

Reporting Developer
Guide
Version: 5.1

Pub Date: 02/09/2006

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404

Copyright © 2006 Siebel Systems, Inc.

All rights reserved.

Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in
any way, including but not limited to photocopy, photographic, magnetic, or other record,
without the prior agreement and written permission of Siebel Systems, Inc.

Siebel, the Siebel logo, UAN, Universal Application Network, Siebel CRM OnDemand, and other
Siebel names referenced herein are trademarks of Siebel Systems, Inc., and may be
registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered
trademarks of their respective owners.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are
optional and for which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software implementation
may differ from descriptions in this guide. To find out more about the modules your
organization has purchased, see your corporate purchasing agent or your Siebel sales
representative.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation,
delivered subject to the Department of Defense Federal Acquisition Regulation Supplement,
are “commercial computer software” as set forth in DFARS 227.7202, Commercial Computer
Software and Commercial Computer Software Documentation, and as such, any use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation shall be
subject to the restrictions contained in the applicable Siebel license agreement. All other use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions
contained in subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted
Rights (June 1987), or FAR 52.227-14, Rights in Data—General, including Alternate III (June
1987), as applicable. Contractor/licensor is Siebel Systems, Inc., 2207 Bridgepointe Parkway,
San Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in this
documentation and in Siebel Online Help to be Confidential
Information. Your access to and use of this Confidential
Information are subject to the terms and conditions of: (1)
the applicable Siebel Systems software license agreement,
which has been executed and with which you agree to
comply; and (2) the proprietary and restricted rights notices
included in this documentation.

Reporting Developer Guide Version: 5.1 3

Contents

1 Reporting Engine Overview

About the Reporting Engine 7
Reporting Engine Features 7
Reporting engine architecture 8
Reporting Engine Object Model 10

2 Anatomy of Reporting Engine

Reporting Package 13
reportList.properties 17
Reporting XML 17

<reports> 17

<localizer> 18

<resourceBundle> 18

<prompts> 18

<templates> 18

<template> 19

<report> 19

<dataSource> 20

<query> 21

<inputBindings> 21

<inputBinding> 21

<prompts> 23

<block> 25

<group> 25

<select> 26

Contents

<checkBox> 28

<radio> 28

<text> 29

<image> 29

<label> 29

<reset> 30

<submit> 30

<columns> 30

<column> 31

<transformer> 32

<columns> 33

<column> 33

<link> 34

<templates> 35

<template> 35

<groups> 35

<group> 36

<column> 36

<calculator> 37

<operationGroup> 37

<operation> 38

<charts> 39

<chart> 39

<datasets> 40

<dataset> 40

<column> 40

<xlabel> 41

<column> 41

Reporting Developer Guide Version: 5.1 4

Reporting Engine Overview

<downloadList> 41

<download> 41

<printList> 42

<print> 42

<customList> 43

<custom> 43
Reporting templates 44
Pre-defined context variables 45
Integration with Struts/Tiles 48

Struts Action Class: 49

Tiles definition 49

Report.jsp 49
Reporting API 51

3 Core Reporting Features

Sorting 53
Paging 54
Dynamic SQL 54
Internationalization/Localization 55

Resource bundle definition 56

Localization of Text 57

Localization of Data From a Data Source 57

Localization of Charts 58

Locale 58

Dynamic Localization 58
Object Data Source 59
DSV Data Source 59
Drill down and Breadcrumb link: 60

4 Customizing the Reporting Engine

Write Your Own Report XML 63

Reporting Developer Guide Version: 5.1 5

Contents

Customize the Report Template 63
Write Your Own Action Classes and Re portForm. 64
Packaging 64
Hiding Report Columns and Manipulating IReport 65
Development Tips 65

Reloading report xml and templates without re-starting the server 65

5 Questions and Answers

Reporting Developer Guide Version: 5.1 6

Reporting Developer Guide Version: 5.1 7

 1 Reporting Engine Overview

About the Reporting Engine
The reporting engine is used for much more than just reporting. It is Siebel's Self-Service
next-generation, data-mart based, powerful presentation engine. The reporting engine can
present any data you can retrieve from any data sources (for example, RDBMS or CSV files).

The following list shows some possible use cases supported by the reporting engine:

 Viewing statements, invoices, etc.

 Analytic reports, such as the 10 most expensive calls

 Cost center reports (hierarchy report), such as cost summary by cost centers

 System reports like the most frequent visited users or logging analysis report

 Address book

 Email content composition.

 AR file generation

The Reporting engine offers great tools to help you implement these use cases. It uses XML to
describe how you want to present a report. Then the reporting engine does the rest of the
work for you, including retrieving data from data source, formatting, and then presenting the
data to the end user through Velocity templates.

The reporting engine is designed to be:

 Easy to use: Simply create an XML file to describe the report you want to create; that’s
it. The reporting engine automatically generates that report for you, in variety of formats,
such as HTML or CVS.

 Easy to extend and customize: You can easily extend the reporting engine to support
any UI customization. The Reporting engine uses Velocity templates, which is a powerful
MVC based presentation tool that is well-suited for this purpose.

 Easy to maintain: The Reporting engine itself is an MVC-based, and offers the best
separation of presentation logic and business logic, which greatly improves maintainability.

Reporting Engine Features
The following list shows the major features offered by the reporting engine:

 Multiple data sources: The reporting engine connects to multiple data sources, including
SQL data source, object data source and CSV data source.

 Prompts: Prompts allow you to select desired data from data source.

Reporting Engine Overview

 Interactive sorting: Sorting can be case sensitive or insensitive.

 Interactive grouping: Data is grouped by a particular column’s values.

 Calculator operations: Summary, maximal, minimal, average and count operations are
supported.

 Charting: This feature supports both bar chart and pie chart

 Template: Template-based presentation for both web-based and non-web based
applications.

 Formatting: Support is provided for locale based format for numeric values and dates.

 Printer friendly view: This feature allows you to generate a printer friendly view for
printing.

 CSV download: CSV download allows you to download the report in CSV format.

 Paging: Pages through large set of data.

 Custom report: Custom reports allow users to create their own reports and save them
for later retrieval.

 Internationalization: Standard Java resource bundle based internationalization; easy to
understand and use.

 Drill down and Breadcrumb links: The Report engine offers a powerful yet simple way
to drill down to different reports and drill back through breadcrumb links.

 Seamless integration with Struts/Tiles: The Reporting engine is not tied to a
particular presentation framework, but offers excellent support for Struts and Tiles.

 Batch report: When it takes a long time to generate a report online, you can use the
batch report feature to send a request which will be processed offline.

 Reporting engine architecture
The following diagram shows the reporting engine architecture based on the UML component
model.

Reporting Developer Guide Version: 5.1 8

Reporting Engine Overview

The overall reporting engine architecture follows the MVC model: the data source is the model,
the report manager, transformer and report XML are the controller, and the template is the
view.

Report Client: This client calls the Report API to generate reports. The client can be a Web
Client, such as JSP/Servlet or Struts/Tiles, or it can be a regular standard alone application.

Report API: This is a set of APIs that the reporting client can use to generate a report. See
the Javadoc for how information about how this API works.

Report Context: The Report context is used by the Report Client to exchange information
with the Report Engine. It includes the information passed from the client that is used to bind
the SQL query parameters and parse the templates. For example, the context may contain
user session information, such as login name, current role and organization level. Or it may
contain report input information, such as the date range used to generate reports. All the
objects in the context can be accessed using Velocity templates.

Request Queue: This queue holds all offline batch report requests. Users can generate
reports immediately, or they request that the reports be generated off-line. Off-line reports
send email notification when the reports are ready. The Request Queue is a JMS queue, and
holds all offline report requests.

Batch Processor: The processor gets offline report requests from the Request Queue, and
sends them to the Report Engine for processing. The batch processor is a batch job that runs
in Command Center.

Report Manager: The Report Manager is the central controller of report engine system. It
receives reporting requests from the client, and invokes the appropriate data source and
transformer to perform the desired processing.

Reporting Developer Guide Version: 5.1 9

Reporting Engine Overview

Data source: This item represents the data source. The data source can be an SQL
statement, an Object or a CSV file.

Transformer: The transformer transforms the query result from presentation, and applies a
set of computations on it, including sorting, grouping, paging, aggregation (summary,
average, maximal, minimal, count), and formatting. The transformer may also cache the data
retrieved from data source so that the operations can be performed in the cache data (which
reduces database accesses).

Velocity Template: Templates are used to generate desired report output views. The
templates are based on Velocity, and can generate any text reports, such as HTML or CSV.
However, it is not currently possible to use Velocity to generate binary reports.

Report Definition XML: Report XML files control how reports are generated. To create your
own report, create a report definition in a report XML file. You can have multiple report XML
files, and each report XML file can define multiple reports.

Reporting Engine Object Model
The following diagram shows the reporting engine object model. Only the main objects are
shown.

Reporting Developer Guide Version: 5.1 10

Reporting Engine Overview

ReportActionHelper: This class was designed to be called by the Servlet or Struts action
class. It performs a number of tasks, such as parsing the request parameters, and then does
the sorting, paging, etc. It returns an IReport object, which you can use to render a report, or
manipulate further before rendering it. Though it is possible to avoid using this class by using
other APIs, we strongly recommend that you use this class to reduce your customization work.

ReportManager: Use this class to get an instance of IReportManager.

IReportManager: This is the entry class to the reporting engine APIs. For example, it can be
used to get an instance of IReport and other objects.

ReportContext: This class is actually a Map, which allows the reporting engine client to pass
information to the reporting engine. For example, the binding values to SQL “?” parameters,
and the objects used in Velocity templates.

IReportConfig: This interface represents the report XML definition. For example, the SQL
used to query, instructions to bind the report context objects to the SQL, instructions to
format the report. There are a set of Config objects related to this class that represent the
report XML elements. See the API javadoc for details.

ITransformer: This object represents the “transformer” defined in the report XML. It offers a
set of APIs that manipulate the format, such as format value, write the template, etc.

DataSource: This API is not a public. It represents the “datasource” defined in the report
XML, and allows you to retrieve report data from that data source.

IReportList and IReportRow: The report data retrieved from DataSource is represented as
IReportList, which is a java.util.List. IReportList includes a list of IReportRow objects,
which represents rows in report. The objects in IReportRow are basic Java objects, such as
Integer, Double, String, Date, etc. For more details, please check Java APIs of reporting
engine.

The object model of reporting engine is straightforward. The following sequence diagram
shows how the reporting engine objects interact with each other to generate a report:

The Customization section describes how to write action class and report JSP pages in more
detail.

Reporting Developer Guide Version: 5.1 11

Reporting Developer Guide Version: 5.1 13

 2 Anatomy of Reporting Engine

The key to understanding and using the reporting engine is these three components:

 Report XML

 Template

 Reporting API

This chapter describes these components.

Reporting Package
The reporting engine is packaged as part of the Billing Analytics application. However, the
reporting engine is an individual component which can be used in any other application.

Inside the application EAR file, under the XMA directory, there are two files, api-<version-
number>.jar and reporting-<version-number>.jar. The api.jar includes the public APIs of
reporting engine under com.edocs.common.api.reporting , which are the APIs you use to
build your own reports. The file reporting.jar contains the implementation classes.

