

MCA Services Developer
Guide
Version 2005, Rev. B

December 2005

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404

Copyright © 2005 Siebel Systems, Inc.

All rights reserved.

Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in
any way, including but not limited to photocopy, photographic, magnetic, or other record,
without the prior agreement and written permission of Siebel Systems, Inc.

Siebel, the Siebel logo, UAN, Universal Application Network, Siebel CRM OnDemand,
TrickleSync, Universal Agent, and other Siebel names referenced herein are trademarks of
Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered
trademarks of their respective owners.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are
optional and for which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software implementation
may differ from descriptions in this guide. To find out more about the modules your
organization has purchased, see your corporate purchasing agent or your Siebel sales
representative.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation,
delivered subject to the Department of Defense Federal Acquisition Regulation Supplement,
are “commercial computer software” as set forth in DFARS 227.7202, Commercial Computer
Software and Commercial Computer Software Documentation, and as such, any use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation shall be
subject to the restrictions contained in the applicable Siebel license agreement. All other use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions
contained in subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted
Rights (June 1987), or FAR 52.227-14, Rights in Data—General, including Alternate III (June
1987), as applicable. Contractor/licensor is Siebel Systems, Inc., 2207 Bridgepointe Parkway,
San Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in this
documentation and in Siebel Business Applications Online
Help to be Confidential Information. Your access to and use
of this Confidential Information are subject to the terms and
conditions of: (1) the applicable Siebel Systems software
license agreement, which has been executed and with which
you agree to comply; and (2) the proprietary and restricted
rights notices included in this documentation.

 MCA Services Developer Guide Version 2005, Rev. B

Contents

1 What’s New in This Release

2 MCA Services Overview

Channel Management 17

Clients 17

Channels 17

Protocols 17

Channel Manager 17

DataPacket 17

XML 18
Financial Component Framework 18
Client to Financial Component Communication 19

Transforming the DataPacket into the Protocol format 19

Specifying the Financial Component 20

Invoking the Financial Component 20

Example of Client to Financial Component Communication 20

Requester Router to EJB Sequence Diagram 22

EJB to Financial Process Integrator Sequence Diagram 23
Financial Process Integration 24

TxnHandler Find() Sequence Diagram 26

TxnHandler Amend() Sequence Diagram 28
Security Provider Framework 28

User Authentication 29

Session Management 29

Access Control 29

3

Contents

Enterprise Services 29

Required Services 30

Optional Enterprise Services 30
Front-End Framework 32
Administration Tools 32

3 Channel Management

RMI and HTTP 33

Class Descriptions 35

Communicating over HTTP 38

Thin clients using HTML forms 38

Configuring BankframeResource.properties 40

Developing Custom Channel Clients and Servers 42

Thin and Fat Client Examples 42
XML B2B 49

Package: com.bankframe.ei.xml 50

Configuring BankframeResource.properties 53

Developing Custom XML and XSL Codecs 54

The DPTPCodec transmission format 55

XML and XSL Examples 56
Web Services 59

MCA Services Web Services 59

Web Services Application Servers 61

Class Descriptions 61
Session Affinity 63

Configuring Session Affinity 63

4 Financial Process Integration

About Financial Process Integration 65

Overview of Interfacing with a Host System 66

MCA Services Developer Guide Version 2005, Rev. B 4

What’s New in This Release Channel Management

Components of the Financial Process Integrator 66

Interaction of Financial Process Integrator Components 68
Financial Process Integrator Meta-Data 69

Request Transaction Fields 70

Example Transaction Request 72

Processing Host System Response 73

Response Meta Data Mapping 73

Response Transaction Fields 75

Caching the Meta-Data (Transaction Fields) 76

TransactionField Interface 76

Example Response Mapping 77

Support for Tier Fields 79

Deeply Nested Cobol Copybooks 80

Mapping a Subset of Transaction Fields 82

Recurring Fields 83

Handling Error Conditions 84

Example Error Condition 86

Transaction Field Naming 88
Mapping Entity Beans to Transactions 89

One Transaction to One Entity 90

One Transaction to Many Entities 90
Entity Bean Persistence and the FPI 90

com.bankframe.ejb.bmp 90

Writing a Persister 93

PersisterTxnMap 100

Configuring BankframeResource.properties 102
Financial Process Integrator Caching 103

Host Cache Examples 103

 MCA Services Developer Guide Version 2005, Rev. B 5

Contents

Configuring BankframeResource.properties 103
Financial Process Integrator Engine 104

Financial Process Integrator Engine Interface 104

Transaction Request DataPacket 105

Transaction Request Processing Steps 106

Transaction Data-Format Class 106

TransactionHandlerUtils helper class 112

DataFormatUtils helper class 113

Transaction Route Entity Bean 114

Destination Entity Bean 115

Posting the Transaction Request data Object to the Host Connector 117

Configuring BankframeResource.properties 117

Financial Process Integrator Testing using Test Servlet 118
EIS Connectors 122

MCA Services Connector Architecture 122

JCA Support 131
Store and Forward 133

Overview 134

Destination Entity Bean 135

DestinationEjbMap Entity Bean 135

Store and Forward Classes and Package Structure 136

Forcing the host online or offline 143

Exceptions 143

BankframeResource.properties settings 144

Implementing Store and Forward 145

Teller Example of Store and Forward 149

About Branch Teller Offline Transaction Processing 153
Financial Process Integrator Examples 153

MCA Services Developer Guide Version 2005, Rev. B 6

What’s New in This Release Channel Management

Extracting the Source Code for the FPI Examples 153

Launching the FPI Examples 154

The CustomerSearch Example 154

The AccountSearch Example 173
Financial Process Integrator Advanced Topics 179

Handling Complex Amend and Find Operations 179

Handling Create and Remove Operations 180

An example data formatter class 181

5 Enterprise Services

Security Provider Framework 185

Security Provider Framework Classes and Package Structure 185

Configuration of the Security Provider 185

Security Providers included with MCA Services 186

Implementing a Security Provider 187
User Authentication 188

The logon process 188

The logoff process 189

com.bankframe.services.authentication package 189

Implementing a custom authentication mechanism 191

Registering Authentication Mechanisms with MCA Services 195

Implementing a client application that can authenticate against MCA 195

LDAP Authentication 198

Introduction to LDAP Authentication 198

RDBMS Authentication 199

Encrypting Sensitive Data 200
Session Management 200

Use Cases 201

com.bankframe.services.sessionmgmt 202

 MCA Services Developer Guide Version 2005, Rev. B 7

Contents

Implementing a session management aware client application 203

Implementing a custom session management implementation 204

Configuring and Administering Session Management 204

Standard Session Management Implementations 205
Access Control 205

com.bankframe.services.accesscontrol 207

Implementing a custom access control mechanism 208

LDAP Access Control Mechanism 210

EJB Access Control Implementation 212

User and Group Administration Session Beans 216
Routing 226

How MCA Services Routing works 227

The com.bankframe.services.requestrouter package 228

The com.bankframe.services.route package 229

Route Administration Session Bean 230

Request Contexts 233

Request Context Example 236
Remote Notification 237

How Siebel Notification Works 237

Remote Notification API 241

The com.bankframe.services.notification.targetselection package 243
Internationalization 244

