true displays the numeric data value of
each pie slice, for example 30.5

PiePercentLabelsOn =true true displays percent of total for each
pie slice, for example 30.5%

PieLabelColor.Blue =0 RGB value of blue (0-255).

PieLabelColor.Green =0 RGB value of green (0-255).

PieLabelColor.Red =0 RGB value of red (0-255).

PieLabelFont.Name =Times New
Roman

same as java.awt.font

PieLabelFont.Style =plain same as java.awt.font

PieLabelFont.Size =12 same as java.awt.font

Pie.Height =0.5 Vertical dimension of the pie, as a
percentage of plot area height. Default
value produces a circle.

PieWidth =0.33 Horizontal dimension of the pie, as a
percentage of plot area width. Default
value produces a circle.

PieXLoc =0.5 Horizontal center of the pie, as a
percentage of plot area height.

Pie.YLoc =0.5 Vertical center of the pie, as a
percentage of plot area height.

Charting Customizing Chart Properties

230 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Sample Properties Sample Chart
height=200 pixels
width=300 pixels
Pie.Height=0.5 (0.5 *
200=100)
Pie.Width=0.33 (0.33 *
300=100)
Chart.LegendVisible=true
Legend.IconGap=0.02
Legend.IconHeight=0.05
Legend.IconWidth=0.07
Legend.LabelColor.Red=123
Legend.LabelColor.Blue=126
Legend.LabelColor.Green=129
Legend.LlX=0.7
Legend.LlY=0.4
Legend.VerticalLayout=false
Pie.LabelPosition=2
Pie.PercentLabelsOn=true
Pie.StartDegrees=0
Pie.TextLabelsOn=false
Pie.ValueLabelsOn=false
Pie.XLoc=0.5
Pie.YLoc=0.5

TIP: If labels appear too crowded, you can use a legend instead. Set
Chart.Legend.Visible=true and specify values for legend height, width, and color.
Turn off pie labels by setting TextLabelsOn, ValueLabelsOn, and
PercentLabelsOn properties to false.

Bar

Displays each data series vertically in a single color (sometimes called a column chart). To display
horizontally, use HorizBar.To display different colors for each bar in a series, use IndBar
(horizontal) or IndColumn (vertical).

Charting Customizing Chart Properties

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

231

▪

To define bar properties:

Property Default Description

Bar.Baseline =0.0 Value from which bars ascend or descend. Default is X-axis.

Bar.ClusterWidth =0.8 Width of a cluster of bars, as a percentage of the available space (1.0
means that clusters touch; 0.5 means that clusters are as wide as the
space separating clusters).

Bar.DoClip =false true clips bar values to the outer edge of the plot area (off by
default).

Line

Displays data values as lines on a graph, without value labels for each data point.

To define LineClip property:

To clip line values at the boundary of the plot area, set LineClip=true. Default is Clip=false.

Vertical bar chart with High and Low values indicated.

Horizontal Bars (HorizBar)

Displays each data series horizontally in a single color. To display vertically, (sometimes called a
column chart). To display different colors for each bar in a series, use IndBar (horizontal) or
IndColumn (vertical).

Charting Customizing Chart Properties

232 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Individually Colored Bars (IndBar)

Horizontal bar chart that uses a separate color for each bar.

Individually Colored Columns (IndColumn)

Vertical bar chart that uses a separate color for each bar.

(LabelLine)

Displays data values as lines on a graph, with user-defined labels on the X-axis.

Charting Customizing Chart Properties

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

233

▪

Polar Chart (Polar)

A chart that looks like a radar screen. Plots only one data value, but the scale is determined by all the
data.

Regression (Regress)

A chart that plots OLS regression for data values.

Stacked Bars (StackBar)

A chart that stacks data values horizontally.

Charting Customizing Chart Properties

234 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Stack Column Chart (StackColumn)

A chart that stacks data values vertically.

Stick Chart (Stick)

Chart that draws a vertical line to the Y-axis height of each data value.

StickBar Chart (StickBar)

Chart that draws a vertical line to the Y-axis height of each data value.

Charting Customizing Chart Properties

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

235

▪

Other Chart Properties

General Properties

Property Default Description

Chart.LegendVisible FALSE true sets legend visible. Invisible by default.

Chart.Name MyChart User-defined string for chart title.

Chart.ThreeD FALSE true displays chart with 3D drop shadows.

Chart.XAxisVisible TRUE true sets X-axis visible (default).

Chart.XOffset 0 number of pixels of offset in X direction for 3D effect
(default 0)

Chart.YAxisVisible TRUE true sets Y-axis visible (default).

Chart.YOffset 0 number of pixels of offset in Y direction for 3D effect
(default 0)

ChartQuality =1 Set to 1 for highest quality (larger) image, 0 for lower
quality (smaller) image.

Background Properties
Titles and sub-titles are elements of the chart background. Their color, font and string value are
controlled by the following properties:

Property Default Description

Background.Gc.FillColor.Blue 0 RGB value of blue (0-255).

Background.Gc.FillColor.Green 0 RGB value of green (0-255).

Background.Gc.FillColor.Red 0 RGB value of red (0-255).

Background.Gc.Image <unimplemented>
UNIMPLEMENTED. Sets a background
image for the chart. Do not use.

Background.Gc.LineColor.Blue 0 RGB value of blue (0-255).

Background.Gc.LineColor.Green 0 RGB value of green (0-255).

Background.Gc.LineColor.Red 0 RGB value of red (0-255).

Background.Gc.LineWidth 1 Sets line width in pixels.

Background.Gc.MarkerColor.Blue 0 RGB value of blue (0-255).

Background.Gc.MarkerColor.Green 0 RGB value of green (0-255).

Background.Gc.MarkerColor.Red 0 RGB value of red (0-255).

Charting Customizing Chart Properties

236 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Property Default Description

Background.SubTitleColor.Blue 0 RGB value of blue (0-255).

Background.SubTitleColor.Green 0 RGB value of green (0-255).

Background.SubTitleColor.Red 0 RGB value of red (0-255).

Background.SubTitleFont.name
Times New
Roman

Uses available values from
java.awt.font.

Background.SubTitleFont.size 12
Uses available values from
java.awt.font.

Background.SubTitleFont.style plain
Uses available values from
java.awt.font.

Background.SubTitleString null
User-defined string for the background
subtitle.

Background.TitleColor.Blue 0 RGB value of blue (0-255).

Background.TitleColor.Green 0 RGB value of green (0-255).

Background.TitleColor.Red 0 RGB value of red (0-255).

Background.TitleFont.name
Times New
Roman Uses available values from java.awt.font.

Background.TitleFont.size 12 Uses available values from java.awt.font.

Background.TitleFont.style plain Uses available values from java.awt.font.

Background.TitleString null
User-defined string for the background
title.

Plot Area Properties
The plot area is the region bounded by the axes; where the data are plotted. These properties specify
the fill color for this region, and marker and grid line settings.

Property Default Description

Plotarea.Gc.FillColor.Blue 0 RGB value of blue (0-255).

Plotarea.Gc.FillColor.Green 0 RGB value of green (0-255).

Plotarea.Gc.FillColor.Red 0 RGB value of red (0-255).

Plotarea.Gc.LineColor.Blue 0 RGB value of blue (0-255).

Plotarea.Gc.LineColor.Green 0 RGB value of green (0-255).

Plotarea.Gc.LineColor.Red 0 RGB value of red (0-255).

Plotarea.Gc.LineWidth 1 Sets line width in pixels.

Plotarea.Gc.MarkerColor.Blue 0 RGB value of blue (0-255).

Plotarea.Gc.MarkerColor.Green 0 RGB value of green (0-255).

Charting Customizing Chart Properties

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

237

▪

Property Default Description

Plotarea.Gc.MarkerColor.Red 0 RGB value of red (0-255).

Axis Properties
The axis properties control the location of the axis on the canvas, its major and minor ticks, title, grid, and labels.

 Properties listed here are for the X-axis. An identical set of properties exists for the Y-axis,
Y.Axis.*.

 Axis.Start: By default, axes automatically determine a starting and ending value. By setting this
value, you can give the axis a default minimum value. If the Axis is set to noAutoScale, this
value is used directly. Otherwise, this value may be adjusted slightly to yield better-looking labels.
For example, if you set X.AxisStart to 0.01, the chart may decide to round the value down to
0.0 to create even axis increments.

Property Default Description

X.Axis.AutoScale TRUE
Automatically creates X axis scale based on data
values (default).

X.Axis.AxisEnd 6
Ending value of X-axis. Set to greater than or equal
to number of data points anticipated.

X.Axis.AxisStart 0 Starting value on X-axis.

X.Axis.BarScaling TRUE
Scales bars to axis length. Set true for bar charts
(default).

X.Axis.GridGc.FillColor.Blue 0 RGB value of blue (0-255).

X.Axis.GridGc.FillColor.Green 0 RGB value of green (0-255).

X.Axis.GridGc.FillColor.Red 0 RGB value of red (0-255).

X.Axis.GridGc.LineColor.Blue 0 RGB value of blue (0-255).

X.Axis.GridGc.LineColor.Green 0 RGB value of green (0-255).

X.Axis.GridGc.LineColor.Red 0 RGB value of red (0-255).

X.Axis.GridGc.LineWidth 1 Sets line width in pixels.

X.Axis.GridGc.MarkerColor.Blue 0 RGB value of blue (0-255).

X.Axis.GridGc.MarkerColor.Green 0 RGB value of green (0-255).

X.Axis.GridGc.MarkerColor.Red 0 RGB value of red (0-255).

X.Axis.GridVis FALSE
True sets X-axis grid lines visible (invisible by
default).

X.Axis.LabelAngle 0 Sets the number of degrees to rotate X axis labels.

X.Axis.LabelColor.Blue 0 RGB value of blue (0-255).

X.Axis.LabelColor.Green 0 RGB value of green (0-255).

Charting Customizing Chart Properties

238 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Property Default Description

X.Axis.LabelColor.Red 0 RGB value of red (0-255).

X.Axis.LabelFont.Name
Times
Roman Uses available values from java.awt.font.

X.Axis.LabelFont.Size 12 Uses available values from java.awt.font.

X.Axis.LabelFont.Style plain Uses available values from java.awt.font.

X.Axis.LabelFormat null
Defines data format for labels, for example first three
letters of month name.

X.Axis.LabelPrecision 2
Sets the number of digits past the decimal point to
display X axis labels.

X.Axis.LabelVis TRUE True sets X axis labels visible (default).

