
Oracle® Business
Intelligence Server
Administration Guide

Version 10.1.3.2
December 2006

Part Number: B31770-01

Copyright © 2006, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information;
they are provided under a license agreement containing restrictions on use and disclosure and are also
protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. This document is not warranted to be error-
free. Except as may be expressly permitted in your license agreement for these Programs, no part of
these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical
data delivered to U.S. Government customers are "commercial computer software" or "commercial
technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
Programs, including documentation and technical data, shall be subject to the licensing restrictions set
forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA,
Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or
services from a third party, the relationship is directly between you and the third party. Oracle is not
responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of
the agreement with the third party, including delivery of products or services and warranty obligations
related to purchased products or services. Oracle is not responsible for any loss or damage of any sort
that you may incur from dealing with any third party.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 3

Contents

Oracle® Business Intelligence Server Administration Guide 1

Chapter 1: What’s New in This Release

Chapter 2: Oracle BI Administration Tool Basics
Administration Tool User Interface Components 17

Features and Options for Oracle’s Siebel Marketing Application 24

Online and Offline Repository Modes 24

Checking the Consistency of a Repository or a Business Model 26

Setting Preferences 29
Using the Options Dialog Box—General Tab 29
Using the Options Dialog Box—Repository Tab 31
Using the Options Dialog Box—Sort Objects Tab 32
Using the Options Dialog Box—Cache Manager Tab 32
Using the Options Dialog Box—Multiuser Tab 33
Using the Options Dialog Box—More Tab 33

Setting Permissions for Repository Objects 33

Editing, Deleting, and Reordering Objects in the Repository 35

Displaying and Updating Row Counts for Tables and Columns 35

Populating Logical Level Counts Automatically 36

Using the Browse Dialog Box 37

Chapter 3: Planning and Creating an Oracle BI Repository
Roadmap for Planning and Setting Up an Oracle BI Repository 39

Process of Oracle BI Repository Planning and Design 39
About Repository Planning and Design 39
Planning Your Business Model 40
Identifying the Database Content For The Business Model 45
Guidelines For Designing a Repository 50

Creating a New Oracle BI Repository File 54

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Contents ■

4

Chapter 4: Creating and Administering the Physical Layer in
an Oracle BI Repository

Process of Creating the Physical Layer from Relational Data Sources 56
Importing a Physical Schema from Relational Data Sources 56

Process of Creating the Physical Layer from Multidimensional Data Sources 58
Importing a Physical Schema from Multidimensional Data Sources 59

Setting Up Database Objects 60
About Database Types in the Physical Layer 61
Creating a Database Object Manually in the Physical Layer 61
Specifying SQL Features Supported by a Database 64

Setting Up Connection Pools 65
Creating or Changing Connection Pools 67
Setting Up Connection Pool Properties for Multidimensional Data Sources 73
Setting Up Additional Connection Pool Properties for an XML Data Source 76
Setting Up Write-Back Properties 77
Setting Up the Persist Connection Pool Property 79

About Physical Tables 81

Creating and Setting Up Physical Tables 83
Creating and Administering General Properties for Physical Tables 85
Viewing Data in Physical Tables or Columns 87
Creating and Administering Columns and Keys in a Physical Table 87
Setting Up Hierarchies in the Physical Layer for a Multidimensional Data Source 91
Setting Physical Table Properties for an XML Data Source 96

Creating Physical Layer Folders 96
Creating Physical Layer Catalogs and Schemas 97
Using a Variable to Specify the Name of a Catalog or Schema 97
Setting Up Display Folders in the Physical Layer 98

About Physical Joins 99

Defining Physical Foreign Keys and Joins 100
Defining Physical Foreign Keys or Complex Joins with the Joins Manager 101
Defining Physical Joins in the Physical Diagram 101

Deploying Opaque Views 103

Using Database Hints 106

Chapter 5: Creating and Administering the Business Model
and Mapping Layer in an Oracle BI Repository

About Creating the Business Model and Mapping Layer 109

Contents ■

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 5

Creating Business Model Objects 110

Duplicate Business Model and Presentation Catalog 110

Creating and Administering Logical Tables 111
Creating Logical Tables 111
Specifying a Primary Key in a Logical Table 112
Reviewing Foreign Keys for a Logical Table 113

Creating and Administering Logical Columns 113
Creating and Moving a Logical Column 114
Setting Default Levels of Aggregation for Measure Columns 115
Associating an Attribute with a Logical Level in Dimension Tables 116

Creating and Administering Logical Table Sources (Mappings) 117
Creating or Removing a Logical Table Source 118
Defining Physical to Logical Table Source Mappings 119
Defining Content of Logical Table Sources 121

About Dimensions and Hierarchical Levels 125

Process of Creating and Administering Dimensions 126
Creating Dimensions 126
Creating Dimension Levels and Keys 126
Setting Up Dimension-Specific Aggregate Rules for Logical Columns 134

Setting Up Display Folders in the Business Model and Mapping Layer 136

Defining Logical Joins 136
Defining Logical Joins with the Joins Manager 137
Defining Logical Joins with the Business Model Diagram 139
Specifying a Driving Table 140
Identifying Physical Tables That Map to Logical Objects 141

Chapter 6: Creating and Maintaining the Presentation Layer
in an Oracle BI Repository

Creating the Presentation Layer in the Repository 143

Presentation Layer Objects 144
Working with Presentation Catalogs 145
Working with Presentation Tables 146
Working with Presentation Columns 147
Using the Alias Tab of Presentation Layer Dialog Boxes 149

Generating an XML File from a Presentation Table 149

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Contents ■

6

Chapter 7: Completing Setup and Managing Oracle BI
Repository Files

Process of Completing the Setup for a Repository File 151
Saving the Repository and Checking Consistency 152
Add an Entry in the NQSConfig.INI File 152
Create the Data Source 153
Start the Oracle BI Server 153
Test and Refine the Repository 154
Publish to User Community 154

Importing From Another Repository 154

Querying and Managing Repository Metadata 156

Constructing a Filter for Query Results 159

Comparing Repositories 161

Merging Oracle BI Repositories 163

Exporting Oracle BI Metadata to IBM DB2 Cube Views 167

About Extracting Metadata Subsets Into Projects 167

Setting up and Using the Oracle BI Multiuser Development Environment 169
Setting Up a Multiuser Development Environment (Administrator) 170
Making Changes in a Multiuser Development Environment (Developers) 172
Checking In Multiuser Development Repository Projects 175
Viewing and Deleting History for Multiuser Development 178

Setting Up the Repository to Work with Delivers 180
About the SA System Subject Area 180
Setting Up the SA System Subject Area 181

Chapter 8: Oracle BI Administration Tool Utilities and
Expression Builder

Utilities and Wizards 183
Replace Column or Table Wizard 183
Oracle BI Event Tables 184
Externalize Strings 184
Rename Wizard 185
Update Physical Layer Wizard 185
Generating Documentation of Repository Mappings 186
Generating and Deploying a Metadata Dictionary 187
Removing Unused Physical Objects 189
Aggregate Persistence Wizard 189
Calculation Wizard 190

Contents ■

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 7

Expression Builder 190

Chapter 9: Setting Up Fragmentation Content in an Oracle
BI Repository for Aggregate Navigation

About Aggregate Navigation 201

Specify Fragmentation Content 201

Chapter 10:Administering the Oracle BI Server Query
Environment

Starting the Oracle BI Server 209
Starting the Server from Windows Services 209
Configuring the Server for Automatic Startup in Windows 210
Running the Server Startup Script in UNIX 210
Changing the User ID in Which the Oracle BI Server Runs 211
If the Server Fails to Start 211

Shutting Down the Oracle BI Server 212
Shutting Down the Server in Windows Services 212
Shutting Down the Server from a Command Prompt in Windows 213
Running the Server Shutdown Script in UNIX 213
Shutting Down the Oracle BI Server Using the Administration Tool 214

Getting Users to Connect to the Server 214

Administering the Query Log 214

Administering Usage Tracking 219
Setting Up Direct Insertion to Collect Information for Usage Tracking 219
Setting Up a Log File to Collect Information for Usage Tracking 221

Server Session Management 225

Server Configuration and Tuning 227

Chapter 11:Query Caching in the Oracle BI Server
About the Oracle BI Server Query Cache 229

Query Cache Architecture 232

Configuring Query Caching 232

Monitoring and Managing the Cache 234

Purging and Maintaining Cache Using ODBC Procedures 235
Storing and Purging Cache for SAP/BW Data Sources 237

Strategies for Using the Cache 238

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Contents ■

8

Creating Aggregates for Oracle BI Server Queries 241
Identifying Query Candidates for Aggregation 242
About Writing the Create Aggregates Specification 242
Generating the SQL Script File 247
About Setting the Logging Level 247
Executing the SQL Script File to Create and Delete Aggregates 247
Post Creation Activities 247

Cache Event Processing with an Event Polling Table 248
Setting Up Event Polling Tables on the Physical Databases 249
Making the Event Polling Table Active 252
Populating the Oracle BI Server Event Polling Table 253
Troubleshooting Problems with an Event Polling Table 253

Making Changes to a Repository 254

Using the Cache Manager 255
Displaying Global Cache Information 256
Purging Cache 256

About the Refresh Interval for XML Data Sources 257

Chapter 12:Connectivity and Third-Party Tools in Oracle BI
Server

Configuring Oracle BI ODBC Data Source Names (DSNs) 259

ODBC Conformance Level 261

Third-Party Tools and Relational Data Source Adapters 262

Importing Metadata 263

Exchanging Metadata with Databases 263
Finding Information on Metadata Exchange 263
Generating the Import File 264

Using Materialized Views in the Oracle Database with Oracle BI 273
About Using Oracle Database Summary Advisor with Materialized Views 273
Process of Deploying Metadata for Oracle 274

Using IBM DB2 Cube Views with Oracle BI 277
About Using IBM DB2 Cube Views with Oracle BI 278
Process of Deploying Cube Metadata 278

Chapter 13:Using Variables in the Oracle BI Repository
Using the Variable Manager 283

Understanding and Creating Repository Variables 283
Understanding and Creating Session Variables 286

Contents ■

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 9

About Using Initialization Blocks With Variables 290

Process of Creating Initialization Blocks 293
Assigning a Name and Schedule to Initialization Blocks 294
Selecting and Testing the Data Source and Connection Pool 294
Associating Variables With Initialization Blocks 298
Establishing Execution Precedence 299

Chapter 14:Clustering Oracle BI Servers
About the Cluster Server 301

Components of the Cluster Server 301

Implementing the Cluster Server 303

Chronology of a Cluster Operation 305

Using the Cluster Manager 307
Viewing and Managing Cluster Information 307

Performance Considerations 313

Chapter 15:Security in Oracle BI
Oracle BI Security Manager 315

Working with Users 315
Working with Groups 317
Importing Users and Groups from LDAP 321

Authentication Options 324
Setting Up LDAP Authentication 324
Setting Up External Table Authentication 326
Setting Up Database Authentication 327
About Oracle BI Delivers and Database Authentication 328
Maintaining Oracle BI Server User Authentication 329
Order of Authentication 330

Managing Query Execution Privileges 330

Chapter 16:Using XML as a Data Source for the Oracle BI
Server

Locating the XML URL 335

Using the Oracle BI Server XML Gateway 336
Oracle BI Server XML Gateway Example 338
Accessing HTML Tables 344
Using the Data Mining Adapter 345

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Contents ■

10

Using XML ODBC 349

XML ODBC Example 349

XML Examples 350
83.xml 350
8_sch.xml 351
84.xml 352
Island2.htm 353

Chapter 17:Oracle BI Server SQL Reference
SQL Syntax and Semantics 355

SELECT Query Specification Syntax 355
SELECT Usage Notes 356
SELECT List Syntax 357
Rules for Queries with Aggregate Functions 358
SQL Logical Operators 363
Conditional Expressions 364

SQL Reference 366
Aggregate Functions 366
Running Aggregate Functions 374
String Functions 378
Math Functions 384
Calendar Date/Time Functions 390
Conversion Functions 398
System Functions 402
Expressing Literals 402

Appendix A: Oracle BI Server Usage Tracking Data
Descriptions and Using the Log File Method

Create Table Scripts for Usage Tracking Data 405

Loading Usage Tracking Tables with Log Files 405

Description of the Usage Tracking Data 406

Appendix B: Oracle BI Server Authentication APIs

Index

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 11

1 What’s New in This Release

Oracle Business Intelligence Enterprise Edition consists of components that were formerly available
from Siebel Systems as Siebel Business Analytics Platform, with a number of significant
enhancements.

The Oracle Business Intelligence Server Administration Guide is part of the documentation set for
Oracle Business Intelligence Enterprise Edition. This guide contains information about setting up the
Oracle Business Intelligence Server. This guide contains new material and material that was
previously published under the title Siebel Business Analytics Server Administration Guide.

Oracle recommends reading the Oracle Business Intelligence Enterprise Edition Release Notes before
installing, using, or upgrading the Oracle BI Infrastructure. The Oracle Business Intelligence
Enterprise Edition Release Notes are available:

■ On the Oracle Business Intelligence Enterprise Edition CD-ROM.

■ On the Oracle Technology Network at http://www.oracle.com/technology/documentation/
bi_ee.html (to register for a free account on the Oracle Technology Network, go to http://
www.oracle.com/technology/about/index.html).

What’s New in Oracle Business Intelligence Server Administration
Guide, Version 10.1.3.2
Table 1 on page 11 lists changes described in this version of the documentation to support Release
10.1.3.2 of the software. These changes include the name of this guide and many of the products.

Table 1. Changed Features and Information in Oracle Business Intelligence Server Administration
Guide, Version 10.1.3.2

Topic Description

“Menus in the Administration Tool”
on page 18

Updated menu items to reflect changes to product names and
changed functionality.

“Keyboard Shortcuts in the
Administration Tool” on page 21

Added new shortcuts.

“Icons and Symbols in the
Administration Tool” on page 21

Added new icons for physical cube hierarchy types, opaque
views, and aggregate objects.

“Features and Options for Oracle’s
Siebel Marketing Application” on
page 24

Added topic.

“Checking the Consistency of a
Repository or a Business Model” on
page 26

Rewrote topic to describe the new Consistency Check
Manager.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

What’s New in This Release ■

12

“Using the Options Dialog Box—
General Tab” on page 29

Updated Calculation Wizard information, added import
repository option, and removed options for Time Series
Wizard and Merge repository mismatch warning.

“Using the Options Dialog Box—
Multiuser Tab” on page 33

Added information about new tab.

“Populating Logical Level Counts
Automatically” on page 36

Added topic.

“Process of Creating the Physical
Layer from Multidimensional Data
Sources” on page 58

Updated section to include support for SAP/BW and new
versions of Microsoft Analysis Services.

“Importing a Physical Schema from
Multidimensional Data Sources” on
page 59

Updated the steps to import objects to include support for
SAP/BW.

“Creating a Database Object
Manually in the Physical Layer” on
page 61

Added field needed to create a database using a virtual
private database as a source.

“Creating or Changing Connection
Pools” on page 67

Updated general properties for setting up connection pools
for all data sources.

“Setting Up Connection Pool
Properties for Multidimensional Data
Sources” on page 73

Updated general properties for setting up connection pools.

“About Physical Tables” on page 81 Updated topic.

“About Physical Alias Tables” on
page 83

Added topic.

“Creating and Administering
General Properties for Physical
Tables” on page 85

Updated this topic to include changes for multidimensional
data sources and added new properties for alias tables.

“About Measures in a
Multidimensional Data Source” on
page 88

Added topic.

“Creating and Administering
Columns and Keys in a Physical
Table” on page 87

Updated topic and procedure to include instructions for alias
tables.

“Setting Up Hierarchies in the
Physical Layer for a
Multidimensional Data Source” on
page 91

Updated topic to reflect new properties.

Table 1. Changed Features and Information in Oracle Business Intelligence Server Administration
Guide, Version 10.1.3.2

Topic Description

What’s New in This Release ■

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 13

“Updating Member Counts” on
page 94 and “Viewing Members in
Physical Cube Tables” on page 94

Added topics about updating member counts and viewing
member data.

“Deploying Opaque Views” on
page 103

Added topics that explain how to deploy, undeploy, and
remove opaque views.

“Creating Dimensions” on page 126 Updated topic.

“Creating Dimension Levels and
Keys” on page 126

Updated topic and added topics about working with time
dimensions and chronological keys.

“Selecting and Sorting
Chronological Keys in a Time
Dimension” on page 130

Added topic.

“Importing From Another
Repository” on page 154

Added information about changes to the import from
repository process.

“Querying and Managing Repository
Metadata” on page 156

Added procedures for saving queries and deleting saved
queries. Updated procedures for running queries and saving
query results to an external file.

“About Extracting Metadata Subsets
Into Projects” on page 167

Added an explanation about how project extract work.

“Setting Up the SA System Subject
Area” on page 181

Revised topic and added caution note about authorization and
authentication configuration option.

Extracting Analytics Metadata
Using Dependency Tracking

This topic replaced by “Generating and Deploying a Metadata
Dictionary” on page 187

Time Series Wizard Removed topic from “Oracle BI Administration Tool Utilities and
Expression Builder” on page 183.

Synchronize Aliases Removed topic from “Oracle BI Administration Tool Utilities and
Expression Builder” on page 183. Synchronization is now
automatic.

“Generating and Deploying a
Metadata Dictionary” on page 187

Added topic.

“Aggregate Persistence Wizard” on
page 189

Added topic.

“Calculation Wizard” on page 190 Added topic.

“About Time Series Conversion
Functions” on page 197

Added topic to update Expression Builder.

“About the IndexCol Conversion
Function” on page 199

Added topic to update Expression Builder.

Table 1. Changed Features and Information in Oracle Business Intelligence Server Administration
Guide, Version 10.1.3.2

Topic Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

What’s New in This Release ■

14

“Administering Usage Tracking” on
page 219

Added information about how usage tracking works.

“Purging and Maintaining Cache
Using ODBC Procedures” on
page 235

Added information about the SAGetSharedRequestKey ODBC
procedure.

“Storing and Purging Cache for SAP/
BW Data Sources” on page 237

Added topic.

“Creating Aggregates for Oracle BI
Server Queries” on page 241

Added topics.

“Understanding and Creating
Session Variables” on page 286

Added description of Oracle Business Intelligence
Disconnected Analytics variables.

“Creating Repository Variables” on
page 285 and “Creating Session
Variables” on page 289

Reorganized and updated these topics to reflect the changes
in user interface design. Also added information about virtual
private database parameters.

“About Using Initialization Blocks
With Variables” on page 290 and
“Process of Creating Initialization
Blocks” on page 293

Revised all topics to conform to new user interface.

“About Authenticating Users Using
Initialization Blocks” on page 293

Retitled and revised topics.

“Clustering Oracle BI Servers” on
page 301

Added information about Oracle BI Scheduler to this chapter.

“Setting Parameters in the
NQSConfig.INI File” on page 304
and “Setting Parameters in the
NQClusterConfig.INI File” on
page 304

Removed parameters from these topics. Parameters are
described in the Oracle Business Intelligence Infrastructure
Installation and Configuration Guide.

“Setting Up LDAP Authentication” on
page 324 and “Maintaining Oracle
BI Server User Authentication” on
page 329

Expanded and reorganized topics about LDAP authentication.

“Maintaining Oracle BI Server User
Authentication” on page 329

Added cross-reference to Oracle Business Intelligence
Enterprise Edition Deployment Guide.

“Using FILTER to Compute a
Conditional Aggregate” on page 362

Added topic.

“Aggregate Functions” on page 366 Added and updated several topics about time series
functions.

 “IndexCol” on page 400 Added conversion function.

Table 1. Changed Features and Information in Oracle Business Intelligence Server Administration
Guide, Version 10.1.3.2

Topic Description

What’s New in This Release ■

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 15

Other Documentation Changes
■ Added notes throughout the guide to identify the repository Presentation layer catalogs as

subject areas.

“Description of the Usage Tracking
Data” on page 406

Added data columns.

“Oracle BI Server Authentication
APIs” on page 409

Added appendix.

Table 1. Changed Features and Information in Oracle Business Intelligence Server Administration
Guide, Version 10.1.3.2

Topic Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

What’s New in This Release ■

16

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 17

2 Oracle BI Administration Tool
Basics

This section provides an overview of the user interface components included in the Administration
Tool. The Administration Tool is a Windows application that allows the Oracle BI Administrator to
create and edit repositories.

NOTE: In this guide, tables of values and descriptions contain only values that need a detailed
description. Self-explanatory values such as Show Toolbar do not need to be listed.

This section contains the following topics:

■ Administration Tool User Interface Components on page 17

■ Features and Options for Oracle’s Siebel Marketing Application on page 24

■ Online and Offline Repository Modes on page 24

■ Checking the Consistency of a Repository or a Business Model on page 26

■ Setting Preferences on page 29

■ Setting Permissions for Repository Objects on page 33

■ Editing, Deleting, and Reordering Objects in the Repository on page 35

■ Displaying and Updating Row Counts for Tables and Columns on page 35

■ Using the Browse Dialog Box on page 37

Administration Tool User Interface
Components
This section includes a description of the following interface components:

■ Main Window in the Administration Tool on page 17

■ Menus in the Administration Tool on page 18

■ Toolbar in the Administration Tool on page 20

■ Keyboard Shortcuts in the Administration Tool on page 21

■ Icons and Symbols in the Administration Tool on page 21

■ Online Help in the Administration Tool on page 24

Main Window in the Administration Tool
The main window of the Administration Tool is a graphical representation of the following three parts
of a repository:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Basics ■ Administration Tool User Interface Components

18

■ Physical layer. Represents the physical structure of the data sources to which the Oracle BI
Server submits queries. This layer is displayed in the right pane of the Administration Tool.

■ Business Model and Mapping layer. Represents the logical structure of the information in the
repository. The business models contain logical columns arranged in logical tables, logical joins,
and dimensional hierarchy definitions. This layer also contains the mappings from the logical
columns to the source data in the Physical layer. It is displayed in the middle pane of the
Administration Tool.

■ Presentation layer. Represents the presentation structure of the repository. This layer allows
you to present a view different from the Business Model and Mapping layer to users. It is
displayed in the left pane of the Administration Tool.

Figure 1 on page 18 shows the three layers of a repository, as described in the preceding list.

Menus in the Administration Tool
The Administration Tool includes the following menus:

File
The File menu contains options to work with repositories as well as several server-related options
that are active when a repository is open in online mode. Before you open a repository, the File menu
has fewer commands available.

Figure 1. Example Administration Tool Main Window

Oracle BI Administration Tool Basics ■ Administration Tool User Interface Components

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 19

Edit
The Edit menu options allow you to perform basic editing functions (cut, copy, paste, duplicate, and
delete) on objects in a repository. Additionally, you can view and edit some of the object properties.

View
The View menu options toggle the view of specific metadata panes, give you access to the Join
diagrams, and refresh the repository view.

Manage
The Manage menu allows you to access the management functions described in Table 2 on page 19.

Tools
The Tools menu options allow you to update all row counts, open the Query Repository dialog box,
set options for the Administration Tool, and work with various utilities.

Table 2. Manage Menu Functions

Menu Option Description

Jobs This option is available when a repository is opened in online mode. The Job
Manager is the management interface to Oracle Business Intelligence Scheduler
Guide. For more information about using BI Scheduler, see Oracle Business
Intelligence Scheduler Guide.

Sessions This option is available when a repository is opened in online mode. In the
Session Manager, you can monitor activity on the system, including the current
values of repository and session variables.

Cache This option is available when a repository is opened in online mode and caching
is enabled. The Cache Manager allows you to monitor and manage the cache.

Clusters This option is available when the Oracle BI Cluster Server is installed. The Cluster
Manager monitors and manages the operations and activities of the cluster.

Security The Security Manager displays security information for a repository and provides
a central location for security configuration and management.

Joins The Joins Manager allows you to work with physical and logical joins.

Variables The Variables Manager allows you to create, edit or delete variables.

Projects The Project Manager allows you to create, edit, or remove projects or project
elements. Project elements include presentation catalogs (repository subject
areas), logical fact tables, groups, users, variables, and initialization blocks. You
use projects during multiuser development. For more information, refer to
“Setting Up a Multiuser Development Environment (Administrator)” on page 170.

Marketing Applies to Oracle’s Siebel Marketing product. You need a separate license to use
this product. For information about using Marketing with Oracle BI, refer to the
administrator documentation for the Siebel Marketing application.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Basics ■ Administration Tool User Interface Components

20

Window
The Window menu options allow you to cascade or tile open layer windows and toggle among them.

NOTE: The Cascade and Tile options are only available if you clear the Tile when resizing check box
in the Tools > Options dialog box, in the General tab.

Help
The Help menu allows you to obtain the following information:

■ Help Topics. Access the online help system for the Administration Tool.

■ Oracle on Web. Access the Oracle Web site.

■ About Administration Tool. Obtain version information about Oracle BI Server Administration
Tool.

Toolbar in the Administration Tool
The toolbar provides access to functions that you use frequently.

To toggle the toolbar on and off
■ Select Tools > Options > Show Toolbar.

To dock the toolbar
■ Place your cursor on the double bars to the left of the toolbar, and then click and drag to where

you want to place the toolbar.

Oracle BI Administration Tool Basics ■ Administration Tool User Interface Components

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 21

Keyboard Shortcuts in the Administration Tool
Table 3 on page 21 presents the keyboard shortcuts you can use in the Administration Tool to perform
frequent tasks.

Icons and Symbols in the Administration Tool
For most icons, you can obtain the object type by, double-clicking the icon and reading the title bar
of the dialog box. Table 4 on page 21 presents some of the icons and symbols that elaborate on the
name in the title bar. Some of the items in this list are symbols used in conjunction with other icons
to expand their meanings.

Table 3. Keyboard Shortcuts

Menu Command Shortcut

File New

Open > Offline

Open > Online

Save

Check Global Consistency

CTRL + N

CTRL + F

CTRL + L

CTRL + S

CTRL + K

Edit Cut

Copy

Paste

Delete

CTRL + X

CTRL + C

CTRL + V

DEL

View Refresh F5

Tools Show Consistency Checker

Query Repository

CTRL + E

CTRL + Q

Table 4. Icons and Symbols

Icon or
Symbol What It Represents

Stored procedure call object, as specified by the Object Type option in the General
tab of the Physical Table dialog box.

View object.

Opaque view object after deployed.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Basics ■ Administration Tool User Interface Components

22

A primary key for a physical or logical table (yellow).

A foreign key for a physical or logical table in the Joins Manager (gray).

A key for a logical dimension level (blue).

A key for a multidimensional data source physical level (green).

A physical or logical complex join in the Joins Manager.

Unknown hierarchy type. Typically, this icon is assigned to a hierarchy when a cube
is imported. You need to assign a valid type to each hierarchy after import.

Fully Balanced hierarchy type for a multidimensional data source in the Physical
layer.

Unbalanced hierarchy type for a multidimensional data source in the Physical layer.

Ragged Balanced hierarchy type for a multidimensional data source in the Physical
layer.

Network hierarchy type for a multidimensional data source in the Physical layer.

A level in the Business Model and Mapping layer.

A level in the Business Model and Mapping layer in which a level key contains one
or more columns from another level.

A level for a multidimensional data source in the Physical layer.

A physical or logical column.

A logical column with an aggregation rule.

A derived logical column.

Table 4. Icons and Symbols

Icon or
Symbol What It Represents

Oracle BI Administration Tool Basics ■ Administration Tool User Interface Components

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 23

A physical cube column from a multidimensional data source. This icon represents
columns that are not measures.

A physical cube column from a multidimensional data source. This icon represents
columns that are measures.

An invalid item. For example, a column may be invalid, if it has no physical mapping.

A collapsed business model in the Business Model and Mapping layer that is not
available for queries.

An expanded business model in the Business Model and Mapping layer that is not
available for queries.

An item that contains an attribute definition.

Overlays other symbols to indicate a new item that has not been checked in
(appears in online mode only). For example, this icon would appear on top of an
alias table icon to indicate an alias table is new.

A system DSN ODBC entry. Appears in the Import dialog box.

A measure definition.

Overlays other icons to indicate an object that is checked out. For example, this icon
would appear on top of a table icon to indicate that the table has been checked out.

A static repository variable.

A dynamic repository variable.

A system session variable.

A nonsystem session variable.

An initialization block.

A group association (appears only in the results display of the Query Repository
dialog box).

Table 4. Icons and Symbols

Icon or
Symbol What It Represents

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Basics ■ Features and Options for Oracle’s Siebel
Marketing Application

24

Online Help in the Administration Tool
Most windows and dialog boxes have help buttons that open online help topics containing information
to help you complete a task.

Features and Options for Oracle’s Siebel
Marketing Application
Some features and options in the Oracle BI Server Administration Tool are for use by organizations
that have Siebel Marketing. For information, refer to the administrator documentation for the Siebel
Marketing application.

Online and Offline Repository Modes
You can open a repository for editing in either online or offline mode. You can perform different tasks
based on the mode in which you opened the repository.

This section includes the following topics:

■ Opening a Repository in Offline Mode on page 25

■ Opening a Repository in Online Mode on page 25

■ Checking In Changes on page 26

A level-to-level relationship (appears only in the results display of the Query
Repository dialog box).

A type privilege (appears only in the results display of the Query Repository dialog
box).

A query privilege (appears only in the results display of the Query Repository dialog
box).

A privilege package (appears only in the results display of the Query Repository
dialog box).

An object privilege (appears only in the results display of the Query Repository
dialog box).

Overlays other icons to indicate an object that has been cut. Appears with other
symbols, for example, to indicate that a cut item is an alias table.

Table 4. Icons and Symbols

Icon or
Symbol What It Represents

Oracle BI Administration Tool Basics ■ Online and Offline Repository Modes

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 25

Opening a Repository in Offline Mode
Use offline mode to view and modify a repository while it is not loaded into the Oracle BI Server. If
you attempt to open a repository in offline mode while it is loaded into the Oracle BI Server, the
repository opens in read-only mode. Only one Administration Tool session at a time can edit a
repository in offline mode.

To open a repository in offline mode

1 In the Administration Tool, select File > Open > Offline.

2 Navigate to the repository you want to open, and then select Open.

3 In the Open Offline dialog box, type a valid user ID and password, and then click OK.

This opens the repository for editing.

NOTE: If the server is running and the repository you are trying to open is loaded, the repository
will only open in read-only mode. If you want to edit the repository while it is loaded, you have
to open it in online mode. Also, if you open a repository in offline mode and then start the server,
the repository will be available to users; any changes you make will become available only when
the server is restarted.

Opening a Repository in Online Mode
Use online mode to view and modify a repository while it is loaded into the Oracle BI Server. The
Oracle BI Server must be running to open a repository in online mode. There are certain things you
can do in online mode that you cannot do in offline mode. In online mode, you can perform the
following tasks:

■ Manage scheduled jobs

■ Manage user sessions

■ Manage the query cache

■ Manage clustered servers

■ Stop the Oracle BI Server

To open a repository in online mode

1 In the Administration Tool, select File > Open > Online.

The Open Online Repository dialog box appears, from which you select a data source.

The data sources displayed in the dialog box are all the User and System DSNs on your computer
that are configured using the Oracle BI ODBC driver.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Basics ■ Checking the Consistency of a Repository or a
Business Model

26

2 Select a data source, type a valid user ID and password, and then click OK.

The repository opens that contains the business model corresponding to the data source
selected.

NOTE: If you expect to work extensively with the repository (for example, you plan to check out
many objects), select the Load all objects option. This loads all objects immediately, rather than
as selected. The initial connect time may increase slightly, but opening items in the tree and
checking out items will be faster.

Checking In Changes
When you are working in a repository open in online mode, you will be prompted to perform a
consistency check before checking in the changes you make to a repository.

If you have made changes to a repository and then attempt to close the repository without first
checking in your changes, a dialog box opens automatically asking you to select an action to take.
If you move an object from beneath its parent and then attempt to delete the parent, you will be
prompted to check in changes before the delete is allowed to proceed.

Use the Check in Changes dialog box to perform the following tasks:

■ Make changes available immediately for use by other applications. Applications that query the
Oracle BI Server after you have checked in the changes will recognize them immediately.
Applications that are currently querying the server will recognize the changes the next time they
access any items that have changed.

■ Specify that repository changes should be written to disk immediately. If the Oracle BI Server is
shut down abnormally, using the Check Changes dialog box will make sure that checked-in
changes to the repository can be recovered. Changes that are checked in but not saved to disk
will be restored through the server’s error recovery processing. (This processing takes place
automatically whenever the Oracle BI Server has been shut down abnormally.)

To make changes available and have them saved to disk immediately
■ In the Administration Tool, select File > Check in Changes.

If the Administration Tool detects an invalid change, an informational message appears to alert you
to the nature of the problem. Correct the problem and perform the check-in again.

NOTE: If you make changes to a repository open in online mode, and then attempt to stop the Oracle
BI Server, this option will not be available. This is because your changes will be saved automatically
when the server shuts down.

Checking the Consistency of a
Repository or a Business Model
Repository metadata must pass a consistency check before you can make the repository available
for queries. The Consistency Check Manager allows you to enable and disable rules for consistency
checks, navigate to and fix inconsistent objects, and limit the consistency check to specific objects.

Oracle BI Administration Tool Basics ■ Checking the Consistency of a Repository or a
Business Model

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 27

The Consistency Check Manager does not check the validity of objects outside the metadata using
the connection. It only checks the consistency of the metadata and not any mapping to the physical
objects outside the metadata. If the connection is not working or objects have been deleted in the
database, the Consistency Check Manager will not report these errors.

The consistency checker returns the following types of messages:

■ Error. These messages describe errors that need to be fixed. Use the information in the message
to correct the inconsistency, and then run the consistency checker again. The following is an
example of an error message:

[38082] Type of Hierarchy '"0RT_C41"..."0RT_C41/MDF_BW_Q02"."Product Hierarchy for
Material MARA"' in Cube Table '"0RT_C41"..."0RT_C41/MDF_BW_Q02"' needs to be set.

NOTE: If you disable an object and it is inconsistent, you will receive a message asking if you
want to make it unavailable for queries.

■ Warning. These messages indicate conditions that may or may not be errors, depending upon
the intent of the Oracle BI Administrator. For example, a warning message about a disabled join
may be the result of the Oracle BI Administrator intentionally disabling a join, such as eliminating
a circular join condition. The following is an example of a warning message:

[39024] Dimension '"Paint"."MarketDim"' has defined inconsistent values in its
levels' property 'Number of elements'.

■ Best practices. These messages provide information about conditions but do not indicate an
inconsistency. The message appears if a condition violates a best practice recommendation. The
following is an example of a best practice message:

[89001] The Physical Table '"XLS_Forecast"."Forecast".."Sheet1$"' has no keys
defined.

NOTE: After upgrading from a previous software version and checking the consistency of your
repository, you might notice messages that you had not received in previous consistency checks. This
typically indicates inconsistencies that had been undetected prior to the upgrade, not new errors.

In the Consistency Check Manager, in the Messages tab, you can sort the rows of messages by
clicking the column headings. Additionally, the status bar provides a summary of all the rows
displayed

Setting Up Consistency Check Manager
During installation, a default subset of rules is installed. On each workstation, users can use the
default subset of rules or change the subset by adding or deleting rules. By default, all consistency
check rules are enabled and all types of messages are set to display after you run a consistency
check. You can disable any of the consistency check rules and change the messages list so that one
or more of the messages types do not appear. However, at least one message type must be enabled.

To set up the Consistency Check Manager

1 In the Administration Tool, select Tools > Show Consistency Checker.

2 In the Consistency Check Manager, in the Messages tab, perform the following steps:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Basics ■ Checking the Consistency of a Repository or a
Business Model

28

a Clear the check box for any message types that you do not want to display.

b If you want the message to show the fully qualified name of each object, select the Show
Qualified Name check box.

3 Click the Options tab.

4 Expand each message type.

5 To disable an enabled rule, select the rule and click Disable.

6 To enable a disabled rule, select the rule and click Enable.

7 If you do not want to check for consistency at this time, click Close.

Checking the Consistency of a Repository
Currently you can check consistency in the following ways:

■ You can check global consistency of the repository from the File menu and from the Consistency
Check Manager (Check All Objects). If you disabled any rules in Consistency Check Manager,
those rules will not be checked.

NOTE: If you disable an object and it is inconsistent, You will receive a message asking if you
want to make it unavailable for queries.

■ You can check the consistency of a business model from the right click menu of a business model.

■ You can check the consistency of some or all of the objects in the repository from the Consistency
Check Manager. To limit the objects that are checked, in Consistency Check Manager, in the
Options tab, you disable the rules for objects that you want to exclude.

To check the consistency of a repository

1 In the Administration Tool, from the Tools menu, select Show Consistency Checker.

If you checked consistency in the current session, the messages from the last check appear in
the Messages tab.

2 In Consistency Check Manager, click the Options tab and verify the rules are set appropriately.

3 Click the Messages tab and click Check All Objects.

If you already have checked consistency in the current session and then change the rules, you
might notice different messages.

4 To edit the repository to correct inconsistencies, perform the following steps:

a Double-click any cell in a row and the properties dialog box for that object opens.

b In the properties dialog box for the object, correct the inconsistency, and then click OK.

5 To copy the messages so that you can paste them in another file such as a spreadsheet, click
Copy.

Oracle BI Administration Tool Basics ■ Setting Preferences

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 29

6 To check consistency again, click Check All Objects.

When you select Show Consistency Checker from the Tools menu or Check Global Consistency
from the File menu, the refresh button in the top right corner of the Consistency Check Manager
dialog box checks all objects.

7 When finished, click Close.

To check the consistency of a single object in a repository

1 In the Administration Tool, right-click an object, and then select Check Consistency.

If the object is not consistent, a list of messages appears.

2 To edit the repository to correct inconsistencies, perform the following steps:

a Double-click any cell in a row and the properties dialog box for that object opens.

b In the properties dialog box for the object, correct the inconsistency, and then click OK.

3 To copy the messages so that you can paste them in another file such as a spreadsheet, click
Copy.

4 To check consistency of the object again, click the refresh button at the top right corner of the
dialog box.

NOTE: If you click Check All Objects, all objects in the repository will be checked.

Setting Preferences
You can use the Options dialog box to set preferences for the Administration Tool.

This section includes the following topics:

■ Using the Options Dialog Box—General Tab on page 29

■ Using the Options Dialog Box—Repository Tab on page 31

■ Using the Options Dialog Box—Sort Objects Tab on page 32

■ Using the Options Dialog Box—Cache Manager Tab on page 32

■ Using the Options Dialog Box—Multiuser Tab on page 33

■ Using the Options Dialog Box—More Tab on page 33

Using the Options Dialog Box—General Tab
Use the General tab of the Options dialog box to set general preferences for the Administration Tool.

To set general preferences

1 In the Administration Tool, select Tools > Options.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Basics ■ Setting Preferences

30

2 In the Options dialog box, select the General tab.

3 Select the options you want.

The following list contains the options that need additional explanation:

Option Action When Selected

Tile when resizing Automatically tiles the layer panes of the repository
when you resize the Administration Tool. When this
option is checked, the Cascade and Tile options are not
available in the Windows menu of the Administration
Tool.

Display qualified names in diagrams Makes it easier to identify table sources.

Display original names for alias in
diagrams

Makes it easier to identify the actual table referenced.

Show Calculation Wizard
introduction page

Displays the Calculation Wizard introduction page. The
introduction page also contains an option to suppress
its display in the future.

Use the Calculation Wizard to create new calculation
columns that compare two existing columns and to
create metrics in bulk (aggregated), including existing
error trapping for NULL and divide by zero logic.

You start the Calculation Wizard in the Business Model
and Mapping layer by right-clicking any logical fact or
dimension column of data type numeric, and then
selecting the option Calculation Wizard.

NOTE: Time Series calculation is not allowed for a
logical table not identified as a time dimension. For
more information, refer to topics about time dimensions
in “Process of Creating and Administering Dimensions” on
page 126.

Check out objects automatically (online mode only) Automatically checks out the object
when you double-click it.

NOTE: If the option is not selected, you will be
prompted to check out the object before you can edit it.

Oracle BI Administration Tool Basics ■ Setting Preferences

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 31

Using the Options Dialog Box—Repository Tab
You can set the following values in the Repository tab:

■ Show tables and dimensions only under display folders. Oracle BI Administrators can
create display folders to organize objects in the Physical and Business Model and Mapping layers.
They have no metadata meaning. After you create a display folder, the selected objects appear
in the folder as a shortcut and in the database or business model tree as an object. You can hide
the objects so that only the shortcuts appear in the display folder.

For more information about creating display folders, refer to “Setting Up Display Folders in the
Physical Layer” on page 98 and “Setting Up Display Folders in the Business Model and Mapping
Layer” on page 136.

Show row count in physical view Displays row counts for physical tables and columns in
the Physical Layer. Row counts will not initially display
until they are updated. To update the counts, select
Tools > Update All Row Counts. You can also right-click
on a table or column in the Physical Layer and select the
option Update Row Count.

Note: Row counts are not shown for items that are
stored procedure calls (from the optional Object Type
drop-down list in the General tab of the Physical Table
dialog). Row counts are not available for XML, XML
Server, or multidimensional databases. You cannot
update row counts on any new objects until you check
them in.

Prompt when moving logical columns Allows you to ignore, specify an existing, or create a
new logical table source for a moved column.

Remove unused physical tables after
Merge

Executes a utility to clean the repository of unused
physical objects. It might make the resulting repository
smaller.

Allow import from repository When checked, the Import from repository option on
the File menu becomes available.

NOTE: By default, the Import from repository option on
the File menu is disabled and this option will not be
supported in the future. It is recommended that you
create projects in the repository that contain the
objects that you wish to import, and then use repository
merge to bring the projects into your current repository.
For more information, see “About Extracting Metadata
Subsets Into Projects” on page 167.

Option Action When Selected

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Basics ■ Setting Preferences

32

■ Hide level-based measure. When selected, level-based measures (columns for which the
aggregation rule is other than NONE) will not appear in the Business Model and Mapping layer
under the level.

To set options in the Repository tab

1 From the menu bar, choose Tools > Options.

2 In the Options dialog box, click the Repository tab.

3 In the Repository tab, select the options you wish to choose, and then click OK.

Using the Options Dialog Box—Sort Objects Tab
Use the Sort Objects tab to specify which repository objects appear in the Administration Tool in
alphabetical order.

To specify which repository objects appear in alphabetical order

1 In the Administration Tool, select Tools > Options.

2 In the Options dialog box, select the Sort Objects tab.

3 Check the boxes for the objects you want to appear in alphabetical order.

For example, if you want the database objects that appear in the Physical layer to appear in
alphabetical order, select the Database check box.

Using the Options Dialog Box—Cache Manager Tab
Use the Cache Manager tab to choose the columns that should be shown in the Cache Manager and
the order in which they will be displayed on the Cache tab of the Cache Manager.

To select columns to display in the Cache Manager

1 In the Administration Tool, select Tools > Options.

2 In the Options dialog box, select the Cache Manager tab.

3 Check the boxes for the columns you want display in the Cache Manager.

Clicking on an already checked box removes the check mark. Unchecked items will not appear in
the display.

4 To change the order of columns in the Cache Manager, select an item, and then use the Up and
Down buttons to change its position.

Oracle BI Administration Tool Basics ■ Setting Permissions for Repository Objects

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 33

Using the Options Dialog Box—Multiuser Tab
Use the Multiuser tab to specify the path to the multiuser development directory. For more
information, refer to “Setting Up a Pointer to the Multiuser Development Directory” on page 172.

Using the Options Dialog Box—More Tab
Use the More tab to set the speed when scrolling through the trees in various Administration Tool
dialog boxes, and to set the default window size for the join diagrams.

To set the scrolling speed and default window size

1 In the Administration Tool, select Tools > Options.

2 In the Options dialog box, select the More tab.

3 Position the cursor on the Scrolling Speed slider to set the speed.

4 In the Default diagram zoom drop-down list, you can choose a percentage or Best Fit.

The default window size is Best Fit. If you use the Best Fit option, the following rules apply:

■ If there are five or fewer objects, the zoom level will be 50%.

■ If there are more than five objects, the zoom level changes automatically to Zoom to Fit.

Setting Permissions for Repository
Objects
You can assign user and group permissions to connection pools in the Physical layer and to
Presentation layer objects. Additionally, you use Security Manager to set up privileges and
permissions. For more information about managing security, refer to “Oracle BI Security Manager” on
page 315.

The Permissions dialog box displays all currently defined users and groups. to see all users and
groups, select the check box named Show all users/groups. For each user and group, you can allow
or disallow access privileges for an object by clicking in the check box to toggle among the following
options:

■ A check mark indicates that a permission is granted.

■ An X indicates that a permission is denied.

■ An empty check box indicates that a permission has not been modified.

You can access the Permissions dialog box from the following dialog boxes:

■ Connection Pool—General tab

■ Presentation Catalog Folder—General tab

NOTE: The term Presentation Catalog in the Administration Tool refers to subject areas.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Basics ■ Setting Permissions for Repository Objects

34

■ Presentation Table—General tab

■ Presentation Column—General tab

To add or edit permissions from a connection pool

1 Open a repository in the Administration Tool, expand a physical database, and double-click a
connection pool.

2 In the Connection Pool dialog box, click Permissions.

3 In the Permissions dialog box, select the appropriate options for each user and group that you
want to modify.

4 Click OK.

Sorting Columns in the Permissions Dialog box
There are six ways that you can sort the types and User/Group names. In the Permissions dialog box,
there are three columns. The first column (sort on this column) has no heading and contains an icon
that represents the type of user or group of users. The second column (sort on this column) contains
the name of the User/Group object, and the third column (cannot sort on this column) contains the
Read check box. To change the sort, click the heading of the first or second column.

There are three ways to sort by type and two ways to sort the list of user and group names. This
results in a total of six possible sort results (3 x 2 = 6). The following list shows the sort results
available by clicking the type column:

■ Everyone, Groups, Users (ascending by name of type)

■ Users, Groups, Everyone (descending by name of type)

■ Type column is in no particular order (Type value is ignored as all names in User/Group column
are sorted in ascending order by value in User/Group column)

The following list shows the sort results available by clicking the User/Group column:

■ Ascending within the type

■ Descending within the type

Examples of Sorting Columns in the Permissions Dialog Box
If you want to sort all rows first by type in ascending order and then, within type, sort the User/
Group names in ascending order, use the following steps in the sequence shown:

1 Click the blank heading above the type column until the Everyone type appears at the top.

The type column is in ascending order.

2 If the User/Group name column is in descending order within each type, click the User/Group
heading once.

The list is sorted by type in ascending order and then within type, by User/Group names in
ascending order.

Oracle BI Administration Tool Basics ■ Editing, Deleting, and Reordering Objects in the
Repository

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 35

3 To change the sort by type to descending order, leaving the User/Group names in ascending
order, click the type (blank) heading once.

4 To change the sort to ignore the type column and sort only on the names in the User/Group
column in ascending order, click the type heading once more.

5 To continue ignoring the type column and change the sort for the names in the User/Group
column to be in descending order, click the User/Group heading.

Editing, Deleting, and Reordering
Objects in the Repository
This section contains the standard steps for editing, deleting, and reordering objects. These
instructions will not be repeated for each object in the chapters discussing the layers of the
repository unless the material is needed to perform a task.

■ To edit objects, double-click the object and complete the fields in the dialog box that appears. In
some dialog boxes, you can click Edit to open the appropriate dialog box.

■ To delete objects, select the object and click Delete.

■ To reorder objects, drag and drop an object to a new location. In some dialog boxes, you can use
an up or down arrow to move objects to a new location.

NOTE: Reordering is only possible for certain objects and in certain dialog boxes.

Displaying and Updating Row Counts for
Tables and Columns
When you request row counts, the Administration Tool retrieves the number of rows from the physical
database for all or selected tables and columns (distinct values are retrieved for columns) and stores
those values in the repository. The time this process takes depends upon the number of row counts
retrieved.

When updating all row counts, the Updating Row Counts window appears while row counts are
retrieved and stored. If you click Cancel, the retrieve process stops after the in-process table (and
its columns) have been retrieved. Row counts include all tables and columns for which values were
retrieved prior to the cancel operation.

Updating all row counts for a large repository might take a long time to complete. Therefore, you
sometimes might want to update only selected table and column counts.

Row counts are not available for the following:

■ Stored Procedure object types

■ XML data sources and XML Server databases

■ Multidimensional data sources. For information about member counts, refer to “Updating Member
Counts” on page 94.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Basics ■ Populating Logical Level Counts Automatically

36

■ Data sources that do not support the CountDistinct function, such as Microsoft Access, Microsoft
Excel

■ In Online mode, Update Row Count will not work with connection pools in which the session
variables :USER and :PASSWORD are set as the user name and password.

In offline mode, the Set values for variables dialog box appears so that you can populate the
session variables :USER and :PASSWORD.

■ In online mode, after importing or manually creating a physical table or column, Oracle BI Server
does not recognize the new objects until you check them in. Therefore, Update Row Count will
not be available in the menu until you check in these objects.

To display row counts in the Physical layer

1 Select Tools > Options.

2 In the General tab of the Options dialog box, select the option Show row count in physical view,
and then click OK.

To update selected row counts in the Physical layer

1 In the Physical layer, right-click a single table or column.

You can select multiple objects and then right-click.

2 In the shortcut menu, select Update Rowcount.

To update all row counts in the Physical layer

1 Select Tools > Update All Row Counts.

If the repository is open in online mode, the Check Out Objects window may open.

2 Click Yes to check out the objects.

Any row counts that have changed since the last update will be refreshed.

Populating Logical Level Counts
Automatically
Estimate Levels allows the Oracle BI Administrator to automatically populate level counts for one or
more dimension hierarchies. Level counts are utilized by the query engine to determine the most
optimal query plan and optimizes overall system performance.

The repository needs to be opened in online mode and the business model must be available for
query. Then, in the Business Model and Mapping layer, the Oracle BI Administrator can select any of
the following logical layer elements, and then execute the Estimate Levels command:

■ Business model. Must be available for query. If you select this object, the Administration Tool will
attempt to check out all objects in the business model.

Oracle BI Administration Tool Basics ■ Using the Browse Dialog Box

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 37

■ Dimension. The Oracle BI Administrator should run a consistency check on dimensions to make
sure that the dimension is logically sound.

■ A combination of business models and dimensions. The Oracle BI Administrator can select
multiple dimensions and multiple business models individually.

When run, the Estimate Levels command also launches a consistency check on the level counts as
described in the following list:

■ Checks that a level key is valid. Columns in levels have referential integrity.

■ Checks the parent-child relationship. If the parent level count is greater that the child level count,
an error is returned.

■ Generates a run report that lists all the counts that were estimated and any errors or consistency
warnings.

■ The queries and errors are logged to NQQuery.log on the Oracle BI Server.

NOTE: Set the log level at 4 or higher to write this info to the log file. For more information, see
the topic about setting the logging level in “Administering the Query Log” on page 214.

To populate logical level counts automatically

1 In the Administration Tool, open a repository in online mode.

2 Right-click one or more business models and dimension objects, and choose Estimate Levels.

3 In the Check Out Objects dialog box, click Yes to check out the objects that appear in the list.

NOTE: If you click No, the action terminates because you must check out items to run Estimate
Levels.

In the Oracle BI Administration Tool dialog box, a list of the dimension level counts and any errors
or warning messages appear.

When you check in the objects, you can check the global consistency of your repository.

Using the Browse Dialog Box
The Browse dialog box appears in many situations in the Administration. You use it to navigate to
and select an object.

The Browse dialog box is accessible from a number of dialog boxes that allow you to make a selection
from among existing objects.

■ The left pane of the Browse dialog box contains the following parts:

■ A tree listing all of the objects in the Presentation Layer, Business Model and Mapping Layer
and the Physical Layer of a repository.

■ Tabs at the bottom of the left pane allow you to select a layer. Only the tabs for the layers
that contain objects that can be manipulated in the dialog box from which you entered the
Browse dialog box will appear.

■ The right pane of the Browse dialog box contains the following parts:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Basics ■ Using the Browse Dialog Box

38

■ Query allows you to query objects in the repository by name and type. The Name field
accepts an asterisk (*) as the wild card character, so you can query for partial matches.

■ The Show Qualified Names check box allows you to identify to which parents an object
belongs.

■ View allows you to view properties of a selected object in read-only mode.

To query for an object in the Browse dialog box

1 Select the object type from the Type drop-down list.

2 Type the name of the object or a part of the name and the wild card character (*) in the Name
field. Refer to the following examples:

■ To search for logical tables that have names beginning with the letter Q, select Logical Tables
from the Type drop-down list, and then type Q* in the Name field.

■ To search for logical tables that have names ending with the letters dim, type *dim in the
name field.

3 Click the Query button.

Relevant objects appear in the query results list.

To select an object in the Browse dialog box
■ Select the object you want to select, and then click Select.

The Browse dialog box closes, and the object appears in the previous dialog box.

To synchronize an object in the query results list with the tree control list

1 Select an object in the Query list.

2 Click the Synchronize Contents icon.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 39

3 Planning and Creating an Oracle
BI Repository

This chapter contains the following topics:

■ Roadmap for Planning and Setting Up an Oracle BI Repository on page 39

■ Process of Oracle BI Repository Planning and Design on page 39

■ Creating a New Oracle BI Repository File on page 54

Roadmap for Planning and Setting Up an
Oracle BI Repository
The roadmap topics are discussed in several chapters in this book. The following are the topics that
you will use to plan and set up an Oracle BI repository:

■ Process of Oracle BI Repository Planning and Design on page 39

■ Creating a New Oracle BI Repository File on page 54

■ Chapter 4, “Creating and Administering the Physical Layer in an Oracle BI Repository”

■ Chapter 5, “Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository”

■ Chapter 6, “Creating and Maintaining the Presentation Layer in an Oracle BI Repository”

■ Chapter 7, “Completing Setup and Managing Oracle BI Repository Files”

Process of Oracle BI Repository
Planning and Design
This section contains the following topics:

■ About Repository Planning and Design on page 39

■ Planning Your Business Model on page 40

■ Identifying the Database Content For The Business Model on page 45

■ Guidelines For Designing a Repository on page 50

About Repository Planning and Design
This topic is part of the “Process of Oracle BI Repository Planning and Design” on page 39.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Planning and Creating an Oracle BI Repository ■ Process of Oracle BI Repository
Planning and Design

40

Before you create a repository or modify the repository that was shipped with Oracle Business
Intelligence, you need to plan your business model and develop a design for the repository.

An Oracle BI repository has the following layers:

■ Repository Physical layer. You create this layer (schema) first from the tables in your physical
databases.

CAUTION: Before you create the physical layer of your repository, you must thoroughly analyze
and understand your business requirements, business data model, and your users so that you
can set up the physical layer correctly. For more information, refer to “Planning Your Business
Model” on page 40.

■ Repository Business Model and Mapping layer. After you set up the Physical layer, you can create
the Business Model and Mapping layer by dragging and dropping the Physical layer onto the
Business Model and Mapping layer. This preserves the mapping that you established in the
Physical layer.

■ Repository Presentation layer. After you set up the Business Model and Mapping layer, you can
create the Presentation layer by dragging and dropping the Business Model and Mapping layer
onto the Presentation layer. This layer provides the objects that the end user will access through
an application such as Oracle’s Siebel Marketing.

Customization involves modifying the Physical, Business Model and Mapping, and Presentation
layers. This is a sensitive task and should be done very carefully. It is recommended that you use
the information in this chapter when designing and customizing your Oracle BI repository.

Planning Your Business Model
This topic is part of the “Process of Oracle BI Repository Planning and Design” on page 39.

Planning your business model is the first step in developing a usable data model for decision support.
After you have followed the planning guidelines in this section, you can begin to create your
repository. This section contains the following topics:

■ Analyzing Your Business Model on page 40

■ Identifying the Content of The Business Model on page 41

Analyzing Your Business Model
Your first task is to thoroughly understand your business model. You have to understand what
business model you want to build before you can determine what the physical layer needs to have
in it.

In a decision support environment, the objective of data modeling is to design a model that presents
business information in a manner that parallels business analysts’ understanding of the business
structure. A successful model allows the query process to become a natural process by allowing
analysts to structure queries in the same intuitive fashion as they would ask business questions. This
model must be one that business analysts will inherently understand and that will answer meaningful
questions correctly.

Planning and Creating an Oracle BI Repository ■ Process of Oracle BI Repository
Planning and Design

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 41

This requires breaking down your business into several components to answer the following
questions:

■ What kinds of business questions are analysts trying to answer?

■ What are the measures required to understand business performance?

■ What are all the dimensions under which the business operates?

■ Are there hierarchical elements in each dimension and what are the parent-child relationships
that define each hierarchy?

After you have answered these questions, you can identify and define the elements of your business
model. This section will help you identify the components of your business.

Identifying the Content of The Business Model
To create a business model, the data needs to be mapped logically to a business model. The Oracle
BI Server can use dimensional models for this purpose. This section discusses some of the
components and variants of representative dimensional models.

Businesses are analyzed by relevant dimensional criteria, and the business model is developed from
these relevant dimensions. These dimensional models form the basis of the valid business models to
use with the Oracle BI Server. All dimensional models build on a star schema. That is, they model
some measurable facts that are viewed in terms of various dimensional attributes.

After you analyze your business model, you need to identify the specific logical tables and hierarchies
that you need to include in your business model. For more information about these objects, refer to
Identifying the Content of The Business Model on page 41. The following sections are discussed in this
section:

■ Identifying Fact Tables on page 41

■ Identifying Dimension Tables on page 43

■ Identifying Bridge Tables on page 43

■ Identifying Dimension Hierarchies on page 43

■ About Star and Snowflake Models on page 44

Identifying Fact Tables
A fact table is a table with measures. Measures must be defined in a logical fact table. Measures, or
facts, are typically calculated data such as dollar value or quantity sold, and they can be specified in
terms of dimensions. For example, you might want to determine the sum of dollars for a given
product in a given market over a given time period.

Each measure has its own aggregation rule such as SUM, AVG, MIN, or MAX. A business might want
to compare values of a measure and need a calculation to express the comparison. Also, aggregation
rules can be specific to particular dimensions. The Oracle BI Server allows you to define complex,
dimension-specific aggregation rules.

The Oracle BI Server recognizes that when a table in the Business Model and Mapping layer of a
repository has only many-to-one (N:1) logical joins pointing to it, it is typically a fact table.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Planning and Creating an Oracle BI Repository ■ Process of Oracle BI Repository
Planning and Design

42

For example, you might have two tables. Sales Transactions is a fact table while Stores is a
Dimension table. One store will have many sales transactions and another store might have no
transactions (closed for refurbishment) resulting in 1:n and 1:0 relationships, respectively. Some
transactions do not happen in the stores but at a conference, resulting in a 0:n (zero to many)
relationship.

NOTE: The fact table is at the end of a 0, 1:N (zero, one-to-many relationship) join.

Figure 2 on page 42 illustrates the many-to-one joins to a fact table in a Business Model Diagram. In
the diagram, all joins have the crow's feet symbol (indicating the many side) pointing into the Fact-
Pipeline table and no joins pointing out of it. For an example of this in a business model, open a
repository in the Administration Tool, right-click a fact table, and select Business Model Diagram >
Whole Diagram.

NOTE: A bridge table is an exception to this joins rule. For more information, refer to “Identifying
Bridge Tables” on page 43.

Figure 2. Diagram of Fact Table Joins

Planning and Creating an Oracle BI Repository ■ Process of Oracle BI Repository
Planning and Design

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 43

Identifying Dimension Tables
A business uses facts to measure performance by well-established dimensions, for example, by time,
product, and market. Every dimension has a set of descriptive attributes. Dimension tables contain
attributes that describe business entities. For example, Customer Name, Region, Address, Country
and so on. Dimension tables also contain primary keys that identify each member.

Dimension table attributes provide context to numeric data, such as being able to categorize Service
Requests. Attributes stored in this dimension might include Service Request Owner, Area, Account,
Priority, and so on.

The best method to identify dimensions and their attributes is to talk with the analysts in the
organization who will use the data. The terminology they use and understand is important to capture.

Identifying Bridge Tables
When you need to model many-to-many relationships between dimension tables and fact tables, you
can create a bridge table that resides between the fact and the dimension tables. A bridge table
stores multiple records corresponding to that dimension. In the Administration Tool, General tab in
the Logical Table dialog box contains a check box that you can select to specify that a table is a bridge
table.

A bridge table allows you to resolve many-to-many data relationships. For example, you might have
an Employees table and a Jobs table. An employee within an organization can have many jobs such
as clerk, first-aid responder, and floor leader. Additionally, one job might be occupied by more than
one employee such as there are 10 floor leaders in the organization. There is a many-to-many
relationship between Employees and Jobs. However, a single table contains all the employees and
another single table contains all the jobs within the organization.

To record and resolve this many to many relationship, you create a bridge (intermediate) table called
Assignment. As a result, one employee may have many assignments and one job may also have
many assignments. This assignments table records employee and job combination. The primary key
is the combination of employee and job, and results in a unique record called an assignment.
Therefore, Employee to Assignment is a 1:n relationship and Job to Assignment is also a 1:n
relationship. The Assignment table acts as a bridging table between the Job and Employee tables,
allowing the many to many relationship between Employees and Jobs to be resolved. For example,
Mike and Gavin can be both first-aid responders and floor leaders.

Identifying Dimension Hierarchies
Understanding the hierarchies you need in your business is essential to provide the metadata that
allows the Oracle BI Server to determine if a particular request can be answered by an aggregate
that is already computed. For example, if month rolls up into year and an aggregate table exists at
the month level, that table can be used to answer questions at the year level by adding up all of the
month-level data for a year.

A hierarchy is a set of parent-child relationships between certain attributes within a dimension. These
hierarchy attributes, called levels, roll up from child to parent; for example, months can roll up into
a year. These rollups occur over the hierarchy elements and span natural business relationships.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Planning and Creating an Oracle BI Repository ■ Process of Oracle BI Repository
Planning and Design

44

Dimensions are categories of attributes by which the business is defined. Common dimensions are
time periods, products, markets, customers, suppliers, promotion conditions, raw materials,
manufacturing plants, transportation methods, media types, and time of day. Within a given
dimension, there may be many attributes. For example, the time period dimension can contain the
attributes day, week, month, quarter, and year. Exactly what attributes a dimension contains
depends on the way the business is analyzed.

A dimensional hierarchy expresses the one-to-many relationships between attributes. Given a
sample time dimension, consider the hierarchies it implies, as shown in Figure 3 on page 44.

With this sample time dimension, days may aggregate, or roll up, into weeks. Months may roll up
into quarters, and quarters into years. When one attribute rolls up to another, it implies a one-to-
many relationship.

These hierarchy definitions have to be specific to the business model. One model may be set up
where weeks roll up into a year, and another where they do not. For example, in a model where
weeks roll up into a year, it is implied that each week has exactly one year associated with it; this
may not hold true for calendar weeks, where the same week could span two years.

Some hierarchies might require multiple elements to roll up, as when the combination of month and
year roll up into exactly one quarter. The Oracle BI Server allows you to define the hierarchy
definitions for your particular business, however complex, assuring that analyses will conform to
your business definitions.

You should identify as many natural hierarchies as possible. As with business questions, some
hierarchies are obvious, but some are not and are only known by the end users who interact with
particular aspects of the business. You should verify that you understand the hierarchies so you can
define them properly using the Administration Tool.

About Star and Snowflake Models
Star and snowflake models follow the dimensional rules of one-to-many relationships. Star schemas
have one-to-many relationships between the logical dimension tables and the logical fact table.
Snowflake schemas have those same types of relationships, but also include one-to-many
relationships between elements in the dimensions. For example, in Figure 4 on page 45 and Figure 5
on page 45, Sales Facts and Facts are fact tables and Markets, Periods, Products, Account Hierarchy,
Account Region Hierarchy and Account are dimension tables. Any logical table that is not a fact table
or a bridge table is a dimension table. For more information, see “Identifying Bridge Tables” on
page 43.

Figure 3. Sample Hierarchy

Planning and Creating an Oracle BI Repository ■ Process of Oracle BI Repository
Planning and Design

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 45

Figure 4 on page 45 illustrates a star schema:

NOTE: It is recommended that you minimize the use of snowflake schemas.

In a snowflake schema, the server treats outer joins that are within a logical table source differently
from other outer joins. Within a logical table source, the joins are always executed. When between
logical tables, the joins are only performed when required. For more information about snowflake
schemas, refer to “About Types of Physical Schemas” on page 46. Figure 5 on page 45 illustrates a
logical snowflake schema.

Identifying the Database Content For The Business
Model
This topic is part of the “Process of Oracle BI Repository Planning and Design” on page 39.

Figure 4. Diagram of a Star Schema

Figure 5. Diagram of a Snowflake Schema

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Planning and Creating an Oracle BI Repository ■ Process of Oracle BI Repository
Planning and Design

46

The Oracle BI Server provides an interface that allows you to map the Oracle BI repository to your
underlying physical databases. Sometimes you can control the physical design of the underlying
databases. However, sometimes the database already exists and you need to work with what is
there. In either case, you need to understand the structure and content of your physical databases.

This section discusses the following topics:

■ About Types of Physical Schemas on page 46

■ About Primary Key-Foreign Key Relationships on page 48

■ Identifying the Database Table Structure To Import on page 49

About Types of Physical Schemas
There are two types of physical schemas (models): entity-relationship (E-R) schemas and
dimensional schemas. E-R schemas are designed to minimize data storage redundancy and optimize
data updates. Dimensional schemas are designed to enhance understandability and to optimize
query performance.

■ Entity-Relationship (E-R) Schemas. The entity-relationship (E-R) schema is the classic, fully
normalized relational schema used in many online transaction processing (OLTP) systems. The
relationships between tables signify relationships between data, not necessarily business
relationships.

Typically, E-R schemas have many tables, sometimes hundreds or even thousands. There are
many tables because the data has been carefully taken apart (normalized, in database
terminology) with the primary goal of reducing data redundancy and bringing about fast update
performance. E-R schemas are very efficient for OLTP databases. When E-R databases are
queried, joins are usually predetermined and can be optimized. E-R databases are usually
queried by applications that know exactly where to go and what to ask. These applications
typically query small units of information at a time, such as a customer record, an order, or a
shipment record.

E-R schemas generally do not work well for queries that perform historical analysis due to two
major problems: poor performance and difficulty in posing the question in SQL.

■ Performance problems persist with historical E-R queries because the queries require the
database to put the data back together again; this is a slow, complex process. Furthermore,
because the cost-based optimizers in database management systems are not designed for
the level of complexity in such a query, they can generate query plans that result in poor
performance.

■ A Database Analyst (DBA) who is very familiar with the data might be able to write a SQL
query against an E-R schema that can theoretically answer a business question, but such
detailed knowledge of the data is generally beyond the scope of the end-user business
analyst. Even when the SQL is crafted properly, there is often an unacceptably high response
time in returning results to the user.

Planning and Creating an Oracle BI Repository ■ Process of Oracle BI Repository
Planning and Design

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 47

■ Dimensional Schemas. A dimensional schema is a denormalized schema that follows the
business model. Dimensional schemas contain dimension tables and fact tables. Dimension
tables contain attributes of the business, and fact tables contain individual records with a few
facts and foreign keys to each of the dimension tables.

Dimensional schemas are used for business analysis and have two major advantages over E-R
schemas for decision support:

■ Better query performance

■ Easier to understand

Dimensional schemas are not nearly as efficient as E-R schemas for updating discrete records,
but they work well for queries that analyze the business across multiple dimensions.

The following are two types of dimensional schemas:

■ Star schema. A star schema is a dimensional schema with a single fact table that has foreign
key relationships with several dimension tables.

❏ The dimension tables mirror the business model and contain columns with descriptive
attributes, such as Product, Size, and Color in the sample Products dimension. Dimension
tables also have a key column (or columns) that uniquely identifies each row in the table.

❏ The fact table has a multipart primary key, often made up of the foreign key references
to the dimension tables. The fact table also contains all the measures, or facts, used to
measure business performance. The lowest level of detail stored is the granularity of the
fact table. Information at higher levels of aggregation is either calculated from the detail
level records or precomputed and stored in separate aggregate fact tables, resulting in a
multiple-star schema. For a discussion of aggregate fact tables, read “Identifying Fact
Tables” on page 41.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Planning and Creating an Oracle BI Repository ■ Process of Oracle BI Repository
Planning and Design

48

■ Snowflake schema. A snowflake schema is a dimensional schema where one or more of the
dimensions are normalized to some extent.

NOTE: It is recommended that you minimize the use of snowflake schemas.

The difference between the type of normalization in a snowflake schema and in an E-R
schema is that the snowflake normalization is based on business hierarchy attributes. The
tables snowflaked off the dimensions have parent-child relationships with each other that
mimic the dimensional hierarchies. In a snowflake schema, multiple logical tables are
considered a single logical table.

For example, Figure 6 on page 48 contains a snowflake schema showing that Product Line >
Products is a branch of the snowflake.

One dimension hierarchy should be created for the Products branch. The following is a list of
the minimal levels that should be created for this hierarchy:

❏ Grand Total Level

❏ Detail Level of the dimension that is not joined to the fact table. In this case, it is
ProductLine.

❏ Detail Level of the dimension that is joined to the fact table.

Figure 7 on page 48 shows the hierarchy that should be created.

About Primary Key-Foreign Key Relationships
To fully understand the structure and content of your physical databases, it is important to become
familiar with the concepts behind primary key-foreign key relationships.

A primary key-foreign key relationship defines a one-to-many relationship between two tables in a
relational database. A foreign key is a column or a set of columns in one table that references the
primary key columns in another table. The primary key is defined as a column (or set of columns)
where each value is unique and identifies a single row of the table.

Figure 6. Diagram of a Snowflake Schema

Figure 7. Hierarchy for the Products Branch in the Business Model and Mapping Layer

Planning and Creating an Oracle BI Repository ■ Process of Oracle BI Repository
Planning and Design

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 49

Consider Figure 8 on page 49, where the upper table is a fact table named Sales and the lower table
is a dimension table named Date. The Sales fact table contains one row for every sales transaction,
and the Date dimension table contains one row for every date the database will potentially cover.

Because of this primary key-foreign key relationship, you can join the Sales and Date tables to
combine the other attributes of the Date table with the records in the Sales table. For example, if an
analyst asks for the total sales, the day of the week, the product name, and the store in which the
product was sold, the information is compiled by joining the sales, date, product, and store tables
through the primary key-foreign key relationships between the Sales table and the various dimension
tables.

Identifying the Database Table Structure To Import
The Administration Tool provides an interface to map logical tables to the underlying physical tables
in the database. Before you can map the tables, you need to identify the contents of the physical
database as it relates to your business model. To do this correctly, you need to identify the following
contents of the physical database:

■ Identify the contents of each table

■ Identify the detail level for each table

■ Identify the table definition for each aggregate table. This allows you to set up aggregate
navigation. The following detail is required by the Oracle BI Server:

■ The columns by which the table is grouped (the aggregation level)

■ The type of aggregation (SUM, AVG, MIN, MAX, or COUNT)

For information on how to set up aggregate navigation in a repository, refer to “Setting Up
Fragmentation Content in an Oracle BI Repository for Aggregate Navigation” on page 201.

■ Identify the contents of each column

Figure 8. Primary Key-Foreign Key Sample

Column 2 of the Sales fact table
is a foreign key referencing the
Date dimension table

Indicates many-to-one
relationship between Sales and
Date

Column 1 is the primary key of
the Date dimension table

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Planning and Creating an Oracle BI Repository ■ Process of Oracle BI Repository
Planning and Design

50

■ Identify how each measure is calculated

■ Identify the joins defined in the database

To acquire this information about the data, you could refer to any available documentation that
describes the data elements created when the database was implemented, or you might need to
spend some time with the DBA for each database to get this information. To fully understand all the
data elements, you might also need to ask people in the organization who are users of the data,
owners of the data, or the application developers of applications that create the data.

Guidelines For Designing a Repository
This topic is part of the “Process of Oracle BI Repository Planning and Design” on page 39.

After analyzing your business model needs and identifying the database content your business
needs, you can complete your repository design. This section contains some design best practices
that will help you implement a more efficient repository.

Typically, you should not make performance tuning changes until you have imported and tested your
databases. This would occur during the final steps in completing the setup of your repository. For
more information about these final steps, refer to “Completing Setup and Managing Oracle BI
Repository Files” on page 151.

The following topics are discussed in this section:

■ General Tips For Working on the Repository on page 50

■ Design Tips For the Physical Layer (Schema) on page 51

■ Design Tips for the Business Model and Mapping Layer on page 52

■ Design Tips For the Presentation Layer on page 53

General Tips For Working on the Repository
The Oracle BI Server stores metadata in repositories. The Oracle BI Administrator uses the graphical
user interface (GUI) of the Administration Tool software to create and maintain repositories. An
Oracle BI repository consists of three layers. Each layer appears in a separate pane in the
Administration Tool user interface and has a tree structure (similar to the Windows Explorer). These
layers are not visible to the end user.

Most windows and dialog boxes have online help containing information to help you complete a task.
To access a help topic, click the help button in a dialog box or select Help from some menus.

The following list contains some recommended design strategies for the Oracle BI repository
structure:

■ Perform the majority of repository editing in offline mode to make your results more consistent.
In some environments, this might save time during the development effort.

If you work in Online mode, save backups of the online repository before and after every
completed unit of work. If needed, use Copy As on the File menu to make an offline copy
containing the changes.

Planning and Creating an Oracle BI Repository ■ Process of Oracle BI Repository
Planning and Design

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 51

■ For design independence, import databases for each business model separately. For example,
you might have one database for each application. Some tables may exist in more than one
database and you can customize each table for a different business model. This eliminates the
need for cross-database joins.

■ After importing a database, test it before importing another. Make sure the metadata is
generating the correct record set before performing performance tuning activities.

■ Use the Physical diagrams in the Administration Tool to verify sources and joins.

Design Tips For the Physical Layer (Schema)
The Physical layer contains information about the physical data sources. The most common way to
create the schema in the Physical layer is by importing metadata from databases and other data
sources. If you import metadata, many of the properties are configured automatically based on the
information gathered during the import process. You can also define other attributes of the physical
data source, such as join relationships, that might not exist in the data source metadata.

There can be one or more data sources in the Physical layer, including databases and XML
documents. For more information about supported databases, refer to System Requirements and
Supported Platforms.

For each data source, there is at least one corresponding connection pool. The connection pool
contains data source name (DSN) information used to connect to a data source, the number of
connections allowed, timeout information, and other connectivity-related administrative details. For
more information, refer to “Setting Up Connection Pools” on page 65 and Chapter 4, “Creating and
Administering the Physical Layer in an Oracle BI Repository.”

The following is a list of tips to use when designing the Physical layer:

■ Before importing metadata from a data warehouse into the Physical layer of your repository,
eliminate all outer joins in the data warehouse. Use Extract, Transform, and Load (ETL) lookups
to find them. Eliminating outer joins results in a more consistent record set, a simplified business
model, and improved performance.

■ To reduce problems that might be caused by importing physical joins, import the physical data
without foreign keys and then create the keys as needed.

■ You will probably import some tables into the Physical layer that you might not use right away
but that you do not want to delete. One way to identify tables that you do want to use right away
in the Business Model and Mapping layer, is to assign aliases to physical tables before mapping
them to the business model layer.

NOTE: To have the name of a table to which you assigned an alias appear, make sure you turn
on the following option in the Tools > Options > General menu path: Display original names for
alias in diagrams.

■ Use a naming standard in the Physical Layer that identifies the logical components followed by
the physical table name as shown in the following example:

Created By Employee (W_PERSON_D)

NOTE: The Physical layer object name is included in the Physical SQL. By using qualified Physical
Layer names, debugging is made easier.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Planning and Creating an Oracle BI Repository ■ Process of Oracle BI Repository
Planning and Design

52

■ An opaque view (a physical layer table that consists of a Select statement) should be used only
if there is no other solution. Ideally, a physical table should be created, or alternatively a
materialized view. A traditional database view is not needed because it is identical to the opaque
view. For more information, refer to “Deploying Opaque Views” on page 103.

Design Tips for the Business Model and Mapping Layer
The Business Model and Mapping layer organizes information by business model. Each business
model contains logical tables. Logical tables are composed of logical columns. Logical tables have
relationships to each other expressed by logical joins. The relationship between logical columns can
be hierarchical, as defined in business model hierarchies. Logical tables map to the source data in
the Physical layer. The mapping can include complex transformations and formulas.

The Business Model and Mapping layer defines the meaning and content of each physical source in
business model terms. The Oracle BI Server uses these definitions to assign the appropriate sources
for each data request.

You can change the names of physical objects independently from corresponding business model
object names and properties, and vice versa. Any changes in the underlying physical databases or
the mappings between the business model tables and physical tables might not change the view in
the end-user applications that view and query the repository.

The logical schema defined in each business model needs to contain at least two logical tables.
Relationships need to be defined between all the logical tables. For more information about business
model schemas, refer to “Process of Oracle BI Repository Planning and Design” on page 39. For more
information about setting up the Business Model and Mapping layer, refer to Chapter 5, “Creating and
Administering the Business Model and Mapping Layer in an Oracle BI Repository.”

The following is a list of tips to use when designing the Business Model and Mapping layer:

■ Create the business model with one-to-many complex joins between logical dimension tables and
the fact tables wherever possible. The business model should ideally resemble a simple star
schema in which each fact table is linked directly to its dimensions.

NOTE: If you use the snowflake model, you might have more flexibility (for example, the ability
to use outer joins) but it may create more columns in the presentation layer. However, it is
recommended that you minimize the use of snowflake schemas.

■ Outer joins should be avoided in the reporting SQL. They can be eliminated in the ETL via a
variety of techniques, but by doing so, not only can an additional table be removed from the
report SQL, but the performance will also improve.

■ Combine all similar dimensional attributes into one logical dimension table. Where needed,
include data from other dimension tables into the main dimension source using aliases in the
Physical layer tables. This should occur during the ETL process for optimal performance.

■ Every logical dimension table should have a dimensional hierarchy associated with it. Make sure
that all appropriate fact sources link to the proper level in the hierarchy using aggregation
content. You set up aggregation content in the Content tab of the Logical Table Source properties
window.

■ Aggregate sources should be created as a separate Source in a logical table. For fact aggregates,
use the Content tab of the Logical Table Source properties window to assign the correct logical
level to each dimension.

Planning and Creating an Oracle BI Repository ■ Process of Oracle BI Repository
Planning and Design

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 53

■ It is recommended that you use table aliases frequently in the Business Model layer to eliminate
extraneous joins, including the following:

■ Eliminate all physical joins that cross dimensions (inter-dimensional circular joins) by using
aliases.

■ Eliminate all circular joins (intra-dimensional circular joins) in a logical table source in the
Physical Model by creating physical table aliases.

■ Renaming an element in the Business Model and Mapping layer will automatically create an alias.

■ To prevent problems with aggregate navigation, make sure that each logical level of a dimension
hierarchy contains the correct value in the field named Number of elements at this level. Fact
sources are selected on a combination of the fields selected as well as the levels in the
dimensions to which they link. By adjusting these values, you can alter the fact source selected
by Oracle Business Intelligence.

■ Outer joins in logical table sources are always included in a query, even if the table source is not
used. If possible, create one logical table source without the outer join and another with the outer
join. Order the logical table source with the outer join after the non-outer join so that it will be
used only when necessary.

Design Tips For the Presentation Layer
You set up the user view of a business model in the Presentation layer. The names of folders and
columns in the Presentation layer appear in localized language translations. The Presentation layer
is the appropriate layer in which to set user permissions. In this layer, you can do the following:

■ You can show fewer columns than exist in the Business Model and Mapping layer. For example,
you can exclude the key columns because they have no business meaning.

■ You can organize columns using a different structure from the table structure in the Business
Model and Mapping layer.

■ You can display column names that are different from the column names in the Business Model
and Mapping layer.

■ You can set permissions to grant or deny users access to individual catalogs, tables, and columns.

■ You can export logical keys to ODBC-based query and reporting tools.

For more information about setting up the Presentation layer, refer to Chapter 6, “Creating and
Maintaining the Presentation Layer in an Oracle BI Repository.”

The following is a list of tips to use when designing the Presentation layer:

■ Column aliases. It is recommended that you do not use aliases for Presentation layer columns.

NOTE: Renaming an element in the Presentation layer will automatically create an alias. This
prevents reports that reference the original element from failing.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Planning and Creating an Oracle BI Repository ■ Creating a New Oracle BI Repository
File

54

■ Single table model. For the greatest simplicity, you could construct a subject area that consists
of a single table. To create a single table model, you first create a logical dimensional model, and
then present it as a single table schema in the Administration Tool’s Presentation layer. The
logical dimensional model is required to set up the necessary metadata for the Oracle BI Server
to navigate to the proper physical tables. For information about the Presentation layer, refer to
“Creating and Maintaining the Presentation Layer in an Oracle BI Repository” on page 143.

Creating a New Oracle BI Repository File
Now that you have completed your planning and design tasks, you can create a repository. The first
step in creating a repository is creating a repository file. Each time you save the repository, a dialog
box asks if you want to check global consistency. You have the following options:

■ Yes. Checks global consistency and then saves the repository file.

■ No. Does not check global consistency and then saves the repository file.

■ Cancel. Does not check global consistency and does not save the repository file.

For more information, see “Checking the Consistency of a Repository or a Business Model” on page 26.

NOTE: In offline editing, remember to save your repository from time to time. You can save a
repository in offline mode even though the business models may be inconsistent.

To create a new repository file

1 From the Administration Tool menu, select File > New or click the New button in the toolbar.

2 Type a name for the repository.

A RPD file extension will automatically be added if you do not explicitly specify it. The default
location for all repositories is in the Repository subdirectory, located in the Oracle BI software
installation folder (Oracle BI\server\Repository).

The new repository is empty. The remaining steps in the repository setup process, as outlined in
“Roadmap for Planning and Setting Up an Oracle BI Repository” on page 39, describe the steps you
should follow to set up and populate repositories.

After Creating a Repository File
After you create a repository file in the Administration Tool, you can import tables into the Physical
layer.

NOTE: The typical order is to create the Physical layer first, the Business Model and Mapping layer
next, and the Presentation layer last. However, you can work on each layer at any stage in creating
a repository. You can set up security when you are ready to begin testing the repository.

For more information, refer to “Creating and Administering the Physical Layer in an Oracle BI
Repository” on page 55.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 55

4 Creating and Administering the
Physical Layer in an Oracle BI
Repository

This section is part of the roadmap for planning and setting up a repository. For more information,
refer to “Planning and Creating an Oracle BI Repository” on page 39.

Before you create the physical layer of a repository, you need to plan, design, and then create a
repository file. For more information, refer to “Process of Oracle BI Repository Planning and Design”
on page 39

The Physical layer of the Administration Tool defines the data sources to which the Oracle BI Server
submits queries and the relationships between physical databases and other data sources that are
used to process multiple data source queries. (Your licensing options determine whether you can add
databases and connection pools to the physical layer.)

The first step in creating the physical layer is to create the schema. You can import the physical
schema for supported data source types. You can import schemas or portions of schemas from
existing data sources. Additionally, you can create the physical layer manually but it is a labor-
intensive and error-prone activity.

CAUTION: It is strongly recommended that you import physical schemas.

This section provides the following topics to help you use the Administration Tool to create the
physical layer of a repository:

■ Process of Creating the Physical Layer from Relational Data Sources on page 56

■ Process of Creating the Physical Layer from Multidimensional Data Sources on page 58

■ Setting Up Database Objects on page 60

■ Setting Up Connection Pools on page 65

■ About Physical Tables on page 81

■ Creating and Setting Up Physical Tables on page 83

■ Creating Physical Layer Folders on page 96

■ About Physical Joins on page 99

■ Defining Physical Foreign Keys and Joins on page 100

■ Deploying Opaque Views on page 103

■ Using Database Hints on page 106

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Process
of Creating the Physical Layer from Relational Data Sources

56

Process of Creating the Physical Layer
from Relational Data Sources
Importing the physical schema saves you time and effort by importing the structure for the physical
layer. You can import schema for supported data sources. If you do not import the schema, you must
create each table, primary key, foreign key, and any other objects against which you want to
generate queries. Data from these sources can be displayed on an Oracle BI Interactive Dashboard.

The following is a list of tips to help you when importing a physical schema:

■ When you import schema for most databases, the default is to import tables, primary keys, and
foreign keys.

NOTE: It is recommended that you not import foreign keys from a database because the process
is lengthy when importing a large number of tables.

■ When you import physical tables, be careful to limit the import to only those tables that contain
data that are likely to be used in the business models you create. You can use a filter (table mask)
to limit the number of tables that appear in the import list. This makes it easier to locate and
select the tables that you want to import.

■ You can also import database views, aliases, synonyms, and system tables. Import these objects
only if you want the Oracle BI Server to generate queries against them.

■ Importing large numbers of extraneous tables and other objects adds unnecessary complexity
and increases the size of the repository.

NOTE: Data Warehouse (OLAP) objects are stored in and accessed through Oracle Analytic
Workspaces (AWs). For information about how to extract these objects, refer to the Oracle Reference
10g Release 2 documents from the oracle.com Web site.

To create the physical layer by importing the schema, complete the following tasks in the sequence
shown:

■ Importing a Physical Schema from Relational Data Sources on page 56

■ Setting Up Database Objects on page 60

■ Setting Up Connection Pools on page 65

■ About Physical Tables on page 81

■ Creating and Setting Up Physical Tables on page 83

Importing a Physical Schema from Relational Data
Sources
This topic is part of the “Process of Creating the Physical Layer from Relational Data Sources” on
page 56.

You can import physical schema for supported data source types. When you can use importing to
create the physical schema, you need to select one of the following import options and the
appropriate connection type:

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Process
of Creating the Physical Layer from Relational Data Sources

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 57

■ From a database. Available in Offline and Online modes. Use this option when you have all
database connections set up on your machine. You can use the following connection types with
the Import option:

■ Most physical schema imports are performed using an ODBC connection type.

■ Native database gateways for schema import are supported for only DB2 (using DB2 CLI or
DB2 CLI Unicode) and XML connection types. For more information about importing XML data
using the Oracle BI Server XML gateway, refer to “Oracle BI Server XML Gateway Example” on
page 338.

■ You can use a table mask to limit (filter) the list of tables that appear in the Import dialog
box. When you have one or more specific tables that you want to import, using a table mask
helps locate the tables.

■ Through the Oracle BI Server. Available in Online mode. Use this option when you want to use
the Oracle BI Server connections to import schema. This option allows Oracle BI Administrators
to use the Data Source Name (DSN) of the Oracle BI Server machine to import physical schema
information. Connectivity software and duplicate DSNs do not have to reside on the Oracle BI
Administrator's machine and the Oracle BI Server machine. You can use the following connection
types with the Import option:

■ Available connection types are ODBC, DB2 CLI, DB2 CLI (Unicode), and XML.

■ When it is running on a UNIX platform, the Oracle BI Server does not support importing
schema using an ODBC connection type.

■ From a repository. Available in Offline mode. By default, the Import from repository option on
the File menu is disabled and this option will not be supported in the future. If you must import
metadata using this method, see “Using the Options Dialog Box—General Tab” on page 29.

NOTE: It is recommended that you create projects in the repository that contain the objects that
you wish to import, and then use repository merge to bring the projects into your current
repository. For more information, see “About Extracting Metadata Subsets Into Projects” on
page 167.

■ From XMLA. Used to import multidimensional data sources. For more information, refer to
“Importing a Physical Schema from Multidimensional Data Sources” on page 59.

To import a physical schema from an ODBC connection type

1 In the Administration Tool, select File > Import, and then select the source type of your physical
schema from the following options:

■ from Database

■ through Server

■ from Repository

2 In the Select Data Source dialog box, perform the following steps:

a From the Connection Type drop-down list, select the correct type.

NOTE: It is recommended that you use ODBC 3.5 or DB2 CLI Unicode for importing schema
with International characters such as Japanese table and column names.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Process
of Creating the Physical Layer from Multidimensional Data Sources

58

b In the DSN list, select a data source from which to import the schema.

When you import through the Oracle BI Server, the DSN entries are on the Oracle BI Server,
not on the local machine.

c To import from Customer Relationship Management (CRM) tables, select the Read from CRM
metadata tables check box.

d Click OK.

3 If a logon screen appears, type a valid user ID and password for the data source, and then click
OK.

The Oracle BI Administrator must supply the user name and password for the data source. If you
are performing an import on the Oracle BI Administrator's machine, the user name will be
obtained from the machine’s DSN configuration.

4 In the Import dialog box, select the check boxes for the types of objects that you want to import.
For example, Tables, Keys, and Foreign Keys.

Some objects check boxes are automatically selected. These default selections depend on your
data source.

5 To use a table mask, type a table mask such as F%, and then click the highest level database
folder.

Tables that meet the filter criteria appear.

6 Select the tables and columns you want to import.

NOTE: If you select just a table without identifying the columns, all the columns in the table will
be imported.

7 After you select all the objects you want to import, click Import or drag and drop them into the
Physical layer.

Process of Creating the Physical Layer
from Multidimensional Data Sources
This section describes how you use the Administration Tool to add a multidimensional data source to
the physical layer of a repository. The ability to use multidimensional data sources allows the Oracle
BI Server to connect to sources such as Microsoft Analysis Services and SAP/BW (SAP/Business
Warehouse) to extract data. Data from these sources can be displayed on an Oracle BI Interactive
Dashboard.

The Oracle BI Server connects to the multidimensional source using XML for Analysis (XMLA)
standards protocol. This requires that the target data source have a fully functional Web services
interface available. The standard dictates the various protocols that the Oracle BI Server can use to
connect to the target and query data.

Importing data from a multidimensional source creates the metadata of the data source in the Oracle
BI repository. The primary differences between setting up multidimensional data sources and
relational data sources are in the physical layer. The setup in the business model and presentation
layers for multidimensional data sources and relational data sources is almost identical.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Process
of Creating the Physical Layer from Multidimensional Data Sources

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 59

To create a physical layer for a multidimensional data source, complete the following tasks in the
sequence shown:

■ Importing a Physical Schema from Multidimensional Data Sources on page 59

■ Setting Up Database Objects on page 60

■ Setting Up Connection Pools on page 65

■ About Physical Tables on page 81

■ Creating and Setting Up Physical Tables on page 83

Importing a Physical Schema from Multidimensional
Data Sources
This topic is part of “Process of Creating the Physical Layer from Multidimensional Data Sources” on
page 58.

CAUTION: Manually creating a physical schema from a multidimensional data source is labor-
intensive and error prone. Therefore, it is strongly recommended that you import it.

The Oracle BI Server uses XMLA standards to import data from a multidimensional data source into
the Oracle BI repository. During the import process, each cube in a multidimensional data source is
created as a single physical cube table. The Oracle BI Server imports the cube, including its metrics,
dimensions and hierarchies. After importing the cubes, you need to make sure that the physical cube
columns have the correct aggregation rule and that the default member type ALL is correctly
imported for a hierarchy. For more information, refer to “Adding a Hierarchy to a Physical Cube Table”
on page 91.

The following list includes information that you should consider before importing data:

■ Microsoft Analysis Services and SAP/BW are the only supported XMLA-compliant data sources
currently available.

■ The Oracle BI Server only imports the dimensions and hierarchies that are supported by Oracle
BI. Therefore, if a cube has a ragged hierarchy or a parent-child hierarchy, it will not be imported.
Additionally, measure hierarchies are not imported or supported.

■ It is recommended that you remove hierarchies and columns from the physical layer if they will
not be used in the business model. This eliminates maintaining unnecessary objects in the
Administration Tool and might result in better performance.

To import a physical schema from multidimensional data sources

1 From your data source administrator, obtain the URL connection string and user name and
password for the data source.

2 In the Administration Tool, select File > Import from XMLA.

3 In the Import From XMLA dialog box, complete the following fields:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Database Objects

60

a In the URL field, type the URL for the Web service that acts as the XMLA provider.

Use the URL connection string obtained from your data source administrator.

b In the username and password fields, type a valid username and password for the data source.

Use the user name and password that you obtained from your data source administrator.

4 Click OK.

The Administration Tool connects to the destination source to obtain a list of the available data
catalogs (databases).

5 In the Browse dialog box, expand the data source and catalog (database), if necessary, and
select the catalogs (databases) or cubes to import.

The Import button is unavailable until you select an object that can be downloaded.

6 After you select all the objects you want to import, click Import.

If some objects could not be imported, a list of warning messages appears in the Oracle BI
Administration Tool dialog box. For example:

Hierarchy "[Measures]" from data source "SDCHS40I023", catalog
"XMLA_council_interop", cube "BeverageSales" is of measure type and not imported.