MCA Internationalization Framework 245

Examples 249

References 250
Logging 251

Classes and Package Structure 251

Using the Logging Service 253

The Logging context 255

MCA Services Developer Guide Version 2005, Rev. B 8

What’s New in This Release Channel Management

Techniques for problem resolution using the logging framework 256

Configuring the Logging Service 258

Integrating with other Logging Frameworks 259

Deprecations 261

References 261
Audit 261

Audit Classes and Package Structure 261

Configuring the Audit Service 262

Configuring Routes to the Audit Service 263

Calling the Audit Service from within custom code 263

Exceptions in the Audit Service 264
Timing Points 264

The com.bankframe.services.trace package 264

Configuring Timing Points 269
Mail 272

Classes and Package Structure 272

DataPacket Structure 273

Using the Mail Service 274
Ping 275

Classes and Package Structure 275

DataPacket Structure 275

Using the Ping Service 276
LDAP Connectivity 277

com.bankframe.ei.ldap 278

Sample Bean Managed LDAP based Entity Bean 280

Advanced Topics 286
Data Validation 289

Classes and Package Structure 289

Examples 293

 MCA Services Developer Guide Version 2005, Rev. B 9

Contents

Peripherals Support 299

MCA Device Base Classes 300

MCA device implementations 303

Implementing a new type of MCA Device 317

Hardware Requirements 318

Software Requirements 319

Installation and configuration of required hardware 319

Installation and configuration of required software 328

Topology 331

Future development 333

References 333
Printing Framework 334

com.bankframe.services.print 334

Generating the Service 334

Calling the Service from another Session 335

Accelio Architecture 336
Caching Framework 339

com.bankframe.services.cache 341

Cache and Cache Index Interaction 349

Cache and CachePolicy Interaction 350

Creating persistent caches 351

Configuring the Caching Framework 351
Dynamic Configuration 352

com.bankframe.services.resource 353

Using the dynamic configuration framework 359

6 Appendix: Glossary

MCA Services Developer Guide Version 2005, Rev. B 10

 MCA Services Developer Guide Version 2005, Rev. B

1 What’s New in This Release

What’s New in MCA Services Developer Guide, Version 2005, Rev. B
Table 3 lists changes in this version of the document to support release 2005 of the software.

Table 1. What’s New in MCA Services Developer Guide, Version 2005, Rev. B

Topic Description

About Branch Teller Offline Transaction
Processing, page 153

Added overview on how offline transactions are
processed when the host is offline or when a
HostConnectivityException is encountered.

What’s New in MCA Services Developer Guide, Version 2005, Rev. A
Table 3 lists changes in this version of the document to support the stand-alone release of Foundation
Services version 2005.

Table 2. What’s New in MCA Services Developer Guide, Version 2005, Rev. A

Topic Description

MCA Services Overview, page 17 Added descriptions for the sequence diagrams.

Launching the FPI Examples, page 155 Added the URL for launching the Financial Process
Integrator examples.

What’s New in MCA Services Developer Guide, Version 2005
Table 3 lists changes in this version of the documentation to support release 2005 of the software.

Table 3. What’s New in MCA Services Developer Guide, Version 2005

Topic Description

Front End Framework The Front End Framework chapter has been
removed as this framework is now deprecated.
Refer to the Screen Orchestrator Guide for front
end development.

Financial Component Framework, page 18 The Financial Component Framework overview has
been updated to include the abstract method
processDataPackets(). This method is defined to

11

What’s New in This Release Channel Management

Topic Description

cater for multiple DataPackets in a request, takes a
Vector of DataPackets as a parameter and returns
a Vector of DataPackets as a response.

When data needs to be passed to a Financial
Component, MCA Services invokes the
processDataPackets() method. When the
Financial Component has completed it returns its
response data as a Vector of DataPackets to MCA
Services. A Financial Component
processDataPackets() method may choose to
invoke its processDataPacket() method if there is
only one DataPacket in the request.

Caching Framework, page 27 Non-key Cache indexing support has been added to
the caching Framework to optimally retrieve data
from a cache when the key is not known.

Configuring HTTPSClient, page 37 The SSL protocol and SSL provider can now be
configured. The configuration depends on the
application server being used. The following two
BankframeResource.properties settings need to be
configured for the HTTPSClient:
channel.https.ssl.protocol=<class name of
the SSL protocol> and
channel.https.ssl.provider=<class name of
the SSL provider>.

Meta-Data, page 63 The ResponseIndex entity EJB has been added for
modeling Meta-data information on which host
transaction responses should be indexed.

Interaction of Financial Process Integrator
Components, page 64

The persister lookup of the cache now supports
both cache lookup by primary key and cache
lookup by an index.

RESPONSE_META_DATA table, page 74 ACCOUNT_NUMBER has replaced ACCOUNT_NAME in the
DP_FIELD and TXN_FIELDNAME columns of the
RESPONSE_META_DATA table.

PERSISTER_TXN_MAP table, page 96 The INDEX_NAME column has been added to the
PERSISTER_TXN_MAP table to support cache
indexing. The INDEX_NAME value specifies the name
of the cache index to use to look up request data in
the cache.

CustomerSearch Session EJB, page 151 An additional example finder method has been
added to the CustomerSearch Session EJB. This
method uses cache indexing as there is no
corresponding host transaction to do a lookup by
customer first name.

MCA Services Developer Guide Version 2005, Rev. B 12

What’s New in This Release Channel Management

Topic Description

Modeling the Customer and Address Entity
Relationship, page 157

MasterEntityPersister now extends
CacheIndexPersister therefore its EJB
implementations now support cache indexing.