X.Axis.LineGc.FillColor.Blue 0 RGB value of blue (0-255).

X.Axis.LineGc.FillColor.Green 0 RGB value of green (0-255).

X.Axis.LineGc.FillColor.Red 0 RGB value of red (0-255).

X.Axis.LineGc.LineColor.Blue 0 RGB value of blue (0-255).

X.Axis.LineGc.LineColor.Green 0 RGB value of green (0-255).

X.Axis.LineGc.LineColor.Red 0 RGB value of red (0-255).

X.Axis.LineGc.LineWidth 1 Sets line width in pixels.

X.Axis.LineGc.MarkerColor.Blue 0 RGB value of blue (0-255).

X.Axis.LineGc.MarkerColor.Green 0 RGB value of green (0-255).

X.Axis.LineGc.MarkerColor.Red 0 RGB value of red (0-255).

X.Axis.LineVis TRUE True sets X axis lines visible (default).

X.Axis.LogScaling FALSE True sets X axis to use log scaling; linear by default.

X.Axis.MajTickLength 5 Sets length of X axis major ticks in pixels.

X.Axis.MajTickVis TRUE Sets X axis major ticks visible (default).

X.Axis.MinTickLength 2 Sets length of X axis minor ticks in pixels.

X.Axis.MinTickVis FALSE Sets X axis minor ticks visible (default).

X.Axis.NumGrids 5
Sets the number of grid lines on the X axis to set to
noAutoScale.

X.Axis.NumLabels 5
Sets the number of labels on the X axis to set to
noAutoScale.

X.Axis.NumMajTicks 5
Sets the number of major ticks on the X axis to set to
noAutoScale.

X.Axis.NumMinTicks 10
Sets the number of minor ticks on the X axis to set to
noAutoScale.

Charting Customizing Chart Properties

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

239

▪

Property Default Description

X.Axis.Plotarea.LlX 0.2
Shifts the horizontal position of the axis start on the
canvas. Negative values shift left, positive shift right.

X.Axis.Plotarea.LlY 0.2
Shifts the vertical position of the axis start on the
canvas. Negative values shift down, positive shift up.

X.Axis.Plotarea.UrX 0.8
Sets the upper right X location of the plot area as a
double ranging from 0 to 1.

X.Axis.Plotarea.UrY 0.8
Sets the upper right X location of the plot area as a
double ranging from 0 to 1.

X.Axis.Side 1

X.Axis.TickGc.FillColor.Blue 0 RGB value of blue (0-255).

X.Axis.TickGc.FillColor.Green 0 RGB value of green (0-255).

X.Axis.TickGc.FillColor.Red 0 RGB value of red (0-255).

X.Axis.TickGc.LineColor.Blue 0 RGB value of blue (0-255).

X.Axis.TickGc.LineColor.Green 0 RGB value of green (0-255).

X.Axis.TickGc.LineColor.Red 0 RGB value of red (0-255).

X.Axis.TickGc.LineWidth 1 Sets line width in pixels.

X.Axis.TickGc.MarkerColor.Blue 0 RGB value of blue (0-255).

X.Axis.TickGc.MarkerColor.Green 0 RGB value of green (0-255).

X.Axis.TickGc.MarkerColor.Red 0 RGB value of red (0-255).

X.Axis.TitleColor.Blue 0 RGB value of blue (0-255).

X.Axis.TitleColor.Green 0 RGB value of green (0-255).

X.Axis.TitleColor.Red 0 RGB value of red (0-255).

X.Axis.TitleFont.Family

Times
New
Roman Uses available values from java.awt.font.

X.Axis.TitleFont.Name

Times
New
Roman Uses available values from java.awt.font.

X.Axis.TitleFont.Size 12 Uses available values from java.awt.font.

X.Axis.TitleFont.Style plain Uses available values from java.awt.font.

X.Axis.TitleString User-defined string for X axis title.

X.Axis.UseDisplayList FALSE
UNIMPLEMENTED. Retrieves objects using mouse
click events. Do not use.

Charting Customizing Chart Properties

240 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Legend Properties

Property Default Description

Legend.BackgroundGC.Gc.FillColor.Blue 0 RGB value of blue (0-255).

Legend.BackgroundGC.Gc.FillColor.Green 0 RGB value of green (0-255).

Legend.BackgroundGC.Gc.FillColor.Red 0 RGB value of red (0-255).

Legend.BackgroundGC.Gc.Image
<unimpleme
nted>

Sets a background image for the
legend. Do not use.

Legend.BackgroundGC.Gc.LineColor.Blue 0 RGB value of blue (0-255).

Legend.BackgroundGC.Gc.LineColor.Green 0 RGB value of green (0-255).

Legend.BackgroundGC.Gc.LineColor.Red 0 RGB value of red (0-255).

Legend.BackgroundGC.Gc.LineWidth 1 Sets line width in pixels.

Legend.BackgroundGC.Gc.MarkerColor.Blue 0 RGB value of blue (0-255).

Legend.BackgroundGC.Gc.MarkerColor.Green 0 RGB value of green (0-255).

Legend.BackgroundGC.Gc.MarkerColor.Red 0 RGB value of red (0-255).

Legend.BackgroundVisible TRUE
Set false to avoid displaying
background in chart legend.

Legend.IconGap 0.02
Separation between rows of the
legend.

Legend.IconHeight 0.05
Legend icon height 0 < k < 1.0,
where 1.0 = full height of canvas

Legend.IconWidth 0.07
Legend icon width 0 < k < 1.0, where
1.0 = full width of canvas

Legend.LabelColor.Blue 0 RGB value of blue (0-255).

Legend.LabelColor.Green 0 RGB value of green (0-255).

Legend.LabelColor.Red 0 RGB value of red (0-255).

Legend.LabelFont.Name
Times New
Roman

Uses available values from
java.awt.font.

Legend.LabelFont.Size 12
Uses available values from
java.awt.font.

Legend.LabelFont.Style plain
Uses available values from
java.awt.font.

Legend.LlX 0
lower x left corner 0 < y < 1.0, 1.0 =
full width

Legend.LlY 0
lower y left corner 0 < y < 1.0, 1.0 =
full height

Charting Customizing Chart Properties

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

241

▪

Property Default Description

Legend.UrX 0
upper x right corner 0 < y < 1.0, 1.0 =
full width

Legend.UrY 0
upper y right corner 0 < y < 1.0, 1.0 =
full height

Legend.VerticalLayout FALSE
Set true to display legend at side of
chart, false to display below chart.

Favorite Colors Properties
You can specify favorite colors as RGB values, to fill pie slices, bars, and other data values. For
example, you may want to match the chart colors to the color scheme of the embedding page.
Favorite colors are specified using the prefix Favorite.1.Color, where 1 is the first color in the
series.

 Number: Favorite colors become active when the number of colors defined is greater than or
equal to the number of data points displayed (unless for individual colors). For example, if a Pie
has six slices but only five favorite colors specified, the favorite colors are not used. This is
because there is no way to guess which colors would go well with those already specified.

 Order: The favorite colors are used in the order specified. Define each color to be distinguishable
from adjacent colors for contrast and readability.

This example defines two favorite colors:

Favorite.1.Color.Red=201
Favorite.1.Color.Blue=92
Favorite.1.Color.Green=132

Favorite.2.Color.Red=51
Favorite.2.Color.Blue=52
Favorite.2.Color.Green=53

Default Chart Properties
The following properties are the default values created in the chart properties file. For a full listing, see
“Default Properties and Attributes” on page 261.

Type=Pie

Legend.BackgroundVisible=true

Legend.IconGap=0.02

Legend.IconHeight=0.05

Legend.IconWidth=0.07

Legend.LabelColor.Red=0

Legend.LabelColor.Blue=0

Legend.LabelColor.Green=0

Legend.LabelFont.Name=Times New Roman

Charting Customizing Chart Properties

242 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Legend.LabelFont.Style=plain

Legend.LabelFont.Size=12

Legend.LlX=0.0

Legend.LlY=0.0

Legend.UrX=0.0

Legend.UrY=0.0

Legend.VerticalLayout=false

X.Axis.CullingLabel=false;

X.Axis.AutoScale=true

X.Axis.AxisEnd=6.0

X.Axis.AxisStart=0.0

X.Axis.BarScaling=true

X.Axis.GridVis=false

X.Axis.LabelAngle=0

X.Axis.LabelColor.Red=0

X.Axis.LabelColor.Blue=0

X.Axis.LabelColor.Green=0

X.Axis.LabelFont.Name=Times New Roman

X.Axis.LabelFont.Style=plain

X.Axis.LabelFont.Size=12

X.Axis.LabelFormat=null

X.Axis.LabelPrecision=2

X.Axis.LabelVis=true

X.Axis.LineVis=true

X.Axis.LogScaling=false

X.Axis.MajTickLength=5

X.Axis.MajTickVis=true

X.Axis.MinTickLength=2

X.Axis.MinTickVis=false

X.Axis.NumGrids=5

X.Axis.NumLabels=5

X.Axis.NumMajTicks=5

X.Axis.NumMinTicks=10

X.Axis.Plotarea.LlX=0.2

X.Axis.Plotarea.LlY=0.2

X.Axis.Plotarea.UrX=0.8

Charting Customizing Chart Properties

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

243

▪

X.Axis.Plotarea.UrY=0.8

X.Axis.TitleRotated=true

X.Axis.TitleColor.Red=0

X.Axis.TitleColor.Blue=0

X.Axis.TitleColor.Green=0

X.Axis.TitleFont.Family=TimesNewRoman

X.Axis.TitleFont.Name=Times New Roman

X.Axis.TitleFont.Style=plain

X.Axis.TitleFont.Size=12

X.Axis.TitleString=RemembertosetXaxistitle!