7 In the Oracle BI Administration Tool dialog box, you can perform the following actions:

■ To search for specific terms, click Find and then Find Again.

■ To copy the contents of the window so that you can paste the messages in another file, click
Copy.

8 When finished importing, in each dialog box, click OK and then Close.

Setting Up Database Objects
This topic is part of the “Process of Creating the Physical Layer from Relational Data Sources” on
page 56 and the “Process of Creating the Physical Layer from Multidimensional Data Sources” on
page 58.

Importing a schema automatically creates a database object for the schema but you need to set up
the database properties.

For more information about supported databases, refer to System Requirements and Supported
Platforms.

To create or edit database objects in the physical layer, perform the following tasks:

■ About Database Types in the Physical Layer on page 61

■ Creating a Database Object Manually in the Physical Layer on page 61

■ Specifying SQL Features Supported by a Database on page 64

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Database Objects

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 61

About Database Types in the Physical Layer
If you import the physical schema into the Physical layer, the database type is usually assigned
automatically. The following list contains additional information about automatic assignment of
database types:

■ Relational data sources. During the import process, some ODBC drivers provide the Oracle BI
Server with the database type. However, if the server cannot determine the database type, an
approximate ODBC type is assigned to the database object. Replace the ODBC type with the
closest matching entry from the database type drop-down menu.

■ Multidimensional data sources. Microsoft Analysis Services and SAP/BW are the only
supported XMLA-compliant data sources currently available. When you import a multidimensional
data source, you need to select the appropriate database type and version.

Creating a Database Object Manually in the Physical
Layer
If you create a database object manually, you need to manually set up all database elements such
as connection pool, tables, and columns.

NOTE: For multidimensional data sources, if you create the physical schema in the physical layer of
the repository, you need to create one database in the physical layer for each cube, or set of cubes,
that belong to the same catalog (database) in the data source. A physical database can have more
than one cube. However, all of these cubes must be in the same catalog in the data source. You
specify a catalog in the Connection Pool dialog box.

CAUTION: It is strongly recommended that you import your physical schema.

To create a database object

1 In the Physical layer of the Administration Tool, right-click and choose New Database.

Make sure that no object is selected when you right-click.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Database Objects

62

2 In the Database dialog box, in the General tab, complete the fields using Table 5 on page 62 as
a guide.

Table 5. Fields General Tab of the Database Dialog Box

Field Description

Allow direct database
requests by default
(check box)

When checked, allows everyone to execute physical queries. The
Oracle BI Server will send unprocessed, user-entered, physical SQL
directly to an underlying database. The returned results set can be
rendered in Oracle BI Presentation Services, and then charted,
rendered in a dashboard, and treated as an Oracle BI request.

If you want most but not all users to be able to execute physical queries,
check this option and then limit queries for specific users or groups. For
more information about limiting queries, refer to “Managing Query
Execution Privileges” on page 330.

CAUTION: If configured incorrectly, this can expose sensitive data to
an unintended audience. For more information, refer to
“Recommendations for Allowing Direct Database Requests by Default”
on page 63.

For more information about executing physical SQL, refer to Oracle
Business Intelligence Answers, Delivers, and Interactive Dashboards
User Guide.

Allow populate queries
by default (check box)

When checked, allows everyone to execute POPULATE SQL. If you want
most but not all users to be able to execute POPULATE SQL, check this
option and then limit queries for specific users or groups. For more
information about limiting queries, refer to “Managing Query Execution
Privileges” on page 330.

Data Source Definition

CRM Metadata Tables

Not available for multidimensional data sources. When selected, the
import utility will look for the table definition in Oracle’s Siebel CRM
specific tables. For Siebel CRM tables, the import reads the Siebel
metadata dictionary to define the definition of physical tables and
columns (it does not read the database data dictionary). This is for
legacy Siebel Systems sources only.

Data Source Definition

Database

The database type for your database.

For more information about using the Features tab to examine the
SQL features supported by the specified database type, refer to
“Specifying SQL Features Supported by a Database” on page 64.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Database Objects

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 63

Recommendations for Allowing Direct Database Requests by Default
This property allows all users to execute physical queries. If configured incorrectly, it can expose
sensitive data to an unintended audience. Use the following recommended guidelines when setting
this database property:

■ The Oracle BI Server should be configured to accept connection requests only from a machine
on which the Oracle BI Server, Oracle BI Presentation Services, or Oracle BI Scheduler Server
are running. This restriction should be established at the TCP/IP level using the Oracle BI
Presentation Services IP address. This will allow only a TCP/IP connection from the IP Address of
the Oracle BI Presentation Services.

■ To prevent users from running nQCmd.exe (a file that executes SQL script) by logging in remotely
to this machine, you should disallow access by the following to the machine on which you
installed the Oracle BI Presentation Services:

■ TELNET

■ Remote shells

■ Remote desktops

■ Teleconferencing software (such as Windows NetMeeting)

If necessary, you might want to make an exception for users with Administrator permissions.

■ Only users with Administrator permissions should be allowed to perform the following tasks:

■ TELNET into the Oracle BI Server and Oracle BI Presentation Services machines to perform
tasks such as running nQCmd.exe for cache seeding. For more information, see “Executing
the SQL Script File to Create and Delete Aggregates” on page 247.

■ Access to the advanced SQL page of Answers to create reports. For more information, refer to
Oracle Business Intelligence Presentation Services Administration Guide.

Data Source Definition

Virtual Private Database

Identifies the physical database source as a virtual private database
(VPD). When a VPD is used, returned data results are contingent on
the users authorization credentials. Therefore, it is important to
identify these sources. These data results affect the validity of the
query result set that will be used with Caching. For more information,
see “Query Caching in the Oracle BI Server” on page 229.

NOTE: If you select this check box, you also should select the
Security Sensitive check box in the Session Variable dialog box. For
more information, see “Creating Session Variables” on page 289.

Persist Connection Pool To use a persistent connection pool, you must set up a temporary
table first. For more information, refer to “Setting Up the Persist
Connection Pool Property” on page 79.

Table 5. Fields General Tab of the Database Dialog Box

Field Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Database Objects

64

■ Setup group/user-based permissions on the Oracle BI Presentation Services to control access to
editing (preconfigured to allow access by the Oracle BI Presentation Services Administrators) and
executing (preconfigured to not allow access by anyone) direct database requests. For more
information, refer to Oracle Business Intelligence Presentation Services Administration Guide.

Specifying SQL Features Supported by a Database
When you import the schema or specify a database type in the General tab of the Database dialog
box, the Feature table is automatically populated with default values appropriate for the database
type. These are the SQL features that the Oracle BI Server uses with this data source.

You can tailor the default query features for a database. For example, if a data source supports left
outer join queries but you want to prohibit the Oracle BI Server from sending such queries to a
particular database, you can change this default setting in the Feature table.

CAUTION: Be very careful when modifying the Feature table. If you enable SQL features that the
database does not support, your query may return errors and unexpected results. If you disable
supported SQL features, the server could issue less efficient SQL to the database.

To specify SQL features supported by a database

1 In the Physical layer of the Administration Tool, double-click the database.

2 In the Database dialog box, click the Features tab.

3 In the Features tab, use the information in Table 6 on page 64 to help you specify properties for
each SQL features.

Table 6. SQL Feature Tab Descriptions

Field or Button Description

Ask DBMS A button that is used only if you are installing and querying a database that has
no Features table. It allows you to query this database for Feature table entries.
For more information, refer to “Changing Feature Table Entries Using Ask DBMS”
on page 65.

Default A check box that identifies default SQL features. Default SQL features that are
supported by the database type of the data source are automatically selected.

Find A button that allows you to type a string to help you locate a feature in the list.

Find Again A button that becomes available after you click Find. Allows you to perform
multiple searches for the same string.

Revert to
Defaults

A button that restores the default values.

Value A check box that allows you to specify additional SQL features. Select to enable
a query type or clear to disable a query type. It is strongly recommended that
you do not disable the default SQL features.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 65

Changing Feature Table Entries Using Ask DBMS
You should use the Ask DBMS button only if installing and querying a database that has no Features
table.

NOTE: The Ask DBMS button is not available if you are using an XML or a multidimensional data
source.

The Ask DBMS button on the Features tab of the Database dialog box allows you to query a database
for the SQL features it supports. You can change the entries that appear in the Feature table based
on your query results.

CAUTION: Be very careful when using Ask DBMS. The results of the features query are not always
an accurate reflection of the SQL features actually supported by the data source. You should only
use this functionality with the assistance of Oracle Technical Support.

Setting Up Connection Pools
This topic is part of the “Process of Creating the Physical Layer from Relational Data Sources” on
page 56 and the “Process of Creating the Physical Layer from Multidimensional Data Sources” on
page 58.

The connection pool is an object in the Physical layer that describes access to the data source. It
contains information about the connection between the Oracle BI Server and that data source.

The Physical layer in the Administration Tool contains at least one connection pool for each database.
When you create the physical layer by importing a schema for a data source, the connection pool is
created automatically. You can configure multiple connection pools for a database. Connection pools
allow multiple concurrent data source requests (queries) to share a single database connection,
reducing the overhead of connecting to a database.

NOTE: It is recommended that you create a dedicated connection pool for initialization blocks. For
additional information, refer to “Creating or Changing Connection Pools” on page 67.

For each connection pool, you must specify the maximum number of concurrent connections allowed.
After this limit is reached, the Oracle BI Server routes all other connection requests to another
connection pool or, if no other connection pools exist, the connection request waits until a connection
becomes available.

Increasing the allowed number of concurrent connections can potentially increase the load on the
underlying database accessed by the connection pool. Test and consult with your DBA to make sure
the data source can handle the number of connections specified in the connection pool. Also, if the
data sources have a charge back system based on the number of connections, you might want to
limit the number of concurrent connections to keep the charge-back costs down.

In addition to the potential load and costs associated with the database resources, the Oracle BI
Server allocates shared memory for each connection upon server startup. This raises the number of
connections and increases Oracle BI Server memory usage.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

66

Table 7 on page 66 contains a brief description of preconfigured connection pools.

Table 7. Preconfigured Connection Pools

Connection Name Description

BBB Data Warehouse Enterprise visibility to the Oracle Business Analytics Warehouse.
Oracle’s Siebel operational applications (Oracle BI customers
only).

BBB OLTP Enterprise visibility to Oracle’s Siebel transactional database.
Oracle’s Siebel operational applications (Oracle BI customers
only).

BBB XLS Data DSN is the same as the connection pool name. Data is stored in
C:\Data\Applications\BBB\BBB.

Oracle’s Siebel operational applications (Oracle BI customers
only).

ERM OLTP Oracle’s Siebel Workforce Analytics connection to Oracle’s Siebel
transactional database.
(Workforce Oracle BI customers only.)

Externalized Metadata Strings Connection to Oracle’s Siebel operational application database to
load the translations of Metadata Strings.
Financial Services customers and all customers deploying Oracle
BI in a language other than English.

NOTE: This connection pool is configured to be the same as the
Oracle’s Siebel transactional database.

Forecasting Oracle Business
Analytics Warehouse

Connection to the Oracle Business Analytics Warehouse.
(Forecasting Oracle BI customers only.)

Forecasting Siebel OLTP Connection to Oracle’s Siebel transactional database.
(Real-time Forecasting Oracle BI customers only.)

Incentive Compensation Siebel
OLTP

Database connection to Oracle’s Siebel transactional database.
(Incentive Compensation Oracle BI customers only.)

Pharma Data Warehouse Connection to the Pharmaceutical data warehouse.
(Pharmaceutical industry-specific customers only.)

Real-time OLTP Connection to Oracle’s Siebel transactional database.
Real-time Oracle BI (all customers).

SIA Data Warehouse Connection for Oracle’s Siebel Industry Applications data
warehouse.
(For Oracle’s Siebel Industry Applications customers only.)

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 67

This section includes the following topics:

■ Creating or Changing Connection Pools on page 67

■ Setting Up Write-Back Properties on page 77

■ Setting Up Connection Pool Properties for Multidimensional Data Sources on page 73

■ Setting Up Additional Connection Pool Properties for an XML Data Source on page 76

■ Setting Up the Persist Connection Pool Property on page 79

Creating or Changing Connection Pools
You must create a database object before you create a connection pool. Typically, the database object
and connection pool are created automatically when you import the physical schema. You create or
change a connection pool in the Physical layer of the Administration Tool.

CAUTION: It is strongly recommend that customers use OCI for connecting to Oracle. ODBC should
only be used to import from Oracle.

This section contains the following topics:

Oracle BI Usage Usage Tracking Writer Connection Pool connects to the database
where you store the usage statistics of the Oracle BI Server.
(Optional for all customers.)

NOTE: Using this requires that the Oracle BI Scheduler Server
be set up to load the usage statistics into the database.

Oracle Business Intelligence
Warehouse

Database connection to the Oracle Business Analytics
Warehouse. (Oracle BI applications customers only.)

Siebel OLTP NOTE: There are two connection pools to Oracle’s Siebel
transactional database. Both should be configured properly.

OLTP DbAuth connects to Oracle’s Siebel transactional
database for Authentication and Authorization. The user name
and password is preconfigured to USER and PASSWORD and
should be left as such if you want to use database logons to
authenticate users.

(All customers.)

UQ Siebel OLTP Connection to Oracle’s Siebel transactional database. Oracle’s
Siebel Universal (Queuing customers only.)

Usage Accelerator
Datawarehouse

Database connection to the Oracle Business Analytics
Warehouse. (Oracle BI applications customers only.)

Table 7. Preconfigured Connection Pools

Connection Name Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

68

■ About Connection Pools for Initialization Blocks on page 68

■ Setting Up General Properties For Connection Pools on page 68

About Connection Pools for Initialization Blocks
It is recommended that you create a dedicated connection pool for initialization blocks. This
connection pool should not be used for queries.

Additionally, it is recommended that you isolate the connections pools for different types of
initialization blocks. This also makes sure that authentication and login-specific initialization blocks
do not slow down the login process. The following types should have separate connection pools:

■ All Authentication and login-specific initialization blocks such as language, externalized strings,
and group assignments.

■ All initialization blocks that set session variables.

■ All initialization blocks that set repository variables. These initialization blocks should always be
run using the system Administrator user login.

Be aware of the number of these initialization blocks, their scheduled refresh rate, and when they
are scheduled to run. Typically, it would take an extreme case for this scenario to affect
resources. For example, refresh rates set in minutes, greater than 15 initialization blocks that
refresh concurrently, and a situation in which either of these scenarios could occur during prime
user access time frames. To avoid straining the available resources, you might want to disable
query logging for the default Oracle BI Administrator.

Initialization blocks should be designed so that the maximum number of Oracle BI Server variables
may be assigned by each block. For example, if you have five variables, it is more efficient and less
resource intensive to construct a single initialization block containing all five variables. When using
one initialization block, the values will be resolved with one call to the back end tables using the
initialization string. Constructing five initialization blocks, one for each variable, would result in five
calls to the back end tables for assignment.

Setting Up General Properties For Connection Pools
Use this section to complete the General tab.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 69

To set up general properties for connection pools

1 In the Physical layer of the Administration Tool, right-click a database and choose
New Object > Connection Pool, or double-click an existing connection pool.

The following is an illustration of the General tab in the Connection Pool dialog box.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

70

2 In the Connection Pool dialog box, click the General tab, and then complete the fields using
information in Table 8 on page 70.

Properties that are specific to a multidimensional data sources can be found in Table 9 on
page 75.

Table 8. Connection Pool General Properties

Field or Button Description

Call interface The application program interface (API) with which to access the data source.
Some databases may be accessed using native APIs, some use ODBC, and some
work both ways. If the call interface is XML, the XML tab is available but options
that do not apply to XML data sources are not available.

Data source
name

The drop-down list shows the User and System DSNs configured on your
system. A data source name that is configured to access the database to which
you want to connect. The data source name needs to contain valid logon
information for a data source. If the information is invalid, the database logon
specified in the DSN will fail.

Enable
connection
pooling

Allows a single database connection to remain open for the specified time for
use by future query requests. Connection pooling saves the overhead of opening
and closing a new connection for every query. If you do not select this option,
each query sent to the database opens a new connection.

Execute on
Connect

Allows the Oracle BI Administrator to specify a command to be executed each
time a connection is made to the database. The command may be any command
accepted by the database. For example, it could be used to turn on quoted
identifiers. In a mainframe environment, it could be used to set the secondary
authorization ID when connecting to DB2 to force a security exit to a mainframe
security package such as RACF. This allows mainframe environments to
maintain security in one central location.

Execute queries
asynchronously

Indicates whether the data source supports asynchronous queries.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 71

Isolation level For ODBC and DB2 gateways, the value sets the transaction isolation level on
each connection to the back-end database. The isolation level setting controls
the default transaction locking behavior for all statements issued by a
connection. Only one of the options can be set at a time. It remains set for that
connection until it is explicitly changed.

The following is a list of the options:

Committed Read. Specifies that shared locks are held while the data is read
to avoid dirty reads. However, the data can be changed before the end of the
transaction, resulting in non repeatable reads or phantom data.

Dirty Read. Implements dirty read (isolation level 0 locking). When this option
is set, it is possible to read uncommitted or dirty data, change values in the
data, and have rows appear or disappear in the data set before the end of the
transaction. This is the least restrictive of the isolation levels.

Repeatable Read. Places locks on all data that is used in a query, preventing
other users from updating the data. However, new phantom rows can be
inserted into the data set by another user and are included in later reads in the
current transaction.

Serializable. Places a range lock on the data set, preventing other users from
updating or inserting rows into the data set until the transaction is complete.
This is the most restrictive of the four isolation levels. Because concurrency is
lower, use this option only if necessary.

Maximum
connections

The maximum number of connections allowed for this connection pool. The
default is 10. This value should be determined by the database make and model
and the configuration of the hardware box on which the database runs as well
as the number of concurrent users who require access.

NOTE: For deployments with Intelligence Dashboard pages, consider
estimating this value at 10% to 20% of the number of simultaneous users
multiplied by the number of requests on a dashboard. This number may be
adjusted based on usage. The total number of all connections in the repository
should be less than 800. To estimate the maximum connections needed for a
connection pool dedicated to an initialization block, you might use the number
of users concurrently logged on during initialization block execution.

Name The name for the connection pool. If you do not type a name, the Administration
Tool generates a name. For multidimensional and XML data sources, this is
prefilled.

Parameters
supported

If the database features table supports parameters and the connection pool
check box property for parameter support is unchecked, special code executes
that allows the Oracle BI Server to push filters (or calculations) with parameters
to the database. The Oracle BI Server does this by simulating parameter
support within the gateway/adapter layer by sending extra SQLPrepare calls to
the database.

Table 8. Connection Pool General Properties

Field or Button Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

72

Permissions Assigns permissions for individual users or groups to access the connection
pool. You can also set up a privileged group of users to have its own connection
pool.

Require fully
qualified table
names

Select this check box, if the database requires it.

When this option is selected, all requests sent from the connection pool use fully
qualified names to query the underlying database. The fully qualified names are
based on the physical object names in the repository. If you are querying the
same tables from which the physical layer metadata was imported, you can
safely check the option. If you have migrated your repository from one physical
database to another physical database that has different database and schema
names, the fully qualified names would be invalid in the newly migrated
database. In this case, if you do not select this option, the queries will succeed
against the new database objects.

For some data sources, fully qualified names might be safer because they
guarantee that the queries are directed to the desired tables in the desired
database. For example, if the RDBMS supports a master database concept, a
query against a table named foo first looks for that table in the master
database, and then looks for it in the specified database. If the table named foo
exists in the master database, that table is queried, not the table named foo in
the specified database.

Shared logon Select the Shared logon check box if you want all users whose queries use the
connection pool to access the underlying database using the same user name
and password.

If this option is selected, then all connections to the database that use the
connection pool will use the user name and password specified in the connection
pool, even if the user has specified a database user name and password in the
DSN (or in user configuration).

If this option is not selected, connections through the connection pool use the
database user ID and password specified in the DSN or in the user profile.

Table 8. Connection Pool General Properties

Field or Button Description

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 73

Setting Up Connection Pool Properties for
Multidimensional Data Sources
When you import an external multidimensional data source, the connection pool is automatically set
up in the physical layer. You can add a connection pool manually using the instructions in this section.

Table 8 on page 70 describes some general properties that are shared among connection pools with
different data sources. Table 9 on page 75 describes the properties in this dialog box that are unique
to multidimensional data sources.

Timeout
(Minutes)

Specifies the amount of time, in minutes, that a connection to the data source
will remain open after a request completes. During this time, new requests use
this connection rather than open a new one (up to the number specified for the
maximum connections). The time is reset after each completed connection
request.

If you set the timeout to 0, connection pooling is disabled; that is, each
connection to the data source terminates immediately when the request
completes. Any new connections either use another connection pool or open a
new connection.

Use
Multithreaded
Connections

When the check box is select ed, Oracle BI Server terminates idle physical
queries (threads). When not selected, one thread is tied to one database
connection (number of threads = maximum connections). Even if threads are
idle, they consume memory.

The parameter DB_GATEWAY_THREAD_RANGE in the Server section of
NQSConfig.ini establishes when Oracle BI Server terminates idle threads. The
lower number in the range is the number of threads that are kept open before
Oracle BI Server takes action. If the number of open threads exceeds the low
point in the range, Oracle BI Server terminates idle threads. For example, if
DB_GATEWAY_THREAD_RANGE is set to 40-200 and 75 threads are open,
Oracle BI Server terminates any idle threads.

Table 8. Connection Pool General Properties

Field or Button Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

74

To set up connection pools for a multidimensional data source

1 In the Physical layer of the Administration Tool, right-click a database and select
New Object > Connection Pool, or double-click an existing connection pool.

The following is an illustration of the General tab for a multidimensional data source in the
Connection Pool dialog box.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 75

2 In the Connection Pool dialog box, in the General tab, complete the fields using information in
Table 8 on page 70 and Table 9 on page 75.

NOTE: Table 9 on page 75 describes the connection pool properties or descriptions that are
unique to multidimensional data sources.

Table 9. Multidimensional Data Source Connection Pool General Properties

Property Description

Data Source
Information:

Catalog

The list of catalogs available, if you imported data from your data source.
The cube tables correspond to the catalog you use in the connection pool.

Data Source
Information:

Data Source

The vendor-specific information used to connect to the multidimensional
data source. Consult your multidimensional data source administrator for
setup instructions because specifications may change. For example, if you
use v1.0 of the XML for Analysis SDK then the value should be Provider-
MSOLAP;Data Source-local. If using v1.1, then it should be Local Analysis
Server.

Shared logon Select the Shared logon check box if you want all users whose queries use
the connection pool to access the underlying database using the same user
name and password.

If this option is selected, then all connections to the database that use the
connection pool will use the user name and password specified in the
connection pool, even if the user has specified a database user name and
password in the DSN (or in the user configuration).

If this option is not selected, connections through the connection pool use
the database user ID and password specified in the DSN or in the user
profile.

URL The URL to connect to the XMLA provider. It points to the XMLA virtual
directory of the machine hosting the cube. This virtual directory needs to be
associated with msxisapi.dll (part of the Microsoft XML for Analysis SDK
installation). For example, the URL might look like the following:

http://SDCDL360i101/xmla/msxisap.dll

Use session Controls whether queries go through a common session. Consult your
multidimensional data source administrator to determine whether this option
should be enabled. Default is Off (not checked).

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

76

Setting Up Additional Connection Pool Properties for an
XML Data Source
Use the XML tab of the Connection Pool dialog box to set additional properties for an XML data source.

CAUTION: The XML tab of the Connection Pool dialog box provides the same functionality as the
XML tab of the Physical Table dialog box. However, when you set the properties in the XML tab of the
Physical Table dialog box you will override the corresponding settings in the Connection Pool dialog
box.

To set up connection pool properties for an XML data source

1 Right-click the XML database, select New Object > Connection Pool.

2 In the Connection Pool dialog box, click the XML tab.

3 Complete the fields, using Table 10 on page 76 as a guide.

Table 10. XML Connection Pool Properties

Property Description

Connection method

Search script

Used for XML Server data source.

Connection
properties

Maximum
connections

Default is 10.

Connection
properties

URL loading time
out

Used for XML data source. Time-out interval for queries. The default is 15
minutes.

If you specified a URL to access the data source, set the URL loading time-
out as follows:

■ Select a value from the drop-down list (Infinite, Days, Hours, Minutes or
Seconds).

■ Specify a whole number as the numeric portion of the interval.

Connection
properties

URL refresh interval

Used for XML data source. The refresh interval is analogous to setting cache
persistence for database tables. The URL refresh interval is the time interval
after which the XML data source will be queried again directly rather than
using results in cache. The default setting is infinite, meaning the XML data
source will never be refreshed.

If you specified a URL to access the data source, set the URL refresh interval.

■ Select a value from the drop-down list (Infinite, Days, Hours, Minutes or
Seconds).

■ Specify a whole number as the numeric portion of the interval.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 77

To specify query output format settings

1 (Optional) For an XSLT file, type the path to and name of the XSLT file in the XSLT File field, or
use the Browse button.

2 (Optional) For an XPath expression, type the XPath expression in the XPath Expression field, for
example, //XML, or use the Browse button.

Setting Up Write-Back Properties
Use this section to complete the Write Back tab in the Connection Pool dialog box.

Query input
supplements

Header file/Trailer
file

Used for XML Server data source.

Query output
format

Choose only XML for an XML data source.

Other choices are available for an XML Server data source.

XPath expression An XPath expression is a simple XSLT transformation rule that fits into one
line. It is not essential, given the support of XSLT, but it is supported for
convenience. A sample entry might be */BOOK[not(PRICE>'200')].

■ For an XML Server data source, you cannot specify an XPath expression
on the XML tab of the Physical Table object.

XSLT file An XSLT file contains formatting rules written according to the XSLT
standard. It defines how an XML file may be transformed. The current
implementation of the XML gateway does not support all XML files, only
those that resemble a tabular form, with repeating second level elements.
To increase the versatility of the XML gateway, customers can specify an
XSLT file to preprocess an XML file to a form that the Oracle BI Server
supports. Specifying the XSLT file in the connection pool applies it to all the
XML physical tables in the connection pool.

■ For an XML data source, you can specify an XSLT file on a per-table basis
on the XML tab of the Physical Table object. This overrides what you
specified in the connection pool.

■ For an XML Server data source, you cannot specify an XSLT file on the
XML tab of the Physical Table object.

Table 10. XML Connection Pool Properties

Property Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

78

To set up write-back properties for connection pools

1 In the Physical layer of the Administration Tool, right-click a database and select
New Object > Connection Pool, or double-click an existing connection pool.

2 In the Connection Pool dialog box, click the Write Back tab.

3 In the Write Back tab, complete the fields using Table 11 on page 78 as a guide.

Table 11. Field Descriptions for Write Back Tab

Field Description

Bulk Insert

Buffer Size (KB)

Used for limiting the number of bytes each time data is inserted in a
database table.

Bulk Insert

Transaction Boundary

Controls the batch size for an insert in a database table.

Temporary table

Database Name

Database where the temporary table will be created. This property
applies only to IBM OS/390 because IBM OS/390 requires database
name qualifier to be part of the CREATE TABLE statement. If left blank,
OS/390 will default the target database to a system database for which
the users may not have Create Table privileges.

Temporary table

Owner

Table owner name used to qualify a temporary table name in a SQL
statement, for example to create the table owner.tablename. If left
blank, the user name specified in the writeable connection pool is used
to qualify the table name and the Shared Logon field on the General tab
should also be set.

Temporary table

Prefix

When the Oracle BI Server creates a temporary table, these are the
first two characters in the temporary table name. The default value is
TT.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 79

Setting Up the Persist Connection Pool Property
A persist connection pool is a database property that is used for specific types of queries (typically
used to support Marketing queries). In some queries, all of the logical query cannot be sent to the
transactional database because that database might not support all of the functions in the query.
This issue might be solved by temporarily constructing a physical table in the database and rewriting
the Oracle BI Server query to reference the new temporary physical table.

You could use the persist connection pool in the following situations:

■ Populate stored procedures. Use to rewrite the logical SQL result set to a managed table.
Typically used by Oracle’s Siebel Marketing Server to write segmentation cache result sets.

■ Perform a generalized subquery. Stores a nonfunction subquery in a temporary table and
then rewrites the original subquery result against this table. Reduces data movement between
the Oracle BI Server and the database and supports unlimited IN list values and might result in
improved performance.

NOTE: In these situations, the user issuing the logical SQL needs to have been granted the Populate
privilege on the target database.

Temporary table

Tablespace Name

Tablespace where the temporary table will be created. This property
applies to OS/390 only as OS/390 requires tablespace name qualifier
to be part of the CREATE TABLE statement. If left blank, OS/390 will
default the target database to a system database for which the users
may not have Create Table privileges.

Unicode Database Type Select this check box when working with columns of an explicit Unicode
data type, such as NCHAR, in an Unicode database. This makes sure
that the binding is correct and data will be inserted correctly. Different
database vendors provide different character data types and different
levels of Unicode support. Use the following general guidelines to
determine when to set this check box:

■ On a database where CHAR data type supports Unicode and there
is no separate NCHAR data type, do not select this check box.

■ On a database where NCHAR data type is available, it is
recommended to select this check box.

■ On a database where CHAR and NCHAR data type are configured to
support Unicode, selecting this check box is optional.

NOTE: Unicode and non-Unicode datatypes cannot coexist in a single
non-Unicode database. For example, mixing the CHAR and NCHAR data
types in a single non-Unicode database environment is not supported.

Table 11. Field Descriptions for Write Back Tab

Field Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Setting
Up Connection Pools

80

The persist connection pool functionality designates a connection pool with write-back capabilities
for processing this type of query. You can assign one connection pool in a single database as a persist
connection pool. If this functionality is enabled, the User name specified in the connection pool must
have the privileges to create DDL (Data Definition Language) and DML (Data Manipulation Language)
in the database.

Example of Using Buffer Size and Transaction Boundary
If each row size in a result set is 1 KB and the buffer size is 20 KB, then the maximum array size will
be 20 KB. If there are 120 rows, there will be 6 batches with each batch size limited to 20 rows.

If you set the Transaction boundary field to 3, the server will commit twice. The first time the server
commits after row 60 (3 * 20). The second time the server commits after row 120. If there is a failure
when the server commits, the server will only rollback the current transaction. For example, if there
are two commits and the first commit succeeds but the second commit fails, the server only rolls
back the second commit. To make sure that the array-based insert runs successfully, it is
recommended that you not set the transaction boundary greater than 10 and you set the buffer size
to approximately 32 KB.

To assign a persist connection pool

1 In the Physical layer, double-click the database icon.

2 In the Database dialog box, click the General tab.

3 In the Persist Connection Pool area, click Set.

If there is only one connection pool, it appears in the Persist Connection Pool field.

4 If there are multiple connection pools, in the Browse dialog box, select the appropriate
connection pool, and then click OK.

The selected connection pool name appears in the Persist connection pool field.

5 (Optional) To set write-back properties, click the Connection Pools tab.

6 In the connection pool list, double-click the connection pool.

7 In the Connection Pool dialog box, click the Write Back tab.

8 Complete the fields using Table 11 on page 78 as a guide.

9 Click OK twice to save the persist connection pool.

To remove a persist connection pool

1 In the Physical layer, double-click the database icon.

2 In the Database dialog box, click the General tab.

3 In the Persist Connection Pool area, click Clear.

The database name is replaced by not assigned in the Persist connection pool field.

4 Click OK.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ About
Physical Tables

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 81

About Physical Tables
This topic is part of the “Process of Creating the Physical Layer from Relational Data Sources” on
page 56 and the “Process of Creating the Physical Layer from Multidimensional Data Sources” on
page 58.

A physical table is an object in the Physical layer of the Administration Tool that corresponds to a
table in a physical database. Physical tables are usually imported from a database or another data
source. They provide the metadata necessary for the Oracle BI Server to access the tables with SQL
requests.

In addition to importing physical tables, you can create virtual physical tables in the Physical layer,
using values in the Table Type field in the Physical Table dialog box. A virtual physical table can be a
stored procedure or a Select statement. Creating virtual tables can provide the Oracle BI Server and
the underlying databases with the proper metadata to perform some advanced query requests.

Table Types for Physical Tables
The Table Type drop-down list in the General tab of the Physical Table dialog box allows you to specify
the physical table object type. Table 12 on page 81 provides a description of the available object
types.

Table 12. Table Type Descriptions for Physical Tables

Table
Type Description

Physical
Table

Specifies that the physical table object represents a physical table.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ About
Physical Tables

82

Using Stored Procedures with an Oracle Database
Stored Procedures within Oracle do not return result sets. Therefore they cannot be initiated from
within Oracle BI. You need to rewrite the procedure as an Oracle function, use it in a select statement
in the Administration Tool initialization block, and then associate it with the appropriate Oracle BI
session variables in the Session Variables dialog box.

The function uses the GET_ROLES function and takes a user Id as a parameter and returns a semi-
colon delimited list of group names.

The following is an example of an initialization SQL string using the GET_ROLES function that is
associated with the USER, GROUP, DISPLAYNAME variables:

select user_id, get_roles(user_id), first_name || ' ' || last_name

from csx_security_table

where user_id = ':USER' and password = ':PASSWORD'

Stored
Proc

Specifies that the physical table object is a stored procedure. When you select this
option, you type the stored procedure in the text box. Requests for this table will call
the stored procedure.

For stored procedures that are database specific, select the Use database specific SQL
check box. At run time, if a stored procedure has been defined, the stored procedure
will be executed; otherwise, the default configuration will be executed.

NOTE: Stored procedures using an Oracle database do not return result sets. For more
information, refer to “Using Stored Procedures with an Oracle Database” on page 82.

For information about stored procedures and alias tables, see “About Physical Alias
Tables” on page 83.

Select Specifies that the physical table object is a Select statement. When you select this
option, you type the select statement in the text field and you need to manually create
the table columns. The column names must match the ones specified in the Select
statement. Column aliases are required for advanced SQL functions, such as aggregates
and case statements.

Requests for this table will execute the Select statement.

For Select statements that are database specific, select the Use database specific SQL
check box. At run time, if a Select statement has been defined, the Select statement
will be executed; otherwise, the default configuration will be executed.

Table 12. Table Type Descriptions for Physical Tables

Table
Type Description

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
and Setting Up Physical Tables

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 83

Creating and Setting Up Physical Tables
This topic is part of the “Process of Creating the Physical Layer from Relational Data Sources” on
page 56 and the “Process of Creating the Physical Layer from Multidimensional Data Sources” on
page 58.

For all data sources, you can define general properties, columns, a primary key, and foreign keys.

About Physical Alias Tables
An Alias table (Alias) is a physical table with the type of Alias. It is a reference to a logical table
source, and inherits all its column definitions and some properties from the logical table source. A
logical table source shows how the logical objects are mapped to the physical layer and can be
mapped to physical tables, stored procedures, and select statements. An alias table can be a
reference to any of these logical table source types. For more information, see “Creating and
Administering the Business Model and Mapping Layer in an Oracle BI Repository” on page 109.

Alias Tables can be an important part of designing a physical layer. The following is a list of the main
reasons to create an alias table:

■ To reuse an existing table more than once in your physical layer (without having to import it
several times.

■ To set up multiple alias tables, each with different keys, names, or joins.

■ To help you design sophisticated star or snowflake structures in the business model layer. Alias
tables are critical in the process of converting ER Schemas to Dimensional Schemas. For more
information, see “Identifying the Database Content For The Business Model” on page 45.

You can allow an alias table to have cache properties that differ from its source table by setting an
override flag in the Physical Table dialog box. In alias tables, columns cannot be added, deleted, or
modified. Columns are automatically synchronized; no manual intervention is required.

NOTE: Synchronization makes sure that source tables and their related alias tables have the same
column definitions. For example, if you delete a column in the source table the column is
automatically removed from the alias table.

You cannot delete source tables unless you delete all its alias tables first. You can change the source
table of an alias table, if the new source table is a superset of the current source table. However, this
could result in an inconsistent repository if changing the source table deletes columns that are being
used. If you attempt to do this, a warning message appears to let you know that this could cause a
problem and allows you to cancel the action.

NOTE: Running a consistency check identifies orphaned aliases.

When you edit a physical table or column in online mode, all alias tables and columns must be
checked out. The behavior of online checkout uses the following conventions:

■ If a source table or column is checked out, all its alias tables and columns will be checked out.

■ If an alias table or column is checked out, its source table and column will be checked out.

■ The checkout option is available for online repositories (if not read-only) and for all source and
alias tables and columns.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
and Setting Up Physical Tables

84

Alias tables inherit some properties from their source tables. A property that is proxied is a value
that is always the same as the source table, and cannot be changed. If the source table changes its
value for that particular property, the same will be applied on the alias table.

The following is a list of the properties that are proxied:

■ IsCacheable (the inherited property can be overridden)

■ CacheExpiry (the inherited property can be overridden)

■ Row Count

■ Last Updated

■ Table Type

■ External Db Specifications

The following is list of the properties that are not proxied:

■ Name

■ Description

■ Display Folder Containers

■ Foreign Keys

■ Columns (tables don't share columns, ever. Aliases and sources have distinctly different columns
that alias each other)

■ Table Keys

■ Complex Joins

■ Source Connection Pool

■ Polling Frequency

■ All XML attributes

About Creating and Setting Up Physical Tables for Multidimensional
Data Sources
Each cube from a multidimensional data source is set up as a physical cube table, a type of physical
table. It has all the capabilities of a table such as physical cube columns and keys (optional) and
foreign keys (optional). It also has cube-specific metadata such as hierarchies and levels.

In the Physical layer, a physical cube table looks like a regular table but will have a different icon.
For more information about icons, refer to “Icons and Symbols in the Administration Tool” on page 21.

When you import the physical schema, the Oracle BI Server imports the cube, including its metrics,
hierarchies, and levels. Expanding the hierarchy icon reveals the levels in the hierarchy. In the
Physical Cube Table dialog box, the Hierarchies tab lists the dimensional hierarchies in the cube.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
and Setting Up Physical Tables

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 85

Each multidimensional catalog in the database can contain multiple physical cubes. You can import
one or more of these cubes into your BI repository. You can create a cube table manually. However,
it is recommended that you import cube tables and their components.

NOTE: If creating a cube manually, it is strongly recommended that you build each cube one
hierarchy at a time and test each one before building another. For example, create the time hierarchy
and a measure, and then test it. When it is correct, create the geography hierarchy and test it. This
will help make sure you have set up each cube correctly and make it easier to identify any setup
errors.

To create a physical table or a physical cube table and any necessary properties, perform the
following tasks:

■ Creating and Administering General Properties for Physical Tables on page 85

■ Creating and Administering Columns and Keys in a Physical Table on page 87

■ Setting Up Hierarchies in the Physical Layer for a Multidimensional Data Source on page 91

■ Setting Physical Table Properties for an XML Data Source on page 96

Creating and Administering General Properties for
Physical Tables
Use the General tab of the Physical Table dialog box to create or edit a physical table in the Physical
layer of the Administration Tool.

This section contains the following topics:

■ Creating or Editing Physical Tables on page 85

■ Deleting a Physical Table on page 87

Creating or Editing Physical Tables
This section describes how to create or edit the general properties for a table. This includes physical
cube tables and alias tables.

To create a physical table or edit general properties for tables and alias tables

1 In the Physical layer of the Administration Tool, perform one of the following steps:

■ To create a physical table, right-click the physical database and choose
New Object > Physical Table.

■ To create a physical cube table for a multidimensional data source, right-click the physical
database and choose New Object > Physical Cube Table.

NOTE: It is strongly recommended that you import cube tables, not create them manually.

■ To create an alias table, right click a physical table, and choose New Object > Alias.

NOTE: You can also create aliases on opaque views and stored procedures.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
and Setting Up Physical Tables

86

■ To edit an existing physical table, double-click the physical table icon.

2 In the selected Physical Table dialog box, complete the fields using Table 13 on page 86 as a
guide.

Table 13. Physical Table General Properties for Relational and XML Data Sources

Property Description

Name The Oracle BI Administrator assigns a name to new table.

Cacheable To include the table in the Oracle BI Server query cache, select this check
box. When you select this check box, the Cache persistence time settings
become active. This is useful for OLTP data sources and other data sources
that are updated frequently. Typically, you should check this option for most
tables.

Cache never
expires

When you select this option, cache entries do not expire. This could be useful
when a table will be important to a large number of queries users might run.
For example, if most of your queries have a reference to an account object,
keeping it cached indefinitely could actually improve performance rather
than compromise it.

CAUTION: This is only of use on some objects. Set this option for too many
objects and the cache will become manageably large or objects might begin
dropping out of the cache at inefficient times.

Cache persistence
time

How long table entries should persist in the query cache. The default value
is Infinite, meaning that cache entries do not automatically expire. However,
this does not mean that an entry will always remain in the cache. Other
invalidation techniques, such as manual purging, LRU (Least Recently Used)
replacement, metadata changes, and use of the cache polling table, result
in entries being removed from the cache.

If a query references multiple physical tables with different persistence
times, the cache entry for the query will exist for the shortest persistence
time set for any of the tables referenced in the query. This makes sure that
no subsequent query gets a cache hit from an expired cache entry.

If you change the default to minutes or seconds, type a whole number into
the field on the left.

For more information, refer to “Troubleshooting Problems with an Event
Polling Table” on page 253.

External name Applies to physical cube tables from a multidimensional data source. If you
select a Table Type of Physical Table, the external data source name appears.

Override Source
Table Caching
Properties

Check box available for alias tables. When selected, the cacheable
properties become available and you can clear or select the appropriate
options.

Source Table Applies to alias tables. The Select button allows you to choose the physical
table from which to create an alias table.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
and Setting Up Physical Tables

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 87

Deleting a Physical Table
When you delete a physical table, all dependent objects are deleted. For example columns, keys, and
foreign keys. When you delete a physical cube table, hierarchies are also deleted.

NOTE: The deletion fails if an alias exists on the physical table.

To delete a physical table from the Physical layer

1 In the Physical layer of the Administration Tool, locate the table that you want to delete.

2 Right-click the table and choose Delete.

Viewing Data in Physical Tables or Columns
You can view the data in a physical table or an individual physical column by right-clicking the object
and choosing View Data. In online editing mode, you must check in changes before you can use View
Data.

View Data is not available for physical cube tables or columns. For information, refer to “Viewing
Members in Physical Cube Tables” on page 94.

CAUTION: View Data will not work if you set the user name and password for connection pools to
:USER and :PASSWORD. In offline mode, the Set values for variables dialog box appears so that you
can populate :USER and :PASSWORD as part of the viewing process.

Creating and Administering Columns and Keys in a
Physical Table
Each table in the Physical layer of the Administration Tool has one or more physical columns.

Table Type Physical Table values: Physical Table, Stored Proc (stored procedure), or
Select.

Physical Cube Table values: Physical Table or Select.

Use Dynamic Name Check box available for non-multidimensional data source tables when you
select a Table type of Physical Table. When selected, a dialog box opens in
which you can choose a session variable.

Use Database
Specific SQL

Default
Initialization String

For non-multidimensional data source tables (not alias tables), this appears
if you choose a Table Type of Stored Proc or Select. For multidimensional
data source tables, this appears if you choose a Table Type of Select.

When you select the check box, you can specify the database and type the
SQL.

Table 13. Physical Table General Properties for Relational and XML Data Sources

Property Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
and Setting Up Physical Tables

88

The Columns, Keys, and Foreign Keys tabs in the Physical Table dialog box allow you to view, create
new, and edit existing columns, keys, and foreign keys that are associated with the table.

The following list describes the buttons that appear in the tabs:

■ New. Opens the dialog box that corresponds to the tab.

■ Edit. When you select an object and then click Edit, the dialog box that corresponds to the tab
appears. You can then edit the object’s properties.

■ Delete. Deletes the selected object.

This section contains the following tasks:

■ About Measures in a Multidimensional Data Source on page 88

■ Creating and Editing a Column in a Physical Table on page 89

■ Specifying a Primary Key for a Physical Table on page 90

■ Deleting a Physical Column For All Data Sources on page 91

About Measures in a Multidimensional Data Source
You need to select the aggregation rule for a physical cube column carefully to make sure your
measures are correct. Setting it correctly might improve performance.

Use the following guidelines to verify and assign the aggregation rule correctly:

■ Verify aggregation rules after importing a cube. Typically, aggregation rules are assigned
correctly when you import the cube. However, if a measure is a calculated measure, the
aggregation rule will be reported as None. Therefore, you should examine the aggregation rule
for all measures after importing a cube to verify that the aggregation rule has been assigned
correctly.

For all measures assigned an aggregation rule value of None, contact the multidimensional data
source administrator to verify that the value of the aggregation rule is accurate. If you need to
change the aggregation rule, you can change it in the Physical Cube Column dialog box.

■ Setting the aggregation rule when you build the measures manually. Set the aggregation rule to
match its definition in the multidimensional data source.

About Externally Aggregated Measures
In a multidimensional data source, some cubes contain very complex, multi-level based measures.
If the Oracle BI Administrator assigns an aggregation rule of Aggr_External, the BI Server will bypass
its internal aggregation mechanisms and use the pre-aggregated measures. When imported, these
measures are assigned an aggregate value of None.

The following are some guidelines for working with pre-aggregated measures:

■ External aggregation only applies to multidimensional data sources (such as MS Analysis
Services and SAP/BW) that support these complex calculations.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
and Setting Up Physical Tables

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 89

■ You cannot assign external aggregation to measures from standard data sources (relational). If
the measure is supported and can be mapped to a relational database, then it is not complex and
does not require external aggregation.

■ You cannot mix noncomplex measures from standard data sources (relational) with complex
measures from multidimensional data sources.

■ You can mix noncomplex measures from standard data sources (relational) with noncomplex
measures from multidimensional data sources if they are aggregated through the Oracle BI
Server.

Creating and Editing a Column in a Physical Table
If the column is imported, the properties of the column are set automatically. The following list
contains information about nullable and data type values for columns imported into the Physical
layer.

■ Nullable. The option Nullable in the Physical Columns dialog box indicates whether null values
are allowed for the column. If null values can exist in the underlying table, you need to select
this option. This allows null values to be returned to the user, which is expected with certain
functions and with outer joins. It is generally safe to change a non-nullable value to a nullable
value in a physical column.

■ Data type. The data type list indicates the data type of the columns. Use caution in changing
the data type values. Setting the values to ones that are incorrect in the underlying data source
might cause unexpected results. If there are any data type mismatches, correct them in the
repository or reimport the columns with mismatched data types.

If you reimport columns, you also need to remap any logical column sources that reference the
remapped columns. The data type of a logical column in the business model must match the data
type of its physical column source. The Oracle BI Server will pass these logical column data types
to client applications.

NOTE: Except when stated otherwise, the characteristics and behavior of a physical cube column are
the same as for other physical columns.

About Creating and Editing a Column With an Associated Column in an Alias Table
Creating and editing a column in a physical source table that has a corresponding column in an alias
table, causes the following results:

■ Creating a Source Column. Creating a column in the physical source table, creates the same
column on all its alias tables. Here are the steps involved:

■ Deleting a Source Column. Deleting a column in the physical source table, deletes the same
column on all its alias tables.

■ Modifying a Source Column. Modifying a column in the physical source table, modifies the same
column on all its alias tables.

To create or edit a physical column

1 In the Physical layer of the Administration Tool, perform one of the following steps:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
and Setting Up Physical Tables

90

■ To create a physical column, right-click a physical table and choose
New Object > Physical Column from the shortcut menu.

■ To create a physical cube column for a multidimensional data source, right-click a physical
cube table, and choose New Object > Physical Cube Column.

■ To edit an existing physical column, double-click the physical column icon.

2 In the Physical Column dialog box, type a name for the physical column.

For XML data sources, this field will store and display the unqualified name of a column
(attribute) in an XML document.

3 In the Type field, select a data type for the physical column.

4 If applicable, specify the length of the data type.

For multidimensional data sources, if you select VARCHAR, you need to type a value in the Length
field.

5 Select the Nullable option if the column is allowed to have null values.

6 In the External Name field, type an external name.

■ Required if the same name (such as STATE) is used in multiple hierarchies.

■ Optional for XML documents. The External Name field stores and displays the fully qualified
name of a column (attribute).

7 (Multidimensional data sources) When the physical cube column is a measure, in the Aggregation
rule drop-down list, select the appropriate value.

NOTE: A new physical cube column is created as a measure by default. To change this, refer to
“Setting Up Hierarchies in the Physical Layer for a Multidimensional Data Source” on page 91.

8 Click OK.

Specifying a Primary Key for a Physical Table
Use the Physical Key dialog box to specify the column or columns that define the primary key of the
physical table.

To specify a primary key for a physical table

1 In the Physical layer of the Administration Tool, right-click a physical table and choose Properties.

2 In the Physical Table dialog box, click the Keys tab.

3 In the Keys tab, click New.

4 In the Physical Key dialog box, type a name for the key.

5 Select the check box for the column that defines the primary key of the physical table.

6 (Optional) In the Physical Key dialog box, type a description for the key, and then click OK.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
and Setting Up Physical Tables

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 91

Deleting a Physical Column For All Data Sources
You delete a physical column in the same way for all data sources. The following is a list of some
results that occur:

■ Multidimensional data source. If you delete property or key columns from a level, the
association is deleted and the column changes to a measure under the parent cube table.

■ Alias tables. Deleting a column in a physical source table from which an alias table has been
created, deletes the same column on all its alias tables.

To delete a physical column from the Physical layer

1 In the Physical layer of the Administration Tool, locate the column that you want to delete.

2 Right-click the column and choose Delete.

Setting Up Hierarchies in the Physical Layer for a
Multidimensional Data Source
The following are some guidelines to follow when setting up hierarchies in the Physical layer.

■ Hierarchies that are ragged or have a parent-child hierarchy are not imported. You can set up
unbalanced hierarchies in the physical layer by changing the hierarchy type.

■ To change the column from a measure to a property or a level key, you need to set up a hierarchy
and associate the cube column with the hierarchy. If you delete a property or level key column
from a level, the column will change back to a measure under the parent cube table.

CAUTION: You will need to build a matching hierarchy in the Business Model and Mapping layer.
If you do not do this, queries may appear to work but might not return the correct results.

To create and maintain hierarchies in the Physical Layer, perform the following tasks:

■ Adding a Hierarchy to a Physical Cube Table on page 91

■ Verifying Hierarchy Levels on page 93

■ Updating Member Counts on page 94

■ Viewing Members in Physical Cube Tables on page 94

■ Adding or Removing a Cube Column in an Existing Hierarchy on page 95

■ Removing a Hierarchy from a Physical Cube Table on page 95

■ Associating a Physical Cube Column with a Hierarchy Level on page 96

Adding a Hierarchy to a Physical Cube Table
Most hierarchies are imported into the physical layer. Columns associated with a hierarchy that is not
imported will not be imported. If users need access to columns that are not imported, first add these
columns to the physical layer and then associate them with a level in a hierarchy. This section
contains instructions for adding a hierarchy.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
and Setting Up Physical Tables

92

Each level in a hierarchy has a level key. The first cube column associated with (added to) the level
of a hierarchy is the level key. This must match with the data source definition of the cube. The data
source cube table cannot set one column as a level key and the Oracle BI physical layer table set a
different column as a level key. The icon for the column that you select first changes to the key icon
after it is associated with the level of a hierarchy.

When you select columns to add to a hierarchy, it is recommended that you select them in
hierarchical order, starting with the highest level. If you select multiple columns and bring them into
the hierarchy at the same time, the order of the selected group of columns remains the same. After
adding columns to the hierarchy, you can change the order of the columns in the Browse dialog box.

If a query does not explicitly refer to a member of a hierarchy, a default member must be used.
Therefore, every hierarchy must be associated with a default member, typically the ALL member. The
Hierarchy dialog box contains a check box (Default member type ALL) that you use when you want
to designate the ALL member as the default. The following list contains some guidelines about
selecting the check box:

■ If you import the cube, the Default member type ALL check box should be automatically selected.
The ALL member is identified during import.

■ If you build the hierarchies manually, the check box will not be automatically selected. Before
selecting the check box, ask your multidimensional data source administrator if a non-ALL default
member has been defined. For example, for the Year level, 1997 might be designated as the
default member. In this case, you should not select the Default member type ALL check box.

To add a hierarchy to a physical cube table

1 In the Physical layer of the Administration Tool, double-click the table to which you want to add
a hierarchy.

2 In the Physical Cube Table dialog box, click the Hierarchies tab and click Add.

3 In the Hierarchy dialog box, complete the fields using Table 14 on page 93 as a guide.

4 To create a level, perform the following steps:

a In the Hierarchy dialog box, click Add.

b In the Physical Level dialog box, complete the fields using Table 14 on page 93 as a guide.

NOTE: In a hierarchy, levels should be added from the top down (you can reorder them
later). Using the correct hierarchical sequence allows your queries to return accurate
information and avoids errors.

5 To add one or more columns to the level, in the Physical Level dialog box, click Add.

NOTE: You can also add columns to a physical level by dragging and dropping physical columns
on the level object. The first column you add will be a key. Subsequent columns will be properties.

6 In the Browse dialog box, perform the following steps:

a In the Name list, locate the columns that you want to add to the hierarchy.

b Select the key column first, and then click Select.

c In the Physical Level dialog box, click OK.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
and Setting Up Physical Tables

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 93

7 To add more columns, repeat Step 5 on page 92 through Step 6 on page 92.

NOTE: You can add multiple columns by pressing Ctrl on your keyboard while clicking each
column, and then clicking Select.

8 When finished adding columns, in the Hierarchy dialog box, click OK.

Verifying Hierarchy Levels
It is strongly recommended that after setting up a hierarchy containing more than one level, you
should verify the order of the levels in the hierarchy.

To verify the levels in a hierarchy

1 In the Physical layer of the Administration Tool, double-click the table you want to verify.

2 In the Physical Cube Table dialog box, click the Hierarchies tab.

3 In the Hierarchies tab, select a hierarchy, and then click Edit.

4 In the Hierarchy dialog box, verify the levels are correct.

The Hierarchy dialog box lists all the defined levels for the selected hierarchy. The highest level
in the hierarchy should be the first (highest) item in the list.

5 If you need to reorder the hierarchy levels, select a level and click Up or Down to correct the
order of the levels.

There must be multiple levels and you must select a level for the buttons to be available.

6 When the levels are correct, click OK.

7 In the Physical Cube Table dialog box, click OK.

Table 14. Hierarchy and Level Properties for Physical Cube Tables

Property Description

Default member type ALL Check box used to designate the ALL member as the default.
Should not be selected for non-ALL default members.

Dimension Name (Dimension Unique Name) Dimension to which the hierarchy
belongs.

External Name Fully qualified name for the object.

Level Number Identifies the order of levels in a hierarchy. Use this property to
change the order of the levels.

Time Dimension Check box that identifies a dimension as one involving time such
as year, day, quarter.

Type Type of hierarchy: Fully Balanced, Unbalanced, Ragged Balanced,
and Network.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
and Setting Up Physical Tables

94

Updating Member Counts
You must open the repository in online mode to update member counts.

To determine if counts need to be updated, move your mouse over the hierarchy or level name. A
message appears to let you know that the counts need to be updated or when they were last
updated.

When you update member counts, the current number of members are returned from the selected
hierarchy. After successfully updating the member count, the updated member count appears in a
message when you move the mouse above the hierarchy or level name. The message appears in the
following syntax:

<hierarchy name> (<x> members, last updated <time stamp>)

To update member counts

1 In the Administration Tool, in the Physical layer, move your cursor over a hierarchy or level.

If the counts need to be updated, a message appears.

2 Right-click one or more hierarchies and levels.

3 In the menu, select Update Member Count.

An updated message appears if the update was successful.

Viewing Members in Physical Cube Tables
To view members, the repository must be opened in online mode. This is available for physical cube
tables from Analysis Services and SAP/BW data sources.

You can view members of hierarchies or levels in the physical layer of repositories. The list of
members by level in the hierarchy can help you determine if the XMLA connection on the server is
set up properly. You might want to reduce the time it takes to return data or the size of the returned
data by specifying a starting point (Starting from option) and the number of rows you want returned
(Show option).

To view members

1 In the Administration Tool, in the Physical layer, right-click a hierarchy or level.

2 Select View Members.

A window opens showing the number of members in the hierarchy and a list of the levels. You
might need to enlarge the window and the columns to view all the returned data.

3 Click Query to display results.

4 When finished, click Close.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
and Setting Up Physical Tables

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 95

Adding or Removing a Cube Column in an Existing Hierarchy
After setting up a hierarchy you may need to add or remove a column. You might want to remove a
hierarchy if it has been built incorrectly and you want to start over.

If you remove a cube column from a hierarchy, it is deleted from the hierarchy but remains in the
cube table and is available for selection to add to other levels.

To add a cube column to or remove a cube column from an existing hierarchy

1 In the Physical layer of the Administration Tool, double-click the table that you want to change.

2 In the Physical Cube Table dialog box, click the Hierarchies tab.

3 Select the hierarchy you want to change, and then click Edit.

4 In the Hierarchy dialog box, select the level and click Edit.

5 In the Physical Level dialog box, perform one of the following steps:

a To add a column, click Add.

❏ In the Browse dialog box, in the Name list, select the columns that you want to add.

❏ Click Select.

b To remove a column, select the column and click Remove.

c To change the sequence of the levels in a hierarchies, select the level and click Up or Down.

d Click OK.

6 In the Hierarchy dialog box, click OK.

7 In the Physical Cube Table dialog box, click OK.

Removing a Hierarchy from a Physical Cube Table
You might want to remove a hierarchy if it has been built incorrectly and you want to start over or if
you want to remove objects that are not being used. For example, you might import an entire
physical multidimensional schema and only want to keep parts of it in the business model.

NOTE: When you delete a hierarchy in the Physical layer, you remove the hierarchy and the columns
that are part of the hierarchy.

To remove a hierarchy from a physical cube table

1 In the Physical layer of the Administration Tool, double-click the table that you want to change.

2 In the Physical Cube Table dialog box, click the Hierarchies tab.

3 Select the hierarchy you want to remove, and then click Remove.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
Physical Layer Folders

96

Associating a Physical Cube Column with a Hierarchy Level
Attributes are used in the physical layer to represent columns that only exist at a particular level of
a hierarchy. For example, if Population is an attribute that is associated with the level State in the
Geography hierarchy, when you query for Population you are implicitly asking for data that is at the
State level in the hierarchy.

There can be zero or more attributes associated with a level. The first physical cube column that is
associated with a level becomes the level key. If you associate subsequent columns with a level, they
become attributes, not level keys.

Example of Associating a Physical Cube Column with a Hierarchy
You have a level called State and you want to associate a column called Population with this level.

■ Create the hierarchy and the State level.

■ Create the physical cube column for Population.

■ In the Physical Cube Table dialog box, in the Hierarchies tab, select the State level and click Edit.

■ In the Hierarchy dialog box, click Add.

■ In the Physical Level dialog box, click Add.

■ In the Browse dialog box, select the Population column and click Select.

The measure icon changes to the property icon.

Setting Physical Table Properties for an XML Data
Source
Use the XML tab to set or edit properties for an XML data source. The XML tab of the Physical Table
dialog box provides the same functionality as the XML tab of the Connection Pool dialog box.
However, setting properties in the Physical Table dialog box will override the corresponding settings
in the Connection Pool dialog box. For more information, refer to “Setting Up Additional Connection
Pool Properties for an XML Data Source” on page 76.

Creating Physical Layer Folders
This section contains the following topics:

■ Creating Physical Layer Catalogs and Schemas on page 97

■ Using a Variable to Specify the Name of a Catalog or Schema on page 97

■ Setting Up Display Folders in the Physical Layer on page 98

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
Physical Layer Folders

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 97

Creating Physical Layer Catalogs and Schemas
Catalogs are optional ways to group different schemas. A catalog contains all the schema (metadata)
for a database object. A schema contains only the metadata information for a particular user or
application. Model the physical layer after the way your database is structured.

A database can have either catalogs or schemas but not both. If your database has one or more
schemas, you cannot create a catalog. If your database has one or more catalogs, you cannot create
schemas.

NOTE: You must create a database object before you create a catalog object or a schema object.

Creating Catalogs
In the Physical layer of a large repository, Oracle BI Administrators can create catalogs that contain
one or more physical schemas.

To create a catalog

1 In the Physical layer, right-click a database object, and then choose
New Object > Physical Catalog.

2 In the Physical Catalog dialog box, type a name for the catalog.

3 Type a description for the catalog, and then click OK.

Creating Schemas
The schema object contains tables and columns for a physical schema. Schema objects are optional
in the Physical layer of the Administration Tool.

To create a schema

1 In the Physical layer, right-click a database object, and then choose
New Object > Physical Schema.

2 In the Physical Schema dialog box, type a name.

3 Type a description for the schema, and then click OK.

Using a Variable to Specify the Name of a Catalog or
Schema
You can use a variable to specify the names of catalog and schema objects. For example, you have
data for multiple clients and you structured the database so that data for each client was in a
separate catalog. You would initialize a session variable named Client, for example, that could be
used to set the name for the catalog object dynamically when a user signs on to the Oracle BI Server.

NOTE: The Dynamic Name tab is not active unless at least one session variable is defined.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Creating
Physical Layer Folders

98

To specify the session variable to use in the Dynamic Name tab

1 In the Name column of the Dynamic Name tab, click the name of the session variable that you
want to use. The initial value for the variable (if any) is shown in the Default Initializer column.

2 To select the highlighted variable, click Select.

The name of the variable appears in the dynamic name field, and the Select button toggles to
the Clear button.

To remove assignment for a session variable in the Dynamic Name tab
■ Click Clear to remove the assignment for the variable as the dynamic name.

The value Not Assigned displays in the dynamic name field, and the Clear button toggles to the
Select button.

To sort column entries in the Dynamic Name tab
■ You can sort the entries in a column by clicking on the associated column heading, Name or

Default Initializer. Clicking on a column heading toggles the order of the entries in that column
between ascending and descending order, according to the column type.

When no dynamic name is assigned, Not Assigned displays in the dynamic name field to the left
of the Select button. When a dynamic name is assigned, the Select button toggles to the Clear
button, and the name of the variable displays in the dynamic name field.

Setting Up Display Folders in the Physical Layer
Oracle BI Administrators can create display folders to organize table objects in the Physical layer.
They have no metadata meaning. After you create a display folder, the selected tables appear in the
folder as a shortcut and in the Physical layer tree as an object. You can hide the objects so that you
only view the shortcuts in the display folder. For more information about hiding these objects, refer
to “Using the Options Dialog Box—Repository Tab” on page 31.

NOTE: Deleting objects in the display folder deletes only the shortcuts to those objects.

To set up a physical display folder

1 In the Physical layer, right-click a database object, and choose
New Object > Physical Display Folder.

2 In the Physical Display Folder dialog box, in the Tables tab, type a name for the folder.

3 To add tables to the display folder, perform the following steps:

a Click Add.

b In the Browse dialog box, select the fact or physical tables you want to add to the folder and click
Select.

4 Click OK.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ About
Physical Joins

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 99

About Physical Joins
All valid physical joins need to be configured in the Physical layer of the Administration Tool.

NOTE: You do not create joins for multidimensional data sources.

When you import keys in a physical schema, the primary key-foreign key joins are automatically
defined. Any other joins within each database or between databases have to be explicitly defined to
express relationships between tables in the physical layer.

NOTE: Imported key and foreign key joins do not have to be used in metadata. Joins that are defined
to enforce referential integrity constraints can result in incorrect joins being specified in queries. For
example, joins between a multipurpose lookup table and several other tables can result in
unnecessary or invalid circular joins in the SQL issued by the Oracle BI Server.

Multi-Database Joins
A multi-database join is defined as a table under one metadata database object that joins to a table
under a different metadata database object. You need to specify multi-database joins to combine the
data from different databases. Edit the Physical Table Diagram window to specify multi-database
joins. The joins can be between tables in any databases, regardless of the database type, and are
performed within the Oracle BI Server. While the Oracle BI Server has several strategies for
optimizing the performance of multi-database joins, multi-database joins will be significantly slower
than joins between tables within the same database. It is recommended to avoid them whenever
possible. For more information about the Physical Table Diagram, refer to “Defining Physical Joins in
the Physical Diagram” on page 101.

Fragmented Data
Fragmented data is data from a single domain that is split between multiple tables. For example, a
database might store sales data for customers with last names beginning with the letter A through
M in one table and last names from N through Z in another table. With fragmented tables, you need
to define all of the join conditions between each fragment and all the tables it relates to. Figure 9 on
page 99 shows the physical joins with a fragmented sales table and a fragmented customer table
where they are fragmented the same way (A through M and N through Z).

Figure 9. Fragmented Tables Example

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Defining
Physical Foreign Keys and Joins

100

In some cases, you might have a fragmented fact table and a fragmented dimension table, but the
fragments might be across different values. In this case, you need to define all of the valid joins, as
shown in Figure 10 on page 100.

TIP: Avoid adding join conditions where they are not necessary (for example, between Sales A to
M and Customer N to Z in Figure 9 on page 99). Extra join conditions can cause performance
degradations.

Primary Key and Foreign Key Relationships
A primary key and foreign key relationship defines a one-to-many relationship between two tables.
A foreign key is a column or a set of columns in one table that references the primary key columns
in another table. The primary key is defined as a column or set of columns where each value is unique
and identifies a single row of the table. You can specify primary key and foreign keys in the Physical
Table Diagram or by using the Keys tab and Foreign Keys tab of the Physical Table dialog box. Also
refer to “Defining Physical Joins in the Physical Diagram” on page 101 and “Creating and Administering
Columns and Keys in a Physical Table” on page 87.

Complex Joins
In the physical layer of the repository, complex joins are joins over nonforeign key and primary key
columns. When you create a complex join in the physical layer, you can specify expressions and the
specific columns on which to create the join. When you create a complex join in the business model
layer, you do not specify expressions.

Defining Physical Foreign Keys and Joins
You can create physical foreign keys, complex joins, and logical joins using the Joins Manager or the
Physical or Logical Table Diagram.

NOTE: You do not create joins for multidimensional data sources.

To define physical joins, refer to the following topics:

Figure 10. Joins for Fragmented Tables Example

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Defining
Physical Foreign Keys and Joins

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 101

■ Defining Physical Foreign Keys or Complex Joins with the Joins Manager on page 101

■ Defining Physical Joins in the Physical Diagram on page 101

Defining Physical Foreign Keys or Complex Joins with
the Joins Manager
You can use the Joins Manager to view join relationships and to create physical foreign keys and
complex joins.

To create a physical foreign key or complex join

1 In the Administration Tool toolbar, select Manage > Joins.

2 In the Joins Manager dialog box, perform one of the following tasks:

■ Select Action > New > Complex Join.

The Physical Complex Join dialog box appears.

■ Select Action > New > Foreign Key. In the Browse dialog box, double-click a table.

3 In the Physical Foreign Key dialog box, type a name for the foreign key.

4 Click the Browse button for the Table field on the left side of the dialog box, and then locate the
table that the foreign key references.

5 Select the columns in the left table that the key references.

6 Select the columns in the right table that make up the foreign key columns.

7 If appropriate, specify a database hint.

For more information, refer to “Using Database Hints” on page 106.

8 To open the Expression Builder, click the button to the right of the Expression pane.

The expression displays in the Expression pane.

9 Click OK to save your work.

Defining Physical Joins in the Physical Diagram
You can define foreign keys and complex joins between tables, whether or not the tables are in the
same database. If you click the Physical diagram icon on the toolbar, the Physical Table Diagram
window opens and only the selected objects appear. If you right-click a physical object, several
options are available. For more information about these options, refer to Table 15 on page 102.

To display the Physical Table Diagram

1 In the Administration Tool, in the Physical layer, right-click a table and choose Physical Diagram.

2 In the shortcut menu, choose an option from Table 15 on page 102.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Defining
Physical Foreign Keys and Joins

102

3 To add another table to the Physical Table Diagram window, perform the following steps:

a Leave the Physical Table Diagram window open.

b Right-click to select a table you want to add and choose one of the Physical Diagram options
described in Table 15 on page 102.

Repeat this process until all the tables you need appear in the Physical Table Diagram
window.

To define a foreign key join or a complex join

1 In the Physical layer of the Administration Tool, select one or more tables and execute one of the
Physical Diagram commands from the right-click menu.

2 Click one of the following icons on the Administration Tool toolbar:

■ New foreign key

■ New complex join

3 With this icon selected, in the Physical Table Diagram window, left-click the first table in the join
(the table representing one in the one-to-many join) to select it.

4 Move the cursor to the table to which you want to join (the table representing many in the
one-to-many join), and then left-click the second table to select it.

The Physical Foreign Key or Physical Join dialog box appears.

5 Select the joining columns from the left and the right tables.

The SQL join conditions appear in the expression pane of the window.

NOTE: The driving table is shown on this window, but it is not available for selection because the
Oracle BI Server implements driving tables only in the Business Model and Mapping layer. For
more information about driving tables, refer to “Specifying a Driving Table” on page 140.

Table 15. Physical Diagram Shortcut Menu Options

Physical Diagram
Menu Description

Object(s) and all joins Displays the selected objects, as well as each object that is related
directly or indirectly to the selected object through some join path. If all
the objects in a schema are related, then using this option diagrams every
table, even if you only select one table.

Object(s) and direct
joins

Displays the selected objects and any tables that join to the objects that
you select.

Object(s) and direct
joins in the business
model

Option Not available at this time.

Selected object(s)
only

Displays the selected objects only. Joins display only if they exist between
the objects that you select.

Creating and Administering the Physical Layer in an Oracle BI Repository ■
Deploying Opaque Views

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 103

6 If appropriate, specify a database hint.

For more information, refer to “Using Database Hints” on page 106.

7 To open the Expression Builder, click the button to the right of the Expression pane.

The expression displays in the Expression pane.

8 Click OK to apply the selections.

Deploying Opaque Views
This section contains the following topics:

■ About Deploying Opaque Views on page 103

■ Deploying Opaque View Objects on page 103

■ Undeploying a Deployed View on page 105

■ Guidelines for Deleting an Opaque View or Deployed View on page 106

■ Guidelines for Redeploying Opaque Views on page 106

About Deploying Opaque Views
An opaque view is a physical layer table that consists of a Select statement. When you need a new
table, you should create a physical table or a materialized view. An opaque view should be used only
if there is no other solution.

In the repository, opaque views appear as view tables in the physical databases but the view does
not actually exist. You deploy an opaque view in the physical database using the Deploy View(s)
utility. After deploying an opaque view, it is called a deployed view. Opaque views can be used
without deploying them but the Oracle BI Server has to generate a more complex query when an
opaque view is encountered.

NOTE: Databases such as XLS and nonrelational database do not support opaque views and,
therefore, cannot run the view deployment utility.

To verify opaque views are supported by a database, make sure that the CREATE_VIEW_SUPPORTED
SQL feature is selected in the Database dialog box, in the Features tab. For instructions, refer to
“Specifying SQL Features Supported by a Database” on page 64.

Deploying Opaque View Objects
In offline mode, the Deploy View(s) utility is available when importing from databases with ODBC
and DB2cli data sources. Oracle Native (client) drivers are also supported in the offline mode for
deploying views. In online mode, view deployment is available for supported databases using Import
through server (the settings on the client will be ignored).

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■
Deploying Opaque Views

104

The Create View Select Statement
The SQL statement for deploying opaque views in the physical layer of the repository is available for
supported databases. To determine which of your databases support opaque views, contact your
system administrator or consult your database documentation.

Only repository variables can be used in the definition. An error will generate if a session variable is
used in the view definition.

Syntax:

CREATE VIEW <view name> AS <select statement>,

where

For opaque view objects, the right-click menu contains the Deploy View(s) option. When you select
Deploy View(s), the Create View SQL statement executes and attempts to create the deployed view
objects. The following list describes the ways you can initiate view deployment and the results of
each method:

■ Right-click a single opaque view object. When you select Deploy View(s), the Create View SQL
statement executes and attempts to create a deployed view for the object.

■ Right-click several objects. If at least one of the selected objects is an opaque view object, the
right-click menu contains the Deploy View(s) option. When you select Deploy View(s), the Create
View SQL statement executes and attempts to create the deployed views for any qualifying
objects.

■ Right-click a physical schema or physical catalog. If any opaque view object exists in the schema
or catalog, the right-click menu contains the Deploy View(s) option. When you select Deploy
View(s), the Create View SQL statements for all qualifying objects execute and attempt to create
deployed views for the qualifying objects contained in the selected schema or catalog.

During deployment, names are assigned to the views. If you change the preassigned name, the new
name must be alphanumeric and no more than 18 characters. If these guidelines are not followed,
the object name will be automatically transformed to a valid name using the following Name
Transform algorithm:

1 All non-alphanumeric characters will be removed.

2 If there are 16 or more after Step 1 on page 104, the first 16 characters will be kept.

3 Two digits starting from 00 to 99 will be appended to the name to make the name unique in the
corresponding context.

After the deployment process completes, the following occurs:

■ Views that have been successfully and unsuccessfully deployed appear in a list.

■ For unsuccessful deployments, a brief reason appears in the list.

<select statement> The user-entered SQL in the opaque view object. If SQL is invalid, the create
view statement will fail during view deployment.

<view name> Two formats: schema.viewname, or viewname. The connection pool settings
determine if the schema name is added.

Creating and Administering the Physical Layer in an Oracle BI Repository ■
Deploying Opaque Views

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 105

■ If deployment is successful, the object type of the opaque view changes from Select to None and
the deployed view will be treated as a regular table.

NOTE: If you change the type back to Select, the associated opaque views will be dropped from
database or an error message will appear. For information about deleting deployed views, refer
to “Guidelines for Deleting an Opaque View or Deployed View” on page 106

■ In the Administration Tool, the view icon changes to the deployed view icon for successfully
deployed views.

To deploy an opaque view

1 In the Physical layer of the repository, right-click the opaque view that you want to deploy.

2 In the right-click menu, choose Deploy View(s).

3 In the View Deployment - Deploy View(s) dialog box, perform the following steps:

a In the New Table Name column, change the new deployed view names, if you wish.

If the change does not conform to the naming rules a new name will be assigned and the
dialog box appears again so that you can accept or change it. This action will repeat until all
names pass validation.

b If you do not wish to deploy one or more of the views at this time, in the appropriate rows, clear
the check boxes.

4 If there are multiple connection pools defined for the database, in the Select Connection Pool
dialog box, choose a connection pool and click Select.

The SQL statement (CREATE VIEW) executes, and then the View Deployment Messages dialog
box appears.

5 In the View Deployment Messages dialog box, you can search for views using Find and Find Again
or copy the contents.

6 When you have performed the desired tasks, click OK.

Undeploying a Deployed View
Running the Undeploy View(s) utility against a deployed view deletes the views and converts the
table back to an opaque view with its original SELECT statement.

To undeploy a deployed view

1 In the Physical layer of the repository, right-click a database, physical catalog, schema, or
physical table.

If a deployed view exists that is related to the selected object, the right-click menu contains the
Undeploy View(s) option.

2 Choose Undeploy View(s).

A list of views that will be undeployed appears.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Using
Database Hints

106

3 If you do not wish to undeploy one or more of the views at this time, in the appropriate rows, clear
the check boxes.

4 View Deployment - Undeploy View(s) dialog box, click OK to remove the views.

A message appears if the undeployment was successful.

5 In the View Deployment Messages dialog box, you can search for undeployed views using Find
and Find Again, or you can copy the contents.

6 When you have performed the desired tasks, click OK.

Guidelines for Deleting an Opaque View or Deployed View
Use the following guidelines to remove an opaque or deployed view object in the repository:

■ Removing an undeployed opaque view in the repository. If the opaque view has not been
deployed, you can delete it from the repository.

■ Removing a deployed view. When you deploy an opaque view, a database view table is created
physically in the back-end database and the repository. Therefore, you must undeploy the view
before deleting it. You use the Undeploy View(s) utility in the Administration Tool. This removes
the opaque view from the back-end database, changes the Object Type from None to Select, and
restores the SELECT statement of the object in the physical layer of repository.

CAUTION: You should not delete the physical database view in the back-end database. If
deleted, the Oracle BI Server will not be able to query the view object. When you undeploy the
view it is removed automatically from the back-end database.

Guidelines for Redeploying Opaque Views
After removing an opaque view, you can choose to redeploy it. The Administration Tool does not
distinguish between a first-time deployment and a redeployment. Make sure that you remove a
deployed view before deploying the opaque view again. Failure to do this causes the deploy operation
to fail, and an error message will be returned from the database.

Using Database Hints
Database hints are instructions placed within a SQL statement that tell the database query optimizer
the most efficient way to execute the statement. Hints override the optimizer’s execution plan, so
you can use hints to improve performance by forcing the optimizer to use a more efficient plan.

NOTE: Hints are database specific. The Oracle BI Server supports hints only for Oracle 8i, 9i, and
10g servers.

Using the Administration Tool, you can add hints to a repository, in both online and offline modes, to
optimize the performance of queries. When you add a hint to the repository, you associate it with
database objects. When the object associated with the hint is queried, the Oracle BI Server inserts
the hint into the SQL statement.

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Using
Database Hints

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 107

Table 16 on page 107 shows the database objects with which you can associate hints. It also shows
the Administration Tool dialog box that corresponds to the database object. Each of these dialog
boxes contains a Hint field, into which you can type a hint to add it to the repository.

Usage Examples
This section provides a few examples of how to use Oracle hints in conjunction with the Oracle BI
Server. For more information about Oracle hints, refer to the Oracle SQL Reference documentation
for the version of the Oracle server that you use.

Index Hint
The Index hint instructs the optimizer to scan a specified index rather than a table. The following
hypothetical example explains how you would use the Index hint. You find queries against the
ORDER_ITEMS table to be slow. You review the query optimizer’s execution plan and find the
FAST_INDEX index is not being used. You create an Index hint to force the optimizer to scan the
FAST_INDEX index rather than the ORDER_ITEMS table. The syntax for the Index hint is
index(table_name, index_name). To add this hint to the repository, navigate to the Administration
Tool’s Physical Table dialog box and type the following text in the Hint field:

index(ORDER_ITEMS, FAST_INDEX)

Leading Hint
The Leading hint forces the optimizer to build the join order of a query with a specified table. The
syntax for the Leading hint is leading(table_name). If you were creating a foreign key join between
the Products table and the Sales Fact table and wanted to force the optimizer to begin the join with
the Products table, you would navigate to the Administration Tool’s Physical Foreign Key dialog box
and type the following text in the Hint field:

leading(Products)

Performance Considerations
Hints that are well researched and planned can result in significantly better query performance.
However, hints can also negatively affect performance if they result in a suboptimal execution plan.
The following guidelines are provided to help you create hints to optimize query performance:

■ You should only add hints to a repository after you have tried to improve performance in the
following ways:

Table 16. Database Objects That Accept Hints

Database Object Dialog Box

Physical complex join Physical Join - Complex Join

Physical foreign key Physical Foreign Key

Physical table - object type of Alias Physical Table - General tab

Physical table - object type of None Physical Table - General tab

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Physical Layer in an Oracle BI Repository ■ Using
Database Hints

108

■ Added physical indexes (or other physical changes) to the Oracle database.

■ Made modeling changes within the server.

■ Avoid creating hints for physical table and join objects that are queried often.

NOTE: If you drop or rename a physical object that is associated with a hint, you must also alter the
hints accordingly.

Creating Hints
The following procedure provides the steps to add hints to the repository using the Administration
Tool.

To create a hint

1 Navigate to one of the following dialog boxes:

■ Physical Table—General tab

■ Physical Foreign Key

■ Physical Join—Complex Join

2 Type the text of the hint in the Hint field and click OK.

For a description of available Oracle hints and hint syntax, refer to Oracle8i SQL Reference.

NOTE: Although hints are identified by using SQL comment markers (/* or --), do not type SQL
comment markers when you type the text of the hint. The Oracle BI Server inserts the comment
markers when the hint is executed.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 109

5 Creating and Administering the
Business Model and
Mapping Layer in an Oracle BI
Repository

The following topics contain information about creating the business model and logical objects:

■ Creating Business Model Objects on page 110

■ Duplicate Business Model and Presentation Catalog on page 110

■ Creating and Administering Logical Tables on page 111

■ Creating and Administering Logical Columns on page 113

■ Creating and Administering Logical Table Sources (Mappings) on page 117

■ About Dimensions and Hierarchical Levels on page 125

■ Process of Creating and Administering Dimensions on page 126

■ Setting Up Display Folders in the Business Model and Mapping Layer on page 136

■ Defining Logical Joins on page 136

About Creating the Business Model and
Mapping Layer
This section is part of the roadmap for planning and setting up a repository. For more information,
refer to “Planning and Creating an Oracle BI Repository” on page 39.

After creating all of the elements of the Physical layer, you can drag tables or columns from the
Physical layer to the Business Model and Mapping layer. For more information, refer to “Creating and
Administering the Physical Layer in an Oracle BI Repository” on page 55 and “Creating the Business
Model Layer for a Multidimensional Data Source” on page 110.

The Business Model and Mapping layer of the Administration Tool defines the business, or logical,
model of the data and specifies the mapping between the business model and the physical layer
schemas.

You create one or more business models in the logical layer and create logical tables and columns in
each business model. To automatically map objects in the Business Model and Mapping layer to
sources in the Physical layer, you can drag and drop Physical layer objects to a business model in the
logical layer. When you drag a physical table to the Business Model and Mapping layer, a
corresponding logical table is created. For each physical column in the table, a corresponding logical
column is created. If you drag multiple tables at once, a logical join is created for each physical join,
but only the first time the tables are dragged onto a new business model.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating Business Model Objects

110

Creating the Business Model Layer for a Multidimensional Data Source
Setting up the Business Model and Mapping (logical) layer for multidimensional data sources is
similar to setting up the logical layer for a relational data source. To create the business model layer,
you can drag and drop the physical layer cube to the logical layer. However, because the contents of
the physical cube are added as one logical table, you still have to reorganize the columns into
appropriate logical tables and recreate the hierarchies.

Creating Business Model Objects
The Business Model and Mapping layer of the Administration Tool can contain one or more business
model objects. A business model object contains the business model definitions and the mappings
from logical to physical tables for the business model.

NOTE: When you work in a repository in offline mode, remember to save your repository from time
to time. You can save a repository in offline mode even though the business models may be
inconsistent.

To create a business model

1 Right-click in the Business Model and Mapping layer below the existing objects.

2 Select the option New Business Model from the shortcut menu.

3 Specify a name for the business model.

4 If you wish to make the corresponding presentation layer available for queries, select the option
Available for queries.

NOTE: The business model should be consistent before you make select this option.

5 (Optional) Type a description of the business model, and then click OK.

Duplicate Business Model and
Presentation Catalog
This allows you to select a matching business model and presentation catalog, make a copy, and
assign new names to the duplicates.

NOTE: Aliases are not copied.

To copy a business model and its presentation catalog

1 In the Business Model and Mapping layer, right-click a business model.

2 In the right-click menu, choose Duplicate with Presentation Catalog.

3 In the Copy Business Model and Presentation Catalog dialog box, select the business model to
copy.

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating and Administering Logical Tables

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 111

4 Specify new names for the business model and its catalog in the appropriate name fields, and
then click OK.

The copied business model appears in the Business Model and Mapping layer window.

Creating and Administering Logical
Tables
Logical tables exist in the Business Model and Mapping layer. The logical schema defined in each
business model needs to contain at least two logical tables and you need to define relationships
between them.

Each logical table has one or more logical columns and one or more logical table sources associated
with it. You can change the logical table name, reorder the logical table sources, and configure the
logical keys (primary and foreign).

This section includes the following topics:

■ Creating Logical Tables on page 111

■ Specifying a Primary Key in a Logical Table on page 112

■ Reviewing Foreign Keys for a Logical Table on page 113

Creating Logical Tables
Typically, you create logical tables by dragging and dropping a physical table from the Physical layer
to a business model in the Business Model and Mapping layer. If a table does not exist in your physical
schema, you would need to create the logical table manually.

Drag and drop operations are usually the fastest method for creating objects in the Business Model
and Mapping layer. If you drag and drop physical tables from the Physical layer to the Business Model
and Mapping layer, the columns belonging to the table are also copied. After you drag and drop
objects into the Business Model and Mapping layer, you can modify them in any way necessary
without affecting the objects in the Physical layer.

When you drag physical tables (with key and foreign key relationships defined) to a business model,
logical keys and joins are created that mirror the keys and joins in the physical layer. This occurs
only if the tables that you drag include the table with the foreign keys. Additionally, if you create new
tables or subsequently drag additional tables from the Physical layer to the Business Model and
Mapping layer, the logical links between the new or newly dragged tables and the previously dragged
tables must be created manually.

For more information about joins, refer to “Defining Logical Joins with the Joins Manager” on page 137
and “Defining Logical Joins with the Business Model Diagram” on page 139.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating and Administering Logical Tables

112

To create a logical table by dragging and dropping

1 Select one or more table objects in the Physical layer.

You must include the table with the foreign keys if you want to preserve the keys and joins from
the physical layer.

2 Drag and drop the table objects to a business model in the Business Model and Mapping layer.

When you drop them, the table objects, including the physical source mappings, are created
automatically in the Business Model and Mapping layer.

To create a logical table manually

1 In the Business Model and Mapping layer, right-click the business model in which you want to
create the table and select New Object > Logical Table.

The Logical Table dialog box appears.

2 In the General tab, type a name for the logical table.

3 If this is a bridge table, select the option Bridge table.

For more information, refer to “Identifying Dimension Hierarchies” on page 43.

4 (Optional) Type a description of the table.

5 Click OK.

NOTE: After creating a logical table manually, you must create all keys and joins manually.

Adding or Editing Logical Table Sources
You can add a new logical table source, edit or delete an existing table source, create or change
mappings to the table source, and define when to use logical tables sources and how content is
aggregated. For instructions about how to perform these tasks, refer to “Creating and Administering
Logical Table Sources (Mappings)” on page 117.

Specifying a Primary Key in a Logical Table
After creating tables in the Business Model and Mapping layer, you specify a primary key for each
table. Logical dimension tables must have a logical primary key. Logical keys can be composed of
one or more logical columns.

NOTE: Logical keys are optional for logical fact tables. However, it is recommended that you do not
specify logical keys for logical fact tables. For more information, refer to “Reviewing Foreign Keys for
a Logical Table” on page 113.

To specify a primary key in a logical table

1 In the Business Model and Mapping layer, double-click a table.

2 In the Logical Table dialog box, select the Keys tab and then click New.

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating and Administering Logical Columns

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 113

3 In the Logical Key dialog box, perform the following steps:

a Type a name for the key.

b Select the check box for the column that defines the key of the logical table.

4 Click OK.

Reviewing Foreign Keys for a Logical Table
You can use the Foreign Keys tab to review the foreign keys for a logical table.

In fact tables, it is recommended that you use complex logical joins instead of foreign key logical
joins. If complex logical joins are used, then there is more flexibility in defining the primary key. If
the physical table has a primary key, then this field can be used as a logical key for the fact table.
This is the method recommended for the Oracle BI repository.

CAUTION: It is recommended that you do not have foreign keys for logical tables. However, you can
create logical foreign keys and logical complex joins using either the Joins Manager or the Business
Model Diagram. A logical key for a fact table must be made up of the key columns that join to the
attribute tables. For more information, refer to “Defining Logical Joins” on page 136.

To review foreign key information for a logical table

1 In the Business Model and Mapping layer, double-click a table.

2 In the Logical Table dialog box, select the Foreign Keys tab.

3 To review an existing foreign key, in the Foreign Keys list, select a key and click Edit.

The Logical Foreign Key dialog box appears. For more information about changing information in
this dialog box, refer to “Defining Logical Joins” on page 136.

Creating and Administering Logical
Columns
Many logical columns are automatically created by dragging tables from the Physical layer to the
Business Model and Mapping layer. Other logical columns, especially ones that involve calculations
based on other logical columns, can be created later.

Logical columns are displayed in a tree structure expanded out from the logical table to which they
belong. If the column is a primary key column or participates in a primary key, the column is
displayed with the key icon. If the column has an aggregation rule, it is displayed with a sigma icon.
You can reorder logical columns in the Business Model and Mapping layer.

This section includes the following topics:

■ Creating and Moving a Logical Column

■ Setting Default Levels of Aggregation for Measure Columns on page 115

■ Associating an Attribute with a Logical Level in Dimension Tables on page 116

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating and Administering Logical Columns

114

Creating and Moving a Logical Column
Use the General tab to create or edit the general properties of a logical column. You can create a
logical column object in the Business Model and Mapping layer, and then drag and drop it to the
Presentation layer.

About Sorting on a Logical Column
For a logical column, you can specify a different column on which to base the sort. This changes the
sort order of a column when you do not want to order the values lexicographically. Lexicographical
sort arranges the results in alphabetic order such as in a dictionary. In this type of sort, numbers are
ordered by their alphabetic spelling and not divided into a separate group.

For example, if you sorted on month (using a column such as MONTH_NAME), the results would be
returned as February, January, March, and so on, in lexicographical sort order. However, you might
want months to be sorted in chronological order. Therefore, your table should have a month key
(such as MONTH_KEY) with values of 1 (January), 2 (February), 3 (March), and so on. To achieve
the desired sort, you set the Sort order column field for the MONTH_NAME column to be MONTH_KEY.
Then a request to order by MONTH_NAME would return January, February, March, and so on.

To create a logical column

1 In the Business Model and Mapping layer, right-click a logical table.

2 From the shortcut menu, select New Object > Logical Column.

3 In the Logical Column dialog box, select the General tab.

4 In the General tab, type a name for the logical column.

The name of the business model and the associated logical table appear in the Belongs to Table
field.

5 (Optional) If you want to assign a different column on which to base the sort order for a column,
perform the following steps:

a Next to the Sort order column field, click Set.

b In the Browse dialog box, select a column

c To view the column details, click View to open the Logical Column dialog box for that column,
and then click Cancel.

NOTE: You can make some changes in this dialog box. If you make changes, click OK to
accept the changes instead of Cancel.

d In the Browse dialog box, Click OK.

6 (Optional) To remove the Sort order column value, click Clear.

7 (Optional) If you want the logical column to be derived from other logical columns, perform the
following steps:

a Select the check box for Use existing logical columns as source.

b Click the ellipsis button next to the text box to open the Expression Builder.

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating and Administering Logical Columns

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 115

c In the Expression Builder - Derived logical column dialog box, specify the expression from which
the logical column should be derived.

d Click OK.

8 (Optional) In the Logical Column dialog box, type a description of the logical column.

NOTE: The type and length fields are populated automatically based upon the column’s source.

9 Click OK.

To move or copy logical columns

1 In the Business Model and Mapping layer, drag and drop a logical column to a different logical
table.

NOTE: You can select multiple columns to move.

2 In the Sources for moved columns dialog box, in the Action area, select an action.

3 If you select Ignore, no logical source will be added in the Sources folder of the destination table.

4 If you select Create new, a copy of the logical source associated with the logical column will be
created in the Sources folder of the destination table.

5 If you select Use existing, in the Use existing drop-down list, you must select a logical source
from the Sources folder of the destination table.

The column that you moved or copied will be associated with this logical source.

Setting Default Levels of Aggregation for Measure
Columns
You need to specify aggregation rules for mapped logical columns that are measures. Aggregation
should only be performed on measure columns, with the possible exception of the aggregation
COUNT and Count Distinct. Measure columns should exist only in logical fact tables.

NOTE: For multidimensional logical columns, you can set the default aggregation rule to
Aggr_External.

You can specify an override aggregation expression for specific logical table sources. This helps the
Oracle BI Server take advantage of aggregate tables when the default aggregation rule is Count
Distinct. If you do not specify any override, then the default rule prevails.

By default, data is considered sparse. However, on rare occasions you might have logical table source
with dense data. A logical table source is considered to have dense data if it has row for every
combination of its associated dimension levels. When setting up a aggregate rules for a measure
column, you can specify that data is dense only if all the logical table sources to which it is mapped
are dense.

CAUTION: Specifying data is dense when any table source that is used by this column does not
contain dense data will return incorrect results.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating and Administering Logical Columns

116

To specify a default aggregation rule for a measure column

1 In the Business Model and Mapping layer, double-click a logical column.

2 In the Logical Column dialog box, click the Aggregation tab.

3 In the Aggregation tab, complete the following fields.

■ If the aggregation rule will be based on a time dimension, select the Based on dimensions
check box.

The Data is dense check box appears.

■ If all the logical table sources to which this column is mapped are dense, you should select
the Data is dense check box.

CAUTION: Selecting this check box indicates that all sources to which this column is mapped
have a row for every combination of dimension levels that they represent. Checking this box
when any table source that is used by this column does not contain dense data will return
incorrect results.