Anatomy of Reporting Engine

The reporting related components or the Billing Analytics EAR are listed in following diagram:

 ear-tbm-tam.ear
 |
 |---------lib
 | |
 | |-------- velocity-1.4.jar
 |
 |---------xma
 | |
 | |-------- api-1.1.1.jar
 | |-------- reporting.1.2.1.jar
 | |-------- reporting-ext.1.2.1.jar
 | |-------- app-resources.jar
 |
 |---------war-tbm-b2b.war
 |
 |--------WEB-INF
 | |
 | |-------- struts-config-tam.xml
 | |-------- tiles-defs-reports.xml
 | |
 | |--------lib
 | |
 | |--------reporting-web-1.2.1.jar
 |
 |--------tam
 |
 |-------- _assets

| |
| |--------skin.css
|

 |--------reporting
 |
 |--------report.jsp, *.jsp

The following list describes the components of the EAR:

 Velocity-<version-number>.jar: This archive contains the velocity template engine.
Note, the property file for the Velocity engine has been updated for Billing Analytics; do
NOT replace it with any other version of velocity JAR files.

 Api-<version-number>.jar: This archive includes the public APIs that a reporting engine
client can use to access the reporting engine. They are under
com.edocs.common.api.reporting. Please see the JavaDoc for details of these APIs.

 Reporting-<version-number>.jar: This archive includes the reporting engine
implementation classes.

 Reporting-ext-<version-number>.jar: This archive includes the Struts ActionForm
classes. This JAR file is stored at the EAR level instead of the WAR level in order to support
the Batch Reporting functionality. The action forms must be accessible by the Event
module handler, which is at the EAR level. If you are not using the Batch Reporting
feature, you can package this JAR in the WAR file instead.

Reporting Developer Guide Version: 5.1 14

Anatomy of Reporting Engine

 App-resources.jar: This archive includes the resource bundles used by the Billing
Analytics application. The resource bundles are loaded at the EAR level instead of the WAR
level in order to localize the batch reports, which are generated offline. Currently, all
reporting related resource bundles are in the
com.edocs.app.reporting.resources.ApplicationResources*.properties files.

 struts-config-tam.xml: The Billing Analytics UI is defined as a Struts module called
“tam”. All the Billing Analytics related Struts configurations, such as the resource bundles,
are defined in this file.

 tiles-defs-reports.xml: This archive includes the Tile definitions for the Billing Analytics
reporting UI.

 Reporting-web-<version-number>.jar: This archive includes all the action classes and
supporting classes that support the Billing Analytics UI. Note: the ActionForm classes are
in the reporting-ext-<version-number>.jar because of the batch report requirement.

 Skin.css: This file defines the report UI related CSS.

 Report.jsp and other jsp files: This item consists of the Billing Analytics reporting
related JSP files. The report.jsp renders the major reporting UI. You simply call
IReport.writeTemplate() to invoke Velocity template parsing. The actual view rendering
is done through Velocity templates.

In addition to the EAR file, which includes classes and JSPs, there are a set of files packaged
outside the EAR. These files are Velocity template files and report XML files. For example, by
default, on Windows, Billing Analytics is installed into C:/Siebel/CBA. This directory,
C:/Siebel/CBA/estatement, is called the <EDX_HOME> directory, which is where the report
XML files and templates are.

Reporting Developer Guide Version: 5.1 15

Anatomy of Reporting Engine

Siebel
|

 |-------CBA
 |
 |------- estatement
 |
 |------- config
 | |
 | |------- rpt
 | | |
 | | |------- reportList.properties and *.xml, report definition XMLs
 | |
 | |------- chart
 | |
 | |------- *.properties files, chart property definition

|
 |------- templates
 |
 |------- common
 |
 |-------- lib
 | |
 | |------- reporting_library.vm
 |
 |------- reporting
 |
 |------- *.vm, Velocity templates

The following list describes some of the files in the preceding directory structure:

 ReportList.properties: This file is read by the reporting engine to get the list of reporting
XML files to be processed. You must register your report XML through this file.

 Report definition XML files: These files include report definitions. You must register
them in reportList.properties. These files are loaded once during system startup, and are
cached. You can reload them without re-starting the application server. See next chapter
for information about how to do that.

 Chart property files: These files are used by KavaChart to configure the chart display
properties.

 Reporting_library.vm: This file includes the Velocity macros defined for reporting.

 Velocity template .vm files: These are velocity templates used to produce reports.

Reporting Developer Guide Version: 5.1 16

Anatomy of Reporting Engine

reportList.properties
This file includes the list of report XML files to be loaded into report engine. You must have
your report XML file defined in this file. The file format is:

name=xml_file_path

where name must be unique for each report XML and the XML file must be either
under <EDX_HOME> or on the class path.

For example,

telco_xml=config/rpt/telco.xml

Which means there is a file, “config/rpt/telco.xml”, under <EDX_HOME> or on class path.

Reporting XML
The Reporting XML is central to the reporting engine. It describes how to generate a report.
You can generate a good-looking report by simply writing a report XML.

The Reporting XML includes two major parts: dataSource and transformer. The dataSource
describes how to retrieve data from data source, and the transformer manipulates the data
before sending it to the template.

There are samples of the report XML files in the <EDX_HOME/config/rpt directory. To get a
complete list of all the valid report XML elements and attributes, see the report XSD file,
report.xsd, under <EDX_HOME>/config/rpt.

The following sections explain some of the major features of the reporting engine and explain
how to use report XML to implement them.

<reports>
This is the root element of report XML. This element can include <report>, <localizer>,
<prompts> and <templates> elements. The following diagram shows that structure.

 <reports>

 <templates>…</templates>

 <localizer>…</localizer>

 <prompts>…</prompts>

 <report>…</report>

 </reports>

Reporting Developer Guide Version: 5.1 17

Anatomy of Reporting Engine

<localizer>
This element defines how the localization of the reports will be done. For details, see
Internationalization/Localization on page 55 for more information.

<localizer> has the following attributes:

Name Required Description
enableMessageResources N Default is “true”. This attribute allows you to use the

Struts MessageResource to look for the resource
bundles for reports. This means you can use the
same copy of resource bundle files defined in a
struts config file without reloading another copy of it.

defaultCode N Default to “0. It enables you to define the default
behavior if a resource is not found.
"0" means to use the key as the default value;
"1" means to use Struts notion of
"???<locale>.<key>???"
"-1" means throws exception.

Localizer can include <resourceBundle> as its child elements.

<resourceBundle>
This element specifies one resource bundle property file name to be used for report
localization. See Internationalization/Localization on page 55 for more information.

For example:

<resourceBundle name="config/l10n/message" />

Which means the property file, config/l10/message_<locale>.properties under
<EDX_HOME> will be used for localization.

<prompts>
The <prompts> element has the same format as the one defined under <dataSource>.
However, because it is defined at the global level, it can be shared and referenced by other
reports. This significantly reduces duplication of the report XML contents, and makes it easier
to maintain report XML files.

See the <prompts> definitions under <dataSource> for more details.

<templates>
This element allows you define a list of global templates that can be included or parsed into
other templates. For example, the paging.vm is used to generate paging UI and could be
included by other templates, like report_body.vm.

Reporting Developer Guide Version: 5.1 18

Anatomy of Reporting Engine

For example, to define a template:

<templates>

 <template id="paging.vm" name="template/common/reporting/paging.vm"/>

 </templates>

which means there is a template named “paging.vm” and it is located in
“template/common/reporting/paging.vm” under <EDX_HOME>.

Then we can include above paging.vm from another template like this:

#parse ($transformerConfig.getTemplateName("paging.vm"))

the method transformerConfig.getTemplateName("paging.vm") returns this
template, paging.vm, from <EDX_HOME>/template/common/reporting/paging.vm.

Note, if you have a template that has the same id defined inside the transformer element,
then the id in transformer takes precedence over the is in the global template list. This allows
an individual transformer to use its own template. See “<transformer>” for detail.

<template>
This element defines a global template, which has following attributes:

Name Required Description
Y A unique id among all the global templates. Note you can use the same id

for transformer template id: in this case, the transformer template takes
precedent of the global one.

id

Y The full class path name of the template. name

<report>
This element defines a report. A report may include zero or more <dataSource> elements, one
or more <transformer>s, and zero or one of <customList>, <printList> and
<downloadList>.

 <report id=”reportId” name=”MyReport”>

 <downloadList>…</downloadList>

 <printList>…</printList>

 <customList>…</customList>

 <dataSource>…</dataSource>

 <transformer>…</transformer>

 </report>

The <report> element has two attributes:

 id: The id identifies this report. All the reports defined in the report XML files in
reportList.properties must have unique ids. This id must start with an alphabetic character,
and can include numbers and underscores.

 Name: This is the name of the report. This name is used to search the report bundle to
get a localized version of the report name. For example, in the Report List page, the
names of reports are from this attribute.

Reporting Developer Guide Version: 5.1 19

Anatomy of Reporting Engine

<dataSource>
This element defines how to retrieve data from the data source.

 <dataSource id=”” uri=”jdbcJNDI:edx.report.databasePool”>
 <query dynamic=”true”>
 </query>
 <columns>
 <column id=”” type=””/>
 </columns>
 <inputBindings>
 <inputBinding />
 </inputBindings>
 </dataSource>

The data retrieved from the data source is represented as a List of Lists of simple Java
objects, such as Strings, Date/Time/Timestamp or Numbers. We are not using a two
dimensional array because: a List of Lists gives us the potential to increase its size easily if
needed, and Velocity doesn’t support accessing array elements through the [] operator.

The <dataSource> element has following attributes:

 id: A unique id identifies this data source in this report. You must define it even there is
only one data source. It is not required that the id be unique across all reports. This id
must start with an alphabetic character, and can include numbers and underscores.

 uri: A Universal Resource Identifier identifies the location of the data source. Currently we
support three data sources: SQL data source, object data source and DSV data source.
This example focuses on the SQL data source. For information about object data sources,
see Object Data Source on page 59 and for DSV data source, see DSV Data Source on
page 59.

For an SQL data source, there are three URIs:

 jdbcJDNI:<dataSource_JNDI_NAME>
The “jdbcJNDI” indicates that this is a JDBC data source identified by its JDNI name.
For example, “jdbcJDNI:edx.report.databasePool” means there is a JDNI data source
named “edx.report.databasePool”.

 jdbcRef:<dataSource_REF_NAME>
The “jdbcRef” indicates that this is a JDBC data source identified by its local reference
name, either defined in web.xml or ejb-jar.xml. For example, you may have an entry
similar to this in web.xml:

<resource-ref>

 <res-ref-name>jdbc/rptDataSource</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

</resource-ref>

With this entry, you can use following URI: “jdbcRef:jdbc/rptDataSource”. You
must also resolve this local reference through weblogic.xml or another vendor
specific XML file.

Reporting Developer Guide Version: 5.1 20

Anatomy of Reporting Engine

 jdbcDirect:<jdbc_config_property_file_class_path>
The “jdbcDirect” means that there is no connection pool and reporting engine needs to
make a direct JDBC connection to the database. You must specify the class path to the
DB config file. For example, “jdbcDirect:config/db/jdbcConfig.properties”. For the
format of the config file, look at the sample jdbcConfig.properties file coming with the
product. Avoid using this URI if your application can access a connection pool.

This element can include <query>, <inputBindings>, <prompts> and
<columns> elements.

<query>
This element defines the query used to retrieve data from the data source. It applies to an
SQL data source but not an object data source.