Configuring the PERSISTER_TXN_MAP Table
for CustomerSearch, page 160

The cache index CUSTOMER_FIRST_NAME_INDEX and
the finder method findByFirstName have been
added to the sample PERSISTER_TXN_MAP table
configuration for the Customer entity EJB.

Configuring the RESPONSE_INDEX table for
CustomerSearch, Page 167

The RESPONSE_INDEX table has been added to
support cache indexing. This table must be
configured to specify the index structures.

Configuring the INDEX_META_DATA table for
CustomerSearch, page 167

The INDEX_META_DATA table has been added to
support cache indexing. This table must be
configured so that responses from the host system
are indexed when cached.

Internationalization, page 238 Support for localizable arguments has been added
to the MCA Services messaging framework.
Localizable message arguments in
BankframeMessages.properties are appended
with an l8n qualifier to indicate that the argument
needs to be localized. The argument is translated
from a logical value to a localized textual value
before being added to the message.

Configuring Generic Console Logger Settings,
page 253

The logging of console logger debug messages has
been made configurable. Turning off console logger
debug messages reduces output and improves
performance. The following two configurations are
currently available:

console.logger=DEBUG This configuration turns on
debug level logging.

console.logger= This configuration (leaving the
console.logger value blank) turns off debug level
logging.

Configuring LDAP Caching, page 273 The ldap.context.cache setting can now be
configured to enable or disable server context
caching.

com.bankframe.services.cache, page 335 The CacheIndexer and CacheListener interfaces
have been added to the generic caching framework
to support cache indexing.

com.bankframe.services.cache.GenericCache,
page 336

The remove methods public Object
remove(Object key); and public void
remove(Set keySet); have been updated to notify
CacheListeners of the removed key(s) by calling

 MCA Services Developer Guide Version 2005, Rev. B 13

What’s New in This Release Channel Management

Topic Description

cacheChanged(CacheEvent)

Cache and Cache Index Interaction, page
343

The public Object put(Object key) and public
Collection get(Object data) methods have
been added in CacheIndexer to support cache
Indexing.

MCA Services Developer Guide Version 2005, Rev. B 14

 MCA Services Developer Guide Version 2005, Rev. B

2 MCA Services Overview

MCA Services is a framework for building financial solutions. It provides the building blocks to
implement a complete financial solution. All Siebel Retail Finance Modules are built on top of MCA
Services.

At the core of MCA Services is a mechanism for passing data between Client applications and Financial
Components. Also there is a mechanism for sending data between Financial Components and Host
Systems.

Client applications never interact directly with Financial Components, they always communicate via
MCA Services. Similarly Financial Components never communicate directly with Host Systems, they
always communicate via MCA Services.

MCA Services mediates between Clients and Financial Components, so that clients do not have to
worry about locating the Financial Components, this also allows MCA Services to provide secure access
to Financial Components.

MCA Services mediates between Financial Components and Host Systems, so that Financial
Components do not have to worry about how to communicate with Host Systems. Financial
Components pass transactions to MCA Services, which takes care of routing the transactions to the
correct Host System.

MCA Services can be categorized into the following functional areas:

Financial Component Framework A standardized architecture for developing
Financial Components.

15

MCA Services Overview Channel Management

Front-End Framework A framework for rapidly building financial solution
front-ends.

Channel Management The means by which all clients communicate with
MCA Services and thus with Financial
Components.

Financial Process Integration A framework for communicating with Host/legacy
systems.

Enterprise Services A set of services used by Financial Components
e.g. Routing, User Authentication, Access Control
and Internationalization.

Administration Tools A set of tools for configuring and administrating
MCA Services.

This chapter provides an overview of the following areas of MCA Services functionality:

 Channel Management

 Financial Component Framework

 Client to Financial Component Communication

 Financial Process Integration

 Security Provider Framework

 Enterprise Services

 Front-End Framework

 Administration Tools

MCA Services Developer Guide Version 2005, Rev. B 16

MCA Services Overview Channel Management

Channel Management
Channel Management is the mechanism enabling Clients to connect to a Module. MCA Services
separates Financial Components from channel specific functions, thereby increasing the portability of
Financial Components.

Clients
A Client is a single user of a network application run from a central Server. MCA Services is capable of
dealing with a range of Clients from web browsers to Personal Digital Assistants (PDAs).

Channels
A Channel can be seen as a pipe connecting the Client to a Module and is the means by which they
interact; it is the network and the protocols that connect Clients to Servers. MCA Services is capable
of supporting a number of different Channels including HTTP, WAP, PDA, and Digital TV. These
channels have their own protocols and servers.

Protocols
A protocol is the set of rules governing the format of messages that are exchanged between a Client
and a Server. MCA Services provides support for communicating over a number of protocols such as
HTTP and RMI.

Channel Manager
Channel Management is the means by which all clients communicate with MCA Services and thus with
Financial Components. MCA Services provides a variety of channel clients that communicate over a
variety of protocols. A Channel Manager transforms data received from the client over a Channel into
a format that Financial Components can understand. It also transforms data returned from Financial
Components into the format required for the Channel the Client is using.

DataPacket
A DataPacket is the means by which MCA Services organizes data that is passed between Clients and
Financial Components. It provides a standard format for all data used within a Module, which greatly
simplifies the task of passing data from Clients to Financial Components and from Financial
Components to other Financial Components. Information stored in DataPackets can be transformed
into a string representation or a serialized Java Object. This enables DataPackets to be easily
transmitted over various protocols.

A DataPacket is similar to a Hashtable, it is a container for holding data. Unique strings called Keys
identify each piece of data. The data associated with the key can be any Java data-type. MCA Services
defines a number of standard keys:

 MCA Services Developer Guide Version 2005, Rev. B 17

MCA Services Overview Financial Component Framework

DATA PACKET NAME The name of the DataPacket, this key is used to differentiate between
different DataPackets.

OWNER The name of the organization that created the DataPacket, normally eontec.

REQUEST_ID This is a five-character string that identifies the Financial Component that the
DataPacket should be sent to. See the Financial Component Framework
section for more information on this.

XML
XML stands for eXtensible Mark-up Language. XML is a meta-language written in SGML that allows one
to design a markup language, used to allow for the easy interchange of structured information.

MCA Services provides XML connectivity for Business-to-Business (B2B) applications. This enables
third-party applications to communicate with Financial Components using XML and vice versa.