■ Select one of the aggregate functions from the Default Aggregation Rule drop-down list.

The function you select is always applied when an end user or an application requests the
column in a query.

4 Click OK.

Associating an Attribute with a Logical Level in
Dimension Tables
Attributes can be associated with a logical level by selecting the dimensional level on the Levels tab.
Measures can be associated with levels from multiple dimensions and will always aggregate to the
levels specified.

Dimensions appear in the Dimensions list. If this attribute is associated with a logical level, the level
appears in the Levels list.

Another way to associate a measure with a level in a dimension is to expand the dimension tree in
the Business Model and Mapping layer, and then use drag-and-drop to drop the column on the target
level. For more information about level-based measures, refer to “Level-Based Measure Calculations
Example” on page 131.

To associate a measure with a logical level in a dimension

1 In the Business Model and Mapping layer, double-click a logical column.

2 In the Logical Column dialog box, click the Levels tab.

3 In the Levels tab, click the Logical Levels field for the dimension from which you want to select
a logical level.

NOTE: In the Levels tab, in the levels list, you can sort the rows (toggle between ascending order
and descending order) by clicking a column heading.

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating and Administering Logical Table Sources (Mappings)

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 117

4 In the Logical Levels drop-down list, select the level.

5 Repeat this process to associate this measure with other logical levels in other dimensions.

To remove the association between a dimension and a measure

1 In the Business Model and Mapping layer, double-click a logical column.

2 In the Logical Column dialog box, click the Levels tab.

3 In the Levels tab, click the delete button next to the Logical Levels field.

4 Click OK.

Creating and Administering Logical
Table Sources (Mappings)
You can add a new logical table source, edit or delete an existing table source, create or change
mappings to the table source, and define when to use logical tables sources and how content is
aggregated. Additionally, you can copy aggregation content to the Windows clipboard or from
another logical table source, and check the aggregation content of logical fact table sources.

You would add new logical table sources when more than one physical table could be the source of
information. For example, many tables could hold information for revenue. You might have three
different business units (each with its own order system) where you get revenue information. In
another example, you might periodically summarize revenue from an orders system or a financial
system and use this table for high-level reporting.

One logical table source folder exists for each logical table. The folder contains one or more logical
table sources. These sources define the mappings from the logical table to the physical table.
Complex mappings, including formulas, are also configured in the logical table sources.

Logical tables can have many physical table sources. A single logical column might map to many
physical columns from multiple physical tables, including aggregate tables that map to the column
if a query asks for the appropriate level of aggregation on that column.

When you create logical tables and columns by dragging and dropping from the Physical layer, the
logical table sources are generated automatically. If you create the logical tables manually, you need
to also create the sources manually.

For examples of how to set up fragmentation content for aggregate navigation, refer to “Specify
Fragmentation Content” on page 201.

This section includes the following topics:

■ Creating or Removing a Logical Table Source on page 118

■ Defining Physical to Logical Table Source Mappings on page 119

■ Defining Content of Logical Table Sources on page 121

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating and Administering Logical Table Sources (Mappings)

118

Creating or Removing a Logical Table Source
Use the General tab of the Logical Table Source dialog box to define general properties for the logical
table source.

To create a logical table source

1 In the Business Model and Mapping layer, right-click a logical table and choose New
Object > Logical Table Source.

2 In the Logical Table Source dialog box, click the General tab, and then type a name for the logical
table source and click Add.

3 In the Browse dialog box, you can view joins and select tables for the logical table source.

When there are two or more tables in a logical table source, all of the participating tables must
have joins defined between them.

4 To view the joins, in the Browse dialog box, select a table and click View.

■ In the Physical Table dialog box, review the joins, and then click Cancel.

5 To add tables to the table source, select the tables in the Name list and click Select.

6 In the Logical Table Source dialog box, click the Column Mapping tab and complete the fields
using the instructions in “Defining Physical to Logical Table Source Mappings” on page 119.

7 In the Logical Table dialog box, click the Content tab and complete the fields using the
instructions in “Defining Content of Logical Table Sources” on page 121.

8 Click OK.

To remove a table as a source

1 In the Business Model and Mapping layer, right-click a logical table source and choose Properties.

2 In the Logical Table Source dialog box, click the General tab.

3 In the tables list, select the table you want to remove and click Remove.

4 After removing the appropriate table, click OK.

Example of Creating Sources for Each Level of Aggregated Fact Data
In addition to creating the source for the aggregate fact table, you should create corresponding
logical dimension table sources at the same levels of aggregation.

NOTE: You need to have at least one source at each level referenced in the aggregate content
specification. If the sources at each level already exist, you do not need to create new ones.

For example, you might have a monthly sales table containing a precomputed sum of the revenue
for each product in each store during each month. You need to have the following three other
sources, one for each of the logical dimension tables referenced in the example:

■ A source for the Product logical table with one of the following content specifications:

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating and Administering Logical Table Sources (Mappings)

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 119

■ By logical level: ProductDimension.ProductLevel

■ By column: Product.Product_Name

■ A source for the Store logical table with one of the following content specifications:

■ By logical level: StoreDimension.StoreLevel

■ By column: Store.Store_Name

■ A source for the Time logical table with one of the following content specifications:

■ By logical level: TimeDimension.MonthLevel

■ By column: Time.Month

Defining Physical to Logical Table Source Mappings
Use the Column Mapping tab of the Logical Table Source dialog box to map logical columns to physical
columns. The physical to logical mapping can also be used to specify transformations that occur
between the Physical layer and the Business Model and Mapping layer. The transformations can be
simple, such as changing an integer data type to a character, or more complex, such as applying a
formula to find a percentage of sales per unit of population.

To map logical columns to physical columns

1 In the Business Model and Mapping layer, double-click a logical table source, if the Logical Table
Source dialog box is not already open.

2 In the Logical Table Source dialog box, click the Column Mapping tab.

3 In the Column Mapping tab, maximize or enlarge the dialog box to show all the contents, as
shown in Figure 11 on page 120.

NOTE: In the Column Mapping tab, in the Logical column to physical column area, you can sort
the rows (toggle among ascending order, descending order, and then restore original order) by
clicking a column heading.

4 In the Physical Table column, select the table that contains the column you want to map.

When you select a cell in the Physical Table column, a drop-down list appears. It contains a list
of tables currently included in this logical table source.

5 In the Expression list, select the physical column corresponding to each logical column.

When you select a cell in the Expression column, a drop-down list appears. It contains a list of
tables currently included in this logical table source.

6 To open the Expression Builder, click the ellipsis button to the left of the Expression you want to
view or edit.

NOTE: All columns used in creating physical expressions must be in tables included in the logical
table source. You cannot create expressions involving columns in tables outside the source.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating and Administering Logical Table Sources (Mappings)

120

7 To remove a column mapping, click the delete button.

You might need to scroll to the right to locate the delete button.

8 After you map the appropriate columns, click OK.

To remove a column mapping

1 In the Business Model and Mapping layer, right-click a logical table and choose New
Object > Logical Table Source.

2 In the Logical Table Source dialog box, click the Column Mapping tab.

3 In the Column Mapping tab, maximize or enlarge the dialog box to show all the contents, as
shown in Figure 11 on page 120.

4 To remove a column mapping, click the delete button next to the Physical Table cell.

5 Click OK.

Unmapping a Logical Column from Its Source
In the Logical Column dialog box, the Datatype tab contains information about the logical column.
You can edit the logical table sources from which the column derives its data, or unmap it from its
sources.

To unmap a logical column from its source

1 In the Business Model and Mapping layer, double-click a logical column.

2 In the Logical Column dialog box, click the Datatype tab.

3 In the Datatype tab, in the Logical Table Source list, select a source and click Unmap.

4 Click OK.

Figure 11. Logical Table Source Dialog Box

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating and Administering Logical Table Sources (Mappings)

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 121

Defining Content of Logical Table Sources
To use a source correctly, the Oracle BI Server has to know what each source contains in terms of
the business model. Therefore, you need to define aggregation content for each logical table source
of a fact table. The aggregation content rule defines at what level of granularity the data is stored
in this fact table. For each dimension that relates to this fact logical table, define the level of
granularity, making sure that every related dimension is defined. For more information, refer to
“Example of Creating Sources for Each Level of Aggregated Fact Data” on page 118.

If a logical table is sourced from a set of fragments, it is not required that every individual fragment
maps the same set of columns. However, the server returns different answers depending on how
columns are mapped.

■ If all the fragments of a logical table map the same set of columns, than the set of fragmented
sources is considered to be the whole universe of logical table sources for the logical table. This
means that measure aggregations can be calculated based on the set of fragments.

■ If the set of mapped columns differ across the fragments, than we assume that we do not have
the whole universe of fragments, and therefore it would be incorrect to calculate aggregate
rollups (since some fragments are missing).

In this case we return NULL as measure aggregates.

NOTE: It is recommended that all the fragments map the same set of columns

Use the Content tab of the Logical Table Source dialog box to define any aggregate table content
definitions, fragmented table definitions for the source, and Where clauses (if you want to limit the
number of rows returned).

NOTE: For examples of how to set up fragmentation content for aggregate navigation, refer to
“Setting Up Fragmentation Content in an Oracle BI Repository for Aggregate Navigation” on page 201.

Verify Joins Exist From Dimension Tables to Fact Table
This source content information tells the Oracle BI Server what it needs to know to send queries to
the appropriate physical aggregate fact tables, joined to and constrained by values in the appropriate
physical aggregate dimension tables. Be sure that joins exist between the aggregate fact tables and
the aggregate dimension tables in the Physical layer.

One recommended way to verify joins is to select a fact logical table and request a Business Model
Diagram (Selected Tables and Direct Joins). Only the dimension logical tables that are directly joined
to this fact logical table appear in the diagram. It does not show dimension tables if the same physical
table is used in logical fact and dimension sources.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating and Administering Logical Table Sources (Mappings)

122

Figure 12 on page 122 is an example of how the Fact - Asset fact logical table appears in a Business
Model Diagram (Selected Tables and Direct Joins) view.

Table 17 on page 122 contains a list of the logical level for each dimension table that is directly joined
the Fact - Assess fact table shown in Figure 12 on page 122.

To create logical table source content definitions

1 In the Business Model and Mapping layer, double-click a logical table source.

Figure 12. Diagram of Direct Joins for a Fact Table

Table 17. Dimension and Logical Level as Shown in Content Tab

Dimension Logical Level

Account Geography Postal Code Detail

Person Geography Postal Code Detail

Time Day Detail

Account Organization Account Detail

Opportunity Opty Detail

Primary Visibility Organization Detail

Employee Detail

Assessment Detail

Contact (W_PERSON_D) Detail

FINS Time Day

Positions Details

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating and Administering Logical Table Sources (Mappings)

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 123

2 In the Logical Table Source dialog box, click the Content tab and perform the following steps
using Table 18 on page 124 as a guide.

3 If a logical source is an aggregate table and you have defined logical dimensions, perform the
following steps:

a Select Logical Level from the Aggregation content, group-by drop-down list.

CAUTION: Although you have the option to specify aggregate content by logical level or
column, it is recommended that you use logical levels exclusively.

b In the Logical Level drop-down list, select the appropriate level for each dimension logical table
to which the fact logical table is joined.

You should specify a logical level for each dimension, unless you are specifying the Grand
Total level. Dimensions with no level specified will be interpreted as being at the Grand Total
level.

4 If a logical source is an aggregate table and you want to define content for columns, do the
following:

a Select Column from the Aggregation content, group-by drop-down list.

CAUTION: Although you have the option to specify aggregate content by logical level or
column, it is recommended that you use logical levels exclusively.

b In the Table pane, select each logical dimension table that defines the aggregation level of the
source.

c In the Column pane, select the logical column for each dimension that defines how the
aggregations were grouped.

When there are multiple logical columns that could be used, select the one that maps to the
key of the source physical table. For example, if data has been aggregated to the Region
logical level, pick the logical column that maps to the key of the Region table.

NOTE: Do not mix aggregation by logical level and column in the same business model. It is
recommended that you use aggregation by logical level.

5 To specify fragmented table definitions for the source, use the Fragmentation content window to
describe the range of values included in the source when a source represents a portion of the
data at a given level of aggregation.

You can type the formula directly into the window, or click the Expression Builder button to the
right of the window. In the Fragmentation Content Expression Builder, you can specify content in
terms of existing logical columns. For examples of how to set up fragmentation content for
aggregate navigation, see“Specify Fragmentation Content” on page 201.

6 Select the following option:

This source should be combined with other sources at this level

NOTE: This option is only for multiple sources that are at the same level of aggregation.

7 (Optional) Specify Where clause filters in the Where Clause Filter window to limit the number of
rows the source uses in the resultant table. For more information, refer to “About WHERE Clause
Filters” on page 125.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Creating and Administering Logical Table Sources (Mappings)

124

a Click the Expression Builder button to open the Physical Where Filter Expression Builder.

b Type the Where clause and click OK.

8 Select the option Select distinct values if the values for the source are unique.

Table 18. Content Tab Fields for Logical Table Source

Field Description

Aggregation content,
group by

How the content is aggregated.

Fragmentation content A description of the contents of a data source in business model terms.
Data is fragmented when information at the same level of aggregation
is split into multiple tables depending on the values of the data. A
common situation would be to have data fragmented by time period. For
examples of how to set up fragmentation content for aggregate
navigation, see“Specify Fragmentation Content” on page 201.

More (button) When you click More, the following options appear:

■ Copy. (Available only for fact tables) Copies aggregation content to
the Windows clipboard. You can paste the Dimension.Level info into
a text editor and use it for searching or for adding to documentation.

■ Copy from. (Available for fact tables and dimension tables) Copies
aggregation content from another logical table source in the same
business model. You need to specify the source from which to copy
the aggregation content. (Multiple business models appear but only
the logical table sources from the current business model are
selectable.)

■ Get Levels. (Available only for fact tables) Changes aggregation
content. If joins do not exist between fact table sources and
dimension table sources (for example, if the same physical table is
in both sources), the aggregation content determined by the
administration tool will not include the aggregation content of this
dimension.

■ Check Levels. (Available only for fact tables) check the
aggregation content of logical fact table sources (not dimension
table sources). The information returned depends on the existence
of dimensions and hierarchies with logical levels and level keys, and
physical joins between tables in dimension table sources and the
tables in the fact table source. (If the same tables exist in the fact
and dimension sources and there are no physical joins between
tables in the sources, Check Levels will not include the aggregation
content of this dimension.)

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ About Dimensions and Hierarchical Levels

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 125

About WHERE Clause Filters
The WHERE clause filter is used to constrain the physical tables referenced in the logical table source.
If there are no constraints on the aggregate source, leave the WHERE clause filter blank.

Each logical table source should contain data at a single intersection of aggregation levels. You would
not want to create a source, for example, that had sales data at both the Brand and Manufacturer
levels. If the physical tables include data at more than one level, add an appropriate WHERE clause
constraint to filter values to a single level.

Any constraints in the WHERE clause filter are made on the physical tables in the source.

About Dimensions and Hierarchical
Levels
In a business model, a dimension represents a hierarchical organization of logical columns
(attributes) belonging to a single logical dimension table. Common dimensions might be time
periods, products, markets, customers, suppliers, promotion conditions, raw materials,
manufacturing plants, transportation methods, media types, and time of day. Dimensions exist in the
Business Model and Mapping (logical) layer and are not visible to end users.

In each dimension, you organize attributes into hierarchical levels. These logical levels represent the
organizational rules, and reporting needs required by your business. They provide the structure
(metadata) that the Oracle BI Server uses to drill into and across dimensions to get more detailed
views of the data.

Dimension hierarchical levels are used to perform the following actions:

■ Set up aggregate navigation

■ Configure level-based measure calculations (refer to “Level-Based Measure Calculations Example”
on page 131)

■ Determine what attributes appear when Oracle BI Presentation Services users drill down in their
data requests

Select distinct values Used if the values for the source are unique.

This source should be
combined with other
sources at this level
(check box)

Check this box when data sources at the same level of aggregation do
not contain overlapping information. In this situation, all sources must
be combined to get a complete picture of information at this level of
aggregation.

Table 18. Content Tab Fields for Logical Table Source

Field Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Process of Creating and Administering Dimensions

126

Process of Creating and Administering
Dimensions
Each business model can have one or more dimensions, each dimension can have one or more logical
levels, and each logical level has one or more attributes (columns) associated with it.

NOTE: The concept of dimensions for a multidimensional data source is less complex than for
dimensions in other data sources. For example, you do not create dimension level keys. A dimension
is specific to a particular multidimensional data source (cannot be used by more than one) and
cannot be created and manipulated individually. Additionally, each cube in the data source should
have at least one dimension and one measure in the logical layer.

The following sections explain how to create dimensions:

■ Creating Dimensions

■ Creating Dimension Levels and Keys on page 126

■ Creating Dimensions Automatically on page 133

Creating Dimensions
After creating a dimension, each dimension can be associated with attributes (columns) from one or
more logical dimension tables and level-based measures from logical fact tables. After you associate
logical columns with a dimension level, the tables in which these columns exist will appear in the
Tables tab of the Dimension dialog box.

To create a dimension

1 In the Business Model and Mapping Layer, right-click a business model and select New Object >
Dimension.

2 In the Dimension dialog box, in the General tab, type a name for the dimension.

3 If the dimension is a time dimension, select the Time Dimension check box.

NOTE: The Default root level field will be automatically populated after you associate logical
columns with a dimension level.

4 (Optional) Type a description of the dimension.

5 Click OK.

Creating Dimension Levels and Keys
A dimension contains two or more logical levels. The recommended sequence for creating logical
levels is to create a grand total level and then create child levels, working down to the lowest level.
The following are the parts of a dimension:

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Process of Creating and Administering Dimensions

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 127

■ Grand total level. A special level representing the grand total for a dimension. Each dimension
can have just one Grand Total level. A grand total level does not contain dimensional attributes
and does not have a level key. However, you can associate measures with a grand total level. The
aggregation level for those measures will always be the grand total for the dimension.

■ Level. All levels, except the Grand Total level, need to have at least one column. However, it is
not necessary to explicitly associate all of the columns from a table with logical levels. Any
column that you do not associate with a logical level will be automatically associated with the
lowest level in the dimension that corresponds to that dimension table. All logical columns in the
same dimension table have to be associated with the same dimension.

■ Hierarchy. In each business model, in the logical levels, you need to establish the hierarchy
(parent-child levels). One model might be set up so that weeks roll up into a year. Another model
might be set up so that weeks do not roll up. For example, in a model where weeks roll up into
a year, it is implied that each week has exactly one year associated with it. This might not be
true for calendar weeks, where the same week could span two years. Some hierarchies might
require multiple elements to roll up, as when the combination of month and year roll up into
exactly one quarter. You define the hierarchical levels for your particular business so that results
from analyses conform to your business needs and requirements.

■ Level keys. Each logical level (except the topmost level defined as a Grand Total level) needs to
have one or more attributes that compose a level key. The level key defines the unique elements
in each logical level. The dimension table logical key has to be associated with the lowest level
of a dimension and has to be the level key for that level.

A logical level may have more than one level key. When that is the case, specify the key that is
the primary key of that level. All dimension sources which have an aggregate content at a
specified level need to contain the column that is the primary key of that level. Each logical level
should have one level key that will be displayed when an Answers or Intelligence Dashboard user
clicks to drill down. This may or may not be the primary key of the level. To set the level key to
display, select the Use for drill down check box on the Level Key dialog box.

Be careful using level keys such as Month whose domain includes values January, February, and
so on—values that are not unique to a particular month, repeating every year. To define Month
as a level key, you also need to include an attribute from a higher level, for example, Year. To
add Year, click the Add button in this dialog and select the logical column from the dialog that is
presented.

■ Time dimensions and chronological keys. You can identify a dimension (for example, Year)
as a time dimension. At least one level of a time dimension must have a chronological key. The
following is a list of some guidelines you should use when setting up and using time dimensions:

■ At least one level of a time dimension must have chronological key. For more information,
see Selecting and Sorting Chronological Keys in a Time Dimension on page 130.

■ All time series measures using the Ago and ToDate functions must be on time levels. Ago and
ToDate aggregates are created as derived logical columns. For information, refer to “About
Time Series Conversion Functions” on page 197.

■ Any physical table that is part of a time logical table cannot appear in another logical table.
This prevents using date fields from calendar table as measures.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Process of Creating and Administering Dimensions

128

■ Physical tables in time sources, except the most detailed ones, cannot have joins to table
outside their source. The join has to be between the time table and the fact table. The join
can only be based on foreign key; it cannot be a complex join.

■ Ago or ToDate functionality is not supported on fragmented logical table sources. For more
information, refer to “About Time Series Conversion Functions” on page 197.

To create and administer dimension hierarchy levels, perform the following tasks:

■ Creating a Logical Level in a Dimension on page 128

■ Associating a Logical Column and Its Table with a Dimension Level on page 129

■ Identifying the Primary Key for a Dimension Level on page 129

■ Selecting and Sorting Chronological Keys in a Time Dimension on page 130

■ Adding a Dimension Level to the Preferred Drill Path on page 131

■ Level-Based Measure Calculations Example on page 131

■ Grand Total Dimension Hierarchy Example on page 132

■ Creating Dimensions Automatically on page 133

Creating a Logical Level in a Dimension
When creating a logical level in a dimension, you also create the hierarchy by identifying the type of
level and defining child levels. For more information about creating hierarchies for a multidimensional
data source, refer to “Creating the Business Model Layer for a Multidimensional Data Source” on
page 110.

To define general properties for a logical level in a dimension

1 In the Business Model and Mapping layer, right-click a dimension and choose New Object >
Logical Level.

2 In the Logical Level dialog box, in the General tab, specify a name for the logical level.

3 Specify the number of elements that exist at this logical level. If this level will be the Grand Total
level, leave this field blank. The system will set to a value of 1 by default.

This number is used by the Oracle BI Server when picking aggregate sources. The number does
not have to be exact, but ratios of numbers from one logical level to another should be accurate.

4 When the following criteria is met, perform the specified action:

■ If the logical level is the grand total level, select the Grand total level check box.

NOTE: There should be only one grand total level for a dimension.

■ If you want the logical level to roll up to its parent, select the Supports rollup to parent
elements check box.

■ If the logical level is not the grand total level and does not roll up, do not select either check
box.

5 To define child logical levels, click Add.

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Process of Creating and Administering Dimensions

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 129

6 In the Browse dialog box, select the child logical levels and click OK.

The child levels appear in the Child Levels pane.

7 To remove a previously defined child level, select the level in the Child Levels pane and click
Remove.

The child level and all of its child levels are deleted from the Child Levels pane.

8 (Optional) Type a description of the logical level.

9 Click OK.

Associating a Logical Column and Its Table with a Dimension Level
After you create all logical levels within a dimension, you need to drag and drop one or more columns
from the dimension table to each logical level except the Grand Total level. The first time you drag
a column to a dimension it associates the logical table to the dimension. It also associates the logical
column with that level of the dimension. To change the logical level to be associated with that logical
column, you can drag a column from one logical level to another.

NOTE: The logical column(s) comprising the logical key of a dimension table must be associated with
the lowest level of the dimension.

After you associate a logical column with a dimension level, the tables in which these columns exist
appear in the Tables tab of the Dimensions dialog box.

To verify tables that are associated with a dimension

1 In the Business Model and Mapping layer, double-click a dimension.

2 In the Dimensions dialog box, click the Tables tab.

The tables list contains tables that you associated with that dimension. This list of tables includes
only one logical dimension table and one or more logical fact tables (if you created level-based
measures).

3 Click OK or Cancel to close the Dimensions dialog box.

Identifying the Primary Key for a Dimension Level
Use the Keys tab in the Logical Level dialog box to identify the primary key for a level.

To specify a primary key for a dimension level

1 In the Business Model and Mapping layer, expand a dimension and then expand the highest level
(grand total level) of the dimension.

2 Double-click a logical level below the grand total level.

3 In the Logical Level dialog box, click the Keys tab.

4 In the Keys tab, from the Primary key drop-down list, select a level key.

NOTE: If only one level key exists, it will be the primary key by default.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Process of Creating and Administering Dimensions

130

5 To add a column to the list, perform the following steps:

a In the Logical Level dialog box, click New.

b In the Logical Level Key dialog box, type a name for the key.

c In the Logical Level Key dialog box, select a column or click Add.

d If you click Add, in the Browse dialog box, select the column, and then click OK.

The column you selected appears in the Columns list of the Logical Level Key dialog box and
the check box is automatically selected.

6 If the level is in a time dimension, you can select chronological keys and sort the keys by name.

7 (Optional) Type a description for the key and then click OK.

8 Repeat Step 2 on page 129 through Step 7 on page 130 to add primary keys to other logical
levels.

9 In the Logical Level dialog box, click OK.

Selecting and Sorting Chronological Keys in a Time Dimension
At least one level of a time dimension must have a chronological key. For any level, you can select
one or more chronological keys and then sort keys in the level, however, only the first chronological
key is used at this time.

NOTE: To use a dimension as a time dimension, you must select the Time Dimension check box in
the Dimension dialog box.

To select and sort chronological keys for a time dimension

1 In the Business Model and Mapping layer, expand a time dimension and then expand the highest
level (grand total level) of the dimension.

NOTE: For a dimension to be recognized as a time dimension, you need to select the Time
Dimension check box in the Dimension dialog box.

2 Double-click a logical level below the grand total level.

3 In the Logical Level dialog box, click the Keys tab.

4 To select a chronological key, in the Keys tab, select the Chronological Key check box.

5 To sort chronological keys, in the Keys tab, double-click a chronological key.

6 In the Chronological Key dialog box, select a chronological key column, click Up or Down to
reorder the column, and then click OK.

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Process of Creating and Administering Dimensions

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 131

Adding a Dimension Level to the Preferred Drill Path
You can use the Preferred Drill Path tab to identify the drill path to use when Oracle BI Presentation
Services users drill down in their data requests. You should use this only to specify a drill path that
is outside the normal drill path defined by the dimensional level hierarchy. It is most commonly used
to drill from one dimension to another. You can delete a logical level from a drill path or reorder a
logical level in the drill path.

To add a dimension level to the preferred drill path

1 Click the Add button to open the Browse dialog box, where you can select the logical levels to
include in the drill path. You can select logical levels from the current dimension or from other
dimensions.

2 Click OK to return to the Level dialog box.

The names of the levels are added to the Names pane.

Level-Based Measure Calculations Example
A level-based measure is a column whose values are always calculated to a specific level of
aggregation. For example, a company might want to measure its revenue based on the country,
based on the region, and based on the city. You can set up columns to measure CountryRevenue,
RegionRevenue, and CityRevenue.

The measure AllProductRevenue is an example of a level-based measure at the Grand Total level.
Level-based measures allow a single query to return data at multiple levels of aggregation. They are
also useful in creating share measures, that are calculated by taking some measure and dividing it
by a level-based measure to calculate a percentage. For example, you can divide salesperson
revenue by regional revenue to calculate the share of the regional revenue each salesperson
generates.

To set up these calculations, you need to build a dimensional hierarchy in your repository that
contains the levels Grandtotal, Country, Region, and City. This hierarchy will contain the metadata
that defines a one-to-many relationship between Country and Region and a one-to-many relationship
between Region and City. For each country, there are many regions but each region is in only one
country. Similarly, for each region, there are many cities but each city is in only one region.

Next, you need to create three logical columns (CountryRevenue, RegionRevenue, and CityRevenue).
Each of these columns uses the logical column Revenue as its source. The Revenue column has a
default aggregation rule of SUM and has sources in the underlying databases.

You then drag the CountryRevenue, RegionRevenue, and CityRevenue columns into the Country,
Region, and City levels, respectively. Each query that requests one of these columns will return the
revenue aggregated to its associated level.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Process of Creating and Administering Dimensions

132

Figure 13 on page 132 shows what the business model in the Business Model and Mapping layer would
look like for this example.

Grand Total Dimension Hierarchy Example
You might have a product dimensional hierarchy with levels TotalProducts (grand total level), Brands,
and Products. Additionally, there might be a column called Revenue that is defined with a default
aggregation rule of Sum. You can then create a logical column, AllProductRevenue, that uses
Revenue as its source (as specified in the General tab of the Logical Column dialog). Now drag
AllProductRevenue to the grand total level. Each query that includes this column will return the total
revenue for all products. The value is returned regardless of any constraints on Brands or Products.
If you have constraints on columns in other tables, the grand total is limited to the scope of the query.
For example, if the scope of the query asks for data from 1999 and 2000, the grand total product
revenue is for all products sold in 1999 and 2000.

If you have three products, A, B, and C with total revenues of 100, 200, and 300 respectively, then
the grand total product revenue is 600 (the sum of each product’s revenue). If you have set up a
repository as described in this example, the following query produces the results listed:

select product, productrevenue, allproductrevenue

Figure 13. Example Business Model in the Business Model and Mapping Layer

Revenue column has a default
aggregation rule of SUM and is mapped
to physical detail data or physical
aggregate data.

CountryRevenue and RegionRevenue
columns use the Revenue column as
their source.

CountryRevenue and RegionRevenue,
columns are attributes of the Country,
and Region levels of the Geography
dimension.

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Process of Creating and Administering Dimensions

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 133

from sales_subject_area

where product in 'A' or 'B'

PRODUCT PRODUCTREVENUE ALLPRODUCTREVENUE

A 100 600

B 200 600

In this example, the AllProductRevenue column will always return a value of 600, regardless of the
products the query constrains on.

Creating Dimensions Automatically
You can set up a dimension automatically from a logical dimension table if a dimension for that table
does not exist. To create a dimension automatically, the Administration Tool examines the logical
table sources and the column mappings in those sources and uses the joins between physical tables
in the logical table sources to determine logical levels and level keys. Therefore, it is best to create
a dimension in this way after all the logical table sources have been defined for a dimension table.

The following rules apply:

■ Create Dimensions is only available if the selected logical table is a dimension table (defined by
1:N logical joins) and no dimension has been associated with this table.

■ An automatically created dimension uses the same name as the logical table, adding Dim as a
suffix. For example, if a table is named Periods, the dimension is named Periods Dim.

■ A grand total level is automatically named [name of logical table] Total. For example, the grand
total level of the Periods Dim table is Periods Total.

■ When there is more than one table in a source, the join relationships between tables in the source
determine the physical table containing the lowest level attributes. The lowest level in the
hierarchy is named [name of logical table] Detail. For example, the lowest level of the periods
table is Periods Detail.

■ The logical key of the dimension table is mapped to the lowest level of the hierarchy and specified
as the level key. This logical column should map to the key column of the lowest level table in
the dimension source.

■ If there are two or more physical tables in a source, the columns that map to the keys of
those tables become additional logical levels. These additional level names use the logical
column names of these key columns.

■ The order of joins determines the hierarchical arrangement of the logical levels. The level
keys of these new logical levels are set to the logical columns that map to the keys of the
tables in the source.

■ If there is more than one logical table source, the tool uses attribute mappings and physical joins
to determine the hierarchical order of the tables in the physical sources. For example, you might
have three sources (A, B, C) each containing a single physical table and attribute mappings for
10, 15, and 3 attributes, respectively, (not counting columns that are constructed from other
logical columns). The following is a list of the results of creating a dimension for this table
automatically:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Process of Creating and Administering Dimensions

134

■ The Administration Tool creates a dimension containing 4 logical levels, counting the grand
total and detail levels.

■ The key of the table in source B (that has the greatest number of columns mapped and
contains the column mapping for the logical table key) should be the level key for the detail
level.

■ The parent of the detail level should be the logical level named for the logical column that
maps to the key of the physical table in source A.

■ Any attributes that are mapped to both A and B should be associated with level A.

■ The parent of level A should be the logical level named for the logical column that maps to
the key of the physical table in source C.

■ Any columns that are mapped to both A and C should be associated with level C.

■ Table joins in a physical source might represent a pattern that results in a split hierarchy. For
example, the Product table may join to the Flavor table and a Subtype table. This would result
in two parents of the product detail level, one flavor level and one subtype level.

■ You cannot create a dimension automatically in the following situations:

■ If a dimension with joins and levels has already been created, Create Dimension will not
appear on the right-click menu.

■ If the table is not yet joined to any other table, the option is not available because it is
considered a fact table.

■ In a snowflake schema, if you use a table with only one source, and create the dimension
automatically the child tables will automatically be incorporated into a hierarchy. The child tables
will form intermediate levels between the grand total level and detail level. If more then one child
table exists for a dimension table, while creating dimension automatically hierarchy will be split
hierarchy.

To create a dimension automatically

1 In the Administration Tool, open a repository.

2 In the Business Model and Mapping layer of a repository, right-click a logical table.

3 From the right-click menu, choose Create Dimension.

A dimension appears in the Business Model and Mapping layer.

Setting Up Dimension-Specific Aggregate Rules for
Logical Columns
The majority of measures have the same aggregation rule for each dimension. However, some
measures can have different aggregation rules for different dimensions. For example, bank balances
might be averaged over time but summed over the individual accounts. The Oracle BI Server allows
you to configure dimension-specific aggregation rules. You can specify one aggregation rule for a
given dimension and specify other rules to apply to other dimensions.

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Process of Creating and Administering Dimensions

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 135

You need to configure dimensions in the Business Model and Mapping layer to set up
dimension-specific aggregation. For more information about setting up aggregate navigation, refer
to “Setting Up Fragmentation Content in an Oracle BI Repository for Aggregate Navigation” on page 201.

To specify dimension-specific aggregation rules for a single logical column

1 In the Business Model and Mapping layer, double-click a logical column.

2 In the Logical Column dialog box, click the Aggregation tab.

3 In the Aggregation tab, select the Based on dimensions check box.

The Browse dialog box automatically opens.

4 In the Browse dialog box, click New, select a dimension over which you want to aggregate, and
then click OK.

5 In the Aggregation tab, from the Formula drop-down list, select a rule.

NOTE: After selecting rules for specified dimensions, set the aggregation rule for any remaining
dimensions by using the dimension labeled Other.

6 If you need to create more complex formulas, click the ellipsis button to the right of the Formula
column to open the Expression Builder.

7 If you have multiple dimensions, to change the order in which the dimension-specific rules are
performed, click Up or Down.

When calculating the measure, aggregation rules are applied in the order (top to bottom)
established in the dialog box.

8 Click OK

To specify dimension-specific aggregation rules for multiple logical fact columns

1 In the Business Model and Mapping layer, select multiple logical fact columns.

2 Right-click and select Set Aggregation.

If the fact column has an aggregation rule, Set Aggregation will not appear in the menu.

3 In the Aggregation dialog box, select or clear the All columns the same check box.

The check box is checked by default. When checked, you can set aggregation rules that will apply
to all selected columns. If you clear the check box, you can set aggregation rules separately for
each selected column.

4 In the Aggregation tab, click the Use advanced options check box.

5 In the Browse dialog box, select a dimension over which you want to perform aggregation, and
then click OK.

After setting up the rule for a dimension, specify aggregation rules for any other dimensions in
the entry labeled Other.

6 Click the ellipsis button to the right of the Formula column.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Setting Up Display Folders in the Business Model and Mapping Layer

136

7 In the Expression Builder - Aggregate dialog box, from the Formula drop-down list, select the
aggregation to perform over the dimension.

8 To change the order in which the dimension-specific rules are performed, click Up or Down, and
then click OK.

When calculating the measure, aggregation rules are applied in the order (top to bottom)
established in the dialog box.

Setting Up Display Folders in the
Business Model and Mapping Layer
Oracle BI Administrators can create display folders to organize objects in the Business Model and
Mapping layer. They have no metadata meaning. After you create a display folder, the selected tables
and dimensions appear in the folder as a shortcut and in the business model tree as the object. You
can hide the objects so that you only view the shortcuts in the display folder. For more information
about hiding these objects, refer to “Using the Options Dialog Box—Repository Tab” on page 31.

NOTE: Deleting objects in the display folder only deletes the shortcuts to those objects.

To set up a logical display folder

1 In the Business Model and Mapping layer, right-click a business model, and choose New Object
> Logical Display Folder.

2 In the Logical Display Folder dialog box, in the Tables tab, type a name for the folder.

3 To add tables to the display folder, perform the following steps:

a Click Add.

b In the Browse dialog box, select the fact or dimension tables you want to add to the folder and
click Select.

4 To add dimensions to the display folder, click the Dimensions tab and perform the following steps:

a Click Add.

b In the Browse dialog box, select the dimensions that you want to add to the folder and click
Select.

5 Click OK.

Defining Logical Joins
Logical tables are related to each other. How they are related is expressed in logical joins. A key
property of a logical join is cardinality. Cardinality expresses how rows in one table are related to
rows in the table to which it is joined. A one-to-many cardinality means that for every row in the first
logical dimension table there are 0, 1, or many rows in the second logical table. The Administration
Tool considers a table to be a logical fact table if it is at the Many end of all logical joins that connect
it to other logical tables.

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Defining Logical Joins

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 137

Specifying the logical table joins is required so that the Oracle BI Server can have the necessary
metadata to translate a logical request against the business model to SQL queries against the
physical data sources. The logical join information provides the Oracle BI Server with the
many-to-one relationships between the logical tables. This logical join information is used when the
Oracle BI Server generates queries against the underlying databases.

The joins between the logical layer and the physical layer will be automatically created if both of the
following statements are true:

■ You create the logical tables by simultaneously dragging and dropping all required physical tables
to the Business Model and Mapping layer.

■ The logical joins are the same as the joins in the Physical layer.

However, you will probably have to create some logical joins in the Business Model and Mapping layer,
because you will rarely drag and drop all physical tables simultaneously except in very simple
models. In the Business Model and Mapping layer, you should create complex joins with one-to-many
relationships and not key or foreign key joins.

You can create logical foreign keys and logical complex joins using either the Joins Manager or the
Business Model Diagram. When you create a complex join in the Physical layer, you can specify
expressions and the specific columns on which to create the join. When you create a complex join in
the Business Model and Mapping layer, you cannot specify expressions or columns on which to create
the join. The existence of a join in the Physical layer does not require a matching join in the Business
Model and Mapping layer.

CAUTION: It is recommended that you do not have foreign keys for logical tables. However, you can
create logical foreign keys and logical complex joins using either the Joins Manager or the Business
Model Diagram. A logical key for a fact table must be made up of the key columns that join to the
attribute tables.

To create logical joins, perform the following tasks:

■ Defining Logical Joins with the Joins Manager on page 137

■ Defining Logical Joins with the Business Model Diagram on page 139

Defining Logical Joins with the Joins Manager
You can use the Joins Manager to view logical join relationships and to create logical foreign keys
and complex joins.

This section includes the following topics:

■ Creating a Logical Foreign Key on page 138

■ Creating a Logical Complex Join on page 138

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Defining Logical Joins

138

Creating a Logical Foreign Key
Logical foreign key joins might be needed if the Oracle BI Server is to be used as an ODBC data
source for certain third-party query and reporting tools. Typically, you should not create logical
foreign keys. This capability is in the Administration Tool to provide compatibility with previous
releases.

To create a logical foreign key

1 In the Administration Tool toolbar, select Manage > Joins.

The Joins Manager dialog box appears.

2 Select Action > New > Logical Foreign Key

3 In the Browse dialog box, double-click a table.

The Logical Foreign Key dialog box appears.

4 Type a name for the foreign key.

5 In the Table drop-down list on the left side of the dialog box, select the table that the foreign key
references.

6 Select the columns in the left table that the foreign key references.

7 Select the columns in the right table that make up the foreign key columns.

8 (Optional) To specify a driving table for the key, select a table from the Driving drop-down list,
and an applicable cardinality.

This is for use in optimizing the manner in which the Oracle BI Server processes multi-database
inner joins when one table is very small and the other table is very large. Do not select a driving
table unless multi-database joins are going to occur. For more information about driving tables,
refer to “Specifying a Driving Table” on page 140.

CAUTION: Use extreme caution in deciding whether to specify a driving table. Driving tables are
used for query optimization only under rare circumstances and when the driving table is
extremely small, that is, less than 1000 rows. Choosing a driving table incorrectly can lead to
severe performance degradation.

9 Select the join type from the Type drop-down list.

10 To open the Expression Builder, click the button to the right of the Expression pane.

The expression displays in the Expression pane.

11 Click OK to save your work.

Creating a Logical Complex Join
The use of logical complex joins is recommended over logical key and foreign key joins.

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Defining Logical Joins

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 139

To create a logical complex join

1 In the Administration Tool toolbar, select Manage > Joins.

The Joins Manager dialog box appears.

2 Select Action > New > Logical Complex Join.

The Logical Join dialog box appears.

3 Type a name for the complex join.

4 In the Table drop-down lists on the left and right side of the dialog box, select the tables that the
complex join references.

5 (Optional) To specify a driving table for the key, select a table from the Driving drop-down list,
and an applicable cardinality.

This is for use in optimizing the manner in which the Oracle BI Server processes multi-database
inner joins when one table is very small and the other table is very large. Do not select a driving
table unless multi-database joins are going to occur. For more information about driving tables,
refer to “Specifying a Driving Table” on page 140.

CAUTION: Use extreme caution in deciding whether to specify a driving table. Driving tables are
used for query optimization only under rare circumstances and when the driving table is
extremely small, that is, less than 1000 rows. Choosing a driving table incorrectly can lead to
severe performance degradation.

6 Select the join type from the Type drop-down list.

7 Click OK.

Defining Logical Joins with the Business Model Diagram
The Business Model Diagram shows logical tables and any defined joins between them. Logical
foreign key joins may be needed if the Oracle BI Server is to be used as an ODBC data source for
certain third-party query and reporting tools.

NOTE: It is recommended that you use the Business Model Diagram to define complex joins. It is
recommended that you do not use the Diagram to define logical foreign keys.

To display the Business Model Diagram

1 In the Administration Tool, right-click a business model, and then select Business Model Diagram
> Whole Diagram.

2 Click one of the following buttons on the Administration Tool toolbar:

■ New complex join (Recommended)

■ New foreign key (Not recommended. This capability exists to provide compatibility with
previous releases.)

3 With one of the buttons selected, move the cursor to the first table in the join (the one of the
one-to-many join).

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Defining Logical Joins

140

4 Left-click and move the cursor to the table to which you want to make the join (the many of the
one-to-many join), and then left-click on the second table.

The Logical Foreign Key or Logical Join dialog box appears.

5 For a logical foreign key, select the joining columns from the left and the right tables.

6 (Optional) To specify a driving table for the key, select a table from the Driving drop-down list,
and an applicable cardinality.

This is for use in optimizing the manner in which the Oracle BI Server processes multi-database
inner joins when one table is very small and the other table is very large. Do not select a driving
table unless multi-database joins are going to occur. For more information about driving tables,
refer to “Specifying a Driving Table” on page 140.

CAUTION: Use extreme caution in deciding whether to specify a driving table. Driving tables are
used for query optimization only under rare circumstances and when the driving table is
extremely small (fewer than 1000 rows). Choosing a driving table incorrectly can lead to severe
performance degradation.

7 Select the join type from the Type drop-down list.

8 To open the Expression Builder, click the button to the right of the Expression pane.

Only columns, designated predicates, and operators are allowed in the expression. For more
information, see “Expression Builder” on page 190.

9 Click OK to save your work.

Specifying a Driving Table
You can specify a driving table for logical joins from the Logical Joins window. Driving tables are for
use in optimizing the manner in which the Oracle BI Server processes cross-database joins when one
table is very small and the other table is very large. Specifying driving tables leads to query
optimization only when the number of rows being selected from the driving table is much smaller
than the number of rows in the table to which it is being joined.

CAUTION: To avoid problems, only specify driving tables when the driving table is extremely small
- less than 1000 rows.

When you specify a driving table, the Oracle BI Server will use it if the query plan determines that
its use will optimize query processing. The small table (the driving table) is scanned, and
parameterized queries are issued to the large table to select matching rows. The other tables,
including other driving tables, are then joined together.

CAUTION: If large numbers of rows are being selected from the driving table, specifying a driving
table could lead to significant performance degradation or, if the MAX_QUERIES_PER_DRIVE_JOIN
limit is exceeded, the query terminates.

In general, driving tables can be used with inner joins, and for outer joins when the driving table is
the left table for a left outer join, or the right table for a right outer join. Driving tables are not used
for full outer joins. For instructions about specifying a driving table, refer to “Defining Logical Joins”
on page 136.

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Defining Logical Joins

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 141

There are two entries in the database features table that control and tune driving table performance.

■ MAX_PARAMETERS_PER_DRIVE_JOIN

This is a performance tuning parameter. In general, the larger its value, the fewer parameterized
queries that will need to be generated. Values that are too large can result in parameterized
queries that fail due to back-end database limitations. Setting the value to 0 (zero) turns off drive
table joins.

■ MAX_QUERIES_PER_DRIVE_JOIN

This is used to prevent runaway drive table joins. If the number of parameterized queries
exceeds its value, the query is terminated and an error message is returned to the user.

Identifying Physical Tables That Map to Logical Objects
The Physical Diagram shows the physical tables that map to the selected logical object and the
physical joins between each table.

One of the joins options, Object(s) and Direct Joins within Business Model, is unique to the logical
layer. It creates a physical diagram of the tables that meet both of the following conditions:

■ Tables in the selected objects and tables that join directly

■ Tables that are mapped (exist in logical table sources in the business model) in the business
model

To open the physical diagram of a logical object

1 In the Business Model and Mapping layer, right-click a business model, logical table, or logical
table source.

2 Choose Physical Diagram and then one of the joins options.

3 Click and drag any object to more clearly view the relationship lines such as one-to-many.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Administering the Business Model and Mapping Layer in an Oracle BI
Repository ■ Defining Logical Joins

142

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 143

6 Creating and Maintaining the
Presentation Layer in an Oracle
BI Repository

This section is part of the roadmap for planning and setting up a repository. For more information,
refer to “Planning and Creating an Oracle BI Repository” on page 39.

After you have created the Business Model and Mapping layer, you can drag and drop that layer to
the Presentation layer in the Administration Tool. For more information about the Business Model and
Mapping layer, refer to “Creating and Administering the Business Model and Mapping Layer in an Oracle
BI Repository” on page 109.

This section provides instructions for using the Administration Tool to create and edit objects in the
Presentation layer of a repository. This is the fourth step in setting up a repository.

This chapter contains the following topics:

■ Creating the Presentation Layer in the Repository on page 143

■ Presentation Layer Objects on page 144

■ Generating an XML File from a Presentation Table on page 149

Creating the Presentation Layer in the
Repository
The Presentation layer provides a way to present customized views of a business model to users.
Presentation Catalogs in the Presentation layer (called Subject Area in Oracle Answers) are seen as
business models by Oracle BI Presentation Services users. They appear as catalogs to client tools
that use the Oracle BI Server as an ODBC data source. The following topics describe the Process of
creating the Presentation layer.

NOTE: In offline editing, remember to save your repository from time to time. You can save a
repository in offline mode even though the business models may be inconsistent.

Copy Business Models to Publish to Users
There are several ways to create a Presentation Catalog in the Presentation layer. The recommended
method is to drag and drop a business model from the Business Model and Mapping layer to the
Presentation layer, and then modify the Presentation layer based on what you want users to see. You
can move columns between presentation tables, remove columns that do not need to be seen by the
users, or even present all of the data in a single presentation table. You can create presentation
tables to organize and categorize measures in a way that makes sense to your users.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Maintaining the Presentation Layer in an Oracle BI Repository ■
Presentation Layer Objects

144

Remove Any Unneeded or Unwanted Columns
One important reason to use a custom Presentation layer is to make the schema as easy to use and
understand as possible. Therefore, users should not be able to view columns that have no meaning
to them. The following columns are examples of columns that you might want to remove from the
Presentation layer:

■ Key columns that have no business meaning.

■ Columns that users do not need to view (for example, codes, when text descriptions exist).

■ Columns that users are not authorized to see.

NOTE: You can also restrict access to tables or columns in the security layer. For more information,
refer to Chapter 15, “Security in Oracle BI.”

Rename Presentation Columns to User-Friendly Names
By default, presentation columns have the same name as the corresponding logical column in the
Business Model and Mapping layer. However, you can specify a different name to be shown to users
by changing the name in the Presentation Column dialog box. Whenever you change the name of a
presentation column, an alias is automatically created for the old name, so compatibility to the old
name remains.

Export Logical Keys in the Presentation Catalog
For each presentation catalog in the Presentation layer, decide whether to export any logical keys as
key columns to tools that access it in the Presentation Catalog dialog box. Exporting logical keys is
irrelevant to users of Oracle BI Presentation Services, but it may be advantageous for some query
and reporting tools. If you decide to export logical keys, be sure the logical key columns exist in the
table folders. In this situation, your business model should use logical key/foreign key joins.

When you select the option Export logical keys in the Presentation Catalog dialog box, any columns
in the Presentation layer that are key columns in the Business Model and Mapping layer are listed as
key columns to any ODBC client. This is the default selection. In most situations, this option should
be selected.

NOTE: If you are using a tool that issues parameterized SQL queries, such as Microsoft Access, do
not select the option Export logical keys. This will stop the tool from issuing parameterized queries.

Presentation Layer Objects
The Presentation layer adds a level of abstraction over the Business Model and Mapping layer. It is
the view of the data seen by client tools and applications.

The Presentation layer provides a means to further simplify or customize the Business Model and
Mapping layer for end users. For example, you can hide key columns or present the schema as a
single table. Simplifying the view of the data for users makes it easier to craft queries based on users’
business needs.

The section provides instructions for using the Administration Tool’s Presentation layer dialog boxes
to create and edit repository objects.

Creating and Maintaining the Presentation Layer in an Oracle BI Repository ■
Presentation Layer Objects

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 145

This section includes the following topics:

■ Working with Presentation Catalogs on page 145

■ Working with Presentation Tables on page 146

■ Working with Presentation Columns on page 147

■ Using the Alias Tab of Presentation Layer Dialog Boxes on page 149

Working with Presentation Catalogs
In the Presentation layer, presentation catalogs (subject areas) allow you to show different views of
a business model to different sets of users. Presentation catalogs have to be populated with contents
from a single business model. They cannot span business models.

When creating a presentation catalog, selecting the option Export logical keys causes any columns
in the Presentation layer that are key columns in the Business Model and Mapping layer to be listed
as key columns to any ODBC client. This is the default selection. In most situations, this option
should be selected. Many client tools differentiate between key and nonkey columns, and the option
Export logical keys provides client tools access to the key column metadata. Any join conditions the
client tool adds to the query, however, are ignored; the Oracle BI Server uses the joins defined in
the repository.

If you set an implicit fact column this column will be added to a query when it contains columns from
two or more dimension tables and no measures. The column is not visible in the results. It is used
to specify a default join path between dimension tables when there are several possible alternatives.

The Presentation Catalog dialog box has three tabs: General, Presentation Tables, and Aliases. The
functionality provided in each tab is described in the following list:

To create a presentation catalog

1 In the Presentation layer, right-click and select New Presentation Catalog.

2 In the Presentation Catalog dialog box, in the General tab, type a name for the presentation
catalog and click Permissions.

3 In the Permissions dialog box, assign user or group permissions to the catalog folder, and then
click OK.

For more information about assigning permissions to a presentation catalog, refer to “Setting
Permissions for Repository Objects” on page 33.

Tab Comment

General Use this tab to create or edit a presentation catalog.

Presentation
Table

Use this tab to reorder or sort the Presentation layer tables in the Administration
Tool workspace, and to delete tables. You can also use this tab to access the
Presentation Table dialog box, where you can create and edit tables.

Aliases Use this tab to specify or delete an alias for a catalog folder.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Maintaining the Presentation Layer in an Oracle BI Repository ■
Presentation Layer Objects

146

4 In the Presentation Catalog dialog box, from the Business Model drop-down list, select a business
model.

After you add columns to the presentation catalog, the drop-down list becomes inactive because
you can add columns from only one business model in each presentation catalog.

5 To expose the logical keys to other applications, select the option Export logical keys.

NOTE: If you are using a tool that issues parameterized SQL queries, such as Microsoft Access,
do not select the Export logical keys option. Not exporting logical keys stops the tool from issuing
parameterized queries.

6 (Optional) Type a description of the catalog folder.

This description will appear in a mouse-over ToolTip for the presentation column in Oracle
Business Intelligence Answers.

CAUTION: When you move columns into presentation catalog folders, be sure columns with the
same name or an alias of the same name do not already exist in the catalog.

7 Set an Implicit Fact Column.

8 Click OK.

Working with Presentation Tables
You can use presentation tables to organize columns into categories that make sense to the user
community. Presentation tables in the Presentation layer contain columns. A presentation table can
contain columns from one or more logical tables. The names and object properties of the
presentation tables are independent of the logical table properties.

The Presentation Tables dialog box has three tabs: General, Columns, and Aliases. The functionality
provided in each tab is described in the following list:

To create a presentation table

1 Right-click a catalog folder in the Presentation layer, and then select New Presentation Table from
the shortcut menu.

The Presentation Table dialog box appears.

2 In the General tab, specify a name for the table.

Tab Comment

General Use this tab to create or edit a presentation table.

Columns Use this tab to reorder or sort the Presentation layer columns in the Administration
Tool workspace, and to delete columns. You can also use this tab to access the
Presentation Column dialog box, where you can create and edit columns.

Aliases Use this tab to specify or delete an alias for a presentation table.

Creating and Maintaining the Presentation Layer in an Oracle BI Repository ■
Presentation Layer Objects

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 147

3 Click the Permissions button to open the Permissions dialog box, where you can assign user or
group permissions to the table.

For more information about assigning permissions to a presentation table, refer to “Setting
Permissions for Repository Objects” on page 33.

4 (Optional) Type a description of the table.

NOTE: To give the appearance of nested folders in Answers, prefix the name of the presentation
folder to be nested with a hyphen and a space and place it after the folder in which it nests (-
<folder name>). For example, to nest the Sales Facts folder in the Facts folder, place the Sales
Facts folder directly after Facts in the metadata and change its name to - Sales Facts. When
Answers displays the folder name in the left pane, it omits the hyphen and space from the folder
name. To nest a second folder, for example Marketing Facts, in the Facts folder, change its name
to - Marketing Facts and place it directly after Sales Facts. The standard preconfigured
repositories provide additional examples for you to review.

To delete a presentation table

1 In the Presentation layer, right-click a catalog and select Properties.

2 In the Presentation Catalog dialog box, click the Presentation Tables tab.

3 In the Presentation Tables tab, select a table and click Remove.

A confirmation message appears.

4 Click Yes to remove the table, or No to leave the table in the catalog.

5 Click OK.

To reorder a table or sort all tables in a presentation catalog

1 In the Presentation layer, right-click a catalog and select Properties.

2 In the Presentation Catalog dialog box, click the Presentation Tables tab.

3 To move a table, perform the following steps:

a In the Presentation Tables tab, in the Name list, select the table you want to reorder.

b Use drag-and-drop to reposition the table, or click the Up and Down buttons.

4 To sort all tables in alphanumeric order, click the Name column heading.

This toggles the sort between ascending and descending alphanumeric order.

Working with Presentation Columns
The presentation column names are, by default, identical to the logical column names in the Business
Model and Mapping layer. However, you can present a different name by clearing both the Use Logical
Column Name and the Display Custom Name check boxes in the Presentation Column dialog box.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Maintaining the Presentation Layer in an Oracle BI Repository ■
Presentation Layer Objects

148

To provide a convenient organization for your end users, you can drag and drop a column from a
single logical table in the Business Model and Mapping layer onto multiple presentation tables. This
allows you to create categories that make sense to the users. For example, you can create several
presentation tables that contain different classes of measures—one containing volume measures,
one containing share measures, one containing measures from a year ago, and so on.

The Presentation Column dialog box has the following tabs:

■ General. Use this tab to create or edit presentation columns.

■ Aliases. Use this tab to specify or delete an alias for a presentation column.

To create a presentation column

1 Right-click a presentation table in the Presentation layer, and then choose New Presentation
Column.

2 In the Presentation Column dialog box, to use the name of the logical column for the presentation
column, select the Use Logical Column check box.

The name of the column and its associated path in the Business Model and Mapping layer appears
in the Logical Column Name field.

3 To specify a name that is different from the Logical Column name, clear the Use Logical Column
check box, and then type a name for the column.

4 To assign user or group permissions to the column, click Permissions.

5 In the Permissions dialog box, assign permissions, and then click OK.

For more information about assigning permissions, refer to “Setting Permissions for Repository
Objects” on page 33.

6 To select the logical column, click Browse.

7 In the Browse dialog box, select the column, and then click Select.

8 (Optional) Type a description of the presentation column.

9 To define any aliases for the logical column, click the Aliases tab.

To edit a presentation column

1 In the Business Model and Mapping layer, double-click the presentation column.

2 In the Presentation Column dialog box, click Edit.

3 In the Logical Column dialog box, make any changes or review the information, and then click
OK.

To delete a presentation column

1 Right-click a presentation table in the Presentation layer, and then select Properties.

2 Click the Columns tab.

Creating and Maintaining the Presentation Layer in an Oracle BI Repository ■
Generating an XML File from a Presentation Table

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 149

3 Select the column you want to delete.

4 Click Remove, or press the Delete key, and then click Yes.

To reorder a presentation column

1 Right-click a presentation table in the Presentation layer, and then select Properties.

2 Click the Columns tab.

3 Select the column you want to reorder.

4 Use drag-and-drop to reposition the column, or click the Up and Down buttons.

5 Click OK.

Using the Alias Tab of Presentation Layer Dialog Boxes
An Alias tab appears on the Presentation Catalog, Presentation Table, and Presentation Column
dialog boxes. You can use this tab to specify or delete an alias for the Presentation layer objects.

To add an alias

1 Double-click a presentation catalog.

2 In the Presentation Layer dialog box, click the Aliases tab.

3 Click the new button, and then type the text string to use for the alias.

4 Click OK.

To delete an alias

1 Double-click a presentation catalog.

2 In the Presentation Layer dialog box, click the Aliases tab.

3 In the Aliases list, select the alias you want to delete.

4 Click the delete button, and then click OK.

Generating an XML File from a
Presentation Table
You can import the structure of an Oracle BI presentation table into Oracle’s Siebel Tools. To do this,
you create an XML file from a table in the Presentation layer of an Oracle BI repository and then
import the XML file into Oracle’s Siebel Tools.

For more information, refer to the documentation for Oracle’s Siebel Tools.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Creating and Maintaining the Presentation Layer in an Oracle BI Repository ■
Generating an XML File from a Presentation Table

150

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 151

7 Completing Setup and Managing
Oracle BI Repository Files

This section is part of the roadmap for planning and setting up a repository. For more information,
refer to “Planning and Creating an Oracle BI Repository” on page 39. After you have created the
repository file, the Physical layer, Business Model and Mapping layer, and Presentation layer, you
need to perform several tasks to complete the initial repository setup. This section contains these
setup steps and topics for managing your repository files.

This section contains instructions for the following topics:

■ Process of Completing the Setup for a Repository File

■ Importing From Another Repository on page 154

■ Querying and Managing Repository Metadata on page 156

■ Constructing a Filter for Query Results on page 159

■ Comparing Repositories on page 161

■ Merging Oracle BI Repositories on page 163

■ Exporting Oracle BI Metadata to IBM DB2 Cube Views on page 167

■ About Extracting Metadata Subsets Into Projects on page 167

■ Setting up and Using the Oracle BI Multiuser Development Environment on page 169

■ Setting Up the Repository to Work with Delivers on page 180

Process of Completing the Setup for a
Repository File
Perform the following tasks to complete the repository file setup:

■ Saving the Repository and Checking Consistency on page 152

■ Add an Entry in the NQSConfig.INI File on page 152

■ Create the Data Source on page 153

■ Start the Oracle BI Server on page 153

■ Test and Refine the Repository on page 154

■ Publish to User Community on page 154

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Process of Completing
the Setup for a Repository File

152

Saving the Repository and Checking Consistency
In offline editing, remember to save your repository from time to time. You can save a repository in
offline mode even though the business models may be inconsistent.

To determine if business models are consistent, use the Check Consistency command to check for
compilation errors. You can check for errors in the whole repository with the File > Check Global
Consistency command or in a particular logical business model by selecting a business model and
using the Check Consistency command from the right-click menu.

The consistency check analyzes the repository for certain kinds of errors and inconsistencies. For
example, the consistency check finds any logical tables that do not have logical sources configured
or any logical columns that are not mapped to physical sources, checks for undefined logical join
conditions, determines whether any physical tables referenced in a business model are not joined to
the other tables referenced in the business model, and checks for existence of a presentation catalog
for each business model.

NOTE: Passing a consistency check does not guarantee that a business model is constructed
correctly, but it does rule out many common problems.

When you check for consistency, any errors or warnings that occur are displayed in a dialog box.
Correct any errors and check for consistency again, repeating this process until there are no more
errors. An error message indicates a problem that needs to be corrected. A warning message
identifies a possible problem to the Oracle BI Administrator. Refer to “Checking the Consistency of a
Repository or a Business Model” on page 26.

NOTE: The consistency check algorithm was enhanced in Siebel Business Analytics 7.8.2. After
upgrading from a previous software version and checking the consistency of your repository, you
might observe messages that you had not received in previous consistency checks. This typically
indicates inconsistencies that had been undetected prior to the upgrade, not new errors.

Add an Entry in the NQSConfig.INI File
After you build a repository and it is consistent, you need to add an entry in the NQSConfig.INI file
for the repository. The entry allows the Oracle BI Server to load the repository into memory upon
startup. Therefore, if you want your changes to take effect immediately, restart the Oracle BI Server.
The NQSConfig.INI file is located in the following location:

[drive path]:\OracleBI\Config\

If errors occur in the file, you might not be able to restart the server. You can review the log
messages in the log (NQServer.log) at the following location:

[drive path]:\OracleBI\server\Log\

For organizations that use Oracle Application Server, Oracle recommends that you use Oracle
Application Server Control to modify configuration files. For organizations that use other application
servers, Oracle recommends that you use JConsole. For more information, see Oracle Business
Intelligence Infrastructure Installation and Configuration Guide.

CAUTION: Although you can use an editor such as Windows Notepad, it's not recommended.

Completing Setup and Managing Oracle BI Repository Files ■ Process of Completing
the Setup for a Repository File

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 153

To add an entry in the NQSConfig.INI file

1 Open the NQSConfig.INI file in an editor such as Notepad.

2 In the repository section, add an entry for your new repository in this format:

logical_name = repository_file_name ;

For example, if the repository file is named northwind.rpd and the logical name you assign it is
star, the entry will read as follows:

star = northwind.rpd ;

One of the repositories should be specified as the default and using the same repository name,
the entry would read as follows:

star = northwind.rpd, default;

The logical name is the name end users have to configure when configuring a DSN in the Oracle
BI ODBC setup wizard. Filenames consisting of more than a single word should be enclosed in
single quotes. Save the configuration file after adding the entry. For more information about the
NQSConfig.INI file, refer to Oracle Business Intelligence Infrastructure Installation and
Configuration Guide.

3 Save the file and restart the Oracle BI Server.

For more information, see “Starting the Oracle BI Server” on page 209.

Create the Data Source
For end user client applications to connect to the new repository, each user needs to define a data
source using an ODBC driver.

NOTE: Oracle BI Presentation Services has the same relationship to the Oracle BI Server as any
other client application.

You can create standard data sources, and data sources that will participate in a cluster. The steps
to create a new data source are given in Chapter 12, “Connectivity and Third-Party Tools in Oracle BI
Server.”

Start the Oracle BI Server
When you start the Oracle BI Server, the repository specified in the NQSConfig.INI file is loaded and
is available for queries. For detailed information on starting the server, refer to “Starting the Oracle
BI Server” on page 209.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Importing From Another
Repository

154

Test and Refine the Repository
When the repository is created and you can connect to it, run sample queries against it to test that
it is created properly. Correct any problems you find and test again, repeating this process until you
are satisfied with the results.

Tips For Performance Tuning
The Physical Data Model should more closely resemble the Oracle BI metadata model (for example
the star schema) instead of a transactional database system. If the Physical model is set up like the
underlying transactional model, performance problems and configuration problems could likely arise.
For additional tips, refer to “Guidelines For Designing a Repository” on page 50.

NOTE: Make sure the metadata is generating the correct record set first, then focus on performance
tuning activities (such as adding sources).

■ Accuracy of metadata is more important than improved performance.

■ In general, push as much processing to the database as possible. This includes tasks such as
filtering, string manipulation, and additive measures.

■ Move as much of the query logic to the ETL as possible to improve system response time. Pre-
calculation of additive metrics and attributes will reduce query complexity and therefore
response time.

■ Use base and extension tables to allow for a cleaner upgrade path. To improve runtime
performance, merge the two tables into a third one, which is then mapped into Oracle BI.
Although this technique requires more effort and a larger ETL batch window, it insulates the
system from upgrade errors while still providing optimal performance.

■ Denormalize data into _DX (dimension extension) tables using the ETL process to reduce runtime
joins to other tables.

Publish to User Community
After testing is complete, notify the user community that the data sources are available for querying.
Presentation Services users need only know the URL to type in their browser. Client/server users (for
example, users accessing the Oracle BI Server with a query tool or report writer client application)
need to know the subject area names, the machine on which the server is running, their user IDs
and passwords, and they need to have the ODBC setup installed on their PCs. They may also need
to know the logical names of repositories when multiple repositories are used and the data source
name (DSN) being created does not point to the default repository.

Importing From Another Repository
It is recommended that you create projects in the repository that contain the objects that you wish
to import, and then use repository merge to bring the projects into your current repository. For more
information, see “Merging Oracle BI Repositories” on page 163.

Completing Setup and Managing Oracle BI Repository Files ■ Importing From Another
Repository

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 155

Use the Repository Import Wizard to import a presentation catalog (called Subject Area in Answers)
and its associated children business model and physical layer objects from another repository. You
can also import users, groups, variables, initialization blocks, and projects.

NOTE: By default, the Import from repository option on the File menu is disabled. When this option
is enabled, the Deprecated feature warning dialog box appears each time a user begins the import.
If the user clicks yes in the dialog box, the import process continues. If the user clicks No, the import
process terminates. To turn on this option, see “Using the Options Dialog Box—General Tab” on
page 29.

Use this option when the objects you import are unrelated to objects already in the repository such
as when the business model and physical layer objects do not exist. If an object of the same name
and type exists, the import process overwrites the existing object with the new object. When you
import objects from one repository into another, the repository from which you are importing must
be consistent.

To import from another repository

1 In the Administration Tool, open the repository in offline mode, and then choose File > Import
from Repository.

This option is only available when opening a repository offline.

2 In the Repository Import Wizard, select a repository by its file name or, if it is being used by
Oracle BI, by the ODBC DSN that points to the desired repository on that server, and then click
Next.

3 Type the Oracle BI Administrator user ID and password.

4 In the Repository Import Wizard-Objects to Update dialog box, from the drop-down list, choose
a category using Table 19 on page 156 as a guide.

Available buttons (options) depend on the category that you select. You can add only the selected
object, the selected object with its child objects, or the selected object with its parent objects.

5 Repeat Step 4 until you have added all the objects you want to import.

If any objects need to be checked out, the Check Out Objects screen appears, notifying you that
objects will be checked out.

6 Click Next to continue.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Querying and Managing
Repository Metadata

156

7 In the Finish screen, click finish.

Querying and Managing Repository
Metadata
You can query for objects in the repository using the Query Repository tool. If you query using the
All Types option, a list appears that contains the exposed object types in the repository. The list does
not contain objects such as aggregate rules, logical source folders, privilege packages, and other
objects that are considered internal objects.

You can use repository queries to help manage the repository metadata in the following ways:

■ Examine and update the internal structure of the repository. For example, you can query a
repository for objects in the repository based on name, type (such as Catalog, Complex Join, Key,
and LDAP Server), or on a combination of name and type. You can then edit or delete objects
that appear in the Results list. You can also create new objects, and view parent hierarchies.

■ Query a repository and view reports that show such items as all tables mapped to a logical
source, all references to a particular physical column, content filters for logical sources,
initialization blocks, and security and user permissions.

For example, you might want to run a report prior to making any physical changes in a database
that might affect the repository. You can save the report to a file in comma-separated value
(CSV) or tab-delimited format.

Table 19. Categories of Repository Objects to Import

Category Description

Catalogs When you select a catalog, the Add with Children button become active.
Presentation catalogs are always added with all their child objects. All associated
objects, from the Presentation layer to the Physical layer, will be updated and
synchronized.

Groups When you select a group, the Add, Add with Children, and Add with Parents
buttons become active. (You can view information about group membership from
the Security Manager.)

Initialization
Blocks

When you select an initialization block, the Add with Children button becomes
active.

List Catalogs When you select a list catalog, the Add with Children button becomes active.

Projects When you select a project, all repository objects that you choose to update and
synchronize appear.

Target levels When you select a target level, the Add with Children button is active.

Users When you select a user, the buttons that become active depend on the user that
you select in the left pane.

Variables When you select a variable, the Add and Add with Parents buttons are active.
Defined system and session variables appear in the left pane.

Completing Setup and Managing Oracle BI Repository Files ■ Querying and Managing
Repository Metadata

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 157

■ You can save a query to run again in the future or save the query results to an external file. When
you save to an external file, the encoding options are ANSI, Unicode, and UTF-8.

To query a repository

1 Open the Administration Tool, and then open your repository.

2 In the repository, right-click any object and choose Display Related > [type of object on which
you want to search].

3 In the Query Repository dialog box, the type of object is prefilled.

4 In the Query Repository dialog box, complete the query information using Table 20 on page 158
as a guide.

Table 20 on page 158 contains a description of most fields and buttons in the Query Repository
dialog box.

5 Click Query.

You can view the results, save the results to an external file, or make changes and overwrite the
existing query or save as a new query.

To save a query results to an external file

1 After running the query, in the Query Repository dialog box, click Save.

2 In the Save As dialog box, type a name, choose a type of file and an Encoding value.

3 To add additional columns of information to the results, click Add Columns.

4 In the Select information to add to the report dialog box, select the columns you want from the
list.

5 You can re-order the columns by selecting a checked column and clicking Up or Down.

6 Click OK

7 In the Save as dialog box, select a Save as type.

8 Click Save.

To save a query to run it again later

1 After running the query, in the Query Repository dialog box, click Save Query As.

2 In the Save Query As dialog box, type a name for the query and click Save.

3 In the Query Repository dialog box, click Close.

To delete a saved query

1 Open the Administration Tool, and then open your repository.

2 From the Tools menu, choose Query Repository.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Querying and Managing
Repository Metadata

158

3 In the Query Repository dialog box, click Saved Queries.

4 In the Saved Queries dialog box, scroll to the right or maximize the dialog box.

5 Click the delete button for the query that you wish to delete, and then click Close.

To run a saved query

1 Open the Administration Tool, and then open your repository.

2 From the Tools menu, choose Query Repository.

3 In the Query Repository dialog box, click Saved Queries.

4 In the Saved Queries dialog box, select the row that contains the query you wish to run, and then
click Select.

5 In the Query Repository dialog box, click Query.

You can view the results, save the results to an external file, or make changes and overwrite the
existing query or save as a new query.

Table 20. Query Repository Fields and Some Buttons

Field or
Button Description

Delete After executing a query, use this button to delete an object in the list of query
results.

Edit After executing a query, use this button to edit an object in the list of query results.
Not all repository objects can be edited from the results list. For example privilege
objects and user database sign-on objects. If an object cannot be edited from the
results list, the Edit button will not be available.

Filter Use this button to create or edit a filter for your query. After you create a filter, the
filter criteria appear in the text box on the left of the button. For more information,
refer to “Constructing a Filter for Query Results” on page 159.

GoTo After executing a query, use this button to go to the object in the Administration
Tool view of the repository.

Mark After executing a query, use this button to mark the selected objects. To unmark
an object click the button again. You can mark objects to make them easier to
visually identify as you develop metadata.

Name Allows a search by object name. You can use an asterisk (*) wildcard character
to specify any characters. The wildcard character can represent the first or last
characters in the search string. Searches are not case sensitive.

New Use to request a new query.

Completing Setup and Managing Oracle BI Repository Files ■ Constructing a Filter for
Query Results

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 159

To create a new object

1 From the Administration Tool menu bar, choose Tools > Query Repository.

2 In the Query Repository dialog box, in the Type drop-down list, select the type of object you want
to create.

3 Click New.

The dialog boxes that appear depend on the object type that you select. For more information
refer to the section of this documentation that pertains to creating that object.

Constructing a Filter for Query Results
Use the Query Repository Filter dialog box to filter the results in the Results list of the Query
Repository dialog box.

Parent After executing a query, use this button to view the parent hierarchy of an object.
If the object does not have a parent, a message appears.

In the Parent Hierarchy dialog box, you can edit or delete objects. However, if you
delete an object, any child objects of the selected object will also be deleted.

Query Use this button when you are ready to submit your query.

Save Query
As

Opens a dialog box in which you can save a query and select or delete a previously
saved query. Available only after you have created a query.

Saved
Queries

Opens a dialog box in which you can type a new name for the query or browse
existing saved queries. This button is only available if you have previously saved
queries.

Set Icon After executing a query, use this button to select a different icon for an object. To
change the icon back to this original icon, use this button and select Remove
associated icon. You can set special icons for objects to make it easier to visually
identify them as having common characteristics. You may, for example, want to
pick a special icon to identify columns that will be used only by a certain user
group.

Show
Qualified
Name

Use this check box to display the fully qualified name of the object(s) found by the
query.

For example, if you query for logical tables, the default value in the Name list is
the table name. However, if you select the Show Qualified Names check box, the
value in the Name list changes to
businessmodelname.logicaltablename.columnname.

Type Select a type from the drop-down list to narrow your search to a particular type of
object.

Table 20. Query Repository Fields and Some Buttons

Field or
Button Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Constructing a Filter for
Query Results

160

The Query Repository Filter dialog box contains five columns: Item column and its operator or
selection column, a Value column and its operator or selection column, and a Delete column that lets
you delete the highlighted filter.

To access the Query Repository Filter dialog box

1 From the Tools menu, choose Query Repository.

2 In the Query Repository dialog box, select an item in the Results list or select an item from the
Type list, and then click Filter.

To construct a filter

1 From the Tools menu, choose Query Repository.

2 In the Query Repository dialog box, select an item in the Results list or select an item from the
Type list, and then click Filter.

3 In the Query Repository Filter dialog box, click the Item field.

The Item drop-down list contains the items by which you can filter.

4 In the Item drop-down list, select the filter that you want to apply to the Results or Type object
you selected in Step 2 on page 160.

Depending on what you select in the Item drop-down list, other options may become available.

To construct a filter to view all databases referenced in a business model

1 From the Tools menu, choose Query Repository.

2 In the Query Repository dialog box, select Database from the Type drop-down list, and then click
Filter.

3 In the Query Repository Filter dialog box, click the Item field.

The Item drop-down list contains the items by which you can filter.

4 In the Item drop-down list, select Related to.

The equals sign (=) appears in the column to the right of the Item field.

5 Click the ellipsis button to the right of the Value field, and in the drop-down list, choose Select
object.

6 In the Select dialog box, select the business model by which you want to filter, and then click
Select.

Your selection appears in the Value field.

7 Click OK to return to the Query Repository dialog box.

The filter appears in the Filter text box of the Query Repository dialog box.

Completing Setup and Managing Oracle BI Repository Files ■ Comparing Repositories

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 161

To construct a filter to view all Presentation layer columns mapped to a logical
column

1 From the Tools menu, choose Query Repository.

2 In the Query Repository dialog box, from the Type drop-down list, select Presentation Column
and then click Filter.

3 In the Query Repository Filter dialog box, click the Item field.

The Item drop-down list contains the items by which you can filter.

4 In the Item drop-down list, select Column.

The equals sign (=) appears in the column to the right of the Item field.

5 Click the ellipsis button to the right of the Value field, and in the drop-down list, choose Select
object.

6 In the Select dialog box, select the column by which you want to filter and click Select.

Your selection appears in the Value field.

7 Click OK to return to the Query Repository dialog box.

The filter appears in the Filter text box of the Query Repository dialog box.

You can construct more than one filter; when you do, the Operator field becomes active. When
the Operator field is active, you can set AND and OR conditions.

TIP: If you are constructing a complex filter, you may want to click OK after adding each constraint
to verify that the filter construction is valid for each constraint.

Comparing Repositories
This section explains how to use the Compare Repositories option in the Administration Tool. It allows
you to compare the contents of two repositories, including all objects in the Physical, Business Model
and Mapping, and Presentation layers.

If you are using an Oracle BI Applications repository and have customized its content, you can use
this option to compare your customized repository to a new version of the repository received with
Oracle BI Applications.

For more information about merging the contents of your customized Oracle BI Applications
repository with that of a new version of the repository, refer to “Merging Oracle BI Repositories” on
page 163.

To compare two repositories

1 In the Administration Tool, open a repository in offline mode.

The repository that you open in this step is referred to as the current repository. For instructions
on opening a repository, refer to “Online and Offline Repository Modes” on page 24.

2 From the File menu, select Compare.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Comparing Repositories

162

3 In the Select Original Repository dialog box, select the repository you want to compare to the
open repository.

4 In the Open Offline dialog box, type the password and click OK.

5 Use the Compare repositories dialog box to review the differences between the two repositories.

The following list contains the values in the Change column and a description:

The following is a list of some of the buttons in the Compare repositories dialog box and a
description of the functionality provided:

Change Description

Created Object was created in the current repository and does not exist in the original
repository.

Deleted Object exists in the original repository but has been deleted from the current
repository.

Modified Object exists in the original repository but has been modified in the current repository.

Button Functionality

Diff Differences between the current repository and the original repository.

Edit 2 Opens created objects for editing.

Equalize This equalizes the upgrade id of the objects. If objects have the same upgrade id,
they are considered to be the same object. Not available when merging
repositories.

Filter Opens the Comparison Filter dialog box to allow you to filter the objects that appear
in the Compare repositories dialog box by type of change and type of object. You
can specify what you want to appear and what you want to be hidden. If you select
the check box (Group created and deleted objects), the tool will filter out the child
objects of created and deleted objects, allowing you to view only the parent
objects. By default, all items are shown.

Find Search by an object Name and Type (such as Initialization Block).

Find Again Search again for the most recent Find value.

Mark Marks the object you select. Boxes appear around created and modified objects. To
remove marks, from the File menu, choose Turn off Compare Mode. Not available
when merging repositories.

Save Saves a list of the differences between the two repositories.

Select Allows you to select a repository to compare with the current repository. Not
available when merging repositories.

Completing Setup and Managing Oracle BI Repository Files ■ Merging Oracle BI
Repositories

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 163

Turn Off Compare Mode
This option allows you to remove marks applied to objects while using the Compare Repositories and
Merge Repositories options. The Turn off Compare Mode option is only available after you have
clicked Mark during the File > Compare action. If no repository object is marked, this option is not
available.

To enable the Turn Off Compare Mode
■ From the Administration Tool toolbar, select File > Turn Off Compare Mode.

Merging Oracle BI Repositories
This section is intended for organizations that use an Oracle BI Applications repository. However, the
Merge Repository option can also be used by customers to upgrade their custom repositories.

The merge process involves three versions of an Oracle BI repository. The terms used in the following
descriptions are the terms used in the Administration Tool user interface.

■ Original repository. The repository you received with the previous version of Oracle BI
Applications. This section uses Oracle’s SiebelAnalytics.Original.rpd as an example.

■ Modified repository. The repository that contains the customizations you made to the original
repository. This section uses Oracle’s SiebelAnalytics.Modified.rpd as an example.

■ Current repository. The repository that is installed with this version and is currently opened as
the main repository. This section uses Oracle’s SiebelAnalytics.Current.rpd as an example.

During the merge process, you can compare the original repository with the modified repository and
the original repository with the current repository. The Merge Repository option allows you to decide
on an object-by-object basis if you want to merge your customizations with the current repository.

Stats Provides the number of changes by Change type. During a multiuser development
merge, this allows you to view an overview of the merge decisions that will take
place.

View 1 Opens deleted objects in read-only mode.

Button Functionality

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Merging Oracle BI
Repositories

164

Figure 14 on page 164 shows the following parts of the Merge repositories dialog box. Table 21 on
page 165 contains descriptions of columns and buttons on the Merge repositories dialog box.

■ The Original repository and Modified repository fields appear at the top of the dialog box. The
Select buttons at the right of the fields allow you to select repositories.

■ The read-only text box describes the type of merge that you selected.

Figure 14. Merge Repositories Dialog Box

Completing Setup and Managing Oracle BI Repository Files ■ Merging Oracle BI
Repositories

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 165

■ The decision table in the middle of the dialog box dynamically changes based on the choices you
make in this window. For example, if you select the option to merge repository contents, the
decision table displays the following information:

Table 21. Merge Repositories Decision Table

Column
Name Description

Decision Allows you to select an action you want to perform on the selected repository
change. For examples of some results that will occur, refer to “Examples of the
Results of Some Decision Choices” on page 166.

■ Current. This type has no suffix. Selecting this type means that you want
to leave the object in the current repository as is).

■ Modified. This type can have an A (add), a D (delete), or an AR (after
renaming) suffix.

NOTE: AR means that the Modified version will be accepted but because it
conflicts with another name in the repository, it will be renamed. For
example, if both the Current and Modified repositories add the same object
with the same name and the user chooses to accept both versions, both
would be added and the object from the Modified repository would be
renamed.

■ Mix. The object was not added or deleted but at least one of its properties
was modified. For example, you can select the choices for the properties.

Description Description of the changes between the original repository and the modified
repository, and between the original repository and the current repository.

Diff (button) Shows which properties of an object have been modified. Available for objects
that are labelled Mix (not added or deleted).

Find (button) Search by an object Name and Type (such as Initialization Block.

Find Again
(button)

Search again for the most recent Find value.

Load
(button)

Loads a saved decisions file from the Repository subdirectory so that you can
continue processing a repository merge.

Name Object name

Save
(button)

Saves a file containing interim changes in the Repository subdirectory so that
you can stop work on the merge and continue it later. After saving the changes
(decisions) you need to close the Merge repositories dialog box by clicking
Cancel.

Stats
(button)

In multiuser development, this allows you to view an overview of the merge
decisions that will take place.

Type Object type

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Merging Oracle BI
Repositories

166

■ When you select an object in the decision table, the read-only text box below the decision table
describes what changes were made to that object in the current repository.

Examples of the Results of Some Decision Choices
The following examples show the results of some decision choices when the current and modified
repositories are different:

■ If the Description column for an object contains Added to Current, the following are choices in
the Decision column and their results:

■ Selecting Current keeps the addition in the current repository.

■ Selecting Modified (D) deletes the added object from the current repository.

■ If the Description column for an object contains Deleted from Modified, the following are choices
in the Decision column and their results:

■ Selecting Current keeps the repository as is without deleting the object.

■ Selecting Modified (D) deletes the object from the current repository.

■ If the Description column for an object contains Deleted from Current, the following are choices
in the Decision column and their results:

■ Selecting Current keeps the repository as is without adding the object back into the current
repository.

■ Selecting Modified (A) adds the object back into the current repository.

■ If the Description column for an object contains Added to Modified, the following are choices in
the Decision column and their results:

■ Selecting Current keeps the repository as is without adding the object back into the current
repository.

■ Modified (A). Selecting Modified (A) adds the object back into the current repository.

NOTE: If a decision choice is Mix, the choices apply to each property level on an object. Click the
ellipses button to open the Properties dialog box.

The procedure in this section explains how to use the Merge Repository option of the Administration
Tool to merge your repository customizations from a prior release with a new version of the Oracle
BI repository.

To merge versions of the Oracle BI repository

1 In the Administration Tool, open the newly installed Oracle BI repository (for example
SiebelAnalytics.Current.rpd) in offline mode.

2 From the Administration Tool menu bar, choose File > Merge.

3 In the Select Original Repository dialog box, select the repository received with your previous
version of the software (for example, SiebelAnalytics.Original.rpd).

4 Type the password and click OK.

5 Click Select for the Modified Repository field.

Completing Setup and Managing Oracle BI Repository Files ■ Exporting Oracle BI
Metadata to IBM DB2 Cube Views

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 167

6 In the Select Modified Repository dialog box, select the repository that contains the
customizations you made to the previous version of the repository (for example,
SiebelAnalytics.Modified.rpd).

7 Click Open, type the password, and then click OK.

8 In the Decision drop-down list, select the action you want to take regarding the repository
change, or accept the default action.

9 To locate subsequent rows with empty Decision fields, click the Decision header cell.

When all rows have a value in the Decision field, the Merge button is enabled.

10 Click Merge.

A message appears to let you know that the merge is complete.

11 From the File menu, choose Save As, and save the current repository under a new name.

Exporting Oracle BI Metadata to IBM
DB2 Cube Views
You can convert Oracle BI proprietary metadata to an XML file and import the metadata into your
DB2 database. For more information, refer to “Using IBM DB2 Cube Views with Oracle BI” on page 277.

NOTE: The term IBM DB2 Cube Views is a registered trademark of IBM.

About Extracting Metadata Subsets Into
Projects
A project consists of a discretely-defined subset of the metadata. Projects can consist of Presentation
layer catalogs (subject areas) and their associated business model logical facts, dimensions, groups,
users, variables, and initialization blocks. The Oracle BI Administrator creates projects so that
developers and groups of developers can work on projects in their area of responsibility. The
following is a list of some of the reasons you might wish to create projects:

■ Licensing. Prior to releasing a new software version, you want to make sure that only the
metadata that is relevant to the licensed application is in a project and that everything is
consistent and complete. You accomplish this by adding only the fact tables that are relevant to
the application.

■ Multiuser development. During the development process, you want to split up the work
(metadata) between different teams within your company. You accomplish this by extracting the
metadata into projects so that each project group can access a different part of the metadata.

Project extractions are fact table centric. This makes sure that project extracts are consistent and
makes licensing much easier to manage. The following is a list of the types of fact tables:

■ Simple (base) fact table. Fact tables with nonderived columns or with columns that are derived
but whose expressions are made up of constants.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ About Extracting
Metadata Subsets Into Projects

168

■ Compound fact table. Fact tables with derived columns whose components come from other
fact tables

■ Component fact table. Simple (base) fact tables that are part of a compound fact table. Their
nonderived columns are used in the compound fact table.

About the Project Dialog Box
Target levels, list catalogs, and presentation catalogs cannot be added to or removed from projects.

Although, in the left pane, it appears that you can add a presentation catalog, you are actually adding
only the underlying fact tables. The presentation catalogs appear as choices only to make it easier
for you to add the elements you want in your project. Additionally, it adds any other objects that are
necessary to make the extract consistent.

The user interface reflects what is happening in the code. In the Project dialog box, the left pane
contains objects that you can use to create a project. The objects in the right pane are all the objects
you chose (directly or indirectly) that reflect the complete set of data that makes each addition
consistent. For example, if you select a presentation catalog to add to your project, underlying fact
tables of other Presentation catalogs will be automatically be added if needed to make the extract
consistent.

The following describes what you will see in the left pane of the Project dialog box:

■ Only simple (base) fact tables and component fact tables appear.

■ Compound fact tables do not appear.

■ You can choose to group objects by Catalog or Business Model.

■ When grouped by business model, the left pane displays only facts that belong to the business
model.

The following describes what you will see in the right pane of the Project dialog box:

■ Only simple (base) fact tables and component fact tables appear.

■ If you add some but not all components of a compound fact table, the compound fact table will
not appear on the right pane.

■ Catalogs that will be extracted when you click OK.

About Converting Older Projects During Repository Upgrade
When you upgrade to the 10.1.3.2 version of Oracle BI the project definition is upgraded. During the
upgrade, the project definition, presentation catalogs, target levels, list catalogs, and existing fact
tables are automatically converted into simple (base) fact tables in the following way:

■ Get presentation columns related to the target levels through the qualifying keys.

■ Get presentation columns related to the list catalogs through the qualifying keys.

■ Get presentation columns related to the presentation catalogs.

■ Get all the base logical columns from all the presentation columns.

■ Get all the base logical columns from the fact tables in the project.

Completing Setup and Managing Oracle BI Repository Files ■ Setting up and Using the
Oracle BI Multiuser Development Environment

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 169

■ Get the base fact tables from all the base logical columns.

NOTE: After the upgrade, projects contain only simple (base) fact tables. All the security objects
remain unchanged.

About Using Older Repositories After Upgrading
Occasionally, you might need to use an older version of the repository. To support this, the project
definition might need to be converted to the old project definition. To downgrade the project
definition, the fact tables will be converted into a project definition that contains presentation
catalogs, target levels, list catalogs, and compound fact tables.

When you open a repository with a version number older than the 10.1.2.3 version, the following
actions occur:

■ Get all the presentation catalogs related to the fact tables.

■ Get all the presentation columns under the presentation catalogs.

■ Add all the target levels whose qualifying key columns are contained in the presentation column.

■ Add all the list catalogs whose qualifying key columns are contained in the presentation column.

■ Add the presentation catalogs to the project.

Setting up and Using the Oracle BI
Multiuser Development Environment
Oracle BI allows multiple developers to work on repository objects from the same repository during
group development of Oracle BI applications. The following are examples of how you might use a
multiuser development environment:

■ Multiple developers need to work concurrently on subsets of the metadata and then merge these
subsets back into a master repository without their work conflicting with other developers. For
example, after completing an implementation of data warehousing at a company, an
administrator might want to deploy Oracle BI to other functional areas.

■ A single developer might manage all development. For simplicity and performance, this
developer might want to use an Oracle BI multiuser development environment to maintain
metadata code in smaller chunks instead of in a large repository.

In both examples, the administrator creates projects in the repository file in the Administration Tool,
and then copies this repository file to a shared network directory. Developers can check out projects,
make changes and then merge the changes into the master repository.

When developers check out projects, the Administration Tool automatically copies and overwrites
files in the background. Therefore, it is important for the administrator to perform setup tasks and
for the developers to perform checkout and checkin procedures carefully, paying close attention to
the messages that appear.

NOTE: To perform the tasks in this section, Oracle BI Administrators must understand the metadata
creation process.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Setting up and Using the
Oracle BI Multiuser Development Environment

170

This section contains the following topics:

■ Setting Up a Multiuser Development Environment (Administrator) on page 170

■ Making Changes in a Multiuser Development Environment (Developers) on page 172

■ Checking In Multiuser Development Repository Projects on page 175

■ Viewing and Deleting History for Multiuser Development on page 178

Setting Up a Multiuser Development Environment
(Administrator)
To prepare for multiuser development, the administrator performs the following tasks:

■ Creating Projects for a Multiuser Development Environment on page 170. In the repository, create
the projects that your developers need.

■ Set Up the Shared Network Directory on page 171. Identify or create a shared network directory
that will be dedicated to multiuser development.

■ Copy the Master Repository to the Shared Network Directory on page 172. After creating all
projects, you copy the repository file in which you created the projects to the shared network
directory where it will be used as your master repository for multiuser development.

NOTE: In this section, we use the phrase master repository to refer to this copy of a repository
in the shared network directory.

Creating Projects for a Multiuser Development Environment
A project consists of a discretely-defined subset of the metadata. Projects can consist of Presentation
layer catalogs (subject areas) and their associated business model logical facts, dimensions, groups,
users, variables, and initialization blocks.

The Oracle BI Administrator creates projects in a repository and copies this repository to a shared
network directory. A best practice is to create projects of manageable size based on individual logical
star schemas in the business model. For Oracle BI projects that are just beginning, the best practice
is to begin with a repository containing all the necessary physical table and join definitions. In this
repository, you create a logical fact table as a placeholder in the Business Model and Mapping layer
and a presentation catalog as a placeholder in the Presentation layer. As you add business model and
presentation catalog metadata, new projects based on individual presentation catalogs and logical
facts can be created.

NOTE: Only one person at a time can create projects in a master repository.

When creating a project, the Oracle BI Administrator selects a presentation catalog or a subset of
logical fact tables related to the selected presentation catalog, and the Administration Tool
automatically adds any business model and physical layer objects that are related. An object can be
part of multiple projects.

Completing Setup and Managing Oracle BI Repository Files ■ Setting up and Using the
Oracle BI Multiuser Development Environment

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 171

After you create projects, they become part of the metadata and are available to multiple developers
who need to perform development tasks on the same master repository. When defined this way,
projects typically become a consistent repository after a developer checks out the projects and saves
them as a new repository file. For more information about creating projects, see “About Extracting
Metadata Subsets Into Projects” on page 167.

To create a project for a multiuser development environment

1 In the Administration Tool menu, choose File > Open > Offline.

2 In the Open dialog box, select the repository that you want to make available for multiuser
development, and then click OK.

3 In the Administration Tool menu, choose Manage > Projects.

4 In the Project Manager dialog box, in the right panel, right-click and then select New Project.

The left pane contains the objects that are available to be placed in a project. The right pane
contains the objects that you select to be part of the project.