<query dynamic=”false” maxRows=”1000”> <![CDATA[select name, amount from

summary where user_id=?]]></query>

The value for <query> is enclosed in a “CDATA” section, which can include any SQL.

The “?” in the SQL means that a variable must be resolved (bound) before the SQL
can be executed. They are resolved through the <inputBindings> element.

The following table lists the attributes of this element:

Name Required Description
dynamic N True/false, default is “false”. This attribute indicates whether to parse

this SQL as a Velocity template before execution. This allows us to
use a Velocity template to generate a SQL dynamically. For
information about how to write dynamically generated SQL, see
Dynamic SQL on 54.

maxRows N An integer, default is 1000. This attribute indicates the maximal
number of rows will be retrieved from the data source.

<inputBindings>
This element defines a list of input bindings that are used to bind the SQL variables defined in
the <query> element. It has no attribute, and includes an <inputBinding> element.

<inputBinding>
This element defines a single input binding. There are two kinds of bindings: objects and
prompts. The order of the <inputBinding> elements is the same as the order of the SQL
variables. That means the n-th <inputBinding> is used to bind the n-th SQL variable. Object
binding means binding an object or its property to an SQL variable.

For example:

Reporting Developer Guide Version: 5.1 21

Anatomy of Reporting Engine

<inputBinding object=”bean” property=”userId” />

This means there is an object called “bean” in the report context, this object is a
JavaBean, and it has a property named “userId”. The value returned by
bean.getUserId() will be used to bind the SQL variable. Usually, the “bean” is a
Struts ActionForm object. If the object returned by the property is a Collection, then
each element in the Collection will be used for binding.

<inputBinding object=”myObejct” />

In this case, there is no property defined, so myObject is not assumed to be a
JavaBean. If the myObject is not a Collection, then myObject is used to bind to the
SQL variable directly. If the myObject is a Collection, then each element in the
myObject Collection will be used to bind to the SQL variable(s) in its natural order in
the collection. This latter case is very useful where the number of SQL variables is
dynamic. For example, a “where name in (?…?)” clause. For more information, see
Dynamic SQL on page 54.

Prompt binding is a special case of object binding. Prompt binding means that the binding
object is from the user prompt, which allows you to bind the value of the prompt to a SQL
variable.

<inputBinding object=”form” property=”<bean_property>” prompt=”<prompt_id>” />

You can use a map-backed ActionForm also. For example, the ReportForm from the Billing
Analytics application is a map-backed form. It has map-methods, such as
getParameter(String name) and setParameter(String name, Object value). You can use
this syntax in a property or prompt attribute:

<inputBind object=”form” property=”parameter(callType)” />

or

<inputBind object=”form” property=”parameter(callType)”

prompt=”parameter(callType)”/>

The following table describes the attributes of <inputBinding>:

Name Required? Description
object Yes The name of the object in the report context used for binding. This

object must be put into report context.

In the case of prompt binding, the reporting engine automatically
gets the prompt value from the prompt form, and puts this object
into the report context. The ReportActionHelper class puts the
value of the prompt into the context with that name.

In the non-prompt case, the caller of Report engine must put this
object into context.

property No This attribute is optional. When it appears, it means the object is a
JavaBean and the value of the property of this bean is used to
bind SQL variable.

If this property is not there, then it means the object identified by
object attribute is used for binding. Note, a map-backed property
is supported, such as “parameter(callType)”.

Reporting Developer Guide Version: 5.1 22

Anatomy of Reporting Engine

Name Required? Description
No This attribute indicates that this input binding is from a prompt,

and the value of it must be the id of the prompt defined in the
<prompts> element.

prompt

Note, the object name for the prompt form is fixed to “form” and you must use object=”form”
for prompt.

<prompts>
This element defines an HTML form whose input is used for data source input bindings. Each
input field in the form is called a “prompt”. You configure where the prompt gets its original
data (from a database or from a fixed value list), and how it will be presented by the report
XML. The reporting engine builds the report prompt (input) UI, which is fully customizable (it
uses a template to generate the UI).

To easily control the look and feel of prompts, reporting uses a technique similar to tiles;
layout.vm controls the layout format, and prompt.vm controls the prompt rendering.

The default prompt layout (layout.vm) allows you to produce a prompt layout like this:

<prompts> has a list of prompt blocks. Each block is separated by that dark blue bar at the
top, and you can define a label for each blue bar. Inside each block, you can define a list of
groups, where each group has a list of prompts. Each prompt group acts like <tr> in an HTML
table, and all prompts within a prompt group display horizontally in a row. Each prompt must
belong to a group. Prompts can be HTML input or a plain label. In the preceding example UI,
Data range is a group with two prompts: the start date and end date. Usage type is another
group that has two prompts: usage type and call type.

The <prompts> definition used to generate the example UI is:

Reporting Developer Guide Version: 5.1 23

Anatomy of Reporting Engine

<prompts id="prompts1" formName="reportForm" action="report.do"

 method="post" templateID="layout.vm">

 <block>

<group label="Date Range:" >

<text id="fromDate" size="12" value="1/1/2004"

 imgSrc="_assets/images/calendar.gif" label="From:"

 labelPosition="top"/>

 <text id="toDate" size="12" value="12/1/2004"

 imgSrc="_assets/images/calendar.gif" label=" To:"

 labelPosition="top"/>

 </group>

 <group>

 <select id="parameter(usageType)" report="prompt_usageType"

 displayColumnId="usage_type_name"

 valueColumnId="usage_type_key" value="2"

 label="Usage Type:"/>

 <select id="parameter(callType)" report="prompt_callType"

 displayColumnId="call_type_name"

 valueColumnId="call_type_key" value="2"

 label="Call Type:"/>

 <image name="display" src="_assets/images/display.gif" />

 </group>

 <group label=" Billing Reports">

 <select report="prompt_reportList" value="first" name="reportId"

onChange="cleanupHiddenValues()"/>

 </group>

 </block>

</prompts>

You can define <prompts> under <reports> and it will be global. To refer to a global
<prompts> from inside <dataSource>, use:

<prompts id="billingPrompts"/>

Which means that there is a global prompts whose id is “billingPrompts”. If the same
<prompts> is used across multiple data sources, the global <prompts> helps you to maintain
only one copy of it.

This element has following attributes:

Name Required? Description
Y A unique id is used to identify this prompts list in this data source.

Currently we only support one prompts element per data source.
id

N The name of the HTML form and default “reportForm”. It is only
useful if you want to use JavaScript to manipulate the form.

formName

Y Action of the HTML form. Use “report.do” for the action since it is
used as the default. If you change the action name defined in
Struts config xml, you may need to search all your JSP pages and
velocity templates to replace it.

action

method N Default is “post”.

Reporting Developer Guide Version: 5.1 24

Anatomy of Reporting Engine

Name Required? Description
Y Specifies the layout template ID. The template must be either

defined in corresponding transformer’s <templates> or in the
global <templates>.

templateID

N Encryption type. enctype

N Name of JavaScript being called when Reset is called on the HTML
form.

onReset

N Name of JavaScript being called when Submit is called on the
HTML form.

onSubmit

The <prompts> elements contain one or more <block> elements.

<block>
This is an optional element. If you don’t define it, then you can define “group” directly under
<prompts>, and all the groups will be put, implicitly, under a block.

You can define a label for a block and the label will be displayed in the blue bar of the above
prompt diagram.

<group>
This element defines a group of prompts. This group of prompts will be displayed horizontally
in one line. Different groups of prompts will be displayed vertically.

It has following attributes:

Name Required Description

N The label displayed at the beginning of the each prompt group. label

N Used for rollover question mark. description

There are eight types of prompts, which correspond to input types in an HTML form (except
Label).

Some supported HTML forms are: Text, checkbox, select, radio, image, submit, reset and
label. Image, submit, reset, label are purely for HTML form rendering and manipulation; their
values are not used for report SQL input bindings. CheckBox, select, radio and text can be
used for SQL input bindings.

Attributes for prompt related configuration in XML file, most of attributes are from an HTML
form, others are required by the Report Engine.

<group> can include: <checkBox>, <select>, <radio>, <text>, <image>, <label>, <submit>
and <reset>.

Reporting Developer Guide Version: 5.1 25

Anatomy of Reporting Engine

<select>
This element defines a select prompt. A select prompt allows you to select one or more values
from a list of values. A select prompt should associate with a report whose result set is used to
populate the select list. For example:

<select id="parameter(callType)"

 report="prompt_callType"

 displayColumnId="call_type_name"

 valueColumnId="call_type_key"

 value="2"

 label="Call Type:"/>

A select list requires two types of information: display values and actual values. The display
values are for display purpose, and the actual values are for query purpose. For example, you
can display “May 2004”, but use an internal value “5” for a query. For example:

<select>

 <option value=”5”>May 2004</option>

</select>

To render the preceding UI, get the option’s values and display names from the associated
reports. The following table describes the select options:

Name Required Description

id Y Identifies this prompt in this prompts list. The id is used as
the name of the input prompt in the HTML forms, which
means that it determines which ActionForm property is used
to hold this input value. In the example, the billPeriod
property of ActionForm holds the value of the select box.

If there is no corresponding property in the ActionForm (if it
is a map-backed form), you can use the Parameter property
(a map-backed property) to get the value into the
ActionForm.

For example, to create a prompt for call type, which is not a
property of ActionForm:

<inputBinding object="form"

property="parameter(callType)"

prompt="parameter(callType)"/>

where prompt is declared as:

<select id="parameter(callType)" label="Call

Type:">.

Note, when using parameter(calltype) as id (hence the
HTML input filed name), JavaScript may not recognize the
name. In that case, you may want to extend your
ActionForm implementation to be a regular JavaBean
property, which allows you to use
<select id=”callType” >.

Reporting Developer Guide Version: 5.1 26

Anatomy of Reporting Engine

Name Required Description

label N The label of this prompt. Used for display.

labelPosition N Display label position against the prompt. Top, bottom, left,
and right are supported.

“top”, label is on top of the prompt

“bottom”, label is on bottom of the prompt

“left”, label is at the lest of the prompt

“right”, label is at the right of the prompt

N Size of the HTML input field size

Y The id of the report, whose result set will be used to populate
the Select element. The report can load data from the
database or it can load from a DSV data source which is
useful if the data in the list is fixed.

report

N The column id of the report, whose values will be used as the
display names of the <option> fields of <select> list. The first
column of the report is used when displayColumnId is not
specified.

displayColumnId

valueColumnId N The column id of the report, whose values will be used as the
actual values of the <option> fields of <select> list. The
second column of the report is used when valueColumnId is
not specified.

value N The default value for the <select> list. It can be:

“first”, using the first value in the valueColumnId column of
the report

“last”, using the first value in the valueColumnId column of
the report

An integer N, such as “1” or “2”, which indicates the N-th
value in valueColumnId column of the report. Note the index
starts from 1.

N Specifies that multiple items can be selected. True and false
is supported. Default is false.

multiple

N Name of JavaScript being called for onBlur event onBlur

N Name of JavaScript being called for onChange event onChange

N Name of JavaScript being called for onClickeventonClick

N Name of JavaScript being called for onFocus event onFocus

The report used to generate <prompt> should meet following requirements:

Reporting Developer Guide Version: 5.1 27

Anatomy of Reporting Engine

 It should have two columns: one column for display, and another for prompt value. The
display column id must match the displayColumnId attribute defined above, and the
value column id must match the valueColumnId attributed defined above. If the report
only has only one column, you can have both displayColumnId and valueColumnId point
to the same column.