Financial Component Framework
A framework is provided for implementing Financial Components. This framework has the following
functions:

 Provide a standard implementation of methods required by the EJB specification. This simplifies
the process of creating Financial Components.

 Define a standard interface to all Financial Components. This ensures that all Financial
Components can be invoked and managed in a uniform manner.

Financial Components are stateless Session EJBs. MCA Services requires that all Financial Components
comply with the Financial Components Framework. The two requirements are:

 All Financial Component EJBs must extend the com.bankframe.ejb.ESessionBean class.

 All Financial Components must implement the processDataPacket() and processDataPackets()
methods.

The com.bankframe.ejb.ESessionBean class defines standard implementations of all the methods
required by the EJB Specification. This reduces the code that needs to be written for a Financial
Component. In addition com.bankframe.ejb.ESessionBean defines an abstract method called
processDataPacket(). Defining the method as abstract requires all Financial Components to provide
an implementation of this method. This method takes a DataPacket as a parameter and returns a
Vector of DataPackets. This method provides a standard interface to all Financial Components.
Similarly, an abstract method called processDataPackets() is defined to cater for multiple
datapackets in a request. This method takes a Vector of DataPackets as a parameter and returns a
Vector of DataPackets as a response.

When data needs to be passed to a Financial Component, MCA Services invokes the
processDataPackets() method. When the Financial Component has completed it returns its response
data as a Vector of DataPackets to MCA Services. A Financial Component processDataPackets()
method may choose to invoke its processDataPacket() method if there is only one DataPacket in the
request.

MCA Services Developer Guide Version 2005, Rev. B 18

MCA Services Overview Client to Financial Component Communication

Client to Financial Component
Communication
This section covers how Clients send and receive information to/from Financial Components (Note that
in order to keep the discussion simple details of how the Client authenticates itself with MCA Services
have been omitted. This topic is covered in more detail in the security section). The high-level
overview is as follows:

 Client creates DataPacket with the information it wants to send to the Financial Component.

 Client passes the DataPacket to MCA Services.

 MCA Services passes the DataPacket to the Financial Component.

 The Financial Component returns a Vector of DataPackets to MCA Services.

 MCA Services returns the DataPackets to the Client.

There are number of tasks in this process:

 The Client must put the information that the Financial Component is expecting in the DataPacket.
(When the Client is being developed, the Financial Component design documentation must be
consulted, to see what information the Financial Component expects to be in the DataPacket).

 The Client must specify which Financial Component the DataPacket should be sent to.

 The DataPacket must be transformed into the correct format for the protocol being used to
communicate with MCA Services.

 MCA Services must interpret the information received from the Client and transform it back into a
DataPacket.

 MCA Services must locate the Financial Component specified by the Client, instantiate the
Financial Component, and pass it the DataPacket.

 The Financial Component must interpret the information in the DataPacket, carry out its business
logic, and return its results in a Vector of DataPackets to MCA Services.

 MCA Services must transform the result DataPackets into the format for the protocol being used
to communicate with the Client.

 The Client must transform the result data received from MCA Services back into a Vector of
DataPackets.

The important point to note is that the Client never communicates directly with the Financial
Component, it always communicates via MCA Services.

Transforming the DataPacket into the Protocol format
Transforming a DataPacket to a protocol format (and vice versa) is achieved using a Communications
Manager (CommsManager). MCA Services provides a number of CommsManagers that can transform
DataPackets to/from different protocols, for example the EHTTPCommsManager can transform
DataPackets into HTTP Requests.

 MCA Services Developer Guide Version 2005, Rev. B 19

MCA Services Overview Client to Financial Component Communication

So when a Client needs to send a DataPacket to MCA Services over HTTP it uses the
EHTTPCommsManager class to send the DataPackets as HTTP requests to MCA Services. MCA Services
uses another CommsManager: EHTTPServletCommsManager, to transform the HTTP requests back into
DataPackets.

Specifying the Financial Component
One of the DataPacket key values defined by MCA Services is the REQUEST_ID key. This key contains
a five-digit number. This five-digit number is used to identify which Financial Component a
DataPacket should be sent to. Each Financial Component has a REQUEST_ID associated with it. When
a Client wants to send a DataPacket to a Financial Component, it must put the REQUEST_ID associated
with the Financial Component in the DataPacket.

When MCA Services receives the DataPacket from the client it examines the DataPacket to see what
REQUEST_ID is specified. MCA Services then looks up a mapping of REQUEST_IDs to Financial
Component names, finds the specified REQUEST_ID, and invokes the associated Financial Component.

Invoking the Financial Component
The Financial Component is an EJB Session bean. Every EJB has a unique JNDI (Java Naming &
Directory Interface) Name. MCA Services maintains a mapping of REQUEST_IDs to JNDI names. When
MCA Services has discovered a Financial Component’s JNDI name, it asks the EJB Server to create an
instance of the Financial Components. All Financial Components must have a method called
processDataPacket(). MCA Services invokes this method, passing it the DataPacket received from
the client.

Example of Client to Financial Component Communication
This example will illustrate how a credit transfer would be carried out using MCA Services. The
following assumptions will be made:

 The Client is a Java application.

 The Client communicates with MCA Services over HTTP.

 The Financial Component that implements the credit transfer is called CreditTransferBean. It has
the JNDI name: eontec.bankframe.CreditTransferBean.

 The Financial Component is associated with REQUEST_ID 40000.

 The CreditTransferBean expects a DataPacket with the following keys:

DATA PACKET NAME Must have a value of ‘CREDIT TRANSFER’.

FROM_ACCOUNT Account number of the account money is
being transferred from.

TO_ACCOUNT Account number of the account the
money is being transferred to.

MCA Services Developer Guide Version 2005, Rev. B 20

MCA Services Overview Client to Financial Component Communication

AMOUNT Amount to be transferred.

 The Client is a Java GUI that allows the user to input the FROM_ACCOUNT, TO_ACCOUNT, and AMOUNT
values: For this example the user has entered the following values:

FROM_ACCOUNT 11442255

TO_ACCOUNT 21673488

AMOUNT $100.00

Client Creates DataPacket
The Client application must create a DataPacket with the following values:

Key Value

NAME CREDIT TRANSFER

REQUEST_ID 40000

FROM_ACCOUNT 11442255

TO_ACCOUNT 21673488

AMOUNT $100.00

Client Sends DataPacket to MCA Services
The Client must use the EHTTPCommsManager class to send the DataPacket to MCA Services via a HTTP
request.