X.Axis.UseDisplayList=false

Y.Axis.CullingLabel=false;

Y.Axis.AutoScale=true

Y.Axis.AxisEnd=6.0

Y.Axis.AxisStart=0.0

Y.Axis.BarScaling=true

Y.Axis.GridVis=false

Y.Axis.LabelAngle=0

Y.Axis.LabelColor.Red=0

Y.Axis.LabelColor.Blue=0

Y.Axis.LabelColor.Green=0

Y.Axis.LabelFont.Name=Times New Roman

Y.Axis.LabelFont.Style=plain

Y.Axis.LabelFont.Size=12

Y.Axis.LabelFormat=null

Y.Axis.LabelPrecision=2

Y.Axis.LabelVis=true

Y.Axis.LineVis=true

Y.Axis.LogScaling=false

Y.Axis.MajTickLength=5

Y.Axis.MajTickVis=true

Y.Axis.MinTickLength=2

Y.Axis.MinTickVis=false

Y.Axis.NumGrids=5

Y.Axis.NumLabels=5

Y.Axis.NumMajTicks=5

Charting Customizing Chart Properties

244 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Y.Axis.NumMinTicks=10

Y.Axis.Plotarea.LlX=0.2

Y.Axis.Plotarea.LlY=0.2

Y.Axis.Plotarea.UrX=0.8

Y.Axis.Plotarea.UrY=0.8

X.Axis.TitleRotated=true

Y.Axis.TitleColor.Red=0

Y.Axis.TitleColor.Blue=0

Y.Axis.TitleColor.Green=0

Y.Axis.TitleFont.Family=TimesNewRoman

Y.Axis.TitleFont.Name=Times New Roman

Y.Axis.TitleFont.Style=plain

Y.Axis.TitleFont.Size=12

Y.Axis.TitleString=RemembertosetXaxistitle!

Y.Axis.UseDisplayList=false

Pie.LabelColor.Red=0

Pie.LabelColor.Blue=0

Pie.LabelColor.Green=0

Pie.LabelFont.Name=Times New Roman

Pie.LabelFont.Style=plain

PieLabelFont.Size=12

Pie.LabelPosition=2

Pie.PercentLabelsOn=true

Pie.StartDegrees=0

Pie.TextLabelsOn=false

Pie.ValueLabelsOn=false

Pie.Height=0.6

Pie.Width=0.6

Pie.XLoc=0.5

Pie.YLoc=0.5

Chart.LegendVisible=false

Chart.Name=MyChart

Chart.ThreeD=false

Chart.XOffset=0

Chart.YOffset=0

Chart.YAxisVisible=true

Charting Customizing Chart Properties

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

245

▪

Chart.XAxisVisible=true

Chart.Quality=1.0

Customizing Default Properties
The default settings for the chart properties file are stored in the text file
ChartDefaults.properties inside the com.edocs.app.chart directory of edx_servlet.jar.
If you are creating a series if similar charts, you may find it convenient to modify the default
properties as a base template.

The Sample Web application contains two instances of edx_servlet.jar: one in the WEB-INF/lib
directory of the EAR file ear-Sample-ear and another in the WEB-INF/lib directory of WAR file
war-Sample.war. You can edit either instance of ChartDefaults.properties as long as you add
the edited version of edx_servlet.jar to your classpath.

Unjar the EAR and WAR archive files, and then unjar edx_servlet.jar, to find
ChartDefaults.properties in each archive. For example, the path to the default properties file in
the WAR file for a default installation of eStatement Manager (WebLogic for Windows 2000) is:

C:/eStatement/samples/Sample/J2EEApps/weblogic/ear-sample/war-sample/WEB-
INF/lib/edx_servlet/ com/edocs/app/chart/ChartDefaults.properties

Open ChartDefaults.properties with a text editor and make any desired changes to the default
properties; for example, change the default if you are creating a series of bar charts. Jar up the
servlet, WAR, and EAR files, and add your modified edx_servlet.jar to your classpath. Now, when
you create a chart in the Composer, the default chart properties should reflect your new settings.

Previewing Charts with com.edocs.app.chart.Simulator
The Chart Simulator API is a simple command line interface for
com.edocs.app.chart.ChartClient.java. The API chart.Simulator requires a Java
environment with javachart.jar, edx_servlet.jar and edx_client.jar in the default
classpath. These JAR files are installed with eStatement Manager, but you must add them to your
classpath to use the Simulator.

Setting the Display Environment for Simulation
You can control where your charts are simulated by setting your display awareness to either your
production or deployment server. For simple previews to check if data is being correctly retrieved, a
local simulation on your production workstation may be fine. However, remember that the appearance
of your chart is controlled by the deployment server. This server may have different fonts available
or be running a virtual display with different resolution or other graphics settings. Always preview your
charts in a deployment environment before finalizing your chart properties and ALF.

For more information on display environments, including display devices, permissions, and awareness,
see “Configuring Charting for Your Server” on page 218.

Formatting Data Strings for Chart Data
The Charting API passes chart data directly as one or more encoded data strings, for example:

Charting Customizing Chart Properties

246 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

"Series1*F*30*apple*56.8*orange*12.5*banana"

Enclose the data string in quotes, and separate each value with an asterisk (*). The first value in the
string must be the data series name. The second is a T/F value that determines whether to label data
values with the pie slice percentage (T=labels, F=no labels).

All remaining values in the string must be value/name pairs, where the first item in each pair is the
numeric data value and the second item is its label name.

TIP: Remember to put values first, then labels (the opposite of a standard name/value pair).

The Simulator also takes parameters for the height and width of the chart canvas. If you find that
labels or legends are clipped or cut off, adjust your chart canvas and properties file settings to
accommodate the maximum length of legends and other objects.

To simulate a chart:

1 Edit your chart properties file.

2 Add javachart.jar, edx_servlet.jar and edx_client.jar to your classpath.

3 (optional) Create a text file with your formatted data strings, which you can then copy and paste
into the command.

4 Run the Simulator from the command line.

java com.edocs.app.chart.Simulator propsFileName
imgOutputFilename.jpg width height encodedDataString1
encodedDataString2

5 View the generated image file in your browser. By default, the generated image is saved in the
directory containing the ALF and properties file.

The Composer can simulate only charts containing a single data string. To display multiple datasets,
you must customize the charting servlet to extract and present data as multiple strings. For more
information, see your Oracle Professional Services representative.

Parameters

Parameter Description
propsFileName Chart properties file

imgOutputFilename File name for image output. JPEG format required

Width Width of chart canvas in pixels.

Height Height of chart canvas in pixels.

encodedDataString A single data string enclosed in quotes and separated by
asterisks. See “Formatting Data Strings for Chart Data” on
page 245.

Charting Publishing Charts

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

247

▪

Publishing Charts

About Publishing Charts
The eStatement Manager application server compiles charts dynamically at Web time. When an HTML
template contains a chart tag, the Web application requests the table from the eStatement Manager
database and posts an HTTP request to the charting servlet. The servlet uses the chart properties file
published for that version set to format the data from the table, and renders the chart as a JPEG
embedded in the dynamic HTML.

Before Publishing Charts

To prepare your application for chart viewing:

1 Create an application, for example, NatlWireless.

2 Create, configure, and run an Indexer job to index your dataset.

3 Publish an HTML Web view.

Publishing a Chart View
You must publish a CHART view for each individual chart in an online statement. Chart views merge
the DDF and ALF information from the specified HTML Web view with the properties you defined for
the chart, and embed the chart data in the Chart URL published by the HTML Web view.

CAUTION: If you publish an HTML Web view for an ALF with a chart tag, you must publish a CHART
view for that chart before it will display. If there is no chart view available, the HTML Web view
displays only a placeholder for the chart graphic.

To publish a Chart view:

1 In the Command Center, select Publisher from the navigation bar. A new Publisher window
appears.

2 Select Create from the navigation bar. The Create a version set for CHART window appears.

3 Select the name of your application from the dropdown list, for example, NatlWireless. The view
type is set to CHART.

4 Enter the view name associated with this chart. This view name must be the name of the chart,
for example LocChargeSummary_0.

5 Enter the path to the chart properties file. This file must have an extension of *.properties, for
example:

C:/eStatement/samples/NatlWireless/LocChargeSummary_0.properties

Charting Designing Custom Charts with the Charting Servlet

248 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

6 If you have modified the view name since creating your ALF, update the ALF to point to the correct
Web view for your application,

7 Click Submit to publish your chart view.

Viewing Charts in Statements

To view charts in statements:

1 Index your statement data with an Indexer job.

2 Publish at least one HTML Web view with an ALF containing chart tag(s).

3 Publish a Chart view for each chart.

4 Browse your Web application, for example Sample, and enroll one or more customers.

5 Log in as the customer whose statement you wish to view and browse the statement with the
chart(s).

Designing Custom Charts with the
Charting Servlet

About The Charting Servlet
The previous chapters describe how to use the Oracle charting servlet to compose and publish charts
in online statements. The com.edocs.app.chart API allows you to create your own charting
servlets to generate customized charts. Your servlet will create an instance of the ChartClient
class.

CAUTION: Ensure that you set servlet response type appropriately before sending any output to the
servlet. The response object of the servlet is a required input to the generateChart method of the
ChartClient class, which streams the chart as a jpeg. Always set
response.setContentType("image/jpeg") in custom servlets.

Browse to the charting servlet with a URL of this syntax for your application:

http://<hostname>:<port>/Sample/Chart?app=Charter&ddn=Payment&viewType=CHART&viewName
=MyView&H=300&W=400&T=L&XT=Xvalue&YT=Yvalue&data=encodeddata ….

ChartData is a constructor that takes an encoded data string. A chart may have one or more such
encoded data sets.

The width and height parameters are not present in the properties file, since the dimensions of the
canvas are not actual properties of the chart.

TIP: Remember to register any custom servlets you create in the web.xml file for your Web
application.

Charting Designing Custom Charts with the Charting Servlet

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

249

▪

Customizing Charter.java
This topic presents the complete code for the default charting servlet that ships with eStatement, with
comments on where and how to begin customization.

To customize your servlet, import the following packages, as well as any other packages you intend to
use. Package chart is the Charting API. Class App is the base class for all eStatement application
servlets, and class LoginRequired is the interface which signals that an account is required before
access should be granted.

package com.edocs.app.chart;

import java.io.*;

import java.util.*;

import java.awt.Graphics;

import java.awt.Image;

import java.awt.Frame;

import javax.servlet.*;

import javax.servlet.http.*;

import com.edocs.app.App;

import com.edocs.app.LoginRequired;

Your custom servlet can extend the base servlet class with a new instance of the Charter class,
which contains the getDataSets method that requests the ChartData object. This class takes the
response from the client browser and sends it to the application server, which in turn fulfills the
servlet request and passes a chart URL back to the browser. You may customize a chart servlet to
obtain its data from another source, or in a different format.

public class Charter extends App implements LoginRequired {

 static private boolean DEBUG = Constants.DEBUG;

 public void doPost(HttpServletRequest request,

 HttpServletResponse response) {

The charting engine returns images in JPEG format. You must set the content type of your servlet to
JPEG for the output stream.

 try {

response.setContentType("image/jpeg");

ServletOutputStream out = response.getOutputStream();

Then request the parameters from the DDN (data source) and the CHART view name (ALF for
presentation logic and properties from the chart properties file). Together, these parameters identify
the file to retrieve from the versioning system and determine the chart properties. If you have
multiple charts in a single statement, create a

String ddn = request.getParameter("ddn");

Charting Designing Custom Charts with the Charting Servlet

250 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

String viewName = request.getParameter("viewName");

Requesting the width and height parameters determines the canvas size of your chart. You set these
parameters in the chart properties file.

int width = Integer.parseInt(request.getParameter("W"));

int height = Integer.parseInt(request.getParameter("H"));

You then call a Java Properties object that loads the specified chart properties, DDN, and view name
with the getChartPropsStream method of the PublisherWrapper class. This links the data
source and graphic elements of the chart.