5 In the Project dialog box, type a name for the project.

6 Perform one of the following steps to finish creating the project:

■ In the Project dialog box, expand the catalogs and select one or more logical fact tables
within the business model that are related to the presentation catalog, and then click Add.

The project is defined as explicitly containing the logical fact tables and implicitly containing
all logical dimension tables that are joined to the selected logical fact tables (even though
they do not appear in the right pane).

■ In the Project dialog box, select a presentation catalog and then click Add.

The Administration Tool automatically adds all the logical fact tables.

7 To remove any fact table from the project, in the right pane, select the fact table and click
Remove.

8 Add any Catalogs, Groups, Users, Variables, or Initialization Blocks needed for the project.

NOTE: You must add all developers who need to work on the project or they will not be allowed
to check out objects.

9 Click OK.

Set Up the Shared Network Directory
After defining all projects and set up the shared network directory, the Oracle BI Administrator needs
to identify or create a shared network directory that all developers can access, and then upload the
new master repository to that location. This shared network directory needs to be used only for
multiuser development. This directory typically contains copies of repositories that need to be
maintained by multiple developers.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Setting up and Using the
Oracle BI Multiuser Development Environment

172

Developers create a pointer to this shared network directory when they set up the Administration
Tool on their machines.

CAUTION: The Oracle BI Administrator must set up a separate, shared network directory that is
dedicated to multiuser development. If not set up and used as specified, critical repository files can
be unintentionally overwritten and repository data can be lost.

Copy the Master Repository to the Shared Network Directory
Make a copy of the master repository file and paste it in the directory that you have dedicated to
multiuser development. Projects from this master repository will be extracted and downloaded by
the developers who will make changes and then merge these changes back into the master
repository.

After you copy the repository to the shared network directory, notify developers that the multiuser
development environment is ready.

Making Changes in a Multiuser Development
Environment (Developers)
Before checking out projects, the developers need to set up to the Administration Tool to point to the
shared network directory containing the master repository. This must be the multiuser development
directory created by the Oracle BI Administrator. For more information, see “Setting Up a Multiuser
Development Environment (Administrator)” on page 170

During checkout and checkin, a copy of the master repository is temporarily copied to the developer’s
local repository directory (\Oracle BI\Repository by default). After checking out projects and making
changes in a local repository file, each developer can check in (merge) changes into the master
repository or discard the changes.

To make changes in a multiuser development environment, perform the following tasks:

■ Setting Up a Pointer to the Multiuser Development Directory on page 172

■ Checking Out Repository Projects on page 173

■ About Changing and Testing Metadata on page 174

Setting Up a Pointer to the Multiuser Development Directory
Before checking out projects, each developer must set up their Administration Tool application to
point to the multiuser development directory on the network. The Administration Tool stores this path
in a hidden Windows registry setting on the workstation of the developer and uses it when the
developer checks out and checks in objects in the shared directory.

NOTE: Until the pointer is set up, the multiuser options will not be available in the Administration
Tool.

Initially, the network directory contains the master repositories. The repositories in this location are
shared with other developers.

Completing Setup and Managing Oracle BI Repository Files ■ Setting up and Using the
Oracle BI Multiuser Development Environment

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 173

When setting up the pointer, the developer can also complete the Full Name field. Although the field
is optional, it is recommended that the developer complete this field to allow other developers to
know who has locked the repository. The Full Name value is stored in HKEY_CURRENT_USER in the
registry, and is unique for each login.

To set up a pointer to the multiuser default directory

1 From the Administration Tool menu, choose Tools > Options.

2 In the Options dialog box, click the Multiuser tab.

3 In the Multiuser tab, next to the Multiuser development directory field, click Browse.

4 In the Browse For Folder dialog box, locate and select the multiuser development network
directory, and then click OK.

5 In the Options dialog box, verify that the correct directory appears in the Multiuser development
directory field.

6 In the Full Name field, type your complete name, and then click OK.

Checking Out Repository Projects
After setting up a pointer to the multiuser development default directory, a developer can check out
projects, change metadata, and test the metadata. In the File > Multiuser submenu, the Checkout
option is only available when there is a multiuser development directory defined in the More tab of
the Options dialog box. For more information, refer to “Setting up and Using the Oracle BI Multiuser
Development Environment” on page 169.

If a developer checks out a local repository and attempts to exit the application before publishing it
to the network or discarding local changes, a message appears to allow the developer to select an
action. For more information, refer to “About Closing a Repository Before Publishing It to the Network”
on page 177.

To check out projects

1 From the Administration Tool menu, choose File > Multiuser > Checkout.

2 In the Multiuser Development Checkout dialog box, select the repository, and then click Open.

This dialog box will not appear if there is only one repository in the multiuser development
directory.

3 If prompted for your user name and password, in the Extract from dialog box, type your user
name and password, and then click OK.

If no projects exist in the repository, a message appears and the repository does not open.

4 In the Browse dialog box, select the projects that you want to be part of your project extract,
and then click OK.

If only one project exists in the master repository, it is selected automatically and the Browse
dialog box does not appear.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Setting up and Using the
Oracle BI Multiuser Development Environment

174

5 In the New Repository dialog box, type a name for the new repository and then click Save.

A working project extract repository is saved on your local machine. The name is exactly as you
specified and is opened in offline mode. A log file is also created. The extracted repository might
not be consistent.

CAUTION: A second copy of the project extract repository is saved in the same location. The
name of this version contains the word Original added at the beginning of the name that you
assigned to the repository extract. Do not change the Original project extract repository. It will
be used when you want to compare your changes to the original projects.

About Changing and Testing Metadata
Most types of changes that can be made to standard repository files are also supported for local
repository files. Developers can add new logical columns, logical tables, change table definitions,
logical table sources, and so on. Developers may also work simultaneously on the same project
locally. It is important to note, however, that Oracle BI assumes the individual developer understands
the implications these changes might have on the master repository. For example, if a developer
deletes an object in a local repository, this change will be propagated to the master repository
without a warning prompt.

The following modifications should not be made in a local repository:

■ Hierarchy definitions. When modified concurrently by two developers, the changes will not be
merged correctly during checkin.

■ Project definitions. These should only be changed by the Oracle BI Administrator in the master
repository.

■ Physical Connection settings. These are intentionally not propagated and developers should not
test in local environments.

After making changes to a local repository, the developer can edit the local NQSConfig.INI file, enter
the name of the repository as the default repository, and test the edited metadata.

NOTE: DSNs specified in the metadata need to exist on the developer's workstation.

For more information about testing the metadata, refer to “Test and Refine the Repository” on
page 154.

After the local developer makes changes, tests the changes, and saves the repository locally, the
local developer can perform the following tasks from the File > Multiuser submenu:

■ Compare with Original. Compares the working extracted local repository to the original
extracted repository. When this option, the Compare repositories dialog box opens and lists all
the changes made to the working extracted repository since you checked out the projects. For
more information, see “Comparing Repositories” on page 161.

■ Discard local changes. Anytime after check out and before check in, you can discard your
changes. When you select this option, the working repository closes without giving you an
opportunity to save your work.

CAUTION: If you select this option, there is no opportunity to change your mind. For example,
no Are You Sure? dialog box appears.

Completing Setup and Managing Oracle BI Repository Files ■ Setting up and Using the
Oracle BI Multiuser Development Environment

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 175

■ Merge local changes. Locks the master repository on the network multiuser directory to allow
you to check in your changes. For more information, see “Checking In Multiuser Development
Repository Projects” on page 175.

■ Publish to the network. After you successfully merge your changes, the master repository
opens locally and the Publish to Network submenu item is available. When you select this option,
the lock is removed, the repository is published, and the repository closes. For more information,
see “Checking In Multiuser Development Repository Projects” on page 175.

Checking In Multiuser Development Repository Projects
After changing and testing the metadata on a local machine, the developer needs to merge the local
changes into the local master check in the projects into the master repository on the shared network
directory. Only one developer at a time can merge metadata from a local repository into the master
repository. Therefore, the master repository is locked at the beginning of the merge process.

About Checking-In Projects
When the check-in process begins, the following actions occur:

■ The Administration Tool determines if the master repository is currently locked. If not, it locks
the master repository, preventing other developers from performing a merge until the current
merge is complete, and records the lock in the log file.

■ For other developers, the Merge Local Changes option on the File > Multiuser menu will be
unavailable until the current check-in process has been successfully completed.

■ The Administration Tool automatically copies the current version of the master repository from
the shared network directory to the \\Oracle BI\Repository directory on the developer’s machine
and updates the log files in the local and shared network directories. This is necessary because
the master repository in the shared network directory might have changed after the developer
checked out the projects.

About Merging Multiuser Development Metadata
The merge process involves the following files:

■ Original of the local (subset) repository. Contains the state of the projects as originally
extracted. This repository name begins with Original. An example of the file name for this copy
might be OriginalDevelopment2.rpd. This version is stored in the same location as the modified
(or working) version of the local repository.

■ Modified local (subset) repository. Contains the extracted projects after being modified by
the developer. This version is stored in the same location as the original version of the local
repository.

■ Master repository in network shared directory. This may have been modified by other
developers before this merge. (For example, Master_SiebelAnalytics.rpd.)

During the merge, the Administration Tool checks for added objects and if found, a warning message
appears. The following list describes what happens during this step:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Setting up and Using the
Oracle BI Multiuser Development Environment

176

■ Warning about added objects. When a person checks out a project, they have the ability to
modify that project in any way and check it back in. Deletions and modifications are ways in
which the integrity of the project is maintained. However, adding objects might introduce objects
into the repository that do not belong to any project. Therefore, all project related objects are
checked and if a new object is found, a warning message appears.

■ Aggregation of related objects. In the warning message, only the parent object is reported. The
Administration tool aggregates all the objects to make the message more usable. For example,
if a developer added a new business model, only the business model appears in the warning
message to the user, not the tables, columns, dimensions, and so on.

When the developer closes the Administration Tool, the following actions occur:

■ The master repository on the shared network directory is overwritten with the master repository
containing the developer’s changes.

■ The [master repository].lck file is deleted. If another developer checks out the changed project
from the master repository, the changes made by the first developer are exposed to the other
developer.

CAUTION: The Oracle BI Administrator needs to add newly created metadata to the project
definition in the master repository for it to be visible in future extracted versions of the project.
For example, if a developer checks out a project, adds a new object, and then checks it in, the
new object will not be visible in extracted versions of the project until it is explicitly added to the
project definition. For instructions, refer to “Creating Projects for a Multiuser Development
Environment” on page 170.

Tracking Changes to the Master Repository
A summary of the development activities on the master repository is in the [master_repository].log.
This log contains a record of the following activities:

■ Projects that have been checked in and checked out and when these actions occurred

■ The NT login name and computer name initiating the transaction

■ When locks are created and removed

Differences Between the Multiuser Merge and Standard Repository
Merge Processes
The multiuser development check-in process uses the same technology as the standard repository
merge process with a few important differences. For more information about the standard repository
merge, refer to “Merging Oracle BI Repositories” on page 163.

The following list describes the differences that occur during a multiuser development merge:

■ Inserts are applied automatically. Because a subset of the master repository is being used as the
original repository, most objects in the master repository appear to be new. This would result in
many unnecessary prompts that the developer would have to manually approve. Therefore,
inserts are applied without a prompt during a multiuser development merge.

■ Conflicts that are not inserts but are resolved as a result of the automatic inserts are applied
without a prompt during a multiuser development merge.

Completing Setup and Managing Oracle BI Repository Files ■ Setting up and Using the
Oracle BI Multiuser Development Environment

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 177

■ The database and connection pool properties on the server take precedence over the same
properties on the developer’s machine. This precedence are applied without a prompt during a
multiuser development merge.

About Closing a Repository Before Publishing It to the Network
If you attempt to close an unpublished, locked repository without selecting one of the options in the
File > Multiuser submenu, the Closing MUD repository dialog box opens with the following options:

■ Publish to Network. Publishes the merged repository to the network share as the new master,
releases the lock on the master, and the event is logged. This option is available after a Merge
Local Changes event occurs. This option is also available on the File > Multiuser submenu.

■ Discard Local Changes. Releases the lock on the master repository and records the event in
the log. This option is available after a Checkout or Merge Local Changes is performed. available
on the File > Multiuser submenu.

■ Close repository and keep lock. This closes the repository leaving the master repository
locked.

To check in projects to the master repository

1 From the Administration Tool menu, choose File > Multiuser > Merge Local Changes.

2 In the Lock Information dialog box, in the Comment field, type a description of the changes that
you made, and then click OK.

3 In the Merge repositories dialog box, verify that the Original local repository and Modified local
repository file names are correct.

In the Merge repositories dialog box, it might appear that there are no differences between the
repositories. However, what this means is that there are no decisions that have to be explicitly
made by the developer to check-in changes.

4 For an overview of the merge decisions that will take place, click Stats.

5 In the Results dialog box, click close.

6 Click Merge.

7 If asked if you want to check global consistency, click Yes or No.

The changes are merged and the merged local repository file opens. In the developer's local
directory, a CSV file is created that contains details of the merged changes.

8 Verify that the changes made in the modified local repository are reflected in this merged local
repository.

CAUTION: The merged repository has the same name as the shared repository, but this is still
a local copy.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Setting up and Using the
Oracle BI Multiuser Development Environment

178

9 After you confirm all the changes, click Save.

This saves the merged repository locally, and then, uploads this repository to the shared network
directory with a 000 file extension. For example, Master_Sales.000.

At this point, the changes made by the developer are still not saved to the master repository in
the shared network directory.

10 To commit these changes to the master repository in the shared network directory, close the
Administration Tool.

11 In the Closing MUD repository dialog box, select Publish to Network.

The master repository on the shared network directory is overwritten with the copy of the
repository containing the developer’s changes. For more information about the options in this
dialog box, see “About Closing a Repository Before Publishing It to the Network” on page 177

Viewing and Deleting History for Multiuser Development
You can view the development history of a multiuser development repository. In the Administration
Tool, multiuser development history is only available when no repository is open and after the
administrator sets up the shared network directory. This prevents the confusion that could occur if
a user opened a history log that did not match an open, unrelated repository.

To view multiuser development history

1 Open the Administration Tool.

2 Without opening a repository, from the Administration Tool menu, choose File > Multiuser >
History.

3 In the Multiuser Development History dialog box, select a repository.

A list of all master repositories in the multiuser development directory appears. If directory
contains only one master repository, it is selected by default, and no list appears.

4 In the Open Offline dialog box, type the password for the repository.

5 In the Multi User History dialog box, right-click a row and select one of the following items:

Action Description

View Repository Loads the selected master version of the repository in the
Administration Tool in read-only mode.

View Projects Loads the selected version of a modified subset repository in
the Administration Tool in read-only mode.

Completing Setup and Managing Oracle BI Repository Files ■ Setting up and Using the
Oracle BI Multiuser Development Environment

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 179

Deleting Multiuser Development History
Only the Administrator can delete history. Administrators are defined in a special hidden option file
in multiuser development directory. This option file has the following properties and characteristics:

■ Must have the HIDDEN flag turned on.

■ Can have network access privileges assigned only to multiuser development administrators.

■ Has the same base name as the master repository, but the extension is OPT. For example, for
\\network\MUD\sales.rpd, the administrator might create the hidden file
\\network\MUD\sales.opt.

■ The OPT file is a TXT file in the format:

[Options]

Admin=admin1;admin2

Administrators are defined by their network login names. When multiple administrators exist,
administrator names are separated by semicolons. For example:

[Options]

Admin=jsmith;mramirez;plafleur

View Conflict Resolution Loads all necessary repositories of the selected version. Also
shows the Merge dialog box in read-only mode with all
selected decisions as they were during the Merge Local
Changes activity at that time.

NOTE: The Conflict Resolution check box has to be selected
in the dialog, in order to this menu item to be enabled
(otherwise, there is nothing to show - there were no decisions
decided by the user).

View Details Displays a log with details for the selected versions, or
displays details for all versions if no specific versions are
selected.

View Changes Compares modified subset repository of the selected version
with original subset repository and shows all changes made by
the user in the selected version.

Find and Find Again Allows you to search the list.

Select All Selects all items displayed in the dialog.

Delete Available only to the Administrator.

Action Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Setting Up the
Repository to Work with Delivers

180

An administrator can delete the entire MUD history or the oldest 1 to n versions. It is not possible to
delete versions in the middle of the range. For example, an administrator cannot delete version 3 if
there are still versions 2 and 1. If an administrator deletes the entire MUD history, newly assigned
version numbers restart at version 1. If one or more versions are not deleted, the newly assigned
version numbers continue from.

Setting Up the Repository to Work with
Delivers
The Oracle BI Presentation Services needs to deliver alerts from Delivers to entire groups and to
specified email addresses, phone numbers, and so on. Delivers uses a tool called iBot to deliver
alerts. iBots are software-based agents driven by a schedule or events that can access, filter, and
perform analysis on data based upon defined criteria. For more information about iBots, refer to the
chapter about using Delivers in Oracle Business Intelligence Answers, Delivers, and Interactive
Dashboards User Guide.

You need to set up a presentation catalog (called subject area in Answers) with the name SA System
in the Presentation layer of the Oracle BI repository for this to function correctly.

NOTE: For information about setting the BI Presentation Server parameters, refer to Oracle Business
Intelligence Presentation Services Administration Guide.

This section contains the following topics:

■ About the SA System Subject Area on page 180

■ Setting Up the SA System Subject Area on page 181

About the SA System Subject Area
In Oracle BI, data visibility can be defined by the groups to which a user belongs. For example, when
Oracle BI applications customers log on, the GROUP system session variable can be populated and
the user sees certain subject areas and columns depending on the groups that exist in the variable.
Although the GROUP system session variable provides Oracle BI with the groups to which each user
belongs, it does not identify the users that are in each group.

SA System is a presentation catalog (called subject area in Answers) that addresses this data
visibility issue by exposing users in a group to Delivers. It also allows contact information such as
email addresses to be retrieved from a database and used as delivery devices in Delivers. This allows
Oracle BI Administrators to set up the Oracle BI Server to automatically populate delivery devices
and profiles for users instead of requiring users to update their My Account screen in Delivers.

Group membership is often maintained in an external database such as Oracle’s Siebel transactional
database and not in the Oracle BI repository. This information can be propagated to the Oracle BI
Server and Oracle BI Presentation Services through the GROUP session variable. The SA System
subject area provides group membership and external email addresses to Delivers when used in
conjunction with the GROUP session variable.

Completing Setup and Managing Oracle BI Repository Files ■ Setting Up the
Repository to Work with Delivers

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 181

Setting Up the SA System Subject Area
The Oracle BI Presentation Services is preconfigured to look for the SA System subject area on
startup and will use it if it exists. You can import any external schema that holds group membership,
users' primary email addresses, and users' SMTP devices (cell phones, handhelds, and so on), and
then map it to the SA System subject area.

You can add columns to the SA System table (for example, adding a provider name) by extending
the underlying physical tables and columns.

This section contains the following topics:

■ Guidelines for Implementing the SA System Subject Area on page 181

■ Setting Up the SA System Subject Area for a Stand-Alone Implementation on page 181

Guidelines for Implementing the SA System Subject Area
The name for the subject area must always be SA System. If you use the SA System subject area,
the following set-up guidelines apply:

■ Users and groups. Every user and group must be present in the data. Oracle BI does not
support group membership through a mix of internal Oracle BI repository users and external
users in the SA System subject area.

■ Delivery profile. It is not recommended for the user to set up a delivery profile because there
is no way for Oracle BI Administrators to control this profile. For example, the Oracle BI
Administrator loses the ability to perform a mass update of email addresses. If a user does set
up a delivery profile, the delivery profile will take precedence over what is shown in the SA
System subject area.

■ Authorization and authentication. This option affects what users are allowed to do in the
system (authorization), not who users are (authentication). For related information about
database authentication, refer to “About Oracle BI Delivers and Database Authentication” on
page 328.

CAUTION: An existing configuration option (the Alerts element) in instanceconfig.xml controls
how logon names are treated before accessing the SA System subject area. For example, login
names might be converted to all uppercase. For more information, refer to Oracle Business
Intelligence Presentation Services Administration Guide.

■ Security settings. The SA System subject area only needs to have read-access to the
Administrator account and as a result, security settings are not compromised. If group
membership is seen as privileged data, you can allow only the Oracle BI Administrator to have
access to this subject area.

Setting Up the SA System Subject Area for a Stand-Alone
Implementation
Oracle BI standalone customers also need to create and populate the SA System subject area in the
Oracle BI repository.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Completing Setup and Managing Oracle BI Repository Files ■ Setting Up the
Repository to Work with Delivers

182

Customers who install the Oracle BI Server in a standalone environment (without Oracle BI
Applications) must perform the following tasks in the order shown:

■ Create tables and columns in your data source (for example your external database).

■ Create and build the subject area in the Oracle BI repository.

■ Import schema that stores the appropriate information. For instructions, refer to “Creating
and Administering the Physical Layer in an Oracle BI Repository” on page 55.

■ Map the tables and columns from the Physical Layer to the Business Model and Mapping layer.
For instructions, refer to “Creating and Administering the Business Model and Mapping Layer in
an Oracle BI Repository” on page 109.

■ Map the tables and columns from the Business Model and Mapping layer to the Presentation
layer. For instructions, refer to “Creating and Maintaining the Presentation Layer in an Oracle
BI Repository” on page 143.

The Presentation layer metadata needs to contain the SA System folder, User table, and
columns.

NOTE: For Oracle BI Application customers, the SA System subject area is preconfigured in their
Oracle BI repository.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 183

8 Oracle BI Administration Tool
Utilities and Expression Builder

This section describes the various utilities and wizards contained in the Administration Tool. It also
describes the Expression Builder and provides instructions for creating constraints, aggregations,
and other definitions within a repository.

This section contains the following topics:

■ Utilities and Wizards on page 183

■ Expression Builder on page 190

Utilities and Wizards
The Administration Tool provides a number of wizards and utilities to aid you in performing various
tasks.

This section provides a description of the following utilities and wizards:

■ Replace Column or Table Wizard on page 183

■ Oracle BI Event Tables on page 184

■ Externalize Strings on page 184

■ Rename Wizard on page 185

■ Update Physical Layer Wizard on page 185

■ Generating Documentation of Repository Mappings on page 186

■ Generating and Deploying a Metadata Dictionary on page 187

■ Removing Unused Physical Objects on page 189

■ Aggregate Persistence Wizard on page 189

■ Calculation Wizard on page 190

Replace Column or Table Wizard
The Replace Wizard automates the process of replacing physical columns or tables in logical table
sources by allowing the Oracle BI Administrator to select the sources from those displayed. The
wizard prompts the Oracle BI Administrator to replace columns as well as tables.

To start the Replace Column or Table Wizard

1 From the Tools menu, choose Utilities > Replace Column or Table in Logical Table Sources

2 Click Execute.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Utilities and Expression Builder ■ Utilities and Wizards

184

Oracle BI Event Tables
This utility allows you to identify a table as an Oracle BI event polling table. An event polling table
is a way to notify the Oracle BI Server that one or more physical tables have been updated. Each
row that is added to an event table describes a single update event. The cache system reads rows
from, or polls, the event table, extracts the physical table information from the rows, and purges
cache entries that reference those physical tables. For more information about event tables, refer to
“Cache Event Processing with an Event Polling Table” on page 248.

To start the Oracle BI Event Tables utility
■ From the Tools menu, choose Utilities > Oracle BI Event Tables

■ Click Execute.

Externalize Strings
This utility is primarily for use by translators to translate Presentation layer catalogs, tables,
columns, and their descriptions into other languages. You can save these text strings to an external
file with ANSI, Unicode, and UTF-8 coding options.

CAUTION: When using this utility, translators should work closely with Oracle BI contacts to verify
that the correct process is followed for each situation.

To translate a string

1 In the Presentation layer, right-click a presentation catalog and choose Externalize Display
Names.

NOTE: The term Presentation Catalog in the Administration Tool refers to subject areas.

2 In the Presentation layer, right-click the same presentation catalog and choose Externalize
Descriptions.

In the right-click menu, both options appear with a check next to them.

3 From the Tools menu, choose Utilities > Externalize Strings, and then click Execute.

4 In the Externalize Strings dialog box, click a presentation catalog in the left pane.

NOTE: You can select all catalogs at once or select them individually and create a separate string
file for each one.

In the right pane, the translated values and the original strings (names) appear. These will be
placed in session variables for use by Oracle BI Presentation Services.

5 Click Save.

6 In the Save As dialog box, choose a type of file and an encoding value and click Save.

7 In the Externalized Strings dialog box, click Close.

8 (Optional) To clear the check marks next to these options, right-click the presentation catalog
and click each option.

Oracle BI Administration Tool Utilities and Expression Builder ■ Utilities and Wizards

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 185

Rename Wizard
The Rename Wizard allows you to rename presentation and Business Model and Mapping layer tables
and columns. It provides a convenient way to transform physical names to user-friendly names.

NOTE: Renaming the presentation layer columns will reset the Use Logical Column Name property
to false. It is recommended that you rename the business model layer logical columns instead.

To start the Rename Wizard
■ From the Tools menu, choose Utilities > Rename Wizard, and then click Execute.

Update Physical Layer Wizard
This wizard allows you to update database objects in the Physical layer of a repository based on their
current definitions in the back-end database.

NOTE: This wizard is not available for repositories that are opened in read-only mode, because they
are not available for updating.

When the wizard processes the update, the server running the Administration Tool connects to each
back-end database. The objects in the Physical layer are compared with those in the back-end
database. Explanatory text alerts you to differences between objects as defined in the database in
the Physical layer and as defined the back-end database, such as data type-length mismatches and
objects that are no longer found in the back-end database. For example, if an object exists in the
database in the Physical layer of the repository but not in the back-end database, the following text
is displayed:

Object does not exist in the database

NOTE: The wizard does not add columns or tables to the repository that exist in the back-end
database but not in the repository. Additionally, the Wizard doesn't update column Key assignments.
It checks that there is a column in the repository that matches the column in the database, and then,
if the values don't match, the wizard updates the type and length of the column in the repository.

The connection pool settings for each database need to match the connection pool settings used
when the objects were last imported into the Physical layer from the back-end database. For
example, for Oracle, the connection pool may be set to native OCI, but an Oracle ODBC source must
be used for the update. In this case, you would set the connection pool to the Oracle ODBC setting
used for the import. For more information about connection pool settings, refer to “Setting Up
Connection Pools” on page 65.

To update objects in the Physical layer

1 From the Tools menu, choose Utilities > Update Physical Layer, and then click Execute.

The databases in the Physical layer of the repository are listed in the left pane of the wizard.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Utilities and Expression Builder ■ Utilities and Wizards

186

2 In the Update Physical Layer Wizard dialog box, select the databases that you want to update in
the left pane, and then click Add.

The databases move to the right pane.

3 To remove a database from the update list, select it and click Remove.

4 After you select the objects that you want to update in the Physical layer, click Next.

5 In the next window, select the connection pool for each database that you want to update and
then click Next.

The wizard alerts you if it needs to check any objects out.

6 Review the information about each update.

NOTE: You can sort the rows (toggle between ascending order and descending order) by clicking
the Name column heading.

7 If you decide that you do not want the wizard to update a particular object in the Physical layer,
click the Back button and remove the object.

8 Click Finish.

The wizard updates the objects in the Physical layer, and then closes automatically.

9 On the Administration Tool toolbar, click File > Save to save the updated objects in the Physical
layer.

Generating Documentation of Repository Mappings
The Repository Documentation utility documents the mapping from the presentation columns to the
corresponding logical and physical columns. The documentation also includes conditional expressions
associated with the columns. The documentation can be saved in comma separated (CSV) or tab
delimited (TXT) format.

The Repository Documentation utility allows you to extract Oracle BI metadata to a flat file so that
it can be loaded into Excel and RDBMS. You can query the resulting file to answer questions such as
“If I delete physical column X, what logical columns will be affected?” or “How many places in the
business model refer to the physical table W_SRVREQ_F”. Then you can establish dependency
relationships among elements in the repository.

Excel only allows data sets of 1,000,000 rows. You might exceed this in a large repository. Therefore,
you may wish to run the Repository Documentation utility on a subset of the repository by extracting
relevant business models into a new project. For more information, see “Setting up and Using the
Oracle BI Multiuser Development Environment” on page 169.

The Repository Documentation utility creates a comma-separated values file or a tab-separated
values file that shows the connections between the presentation and physical layers in the current
repository. This file can be imported into a repository as a physical layer.

NOTE: This file excludes any information about repository variables and marketing objects.

Oracle BI Administration Tool Utilities and Expression Builder ■ Utilities and Wizards

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 187

To run the Repository Documentation utility

1 From the Tools menu, choose Utilities.

2 In the Utilities dialog box, select Repository Documentation, and then click Execute.

3 In the Save As dialog box, choose the directory where you want to save the file.

4 Type a name for the file.

5 Choose a type of file and an Encoding value and click Save.

Current encoding options are ANSI, Unicode, and UTF-8.

Generating and Deploying a Metadata Dictionary
When using Oracle BI, you might need to obtain more information about metrics or attributes for
repository objects. For example, you might need to resolve issues caused by confusing metadata
object names or to obtain more details when an attribute is derived in a complicated way. A metadata
dictionary can help you resolve conflicting information and understand the metrics and attributes of
repository objects.

A metadata dictionary is a static set of XML documents. Each XML document describes a metadata
object such as a physical table or a logical column, including its properties and relationships with
other metadata objects.

These XML documents are viewed using index files in a browser. Therefore, the metadata dictionary
needs to be located on the BI Presentation Server. If you know that location before you generate the
dictionary, you can specify the location in the Save As dialog box before you generate the dictionary
files and folders. If you obtain the location after you generate the dictionary, you can copy the files
to the desired location at that time.

The dictionary does not change dynamically as repository changes are made. Therefore, you will
need to generate the dictionary periodically to update the content.

Generating a Metadata Dictionary
When you generate the dictionary, you can set the output location to the final location or to a
temporary location.

CAUTION: Repositories can be large (containing tens of thousands of objects). Generating a
dictionary for a large repository can take a significant period of time.

You can select a destination for your dictionary in the following ways:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Utilities and Expression Builder ■ Utilities and Wizards

188

■ Select a local or network location when you generate the dictionary. When the dictionary is
generated, a subdirectory with the same name as the repository will be created in that location.
The dictionary folders and files will be created in that subdirectory.

For example, If you select J:\BI_DataDictionary\ and your repository name is demo1.rpd, the
dictionary files, including the style sheets, will be located in the following location:

J:\BI_DataDictionary\demo1\

NOTE: If the dictionary you wish to use has been generated, copy the entire folder to the desired
location.

■ If you want to use an IIS virtual directory, you can create or select a virtual directory in IIS before
you generate the dictionary. When you generate the dictionary, choose the physical directory
associated with the IIS virtual directory.

NOTE: If dictionary has been generated, copy the entire folder to the physical directory
associated with the IIS virtual directory.

After you generate a metadata dictionary, style sheets and index files are created for that dictionary.

The related style sheets (XSL files) are created and stored in the following location:

[drive]:\[path]\[repository name]\xsl

A name index and tree index are created and stored in the [drive]:\[path]\[repository name] root
folder. You can use following URLs to locate and view objects:

■ http://<hostname>:<portname>/<repository name>/NameIndex.xml. Allows you to search for
repository objects by name.

■ http://<hostname>:<portname>/<repository name>/TreeIndex.xml. Allows you to drill down
from top-level objects to the object that you want to view.

NOTE: Each index file contains a link to the other so that you can quickly switch views.

To generate the metadata dictionary

1 Open the repository in Offline mode.

You cannot generate the metadata dictionary in Online mode.

2 From the Tools menu, choose Utilities > Generate Metadata Dictionary, and then click Execute.

3 In the Choose Directory dialog box, click Browse to locate and select the location where you want
to store the dictionary.

You should receive the following message: Metadata dictionary has been successfully created in
[drive]:\[path]\

4 Click OK.

Oracle BI Administration Tool Utilities and Expression Builder ■ Utilities and Wizards

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 189

Removing Unused Physical Objects
Large repositories use more memory on the server and are harder to maintain. Additionally,
development activities take longer on a large repository. This utility allows you to remove objects
that you no longer need in your repository. You can remove databases, initialization blocks, physical
catalogs, and variables.

To remove unused physical objects

1 From the Tools menu, choose Utilities > Remove Unused Physical Objects, and then click Execute.

2 In the Remove Unused Physical Objects dialog box, from the Type drop-down list, select the type
of object.

3 In the list of objects, verify that only the objects that you want to remove are checked.

Below the list of objects, the number of checked and the total number of objects appears.

4 To remove the checked objects, click Yes.

5 To cancel, click No.

Aggregate Persistence Wizard
Aggregates are created and persisted in the Oracle BI Server metadata as well as in the back-end
databases. This section describes how you can use the Aggregate Persistence Wizard to create the
SQL file that will be used to create aggregate tables and map them into the metadata.

Guidelines for Using the Aggregate Persistence Wizard
The traditional process of creating aggregates for Oracle BI Server queries is a manual process,
requiring that you write complicated DDL and DML files that create and populate tables in the
databases. Additionally, these tables need to be mapped into the repository metadata to be available
for queries. This is a time-consuming and potentially error-prone process. The Aggregate Persistence
Wizard allows the Oracle BI Administrator to automate the creation of these aggregate tables and
their mappings into the metadata. The following is a list of the guidelines you should follow when
using the Aggregate Persistence Wizard:

■ From the Tools menu, choose Utilities > Aggregate Persistence Wizard, and then click Execute.

■ In the Select file location dialog box, specify the complete path and file name of the aggregate
creation script. You can specify a new or an existing file name. If you want to generate a DDL
file, select the Generate DDL file check box.

■ In the Select Business Model & Measures dialog box, select the items.

NOTE: The View Script button is not available during the creation of the first aggregate table
block.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Utilities and Expression Builder ■ Expression Builder

190

■ In the Select Dimensions & Levels dialog box, expand the window to view all columns. You might
want to specify a surrogate key to be used for the fact-dimension join.

The default join option between the fact and level aggregate tables is to use the primary keys
from the level aggregate. If the primary key of the level is large and complex, the join to the fact
table will be expensive. A surrogate key is an artificially generated key, usually a number. For
example, a surrogate key in the level aggregate table would simplify this join, removing
unnecessary (level primary key) columns from the fact table and resulting in a smaller fact table.

■ In the Select Output Connection Pool, Container & Name, select the items. A default aggregate
table name will be provided and a prefix (defined in NQSConfig.INI) is added to the file name.

■ In the Aggregate Definition dialog box, the View Script button becomes available for use, the
logical SQL appears for your review, and you have a choice of defining another aggregate
(default) or ending the wizard.

■ In the Complete Aggregate Script dialog box, the complete path and file name appears.

For information about using the SQL file to create aggregate tables, refer to “Creating Aggregates for
Oracle BI Server Queries” on page 241.

Calculation Wizard
You use the Calculation Wizard to create new calculation columns that compare two existing columns
and to create metrics in bulk (aggregated), including existing error trapping for NULL and divide by
zero logic.

You start the Calculation Wizard in the Business Model and Mapping layer by right-clicking any logical
fact or dimension column of data type numeric, and then selecting the option Calculation Wizard. For
information about setting up the Calculation Wizard, refer to “Using the Options Dialog Box—General
Tab” on page 29.

Expression Builder
You can use the Expression Builder dialog boxes in the Administration Tool to create constraints,
aggregations, and other definitions within a repository. The expressions you create with the
expression builder are similar to expressions created with SQL. Except where noted, you can use all
expressions constructed with the expression builder in SQL queries against the Oracle BI Server.

For information about using SQL with the expression builder, refer to “SQL Syntax and Semantics” on
page 355. For information about the SQL functions supported by the Oracle BI Server, refer to “SQL
Reference” on page 366.

This section includes the following topics:

■ About the Expression Builder Dialog Boxes on page 191

■ Expression Builder Toolbar on page 192

■ Folders in the Selection Pane on page 193

■ Example of Setting Up an Expression on page 195

Oracle BI Administration Tool Utilities and Expression Builder ■ Expression Builder

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 191

■ Navigating Within the Expression Builder on page 196

■ Building an Expression on page 196

■ About Time Series Conversion Functions on page 197

About the Expression Builder Dialog Boxes
You can access the expression builder from the following dialog boxes:

■ Logical Table Source—Content tab

■ Logical Table Source—Column Mapping tab

■ Logical Column—General tab

■ Logical Column—Aggregation tab

■ Logical Foreign Key

■ Physical Foreign Key

■ Session Variable—Variable tab

■ Static Repository Variable—Variable tab

When creating expressions in the Expression Builder dialog boxes, you can search the categories
pane and building blocks pane. When you type a value into the search box, it filters out the non-
matching strings and only the ones that match will appear. After typing search criteria in a search
box, you can move up and down the list using arrows and tab between the first search box and the
second search box. To return to the full list of results, you delete the search string from the Search
field.

When you locate the item you want to insert into the expression, select it and click Insert in the dialog
box or press Enter on your keyboard. The item you selected will appear in the expression in the
expression box.

When you first open the Expression Builder dialog box, the items are not sorted. When checked the
Sort Panes check box sorts all items in the panes. As soon as you select the check box, the panes
are automatically redrawn without changing the contents of the panes or your filtering criteria.

Figure 15 on page 192 shows an example of an expression builder and the dialog box contains the
following sections:

■ The edit pane at the top of the dialog box allows you to edit the current expression.

■ The toolbar in the middle of the dialog box contains commonly used expression building blocks.

■ In the lower half of the dialog box, the left pane is the Selection pane. It displays the folders that
are appropriate for the dialog box from which you accessed the expression builder.

■ The lower middle pane is the Categories pane. It displays the available categories for the folder
you select in the Selection pane. The Search field below the middle pane allows you to search for
a value in the middle pane.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Utilities and Expression Builder ■ Expression Builder

192

■ The lower right pane is the Building Blocks pane. It displays the individual building blocks for the
category you select in the Category pane. The Search field below the right pane allows you to
search for a value in the right pane.

Expression Builder Toolbar
The toolbar is located in the middle portion of the expression builder. Table 22 on page 192 describes
each icon and its function in an expression.

Figure 15. Example Expression Builder

Table 22. Expression Builder Toolbar

Operator Description

+ Plus sign for addition.

- Minus sign for subtraction.

* Multiply sign for multiplication.

/ Divide by sign for division.

|| Character string concatenation.

(Open parenthesis.

) Close parenthesis.

> Greater than sign, indicating values higher than the comparison.

< Less than sign, indicating values lower than the comparison.

= Equal sign, indicating the same value.

Oracle BI Administration Tool Utilities and Expression Builder ■ Expression Builder

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 193

Folders in the Selection Pane
The folders that appear in the Selection pane vary based on the dialog box from which you accessed
the expression builder. This section describes the folders that may appear.

Aggregate Content
The Aggregate Content folder contains the available aggregate functions. Aggregate sources must
use one of the functions listed here to specify the level of their content.

Dimensions
The Dimensions folder contains the dimension configured in the business model. If no dimension
exists in a business model, or if the dimension folder is not pertinent to a particular expression
builder, the Dimension folder is not displayed.

When you select the Dimensions folder, each configured dimension displays in the middle pane, and
each level for the selected dimension displays in the right pane.

Logical Tables
The Logical Tables folder contains the logical tables configured in the business model. If logical tables
are not pertinent to a particular expression builder, the Logical Tables folder is not displayed.

When you select the Logical Tables folder, each logical table in the business model displays in the
middle pane, and each column for the selected logical table displays in the right pane.

Operators
The Operators folder contains the available SQL logical operators.

<= Less than or equal to sign, indicating values the same or lower than the comparison.

>= Greater than or equal to sign, indicating values the same or higher than the
comparison.

<> Not equal to, indicating values higher or lower, but not the same.

AND AND connective, indicating intersection with one or more conditions to form a
compound condition.

OR OR connective, indicating the union with one or more conditions to form a
compound condition.

NOT NOT connective, indicating a condition is not met.

, Comma, used to separate elements in a list.

Table 22. Expression Builder Toolbar

Operator Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Utilities and Expression Builder ■ Expression Builder

194

Expressions
The Expressions folder contains the available expressions.

Functions
The Functions folder contains the available functions. The functions that appear depend on the object
you selected.

Constants
The Constants folder contains the available constants.

Types
The Types folder contains the available data types.

Repository Variables
This folder contains the available repository variables. If no repository variables are defined, this
folder does not appear.

Session Variables
This folder contains the available system session and non system session variables. If no session
variables are defined, this folder does not appear.

Oracle BI Administration Tool Utilities and Expression Builder ■ Expression Builder

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 195

Example of Setting Up an Expression
Figure 16 on page 195 shows the expression builder for a derived logical column.

Select the Functions folder in the left pane. Double-click the function in the right pane to paste the
function in the edit box. In the expression builder’s edit box, click once between the parentheses of
the function to select the area as the insertion point for adding the argument of the function.

Figure 16. Expression Builder for Derived Logical Columns

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Utilities and Expression Builder ■ Expression Builder

196

Double-click the logical column to paste the logical column at the insertion point as the argument of
the function. Figure 17 on page 196 shows where the expression appears in the window.

Navigating Within the Expression Builder
Use the following procedure to navigate within an Expression Builder dialog box.

To navigate within an Expression Builder

1 In the Selection pane, select the appropriate folder for the type of expression you want to build.

The available categories for the folder appear in the Categories pane.

2 Select the appropriate category for the expression you want to build.

The available building blocks for that category appear in the Building Blocks pane.

3 Double-click a building block to move it into the Editing pane.

4 To insert an operator into the expression, double-click an operator on the Expression Builder
toolbar.

Building an Expression
Use this procedure to build an expression in the Expression Builder dialog box.

Figure 17. Example Logical Column Function in the Editing Pane

Oracle BI Administration Tool Utilities and Expression Builder ■ Expression Builder

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 197

To build an expression

1 Navigate to the individual building blocks you want in the expression.

The Syntax bar at the bottom of the Expression Builder dialog box shows the syntax for the
expression.

2 Add the building blocks to the Editing pane.

3 Edit the building blocks to reflect the expression you want.

4 Use the Expression Builder toolbar to insert operators into the expression.

5 Repeat the preceding steps until the expression is complete, and then click OK.

The Administration Tool displays a message for any syntax errors in the expression. When the
expression is syntactically correct, the Administration Tool adds the expression to the dialog box
from which you accessed the Expression Builder.

About Time Series Conversion Functions
Time series functions operate on time-oriented dimensions. To use these functions on a particular
dimension, you have to designate the dimension as a Time Dimension and set one or more keys at
one or more levels as Chronological keys. This identifies the dimension as having a monotonically
increasing value in time (corresponds to chronological order).

NOTE: It is required that you define a chronological key at a level that can be used to answer your
time series query. It is recommended that you define additional chronological keys at other relevant
levels for performance reasons.

Currently, AGO and TODATE are the types of time series conversion functions. Currently, you may
only enter AGO and TODATE functions in the Expression Builder in the Administration Tool. You
cannot use them in coded SQL.

The Ago and ToDate functions allow you use Expression Builder to call a logical function to perform
time series calculations instead of aliasing physical tables and modeling logically. The time series
functions calculate Period Ago and Period to Date functions based on user supplied calendar tables,
not on standard SQL date manipulation functions.

The following list describes the important grains in navigating a time query, using the following query
example:

Select quarter, YearAgoSales:

■ Query grain. The grain of the request. In the query example, the query grain is Quarter.

■ Time Series grain. The grain at which the aggregation is requested. In the query example, the
Time Series grain is Year.

NOTE: Time series query is valid only if the time series grain is at the query grain or higher.

■ Storage grain. The query in the example can be computed from daily sales or from monthly
sales, or from quarterly sales. The grain of the aggregate source is called aggregation grain.

NOTE: The chronological key has to be defined at this level.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Utilities and Expression Builder ■ Expression Builder

198

Figure 18 on page 198 shows the time series functions in the Expression Builder dialog box.

Ago
A time series aggregation function for relational data sources only. Calculates the aggregated value
from the current time back to a specified time period. For example, Ago can produce sales for every
month of the current quarter and the corresponding quarter-ago sales. Multiple Ago functions can be
nested if all the Ago functions have the same level argument.

NOTE: You can nest exactly one ToDate and multiple Ago functions if they each have the same level
argument.

Syntax:

AGO(<measure_expression>, <model_id>.<dimension_id>.<level_id>, <integer_literal>)

In that example, <measure_expression> is an expression that contains at least one measure,
<model_id> is a model identifier, <dimension_id> is a dimension identifier, <level_id> is a level
identifier, and <integer_literal> is an integer literal. The following is an example of this syntax:

AGO(model.sales.revenue + 5, model.time.month, 3)

ToDate
A time series aggregation function for relational data sources only. ToDate aggregates a measure
attribute from the beginning of a specified time period to the currently displayed time. For example,
this function can calculate Year to Date sales.

Figure 18. Example Time Series Functions in the Expression Builder

Oracle BI Administration Tool Utilities and Expression Builder ■ Expression Builder

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 199

If unsupported metrics are requested, NULL values will be returned and a warning entry will be
written to the NQQuery.log file when the logging level equals three or above. A ToDate function may
not be nested within another ToDate function.

NOTE: You can nest exactly one ToDate and multiple Ago functions if they each have the same level
argument.

Syntax:

TODATE(<measure_expression>, <model_id>.<dimension_id>.<level_id>)

About the IndexCol Conversion Function
The IndexCol function allows you to build a derived logical column. Selecting IndexCol automatically
generates the following function template:

IndexCol(<<integer literal>>, <<expr1>> [, <<expr2>>, ?-])

For more information, refer to “IndexCol” on page 400.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Administration Tool Utilities and Expression Builder ■ Expression Builder

200

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 201

9 Setting Up Fragmentation
Content in an Oracle BI
Repository for Aggregate
Navigation

This section contains the following topics:

■ About Aggregate Navigation on page 201

■ Specify Fragmentation Content on page 201

About Aggregate Navigation
Aggregate tables store precomputed results from measures that have been aggregated over a set of
dimensional attributes. Each aggregate table column contains data at a given set of levels. For
example, a monthly sales table might contain a precomputed sum of the revenue for each product
in each store during each month. You configure this metadata in the Logical Table Source dialog box.
For detailed steps showing how to create a logical source, refer to “Creating and Administering Logical
Table Sources (Mappings)” on page 117.

This section includes a description of how you can use aggregate navigation and provides setup
instructions.

Specify Fragmentation Content
When a logical table source does not contain the entire set of data at a given level, you need to
specify the portion, or fragment, of the set that it does contain. You describe the content in terms of
logical columns on the Content tab of the Logical Table Source dialog box, in the Fragmentation
Content edit box.

The following examples illustrate techniques and rules for specifying the fragmentation content of
sources.

Single Column, Value-Based Predicates
The IN predicates can be replaced with either an equality predicate or multiple equality predicates
separated by the OR connective.

Fragment 1:

logicalColumn IN <valueList1>

Fragment n:

logicalColumn IN <valueListN>

Single Column, Range-Based Predicates
Fragment 1:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Setting Up Fragmentation Content in an Oracle BI Repository for Aggregate
Navigation ■ Specify Fragmentation Content

202

logicalColumn >= valueof(START_VALUE) AND logicalColumn < valueof(MID_VALUE1)

Fragment 2:

logicalColumn >= valueof(MID_VALUE1) AND logicalColumn < valueof(MID_VALUE2)

Fragment n:

logicalColumn >= valueof(MID_VALUEN-1) AND logicalColumn < valueof(END_VALUE)

Pick your start point, midpoints, and endpoint carefully.

NOTE: Notice the use of >= and < predicates to make sure the fragment content descriptions do
not overlap. For each fragment, the upper value needs to be expressed as <. You will get an error if
you use <=. Likewise, you cannot use the BETWEEN predicate to describe fragment range content.

The valueof referenced here is the value of a repository variable. (For more information about
variables, refer to Chapter 13, “Using Variables in the Oracle BI Repository.”) If you use repository
values in your expression, note that the following construct will not work for Fragment 2:

logicalColumn >= valueof(MID_VALUE1)+1 AND logicalColumn < valueof(MID_VALUE2)

Use another repository variable instead of valueof(MID_VALUE1)+1.

The same variables, for example, valueof(MID_VALUE1), do not have to appear in the content of both
fragments. You could set another variable, and create statements of the following form:

Fragment 1:

logicalColumn >= valueof(START_VALUE) AND logicalColumn < valueof(MID_VALUE1)

Fragment 2:

logicalColumn >= valueof(MID_VALUE2) AND logicalColumn < valueof(MID_VALUE3)

Multicolumn Content Descriptions
An arbitrary number of predicates on different columns can be included in each content filter. Each
column predicate can be value-based or range-based.

Fragment 1:

<logicalColumn1 predicate> AND <logicalColumn2 predicate > ... AND <logicalColumnM
predicate>

Fragment n:

<logicalColumn1 predicate> AND <logicalColumn2 predicate > ... AND <logicalColumnM
predicate>

Ideally, all fragments will have predicates on the same M columns. If there is no predicate constraint
on a logical column, the Oracle BI Server assumes that the fragment contains data for all values in
that logical column. For exceptions using the OR predicate, refer to “Parallel Content Descriptions” on
page 203.

Setting Up Fragmentation Content in an Oracle BI Repository for Aggregate
Navigation ■ Specify Fragmentation Content

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 203

Parallel Content Descriptions
Unfortunately, the preceding techniques are still not sufficient to handle dates because of the
multiple hierarchical relationships across logical columns, such as year > year month > date;
month > year month > date. For example, consider fragments delineated by different points in time,
such as year and month. Constraining sufficiently far back on year should be enough to drive the
selection of just the historical fragment. The parallel OR technique supports this, as shown in the
next example. This example assumes that the snapshot month was April 1, 12:00 a.m. in the year
1999. The relevant OR connectives and predicates are shown in bold text.

Fragment 1 (Historical):

EnterpriseModel.Period."Day" < VALUEOF("Snapshot Date") OR

EnterpriseModel.Period.MonthCode < VALUEOF("Snapshot Year Month") OR

EnterpriseModel.Period."Year" < VALUEOF("Snapshot Year") OR

EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Month in Year" < VALUEOF("Snapshot Month") OR

EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Monthname" IN ('Mar', 'Feb', 'Jan')

Fragment 2 (Current):

EnterpriseModel.Period."Day" >= VALUEOF("Snapshot Date") OR

EnterpriseModel.Period.MonthCode >= VALUEOF("Snapshot Year Month") OR

EnterpriseModel.Period."Year" > VALUEOF("Snapshot Year") OR

EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Month in Year" >= VALUEOF("Snapshot Month") OR

EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Monthname" IN ('Dec', 'Nov', 'Oct', 'Sep', 'Aug', 'Jul',
'Jun', 'May', 'Apr')

If the logical model does not go down to the date level of detail, then omit the predicate on
EnterpriseModel.Period."Day" in the preceding example.

Note the use of the OR connective to support parallel content description tracks.

Examples and Discussion
In this section, the Track n labels in the examples are shown to make it easier to relate the examples
to the discussion that follows. You would not include these labels in the actual fragmentation content
statement.

Fragment 1 (Historical):

Track 1 EnterpriseModel.Period."Day" < VALUEOF("Snapshot Date") OR

Track 2 EnterpriseModel.Period.MonthCode < VALUEOF("Snapshot Year Month") OR

Track 3 EnterpriseModel.Period."Year" < VALUEOF("Snapshot Year") OR

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Setting Up Fragmentation Content in an Oracle BI Repository for Aggregate
Navigation ■ Specify Fragmentation Content

204

Track 4 EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Month in Year" < VALUEOF("Snapshot Month") OR

Track 5 EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Monthname" IN ('Mar', 'Feb', 'Jan')

For example, consider the first track on EnterpriseModel.Period."Day". In the historical fragment, the
< predicate tells the Oracle BI Server that any queries that constrain on Day before the Snapshot
Date fall within the historical fragment. Conversely, the >= predicate in the current fragment on Day
indicates that the current fragment does not contain data before the Snapshot Date.

The second track on MonthCode (for example, 199912) is similar to Day. It uses the < and >=
predicates as there is a nonoverlapping delineation on month (because the snapshot date is April 1).
The key rule to remember is that each additional parallel track needs to reference a different column
set. Common columns may be used, but the overall column set needs to be unique. The Oracle BI
Server uses the column set to select the most appropriate track.

The third track on Year (< in the historical fragment and > in the current fragment) tells the Oracle
BI Server that optimal (single) fragment selections can be made on queries that just constrain on
year. For example, a logical query on Year IN (1997, 1998) should only hit the historical fragment.
Likewise, a query on Year = 2000 needs to hit only the current fragment. However, a query that hits
the year 1999 cannot be answered by the content described in this track, and will therefore hit both
fragments, unless additional information can be found in subsequent tracks.

The fourth track describes the fragment set with respect to Year and Month in Year (month integer).
Notice the use of the multicolumn content description technique, described previously. Notice the use
of < and >= predicates, as there is no ambiguity or overlap with respect to these two columns.

The fifth track describes fragment content in terms of Year and Monthname. It uses the value-based
IN predicate technique.

As an embellishment, suppose the snapshot date fell on a specific day within a month; therefore
multicolumn content descriptions on just year and month would overlap on the specific snapshot
month. To specify this ambiguity, <= and >= predicates are used.

Fragment 1 (Historical):

EnterpriseModel.Period."Day" < VALUEOF("Snapshot Date") OR

EnterpriseModel.Period.MonthCode <= VALUEOF("Snapshot Year Month") OR

EnterpriseModel.Period."Year" < VALUEOF("Snapshot Year") OR

EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Month in Year" <= VALUEOF("Snapshot Month") OR

EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Monthname" IN ('Apr', 'Mar', 'Feb', 'Jan')

Fragment 2 (Current):

EnterpriseModel.Period."Day" >= VALUEOF("Snapshot Date") OR

EnterpriseModel.Period.MonthCode >= VALUEOF("Snapshot Year Month") OR

EnterpriseModel.Period."Year" > VALUEOF("Snapshot Year") OR

Setting Up Fragmentation Content in an Oracle BI Repository for Aggregate
Navigation ■ Specify Fragmentation Content

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 205

EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Month in Year" >= VALUEOF("Snapshot Month") OR

EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Monthname" IN ('Dec', 'Nov', 'Oct', 'Sep', 'Aug', 'Jul',
'Jun', 'May', 'Apr')

Unbalanced Parallel Content Descriptions
In an order entry application, time-based fragmentation between historical and current fragments is
typically insufficient. For example, records may still be volatile, even though they are historical
records entered into the database before the snapshot date.

Assume, in the following example, that open orders may be directly updated by the application until
the order is shipped or canceled. After the order has shipped, however, the only change that can be
made to the order is to type a separate compensating return order transaction.

There are two parallel tracks in the following content descriptions. The first track uses the
multicolumn, parallel track techniques described in the preceding section. Note the parentheses
nesting the parallel calendar descriptions within the Shipped-or-Canceled order status multicolumn
content description.

The second parallel track is present only in the Current fragment and specifies that all Open records
are in the Current fragment only.

Fragment 1 (Historical):

Marketing."Order Status"."Order Status" IN ('Shipped', 'Canceled') AND

Marketing.Calendar."Calendar Date" <= VALUEOF("Snapshot Date") OR

Marketing.Calendar."Year" <= VALUEOF("Snapshot Year") OR

Marketing.Calendar."Year Month" <= VALUEOF("Snapshot Year Month")

Fragment 2 (Current):

Marketing."Order Status"."Order Status" IN ('Shipped', 'Canceled') AND

Marketing.Calendar."Calendar Date" > VALUEOF("Snapshot Date") OR

Marketing.Calendar."Year" >= VALUEOF("Snapshot Year") OR

Marketing.Calendar."Year Month" >= VALUEOF("Snapshot Year Month")

OR Marketing."Order Status"."Order Status" = 'Open'

The overlapping Year and Month descriptions in the two fragments do not cause a problem, as
overlap is permissible when there are parallel tracks. The rule is that at least one of the tracks has
to be nonoverlapping. The other tracks can have overlap.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Setting Up Fragmentation Content in an Oracle BI Repository for Aggregate
Navigation ■ Specify Fragmentation Content

206

Aggregate Table Fragments
Information at a given level of aggregation is sometimes stored in multiple physical tables. When
individual sources at a given level contain information for a portion or fragment of the domain, the
Oracle BI Server needs to know the content of the sources in order to pick the appropriate source
for the query.

For example, suppose you have a database that tracks the sales of soft drinks in all stores. The detail
level of data is at the store level. Aggregate information, as described in Figure 19 on page 206, is
stored at the city level for the sales of Coke and Pepsi, but there is no aggregate information for the
sales of 7-Up or any other of the sodas.

The goal of this type of configuration is to maximize the use of the aggregate table. If a query asks
for sales figures for Coke and Pepsi, the data should be returned from the aggregate table. If a query
asks for sales figures for all soft drinks, the aggregate table should be used for Coke and Pepsi and
the detail data for the other brands.

The Oracle BI Server handles this type of partial aggregate navigation. To configure a repository to
use aggregate fragments for queries whose domain spans multiple fragments, you need to define
the entire domain for each level of aggregate data, even if you have to configure an aggregate
fragment as being based on a less summarized physical source.

Figure 19. Aggregating Information

Setting Up Fragmentation Content in an Oracle BI Repository for Aggregate
Navigation ■ Specify Fragmentation Content

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 207

Specify the Aggregate Table Content
You configure the aggregate table navigation in the logical table source mappings. In the soft drink
example, the aggregate table contains data for Coke and Pepsi sales at the city level. Its Aggregate
content specification (in the Content tab of the Logical Table Source window) is similar to the
following:

Group by logical level:

GeographyDim. CityLevel, ProductDim.ProductLevel

Its Fragmentation content specification (also in the Content tab of the Logical Table Source dialog)
is similar to the following:

SoftDrinks.Products.Product IN ('Coke', 'Pepsi')

This content specification tells the Oracle BI Server that the source table has data at the city and
product level for two of the products. Additionally, because this source is a fragment of the data at
this level, you need to check the option This source should be combined with other sources at this
level, in the Content tab of the Logical Table Source dialog box, to indicate that the source combines
with other sources at the same level. For more information, refer to “Specify Fragmentation Content”
on page 201.

Define a Physical Layer Table with a Select Statement to Complete the Domain
The data for the rest of the domain (the other types of sodas) is all stored at the store level. To define
the entire domain at the aggregate level (city and product, in this example), you need to have a
source that contains the rest of the domain at this level. Because the data at the store level is at a
lower (that is, more detailed) level than at the city level, it is possible to calculate the city and
product level detail from the store and product detail by adding up the product sales data of all of
the stores in a city. This can be done in a query involving the store and product level table.

One way to do this is to define a table in the Physical layer with a Select statement that returns the
store level calculations. To define the table, create a table in the Physical layer by selecting the
physical schema folder that the Select statement will be querying and execute the New Table
command. Choose Select from the Object Type drop-down list, and type the SQL statement in the
pane to the right.

The SQL needs to define a virtual table that completes the domain at the level of the other aggregate
tables. In this case, there is one existing aggregate table, and it contains data for Coke and Pepsi by
city. Therefore, the SQL statement has to return all of the data at the city level, except for the Coke
and Pepsi data.

Specify the SQL Virtual Table Content
Next, create a new logical table source for the Sales column that covers the remainder of the domain
at the city and product level. This source contains the virtual table created in the previous section.
Map the Dollars logical column to the USDollars physical column in this virtual table.

The Aggregate content specification (in the Content tab of the Logical Table Source dialog) for this
source is:

Group by logical level:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Setting Up Fragmentation Content in an Oracle BI Repository for Aggregate
Navigation ■ Specify Fragmentation Content

208

GeographyDim.CityLevel, ProductDim.ProductLevel

This tells the Oracle BI Server this source has data at the city and product level.

The Fragmentation content specification might be:

SoftDrinks.Products.Product = '7-Up'

Additionally, because it combines with the aggregate table containing the Coke and Pepsi data at the
city and product level to complete the domain, you need to check the option in the Content tab of
the Logical Table Source dialog indicating that the source is combined with other sources at the same
level.

Physical Joins for Virtual Table
Construct the correct physical joins for the virtual table. Notice that CityProductSales2 joins to the
Cities and Products tables in Figure 20 on page 208.

In this example, the two sources comprise the whole domain for soda sales. A domain may have
many sources. The sources have to all follow the rule that each level needs to contain sources that,
when combined together, comprise the whole domain of values at that level. Setting up the entire
domain for each level helps to make sure that queries asking for Coke, Pepsi, and 7-Up do not leave
out 7-Up. It also helps to make sure that queries requesting information that has been precomputed
and stored in aggregate tables can retrieve that information from the aggregate tables, even if the
query requests other information that is not stored in the aggregate tables.

Figure 20. Example Physical Joins

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 209

10 Administering the Oracle BI
Server Query Environment

The Oracle BI Server is a server-based query environment and has many of the tools associated with
managing server-based systems. This section describes how to use these tools to perform various
administrative actions, including starting and stopping the server, checking and analyzing the log
files, and other tasks related to managing a multiuser environment.

This chapter contains the following topics:

■ Starting the Oracle BI Server on page 209

■ Shutting Down the Oracle BI Server on page 212

■ Getting Users to Connect to the Server on page 214

■ Administering the Query Log on page 214

■ Administering Usage Tracking on page 219

■ Server Session Management on page 225

■ Server Configuration and Tuning on page 227

Starting the Oracle BI Server
The Oracle BI Server needs to be running before any queries can be processed. The following topics
describe three ways to start the Oracle BI Server, how to change the User ID for the Oracle BI Server,
and what to do if the Oracle BI Server fails to start:

■ Starting the Server from Windows Services on page 209

■ Configuring the Server for Automatic Startup in Windows on page 210

■ Running the Server Startup Script in UNIX on page 210

■ Changing the User ID in Which the Oracle BI Server Runs on page 211

■ If the Server Fails to Start on page 211

Starting the Server from Windows Services
This procedure requires your user ID to be a member of the Windows Administrators group on the
local machine on which the Oracle BI Server is installed.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Administering the Oracle BI Server Query Environment ■ Starting the Oracle BI Server

210

To start the Oracle BI Server

1 On the machine in which the server is installed, choose Start > Settings > Control Panel
> Services.

You might need to open the Administrative Tools submenu.

2 Select the Oracle BI Server service and click Start.

A message appears indicating that the service is starting. It might take a few minutes for the
server to start while it loads the repository in the Repositories section of the NQSConfig.INI file.

When startup is complete, the startup message goes away and the status of the service changes
to Started. The following information is logged to the NQServer.log file, located in the Log
subdirectory of the Oracle BI installation folder:

■ Startup time

■ Any business models that are loaded

■ Any errors that occurred

If startup does not complete, check to make sure that there are no errors in the NQSConfig.INI
file, such as the incorrect spelling of the repository filename. If you receive an informational
message stating the server has not yet started, refresh the status periodically until the status
changes to Started.

Configuring the Server for Automatic Startup in
Windows
The following procedure explains how to configure the Oracle BI Server to start automatically when
Windows NT or Windows 2000 starts.

To configure the Oracle BI Server for automatic startup

1 On the machine in which the server is installed, choose Start > Settings > Control Panel
> Services.

You might need to open the Administrative Tools submenu.

2 In the Services dialog box, double-click the Oracle BI Server service.

3 In the Oracle BI Server Properties dialog box, from the Startup Type drop-down list, select
Automatic, and then click OK.

The Oracle BI Server service will now start automatically when Windows starts.

Running the Server Startup Script in UNIX
Start the Oracle BI Server by running one of the following scripts:

■ If you are using sh or bash:

Administering the Oracle BI Server Query Environment ■ Starting the Oracle BI Server

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 211

run-sa.sh start

■ If you are using csh:

run-sa.csh start

■ If you have set up your environment with sa.sh or sa.csh:

nqscomgateway.exe &

■ For the standard shell:

nohup nqscomgateway.exe >/dev/null 2>&1 &

■ For the C shell:

nohup nqscomgateway.exe >&/dev/null &

Changing the User ID in Which the Oracle BI Server
Runs
In Windows, the Oracle BI Server runs as a Windows service. It runs under the local system account
by default. If the server needs to access databases on remote machines, it needs to run under a
user ID that has the appropriate network privileges. Additionally, the user ID has to be a member of
the Windows NT Administrators group on the local machine.

If you want to change the user ID in which the Oracle BI Server runs, you can do so from the Control
Panel Services utility.

To change the user ID

1 On the machine in which the Oracle BI Server is installed, select Start > Settings > Control Panel.

2 In the Control Panel, double-click the Services icon.

3 Double-click the Oracle BI Server service and click Startup.

4 In the Oracle BI Server Properties dialog box, in the Log On As area, select This Account, and
then click the button to the right of the text box.

5 In the Add User dialog box, select the user account in which you want the Oracle BI Server to
run, click Add, and then click OK.

6 Type the password for the user in the Services dialog box, confirm the password, and then click
OK.

The server is now configured to run under the new user ID. The next time you start the service,
it will attempt to use the new account to start the service.

If the Server Fails to Start
If the startup operation fails, look in the following log files for messages indicating why:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Administering the Oracle BI Server Query Environment ■ Shutting Down the Oracle BI
Server

212

■ In Windows NT and Windows 2000, in the Windows Event log, that you can access by selecting
Start > Programs > Administrative Tools > Event Viewer.

■ In Windows NT, Windows 2000, and UNIX, in the NQServer.log file. This file is located in the Log
folder in the Oracle BI Server software installation folder (\OracleBI). You can use a text editor
to view this file.

■ In UNIX, run /usr/sbin/syslogd and look for any system and Oracle BI Server-related messages.

The log files contain messages indicating why the server startup failed. For example, if there were a
syntax error in the NQSConfig.INI file, both the operating system’s log and the NQServer.log file
would contain messages about the syntax error. After examining the log messages, correct the
problem and start the server again.

Shutting Down the Oracle BI Server
You can stop the Oracle BI Server in any of the following ways.

■ Shutting Down the Server in Windows Services on page 212

■ Shutting Down the Server from a Command Prompt in Windows on page 213

■ Running the Server Shutdown Script in UNIX on page 213

■ Shutting Down the Oracle BI Server Using the Administration Tool on page 214

When you shut down the server, any active client connections receive an error message and are
immediately terminated, and any outstanding queries to underlying databases are cancelled.

Shutting Down the Server in Windows Services
The following procedure explains how to shut down the Oracle BI Server from the Windows Control
Panel Services applet.

To shut down the server from the Services applet

1 On the machine in which the Oracle BI Server is installed, select Start > Settings > Control Panel.

2 Open the Services applet by double-clicking the Services icon in the Control Panel.

3 Select the Oracle BI Server service and click Stop.

A message appears indicating that the service is shutting down.

When shutdown is complete, the status in the Services Control Panel becomes blank and a log
message is written to the NQServer.log file, located in the Log folder in the software installation
folder (\OracleBI\Log).

Administering the Oracle BI Server Query Environment ■ Shutting Down the Oracle BI
Server

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 213

Shutting Down the Server from a Command Prompt in
Windows
Use this procedure in Windows to shut down the Oracle BI Server from a Command prompt.

To shut down the Oracle BI Server from a Windows command prompt
■ Type the following command in the machine in which the Oracle BI Server is running:

nqsshutdown {-d <data_source_name> -u <user ID> -p <password>}

where:

When shutdown is complete, a message indicating this is displayed in the Command window.

Running the Server Shutdown Script in UNIX
Stop the Oracle BI Server by running one of the following scripts:

■ If you are using sh or bash:

run-sa.sh stop

■ If you are using csh:

run-sa.csh stop

■ If you have set up your environment with sa.sh or sa.csh:

nqsshutdown.exe -uAdministrator

data_source_name The name of a nonclustered ODBC data source used to connect to the
server to perform the shut down operation. The data source needs to
connect to the server as an Oracle BI user who is a member of the Oracle
BI Administrators group. Only users defined as Oracle BI Administrators
can shut down the server.

NOTE: The nqsshutdown command is not valid for clustered DSNs. When passed a standard
(nonclustered) DSN, it will shut down the targeted Oracle BI Server even if the server is
participating in a cluster.

user ID The user to connect to the Oracle BI Server to perform the shut down
operation.

password The password for the user ID connecting to the Oracle BI Server to
perform the shut down operation.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Administering the Oracle BI Server Query Environment ■ Getting Users to Connect to
the Server

214

Shutting Down the Oracle BI Server Using the
Administration Tool
The following procedure explains how to shut down the server using the Administration Tool. You
need to open the repository in online mode using a nonclustered DSN.

NOTE: To shut down the server, the DSN has to log in as a user that has Administrator authority.

To shut down the server using the Administration Tool

1 Start the Administration Tool by selecting Start > Programs > Oracle BI > Oracle BI
Administration Tool.

2 Open a repository that is loaded on the server in online mode.

3 Select File > Shut Down Server.

4 When a dialog box appears asking you to confirm the shutdown, click Yes.

This shuts the server down and ends the Administration Tool online session. When connected
using a clustered DSN, use the Cluster Manager to take individual Oracle BI Server instances
offline. For more information, refer to “Using the Cluster Manager” on page 307.

Getting Users to Connect to the Server
Users need to set up a data source to connect to a business model within an Oracle BI repository.
For information about setting up DSN connections, refer to “Configuring Oracle BI ODBC Data Source
Names (DSNs)” on page 259.

You can also run the Administration Tool from a remote machine in online mode or offline mode.

Administering the Query Log
The Oracle BI Server provides a facility for logging query activity at the individual user level. The
query log file is named the NQQuery.log file. This file is in the Log subdirectory in the Oracle BI
installation folder. Logging should be used for quality assurance testing, debugging, and
troubleshooting by Oracle Technical Support. In production mode, query logging is typically disabled.

Oracle BI Server query logging is tracked at a user level. It will be a resource intensive process if
you track the entire user community.

NOTE: For production systems, it is recommended that query logging be enabled only for a very
targeted user community. Most users should have a log level of 0 (zero). In production systems, you
can use the Usage Tracking as the production level logging facility. For more information, see
“Administering Usage Tracking” on page 219.

Administering the Oracle BI Server Query Environment ■ Administering the Query Log

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 215

It is recommended that you only test users when the user name clearly indicates it is a test user and
have verified that query logging enabled. If logging is enabled for such users, it is recommended that
they be given names such as sales_admin_with_logging, sales_dev_with_logging, or
sales_test_with_logging, so that you can readily identify them. Even production Oracle BI
Administrator logins should not have query logging enabled because it could strain the available
resources.

You should also disable query logging for the following:

■ The SQL statement in the initialization string. The Initialization string text box is in the
Initialization Block dialog box, in the General tab.

NOTE: The LOGGING column references stored values for the log level.

■ The logging level should be set to 0 (zero) for each production user. The Logging level field is in
the User dialog box, in the User tab.

Configuring the Logging System
This section describes the logging system and includes information about setting the size of the
query log, choosing a logging level, and enabling query logging for a user.

Because query logging can produce very large log files, the logging system is turned off by default.
It is sometimes useful to enable logging to test that your repository is configured properly, to monitor
activity on your system, to help solve performance problems, or to assist Technical Support. You
need to enable logging on the system for each user whose queries you want logged.

Controlling the Size of the Log File
The parameter USER_LOG_FILE_SIZE in the User Log section of the NQSConfig.INI file determines
the size of the NQQuery.log file. When the log file grows to one-half the size specified by the
USER_LOG_FILE_SIZE parameter, the file is renamed to NQQuery.log.old, and a new log file is
created automatically. (This helps to make sure that the disk space allocated for the log file does not
exceed the size specified in the configuration file.) Only one copy of the old file is kept.

You can set the file size as high as you like, limited only by the amount of space available on the
device. If you change the value of the USER_LOG_FILE_SIZE parameter, you need to restart the
Oracle BI Server for the change to take effect. For the syntax of the USER_LOG_FILE_SIZE
parameter, refer to Oracle Business Intelligence Infrastructure Installation and Configuration Guide.

Setting a Logging Level
You can enable logging level for individual users; you cannot configure a logging level for a group.

NOTE: A session variable overrides a user’s logging level. For example, if the Oracle BI Administrator
has a logging level defined as 4 and a session variable logging level is defined as default 0 (zero) in
the repository, the Oracle BI Administrator’s logging level will be 0.

Set the logging level based on the amount of logging you want to do. In normal operations, logging
is generally disabled (the logging level is set to 0). If you decide to enable logging, choose a logging
level of 1 or 2. These two levels are designed for use by Oracle BI Administrators.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Administering the Oracle BI Server Query Environment ■ Administering the Query Log

216

You might want to diagnose performance or data issues by setting a temporary log level for a query.
You can enable query logging for a specific query by preceding your Select statement with the
following:

Set Variable LOGLEVEL=n;

See the following example:

Set Variable LOGLEVEL=5; select year, product, sum(revenue) from time, products,
facts

For this query, the logging level of five is used regardless of the value of the underlying LOGLEVEL
variable.

NOTE: Logging levels greater than 2 should be used only with the assistance of Technical Support.

The logging levels are described in Table 23 on page 216.

Table 23. Logging Levels

Logging
Level Information That Is Logged

Level 0 No logging.

Level 1 Logs the SQL statement issued from the client application.

Logs elapsed times for query compilation, query execution, query cache
processing, and back-end database processing.

Logs the query status (success, failure, termination, or timeout). Logs the user ID,
session ID, and request ID for each query.

Level 2 Logs everything logged in Level 1.

Additionally, for each query, logs the repository name, business model name,
presentation catalog (called Subject Area in Answers) name, SQL for the queries
issued against physical databases, queries issued against the cache, number of
rows returned from each query against a physical database and from queries
issued against the cache, and the number of rows returned to the client
application.

Level 3 Logs everything logged in Level 2.

Additionally, adds a log entry for the logical query plan, when a query that was
supposed to seed the cache was not inserted into the cache, when existing cache
entries are purged to make room for the current query, and when the attempt to
update the exact match hit detector fails.

Do not select this level without the assistance of Technical Support.

Level 4 Logs everything logged in Level 3.

Additionally, logs the query execution plan. Do not select this level without the
assistance of Technical Support.

Administering the Oracle BI Server Query Environment ■ Administering the Query Log

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 217

To set a user’s logging level

1 In the Administration Tool, select Manage > Security.

The Security Manager dialog box appears.

2 Double-click the user’s user ID.

The User dialog box appears.

3 Set the logging level by clicking the Up or Down arrows next to the Logging Level field.

To disable a user’s logging level
■ Set the logging level to 0.

Using the Log Viewer
Use the Oracle BI log viewer utility nQLogViewer (or a text editor) to view the query log. Each entry
in the query log is tagged with the user ID of the user who issued the query, the session ID of the
session in which the query was initiated, and the request ID of the individual query.

To run the nQlogViewer utility, open a Command window and type nQlogViewer with any combination
of its arguments. The syntax is as follows:

nqlogviewer [-u<user_ID>] [-f<log_input_filename>]
[-o<output_result_filename>]
[-s<session_ID>] [-r<request_ID>]

where:

Level 5 Logs everything logged in Level 4.

Additionally, logs intermediate row counts at various points in the execution plan.
Do not select this level without the assistance of Technical Support.

Level 6 and 7 Reserved for future use.

user_ID The name of a user in the Oracle BI repository. This limits the scope
to entries for a particular user. If not specified, all users for whom
query logging is enabled are shown.

log_input_filename The name of an existing log file. This parameter is required.

output_result_filename The name of a file in which to store the output of the log viewer. If the
file exists, results are appended to the file. If the file does not exist, a
new file is created. If not specified, output is sent to the monitor
screen.

Table 23. Logging Levels

Logging
Level Information That Is Logged

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Administering the Oracle BI Server Query Environment ■ Administering the Query Log

218

You can also locate user IDs, session IDs and request IDs through the Session Manager. For more
information, refer to “Using the Session Manager” on page 225.

NOTE: Oracle BI Presentation Services Administrators can view the query log using the Manage
Sessions option in Presentation Services Administration.

Interpreting the Log Records
After you have logged some query information and started the log viewer, you can analyze the log.
The log is divided into several sections, some of which are described in the next section. Log entries
for levels 1 and 2 are generally self-explanatory. The log entries can provide insights to help DBAs
in charge of the underlying databases tune them for optimum query performance. The query log can
also help you check the accuracy of applications that use the Oracle BI Server.

SQL Request
This section lists the SQL issued from the client application. This can be used to rerun the query from
the same application, or from a different application.

General Query Information
This section lists the repository, the business model, and the presentation catalog from which the
query was run. You can use this information to provide statistics on query usage that could be used
to set priorities for future application development and system management.

Database Query
This section of the log begins with an entry that reads Sending query to the database named
<data_source_name>, where data_source_name is the name of the data source to which the Oracle
BI Server is connecting. Multiple database queries can be sent to one or more data sources. Each
query will have an entry in the log.

session_ID The session ID of the user session. The Oracle BI Server assigns each
session a unique ID when the session is initiated. This limits the scope
of the log entries to the specified session ID. If not specified, all
session IDs are shown.

request_ID The request ID of an individual query. The Oracle BI Server assigns
each query a unique ID when the query is initiated. This limits the
scope of the log entries to the specified request ID. If not specified, all
request IDs are shown.

NOTE: The request id will be unique among the active requests but
not necessarily unique during the session. Request ids are generated
in a circular manner, and if a request is closed or if the session is long
enough, a request id will be reused.

Administering the Oracle BI Server Query Environment ■ Administering Usage Tracking

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 219

The database query section has several uses. It records the SQL sent to the underlying databases;
you can then use the logged SQL to run queries directly against the database for performance tuning,
results verification, or other testing purposes. It allows you to examine the tables that are being
queried to verify that aggregate navigation is working as you expect. If you understand the structure
of the underlying database, it might also provide some insights into potential performance
improvements, such as useful aggregate tables or indexes to build.

Query Status
The query success entry in the log indicates if the query completed successfully or if it failed. You
can search through the log for failed queries to determine why they failed. For example, all the
queries during a particular time period might have failed due to a database downtime.

Administering Usage Tracking
The Oracle BI Server supports the accumulation of usage tracking statistics that can be used in a
variety of ways such as database optimization, aggregation strategies, or billing users or
departments based on the resources they consume. The Oracle BI Server tracks usage at the detailed
query level.

When you enable usage tracking, statistics for every query are inserted into a database table or are
written to a usage tracking log file. If you use direct insertion, the Oracle BI Server directly inserts
the usage tracking data into a relational database table. It is recommended that you use direct
insertion to write statistics to a database table.

When the Oracle BI Server starts up, Oracle BI Server validates the column names in the metadata
against the list of valid columns in the usage tracking table. The lengths of varchars will not be
validated. The following events occur:

■ Column names. If metadata contains column names that are not in the table, an error will be
written to the Oracle BI Server log and usage tracking will be disabled. If there are columns in
tables that are not in the metadata, the columns that are in the metadata will be written to the
usage tracking table.

■ Varchar length. If the length in metadata and the set length in the table do not match, an error
will be written to the NQServer.log file and usage tracking will be disabled.

This section contains the following topics:

■ Setting Up Direct Insertion to Collect Information for Usage Tracking on page 219

■ Setting Up a Log File to Collect Information for Usage Tracking on page 221

Setting Up Direct Insertion to Collect Information for
Usage Tracking
This is the recommended method for setting up usage tracking.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Administering the Oracle BI Server Query Environment ■ Administering Usage Tracking

220

To set up direct insertion for usage tracking, use the guidelines in this section. For more information,
refer to Oracle Business Intelligence Infrastructure Installation and Configuration Guide. To set up
and administer direct insertion, use the following topics:

■ Enabling Direct Insertion on page 220

■ Database Table Configuration on page 220

■ Connection Pool Configuration on page 220

■ Buffer Size Configuration Parameter on page 221

■ Buffer Time Limit Configuration Parameter on page 221

■ Number of Insert Threads Configuration Parameter on page 221

■ Max Inserts Per Transactions Configuration Parameter on page 221

Enabling Direct Insertion
In the Usage Tracking section of the NQSConfig.INI file, the DIRECT_INSERT parameter determines
whether the query statistics are inserted directly into a database table or are written to a file for
subsequent loading. The DIRECT_INSERT and ENABLE parameters must be set to YES to enable
direct insertion.

NOTE: It is strongly recommended that you enable direct insertion.

Database Table Configuration
Inserting query statistic information into a table requires the configuration of the name of the table
and the connection pool used to access the table.

The fully qualified physical table name consists of up to four components (database name, catalog
name, schema name, and table name). Each component is surrounded by double quotes (") and
separated by a period (.). The physical table name must be fully qualified. This fully qualified physical
table name must match a table name in the physical layer of the loaded repository. The following is
an example of a physical table name for the Usage Tracking table in the Oracle BI repository:

PHYSICAL_TABLE_NAME = "Oracle BI Usage"."Catalog"."dbo"."S_NQ_ACCT" ;

In this example, Oracle BI Usage represents the database component, Catalog represents the catalog
component, dbo represents the schema component, and S_NQ_ACCT represents the table name.

Connection Pool Configuration
The fully-specified connection pool name has two parts, database name and connection pool name.
Each part is surrounded by double quotes (") and separated by a period (.). The fully qualified
connection pool name should match a connection pool name in the physical layer of the loaded
repository. For an example, refer to the following connection pool name in the Oracle BI repository:

CONNECTION_POOL = "Oracle BI Usage"."Connection Pool" ;

In this example, Oracle BI Usage represents the database component and Connection Pool
represents the connection pool name proper.

Administering the Oracle BI Server Query Environment ■ Administering Usage Tracking

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 221

For Usage Tracking inserts to succeed, the connection pool must be configured with a user ID that
has write access to the back-end database.

NOTE: It is recommended that the connectivity type supports international data.

Buffer Size Configuration Parameter
The BUFFER_SIZE configuration parameter indicates how much memory the Oracle BI Server should
allocate for buffering the insert statements. Such a buffer allows the Oracle BI Server to submit
multiple insert statements as part of a single transaction, improving Usage Tracking insert
throughput. It also means that ordinary query requests do not have to wait on Usage Tracking
inserts, improving average query response time. You may want to adjust this value based on
available memory and memory utilization on the server machine.

Buffer Time Limit Configuration Parameter
The BUFFER_TIME_LIMIT_SECONDS configuration parameter indicates the maximum amount of time
an insert statement will remain in the buffer before the Usage Tracking subsystem attempts to issue
it. This time limit ensures that the Oracle BI Server will issue the insert statements in a timely
manner even during periods of extended quiescence.

Number of Insert Threads Configuration Parameter
The NUM_INSERT_THREADS configuration parameter indicates the number of threads that will
remove insert statements from the buffer and issue them to the Usage Tracking database. Assuming
separate connection pools for readers and inserters, the number of insert threads should typically
equal the Maximum Connections setting in the connection pool.

Max Inserts Per Transactions Configuration Parameter
The MAX_INSERTS_PER_TRANSACTION configuration parameter indicates the maximum number of
insert statements the Usage Tracking subsystem attempts to issue as part of a single transaction.
The larger this number, the greater potential throughput for Usage Tracking inserts. However a larger
number also increases the likelihood of transactions failing due to deadlocks. Note that a small value
for BUFFER_TIME_LIMIT_SECONDS may limit the number of inserts per transaction.

Setting Up a Log File to Collect Information for Usage
Tracking
This is an alternate method for setting up usage tracking. It is recommended that you use direct
insertion to collect information for usage tracking. For more information, refer to “Setting Up Direct
Insertion to Collect Information for Usage Tracking” on page 219.

This section contains the following topics:

■ Selecting an Output Location on page 222

■ File Naming Conventions on page 222

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Administering the Oracle BI Server Query Environment ■ Administering Usage Tracking

222

■ Output File Format on page 222

■ Performance Considerations on page 224

Selecting an Output Location
The parameter STORAGE_DIRECTORY in the Usage Tracking section of the NQSConfig.INI file
determines the location of usage tracking log files. If usage tracking is enabled, but no storage folder
is specified, the files are written in the Log folder in the software installation folder (\OracleBI).

Current files are periodically written to disk, and new files are created. The parameter
CHECKPOINT_INTERVAL_MINUTES controls the frequency with which usage tracking data is flushed
to disk, and the parameter FILE_ROLLOVER_INTERVAL_MINUTES controls the frequency with which
the current usage tracking log file is closed and a new file created.

When usage tracking is enabled, every query is logged to a usage tracking log file. This may require
a large amount of available storage. For example, assume an average of 300 bytes of data output
for each query and 10 queries per second over an 8 hour day. This results in approximately 83 MB
of usage tracking data written to storage per day. If this example is extended to a 24 x 7 operation,
the result is approximately .25 GB of storage per day.

The Oracle BI Server has no limit on the size or quantity of usage tracking log files that can exist in
the specified location. It is the responsibility of the user to make sure that sufficient space is
available, and to remove or archive old usage tracking files.

NOTE: Insufficient storage space may cause you to lose usage tracking data. If the Oracle BI Server
encounters an error accessing a usage tracking output file, it immediately discontinues the collection
of usage tracking statistics and issues an error message to the NQServer.log and, in Windows, to the
Windows Event log. Even if additional storage space is made available, the collection of usage
tracking statistics will not resume until the server is restarted.

File Naming Conventions
The file naming scheme for the usage tracking log files is NQAcct.yyyymmdd.hhmmss.log, where
yyyy is the year, mm is the month, dd is the day, hh is the hour, mm is the minute, and ss is the
second of the timestamp when the file was created. For example, if the server creates the usage
tracking log file at 07:15:00 AM on February 12, 2003, the filename would be
NQAcct.20030212.071500.log. After the specified rollover interval, this file is flushed to disk and
closed and a new log file, with the current date and timestamp, is created.

Output File Format
The usage tracking log files are text files, in semicolon-delimited (;) format.
(A semicolon is used as the column delimiter because the logical SQL text contains commas.) A line
feed delimits the end of each row of data.

Administering the Oracle BI Server Query Environment ■ Administering Usage Tracking

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 223

The schema is described in Table 24 on page 223. For more information about the contents of each
column, refer to “Description of the Usage Tracking Data” on page 406.

Table 24. Usage Tracking Output File Format

Column
Number Column Name Data Type Max Data Size Nullable

1 User name Varchar 128 No

2 Repository name Varchar 128 No

3 Subject area name Varchar 128 No

4 Node ID Varchar 15 No

5 Start timestamp Char (Timestamp) 19 No

6 Start date Char (yyyy-mm-dd) 10 No

7 Start hourMin Char (hh:mm) 5 No

8 End timestamp Char (Timestamp) 19 No

9 End date Char (yyyy-mm-dd) 10 No

10 End hourMin Char (hh:mm) 5 No

11 Query Text Varchar 1024 No

12 Success indicator Integer (refer to
following Note)

4 No

13 Row count Integer (refer to
following Note)

4 Yes

14 Total time (secs) Integer (refer to
following Note)

4 Yes

15 Compilation time (secs) Integer (refer to
following Note)

4 Yes

16 Number of database queries Integer (refer to
following Note)

4 Yes

17 Cumulative db time (secs) Integer (refer to
following Note)

4 Yes

18 Cumulative db rows Integer (refer to
following Note)

4 Yes

19 Cache indicator Char 1 No

20 Query source Varchar 30 No

21 Presentation Catalog path Varchar 250 No

22 Interactive Dashboard name Varchar 150 Yes

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Administering the Oracle BI Server Query Environment ■ Administering Usage Tracking

224

NOTE: All data in the output file is in character format. The data in columns 12 through 18 are output
as text representations of integer numbers. Therefore, they behave more like Varchar(10) columns
than integers. For example, if the row count is one million rows, then 1000000 appears in the output
file in column 13 (Row count). This constitutes seven bytes of data, even though the data represents
a 4-byte internal integer value.

■ In column 12, a Success indicator value of 0 signifies a successful query. All nonzero values
indicate failure. The following failure indicators are currently defined:

■ 1 indicates timeout

■ 2 indicates row limit violation

■ 3 indicates unknown error

The subsequent columns are valid only if the Success indicator signifies a successful query (value is
0):

■ The Start timestamp and End timestamp columns indicate the wall clock time when the logical
query started and finished. Each value is 19 bytes of character data representing a SQL-92
timestamp. The format is yyyy-mm-dd-hh:mm:ss. The related columns, Start date and End date,
contain just the date component from the respective timestamps (in the yyyy-mm-dd format).
Finally, the related columns, Start hourMin and End hourMin, contain just the hour and minute
components from the respective timestamps (in a char hh:mm format).

While there is no guaranteed unique key for the usage tracking data, a combination of User name,
Node ID, Start timestamp and Query text will usually be sufficient.

For information about sample scripts to help you extract data from usage tracking log files and load
it to appropriately formatted relational database tables, refer to “Oracle BI Server Usage Tracking Data
Descriptions and Using the Log File Method” on page 405.

Performance Considerations
When usage tracking is enabled, the Oracle BI Server collects usage tracking data for every query.
This data, however, is only written to disk at user-specified intervals, known as checkpoints. The
default setting is to checkpoint every 5 minutes.

While this value can be modified in theNQSConfig.INI file (refer to Oracle Business Intelligence
Infrastructure Installation and Configuration Guide), reducing the interval adds overhead and, if set
low enough, could potentially impact server performance. Setting the value higher increases the
amount of usage tracking data that could be lost in the unlikely event of an abnormal shutdown of
the Oracle BI Server.

The Oracle BI Server periodically initiates usage tracking log file rollovers. A rollover consists of
closing the current usage tracking log file and opening a newly created one for writing subsequent
data. The frequency at which rollovers occur is called a rollover interval. The default rollover interval
is 240 minutes (every 4 hours).

Usage tracking log files that are closed are available for analysis. Setting a lower rollover interval
will make usage tracking log files available for analysis sooner, but at the cost of additional overhead.

If the checkpoint interval equals or exceeds the rollover interval, only the rollover occurs explicitly;
the checkpoint only occurs implicitly when the old usage tracking log file is closed.

Administering the Oracle BI Server Query Environment ■ Server Session Management

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 225

Server Session Management
The Session Manager is used in online mode to monitor activity. The Session Manager shows all users
logged into the session, all current query requests for each user, and variables and their values for
a selected session. Additionally, the Oracle BI Administrator can disconnect any users and kill any
query requests with the Session Manager.

How often the Session Manager data refreshes depends on the amount of activity on the system. To
refresh the display at any time, click Refresh.

Using the Session Manager
The Session Manager contains an upper and a lower pane:

■ The top window, the Session window, shows users currently logged into the Oracle BI Server. To
control the update speed, from the Update Speed drop-down list, choose Normal, High, or Low.
Select Pause to keep the display from being refreshed.

■ The bottom window contains two tabs.

■ The Request tab shows active query requests for the user selected in the Session window.

■ The Variables tab shows variables and their values for a selected session. You can click the
column headers to sort the data.

NOTE: Only 7.7 Oracle BI Server return information about variables. If the Administration
Tool connects to an older-version server online, only the Requests tab will be visible in the
Session Manager dialog box.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Administering the Oracle BI Server Query Environment ■ Server Session Management

226

Table 25 on page 226 and Table 26 on page 226 describe the columns in the Session Manager
windows.

To view the variables for a session

1 In the Administration Tool, open a repository in online mode and choose Manage > Sessions.

2 Select a session and click the Variables tab.

For more information about variables, refer to “Using Variables in the Oracle BI Repository” on
page 283.

3 To refresh the view, click Refresh.

4 To close Session Manager, click close.

To disconnect a user from a session

1 In the Administration Tool, open a repository in online mode and choose Manage > Sessions.

2 Select the user in the Session Manager top window.

Table 25. Fields in the Session Window

Column Name Description

Client Type The type of client connected to the server.

Last Active Time The timestamp of the last activity on the session.

Logon Time The timestamp that shows when the session initially connected to the Oracle
BI Server.

Repository The logical name of the repository to which the session is connected.

Session ID The unique internal identifier that the Oracle BI Server assigns each session
when the session is initiated.

User The name of the user connected.

Table 26. Some Fields in the Request Tab

Column Name Description

Last Active Time The timestamp of the last activity on the query.

Request ID The unique internal identifier that the Oracle BI Server assigns each query
when the query is initiated.

Session ID The unique internal identifier that the Oracle BI Server assigns each session
when the session is initiated.

Start Time The time of the individual query request.

Administering the Oracle BI Server Query Environment ■ Server Configuration and
Tuning

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 227

3 Click Disconnect.

The user session receives a message indicating that the session was terminated by the Oracle BI
Administrator. Any currently running queries are immediately terminated, and any outstanding
queries to underlying databases are canceled.

4 To close Session Manager, click close.

To kill an active query

1 In the Administration Tool, open a repository in online mode and choose Manage > Sessions.

2 Select the user session that initiated the query in the top window of the Session Manager.

After the user is highlighted, any active query requests from that user are displayed in the
bottom window.