MCA Services Converts the HTTP Request Back to a DataPacket
MCA Services uses the EHTTPServletCommsManager class to convert the HTTP request back to a
DataPacket.

MCA Services Determines which Financial Component to Invoke
MCA Services checks the REQUEST_ID key in the DataPacket. It looks up the mapping of REQUEST_IDs
to JNDI names, and determines that the DataPacket should be sent to the EJB named
‘eontec.bankframe.CreditTransfer’.

MCA Services Passes the DataPacket to the Financial Component
MCA Services asks the EJB Container to create an instance of the bean named
‘eontec.bankframe.CreditTransfer’, i.e. CreditTransferBean. When the instance is created MCA

 MCA Services Developer Guide Version 2005, Rev. B 21

MCA Services Overview Client to Financial Component Communication

Services invokes CreditTransferBean’s processDataPacket() method, passing it the DataPacket
from the Client.

CreditTransferBean Processes the DataPacket and Returns its
Response Data
CreditTransferBean parses the information in the DataPacket and carries out the credit transfer. It
returns a response DataPacket confirming the transaction was carried out and containing the new
balance on the account the money was transferred from.

MCA Services Passes the Response Data back to the Client
MCA Services uses the EHTTPServletCommsManager to send the response back to the Client as a HTTP
response.

The Client Converts the HTTP Response back into DataPackets
The Client uses EHTTPCommsManager to convert the HTTP Response into a Vector of DataPackets. In
this case the Vector contains a single DataPacket with the information returned from the Financial
Component.

Requester Router to EJB Sequence Diagram
The Request Router to EJB sequence diagram outlines Request Router and Session EJB
communication.

MCA Services Developer Guide Version 2005, Rev. B 22

MCA Services Overview Client to Financial Component Communication

EJB to Financial Process Integrator Sequence Diagram
The EJB to Financial Process Integrator sequence diagram outlines how an entity bean interacts with
the FPI using the Epersister interface.

 MCA Services Developer Guide Version 2005, Rev. B 23

MCA Services Overview Financial Process Integration

Financial Process Integration
All financial institutions deploy a host of some description. This is where a financial institution’s core
business processes are run. These host systems are accessed via software known as Middleware. MCA
Services can use a number of different Middleware technologies (such as IMS, MQ Series, CICS,
Tuxedo) to communicate with Host systems.

All Middleware technologies do the same basic thing: they send request data to host systems and pass
back response data from the host system. However they all do this in significantly different ways. MCA
Services provides an abstraction layer that hides the differences between different Middleware
technologies. This provides Financial Components with a simple interface for communicating with host
systems. This abstraction is enabled by the Financial Process Integrator.

The Financial Process Integrator is not an off the shelf solution; because of the complexity of
communicating with legacy or host systems, there will always be a certain amount of customization
required for each host system.

The Financial Process Integrator has a number of components:

TransactionHandler This is an EJB session bean that provides the interface
through which Financial Components communicate with
host systems.

Middleware Connector(s) This is an EJB session bean that provides the means of
communicating with a specific Middleware technology.
MCA Services provides a number of connectors for
Middleware technologies such as IMS or MQ Series.

TransactionRoute This is an EJB Entity Bean that stores the information
about which connector and Data Formatter to use for
each transaction code and type.

Destination This is an EJB Entity Bean that stores information
necessary for invoking the connector to access a specific
host.

Data Formatter This is a class that formats the data to and from the Host
System. This class uses the EJBs
RequestTransactionField, ResponseTransactionField,
MetaData and TransactionErrorCondition to obtain the
structure of the host system data.

RequestTransactionField This is an EJB Entity Bean that stores information about
each field in the transaction request to send to the host
system.

ResponseTransactionField This is an EJB Entity Bean that stores information about
each field in the transaction response from the host
system.

MetaData This is an EJB Entity Bean that stores information about
the mapping from the host system transaction data to the
Financial Component data.

TransactionErrorCondition This is an EJB Entity Bean that stores information about
error condition response transactions from the host

MCA Services Developer Guide Version 2005, Rev. B 24

MCA Services Overview Financial Process Integration

system.

All Financial Components interact with the Financial Process Integrator by passing it DataPackets,
containing the information about the transaction to be sent to the host system. The DataPacket
passed in will contain a transaction code and a transaction type. The Financial Process Integrator will
use the TransactionRoute Bean to determine the following:

 Which Destination corresponds to the transaction code and transaction type and

 Which Data Formatter class is required to format the data to and from the host system.

The TransactionRoute contains information about which Middleware Connector to use, so the
TransactionHandler will:

 Call the Data Formatter to transform the information in the DataPacket into a host system
specific format and

 Instantiate the correct Connector and pass the formatted data to it.

The Connector will send the information to the Host System.

The Data Formatter will also take any data passed back from the Host System and transform it into
one or more DataPacket(s) and pass it/them back to the Financial Process Integrator. The Financial
Process Integrator will then pass back the DataPacket(s) to the Financial Components.

 MCA Services Developer Guide Version 2005, Rev. B 25

MCA Services Overview Financial Process Integration

TxnHandler Find() Sequence Diagram
The TxnHandler Find() sequence diagram outlines the interaction between the components of the FPI
when a Find method is invoked by an entity EJB on the FPI (TxnHandler).

MCA Services Developer Guide Version 2005, Rev. B 26

MCA Services Overview Financial Process Integration

 MCA Services Developer Guide Version 2005, Rev. B 27

MCA Services Overview Security Provider Framework

TxnHandler Amend() Sequence Diagram
The TxnHandler Amend sequence diagram outlines the interaction between the components of the FPI
when an amend method is invoked by an entity EJB on the FPI (TxnHandler).

Security Provider Framework
MCA Services provides a framework for ensuring that access to Financial Components is limited to
authorized users. The framework provides both off the shelf security solutions and an extendable
architecture enabling third-party security applications to be integrated with MCA Services.

The MCA Services Security Provider Framework consists of a NullBankFrameSecurityProvider and a
DefaultBankFrameSecurityProvider and the framework enables the implementation of custom

MCA Services Developer Guide Version 2005, Rev. B 28

MCA Services Overview Enterprise Services

security providers. The NullBankFrameSecurityProvider is used to turn off security and the
DefaultBankFrameSecurityProvider encompasses the following:

User Authentication The process by which a user’s identity is verified.