Properties chartProps = new Properties();

chartProps.load(PublisherWrapper.getChartPropsStream(ddn,viewN
ame));

The ChartData class constructs the datasets for the chart from the encoded data passed in the chart
URL. For details of this constructor, which has five signatures, see Class ChartData in Application
Programming Interfaces (APIs) for Charting.

 ChartData[] dataSets = getDataSets(request);

TIP: You can insert a custom error message here, for example to advise of too much data in the chart
URL; see the Custom Error Message example.

Your servlet now creates a new ChartClient to hold the chart properties and the dimensions of the
canvas, and generates the chart as an out object for the servlet response, catching any exceptions.

 ChartClient cl = new ChartClient(chartProps, width,
height);

 cl.generateChart(out, dataSets);

 } catch (Exception e) {

 e.printStackTrace();

 doForwardException(request, response, e);

 }

 }

 public void doGet(HttpServletRequest request,
HttpServletResponse response)

 {

 doPost(request, response);

 }
ChartData gets the encoded data string from the chart object in the ALF. Any data properties
specified in the chart properties file will override these ALF attributes.

 static private ChartData[] getDataSets(HttpServletRequest
request)

Charting Troubleshooting Charts

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

251

▪

 throws ChartException {

 String[] dataStrs = request.getParameterValues("data");

 int num = dataStrs.length;

 ChartData[] dataSets = new ChartData[num];

 for (int i = 0; i < num; i++) {

 dataSets[i] = new ChartData(dataStrs[i]);

 if (DEBUG) {

 System.out.println("DataSet(" + i + ") : " +
dataSets[i]);

 }

 }

 return dataSets;

 }

}

Example: Custom Error Message
chartProps.load(PublisherCommon.getChartPropsStream(ddn,viewNa
me));

try {

ChartData[] dataSets = getDataSets(request);

} catch (Exception be) {

String msg = e.getMessage(); if (msg.indexOf("data format
error")) { // then perhaps our URL is too long // get the
sorry too much charting data // open the gif tooMuch.gif //
write it to the output stream return; } else { throw be; }

}

ChartClient cl = new ChartClient(chartProps, width, height);
cl.generateChart(out, dataSets);

 } catch (Exception e) { e.printStackTrace();
doForwardException(request, response, e); } }

Troubleshooting Charts

Charting Checklist
 Are xwindow displays enabled on the Web-server machine? In an x-term window or a terminal

that knows a notion of "DISPLAY" enter "echo $DISPLAY." If you get a non-null string, run xhost +
on the machine indicated in the display variable.

Charting Troubleshooting Charts

252 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 Does your machine have a physical display device or is it headless? A machine without a physical
display requires an x-virtual frame buffer, such as xvfb.

 Does your Web/application server know where to send its x-displays? Make sure the DISPLAY
environment variable is correctly set, either in the start script for your Web/application server or
in the xterm for your start command.

 Is xhost running? Ensure you have not closed the xterm which issued "xhost + " unless you have
"xhost +" as part of your server startup script.

 Have you published a CHART view in the eStatement Manager Publisher? A Chart view requires a
chart properties file; make sure you have published the one associated with your eStatement
Manager application.

 Does the BaseURL charting attribute in the ALF file match your Web application name? This
attribute points the servlet to the correct CHART view. Make sure they match.

 Can you see charts in statements? If not, repeat the steps above. If you are still having trouble:

 How long is your chart URL? For large datasets, you may need to customize the charting servlet.

 Does your data contain special characters? The chart servlet may not handle these characters
correctly. You need to customize the charting servlet.

Common Problems and Known Issues

AIX Does Not Display Charts
The X Windows client for AIX systems requires the X11 package, which comes with the O/S but is not
installed by default. To check whether X11 is installed, run smit and check the installed packages
option for AIX Windows X11 libraries, or look in the default directory /usr/lpp/X11.

Pie Chart Displays When another Chart Type Is Selected
The Composer creates only a Pie chart by default (though it displays other chart types on the dialog).
To change the chart type and display an example, edit the chart properties file (not the ALF) and
simulate the chart with the Simulator API.

Small Segments Collide In Pie Charts
Remove the % values that appear close to the pie, by setting chart properties

Pie.PercentLabelsOn=false

Pie.TextLabelsOn=false

UNDO Button in Composer Does Not Affect ALF
Inserting a chart modifies both the ALF and the HTML template, enabling the UNDO button. If you
then click UNDO, only the HTML template changes are reversed—not those in the ALF. This can cause
the Composer to fail when processing a section of a statement. Use caution in using the UNDO button
to reverse changes.

Charting Troubleshooting Charts

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

253

▪

Chart Quality Is Poor
The default chart property is Chart.Quality=.75. For highest quality charts, set chart property
Chart.Quality=1.

ALF Axis Titles Overwritten By Properties File
Title values defined in the chart properties file (X.Axis.TitleString and Y.Axis.TitleString)
take precedence over those defined in the ALF (XField and YField).

Changing Addtolegend In ALF Does Not Change Chart URL
Changing the value in the ALF for the property AddValuetoLegend does not change the URL "T"/"F"
property. Instead, it actually passes the value as part of the legend. In order to change the URL
"T"/"F" property through the ALF file, set the HidePieLegend property to 1. This works only if the
Type property is set to 5 for pie.

Title Fonts Do Not Appear Bold
Setting font properties, for example Y.Axis.TitleFont.Style=Bold, on a headless server
requires that fonts be available and requires a virtual display, or virtual frame buffer, such as xvfb.
To display fonts and styles correctly, see “Setting Display Devices and xvfb” on page 219 and
“Configuring a Headless Server for Charting” on page 222.

Bold Italic Does Not Display Correctly
Setting fonts to both bold and italic in the chart properties file may cause text to display as a bitmap.
Charting implements fonts through java.awt.font, and the bold italic combination is handled as a
bitmap of java.awt.Font.BOLD and java.awt.ITALIC.

Chart Servlet Suppresses Commas and Spaces
In a legend label, the charting servlet interprets "July 25, 2002" as "July252002.” The workaround is
to reformat the data at the JSP layer, but this does not work for Web views.

Charting Troubleshooting Charts

254 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Troubleshooting Flowchart

Charting Application Programming Interfaces (APIs) for Charting

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

255

▪

Application Programming Interfaces
(APIs) for Charting

Package com.edocs.app.chart Description
Contains classes, constructors, and methods to render and publish charts as JPEG graphics and to
extend the charting servlet (an instance of the Charter class).

Class ChartClient
Contains a constructor and methods to draw a chart as a JPEG graphic.

Available Chart Types
Type Description

Pie Pie chart with one slice per data point.

Bar Displays each data series vertically in a single color (sometimes called a
column chart). To display horizontally, use HorizBar To display different
colors for each bar use IndBar (horizontal) or IndColumn (vertical).

Line Displays data values as lines on a graph, without value labels for each data
point.

HiLoBar Vertical bar chart with High and Low values indicated.

HorizBar Displays each data series horizontally in a single color. To display vertically,
use Bar (sometimes called a column chart). To display different colors for
each bar, use IndBar (horizontal) or IndColumn (vertical).

HorizHiLoBar Horizontal bar chart with High and Low values indicated.

IndBar Horizontal bar chart that uses separate color for each bar.

IndColumn Vertical bar chart that uses a separate color for each bar.

LabelLine Displays data values as lines on a graph, with user-defined labels on the X-
axis.

Polar A chart that looks like a radar screen. Plots only one data value, but the scale is
determined by all the data.

Regress Subclass of Line chart that plots OLS regression for data values.

Speedo A chart that looks like a gauge or speedometer, similar to Polar.

StackBar Bar chart that stacks data values horizontally.

StackColumn Bar chart that stacks data values vertically.

Stick Chart that draws a vertical line to the Y-axis height of each data value.

StickBar Chart that draws a vertical line to the Y-axis height of each data value.

Charting Application Programming Interfaces (APIs) for Charting

256 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Class Diagram

ChartClient

- DEBUG: boolean = Constants
~ chart: Chart = null
~ favoriteColors: Hashtable = null
~ width: int
~ height: int
~ chartType: String = null
~ chartQuality: float

+ ChartClient(Properties, int, int)
+ generateChart(OutputStream, ChartData[]) : void
- setData(ChartData, int) : void
- useFavoriteColors(int) : void
- getFavColor(int) : Color

Constructors
chartClient(java.util.Properties properties, int canvasWidth, int
canvasHeight) throws ChartException

The ChartClient constructor takes a java properties object that specifies the default properties for the
chart, and integers that specify the dimensions of the canvas in pixels.

Parameters

Parameter Description

Default property list. See java.util.Properties. properties

canvasWidth Integer specifying the chart width in pixels.

canvasHeight Integer specifying the chart height in pixels.

Methods
generateChart(java.io.OutputStream out, ChartData[] dataSets) throws
ChartException

generateChart is invoked to render the chart as a graphic.

Parameters

Parameter Description

out Defines an output stream, for example to generate the output
for a servlet response object.

Charting Application Programming Interfaces (APIs) for Charting

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

257

▪

Parameter Description

data String specifying the data to be charted.

Class ChartData
Contains a constructor and methods to create the ChartData object required by the ChartClient.
Also contains get and set methods for constructor parameters. For details, see the Javadoc.

Class Diagram

ChartData

- DEBUG: boolean = Constants
~ XAxisTitle: String = null
~ YAxisTitle: String = null
~ labels: String[] = null
~ xValues: double[] = null
~ yValues: double[] = null
~ highValues: double[] = null
~ lowValues: double[] = null
~ closeValues: double[] = null
~ seriesName: String = null

+ ChartData(String[], double[])
+ ChartData(String[], double[], String, String)
+ ChartData(String[], double[], String, String, String)
+ ChartData(String)
- addPercentToLabel(double[], ArrayList) : String[]
+ ChartData(String, double[], double[], double[], double, String, String)
+ getLabels() : String[]
+ getXValues() : double[]
+ getCloseValues() : double[]
+ getHighValues() : double[]
+ getLowValues() : double[]
+ getYValues() : double[]
+ setXAxisTitle(String) : void
+ getXAxisTitle() : String
+ setYAxisTitle(String) : void
+ getYAxisTitle() : String
+ getSeriesName() : String
+ toString() : String
- doubleArray2String(String, double[]) : String
- stringArray2String(String, String[]) : String

Constructors
Five signatures of ChartData construct the ChartData object to pass to the ChartClient.