3 Select the request you want to kill.

4 Click Kill Request to terminate the highlighted request.

The user receives a message indicating that the query was terminated by the Oracle BI
Administrator. The query is immediately terminated, and any outstanding queries to underlying
databases are canceled.

Repeat this process to kill any other requests.

5 To close Session Manager, click close.

Server Configuration and Tuning
Performance is an extremely important consideration in every decision support system, but it is
particularly important in systems that allow queries over the Web. This section describes some
important considerations for improving query performance with the Oracle BI Server. This is an
overview topic. For details, see Oracle Business Intelligence Infrastructure Installation and
Configuration Guide

NQSConfig.INI File Parameters
The NQSConfig.INI file contains configuration and tuning parameters for the Oracle BI Server. There
are parameters to configure disk space for temporary storage, set sort memory buffer sizes, set
cache memory buffers, set virtual table page sizes, and a number of other configuration settings that
allow you to take full advantage of your hardware’s capabilities.

For more information about the NQSConfig.INI file parameters, refer to Oracle Business Intelligence
Infrastructure Installation and Configuration Guide.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Administering the Oracle BI Server Query Environment ■ Server Configuration and
Tuning

228

Aggregate Tables
You should use aggregate tables to improve query performance. Aggregate tables contain
precalculated summarizations of data. It is much faster to retrieve an answer from an aggregate
table than to recompute the answer from thousands of rows of detail. The Oracle BI Server uses
aggregate tables automatically, if they have been properly specified in the repository.

For more information and examples of setting up aggregate navigation in a repository, refer to
“Setting Up Fragmentation Content in an Oracle BI Repository for Aggregate Navigation” on page 201.

Query Caching
Enabling query caching causes the Oracle BI Server to store query results for reuse by subsequent
queries. Caching can dramatically improve the apparent performance of the system for users. For
more information about query caching concepts and setup, refer to Chapter 11, “Query Caching in the
Oracle BI Server.”

Tune and Index Underlying Databases
The Oracle BI Server sends queries to databases. For the queries to return in a timely manner, the
underlying databases need to be configured, tuned, and indexed correctly. You might need to work
with the DBAs of the underlying databases to help identify any problem areas where database tuning
is in order.

Different database products will have different tuning considerations. If there are queries that return
slowly from the underlying databases, you can capture the SQL of the queries in the query log, then
provide them to the DBA for analysis. For more information about configuring query logging on your
system, refer to “Administering the Query Log” on page 214.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 229

11 Query Caching in the Oracle BI
Server

Decision support queries sometimes require large amounts of database processing. The Oracle BI
Server can save the results of a query in cache files and then reuse those results later when a similar
query is requested. Using cache, the cost of database processing only needs to be paid once for a
query, not every time the query is run.

This section explains query caching and how it is implemented in the Oracle BI Server.

NOTE: For information about how to use Delivers to seed the Oracle BI Server Cache, refer to Oracle
Business Intelligence Presentation Services Administration Guide.

This chapter contains the following topics:

■ About the Oracle BI Server Query Cache on page 229

■ Query Cache Architecture on page 232

■ Configuring Query Caching on page 232

■ Monitoring and Managing the Cache on page 234

■ Purging and Maintaining Cache Using ODBC Procedures on page 235

■ Strategies for Using the Cache on page 238

■ Creating Aggregates for Oracle BI Server Queries on page 241

■ Cache Event Processing with an Event Polling Table on page 248

■ Making Changes to a Repository on page 254

■ Using the Cache Manager on page 255

■ About the Refresh Interval for XML Data Sources on page 257

About the Oracle BI Server Query Cache
Oracle BI Administrators can configure the Oracle BI Server to maintain a local, disk-based cache of
query result sets (query cache). The query cache allows the Oracle BI Server to satisfy many
subsequent query requests without having to access back-end databases (such as Oracle or DB2).
This reduction in communication costs can dramatically decrease query response time.

As updates occur on the back-end databases, the query cache entries can become stale. Therefore,
Oracle BI Administrators need to periodically remove entries from the query cache using one of the
following methods:

■ Manually. In the Administration Tool, in the Manage menu, select Cache to open the Cache
Manager. Cache Manager provides the maximum flexibility in choosing which cache entries to
purge and when to purge them, but it requires direct human involvement. For more information,
refer to “Using the Cache Manager” on page 255.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ About the Oracle BI Server Query Cache

230

■ Automatically. In the Administration Tool, you can disable cache for the system, set caching
attributes for a specific physical table, and use Oracle BI event tables to purge cache
automatically. For additional information about managing cache, refer to “Monitoring and
Managing the Cache” on page 234.

■ Programatically. The Oracle BI Server provides ODBC-extension functions for purging cache
entries programmatically. These functions give you the choice and the timing flexibility of Cache
Manager with the automation of event tables. You can write your own scripts to call these
functions at times that fit your needs. For more information, refer to “Purging and Maintaining
Cache Using ODBC Procedures” on page 235.

The parameters that control query caching are located in the NQSConfig.INI file described in Oracle
Business Intelligence Infrastructure Installation and Configuration Guide.

NOTE: For information about how to use Delivers to seed the Oracle BI Server Cache, refer to Oracle
Business Intelligence Presentation Services Administration Guide.

Advantages of Caching
The fastest way to process a query is to skip the bulk of the processing and use a precomputed
answer.

Aggregate tables are examples of precomputed answers. Aggregate tables contain precalculated
results for a particular aggregation level. For example, an aggregate table might store sales results
for each product by month, when the granularity of detail for the database is at the day level. To
create this aggregate table, a process (often a query) computes the results and then stores them in
a table in the database.

With query caching, the Oracle BI Server stores the precomputed results of queries in a local cache.
If another query can use those results, all database processing for that query is eliminated. This can
result in dramatic improvements in the average query response time.

In addition to improving performance, being able to answer a query from a local cache conserves
network resources and processing time on the database server. Network resources are conserved
because the intermediate results do not have to come over the network to the Oracle BI Server. Not
running the query on the database frees the database server to do other work. If the database uses
a charge back system, it could save money in the budget as well.

Another benefit of using the cache to answer a query is savings in processing time on the Oracle BI
Server, especially if the query results are retrieved from multiple databases. Depending on the query,
there might be considerable join and sort processing in the server. If the query is already calculated,
this processing is avoided, freeing server resources for other tasks.

To summarize, query caching has the following advantages:

■ Dramatic improvement of query performance.

■ Less network traffic.

■ Reduction in database processing and charge back.

■ Reduction in Oracle BI Server processing overhead.

Query Caching in the Oracle BI Server ■ About the Oracle BI Server Query Cache

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 231

Initializing Cache Entries for User Ids
To initialize cache entries for user Ids, the Connection Pool needs to be set up for shared login with
session variables VALUEOF(NQ_SESSION.PASSWORD),VALUEOF(NQ_SESSION.USER) in the login
properties. If the shared login is disabled and a user specific database login is used, cache will be
shared.

For more information about security, refer to Chapter 15, “Security in Oracle BI.”

Costs of Caching
Query caching has many obvious benefits, but also certain costs:

■ Disk space for the cache

■ Administrative costs of managing the cache

■ Potential for cached results being stale

■ Minor CPU and disk I/O on server machine

With proper cache management, the benefits will far outweigh the costs.

Disk Space
The query cache requires dedicated disk space. How much space depends on the query volume, the
size of the query result sets, and how much disk space you choose to allocate to the cache. For
performance purposes, a disk should be used exclusively for caching, and it should be a high
performance, high reliability type of disk system.

Administrative Tasks
There are a few administrative tasks associated with caching. You need to set the cache persistence
time for each physical table appropriately, knowing how often data in that table is updated. When
the frequency of the update varies, you need to keep track of when changes occur and purge the
cache manually when necessary. You can also create a cache event polling table and modify
applications to update the polling table when changes to the databases occur, making the system
event-driven.

The Oracle BI Server also provides ODBC-extension functions for purging cache entries
programmatically. You can write your own scripts to call these functions at the appropriate times.

Keeping the Cache Up To Date
If the cache entries are not purged when the data in the underlying databases changes, queries can
potentially return results that are out of date. You need to evaluate whether this is acceptable. It
might be acceptable to allow the cache to contain some stale data. You need to decide what level of
stale data is acceptable and then set up (and follow) a set of rules to reflect those levels.

For example, suppose your application analyzes corporate data from a large conglomerate, and you
are performing yearly summaries of the different divisions in the company. New data is not going to
materially affect your queries because the new data will only affect next year’s summaries. In this
case, the tradeoffs for deciding whether to purge the cache might favor leaving the entries in the
cache.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ Query Cache Architecture

232

Suppose, however, that your databases are updated three times a day and you are performing
queries on the current day’s activities. In this case, you will need to purge the cache much more
often, or perhaps consider not using it at all.

Another scenario is that you rebuild your data mart from scratch at periodic intervals (for example,
once per week). In this example, you can purge the entire cache as part of the process of rebuilding
the data mart, making sure that you never have stale data in the cache.

Whatever your situation, you need to evaluate what is acceptable as far as having noncurrent
information returned to the users.

CPU Usage and Disk I/O
Although in most cases it is very minor, query caching does require a small amount of CPU time and
adds to the disk I/O. In most cases, the CPU usage is insignificant, but the disk I/O might be
noticeable, particularly if queries return large data sets.

Query Cache Architecture
The query cache consists of cache storage space, cache metadata, and cache detection in query
compilation.

The process of accessing the cache metadata is very fast. If the metadata shows a cache hit, the
bulk of the query processing is eliminated, and the results are immediately returned to the user. The
process of adding the new results to the cache is independent of the results being returned to the
user; the only effect on the running query is the resources consumed in the process of writing the
cached results.

Configuring Query Caching
The query cache is disabled by default. To enable caching, you need to configure the cache storage
and decide on a strategy for flushing outdated entries. This section includes information on the tasks
necessary to configure the Oracle BI Server for query caching.

The parameters to control query caching are located in the NQSConfig.INI file, described in Oracle
Business Intelligence Infrastructure Installation and Configuration Guide.

Configuring the Cache Storage
The following items need to be set up for cache storage in the NQSConfig.INI file:

■ Directories to store the cache files.

■ A file to store the cache metadata.

Query Caching in the Oracle BI Server ■ Configuring Query Caching

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 233

Cache Data Storage Directories
The DATA_STORAGE_PATHS parameter in the CACHE section of the NQSConfig.INI file specifies one
or more directories for query cache storage. These directories are used to store the cached query
results and are accessed when a cache hit occurs. For more information, refer to “Cache Hits” on
page 238.

The cache storage directories should reside on high performance storage devices, ideally devoted
solely to cache storage. When the cache storage directories begin to fill up, the entries that are least
recently used (LRU) are discarded to make space for new entries. The MAX_CACHE_ENTRIES
parameter value specifies the maximum number of cache entries allowed in the query cache. The
more space you can allocate to the cache, the less often queries will have to access the underlying
databases to get the results.

For more information about this configuration parameter, refer to Oracle Business Intelligence
Infrastructure Installation and Configuration Guide.

Maximum Cache Entry Values
You can control the maximum number of rows for any cache entry and the maximum number of
cache entries with the MAX_ROWS_PER_CACHE_ENTRY and MAX_CACHE_ENTRIES NQSConfig.INI
file parameters, respectively. Limiting the number of rows is a useful way to avoid using up the cache
space with runaway queries that return large numbers of rows. Limiting the total number of cache
entries provides another parameter with which to manage your cache storage. If the number of rows
a query returns is greater than the value specified in the MAX_ROWS_PER_CACHE_ENTRY parameter,
the query is not cached.

For the syntax of these parameters, refer to Oracle Business Intelligence Infrastructure Installation
and Configuration Guide.

Aggregates
Typically, if a query gets a cache hit from a previously executed query, then the new query is not
added to the cache. The POPULATE_AGGREGATE_ROLLUP_HITS parameter overrides this default
when the cache hit occurs by rolling up an aggregate from a previously executed query.

Enabling Query Caching
After configuring the cache storage and deciding on one or more cache management strategies, as
discussed in “Monitoring and Managing the Cache” on page 234, you can enable query caching.

To enable query caching

1 Set the ENABLE parameter in the CACHE section of the NQSConfig.INI file to YES.

2 Restart the Oracle BI Server.

Disabling Query Caching
This section explains how to disable query caching.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ Monitoring and Managing the Cache

234

To disable query caching

1 Set the ENABLE parameter in the CACHE section of the NQSConfig.INI file to NO.

2 Restart the Oracle BI Server.

Monitoring and Managing the Cache
To manage the changes in the underlying databases and to monitor cache entries, you need to
develop a cache management strategy. You need a process to invalidate cache entries when the data
in the underlying tables that compose the cache entry have changed, as well as a process to monitor,
identify, and remove any undesirable cache entries.

Choosing a Cache Management Strategy
The choice of a cache management strategy depends on the volatility of the data in the underlying
databases and the predictability of the changes that cause this volatility. It also depends on the
number and types of queries that comprise your cache, as well as the usage those queries receive.
This section provides an overview of the various approaches to cache management.

Disable Caching for the System
You can disable caching for the whole system by setting the ENABLE parameter to NO in the
NQSConfig.INI file and restarting the Oracle BI Server. Disabling caching stops all new cache entries
and stops any new queries from using the existing cache. Disabling caching allows you to enable it
at a later time without losing any entries already stored in the cache.

Temporarily disabling caching is a useful strategy in situations where you might suspect having stale
cache entries but want to verify if they are actually stale before purging those entries or the entire
cache. If you find that the data stored in the cache is still relevant, or after you have safely purged
problem entries, you can safely enable the cache. If necessary, purge the entire cache or the cache
associated with an entire business model before enabling the cache again.

Caching and Cache Persistence Timing for Specified Physical Tables
You can set a cachable attribute for each physical table, allowing you to specify if queries for a that
table will be added to the cache to answer future queries. If you enable caching for a table, any query
involving the table is added to the cache. All tables are cachable by default, but some tables may
not be good candidates to include in the cache unless you use the Cache Persistence Time settings.
For example, perhaps you have a table that stores stock ticker data, that is updated every minute.
You could use the Cache Persistence Time settings to purge the entries for that table every 59
seconds.

You can also use the Cache persistence time field to specify how long the entries for this table should
be kept in the query cache. This is useful for data sources that are updated frequently.

To set the caching attributes for a specific physical table

1 In the Physical layer, double-click the physical table.

Query Caching in the Oracle BI Server ■ Purging and Maintaining Cache Using ODBC
Procedures

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 235

2 In the Physical Table properties dialog box, in the General tab, make one of the following
selections:

■ To enable caching, select the Make table cachable check box.

■ To prevent a table from ever being cached, clear the Make table cacheable check box.

3 To set an expiration time (maximum lifetime), perform the following steps:

a In the Cache persistence time drop-down list, select a value.

If you select Infinite or until you select a different value, the Cache Persistence time field will
not be available.

b Complete the Cache persistence time field.

4 Click OK.

Configure Oracle BI Server Event Polling Tables
Oracle BI Server event polling tables store information about updates in the underlying databases.
An application (such as one that loads data into a data mart) could be configured to add rows to an
event polling table each time a database table is updated. The Oracle BI Server polls this table at
set intervals and invalidates any cache entries corresponding to the updated tables. Event polling
tables can be your sole method of cache management or can be used in conjunction with other cache
management schemes. Event tables offer less flexibility about choice of cache entries and the timing
of purges. For more information about event polling tables, refer to “Setting Up Event Polling Tables
on the Physical Databases” on page 249.

Purging and Maintaining Cache Using
ODBC Procedures
The Oracle BI Server provides ODBC-extension functions for the Oracle BI Administrator to use for
purging cache entries.

Some of these functions are particularly useful for embedding in an Extract, Transform, and Load
(ETL) task. For example, after a nightly ETL is performed, all Oracle BI Server cache can be purged.
If only the fact table was modified, only cache related to that table can be purged. In some cases,
you might need to purge the cache entries associated with a specific database.

NOTE: Only Oracle BI Administrators have the right to purge cache. Therefore scripts that call these
ODBC-extension functions must run under an Oracle BI Administrator logon ID.

The following ODBC functions affect cache entries associated with the repository specified by the
ODBC connection:

■ SAPurgeCacheByQuery. Purges a cache entry that exactly matches a specified query. For
example, using the following query, you would have a query cache entry that retrieves the names
of all employees earning more than $100,000:

select lastname, firstname from employee where salary > 100000;

The following call purges the cache entry associated with this query:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ Purging and Maintaining Cache Using ODBC
Procedures

236

Call SAPurgeCacheByQuery(‘select lastname, firstname from employee where salary >
100000’);

■ SAPurgeCacheByTable. Purges all cache entries associated with a specified physical table
name (fully qualified) for the repository to which the client has connected.

This function takes up to four parameters representing the four components (database, catalog,
schema and table name proper) of a fully qualified physical table name. For example, you might
have a table with the fully qualified name of DBName.CatName.SchName.TabName. To purge the
cache entries associated with this table in the physical layer of the Oracle BI repository, execute
the following call in a script:

Call SAPurgeCacheByTable(‘DBName’, ‘CatName’, ‘SchName’, ‘TabName’);

NOTE: Wild cards are not supported by the Oracle BI Server for this function. Additionally,
DBName and TabName cannot be null. If either one is null, you will receive an error message.

■ SAPurgeAllCache. Purges all cache entries. The following is an example of this call:

Call SAPurgeAllCache();

■ SAPurgeCacheByDatabase. Purges all cache entries associated with a specific physical
database name. A record is returned as a result of calling any of the ODBC procedures to purge
the cache. This function takes one parameter that represents the physical database name and
the parameter cannot be null. The following shows the syntax of this call:

Call SAPurgeCacheByDatabase(‘DBName’);

About Sharing Presentation Server Cache
When users access the Intelligence Dashboard to run queries, Oracle BI Presentation Services caches
the results of the queries. Oracle BI Presentation Services uses the request key and the logical SQL
string to determine if subsequent queries can use cached results. If the cache can be shared,
subsequent queries are not stored.

■ SAGetSharedRequestKey. An ODBC procedure that takes a logical SQL statement from the
Oracle BI Presentation Services and returns a request key value.

The following shows the syntax of this procedure:

SAGetSharedRequestKey(‘sql-string-literal)

About Result Records
The result record contains two columns. The first column is a result code and the second column is
a short message describing result of the purge operation. The following list contains examples of
result records:

Result Code Result Message

1 SAPurgeCacheByDatabase returns successfully.

Query Caching in the Oracle BI Server ■ Purging and Maintaining Cache Using ODBC
Procedures

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 237

Storing and Purging Cache for SAP/BW Data Sources
In Microsoft Analysis Services, member caption name is the same as member unique name. However,
in SAP/BW data sources, member caption name is different from member unique name. Therefore,
the Oracle BI Server maintains a cache subsystem for SAP/BW member unique names. This
subsystem is turned off by default. For configuration information, refer to the topic about the MDX
Member Name Cache Section of the NQSConfig.INI file in Oracle Business Intelligence Infrastructure
Installation and Configuration Guide.

When a query is received for member unique name, the subsystem checks the cache to determine
whether cache exists for this query. If cache exists, the record for the cached unique name is
returned. If there is no cache that matches the query, the subsystem sends a probing query to SAP/
BW.

The probing query will be logged when the log level is equal or greater than 2. The status of the
subsystem, such as if the subsystem is enabled and events such as start and shutdown events, are
also written to the server log.

CAUTION: With each increased logging level, performance is impacted. Use caution when increasing
the log level for users.

Purging Cache for SAP/BW Data Sources
Only Oracle BI Administrators have privileges to run ODBC purge procedures. It is the responsibility
of the Oracle BI Administrator to maintain the cache. Therefore, the Oracle BI Administrator should
be aware of the following issues:

■ The size of multidimensional cache entries can grow very large. Therefore, a limit on the size of
each member set has been established in the MDX_MEMBER_CACHE section of the
NQSConfig.INI file.

■ The format of persisted cache might not be consistent after an upgrade. Therefore, the Oracle
BI Administrator should purge all cache before a software upgrade.

■ The cache will be populated the first time the query runs. The Oracle BI Administrator should
arrange to populate the cache during off-peak hours, to minimize performance impact.

NOTE: In the Oracle BI Administration Tool, the Oracle BI Administrator can purge cache for an
individual cube table by right-clicking the cube table, and then selecting Purge Member Cache. This
must be performed in online mode and by a user with Oracle BI Administrator privileges.

The following purge procedures are specific to SAP/BW data sources:

■ SAPurgeALLMCNCache. Purges all SAP/BW cache entries.

The following shows the syntax of this procedure:

E_Execution_CacheNotEnabled Operation not performed because caching is not
enabled.

E_Execution_NonExistingDatabase The database specified does not exist.

Result Code Result Message

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ Strategies for Using the Cache

238

SAPurgeALLIMCNCache ()

■ SAPurgeMCNCacheByCube. Purges all cache entries associated with the specified physical
cube. The database name and cube name are the external names of the repository objects. The
following shows the syntax of this procedure:

SAPurgeMCNCacheByCube(‘DBName’, ‘CubeName’)

The following messages will be returned.

Strategies for Using the Cache
One of the main advantages of query caching is to improve apparent query performance. It may be
valuable to seed the cache during off hours by running queries and caching their results. A good
seeding strategy requires that you know when cache hits occur.

 If you want to seed the cache for all users, you might seed the cache with the following query:

Select User, SRs

After seeding the cache using Select User, SRs, the following queries will all be cache hits:

Select User, SRs where user = valueof(nq_SESSION.USER) (and the user was USER1)

Select User, SRs where user = valueof(nq_SESSION.USER) (and the user was USER2)

Select User, SRs where user = valueof(nq_SESSION.USER) (and the user was USER3)

Cache Hits
When caching is enabled, each query is evaluated to determine whether it qualifies for a cache hit.
A cache hit means that the server was able to use cache to answer the query and did not go to the
database at all.

NOTE: The Oracle BI Server can use query cache to answer queries at the same or higher level of
aggregation.

A cache hit occurs only if all of the conditions described in this section are met.

Return Code Return Message

1 SAPurgeALLMCNCache returns successfully.

1 SAPurgeMCNCacheByCube returns successfully.

E_Execution_NonExistingDatabase(*) The database specified does not exist.

NOTE: If the database and physical cube are both
wrong, this result code will be returned.

E_Execution_NonExistingPhysicalCube The physical cube specified does not exist.

Query Caching in the Oracle BI Server ■ Strategies for Using the Cache

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 239

■ WHERE clause semantically the same or a logical subset. For the query to qualify as a
cache hit, the WHERE clause constraints need to be either equivalent to the cached results, or a
subset of the cached results.

A WHERE clause that is a logical subset of a cached query qualifies for a cache hit if the subset
meets one of the following criterion:

■ A subset of IN list values.

Queries requesting fewer elements of an IN list cached query qualify for a cache hit. For
example, the following query:

select employeename, region
from employee, geography
where region in ('EAST', 'WEST')

qualifies as a hit on the following cached query:

select employeename, region
from employee, geography
where region in ('NORTH', 'SOUTH', 'EAST', 'WEST')

■ It contains fewer (but identical) OR constraints than the cached result.

■ It contains a logical subset of a literal comparison.

For example, the following predicate:

where revenue < 1000

qualifies as a cache hit on a comparable query with the predicate:

where revenue < 5000

■ There is no WHERE clause.

If a query with no WHERE clause is cached, queries that satisfy all other cache hit rules
qualify as cache hits regardless of their WHERE clause.

■ A subset of columns in the SELECT list. All of the columns in the SELECT list of a new query
have to exist in the cached query in order to qualify for a cache hit, or they must be able to be
calculated from the columns in the query.

■ Columns in the SELECT list can be composed of expressions on the columns of the
cached queries. The Oracle BI Server can calculate expressions on cached results to answer the
new query, but all the columns have to be in the cached result.

For example, the query:

select product, month, averageprice from sales where year = 2000

will hit cache on the query:

select product, month, dollars, unitsales from sales where year = 2000

because averageprice can be computed from dollars and unitsales (averageprice = dollars/
unitsales).

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ Strategies for Using the Cache

240

■ Equivalent join conditions. The resultant joined logical table of a new query request has to be
the same as (or a subset of) the cached results to qualify for a cache hit.

■ DISTINCT attribute the same. If a cached query eliminates duplicate records with DISTINCT
processing (for example, SELECT DISTINCT...), requests for the cached columns have to also
include the DISTINCT processing; a request for the same column without the DISTINCT
processing will be a cache miss.

■ Compatible aggregation levels. Queries that request an aggregated level of information can
use cached results at a lower level of aggregation.

For example, the following query:

select supplier, region, city, qtysold
from suppliercity

requests the quantity sold at the supplier and region and city level, while the following query:

select city, qtysold
from suppliercity

requests the quantity sold at the city level. The second query would result in a cache hit on the
first query.

■ Limited additional aggregation. For example, if a query with the column qtysold is cached, a
request for RANK(qtysold) results in a cache miss. Additionally, a query requesting qtysold at the
country level can get a cache hit from a query requesting qtysold at the country, region level.

■ ORDER BY clause made up of columns in the select list. Queries that order by columns not
contained in the select list result in cache misses.

Running a Suite of Queries to Populate the Cache
To maximize potential cache hits, one strategy is to run a suite of queries just for the purpose of
populating the cache. The following are some recommendations for the types of queries to use when
creating a suite of queries with which to seed the cache.

■ Common prebuilt queries.

Queries that are commonly run, particularly ones that are expensive to process, are excellent
cache seeding queries. Queries whose results are embedded in Intelligence Dashboards would
be good examples of common queries.

■ SELECT lists with no expressions.

Eliminating expressions on SELECT list columns expands the possibility for cache hits. A cached
column with an expression can only answer a new query with the same expression; a cached
column with no expressions can answer a request for that column with any expression. For
example, a cached request such as:

SELECT QUANTITY, REVENUE...

can answer a new query such as:

Query Caching in the Oracle BI Server ■ Creating Aggregates for Oracle BI Server
Queries

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 241

SELECT QUANTITY/REVENUE...

but not the reverse.

■ No WHERE clause.

If there is no WHERE clause in a cached result, it can be used to answer queries satisfying the
cache hit rules for the select list with any WHERE clause that includes columns in the projection
list.

In general, the best queries to seed cache with are queries that heavily consume database processing
resources and that are likely to be reissued. Be careful not to seed the cache with simple queries
that return many rows. These queries (for example, SELECT * FROM PRODUCTS, where PRODUCTS
maps directly to a single database table) require very little database processing. Their expense is
network and disk overhead—factors that caching will not alleviate.

NOTE: When the Oracle BI Server refreshes repository variables, it will examine business models to
determine if they reference those repository variables. If they do, the Oracle BI Server purges all
cache for those business models.

Creating Aggregates for Oracle BI
Server Queries
Aggregate tables store precomputed results that are aggregated measures (typically summed) over
a set of dimensional attributes. Using aggregate tables is a typical technique used to improve query
response times in decision support systems.

If you write SQL queries or use a tool that only understands what physical tables exist and not their
meaning, using aggregate tables becomes more complex as the number of aggregate tables
increases. The aggregate navigation capability of the Oracle BI Server allows queries to use the
information stored in aggregate tables automatically. The Oracle BI Server allows you to concentrate
on asking the right business question, and then the server decides which tables provide the fastest
answers.

The traditional process of creating aggregates for Oracle BI Server queries is manual. It requires
writing complicated DDL and DML to create tables in the databases involved. Additionally, these
tables need to be mapped into the repository metadata to be available for queries. This is a time
consuming, and a potentially error-prone process. The Aggregate Persistence module allows the
Oracle BI Administrator to automate the creation of aggregate tables and their mappings into the
metadata.

Aggregate creation will run against the master server in a cluster. It will take some time for the
metadata changes to propagate to the slaves. The cluster refresh time is a user-controlled option
and results may be incorrect if a query hits a slave server before it is refreshed. It is the Oracle BI
Administrator’s responsibility to set an appropriate cluster refresh interval.

The NQSConfig.INI file contains the following optional parameter in the GENERAL section:

AGGREGATE_PREFIX = "user specified short prefix for dimension aggregates" ;

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ Creating Aggregates for Oracle BI Server
Queries

242

This parameter has a maximum of 8 characters and is specified if you want to add a prefix to
automatically generated dimension (level) aggregates. If not specified, the default prefix SA_ will be
used.

NOTE: Only the Oracle BI Administrators group is allowed to manage aggregates.

This section contains the following topics:

■ Identifying Query Candidates for Aggregation on page 242

■ About Writing the Create Aggregates Specification on page 242

■ Generating the SQL Script File on page 247

■ About Setting the Logging Level on page 247

■ Executing the SQL Script File to Create and Delete Aggregates on page 247

■ Post Creation Activities on page 247

Identifying Query Candidates for Aggregation
When creating aggregates you need to identify which queries would benefit substantially from
aggregated data. You will achieve the best results by aggregating to the highest level possible. To
identify slow running queries, perform the following tasks:

■ Enable usage tracking in the Oracle BI Server.

Usage tracking statistics can be used in a variety of ways, for example, database optimization,
aggregation strategies, and billing users or departments based on the resources they consume.
The Oracle BI Server tracks usage at the detailed query level. When you enable usage tracking,
statistics for every query are written to a usage tracking log file or inserted into a database table.

NOTE: It is strongly recommended that you use direct insertion into a database. For instructions,
refer to “Administering Usage Tracking” on page 219.

■ Analyze the query runtimes and identify the slowest running queries as candidates for
aggregation.

The run time for creating aggregates is dependent on the type of aggregates selected by the user.
Creating aggregates from large fact tables will be slower than from smaller tables. The Oracle BI
Administrator needs to carefully select the aggregates to be created.

About Writing the Create Aggregates Specification
To create the script file, you can use the Aggregate Persistence Wizard in the Administration Tool or
write the file manually.

NOTE: It is recommended that you use the Aggregate Persistence Wizard. For instructions, refer to
“Aggregate Persistence Wizard” on page 189.

Query Caching in the Oracle BI Server ■ Creating Aggregates for Oracle BI Server
Queries

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 243

If you do not want Oracle BI Server to modify your databases during aggregate creation, you can
use the Aggregate Persistence Wizard to create the SQL file. After creating the SQL, you can use your
database administration processes to create your aggregate tables.

Constraints Imposed During the Create Process
This section describes the constraints that are imposed during the create process.

Valid Measures
A valid measure must have a valid aggregation rule.

■ The following constraints apply to level-based measures:

■ If the level is grand total alias, then that dimension must not be present in the list of levels
for that aggregate specification.

■ Any other level defined for this measure, must be present in the list of levels for that
aggregate specification.

If the above constraints are not met, the entire aggregate specification will be discarded.

■ A measure will be ignored by the create process if any of the following conditions are true:

■ Measure is mapped to a session or repository variable.

■ Measure is a derived measure.

Measures that are ignored do not necessarily affect the aggregate specification. The remaining
measures will be used to create the aggregate.

Valid Levels
A valid level must have a valid primary key.

■ If a level is invalid, the aggregate specification will be discarded.

■ Attributes of a level or its primary key will be ignored, if any of the following conditions are true:

■ Attribute is mapped to session or repository variables.

■ Attributes are not from the same logical table.

Valid Aggregate Specification
A valid aggregate specification has the following properties:

■ Name length is between 1 and 18 characters (inclusive).

■ At least one valid level must be specified.

■ At least one valid measure must be specified.

■ Must have a valid connection pool.

■ Must have a valid output container (database/catalog/schema).

■ Connection pool and container must belong to the same database.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ Creating Aggregates for Oracle BI Server
Queries

244

■ Only one level per dimension can be specified.

■ Measures can only be from the same fact table.

■ All logical components of the specification must be from the same subject area.

An aggregate specification will be ignored if the name already exists in the output container because
level aggregates are scoped by the entire database. However, if different catalogs or schemas are
specified for the same fact aggregate name, it is allowed to have multiple facts with the same name
but different scope in the same database.

Guidelines for Writing the Create Aggregates Specification
All metadata names (except for logical fact columns) are fully qualified. There are two modes of
operation: Create and Delete.

It is strongly recommended to place all aggregate specifications under a single Create Aggregates
statement.

■ Begin the script file with a Delete statement. It is essential to delete system generated
aggregates before creating any new ones. This makes sure that data is consistent and it removes
invalid or incomplete aggregates before you run the Create operation. The following statement
is the syntax for deleting aggregates:

Delete aggregates;

■ The next statement should be a Create statement. The following is the syntax for creating
aggregates:

Create|Prepare aggregates

<aggr_name_1>

for logical_fact_table_1 [(logical_fact_column_1, logical_fact_column_2,…)]

at levels (level_1, level_2, …)

using connection pool <connection_pool_name_1>

in <schema_name_1>

[,<aggr_name_2>

for logical_fact_table_3 [(logical_fact_column_5, logical_fact_column_2,…)]

at levels (level_3, level_2, …)

using connection pool <connection_pool_name_2>

in <schema_name_2>] ;

■ Creating multiple aggregates. To specify more than one aggregate in a single Create Aggregates
statement, use the following guidelines:

■ Each of the multiple aggregate specifications are separated by a comma, and the entire
aggregate creation script is terminated with a semi-colon.

Query Caching in the Oracle BI Server ■ Creating Aggregates for Oracle BI Server
Queries

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 245

■ In this file, only one Delete Aggregates statement should be specified at the beginning. The
Oracle BI Administrator should make sure that only one delete is issued per ETL run (unless
a reset is called for).

CAUTION: Any aggregate scripts that are run after the first one should not have a Delete
Aggregates statement or all previously created aggregates will be removed.

■ Creating aggregates with surrogate keys. For detailed instructions, refer to “About Adding
Surrogate Keys to Dimension Aggregate Tables” on page 245

About Adding Surrogate Keys to Dimension Aggregate Tables
The join option default between fact and level aggregate tables uses primary keys from the level
aggregate. If the primary key of the level is large and complex (composite of many columns), the
join to the fact table will be expensive. A surrogate key is an artificially generated key, usually a
number. A surrogate key, in the level aggregate table, simplifies this join and removes unnecessary
columns (level primary key) from the fact table, resulting in a smaller-sized fact table. Adding
surrogate keys to the dimension (level) aggregate tables can simplify joins to the fact tables and
might improve query performance. Additionally, a surrogate key makes sure that each aggregate
table has a unique identifier.

There may be cases in which a level is shared among multiple fact tables. One fact may use surrogate
keys, and another may use primary keys from the dimension aggregate. The following are some
options for resolving this issue:

■ Set a metadata property for levels that indicates whether to use surrogate keys or primary keys.

■ Always create a surrogate key for a level aggregate (relatively low cost operation). Then decide
later if the fact aggregate should join to it using a surrogate or primary key.

An alternative to specifying the join type for each dimension is to specify if surrogate keys should be
used for the entire star. This would result in simpler syntax but would also restrict the available user
options and slow the aggregate creation process.

Surrogate Key Input for Create/Prepare Aggregates
The Oracle BI Administrator can create the aggregate star using the following join options:

■ Primary Keys (default, if no option is specified)

■ Surrogate Keys

Syntax for Create/Prepare Aggregates
The following syntax for create/prepare aggregates contains the change for [Using_Surrogate_Key].
The surrogate key option can be specified for each level. If unspecified, the fact and dimension tables
are joined using the primary key from the level aggregate.

Create|Prepare aggregates

<aggr_name_1>

[file <output_file_name>]

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ Creating Aggregates for Oracle BI Server
Queries

246

for logical_fact_table_1 [(logical_fact_column_1, logical_fact_column_2,…)]

at levels (level_1 [Using_Surrogate_Key], level_2, …)

using connection pool <connection_pool_name_1>

in <schema_name_1>

[,<aggr_name_2>

for logical_fact_table_3 [(logical_fact_column_5, logical_fact_column_2,…)]

at levels (level_3, level_2, …)

using connection pool <connection_pool_name_2>

in <schema_name_2>] ;

Surrogate Key Output From Create/Prepare Aggregates
The changes to the current process are restricted to the physical metadata layer in the repository
and the database.

When you use the UseSurrogateKeys join option, the following describes the results:

■ For a level aggregate, the following occurs:

■ In the physical metadata, the following occurs:

❏ The level aggregate table will have a new column called <level_name>_SKEY (check for
collisions). This is the surrogate key column for the dimension aggregate.

❏ The type of this column is UINT.

■ In the database, the following occurs:

❏ The level aggregate table will also have a corresponding column called
<level_name>_SKEY.

❏ It can be populated using RCOUNT ().

■ For a fact aggregate, the following occurs:

■ In the physical metadata, the following occurs:

❏ The fact aggregate table will no longer contain columns from the level's primary keys.

❏ Instead, a new column that corresponds to the level aggregate's surrogate key will be
added to the table.

❏ The type of this column will be identical to the level's surrogate key.

❏ The column will have the same name as that in the level aggregate (check for collisions).

❏ The fact table and the level table will be joined using this surrogate key only.

■ In the database, the following occurs:

❏ The fact aggregate table will also have the corresponding surrogate key.

❏ It is populated using new capabilities to be available through Populate.

Query Caching in the Oracle BI Server ■ Creating Aggregates for Oracle BI Server
Queries

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 247

Generating the SQL Script File
Now that you understand more about how to specify aggregates, you can write the aggregate logical
SQL or generate a SQL script file using the Aggregate Persistence Wizard.

NOTE: It is strongly recommended that you use the Aggregate Persistence Wizard because it
automatically enforces many of the constraints outlined in the previous section. If you choose to
write the SQL script manually, use the syntax as described in “Guidelines for Writing the Create
Aggregates Specification” on page 244.

About Setting the Logging Level
Trace logs will be logged to NQQuery.log if the logging level is at least 2. The logging events will
include the aggregate execution plan and the order in which the aggregates are created and deleted.
Higher logging levels provide more details about the query and execution plans.

Error logs will be logged to NQQuery.log if the logging level is at least 1 and to NQServer.log
regardless of the logging level.

Executing the SQL Script File to Create and Delete
Aggregates
After generating the SQL script file and setting the logging levels, you need to execute the SQL script.
You can run nQCmd.exe from the Command Line prompt or the Job Manager utility in the
Administration Tool.

NOTE: It is strongly recommended that you use Job Manager to run nQCmd.exe. For more
information, refer to Oracle Business Intelligence Scheduler Guide. If you choose to run nQCmd.exe,
a version can be found in the following Oracle BI installation folder:
[installdrivepath]:\OracleBI\server\Bin.

After executing the SQL script, aggregates are created and persisted in the Oracle BI Server
metadata as well as in the backend databases.

Post Creation Activities
This section discusses the following topics:

■ About Database Index Creation on page 248

■ About Error Handling on page 248

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ Cache Event Processing with an Event Polling
Table

248

About Database Index Creation
Currently, database table indexes are not generated automatically. If required, the database
Administrator has to manually create these indexes on the database tables. Since the dimension
tables are automatically generated, it is useful to set the logging level to 2 or higher to view the
Aggregate Creation Plan in NQQuery.log. This plan, along with the aggregate specifications, can be
used as a reference to locate automatically generated tables in the database.

You can manually embed dropping and building indexes in the logical SQL script using the EXECUTE
PHYSICAL capability. The following is an example of the statements that you might add to the
beginning of your script:

EXECUTE PHYSICAL CONNECTION POOL "SQL_Paint"."SQL_Paint" DROP INDEX demo_index1;

CREATE AGGREGATES......;

EXECUTE PHYSICAL CONNECTION POOL "SQL_Paint"."SQL_Paint" CREATE INDEX demo_index1
ON table1(col1);

About Error Handling
The following is a list of some reasons errors can occur:

■ Network failure.

■ No disk space on the database.

■ Bad aggregate request.

If there is an error in the creation of any aggregate, the entire aggregate request is aborted and
subsequent aggregates are not created. Aggregates that are already created and checked in, remain
checked in. If there are errors, you need to remove them at the time of the error or at the next ETL
run in one of the following ways:

■ Manually remove the aggregates from the metadata and the database.

■ Automatically remove all the aggregates using the Delete Aggregates specification.

Cache Event Processing with an Event
Polling Table
The use of an Oracle BI Server event polling table (event table) is a way to notify the Oracle BI Server
that one or more physical tables have been updated. Each row that is added to an event table
describes a single update event, such as an update occurring to the Product table in the
11308Production database. The Oracle BI Server cache system reads rows from, or polls, the event
table, extracts the physical table information from the rows, and purges stale cache entries that
reference those physical tables.

The event table is a physical table that resides on a database accessible to the Oracle BI Server.
Regardless of where it resides—in its own database, or in a database with other tables—it requires
a fixed schema, described in Table 27 on page 250. It is normally exposed only in the Physical layer
of the Administration Tool, where it is identified in the Physical Table dialog box as being an Oracle
BI Server event table.

Query Caching in the Oracle BI Server ■ Cache Event Processing with an Event Polling
Table

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 249

The use of event tables is one of the most accurate ways of invalidating stale cache entries, and it
is probably the most reliable method. It does, however, require the event table to be populated each
time a database table is updated (refer to “Populating the Oracle BI Server Event Polling Table” on
page 253). Also, because there is a polling interval in which the cache is not completely up to date,
there is always the potential for stale data in the cache.

A typical method of updating the event table is to include SQL INSERT statements in the extraction
and load scripts or programs that populate the databases. The INSERT statements add one row to
the event table each time a physical table is modified. After this process is in place and the event
table is configured in the Oracle BI repository, cache invalidation occurs automatically. As long as the
scripts that update the event table are accurately recording changes to the tables, stale cache entries
are purged automatically at the specified polling intervals.

Setting Up Event Polling Tables on the Physical
Databases
This section describes how to set up the Oracle BI Server event polling tables on physical databases.

Polling Table Structure
You can set up a physical event polling table on each physical database to monitor changes in the
database. You can also set up the event table in its own database. The event table should be updated
every time a table in the database changes. The event table needs to have the structure shown in
Table 27 on page 250; some columns can contain null values depending on where the event table
resides.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ Cache Event Processing with an Event Polling
Table

250

The column names for the event table are suggested; you can use any names you want. However,
the order of the columns has to be the same as shown in Table 27 on page 250. Sample CREATE
TABLE statements to create an event polling table are shown in “Sample Event Polling Table CREATE
TABLE Statements” on page 251.

Table 27. Event Polling Table Column Names

Event Table
Column Name Data Type Description

CatalogName CHAR or
VARCHAR

The name of the catalog where the physical table that
was updated resides.

Populate the CatalogName column only if the event table
does not reside in the same database as the physical
tables that were updated. Otherwise, set it to the null
value.

DatabaseName CHAR or
VARCHAR

The name of the database where the physical table that
was updated resides. This is the name of the database as
it is defined in the Physical layer of the Administration
Tool. For example, if the physical database name is
11308Production, and the database name that represents
it in the Administration Tool is SQL_Production, the polled
rows in the event table has to contain SQL_Production as
the database name.

Populate the DatabaseName column only if the event
table does not reside in the same database as the
physical tables that were updated. Otherwise, set it to the
null value.

Other CHAR or
VARCHAR

Reserved for future enhancements. This column must be
set to a null value.

SchemaName CHAR or
VARCHAR

The name of the schema where the physical table that
was updated resides.

Populate the SchemaName column only if the event table
does not reside in the same database as the physical
tables being updated. Otherwise, set it to the null value.

TableName CHAR or
VARCHAR

The name of the physical table that was updated. The
name has to match the name defined for the table in the
Physical layer of the Administration Tool.

Values cannot be null.

Query Caching in the Oracle BI Server ■ Cache Event Processing with an Event Polling
Table

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 251

The Oracle BI Server needs to have read and write permission on the event polling table. The server
reads the event table at specified intervals to look for changed data. Applications add rows to the
event table when database tables are modified (for example, during a load operation). When there
are rows in the event table, there is changed data in the underlying databases. The server then
invalidates any cache entries corresponding to the changed physical tables and periodically deletes
obsolete rows from the event table. The next time it checks the event table, the process repeats.

NOTE: A single event polling table cannot be shared by multiple Oracle BI Servers. When you set up
multiple Oracle BI Servers, you need to create an event polling table for each one.

To allow Oracle BI Server to have write access to the event polling table but not to any other tables
in a database, perform the following tasks:

■ Create a separate physical database in the Physical layer of the Administration Tool with a
privileged connection pool.

■ Assign a user to the connection pool that has delete privileges.

■ Populate the privileged database with the event table.

The Oracle BI Server will have write access to the event polling table, but not to any tables that are
used to answer user queries.

Sample Event Polling Table CREATE TABLE Statements
The following are sample CREATE TABLE statements for SQL Server 7.0 and Oracle 8i. These CREATE
TABLE statements create the structure required for an Oracle BI Server event polling table. In these
statements, the table created is named UET. It resides in the same database as the physical tables
that are being updated.

NOTE: The column lengths need to be large enough to represent the object names in your repository.

The following is the CREATE TABLE statement for SQL Server 7.0:

UpdateTime DATETIME The time when the update to the event table occurs. This
needs to be a key (unique) value that increases for each
row added to the event table. To make sure a unique and
increasing value, specify the current timestamp as a
default value for the column. For example, specify
DEFAULT CURRENT_TIMESTAMP for Oracle 8i.

Values cannot be null.

UpdateType INTEGER Specify a value of 1 in the update script to indicate a
standard update. (Other values are reserved for future
use.)

Values cannot be null.

Table 27. Event Polling Table Column Names

Event Table
Column Name Data Type Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ Cache Event Processing with an Event Polling
Table

252

// SQL Server 7.0 Syntax
create table UET (
 UpdateType Integer not null,
 UpdateTime datetime not null DEFAULT CURRENT_TIMESTAMP,
 DBName char(40) null,
 CatalogName varchar(40) null,
 SchemaName varchar(40) null,
 TableName varchar(40) not null,
 Other varchar(80) null DEFAULT NULL
)

The following is the CREATE TABLE statement for Oracle 8i:

// Oracle 8i syntax
create table UET (
 UpdateType Integer not null,
 UpdateTime date DEFAULT SYSDATE not null,
 DBName char(40) null,
 CatalogName varchar(40) null,
 SchemaName varchar(40) null,
 TableName varchar(40) not null,
 Other varchar(80) DEFAULT NULL
);

You might need to modify these CREATE TABLE statements slightly for different versions of SQL
Server and Oracle, or for other databases. Additionally, if you want to specify any explicit storage
clauses, you need to add the appropriate clauses to the statements.

Making the Event Polling Table Active
After the table is created on the physical database, you can make it active in the Oracle BI Server.

To make the polling table active

1 Import the table to the Physical layer.

2 Include it in the group of Oracle BI Server event polling tables using the Tools > Utilities > Oracle
Event Tables menu item, and set a polling interval.

To import the polling table into the Physical layer, perform the following steps from an open
repository.

To import the table into the Physical layer

1 Select File > Import...

2 Select the data source containing the event table to import, and then click OK.

The Import dialog box appears.

3 Check the Tables option to import the table metadata.

Query Caching in the Oracle BI Server ■ Cache Event Processing with an Event Polling
Table

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 253

4 Navigate to the event polling table, select the table and either click the Import button or drag
and drop it into the Physical layer.

This imports the event table to the Physical layer. If you have multiple event polling tables, repeat
this procedure for each event table.

NOTE: Be sure the data source specified for the event table has read and write access to the event
table. The repository will both read the table and delete rows from it, so it needs write permission.
Event tables do not need to be exposed in the Business Model and Mapping layer.

After one or more polling tables are present in the Physical layer, you need to include them in the
group of event polling tables.

To mark the table object as an Event Polling Table

1 Click on the Tools > Utilities menu item.

2 Select the option Oracle BI Event Tables from the list of options.

3 Click Execute.

4 Select the table to register as an Event Table and click the >> button.

5 Specify the polling frequency in minutes, and click OK.

The default value is 60 minutes.

NOTE: You should not set the polling frequency to less than 10 minutes. If you want a very short
polling interval, consider marking some or all of the tables noncachable.

When a table has been registered as an Oracle BI Server event table, the table properties change.
Registration as an event table removes the option to make the table cachable, as there is no reason
to cache results from an event polling table.

Populating the Oracle BI Server Event Polling Table
The Oracle BI Server does not populate the event polling table. The event table is populated by
inserting rows into it each time a table is updated. This process is normally set up by the database
Administrator; typically, the load process is modified to insert a row into the polling table each time
a table is modified. This can be done from the load script, using database triggers (in databases that
support triggers), from an application, or manually. If the process of populating the event table is
not done correctly, the Oracle BI Server cache purging will be affected; the server assumes the
information in the polling table to be correct and up to date.

Troubleshooting Problems with an Event Polling Table
If you experience problems with cache polling, you can search the Oracle BI Server activity logs for
any entries regarding the server’s interaction with the event table.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ Making Changes to a Repository

254

■ The NQServer.log file logs activity automatically about the Oracle BI Server. The default location
for this file is the Log folder in the Oracle BI Server software installation folder (\OracleBI\Log).
Log entries are self-explanatory and can be viewed using a text editor.

■ When the Oracle BI Server polls the event table, it will log the queries in the NQQuery.log file
using the Oracle BI Administrator user ID unless the logging level for the Oracle BI Administrator
is set to 0. You should set the logging level to 2 for the Oracle BI Administrator user ID to provide
the most useful level of information. The default location for the NQQuery.log file is the Log folder
in the Oracle BI Server software installation folder (\OracleBI). For more information about user-
level logging, refer to “Query Caching in the Oracle BI Server” on page 229.

Making Changes to a Repository
When you modify Oracle BI repositories, the changes can have implications for entries that are stored
in the cache. For example, if you change the definition of a physical object or a dynamic repository
variable, cache entries that reference that object or variable may no longer be valid. These changes
might result in the need to purge the cache. There are three scenarios to be aware of—when the
changes occur in online mode, when they occur in offline mode, and when you are switching between
repositories.

Online Mode
When you modify an Oracle BI repository in online mode, any changes you make that will affect cache
entries automatically result in a purge of all cache entries that reference the changed objects. The
purge occurs when you check in the changes. For example, if you delete a physical table from a
repository, all cache entries that reference that table are purged upon check in. Any changes made
to a business model in the Business Model and Mapping layer will purge all cache entries for that
business model.

Offline Mode
When you modify an Oracle BI repository in offline mode, you might make changes that affect
queries stored in the cache and render those cached results obsolete. Because the repository is not
loaded by the server during offline mode edits, the server has no way of determining if the changes
made affect any cached entries. The server therefore does not automatically purge the cache after
offline changes. If you do not purge the cache, there might be invalid entries when the repository is
next loaded. Unless you are sure that there are no entries in the cache that are affected by your
offline changes, you should purge the cache for any business model you have modified.

Switching Between Repositories
If you intend to remove a repository from the configuration of the Oracle BI Server, make sure to
purge the cache of all cache entries that reference the repository. Failure to do so will result in a
corrupted cache. For information, refer to “Purging Cache” on page 256.

Query Caching in the Oracle BI Server ■ Using the Cache Manager

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 255

Using the Cache Manager
The Cache Manager provides Oracle BI Administrators the capability of viewing information about the
entire query cache, as well as information about individual entries in the query cache associated with
the open repository. It also provides the ability to select specific cache entries and perform various
operations on those entries, such as viewing and saving the cached SQL call, or purging them.

To open the Cache Manager
■ In the Administration Tool toolbar, select Manage > Cache.

Select the Cache tab on the left explorer pane to view the cache entries for the current repository,
business models, and users. The associated cache entries are reflected in the right pane, with the
total number of entries shown in the view-only field at the top.

The cache entry information and its display sequence is controlled by your Options settings (select
Edit > Options... from the Cache Manager, or Tools > Options > Cache Manager tab from the
Administration Tool). Information may include the options in Table 28 on page 255.

Table 28. Cache Options

Option Description

Business model The name of the business model associated with the cache entry.

Column count The number of columns in each row of this cache entry’s result set.

Created The time the cache entry’s result set was created.

Creation elapsed
time

The time, in seconds, needed to create the result set for this cache entry.

NOTE: The value stored in the cache object descriptor on disk is in units of
milliseconds. The value is converted to seconds for display purposes.

Full size Full size is the maximum size used, considering variable length columns,
compression algorithm, and other factors. The actual size of the result set will
be smaller than Full size.me, in seconds, needed to create the result set for
this cache entry.

Last used The last time the cache entry’s result set satisfied a query. (After an
unexpected shutdown of the Oracle BI Server, the last used time may
temporarily have a stale value—a value that is older than the true value.)

Query Server The Oracle BI Server that serviced the query.

Row count The number of rows generated by the query.

Row size The size of each row (in bytes) in this cache entry’s result set.

SQL The SQL statement associated with this cache entry.

Use count The number of times this cache entry’s result set has satisfied a query (since
Oracle BI Server startup).

User The ID of the user who submitted the query that resulted in the cache entry.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ Using the Cache Manager

256

Expand the repository tree to display all the business models with cache entries, and expand the
business models to display all users with cache entries. The right pane displays only the cache entries
associated with the selected item in the hierarchical tree.

Displaying Global Cache Information
Select Action > Show Info... to display global cache information. Table 29 on page 256 describes the
information that appears in the Global Cache Information window.

With the Cache Manager as the active window, press F5, or select Action > Refresh to refresh the
display. This retrieves the current cache entries for the repository you have open, as well as the
current global cache information. If the DSN is clustered, information about all repositories in the
cluster will be displayed.

Purging Cache
Purging cache is the process of deleting entries from the query cache. You can purge cache entries
in the following ways:

Table 29. Global Cache Information

Column Description

Amount of space still
available for cache storage
use

The amount of space, in megabytes, still available for cache storage.

Amount of space used on
disks containing cache
related files

The total amount of space, in megabytes, used on the disk
containing cache-related files (not just space used for the cache-
related files).

Maximum allowable number
of entries in cache

The maximum number of entries that may be in your cache, from
the MAX_CACHE_ENTRIES parameter in the NQSConfig.INI file.

Maximum allowable number
of rows per cache entry
result set

The maximum number of rows allowed for each cache entry’s result
set, from the MAX_ROWS_PER_CACHE_ENTRY parameter in the
NQSConfig.INI file.

Number of entries currently
in cache

The current number of entries in your global cache. These entries
may relate to multiple repositories.

Number of queries not
satisfied from cache since
startup of Oracle BI Server

Cache misses, since the last time the Oracle BI Server was started.

Number of queries satisfied
from cache since startup of
Oracle BI Server

Cache hits, since the last time the Oracle BI Server was started.

Query Caching in the Oracle BI Server ■ About the Refresh Interval for XML Data Sources

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 257

■ Manually, using the Administration Tool Cache Manager facility (in online mode).

■ Automatically, by setting the Cache Persistence Time field in the Physical Table dialog box for a
particular table.

■ Automatically, by setting up an Oracle BI Server event polling table.

■ Automatically, as the cache storage space fills up.

To purge the cache manually with the Cache Manager facility

1 Use the Administration Tool to open a repository in online mode.

2 Select Manage > Cache to open the Cache Manager dialog box.

3 Select Cache or Physical mode by selecting the appropriate tab in the left pane.

4 Navigate the explorer tree to display the associated cache entries in the right pane.

5 Select the cache entries to purge, and then select Edit > Purge to remove them.

■ In Cache mode, select the entries to purge from those displayed in the right pane.

■ In Physical mode, select the database, catalog, schema or tables to purge from the explorer
tree in the left pane.

In Cache mode, you can purge:

■ One or more selected cache entries associated with the open repository.

■ One or more selected cache entries associated with a specified business model.

■ One or more selected cache entries associated with a specified user within a business model.

In Physical mode, you can purge:

■ All cache entries for all tables associated with one or more selected databases.

■ All cache entries for all tables associated with one or more selected catalogs.

■ All cache entries for all tables associated with one or more selected schemas.

■ All cache entries associated with one or more selected tables.

Purging deletes the selected cache entries and associated metadata. Select Action > Refresh or press
F5 to refresh your cache display.

About the Refresh Interval for XML Data
Sources
This section provides information about the refresh interval for XML data sources.

For more information, refer to “Using XML as a Data Source for the Oracle BI Server” on page 335.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Query Caching in the Oracle BI Server ■ About the Refresh Interval for XML Data Sources

258

Typically, XML data sources are updated frequently and in real time. Setting a refresh interval for
XML data sources is analogous to setting cache persistence for database tables. The refresh interval
is a time interval after which the XML data sources are to be queried again directly, rather than using
results in cache. This refresh interval is specified on the XML tab of the Connection Pool dialog box.

The default interval setting is Infinite, meaning that the XML data source is not automatically
refreshed.

The refresh interval setting specifies the time interval after which the Oracle BI Server XML Gateway
connection will be refreshed.

■ For URLs that begin with http:// or https://, the gateway will refresh when it detects that the
interval has expired.

■ For URLs that reside on a local or network drive, the gateway will refresh when the interval has
expired and the system detects that the URLs have been modified.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 259

12 Connectivity and Third-Party
Tools in Oracle BI Server

The Oracle BI Server provides the functionality for you to connect to it through many client tools and
applications. This section contains the following topics:

■ Configuring Oracle BI ODBC Data Source Names (DSNs) on page 259

■ ODBC Conformance Level on page 261

■ Third-Party Tools and Relational Data Source Adapters on page 262

■ Importing Metadata on page 263

■ Exchanging Metadata with Databases on page 263

■ Using Materialized Views in the Oracle Database with Oracle BI on page 273

■ Using IBM DB2 Cube Views with Oracle BI on page 277

Configuring Oracle BI ODBC Data Source
Names (DSNs)
In a non-English environment, you cannot use a direct ODBC connection to Oracle BI Server. Only
the Oracle BI Presentation Services client can connect directly to Oracle BI Server in a non-English
environment.

This procedure applies to Windows-based operating systems.

To create a new data source

1 Open the Windows ODBC Control Panel applet by selecting Start > Settings > Control Panel, and
then double-click the ODBC Data Sources icon.

If you are running Windows 2000 or XP, the Data Sources (ODBC) icon is available under
Administrative Tools.

2 In the ODBC Data Source Administrator dialog box, click the System DSN tab, and then click Add.

3 Select the Oracle BI Server driver from the Create New Data Source dialog, and then click Finish.

The first DSN Configuration screen appears.

4 Type a name for the data source in the Name field.

5 (Optional) Type a description in the Description field.

6 If this data source will not participate in a cluster, in the Server field at the bottom of the screen,
select the machine on which the Oracle BI Server is running.

If the server name does not appear in the drop-down list, type the name in the Server field. This
needs to be the NetBIOS name (computer name) of the machine.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Connectivity and Third-Party Tools in Oracle BI Server ■ Configuring Oracle BI ODBC
Data Source Names (DSNs)

260

7 If this data source is to participate in a cluster, do the following:

a Select the option Is this a Clustered DSN?

This causes the fields Primary Controller and Secondary Controller to become active, and the
Server field to become inactive.

b Type the name of the machine that is specified as the primary Cluster Controller (from the
parameter PRIMARY_CONTROLLER in the NQClusterConfig.INI file). This needs to be the
NetBIOS name (computer name) of the machine.

c If a secondary Cluster Controller has been specified (from the parameter
SECONDARY_CONTROLLER in the NQClusterConfig.INI file), type the name of the machine in the
Secondary Controller field. The computer name must be unique from that of the primary Cluster
Controller.

d To test the connection to the Cluster Controller, click Test Connect.

A message indicates if the connection was tested successfully. If the test is not successful,
correct any error identified in the message and test the connection again.

8 In the next DSN Configuration screen, type a valid user ID and password for the repository to
which you want the data source to connect. If you are using Windows operating system
authentication, leave this field blank. You will then log into the Oracle BI Server with the logon
ID of your Windows account.

9 If you want to save your logon ID in the repository, check the option Save login ID.

If you check this option, you will not have to type your logon information each time you connect.

10 In the Port field, specify the TCP/IP port the Oracle BI Server is using for client/server
communications.

The default port is 9703. This port number should match the port number specified in the
parameter RPC_SERVICE_OR_PORT in the Server section in the NQSConfig.INI file. If you change
the port number in the configuration file, remember to reconfigure any affected ODBC data
sources to use the new port number.

NOTE: The default client/server communication method for the Oracle BI Server has changed
from Distributed component object model (DCOM) to TCP/IP. Support for DCOM will be
discontinued in a future release. For sites already running the Oracle BI Server that want to
continue to use DCOM until support is discontinued, leave this field set to its default value and
define a Windows system environment variable named NQUIRE_DCOM to force the usage of
DCOM. Set the variable value to 1. (To define a system environment variable, select System from
the Control Panel, click the Advanced tab, and then click the Environment Variables button to
open the Environment Variables dialog box.)

11 If you want to connect to a repository other than the default repository, select the option Change
the default repository to, and then type the logical name of the repository (as it appears in the
NQSConfig.INI file) to which you want to connect in the field below the check box.

If this option is not selected, the data source will connect to the repository marked as the default
repository in the NQSConfig.INI file, or to the first repository listed if none of the entries is
marked as the default.

Connectivity and Third-Party Tools in Oracle BI Server ■ ODBC Conformance Level

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 261

12 Select the option Connect to Oracle BI Server to obtain default settings for additional
configuration.

The setup will attempt to connect to the server to obtain information about the business models
in the repository. If you do not select this option, you can still configure the DSN by manually
entering the information in the next configuration screen.

13 Click Next to advance to the next window.

14 To change the default catalog, select the option Change the default catalog to, and then type the
name of the catalog in the field below the check box.

The default catalog is the catalog folder that appears at the top of the Presentation layer in the
Administration Tool. For the DSN used by Oracle BI Presentation Services, it is better to leave
this check box clear with the drop-down box showing no entry.

You can also specify user IDs and passwords for the underlying databases to which the Oracle BI
Server connects. If you specify database user IDs and passwords, those are used to connect to
the databases if user-specific database logon information is configured in the connection pools,
as described in “Creating or Changing Connection Pools” on page 67. The database-specific user
IDs and passwords allow privileged users to connect to the underlying databases at the level of
authority granted to those users in the databases.

15 At this point, you can change the password for the Oracle BI user the DSN logs in as (if the server
is running in a writable mode). To change the password, you must have entered your logon
information and selected the option Connect to Oracle BI in the previous screen. The new
password is stored in encrypted form in the repository.

ODBC Conformance Level
The Oracle BI Server supports the following ODBC calls from client applications:

■ SQLAllocConnect

■ SQLAllocEnv

■ SQLAllocStmt

■ SQLBindCol

■ SQLCancel

■ SQLColumns

■ SQLConnect

■ SQLDescribeCol

■ SQLDisconnect

■ SQLDriverConnect

■ SQLError

■ SQLExecDirect

■ SQLExecute

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Connectivity and Third-Party Tools in Oracle BI Server ■ Third-Party Tools and
Relational Data Source Adapters

262

■ SQLExtendedFetch

■ SQLFetch

■ SQLFreeConnect

■ SQLFreeEnv

■ SQLFreeStmt

■ SQLGetConnectOption

■ SQLGetCursorName

■ SQLGetData

■ SQLGetFunctions

■ SQLGetInfo

■ SQLGetStmtOption

■ SQLGetTypeInfo

■ SQLColAttributes

■ SQLNumResultCols

■ SQLPrepare

■ SQLRowCount

■ SQLSetConnectOption

■ SQLSetStmtOption

■ SQL Tables

Oracle BI ODBC supports full scrollable cursors with static, dynamic, forward only, and key set driven
cursors.

Oracle BI ODBC supports asynchronous and synchronous processing and cancellation.

Third-Party Tools and Relational Data
Source Adapters
The Oracle BI Server allows connectivity between a wide variety of client tools and a wide variety of
data sources. For information, refer to System Requirements and Supported Platforms.

Connectivity and Third-Party Tools in Oracle BI Server ■ Importing Metadata

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 263

Importing Metadata
You can import metadata from a data source to an Oracle BI repository. The metadata is used to
establish physical table information in the Physical layer of the Administration Tool.

Metadata imports to an Oracle BI repository have to occur through an ODBC or native database
connections to the underlying data sources. Metadata can also be imported from software such as
Microsoft Excel through an ODBC connection.

For the metadata import procedure, refer to “Process of Creating the Physical Layer from Relational
Data Sources” on page 56.

Using Query and Reporting Tools
You can connect to the Oracle BI Server with a wide variety of ODBC-compliant query and reporting
tools. Connecting with a query tool is a matter of configuring a data source using the Oracle BI ODBC
driver and then using the Oracle BI DSN to connect to a repository from the query tool.

The Presentation layer allows you to configure the presentation of a business model to be consistent
with the rules and conventions of your tools to take advantage of the Oracle BI Server’s analytical
engine and data abstraction. This makes it much easier to include columns involving complex
aggregation and calculation rules in queries and reports. Also, if your organization is currently using
query and reporting tools, using the Oracle BI Server as a data source will make these tools more
valuable and will simplify the work entailed when using them.

Exchanging Metadata with Databases
If your organization has installed either an Oracle Database or an IBM DB2 Database, then you can
use these databases to enhance the data warehouse performance and functionality of queries that
run on the Oracle BI Server. By exchanging Oracle BI metadata from the Oracle BI Server with the
Oracle Database or with the IBM DB2 Database, you allow the database to accelerate the
performance of data warehouse queries by using the following tools:

■ In the Oracle Database, Oracle Database Summary Advisor to create materialized views and
index recommendations on optimizing performance.

■ In the IBM DB2 Database, IBM DB2 Cube Views to create materialized query tables (MQTs).

Both of these tools preaggregate the relational data and improve query performance.

Finding Information on Metadata Exchange
The sections in the following list provide information on exchanging metadata:

■ Using Materialized Views in the Oracle Database with Oracle BI on page 273

■ Using IBM DB2 Cube Views with Oracle BI on page 277

The “Generating the Import File” section provides information that applies to both types of databases.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Connectivity and Third-Party Tools in Oracle BI Server ■ Exchanging Metadata with
Databases

264

Generating the Import File
Both the Oracle Database Metadata Generator and the DB2 Cube Views Generator create the files
that are needed to import metadata from Oracle BI into the Oracle Database Summary Advisor or
an IBM DB2 Database. Before reading this section, read “Finding Information on Metadata Exchange”
on page 263.

This section contains the following topics that are common to the two generators:

■ Running the Generator on page 264

■ About the Metadata Input File on page 265

■ About the Output Files on page 265

■ Troubleshooting Errors from the Generator on page 266

■ Metadata Conversion Rules and Error Messages on page 267

Running the Generator
The Oracle Database Metadata Generator and the DB2 Cube Views Generator are invoked from the
command line or embedded in a batch file. The command-line executable is named
SAMetaExport.exe, and has the following syntax:

SAMetaExport -r "PathAndRepositoryFileName" -u <UserName> -p <Password>
-f "InputFileNameAndPath" [-t “ORACLE” or “DB2”]

Table 30 contains descriptions of the parameters in the command-line executable file.

Table 30. Parameters for SAMetaExport.exe

Parameter Definition Additional Information

-r Repository file name
and full path

Quotation marks are required for the file name and path only
if the file path is in long format or has spaces. Use the full
path if the file is not in the current directory.

-u User name User name that will allow access to the repository.

-p Password Password for the user name. If the repository password is
empty, then do not use the password parameter.

-f Input file name and
full path

Quotation marks are required for the file name and path only
if the file path is in long format or has spaces. Use the full
path if the file is not in the current directory. You specify
input files so that you do not have to type all the required
information at the command line, and so that you can type
international characters. For more information about the
input file, refer to About the Metadata Input File on page 265.

-t ORACLE or DB2 Indication for either the Oracle or IBM DB2 Database. You
can omit this parameter because the database type is
automatically detected based on information in the
repository.

Connectivity and Third-Party Tools in Oracle BI Server ■ Exchanging Metadata with
Databases

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 265

About the Metadata Input File
The input file is a text file that contains the parameters that are described in Table 31.

The following text shows a sample metadata input file:

BUSINESS_MODEL= "Paint"

PHYSICAL_DATABASE ="SQL_Paint"

RUN_AS_USER = "Administrator"

OUTPUT_FOLDER = "C:\OracleBI"

About the Output Files
Each Generator creates different types of output files, as described in the following list:

■ Oracle Database Metadata Generator: Generates a SQL file that is encoded in UTF8 and stored
in the specified output folder. The file name includes the name of the business model in the Cube
Model, such as my_business_model.sql.

■ DB2 Cube Views Generator: Generates the following files in the specified output folder:

Table 31. Cube Metadata Input File Parameters

Input File Name Description

BUSINESS_MODEL The name of the business model in the logical layer of the Oracle
BI repository that contains the metadata that you want to export.
If the business model is not found in the repository, then an error
message is displayed.

PHYSICAL_DATABASE The name of the database in the physical layer of the Oracle BI
repository that contains the metadata that you want to export.
When the business model derives from more than one database,
then it eliminates metadata from all databases other than the one
specified here. When the physical database is not found in the
repository, an error message is displayed.

RUN_AS_USER The user name of the user whose visibility needs to be duplicated
for the metadata export. This cannot be empty. If the user is not
found in the repository, then an error message is displayed.

OUTPUT_FOLDER The full path and file name of the folder to which the SQL file will
be written. If the folder does not exist when you run the Oracle
Database Metadata Generator, it will be created. For more
information about the output files, refer to “About the Output Files”
on page 265.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Connectivity and Third-Party Tools in Oracle BI Server ■ Exchanging Metadata with
Databases

266

■ XML files (encoded in UTF8). One XML file is created for each specified business model. It
contains all objects that were converted to cubes. Additionally, objects in the repository will
be mapped to similar objects in the IBM Cube Views metadata. For a list of objects that will
not be converted, refer to “Metadata Conversion Rules and Error Messages” on page 267.

The name of the XML file will match the business model name (without spaces), followed by
the XML extension. For example, SalesResults.xml. The following is the syntax of the XML file
name:

[BusinessModelNameWithNoSpaces].xml

■ A SQL file that contains the alias generation DLL. A SQL file is created for each specified
business model only if aliases exist in the physical layer databases that are referenced in the
specified business model. The alias file contains SQL commands that will create the aliases
in the DB2 database. The name of the SQL file will match the business model name (without
spaces), followed by the SQL extension. For example, SalesResults-alias.sql. The following is
the syntax of the alias-SQL file name:

[BusinessModelNameWithNoSpaces]-alias.sql

Troubleshooting Errors from the Generator
Error messages indicate that the Generator was unable to complete some or all of its tasks. After
starting the Generator, you might observe the following error messages:

■ Unable to write to Log file: <log_file_name>.

The log file specified in the NQSConfig.INI file might contain the wrong path, the user might not
have write permissions to that folder, or the disk could be out-of-space.

■ Run_as_user, <user_name>, is invalid.

The user name is incorrect.

■ Repository, <repository_name>, is invalid or corrupt.

The repository name might be incorrect, it might not exist in the given path, or the user might
not have permission to read it.

■ Physical Database, <database_name>, is invalid.

The physical database name is incorrect.

■ Business Model, <model_name>, is invalid.

The business model name is correct.

■ Authentication information provided is invalid.

The specified username or password is incorrect.

■ Path: "<path_name>" is invalid.

The path or file name is incorrect.

Connectivity and Third-Party Tools in Oracle BI Server ■ Exchanging Metadata with
Databases

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 267

Metadata Conversion Rules and Error Messages
When the Generator creates the output files, it also maps the metadata objects in the Oracle BI
repository to similar objects in the metadata of the Oracle Database or the IBM DB2 Database.

This section explains the rules used to identify Oracle BI metadata that cannot be translated
(converted) into either SQL or XML format. These rules are necessary because the Oracle Database
and IBM Cube Views do not support some of the metadata constructs that are allowed by Oracle BI.

Dimensional metadata in the SQL or XML file will be generated at the logical fact table source level.
If a logical fact table source has an invalid logical dimension table source, then the logical dimension
table source will be invalidated. If the logical fact table source is invalid, then all the logical dimension
table sources that are linked to it will also be invalidated. Invalid Oracle BI repository metadata
elements will not be converted to cubes in the SQL or XML file.

When a rule is violated, the Generator writes the error messages and the metadata that violated the
rule to a log file. You specify the name of this log file in the LOG_FILE_NAME parameter in the
NQSConfig.INI file. For information about parameters in the Cube Views section of the NQSConfig.INI
file, refer to Oracle Business Intelligence Infrastructure Installation and Configuration Guide.

Conversion Rules for Oracle Database
The following list provides the rules for converting Oracle BI metadata into objects in the Oracle
Database:

■ Attributes that contain expressions in the logical table cannot be exported.

■ Tables joined using complex joins are not considered.

■ Tables that are opaque views are not considered.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Connectivity and Third-Party Tools in Oracle BI Server ■ Exchanging Metadata with
Databases

268

■ Columns used as part of a key in one level cannot be used as part of another level key. Consider
the example that is shown in the following figure of a repository that contains a dimension called
Source A and a dimension called Source B. The Source A dimension shares the T1 table with
Source B. The T24Key is used in both the join to the T2 table (T24Key and T2Key) and in the join
to table T4 (T24Key and T4Key).

The Oracle Database prohibits the use of columns as keys in multiple levels. This prohibition
requires the Oracle Database Metadata Generator to eliminate one of the two joins, usually the
join that is encountered first. Therefore, because the T1-T4 join was encountered first, the joins
to T2 and T3 are lost, which prevents the Attr2 and Attr3 attributes in tables T2 and T3 from
being exported.

Connectivity and Third-Party Tools in Oracle BI Server ■ Exchanging Metadata with
Databases

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 269

Conversion Rules for IBM DB2 Database
Table 32 lists the rules used to validate Oracle BI repository metadata elements, error messages that
are written to the log file if the rule is violated, and an explanation of what caused the rule violation.
The error messages help you determine why a particular Oracle BI metadata object was not exported
to the XML file.

Table 32. Validation Rules for Metadata Elements

Rule Message Explanation

ComplexJoinFa
ctsRule

[Fact Logical Table Source]Complex
Physical Joins not supported

%qn has a complex Join %qn between
Physical Tables %qn and %qn

If the physical fact tables are
connected through complex joins, the
join is not supported. A complex join is
defined as any join between two tables
that do not have a foreign key
relationship.

ComplexJoinDi
msRule

[Dimension Logical Table
Source]Complex Physical Joins not
supported

%qn has a complex Join %qn between
Physical Tables %qn and %qn

If the dimension physical tables are
connected through a complex join,
then that join is not supported.

ComplexJoinFa
ctDimRule

[Fact Logical Table Source ->
Dimension Logical Table Source]
Complex Physical Joins not supported.

%qn has a complex Join %qn between
Physical Tables %qn and %qn.

If a dimension physical table and a fact
physical table are connected through a
complex join, that join is not supported
and the dimension table source is
invalidated.

OpaqueViewFac
tRule

[Fact Logical table Source] Physical SQL
Select Statements not supported.

%qn uses the SQL Select Statement
%qn.

When the physical fact table is
generated by a SQL select statement,
the logical fact table source that
contains the table is invalidated. All
logical dimension table sources
connected to this logical fact table
source are also invalidated. This
construct allows subquery processing.

OpaqueViewDi
mRule

[Dimension Logical table Source]
Physical SQL Select Statements not
supported.

%qn uses the SQL Select Statement
%qn.

When a physical dimension table is
generated by a SQL select statement,
the logical dimension table source
containing that table is invalidated.

OuterJoinFactR
ule

[Fact Logical Table Source] Physical
Outer Joins not supported.

%qn has an outer join %qn between
physical tables %qn and %qn.

If the logical fact table source has an
outer join linkage, then that logical fact
table source is invalidated and all
logical dimension table sources linked
to this source will also be invalidated.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Connectivity and Third-Party Tools in Oracle BI Server ■ Exchanging Metadata with
Databases

270

OuterJoinDimR
ule

[Dimension Logical Table Source]
Physical Outer Joins not supported.

%qn has an outer join %qn between
physical tables %qn and %qn.

If the logical dimension table source
has an outer join linkage, that logical
dimension table source is invalidated.

WhereClauseFa
ctRule

[Fact Logical Table Source] WHERE
clauses are not supported.

%qn has a where condition %s.

If the fact table source uses a WHERE
clause to filter the data that is loaded,
then this table source is invalidated.

WhereClauseDi
mRule

[Dimension Logical Table Source]
WHERE clauses are not supported.

%qn has a where condition %s.

If the dimension table source uses a
WHERE clause to filter the data that is
loaded, this table source is invalidated.

TwoJoinFactDi
mRule

[Fact Logical Table Source ->
Dimension Logical Table Source]
Multiple Joins between sources not
supported.

 %qn and %qn have at least the
following joins : %qn, %qn.

If a physical fact table is linked to two
dimension tables from the same
dimension source (if the fact table is
not exclusively linked to the most
detailed table in the table source), the
dimension table source is invalidated.

HiddenManyMa
nyRule

[Fact Logical Table Source ->
Dimension Logical Table Source] Join
between (physical or logical?) fact and
dimension is not on the most detailed
table.

 %qn between %qn and %qn is not on
the most detailed table %qn {Join
name, facttable, dimtable).

This is related to the
TwoJoinFactDimRule. If the fact table is
joined to a dimension table that is not
the most detailed table in the table
source, the dimension table source is
invalidated.

ComplexMeasu
reRule

[Column] Complex Aggregation Rules
not supported.

 %qn uses an aggregation rule of %s
which is not supported.

The supported aggregations are SUM,
COUNT, AVG, MIN, MAX, STDDEV,
COUNT-DISTINCT, and COUNT.

CountDistMeas
ureRule

[Column] COUNT-DISTINCT
Aggregation Rule not supported.

 %qn uses an aggregation rule of %s
which is not supported.

COUNT-DISTINCT aggregation is not
supported.

InvalidColumnL
evelRule

[Level] Some columns that are part of
the Primary Level Key are invalid.

 %qn has %qn as part of its primary
key, when %qn has already been
marked invalid.

COUNT-DISTINCT aggregation is not
supported.

Table 32. Validation Rules for Metadata Elements

Rule Message Explanation

Connectivity and Third-Party Tools in Oracle BI Server ■ Exchanging Metadata with
Databases

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 271

VariableBasedC
olumnRule

[Logical Table Source -> Column]
Column uses a Variable in the
Expression

Column %qn uses a variable in its
mapping.

COUNT-DISTINCT aggregation is not
supported. The logical column uses
repository and session variables in the
expression.

OneFactToMany
DimRule

[Fact Logical Table Source ->
Dimension Logical Table Source] There
must be a unique join path between the
most detailed tables in the (logical or
physical?) fact and the dimension.

No join paths found between %qn and
%qn (both physical table names).

Found at least the following join paths:
(%qn->%qn....), (%qn->%qn....)

Same as in TwoJoinFactDimRule or
HiddenManyManyRule.

ManyMDTinFact
Rule

[Fact Logical Table Source] Fact Logical
Table Source must have a unique most
detailed table.

%qn has at least the following most
detailed tables : %qn,%qn.

A fact that has more than one table
that is the most detailed table.

NoMeasureFact
Rule

[Fact Logical Table Source] Fact Logical
Table Source does not have any
Measures.

%qn does not have any deployable
measures.

A fact table does not have any
measures because all the measures
have been invalidated.

NoInActiveFact
Rule

[Fact Logical Table Source] Fact Logical
Table Source is not marked Active.

A fact source is not active.

NoInActiveDim
Rule

[Dimension Logical Table Source]
Dimension Logical Table Source is not
marked Active.

A dimension source is not active.

NoAttributeInF
actRule

[Fact Logical Table Source -> Column]
Attribute found in Fact.

%qn in a fact source %qn does not
have an aggregation rule.

No attributes in the fact source.

NoMeasureInDi
mRule

[Dimension Logical Table Source ->
Column] Measure found in Dimension.

%qn in a dimension source %qn has an
aggregation rule.

No measures in the dimension source.

Table 32. Validation Rules for Metadata Elements

Rule Message Explanation

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Connectivity and Third-Party Tools in Oracle BI Server ■ Exchanging Metadata with
Databases

272

VisibleColumns
AttrRule

[Column] -> The run_as_user does not
have visibility to this Logical Column.

%qn is not accessible to the
run_as_user %qn due to visibility rules.

A column does not have visibility for
this user.

VisibleColumns
MeasRule

[Column] -> The run_as_user does not
have visibility to this Logical Column.

%qn is not accessible to the
run_as_user %qn due to visibility rules.

A column does not have visibility for
this user.

MultiplePrimary
KeysDimRule

[Dimension Logical Table Source] A Join
uses an alternate key in the Dimension
Logical Table Source.

%qn between %qn and %qn in %qn
uses the alternate key %qn.

A dimension physical table can contain
only one primary key. It is joined to
another dimension physical table using
a different unique key and that join is
invalid.

IBM Cube Views does not accept any
unique keys to be used for foreign joins
and always requires the primary key.

MultiplePrimary
KeysFactRule

[Dimension Logical Table Source] A Join
uses an alternate key in the Dimension
Logical Table Source.

%qn between %qn and %qn in %qn
uses the alternate key %qn.

A fact physical table can contain only
one primary key. It is joined to another
fact physical table using a different
unique key and that join is invalid.

IBM Cube Views does not accept any
unique keys to be used for foreign joins
and always requires the primary key.

MultiplePrimary
KeysFactDimRu
le

[Fact Logical Table Source -> Dim
Logical Table Source] A Join uses an
alternate key between the Logical Table
sources.

%qn between %qn and %qn for
sources %qn and %qn uses the
alternate key %qn.

A fact physical table can contain only
one primary key. It is joined to a
dimension physical table using a
different unique key and is invalid.

IBM Cube Views does not accept any
unique keys to be used for foreign joins
and always requires the primary key.

NotDB2Express
ionAttrRule

[Dimension Logical Table Source ->
Column] The Column contains an
Expression not supported.

%qn has expression %s which is not
supported.

The attribute contains an expression
not supported by IBM Cube Views.

This includes metadata expressions
that use DateTime functions (for
example, CURRENT_DATE).

Table 32. Validation Rules for Metadata Elements

Rule Message Explanation

Connectivity and Third-Party Tools in Oracle BI Server ■ Using Materialized Views in
the Oracle Database with Oracle BI

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 273

Using Materialized Views in the Oracle
Database with Oracle BI
This section explains how to export metadata from Oracle BI into the Oracle Database Summary
Advisor and create materialized views using the Oracle Database Metadata Generator. Before reading
this section, read “Exchanging Metadata with Databases” on page 263.

This section contains the following topics:

■ About Using Oracle Database Summary Advisor with Materialized Views on page 273

■ Process of Deploying Metadata for Oracle on page 274

About Using Oracle Database Summary Advisor with
Materialized Views
This feature enhances the data warehouse performance and functionality of a database. It allows the
Oracle Database Summary Advisor to store metadata about the logical relationships of the data that
resides in the database. Additionally, it accelerates data warehouse queries by using more efficient
Oracle materialized views. These materialized views preaggregate the relational data and improve
query performance. Once the metadata is stored in the Oracle Database Summary Advisor, the
database administrator can optimize the database objects and improve query performance.

When processing queries, the Oracle Database routes queries to tables that hold materialized views
when possible. Because these tables of materialized views are smaller than the underlying base
tables and the data has been preaggregated, the queries that are rerouted to them might run faster.

Oracle Database Metadata Generator works as a metadata bridge to convert the Oracle BI proprietary
metadata into a SQL file that contains PL/SQL commands to generate dimensions in the Oracle
Database Summary Advisor. After converting metadata into a SQL file, you use a tool such as

NotDB2Express
ionMeasRule

[Fact Logical Table Source -> Column]
The Column contains an Expression not
supported.

%qn has expression %s which is not
supported.

A measure contains an expression not
supported by IBM Cube Views.

This includes metadata expressions
that use DateTime functions (for
example,. CURRENT_DATE).

NoAttributeDim
Rule

[Dimension Logical Table Source]
Dimension Logical Table Source does
not have any attributes visible to the
run_as_user.

%qn can not be queried by user %qn
since none of its attributes are visible.

A dimension does not have any
attributes.

Table 32. Validation Rules for Metadata Elements

Rule Message Explanation

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Connectivity and Third-Party Tools in Oracle BI Server ■ Using Materialized Views in
the Oracle Database with Oracle BI

274

SQL*Plus to import the translated metadata into the Oracle Database Summary Advisor and store it
in metadata catalog tables. After importing the metadata, you create materialized views, which are
used by to optimize incoming application queries.

You can use this feature with Oracle Database 9i and higher. For information about platform
compatibility, refer to System Requirements and Supported Platforms.

Process of Deploying Metadata for Oracle
NOTE: Become familiar with the Oracle Database and its tools before attempting to deploy metadata
in the Oracle Database. For more information, refer to Oracle Database documentation.

Before deploying metadata, complete the steps in “Generating the Import File” on page 264. To deploy
cube metadata, perform the following tasks in the order shown:

1 Executing the SQL File for Oracle on page 274

2 Defining Constraints for the Existence of Joins on page 275

3 Creating the Query Workload on page 275

4 Creating Materialized Views on page 277

Executing the SQL File for Oracle
This step is part of the “Process of Deploying Metadata for Oracle” on page 274.

Before executing the SQL file for importing into the Oracle Database Summary Advisor, ensure that
you are familiar with Oracle Database import tools. Refer to Oracle Database documentation for
information.

Use a tool such as SQL*Plus to execute the SQL file that Oracle Database Metadata Generator
generated. You might see error messages if the dimensions already exist or if the database schema
differs from that in the RPD file. When the script executes successfully, you can see the dimensions
that were created by using the database web console or the Oracle Enterprise Manager Console. In
the Oracle Enterprise Manager Console, expand the following nodes: Network, Databases, database-
name, Warehouse, Summary Management, Dimensions, System.

After you execute the SQL file, you might need to perform the following actions:

■ No incremental metadata changes are allowed. Schema changes require that you manually
delete cube model metadata in the Oracle Database and convert the Oracle BI metadata again.
For example, if you need to make a change to a dimension in a cube in the Oracle BI metadata
repository, you need to delete the cube model in the Oracle Database, regenerate the SQL file
from the Oracle BI repository, and import it into the Oracle Database Summary Advisor.

■ You cannot delete metadata using the Oracle Database Metadata Generator. The Oracle BI
Administrator must manually delete the cube model using Oracle Enterprise Manager Console.

Connectivity and Third-Party Tools in Oracle BI Server ■ Using Materialized Views in
the Oracle Database with Oracle BI

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 275

Defining Constraints for the Existence of Joins
This step is part of the “Process of Deploying Metadata for Oracle” on page 274. For more information,
refer to Oracle Database documentation.

You must ensure that the Oracle Database knows about the joins between the dimension tables and
the fact tables. To do so, you create constraints in SQL*Plus or Oracle Enterprise Manager Console.
In Oracle Enterprise Manager Console, you select the table on which you must create a constraint
then select the Constraint tab.

You create a different type of constraint for each kind of table, as follows:

■ For dimension tables, create a UNIQUE key constraint.

■ For fact tables, create a FOREIGN key constraint and specify the referenced schema and
referenced table. In the Constraint Definition area, include the foreign key columns in the fact
table and the corresponding unique keys in the dimension table. An attempt to create a foreign
key on a dimension table can fail if the foreign key column data does not match the unique key
column data on the dimension table.

Creating the Query Workload
This step is part of the “Process of Deploying Metadata for Oracle” on page 274. For more information,
refer to Oracle Database documentation.

A query workload is a sample set of physical queries that you want to optimize. Before you create
the workload, you generate a Trace file with information on the slowest-running queries.

To generate the Trace file
You can generate the Trace file of the slowest-running queries using a tool that is appropriate to your
database version, as described in the following list:

■ Usage Tracking: Use this capability in Oracle BI to log queries and how long they take to run.
Long running Oracle BI queries can then be executed as a script and used in conjunction with the
Trace feature in the Oracle Database to capture the Oracle Database SQL code for these queries.

■ Oracle Database Trace: Use this tool to identify the slowest physical query. You can enable the
Trace feature either within Oracle Enterprise Manager Database Control or by entering SQL
commands with the DBMS_MONITOR package. Once you enable the Trace feature, you use a
script to create a Trace file to capture the SQL code for queries in a query workload table.

■ Oracle Enterprise Manager: Use this tool to track slow-running queries.

TIP: The capabilities that are described in the following sections are available in the Oracle
Database, rather than as part of Oracle BI.

To analyze the information in the Trace file

1 Use the following guidelines when reviewing the Trace file:

■ When you have traced many statements at once, such as in batch processes, quickly discard
any statements that have acceptable query execution times. Focus on those statements that
take the longest times to execute.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Connectivity and Third-Party Tools in Oracle BI Server ■ Using Materialized Views in
the Oracle Database with Oracle BI

276

■ Check the Query column for block visits for read consistency, including all query and
subquery processing. Inefficient statements are often associated with a large number of
block visits. The Current column indicates visits not related to read consistency, including
segment headers and blocks that will be updated.

■ Check the Disk column for the number of blocks that were read from disk. Because disk reads
are slower than memory reads, the value will likely be significantly lower than the sum of the
Query and Current columns. If it is not, check for issues with the buffer cache.

■ Note that locking problems and inefficient PL/SQL loops can lead to high CPU time values
even when the number of block visits is low.

■ Watch for multiple parse calls for a single statement, because this indicates a library cache
issue.

2 After identifying the problem statements in the file, check the execution plan to learn why each
problem statement occurred.

To load queries into the workload
■ After you use the Trace utility to learn the names of the slowest physical queries, insert them

into the USER_WORKLOAD table.

Table 33 on page 276 describes the columns of the USER_WORKLOAD table.

■ Use INSERT statements to populate the QUERY column with the SQL statements for the slowest
physical queries and the OWNER column with the appropriate owner names.

Table 33. Columns in USER_WORKLOAD Table

Column Data Type Required Description

QUERY Any LONG or VARCHAR type
(all character types)

YES SQL statement for the query.

OWNER VARCHAR2 (30) YES User who last executed the query.

APPLICATION VARCHAR2 (30) NO Application name for the query.

FREQUENCY NUMBER NO Number of times that the query
was executed.

LASTUSE DATE NO Last date on which the query was
executed.

Connectivity and Third-Party Tools in Oracle BI Server ■ Using IBM DB2 Cube Views
with Oracle BI

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 277

Creating Materialized Views
This step is part of the “Process of Deploying Metadata for Oracle” on page 274.

After you create the query workload table, use the appropriate tool for the Oracle Database version
to create materialized views. In Oracle Database 10g, use the Summary Advisor on the Oracle
Enterprise Manager Console and specify the query workload table that you created.

The Summary Advisor generates recommendations on improving the performance of the fact tables
that you specify. The Summary Advisor displays the SQL code with which it will create the
appropriate materialized views. Before indicating that the Summary Advisor should create the
materialized views, review the following tips:

■ The creation of a materialized view can fail if the SQL code includes a CAST statement.

■ Ensure that the CREATE MATERIALIZED VIEW statement does not specify the same query that
you provided as a workload table. If the statement does specify the same query, then the
materialized views will likely not reflect the true performance gain. However, if the query is
executed frequently, then the creation of the materialized view might still be worthwhile.

■ Add a forward slash (/) to the end of the CREATE MATERIALIZED VIEW statement after the SQL
statement. Otherwise, the SQL*Plus worksheet will not recognize it as a valid statement.

TIP: SQLAccess Advisor can also help determine appropriate indexing schemes.

Using IBM DB2 Cube Views with Oracle
BI
This section explains how to export metadata from Oracle BI into the IBM DB2 Database using the
DB2 Cube Views Generator. Before reading this section, read “Exchanging Metadata with Databases”
on page 263.

This section contains the following topics:

■ About Using IBM DB2 Cube Views with Oracle BI on page 278

■ Process of Deploying Cube Metadata on page 278

PRIORITY NUMBER NO User-supplied ranking of the
query.

RESPONSETIME NUMBER NO Execution time of the query in
seconds.

RESULTSIZE NUMBER NO Total number of bytes that the
query selected.

SQL_ADDR NUMBER NO Cache address of the query.

SQL_HASH NUMBER NO Cache hash value of the query.

Table 33. Columns in USER_WORKLOAD Table

Column Data Type Required Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Connectivity and Third-Party Tools in Oracle BI Server ■ Using IBM DB2 Cube Views
with Oracle BI

278

About Using IBM DB2 Cube Views with Oracle BI
The term IBM DB2 Cube Views is a registered trademark of IBM. For information about platform
compatibility, refer to System Requirements and Supported Platforms.

This feature enhances the data warehouse performance and functionality of a database. It allows the
DB2 database to store metadata about the logical relationships of the data residing in the database.
Additionally, it accelerates data warehouse queries by using more efficient DB2 materialized query
tables (MQTs). These MQTs preaggregate the relational data and improve query performance.

When processing queries, the DB2 Query Rewrite functionality routes queries to the MQTs when
possible. Because these tables are smaller than the underlying base tables and the data has been
preaggregated, the queries that are rerouted to them might run faster.