Session Management The process of keeping track of which users are currently
logged on to MCA Services.

Access Control The process of determining which Financial Component(s)
each user is permitted to access.

Below we discuss how MCA Services authenticates Clients and how access to Financial Components is
controlled.

User Authentication
MCA Services must authenticate Clients before they are permitted to access Financial Components.
The Client must send a special DataPacket (a logon request), which contains the user’s authentication
details. As with any other request the DataPacket must contain a REQUEST_ID In the case of a logon
request, the REQUEST_ID must map to the EJB Session bean that carries out User Authentication. The
logon request is passed to the User Authentication Bean, which will determine if the user’s credentials
are correct.

Session Management
If a Client’s user credentials are determined to be correct then a user session is created for the user.
This user session includes a unique session ID. This session ID is returned to the Client after a
successful authentication. The Client must add this session ID to each subsequent DataPacket it
sends to MCA Services. This requirement makes sure that only authenticated users gain access. Each
time MCA Services receives a request from a Client it checks to ensure that the session ID is valid.

Access Control
Before passing a DataPacket from a Client to a Financial Component for processing the access control
bean checks to ensure that the Client has access to the Financial Component. Each DataPacket from
the Client will contain a unique session ID. This session ID corresponds to an individual user. The
user’s access rights will be checked to ensure the user has access to the requested Financial
Component. If the user does not have access then the DataPacket will not be passed to the Financial
Component, and an error will be returned to the Client, otherwise the DataPacket will be passed to
the Financial Component as normal.

Enterprise Services
Required Enterprise Services Required by MCA Services to function properly e.g.

Routing or User Authentication.

 MCA Services Developer Guide Version 2005, Rev. B 29

MCA Services Overview Enterprise Services

Optional Enterprise Services Useful but not required e.g. Mail.

Required Services
The following are required by MCA Services to function correctly:

Routing
The core of MCA Services; it takes DataPackets received from Clients and determines which Financial
Component they are intended for, and then passes the DataPackets to the relevant Financial
Component. When processing requests from Clients it uses the User Authentication service to log
users on and off, the Session Management service to ensure users are logged on before they access
Financial Components, and the Access Control service to make sure Clients only send DataPackets to
the Financial Components they are allowed access to.

User Authentication, Session Management, and Access Control
Refer to the MCA Services Security section for an overview of the above.

Internationalization
MCA Services code does not contain any hard-coded messages; all messages are loaded at run-time
from a file. This means that localizing MCA Services to a new language is a simple matter of changing
the content of the messages file.

Dynamic Configuration
Standard Java APIs for reading configuration information from .properties files require the
application server to be re-started to pick up any configuration changes made. The MCA Dynamic
Configuration framework enables changing MCA's configuration & enabling these changes to take
effect without having to re-start the application server. The Dynamic Configuration framework re-
reads the .properties file into in-memory cache from the disk file at set intervals. The interval period
is configurable in the BankframeResource.properties file and can be turned off by setting the refresh
rate to –1. The default is 15 minutes. The MCA Dynamic Configuration framework allows for the
grouping of properties.

Optional Enterprise Services
MCA Services contains a number of optional Enterprise Services, which are not required for MCA
Services to function correctly:

Audit
This service enables a record of all Business Transactions carried out by Financial Components to be
recorded in a relational database table.

MCA Services Developer Guide Version 2005, Rev. B 30

MCA Services Overview Enterprise Services

Logging
This service provides a facility for MCA Services and Financial Components to record actions carried
out in a text file. A GUI-based log viewer tool is available in the Siebel Financial Transactions
WorkBench – consult the WorkBench documentation for further information on same.

Mail
This service enables Financial Components to send e-mails.

Ping
This service is used to determine if MCA Services is working properly. Clients can invoke this service to
determine if a connection to MCA Services can be made.

LDAP
This service provides connectivity to LDAP data-stores. It provides two levels of connectivity: an API
for directly accessing data in the LDAP data-store, and a framework for developing Bean Managed
Entity Beans that persist to an LDAP data-store.

Peripherals Support
MCA Services provides a framework for implementing support for peripherals such as cheque-readers,
PIN-readers and receipt printers, MCA Services also provides some sample drivers for supporting
these types of devices.

Printing Support
MCA Services provides printing support via the third party Accelio Central Pro product. Accelio Central

Pro takes application data and merges it with an electronic document template. It accepts
input from different sources and produces output in a variety of formats. Documents can be
simultaneously output to print, fax, e-mail, PDF or the Web.

Caching Framework
The MCA Services Caching Framework reduces the effort required to implement caching and makes
sure caching is done in a uniform manner. For use anytime it is expensive (in terms of time) to access
some data. Supports both in-memory caching and persistent caching. A persistent cache can be read-
only or read-write. The generic caching framework encompasses:

 A generic implementation of an in-memory cache.

 A plugable CachePolicy interface that allows the policy used for removing expired objects to be
customized.A framework for implementing persistent caches - supports maintaining the cache
consistency and flushing updates to the persistent store.

 An easy to use API; the Cache class implements the java.util.Map interface so that the Cache
class can be easily integrated into code that previously used Hashtables or HashMaps for caching
data.

 Non key Cache indexing to optimally retrieve data from a cache when the key is not known.

 MCA Services Developer Guide Version 2005, Rev. B 31

MCA Services Overview Front-End Framework

Front-End Framework
The Siebel Screen Orchestrator tool is used for front end development – refer to the Screen
Orchestrator Guide.

Administration Tools
MCA Services provides the following tools for administering MCA Services installations:

RouteServlet A Servlet for administering the REQUEST_IDs that
Financial Components are associated with.

BankFrameSessionServlet A Servlet for administering MCA Services Session
Management.

MonitorServlet A Servlet for testing that MCA Services installations
are correctly configured.

The administration tools are described in more detail in the Administrating MCA Services
documentation.

MCA Services Developer Guide Version 2005, Rev. B 32

 MCA Services Developer Guide Version 2005, Rev. B

3 Channel Management

RMI and HTTP
MCA Services Channel Management encompasses the following concepts:

DataPackets
Datapackets are the standard way in which any data is passed to, from and within MCA. Essentially
DataPackets are hashtables that use a simple key, object mapping. There are a number of standard
key names such as REQUEST_ID and DATA PACKET NAME that must be included in all DataPackets in
order for them to be processed by MCA.