ChartData(java.lang.String URLencodedDataStr)

Charting Application Programming Interfaces (APIs) for Charting

258 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Constructs an object containing an encoded URL in an HTTP Get request, or any raw data string.

ChartData(java.lang.String[] theLabels, double[] vals)
Constructs an object containing chart labels and name-value pairs of data values, as from a properties
file.

ChartData(java.lang.String[] theLabels, double[] vals, java.lang.String
xTitle, java.lang.String yTitle)

Constructs an object containing chart labels, name-value pairs of data values, and axis titles, as from
a properties file. Use when charting a single data series.

ChartData(java.lang.String[] theLabels, double[] vals,
java.lang.String xTitle, java.lang.String yTitle,
java.lang.String dataSeriesName)

Constructs an object containing chart labels, name-value pairs of data values, axis titles, and the
name of each data series, as from a properties file. Use when charting multiple data series, as for
stacked lines or bars.

ChartData(java.lang.String dataSeriesName, double[] xVals,
double[] hiVals, double[] loVals, double[] closeVals,
java.lang.String xTitle, java.lang.String yTitle)

Constructs an object containing parameters for high-low bar charts.

Parameters
Parameter Description

closeVals[] Double parameter for closing values in a high-low bar chart.

dataSeriesName Display name for the data series being charted. Use when
displaying multiple data series in a single chart.

hiVals Double parameter for high values in a high-low bar chart.

loVals Double parameter for low values in a high-low bar chart.

theLabels String array containing values for data labels.

URLencodedDataStr Chart data passed as a string. For syntax, see “Formatting Data
Strings for Chart Data” on page 245.

vals Array of doubles, the value to chart

xTitle Display name for the X-Axis.

xVals double[]

yTitle Display name for the Y-Axis.

Class Charter
Servlet class for the charting servlet. Contains the getDataSets method that requests the
ChartData object. Implements com.edocs.app.LoginRequired, javax.servlet.Servlet,
and extends com.edocs.app.App. Also contains doPost and doGet methods that override those in
class com.edocs.app.App. For details, see the Javadoc.

Charting Application Programming Interfaces (APIs) for Charting

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

259

▪

Class Diagram

App
LoginRequired

Charter

- DEBUG: boolean = Constants

+ doPost(HttpServletRequest, HttpServletResponse) : void
+ doGet(HttpServletRequest, HttpServletResponse) : void
- getDataSets(HttpServletRequest) : ChartData[]

Class Constants
Contains a constructor and default fields for defining custom chart parameters. For details, see the
Javadoc.

Class Diagram

Constants
{leaf}

+ CHART_DEBUG_FLAG: String = {}
+ DEBUG: boolean = Boolean
+ chartTypes: String[] = {}
+ AxisTypes: String[] = {}
+ delimMethod: String = "&"
+ delimProp: String = "."
+ delimValue: String = "*"
+ delimLength: int = delimMethod
~ methodValueSeparator: String = "="
~ WIDTH: String = "Width"
~ HEIGHT: String = "Height"
~ TYPE: String = "Type"
~ chartDefaults: Properties = new Properties()

+ getDefault(String) : String

Class PublisherCommon
Contains a constructor, fields, and methods to retrieve the root directory and Web views for the chart
from the Publisher. For details, see the Javadoc.

Charting Application Programming Interfaces (APIs) for Charting

260 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Class Diagram

PublisherCommon

+ WebRoot: String = getRootDir
+ APPRoot: String = getRootDir
+ WEB_VIEW_TYPES: String[] = {}

- getRootDir(String) : String
+ getResource(String, String) : byte[]
+ getVersionSet(String, String, String) : IVersionSetReader
+ timeDisplayPublisher(long) : String

Class PublisherWrapper
Contains a constructor, fields, and methods to retrieve chart properties as an input stream. For
details, see the Javadoc.

Class Diagram

PublisherWrapper

+ CHART_TYPE: String = "CHART"
+ CHART_PATH: String = "CHART_PATH"
+ CHART_PROPS_EXT: String = ".properties"

+ getChartPropsStream(String, String) : ByteArrayInputStream

Class Simulator
Constructor and methods that behave like a shell command to create a JPEG image of the specified
data and chart properties. Extends class java.awt.Frame. For usage, see “Previewing Charts with
com.edocs.app.chart.Simulator” on page 245. Also see the Javadoc.

Class Util
Utility class to support the Charting API. For details, see the Javadoc.

Charting Default Properties and Attributes

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

261

▪

Class Diagram

Util

- DEBUG: boolean = Constants

+ getColor(String, Properties) : Color
+ getFont(String, Properties) : Font
- inRGBRange(int) : boolean
+ arrayListToStringArray(ArrayList) : String[]
+ arrayListToDoubleArray(ArrayList) : double[]
+ getBoolean(String) : boolean
+ inArrayList(ArrayList, String) : boolean
+ debugProps(Properties) : void
+ getPropVal(String, Properties) : String
+ getFloat(String) : float

Default Properties and Attributes

ChartDefaults.properties

Kavachart3.2 properties influencing chart presentation # initially
3.1, with addition of CullingLabel, its 3.2

Primary Properties

Chart type: Pie

DateLine

FinCom

HiLoBar

HiLoClose

Charting Default Properties and Attributes

262 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

HorizBar == to generate horizontal bar chart

**** Please note, the property name, "Type" IS case
sensitive, and its

**** value is case sensitive.

Type=Pie

Legend related

 Legend.BackgroundVisible=true

-- separation between rows of the legend

 Legend.IconGap=0.02

-- Legend icon height 0 < k < 1.0, where 1.0 = full height
of canvas

 Legend.IconHeight=0.05

-- Legend icon width 0 < k < 1.0, where 1.0 = full width of
canvas

 Legend.IconWidth=0.07

-- R G B values

 Legend.LabelColor.Red=0

 Legend.LabelColor.Blue=0

 Legend.LabelColor.Green=0

-- this needs to be broken up into its components

 Legend.LabelFont.Name=Times New Roman

 Legend.LabelFont.Style=plain

 Legend.LabelFont.Size=12

-- lower x left corner 0 < y < 1.0, 1.0 = full width

 Legend.LlX=0.0

-- lower y left corner 0 < y < 1.0, 1.0 = full height

 Legend.LlY=0.0

-- upper x right corner 0 < y < 1.0, 1.0 = full width

 Legend.UrX=0.0

--upper y right corner 0 < y < 1.0, 1.0 = full height

 Legend.UrY=0.0

Charting Default Properties and Attributes

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

263

▪

-- legend below chart

 Legend.VerticalLayout=false

-- To change the Legend's Graphic component

Legend.BackgroundGC.Gc.FillColor.Red=0

Legend.BackgroundGC.Gc.FillColor.Blue=0

Legend.BackgroundGC.Gc.FillColor.Green=0

Legend.BackgroundGC.Gc.LineColor.Red=0

Legend.BackgroundGC.Gc.LineColor.Blue=0

Legend.BackgroundGC.Gc.LineColor.Green=0

Legend.BackgroundGC.Gc.LineWidth=1

Legend.BackgroundGC.Gc.MarkerColor.Red=0

Legend.BackgroundGC.Gc.MarkerColor.Blue=0

Legend.BackgroundGC.Gc.MarkerColor.Green=0

Legend.BackgroundGC.Gc.Image -- unimplemented

Class name = javachart.chart.Axis

Specific to X axis

to skip labels that collide

meaningful if the user can guess the missed labels

 X.Axis.CullingLabel=false;

 X.Axis.AutoScale=true

-- Determines end of an axis for a default axis.

-- For log-scale its a power of ten.

 X.Axis.AxisEnd=6.0

-- Determines start of axis.

-- For AUTO_SCALE, selection of axis start is automatic,

-- for log scale its a pwoer of ten.

 X.Axis.AxisStart=0.0

-- placed bar within axis, set true for bar charts

 X.Axis.BarScaling=true

 X.Axis.GridVis=false

 X.Axis.LabelAngle=0

-- Axis label color

Charting Default Properties and Attributes

264 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 X.Axis.LabelColor.Red=0

 X.Axis.LabelColor.Blue=0

 X.Axis.LabelColor.Green=0

 X.Axis.LabelFont.Name=Times New Roman

 X.Axis.LabelFont.Style=plain

 X.Axis.LabelFont.Size=12

-- Label Format determines how the label must be
redenered,

-- eg. first three letters of month name, basically the
defined method

-- is applied to the actual label

 X.Axis.LabelFormat=null

For double quantities such as currency

 X.Axis.LabelPrecision=2

Determines whether the label is visible

 X.Axis.LabelVis=true

Determines whether the axis line is visible

 X.Axis.LineVis=true

Determines whether the scale is log based

 X.Axis.LogScaling=false

 X.Axis.MajTickLength=5

 X.Axis.MajTickVis=true

 X.Axis.MinTickLength=2

 X.Axis.MinTickVis=false

 X.Axis.NumGrids=5

 X.Axis.NumLabels=5

 X.Axis.NumMajTicks=5

 X.Axis.NumMinTicks=10

reduce LlX to left shift axis position on canvas

increase for right shift, that is along the X direction

 X.Axis.Plotarea.LlX=0.2

-- reduce LlX to left shift on the canvas the axis start

-- increase LlX to right shift axis start on canvas

 X.Axis.Plotarea.LlY=0.2

Charting Default Properties and Attributes

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

265

▪

similar to LlX and LlY, but controls upper right corner

 X.Axis.Plotarea.UrX=0.8

 X.Axis.Plotarea.UrY=0.8

true sets the title perpendicular to the axis, in the
middle

 X.Axis.TitleRotated=true

 X.Axis.TitleColor.Red=0

 X.Axis.TitleColor.Blue=0

 X.Axis.TitleColor.Green=0

 X.Axis.TitleFont.Family=Times New Roman

 X.Axis.TitleFont.Name=Times New Roman

 X.Axis.TitleFont.Style=plain

 X.Axis.TitleFont.Size=12

 X.Axis.TitleString=Remember to set X axis title!