 The report id of the prompt report must match the report attribute defined above.

 You can format the prompt display names by using pattern attribute of column element of
the report.

<checkBox>

The checkBox prompt allows you to print the prompt values in a list of check boxes. For
example:

<checkBox id="billPeriod" label="Bill Period:"

 report="prompt_billPeriod"

 onClick="alter(‘onClick’)"

 displayColumnId="bill_period_name"

 valueColumnId="bill_period_key"

value="last"/>

In the example, the bill period prompt is defined as a set of check boxes, where you can check
one or more bill periods. The display names and values of bill period come from the
prompt_billPeriod report.

The <checkBox> has the same attributes as <select>, except multiple doesn’t apply (see
<select> for more information). In fact, you can think of checkBox as just another view
presenting the same prompt. <checkbox> is similar to a multiple-select list.

The actual data retrieved from data source for <checkbox> must be either “true” or “false”.

<radio>

This prompt presents a list of radio buttons, only one of which can be selected.

<radio id="billPeriod" label="Bill period:"

 report="prompt_billPeriod"

 onClick="alert(‘onclick’)"

 value="last" />

In the example, the bill period prompt is defined as a set of radio buttons, where you can only
check one of the bill periods. The display names and values for bill period come from the
prompt_billPeriod report.

The <radio> has the same attributes as <select>, except multiple doesn’t apply. See
<select> for more information. In fact, you can just think radio as another view of presenting
the same prompt. <radio> is like a single-select list.

The actual data retrieved from the data source used for <radio> must be either “true” or
“false”, and only one can be “true”.

Reporting Developer Guide Version: 5.1 28

Anatomy of Reporting Engine

<text>
This element allows you to define a text box and use the user-entered value as the prompt
value.

<prompt id="billPeriod" label="Bill period:">

 <text

 report="prompt_billPeriod"

 maxLength="10"

 onBlur="alert(‘onBlur’)"

 onChange=" alert(‘onChange’)"

 onFocus=" alert(‘onFocus’)"

 onSelect=" alert(‘onSelect’)"

 size="10"

 value="06/2004"/>

</prompt>

In the text prompt, size attribute determines the width of the prompt.

<image>
This element allows you to define an image. For example:

<image name="display" src="_assets/images/display.gif" />

This allows you to create an image submit button. Note, this one is different from the
HTML tag.

Name Required Description

Y The display name of the image. name

Y The image src. src

N “left” or “right”. align

<label>
This element defines text to display in the form. For example:

<label name="ccc_toll_lbl" value=" and " />

Name Required Description

N Not used. name

Y Value The text to be displayed as it is on the screen.

Reporting Developer Guide Version: 5.1 29

Anatomy of Reporting Engine

<reset>
This element displays an HTML reset button. For example:

<reset name=”reset” value=”reset” />

Name Required Description

Y Name of the reset button name

Y The display value of the reset button value

N Javascript to invoke. onClick

<submit>
This element displays an HTML submit button. For example:

<submit name=”submit” value=”ok” />

Name Required Description

Y Name of the submit button. name

Y The display value of the submit button. value

N The javascript to invoke. onClick

<columns>
This element, under <dataSource>, defines the list of columns retrieved from the data source.
As described previously, the data retrieved from the data source is a two-dimensional matrix
with rows and columns. For an SQL query, the rows are the rows from the SQL table, and the
columns are the SQL table columns. Most of the transformer operations, such as sorting,
grouping and calculation, are based on the types of the columns. Only the type of the column
is important, not the definition of the column. For example, you can summarize if the type is
Number; it doesn’t matter if the definition is Air Fee or Toll Charge. That is the primary reason
to use a List of Lists of objects to present all our data.

You must define all the columns retrieved from the data source here, in the same order as the
data source. For example, if you are using a SQL data source, the order of selected columns
from Select must be the same as the order defined in the XML element. The same is true for
object data sources.

Reporting Developer Guide Version: 5.1 30

Anatomy of Reporting Engine

<column>
This element describes the column retrieved from the data source. You must define the type of
the column here. The order of <column> elements must be the same as the order of columns
retrieved from the data source and for each column in the data source, you must have one of
this XML element defined for it.

<column> includes the following attributes:

Attribute Required Description

Id Yes Uniquely identifies this column in the data source.

type Yes Type of column. The legal types are all simple Java object types. A
column can be sorted if its type is java.lang.Comparable. or it can
take a calculator operation (aggregation), if its type is
java.lang.Number.

java.lang.Object, a generic type. Avoid using this if you want to do
sorting or formatting on the column. Use a more specific type,
instead.

Java.lang.Double, Indicates this is a double value, which can be
sorted and aggregated.

Java.lang.Float, Indicates this is a float value, which can be sorted
and aggregated.

Java.lang.Integer, Indicates this is an integer, which can be sorted
and aggregated.

Java.lang.Long, Indicates this is a Long value, which can be sorted
and aggregated.

Java.lang.Short, Indicates this is a Short value, which can be
sorted and aggregated.

Java.lang.BigDecimal, Indicates this is a BigDecimal, which can be
sorted and aggregated.

Java.long.String, Indicates a String value, which can be sorted.

Java.sql.Date,Indicates a Date value (a Date has no time
information). It can be sorted.

Java.sql.Time, Indicates a Time value (a Time has do date
information). It can be sorted.

Java.sql.Timestamp, Indicates a Timestamp value, which includes
both date and time information. It can be sorted.

Java.lang.Boolean, Indicates a Boolean value, which can be sorted.

Java.lang.Byte, Indicates a Byte value, which can be sorted.

Reporting Developer Guide Version: 5.1 31

Anatomy of Reporting Engine

Attribute Required Description

default N Note, this feature is only available in release 2.

This attribute indicates the default value for this column ,if the value
returned from data source is null. If the type or the column is:

Number, then the default value is parsed as a Number string by
invoking the parseXXX method on the corresponding java class. For
example, use Double.parseDouble() if it is a double. It can only
include digits and decimal point.

Timestamp, then you must supply the default value formatted as
“yyyy-mm-dd hh:mm:ss”.

Date, then you must supply the default value formatted as “yyyy-
mm-dd”.

Time, then you must supply the default value formatted as
“hh:mm:ss”.

String, then the default value is used as it is.

Boolean, then the default value can be “true” or “false”.

<transformer>
This element defines a transformer for this report. A report may include zero or more
transformers. Transformer is key element of the report engine; it is responsible for
transforming the data retrieved from data source into a format suitable for presentation.

<transformer> has following attributes:

Name Required Description

Y Uniquely identifies this transformer in this report. Note, you are
allowed to have two transformers with same id if they are from
different reports.

id

N The id of the data source where the transformer gets data.
Note, a transformer is not required to have a data source. If it
does, then the reporting engine is usually used as a pure
Template engine, and no meaningful data transformation is
done inside transformer. That means that all the reporting
functionality, such as sorting and paging, won’t apply. For
example, in telco.xml, the transformer with report_header.vm
defined has no data source.

datasourceId

N This attribute enables paging and defines the number of rows
that will be displayed in one page. All the data will be presented
in one page if this attribute is not specified.

pageSize

Reporting Developer Guide Version: 5.1 32

Anatomy of Reporting Engine

<columns>
This element defines a list of columns for the transformer. You are not required to define a
column in the transformer for each column in the data source. The order of columns in the
transformer does not need to match the order of the columns in the data source. However,
following those two rules will make your code easier to maintain.

This XML element has no attribute and contains <column> elements.

<column>
This XML element defines a column for the transformer. The transformer will render the
columns in a table format. This is one of the most important XML elements.

<column

 id="myColumnId"

 name="Column Name"

 isHidden="false"

 sortable="true"

 defaultSort=”true”

 caseInsensitiveSort=”true”

 pattern="MM/dd/yyyy"

 link="report.do?reportId=myReport&parameter(myColumnId)=$col"

 localize=”true”

/>

The following table lists all the attributes for the <column> xml element:

Name Required Description

Y This id must match one of the ids defined in the data
source.

id

Y The name of the column. The name will be localized and
then presented as the table column name.

name

N True/false; defaults to false. This attribute indicates
whether this column is visible or not.

isHidden

N True/false; defaults to false. This attribute defines
whether this column is sort-able. If true, the template
will generate a URL link for this column.

sortable

N True/false; defaults to false. This attribute defines
whether you want this column be sorted when the report
is generated.

defaultSort

caseInseisitiveSort N True/false; defaults to false. This attributes defines
whether you want a case-insensitive sort when the
column type is java.lang.String.

Reporting Developer Guide Version: 5.1 33

Anatomy of Reporting Engine

Name Required Description

pattern N This attribute defines the format pattern of the column’s
values. If the column type is:

java.sql.Date/Time/Timestamp, you can use any
java.text.SimpleDateFormat pattern, for example
“MM/dd yyyy”. See the JDK documentation for more
information.

Number (Double/Float, etc), you can use any
java.text.NumberFormat patter. For example,
“¤#,##0.00”, where “¤” is the locale-specific currency
sign. See the JDK documentation for more information.

Number, but you want to format it as a duration, you can
use a pattern such as:
duration2time:<unit>:<duration_pattern>, where
duration2time is as defined, “<unit>” is the unit of the
column type, which can be “h” for hour, “m” for minute,
“s” for second and “S” for millisecond. The
<duration_pattern> can be
“[h]h<separator>[m]m<separator>[s]s”. The char
enclosed in “[]” is optional, and you can use any
separator such as “ “ or “/” or “:”. For example, if the
column value is 1.2 and the unit is minute with a pattern
as “duration2time:m:hh:mm:ss” will be formatted as
“00:01:12” and a pattern as “duration2time:m:h:m:s”
will be formatted as “0:1:12”

localize N Note, this feature is not completely implemented in
Release 1 but will be completed in release 2.

True/false and default to false. This attribute let you to
localize the column value retrieved from the data source
if it is true: in this case, the column value is used as the
key to look up the resource bundle and the localized
value is presented instead.

N This attributes allows you to define a drilldown link,
which can also being defined as a <link> element. See
below for <link>.

link

N This attribute allows you to define a breadcrumb link.
See section Drilldown and Breadcrumb Link for detail.

enableDrillUp

<link>
This element allows you to define a drilldown link, which can also be defined as an attribute of
the <column> element. The benefit of using it as an attribute is that you can wrap the content
in CDATA without escaping the special characters.

Reporting Developer Guide Version: 5.1 34

Anatomy of Reporting Engine

<templates>
This element includes a list of template elements. It has no attributes, and includes only one
element, template.

<template>
This element defines one template used by the transformer. A transformer can define one or
more templates and each template represents a presentation view. For example, you can
define one template for HTML, one for XML and another for CSV. You specify which view
(template) to use to render the UI by passing the template id through
Ireport.writeTemplate().

<templates>

 <template

 id="HTML_TEMPLATE"

 name="template/common/reporting/report_body.vm"/>

</templates>

This element includes following attributes:

Attribute Required Description

Y Identifies this template inside this transformer. Note, an id must
only be unique to this transformer.

id

Y The class path of the template name. Since the template is loaded
by the class loader by default, this template must exist on the
classpath (for example, on WEB-INF/classes directory or packaged
into a JAR file). For example, if your template is under
template/templ/my.vm and that is on the class path, then you
should use “template/temp/my.vm” as name.

name

N True or false. True means this template is localized. There is one
template for each locale, and the report engine will find the right
template based on the locale. For example, the email template has
a lot of static text. Therefore, define one template for each locale,
and specify this attribute as true, to associate the right template for
each locale.

localize

<groups>
This element allows you to group the data retrieved from a data source into groups, where
each group is presented inside a table. For example, you may want to group on all types, so
that all the local calls are presented in one table, and international calls are presented in
another table. Only single column grouping is supported.