All data that is passed between channel clients and MCA is encoded as a Vector of DataPackets. This
provides a standard format for all data used within MCA. All responses from MCA are also encoded as
a Vector of DataPackets. This helps provide a standard view of MCA to all Siebel clients regardless of
their type.

Channel Clients
A channel client is a class provided by MCA that is used by any fat client wishing to send data to, and
receive data from MCA. It deals with all communication issues involved in sending a request to MCA
and receiving the corresponding response. This ensures that the view provided by all channel clients
to Siebel clients is consistent. However the data sent by each channel client to MCA will depend
entirely on the network and network protocol over which the data is being sent. Therefore each
channel client must be able to accept requests in a standard format (DataPackets) and convert this to
a channel (network) specific format for transmission.

Channel Management
Channel Management is the means by which all clients communicate with MCA and thus to Financial
Components. MCA provides a variety of channel clients that communicate over a variety of protocols.
Requests can be comprised of multiple DataPackets. Most Siebel clients will use channel clients to
communicate with Siebel Retail Finance. These channel clients will in turn communicate with channel
servers that act as gateways to Financial Components. This means that Siebel clients will only ever
deal with a channel client. This level of abstraction prevents Siebel clients from needing to know or
understand the wire protocol over which they are communicating. However not all Siebel clients will
need to use a Channel client to communicate with MCA. The most common example of this is web
browsers. Here browsers will themselves send their request data in a HTTP Post/Get request. There is
a mechanism provided to handle this situation, which is detailed in a later section.

Channel Servers
The main function of a channel server is to accept requests from a channel client, convert this request
to a DataPacket and pass the DataPacket to the RequestRouter. The channel server will also
appropriately encode the response from the Financial Component and return this to the calling channel

33

Channel Management RMI and HTTP

client. This means that for most channel clients there will be a corresponding specific channel server
that will understand the network specific format of the request and build a standard DataPacket
request from this.

Codecs
Codecs are used to encode data that is sent between some channel clients and channel servers. Siebel
client requests consist of one or more DataPacket objects. However DataPacket objects usually need
to be converted to a specific form before they can be sent over a network connection. This is the job
of the codec. It will convert a DataPacket representation of a request to a format that can be sent
over the network. codecs must also be able to rebuild the original DataPacket request from the
encoded request to allow the channel server to process it.

Thin and Fat Clients
The com.bankframe.ei.channel.client package provides two mechanisms for passing DataPackets
over http connections, one to be used with thin clients, the other with fat clients.

Thin client

A client program, which relies on all of the function of the system being on the Server. Some
examples of thin clients include:

 HTML based clients, all processing is done on the server, and the client is the web-browser, which
is used to present information to the user.

 WAP based clients, all processing is done on the server, and the built-in WAP functionality in the
mobile phone is used to display information to the User.

Thin clients are implemented using a combination of Java Server Pages (JSPs), HTML and JavaScript.
It should be remembered that most thin clients will not need to use a channel client to talk to MCA.

Fat Client
A client program, which relies on some of the function of the system being in the Client. Some
examples of fat clients include:

 A Java application installed on a user’s PC, the Java application contains functionality for
displaying information and accepting user input, however all of the business logic is on the Server.

 A Java Applet. This is similar to a Java application, the only difference is that the Applet is not
installed on the User’s PC, instead it is downloaded through the Web-Browser that runs the Applet.

Fat clients are implemented using Java and the Java Swing GUI toolkit.

When to use Thin Clients

Thin clients are best used in the following scenarios:

 When the solution is accessed over the Internet, for example an online banking solution.

 When the cost of deploying fat clients would be too expensive, for example a large intranet project
that would have thousands of users.

MCA Services Developer Guide Version 2005, Rev. B 34

Channel Management RMI and HTTP

 When the technology requires it, for example all WAP based solutions must use a thin client
architecture.

 When the network bandwidth is limited.

When to use Fat Clients

Fat clients are best used in the following scenarios:

 On a corporate intranet, for example a teller application.

 When the solution needs a complex windowed graphical user interface, for example a call-center
solution.

 When business requirements specify that data validation should be part of the front-end.

Class Descriptions

Package: com.bankframe.ei.channel.client
This package contains the classes that are used by Siebel clients to communicate with MCA.

ChannelClient

All channel clients must implement this interface. It provides one method that all implementing
classes must override. This is the send(Vector) method. This allows Siebel clients to build
DataPackets and call the send method without needing to understand or worry about the underlying
wire protocol and subsequent encoding and decoding of data for that protocol.

ChannelClientFactory

This class uses the factory pattern to generate com.bankframe.channel.ChannelClient instances
based on properties set in the BankframeResource.properties file. The purpose of this is to remove
the need for code changes should a Siebel client wish to change the way (protocol) by which it
transmits data. By using this factory pattern all the Siebel client needs to do is change the values
within the properties file and the ChannelClientFactory will supply the appropriate class for the new
transmission protocol. The factory can also be configured to return the same instance of a
ChannelClient, or a new instance each time, by setting the enforce.singleton property in
BankframeResource.properties. By default the getChannelClient() method will lookup
channel.client property key. However, another property key can be specified through
getChannelClient(String clientName).

HttpClient

This is a client for transmitting DataPackets over any HTTP connection. Fat clients communicating
over HTTP should use this client. This client has a number of properties that must be set in the
BankframeResource.properties file. Settings include what codec class to use to encode and decode
a vector of DataPackets. The HttpClient can also add values from the first DataPacket as request
properties to the http connection. This is all configurable in the properties file. Users of this client
should read the Configuring and Administrating MCA Services document.

 MCA Services Developer Guide Version 2005, Rev. B 35

Channel Management RMI and HTTP

HttpsClient

This is a client for transmitting DataPackets over a secure HTTPS connection using SSL. Any
application, that requires the transfer of information over a secure connection to a server should use
this client. Before a secure connection can be made the client and server must have a truststore and
also a keystore created. The truststore contains trusted certificates and the keystore holds the public-
private keys used in SSL. This client has a number of properties that must be set in the
BankframeResource.properties file. Users of this client should read the properties file section later in
the document.

RmiIiopClient

This class is used to call the RequestRouter directly using an RMI call. RequestRouter stub classes
are needed by the Siebel client when using this class.