-- ignore this, not planning to retrieve objects using

-- mouse click events

 X.Axis.UseDisplayList=false

X.Axis.GridGc.FillColor.Red=0

X.Axis.GridGc.FillColor.Blue=0

X.Axis.GridGc.FillColor.Green=0

X.Axis.GridGc.Image -- unimplemented

X.Axis.GridGc.LineColor.Red=0

X.Axis.GridGc.LineColor.Blue=0

X.Axis.GridGc.LineColor.Green=0

X.Axis.GridGc.LineWidth=1

X.Axis.GridGc.MarkerColor.Red=0

X.Axis.GridGc.MarkerColor.Blue=0

X.Axis.GridGc.MarkerColor.Green=0

valid values = Left, Right, Top, Bottom

X.Axis.Side=Left

X.Axis.TickGc.FillColor.Red=0

Charting Default Properties and Attributes

266 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

X.Axis.TickGc.FillColor.Blue=0

X.Axis.TickGc.FillColor.Green=0

X.Axis.TickGc.Image -- unimplemented

X.Axis.TickGc.LineColor.Red=0

X.Axis.TickGc.LineColor.Blue=0

X.Axis.TickGc.LineColor.Green=0

X.Axis.TickGc.LineWidth=1

X.Axis.TickGc.MarkerColor.Red=0

X.Axis.TickGc.MarkerColor.Blue=0

X.Axis.TickGc.MarkerColor.Green=0

X.Axis.LineGc.FillColor.Red=0

X.Axis.LineGc.FillColor.Blue=0

X.Axis.LineGc.FillColor.Green=0

X.Axis.LineGc.Image -- unimplemented

X.Axis.LineGc.LineColor.Red=0

X.Axis.LineGc.LineColor.Blue=0

X.Axis.LineGc.LineColor.Green=0

X.Axis.LineGc.LineWidth=1

X.Axis.LineGc.MarkerColor.Red=0

X.Axis.LineGc.MarkerColor.Blue=0

X.Axis.LineGc.MarkerColor.Green=0

Class name = javachart.chart.Axis

Specific to Y axis

to skip labels that collide

meaningful if the user can guess the missed labels

 Y.Axis.CullingLabel=false;

 Y.Axis.AutoScale=true

-- Determines end of an axis for a default axis.

-- For log-scale its a power of ten.

 Y.Axis.AxisEnd=6.0

Charting Default Properties and Attributes

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

267

▪

-- Determines start of axis.

-- For AUTO_SCALE, selection of axis start is automatic,

-- for log scale its a pwoer of ten.

 Y.Axis.AxisStart=0.0

-- placed bar within axis, set true for bar charts

 Y.Axis.BarScaling=true

 Y.Axis.GridVis=false

 Y.Axis.LabelAngle=0

-- Axis label color

 Y.Axis.LabelColor.Red=0

 Y.Axis.LabelColor.Blue=0

 Y.Axis.LabelColor.Green=0

 Y.Axis.LabelFont.Name=Times New Roman

 Y.Axis.LabelFont.Style=plain

 Y.Axis.LabelFont.Size=12

-- Label Format determines how the label must be
redenered,

-- eg. first three letters of month name, basically the
defined method

-- is applied to the actual label

 Y.Axis.LabelFormat=null

For double quantities such as currency

 Y.Axis.LabelPrecision=2

Determines whether the label is visible

 Y.Axis.LabelVis=true

Determines whether the axis line is visible

 Y.Axis.LineVis=true

Determines whether the scale is log based

 Y.Axis.LogScaling=false

 Y.Axis.MajTickLength=5

 Y.Axis.MajTickVis=true

 Y.Axis.MinTickLength=2

 Y.Axis.MinTickVis=false

 Y.Axis.NumGrids=5

 Y.Axis.NumLabels=5

Charting Default Properties and Attributes

268 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 Y.Axis.NumMajTicks=5

 Y.Axis.NumMinTicks=10

reduce LlX to left shift axis position on canvas

increase for right shift, that is along the X direction

 Y.Axis.Plotarea.LlX=0.2

-- reduce LlX to left shift on the canvas the axis start

-- increase LlX to right shift axis start on canvas

 Y.Axis.Plotarea.LlY=0.2

similar to LlX and LlY, but controls upper right corner

 Y.Axis.Plotarea.UrX=0.8

 Y.Axis.Plotarea.UrY=0.8

true sets the title perpendicular to the axis, in the
middle

 X.Axis.TitleRotated=true

 Y.Axis.TitleColor.Red=0

 Y.Axis.TitleColor.Blue=0

 Y.Axis.TitleColor.Green=0

 Y.Axis.TitleFont.Family=Times New Roman

 Y.Axis.TitleFont.Name=Times New Roman

 Y.Axis.TitleFont.Style=plain

 Y.Axis.TitleFont.Size=12

 Y.Axis.TitleString=Remember to set X axis title!

-- ignore this, not planning to retrieve objects using

-- mouse click events

 Y.Axis.UseDisplayList=false

Y.Axis.GridGc.FillColor.Red=0

Y.Axis.GridGc.FillColor.Blue=0

Y.Axis.GridGc.FillColor.Green=0

Y.Axis.GridGc.Image -- unimplemented

Y.Axis.GridGc.LineColor.Red=0

Y.Axis.GridGc.LineColor.Blue=0

Charting Default Properties and Attributes

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

269

▪

Y.Axis.GridGc.LineColor.Green=0

Y.Axis.GridGc.LineWidth=1

Y.Axis.GridGc.MarkerColor.Red=0

Y.Axis.GridGc.MarkerColor.Blue=0

Y.Axis.GridGc.MarkerColor.Green=0

valid values = Left, Right, Top, Bottom

Y.Axis.Side=Left

Y.Axis.TickGc.FillColor.Red=0

Y.Axis.TickGc.FillColor.Blue=0

Y.Axis.TickGc.FillColor.Green=0

Y.Axis.TickGc.Image -- unimplemented

Y.Axis.TickGc.LineColor.Red=0

Y.Axis.TickGc.LineColor.Blue=0

Y.Axis.TickGc.LineColor.Green=0

Y.Axis.TickGc.LineWidth=1

Y.Axis.TickGc.MarkerColor.Red=0

Y.Axis.TickGc.MarkerColor.Blue=0

Y.Axis.TickGc.MarkerColor.Green=0

Y.Axis.LineGc.FillColor.Red=0

Y.Axis.LineGc.FillColor.Blue=0

Y.Axis.LineGc.FillColor.Green=0

Y.Axis.LineGc.Image -- unimplemented

Y.Axis.LineGc.LineColor.Red=0

Y.Axis.LineGc.LineColor.Blue=0

Y.Axis.LineGc.LineColor.Green=0

Y.Axis.LineGc.LineWidth=1

Y.Axis.LineGc.MarkerColor.Red=0

Y.Axis.LineGc.MarkerColor.Blue=0

Y.Axis.LineGc.MarkerColor.Green=0

Charting Default Properties and Attributes

270 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Optional Properties:

Set the Bar baseline.

##Bar.Baseline=0.0

sets the cluster width

##Bar.ClusterWidth=0.8

Set to true to clip bars at Plotarea boundaries.

Bar.DoClip=false

Optional Properties: Line

true clips lines at the plot area boundary

Line.Clip=false

Optional Properties: Pie

 Pie.LabelColor.Red=0

 Pie.LabelColor.Blue=0

 Pie.LabelColor.Green=0

 Pie.LabelFont.Name=Times New Roman

 Pie.LabelFont.Style=plain

 Pie.LabelFont.Size=12

 Pie.LabelPosition=2

 Pie.PercentLabelsOn=true

 Pie.StartDegrees=0

 Pie.TextLabelsOn=false

 Pie.ValueLabelsOn=false

-- if you want a circular pie, scale Height and Width to

-- be equal in terms of pixels after you've taken into

-- consideration true canvas height and width

 Pie.Height=0.6

Charting Default Properties and Attributes

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

271

▪

 Pie.Width=0.6

-- this is the center of the pie, do you want it in the
center

-- of the canvas or to one side. Elect side if the labels
to be

-- rendered on the legend are long.

-- choose up or down, if you have more vertical real
estate on the

-- html page

 Pie.XLoc=0.5

 Pie.YLoc=0.5

General chart properties

 Chart.LegendVisible=false

 Chart.Name=MyChart

x and y offset determine the three dimensional effect

 Chart.ThreeD=false

 Chart.XOffset=0

 Chart.YOffset=0

 Chart.YAxisVisible=true

 Chart.XAxisVisible=true

-- The chart quality has a default value of 1. It can take
values

-- from 0 to 1, where 0 is the poorest quality, while 1 is
the best

-- 0.75 is a good balance between image size and quality

 Chart.Quality=1.0

Plotarea Graphic Component properties

Plotarea.Gc.FillColor.Red=0

Plotarea.Gc.FillColor.Blue=0

Plotarea.Gc.FillColor.Green=0

Charting Default Properties and Attributes

272 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

Plotarea.Gc.Image -- unimplemented

Plotarea.Gc.LineColor.Red=0

Plotarea.Gc.LineColor.Blue=0

Plotarea.Gc.LineColor.Green=0

Plotarea.Gc.LineWidth=1

Plotarea.Gc.MarkerColor.Red=0

Plotarea.Gc.MarkerColor.Blue=0

Plotarea.Gc.MarkerColor.Green=0

Background properties

Background.Gc.FillColor.Red=0

Background.Gc.FillColor.Blue=0

Background.Gc.FillColor.Green=0

Background.Gc.Image -- unimplemented

Background.Gc.LineColor.Red=0

Background.Gc.LineColor.Blue=0

Background.Gc.LineColor.Green=0

Background.Gc.LineWidth=1

Background.Gc.MarkerColor.Red=0

Background.Gc.MarkerColor.Blue=0

Background.Gc.MarkerColor.Green=0

Background.SubTitleColor.Red=0

Background.SubTitleColor.Blue=0

Background.SubTitleColor.Green=0

Background.SubTitleFont.name=Times New Roman

Background.SubTitleFont.style=plain

Background.SubTitleFont.size=12

Background.SubTitleString=null

Background.TitleColor.Red=0

Background.TitleColor.Blue=0

Background.TitleColor.Green=0

Charting Default Properties and Attributes

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

273

▪

Background.TitleFont.Name=Times New Roman

Background.TitleFont.Style=plain

Background.TitleFont.Size=12

Background.TitleString=null

Favorite.1.Color.Red=0

Favorite.1.Color.Blue=0

Favorite.1.Color.Green=0

Favorite.2.Color.Red=0

Favorite.2.Color.Blue=0

Favorite.2.Color.Green=0

Favorite.3.Color.Red=0

Favorite.3.Color.Blue=0

Favorite.3.Color.Green=0

Favorite.4.Color.Red=0

Favorite.4.Color.Blue=0

Favorite.4.Color.Green=0

Favorite.5.Color.Red=0

Favorite.5.Color.Blue=0

Favorite.5.Color.Green=0

NW_LocSummary.ALF
<?xml version="1.0"?>

<!DOCTYPE ALF [

 <!-- An element of type ALF must contain following
subelements -->

 <!ELEMENT ALF (VERSION, DATA_GROUP, DDF, SWITCH, HOME,
TEMPLATES, CONTENTS, CONDITIONS, PROFILES, BUSINESSCONDITIONS,
RECORDS, PAGE_ELEMENTS, composition-specs)>