You can define multiple groups. You can define one of them as default grouping, so when the
data is retrieved from the data source, it will be grouped by that default grouping. Call
Itransformer.group() in your calling program to switch to another group.

Reporting Developer Guide Version: 5.1 35

Anatomy of Reporting Engine

This element has no attributes, and can include the <group> element.

<group>
This XML element defines a single group. The <column> element defines the column(s) you
want to group on. You can only define one column. For example:

<group id="group_by_type" default="true">

 <column id="type"/>

</group>

<group> has following attribute:

Name Required Description

Y Defines a unique id that identifies this group in this
transformer. The group id needs to only be unique among the
groups defined in this transformer.

id

Optional Its default value is “false”. This flag indicates that this group is
the default one, so when data is retrieved from data source, the
data will be grouped (only one group can be default). The data
won’t be grouped if there is no default group defined.

default

 <column>
This element is defined as part of the <group> element, and identifies the column where
grouping will happen. It has following attributes:

Name Required Description

Y This is the column id defined in data source. This id must match the
id of the column of the data source where you want the grouping to
happen.

id

Reporting Developer Guide Version: 5.1 36

Anatomy of Reporting Engine

<calculator>
This element defines a calculator for the report. The calculator can perform a set of
operations, for example: summarize (subtotal), average, maximal and minimal. The
operations are grouped together into an operation group. calculator contains one or more
<operationGroup> elements. For example:

<calculator>

 <operationGroup name="Total">

 <operation type="sum" columnId="Charges" />

 <operation type="sum" columnId="taxes" />

 </operationGroup>

 <operationGroup name="Average">

 <operation type="ave" columnId="Charges" />

 <operation type="ave" columnId="taxes" />

 </operationGroup>

</calculator>

For the example, the reporting engine will generate a table similar to this:

Invoice Number Charges Taxes

12345 10.01 0.23

23456 12.11 1.03

Total 22.12 1.26

Average 11.06 0.63

<operationGroup>
This element defines a group of operations. Different operations in the group should operate
on different columns, but it’s not required they have the same operation types. That is, you
can mix sum with avg in the same operation group.

In general, you should not define an operation on the first visible column of the table; that
column will be used to display the name of the operationGroup. However, if you do need to
define an operation on the first visible column, you can change the report_body.vm by
replacing the operationGroup name with the operation value you define.

This element has one attribute, name:

Name Required Description

Yes The name of this group of operations. The default template,
report_body.vm, presents it as the first column of the operation
row of the table.

name

This element can contain one or more <operation> elements.

Reporting Developer Guide Version: 5.1 37

Anatomy of Reporting Engine

<operation>
This element defines a single calculator operation on a single column. It has following
attributes:

Name Required Comments

type Y The type of the operation.

summary: finds the summary of all the values of the column
identified by columnId attribute.

avg: finds the average of all the values of the column identified
by columnId attribute.

max: finds the maximal value of all the values of the column
identified by the columnId attribute.

min: finds the minimal value of all the values of the column
identified by the columnId attribute.

count: finds the total number of rows. In this case, columnId is
optional.

Y The id of the column that the operation will apply to. columned

Reporting Developer Guide Version: 5.1 38

Anatomy of Reporting Engine

<charts>
This element allows you to define one or more charts for a single transformer. For example:

<charts>

 <chart id="c1"

 type="columnApp"

 className="com.edocs.common.reporting.chart.statementColumnApp"

 style="config/chart/telco_std_r1.properties"

 chartTitle="Totals Per Invoice Numbers"

 xAxisTitle="Invoice Number"

 yAxisTitle="Total">

 <datasets>

 <dataset><column id="Total"/></dataset>

 </datasets>

 <xlabel><column id="Invoice_Number"/></xlabel>

 </chart>

 <chart id="c2"

 type="pieApp"

 style="config/chart/telco_std_r6.properties"

 chartTitle="Plan">

 <datasets>

 <dataset><column id="total"/></dataset>

 </datasets>

 <xlabel><column id="rate_plan"/></xlabel>

 <compress threshold="2" label="Other" append="true"/>

 </chart>

</charts>

<chart>
This element defines a single chart for this transformer. Currently we only support two kinds
of chart: Bar chart and Pie chart. The data of the chart must come from the columns of the
data source.

<chart> includes following attributes:

Name Required Description

id Y Uniquely identifies this chart among all the charts defined in this
transformer. Note, you can use the same chart ids in different
transformers.

type Y The type of the chart. Currently we only support two types of
chart:

columnApp: which means this is a vertical bar chart. Note, the
name of columnApp comes from the KavaChart terminology.

pieApp: which means this is a pie chart.

Reporting Developer Guide Version: 5.1 39

Anatomy of Reporting Engine

Name Required Description

N This attribute is used to identify the kavaChart class representing
this chart type. If you don’t specify, then report engine will use
the default kavaChart class or you can specify your own class if
you want to extend the default kavaChart class. In the preceding
example,
com.edocs.common.reporting.chart.statementColumnApp is a
chart class reporting engine offers.

className

N Full class path to the name of the KavaChart properties file.
KavaChart supports the feature of defining chart styles in a
properties file. Follow this link to build your own kavaChart
properties file: http://www.ve.com/editor/index.html.

style

N Defines the title of the chart. chartTitle

N The title of the X-axis. This is only used for bar chart. xAxisTitle

N The title of the Y-axis. This is only used for bar chart. yAxisTitle

The <chart> elements also include following two elements: <datasets> and <xlabel>.

<datasets>
This element allows you to define multiple data sets used to draw the chart. Only one dataset
per chart is supported.

<dataset>
This element defines a data set used for charting. A data set should come from the column of
the data source. Currently, you can only define one column for on dataset. It has no attributes
and contains one element: <column>.

<column>
This element defines the column whose values will be used as the data set to KavaChart. For
example, for the columnApp chart, the dataset is used for the Y-axis values. For pieApp chart,
the dataset is used for the Pie’s data.

This element only includes one attribute:

Name Required Description

Y The id of the column where the chart will get its data. The type of
the column must be a number.

id

Reporting Developer Guide Version: 5.1 40

Anatomy of Reporting Engine

<xlabel>
This element defines the values for the x-axis. The x-label must come from the data source
column. It has no attributes, and contains one element: <column>. You can only define one
column for each x-label.

<column>
This element defines the column used for the x-label. The values of the column are used for
the x-axis values. This element only includes one attribute:

Name Required Description

id Y The id of the column where the chart will get its x-axis values.

<downloadList>
This element defines a list of downloads available for this report. For example, you may define
an XML download and a CVS download. For each download, a download link will be generated
by the template. You can define multiple downloads for one report. For example:

<downloadList name="Download">

 <download

 name="Download CSV"

 type="csv"

 description="CSV download"

 templateId="CSV_TEMPLATE" />

</downloadList>

It has only one attribute, <name>.

Name Required Description

N The name of this downloadList. Depending on your template, you
can use this name for different purposes. For example, you may
build a dropdown list of downloads and use this name as the name
of the dropdown list.

name

<download>
This element defines one download for the report. It has following attributes:

Name Required Description

type Y The type of the download. You can name any type you want, but
since the type is used as the download file extension, you should
choose something meaningful to the file system. For example, use
“csv” for CSV download and use “xml” for XML download.

Reporting Developer Guide Version: 5.1 41

Anatomy of Reporting Engine

N The name of the download. Depends on the template; it can either
be shown as a URL link or as a dropdown list item.

name

N Description of the download. Currently it is not used by template,
but you can modify template to use it for a pop-up help window.

description

Y The template Id used to generate the download of the report. It’s
possible that the same template id may appear in multiple
transformers and so, all these templates will be parsed and
appended together, in the order of the templates defined in XML.

templateId

<printList>
This element defines a list of print-friendly available for this report. Through it is possible, it is
unlikely you will define more than one print-friendly. For each print friendly, a print friendly
link will be generated through the template.

Here is one example:

<printList name="Print friendly">

 <print

 name="Print friendly"

 description="print friendly account details"

 templateId="PRINT_TEMPLATE" />

 </printList>

It has only one attribute, “name”.

Name Required Description

N The name of this printList. It is not used by current template.name

<print>
This element defines one print-friendly for the report. It has following attributes:

Name Required Description

N The name of the print-friendly. The default template renders it
as a URL link.

name

N Description of the print-friendly. Currently it is not used by
template, but you can modify template to use it for a pop-up
help window.

description

Y templateId The template Id used to generate the print-friendly of the
report. It’s possible that the same template id may appear in
multiple transformers, so all these templates will be parsed and
appended together, in the order of the templates defined in
XML.

Reporting Developer Guide Version: 5.1 42

Anatomy of Reporting Engine

<customList>
This element defines a list of custom reports available for this report. Through it is possible, it
is unlikely you will define more than one custom report. For each custom report, a custom
report link will be generated through the template.

For example:

<customList name="Customize">

 <custom

 name="Customize"

 description="Create a custom report for contract call details"

 reportId="telco_cust_std_r4" />

 </customList>

It has only one attribute, <name>.

Name Required Description

N The name of this customList. It is not used by current
template.

name

<custom>
This element defines one custom report for the current report. Each custom report must be
itself defined a report. This <custom> tag is used to build a link to that custom report. It has
following attributes:

Name Required Description

N The name of the custom report. The default template renders it
as a URL link.

name

N Description of the custom report. Currently it is not used by
template but you can modify template to use it for a pop-up
help window.

description

Y The report id of the report used to define the custom report:
the custom report itself is a report and you must define it as a
report.

reportId

Reporting Developer Guide Version: 5.1 43

Anatomy of Reporting Engine

Reporting templates
All the report UIs are generated through Velocity templates. For information about how the
Velocity templates work, see:

http://jakarta.apache.org/velocity/index.html

CAUTION: Billing Analytics has changed some of the default Velocity templates. The most
important one is that inside “foreach” loop, the $velocityCount variable starts from 0 instead
of the default 1.

Billing Analytics offers a set of example templates that generate useful UIs. These templates
are very generic, are not tied to a particular application, and can be used as the base for your
customization work.

The templates are all defined in <EDX_HOME>/template/common directory. The lib
subdirectory includes some Velocity MACRO library files and the reporting subdirectory
includes report template files.

The following table explains the libraries that are included with the report package:

Name Description

This file defines some common MACROs used by the reporting
engine. You should use it as it is.

Lib/report_library.vm

Reporting Developer Guide Version: 5.1 44

http://jakarta.apache.org/velocity/index.html

Anatomy of Reporting Engine

The following table explains the templates that are included with the report package:

Name Description

Common/report_header.vm This is the header part of the report. Note, this is not the
header of the tiles. The tile header is usually the Navigation
Tabs. The report header usually includes the report name
and the download/print friendly/custom report links.

Common/report_body.vm This template is used to render the table associated with
the transformer. Since a report may define multiple
transformers, the template may be parsed multiple times
for a report.

Common/paging.vm This template is used to render the paging navigation part,
which has previous, forward buttons for a user to page
through the report.