DB2 Cube Views Generator works as a metadata bridge to convert the Oracle BI proprietary
metadata into an IBM Cube Views XML file. After converting metadata into an XML file, you use IBM
Cube Views to import the translated metadata into the DB2 database and store it in IBM Cube Views
metadata catalog tables. After importing the metadata, you use the IBM Optimization Advisor to
generate scripts to create materialized query tables (MQT) and their indexes. The deployed MQTs are
used by the DB2 Query Reroute Engine to optimize incoming application queries.

NOTE: DB2 provides an API (implemented as a stored procedure) that passes XML documents as
arguments to create, modify, delete, or read the metadata objects. For more information about IBM
Cube Views, refer to the IBM DB2 documentation.

Process of Deploying Cube Metadata
The alias-SQL file generated by the DB2 Cube Views Generator should be executed before importing
the XML file. The XML file generated by the DB2 Cube Views Generator contains the cube metadata
in XML format. After importing the XML file into your DB2 database, you need to create materialized
query tables.

NOTE: It is strongly recommended that you become familiar with IBM Cube Views and its tools
before attempting to import the XML file. For more information, refer to IBM documentation.

Before deploying metadata, complete the steps in “Generating the Import File” on page 264. To deploy
cube metadata, perform the following tasks in the order shown:

1 Executing the Alias-SQL File for IBM Cube Views on page 278

2 Importing the XML File on page 279

3 Guidelines for Creating Materialized Query Tables (MQTs) on page 280

Executing the Alias-SQL File for IBM Cube Views
This step is part of the “Process of Deploying Cube Metadata” on page 278. You must execute the alias-
SQL file before you import the XML file into your DB2 database. For more information, refer to your
IBM documentation.

Connectivity and Third-Party Tools in Oracle BI Server ■ Using IBM DB2 Cube Views
with Oracle BI

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 279

The alias-SQL file that is generated by the DB2 Cube Views Generator needs to be executed by a SQL
client on the database where the data warehouse is located. When executed, it creates aliases
(synonyms) for tables in the database.

Importing the XML File
This step is part of the “Process of Deploying Cube Metadata” on page 278.

After you execute the alias-SQL. file, you can import the XML file into the database. For more
information, refer to IBM documentation.

NOTE: It is strongly recommended that you become familiar with IBM Cube Views and its tools
before attempting to import the XML file. For more information, refer to IBM documentation.

You can import this file using the following IBM tools:

■ IBM OLAP Center (recommended). For more information, refer to “Guidelines for Importing
the XML File Using the IBM OLAP Center” on page 279 and IBM documentation.

■ IBM command-line client utility (db2mdapiclient.exe). IBM ships this utility with DB2. For
more information about using the command-line client utility, refer to IBM documentation.

■ IBM DB2 Stored Procedure. IBM Cube Views provides a SQL-based and XML-based application
programming interface (API) that you can use to run single stored procedure to create, modify,
and retrieve metadata objects. For more information, refer to IBM documentation.

Guidelines for Importing the XML File Using the IBM OLAP Center
Using the IBM OLAP Center, you can import cube metadata into the DB2 database. The IBM OLAP
Center provides wizards to help you import the file. For more information, refer to IBM
documentation.

To import the XML file, use the following guidelines:

■ Using the IBM OLAP Center tool, connect to the DB2 database.

■ In the Import Wizard, choose the XML file that you want to import.

■ If metadata exists that refers to database constructs that are not in the database, then an error
message is displayed.

■ When the wizard asks for an import option, choose to replace existing objects.

■ When you are returned to the IBM OLAP Center, a diagram of the cube model is shown.

Guidelines for Changing Cube Metadata After Importing the XML File
After you import the XML file, you might need to perform the following actions:

■ Because the Oracle Business Analytics Warehouse does not store foreign keys as metadata, they
will not exist in the converted metadata in the DB2 database. You need to use the IBM Referential
Integrity Utility for IBM Cube Views to generate foreign key informational constraints. You can
obtain this utility on the IBM Web site.

■ You might encounter other issues such as foreign key join columns being nullable. You can use
the following ways to solve this problem:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Connectivity and Third-Party Tools in Oracle BI Server ■ Using IBM DB2 Cube Views
with Oracle BI

280

■ If data in these columns are not null, it is recommended that you convert these columns to
not-null columns.

■ If data in these columns are null or you prefer not to convert the column data type even if
the column data is not null, it is recommended that you modify the cube model using the
following guidelines:

❏ In a fact-to-dimension join, you need to manually eliminate this dimension object from
the converted cube model and create a degenerated dimension object consisting of the
foreign key of this join.

❏ In a dimension-to-dimension join, you need to manually eliminate the dimension object
that represents the primary-key side of the join from the converted cube model and
create a degenerated dimension object consisting of the foreign key of this join.

❏ In a fact-to-fact join, you need to manually eliminate the fact object that represents the
primary-key side of the join from the converted cube model and create a degenerated
dimension object consisting of the foreign key of this join.

■ No incremental metadata changes will be allowed by the Cube Generator. Schema changes
require that you manually delete cube model metadata in the DB2 database and convert the
Oracle BI metadata again. For example, if you need to make a change to a dimension in a cube
in the Oracle BI metadata repository, you need to delete the cube model in the DB2 database,
regenerate the XML file from the Oracle BI repository, and import it into the DB2 database.

■ You cannot delete metadata using the DB2 Cube Views Generator. The Oracle BI Administrator
needs to manually delete the cube model using the IBM OLAP Center.

■ The IBM Statistics tool and IBM Optimization Advisor must be run periodically.

For more information, refer to your IBM documentation.

Guidelines for Creating Materialized Query Tables (MQTs)
This step is part of the “Process of Deploying Cube Metadata” on page 278. For more information, refer
to IBM documentation.

After you import the cube metadata into the database, the Oracle BI Administrator runs the IBM
Optimization Advisor to generate SQL scripts and then execute those scripts to create the MQTs. The
Oracle BI Administrator needs to provide certain parameters to the IBM Optimization Advisor to get
optimal results from the implementation. The IBM Optimization Advisor wizard analyzes your
metadata and recommends how to build summary tables that store and index aggregated data for
SQL queries. Running the IBM Optimization Advisor can help you keep the MQTs current. Additionally,
you must refresh your database after each ETL.

To create MQTs, use the following guidelines:

■ In the IBM OLAP Center, choose the cube model that you want to optimize and open the IBM
Optimization Advisor wizard.

Connectivity and Third-Party Tools in Oracle BI Server ■ Using IBM DB2 Cube Views
with Oracle BI

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 281

■ Follow the instructions in the wizard, using the following table as a guide.

■ When the IBM Optimization Advisor closes, the Oracle BI Administrator must execute the SQL
scripts to create the MQTs.

When asked for: Choose:

Summary Tables Choose Deferred (or Immediate) and provide a tablespace for the tables

Limitations Choose an appropriate value for the optimization parameters. You should
turn on the Data-sampling option.

SQL Scripts Creation of the scripts needed to run to create the Summary tables.
Choose the filename and locations

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Connectivity and Third-Party Tools in Oracle BI Server ■ Using IBM DB2 Cube Views
with Oracle BI

282

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 283

13 Using Variables in the Oracle BI
Repository

You can use variables in a repository to streamline administrative tasks and modify metadata content
dynamically to adjust to a changing data environment. The Administration Tool includes a Variable
Manager for defining variables.

This section contains the following topics:

■ Using the Variable Manager on page 283

■ About Using Initialization Blocks With Variables on page 290

■ Process of Creating Initialization Blocks on page 293

Using the Variable Manager
The Variable Manager allows you to define variables. The Variable Manager dialog box has two panes.
The left pane displays a tree that shows variables and initialization blocks, and the right pane
displays details of the item you select in the left pane.

There are two classes of variables: repository variables and session variables.

■ A repository variable has a single value at any point in time. There are two types of repository
variables: static and dynamic. Repository variables are represented by a question mark icon.

■ Session variables are created and assigned a value when each user logs on. There are two types
of session variables: system and nonsystem.

System and nonsystem variables are represented by a question mark icon.

Initialization blocks are used to initialize dynamic repository variables, system session variables, and
nonsystem session variables. The icon for an initialization block is a cube labeled i.

This section contains the following topics:

■ Understanding and Creating Repository Variables on page 283

■ Understanding and Creating Session Variables on page 286

Understanding and Creating Repository Variables
A repository variable has a single value at any point in time. Repository variables can be used instead
of literals or constants in expression builders in the Administration Tool. The Oracle BI Server will
substitute the value of the repository variable for the variable itself in the metadata.

This section includes the following topics:

■ Static Repository Variables on page 284

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using Variables in the Oracle BI Repository ■ Using the Variable Manager

284

■ Dynamic Repository Variables on page 285

■ Creating Repository Variables on page 285

Static Repository Variables
The value of a static repository value is initialized in the Variable dialog box. This value persists, and
does not change until an Oracle BI Administrator decides to change it.

Example
Suppose you want to create an expression to group times of day into different day segments. If Prime
Time were one of those segments and corresponded to the hours between 5:00 PM and 10:00 PM,
you could create a CASE statement like the following:

CASE WHEN "Hour" >= 17 AND "Hour" < 23 THEN 'Prime Time' WHEN... ELSE...END

where Hour is a logical column, perhaps mapped to a timestamp physical column using the date-and-
time Hour(<<timeExpr>>) function.

Rather than entering the numbers 17 and 23 into this expression as constants, you could use the
Variable tab of the Variable dialog box to set up a static repository variable named prime_begin and
initialize it to a value of 17, and create another variable named prime_end and initialize it to a value
of 23.

Using Variables in Expression Builders
After created, variables are available for use in expression builders. In an expression builder, click
on the Repository Variables folder in the left pane to display all repository variables (both static and
dynamic) in the middle pane by name.

To use a repository variable in an expression, select it and double-click. The expression builder will
paste it into the expression at the active cursor insertion point.

Variables should be used as arguments of the function VALUEOF(). This will happen automatically
when you double-click on the variables to paste them into the expression.

For example, the following CASE statement is identical to the one explained in the preceding example
except that variables have been substituted for the constants.

CASE WHEN "Hour" >= VALUEOF("prime_begin")AND "Hour" < VALUEOF("prime_end") THEN
'Prime Time' WHEN ... ELSE...END

NOTE: You cannot use variables to represent columns or other repository objects.

Using Variables in the Oracle BI Repository ■ Using the Variable Manager

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 285

Dynamic Repository Variables
You initialize dynamic repository variables in the same way as static variables, but the values are
refreshed by data returned from queries. When defining a dynamic repository variable, you will
create an initialization block or use a pre-existing one that contains a SQL query. You will also set up
a schedule that the Oracle BI Server will follow to execute the query and periodically refresh the
value of the variable.

NOTE: When the value of a dynamic repository variable changes, all cache entries associated with
a business model that reference the value of that variable will be purged automatically.

Each query can refresh several variables—one variable for each column in the query. You schedule
these queries to be executed by the Oracle BI Server.

Example
Dynamic repository variables are very useful for defining the content of logical table sources. For
example, suppose you have two sources for information about orders. One source contains recent
orders and the other source contains historical data.

You need to describe the content of these sources on the Content tab of the Logical Table Source
dialog box. Without using dynamic repository variables, you would describe the content of the source
containing recent data with an expression such as:

Orders.OrderDates."Order Date" >= TIMESTAMP '2001-06-02 00:00:00'

This content statement will become invalid as new data is added to the recent source and older data
is moved to the historical source. To accurately reflect the new content of the recent source, you
would have to modify the fragmentation content description manually. Dynamic repository values can
be set up to do it automatically.

Another suggested use for dynamic repository values is in WHERE clause filters of logical table
sources, that are defined on the Content tab of the Logical Table Source dialog box.

The values of dynamic repository variables are set by queries defined in Variable Initialization blocks.
When defining a dynamic repository variable, you create an initialization block or use a preexisting
block that contains a query. You also set up a schedule that the Oracle BI Server will follow to execute
the query and periodically refresh the value of the variable.

A common use of these variables is to set filters for use in Oracle BI Presentation Services. For
example, to filter a column on the value of the dynamic repository variable CurrentMonth, set the
filter to the Variable CurrentMonth.

Creating Repository Variables
Use the this task to create a repository variable. For more information, see Understanding and
Creating Repository Variables on page 283.

To create a repository variable

1 From the Administration Tool menu bar, choose Manage > Variables.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using Variables in the Oracle BI Repository ■ Using the Variable Manager

286

2 In the Variable Manager dialog box, from the menu bar, choose
Action > New > Repository > Variable.

3 In the Variable dialog box, type a Variable name.

Names for all variables should be unique. The names of system session variables are reserved
and cannot be used for other types of variables.

4 In the Variables dialog box, select the type of variable: Static or Dynamic.

The name of the dialog box changes to reflect the type of variable that you select.

5 (Dynamic repository variables) Use the Initialization Block drop-down list to select an existing
initialization block that will be used to refresh the value on a continuing basis.

To create a new initialization block, click New. For more information, refer to “Process of Creating
Initialization Blocks” on page 293.

6 (Dynamic or static variables) To add a Default initializer value, perform one of the following
steps:

■ To use the Expression Builder, click the ellipsis button to the right of the Default initializer
work space. For more information about creating the value, refer to “SQL Logical Operators”
on page 363.

■ Type the value into the Default initializer text box.

For static repository variables, the value you specify in the Default initializer window persists. It
will not change unless you change it. If you initialize a variable using a character string, enclose
the string in single quotes (‘).

7 Click OK.

Understanding and Creating Session Variables
Session variables are similar to dynamic repository variables in that they obtain their values from
initialization blocks. Unlike dynamic repository variables, however, the initialization of session
variables is not scheduled. When a user begins a session, the Oracle BI Server creates new instances
of session variables and initializes them.

Unlike a repository variable, there are as many instances of a session variable as there are active
sessions on the Oracle BI Server. Each instance of a session variable could be initialized to a different
value.

Session variables are primarily used when authenticating users against external sources such as
database tables or LDAP servers. If a user is authenticated successfully, session variables can be
used to set filters and permissions for that session. For a discussion of the use of session variables
in setting up security, refer to Chapter 15, “Security in Oracle BI.”

This section includes the following topics:

■ Using System Session Variables on page 287

■ Using Nonsystem Session Variables on page 289

■ Creating Repository Variables on page 285

Using Variables in the Oracle BI Repository ■ Using the Variable Manager

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 287

For more information, refer to “Creating Repository Variables” on page 285.

Using System Session Variables
System session variables are session variables that the Oracle BI Server and Oracle BI Presentation
Services use for specific purposes. System session variables have reserved names, that cannot be
used for other kinds of variables (such as static or dynamic repository variables and nonsystem
session variables).

For information about using the GROUP system session variable in conjunction with the SA System
subject area to provide group membership and external email addresses to Oracle BI Delivers, refer
to “Setting Up the Repository to Work with Delivers” on page 180.

NOTE: When you use these variables for Oracle BI Presentation Services, preface their names with
NQ_SESSION. For example, to filter a column on the value of the variable LOGLEVEL set the filter to
the Variable NQ_SESSION.LOGLEVEL.

Table 34 on page 287 describes the available system session variables.

Table 34. System Session Variables

Variable Description

DISPLAYNAME Used for Oracle BI Presentation Services. It contains the name that will be
displayed to the user in the greeting in the Oracle BI Presentation Services user
interface. It is also saved as the author field for catalog objects. For internal
Oracle BI repository users (nondatabase users), this variable is populated with
the user's full name.

EMAIL Contains the user’s default email address for use with Answers. If the delivery
option of Answers is enabled, an email device using this address will be created
for the user upon first log in. Users can override this address by changing their
account settings in Oracle BI Presentation Services.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using Variables in the Oracle BI Repository ■ Using the Variable Manager

288

GROUP Contains the groups to which the user belongs. These are used by both the
Oracle BI Server and Oracle BI Presentation Services.

When a user belongs to multiple groups, separate the group names with
semicolons. Do not delimit text (for example, do not surround the text with
single or double quotes). Use a Varchar column in a database table to contain
the group memberships.

For example, if a user belonged to groups called Sales US, Sales UK, QA and Dev,
and Doc, the text entered into a Varchar data type column in a database table
would be:

Sales US;Sales UK;QA and Dev;Doc

Note: The Oracle BI Presentation Services Administrator needs to make sure that
the names of Presentation Services groups are different from any user IDs that
will be used to log on to Oracle BI Presentation Services. If a user and a
Presentation Services group share the same name, the user will receive an
Invalid Account message when attempting to log on to Oracle BI Presentation
Services.

LAST_SYNCH_
TIME and
THIS_SYNCH_T
IME

These two variables are set and tracked by Oracle BI Presentation Services to
manage the synchronization of Oracle BI Disconnected Analytics. For more
information, refer to Oracle Business Intelligence Disconnected Analytics
Administration and Configuration Guide.

LOGLEVEL The value of LOGLEVEL (a number between 0 and 5) determines the Logging
level that the Oracle BI Server will use for user queries.

This system session variable overrides a variable defined in the Users object. If
the Administrators Users object has a Logging level defined as 4 and the session
variable LOGLEVEL defined in the repository has a value of 0 (zero), the value of
0 applies.

PORTALPATH Used for Oracle BI Presentation Services. It identifies the default dashboard the
user sees when logging in (the user can override this preference after logged
on).

REQUESTKEY Used for Oracle BI Presentation Services. Any users with the same nonblank
request key will share the same Presentation Server cache entries. This tells
Oracle BI Presentation Services that these users have identical content filters
and security in the Oracle BI Server. Sharing Presentation Server cache entries
is a way to minimize unnecessary communication with the Oracle BI Server.

Table 34. System Session Variables

Variable Description

Using Variables in the Oracle BI Repository ■ Using the Variable Manager

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 289

Using Nonsystem Session Variables
The procedure for defining nonsystem session variables is the same as for system session variables.

A common use for nonsystem session variables is setting user filters. For example, you could define
a nonsystem variable called SalesRegion that would be initialized to the name of the user’s sales
region.

You could then set a security filter for all members of a group that would allow them to view only
data pertinent to their region.

NOTE: When you use these variables for Oracle BI Presentation Services, preface their names with
NQ_SESSION. For example, to filter a column on the value of the variable SalesRegion set the filter
to the Variable NQ_SESSION.SalesRegion.

Creating Session Variables
Use the this task to create a session variable.

To create a session variable

1 From the Administration Tool menu bar, choose Manage > Variables.

2 In the Variable Manager dialog box, from the menu bar, choose
Action > New > Session > Variable.

3 In the Session Variable dialog box, type a variable name.

Names for all variables should be unique. The names of system session variables are reserved
and cannot be used for other types of variables.

SKIN Determines certain elements of the look and feel of the Oracle BI Presentation
Services user interface. The user can alter some elements of the user interface
by picking a style when logged on to Oracle BI Presentation Services. The SKIN
variable points to an Oracle BI Presentation Services folder that contains the
nonalterable elements (for example, graphics such as GIF files). Such directories
begin with sk_. For example, if a folder were called sk_companyx, the SKIN
variable would be set to companyx.

USER Holds the value the user enters as his or her logon name.

WEBGROUPS Specifies additional groups specific to Oracle BI Presentation Services, if any.
The use of Presentation Services groups provides a mechanism for more granular
content control.

Table 34. System Session Variables

Variable Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using Variables in the Oracle BI Repository ■ About Using Initialization Blocks With
Variables

290

4 For session variables, you can select the following check boxes:

5 Use the Initialization Block drop-down list to select an initialization block that will be used to
refresh the value on a continuing basis.

To create a new initialization block, click New. For more information, refer to “Process of Creating
Initialization Blocks” on page 293.

6 To add a Default initializer value, perform one of the following steps:

■ To use the Expression Builder, click the ellipsis button to the right of the Default initializer
work space. For more information about creating the value, refer to “SQL Logical Operators”
on page 363.

■ Type the value into the Default initializer text box.

7 Click OK.

About Using Initialization Blocks With
Variables
Initialization blocks are used to initialize dynamic repository variables, system session variables, and
nonsystem session variables. For example, the NQ_SYSTEM initialization block is used to refresh
system session variables.

An initialization block contains the SQL that will be executed to initialize or refresh the variables
associated with that block. The SQL must reference physical tables that can be accessed using the
connection pool specified in the Connection Pool field in the Initialization Block dialog box.

Enable any user to set the
value

Check box that allows you to set the session variables after the
initialization block has populated the value (at user login) by calling
the ODBC store procedure NQSSetSessionValue(). For example, this
allows non-Oracle BI Administrators to set this variable for
sampling.

Security Sensitive Check box that identifies the variable as sensitive to security for
virtual physical databases (VPD). When filtering cache table
matches, the Oracle BI Server looks at the parent database of each
column or table that is referenced in the logical request projection
list. If the physical database source is a VPD, the Oracle BI Server
matches a list of security-sensitive variables to each prospective
cache hit. Cache hits would only occur on cache entries that included
and matched all security-sensitive variables.

Using Variables in the Oracle BI Repository ■ About Using Initialization Blocks With
Variables

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 291

If you want the query for an initialization block to have database-specific SQL, you can select a
database type for that query. If a SQL initialization string for that database type has been defined
when the initialization block is instantiated, this string will be used. Otherwise, a default initialization
SQL string will be used.

CAUTION: By default, when you open the Initialization Block dialog box for editing in online mode,
the initialization block object is automatically checked out. While the initialization block is checked
out, the Oracle BI Server may continue to refresh the value of dynamic variables refreshed by this
initialization block, depending on the refresh intervals that are set. When you check the initialization
block in, the value of the dynamic variables is reset to the values shown in the Default initializer. If
you do not want this to occur, use the Undo Check Out option.

Initializing Dynamic Repository Variables
The values of dynamic repository variables are set by queries defined in the Initialization string field
of the Initialization Block dialog box. You also set up a schedule that the Oracle BI Server will follow
to execute the query and periodically refresh the value of the variable. If you stop and restart the
Oracle BI Server, the server automatically executes the SQL in repository variable initialization
blocks, reinitializing the repository variables.

The Oracle BI Server logs all SQL queries issued to retrieve repository variable information in the
NQQuery.log file when the Oracle BI Administrator logging level is set to 2 or higher. You should set
the logging level to 2 for the Oracle BI Administrator user ID to provide the most useful level of
information. The default location for the NQQuery.log file is the Log folder in the Oracle BI Server
software installation folder (\OracleBI). For more information about user-level logging, refer to
“Administering the Query Log” on page 214.

Initializing Session Variables
As with dynamic repository variables, session variables obtain their values from initialization blocks.
Unlike dynamic repository variables, session variables are not updated at scheduled time intervals.
Instead, the Oracle BI Server creates new instances of those variables whenever a user begins a new
session. The values remain unchanged for the session's duration.

The Oracle BI Server logs all SQL queries issued to retrieve session variable information if Logging
level is set to 2 or higher in the Security Manager User object or the LOGLEVEL system session
variable is set to 2 or higher in the Variable Manager.

The default location for the NQQuery.log file is the Log folder in the Oracle BI Server software
installation folder (\OracleBI). For more information about user-level logging, refer to “Administering
the Query Log” on page 214.

Row-Wise Initialization
The row-wise initialization option allows you to create session variables dynamically and set their
values when a session begins. The names and values of the session variables reside in an external
database that you access through a connection pool. The variables receive their values from the
initialization string that you type in the Initialization Block dialog box.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using Variables in the Oracle BI Repository ■ About Using Initialization Blocks With
Variables

292

For example, you want to create session variables using values contained in a table named
RW_SESSION_VARS. The table contains three columns: USERID, containing values that represent
users’ unique identifiers; NAME, containing values that represent session variable names; and
VALUE, containing values that represent session variable values.

The content of the table is as follows:

You create an initialization block and select the Row-wise initialization check box (refer to “Process
of Creating Initialization Blocks” on page 293).

For the initialization string, you type the following SQL statement:

select NAME, VALUE
from RW_SESSION_VARS
where USERID=’VALUEOF(NQ_SESSION.USERID)’

NQ_SESSION.USERID has already been initialized using another initialization block.

The following session variables are created:

■ When John connects to the Oracle BI Server, his session will contain two session variables from
row-wise initialization: LEVEL, containing the value 4; and STATUS, containing the value
FULL_TIME.

■ When Jane connects to the Oracle BI Server, her session will contain three session variables from
row-wise initialization: LEVEL, containing the value 8; STATUS, containing the value FULL-TIME;
and GRADE, containing the value AAA.

Initializing a Variable with a List of Values
You can also use the row-wise initialization option to initialize a variable with a list of values. You can
then use the SQL IN operator to test for values in a specified list.

Example: Using the table values in the previous example, you would type the following SQL
statement for the initialization string:

select ‘LIST_OF_USERS’, USERID
from RW_SESSION_VARS
where NAME=’STATUS’ and VALUE=’FULL-TIME’

This SQL statement populates the variable LIST_OF_USERS with a list, separated by colons, of the
values JOHN and JANE; for example, JOHN:JANE. You can then use this variable in a filter, as shown
in the following WHERE clause:

USERID NAME VALUE

JOHN LEVEL 4

JOHN STATUS FULL-TIME

JANE LEVEL 8

JANE STATUS FULL-TIME

JANE GRADE AAA

Using Variables in the Oracle BI Repository ■ Process of Creating Initialization Blocks

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 293

where TABLE.USER_NAME = valueof(NQ_SESSION.LIST_OF_USERS)

The variable LIST_OF_USERS contains a list of values, that is, one or more values. This logical
WHERE clause expands into a physical IN clause, as shown in the following statement:

where TABLE.USER_NAME in (‘JOHN’, ‘JANE’)

About Authenticating Users Using Initialization Blocks
You can create a customized authentication module using initialization blocks. An authenticator is a
DLL (or shared object on UNIX) written by a customer or developer that conforms to the Oracle BI
Authenticator API Specification and can be used by Oracle BI Server to perform authentication and
other tasks at run-time. The dynamically loadable authenticator framework (authentication module)
is an Oracle BI Server module with a cache layer that uses the authenticator to perform
authentication and related tasks at run-time.

Only one authenticator is allowed for each repository. The authentication for the user Administrator
is always performed against the repository. Users in the repository are always authenticated against
the repository.

Two sample authenticator plug-ins are installed when you install Oracle BI. One is only available for
the Windows platform. The other one uses a text file for user information storage and is available to
all platforms. We will provide a header file for all of the types that will be used in the dynamically
loadable authenticator.

The Oracle BI Administrator asks a developer to implement a dynamically loadable authentication
module according to the Oracle BI Authenticator API specification. For more information about this
specification, refer to “Oracle BI Server Authentication APIs” on page 409.

After the Oracle BI Administrator creates an authentication object (authenticator plug-in) and
specifies a set of parameters for the authentication module, such as configuration file path, number
of cache entries, and cache expiration time. The Oracle BI Administrator then associates the
authentication object with an initialization block. The Oracle BI Administrator associates the USER
variable (required) and other variables with the initialization blocks.

When a user logs in, if the authentication is successful, Oracle BI Server populates a list of variables,
as specified in the initialization block.

Process of Creating Initialization Blocks
It is recommended to create a dedicated connection pool for initialization blocks. For more
information, refer to “Creating or Changing Connection Pools” on page 67.

For more information about initialization blocks, refer to “About Using Initialization Blocks With
Variables” on page 290.

To create an initialization block, perform the following steps:

1 Assigning a Name and Schedule to Initialization Blocks on page 294

2 Selecting and Testing the Data Source and Connection Pool on page 294.

3 Associating Variables With Initialization Blocks on page 298

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using Variables in the Oracle BI Repository ■ Process of Creating Initialization Blocks

294

4 Establishing Execution Precedence on page 299

Assigning a Name and Schedule to Initialization Blocks
This task is a step in “Process of Creating Initialization Blocks” on page 293.

For repository variables, you can specify the day, date, and time for the start date and a refresh
interval.

To assign a name and schedule to initialization blocks

1 From the Administration Tool menu bar, select Manage > Variables.

2 In the Variable Manager dialog box, from the Action menu, choose New > Repository (or
Session) > Initialization Block.

3 In the Variable Init Block dialog box, type a name for the block. (The NQ_SYSTEM initialization
block name is reserved.)

4 (Repository init blocks) In the Schedule area, select a start date and time and the refresh
interval.

5 (Session init blocks) Select the following check boxes when appropriate:

■ Disabled. When selected, disables the initialization block.

NOTE: In the Variables Manager, the right-click menu for an existing initialization block
contains a Disable or Enable toggle value. This allows you to change this property without
having to open the initialization block dialog box.

■ Required for authentication. Used when creating an initialization block for authenticating
users.

The next step is to select the data source and connection pool.

Selecting and Testing the Data Source and Connection
Pool
This task is a step in “Process of Creating Initialization Blocks” on page 293.

If you select Database as the data source type, the values returned by the database for the columns
in your SQL statement will be assigned to variables that you associate with the initialization block.
For session variable initialization blocks, you can select LDAP or Custom Authenticator.

If you select Database as the Data Source Type, the SQL used to refresh the variable must reference
physical tables that can be accessed through the connection pool specified in the Connection Pool
field. The tables do not have to be included in the physical layer of the metadata. At run time, if an
initialization string for the database type has been defined, this string will be used. Otherwise, the
default initialization SQL for the database type will be used. You can overtype this string.

Using Variables in the Oracle BI Repository ■ Process of Creating Initialization Blocks

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 295

When you create SQL and submit it directly to the database (for example when using database
specific SQL in initialization blocks), the SQL bypasses Oracle BI Server. The order of the columns in
the SQL statement and the order of the variables associated with the init block determine which
columns are assigned to each variable.

NOTE: You should test this SQL using the Test button in the Variable Init block Data Source dialog
box. If the SQL contains an error, the database will return an error message.

This following example topics contain examples of initialization strings that might be used with
Delivers.

Example of an SQL Statement When Site Uses Delivers
select username, groupname, dbname, schemaname from users
where username=':USER'
NQS_PASSWORD_CLAUSE(and pwd=':PASSWORD')NQS_PASSWORD_CLAUSE

This SQL contains two constraints in the WHERE clause:

':USER' (note the colon and the single quotes) equals the ID the user types when logging in.

':PASSWORD' (again, note the colon and the single quotes) is the password the user enters. This is
another system variable whose presence is always assumed when the USER system session variable
is used. You do not need to set up the PASSWORD variable, and you can use this variable in a
database connection pool to allow passthrough login using the user’s user ID and password. You can
also use this variable in a SQL statement if you so desire.

When using external table authentication with Delivers, the portion of the SQL statement that makes
up the :PASSWORD constraint needs to be embedded between NQS_PASSWORD_CLAUSE clauses.

The query will return data only if the user ID and password match values found in the specified table.
You should test the SQL statement outside of the Oracle BI Server substituting valid values for the
USER and PASSWORD variables and removing the NQS_PASSWORD_CLAUSE clause.

For more information, refer to “About Oracle BI Delivers and Database Authentication” on page 328.

Example of an SQL Statement When Site Does Not Use Delivers
select username, groupname, dbname, schemaname from users
where username=':USER'
and pwd=':PASSWORD'

This SQL statement contains two constraints in the WHERE clause:

':USER' (note the colon and the single quotes) is the ID the user enters when the user logged in.

':PASSWORD' (again, note the colon and the single quotes) is the password the user enters. This is
another system variable whose presence is always assumed when the USER system session variable
is used. You do not need to set up the PASSWORD variable, and you can use this variable in a
database connection pool to allow passthrough login using the user’s user ID and password. You can
also use this variable in a SQL if you so desire.

The query will return data only if the user ID and password match values found in the specified table.
You should test the SQL statement outside of the Oracle BI Server, substituting valid values for the
USER and PASSWORD variables.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using Variables in the Oracle BI Repository ■ Process of Creating Initialization Blocks

296

To select a data source and connection pool for initialization blocks

1 From the Administration Tool menu bar, select Manage > Variables.

2 In the Variable Manager dialog box, double-click the variable.

3 In the Variable Initialization Block dialog box, click Edit Data Source.

4 In the Variable Initialization Block Data Source dialog box, from the Data Source Type drop-down
list, select one of the following types.

5 If you selected Database in the Data Source Connection drop-down list, perform the following
steps:

a Select the connection pool associated with the database where the target information is located
by clicking Browse.

CAUTION: If you do not select a connection pool before typing the initialization string, you
will receive a message prompting you to select the connection pool.

b In the Browse dialog box, select the connection pool and click OK.

NOTE: Select a connection pool before typing an initialization string.

(Optional) Select the Use Database Specific SQL check box and in the Database pane, expand
and select the database and its associated string.

c In the Initialization string text box, type the SQL initialization string needed to populate the
variables.

d (Optional) Click Test. Tests the data source connectivity for the SQL statement.

6 If you selected XML in the Data Source Connection area, perform the following steps:

a Select the connection pool associated with the database where the target information is located
by clicking Browse.

b In the Initialization string text box, type the SQL initialization string needed to populate the
variables.

7 If you selected LDAP in the Data Source Connection area, perform the following steps:

a Click Browse to select an existing LDAP Server or click New to open the General tab of the LDAP
Server dialog box and create an LDAP Server.

b Click OK to return to the Initialization Block dialog box.

The LDAP server name and the associated domain identifier appear in the Name and Domain
identifier columns.

Data Source Type Description

Database Repository and session variables.

XML Repository and session variables.

LDAP Session variables.

Custom Authenticator Session variables. For more information, see “About Authenticating
Users Using Initialization Blocks” on page 293.

Using Variables in the Oracle BI Repository ■ Process of Creating Initialization Blocks

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 297

8 If you selected Custom Authenticator in the Data Source Connection area, complete the fields
using the following list as a guide.

9 Click OK.

Testing the Initialization Block
You should test the SQL using the Test button or an SQL tool such as the Oracle BI Client utility. If
you use an SQL tool, be sure to use the same DSN or one set up identically to the DSN in the specified
connection pool.

In Online editing mode, Initialization Block tests will not work with connection pools set to use :USER
and :PASSWORD as the user name and password. In offline mode, the Set values for variables dialog
box appears so that you can populate :USER and :PASSWORD.

To test the initialization block (optional)

1 From the Administration Tool menu bar, select Manage > Variables.

2 In the Variable Manager dialog box, double-click the last variable that you want to be initialized.

3 In the Variable Initialization Block dialog box, click Test.

4 In the Set value for the variables dialog box, verify the information is correct, and then click OK.

5 In the View Data from Table dialog box, type the number of rows and the starting row for your
Query, and then click Query.

The Results dialog box lists the variables and their values.

The next step is to associate variables with the initialization block.

Field Description

Authenticator
plug-in

Type or browse for the DLL authenticator file.

Configuration
parameters

Can be used to specify a configuration file.

Cache never
expires

When selected, cache never expires and has to be purged manually.

Cache persistence
time

When selected, a text box and drop-down list become available, allowing
you to type a number in the text box and select days, hours, minutes, or
seconds as the time increment. The cache will automatically expire after
this time passes.

Number of cache
entries

Maximum number of cache entries.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using Variables in the Oracle BI Repository ■ Process of Creating Initialization Blocks

298

Associating Variables With Initialization Blocks
This task is a step in “Process of Creating Initialization Blocks” on page 293.

The SQL SELECT statement in the Default initializer list can contain multiple columns. The order of
the columns in the SQL statement and order of the variables associated with the initialization block
determine the column value that is assigned to each variable. Therefore, when you associate
variables with an initialization block, the value returned in the first column will be assigned to the
first variable in the list.

For more information, see “About Using Initialization Blocks With Variables” on page 290.

Repository Variables
When you open a repository in online mode, the value shown in the Default initializer field of the
Initialization Block dialog box is the current value of that variable as known to the Oracle BI Server.

NOTE: The number of associated variables can be different from the number of columns being
retrieved. If there are fewer variables than columns, extra column values are ignored. If there are
more variables than columns, the additional variables are not refreshed (they retain their original
values, whatever they may be). Any legal SQL can be executed using an initialization block, including
SQL that writes to the database or alters database structures, assuming the database permits the
user ID associated with the connection pool to perform these actions.

If you stop and restart the Oracle BI Server, the server automatically executes the SQL in the
repository variable initialization blocks, re-initializing the repository variables.

Session Variables
For session variable initialization blocks, you can select Row-wise initialization. The Cache variables
check box is automatically selected when you select the Row-wise initialization check box. Selecting
the cash variables option directs the Oracle BI Server to store the results of the query in a main
memory cache. For more information, refer to “Row-Wise Initialization” on page 291.

The Oracle BI Server uses the cached results for subsequent sessions. This can reduce session
startup time. However, the cached results may not contain the most current session variable values.
If every new session needs the most current set of session variables and their corresponding values,
you clear this check box.

To associate variables with the initialization block

1 From the Administration Tool menu bar, select Manage > Variables.

2 In the Variable Manager dialog box, double-click the variable.

3 In the Variable Initialization Block dialog box, click Edit Data Target.

4 In the Variable Initialization Block Variable Target dialog box, you can select one of the following:

■ Variables. Associates variables with the initialization block.

Using Variables in the Oracle BI Repository ■ Process of Creating Initialization Blocks

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 299

■ Row-wise initialization. Used with session init blocks only. For more information, see
“Row-Wise Initialization” on page 291.

If you select Row-wise initialization, the Use caching check box becomes available.

5 If you select the Variables option, perform one of the following steps:

a Click new, and in the Variable dialog box, create a new variable.

NOTE: For the Custom Authentication data source type (Session variables), the variable
USER is required.

For information about creating variables, see “Using the Variable Manager” on page 283.

b Click Link, to associate an existing variable with an initialization block.

❏ In the Browse dialog box, select the variable to be refreshed by this initialization block,
and then click OK.

6 To reorder variables, select a variable, and then click Up or Down.

7 To remove a variable from association with this block, select the variable, and then click the
remove button.

8 Click OK.

The next step is to establish execution precedence.

Establishing Execution Precedence
This task is a step in “Process of Creating Initialization Blocks” on page 293.

When a repository has more than one initialization block, you can set the order (establish the
precedence) in which the blocks will be initialized.

First, you open the block that you want to be executed last and then add the initialization blocks that
you want to be executed before the block you have open. For example, suppose a repository has two
initialization blocks, A and B. You open initialization block B, and then specify that block A will execute
before block B. This causes block A to execute according to block B’s schedule, in addition to its own.

To establish execution precedence

1 From the Administration Tool menu bar, select Manage > Variables.

2 In the Variable Manager dialog box, double-click the last variable that you want to be initialized.

3 In the Variable Initialization Block dialog box, click Edit Execution Precedence.

4 In the Variable Initialization Block Execution Precedence dialog box, click Add.

NOTE: Add is only available if unselected initialization blocks are available.

5 In the Browse dialog box, select the blocks that should be initialized before the block that you
have open, and then click OK.

CAUTION: Make sure you add the blocks in the order that you want them to be initialized.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using Variables in the Oracle BI Repository ■ Process of Creating Initialization Blocks

300

6 To remove a block, in the Variable Initialization Block Execution Precedence dialog box, select the
block you want to remove, and then click Remove.

7 Click OK.

8 If you wish the initialization block to be required, in the Variable Initialization Block dialog box,
select the Required for authentication check box.

9 Click OK.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 301

14 Clustering Oracle BI Servers

This section describes the Cluster Server and provides instructions for setting up and configuring the
clustering of multiple servers.

This section contains the following topics:

■ About the Cluster Server on page 301

■ Components of the Cluster Server on page 301

■ Implementing the Cluster Server on page 303

■ Chronology of a Cluster Operation on page 305

■ Using the Cluster Manager on page 307

■ Performance Considerations on page 313

About the Cluster Server
The Cluster Server allows up to 16 Oracle BI Servers in a network domain to act as a single server.
Servers in the cluster share requests from multiple Oracle BI clients, including Answers and Delivers.

The Cluster Controller is the primary component of the Cluster Server. It monitors the status of
resources in a cluster and performs session assignment as resources change. It also supports
detection of server and Oracle Business Intelligence Scheduler failures and failover for ODBC clients
of failed servers for clients of these managed services.

Components of the Cluster Server
In a clustering environment, the following components are available:

■ Two Cluster Controllers. For more information, see “About Cluster Controllers” on page 302.

■ One or more servers. For more information, see “About Servers Used in Clustering” on page 302.

■ One or more Schedulers. There can only be one active Scheduler (only one Scheduler running
jobs). For more information, see “About Schedulers Used in Clustering” on page 302.

■ Cluster Manager. A utility in the Administration Tool.

■ Repository Publishing Directory. This directory is shared by all Oracle BI Servers participating
in a cluster. It holds the master copies of repositories edited in online mode. The clustered Oracle
BI Servers examine this directory upon startup for any repository changes. The directory
typically resides on a shared file system visible to all servers in the cluster. You must set up the
following access to this publishing directory:

■ The master server must have read and write access.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Clustering Oracle BI Servers ■ Components of the Cluster Server

302

■ All slave servers must have read access.

In the NQSConfig.INI file, the REPOSITORY_PUBLISHING_DIRECTORY parameter specifies the
location of the repository publishing directory.

About Cluster Controllers
The following are the types of Cluster Controllers with their descriptions:

■ Primary Cluster Controller. The role of the primary Cluster Controller is to monitor the
operation of the servers and Schedulers in the cluster and to assign sessions within the cluster.
The primary Cluster Controller can reside on the same machine as an Oracle BI Server in the
cluster or on another machine that is on the same subnet as the cluster. A machine can host one
Oracle BI Server, one Cluster Controller, one Scheduler, or one of each. The primary controller
also determines the active Scheduler in the cluster and notifies Scheduler instances when the
active instance changes.

In the NQClusterConfig.INI file, the parameter PRIMARY_CONTROLLER specifies the machine
that hosts the primary Cluster Controller.

■ Secondary Cluster Controller. The secondary Cluster Controller assumes the role of the
primary Cluster Controller if the primary is unavailable. The secondary Cluster Controller can
reside on the same machine as an Oracle BI Server in the cluster or on another machine that is
on the same subnet as the cluster.

In the NQClusterConfig.INI file, the parameter SECONDARY_CONTROLLER specifies the machine
that will host the secondary Cluster Controller. It must be different from the machine that hosts
the primary Cluster Controller. Specifying a secondary Cluster Controller is optional. However, if
the primary Cluster Controller is unavailable and the secondary Cluster Controller has not been
configured, the cluster will not operate.

NOTE: In the NQClusterConfig.ini file, you must not use fully-qualified machine names because
all servers are required to run on the same LAN. Use the syntax machinename not
machinename.domain.

About Servers Used in Clustering
The following are descriptions of the types of servers used in clustering:

■ Master server. A master server is a clustered Oracle BI Server to which the Administration Tool
connects for online repository changes. In the NQClusterConfig.INI file, the parameter
MASTER_SERVER specifies the Oracle BI Server that functions as the master server.

■ Slave server. A slave server is a clustered Oracle BI Server that does not allow online repository
changes. It is used in load balancing of ODBC sessions to the Oracle BI Server cluster. If the
master server is ever down, the Administration Tool will connect to an available slave server, but
in read-only mode.

About Schedulers Used in Clustering
The following are the types of Schedulers used in clustering with their descriptions:

Clustering Oracle BI Servers ■ Implementing the Cluster Server

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 303

■ Active Scheduler. An active Scheduler is a clustered Oracle BI Scheduler instance which
actively processes Scheduler jobs. The Cluster Controller determines the active instance at run
time and notifies the Scheduler cluster of this instance.

■ Inactive Scheduler. An inactive Scheduler is a clustered Oracle BI Scheduler instance which is
not actively processing Scheduler jobs but is ready to take over in the event of an active
Scheduler failure. An inactive scheduler is idle at all other times.

About the Cluster Manager
The Cluster Manager is a utility that is available in the Administration Tool when a repository is open
in online mode. It allows the Oracle BI Administrator to monitor and manage the operations and
activities of the cluster.

You cannot start, stop, or restart services from the Cluster Manager. Use the mechanism provided
with your operating system for stopping and restarting an Oracle BI service. For Oracle BI Scheduler
instances, the only option from the right-click menu is Activate.

For Oracle BI Server instances, the only options from the right-click menu are Quiesce (stop taking
new sessions) or Enable (take new sessions). If an Oracle BI Server instance is running, you can
select Quiesce. If it is queisced, you can select Enable.

Implementing the Cluster Server
These are the high-level steps to implement the Cluster Server:

1 Install Oracle BI components, including the Cluster Controller component.

2 Set parameters in the NQSConfig.INI file.

3 Set parameters in the NQClusterConfig.INI file.

4 Set up the Oracle BI ODBC data source for clustering.

5 Configure the Schedulers to be participants in the cluster.

6 Configure Oracle BI Presentation Services to point to the Scheduler Cluster Controllers.

7 Copy the NQClusterConfig.INI file to the Cluster Controllers and Oracle BI Server in the cluster.

8 Start the machines in the cluster.

For information about installing and configuring the Cluster Server, refer to Oracle Business
Intelligence Enterprise Edition Deployment Guide.

Installing the Cluster Server Component
To install this component, see Oracle Business Intelligence Enterprise Edition Deployment Guide.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Clustering Oracle BI Servers ■ Implementing the Cluster Server

304

Setting Parameters in the NQSConfig.INI File
In the Server section of the NQSConfig.INI file, you need to set parameters for any Oracle BI Server
that will participate in a cluster. The NQSConfig.INI file is located in the Config directory in the Oracle
BI software installation folder. For more information about this file and its parameters, refer to Oracle
Business Intelligence Infrastructure Installation and Configuration Guide.

Setting Parameters in the NQClusterConfig.INI File
The NQClusterConfig.INI file contains the cluster configuration parameters. The Oracle BI Server and
Scheduler read this file after it reads the NQSConfig.INI file (when CLUSTER_PARTICIPANT is set to
YES in the NQSConfig.INI file). Cluster Controllers also read this file.

The NQClusterConfig.INI file is located in the Config directory in the Oracle BI installation folder. For
more information about this file and its parameters, refer to Oracle Business Intelligence Enterprise
Edition Deployment Guide.

Configuring the Oracle BI ODBC Data Source Name
All clients, including Oracle BI Presentation Services clients, need to have a clustered data source
name (DSN) configured in order to communicate with a cluster. You set up a DSN by using the Oracle
BI DSN Configuration wizard, described in “Connectivity and Third-Party Tools in Oracle BI Server” on
page 259.

Copying the NQClusterConfig.INI File
A configured NQClusterConfig.INI file needs to reside in the Config directory of every Oracle BI
Server and Cluster Controller that is to participate in the cluster.

For detailed instructions on configuring the NQClusterConfig.INI file, refer to Oracle Business
Intelligence Enterprise Edition Deployment Guide.

Starting Cluster Controllers and Oracle BI Servers
When you are using the Administration Tool and have a repository open in online mode, you can use
the Cluster Manager to monitor and manage the operations of the cluster Oracle BI Server. However,
opening a repository in online mode does not automatically start a clustered Oracle BI Server or a
Cluster Controller; therefore, you must start one Oracle BI Server and one Cluster Controller
manually. You can then use the Cluster Manager to start additional clustered servers.

NOTE: On all platforms, you need to manually start each Oracle BI Server, Scheduler, and Cluster
Controller.

To start the Oracle BI Server, Scheduler, and Cluster Controller from the Command
window on Windows
■ Open a Command window and type the following:

net start “Oracle BI SERVER”

net start “Oracle BI CLUSTER”

Clustering Oracle BI Servers ■ Chronology of a Cluster Operation

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 305

net start “Oracle BI SCHEDULER”

NOTE: You can also use a third-party tool designed for remote service manipulation.

After you start the services and Cluster Controller, use a text editor to examine the log files
NQServer.log, NQScheduler.log, and NQCluster.log in the Log directories, and verify that all
processes started without errors and joined the operational cluster configuration successfully. If the
log files indicate errors, correct the errors and restart the servers.

To start the Oracle BI Server, Scheduler, and Cluster Controller from the command
line on UNIX

1 Navigate to a command window (xterm).

2 In the Command window, type the following commands (the commands will be slightly different
if using csh):

cd INSTALLDIR/setup

./run-sa.sh start

./run-ccs.sh start

./run-sasch.sh start

Chronology of a Cluster Operation
This section provides an overview of the Oracle BI Cluster Server startup process.

1 As each Oracle BI Server starts, it reads its NQSConfig.INI file. If a server detects a syntax error
while reading the file, it logs the error to its NQServer.log file in its Log directory. All syntax errors
have to be corrected for startup to continue.

2 Each Oracle BI Server reads its NQClusterConfig.INI file and Scheduler file when
CLUSTER_PARTICIPANT is set to YES in the NQSConfig.INI file. Cluster Controllers also read this
file.

■ If a Oracle BI Server detects a syntax error while reading the file, it logs the error to its
NQServer.log file.

■ If a Cluster Controller detects an error while reading the file, it logs the error to its
NQCluster.log.

■ If a Scheduler detects an error while reading the file, it logs to NQScheduler.log.

■ If a machine is hosting both an Oracle BI Server and a Cluster Controller, messages will be
written to both logs.

■ All syntax errors have to be corrected for startup to continue.

3 When an instance of Oracle BI Server or Scheduler starts up, it waits for a connection from the
primary and secondary cluster controllers.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Clustering Oracle BI Servers ■ Chronology of a Cluster Operation

306

■ Oracle BI Server can run without the presence of a Cluster Controller service instance.
However, no clustered ODBC connection can be made to Oracle BI Server if there is no
running Cluster Controller service.

■ The Scheduler service will start but will remain in an inactive state until a Cluster Controller
service instance comes online and notifies the Scheduler of a state change.

4 The primary and secondary Cluster Controllers begin to exchange heartbeat messages. (This
step is omitted when no secondary Cluster Controller is defined.)

5 The Oracle BI Server verifies whether the repository publishing directory is available. If the
repository publishing directory is not available, the action each server takes depends on the
setting for the REQUIRE_PUBLISHING_DIRECTORY parameter in its NQSConfig.INI file.

■ When set to YES, if the publishing directory is not available at startup or if an error is
encountered while the server is reading any of the files in the directory, an error message is
logged in the NQServer.log file and the server shuts down.

■ When set to NO, the server joins the cluster, and a warning message is logged in the
NQServer.log file. However, any online repository updates are not reflected in the server’s
Repository directory.

6 The primary and secondary Cluster Controllers begin to exchange heartbeat messages with each
participant in the cluster.

■ The connection status is logged in the log files of the appropriate clustered instance
(Scheduler or Oracle BI Server). Messages are also logged in the NQCluster.log file of the
Cluster Controller.

■ Any participants with connection problems are not allowed to join the cluster.

■ If the server defined as the MASTER_SERVER for an online repository is not available, you
cannot edit the repository in online mode.

7 As each Oracle BI Server in the cluster starts, it examines the repository publishing directory for
any updated repositories. This is done by comparing the date and timestamps.

NOTE: The Oracle BI Server administrator is responsible for making sure that the time-of-day
clocks are synchronized across all Oracle BI Servers and Cluster Controllers.

■ If a server detects a newer version of an existing repository, it copies the repository to its
own Repository directory.

■ A server will not detect the presence of any new repositories. A new repository must be
manually propagated to all clustered servers when it is created. After that, online changes
are detected at subsequent startups of each server.

8 When the Cluster Controller assigns a session to a particular Oracle BI Server, the server
communicates with the back-end database using the connection defined in the Connection Pool
dialog box for the database. Clustered servers do not share a common connection pool. An ODBC
session maintains affinity to one Oracle BI Server session for the lifetime of that session.

9 If an Oracle BI Server determines it can satisfy all or a portion of a query from its cache file, it
will do so. Clustered servers do not share a common cache. Clustered servers do not share
common ad-hoc query cache. They can share cache for seeded queries, if each server instance
is configured to do so.

Clustering Oracle BI Servers ■ Using the Cluster Manager

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 307

Using the Cluster Manager
The Cluster Manager allows you to monitor, analyze, and manage the operations of a cluster. It
provides status, cache, and session information about the servers and controllers that make up a
cluster. It is available only when the Administration Tool is connected to a clustered DSN.

NOTE: If all Cluster Controllers or Oracle BI Servers in the cluster are currently stopped or offline,
you cannot access the Cluster Manager to start them. You must manually start one Cluster Controller
(generally, the primary) and one Oracle BI Server.

The Cluster Manager Graphical User Interface (GUI) has two panes: the Explorer pane on the left
side and the Information pane on the right side. The Explorer pane displays hierarchical information
about the servers, schedulers, and controllers that make up a cluster. The Information pane shows
detailed information about an item selected in the Explorer pane.

The Cluster Manager window refreshes every minute by default. You can change the interval.

To set the refresh interval for the display

1 In the Administration Tool, open a repository in online mode.

2 Select Manage > Clusters.

3 To change this value, select Refresh > Every and choose another value from the list.

4 To refresh the display at any time, make sure the Cluster Manager is the active window and press
F5, or select Refresh > Now.

This retrieves the most current information for the cluster.

To activate an inactive Scheduler instance

1 In the Administration Tool, open a repository in online mode.

2 Select Manage > Clusters.

3 In the Cluster Manager dialog box, right-click a Scheduler instance.

4 If the Scheduler instance selected is inactive, select Activate.

This allows the administrator to dictate the active Scheduler instance at run time.

Viewing and Managing Cluster Information
The section describes how to view status, cache, and session information about a cluster and the
meaning of the information provided.

Status Information
The Status view is automatically displayed when you first open the Cluster Manager window. You can
also access the Status view by selecting View > Status in the Cluster Manager window.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Clustering Oracle BI Servers ■ Using the Cluster Manager

308

The categories of information displayed in the Information pane may vary depending on the server
to which Administration Tool is connected. Table 35 on page 308 describes categories that may
appear.

Table 35. Status Columns

Column Description

Last Reported
Time

The time the Cluster Controller or Oracle BI Server communicated with the
Controlling Cluster Controller. If the server or controller is offline, this field may
be blank.

Name The name of the machine hosting the Oracle BI Server or Cluster Controller.

Role The role of the object in the cluster:

■ Controlling. A Cluster Controller that is currently assigned the
responsibility for control of the cluster.

■ Primary. The primary Cluster Controller. This role is not displayed if the
primary Cluster Controller is currently the controlling Cluster Controller.

■ Secondary. The secondary Cluster Controller. This role is not displayed if
the secondary Cluster Controller is currently the controlling Cluster
Controller.

■ Clustered server. An Oracle BI Server that is a member of the cluster. This
role is not displayed for the clustered server defined as the master server.

■ Master. The clustered server that the Administration Tool connects to for
editing repositories in online mode.

■ Active. The Scheduler is active.

Sessions This field is available when either Servers or an individual server is selected in
the Explorer pane. It shows the number of sessions currently logged on to a
clustered server.

Start Time The timestamp showing when the Cluster Controller or Oracle BI Server was last
started. This field will be blank if the Cluster Controller or clustered server is
offline.

Clustering Oracle BI Servers ■ Using the Cluster Manager

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 309

Cache Information
The Cache view is available in the Cluster Manager window if caching is enabled.

Status The status of the object in the cluster:

■ Online. The Cluster Controller or Oracle BI Server is online. For Cluster
Controllers, this means the controller can accept session requests and
assign them to available servers within the cluster. For clustered servers,
this means that the server may be assigned sessions by the Cluster
Controller.

■ Quiesce. This status is applicable to clustered servers only. This means that
any activity in progress on outstanding sessions will be allowed to complete
before the server transitions to Offline status.

■ Offline. The Cluster Controller or Oracle BI Server is offline. For Cluster
Controllers, this means the controller cannot accept session requests or
assign sessions to available servers within the cluster. For clustered servers,
this means that the server is not communicating with the controlling Cluster
Controller and cannot accept sessions assigned by the controlling Cluster
Controller. If the server subsequently becomes available, it will be allowed
to participate in the cluster. If you want to stop the Cluster Controller or
clustered server after quiescing it, you need to issue the Stop command.

■ Forced Offline. This status applies to clustered servers only. The Oracle BI
Server has been stopped. This is identical to the offline status, except that
if the Oracle BI Server comes back online, it will not be assigned requests.
The server will remain in this state until the Start command is issued against
this server from the Administration Tool Cluster Manager or both Cluster
Controllers are shut down and restarted.

■ Online: Active. The Scheduler instance is online, running, and the one to
which Scheduler clients will connect. This instance will execute jobs.

■ Online: Inactive. The Scheduler is online but not running. This instance is
ready to take over for the active instance if the active instance becomes
unavailable.

■ Online: Inactive Pending. The Scheduler was active and is trying to go
into an inactive state. This might take a few minutes, for example, if a
multiple jobs are running.

Type When Clusters is selected in the Explorer pane, this field is available. There are
two types:

■ Controller. The object is a Cluster Controller.

■ Server. The object is an Oracle BI Server.

■ Scheduler. The object is a Scheduler Server.

Table 35. Status Columns

Column Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Clustering Oracle BI Servers ■ Using the Cluster Manager

310

The categories of information and their display sequence are controlled by your Options settings.
Table 36 on page 310 describes categories that may appear.

To view cache information
■ Click an individual server in the Explorer pane, and then select View > Cache.

Session Information
The Session view is available for Oracle BI Servers. The information is arranged in two windows,
described in Table 37 on page 311.

■ Session window—Appears on the top. Shows users currently logged on to the Oracle BI Server.

■ Request window—Appears on the bottom. Shows active query requests for the user selected in
the Session window.

Table 36. Cache View Columns

Column Description

Business Model Name of the business model associated with the cache entry.

Column count Number of columns in each row of this cache entry’s result set.

Created Time the cache entry’s result set was created.

Creation
elapsed time

Time, in milliseconds, needed to create the result set for this cache entry.

Full size Full size is the maximum size used, considering variable length columns,
compression algorithm, and other factors. The actual size of the result set will
be smaller than Full size.me, in seconds, needed to create the result set for this
cache entry.

Last used Last time the cache entry’s result set satisfied a query. (After an unexpected
shutdown of an Oracle BI Server, the Last used time may temporarily have a
stale value, that is, older than the true value.)

Row count Number of rows generated by the query.

Row size Size of each row (in bytes) in this cache entry’s result set.

SQL Text of the SQL that generated the cache entry.

Use count Number of times this cache entry’s result set has satisfied a query (since Oracle
BI Server startup).

User ID of the user who submitted the query that resulted in the cache entry.

Clustering Oracle BI Servers ■ Using the Cluster Manager

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 311

Table 37 on page 311 describes the information that appears in the Session window.

Table 38 on page 311 describes the information that appears in the Request window.

Table 37. Session Window Columns (Top Window)

Column Description

Catalog Name of the Presentation layer catalog to which the session is connected.

Client Type Type of client session. The client type of Administration is reserved for the
user logged in with the Oracle BI Administrator user ID.

Last Active Time Timestamp of the last activity on the session or the query.

Logon Time Timestamp when the session logged on to Oracle BI Server.

Repository Logical name of the repository to which the session is connected.

Session ID Unique internal identifier that the Oracle BI Server assigns each session when
the session is initiated.

User Name of the user connected.

Table 38. Request Window Columns (Bottom Window)

Column Description

Last Active Time Timestamp of the last activity on the session or the query.

Request ID Unique internal identifier that the Oracle BI Server assigns each query when the
query is initiated.

Session ID Unique internal identifier that Oracle BI Server assigns each session when the
session is initiated.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Clustering Oracle BI Servers ■ Using the Cluster Manager

312

To manage clustered servers

1 In the Explorer pane, click the plus sign (+) to the left of the Server icon to display the servers
in the cluster.

2 In the Information pane, select a server.

3 Select Action, and then select one of the available options.

When the operation finishes, the status of the clustered server will be refreshed automatically.

To view session information
■ Select a server in the Explorer pane, and then select View > Sessions.

Session information for the server is displayed in the Information pane. It shows all users logged
into the server and all current query requests for each user.

To disconnect a session
■ In the Session view, right-click the session in the Session window (top window) and click

Disconnect.

Start Time Time of the initial query request.

Status These are the possible values. Due to the speed at which some processes
complete, not all values for any given request or session may appear.

■ Idle. There is presently no activity on the request or session.

■ Fetching. The request is being retrieved.

■ Fetched. The request has been retrieved.

■ Preparing. The request is being prepared for processing.

■ Prepared. The request has been prepared for processing and is ready for
execution.

■ Executing. The request is currently running. To kill a request, select it and
click the Kill Request button. The user will receive an informational message
indicating that the Oracle BI Administrator cancelled the request.

■ Executed. The request has finished running.

■ Succeeded. The request ran to completion successfully.

■ Canceled. The request has been canceled.

■ Failed. An error was encountered during the processing or running of the
request.

Table 38. Request Window Columns (Bottom Window)

Column Description

Clustering Oracle BI Servers ■ Performance Considerations

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 313

To kill a query request
■ In the Session view, right-click the request in the Request window (bottom window) and click Kill

Request.

Server Information
Selecting Server info from the View menu provides information about the cluster server such as
server version number.

Performance Considerations
This section describes characteristics of the Cluster Server that may influence the performance of
clustered Oracle BI Servers. You should consider these points when implementing the Cluster Server.

■ Sessions are assigned to an Oracle BI Server when the session is established. A session is
assigned to the server with the fewest sessions. As a result, the load on Oracle BI Servers can
vary and Oracle BI Servers brought online into an operational cluster may not receive work for
some time.

■ Because each Oracle BI Server maintains its own local query results cache, back-end databases
may receive the same query from multiple Oracle BI Servers even though the result is cached.
If you are using cluster aware caching, queries that are explicitly seeded through a cache seeding
iBot are shared across nodes in the cluster. For more information, see Oracle Business
Intelligence Enterprise Edition Deployment Guide.

■ Because each Oracle BI Server maintains its own local query results cache, Oracle BI Servers
that are brought online into an operational cluster may respond to queries more slowly while their
local cache is being populated.

■ Because each Oracle BI Server has an independent copy of each repository and hence its own
back-end connection pools, back-end databases may experience as many as N*M connections,
where N is the number of active servers in the cluster and M is the maximum sessions allowed
in the connection pool of a single repository. Therefore, it may be appropriate to reduce the
maximum number of sessions configured in session pools.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Clustering Oracle BI Servers ■ Performance Considerations

314

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 315

15 Security in Oracle BI

The Oracle BI Server provides secure access control at any level. This section contains the following
topics:

■ Oracle BI Security Manager on page 315

■ Authentication Options on page 324

■ Managing Query Execution Privileges on page 330

Oracle BI Security Manager
The Oracle BI Security Manager displays all security information for a repository. You can use the
Security Manager to set up users and groups, synchronize LDAP users and groups, set access
privileges for objects such as tables and columns, set filters on information, and set up a managed
query environment in which you have a great deal of control over when users can access data.

NOTE: You should read this section to understand the basics about security and setting up
authentication. After reading this section, refer to details about configuring security for Oracle BI
applications in Oracle Business Intelligence Applications Installation and Administration Guide.

The Oracle BI Server and Oracle BI Presentation Services client support industry-standard security
for login and password encryption. When an end user enters a login and password in the Web
browser, the Oracle BI Server uses the Hyper Text Transport Protocol Secure (HTTPS) standard to
send the information to a secure port on the Oracle BI Presentation Services. From the Oracle BI
Presentation Services, the information is passed through ODBC to the Oracle BI Server, using Triple
DES (Data Encryption Standard). This provides a high level of security (168 bit), preventing
unauthorized users from accessing data or Oracle BI metadata.

At the database level, Oracle BI Administrators can implement database security and authentication.
Finally, a proprietary key-based encryption provides security to prevent unauthorized users from
accessing the Oracle BI metadata repository.

This section includes the following topics:

■ Working with Users on page 315

■ Working with Groups on page 317

■ Importing Users and Groups from LDAP on page 321

Working with Users
User accounts can be defined explicitly in an Oracle BI repository or in an external source (such as
a database table or an LDAP server). However user accounts are defined, users need to be
authenticated by the Oracle BI Server for a session to take place.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Security in Oracle BI ■ Oracle BI Security Manager

316

Users defined explicitly in a repository can access business models in that repository, but they cannot
span repositories.

The Oracle BI Administrator user account is created automatically when a repository is created and
cannot be deleted. For more information about the Oracle BI Administrator user account, refer to
“About the Oracle BI Administrator Account” on page 317.

This section includes the following topics:

■ Adding a New User to a Repository on page 316

■ About the Oracle BI Administrator Account on page 317

Adding a New User to a Repository
Use this procedure to add a new user to a repository.

To add a new user to a repository

1 Open a repository in the Administration Tool.

2 Display the security manager by selecting Manage > Security.

3 Select Action > New > User to open the User dialog box.

4 Type a name and password for the user.

5 If you want to log queries for this user in the query log, change the query logging level to 1 or 2.

For more information about query logging, refer to “Setting a Logging Level” on page 215.

6 Click OK.

This creates a new user with default rights granted to it. In the NQSConfig.INI file, the default
rights are specified by the entry DEFAULT_PRIVILEGES.

7 To modify the user’s permissions, open the User dialog by double-clicking on the user icon you
want to modify. If you click Permissions, you can change permissions for multiple columns.

8 Specify the password expiration option.

■ If the user’s password should never expire, select the option Password Never Expires.

■ If you want the user’s password to expire, use the Days drop-down list to select the number
of days to elapse before the user’s password will expire. The maximum interval is 365 days.

When the specified number of days passes after the password is created or changed, the
password expires and must be changed.

9 You can grant rights to the user individually, through groups, or a combination of the two. To
grant membership in a group, check as many groups as you want the user to be a part of in the
Group Membership portion of the dialog box.

Security in Oracle BI ■ Oracle BI Security Manager

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 317

10 To specify specific database logon IDs for one or more databases, type the appropriate user IDs
and passwords for the user in the Logons tab of the User dialog box.

NOTE: If a user specifies database-specific logon IDs in the DSN used to connect to the Oracle
BI Server, the logon IDs in the DSN are used if the Oracle BI Administrator has configured a
connection pool with no default database-specific logon ID and password. For information about
configuring the connection pools to support database-specific logon IDs, refer to “Creating or
Changing Connection Pools” on page 67.

11 Set up any query permissions for the user. For information, refer to “Managing Query Execution
Privileges” on page 330.

About the Oracle BI Administrator Account
The Oracle BI Administrator account (user ID of Administrator) is a default user account in every
Oracle BI repository. This is a permanent account. It cannot be deleted or modified other than to
change the password and logging level. It is designed to perform all administrative tasks in a
repository, such as importing physical schemas, creating business models, and creating users and
groups.

NOTE: The Oracle BI Administrator account is not the same as the Windows NT and Windows 2000
Administrator account. The administrative privileges granted to this account function only within the
Oracle BI Server environment.

When you create a new repository, the Oracle BI Administrator account is created automatically and
has no password assigned to it. You should assign a password for the Oracle BI Administrator account
as soon as you create the repository. The Oracle BI Administrator account created during the
installation of the Oracle BI repository, that is, the repository shipped with Oracle BI, has the default
password SADMIN.

The Oracle BI Administrator account belongs to the Administrators group by default and cannot be
deleted from it. The person logged on using the Oracle BI Administrator user ID or any member of
the Oracle BI Administrators group has permissions to change anything in the repository. Any query
issued from the Oracle BI Administrator account has complete access to the data; no restrictions
apply to any objects.

NOTE: You can set the minimum length for passwords in the NQSConfig.INI file using the
MINIMUM_PASSWORD_LENGTH setting.

Working with Groups
The Oracle BI Server allows you to create groups and then grant membership in them to users or
other groups.

You can think of a group as a set of security attributes. The Oracle BI Server groups are similar to
groups in Windows NT and Windows 2000, and to groups or roles in database management systems
(DBMS). Like Windows NT and Windows 2000, and database groups or roles, Oracle BI Server groups
can allow access to objects. Additionally, Oracle BI Server groups can explicitly deny particular
security attributes to its members.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Security in Oracle BI ■ Oracle BI Security Manager

318

Groups can simplify administration of large numbers of users. You can grant or deny sets of privileges
to a group and then assign membership in that group to individual users. Any subsequent
modifications to that group will affect all users who belong to it. Externally defined users can be
granted group membership by use of the GROUP session variable. For more information about
session variables, refer to “Using System Session Variables” on page 287.

This section includes the following topics:

■ Predefined Administrators Group on page 318

■ Defined Groups on page 318

■ Group Inheritance on page 318

■ Adding a New Group on page 320

■ Viewing Member Hierarchies on page 320

Predefined Administrators Group
The Oracle BI Server has one predefined group, the Oracle BI Administrators group. Members of this
group have the authority to access and modify any object in a repository. The predefined Oracle BI
Administrator user ID is automatically a member of the Oracle BI Administrators group.

Use caution in granting membership in the Oracle BI Administrators group to users or other groups.
Membership in the Oracle BI Administrators group supersedes all privileges granted to a user, either
through groups or explicitly through the user privileges. Any user who is a member of the Oracle BI
Administrators group has all of the privileges of the Oracle BI Administrator user.

Defined Groups
You can create an unlimited number of groups in an Oracle BI repository. Each group can contain
explicitly granted privileges or privileges granted implicitly using membership in another group. For
more information about setting up a group, refer to “Adding a New Group” on page 320.

For example, you can create one group that denies access to the repository on Mondays and
Wednesdays (Group1), another group that denies access on Saturdays and Sundays (Group2), and
another that denies access on Tuesdays, Thursdays, and Fridays (Group3). Users who are members
of Group2 can access the system only during weekdays, users who are members of Group1 and
Group3 can access the system only on weekends, and so on.

Group Inheritance
Users can have explicitly granted privileges. They can also have privileges granted through
membership in groups, that in turn can have privileges granted through membership in other groups,
and so on. Privileges granted explicitly to a user have precedence over privileges granted through
groups, and privileges granted explicitly to the group take precedence over any privileges granted
through other groups.

If there are multiple groups acting on a user or group at the same level with conflicting security
attributes, the user or group is granted the least restrictive security attribute. Any explicit
permissions acting on a user take precedence over any privileges on the same objects granted to
that user through groups.

Security in Oracle BI ■ Oracle BI Security Manager

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 319

Example 1
Suppose you have a user (User1) who is explicitly granted permission to read a given table (TableA).
Suppose also that User1 is a member of Group1, that explicitly denies access to TableA. The resultant
privilege for User1 is to read TableA, as shown in Figure 21 on page 319.

Because privileges granted directly to the user take precedence over those granted through groups,
User1 has the privilege to read TableA.

Example 2
Consider the situation shown in Figure 22 on page 319.

These are the resulting privileges:

Figure 21. User Privileges and Group Privileges

Figure 22. Privileges Example

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Security in Oracle BI ■ Oracle BI Security Manager

320

■ User1 is a direct member of Group1 and Group2, and is an indirect member of Group3, Group4,
and Group5.

■ Because Group5 is at a lower level of precedence than Group2, its denial of access to TableA is
overridden by the READ privilege granted through Group2. The result is that Group2 provides
READ privilege on TableA.

■ The resultant privileges from Group1 are DENY for TableA, READ for TableB, and READ for TableC.

■ Because Group1 and Group2 have the same level of precedence and because the privileges in
each cancel the other out (Group1 denies access to TableA, Group2 allows access to TableA), the
less restrictive level is inherited by User1; that is, User1 has READ access to TableA.

■ The total privileges granted to User1 are READ access for TableA, TableB, and TableC.

Adding a New Group
The following procedure explains how to add a new group to a repository.

To add a new group to a repository

1 Open a repository in the Administration Tool. (The repository can be opened in either online or
offline mode.)

2 Display the security window by selecting Manage > Security.

3 Select Action > New > Group from menu.

The Group dialog box appears.

NOTE: You can also select the Group icon in the left pane, and then right-click on white space in
the left pane and select New Security Group from the right-click menu.

4 Type a name for the group and click OK.

This creates a new group with no rights granted to it.

5 To modify the group’s permissions, open the Group dialog by double-clicking on the group icon
you want to modify. If you click on Permissions, you can change permissions for multiple
columns.

6 You can grant rights to the group by adding other groups, by explicit configuration for the group,
or a combination of the two. To grant membership to a group, click Add and select any users or
groups you want to grant membership. Click OK after you have selected the groups and users.

7 Set up any query permissions for the group. For information, refer to “Managing Query Execution
Privileges” on page 330.

NOTE: Unlike the User dialog box, the Group dialog box does not allow you to select a logging
level. The logging level is a user attribute and cannot be specified for a group.

Viewing Member Hierarchies
Use the following procedures to view member hierarchies.

Security in Oracle BI ■ Oracle BI Security Manager

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 321

To view member hierarchies in the Security Manager
■ Click the hierarchy icon in the left pane of the Security Manager, and then expand the tree in the

right pane.

To view member hierarchies in the Query Repository dialog box

1 Select Tools > Query Repository from the main menu of the Administration Tool.

2 To view all groups, select Security Groups from the Type drop-down list and click Query.

3 To view all users, select Users from the Type drop-down and click Query.

4 To view the groups that a group is a member of, select the group and click Parent. For example,
to view what groups Group1 is a member of, select Group1 and click the Parent button.

Importing Users and Groups from LDAP
If your organization uses Lightweight Directory Access Protocol (LDAP), you can import your existing
LDAP users and groups to a repository. After imported, all normal Oracle BI Server user and group
functions are available. You can resynchronize your imported list at any time.

You can also authenticate against LDAP as an external source. When you do this, users are not
imported into the repository. Users are authenticated, and their group privileges determined, when
they log on. For more information about using LDAP authentication, refer to “Setting Up LDAP
Authentication” on page 324.

NOTE: If you create a variable for the same user in both the repository and in a LDAP server, the
local repository user definition takes precedence and LDAP authentication will not occur. This allows
the Oracle BI Administrator to reliably override users that exist in an external security system.

This section includes the following topics:

■ Setting Up an LDAP Server on page 321

■ Importing Users from LDAP on page 323

■ Synchronizing Users and Groups with LDAP on page 323

Setting Up an LDAP Server
This section explains how to set up LDAP authentication for the repository.

NOTE: For information about the basics of security and setting up authentication, refer to “Oracle BI
Security Manager” on page 315.

For instances of Oracle BI that use ADSI as the authentication method, the following options should
be used when setting up the AD instance:

■ In Log On To, check All Computers or, if you list some computers, include the AD server as a
Logon workstation.

■ The following option must not be checked:

User must change password at next logon

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Security in Oracle BI ■ Oracle BI Security Manager

322

In the Administration Tool, the CN user used for the BIND DN of the LDAP Server section must have
both ldap_bind and ldap_search authority.

NOTE: The Oracle BI Server uses clear text passwords in LDAP authentication. Make sure your LDAP
Servers are set up to allow this.

To set up LDAP authentication for the repository

1 Open a repository in the Administration Tool in offline or online mode.

2 From the application menu, choose Manage > Security.

3 From the Security Manager menu, choose Action > New > LDAP Server.

4 In the LDAP Server dialog box, in the General tab, complete the necessary fields. The following
list of fields (or buttons) and descriptions contain additional information to help you set up the
LDAP server:

■ Host name. The name of your LDAP server.

■ Port number. The default LDAP port is 389.

■ LDAP version. LDAP 2 or LDAP 3 (versions). The default is LDAP 3.

■ Base DN. The base distinguished name (DN) identifies the starting point of the
authentication search. For example, if you want to search all of the entries under the
o=Oracle.com subtree of the directory, o=Oracle.com is the base DN.

■ Bind DN and Bind Password. The optional DN and its associated user password that are
required to bind to the LDAP server.

If these two entries are blank, anonymous binding is assumed. For security reasons, not all
LDAP servers allow anonymous binding.

These fields are optional for LDAP V3, but required for LDAP V2, because LDAP V2 does not
support anonymous binding.

These fields are required if you select the ADSI check box. If you leave these fields blank, a
warning message appears asking if you want to leave the password empty anyway. If you
click Yes, anonymous binding is assumed.

■ Test Connection. Use this button to verify your parameters by testing the connection to the
LDAP server.

5 Click the Advanced tab, and type the required information. The following list of fields and
descriptions contain additional information to help you set up the LDAP server:

NOTE: The Oracle BI Server maintains an authentication cache in memory that improves
performance when using LDAP to authenticate large numbers of users. Disabling the
authentication cache can slow performance when hundreds of sessions are being authenticated.

■ Connection timeout. When the Administration Tool attempts to connect to an LDAP server
for import purposes or the Oracle BI Server attempts to connect to an LDAP server for user
authentication, the connection will time out after the specified interval.

Security in Oracle BI ■ Oracle BI Security Manager

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 323

■ Domain identifier. Typically, the identifier is a single word that uniquely identifies the
domain for which the LDAP object is responsible. This is especially useful when you use
multiple LDAP objects. If two different users have the same user ID and each is on a different
LDAP server, you can designate domain identifiers to differentiate between them. The users
log in to the Oracle BI Server using the following format:

domain_id/user_id

If a user enters a user id without the domain identifier, it will be authenticated against all
available LDAP servers in turn. If there are multiple users with the same ID, only one user
can be authenticated.

■ ADSI. (Active Directory Service Interfaces) A type of LDAP server. If you select the ADSI
check box, Bind DN and Bind password are required.

■ SSL. (Single Socket Layer) Check this box to enable this.

■ User Name Attribute Type. This uniquely identifies a user. In many cases, this is the RDN
(relative distinguished name). Typically, you accept the default value. For most LDAP servers,
you would use the user ID. For ADSI, use sAMAccountName.

NOTE: For information about configuring cache settings and SSL, refer to Oracle Business
Intelligence Enterprise Edition Deployment Guide.

Importing Users from LDAP
You can import selected users or groups, or you can import all users or groups. If you have previously
performed an import, you can choose to synchronize the repository with the LDAP server.

To import LDAP users and groups to a repository

1 Open a repository in the Administration Tool in offline or online mode.

2 From the application menu, choose Manage > Security.

3 In the Security Manager, select LDAP Servers in the left pane to display existing LDAP servers in
the right pane. Select the LDAP server from which you want to import users or groups, and select
Import... from the right-click menu. (You can also select the server and then select LDAP >
Import.)

You can choose to import selected users or groups, or you can import all users and groups. If
you have previously done an import, you can choose to synchronize the repository with the LDAP
server.

4 Select the users you want to import and click Import.

You can import groups by selecting Groups from the drop down list instead of Users.

Synchronizing Users and Groups with LDAP
You can refresh the repository users and groups with the current users and groups on your LDAP
server. After selecting the appropriate LDAP server, select LDAP > Synchronize (or choose
Synchronize from the right-click menu).

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Security in Oracle BI ■ Authentication Options

324

Synchronization updates your list of repository users and groups to mirror your current LDAP users
and groups. Users and groups that do not exist on your LDAP server are removed from the repository.
The special user Administrator and the special group Administrators always remain in your repository
and are never removed.

Properties of users already included in the repository are not changed by synchronization. If you
have recycled a login name for another user, drop that name from your repository prior to
synchronization. This assures that the process will import the new LDAP user definition.

NOTE: With external LDAP authentication (discussed in the next section), import and
synchronization are not really necessary. The primary use for import is to make it easy to copy LDAP
users as Oracle BI users for testing.

Authentication Options
Authentication is the process by which a system uses a user ID and password ti verify that a user
has the necessary permissions and authorizations to log in and access data. The Oracle BI Server
authenticates each connection request it receives.

The Oracle BI Server supports the following authentication types:

■ Setting Up LDAP Authentication on page 324

■ Setting Up External Table Authentication on page 326

■ Setting Up Database Authentication on page 327

■ About Oracle BI Delivers and Database Authentication on page 328

■ Maintaining Oracle BI Server User Authentication on page 329

Setting Up LDAP Authentication
Instead of storing user IDs and passwords in an Oracle BI repository, you can set up the Oracle BI
Server to take the user ID and password typed by a user and pass them to an LDAP server for
authentication. The server uses clear text passwords in LDAP authentication. Make sure your LDAP
servers are set up to allow this.

In addition to basic user authentication, the LDAP server can also provide the Oracle BI Server with
other information, such as the user display name (used by Oracle BI Presentation Services) and the
name of any groups to which the user belongs. The LDAP server can also provide the names of
specific database catalogs or schemas to use for each user when querying data. This information is
contained in LDAP variables that get passed to Oracle BI session variables during the process of user
authentication. For more information about session variables, refer to “Understanding and Creating
Session Variables” on page 286.

LDAP authentication uses Oracle BI session variables, that you define using the Variable Manager of
the Administration Tool. For more information about the Variable Manager, refer to “Using the Variable
Manager” on page 283.

You need to perform the following steps to set up LDAP authentication:

Security in Oracle BI ■ Authentication Options

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 325

1 Create an LDAP Server using the Administration Tool menu path: Manage > Security. For
instructions, see “Setting Up an LDAP Server” on page 321.

2 Create an LDAP initialization block and associate it with an LDAP server. Setting up an LDAP
initialization block is explained in “Process of Creating Initialization Blocks” on page 293.

3 Define a system variable named USER and map the USER variable to an LDAP attribute (uid or
sAMAccountName).

Session variables get their values when a user begins a session by logging on. Certain session
variables, called system session variables, have special uses. The variable USER is a system
variable that is used with LDAP authentication. For more information about the USER system
variable, refer to “Using System Session Variables” on page 287 and “Defining a USER Session
Variable for LDAP Authentication” on page 325.

4 If applicable, delete users from the Oracle BI repository file.

5 Associate the USER system variable with the LDAP initialization block. For more information, see
“About Authenticating Users Using Initialization Blocks” on page 293.

Defining a USER Session Variable for LDAP Authentication
To set up LDAP authentication, you define a system variable called USER and associate it with an
LDAP initialization block that is associated with an LDAP server. When a user logs into the Oracle BI
Server, the user ID and password will be passed to the LDAP server for authentication. After the user
is authenticated successfully, other session variables for the user could also be populated from
information returned by the LDAP server.

NOTE: If you create a variable for the same user in both the repository and in a LDAP server, the
local repository user definition takes precedence and LDAP authentication will not occur.

The information in this section assumes that an LDAP initialization block has already been defined.

For users not defined in the repository, the presence of a defined session system variable USER
determines that external authentication is performed. Associating USER with an LDAP initialization
block determines that the user will be authenticated by LDAP. To provide other forms of
authentication, associate the USER variable with an initialization block associated with an external
database or XML source. For more information, refer to “Setting Up External Table Authentication” on
page 326.

To define the USER session system variable for LDAP authentication

1 Select Manage > Variables from the Administration Tool menu.

2 Select the System leaf of the tree in the left pane.

3 Right-click on the right pane and select New USER.

4 In the Session Variable - USER dialog box, select the appropriate LDAP initialization block from
the Initialization Block drop-down list.

The selected initialization block provides the USER session system variable with its value.

5 Click OK to create the USER variable.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Security in Oracle BI ■ Authentication Options

326

Setting the Logging Level
Use the system variable LOGLEVEL to set the logging level for users who are authenticated by an
LDAP server. Refer to “Setting a Logging Level” on page 215 for more information.

Setting Up External Table Authentication
Instead of storing user IDs and passwords in an Oracle BI repository, you can maintain lists of users
and their passwords in an external database table and use this table for authentication purposes.
The external database table contains user IDs and passwords, and could contain other information,
including group membership and display names used for Oracle BI Presentation Services users. The
table could also contain the names of specific database catalogs or schemas to use for each user
when querying data.

NOTE: If a user belongs to multiple groups, the group names should be included in the same column
separated by semicolons.

External table authentication can be used in conjunction with database authentication. If external
table authentication succeeds, then database authentication is not performed. If external table
authentication fails, then database authentication is performed.

Refer to “Setting Up Database Authentication” on page 327, and “Order of Authentication” on page 330
for additional details.

External table authentication uses Oracle BI session variables that you define using the Variable
Manager of the Administration Tool. For more information about the Variable Manager, refer to “Using
the Variable Manager” on page 283.

Session variables get their values when a user begins a session by logging on. Certain session
variables, called system variables, have special uses. The variable USER is a system variable that is
used with external table authentication.

To set up external table authentication, you define a system variable called USER and associate it
with an initialization block that is associated with an external database table. Whenever a user logs
in, the user ID and password will be authenticated using SQL that queries this database table for
authentication. After the user is authenticated successfully, other session variables for the user could
also be populated from the results of this SQL query. For more information about session variables,
refer to “Understanding and Creating Session Variables” on page 286.

The presence of a defined system variable USER determines that external authentication is done.
Associating USER with an external database table initialization block determines that the user will be
authenticated using the information in this table. To provide other forms of authentication, associate
the USER system variable with an initialization block associated with a LDAP server or XML source.
For more information, refer to “Setting Up LDAP Authentication” on page 324.

To set up external table authentication

1 Import information about the external table into the Physical layer. In this illustration, the
database sql_nqsecurity contains a table named securitylogons and has a connection pool named
External Table Security.

2 Select Manage > Variables to open the Variable Manager.

Security in Oracle BI ■ Authentication Options

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 327

3 Select Initialization Blocks on the left tree pane.

4 Right-click on white space in the right pane, and then click on New Initialization Block from the
right-click menu.

5 In the Initialization Block dialog box, type the name for the initialization block.

6 Select Database from the Data Source Connection drop-down list.

7 Click Browse to search for the name of the connection pool this block will use.

8 In the Initialization String area, type the SQL statement that will be issued at authentication
time.

The values returned by the database in the columns in your SQL will be assigned to variables.
The order of the variables and the order of the columns will determine which columns are
assigned to which variables. Consider the SQL in the following example:

select username, grp_name, SalesRep, 2 from securitylogons where username =
':USER' and pwd = ':PASSWORD'

This SQL contains two constraints in the WHERE clause:

■ :USER (note the colon) equals the ID the user entered when logging on.

■ :PASSWORD (note the colon again) equals the password the user typed.

The query will return data only if the user ID and password match values found in the specified
table.

You should test the SQL statement outside of the Oracle BI Server, substituting valid values for
:USER and :PASSWORD to verify that a row of data returns.

9 If this query returns data, the user is authenticated and session variables will be populated.
Because this query returns four columns, four session variables will be populated. Create these
variables (USER, GROUP, DISPLAYNAME, and LOGLEVEL) by clicking New in the dialog's Variables
tab.

If a variable is not in the desired order, click on the variable you want to reorder and use the Up
and Down buttons to move it.

10 Click OK to save the initialization block.

Setting Up Database Authentication
The Oracle BI Server can authenticate users through database logons. If a user has read permission
on a specified database, the user will be trusted by the Oracle BI Server. Unlike operating system
authentication, this authentication can be applied to Oracle BI Presentation Services users. For
information, refer to “About Oracle BI Delivers and Database Authentication” on page 328.

Database authentication can be used in conjunction with external table authentication. If external
table authentication succeeds, then database authentication is not performed. If external table
authentication fails, then database authentication is performed.

Refer to “Setting Up External Table Authentication” on page 326 and “Order of Authentication” on
page 330 for additional details.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Security in Oracle BI ■ Authentication Options

328

Database authentication requires the user ID to be stored in the Oracle BI repository.

To set up database authentication

1 Create users in the repository named identically to the users in a database. Passwords are not
stored in the repository.

2 Assign the permissions (including group memberships, if any) you want the users to have.

3 Specify the authentication database in the Security section of the NQSConfig.INI file.

For more information, see Oracle Business Intelligence Infrastructure Installation and
Configuration Guide.

4 Create a DSN for the database.

5 Import the database into the Physical layer. You do not need to import the physical table objects.
The database name in the Physical layer has to match the database name in the NQSConfig.INI
file (as specified in Step 3).

6 Set up the connection pool without a shared logon.

When a user logs on to the Oracle BI Server, the server attempts to use the logon name and
password to connect to the authentication database using the first connection pool associated with
it. If this connection succeeds, the user is considered to be authenticated successfully.

If the logon is denied, the Oracle BI Server issues a message to the user indicating an invalid user
ID or password.

About Oracle BI Delivers and Database Authentication
In Oracle BI Applications, users are always created in the operational application database, never in
the Oracle BI repository. The Oracle BI repository is preconfigured for database authentication.

Oracle BI Scheduler Server runs Delivers jobs for users without accessing or storing their passwords.
Using a process called impersonation, the Scheduler uses one user ID and password with Oracle BI
Administrator privileges that can act on behalf of other users. The Scheduler initiates an iBot by
logging on to Oracle BI Presentation Services with that Oracle BI Administrator ID and password.

For Delivers to work, all database authentication must be performed in only one connection pool, and
that connection pool can only be selected in an initialization block for the USER system session
variable. This is typically called the Authentication Initialization Block. When impersonation is used,
this initialization block is skipped. All other initialization blocks must use connection pools that do
not use database authentication.

CAUTION: Using an authentication initialization block is the only initialization block in which it is
acceptable to use a connection pool in which :USER and :PASSWORD are passed to a physical
database.

For other initialization blocks, SQL statements can use :USER AND :PASSWORD. However, because
Oracle BI Scheduler Server does not store user passwords, the WHERE clause must be constructed
as shown in the following example:

Security in Oracle BI ■ Authentication Options

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 329

select username, groupname, dbname, schemaname from users
where username=':USER'
NQS_PASSWORD_CLAUSE(and pwd=':PASSWORD')NQS_PASSWORD_CLAUSE

NOTE: When impersonation is used, everything in the parentheses is extracted from the SQL
statement at runtime.

For more information, refer to the Oracle BI Delivers examples in “Selecting and Testing the Data
Source and Connection Pool” on page 294.

Maintaining Oracle BI Server User Authentication
You can maintain lists of users and their passwords in the Oracle BI repository using the
Administration Tool. The Oracle BI Server will attempt to authenticate users against this list when
they log on unless another authentication method has already succeeded, or database authentication
has been specified in the NQSConfig.INI file.

Refer to “Order of Authentication” on page 330 for additional information.

The Oracle BI Server user IDs are stored in nonencrypted form in an Oracle BI repository and are
caseinsensitive. Passwords are stored in encrypted form and are casesensitive. The Oracle BI Server
user IDs can be used to access any business model in a repository provided that the users have the
necessary access privileges. User IDs are valid only for the repository in which they are set up. They
do not span multiple repositories.

NOTE: If you are using LDAP or external table authentication, passwords are not stored in the Oracle
BI repository.

For information about configuring user authentication, refer to Oracle Business Intelligence
Enterprise Edition Deployment Guide.

Changing Oracle BI Server User Passwords
You can change user passwords in the Administration Tool.

To change a user password

1 Select Manage > Security.

2 In the Security Manager dialog box, select Users in the left pane.

3 In the right pane, right-click the user whose password you want to change.

4 Select Properties from the shortcut menu.

5 In the User tab, type the new password.

6 In the Confirm Password text box, type the password again, and then click OK.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Security in Oracle BI ■ Managing Query Execution Privileges

330

Order of Authentication
If the user does not type a logon name, then OS authentication is triggered, unless OS authentication
is explicitly turned off in the NQSConfig.INI file. For more information, refer to Oracle Business
Intelligence Enterprise Edition Deployment Guide. Additionally, OS authentication is not used for
Oracle BI Presentation Services users.

The Oracle BI Server populates session variables using the initialization blocks in the desired order
that are specified by the dependency rules defined in the initialization blocks. If the server finds the
session variable USER, it performs authentication against an LDAP server or an external database
table, depending on the configuration of the initialization block with which the USER variable is
associated.

Oracle BI Server internal authentication (or, optionally, database authentication) occurs only after
these other possibilities have been considered.

Managing Query Execution Privileges
The Oracle BI Server allows you to exercise varying degrees of control over the repository
information that a user can access.

Controlling query privileges allows you to manage the query environment. You can put a high level
of query controls on users, no controls, or somewhere in between. The following list contains some
types of activities you may want to limit:

■ Restricting query access to specific objects, including rows and columns, or time periods

■ Objects. If you explicitly deny access to an object that has child objects, the user will be
denied access to the child objects. For example, if you explicitly deny access to a particular
physical database object, you are implicitly denying access to all of the physical tables and
physical columns in that catalog.

If a user or group is granted or disallowed privileges on an object from multiple sources (for
example, explicitly and through one or more groups), the privileges are used based on the
order of precedence, as described in “Group Inheritance” on page 318.

You can grant or disallow the ability to execute direct database requests for a user or group.

■ Time periods. If you do not select a time period, access rights remain unchanged. If you
allow or disallow access explicitly in one or more groups, the user is granted the least
restrictive access for the defined time periods. For example, suppose a user is explicitly
allowed access all day on Mondays, but belongs to a group that is disallowed access during
all hours of every day. This means that the user will have access on Mondays only.

■ Controlling runaway queries by limiting queries to a specific number of rows or maximum run
time

■ Limit queries by setting up filters for an object

All restrictions and controls can be applied at the user level, at the group level, or a combination of
the two.