 <!-- An element of type VERSION contains a mixture of
character data -->

 <!ELEMENT VERSION (#PCDATA)>

 <!-- An element of type DATA_GROUP contains a mixture of
character data -->

Charting Default Properties and Attributes

274 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 <!ELEMENT DATA_GROUP (#PCDATA)>

 <!-- An element of type DDF contains a mixture of character
data -->

 <!ELEMENT DDF (#PCDATA)>

 <!-- An element of type SWITCH consist of Optional
Statement element -->

 <!ELEMENT SWITCH (Statement?)>

 <!-- An element of type Statement can contain three
subelements. Firstly it must

have Condition element and Action1 element. This is Optionaly
followed by the Action2 element -->

 <!ELEMENT Statement (Condition, Action1, Action2?)>

 <!ATTLIST Statement

 Profile (Y | N) #IMPLIED

>

 <!-- An element of type Condition contains a mixture of
character data -->

 <!ELEMENT Condition (#PCDATA)>

 <!-- An element of type Action1 contains a mixture of
character data -->

 <!ELEMENT Action1 (#PCDATA)>

 <!-- An element of type Action2 contains a mixture of
character data or Statement elements in any order-->

 <!ELEMENT Action2 (#PCDATA | Statement)*>

 <!ELEMENT HOME (DefaultTemplate, Statement?)>

 <!ELEMENT DefaultTemplate (#PCDATA)>

 <!ELEMENT TEMPLATES (Template)+>

 <!ELEMENT Template (SECTIONS, CHARTS, GROUPS,
GroupTemplate*)>

 <!ATTLIST Template

 Name CDATA #REQUIRED

>

 <!ELEMENT FormatSpecification (#PCDATA)>

 <!ELEMENT Action (#PCDATA)>

 <!ELEMENT SECTIONS (Section*)>

 <!ELEMENT Section (Statement+ | (FormatSpecification,
Action)+)>

 <!ATTLIST Section

 Name CDATA #REQUIRED

Charting Default Properties and Attributes

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

275

▪

 Promotional CDATA #IMPLIED

>

 <!ELEMENT CHARTS (Chart*)>

 <!ELEMENT Chart EMPTY>

 <!ATTLIST Chart

 Name CDATA #REQUIRED

 RecordName CDATA #REQUIRED

 TopTitle CDATA #REQUIRED

 BottomTitle CDATA #REQUIRED

 LeftTitle CDATA #REQUIRED

 RightTitle CDATA #REQUIRED

 XField CDATA #REQUIRED

 YField CDATA #REQUIRED

 Key CDATA #REQUIRED

 StackedStyle CDATA #REQUIRED

 ColorScheme CDATA #REQUIRED

 GridLines CDATA #REQUIRED

 Full3D CDATA #REQUIRED

 AngleX CDATA #REQUIRED

 AngleY CDATA #REQUIRED

 Atribute CDATA #REQUIRED

 MarkerVolume CDATA #REQUIRED

 Shadow CDATA #REQUIRED

 MultiShape CDATA #REQUIRED

 Dimension_3D CDATA #REQUIRED

 View3DDepth CDATA #REQUIRED

 Type CDATA #REQUIRED

 CGITimeSpan CDATA #REQUIRED

 BackgroundColor CDATA #REQUIRED

 ForgroundColor CDATA #REQUIRED

 Height CDATA #REQUIRED

 Width CDATA #REQUIRED

 LegendShow CDATA #REQUIRED

 LegendToolSize CDATA #REQUIRED

 LegendToolStyle CDATA #REQUIRED

 HidePieLegend CDATA #REQUIRED

Charting Default Properties and Attributes

276 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 SeriesColor CDATA #REQUIRED

 LeftGap CDATA #REQUIRED

 RightGap CDATA #REQUIRED

 ImgQuality CDATA #REQUIRED

 ImgSmooth CDATA #REQUIRED

 AddValueToLegend CDATA #REQUIRED

 BaseURL CDATA #REQUIRED

 UNIXChart CDATA #REQUIRED

>

 <!ELEMENT GROUPS (Group*)>

 <!ELEMENT Group (Statement)>

 <!ATTLIST Group

 Name CDATA #REQUIRED

>

 <!ELEMENT GroupTemplate (SECTIONS, CHARTS, GROUPS,
GroupTemplate*)>

 <!ATTLIST GroupTemplate

 Name CDATA #REQUIRED

>

 <!ELEMENT CONTENTS (Content)+>

 <!ELEMENT Content (#PCDATA)>

 <!ATTLIST Content

 Name CDATA #REQUIRED

 Type (MainTemplate | RGTemplate1 | RGTemplate2 |
SectionTemplate | ALF | Image | Text | Active | GlobalAction)
"MainTemplate"

 Parent CDATA #REQUIRED

 ParentTemplate CDATA #REQUIRED

>

 <!ELEMENT CONDITIONS (SavedCondition)*>

 <!ELEMENT SavedCondition (#PCDATA)>

 <!ATTLIST SavedCondition

 Name CDATA #REQUIRED

 SavedConditionProfile (Y | N) #REQUIRED

>

 <!ELEMENT PROFILES (Profile)*>

 <!ELEMENT Profile (#PCDATA)>

Charting Default Properties and Attributes

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

277

▪

 <!ATTLIST Profile

 Name CDATA #REQUIRED

>

 <!ELEMENT BUSINESSCONDITIONS (BusinessCondition)*>

 <!ELEMENT BusinessCondition (#PCDATA)>

 <!ATTLIST BusinessCondition

 Name CDATA #REQUIRED

>

 <!ELEMENT RECORDS (Record)*>

 <!ELEMENT Record (#PCDATA)>

 <!ATTLIST Record

 Name CDATA #REQUIRED

 ApplyAll (Y | N) #REQUIRED

 PresentationTable CDATA #IMPLIED

>

 <!ELEMENT PAGE_ELEMENTS (PageElement)*>

 <!ELEMENT PageElement (#PCDATA)>

 <!ATTLIST PageElement

 Name CDATA #REQUIRED

 Type (Table | Group) #REQUIRED

 Enable (yes | no) #REQUIRED

 Mode (line | occurrence) #REQUIRED

 SetSize CDATA #REQUIRED

 Occurrences CDATA #REQUIRED

>

 <!ELEMENT composition-specs ((sort-spec | filter-spec |
select-spec | arithmetic-spec)*, combine-spec)>

 <!ELEMENT sort-spec (sorted-element, sort-by-element)+>

 <!ATTLIST sort-spec

 name CDATA #REQUIRED

 mode (Table | Group) #REQUIRED

>

 <!ELEMENT sorted-element (#PCDATA)>

 <!ELEMENT sort-by-element (#PCDATA)>

 <!ATTLIST sort-by-element

 data-type CDATA #REQUIRED

Charting Default Properties and Attributes

278 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 format-string CDATA #REQUIRED

 direction (a | d) #REQUIRED

>

 <!ELEMENT filter-spec (filtered-element, filtered-by-
element, filter-expression)+>

 <!ATTLIST filter-spec

 name CDATA #REQUIRED

 mode (Table | Group) #REQUIRED

>

 <!ELEMENT filtered-element (#PCDATA)>

 <!ELEMENT filtered-by-element (#PCDATA)>

 <!ELEMENT filter-expression (#PCDATA)>

 <!ELEMENT select-spec (selected-element, selected-by-
element)+>

 <!ATTLIST select-spec

 name CDATA #REQUIRED

 mode (Table | Group) #REQUIRED

>

 <!ELEMENT selected-element (#PCDATA)>

 <!ELEMENT selected-by-element (#PCDATA)>

 <!ATTLIST selected-by-element

 data-type CDATA #REQUIRED

 format-string CDATA #REQUIRED

 direction (Top | Bottom) #REQUIRED

 default-count CDATA #REQUIRED

>

 <!ELEMENT combine-spec (combine-element)*>

 <!ELEMENT combine-element (#PCDATA)>

 <!ELEMENT arithmetic-spec (arithmetic-element, arithmetic-
by-element)>

 <!ATTLIST arithmetic-spec

 name CDATA #REQUIRED

>

 <!ELEMENT arithmetic-element (#PCDATA)>

 <!ELEMENT arithmetic-by-element (#PCDATA)>

 <!ATTLIST arithmetic-by-element

 data-type CDATA #REQUIRED

Charting Default Properties and Attributes

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

279

▪

 format-string CDATA #REQUIRED

 mode (total | count) #REQUIRED

 output-format-string CDATA #REQUIRED

>

]>

<ALF>

 <VERSION>3.0</VERSION>

 <DATA_GROUP>Local_Summary</DATA_GROUP>

 <DDF>C:/eStatement/samples/NatlWireless/NW_LocSummary.ddf</
DDF>

 <SWITCH/>

 <HOME>

 <DefaultTemplate>Default_Template</DefaultTemplate>

 </HOME>

 <TEMPLATES>

 <Template Name="Default_Template">

 <SECTIONS/>

 <CHARTS>

 <Chart Name="LocalLineSummary_0"
RecordName="LocalLineSummary" TopTitle="Top Lable"
BottomTitle="Bottom Lable" LeftTitle="" RightTitle=""
XField="LocalLinePhNo" YField="LocalLineAmt" Key="0"
StackedStyle="0" ColorScheme="0" GridLines="0" Full3D="0"
AngleX="0" AngleY="0" Atribute="0" MarkerVolume="0" Shadow="0"
MultiShape="0" Dimension_3D="0" View3DDepth="0" Type="1"
CGITimeSpan="" BackgroundColor="White" ForgroundColor="Black"
Height="300" Width="400" LegendShow="1" LegendToolSize="100"
LegendToolStyle="167116800" HidePieLegend="0" SeriesColor=""
LeftGap="40" RightGap="40" ImgQuality="75" ImgSmooth="0"
AddValueToLegend="0" BaseURL="/Chart" UNIXChart="Pie"/>