Common/layout.vm This template is used to define the layout of the prompts of
the report.

Common/promt.vm This template is used to render each individual prompt of
the report.

Common/csv.vm This template is used to render the CSV format of a report.
The current CSV format is very simple and doesn’t consider
the case of how to escape the special characters like “,”.
You must write code to handle that case.

Common/print.vm This template is used to render the print friendly format of
a report.

The template is used for custom report: it displays the
custom report detail and allows you to type a name for the
report to save into database.

Common/custom_report.vm

Pre-defined context variables
When you call the IReportActionHelper.execute() method to generate reports, the
reporting engine puts a list of pre-defined context variables into the report context, which are
then available to the Velocity template.

The following table lists some of the variables you may be interested. If the overwrite flag is
Y, then you can pass a variable with the same name through ReportContext to overwrite the
default values set by ReportActionHelper.

Name Type Over
write?

Description

form Action Form N This is the struts ActionForm object currently being
processed.

Reporting Developer Guide Version: 5.1 45

Anatomy of Reporting Engine

Name Type Over
write?

Description

gifDir String Y The directory where the image files used by report are
saved, for example, the paging arrow images. It is
default to "_assets/images”.

link String N This is the URL link base of this page and it is
equivalent to the html <base> tag. Its default value
is:

HttpServletRequest.getContextPath() +
HttpServletRequest.getServletPath()

and similar to this:

http://host:port/<web-root>/report.do.

user IUser of UMF Y The current user logged in. IUser is passed in as a
session variable, “USER_PROFILE”. If it is not in the
session, we won’t put it in the context. “user” is just
used for query purpose and its absence won’t affect
the functionality of the reporting. For example, for
some reason, you may not use UMF IUser and you
can use your own user object. Note, some template,
like report_header.vm, may expect IUser to get user
name and if you don’t supply IUser, the template may
not display user name properly.

contact

Profile

IContactPro

file of UMF
Y The contactProfile is a profile of IUser named as

contact_profile. We currently use it to retrieve
user’s first name and last name. It is currently only
used in report_header.vm. Note, absence of this
information won’t affect the function of reporting
engine.

locale String Y The default value set by ReportActionHelper is the
from http session:
session.getAttribute("org.apache.struts.action

.LOCALE"). Note this is locale put into session by
Struts framework.

reportId String N The report Id of current report.

transformer ITransforme

r

N You can use transformer object to do work such as
formatting data etc. Note, you should never call
ITransformer.writeTemplate() in the template.

reportConfig IReportConf

ig

N Represents the report configuration.

dataSourceConf

ig

IDataSource

Config

N Represents the data source configuration.

dataSource

ColumnConfigs

A list of
IDataSource

N Represents the list of data source column
configurations.

Reporting Developer Guide Version: 5.1 46

http://host:port/%3Cweb-root%3E/report.do

Anatomy of Reporting Engine

Name Type Over
write?

Description

ColumnConfi

g

transformerCon

figs

ITransforme

rConfig

N Represents the transformer configuration.

transformer

ColumnConfigs

A list of
ITransforme

r

ColumnConfi

g

N Represents the list of transformer column
configurations.

operationGroup

Configs

A list of
IOperation

GourpConfig

N Represents the list of operation groups defined inside
calculator for the transformer.

chartConfigs A list of
IChartConfi

g

N Represents the list of chart configurations for the
transformer.

templateConfig

s

A list of
ITemplateCo

nfig

N Represents the list of template configurations for the
transformer.

rowlist IReportList N Represents the original data retrieved from the data
source. The data may be sorted and so the order may
be changed. Though you cannot overwrite this
variable, you can certainly change the content of the
list

groupSet Set N To support grouping, the transformer maintains a Map
of List objects. In the case of no grouping, there is
only one entry in the map, the key is the report name,
and the value is the List returned from data source; In
the case of grouping, the original list from the data
source is re-grouped into multiple lists. Each list has
the same group value, and the group value becomes
the map key. This variable is looped through in
report_body.vm to build the HTML table.

dataMap Map N This is the map of group keys to the List as described
previously.

reportContext ReportConte

xt

N The ReportContext object used to generate reports.

Note, you can’t overwrite it, but you can change the
content of it.

Reporting Developer Guide Version: 5.1 47

Anatomy of Reporting Engine

Name Name Type Type Over
write?
Over
write?

Description Description

URLEncoder N This is actually a wrapper class around
java.net.URLEncoder, the reason we do this is that
Velocity cannot invoke a static method directly through
class name, and java.net.URLEncoder doesn’t have a
constructor. Use this class to encode the parameter
values you passed through the URL.

URLEncoder

Integration with Struts/Tiles
The reporting engine can be used with any presentation framework. However, since Billing
Analytics is based on Struts/Tiles, the reporting engine has special extensions to help it
integrate with Struts/Tiles. This section describes that integration.

The following diagram illustrates how to use the reporting engine in the context of
Struts/Tiles:

Struts
Action

IReportAction
Helper

Tile

execute():IReport

IReport writeTemplate()

forward

Reporting Developer Guide Version: 5.1 48

Anatomy of Reporting Engine

Struts Action Class:
The Struts action class does following processing:

ReportContext ctx = new ReportContext()

ctx.put(…) //put whatever your stuff used in template

IReportActionHelper helper = ReportManager.getReportActionHelper()

IReport report = helper.execute(ctx, form, request, response); //IReport will

be in session

return mapping.findForward(" page.reports.report ");

It creates a ReportContext object which you can put your own objects into. These objects can
then be used in report templates.

After that, it calls IReprotActionHelper.execute() method to get an IReport object. If this
is the first time to access the report, a new IReport object will be created; if this is a sorting
or paging operation, the IReport object cached in the session will be returned. In case a new
IReport object is needed, the report data will be retrieved from the DataSource defined in the
report XML of this reportId.

For the last action of this class, control is forwarded to the tile, page.reports.report, which
is defined in the tiles definition file.

Tiles definition
Tiles are defined in the tiles-defs-reports.xml file in the WAR file of the EAR file.

<definition name=" page.reports.report "

 path="/tam/_templates/simpleLayout.jsp">

 <put name="title" value="Telco Analytics Manager" />

 <put name="header" value="/tam/_includes/header.jsp" />

 <put name="footer" value="/tam/_includes/footer.jsp" />

 <put name="actionBar" value="/tam/_includes/actionBar.jsp" />

 <put name="body" value="/tam/reporting/report.jsp" />

</definition>

The key to this tile is that the body tile is report.jsp, which generates the main body of
reporting UI.

Report.jsp
The report.jsp page is used to render the view. In fact, there is almost no HTML code in this
page. Instead, this page just invokes the Velocity template engine to parse the templates:

IReport report = (IReport)request.getSession().getAttribute(reportId);

IReport.writeTemplate(jspWriter, templateId);

//template is the one defined in report xml and default to “HTML_TEMPLATE”

Reporting Developer Guide Version: 5.1 49

Anatomy of Reporting Engine

The reporting engine goes through the Transformers defined in the report XML for this
reportId and for each transformer, parsing the template whose ID matches templateId.
Note a transformer will be ignored if it has no template with a matching templateId defined in
the transformer configuration of the report XML.

The matching templates will be parsed in the same order as defined in the report XML, and the
results will be written back into JSPWriter sequentially.

The following diagram illustrates the different View components of a typical Billing Analytics
reporting page:

Reporting Developer Guide Version: 5.1 50

Anatomy of Reporting Engine

The following diagram illustrates the details of report body:

Reporting API
The reporting API offers an interface to interact with the reporting engine. These APIs manage
common reporting features, such as sorting, grouping and paging. They also offer report
clients the flexibility to customize reporting.

The reporting API is not tied to a particular presentation framework; you can use struts and
tiles or servlets and JSP to access it. However, you may find that using struts and tiles is the
easiest way to implement your own reporting UI, because that is the default presentation
framework used for the reporting UI of Billing Analytics.

The core reporting APIs are: ReportContext, IReportManager, IReport, ITransformer,
IReportConfig and ReportActionHelper. See the Reporting API JavaDoc for more
information.

ReportContext is the carrier of information between the reporting caller and the reporting
engine. ReportManager is a factory that gets an instance of IReportManager.
IReportManager is the factory for IReport objects. IReport represents a report defined in
XML. ITransformer represents the transformer defined inside a report in XML. IReportConfig
represents the configuration information in XML.

For example, here is an example that shows how to generate a report:

ReportContext context = new ReportContext();

context.put(“form”, StrutsActionForm);

IReportManager rptmgr = ReportManager.getInstance();

IReport rpt = rptmgr.getReport(“reportId”, context);

Rpt.writeTemplate(“templateId”, Writer);

In the example, a Struts ActionForm is put into the reportContext, which means this object
is available to the Velocity template. You can use the following syntax in the velocity template:
$form.name, assume there is a name property in the form.

Reporting Developer Guide Version: 5.1 51

Anatomy of Reporting Engine

After you get an instance of IReportManager, call its getReport method to get a report. The
reported must match the one defined in report XML. It will return an object that represents
the report defined in the XML with the same reportId.

After you get an instance of IReport, it calls its writeTemplate() method to parse the
Velocity template identified by templateId in the report XML, and writes the content into a
Writer output. This method actually loops through all the transformers in the report and calls
transformer.writeTemplate(). Multiple templates may be parsed. If the same template Ids
appear in different transformers, then the content of the parsed templates will be appended
together in the order in which they appear in the report configuration XML.

You can also call the individual APIs of ITransformer to do sorting, grouping or paging.

However, it is tedious to call these APIs: they are usually used for back-end based
applications. For the common UI features, such as sorting/grouping/paging, the reporting API
offers a web helper class, ReportActionHelper, to shield you from the low level APIs. This
class is a façade to the Report Engine APIs. In most cases, your struts action should call this
helper class instead of calling the lower-level reporting APIs. However, you can always access
the report APIs directly if you want to. The action used by the product,
Com.edocs.app.reporting.actions.ReportAction, calls this helper class. You can do a similar
thing in your action class.

Reporting Developer Guide Version: 5.1 52

Reporting Developer Guide Version: 5.1 53

3 Core Reporting Features

This chapter describes some of the most important features of reporting engine, and how to
use them in your application.

Sorting
Sorting is a built-in feature of the report engine. It is available when you use the
ReportActionHelper class from your action class. With the reporting XML and template,
enabling sorting is as easy as configuring a transformer’s column. For example:

<column sortable=”true” …/>

Only single column sorts are supported. The sorting is done in-memory, to eliminate accesses
to the data source.

Set the column attribute sortable to true. The reporting engine reads the configuration,
instructs the template to generate a sort-able link for the corresponding table column name,
and the ReportActionHelper class calls the ITransformer.sort() API.

When a column is defined as sort-able, the report_body.vm template renders the column of
the HTML table with a URL link. For example:

<a

href="$link?sortColumn=$x&reportId=$reportId&transformerId=$transformerConfig.i

d¤tSortColumn=$currentSortColumn&ascending=$ascending¤tGroup=$group

Index">

The following table describes the parameters in the URL:

Parameter Description

$link The URL context base. It is set to

http://host:port/<web-context>/report.do in
ReportActionHelper class, where <web-
context> is the web context you defined in your
EAR file.

SortColumn=$x This is the column index of the column being
sorted in the transformer configuration.

Reported=$reported The report id of the report.