Security in Oracle BI ■ Managing Query Execution Privileges

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 331

To limit queries by objects for a user or group

1 From the Administration Tool menu bar, choose Manage > Security.

2 In the Security Manager dialog box, in the tree pane, select Users or Groups.

3 In the right pane, right-click the name that you want to change and select Properties.

4 In the User or Group dialog box, click Permissions.

5 In the User/Group Permissions dialog box, click the General tab and perform the following steps:

a In the General tab, to explicitly allow or disallow access to one or more objects in the repository,
click Add.

b In the Browse dialog box, in the Name list, select the objects you want to change, and then click
Select.

c In the User/Group Permissions dialog box, assign the permissions by selecting or clearing the
Read check box for each object.

(Default is a check) If the check box contains a check, the user has read privileges on the
object. If the check box contains an X, the user is disallowed read privileges on the object.
If it is blank, any existing privileges (for example, through a group) on the object apply.

For more information about assigning permissions, refer to “Setting Permissions for Repository
Objects” on page 33.

6 To explicitly allow or disallow populate privilege or the ability to execute direct database requests
for specific database objects, perform the following steps:

a Click the Query Limits tab and select the database.

b In the Populate Privilege drop-down list, select Allow or Disallow.

NOTE: For the selected user or group, this overrides the database property Allow populate
queries for all.

c To explicitly allow or disallow the ability to execute direct database requests for specific database
objects, in the Execute Direct Database Requests drop-down list, select Allow or Disallow.

NOTE: For the selected user or group, this overrides the database property Allow direct
database requests for all.

7 Click OK twice to return to the Security Manager dialog box.

To limit queries by number of rows received by a user or group

1 From the Administration Tool menu bar, choose Manage > Security.

2 In the Security Manager dialog box, in the tree pane, select Users or Groups.

3 In the right pane, right-click the name that you want to change and select Properties.

4 In the User or Group dialog box, click the Permissions tab.

5 In the User/Group Permissions dialog box, click the Query Limits tab and expand the dialog box
to view all columns.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Security in Oracle BI ■ Managing Query Execution Privileges

332

6 To specify or change the maximum number of rows each query can retrieve from a database, in
the Query Limits tab, perform the following steps:

a In the Max Rows column, type the maximum number of rows.

b In the Status Max Rows field, select a status using Table 39 on page 333 as a guide.

7 Click OK twice to return to the Security Manager dialog box.

To limit queries by maximum run time or to time periods for a user or group

1 From the Administration Tool menu bar, choose Manage > Security.

2 In the Security Manager dialog box, in the tree pane, select Users or Groups.

3 In the right pane, right-click the name that you want to change and select Properties.

4 In the User or Group dialog box, click the Permissions tab.

5 In the User/Group Permissions dialog box, click the Query Limits tab and expand the dialog box
to view all columns.

6 To specify the maximum time a query can run on a database, in the Query Limits tab, perform
the following steps:

a In the Max Time column, select the number of minutes.

b From the Status Max Time drop-down list, select a status using Table 39 on page 333 as a guide.

7 To restrict access to a database during particular time periods, in the Restrict column, click the
ellipsis button.

8 In the Restrictions dialog box, perform the following steps:

a To select a time period, click the start time and drag to the end time.

b To explicitly allow access, click Allow.

c To explicitly disallow access, click Disallow.

9 Click OK twice to return to the Security Manager dialog box.

To limit queries by setting up a filter on an object for a user or group

1 From the Administration Tool menu bar, choose Manage > Security.

2 In the Security Manager dialog box, in the tree pane, select Users or Groups.

3 In the right pane, right-click the name that you want to change and select Properties.

4 In the User or Group dialog box, click Permissions.

5 In the User/Group Permissions dialog box, click the Filters tab.

6 In the Filters tab, to add an object to filter, perform the following steps:

a Click Add.

b In the Browse dialog box, in the Names list, locate and double-click the object on which you want
to filter.

Security in Oracle BI ■ Managing Query Execution Privileges

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 333

c Select the object and click Select.

7 In the User/Group Permissions Filters dialog box, perform the following steps:

a Scroll to the right to view the Business Model Filter column.

b Click the Business Model Filter ellipsis button for the selected object.

8 In the Expression Builder dialog box, create a logical filter, and then click OK.

9 In the User/Group Permissions Filters dialog box, from the Status drop-down list, select a status
using Table 39 on page 333 as a guide.

10 Click OK twice to return to the Security Manager dialog box.

Assigning Populate Privilege to a User or Group
When a criteria block is cached, the Populate Stored procedure writes the Cache/Saved Result Set
value to the database.

NOTE: Any Marketing user who writes a cache entry or saves a result set needs to be assigned the
POPULATE privilege for the target database. All Marketing segmentation users and groups need to
be assigned this privilege. Typically, all Marketing users are associated with a group and this group
is granted the privilege. For more information about marketing cache, refer to the topic about setting
up cache for target levels in the documentation for Oracle’s Siebel Marketing application.

To assign Populate privilege to a user or group

1 From the Administration Tool menu bar, choose Manage > Security.

2 In the Security Manager dialog box, in the tree pane, select Users or Groups.

3 In the right pane, right-click the name that you want to change and select Properties.

Table 39. Query Privileges Status Fields

Status Description

Disable ■ Status Max Rows or Status Max Time. When selected, disables any limits set
in the Max Rows or Max Time fields.

■ Filter. The filter is not used and no other filters applied to the object at higher
levels of precedence (for example, through a group) are used.

Enable ■ Status Max Rows or Status Max Time. This limits the number of rows or time
to the value specified. If the number of rows exceeds the Max Rows value, the
query is terminated.

■ Filter. The filter is applied to any query that accesses the object.

Ignore ■ Status Max Rows or Status Max Time. Limits will be inherited from the parent
group. If there is no row limit to inherit, no limit is enforced.

■ Filter. The filter is not in use, but any other filters applied to the object (for
example, through a group) are used. If no other filters are enabled, no filtering
will occur.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Security in Oracle BI ■ Managing Query Execution Privileges

334

4 In the User or Group dialog box, click Permissions.

5 In the User/Group Permissions dialog box, select the Query Limits tab.

6 In the Query Limits list, expand the dialog box to view all columns.

7 From the Populate Privilege drop-down list, select Allow or Disallow.

NOTE: For all Marketing data warehouses, set Populate Privilege to Allow.

8 Click OK twice to return to the Security Manager dialog box.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 335

16 Using XML as a Data Source for
the Oracle BI Server

This section describes the use of the Extensible Markup Language (XML) as a data source. XML is the
universal format for structured documents and data on the Web. It can also be used as a database
to store structured data.

The Oracle BI Server supports various XML access modes, including access through the Oracle BI
Server XML Gateway and its extension, the Data Mining Adapter; and access through an XML ODBC
driver.

This section includes the following topics:

■ Locating the XML URL on page 335

■ Using the Oracle BI Server XML Gateway on page 336

■ Using XML ODBC on page 349

■ XML Examples on page 350

Locating the XML URL
The Oracle BI Server supports the use of XML data as a data source for the Physical layer in the
repository. Depending on the method used to access XML data sources, a data source may be
represented by a URL pointing to one of the following sources.

■ A static XML file or HTML file that contains XML data islands on the Internet (including intranet
or extranet). For example,
tap://216.217.17.176/[DE0A48DE-1C3E-11D4-97C9-00105AA70303].XML

■ Dynamic XML generated from a server site. For example,
tap://www.aspserver.com/example.asp

■ An XML file or HTML file that contains XML data islands on a local or network drive. For example,
d:/xmldir/example.xml
d:/htmldir/island.htm

You can also specify a directory path for local or network XML files, or you can use the asterisk
(*) as a wildcard with the filenames. If you specify a directory path without a filename
specification (like d:/xmldir), all files with the XML suffix are imported. For example,
d:/xmldir/
d:/xmldir/exam*.xml
d:/htmldir/exam*.htm
d:/htmldir/exam*.html

■ An HTML file that contains tables, defined by a pair of <table> and </table> tags. The HTML file
may reside on the Internet (including intranet or extranet) or on a local or network drive. Refer
to “Accessing HTML Tables” on page 344 for more information.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using XML as a Data Source for the Oracle BI Server ■ Using the Oracle BI Server XML
Gateway

336

URLs may include repository or session variables, providing support for HTTP data sources that
accept user IDs and passwords embedded in the URL; for example: http://somewebserver/
cgi.pl?userid=valueof(session_variable1)&password= valueof(session_variable2). (This
functionality also allows the Oracle BI Administrator to create an XML data source with a location
that is dynamically determined by some runtime parameters.) For more information about variables,
refer to Chapter 13, “Using Variables in the Oracle BI Repository.”

The Oracle BI Server also supports the use of XSL transformation files (XSLT) or XPath expressions
for transforming the XML files or XML data islands in an HTML page.

XSLT is a generalized form of the Cascaded Style Sheet (CSS) for HTML documents as applied to XML
documents or text fragments. XPath is a simplified version of XSLT that may be expressed in a one-
line statement. For example, //xml is an XPath expression instructing the XML processor to extract
all elements under the root element xml. An XSLT file can also contain an XPath expressions.

NOTE: If the Oracle BI Server needs to access any nonlocal files (network files or files on the
Internet, for example), you need to run the Oracle BI Server using a valid user ID and password with
sufficient network privileges to access these remote files. In Windows NT and Windows 2000, this
user ID also needs to have Windows Administrator privileges on the local machine. To change the
account under which the server runs, follow the steps described in “Changing the User ID in Which
the Oracle BI Server Runs” on page 211.

Using the Oracle BI Server XML Gateway
Using the Oracle BI Server XML Gateway, the metadata import process flattens the XML document
to a tabular form using the stem of the XML filename (that is, the filename less the suffix) as the
table name and the second level element in the XML document as the row delimiter. All leaf nodes
are imported as columns belonging to the table. The hierarchical access path to leaf nodes is also
imported.

The Oracle BI Server XML Gateway uses the metadata information contained in an XML schema. The
XML schema is contained within the XML document or is referenced within the root element of the
XML document. Support is currently available for the version of XML schema defined by Microsoft
and implemented in its Internet Explorer 5 family of browsers.

Where there is no schema available, all XML data is imported as text data. In building the repository,
you may alter the data types of the columns in the Physical layer, overriding the data types for the
corresponding columns defined in the schema. The gateway will convert the incoming data to the
desired type as specified in the Physical layer. You can also map the text data type to other data
types in the Business Model and Mapping layer of the Administration Tool, using the CAST operator.

At this time, the Oracle BI Server XML Gateway does not support:

■ Resolution of external references contained in an XML document (other than a reference to an
external XML schema, as demonstrated in the example file in the section “Oracle BI Server XML
Gateway Example” on page 338).

■ Element and attribute inheritance contained within the Microsoft XML schema.

Using XML as a Data Source for the Oracle BI Server ■ Using the Oracle BI Server XML
Gateway

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 337

■ Element types of a mixed content model (such as XML elements that contain a mixture of
elements and CDATA, such as <p> hello Joe, how are you doing?</p>).

NOTE: The Oracle BI Server XML Gateway includes a Data Mining Adapter. It allows you to access
data sources by calling an executable file or DLL for each record retrieved. For more information,
refer to “Using the Data Mining Adapter” on page 345.

To import XML data using the Oracle BI Server XML Gateway

1 From the Administration Tool toolbar, select File > Import.

The Select ODBC Data Source dialog box appears.

2 Select XML from the Connection Type drop-down list.

The Type In Uniform Resource Locator dialog box appears, with the Connection Type set to XML.

3 In the URL field, specify the XML data source URL.

The Oracle BI Server XML Gateway supports all data sources described in the section “Locating
the XML URL” on page 335.

URLs can include repository or session variables. If you click the Browse button, the Select XML
File dialog box appears, from which you can select a single file. For more information about
variables, refer to Chapter 13, “Using Variables in the Oracle BI Repository.”

4 Optionally, type either an Extensible Stylesheet Language Transformations (XSLT) file or XPath
expression.

Use the Browse button to browse for XSLT source files.

5 Type an optional user ID and password in the appropriate fields for connections to HTTP sites
that employ the HTTP Basic Authentication security mode.

In addition to HTTP Basic Authentication security mode, the Oracle BI Server XML Gateway also
supports Secure HTTP protocol and Integrated Windows Authentication (for Windows 2000),
formerly called NTLM or Windows NT Challenge/Response authentication.

6 Click OK to open the Import dialog box.

7 Select the tables and columns and check the type of metadata you want to import.

The default setting imports all objects and all metadata.

8 Click Import to begin the import process.

9 In the Connection Pool dialog box, type a name and optional description for the connection on
the General tab. Refer to “Setting Up Connection Pools” on page 65 for additional details.

10 Click the XML tab to set additional connection properties, including the URL refresh interval and
the length of time to wait for a URL to load before timing out.

Because XML data sources are typically updated frequently and in real time, the Oracle BI Server
XML Gateway allows users to specify a refresh interval for these data sources.

For more information, refer to “About the Refresh Interval for XML Data Sources” on page 257.

The default time-out interval for queries (URL loading time-out) is 15 minutes.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using XML as a Data Source for the Oracle BI Server ■ Using the Oracle BI Server XML
Gateway

338

11 Click OK to complete the import.

12 For additional control over the XML data sources, you can specify an XSLT file or an XPath
expression for individual tables in the data sources from the Physical Table dialog box. If
specified, these entries are used to overwrite corresponding XSLT or XPath entries in the
Connection Pool for the respective physical tables.

Oracle BI Server XML Gateway Example
The following sample XML data document (mytest.xml) references an XML schema contained in an
external file. The schema file is shown following the data document. The generated XML schema
information available for import to the repository is shown at the end.

<?xml version="1.0"?>
<test xmlns="x-schema:mytest_sch.xml">

<row>
<p1>0</p1>
<p2 width="5">

<p3>hi</p3>
<p4>

<p6>xx0</p6>
<p7>yy0</p7>

</p4>
<p5>zz0</p5>

</p2>
</row>

<row>
<p1>1</p1>
<p2 width="6">

<p3>how are you</p3>
<p4>

<p6>xx1</p6>
<p7>yy1</p7>

</p4>
<p5>zz1</p5>

</p2>
</row>

<row>
<p1>a</p1>
<p2 width="7">

<p3>hi</p3>
<p4>

<p6>xx2</p6>
<p7>yy2</p7>

</p4>
<p5>zz2</p5>

</p2>
</row>

Using XML as a Data Source for the Oracle BI Server ■ Using the Oracle BI Server XML
Gateway

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 339

<row>
<p1>b</p1>
<p2 width="8">

<p3>how are they</p3>
<p4>

<p6>xx3</p6>
<p7>yy3</p7>

</p4>
<p5>zz2</p5>

</p2>
</row>
</test>

The corresponding schema file follows:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">
<ElementType name="test" content="eltOnly" order="many">

<element type="row"/>
</ElementType>
<ElementType name="row" content="eltOnly" order="many">
<element type="p1"/>

<element type="p2"/>
</ElementType>
<ElementType name="p2" content="eltOnly" order="many">

<AttributeType name="width" dt:type="int" />
<attribute type="width" />
<element type="p3"/>
<element type="p4"/>
<element type="p5"/>

</ElementType>
<ElementType name="p4" content="eltOnly" order="many">

<element type="p6"/>
<element type="p7"/>

</ElementType>
<ElementType name="p1" content="textOnly" dt:type="string"/>
<ElementType name="p3" content="textOnly" dt:type="string"/>
<ElementType name="p5" content="textOnly" dt:type="string"/>
<ElementType name="p6" content="textOnly" dt:type="string"/>
<ElementType name="p7" content="textOnly" dt:type="string"/>

</Schema>

The name of the table generated from the preceding XML data document (mytest.xml) would be
mytest and the column names would be p1, p3, p6, p7, p5, and width.

In addition, to preserve the context in which each column occurs in the document and to distinguish
between columns derived from XML elements with identical names but appearing in different
contexts, a list of fully qualified column names is generated, based on the XPath proposal of the
World Wide Web Consortium, as follows:

//test/row/p1
//test/row/p2/p3
//test/row/p2/p4/p6

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using XML as a Data Source for the Oracle BI Server ■ Using the Oracle BI Server XML
Gateway

340

//test/row/p2/p4/p7
//test/row/p2/p5
//test/row/p2@width

The following example is a more complex example that demonstrates the use of nested table
structures in an XML document. Note that you may optionally omit references to an external schema
file, in which case all elements would be treated as being of the Varchar character type.

===Invoice.xml===
<INVOICE>

<CUSTOMER>
<CUST_ID>1</CUST_ID>
<FIRST_NAME>Nancy</FIRST_NAME>
<LAST_NAME>Fuller</LAST_NAME>
<ADDRESS>

<ADD1>507 - 20th Ave. E.,</ADD1>
<ADD2>Apt. 2A</ADD2>
<CITY>Seattle</CITY>
<STATE>WA</STATE>
<ZIP>98122</ZIP>

</ADDRESS>
<PRODUCTS>

 <CATEGORY>
 <CATEGORY_ID>CAT1</CATEGORY_ID>
 <CATEGORY_NAME>NAME1</CATEGORY_NAME>
 <ITEMS>

<ITEM>
<ITEM_ID>1</ITEM_ID>
<NAME></NAME>
<PRICE>0.50</PRICE>
<QTY>2000</QTY>

</ITEM>
<ITEM>

<ITEM_ID>2</ITEM_ID>
<NAME>SPRITE</NAME>
<PRICE>0.30</PRICE>
<QTY></QTY>

</ITEM>
 </ITEMS>

</CATEGORY>
 <CATEGORY>

 <CATEGORY_ID>CAT2</CATEGORY_ID>
 <CATEGORY_NAME>NAME2</CATEGORY_NAME>
 <ITEMS>

<ITEM>
<ITEM_ID>11</ITEM_ID>
<NAME>ACOKE</NAME>
<PRICE>1.50</PRICE>
<QTY>3000</QTY>

</ITEM>
<ITEM>

<ITEM_ID>12</ITEM_ID>
<NAME>SOME SPRITE</NAME>
<PRICE>3.30</PRICE>

Using XML as a Data Source for the Oracle BI Server ■ Using the Oracle BI Server XML
Gateway

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 341

<QTY>2000</QTY>
</ITEM>

 </ITEMS>
</CATEGORY>

</PRODUCTS>
</CUSTOMER>
<CUSTOMER>

<CUST_ID>2</CUST_ID>
<FIRST_NAME>Andrew</FIRST_NAME>
<LAST_NAME>Carnegie</LAST_NAME>
<ADDRESS>

<ADD1>2955 Campus Dr.</ADD1>
<ADD2>Ste. 300</ADD2>
<CITY>San Mateo</CITY>
<STATE>CA</STATE>
<ZIP>94403</ZIP>

</ADDRESS>
<PRODUCTS>

 <CATEGORY>
 <CATEGORY_ID>CAT22</CATEGORY_ID>
 <CATEGORY_NAME>NAMEA1</CATEGORY_NAME>
 <ITEMS>

<ITEM>
<ITEM_ID>122</ITEM_ID>
<NAME>DDDCOKE</NAME>
<PRICE>11.50</PRICE>
<QTY>2</QTY>

</ITEM>
<ITEM>

<ITEM_ID>22</ITEM_ID>
<NAME>PSPRITE</NAME>
<PRICE>9.30</PRICE>
<QTY>1978</QTY>

</ITEM>
 </ITEMS>

</CATEGORY>
 <CATEGORY>

 <CATEGORY_ID>CAT24</CATEGORY_ID>
 <CATEGORY_NAME>NAMEA2</CATEGORY_NAME>
 <ITEMS>

<ITEM>
<ITEM_ID>19</ITEM_ID>
<NAME>SOME COKE</NAME>
<PRICE>1.58</PRICE>
<QTY>3</QTY>

</ITEM>
<ITEM>

<ITEM_ID>15</ITEM_ID>
<NAME>DIET SPRITE</NAME>
<PRICE>9.30</PRICE>
<QTY>12000</QTY>

</ITEM>
 </ITEMS>

</CATEGORY>

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using XML as a Data Source for the Oracle BI Server ■ Using the Oracle BI Server XML
Gateway

342

</PRODUCTS>
</CUSTOMER>
<CUSTOMER>

<CUST_ID>3</CUST_ID>
<FIRST_NAME>Margaret</FIRST_NAME>
<LAST_NAME>Leverling</LAST_NAME>
<ADDRESS>

<ADD1>722 Moss Bay Blvd.</ADD1>
<ADD2> </ADD2>
<CITY>Kirkland</CITY>
<STATE>WA</STATE>
<ZIP>98033</ZIP>

</ADDRESS>
<PRODUCTS>

 <CATEGORY>
 <CATEGORY_ID>CAT31</CATEGORY_ID>
 <CATEGORY_NAME>NAMEA3</CATEGORY_NAME>
 <ITEMS>

<ITEM>
<ITEM_ID>13</ITEM_ID>
<NAME>COKE33</NAME>
<PRICE>30.50</PRICE>
<QTY>20033</QTY>

</ITEM>
<ITEM>

<ITEM_ID>23</ITEM_ID>
<NAME>SPRITE33</NAME>
<PRICE>0.38</PRICE>
<QTY>20099</QTY>

</ITEM>
 </ITEMS>

</CATEGORY>
 <CATEGORY>

 <CATEGORY_ID>CAT288</CATEGORY_ID>
 <CATEGORY_NAME>NAME H</CATEGORY_NAME>
 <ITEMS>

<ITEM>
<ITEM_ID>19</ITEM_ID>
<NAME>COLA</NAME>
<PRICE>1.0</PRICE>
<QTY>3</QTY>

</ITEM>
<ITEM>

<ITEM_ID>18</ITEM_ID>
<NAME>MY SPRITE</NAME>
<PRICE>8.30</PRICE>
<QTY>123</QTY>

</ITEM>
 </ITEMS>

</CATEGORY>
</PRODUCTS>

</CUSTOMER>
</INVOICE>

Using XML as a Data Source for the Oracle BI Server ■ Using the Oracle BI Server XML
Gateway

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 343

The generated XML schema shown next consists of one table (INVOICE) with the following column
names and their corresponding fully qualified names.

Only tags with values are extracted as columns. An XML query generates fully qualified tag names,
to help make sure that appropriate columns are retrieved.

These are the results of a sample query against the INVOICE table.

select first_name, last_name, price, qty, name from invoice
--
FIRST_NAME LAST_NAME PRICE QTY NAME
--
Andrew Carnegie 1.58 3 SOME COKE
Andrew Carnegie 11.50 2 DDDCOKE
Andrew Carnegie 9.30 12000 DIET SPRITE
Andrew Carnegie 9.30 1978 PSPRITE
Margar Leverling 0.38 20099 SPRITE33
Margar Leverling 1.0 3 COLA
Margar Leverling 30.50 20033 COKE33
Margar Leverling 8.30 123 MY SPRITE
Nancy Fuller 0.30 SPRITE
Nancy Fuller 0.50 2000
Nancy Fuller 1.50 3000 ACOKE
Nancy Fuller 3.30 2000 SOME SPRITE
--
Row count: 12

Column Fully Qualified Name

ADD1 //INVOICE/CUSTOMER/ADDRESS/ADD1

ADD2 //INVOICE/CUSTOMER/ADDRESS/ADD2

CITY //INVOICE/CUSTOMER/ADDRESS/CITY

STATE //INVOICE/CUSTOMER/ADDRESS/STATE

ZIP //INVOICE/CUSTOMER/ADDRESS/ZIP

CUST_ID //INVOICE/CUSTOMER/CUST_ID

FIRST_NAME //INVOICE/CUSTOMER/FIRST_NAME

LAST_NAME //INVOICE/CUSTOMER/LAST_NAME

CATEGORY_ID //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/CATEGORY_ID

CATEGORY_NAME //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/CATEGORY_NAME

ITEM_ID //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM/ITEM_ID

NAME //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM/NAME

PRICE //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM/PRICE

QTY //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM/QTY

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using XML as a Data Source for the Oracle BI Server ■ Using the Oracle BI Server XML
Gateway

344

Accessing HTML Tables
The Oracle BI Server XML Gateway also supports the use of tables in HTML files as a data source.
The HTML file may be identified as a URL pointing to a file on the internet (including intranet or
extranet) or as a file on a local or network drive.

Even though tables, defined by the <table> and </table> tag pair, are native constructs of the HTML
4.0 specification, they are often used by Web designers as a general formatting device to achieve
specific visual effects rather than as a data structure. The Oracle BI Server XML Gateway is currently
the most effective in extracting tables that include specific column headers, defined by <th> and </
th> tag pairs.

For tables that do not contain specific column headers, the Oracle BI Server XML Gateway employs
some simple heuristics to make a best effort to determine the portions of an HTML file that appear
to be genuine data tables.

The following is a sample HTML file with one table.

<html>
<body>

<table border=1 cellpadding=2 cellspacing=0>
<tr>

<th colspan=1>Transaction</th>
<th colspan=2>Measurements</th>

</tr>
<tr>

<th>Quality</th>
<th>Count</th>
<th>Percent</th>

</tr>
<tr>

<td>Failed</td>
<td>66,672</td>
<td>4.1%</td>

</tr>
<tr>

<td>Poor</td>
<td>126,304</td>
<td>7.7%</td>

</tr>
<tr>

<td>Warning</td>
<td>355,728</td>
<td>21.6%</td>

</tr>
<tr>

<td>OK</td>
<td>1,095,056</td>
<td>66.6%</td>

</tr>
<tr>

<td colspan=1>Grand Total</td>
<td>1,643,760</td>
<td>100.0%</td>

Using XML as a Data Source for the Oracle BI Server ■ Using the Oracle BI Server XML
Gateway

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 345

</tr>
</table>

</body>
</html>

The table name is derived from the HTML filename, and the column names are formed by
concatenating the headings (defined by the <th> and </th> tag pairs) for the corresponding
columns, separated by an underscore.

Assuming that our sample file is named 18.htm, the table name would be 18_0 (because it is the
first table in that HTML file), with the following column names and their corresponding fully qualified
names.

If the table column headings appear in more than one row, the column names are formed by
concatenating the corresponding field contents of those header rows.

For tables without any heading tag pairs, the Oracle BI Server XML Gateway assumes the field values
(as delimited by the <td> and </td> tag pairs) in the first row to be the column names. The columns
are named by the order in which they appear (c0, c1, and so on).

For additional examples of XML, refer to “XML Examples” on page 350.

Using the Data Mining Adapter
The Data Mining Adapter is an extension of the Oracle BI Server XML Gateway. It allows you to
selectively access external data sources by calling an executable file or DLL API for each record
retrieved.

The Data Mining Adapter can only be used for a table in a logical join with another table acting as
the driving table. The table with the Data Mining Adapter receives parameterized queries from a
driving table through some logical joins. The table with the Data Mining Adapter is not a table that
physically exists in a back-end database. Instead, the adapter uses the column values in the WHERE
clauses of the parameterized queries as its input column parameters, and generates values for those
columns (the output columns) not in the WHERE clauses. For information about how to set up the
logical joins, refer to “Specifying a Driving Table” on page 140.

The Data Mining Adapter operates in the following ways:

■ Calls a DLL file. The Data Mining Adapter allows you to specify a DLL, a shared object, or a
shared library that implements the Data Mining Adapter API. At run time, the adapter loads the
DLL and calls the API that retrieves records one row at a time. The query results are returned to
the XML gateway through an API parameter.

Column Fully Qualified Name

Transaction_Quality \\18_0\Transaction_Quality

Measurements_Count \\18_0\Measurements_Count

Measurements_Percent \\18_0\Measurements_Percent

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using XML as a Data Source for the Oracle BI Server ■ Using the Oracle BI Server XML
Gateway

346

■ Calls an executable file. The Data Mining Adapter allows you to specify an executable file. At
run time, the adapter executes the file and retrieves records from it one row at a time. You also
specify the delimiters that demarcate the column values in the output file.

You specify one executable file or DLL for each table.

Using a DLL File to call the Data Mining Adapter API
The API currently consists of only one function. It takes in the values of the input columns in the
parameterized queries, plus the meta information of both the input and the output columns. On
return, the API places the values of the output columns in the outputColumnValueBuffer. All buffers
are allocated by the caller.

Refer to IterativeGatewayDll.h for the definition of the datatype and structures used in this API. You
can find this file at the following path:

[installation root]\Sample\TestExternalGatewayDll\IterativeGatewayDll.h

Table 40 on page 346 provides a description of the API elements.

Table 40. API Elements

Element Description

inputColumnCount The number of input columns.

inputColumnValueBuffer A buffer of bytes containing the value of the input columns. The
actual size of each column value is specified in the columnWidth
field of the OracleBIColumnMetaInfo. The column values are
placed in the buffer in the order in which the columns appear in
the pInputColumnMetaInfoArray.

modelId An optional argument that you can specify in the Search Utility
field in the XML tab of the Physical Table dialog box.

OutputColumnCount The number of output columns.

outputColumnValueBuffer A buffer of bytes containing the value of the output columns. The
actual size of each column value is specified in the columnWidth
field of the OracleBIColumnMetaInfo. The column values must be
placed in the buffer in the order in which the columns appear in
the pOutputColumnMetaInfoArray.

pInputColumnMetaInfoArray An array of meta information for the input columns.
OracleBIColumnMetaInfo is declared in the public header file
IterativeGatewayDll.h (installed with Oracle BI).

pOutputColumnMetaInfoArray An array of meta column information for the output column.
OracleBIColumnMetaInfo is declared in the public header file
IterativeGatewayDll.h (installed with Oracle BI). The caller of the
API provides the column name, and the callee sets the data type
of the column (currently only VarCharData is supported) and the
size of the column value.

Using XML as a Data Source for the Oracle BI Server ■ Using the Oracle BI Server XML
Gateway

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 347

Sample Implementation
A sample implementation of the Data Mining Adapter API is provided for all supported platforms in
the Sample subdirectory of the Oracle BI installation folder (\OracleBI). The following files are
included in the example:

■ hpacc.mak (a HPUX make file for building the sample)

■ IterativeGatewayDll.h (a header file to be included in your DLL)

■ ReadMe.txt (a text file that describes the Data Mining Adapter API)

■ StdAfx.cpp (a Windows-specific file)

■ StdAfx.h (a Windows-specific header file)

■ sunpro.mak (a Solaris make file for building the sample)

■ TestExternalGatewayDll.cpp (the sample implementation of the DLL)

■ TestExternalGatewayDll.dsp (a Microsoft Visual C++ project file for building the sample)

■ TestLibraryUnix.cpp (a test drive that load up the DLL on the UNIX platforms)

■ xlC50.mak (an AIX make file for building the sample)

Using ValueOf() Expressions
You can use ValueOf() expressions in the command line arguments to pass any additional parameters
to the executable file or DLL API.

The following example shows how to pass a user ID and password to an executable file:

executable_name valueof(USERID) valueof(PASSWORD)

Specifying Column Values (Executable File)
When you specify an executable file, you can pass in the column values to the executable file by
bracketing the column names with the $() marker.

For example, suppose there is a table containing the columns Car_Loan, Credit, Demand, Score, and
Probability. The values of the input columns Car_Loan, Credit, and Demand come from other tables
through join relationships. The values of the output columns Score and Probability are to be returned
by the executable file. The command line would look like the following:

executable_name $(Car_Loan) $(Credit) $(Demand)

Each time the executable file is called, it returns one row of column values. The column values are
output in a single-line demarcated by the delimiter that you specify.

By default, the executable is expected to output to the stdout. Alternatively, you can direct the Data
Mining Adapter to read the output from a temporary output file passed to the executable as an
argument by specifying a placeholder, $(NQ_OUT_TEMP_FILE) to which the executable outputs the
result line. When the Data Mining Adapter invokes the executable, the placeholder
$(NQ_OUT_TEMP_FILE) is substituted by a temporary filename generated at runtime. This is
demonstrated in the following example:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using XML as a Data Source for the Oracle BI Server ■ Using the Oracle BI Server XML
Gateway

348

executable_name $(Car_Loan) $(Credit) $(Demand) $(NQ_OUT_TEMP_FILE)

The values of the columns that are not inputs to the executable file will be output first, in the
unsorted order in which they appear in the physical table. In the preceding example, the value of the
Score column will be followed by the value of the Probability column.

If the executable file outputs more column values than the number of noninput columns, the Data
Mining Adapter will attempt to read the column values according to the unsorted column order of the
physical table. If these are in conflict with the values of the corresponding input columns, the values
returned from the executable file will be used to override the input columns.

The data length of each column in the delimited query output must not exceed the size specified for
that column in the physical table.

Configuring the Data Mining Adapter
Use this procedure to configure the Data Mining Adapter.

To configure the Data Mining Adapter

1 In the Administration Tool, create a database, select XML Server as the database type, and then
click OK.

For information about creating a database, refer to “Creating a Database Object Manually in the
Physical Layer” on page 61.

2 Configure the connection pool.

NOTE: Do not type information into any field in the XML tab of the Connection Pool dialog box.
The empty fields indicate to the Oracle BI Server that the Data Mining Adapter functionality will
be invoked.

a Right-click the database you created in Step 1, and then select New Object > Connection Pool.

b In the General tab, type a name for the connection pool.

The call interface defaults to XML.

c Type a data source name, and then click OK.

3 Right-click the database you created in Step 1, and then select New Object > Table.

4 In the Physical Table dialog box, click the XML tab.

5 In the XML tab, complete one of the following tasks:

■ Select Executable, type the path to the executable file in the Search Utility field, and specify
the delimiter for the output values.

■ Select DLL and type the path to the DLL in the Search Utility field.

To include spaces in the path, enclose the path in quotation marks. For example:

Using XML as a Data Source for the Oracle BI Server ■ Using XML ODBC

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 349

“C:\Program Files\OracleBI\Bin\SADataMining.dll”

All characters appearing after the DLL path are passed to the API as a modelid string. You
can use the modelid string to pass static or dynamic parameters to the DLL through the API.
For example:

“C:\Program Files\OracleBI\Bin\SADataMining.dll” VALUEOF(Model1) VALUEOF(Model2)

Using XML ODBC
Using the XML ODBC database type, you can access XML data sources through an ODBC interface.
The data types of the XML elements representing physical columns in physical tables are derived
from the data types of the XML elements as defined in the XML schema. In the absence of a proper
XML schema, the default data type of string is used. Data Type settings in the Physical layer will not
override those defined in the XML data sources. When accessing XML data without XML schema, use
the CAST operator to perform data type conversions in the Business Model and Mapping layer of the
Administration Tool.

To import XML data using ODBC

1 To access XML data sources through ODBC, you need to license and install an XML ODBC driver.

2 Next, create ODBC DSNs that point to the XML data sources you want to access, making sure
you select the XML ODBC database type.

3 From the File menu, choose Import > from Database.

4 Follow the instructions in the dialog boxes to import the ODBC DSNs into the repository.

CAUTION: Make sure you select the Synonyms option in the Import dialog box.

XML ODBC Example
This is an example of an XML ODBC data source in the Microsoft ADO persisted file format. Note that
both the data and the schema could be contained inside the same document.

<xml xmlns:s='uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882'
xmlns:dt='uuid:C2F41010-65B3-11d1-A29F-00AA00C14882'
xmlns:rs='urn:schemas-microsoft-com:rowset'
xmlns:z='#RowsetSchema'>

<s:Schema id='RowsetSchema'>
<s:ElementType name='row' content='eltOnly' rs:CommandTimeout='30'

rs:updatable='true'>
<s:AttributeType name='ShipperID' rs:number='1' rs:writeunknown='true'

rs:basecatalog='Northwind' rs:basetable='Shippers'
 rs:basecolumn='ShipperID'>
<s:datatype dt:type='i2' dt:maxLength='2' rs:precision='5'

rs:fixedlength='true' rs:maybenull='false'/>
</s:AttributeType>
<s:AttributeType name='CompanyName' rs:number='2' rs:writeunknown='true'

rs:basecatalog='Northwind' rs:basetable='Shippers'

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using XML as a Data Source for the Oracle BI Server ■ XML Examples

350

 rs:basecolumn='CompanyName'>
<s:datatype dt:type='string' rs:dbtype='str' dt:maxLength='40'

rs:maybenull='false'/>
</s:AttributeType>
<s:AttributeType name='Phone' rs:number='3' rs:nullable='true'

rs:writeunknown='true' rs:basecatalog='Northwind'
 rs:basetable='Shippers' rs:basecolumn='Phone'>
<s:datatype dt:type='string' rs:dbtype='str' dt:maxLength='24'

rs:fixedlength='true'/>
</s:AttributeType>
<s:extends type='rs:rowbase'/>

</s:ElementType>
</s:Schema>

<rs:data>
<z:row ShipperID='1' CompanyName='Speedy Express' Phone='(503) 555-9831 '/>
<z:row ShipperID='2' CompanyName='United Package' Phone='(503) 555-3199 '/>
<z:row ShipperID='3' CompanyName='Federal Shipping' Phone='(503) 555-9931 '/>

</rs:data>
</xml>

XML Examples
The following XML documents provide examples of several different situations and explain how the
Oracle BI Server XML access method handles those situations.

■ The XML documents 83.xml and 8_sch.xml demonstrate the use of the same element
declarations in different scope. For example, <p3> could appear within <p2> as well as within
<p4>.

Because the element <p3> in the preceding examples appears in two different scopes, each
element is given a distinct column name by appending an index number to the second occurrence
of the element during the Import process. In this case, the second occurrence becomes p3_1. If
<p3> occurs in additional contexts, they become p3_2, p3_3.

■ XML documents 83.xml and 84.xml demonstrate that multiple XML files can share the same
schema (8_sch.xml).

■ Internet Explorer version 5 and higher supports HTML documents containing embedded XML
fragments called XML islands.

The XML document island2.htm demonstrates a simple situation where multiple XML data
islands, and therefore multiple tables, could be generated from one document. One table is
generated for each instance of an XML island. Tables are distinguished by appending an
appropriate index to the document name. For island2.htm, the two XML tables generated would
be island2_0 and island2_1.

83.xml
===83.xml===

Using XML as a Data Source for the Oracle BI Server ■ XML Examples

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 351

<?xml version="1.0"?>
<test xmlns="x-schema:8_sch.xml">|
<row>
<p1>0</p1>
<p2 width="5" height="2">

<p3>hi</p3>
<p4>

<p3>hi</p3>
<p6>xx0</p6>
<p7>yy0</p7>

</p4>
<p5>zz0</p5>

</p2>
</row>

<row>
<p1>1</p1>
<p2 width="6" height="3">

<p3>how are you</p3>
<p4>

<p3>hi</p3>
<p6>xx1</p6>
<p7>yy1</p7>

</p4>
<p5>zz1</p5>

</p2>
</row>
</test>

8_sch.xml
===8_sch.xml===

<Schema xmlns="urn:schemas-microsoft-com:xml-data" xmlns:dt="urn:schemas-microsoft-
com:datatypes">

<AttributeType name="height" dt:type="int" />
<ElementType name="test" content="eltOnly" order="many">

<AttributeType name="height" dt:type="int" />
<element type="row"/>

</ElementType>
<ElementType name="row" content="eltOnly" order="many">

<element type="p1"/>
<element type="p2"/>

</ElementType>
<ElementType name="p2" content="eltOnly" order="many">

<AttributeType name="width" dt:type="int" />
<AttributeType name="height" dt:type="int" />

<attribute type="width" />
<attribute type="height" />
<element type="p3"/>
<element type="p4"/>

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using XML as a Data Source for the Oracle BI Server ■ XML Examples

352

<element type="p5"/>
</ElementType>
<ElementType name="p4" content="eltOnly" order="many">

<element type="p3"/>
<element type="p6"/>
<element type="p7"/>

</ElementType>
<ElementType name="test0" content="eltOnly" order="many">

<element type="row"/>
</ElementType>

<ElementType name="p1" content="textOnly" dt:type="string"/>
<ElementType name="p3" content="textOnly" dt:type="string"/>
<ElementType name="p5" content="textOnly" dt:type="string"/>
<ElementType name="p6" content="textOnly" dt:type="string"/>
<ElementType name="p7" content="textOnly" dt:type="string"/>

</Schema>

84.xml
===84.xml===

<?xml version="1.0"?>
<test0 xmlns="x-schema:8_sch.xml">
<row>
<p1>0</p1>
<p2 width="5" height="2">

<p3>hi</p3>
<p4>

<p3>hi</p3>
<p6>xx0</p6>
<p7>yy0</p7>

</p4>
<p5>zz0</p5>

</p2>
</row>

<row>
<p1>1</p1>
<p2 width="6" height="3">

<p3>how are you</p3>
<p4>

<p3>hi</p3>
<p6>xx1</p6>
<p7>yy1</p7>

</p4>
<p5>zz1</p5>

</p2>
</row>
</test0>

Using XML as a Data Source for the Oracle BI Server ■ XML Examples

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 353

Island2.htm
===island2.htm===

<HTML>
<HEAD>

<TITLE>HTML Document with Data Island</TITLE>
</HEAD>

<BODY>
<p>This is an example of an XML data island in I.E. 5</p>

<XML ID="12345">
test>

<row>
<field1>00</field1>
<field2>01</field2>

</row>
<row>

<field1>10</field1>
<field2>11</field2>

</row>
<row>

<field1>20</field1>
<field2>21</field2>

</row>
</test>

</XML>
<p>End of first example.</p>
<XML ID="12346">

<test>
<row>

<field11>00</field11>
<field12>01</field12>

</row>
<row>

<field11>10</field11>
<field12>11</field12>

</row>
<row>

<field11>20</field11>
<field12>21</field12>

</row>
</test>

</XML>
<p>End of second example.</p>
</BODY>
</HTML>

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Using XML as a Data Source for the Oracle BI Server ■ XML Examples

354

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 355

17 Oracle BI Server SQL Reference

The Oracle BI Server accepts SQL SELECT statements from client tools. Additionally, the
Administration Tool allows you to define logical tables with complex expressions. This section
explains the syntax and semantics for the SELECT statement and for the expressions you can use in
the Administration Tool to define logical tables.

SQL Syntax and Semantics
This section explains the syntax and semantics for the SELECT statement. The following topics are
included:

■ SELECT Query Specification Syntax on page 355

■ SELECT Usage Notes on page 356

■ SELECT List Syntax on page 357

■ Rules for Queries with Aggregate Functions on page 358

NOTE: The syntax descriptions throughout this guide are not comprehensive. They cover only basic
syntax and features unique to the Oracle BI Server. For a more comprehensive description of SQL
syntax, refer to a third-party reference book on SQL or to a reference manual on SQL from your
database vendors.

SELECT Query Specification Syntax
The SELECT statement is the basis for querying any structured query language (SQL) database. The
Oracle BI Server accepts logical requests to query objects in a repository, and users (or query tools)
make those logical requests with ordinary SQL SELECT statements. The server then translates the
logical requests into physical queries against one or more data sources, combines the results to
match the logical request, and returns the answer to the end user.

The SELECT statement, or query specification as it is sometimes referred to, is the way to query a
decision support system through the Oracle BI Server. A SELECT statement returns a table to the
client that matches the query. It is a table in the sense that the results are in the form of rows and
columns.

The following is the basic syntax for the SELECT statement. The individual clauses are defined in the
subsections that follow.

SELECT [DISTINCT] select_list

FROM from_clause

[WHERE search_condition]

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Syntax and Semantics

356

[GROUP BY column {, column}

[HAVING search_condition]]

[ORDER BY column {, column}]

where:

SELECT Usage Notes
The Oracle BI Server treats the SELECT statement as a logical request. If aggregated data is
requested in the SELECT statement, a GROUP BY clause is automatically assumed by the server. Any
join conditions supplied in the query are ignored; the join conditions are all predefined in the
repository.

The Oracle BI Server accepts the following SQL syntaxes for comments:

■ /* */ C-style comments

■ // Double slash for single-line comments

■ # Number sign for single-line comments

The Oracle BI Server supports certain subqueries and UNION, UNION ALL, INTERSECT, and EXCEPT
operations in logical requests. This functionality increases the range of business questions that can
be answered, eases the formulation of queries, and provides some ability to query across multiple
business models.

The Oracle BI Server supports the following subquery predicates in any conditional expression (for
example, within WHERE, HAVING, or CASE statements):

■ IN, NOT IN

■ >Any, >=Any, =Any, <Any, <=Any, <>Any

■ >Some, >=Some, =Some, <Some, <=Some, <>Some

■ >All, >=All, =All, <All, <=All, <>All

■ EXISTS, NOT EXISTS

select_list The list of columns specified in the query. Refer to “SELECT List Syntax” on
page 357.

from_clause The list of tables in the query, or a catalog folder name. Optionally includes
certain join information for the query. Refer to “FROM Clause Syntax” on
page 357.

search_condition Specifies any combination of conditions to form a conditional test. Refer to
“WHERE Clause Syntax” on page 357.

column A column (or alias) belonging to a table defined in the data source.

Oracle BI Server SQL Reference ■ SQL Syntax and Semantics

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 357

SELECT List Syntax
The SELECT list syntax lists the columns in the query.

Syntax:

SELECT [DISTINCT] select_list

where:

FROM Clause Syntax
The Oracle BI Server accepts any valid SQL FROM clause syntax. You can specify the name of a
catalog folder instead of a list of tables to simplify FROM clause creation. The Oracle BI Server
determines the proper tables and the proper join specifications based on the columns the query asks
for and the configuration of the Oracle BI repository.

WHERE Clause Syntax
The Oracle BI Server accepts any valid SQL WHERE clause syntax. There is no need to specify any
join conditions in the WHERE clause because the joins are all configured within the Oracle BI
repository. Any join conditions specified in the WHERE clause are ignored.

The Oracle BI Server also supports the following subquery predicates in any conditional expression
(WHERE, HAVING or CASE statements):

■ IN, NOT IN

■ >Any, >=Any, =Any, <Any, <=Any. <>Any

■ >All, >=All, =All, <All, <=All, <>All

■ EXISTS, NOT EXISTS

select_list The list of columns specified in the query. All columns need to be from a single
business model.

Table names can be included (as Table.Column), but are optional unless column names
are not unique within a business model.

If column names contain spaces, enclose column names in double quotes. The
DISTINCT keyword does not need to be included as the Oracle BI Server will always
do a distinct query.

Columns that are being aggregated do not need to include the aggregation function
(such as SUM), as aggregation rules are known to the server and aggregation will be
performed automatically.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Syntax and Semantics

358

GROUP BY Clause Syntax
With auto aggregation on the Oracle BI Server, there is no need to submit a GROUP BY clause. When
no GROUP BY clause is specified, the GROUP BY specification defaults to all of the nonaggregation
columns in the SELECT list. If you explicitly use aggregation functions in the select list, you can
specify a GROUP BY clause with different columns and the Oracle BI Server will compute the results
based on the level specified in the GROUP BY clause. For additional details, and some examples of
using the GROUP BY clause in queries against the Oracle BI Server, refer to “Rules for Queries with
Aggregate Functions” on page 358.

ORDER BY Clause Syntax
The Oracle BI Server accepts any valid SQL ORDER BY clause syntax, including referencing columns
by their order in the select list (such as ORDER BY 3, 1, 5).

Rules for Queries with Aggregate Functions
The Oracle BI Server simplifies the SQL needed to craft aggregate queries. This section outlines the
rules that the Oracle BI Server follows with respect to whether or not a query contains a GROUP BY
clause and, if a GROUP BY clause is specified, what results you should expect from the query. The
rules outlined in this section apply to all aggregates used in SQL statements (SUM, AVG, MIN, MAX,
COUNT(*), and COUNT).

Computing Aggregates of Baseline Columns
A baseline column is a column that has no aggregation rule defined in the Aggregation tab of the
Logical Column dialog in the repository. Baseline columns map to nonaggregated data at the level of
granularity of the logical table to which they belong. If you perform aggregation (SUM, AVG, MIN,
MAX, or COUNT) on a baseline column through a SQL request, the Oracle BI Server calculates the
aggregation at the level based on the following rules:

■ If there is no GROUP BY clause specified, the level of aggregation is grouped by all of the
nonaggregate columns in the SELECT list.

■ If there is a GROUP BY clause specified, the level of aggregation is based on the columns specified
in the GROUP BY clause.

For example, consider the following query, where the column revenue is defined in the repository as
a baseline column (no aggregation rules specified in the Logical Column > Aggregation tab):

select year, product, sum(revenue)

from time, products, facts

YEAR PRODUCT SUM(REVENUE)

1998 Coke 500

1998 Pepsi 600

1999 Coke 600

Oracle BI Server SQL Reference ■ SQL Syntax and Semantics

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 359

1999 Pepsi 550

2000 Coke 800

2000 Pepsi 600

This query returns results grouped by year and product; that is, it returns one row for each product
and year combination. The sum calculated for each row is the sum of all the sales for that product
in that year. It is logically the same query as the following:

select year, product, sum(revenue)

from time, products, facts

group by year, product

If you change the GROUP BY clause to only group by year, then the sum calculated is the sum of all
products for the year, as follows:

select year, product, sum(revenue)

from time, products, facts

group by year

YEAR PRODUCT SUM(REVENUE)
1998 Coke 1100
1998 Pepsi 1100
1999 Coke 1150
1999 Pepsi 1150
2000 Coke 1400
2000 Pepsi 1400

In this query result set, the sum of revenue is the same for each row corresponding to a given year,
and that sum represents the total sales for that year. In this case, it is the sales of Coke plus the
sales of Pepsi.

If you add a column to the query requesting the COUNT of revenue, the Oracle BI Server calculates
the number of records used to calculate the results for each group. In this case, it is a year, as shown
in the following example:

select year, product, sum(revenue), count(revenue)
from time, products, facts
group by year

YEAR PRODUCT SUM(REVENUE) COUNT(REVENUE)
1998 Coke 1100 6000
1998 Pepsi 1100 6000
1999 Coke 1150 6500
1999 Pepsi 1150 6500
2000 Coke 1400 8000
2000 Pepsi 1400 8000

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Syntax and Semantics

360

Computing Aggregates of Measure Columns
A measure column is a column that has a default aggregation rule defined in the Aggregation tab of
the Logical Column dialog in the repository. Measure columns always calculate the aggregation with
which they are defined. If you perform explicit aggregation (SUM, AVG, MIN, MAX, or COUNT) on a
measure column through a SQL request, you are actually asking for an aggregate of an aggregate.
For these nested aggregates, the Oracle BI Server calculates the aggregation based on the following
rules:

■ A request for a measure column without an aggregate function defined in a SQL statement is
always grouped at the level of the nonaggregate columns in the SELECT list, regardless of
whether the query specifies a GROUP BY clause.

■ If there is no GROUP BY clause specified, the nested aggregate is a grand total of each group
determined by all of the nonaggregate columns in the SELECT list.

■ If there is a GROUP BY clause specified, the nested aggregation calculates the total for each
group as specified in the GROUP BY clause.

For example, consider the following query, where the column SumOfRevenue is defined in the
repository as a measure column with a default aggregation rule of SUM (SUM aggregation rule
specified in the Aggregation tab of the Logical Column dialog):

select year, product, SumOfRevenue, sum(SumOfRevenue)
from time, products, facts

YEAR PRODUCT SUMofREVENUE SUM(SUMofREVENUE)
1998 Coke 500 3650
1998 Pepsi 600 3650
1999 Coke 600 3650
1999 Pepsi 550 3650
2000 Coke 800 3650
2000 Pepsi 600 3650

This query returns results grouped by year and product; that is, it returns one row for each product
and year combination. The sum calculated for each row in the SumOfRevenue column is the sum of
all the sales for that product in that year because the measure column is always at the level defined
by the nonaggregation columns in the query. It is logically the same query as the following:

select year, product, SumOfRevenue, sum(SumOfRevenue)
from time, products, facts
group by year, product

If you change the GROUP BY clause to only group by year, then the sum calculated in the
SumOfRevenue column is the sum of each product for the year, and the sum calculated in the
SUM(SumOfRevenue) column is total sales of all products for the given year, as follows:

select year, product, SumOfRevenue, sum(SumOfRevenue)
from time, products, facts
group by year

YEAR PRODUCT SUMofREVENUE SUM(SUMofREVENUE)
1998 Coke 500 1100
1998 Pepsi 600 1100

Oracle BI Server SQL Reference ■ SQL Syntax and Semantics

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 361

1999 Coke 600 1150
1999 Pepsi 550 1150
2000 Coke 800 1400
2000 Pepsi 600 1400

In this result set, the sum calculated for each row in the SumOfRevenue column is the sum of all the
sales for that product in that year because the measure column is always at the level defined by the
nonaggregation columns in the query. The SUM(SumOfRevenue) is the same for each row
corresponding to a given year, and that sum represents the total sales for that year. In this case, it
is the sales of Coke plus the sales of Pepsi.

Display Function Reset Behavior
A display function is a function that operates on the result set of a query. The display functions the
Oracle BI Server supports (RANK, TOPn, BOTTOMn, PERCENTILE, NTILE, MAVG, MEDIAN, and
varieties of standard deviation) are specified in the SELECT list of a SQL query. Queries that use
display functions conform to the following rules:

■ If no GROUP BY clause is specified, the display function operates across the entire result set;
that is, the grouping level for the display function is the same as for the query.

■ If there is a GROUP BY clause specified, the display function resets its values for each group as
specified in the GROUP BY clause.

For example, in the following query, SumOfRevenue is defined as a measure column with the default
aggregation rule of SUM:

select year, product, SumOfRevenue, rank(SumOfRevenue)
from time, products, facts

YEAR PRODUCT SUMOFREVENUE RANK(SUMOFREVENUE)
1998 Coke 500 6
1998 Pepsi 600 2
1999 Coke 600 2
1999 Pepsi 550 5
2000 Coke 800 1
2000 Pepsi 600 2

In this query result set, there is no GROUP BY clause specified, so the rank is calculated across the
entire result set. The query is logically the same query as the following:

select year, product, SumOfRevenue, rank(SumOfRevenue))
from time, products, facts
group by year, product

If you change the GROUP BY clause to only group by year, then the rank is reset for each year, as
follows:

select year, product, sum(revenue), rank(sum(revenue))
from time, products, facts
group by year

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Syntax and Semantics

362

YEAR PRODUCT SUM(REVENUE) RANK(SUM(REVENUE))
1998 Coke 500 2
1998 Pepsi 600 1
1999 Coke 600 1
1999 Pepsi 550 2
2000 Coke 800 1
2000 Pepsi 600 2

In this result set, the rank is reset each time the year changes, and because there are two rows for
each year, the value of the rank is always either
1 or 2.

Alternative Syntax
When using an aggregate function, you can calculate a specified level of aggregation using BY within
the aggregate function. If you do this, you do not need a GROUP BY clause.

For example, the query:

select year, product, revenue, sum(revenue by year) as year_revenue from softdrinks

will return the column year_revenue that displays revenue aggregated by year.

The same syntax can be used with display functions. The query:

select year, product, revenue, rank(revenue), rank(revenue by year) from softdrinks
order by 1, 5

will calculate overall rank of revenue for each product for each year (each row in the entire result
set) and also the rank of each product’s revenue within each year.

Using FILTER to Compute a Conditional Aggregate
In SQL query language, traditional aggregates, such as SUM, COUNT, MIN, and MAX are evaluated
on a group of tuples (an ordered list of objects, each of a specified type), determined by the GROUP
BY clause. All the aggregates specified in the SELECT clause of a query are evaluated over the same
subset of tuples. Conditional aggregates extend SQL by restricting their input using a predicate.

FILTER is an operator that restricts the set of rows used to compute its aggregate argument to rows
that satisfy the USING condition. The FILTER operator is a logical SQL construct. It may be used in
logical queries referring to the metadata, or in logical columns that use existing logical columns as
the source.

Syntax
Conditional aggregates are only notational concepts and they do not represent executable operators.
Conditional aggregates are expressed in the form of a function as shown in the following statement:

FILTER(<measure_expression> USING <boolean_expression>)

Where:

Oracle BI Server SQL Reference ■ SQL Syntax and Semantics

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 363

■ <measure_expression> is an expression that contains at least one measure. The following is a
list of examples:

■ The expression Sales + 1 is allowed if Sales is a measure.

■ The expression productid is not allowed if productid is a scalar attribute.

■ <boolean_expression> is a boolean expression (evaluates to TRUE or FALSE) that does not
contain any measures. This expression may not contain any nested queries.

Example of the FILTER Function
The following is a simple example of the FILTER function:

SELECT year,

FILTER(sales USING product = 'coke'),

FILTER(sales USING product = 'pepsi')

FROM logBeverages

After navigation, this query is executed as follows:

SELECT year,

SUM(CASE WHEN product = 'coke' THEN sales),

SUM(CASE WHEN product = 'pepsi' THEN sales)

FROM physBeverages

WHERE product = 'coke' OR product = 'pepsi'

GROUP BY year

Error handling
In the example FILTER(X USING Y), error messages will be returned in the following situations:

■ The Y expression is not a boolean expression.

■ The Y expression contains measures.

■ FILTER is used in outer query block.

■ Explicit aggregates are used in the X (measure) expression. For example,
FILTER(COUNT(product), C).

SQL Logical Operators
The following SQL logical operators are used to specify comparisons between expressions.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Syntax and Semantics

364

Between: Used to determine boundaries for a condition. Each boundary is an expression, and the
bounds do not include the boundary limits, as in less than and greater than (as opposed to less than
or equal to and greater than or equal to). BETWEEN can be preceded with NOT to negate the
condition.

In: Specifies a comparison of a column value with a set of values.

Is Null: Specifies a comparison of a column value with the null value.

Like: Specifies a comparison to a literal value. Often used with wildcard characters to indicate any
character string match of zero or more characters (%) or a any single character match (_).

Conditional Expressions
The Expressions folder contains building blocks for creating conditional expressions that use CASE,
WHEN, THEN and ELSE statements.

CASE (Switch)
This form of the Case statement is also referred to as the CASE (Lookup) form.

Syntax:

CASE expression1
WHEN expression2 THEN expression3
{WHEN expression... THEN expression...}
ELSE expression...

END

The value of expression1 is examined, and then the WHEN expressions are examined. If expression1
matches any WHEN expression, it assigns the value in the corresponding THEN expression.

If none of the WHEN expressions match, it assigns the default value specified in the ELSE expression.
If no ELSE expression is specified, the system will automatically add an ELSE NULL.

If expression1 matches an expression in more than one WHEN clause, only the expression following
the first match is assigned.

NOTE: In a CASE statement, AND has precedence over OR.

CASE
Starts the CASE statement. Has to be followed by an expression and one or more WHEN and THEN
statements, an optional ELSE statement, and the END keyword.

WHEN
Specifies the condition to be satisfied.

THEN
Specifies the value to assign if the corresponding WHEN expression is satisfied.

Oracle BI Server SQL Reference ■ SQL Syntax and Semantics

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 365

ELSE
Specifies the value to assign if none of the WHEN conditions are satisfied. If omitted, ELSE NULL is
assumed.

END
Ends the Case statement.

CASE (If)
This form of the CASE statement has the following syntax:

CASE
WHEN search_condition1 THEN expression1
{WHEN search_condition2 THEN expression2}
{WHEN search_condition... THEN expression...}
ELSE expression

END

This evaluates each WHEN condition and if satisfied, assigns the value in the corresponding THEN
expression.

If none of the WHEN conditions are satisfied, it assigns the default value specified in the ELSE
expression.

If no ELSE expression is specified, the system will automatically add an ELSE NULL.

NOTE: In a CASE statement, AND has precedence over OR.

Unlike the Switch form of the CASE statement, the WHEN statements in the If form allow comparison
operators; a WHEN condition of WHEN < 0 THEN 'Under Par' is legal.

CASE
Starts the CASE statement. Has to be followed by one or more WHEN and THEN statements, an
optional ELSE statement, and the END keyword.

WHEN
Specifies the condition to be satisfied.

THEN
Specifies the value to assign if the corresponding WHEN expression is satisfied.

ELSE
Specifies the value to assign if none of the WHEN conditions are satisfied. If omitted, ELSE NULL is
assumed.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

366

END
Ends the Case statement.

SQL Reference
SQL functions perform various calculations on column values. This section explains the syntax for
the functions supported by the Oracle BI Server. It also explains how to express literals. There are
aggregate, string, math, calendar date/time, conversion, and system functions.

The following topics are included:

■ Aggregate Functions on page 366

■ Running Aggregate Functions on page 374

■ String Functions on page 378

■ Math Functions on page 384

■ Calendar Date/Time Functions on page 390

■ Conversion Functions on page 398

■ System Functions on page 402

■ Expressing Literals on page 402

Aggregate Functions
Aggregate functions perform work on multiple values to create summary results. The aggregate
functions cannot be used to form nested aggregation in expressions on logical columns that have a
default aggregation rule defined in the Aggregation tab of the Logical Column dialog box. To specify
nested aggregation, you need to define a column with a default aggregation rule and then request
the aggregation of the column in a SQL statement.

Avg
Calculates the average (mean) value of an expression in a result set. Has to take a numeric
expression as its argument.

Syntax:

AVG (n_expression)

where:

n_expression Any expression that evaluates to a numerical value.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 367

AvgDistinct
Calculates the average (mean) of all distinct values of an expression. Has to take a numeric
expression as its argument.

Syntax:

AVG (DISTINCT n_expression)

where:

BottomN
Ranks the lowest n values of the expression argument from 1 to n, 1 corresponding to the lowest
numerical value. The BOTTOMN function operates on the values returned in the result set.

Syntax:

BOTTOMN (n_expression, n)

where:

NOTE: A query can contain only one BOTTOMN expression.

Count
Calculates the number of rows having a nonnull value for the expression. The expression is typically
a column name, in which case the number of rows with nonnull values for that column is returned.

Syntax:

COUNT (expression)

where:

CountDistinct
Adds distinct processing to the COUNT function.

Syntax:

COUNT (DISTINCT expression)

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

n Any positive integer. Represents the bottom number of rankings displayed in the
result set, 1 being the lowest rank.

expression Any expression.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

368

where:

Count (*) (CountStar)
Counts the number of rows.

Syntax:

COUNT(*)

For example, if a table named Facts contained 200,000,000 rows, the following query would return
the following results:

SELECT COUNT(*) FROM Facts

COUNT(*)

200000000

First
Selects the first returned value of the expression argument. The FIRST function is limited to defining
dimension-specific aggregation rules in a repository. You cannot use it in SQL statements.

The FIRST function operates at the most detailed level specified in your explicitly defined dimension.
For example, if you have a time dimension defined with hierarchy levels day, month, and year, the
FIRST function returns the first day in each level.

You should not use the FIRST function as the first dimension-specific aggregate rule. It might cause
queries to bring back large numbers of rows for processing in the Oracle BI Server causing poor
performance.

Syntax:

FIRST (expression)

where:

GroupByColumn
For use in setting up aggregate navigation. It specifies the logical columns that define the level of
the aggregate data existing in a physical aggregate table.

For example, if an aggregate table contains data grouped by store and by month, specify the
following syntax in the content filter (General tab of Logical Source dialog):

GROUPBYCOLUMN(STORE, MONTH)

The GROUPBYCOLUMN function is only for use in configuring a repository; you cannot use it to form
SQL statements.

expression Any expression.

expression Any expression.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 369

GroupByLevel
For use in setting up aggregate navigation. It specifies the dimension levels that define the level of
the aggregate data existing in a physical aggregate table.

For example, if an aggregate table contains data at the store and month levels, and if you have
defined dimensions (Geography and Customers) containing these levels, specify the following syntax
in the content filter (General tab of Logical Source dialog):

GROUPBYLEVEL (GEOGRAPHY.STORE, CUSTOMERS.MONTH)

The GROUPBYLEVEL function is only for use in configuring a repository; you cannot use it to form
SQL statements.

Last
Selects the last returned value of the expression. The LAST function is limited to defining dimension-
specific aggregation rules in a repository. You cannot use it in SQL statements.

The LAST function operates at the most detailed level specified in your explicitly defined dimension.
For example, if you have a time dimension defined with hierarchy levels day, month, and year, the
LAST function returns the last day in each level.

You should not use the LAST function as the first dimension-specific aggregate rule. It might cause
queries to bring back large numbers of rows for processing in the Oracle BI Server causing poor
performance.

Syntax:

LAST (expression)

where:

Max
Calculates the maximum value (highest numeric value) of the rows satisfying the numeric expression
argument.

Syntax:

MAX (expression)

where:

The MAX function resets its values for each group in the query, according to the rules outlined in
“Display Function Reset Behavior” on page 361.

expression Any expression.

expression Any expression.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

370

Median
Calculates the median (middle) value of the rows satisfying the numeric expression argument. When
there are an even number of rows, the median is the mean of the two middle rows. This function
always returns a double.

Syntax:

MEDIAN (n_expression)

where:

The MEDIAN function resets its values for each group in the query, according to the rules outlined in
“Display Function Reset Behavior” on page 361.

Min
Calculates the minimum value (lowest numeric value) of the rows satisfying the numeric expression
argument.

Syntax:

MIN (expression)

where:

The MIN function resets its values for each group in the query, according to the rules outlined in
“Display Function Reset Behavior” on page 361.

NTile
The NTILE function determines the rank of a value in terms of a user-specified range. It returns
integers to represent any range of ranks. In other words, the resulting sorted data set is broken into
a number of tiles where there are roughly an equal number of values in each tile.

Syntax:

NTILE (n_expression, n)

where:

If the n_expression argument is not null, the function returns an integer that represents a rank within
the requested range.

n_expression Any expression that evaluates to a numerical value.

expression Any expression.

n_expression Any expression that evaluates to a numerical value.

n A positive, nonnull integer that represents the number of tiles.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 371

NTile with n=100 returns what is commonly called the percentile (with numbers ranging from 1 to
100, with 100 representing the high end of the sort). This value is different from the results of the
Oracle BI Server percentile function, that conforms to what is called percent rank in SQL 92 and
returns values from 0 to 1.

Percentile
Calculates a percent rank for each value satisfying the numeric expression argument. The percent
rank ranges are from 0 (1st percentile) to 1 (100th percentile), inclusive.

The PERCENTILE function calculates the percentile based on the values in the result set of the query.

Syntax:

PERCENTILE (n_expression)

where:

The PERCENTILE function resets its values for each group in the query according to the rules outlined
in “Display Function Reset Behavior” on page 361.

PeriodAgo
A time series aggregation function for relational data sources only. Calculates the aggregated value
from the current time back to a specified time period. For example, PeriodAgo can produce sales for
every month of the current quarter and the corresponding quarter-ago sales.

If unsupported metrics are requested, NULL values will be returned and a warning entry will be
written to the NQQuery.log file when the logging level equals three or above. Multiple PeriodAgo
functions can be nested if all the PeriodAgo functions have the same level argument.

You can nest exactly one PeriodToDate and multiple PeriodAgo functions if they each have the same
level argument.

Syntax:

PeriodAgo(<time-level>, <offset>, <measure>)

PeriodToDate
A time series aggregation function for relational data sources only. PeriodToDate aggregates a
measure attribute from the beginning of a specified time period to the currently displayed time. For
example, this function can calculate Year to Date sales.

If unsupported metrics are requested, NULL values will be returned and a warning entry will be
written to the NQQuery.log file when the logging level equals three or above. A PeriodToDate function
may not be nested within another PeriodToDate function.

You can nest exactly one PeriodToDate and multiple PeriodAgo functions if they each have the same
level argument.

n_expression Any expression that evaluates to a numerical value.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

372

Syntax:

PeriodToDate(<time-level>, <measure>)

Rank
Calculates the rank for each value satisfying the numeric expression argument. The highest number
is assigned a rank of 1, and each successive rank is assigned the next consecutive integer (2, 3,
4,...). If certain values are equal, they are assigned the same rank (for example, 1, 1, 1, 4, 5, 5,
7...).

The RANK function calculates the rank based on the values in the result set of the query.

Syntax:

RANK (n_expression)

where:

The RANK function resets its values for each group in the query according to the rules outlined in
“Display Function Reset Behavior” on page 361.

Calculating Absolute Calendar Fields

To calculate absolute calendar fields such as abs_month, you use the prebuilt Rank operator.

Syntax:

Rank(<ordering key>, <partitioning key>, <at_distinct key>)

Where:

The following is a list of examples:

■ Rank(<chronological key>, null, <year key columns>) returns abs_year.

■ Rank(<chronological key>, null, <month key columns>) returns abs_month.

■ Rank(<chronological key>, <year key columns>, <month key columns>) returns
month_in_year.

StdDev
The STDDEV function returns the standard deviation for a set of values. The return type is always a
double.

n_expression Any expression that evaluates to a numerical value.

<ordering key> Key that is used to order the input for the purpose of assigning rank.

<partitioning key> Key that is used to partition data. Ranking is restarted from zero at the
beginning of every partition.

<at_distinct key> Dictates that ranking is increased only across rows with differing values in this
key. The rows with the same value for this key have the same rank.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 373

Syntax:

STDDEV([ALL | DISTINCT] n_expression)

where:

■ If ALL is specified, the standard deviation is calculated for all data in the set.

■ If DISTINCT is specified, all duplicates are ignored in the calculation.

■ If nothing is specified (the default), all data is considered.

There are two other functions that are related to STDDEV:

STDDEV_POP([ALL | DISTINCT] n_expression)

STDDEV_SAMP([ALL | DISTINCT] n_expression)

STDDEV and STDDEV_SAMP are synonyms.

The STDDEV function resets its values for each group in the query according to the rules outlined in
“Display Function Reset Behavior” on page 361.

Sum
Calculates the sum obtained by adding up all values satisfying the numeric expression argument.

Syntax:

SUM (n_expression)

where:

The SUM function resets its values for each group in the query according to the rules outlined in
“Display Function Reset Behavior” on page 361.

SumDistinct
Calculates the sum obtained by adding all of the distinct values satisfying the numeric expression
argument.

Syntax:

SUM(DISTINCT n_expression)

where:

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

374

TopN
Ranks the highest n values of the expression argument from 1 to n, 1 corresponding to the highest
numerical value.

The TOPN function operates on the values returned in the result set.

Syntax:

TOPN (n_expression, n)

where:

A query can contain only one TOPN expression.

The TOPN function resets its values for each group in the query according to the rules outlined in
“Display Function Reset Behavior” on page 361.

Running Aggregate Functions
Running aggregate functions are similar to functional aggregates in that they take a set of records
as input, but instead of outputting the single aggregate for the entire set of records, they output the
aggregate based on records encountered so far.

This section describes the running aggregate functions supported by the Oracle BI Server.

Mavg
Calculates a moving average (mean) for the last n rows of data in the result set, inclusive of the
current row.

Syntax:

MAVG (n_expression, n)

where:

The MAVG function resets its values for each group in the query, according to the rules outlined in
“Display Function Reset Behavior” on page 361.

The average for the first row is equal to the numeric expression for the first row. The average for the
second row is calculated by taking the average of the first two rows of data. The average for the third
row is calculated by taking the average of the first three rows of data, and so on until you reach the
nth row, where the average is calculated based on the last n rows of data.

n_expression Any expression that evaluates to a numerical value.

n Any positive integer. Represents the top number of rankings displayed in the
result set, 1 being the highest rank.

n_expression Any expression that evaluates to a numerical value.

n Any positive integer. Represents the average of the last n rows of data.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 375

MSUM
This function calculates a moving sum for the last n rows of data, inclusive of the current row.

The sum for the first row is equal to the numeric expression for the first row. The sum for the second
row is calculated by taking the sum of the first two rows of data. The sum for the third row is
calculated by taking the sum of the first three rows of data, and so on. When the nth row is reached,
the sum is calculated based on the last n rows of data.

This function resets its values for each group in the query according to the rules described in “Display
Function Reset Behavior” on page 361.

Syntax:

MSUM (n_expression, n)

Where:

Example:

The following example shows a query that uses the MSUM function and the query results.

select month, revenue, MSUM(revenue, 3) as 3_MO_SUM from sales_subject_area

RSUM
This function calculates a running sum based on records encountered so far. The sum for the first
row is equal to the numeric expression for the first row. The sum for the second row is calculated by
taking the sum of the first two rows of data. The sum for the third row is calculated by taking the
sum of the first three rows of data, and so on.

This function resets its values for each group in the query according to the rules described in “Display
Function Reset Behavior” on page 361.

n_expression Any expression that evaluates to a numerical value.

n Any positive integer. Represents the sum of the last n rows of data.

MONTH REVENUE 3_MO_SUM

JAN 100.00 100.00

FEB 200.00 300.00

MAR 100.00 400.00

APRIL 100.00 400.00

MAY 300.00 500.00

JUNE 400.00 800.00

JULY 500.00 1200.00

AUG 500.00 1400.00

SEPT 500.00 1500.00

OCT 300.00 1300.00

NOV 200.00 1000.00

DEC 100.00 600.00

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

376

Syntax:

RSUM (n_expression)

Where:

Example:

The following example shows a query that uses the RSUM function and the query results.

select month, revenue, RSUM(revenue) as RUNNING_SUM from sales_subject_area

RCOUNT
This function takes a set of records as input and counts the number of records encountered so far.

This function resets its values for each group in the query according to the rules described in “Display
Function Reset Behavior” on page 361.

Syntax:

RCOUNT (Expr)

Where:

Example:

The following example shows a query that uses the RCOUNT function and the query results.

select month, profit, RCOUNT(profit) from sales_subject_area where profit > 200.

n_expression Any expression that evaluates to a numerical value.

MONTH REVENUE RUNNING_SUM

JAN 100.00 100.00

FEB 200.00 300.00

MAR 100.00 400.00

APRIL 100.00 500.00

MAY 300.00 800.00

JUNE 400.00 1200.00

JULY 500.00 1700.00

AUG 500.00 2200.00

SEPT 500.00 2700.00

OCT 300.00 3000.00

NOV 200.00 3200.00

DEC 100.00 3300.00

Expr An expression of any data type.

MONTH PROFIT RCOUNT (profit

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 377

RMAX
This function takes a set of records as input and shows the maximum value based on records
encountered so far. The specified data type must be one that can be ordered.

This function resets its values for each group in the query according to the rules described in “Display
Function Reset Behavior” on page 361.

Syntax:

RMAX (expression)

Where:

Example:

The following example shows a query that uses the RMAX function and the query results.

select month, profit, RMAX(profit) from sales_subject_area

MAY 300.00 2

JUNE 400.00 3

JULY 500.00 4

AUG 500.00 5

SEPT 500.00 6

OCT 300.00 7

expression An expression of any data type. The data type must be one that has an
associated sort order.

MONTH PROFIT RMAX (profit)

JAN 100.00 100.00

FEB 200.00 200.00

MAR 100.00 200.00

APRIL 100.00 200.00

MAY 300.00 300.00

JUNE 400.00 400.00

JULY 500.00 500.00

AUG 500.00 500.00

SEPT 500.00 500.00

OCT 300.00 500.00

NOV 200.00 500.00

DEC 100.00 500.00

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

378

RMIN
This function takes a set of records as input and shows the minimum value based on records
encountered so far. The specified data type must be one that can be ordered.

This function resets its values for each group in the query according to the rules described in “Display
Function Reset Behavior” on page 361.

Syntax:

RMIN (expression)

Where:

Example:

The following example shows a query that uses the RMIN function and the query results.

select month, profit, RMIN(profit) from sales_subject_area

String Functions
String functions perform various character manipulations, and they operate on character strings.

ASCII
Converts a single character string to its corresponding ASCII code, between 0 and 255.

Syntax:

ASCII (character_expression)

expression An expression of any data type. The data type must be one that has an associated
sort order.

MONTH PROFIT RMIN
(profit)

JAN 400.00 400.00

FEB 200.00 200.00

MAR 100.00 100.00

APRIL 100.00 100.00

MAY 300.00 100.00

JUNE 400.00 100.00

JULY 500.00 100.00

AUG 500.00 100.00

SEPT 500.00 100.00

OCT 300.00 100.00

NOV 200.00 100.00

DEC 100.00 100.00

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 379

where:

If the character expression evaluates to more than one character, the ASCII code corresponding to
the first character in the expression is returned.

Bit_Length
Returns the length, in bits, of a specified string. Each Unicode character is 2 bytes in length (equal
to 16 bits).

Syntax:

BIT_LENGTH (character_expression)

where:

Char
Converts a numerical value between 0 and 255 to the character value corresponding to the ASCII
code.

Syntax:

CHAR (n_expression)

where:

Char_Length
Returns the length, in number of characters, of a specified string. Leading and trailing blanks are not
counted in the length of the string.

Syntax:

CHAR_LENGTH (character_expression)

where:

Concat
There are two forms of this function. The first form concatenates two character strings. The second
form uses the character string concatenation character to concatenate more than two character
strings.

character_expression Any expression that evaluates to an ASCII character.

character_expression Any expression that evaluates to character string.

n_expression Any expression that evaluates to a numerical value between 0 and 255.

character_expression Any expression that evaluates to a numerical value between 0 and 255.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

380

Form 1 Syntax:

CONCAT (character_expression1, character_expression2)

where:

Form 2 Syntax:

CONCAT (string_expression1 || string_expression2 || ... string_expressionxx)

where:

Insert
Inserts a specified character string into a specified location in another character string.

Syntax:

INSERT(character_expression, n, m, character_expression)

where:

‘

Left
Returns a specified number of characters from the left of a string.

Syntax:

LEFT(character_expression, n)

where:

character_expression Expressions that evaluate to character strings.

string_expression Expressions that evaluate to character strings, separated by the character
string concatenation operator || (double vertical bars). The first string is
concatenated with the second string to produce an intermediate string, and
then this string is concatenated with the next string, and so on.

character_expression Any expression that evaluates to a character string.

n Any positive integer representing the number of characters from the start
of the first string where a portion of the second string is inserted.

m Any positive integer representing the number of characters in the first
string to be replaced by the entirety of the second string.

character_expression Any expression that evaluates to a character string.

n Any positive integer representing the number of characters from the left of
the first string that are returned.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 381

Length
Returns the length, in number of characters, of a specified string. The length is returned excluding
any trailing blank characters.

Syntax:

LENGTH(character_expression)

where:

Locate
Returns the numerical position of the character_expression1 in a character expression. If the
character_expression1 is not found in the character expression, the Locate function returns a value
of 0. If you want to specify a starting position to begin the search, use the LocateN function instead.

Syntax:

LOCATE(character_expression1, character_expression2)

where:

LocateN
Returns the numerical position of the character_expression1 in a character expression. This is
identical to the Locate function, except that the search for the pattern begins at the position specified
by an integer argument. If the character_expression1 is not found in the character expression, the
LocateN function returns a value of 0. The numerical position to return is determined by counting the
first character in the string as occupying position 1, regardless of the value of the integer argument.

Syntax:

LOCATE(character_expression1, character_expression2, n)

where:

character_expression Any expression that evaluates to a character string.

character_expression1 Any expression that evaluates to a character string. This is the
expression to search for in the character expression.

character_expression2 Any expression that evaluates to a character string. This is the
expression to be searched.

character_expression1 Any expression that evaluates to a character string. This is the expression
to search for in the character expression.

character_expression2 Any expression that evaluates to a character string. This is the expression
to be searched.

n Any positive, nonzero integer that represents the starting position to
being to look for the locate expression.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

382

Lower
Converts a character string to lower case.

Syntax:

LOWER (character_expression)

where:

Octet_Length
Returns the bits, in base 8 units (number of bytes), of a specified string.

Syntax:

OCTET_LENGTH (character_expression)

where:

Position
Returns the numerical position of the character_expression1 in a character expression. If the
character_expression1 is not found, the function returns 0.

Syntax:

POSITION(character_expression1 IN character_expression2)

where:

Repeat
Repeats a specified expression n times, where n is a positive integer.

Syntax:

REPEAT(character_expression, n)

where:

character_expression Any expression that evaluates to a character string.

character_expression Any expression that evaluates to a character string.

character_expression1 Any expression that evaluates to a character string. Used to search in the
second string.

character_expression2 Any expression that evaluates to a character string.

character_expression Any expression that evaluates to a character string.

n Any positive integer.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 383

Replace
Replaces specified characters from a specified character expression with other specified characters.

Syntax:

REPLACE(character_expression, change_expression, replace_with_expression)

where:

Right
Returns a specified number of characters from the right of a string.

Syntax:

RIGHT(character_expression, n)

where:

Substring
Creates a new string starting from a fixed number of characters into the original string.

Syntax:

SUBSTRING (character_expression FROM starting_position)

where:

TrimBoth
Strips specified leading and trailing characters from a character string.

Syntax:

TRIM (BOTH 'character' FROM character_expression)

character_expression Any expression that evaluates to a character string. This first string is
the original string.

change_expression Any expression that evaluates to a character string. This second string
specifies characters from the first string that will be replaced.

replace_with_expression Any expression that evaluates to a character string. This third string
specifies the characters to substitute into the first string.

character_expression Any expression that evaluates to a character string.

n Any positive integer representing the number of characters from the right of
the first string that are returned.

character_expression Any expression that evaluates to a character string.

starting_position Any positive integer representing the number of characters from the start of
the string where the result begins.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

384

where:

TrimLeading
Strips specified leading characters from a character string.

Syntax:

TRIM (LEADING 'character' FROM character_expression)

where:

TrimTrailing
Strips specified trailing characters from a character string.

Syntax:

TRIM (TRAILING 'character' FROM character_expression)

where:

Upper
Converts a character string to uppercase.

Syntax:

UPPER (character_expression)

where:

Math Functions
The math functions perform mathematical operations.

character Any single character. If the character part of the specification (and the
single quotes) are omitted, a blank character is used as a default.

character_expression Any expression that evaluates to a character string.

character Any single character. If the character part of the specification (and the single
quotes) are omitted, a blank character is used as a default.

character_expression Any expression that evaluates to a character string.

character Any single character. If the character part of the specification (and the
single quotes) are omitted, a blank character is used as a default.

character_expression Any expression that evaluates to a character string.

character_expression Any expression that evaluates to a character string.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 385

Abs
Calculates the absolute value of a numerical expression.

Syntax:

ABS (n_expression)

where:

Acos
Calculates the arc cosine of a numerical expression.

Syntax:

ACOS (n_expression)

where:

Asin
Calculates the arc sine of a numerical expression.

Syntax:

ASIN (n_expression)

where:

Atan
Calculates the arc tangent of a numerical expression.

Syntax:

ATAN (n_expression)

where:

Atan2
Calculates the arc tangent of y/x, where y is the first numerical expression and x is the second
numerical expression.

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

386

Syntax:

ATAN2 (n_expression1, n_expression2)

where:

Ceiling
Rounds a noninteger numerical expression to the next highest integer. If the numerical expression
evaluates to an integer, the Ceiling function returns that integer.

Syntax:

CEILING (n_expression)

where:

Cos
Calculates the cosine of a numerical expression.

Syntax:

COS (n_expression)

where:

Cot
Calculates the cotangent of a numerical expression.

Syntax:

COT (n_expression)

where:

Degrees
Converts an expression from radians to degrees.

Syntax:

DEGREES (n_expression)

n_expression (1 and 2) Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 387

where:

Exp
Sends the value e to the power specified.

Syntax:

EXP (n_expression)

where:

Floor
Rounds a noninteger numerical expression to the next lowest integer. If the numerical expression
evaluates to an integer, the FLOOR function returns that integer.

Syntax:

FLOOR (n_expression)

where:

Log
Calculates the natural logarithm of an expression.

Syntax:

LOG (n_expression)

where:

Log10
Calculates the base 10 logarithm of an expression.

Syntax:

LOG10 (n_expression)

where:

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

388

Mod
Divides the first numerical expression by the second numerical expression and returns the remainder
portion of the quotient.

Syntax:

MOD (n_expression1, n_expression2)

where:

Pi
Returns the constant value of pi (the circumference of a circle divided by the diameter of a circle).

Syntax:

PI()

Power
Takes the first numerical expression and raises it to the power specified in the second numerical
expression.

Syntax:

POWER(n_expression1, n_expression2)

where:

Radians
Converts an expression from degrees to radians.

Syntax:

RADIANS (n_expression)

where:

Rand
Returns a pseudo-random number between 0 and 1.

Syntax:

RAND()

n_expression (1 and 2) Any expression that evaluates to a numerical value.

n_expression (1 and 2) Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 389

RandFromSeed
Returns a pseudo-random number based on a seed value. For a given seed value, the same set of
random numbers are generated.

Syntax:

RAND (n_expression)

where:

Round
Rounds a numerical expression to n digits of precision.

Syntax:

ROUND (n_expression, n)

where:

Sign
Returns a value of 1 if the numerical expression argument evaluates to a positive number, a value
of -1 if the numerical expression argument evaluates to a negative number, and 0 if the numerical
expression argument evaluates to zero.

Syntax:

SIGN (n_expression)

where:

Sin
Calculates the sine of a numerical expression.

Syntax:

SIN (n_expression)

where:

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

n Any positive integer representing the number of digits of precision with which to
round.

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

390

Sqrt
Calculates the square root of the numerical expression argument. The numerical expression has to
evaluate to a nonnegative number.

Syntax:

SQRT (n_expression)

where:

Tan
Calculates the tangent of a numerical expression.

Syntax:

TAN (n_expression)

where:

Truncate
Truncates a decimal number to return a specified number of places from the decimal point.

Syntax:

TRUNCATE (n_expression, n)

where:

Calendar Date/Time Functions
The calendar date/time functions manipulate data of the data types DATE and DATETIME.

Current_Date
Returns the current date. The date is determined by the system in which the Oracle BI Server is
running.

Syntax:

CURRENT_DATE

n_expression Any expression that evaluates to a nonnegative numerical value.

n_expression Any expression that evaluates to a numerical value.

n_expression Any expression that evaluates to a numerical value.

n Any positive integer representing the number of characters from the right of the
decimal place that are returned.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 391

Current_Time
Returns the current time. The time is determined by the system in which the Oracle BI Server is
running.

Syntax:

CURRENT_TIME (n)

where:

Current_TimeStamp
Returns the current date/timestamp. The timestamp is determined by the system in which the Oracle
BI Server is running.

Syntax:

CURRENT_TIMESTAMP (n)

where:

Day_Of_Quarter
Returns a number (between 1 and 92) corresponding to the day of the quarter for the specified date.

Syntax:

DAY_OF_QUARTER (date_expression)

where:

DayName
Returns the day of the week for a specified date.

Syntax:

DAYNAME (date_expression)

where:

n Any integer representing the number of digits of precision with which to display the fractional
second. The argument is optional; the function returns the default precision when no
argument is specified.

n Any integer representing the number of digits of precision with which to display the fractional
second. The argument is optional; the function returns the default precision when no
argument is specified.

date_expression Any expression that evaluates to a date.

date_expression Any expression that evaluates to a date.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

392

DayOfMonth
Returns the number corresponding to the day of the month for a specified date.

Syntax:

DAYOFMONTH (date_expression)

where:

DayOfWeek
Returns a number between 1 and 7 corresponding to the day of the week, Sunday through Saturday,
for a specified date. For example, the number 1 corresponds to Sunday, and the number 7
corresponds to Saturday.

Syntax:

DAYOFWEEK (date_expression)

where:

DayOfYear
Returns the number (between 1 and 366) corresponding to the day of the year for a specified date.

Syntax:

DAYOFYEAR (date_expression)

where:

Hour
Returns a number (between 0 and 23) corresponding to the hour for a specified time. For example,
0 corresponds to 12 a.m. and 23 corresponds to 11 p.m.

Syntax:

HOUR (time_expression)

where:

date_expression Any expression that evaluates to a date.

date_expression Any expression that evaluates to a date.

date_expression Any expression that evaluates to a date.

time_expression Any expression that evaluates to a time.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 393

Minute
Returns a number (between 0 and 59) corresponding to the minute for a specified time.

Syntax:

MINUTE (time_expression)

where:

Month
Returns the number (between 1 and 12) corresponding to the month for a specified date.

Syntax:

MONTH (date_expression)

where:

Month_Of_Quarter
Returns the number (between 1 and 3) corresponding to the month in the quarter for a specified
date.

Syntax:

MONTH_OF_QUARTER (date_expression)

where:

MonthName
Returns the name of the month for a specified date.

Syntax:

MONTHNAME (date_expression)

where:

Now
Returns the current timestamp. The NOW function is equivalent to the CURRENT_TIMESTAMP
function.

time_expression Any expression that evaluates to a time.

date_expression Any expression that evaluates to a date.

date_expression Any expression that evaluates to a date.

date_expression Any expression that evaluates to a date.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

394

Syntax:

NOW ()

Quarter_Of_Year
Returns the number (between 1 and 4) corresponding to the quarter of the year for a specified date.

Syntax:

QUARTER_OF_YEAR (date_expression)

where:

Second
Returns the number (between 0 and 59) corresponding to the seconds for a specified time.

Syntax:

SECOND (time_expression)

where:

TimestampAdd
The TimestampAdd function adds a specified number of intervals to a specified timestamp. A single
timestamp is returned.

Syntax:

TimestampAdd (interval, integer-expression, timestamp-expression)

date_expression Any expression that evaluates to a date.

time_expression Any expression that evaluates to a time.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 395

where:

A null integer-expression or a null timestamp-expression passed to this function will result in a null
return value.

In the simplest scenario, this function merely adds the specified integer value (integer-expression)
to the appropriate component of the timestamp, based on the interval. Adding a week translates to
adding seven days, and adding a quarter translates to adding three months. A negative integer value
results in a subtraction (going back in time).

An overflow of the specified component (such as more than 60 seconds, 24 hours, twelve months,
and so on) necessitates adding an appropriate amount to the next component. For example, when
adding to the day component of a timestamp, this function considers overflow and takes into account
the number of days in a particular month (including leap years when February has 29 days).

When adding to the month component of a timestamp, this function verifies that the resulting
timestamp has a sufficient number of days for the day component. For example, adding 1 month to
2000-05-31 does not result in 2000-06-31 because June does not have 31 days. This function
reduces the day component to the last day of the month, 2000-06-30 in this example.

A similar issue arises when adding to the year component of a timestamp having a month component
of February and a day component of 29 (that is, last day of February in a leap year). If the resulting
timestamp does not fall on a leap year, the function reduces the day component to 28.

These actions conform to the behavior of Microsoft’s SQL Server and Oracle’s native OCI interface.

The following queries are examples of the TimestampAdd function and its results:

The following query asks for the resulting timestamp when 3 days are added to 2000-02-27
14:30:00. Since February, 2000 is a leap year, the query returns a single timestamp of 2000-03-01
14:30:00.

Select TimestampAdd(SQL_TSI_DAY, 3,

TIMESTAMP‘2000-02-27 14:30:00’)

interval The specified interval. Valid values are:

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

integer_expression Any expression that evaluates to an integer.

timestamp_expression The timestamp used as the base in the calculation.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

396

From Employee where employeeid = 2;

The following query asks for the resulting timestamp when 7 months are added to 1999-07-31 0:0:0.
The query returns a single timestamp of 2000-02-29 00:00:00. Notice the reduction of day
component to 29 because of the shorter month of February.

Select TimestampAdd(SQL_TSI_MONTH, 7,

TIMESTAMP‘1999-07-31 00:00:00’)

From Employee where employeeid = 2;

The following query asks for the resulting timestamp when 25 minutes are added to 2000-07-31
23:35:00. The query returns a single timestamp of 2000-08-01 00:00:00. Notice the propagation of
overflow through the month component.

Select TimestampAdd(SQL_TSI_MINUTE, 25,

TIMESTAMP‘2000-07-31 23:35:00’)

From Employee where employeeid = 2;

CAUTION: The TIMESTAMPADD function is turned on by default for Microsoft SQL Server, ODBC, IBM
DB2, and Oracle databases. Because DB2 and Oracle semantics do not fully support this function,
the answers from this function might not match exactly with what the Oracle BI Server computes.

TimeStampDiff
The TimestampDiff function returns the total number of specified intervals between two timestamps.

Syntax:

TimestampDiff (interval, timestamp-expression1, timestamp-expression2)

where:

interval The specified interval. Valid values are:

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

timestamp_expression1 The timestamp used in the function.

timestamp_expression2 The first timestamp used in the function.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 397

A null timestamp-expression parameter passed to this function will result in a null return value.

This function first determines the timestamp component that corresponds to the specified interval
parameter. For example, SQL_TSI_DAY corresponds to the day component and SQL_TSI_MONTH
corresponds to the month component.

The function then looks at the higher order components of both timestamps to calculate the total
number of intervals for each timestamp. For example, if the specified interval corresponds to the
month component, the function calculates the total number of months for each timestamp by adding
the month component and twelve times the year component.

Finally, the function subtracts the first timestamp’s total number of intervals from the second
timestamp’s total number of intervals.

The TimestampDiff function rounds up to the next integer whenever fractional intervals represent a
crossing of an interval boundary. For example, the difference in years between 1999-12-31 and
2000-01-01 is one year because the fractional year represents a crossing from one year to the next
(that is, 1999 to 2000). By contrast, the difference between 1999-01-01 and 1999-12-31 is zero
years because the fractional interval falls entirely within a particular year (that is, 1999).

Microsoft’s SQL Server exhibits the same rounding behavior. IBM DB2 always rounds down. Oracle
does not implement a generalized timestamp difference function.