 <Chart Name="LocalChargeSummary_1"
RecordName="LocalChargeSummary" TopTitle="Top Lable"
BottomTitle="Bottom Lable" LeftTitle="" RightTitle=""
XField="LocalChargeAmt" YField="LocalChargeDesc" Key="1"
StackedStyle="0" ColorScheme="0" GridLines="0" Full3D="0"
AngleX="0" AngleY="0" Atribute="0" MarkerVolume="0" Shadow="0"
MultiShape="0" Dimension_3D="0" View3DDepth="0" Type="1"
CGITimeSpan="" BackgroundColor="White" ForgroundColor="Black"
Height="300" Width="400" LegendShow="1" LegendToolSize="100"
LegendToolStyle="167116800" HidePieLegend="0" SeriesColor=""
LeftGap="40" RightGap="40" ImgQuality="75" ImgSmooth="0"
AddValueToLegend="0" BaseURL="/Sample" UNIXChart="Pie"/>

 </CHARTS>

 <GROUPS/>

Charting Default Properties and Attributes

280 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

▪

 </Template>

 </TEMPLATES>

 <CONTENTS>

 <Content Name="Default_Template" Type="MainTemplate"
Parent=""
ParentTemplate=""><![CDATA[C:/eStatement/samples/NatlWireless/
NW_LocSummary.htm]]></Content>

 </CONTENTS>

 <CONDITIONS/>

 <PROFILES/>

 <BUSINESSCONDITIONS/>

 <RECORDS>

 <Record Name="CustAddress"
ApplyAll="Y"><![CDATA[<table border=1 width="100%">

 <TBODY>

 <tr>

 <td height=% width=%><font color=#5c00d9 face=Arial

size=2>[E]CustAddressLine[/E]</td></tr
></TBODY></table>]]></Record>

 <Record Name="LocalChargeSummary"
ApplyAll="Y"><![CDATA[<TABLE border=1 width="100%">

 <TBODY>

 <TR>

 <TD height=% width=%><FONT color=#000000 face=Arial

 size=2>[E]LocalChargeDesc[/E]</TD>

 <TD align=right height=% width=%><FONT color=#000000
face=Arial

size=2>[E]LocalChargeAmt[/E]</TD></TR></TBODY></TABLE>]
]></Record>

 <Record Name="LocalLineSummary"
ApplyAll="Y"><![CDATA[<table border=1 width="100%">

 <TBODY>

 <tr>

 <td height=% width=%><font color=#000000 face=Arial

 size=2>[E]LocalLinePhNo[/E]</td>

 <td align=right height=% width=%><font color=#000000
face=Arial

Charting Default Properties and Attributes

 SDK Guide for Oracle Siebel eStatement Manager Version 4.7

281

▪

size=2>[E]LocalLineAmt[/E]</td></tr></TBODY></table>]]>
</Record>

 </RECORDS>

 <PAGE_ELEMENTS/>

 <composition-specs>

 <combine-spec/>

 </composition-specs>

</ALF>

	Contents
	1 Preface
	About Customer Self-Service and eaSuite™
	About This Guide
	Related Documentation

	2 Overview of eaSuite SDK
	Deploying and Customizing J2EE Applications
	Implementing a User Management Framework
	Content Access
	Line Item Dispute and Annotation
	Auditing Data Streams
	Building Custom Jobs
	Charting

	3 The Sample J2EE Application
	About Sample
	Customizing Sample
	eStatement Manager SDK Specification
	User Management
	Content Access
	Audit to Verify
	Shell Commands for Custom Jobs
	Line Item Dispute and Annotation
	Hierarchy
	Charting
	Other

	4 User Management
	Overview
	What is a User Management Framework?
	Goals of the Oracle User Management Framework
	Planning Your User Management Framework
	About the Sample J2EE Applications

	APIs for User Management
	Application Programming Interfaces (APIs) for User Management
	IAccount and IAccount Resolver Packages
	JNDI Packages for Common Directory Access (CDA)
	Other User Management Packages
	About IAccount
	About IAccountResolver

	Introduction to Directory Access
	About Directory Access Services
	Choosing a Directory Access Interface

	Using the Common Directory Access (CDA) Framework
	What is CDA?
	Using Training as a Template
	How does Training Use CDA?
	Using IAccount with CDA for Other Tasks

	Using the CDA Client
	About the CDA Client
	Starting the CDA Client
	Command Parsing in the CDA Client
	Creating and Populating a Directory Information Tree (DIT)
	Navigating a Directory Information Tree
	Working with Directory Contexts
	Working with User Attributes
	Integrating With Existing User Management Systems

	Using a Non-Directory Access Implementation
	Using UMFsample as a Template
	How does UMFsample Do Enrollment?
	Creating an Application Based on UMFsample

	Additional Reading Sources
	LDAP: Lightweight Directory Access Protocol
	JSP: Java Server Pages
	JNDI: Java Naming and Directory Interface

	5 Content Access
	Planning Your Content Access Interface
	About Content Access
	Goals of Content Access
	About XML, XSL, and XSLT

	Introduction to Oracle Content Access
	XML Views and Jobs since eStatement Manager 3.0
	New XML Templates for Views and Jobs

	Command Line Interface (CLI) to Scheduler (PWC)
	com.edocs.pwc.cli.CLIScheduler -start <DDN> <jobname>
	com.edocs.pwc.cli.CLIScheduler -list
	com.edocs.pwc.cli.CLIScheduler -schedules

	XML and eStatement Manager
	About XML and eStatement Manager
	Mapping a DDF to XML
	Additional Reading about XML, XSL, and XSLT

	Extracting Detail Data to the Database
	About the Detail Extractor Job
	Customizing the Detail Extractor Job

	Transforming Data with XSLT
	About the XSLT View Type
	Setting Up Your Environment for XSLT
	Example: Downloading Data in Comma-Separated Values (CSV) Format

	Extracting Data with XML Queries
	About the XML Query View
	Query Document Tag Definitions
	Creating Custom XML Queries

	Application Programming Interfaces for Content Access
	Package com.edocs.app.user Description

	Using Content Access APIs
	Call User Methods in Correct Sequence
	Retrieve and Present Statement Summaries
	Retrieve and Present Statement Detail
	Retrieve and Present XML
	Record and Present Web-Time Activity

	Element ID and Composition Hints
	About Element ID
	Syntax for Element ID
	Tag Attributes for Element ID
	Values for Composition Hints Language
	DTD for Composition Hints Language

	XML Templates for National Wireless
	Detail Extractor
	XSLT Download
	XML Query View
	Example DDF to XML Mapping

	6 Line Item Dispute and Annotations
	 Introduction
	Goals of Line Item Dispute and Annotation
	Disputes and Annotations Compared

	Components of Line Item Dispute and Annotation
	Architectural Overview
	Configuration Tasks
	Composition Tasks
	Production Tasks
	Web Application Tasks
	Viewing Disputes and Annotations in Sample

	Configuring Dispute and Annotation Services
	Configuring JMS Settings
	Database Tables for Dispute and Annotation

	Composition and Production for Dispute and Annotation
	Composition and Production Architecture
	Using Element ID
	Compose XML and XSLT Templates for Detail Extractor
	Compose XML Templates for XML Query Views
	Create and Configure a Detail Extractor Job
	Publish XML Query Dynamic Web Views

	Web Application Components for Dispute and Annotation
	Web Application Component Architecture
	Manage Statement JSPs for Detail, Dispute, and Annotation
	Using XTags with Dispute and Annotation JSPs

	Application Programming Interfaces (API) for Dispute and Annotation
	Data Flow for Annotation and Dispute Services
	Package com.edocs.direct.annotation Description
	Package com.edocs.direct.dispute Description
	Using the Dispute and Annotation APIs
	Retrieving Detail, Disputes, and Annotations with the Content Access API (com.edocs.app.user)

	Sample Files for Dispute and Annotation
	Sample JSPs
	XML Templates for National Wireless

	7 Auditing Datastreams
	Introduction to Auditing Data Streams
	About Auditing Data for Presentment

	APIs for Auditing Data Streams
	Package com.edocs.app.verify Description
	Process Flow for Verify Methods

	Auditing Data Streams with the Verify API
	Retrieve a List of All Applications
	Retrieve a List of Indexed Volumes
	Retrieve a List of Account Numbers
	Retrieve Account Summary Information
	Accept or Reject an Indexed Volume
	Update Summary Information

	8 Custom Jobs
	About Custom Job Types
	About Jobs and the Shell Command Task

	Defining a New Job Type
	Create the Job Type Script
	Configuring Your New Job Type
	Another Example of Defining a New Job Type

	9 Charting
	Introduction to Charting
	About Charting in eStatement Manager
	Components of Charting

	Configuring Charting for Your Server
	About Servers and Charting
	About Fonts
	Configuration Activity Diagram
	Setting Display Devices and xvfb
	Setting Display Permissions and xhost
	Setting Display Awareness
	Configuring a Headless Server for Charting

	Composing Charts in Statements
	About Charting in the Composer
	Inserting a Chart Tag in the Composer
	Naming Conventions for Charts
	About Chart Tags in the ALF
	About The Chart Properties File
	About Simulating Charts

	Customizing Chart Properties
	About Customizing Charts
	About Chart Attributes in the ALF
	Customizing a Chart in the ALF
	Customizing the Chart Properties File
	Chart Type
	Other Chart Properties
	Default Chart Properties
	Customizing Default Properties
	Previewing Charts with com.edocs.app.chart.Simulator

	Publishing Charts
	About Publishing Charts
	Before Publishing Charts
	Publishing a Chart View
	Viewing Charts in Statements

	Designing Custom Charts with the Charting Servlet
	About The Charting Servlet
	Customizing Charter.java

	Troubleshooting Charts
	Charting Checklist
	Common Problems and Known Issues
	Troubleshooting Flowchart

	Application Programming Interfaces (APIs) for Charting
	Package com.edocs.app.chart Description
	Class ChartClient
	Class ChartData
	Class Charter
	Class Constants
	Class PublisherCommon
	Class PublisherWrapper
	Class Simulator
	Class Util

	Default Properties and Attributes
	ChartDefaults.properties
	NW_LocSummary.ALF