TransformerId=$tranformerConfig.id The id of the transformer currently being sorted

CurrentSortColumn=$currentSortColumn This is the current column being sorted in this
transformer.

Ascending=$ascending True or false; defines the sort order.

Not used but may be used for grouping. CurrentGroup=$groupIndex

http://host:port/%3Cweb-context%3E/report.do

Core Reporting Features

The web component must process the URL request, and calls the ITransfomer.sort()
method to sort the column. The Helper class, ReportActionHelper does this work for you.

Just call the ReportActionHelper in your struts action. It processes this request and calls
Itransfomrer.sort() to sort the column, then re-renders the newly sorted report for you.

Paging
Paging is a built-in feature of the reporting engine. Use the ReportActionHelper class and the
default templates (or templates based on the defaults) to access that function. The main
paging template is paging.vm, which is included in report_body.vm.

Paging is enabled when:

 you specify pageSize for transformer in report xml.

 <transformer <pageSize=”20” />

Since reports are loaded and cached in the user session, paging is done on cached data. This
method of paging doesn't scale when there are a large number of rows of data. For that case,
you must limit the number of rows retrieved using the maxRows attribute of the <query>
element.

Dynamic SQL
Some situations will require you to generate SQL dynamically. For example, you may have a
report that searches the call details. One of the criteria is the call date. You want to search for
call date equals a particular date, or you want to search for call dates between a start date
and end date. Since the where clause is different for these two search cases, without
dynamically generated SQL, we will be forced to write two reports with two SQL clauses.
Dynamically generated SQL can solve this problem easily; the where clause of the SQL
statement can be generated based on the current operation (equal or between), so you will
only need one report.

The reporting engine allows you to write an SQL query in a Velocity template, so that the SQL
query will be parsed before it is executed. You must set the dynamic attribute of <query> to
true. For example:

<query dynamic=”true”> <![CDATA[

 select * from my_table where #if ($equal) date = ? #else date >= ? and

date <= ? #end

]]></query>

$equal is a variable set by the caller through the IreportActionCallback interface. It is true
if the user selects the “date equal” operation, and false if the user chooses the “date between”
operation.

Note that the number of ?s is different based on operation types: one for equal and two for
between. To solve this problem, the report engine supports binding a Collection object to ?s.
The report engine loops through the Collection and binds each element to ?s.

Reporting Developer Guide Version: 5.1 54

Core Reporting Features

For example, as in the preceding example, here is an example of how to bind:

<inputBinding object=”form” property=”parameter(dateList)” />

The method form.getParameter(“dateList”) returns a list of Date objects, and each date in
the list is bound to the ?s in the query. The caller of reporting engine is responsible for
collecting the list of dates and passing them to ActionForm.setParameter(“dateList”,
dateList) (This assumes that ActionForm is as map-backed form, and has a pair of
setParmeter and getParameter methods).

Another common use case is to generate the “in” operation in a where clause. The number of
?s will be based on the size of a Collection object.

For example, assume that we have a list of categories saved in a List, and we want to
generate a where clause:

Where category in (?,?,..,?,?)

Where the number of question marks is the size of the List.

When doing the input binding, there is only one List, but loops through the List to set the ?s in
the SQL as appropriate. This ensures that the number of question marks match the number of
variables passed in.

There is a macro to help you generate the number of ?s based on the collection size:

#macro getSQLVariablesIgnoreNull($list $columnName)

Which generates the list.size() number of ?s. For example:

select * from my_table where date in getSQLVariablesIgnoreNull($dateList

“date”)

If the dateList size is 2, and it is Oracle database, then the result is:

select * from my_table where date in (NVL(?,date), NVL(?,date))

Where NVL means ignore this ? if it is null.

Internationalization/Localization
To support internationalization, the following points must be considered:

 Regular text on the report UI

 Some text coming from data source

 Chart: title and amount format, etc

 Date format, number format, etc.

Resource bundles are used to support internationalization. This section discusses
internationalization for velocity templates.

Since the reporting engine is using Velocity templates, we cannot take advantage of the JSP
<message> tag or Struts’s internationalization framework. Instead, the reporting engine has
its own internationalization mechanism specially designed for velocity templates, which has
following features:

Reporting Developer Guide Version: 5.1 55

Core Reporting Features

 Allows a user to specify any resource bundle, just like Struts config does.

 Allows a user to format a string as Y does, for example, "My name is {0}".

 Provides a seamless integration with Struts if it is used. For example, sharing the same
resource bundle.

 Offers a better way to handle default messages than Struts. In Struts, a not-found
resource is either returned as null or as ???<locale><resource_key>???. With the
reporting engine, you can configure it to return the key itself when the value of the key is
not found.

Resource bundle definition
The resource bundle files used by the reporting engine templates are defined in the report XML
files under the <reports> tag. The following example comes with Billing Analytics, and is
defined in telco_global.xml.

<localizer enableMessageResources="true" defaultCode="1">

 <resourceBundle

 name="com/edocs/app/reporting/resources/ApplicationResources" />

</localizer>

You must use "/" instead of "." in the name of the resource bundle, which differs from Struts
message resource.

The "<localizer>" tag defines how text will be localized. You can define multiple
<resourceBundle> tags. Each resourceBundle tag defines a resource bundle file, and its
name is defined by name attribute.

When the reporting engine searches for the resource bundle, it first checks whether this
bundle exists as a file under EDX_HOME, or the current directory if EDX_HOME is not defined.
If that fails, it will try to find it as a class.

The attribute enableMessageResources enables you to use Struts MessageResource to search
for a resource.

The attribute defaultCode enables you to define the default behavior if a resource is not
found. "0" means to use the key as the default value; "1" means to use Struts notion of
"???<locale>.<key>???" and "-1" means throw an exception. The default value for
defaultCode is "0”.

The search order for finding a resource is:

1 If enableMessageResources is true, and the MessageResource does exist (it may not exist
for non-Struts app), search the resource from MessageResource, return if found.

2 For each resource bundle defined in resourceBundle, load the bundle as either file or
class, and then search the resource in the order it appears, return if found.

3 If nothing is found, use defaultCode described previously.

Reporting Developer Guide Version: 5.1 56

Core Reporting Features

If you check the resource bundle name in the struts configuration file, you will notice that the
same file, com/edocs/app/reporting/resources/ApplicationResources, is defined in both the
Struts and report XML files. The only difference in the definitions is the file separators:
reporting uses “/” and Struts uses “.”. The same file is in two locations in order to support
batch reporting. A batch job is not a Web application, so it does not have access to Struts
MessageResource. This is also true if you are using the reporting engine at the EAR level. For
example, you can generate an email message from an MDB event hander or from an EJB.
However, if you are using Struts, and you using the reporting engine for online applications
only (not batch reporting), then you don't need to define a resourceBundle, because the on-
line web application can always find resources from MessageResource.

Because the same resource is defined twice, both Struts and the reporting engine load the
same resource bundle and cache them (twice). Usually, this is not a problem, because a
resource bundle file is small. However, if you do want to reduce memory usage, you can put
all the template related resources into one file. Or, you can be more selective by putting only
the batch report/email/AR related resources into one file, and load it by using the
resourceBundle tag in report xml.

We recommend that you define the resource bundle as flat file under EDX_HOME. That allows
you to modify the file easily and reload it by using this URL without restarting:

http://localhost:7001/tbmb/tam/reporting/reloadReportConfig.jsp

If you want to use a struts message source, which is loaded from the classpath, you can
disable it during the development stage by setting enableMessageResource to false and
loading a resource bundle from file system.

Setting defaultCode to "1" makes it easy to find all the text not being internationalized
properly. You may want to set it to "0" for demonstration purposes.

Localization of Text
The localization of text in report is done through the #localize macro, which is defined in
reporting_library.vm. It is defined as:

#macro (localize $name)

For example, in your template, you can call this macro like this:

#localize(“name”)

Which searches the report bundle to find a key with a value that matches “name”.

All the texts defined in report.xml are treated as resource bundle keys. For example, report
names and column labels. In the report template files, all the texts are localized through the
#localize macro.

Localization of Data From a Data Source
By default, the text data retrieved from data source is not localized. You need to specially turn
on this option. In this case, the text data from data source will be used as keys to search
reporting resource bundles.

Reporting Developer Guide Version: 5.1 57

http://localhost:7001/tbmb/tam/reporting/reloadReportConfig.jsp

Core Reporting Features

The localization of data from data source is done through the “localize” attribute of
transformer column configuration in report xml. See report XML description above.

<column id=”call type” localize=”true” />

Which means that the column data retrieved from the database will be localized.

Localization of Charts
The chart components (chart title, labels and data) are localized by the
ITransformer.writeChart() method. The chart tile is searched as a regular resource bundle
name. Label and data are localized if the localize attribute is set to true for the corresponding
columns.

Locale
To support internationalization, you must pass the Locale object to ReportContext by calling
setLocale(). If ReportContext doesn’t have a locale defined, when you call the
IReportActionHelper.execute() method, it puts the Struts locale object in session.

Dynamic Localization
Velocity is used to support localization. Velocity acts similar to the way
java.text.MessageFormat does, and achieves the same result. The reporting engine parses
the resource value as a Velocity template, whose resource key ends with ".vm", and returns
the parsed value. For example,

rpt.test.vm=My name is $name.

Object "name" should come from the report context.

This feature can make any text in your report dynamic. For example, if you are on the account
detail page, to display the report tile as “Account detail for <account_number>” instead of the
default text, define the report title as a .vm resource bundle. For example:

rpt.accountDetail.title=Account detail for $form.accountNumber

Where accountNumber is from the Struts ActionForm.

Reporting Developer Guide Version: 5.1 58

Core Reporting Features

Object Data Source
You may often not have access (either physically or politically) to the data base. So the
reporting engine provides an API to get back a list of Objects, which can be presented in a
table with paging or sorting. The reporting engine offers an Object data source to provide that
feature.

The object data source is defined as:

<dataSource id="ds1" uri="object:reportList">

 <columns>

 <column id="id" type="java.lang.String"/>

 <column id="name" type="java.lang.String"/>

 </columns>

</dataSource>

This example states that there is an object called reportList in ReportContext, and you
must put that object into ReportContext before calling IReportActionHelper. This object can
either be a List (java.util.List), List of objects, or a List of JavaBean Objects.

If it is a List of List of objects, then it is assumed that the objects in the inner list are basic
Java objects, such as String or Integer. They must also match the types defined in the
dataSource column.

Usually, the object is a List of JavaBean objects. For example, as shown in the example XML,
reportList is a List of IReportConfig objects (see the report API javadoc for more
information). The reporting engine uses reflection to get the property values of the JavaBeans,
whose property names match the column Ids defined in the example XML, and converts this
List of JavaBeans into a List of Lists of JavaBean property objects (more precisely, into a
IReportList of IReportRow objects). Here, it is also assumed that the JavaBean properties
are basic Java types. In the example, for each IReportConfig object in the list, the report
engine calls IReportConfig.getId() and IReportConfig.getName(), and converts the List of
IReportConfig objects into an IReportList object. Each element in IReportList is an
IReportRow object. Each IReportRow includes two elements, the report Ids and the report
names.

Then define the rest of the report XML, including transformers, as usual.

The object data source enables the reporting engine to connect to other data sources currently
not directly supported by the reporting engine. For example, you may have a CORBA interface
that retrieves financial data from a legacy system. You can still use the report engine to
present the data, as long as you can convert the data into a List of Lists of objects.