When calculating the difference in weeks, the function calculates the difference in days and divides
by seven before rounding. Additionally, the function takes into account how the Oracle BI
Administrator has configured the start of a new week in the NQSConfig.INI file using the parameter
FIRST_DAY_OF_THE_WEEK (defaults to Sunday).

For example, with Sunday as the start of the week, the difference in weeks between 2000-07-06 (a
Thursday) and 2000-07-10 (the following Monday) results in a value of one week. With Tuesday as
the start of the week, however, the function would return zero weeks since the fractional interval
falls entirely within a particular week.

When calculating the difference in quarters, the function calculates the difference in months and
divides by three before rounding.

IBM DB2 provides a generalized timestamp difference function (TIMESTAMPDIFF) but it simplifies the
calculation by always assuming a 365-day year, 52-week year, and 30-day month.

TimestampDiff Function and Results Example
The following query asks for a difference in days between timestamps 1998-07-31 23:35:00 and
2000-04-01 14:24:00. It returns a value of 610. Notice that the leap year in 2000 results in an
additional day.

Select TimestampDIFF(SQL_TSI_DAY, TIMESTAMP‘1998-07-31 23:35:00’, TIMESTAMP‘2000-04-01
14:24:00’) From Employee where employeeid = 2;

CAUTION: The TIMESTAMPDIFF function is turned on by default for Microsoft SQL Server, ODBC,
IBM DB2, and Oracle databases. Because DB2 and Oracle semantics do not fully support this
function, the answers from this function might not match exactly with what the Oracle BI Server
computes.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

398

Week_Of_Quarter
Returns a number (between 1 and 13) corresponding to the week of the quarter for the specified
date.

Syntax:

WEEK_OF_QUARTER (date_expression)

where:

Week_Of_Year
Returns a number (between 1 and 53) corresponding to the week of the year for the specified date.

Syntax:

WEEK_OF_YEAR (date_expression)

where:

Year
Returns the year for the specified date.

Syntax:

YEAR (date_expression)

where:

Conversion Functions
The conversion functions convert a value from one form to another.

Cast
Changes the data type of an expression or a null literal to another data type. For example, you can
cast a customer_name (a data type of Char or Varchar) or birthdate (a datetime literal). The
following are the supported data types to which the value can be changed:

date_expression Any expression that evaluates to a date.

date_expression Any expression that evaluates to a date.

date_expression Any expression that evaluates to a date.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 399

CHARACTER, VARCHAR, INTEGER, FLOAT, SMALLINT, DOUBLE PRECISION, DATE, TIME,
TIMESTAMP, BIT, BIT VARYING

NOTE: Depending on the source data type, some destination types are not supported. For example,
if the source data type is a BIT string, the destination data type has to be a character string or
another BIT string.

The following describes unique characteristics of the CHAR and VARCHAR data types:

■ Casting to a CHAR data type. You must use a size parameter. If you do not add a size
parameter, a default of 30 will be added. Syntax options appear in the following list:

■ It is recommended that you use the following syntax:

CAST (expression|NULL AS CHAR(n))

For example, CAST (companyname AS CHAR(35))

■ You can use the following syntax:

CAST (expression|NULL AS datatype)

For example, CAST (companyname AS CHAR)

NOTE: If you use this syntax, Oracle BI Server will explicitly convert and store as CAST
(expression|NULL AS CHAR(30))

■ Casting to a VARCHAR data type. The Administration Tool requires that you use a size
parameter. If you omit the size parameter, you cannot can save the change.

Choose
Takes an arbitrary number of parameters and returns the first item in the list that the user has
permission to see. However, the Oracle BI Administrator must model the column permissions in the
Administration Tool to enable this behavior. For a alternate method, refer to “IndexCol” on page 400.

Syntax:

CHOOSE (expression1, expression2, ..., expressionN)

For example, a single query can be written to return security-based revenue numbers for the entire
organization. The function could look like the following:

choose(L1-Revenue, L2-Revenue, L3-Revenue, L4-Revenue)

If the user issuing this function has access to the column L1-Revenue, then that column value would
be returned. If the user does not have visibility to the column L1-Revenue but does have visibility to
L2-Revenue, then L2-Revenue is returned.

IfNull
Tests if an expression evaluates to a null value, and if it does, assigns the specified value to the
expression.

Syntax:

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

400

IFNULL (expression, value)

IndexCol
IndexCol can use external information to return the appropriate column for the logged-in user to see.
The Oracle BI Server handles this function in the following ways:

■ ODBC Procedures. NQSGetLevelDrillability and NQSGenerateDrillDownQuery return the
context-specific drill-down information based on the expression translated from IndexCol. This
applies to both IndexCol expressions specified in the logical SQL query and IndexCol expressions
specified in a derived logical column.

■ Query Log and cache. The logical SQL with IndexCol function appears in the SQL string in the
query log. But the logical request will not show the IndexCol function because Oracle BI Server
will translate IndexCol to one of the expressions in its expression list in the logical request
generator.

NOTE: The query cache will use the resulting translated expression for cache hit detection.

■ Usage Tracking. Usage tracking will insert the logical SQL query string with the IndexCol function.

■ Security. As long as the user has the privileges to access the column(s) in the expression
translated from IndexCol, then the query will execute.

When the first argument to IndexCol is a session variable and if a default expression is expected
to be returned even if the init block fails, then the Oracle BI Administrator should set a default
value for the session variable. Otherwise, the query will fail because the session variable has no
value definition.

Syntax:

IndexCol(integer literal, expression_list)

Where:

expression_list equals expr1 [, expression_list]

The IndexCol function takes in an integer literal value as its first argument, followed by a variable
length expression list and translates to a single expression from the expression list. The literal value
is the 0-based index of the expression in the expression list to translate to. Consider the following
expression:

IndexCol(integer literal, expr1, expr2, …)

If the literal value is 0, the above expression is the same as expr1. If the literal value is 1, then the
value is the same as expr2, and so on.

NOTE: The primary use case for IndexCol is for the first argument to contain a session variable.
Specifying a constant literal would result in IndexCol always choosing the same expression.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 401

Example With Hierarchy Levels
Company ABC has a geography dimension with the hierarchy Country of State, City. The CEO can
access the Country level down to the City level, and the sales manager can access the State and City
levels, and the sales people can only access the City level. Table 41 on page 401 shows the backend
database for Company ABC.

The following steps illustrate one way to create a single query where each user sees the top level to
which they have access:

■ The Oracle BI Administrator creates a new session variable GEOOGRAPHY_LEVEL that is
populated by the initialization block: SELECT GEO_LEVEL from T where USER_NAME = ':USER'.

This assume that the Oracle BI Server instance has the same user names.

■ Using SELECT IndexCol(VALUEOF(NQ_SESSION.GEOGRAPHY_LEVEL), Country, State, City),
Revenue from Sales, the following occurs:

■ Bob logs in and IndexCol translates to the Country column because the GEOGRAPHY_LEVEL
session variable is 0. He will get the same result and be able to drill down on Country to State
as if he had used SELECT Country, Revenue from Sale.

■ Jackson logs in and IndexCol translates to the State column because the GEOGRAPHY_LEVEL
session variable for Jackson is 1. He will get the same result and be able to drill down on
State to City as if he had used SELECT State, Revenue from Sales.

■ Mike logs in and IndexCol translates to the City column because the GEOGRAPHY_LEVEL
session variable for Mike is 2. He will get the same result and won't be able to drill down on
City as if he had used SELECT City, Revenue from Sales.

VALUEOF()
Use the VALUEOF function in an expression builder or filter to reference the value of a repository
variable defined using the Server Administration Tool. You can also use the VALUEOF function when
you edit the SQL for a request from the Advanced tab in Oracle BI Answers.

Variables should be used as arguments of the VALUEOF function. Refer to static repository variables
by name. For example, to use the value of a static repository variables named prime_begin and
prime_end:

Table 41. IndexCol Example With Hierarchy Levels

USER_NAME TITLE
GEO
LEVEL CURRENCY CURRENCY_COL

Bob CEO 0 US Dollars 0

Harriet Sales Manager 1 Japanese Yen 1

Jackson Sales Manager 1 Japanese Yen 1

Mike Sales Person 2 Japanese Yen 1

Jim Sales Person 2 US Dollars 0

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

402

CASE WHEN "Hour" >= VALUEOF("prime_begin")AND "Hour" < VALUEOF("prime_end") THEN
'Prime Time' WHEN ... ELSE...END

You need to refer to a dynamic repository variable by its fully qualified name. If you are using a
dynamic repository variable, the names of the initialization block and the repository variable need to
be enclosed in double quotes (“), separated by a period, and contained within parentheses. For
example, to use the value of a dynamic repository variable named REGION contained in an
initialization block named Region Security, this is an example of the proper syntax to use:

SalesSubjectArea.Customer.Region =

VALUEOF("Region Security"."REGION")

The names of session variables need to be preceded by NQ_SESSION, separated by a period, and
contained within parentheses. If the variable name contains a space, enclose the name in double
quotes (“). For example, to use the value of a session variable named REGION, this is an example
of the proper syntax to use in an expression builder (filter):

"SalesSubjectArea"."Customer"."Region" = VALUEOF(NQ_SESSION.REGION)

NOTE: Although using initialization block names with session variables (just as with other repository
variables) may work, you should use NQ_SESSION. NQ_SESSION acts like a wild card that matches
all initialization block names. This allows the Oracle BI Administrator to change the structure of the
initialization blocks in a localized manner without impacting reports.

System Functions
The system functions return values relating to the session.

User
Returns the user ID for the Oracle BI repository to which you are logged in.

Syntax:

USER ()

Database
Returns the name of the Oracle BI Presentation Catalog to which you are logged in.

Syntax:

DATABASE ()

Expressing Literals
A literal is a nonnull value corresponding to a given data type. Literals are typically constant values;
that is, they are values that are taken literally as is, without changing them at all. A literal value has
to comply with the data type it represents.

Oracle BI Server SQL Reference ■ SQL Reference

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 403

SQL provides mechanisms for expressing literals in SQL statements. This section describes how to
express each type of literal in SQL.

Character Literals
A character literal represents a value of CHARACTER or VARCHAR data type. To express a character
literal, surround the character string with single quotes ('). The length of the literal is determined
by the number of characters between the single quotes.

Datetime Literals
The SQL 92 standard defines three kinds of typed datetime literals, in the following formats:

DATE 'yyyy-mm-dd'

TIME 'hh:mm:ss'

TIMESTAMP 'yyyy-mm-dd hh:mm:ss'

These formats are fixed and are not affected by the format specified in the NQSConfig.INI file for the
parameters DATE_DISPLAY_FORMAT, TIME_DISPLAY_FORMAT, or DATE_TIME_DISPLAY_FORMAT. To
express a typed datetime literal, use the keywords DATE, TIME, or TIMESTAMP followed by a
datetime string enclosed in single quote marks. Two digits are required for all nonyear components
even if the value is a single digit.

Numeric Literals
A numeric literal represents a value of a numeric data type (for example, INTEGER, DECIMAL, and
FLOAT). To express a numeric literal, type the number as part of a SQL statement.

Do not surround numeric literals with single quotes; doing so expresses the literal as a character
literal.

Integers
To express an integer constant as a literal, type the integer as part of a SQL statement (for example,
in the SELECT list). The integer can be preceded with either a plus sign (+) or minus sign (-) to
indicate the integer is a positive or negative number, respectively.

Decimal
To express a decimal literal, type a decimal number. The decimal can be preceded with either a plus
sign (+) or minus sign (-) to indicate the integer is a positive or negative number, respectively.

Floating Point
To express floating point numbers as literal constants, type a decimal literal followed by the letter
'E' (either uppercase or lowercase) and followed by the plus sign (+) or the minus sign (-) to indicate
a positive or negative exponent. No spaces are allowed between the integer, the letter 'E', and the
sign of the exponent.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server SQL Reference ■ SQL Reference

404

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 405

A Oracle BI Server Usage Tracking
Data Descriptions and Using the
Log File Method

The Oracle BI Server supports the collection of usage tracking data. When usage tracking is enabled,
the Oracle BI Server collects usage tracking data for each query and writes statistics to a usage
tracking log file or inserts them directly to a database table.

NOTE: It is strongly recommended that you use Direct Insert instead of writing to a log file.

For more information, refer to “Administering Usage Tracking” on page 219.

If you are upgrading from previous versions of Usage Tracking, see the usage tracking topics in
Oracle Business Intelligence Infrastructure Upgrade Guide.

Create Table Scripts for Usage Tracking
Data
The OracleBI\server\Schema folder contains the following Create Table scripts for Oracle, DB2, SQL
Server and Teradata:

■ SAACCT.Oracle.sql for Oracle

■ SAACCT.DB2.sql for DB2

■ SAACCT.MSSQL.sql for SQL Server

■ SAACCT.Teradata.sql

The sample scripts set the usage tracking table name to S_NQ_ACCT. For sites that have Oracle BI
Applications, this is the name used in the Oracle BI repository. Sites that build their own repositories
may change the name of the usage tracking table. The table name must match the name used in the
corresponding repository.

Loading Usage Tracking Tables with Log
Files
It is strongly recommended that you load the Usage Tracking table using the Direct-Insert option.
For those customers who have to load the Usage Tracking table from log files, Oracle BI provides the
following sample JavaScript files located in the OracleBI\server\Scripts\Common subdirectory:

■ sblAcctLoaderMSSQL for SQL Server

■ sblAcctLoaderOCL.js for Oracle

■ sblAcctLoaderADO.js for other database servers like DB2

These JavaScript files need to be modified for your environment. Comments at the beginning of these
files should be used as a guide.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server Usage Tracking Data Descriptions and Using the Log File Method ■
Description of the Usage Tracking Data

406

Before extracting usage tracking log file data, you need to create a table to store the data. For more
information, refer to “Create Table Scripts for Usage Tracking Data” on page 405.

NOTE: UNIX installations cannot use these JavaScript files because UNIX operating systems typically
do not support some of the advanced functionality used in these scripts. For UNIX installations,
please ask your DBA to write scripts that will load your usage tracking log files.

Description of the Usage Tracking Data
Table 42 on page 406 describes each column in the usage tracking table. Where appropriate, the data
type and length is also included.

Table 42. Usage Tracking Data

Column Description

CACHE_IND_FLG Default is N.

Y indicates a cache hit for the query, N indicates a cache miss.

COMPILE_TIME_SEC The time in seconds required to compile the query.

CUM_DB_TIME_SEC The total amount of time in seconds that the Oracle BI Server waited for
back-end physical databases on behalf of a logical query.

CUM_NUM_DB_ROW The total number of rows returned by the back-end databases.

END_DT The date the logical query was completed.

END_HOUR_MIN The hour and minute the logical query was completed.

END_TS The date and time the logical query finished. The start and end
timestamps also reflect any time the query spent waiting for resources
to become available.

ERROR_TEXT Default is Null. Varchar(250)

Error message from the back-end database. This column is only
applicable if the SUCCESS_FLG is set to a value other than 0 (zero).
Multiple messages will concatenate and will not be parsed by Oracle BI
Server.

NODE_ID Reserved for future use.

NUM_CACHE_HITS Default is Null. Number(10,0).

NOTE: For DB2, the data type and length is Decimal(10,0).

Indicates the number of times existing cache was returned.

NUM_CACHE_INSERTED Default is Null. Number(10,0).

NOTE: For DB2, the data type and length is Decimal(10,0).

Indicates the number of times query generated cache was returned.

Oracle BI Server Usage Tracking Data Descriptions and Using the Log File Method ■
Description of the Usage Tracking Data

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 407

NUM_DB_QUERY The number of queries submitted to back-end databases in order to
satisfy the logical query request. For successful queries (SuccessFlag =
0) this number will be 1 or greater.

PRESENTATION_NAME Default is Null. Varchar(128)

Name of the Presentation Catalog in Oracle BI Presentation Services.

QUERY_SRC_CD The source of the request, for example, Drill or Report.

QUERY_TEXT The SQL submitted for the query.

REPOSITORY_NAME The name of the repository the query accesses.

ROW_COUNT The number of rows returned to the query client.

RUNAS_USER_NAME Default is Null. Varchar(128)

User Id of impersonated user. If the request is not run as an
impersonated user, the value will be NULL.

SAW_DASHBOARD Path of the dashboard. If the query was not submitted through an
Interactive Dashboard, the value will be NULL.

SAW_DASHBOARD_PG Default is Null. Varchar(150)

Page name in the Interactive Dashboard. If the request is not a
dashboard request, the value will be NULL.

SAW_SRC_PATH The path name in the Oracle BI Presentation Catalog for the request.

START_DT The date the logical query was submitted.

START_HOUR_MIN The hour and minute the logical query was submitted.

START_TS The date and time the logical query was submitted.

SUBJECT_AREA_NAME The name of the business model being accessed.

SUCCESS_FLG The completion status of the query: 0 - The query completed
successfully with no errors. 1 - The query timed out. 2 - The query failed
because row limits were exceeded. 3 - The query failed due to some
other reason.

TOTAL_TIME_SEC The time in seconds that the Oracle BI Server spent working on the
query while the client waited for responses to its query requests.

USER_NAME The name of the user who submitted the query.

Table 42. Usage Tracking Data

Column Description

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server Usage Tracking Data Descriptions and Using the Log File Method ■
Description of the Usage Tracking Data

408

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 409

B Oracle BI Server Authentication
APIs

The Oracle BI Administrator requests that the developer create a dynamically loadable authentication
module according to the Oracle BI Authenticator API specification. This section contains the APIs that
the authenticator needs to implement. For more information about implementation, refer to “About
Authenticating Users Using Initialization Blocks” on page 293.

All of the APIs take SAChar, which is defined as follows:

typedef wchar_t SAChar;

Other related type definitions are defined as follows:

typedef unsigned int SAUInt32;

enum

{

SAAuthenticatorTrue,

SAAuthenticatorFalse,

SAAuthenticatorNotSupported

} SAReturnType;

A header file is provided for all of the types that will be used in the dynamically loadable
authenticator. All of the following APIs need to be thread-safe:

■ SAUInt32 SAAuthenticatorGetVersion()

Description: This returns the current version of the authenticator. The version number is
predefined as 1.

■ Arguments

None

■ Return value

The version number is predefined as 1.

■ void SAAuthenticateFreeString(SAChar *p)

This function is a utility function that frees up memory pointed by p.

■ Argument

■ Return value

None.

Input p A pointer to a SAChar string

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server Authentication APIs ■

410

■ void SAAuthenticateFreeStringArray(SAChar **pp)

This function is a utility function. It frees up memory as pointed by pp.

■ Argument

■ Return value

None

■ SAReturnType SAAuthenticatorInit(const SAChar * pConfigParams, SAChar **ppErrorMessage)

This function performs some basic initialization to the authentication module. It will be called
from Oracle BI Server only once.

■ Arguments

■ Return value

❏ If the initialization is successful, the return value is SAAuthenticatorTrue.

❏ If the initialization fails, the return value is SAAuthenticatorFalse and the error message
is stored in *ppErrorMessage.

NOTE: The authenticator framework is responsible for freeing up the memory allocated for
ppErrorMessage.

■ SAReturnType SAAuthenticatorLogin(const SAChar * pUserID, const SAChar *pPassword,
SAChar **ppErrorMessage)

This function authenticates a user.

■ Arguments

■ Return value

❏ If the authentication is successful, the return value is SAAuthenticatorTrue.

Input pp A pointer to a SAChar array

Input pConfigParams This points to the parameters to be passed to the
authenticator. The string is a concatenation of the
Configuration parameter and decrypted version of the
Encrypted parameter.

Output ppErrorMessage This contains the error message, if an error occurs. The
authenticator writer needs to allocate memory for the error
message.

Input pUserID User's login name

Input pPassword User's password

Output ppErrorMessage This contains the error message, if an error occurs. The
authenticator writer needs to allocate the memory for the
error message.

Oracle BI Server Authentication APIs ■

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 411

❏ If the authentication is unsuccessful, the return value is SAAuthenticatorFalse and the
error message is stored in **ppErrorMessage.

The authenticator framework is responsible for freeing up the memory allocated for
ppErrorMessage. This API cannot return SAAuthenticatorNotSupported.

■ bool SAAuthenticatorIsAValidUser(const SAChar * pUserID, SAChar **ppErrorMessage)

This function determines whether the specified user id is a valid.

■ Arguments

■ Return value

❏ If the user id is valid, the return value is SAAuthenticatorTrue.

❏ If the user id is invalid, the return value is SAAuthenticatorFalse and the error message
is stored in *ppErrorMessage.

The authenticator framework is responsible for freeing up the memory allocated for
ppErrorMessage.

NOTE: This API cannot return SAAuthenticatorNotSupported.

■ SAReturnType SAAuthenticatorGetUserProps(const SAChar * pUserID, const SAChar **ppKeys,
SAChar *** pppValues, SAChar **ppErrorMessage)

This function contains a list of property values. When the key is GROUP and the user belongs to
multiple groups, values need to be semicolon delimited.

■ Arguments

■ Return value

❏ If the function call is successful, the return value is SAAuthenticatorTrue. The Oracle BI
Server authenticator framework is responsible for freeing up the memory allocated for
pppValues.

Input pUserID User's login name

Output ppErrorMessage This contains the error message, if an error occurs. The
authenticator writer needs to allocate the memory for the
error message.

Input pUserID User's login name

Input ppKeys It points a null-terminated array of strings indicating which
properties' values to return.

Output pppValues It points to a null-terminated array of strings which has the
properties' values corresponding to ppKeys. The
authenticator writer needs to allocate the memory for the
array.

Output ppErrorMessage This contains the error message, if an error occurs. The
authenticator writer needs to allocate the memory for the
error message.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Oracle BI Server Authentication APIs ■

412

❏ If function call fails, the return value is SAAuthenticatorFalse and the error message is
stored in *ppErrorMessage. The Oracle BI Server authenticator framework is responsible
for freeing up the memory allocated for ppErrorMessage.

NOTE: This API cannot return SAAuthenticatorNotSupported.

■ SAReturnType SAAuthenticatorGetAllGroups(SAChar *** pppGroups, SAChar
**ppErrorMessage)

This function gets a list of all groups.

■ Arguments

■ Return value

❏ If the function call is successful, the return value is SAAuthenticatorTrue. The Oracle BI
Server authenticator framework is responsible for freeing up the memory allocated for
pppGroups.

❏ If function call fails, the return value is SAAuthenticatorFalse and the error message is
stored in *ppErrorMessage. The Oracle BI Server authenticator framework is responsible
for freeing up the memory allocated for ppErrorMessage.

NOTE: This API can return SAAuthenticatorNotSupported if it is not supported.

■ void SAAuthenticatorShutdown()

This function performs some cleanup up when Oracle BI Server shuts down. It will be called
from Oracle BI Server only once.

■ Arguments

None

■ Return value

None

Output pppGroups It points to a null-terminated array of strings that are the
groups to which the user belongs. The authenticator writer
needs to allocate the memory for the array.

Output ppErrorMessage This contains the error message, if an error occurs. The
authenticator writer needs to allocate the memory for the
error message.

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 413

Index

A
Abs math function, about 385
Acos math function, about 385
Administration Tool

See also Browse dialog box; logical business
models; repository mode

Cache Manager, changing column order 32
Cache Manager, selecting columns to

display 32
Edit menu, described 19
File menu, described 18
Help menu, described 20
icons and symbols (table) 21
join diagrams, setting default window

size 33
keyboard shortcuts (table) 21
main window, repository parts described 17
Manage menu, described and functions

(table) 19
Oracle BI Server, using to shut down 214
preferences, setting general preferences 29
repository components 50
repository objects, adding or editing 34
repository objects, setting permissions 33
repository objects, specifying appearance in

alphabetical order 32
row counts, about updating for tables and

columns 35
scrolling speed, setting 33
toolbar functions 20
Tools menu, described 19
View menu, described 19
Window menu, described 20

Administration Tool, using to shut down
server 214

aggregate expression builder dialog
See Expression Builder dialog boxes

aggregate fact table
creating and example, about 118

aggregate functions
about 366
aggregate queries, about 358
alternative syntax 362
Avg aggregate function, about 366
AvgDistinct, calculating average mean 367
baseline columns, computing

aggregates 358

BottomN, about ranking the lowest n
values 367

Count (*) (CountStar), about counting
number of rows 368

Count, about calculating the number of
rows 367

CountDistinct, about adding distinct process
to COUNT 367

display function, reset behavior 361
First, about selecting first returned

value 368
GroupByColumn, about specifying logical

columns 368
GroupByLevel, about setting up aggregate

navigation 369
LAST, about selecting last returned

value 369
Max, about calculating maximum value 369
measure columns, computing

aggregates 360
Median, about calculating the median value of

rows 370
Min, about calculating the minimum

value 370
NTILE, about determining the rank of a

value 370
Percentile, about calculating a percent

rank 371
PeriodAgo, about 371
PeriodToDate, about 371
Rank, about calculating the rank for each

value 372
StdDev, about returning standard

deviation 372
Sum, about calculating 373
SumDistinct, about calculating sum by adding

distinct values 373
TopN, about ranking the highest n

values 374
aggregate navigation, setting up

See also aggregate tables; aggregate table
fragments

aggregate levels, specifying for each
source 201

aggregate table definitions, about and
navigation 49

aggregate table fragments, about and

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Index ■ B

414

example 206
aggregated fact data, creating dimension

sources for each level 118
fragment content, specifying 201
WHERE clause filter, about and example 125

aggregate table fragments
about and example 206
about configuring a repository to use

fragments 206
aggregate table content, specifying 207
physical joins for virtual table,

constructing 208
physical layer table, defining with a Select

Statement 207
SQL virtual table content, creating 207

aggregate tables
aggregate table definitions, about and

navigation 49
performance, about using to improve 228

alias table
about 83

aliases
Alias tab, using 149

Allow direct database requests for all,
overriding (procedure) 331

Allow populate queries for all, overriding
(procedure) 331

analyzing the cache
See Cache Manager

ASCII string function, about 378
Asin math function, about 385
Ask DBMS button, using to change Feature

table entries 65
Atan math function, about 385
Atan2 math function, about 385
authentication cache, about disabling 322
authentication options

See also security; groups, working with
authentication, about 324
authentication, order of 330
database authentication, about using and

procedure 327
external table authentication, about 326
external table authentication, setting up 326
LDAP authentication, about 324
LDAP authentication, setting up 325
logging level, setting 326
Oracle BI Server internal authentication,

about 329
Oracle BI Server user IDs and passwords,

about and storage of 329
password, changing 329
USER session system variable, defining for

LDAP authentication 325

authenticator
about 293
custom authentication, about 293
definition 293

Avg aggregate function, about 366
AvgDistinct aggregate function, about 367

B
baseline column

behavior with aggregate functions 358
example 358

Between SQL logical operator, about 364
Bit_Length string function, about 379
BottomN aggregate function, about 367
Browse dialog box

about using 37
querying for an object 38
selecting an object in 38
synchronizing an object in the query results

list with the tree control list 38
business model

definition 41
Business Model and Mapping layer

about creating and maintaining 109
Business Model and Mapping layer, setting

up
logical table sources (mappings), setting

up 117
table sources content definitions,

creating 122
Business Model and Mapping layer, working

in
See also business models; logical table joins
business model, about working with 110
business model, creating (procedure) 110
logical columns, creating 113
logical table source 117
logical tables, about working with 111
measure, associating with a level in

dimension 116
measure, removing the association 117
physical to logical mapping, defining 119
repository, about setting up and working

in 52
business models

See also Business Model and Mapping layer,
working in; presentation catalogs

copy business model with presentation
catalog utility 110

diagram, about using to create joins 137
diagram, displaying 139
understanding 40

Index ■ C

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 415

C
cache

behavior in offline mode 254
behavior in online mode 254
disabling 233
enabling 233
purging 256
purging when switching between

repositories 254
cache authentication, about disabling 322
cache hits

description of 238
information about 238

cache information, viewing 310
Cache Manager

about and opening 255
column order, changing 32
columns, selecting columns to display 32
global cache information, displaying 256
option settings (table) 255
purging cache 256
view and save SQL call 255

cache persistence time setting 234
cache sharing, SAGetSharedRequestKey,

using 236
cache storage

cache data storage directories 233
cache entry, controlling max number of

rows 233
query caching, disabling query caching 233
query caching, enabling query caching 233
query caching, sharing with Presentation

Server 236
Cache, Manage menu option, described 19
cache, monitoring and managing

caching attributes, setting for physical tables
(procedure) 234

disabling caching for the system, about 234
event polling tables, configuring 235
physical tables, about caching and persistence

timing 234
Calculation Wizard, about 190
Calculation Wizard, setup 30
calendar date/time functions

Current_Date, about returning 390
Current_Time, about 391
Current_TimeStamp, about 391
Day_Of_Quarter, about 391
DayName, about 391
DayOfMonth, about 392
DayOfWeek, about 392
DayOfYear, about 392
Hour, about 392

Minute, about 393
Month, about 393
Month_Of_Quarter, about 393
MonthName, about 393
Now, about 393
Quarter_Of_Year, about 394
Second, about 394
TimestampAdd, about 394
TimeStampDiff, about 396
Week_Of_Quarter, about 398
Week_Of_Year, about 398
Year, about 398

Cast conversion function, about 398
catalog folders

Dynamic Name tab, sorting entries 98
Dynamic Name tab, specifying the session

variable to use 98
Dynamic Name tab, unassigning a session

variable 98
Ceiling math function, about 386
Char string function, about 379
Char_Length string function, about 379
character literals, about 403
check global consistency

options when saving 54
checking in changes

changes, making available and saving to
disk 26

Check In Changes dialog box, about using and
tasks 26

checkpoints
described 224

chronological keys
about 127

client tools, connectivity to 262
cluster information, viewing

cache information, viewing 310
Cache view, about and columns described

(table) 309
Request window (Session view), columns

described (table) 311
Session window (Session view), columns

described (table) 311
Session window, columns described

(table) 310
Status view, about and columns described

(table) 307
Cluster Manager

See also Cluster Server
cache information, viewing 310
Cache view, about and columns described

(table) 309
graphical user interface, described 307
managing clustered servers (procedure) 312

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Index ■ C

416

performance considerations 313
refreshing and setting interval,

(procedure) 307
scheduler, activating (procedure) 307
Session view, Request window (Session view)

columns described (table) 311
Session view, Session and Request window,

described 310
Session view, Session window columns

described (table) 311
Status view, about and columns described

(table) 307
stopped or offline, note about starting 307
using, about 307

Cluster Server
See also Cluster Manager
about 301
analytics ODBC data source name, about

configuring 304
cache information, viewing 310
Cluster Controller and Oracle BI Server,

starting from the Command
window 304

installing 303
managing clustered servers (procedure) 312
master server, about 302
NQClusterConfig.INI file, about copying to

Config directory 304
parameters, setting in the

NQClusterConfig.INI file 304
parameters, setting in the NQSConfig.INI

file 304
performance considerations 313
primary Cluster Controller, about 301
secondary Cluster Controller, about 302
slave server, about 302
startup process overview 305
stopped or offline, note about starting 307

Cluster, Manage menu option, described 19
column mapping

logical columns to physical columns,
mapping 119

removing column mapping 120
Command window, starting Cluster

Controller and Oracle BI Server 304
complex joins

about 100
logical complex joins, about and complex

joins 137
logical complex joins, creating 139

Concat string function, about 379
conditional expressions

CASE (if), about and syntax 365
CASE (Switch), about and syntax 364

connection pool
about 51
creating and configuring, about 65
creating or editing 67
dialog box, fields described 70
persist connection pool property, setting

up 79
persist connection pool, assigning

(procedure) 80
connectivity

client tools and data sources, connectivity
to 262

metadata, importing 263
ODBC data source names, configuring 259
query and reporting tools, about using 263

consistency check
repository, checking for consistency 28
setting up 27
single object, checking for consistency 29

Consistency Check Manager
about checking repository or objects for

consistency 26
about passing consistency check 26
consistency, checking repository for 28
consistency, checking single object for 29
inconsistencies, copying messages 28
inconsistencies, correcting 28
messages, definitions 27
setting up 27
setting up, about 27

consistency, checking repository for 28
consistency, checking single object for 29
conversion functions

Cast, about changing the data type to another
data type 398

VALUEOF(), about using the function in an
expression builder 401

copy business model with presentation
catalog utility, about and
procedure 110

Cos math function, about 386
Cot math function, about 386
Count (*)/CountStar aggregate function,

about 368
Count aggregate function, about 367
CountDistinct aggregate function,

about 367
create view function, about 104
cube metadata

alias-SQL file, executing 278
alias-SQL output file, about 266
deploying 278
import files, creating 264
input file, about 265

Index ■ D

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 417

materialized query tables (MQTs),
guidelines 280

objects, conversion rules, about 267
objects, mapping, about 267
output files, about 265
XML file, importing 279

Current_Date calendar date/time function,
about 390

Current_Time calendar date/time function,
about 391

Current_TimeStamp calendar date/time
function, about 391

D
Data Mining Adapter

See also XML Gateway; XML ODBC database
type; XML, using as a data source

configuring (procedure) 348
In-Process Data Mining Adapter API,

about 346
In-Process Data Mining Adapter API, sample

implementation 347
In-Process Data Mining Adapter API, using

ValueOf() expression 347
operation modes 345

data modeling
business model, understanding 40
objectives of 40

data sources
connectivity to 262

DATA_STORAGE_PATHS parameter, using to
specify query cache storage 233

database authentication
Oracle BI Delivers, about 328

database hints
See also databases
database objects that accept objects

(table) 107
hints, creating (procedure) 108
index hint, about 107
Leading hint, about 107
performance considerations 107
SQL comment markers, about entering 108
usage examples 107
using, about 106

database object
creating manually in the Physical layer 61
database hints, database objects that accept

hints (table) 107
ODBC type, about assigning if database type

undetermined 61
Database system function, about 402
database type, restoring default entries

for 64
Database types

multidimensional data source, automatically
assigning 61

relational data source, automatically
assigning 61

databases
See also database hints
authentication, about using and

procedure 327
configuring, tuning, and indexing,

importance 228
database hints, about using 106

datetime literals, about 403
Day_Of_Quarter calendar date/time

function, about 391
DayName calendar date/time function,

about 391
DayOfMonth calendar date/time function,

about 392
DayOfWeek calendar date/time function,

about 392
DayOfYear calendar date/time function,

about 392
DB2 265
DB2 Cube Views Generator

about 278
alias-SQL output file, about 266
cube metadata input file, about 265
errors, list of 266
import files, creating 264
metadata objects, conversion rules,

about 267
metadata objects, mapping, about 267
output files, about 265
output, about 265
running 264
SAMetaExport.exe, parameters of 264
troubleshooting 266

DCOM, changed client/server
communication method 260

decimal literal, about 403
default client/server communication

method, changed from DCOM to TCP/
IP 260

Degrees math function, about 386
deleting

alias 149
column mapping 120
initialization block 299
measure, removing the association 117
presentation tables 147
presentation tables column (procedure) 148
table as a logical table source 118

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Index ■ E

418

dimension keys
creating 126

dimension level counts
automatically creating 36
creating automatically 36
creating automatically (procedure) 37

dimension levels
creating 126

dimensional hierarchies
measures, about 41
sample hierarchy rollups, about and

diagram 44
star and snowflake models, about 44

dimensional hierarchy
grand total levels, about 127
grand total levels, example 132
grand total, example 132
level attributes, about 127
level- based measure calculations, setting

up 131
level keys, about 127
level-based measure calculations, about 131
level-based measure calculations,

example 131
levels, about creating 126
time dimension, about 127

dimensional level
general properties, defining 128
primary key, adding 129

dimensional models
about 46
sample hierarchy rollups, about and

diagram 44
single table model, about and creating 54
understanding 41

dimensional schemas
about and advantages 47
fact table, about 47
star schema 47

dimensions
about 125
about cubes from a multidimensional data

source 126
automatically creating 133
creating 126
creating (procedure) 126
creating and administering 126
creating automatically 133
creating automatically (procedure) 134
hierarchies, about 125
note, about including the key column in the

dimension 129
dimensions, defined and example 43
dimension-specific aggregation rules

columns, specifying for 135
setting up, about 134

display functions
example 361
reset behavior 361

DISPLAYNAME system session variable,
about 287

dragging and dropping
logical tables 112

driving table
about specifying 140
caution, about specifying when creating a

Business Model Diagram 140
caution, about specifying when creating a

logical complex join 139
caution, about specifying when creating a

logical foreign key 138
caution, specifying and query

optimization 140
controlling and tuning performance,

about 141
DSN connection

See Oracle BI Server
Dynamic Name tab

entries, sorting 98
session variable, specifying 98
session variable, unassigning 98

dynamic repository variables
See also initialization blocks
about 285
example 285
initializing 291

dynamically loadable authenticator
framework

about 293
definition 293

E
Edit menu, described 19
EMAIL system session variable, about 287
entity-relationship (E-R) models

about 46
queries that perform historical analysis,

performance of 46
Estimate Levels

logical level counts, populating automatically
(procedure) 37

event polling table
cache event processing, about 248
configuring 235
CREATE TABLE statements, sample event

polling table 251
making the polling table active 252

Index ■ F

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 419

Oracle BI Event Table utility, identifying and
using 184

overview 235
physical databases, setting up 249
populating, about 253
repository, making changes to 254
troubleshooting 253
using 254

Exp math function, about 387
Export logical keys option, about using with

parameterized SQL queries 146
Expression Builder dialog boxes

about using 190
accessing 191
Aggregate Content folder, about 193
Constraints folder, about 194
Dimensions folder, about 193
example (diagram) 192
expression, building (procedure) 196
Expressions folder, about 194
Functions folder, about 194
Logical Tables folder, about 193
navigating within the expression builder 196
Operators folder, about 193
Repository Variables folder, about 194
Session Variables folder, about 194
setting up example 195
toolbar (table) 192
Types folder, about 194

expression literals
character literals, about and expressing 402
datetime literals, about and formats 403
decimal, about and expressing 403
floating point, about and expressing 403
integers, about and expressing 403
numeric literals, about 403

Extensible Markup Language
See XML, using as a data source

external table authentication
about 326
setting up 326

Externalize Strings utility, about and
starting 184

F
Feature table entries, changing using Ask

DBMS 65
File menu, described 18
filter

See also query execution privileges
complex filter, about constructing 161
constructing a filter to view all databases

references in a business model 160

constructing a filter to view all Presentation
layer columns mapped to a logical
column 161

query results, constructing a filter for 160
First aggregate function, about 368
floating point literal, about 403
Floor math function, about 387
foreign keys

logical foreign key, creating 138
note, about importing from an Oracle

database 56
primary key, relationship with 100

fragmentation content
about 201
multicolumn content descriptions

example 202
parallel content descriptions example 203
single column range-based predicates

example 201
single column value-based predicates

example 201
unbalanced parallel content descriptions

example 205
fragmented data, about and example 99
FROM clause syntax, about 357
functions

See aggregate functions

G
grand total dimension hierarchy

example 132
grand total levels

about 127
example 132

granularity, defined 47
graphical user interface

 See Cache Manager
GROUP BY clause

query behavior with and without 361
syntax, about 358

GROUP system session variable, about 288
GroupByColumn aggregate function,

about 368
GroupByLevel aggregate function, about

specifying dimension levels 369
groups, working with

See also authentication options
about 317
groups, about creating and example 318
LDAP authentication, configuring 321
LDAP, about importing users and groups 321
member hierarchies, viewing in the Query

Repository dialog box 321

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Index ■ H

420

member hierarchies, viewing in the Security
Manager 321

predefined Administrators group, about 318
privileges example (diagram) 319
privileges, about granting and examples 318
repository, adding a new group to 320
repository, importing LDAP users and groups

into 323
user privileges and group privileges example

(diagram) 319

H
Help menu, described 20
HIDD_A_KEY 90
hierarchies

about 125
hierarchies, about dimensional

hierarchies 41
hierarchy

physical cube table, dimension name
(definition) 93

physical cube table, dimension unique name
(definition) 93

physical cube table, time dimension
(definition) 93

physical cube table, type of hierarchy
(definition) 93

hierarchy, defined and example 43
Hour calendar date/time function,

about 392
HTML tables

example 344
XML Gateway, accessing by 344

I
IBM Cube Views

about 278
about using with Oracle BI 277
alias-SQL file, executing 278
deploying cube metadata 278
materialized query tables (MQTs),

guidelines 280
XML file, importing 279

ibot, definition 180
icons, described (table) 21
IfNull conversion function, about 399
importing

metadata 263
metadata, about connecting using an ODBC

connection 57
users and groups using LDAP 321
XML data using ODBC 349

In SQL logical operator, about 364
IndexCol

conversion function, about 400
IndexCol conversion function, about 199
indexing, about index hint instructions 107
INI file

NQClusterConfig.INI file, setting parameters
for Cluster Server 304

NQSConfig.INI file, tuning parameters 227
NSQConfig.INI file, adding an entry 152

initialization blocks
associating with repository variables,

about 298
associating with session variables,

about 298
associating with variables, about 298
blocks, removing 299
caution, about opening Initialization Block

dialog box in online mode 291
data source and connection pool, selecting

(procedure) 296
dynamic repository variables, initializing 291
initialization block execution order,

setting 299
name and schedule, assigning

(procedure) 294
note, about number of columns different from

number retrieved 298
Oracle BI Server, re-initializing 298
session variables, initializing 291
using with variables, about 290
variables, removing association 299
variables, removing execution

precedence 300
variables, reordering 299

In-Process Data Mining Adapter API
about 346
column values, specifying 347
configuring (procedure) 348
sample implementation 347
ValueOf() expressions, using 347

Insert string function, about 380
integers literals, about 403
Is Null SQL logical operator, about 364

J
Jobs, Manage menu option, described 19
join diagrams, setting default window

size 33
Joins Manager

joins, about using to create 137
Joins, Manage menu option, described 19

Index ■ K

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 421

K
key symbol, described 22
keyboard shortcuts (table) 21

L
Last aggregate function, about 369
LDAP

See Lightweight Directory Access Protocol
(LDAP)

Leading hint, about 107
Left string function, about 380
Length string function, about 381
level attributes

about 127
level keys

about 127
level-based measure calculations

about 131
example 131
setting up 131

levels
general properties, defining 128
hierarchy, about 127
primary key for, adding 129

levels, working with
grand total levels, example 132
level-based measure calculations, setting

up 131
Lightweight Directory Access Protocol

(LDAP)
authentication, about 324
authentication, setting up 325
LDAP authentication, configuring 321
logging level, setting 326
passwords and storage, about 329
repository, importing LDAP users and groups

into 323
USER session system variable, defining for

LDAP authentication 325
users and groups, about using to import 321

Like SQL logical operator, about 364
literals, expressing (list of) 402
Load all objects option, about selecting 26
Locate string function, about 381
LocateN string function, about 381
log files

 See also query log, administering; usage
tracking, administering

NQServer.log and NQCluster.log, about
opening and examining 305

See log files
Log math function, about 387
log viewer utility

log records, interpreting 218
running (procedure) 217
using, about 217

Log10 math function, about 387
logging levels

individual users, enabling 215
levels described (table) 216
log viewer utility, interpreting the log

records 218
log viewer utility, using 217
override with session variable 215
user’s logging levels

disabling 217

setting 217
logical business models

bridge tables, identifying 43
dimensional models, understanding 41
single table model, about and creating 54

Logical Column dialog box
measure, associating with a level in a

dimension 116
measure, removing the association 117

logical columns
creating or editing, about 114
creating, about 113
creating, procedure 114
logical column, unmapping from its

source 120
logical complex join, creating 139
logical foreign key, creating 138
logical object, displaying all that map to

physical tables 141
Logical Table dialog box

foreign key, editing 113
key, specifying 112
new logical table source, adding 118

logical table joins
See also Business Model and Mapping layer,

working in
about 136
Business Model Diagram, displaying 139
creating, about 137
driving table, about specifying 140
driving table, about specifying and query

optimization 140
driving table, controlling and tuning

performance 141
logical complex join, creating 139
logical foreign key, creating 138
logical object, displaying physical tables that

map to 141
logical table sources

removing a table as a source 118

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Index ■ M

422

Replace Wizard, using to replace tables or
columns 183

setting up, about 117
Where clause filter, using to constrain physical

tables 125
logical table sources, editing 112
logical tables

creating by dragging and dropping 112
creating explicitly 112
creating, ways to 111
foreign key, editing 113
key, specifying 112
new logical table source, adding 118
working with, about 111

LOGLEVEL system session variable,
about 288

Lower string function, about 382

M
main window, repository parts described 17
Manage menu, described and functions

(table) 19
Marketing, Manage menu option,

described 19
MASTER_SERVER parameter, about 302
materialized views

Summary Advisor, about using with 273
using, about 273

math functions, list of 384
Mavg running aggregate function,

about 374
Max aggregate function, about 369
measure

dimension, associating with 116
dimension, removing the association 117

measure column
behavior with aggregate functions 360
default aggregation rule, specifying a 115
example 360

measure column, specifying a default
aggregation rule 115

Median aggregate function, about 370
member counts

updating (procedure) 94
viewing (procedure) 94

member hierarchies
Query Repository dialog box, using to

view 321
Security Manager, viewing in 321

metadata, deployment
join constraints, defining 275
materialized views, creating 277
process, about 274

query workload, creating 275
SQL, executing 274
trace file, analyzing (procedure) 275
trace file, generating (procedure) 275

metadata, exchanging
information, finding 263
with databases 263

metadata, importing
about 263
connections, about 57

Min aggregate function, about 370
Minute calendar date/time function,

about 393
Mod math function, about 388
modes

See offline mode; online mode
Month calendar date/time function,

about 393
Month_Of_Quarter calendar date/time

function, about 393
MonthName calendar date/time function,

about 393
More tab

joins diagrams, using to set default window
size 33

scrolling speed, using to set 33
MSUM running aggregate function,

about 375
multi-database joins, about 99
multidimensional

dimensions for a cube from a
multidimensional data source 126

multidimensional data source
Ask DBMS, about availability of 65
physical layer, creating 58
physical schema, importing 59

multiuser development
creating, about 169
history, about viewing and deleting 178
history, guidelines for deleting 179
history, viewing (procedure) 178
local changes, merging 175
making changes, about 172
metadata, changing and testing 174
pointer to shared directory, about 172
pointer to shared directory, setting up

(procedure) 173
projects, checking in 175
projects, checking out 173
projects, checking out (procedure) 173
projects, creating 170
projects, creating (procedure) 170, 171
setting up environment, about 170
shared network directory 171

Index ■ N

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 423

N
Now calendar date/time function,

about 393
NQClusterConfig.INI file, setting parameters

for Cluster Server 304
NQCMD

access, disallowing 63
nQCmd.exe

cache seeding, running for 63
nQLogViewer utility

log records, interpreting 218
query log file, using to view 217

NQSConfig.INI
centrally managing values 152

NQSConfig.INI file
entry, adding an 152
tuning parameters, about 227

NQServer.log, and NQCluster.log, about
opening and examining 305

NTile aggregate function, about 370
numeric literals, about 403

O
Object Type option, using to create virtual

physical tables 81
Octet_Length string function, about 382
ODBC

calls from client applications, list of 261
client tools and data sources, about providing

connectivity to 262
connection, about physical metadata

imports 57
data source names, configuring 259
metadata, importing 263
query and reporting tools, about connecting

with 263
offline mode

cache invalidation, implications for 254
repository, opening in 25

one-to-many relationships, about primary
key-foreign key relationship
(diagram) 48

online help, accessing 24, 50
online mode

cache invalidation, implications for 254
changes, making available and saving to

disk 26
Check In Changes dialog box, about using and

tasks 26
repository, opening in 25

opaque view
about deploying 103
best practice, Oracle BI repository 52

definition 52
deleting, guidelines for 106
deploying 103
deploying (procedure) 105
redeploying, guidelines for 106
undeploying 105
undeploying (procedure) 105

Options dialog box, using to set general
preferences 29

Oracle BI Event Tables utility, about and
starting 184

Oracle BI Server
See also Cluster Server
automatic startup, configuring for 210
connecting to, about 214
fails to start 211
nonlocal files, about accessing 336
note, about changing repository in online

mode and attempting to stop
server 26

password, changing 329
repository variable initialization blocks, re-

initializing 298
starting 209
UNIX, running the shutdown script 213
UNIX, running the startup script 210
user ID, changing 211
user IDs and passwords, about and storage

of 329
Windows, configuring for automatic

startup 210
Windows, shutting down from a Windows

command prompt 213
Windows, shutting down from Services 212
Windows, starting from Services 209

Oracle BI Server Administrator
account, about and password 317
group, about 318

Oracle BI Server XML Gateway
See XML Gateway

Oracle database
note, about importing foreign keys from 56

Oracle Database Metadata Generator
cube metadata input file, about 265
errors, list of 266
import files, creating 264
metadata objects, conversion rules for 267
metadata objects, conversion rules,

about 267
metadata objects, mapping, about 267
metadata objects, validation rules for 267
output files, about 265
output, about 265
running 264

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Index ■ P

424

SAMetaExport.exe, executing 264
SAMetaExport.exe, parameters of 264
troubleshooting 266

Oracle database, stored procedures,
using 82

Oracle Dimension Exporter
about 274

Oracle dimensions
about 274

ORDER BY clause, about 358

P
parallel content descriptions, examples and

discussion 203
password

changing 329
Oracle BI Server administration account 317

Percentile aggregate function, about 371
performance

database hints, about resulting in better query
performance 107

server configuration and tuning 227
permissions

See also privileges
adding or editing 34
limiting queries by filtering (procedure) 332
limiting queries by maximum run time

(procedure) 332
limiting queries by number of rows received

(procedure) 331, 333
limiting queries by objects (procedure) 331
limiting queries by time periods

(procedure) 332
repository objects, about setting for 33

physical column, creating or editing 87
physical database model, understanding

aggregate navigation, about setting up 49
primary-key-foreign key relationships, about

and diagram 48
physical databases

analyzing 49
dimensional schemas, about and

advantages 47
dimensional schemas, about star schema 47
entity-relationship (E-R) schemas, about 46
entity-relationship (E-R) schemas,

performance for queries for historical
analysis 46

identifying contents 49
types of 46
understanding 46

Physical Diagram
command, about using 141

displaying 101
editor, about using to specify multi-database

joins 99
foreign key join or complex join,

defining 102
physical joins, about defining 101

physical joins
See also Physical layer, working in
about 99
complex joins, about 100
fragmented data, about and example 99
Joins Manager, using to define 101
multi-database joins, about 99
note, about imported key and foreign key

joins 99
primary key and foreign key relationships,

about 100
tip, about avoiding unnecessary joins 100

physical joins, defining in the Physical
Diagram 101

Physical layer
creating and maintaining, about 55
queries, specifying types of sent to a

database 64
Physical layer catalogs, creating 97
Physical layer schemas, creating 97
Physical layer, creating manually 61
Physical layer, described 51
Physical layer, working in

See also physical joins
column mapping, removing 120
connection pool, creating or editing 67
database hints, about 106
database hints, database objects that accept

hints (table) 107
database type, restoring default entries

for 64
Feature table entries, changing using Ask

DBMS 65
logical columns, mapping to physical

columns 119
physical joins, defining with the Joins

Manager 101
query type, locating 64
schema folders, working with 97
XML data source, setting properties for 76

physical schemas
importing from ODBC (procedure) 57
importing, about 56

physical tables
creating or editing 85
overview 81
Physical Table dialog box, completing

Columns and Keys tabs 88

Index ■ Q

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 425

virtual physical tables, creating using the
Object Type option 81

XML data source, setting properties for 96
Pi math function, about 388
populate privilege

overriding database property 331
PORTALPATH system session variable,

about 288
Position string function, about 382
Power math function, about 388
preferences

Cache Manager, changing column order 32
Cache Manager, selecting columns to

display 32
general preferences, setting 29
join diagrams, setting default window

size 33
repository objects, specifying appearance in

alphabetical order 32
scrolling speed, setting 33

presentation catalogs
Alias tab, using 149
caution, about moving columns into

presentation catalog folders 146
copy business model with presentation

catalog 110
creating (procedure) 145
Presentation Catalog dialog box,

described 145
presentation tables, deleting 147
table, reordering in the Presentation

layer 147
tables, sorting in alphanumeric order 147
working in, about 145

presentation columns
Alias tab, using 149
creating (procedure) 148
editing (procedure) 148
Presentation Column dialog box, described

(table) 148
working with, about 147

Presentation Layer
nested folders in Oracle BI Answers 147

Presentation layer
about creating 143
about creating and maintaining 143

Presentation Layer dialog box, using the
Alias tab 149

Presentation layer, creating
See also Presentation layer, working in
business models, copying to the Presentation

layer 143
columns, about removing unneeded or

unwanted 144

logical keys, about exporting in the
Presentation Catalog 144

presentation columns, renaming 144
Presentation layer repository layer, about 53

Presentation layer, setting up
presentation column, creating 148
presentation column, deleting 148
presentation column, editing 148

Presentation layer, working in
See also Presentation layer, creating
Alias tab, using 149
Presentation Catalog dialog box,

described 145
presentation catalogs, about working in 145
Presentation Column dialog box, described

(table) 148
presentation column, reordering 149
presentation columns, working with 147
Presentation layer, about and example 144
Presentation Tables dialog box, described

(table) 146
presentation tables, creating 146
presentation tables, deleting 147

presentation table, reordering 147
presentation tables

Alias tab, using 149
column, deleting 148
creating (procedure) 146
presentation column, reordering 149
Presentation Tables dialog box, described

(table) 146
primary key

foreign key, relationship with 100
specifying 90

primary key-foreign key relationship
about and diagram 48

PRIMARY_CONTROLLER parameter,
about 302

privileges
query privileges, about controlling and

activities 330
Project, Manage menu option, described 19

Q
Quarter_Of_Year calendar date/time

function, about 394
queries

aggregate functions, rules for 361
database, specifying types sent to 64
Leading hint, about using to build the join

order 107
query caching, enabling to improve

performance 228

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Index ■ R

426

query privileges, controlling and
activities 330

query type, locating 64
query caching

advantages of 230
cache event processing with an event polling

table 248
cache hits, description of 238
cache hits, information about 238
cache management strategy, choosing 234
Cache Manager, about and opening 255
Cache Manager, options settings (table) 255
cache storage, configuring 233
cache strategies 238
cost of caching, about 231
disabling for system 234
disabling query caching 233
enabling query caching 233
global cache information, displaying 256
improve performance, enabling to 228
invalidation after offline repository

changes 254
note, about query references with different

persistence times 86
parameters to control query caching, location

of 230
Presentation Server, sharing with 236
purge cache options 256
purging cache 256
refresh interval, setting for XML data

sources 257
suite of queries, about running 240
user IDs, initializing cache entries for 231

query environment, administering
See also server configuration and tuning;

usage tracking, administering
Oracle BI Server, shutting down in UNIX 213
Oracle BI Server, shutting down in

Windows 212
Oracle BI Server, starting in UNIX 210
Oracle BI Server, starting in Windows 209
query log, administering 214
server, about connecting to 214
usage tracking, administering 219

query execution privileges 330
query log, administering

about 214
file size, controlling 215
log viewer utility, interpreting the log

records 218
log viewer utility, using 217
logging levels

described (table) 216

setting a user’s 217
logging system, configuring 215
user’s logging levels

disabling 217
query log, setting logging levels 215
query repository

new object, creating (procedure) 159
procedure 157

Query Repository dialog box
about using 156
member hierarchies, using to view 321
new query, requesting 158
parent of an object 159
searching for object based on name 158
Show Qualified Name 159
type of object 159

Query Repository Filter dialog box
about and accessing 159
filter, constructing 160
filter, constructing to view all database

references in a business model 160
query specification (SELECT statement),

about 355
query tool, about connecting with 263

R
Radians math function, about 388
Rand math function, about 388
RandFromSeed math function, about 389
Rank aggregate function, about 372
RCOUNT running aggregate function,

about 376
refresh interval, setting for XML data

sources 257
Rename Wizard, about and starting 185
Rename Wizard, using to rename

Presentation layer and Business
Model and Mapping layer tables and
columns 185

Repeat string function, about 382
Replace string function, about 383
Replace Wizard, about and starting 183
reporting tool, about connecting with 263
repositories

comparing repositories 161
comparing, turning off Compare Mode 163
importing from 154
LDAP authentication, configuring 321
LDAP, importing users and groups into 323
making changes to and implications for

cache 254
merging repositories, about and process 163
merging version of Oracle BI repository

Index ■ S

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 427

(procedure) 166
new group, adding to 320
new user, adding to 316
synchronizing and updating (procedure) 155

repository
Oracle BI Delivers, setting up 180

Repository Documentation
utility, about 186
utility, running (procedure) 187

repository file
options when saving 54
save options 54

Repository Import Wizard, about and
using 155

repository mode
changes, making available and saving to

disk 26
Check In Changes dialog box, about using and

tasks 26
Load all objects option, about selecting 26
note, editing while repository is being

loaded 25
offline mode, opening repository in 25
online mode, opening repository in 25

repository objects
alphabetical order, specifying in 32
permissions, adding or editing 34
permissions, setting 33
permissions, sorting columns 34

repository variables
See also individual repository entries and

initialization blocks
about 283
cache purging considerations 285
dynamic repository variables, about 285
dynamic repository variables, example 285
static repository variables, about 284
static repository variables, example 284
static repository variables, using in an

expression 284
static repository variables, using in expression

builder 284
uses for static repository variables 284

repository variables, creating
(procedure) 285

repository, managing metadata
See also individual repository entries and

Query Repository dialog box
complex filter, about constructing 161
note, about constructing more than one

filter 161
query results, constructing a filter for 159

repository, setting up
Administration Tools, repository components

in 50
connection pool, about creating and

configuring 65
data source, about defining 153
new repository, creating 54
NQSConfig.INI file, adding entry 152
online help, accessing 24, 50
Oracle BI Server, about starting 153
physical schemas, about importing 56
saving 54, 110, 143
saving, checking consistency, and correcting

errors 152
testing and refining, about 154
user community, about publishing to 154

REQUESTKEY system session variable,
about 288

Right string function, about 383
RMAX running aggregate function,

about 377
RMIN running aggregate function,

about 378
rollover, described 224
Round math function, about 389
row count

updating for tables and columns 35
row counts

displaying 36
updating 36

row counts in physical layer, displaying 36
Row-Wise Initialization

about and example 291
variable with a List of Values, initializing 292

RSUM running aggregate function,
about 375

running aggregate functions
about 374
Mavg, about calculating a moving

average 374
MSUM, about calculating a moving sum 375
RCOUNT, about counting number of input

records 376
RMAX, about showing the maximum values of

a set of records 377
RMIN, about showing the minimum values

based on a set of records 378
RSUM, about calculating a running sum 375

S
SA system subject area

about 180
sample scripts, locating and example 405
schema folders

schema object, creating 97

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Index ■ S

428

schemas
See also schema folders
physical schemas, about importing 56
physical schemas, importing from ODBC

(procedure) 57
scrolling speed, setting 33
Second calendar date/time function,

about 394
SECONDARY_CONTROLLER parameter,

about 302
security

See also authentication options; privileges
group privileges, about granting and

examples 318
groups, about creating and example 318
groups, about working with 317
LDAP authentication, configuring 321
LDAP, about importing users and groups 321
member hierarchies, viewing in the Query

Repository dialog box 321
member hierarchies, viewing in the Security

Manager 321
Oracle BI Server administration account

password 317
Oracle BI Server Administrator account,

about 317
predefined administrators group 318
privileges example (diagram) 319
repository, adding a new group to 320
repository, adding new user to 316
repository, importing LDAP users and groups

into 323
user accounts, about working with 315
user privileges and group privileges example

(diagram) 319
Security Manager

See also security
member hierarchies, using to view 321

Security, Manage menu option,
described 19

SELECT list syntax
about and syntax 357
FROM clause syntax, about 357
GROUP BY clause syntax, about 358
ORDER BY clause syntax, about 358
WHERE clause syntax, about 357

SELECT statement
about and basic syntax 355
conditional expressions, list of 364
queries and aggregate functions, rules

for 358
query specification 355
Select list syntax 357
SQL logical operators 363

usage notes 356
WHERE clause 357

server configuration and tuning
See also query environment, administering
aggregate tables, about using 228
databases, importance of configuring, tuning,

and indexing 228
NQSConfig.INI parameters. about using for

tuning 227
query caching, about enabling to improve

performance 228
server session management

See server configuration and tuning; Session
Manager

Session Manager
See also query environment, administering
active query, killing 227
disconnecting a user from a session 226
Session Window fields (table) 226
session, viewing 226
update speed, controlling 225
using, about 225

session variables
See also initialization blocks
about 283
initializing, about 291
nonsystem session variables, about

using 289
row-wise initialization, about and

example 291
security sensitive 290
system session variables, about using 287
system session variables, table of 287
using for authenticating users 286
virtual physical databases 290

session variables, creating (procedure) 289
Sessions, Manage menu option,

described 19
shutting down Oracle BI Server

UNIX, shutting down server 213
Windows, shutting down from a command

prompt 213
Windows, shutting down from Services 212

Sign math function, about 389
Sin math function, about 389
single table model, about and creating 54
SKIN system session variable, about 289
snowflake models, about dimensional

hierarchies 44
Sort Objects tab, using to specify repository

objects in alphabetical order 32
sorting columns

alphabetical 114
chronological 114

Index ■ S

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 429

lexicographical, defining 114
SQL 92 functions

datetime literals, about 403
NTILE function, about 371

SQL FROM clause syntax, about 357
SQL functions

aggregate functions, about 366
calendar date/time functions, about 390
conversion functions, about 398
datetime literals, about 403
expression literals, about 402
NTILE function, about 371
running aggregate functions 374
string functions, about 378
system functions, about 402

SQL logical operators, list of 363
SQL queries, about selecting the Export

logical keys option 144
SQL statement

database hints, about 106
database hints, creating 108
database objects that accept hints

(table) 107
SQL syntax and semantics

conditional expressions, list of 364
queries and aggregate functions, rules

for 358
Select list syntax 357
Select statement, about and basic

syntax 355
Select usage notes 356
SQL logical operators 363

SQL WHERE clause syntax, about 357
Sqrt math function, about 390
star schema

about 47
dimensional hierarchies, about 44

static repository variables
See also initialization blocks
about 284
example 284
expression builders, using in 284
expression, using in 284

StdDev aggregate function, about 372
STORAGE_DIRECTORY parameter

user tracking log files, selecting an output
location for 222

string functions
about 378
Abs, about calculating the absolute

value 384
Acos, calculates the arc cosine of a numerical

expression 385
ASCII, about converter single character string

to 378
Asin, about calculating the arc sine of a

numerical expression 385
Atan, about calculating the arc tangent of a

numerical expression 385
Atan2, about calculating the arc tangent of y/

x 385
Bit_Length, about returning length in

bits 379
Ceiling, about rounding a noninteger

numerical expression 386
Char, about converting a numerical

value 379
Char_Length, about returning length in

number of characters 379
Concat, about forms of function 379
Cos, about calculating the cosine of a

numerical expression 386
Cot, about calculating the cotangent of a

numerical expression 386
Degrees, about converting an expression from

radians to degrees 386
Exp, about sending the value e to the power

specified 387
Floor, about rounding a noninteger numerical

expression 387
Insert, about inserting a character string 380
Left, about returning characters from the left

of a string 380
Length, about returning the length in number

of characters 381
Locate, about returning the numerical position

of the character_expression1 381
LocateN, about returning the numerical

position of the
character_expression1 381

Log, about calculating the natural logarithm of
an expression 387

Log110, about calculating the base 10
logarithm of an expression 387

Lower, about converting a character string to
lower case 382

Mod, about dividing the first numerical
expression 388

Octel_Length. about returning the bits in base
8 units 382

Pi, about returning the value of pi 388
Position, about returning the numerical

position of the
character_expression1 382

Power, about taking the first numerical
expression to the power
specified 388

Radians, about converting from degrees to

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Index ■ T

430

radians 388
Rand, about returning a pseudo-random

number 388
RandFromSeed, about returning a pseudo-

random number from a seed
value 389

Repeat, returns a specified expression n
times 382

Replace, about replacing specified
characters 383

Right, about returning a specified number of
characters from the right of the
string 383

Round, about rounding a numerical
expression to n digits 389

Sign, about returning a value of 1, -1, or
0 389

Sin, calculated the sine of a numerical
expression 389

Sqrt, about calculating the square root of the
numerical expression argument 390

Substring, about creating a new string
starting from a fixed number 383

Tan, about calculating the tangent of a
numerical expression 390

TrimBoth, about stripping specified leading
and trailing characters 383

TrimLeading, about stripping specified leading
characters 384

TrimTrailing, about stripping specified trailing
characters 384

Truncate, about truncating a decimal
number 390

Upper, about converting a character string to
uppercase 384

Substring string function, about 383
Sum aggregate function, about 373
SumDistinct aggregate function, about 373
symbols, described (table) 21
system

session variables, about and LDAP
authentication 325

SQL functions, about 402
variables, about and external table

authentication 326
System subject area

about 180

T
table sources

content definitions, creating 122
tables

event polling table, identifying 184

one-to-many relationship, about and
diagram 48

tables, sorting in alphanumeric order 147
Tan math function, about 390
TCP/IP, client/server communication

method changed 260
text strings, using the Externalize Strings

utility to translate 184
time dimension

chronological key, selecting 130
chronological key, sorting 130

time series functions
about 197
AGO 197
Expression Builder, using in 197
TODATE 197

TimestampAdd calendar date/time function,
about 394

TimeStampDiff calendar date/time function,
about 396

toolbar
docking 20
on/off, toggling 20

Tools menu, described 19
TopN aggregate function, about 374
TrimBoth string function, about 383
TrimLeading string function, about 384
TrimTrailing string function, about 384
troubleshooting

event polling table 253
Oracle BI Server fails to start 211

Truncate math function, about 390
Turn Off Compare Mode, enabling 163

U
UNIX

shutting down the Oracle BI Server 213
starting the Oracle BI Server 210

Update Physical Layer wizard, about and
starting 185

Upper string function, about 384
usage tracking log files

sample scripts, locating and example 405
usage tracking data (table) 406

usage tracking, administering
See also Session Manager; usage tracking log

files
about and example 219
file naming conventions, about and

example 222
note, about error accessing usage tracking

output file 222
output file, about and schema described

Index ■ V

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2 431

(table) 222
output file, column behavior in 224
output file, format of 222
output location, selecting 222
performance considerations, about and

checkpoints described 224
user community, about publishing to 154
user ID, changing for the Oracle BI

Server 211
user interface components

Edit menu, described 19
File menu, described 18
Help menu, described 20
icons and symbols (table) 21
keyboard shortcuts (table) 21
main window, described 17
Manage menu, described 19
toolbar functions, described 20
Tools menu, described 19
View menu, described 19
Window menu, described 20

User system function, about 402
USER system session variable, about 289
USER_LOG_FILE_SIZE parameter, using to

control query log file size 215
users

See also privileges
Administration account, about and

password 317
LDAP, using to import users 321
new user, adding to repository 316
user accounts, about 315

utilities
copy business model with presentation

catalog utility, about and
procedure 110

Externalize Strings utility, about and
starting 184

log viewer utility, interpreting the log
records 218

log viewer utility, using 217
Oracle BI Event Tables utility, about and

starting 184

V
VALUEOF() conversion function, about 401
ValueOf() expressions, using 347
Variables, Manage menu option,

described 19
variables, using

dynamic repository variables, about and
example 285

nonsystem session variables, about

using 289
session variables, about 286
static repository variables, about and

example 284
static repository variables, using variables in

expression builders 284
system session variables, about and LDAP

authentication 325
system session variables, about using 287
system session variables, table of 287
system variables, about and external table

authentication 326
Variable Manager, about and classes of

variable 283
View menu, described 19
virtual physical tables, creating using the

Object Type option 81

W
WEBGROUPS system session variable,

about 289
Week_Of_Quarter calendar date/time

function, about 398
Week_Of_Year calendar date/time function,

about 398
WHERE clause

filter, about and example 125
syntax, about 357

Window menu, described 20
Windows

NT and 2000 Administrator account, about
and Oracle BI Server Administrator
account 317

NT and 2000, user ID to access nonlocal
files 336

ODBC data source names, configuring 259
Oracle BI Server, configuring for automatic

startup 210
shutting down Oracle BI Server from a

command prompt 213
shutting down Oracle BI Server from

Services 212
starting Oracle BI Server from Services 209

wizards
Calculation wizard, about 190
Calculation wizard, setup 30
Rename Wizard, about and starting 185
Replace Wizard, about and starting 183
Repository Import Wizard, about and

using 155
Update Physical Layer Wizard, about and

starting 185
workspace, Administration Tool

Oracle Business Intelligence Server Administration Guide Version 10.1.3.2

Index ■ X

432

Presentation Catalog dialog box, about using
Presentation Table tab 145

Presentation Tables dialog box, about using
Columns tab 146

X
XML 266
XML data source

Ask DBMS, about availability of 65
connection pool properties, setting 76
physical table, setting properties for 96
properties, about setting 76
query output format settings, specifying 77
refresh interval, setting 257

XML Gateway
See also Data Mining Adapter; XML ODBC

database type; XML Gateway
about using 336
example 338
example, more complex 340
HTML tables, accessing 344
HTML tables, example 344
XML data, importing using the XML

Gateway 337
XML examples 350

XML ODBC database type
See also Data Mining Adapter; XML ODBC

database type; XML Gateway
example 349
importing XML data 349
XML data sources, about accessing 349
XML examples 350

XML, using as a data source
See also Data Mining Adapter; XML ODBC

database type
about 335
example, more complex 340
HTML tables, accessing 344
HTML tables, example 344
importing data using the XML Gateway 337
XML examples 350
XML Gateway example 338
XML Gateway, about using 336
XML URL, locating 335
XPath expressions, support of 336
XSL transformation files (XSLT), support

of 336
XMLA

multidimensional data source, importing 59
physical layer, creating 58

Y
Year calendar date/time function,

about 398

	Contents
	1 What’s New in This Release
	What’s New in Oracle Business Intelligence Server Administration Guide, Version 10.1.3.2
	Other Documentation Changes

	2 Oracle BI Administration Tool Basics
	Administration Tool User Interface Components
	Main Window in the Administration Tool
	Menus in the Administration Tool
	File
	Edit
	View
	Manage
	Tools
	Window
	Help

	Toolbar in the Administration Tool
	Keyboard Shortcuts in the Administration Tool
	Icons and Symbols in the Administration Tool
	Online Help in the Administration Tool

	Features and Options for Oracle’s Siebel Marketing Application
	Online and Offline Repository Modes
	Opening a Repository in Offline Mode
	Opening a Repository in Online Mode
	Checking In Changes

	Checking the Consistency of a Repository or a Business Model
	Setting Up Consistency Check Manager
	Checking the Consistency of a Repository

	Setting Preferences
	Using the Options Dialog Box—General Tab
	Using the Options Dialog Box—Repository Tab
	Using the Options Dialog Box—Sort Objects Tab
	Using the Options Dialog Box—Cache Manager Tab
	Using the Options Dialog Box—Multiuser Tab
	Using the Options Dialog Box—More Tab

	Setting Permissions for Repository Objects
	Sorting Columns in the Permissions Dialog box
	Examples of Sorting Columns in the Permissions Dialog Box

	Editing, Deleting, and Reordering Objects in the Repository
	Displaying and Updating Row Counts for Tables and Columns
	Populating Logical Level Counts Automatically
	Using the Browse Dialog Box

	3 Planning and Creating an Oracle BI Repository
	Roadmap for Planning and Setting Up an Oracle BI Repository
	Process of Oracle BI Repository Planning and Design
	About Repository Planning and Design
	Planning Your Business Model
	Analyzing Your Business Model
	Identifying the Content of The Business Model
	Identifying Fact Tables
	Identifying Dimension Tables
	Identifying Bridge Tables
	Identifying Dimension Hierarchies
	About Star and Snowflake Models

	Identifying the Database Content For The Business Model
	About Types of Physical Schemas
	About Primary Key-Foreign Key Relationships
	Identifying the Database Table Structure To Import

	Guidelines For Designing a Repository
	General Tips For Working on the Repository
	Design Tips For the Physical Layer (Schema)
	Design Tips for the Business Model and Mapping Layer
	Design Tips For the Presentation Layer

	Creating a New Oracle BI Repository File
	After Creating a Repository File

	4 Creating and Administering the Physical Layer in an Oracle BI Repository
	Process of Creating the Physical Layer from Relational Data Sources
	Importing a Physical Schema from Relational Data Sources

	Process of Creating the Physical Layer from Multidimensional Data Sources
	Importing a Physical Schema from Multidimensional Data Sources

	Setting Up Database Objects
	About Database Types in the Physical Layer
	Creating a Database Object Manually in the Physical Layer
	Recommendations for Allowing Direct Database Requests by Default

	Specifying SQL Features Supported by a Database
	Changing Feature Table Entries Using Ask DBMS

	Setting Up Connection Pools
	Creating or Changing Connection Pools
	About Connection Pools for Initialization Blocks
	Setting Up General Properties For Connection Pools

	Setting Up Connection Pool Properties for Multidimensional Data Sources
	Setting Up Additional Connection Pool Properties for an XML Data Source
	Setting Up Write-Back Properties
	Setting Up the Persist Connection Pool Property
	Example of Using Buffer Size and Transaction Boundary

	About Physical Tables
	Table Types for Physical Tables
	Using Stored Procedures with an Oracle Database

	Creating and Setting Up Physical Tables
	About Physical Alias Tables
	About Creating and Setting Up Physical Tables for Multidimensional Data Sources
	Creating and Administering General Properties for Physical Tables
	Creating or Editing Physical Tables
	Deleting a Physical Table

	Viewing Data in Physical Tables or Columns
	Creating and Administering Columns and Keys in a Physical Table
	About Measures in a Multidimensional Data Source
	About Externally Aggregated Measures

	Creating and Editing a Column in a Physical Table
	About Creating and Editing a Column With an Associated Column in an Alias Table

	Specifying a Primary Key for a Physical Table
	Deleting a Physical Column For All Data Sources

	Setting Up Hierarchies in the Physical Layer for a Multidimensional Data Source
	Adding a Hierarchy to a Physical Cube Table
	Verifying Hierarchy Levels
	Updating Member Counts
	Viewing Members in Physical Cube Tables
	Adding or Removing a Cube Column in an Existing Hierarchy
	Removing a Hierarchy from a Physical Cube Table
	Associating a Physical Cube Column with a Hierarchy Level
	Example of Associating a Physical Cube Column with a Hierarchy

	Setting Physical Table Properties for an XML Data Source

	Creating Physical Layer Folders
	Creating Physical Layer Catalogs and Schemas
	Creating Catalogs
	Creating Schemas

	Using a Variable to Specify the Name of a Catalog or Schema
	Setting Up Display Folders in the Physical Layer

	About Physical Joins
	Multi�Database Joins
	Fragmented Data
	Primary Key and Foreign Key Relationships
	Complex Joins

	Defining Physical Foreign Keys and Joins
	Defining Physical Foreign Keys or Complex Joins with the Joins Manager
	Defining Physical Joins in the Physical Diagram

	Deploying Opaque Views
	About Deploying Opaque Views
	Deploying Opaque View Objects
	The Create View Select Statement

	Undeploying a Deployed View
	Guidelines for Deleting an Opaque View or Deployed View
	Guidelines for Redeploying Opaque Views

	Using Database Hints
	Usage Examples
	Index Hint
	Leading Hint

	Performance Considerations
	Creating Hints

	5 Creating and Administering the Business Model and Mapping�Layer in an Oracle BI Repository
	About Creating the Business Model and Mapping Layer
	Creating the Business Model Layer for a Multidimensional Data Source

	Creating Business Model Objects
	Duplicate Business Model and Presentation Catalog
	Creating and Administering Logical Tables
	Creating Logical Tables
	Adding or Editing Logical Table Sources

	Specifying a Primary Key in a Logical Table
	Reviewing Foreign Keys for a Logical Table

	Creating and Administering Logical Columns
	Creating and Moving a Logical Column
	About Sorting on a Logical Column

	Setting Default Levels of Aggregation for Measure Columns
	Associating an Attribute with a Logical Level in Dimension Tables

	Creating and Administering Logical Table Sources (Mappings)
	Creating or Removing a Logical Table Source
	Example of Creating Sources for Each Level of Aggregated Fact Data

	Defining Physical to Logical Table Source Mappings
	Unmapping a Logical Column from Its Source

	Defining Content of Logical Table Sources
	Verify Joins Exist From Dimension Tables to Fact Table
	About WHERE Clause Filters

	About Dimensions and Hierarchical Levels
	Process of Creating and Administering Dimensions
	Creating Dimensions
	Creating Dimension Levels and Keys
	Creating a Logical Level in a Dimension
	Associating a Logical Column and Its Table with a Dimension Level
	Identifying the Primary Key for a Dimension Level
	Selecting and Sorting Chronological Keys in a Time Dimension
	Adding a Dimension Level to the Preferred Drill Path
	Level�Based Measure Calculations Example
	Grand Total Dimension Hierarchy Example
	Creating Dimensions Automatically

	Setting Up Dimension-Specific Aggregate Rules for Logical Columns

	Setting Up Display Folders in the Business Model and Mapping Layer
	Defining Logical Joins
	Defining Logical Joins with the Joins Manager
	Creating a Logical Foreign Key
	Creating a Logical Complex Join

	Defining Logical Joins with the Business Model Diagram
	Specifying a Driving Table
	Identifying Physical Tables That Map to Logical Objects

	6 Creating and Maintaining the Presentation Layer in an Oracle BI Repository
	Creating the Presentation Layer in the Repository
	Copy Business Models to Publish to Users
	Remove Any Unneeded or Unwanted Columns
	Rename Presentation Columns to User-Friendly Names
	Export Logical Keys in the Presentation Catalog

	Presentation Layer Objects
	Working with Presentation Catalogs
	Working with Presentation Tables
	Working with Presentation Columns
	Using the Alias Tab of Presentation Layer Dialog Boxes

	Generating an XML File from a Presentation Table

	7 Completing Setup and Managing Oracle BI Repository Files
	Process of Completing the Setup for a Repository File
	Saving the Repository and Checking Consistency
	Add an Entry in the NQSConfig.INI File
	Create the Data Source
	Start the Oracle BI Server
	Test and Refine the Repository
	Tips For Performance Tuning

	Publish to User Community

	Importing From Another Repository
	Querying and Managing Repository Metadata
	Constructing a Filter for Query Results
	Comparing Repositories
	Turn Off Compare Mode

	Merging Oracle BI Repositories
	Examples of the Results of Some Decision Choices

	Exporting Oracle BI Metadata to IBM DB2 Cube Views
	About Extracting Metadata Subsets Into Projects
	About the Project Dialog Box
	About Converting Older Projects During Repository Upgrade
	About Using Older Repositories After Upgrading

	Setting up and Using the Oracle BI Multiuser Development Environment
	Setting Up a Multiuser Development Environment (Administrator)
	Creating Projects for a Multiuser Development Environment
	Set Up the Shared Network Directory
	Copy the Master Repository to the Shared Network Directory

	Making Changes in a Multiuser Development Environment (Developers)
	Setting Up a Pointer to the Multiuser Development Directory
	Checking Out Repository Projects
	About Changing and Testing Metadata

	Checking In Multiuser Development Repository Projects
	About Checking-In Projects
	About Merging Multiuser Development Metadata
	Tracking Changes to the Master Repository
	Differences Between the Multiuser Merge and Standard Repository Merge Processes
	About Closing a Repository Before Publishing It to the Network

	Viewing and Deleting History for Multiuser Development
	Deleting Multiuser Development History

	Setting Up the Repository to Work with Delivers
	About the SA System Subject Area
	Setting Up the SA System Subject Area
	Guidelines for Implementing the SA System Subject Area
	Setting Up the SA System Subject Area for a Stand-Alone Implementation

	8 Oracle BI Administration Tool Utilities and Expression Builder
	Utilities and Wizards
	Replace Column or Table Wizard
	Oracle BI Event Tables
	Externalize Strings
	Rename Wizard
	Update Physical Layer Wizard
	Generating Documentation of Repository Mappings
	Generating and Deploying a Metadata Dictionary
	Generating a Metadata Dictionary

	Removing Unused Physical Objects
	Aggregate Persistence Wizard
	Guidelines for Using the Aggregate Persistence Wizard

	Calculation Wizard

	Expression Builder
	About the Expression Builder Dialog Boxes
	Expression Builder Toolbar
	Folders in the Selection Pane
	Aggregate Content
	Dimensions
	Logical Tables
	Operators
	Expressions
	Functions
	Constants
	Types
	Repository Variables
	Session Variables

	Example of Setting Up an Expression
	Navigating Within the Expression Builder
	Building an Expression
	About Time Series Conversion Functions
	Ago
	ToDate

	About the IndexCol Conversion Function

	9 Setting Up Fragmentation Content in an Oracle BI Repository for Aggregate Navigation
	About Aggregate Navigation
	Specify Fragmentation Content
	Single Column, Value-Based Predicates
	Single Column, Range-Based Predicates
	Multicolumn Content Descriptions
	Parallel Content Descriptions
	Examples and Discussion

	Unbalanced Parallel Content Descriptions
	Aggregate Table Fragments
	Specify the Aggregate Table Content
	Define a Physical Layer Table with a Select Statement to Complete the Domain
	Specify the SQL Virtual Table Content
	Physical Joins for Virtual Table

	10 Administering the Oracle BI Server Query Environment
	Starting the Oracle BI Server
	Starting the Server from Windows Services
	Configuring the Server for Automatic Startup in Windows
	Running the Server Startup Script in UNIX
	Changing the User ID in Which the Oracle BI Server Runs
	If the Server Fails to Start

	Shutting Down the Oracle BI Server
	Shutting Down the Server in Windows Services
	Shutting Down the Server from a Command Prompt in Windows
	Running the Server Shutdown Script in UNIX
	Shutting Down the Oracle BI Server Using the Administration Tool

	Getting Users to Connect to the Server
	Administering the Query Log
	Configuring the Logging System
	Controlling the Size of the Log File
	Setting a Logging Level
	Using the Log Viewer
	Interpreting the Log Records
	SQL Request
	General Query Information
	Database Query
	Query Status

	Administering Usage Tracking
	Setting Up Direct Insertion to Collect Information for Usage Tracking
	Enabling Direct Insertion
	Database Table Configuration
	Connection Pool Configuration
	Buffer Size Configuration Parameter
	Buffer Time Limit Configuration Parameter
	Number of Insert Threads Configuration Parameter
	Max Inserts Per Transactions Configuration Parameter

	Setting Up a Log File to Collect Information for Usage Tracking
	Selecting an Output Location
	File Naming Conventions
	Output File Format
	Performance Considerations

	Server Session Management
	Using the Session Manager

	Server Configuration and Tuning
	NQSConfig.INI File Parameters
	Aggregate Tables
	Query Caching
	Tune and Index Underlying Databases

	11 Query Caching in the Oracle BI Server
	About the Oracle BI Server Query Cache
	Advantages of Caching
	Initializing Cache Entries for User Ids
	Costs of Caching
	Disk Space
	Administrative Tasks
	Keeping the Cache Up To Date
	CPU Usage and Disk I/O

	Query Cache Architecture
	Configuring Query Caching
	Configuring the Cache Storage
	Cache Data Storage Directories
	Maximum Cache Entry Values
	Aggregates

	Enabling Query Caching
	Disabling Query Caching

	Monitoring and Managing the Cache
	Choosing a Cache Management Strategy
	Disable Caching for the System
	Caching and Cache Persistence Timing for Specified Physical Tables
	Configure Oracle BI Server Event Polling Tables

	Purging and Maintaining Cache Using ODBC Procedures
	About Sharing Presentation Server Cache
	About Result Records
	Storing and Purging Cache for SAP/BW Data Sources
	Purging Cache for SAP/BW Data Sources

	Strategies for Using the Cache
	Cache Hits
	Running a Suite of Queries to Populate the Cache

	Creating Aggregates for Oracle BI Server Queries
	Identifying Query Candidates for Aggregation
	About Writing the Create Aggregates Specification
	Constraints Imposed During the Create Process
	Valid Measures
	Valid Levels
	Valid Aggregate Specification

	Guidelines for Writing the Create Aggregates Specification
	About Adding Surrogate Keys to Dimension Aggregate Tables
	Surrogate Key Input for Create/Prepare Aggregates
	Syntax for Create/Prepare Aggregates
	Surrogate Key Output From Create/Prepare Aggregates

	Generating the SQL Script File
	About Setting the Logging Level
	Executing the SQL Script File to Create and Delete Aggregates
	Post Creation Activities
	About Database Index Creation
	About Error Handling

	Cache Event Processing with an Event Polling Table
	Setting Up Event Polling Tables on the Physical Databases
	Polling Table Structure
	Sample Event Polling Table CREATE TABLE Statements

	Making the Event Polling Table Active
	Populating the Oracle BI Server Event Polling Table
	Troubleshooting Problems with an Event Polling Table

	Making Changes to a Repository
	Online Mode
	Offline Mode
	Switching Between Repositories

	Using the Cache Manager
	Displaying Global Cache Information
	Purging Cache

	About the Refresh Interval for XML Data Sources

	12 Connectivity and Third-Party Tools in Oracle BI Server
	Configuring Oracle BI ODBC Data Source Names (DSNs)
	ODBC Conformance Level
	Third-Party Tools and Relational Data Source Adapters
	Importing Metadata
	Using Query and Reporting Tools

	Exchanging Metadata with Databases
	Finding Information on Metadata Exchange
	Generating the Import File
	Running the Generator
	About the Metadata Input File
	About the Output Files
	Troubleshooting Errors from the Generator
	Metadata Conversion Rules and Error Messages
	Conversion Rules for Oracle Database
	Conversion Rules for IBM DB2 Database

	Using Materialized Views in the Oracle Database with Oracle BI
	About Using Oracle Database Summary Advisor with Materialized Views
	Process of Deploying Metadata for Oracle
	Executing the SQL File for Oracle
	Defining Constraints for the Existence of Joins
	Creating the Query Workload
	Creating Materialized Views

	Using IBM DB2 Cube Views with Oracle BI
	About Using IBM DB2 Cube Views with Oracle BI
	Process of Deploying Cube Metadata
	Executing the Alias-SQL File for IBM Cube Views
	Importing the XML File
	Guidelines for Importing the XML File Using the IBM OLAP Center
	Guidelines for Changing Cube Metadata After Importing the XML File

	Guidelines for Creating Materialized Query Tables (MQTs)

	13 Using Variables in the Oracle BI Repository
	Using the Variable Manager
	Understanding and Creating Repository Variables
	Static Repository Variables
	Example
	Using Variables in Expression Builders

	Dynamic Repository Variables
	Example

	Creating Repository Variables

	Understanding and Creating Session Variables
	Using System Session Variables
	Using Nonsystem Session Variables
	Creating Session Variables

	About Using Initialization Blocks With Variables
	Initializing Dynamic Repository Variables
	Initializing Session Variables
	Row-Wise Initialization
	Initializing a Variable with a List of Values

	About Authenticating Users Using Initialization Blocks

	Process of Creating Initialization Blocks
	Assigning a Name and Schedule to Initialization Blocks
	Selecting and Testing the Data Source and Connection Pool
	Example of an SQL Statement When Site Uses Delivers
	Example of an SQL Statement When Site Does Not Use Delivers
	Testing the Initialization Block

	Associating Variables With Initialization Blocks
	Repository Variables
	Session Variables

	Establishing Execution Precedence

	14 Clustering Oracle BI Servers
	About the Cluster Server
	Components of the Cluster Server
	About Cluster Controllers
	About Servers Used in Clustering
	About Schedulers Used in Clustering
	About the Cluster Manager

	Implementing the Cluster Server
	Installing the Cluster Server Component
	Setting Parameters in the NQSConfig.INI File
	Setting Parameters in the NQClusterConfig.INI File
	Configuring the Oracle BI ODBC Data Source Name
	Copying the NQClusterConfig.INI File
	Starting Cluster Controllers and Oracle BI Servers

	Chronology of a Cluster Operation
	Using the Cluster Manager
	Viewing and Managing Cluster Information
	Status Information
	Cache Information
	Session Information
	Server Information

	Performance Considerations

	15 Security in Oracle BI
	Oracle BI Security Manager
	Working with Users
	Adding a New User to a Repository
	About the Oracle BI Administrator Account

	Working with Groups
	Predefined Administrators Group
	Defined Groups
	Group Inheritance
	Example 1
	Example 2

	Adding a New Group
	Viewing Member Hierarchies

	Importing Users and Groups from LDAP
	Setting Up an LDAP Server
	Importing Users from LDAP
	Synchronizing Users and Groups with LDAP

	Authentication Options
	Setting Up LDAP Authentication
	Defining a USER Session Variable for LDAP Authentication
	Setting the Logging Level

	Setting Up External Table Authentication
	Setting Up Database Authentication
	About Oracle BI Delivers and Database Authentication
	Maintaining Oracle BI Server User Authentication
	Changing Oracle BI Server User Passwords

	Order of Authentication

	Managing Query Execution Privileges
	Assigning Populate Privilege to a User or Group

	16 Using XML as a Data Source for the Oracle BI Server
	Locating the XML URL
	Using the Oracle BI Server XML Gateway
	Oracle BI Server XML Gateway Example
	Accessing HTML Tables
	Using the Data Mining Adapter
	Using a DLL File to call the Data Mining Adapter API
	Sample Implementation
	Using ValueOf() Expressions
	Specifying Column Values (Executable File)
	Configuring the Data Mining Adapter

	Using XML�ODBC
	XML ODBC Example
	XML Examples
	83.xml
	8_sch.xml
	84.xml
	Island2.htm

	17 Oracle BI Server SQL Reference
	SQL Syntax and Semantics
	SELECT Query Specification Syntax
	SELECT Usage Notes
	SELECT List Syntax
	FROM Clause Syntax
	WHERE Clause Syntax
	GROUP BY Clause Syntax
	ORDER BY Clause Syntax

	Rules for Queries with Aggregate Functions
	Computing Aggregates of Baseline Columns
	Computing Aggregates of Measure Columns
	Display Function Reset Behavior
	Alternative Syntax
	Using FILTER to Compute a Conditional Aggregate
	Syntax
	Example of the FILTER Function
	Error handling

	SQL Logical Operators
	Conditional Expressions
	CASE (Switch)
	CASE
	WHEN
	THEN
	ELSE
	END

	CASE (If)
	CASE
	WHEN
	THEN
	ELSE
	END

	SQL Reference
	Aggregate Functions
	Avg
	AvgDistinct
	BottomN
	Count
	CountDistinct
	Count (*) (CountStar)
	First
	GroupByColumn
	GroupByLevel
	Last
	Max
	Median
	Min
	NTile
	Percentile
	PeriodAgo
	PeriodToDate
	Rank
	StdDev
	Sum
	SumDistinct
	TopN

	Running Aggregate Functions
	Mavg
	MSUM
	RSUM
	RCOUNT
	RMAX
	RMIN

	String Functions
	ASCII
	Bit_Length
	Char
	Char_Length
	Concat
	Insert
	Left
	Length
	Locate
	LocateN
	Lower
	Octet_Length
	Position
	Repeat
	Replace
	Right
	Substring
	TrimBoth
	TrimLeading
	TrimTrailing
	Upper

	Math Functions
	Abs
	Acos
	Asin
	Atan
	Atan2
	Ceiling
	Cos
	Cot
	Degrees
	Exp
	Floor
	Log
	Log10
	Mod
	Pi
	Power
	Radians
	Rand
	RandFromSeed
	Round
	Sign
	Sin
	Sqrt
	Tan
	Truncate

	Calendar Date/Time Functions
	Current_Date
	Current_Time
	Current_TimeStamp
	Day_Of_Quarter
	DayName
	DayOfMonth
	DayOfWeek
	DayOfYear
	Hour
	Minute
	Month
	Month_Of_Quarter
	MonthName
	Now
	Quarter_Of_Year
	Second
	TimestampAdd
	TimeStampDiff
	TimestampDiff Function and Results Example

	Week_Of_Quarter
	Week_Of_Year
	Year

	Conversion Functions
	Cast
	Choose
	IfNull
	IndexCol
	Example With Hierarchy Levels

	VALUEOF()

	System Functions
	User
	Database

	Expressing Literals
	Character Literals
	Datetime Literals
	Numeric Literals
	Integers
	Decimal
	Floating Point

	A Oracle BI Server Usage Tracking Data Descriptions and Using the Log File Method
	Create Table Scripts for Usage Tracking Data
	Loading Usage Tracking Tables with Log Files
	Description of the Usage Tracking Data

	B Oracle BI Server Authentication APIs
	Index