DSV Data Source
This feature allows you to read a delimiter separated string as a data source. Here is the URI
format of this data source:

“dsv:inline:,:|”

Where “dsv” stands for Delimiter Separated Values; “inline” means that the data can only be
embedded in the report XML (support is not available for reading data from a file); ‘,’ means
the column separator, and “|” means line separator.

Reporting Developer Guide Version: 5.1 59

Core Reporting Features

For example:

<dataSource id="ds" uri="dsv:inline:,:|">

 <query><![CDATA[0,Business|1,Personal]]></query>

 <columns>

 <column id="value" type="java.lang.Integer"/>

 <column id="name" type="java.lang.String"/>

 </columns>

</dataSource>

The data source will be transferred into an IReportList with two IReportRows. The first row
has values of “0” and “Business”, and second row has values of “1” and “Personal”. You can
use this data source to implement the “split-billing” feature. For example, you can generate a
dropdown list for call details and allow the user to change a call from personal to business or
vise versa.

Drill down and Breadcrumb link:
The reporting engine allows you to build a breadcrumb link while you are drilling down from
report to report.

To build drilldown link, you need to define a <link> for a transformer column:

<report id=”testrpt0”>

 <transformer id=”tr1” dataSourceId=”ds1”>

 <column id="invoice_number" name="Invoice number" >

 <link title="Drill down to the invoice detail."><![CDATA[

 report.do?reportId=testrpt1c&invoiceNumber=$row.get(1)¶meter(parentNo

de)=root

]]></link>

 </column>

 </transformer>

</report>

The <link> element instructs the reporting engine to build a drilldown link for each account
number. You must construct the link, which should point to another report. The link will be
parsed as a Velocity template.

This link also has a “title” attribute, which allows you add an HTML “title” to the link. In most
browsers, the title will be displayed as popup help.

When you click on an account number, you will drilldown to “testrpt1” report. However, by
default, there is no breadcrumb link built to allow you to go back to the “testrpt0” report. To
enable the breadcrumb link, add “enableDrillUp”=true to the column definition:

Reporting Developer Guide Version: 5.1 60

Core Reporting Features

<report id=”testrpt0”>

 <transformer id=”tr1” dataSourceId=”ds1”>

 <column id="invoice_number" name="Invoice number" “enableDrillUp”=true >

 link title="Drill down to the invoice detail."><![CDATA[

 report.do?reportId=testrpt1c&invoiceNumber=$row.get(1)¶meter(parentNo

de)=root

]]></link>

 </column>

 </transformer>

</report>

When this flag is set to true, and you drilldown from testrp0 to testrpt1, there will be a
breadcrumb link in the testrpt1 view which allows you to go back to the testrpt0 report.

Currently, you must drill down from one report id to another report id , but the breadcrumb
link won’t work if you try to drilldown to the same report. This feature makes sense when you
are viewing the same report but drilldown through hierarchy.

Reporting Developer Guide Version: 5.1 61

Reporting Developer Guide Version: 5.1 63

 4 Customizing the Reporting Engine

This chapter describes how to customize the reporting engine. The examples use Struts and
Tiles for the presentation framework, but the same techniques can be used for any other web
presentation framework.

You may wish to customize the reporting engine to add the following features:

 Write your own Report XML

 Modify report templates

 Extending reporting engine through Reporting API

Write Your Own Report XML
The first step in creating your own report is to create your own report XML. Each report XML is
project-specific. The best way to start is to use existing report as a base for your modifications

CAUTION: The reporting engine has a DTD, but is not used to validate the report XML.
Therefore, make sure you do not to miss required attributes or XML elements.

You can create one report XML, which includes all the reports for your project, or you can
create one XML file for each report. Remember to register all your report XML files in the
reportList.properties file, and to give each XML file a unique name.

After creating your own report XML you can test it through the default template. Name your
report id with a prefix of “telco_std”, which will cause it to be loaded into the standard billing
report list of Billing Analytics

CAUTION: Make sure that each report has a unique name across all the reports in all report
XMLs, or else a latter one will overwrite the previous one.

Customize the Report Template
After you have created a report XML and familiarize yourself with how the report engine
renders the report, you may wish to customize the report template to generate the look and
feel of your project.

A set of templates are provided with the report product. To customize them, make a copy of
each template, put it into a new template directory, and change your report XML to point to
the new directory.

Feel free to add new objects into the report context (and thereby, the velocity context)
through the IReportActionCallback interface. But do not to overwrite the existing context
variables. One technique is to use a special prefix (for example, “_”) for your custom context
variables.

Customizing the Reporting Engine

The CSS for the reporting HTML is defined in a file called skin.css (see Reporting Package on
page 13 for more information). You can modify this file to change the CSS of the report UI.

Write Your Own Action Classes and
Report Form.
You should write your own Action class and action form for your reports. Use the
ReportActionHelper class to take care of common issues such as sorting and paging.

When writing your own action class, you must call the ReportActionHelper.execute()
method. See the preceding section about Integration with Struts and Tiles for details about
how to invoke this method.

When defining your own Struts ActionForm, you can make the form map-based, which allows
you to pass any parameter into the reporting engine without explicitly adding a set of get and
set methods. The only downside to this method is that a map-based property cannot be
passed into JavaScript for client side validation.

For example, you can define two map methods: public Object getParameter(String
name) and void setParameter(String name, Object value). To use these parameters, in
an HTML form or URL, use a notion similar to this:

“parameter(contractNumber)=123456”

Which passes the contract number to struts, which calls setParameter() on your ActionForm
to put the contractNumber into the map. This parameter can either be used as an SQL data
source input binding or used in template.

To retrieve the parameter as an inputBinding, use:

<inputBinding object=”form” property=”parameter(contractNumber)” />

To retrieve the parameter from the template, use:

$form.getParameter(“contractNumber”).

Packaging
You can package your Struts action classes as usual at the WAR level. For struts forms, if you
are not using batch report, then you can package them at the WAR level, but if you do use
batch report, the forms must be accessible by non-web components such as the Common
Center batch report job. In that case, you must package your report forms at the EAR level.
For example, make them part of the reporting-ext.1.2.1.jar file.

You must register your report XML files in the reportList.properties file, and put the report XML
files in <edx_home>/config/rpt. However, it is possible to put the report XML files under the
other sub-directories of <edx_home>.

Reporting Developer Guide Version: 5.1 64

Customizing the Reporting Engine

Hiding Report Columns and
Manipulating IReport
After you call IReportActionHelper and get back an IReport object, you can manipulate the
object before forwarding it to report.jsp.

For example, you may want to hide some columns based on certain conditions. Get the
IReportConfig object from IReport, find the ITransformerColumnConfig of the
corresponding columns, and set the “isHidden” attribute based on your conditions.

Development Tips
The following list of development tips can help you using reporting engine.

Reloading report xml and templates without re-starting the
server
If you change the report XML, you can use following URL to reload it:

http://localhost:7001/tbmb/tam/reporting/reloadReportConfig.jsp

When you change the Velocity templates, the templates should be loaded by the Velocity
engine automatically. However, because of browser caching issues, sometimes you may need
to restart the server or clean up the browser’s cache.

If you are putting the resource bundle files under EDX_HOME and load them through
<localizer>, then the resource bundle can also be reloaded with preceding URL.

CAUTION: The URL won’t work in a clustered environment, because it only refreshes the
cache in one JVM.

Reporting Developer Guide Version: 5.1 65

http://localhost:7001/tbmb/tam/reporting/reloadReportConfig.jsp

Reporting Developer Guide Version: 5.1 67

 5 Questions and Answers

When should I use the report engine?
If you are working on the UI, you should consider using the report engine whenever you want
to present a tabular table with sorting and paging functionality. For a non-tabular based UI,
you should use JSP files.

Also, the reporting engine is a great tool for generating dynamic text files, such as AR files or
email content.

Is Velocity better than JSP?
This question is hotly debated. Our experience is that Velocity is much less powerful and
complex than JSP and follows MVC module closely. This forces you NOT to put business logic
in the template. However, because of this, you may find that Velocity is less convenient than
JSP and sometimes can be awkward to use. For your application, we recommend that you
stick with JSP for most parts and only use Velocity templates for reporting related UIs.

Then why use Velocity instead of JSP at first place?
The reporting engine uses Velocity instead of JSP because:

 Velocity offers a better MVC module, which keeps most of the business logic in the core
reporting engine APIs.

 The reporting engine is meant to be used by both front end and back end applications. For
back end applications, JSP is not available.

 The views (templates) should be publishable and versioned. This is important if you want
to use the reporting engine to present bills. We can use one set of templates for bills in
one period, and change to another set of templates for another period. This feature is
disabled in the current application, but it will be enabled in a future version. Note that
there is no easy way to publish JSP pages.

Can reporting engine generate a PDF view?
The reporting engine can only generate a text based view, such as HTML, CSV and XML. A
future version of reporting engine may support PDF view.

Can I download a newer version of Velocity and use it to
replace the one in Billing Analytics EAR?
This is not recommended. First, the new Velocity version has not been tested with Billing
Analytics. Second, the default velocity.properties has been changed for Billing Analytics. These
changes include: the velocityCount starts from 0 instead of the default 1, and the templates
can be loaded as file and also as class.

Questions and Answers

Can I define my own data source?
Not currently. The easiest way to get around this is to retrieve your data as a List of objects
and then use the Object Datasource feature to present it through the report engine.

Can I extend report XML to add my own custom tags?
Not currently. However, it is possible that in the future release, we may add flexible attributes
to allow you pass in your custom information into reporting engine.

Reporting Developer Guide Version: 5.1 68

	Contents
	1 Reporting Engine Overview
	About the Reporting Engine
	Reporting Engine Features
	 Reporting engine architecture
	Reporting Engine Object Model

	2 Anatomy of Reporting Engine
	Reporting Package
	 reportList.properties
	Reporting XML
	<reports>
	 <localizer>
	<resourceBundle>
	<prompts>
	<templates>
	<template>
	<report>
	<dataSource>
	<query>
	<inputBindings>
	<inputBinding>
	<prompts>
	<block>
	<group>
	<select>
	<checkBox>
	<radio>
	<text>
	<image>
	<label>
	 <reset>
	<submit>
	<columns>
	<column>
	<transformer>
	<columns>
	<column>
	<link>
	<templates>
	<template>
	<groups>
	<group>
	 <column>
	<calculator>
	<operationGroup>
	<operation>
	<charts>
	<chart>
	<datasets>
	<dataset>
	<column>
	<xlabel>
	<column>
	<downloadList>
	<download>
	<printList>
	<print>
	<customList>
	<custom>

	Reporting templates
	Pre-defined context variables
	Integration with Struts/Tiles
	Struts Action Class:
	Tiles definition
	Report.jsp

	Reporting API

	3 Core Reporting Features
	Sorting
	Paging
	Dynamic SQL
	Internationalization/Localization
	Resource bundle definition
	Localization of Text
	Localization of Data From a Data Source
	Localization of Charts
	Locale
	Dynamic Localization

	Object Data Source
	DSV Data Source
	Drill down and Breadcrumb link:

	4 Customizing the Reporting Engine
	Write Your Own Report XML
	Customize the Report Template
	Write Your Own Action Classes and Report Form.
	Packaging
	Hiding Report Columns and Manipulating IReport
	Development Tips
	Reloading report xml and templates without re-starting the server

	5 Questions and Answers

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings true
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 100
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