Package: com.bankframe.ei.channel.server.
This package contains all the classes required to listen for and process incoming Siebel client requests.
Each class will deal with a single combination of transmission protocol (HTTP, RMI) and data (XML
etc.) format.

HttpServer

This is a servlet that listens for HTTP requests from any HttpClient. The server will decode the
incoming requests to DataPackets and pass them onto the relevant Financial Components. It will then
take the response and appropriately encode this response for transmission back to the HttpClient.
Again it uses settings in the BankframeResource.properties file to deduce the format of the request.

JspHttpServer

This is the class that processes requests that originate from JSPs. JSPs are generally used when user
input is from HTML forms etc. MCA provides a mechanism by which Siebel client developers can
encode multiple DataPackets within a single HTTP post request. The syntax of this is described in the
following section. The JSPHttpServer will process requests from the JSP bean class. It will interpret
the form field names and data to produce request DataPacket(s). The response received from the
Financial Component is returned to the JSP bean code, where it is handled in the handleResponse()
method.

HttpBoomarangServer

This is a test servlet that extends HttpServer. Rather than routing the vector of DataPackets found in
the request, it returns the vector as a response. It is useful for testing channel client and codec
configuration. The vector sent and the vector received by the client should be the same. The servlet
can be used by setting the channel.http.client.url property to the URL of the deployed servlet.

Package: com.bankframe.ei.channel.codec
This package contains classes that implement codecs (coders/decoders).

MCA Services Developer Guide Version 2005, Rev. B 36

Channel Management RMI and HTTP

Codec

All codecs implement this interface. This defines the method signatures for sending and receiving
DataPackets. All codecs will turn a vector of DataPackets into a string representation.

DPTPCodec

DPTP stands for ‘DataPacket Transmission Protocol’. It is used for encoding character data. This codec
converts a Vector of DataPackets into a string representation. This representation uses an XML
format, however this is not a fully qualified XML representation as it doesn’t specify a DTD. It is
however valid XML. This XML therefore is only used between HttpClients and HttpServers.

JOTPCodec

JOTP stands for ‘Java Object Transmission Protocol’ and is used for encoding binary data. This
codec turns a DataPacket into a hexadecimal string representation. The advantage of using this codec
is that it can encode any java object as a string representation because it can represent any literal in a
string format. For example the DPTPCodec could not encode DataPackets that contain binary data
(such as integers, classes etc). In this instance the JOTPCodec should be used.

DPTPPaddingCodec

The DPTPPaddingCodec extends the DPTPCodec and it is used to wrap or pad out the special
characters used by DPTPCodec in encoding and decoding. The special characters are <, > and their
corresponding XML entity reference values < and >. If using DataPackets with XML elements as
values, it may be appropriate to use the DPTPPaddingCodec to ensure data integrity. This codec uses
a padding string defined by channel.codec.paddingstring property. If none is defined, it will default
to ^.

com.bankframe.fe.jsp.BankframePage
All JSPs consist of two components: a java bean and a .jsp file. The java bean is used to store the
information that is either input by the user or displayed on the HTML page. The .jsp file transforms
this information into HTML.

The com.bankframe.fe.jsp.BankframePage class is the super-class that all java beans used with
JSPs are derived from.

The BankframePage class has the following methods:

executeRequest() A JSP sends a request to a Financial Component by invoking the
java bean’s executeRequest() method.

handleResponse() Each java bean overrides this method in order to process the
response data returned from the Financial Component.

isError() This method can be invoked to check if the Financial Component
returned an error.

getErrorMessage() This message will return the error message if the Financial
Component returned an error.

 MCA Services Developer Guide Version 2005, Rev. B 37

Channel Management RMI and HTTP

Communicating over HTTP
MCA Services provides a channel client and channel server to send data over HTTP connections. It is
recommended that all data sent over HTTP connections should use these classes.

Currently the majority of requests that are made to Siebel are over HTTP connections. Channel
management provides a customizable method of sending data over HTTP connections known as DPTP
(DataPacket Transmission protocol). It sends a serializable string representation of DataPackets over
the HTTP connection. This is the most common way that fat Siebel clients will use to send and receive
data to and from Financial Components.

When using DPTP, a codec is specified to encode/decode the data over the wire. For each codec there
is an associated MIME type. For instance the MIME type application/x-eontec-datapacket-hex
corresponds to the JOTPCodec class. All MIME types to codec mappings are specified in the
BankframeResource.properties file, while there is a client setting to specify which MIME type the
HTTP channel client should use (and thus which codec to use). See the properties section for more
information on the HTTP client settings.

The HTTP server is an instance of the javax.servlet.http.HTTPServlet class that listens for HTTP
requests on a given port. It also uses the BankframeResource.properties file to determine all the
codecs that it should support. It reads the MIME type to codec mappings and creates Codec objects for
each specified mapping. Upon receiving a HTTP request it will read the content-type field from the
HTTP header information and use the mapping information to select the codec to decode the request
data. It will also use this mapping to encode the response to send back over the HTTP connection.

Thin clients using HTML forms

Introduction
A common way whereby clients send and receive data from MCA is through a web browser using HTML
forms. In this case there is no Siebel channel client, instead the web browser is the client. This is
because the browser will indirectly send the data to MCA.

This section shows how HTML forms should be written to allow data to be sent to MCA Services.
Communication with MCA is handled through JSPs, which encapsulate the request data (HTTP post
request) as a ServletRequest object. This object contains the data entered in the form along with the
name of each field of the form. When this object gets passed to MCA, MCA must retrieve all the field
names along with the data entered for those fields and convert this data into one or more
DataPackets. It is this requirement that multiple DataPacket requests must be constructed from a
single HTTP post request which has led to the following HTML form syntax.

HTML Form Syntax
In order to send data from HTML forms to MCA Services, the names given to each field in the form
must be valid. This allows form designers to name fields in such a way to allow requests to be
encoded as either single or multiple DataPackets.

If data from a HTML form is to be converted to a single DataPacket request, then all form names
must not contain the square brackets ('[' or ']'). Other than this convention any other previously valid
names are still valid.

MCA Services Developer Guide Version 2005, Rev. B 38

Channel Management RMI and HTTP

However if the data from a form should be converted into a multiple DataPacket request there are a
number of rules that must be adhered to. Failure to adhere to these rules will cause the request to fail
and the server to report an exception. The convention is that each field in the form must contain a
number identifying which request DataPacket the data from that field should be part of.

Syntax rules
ALL form fields (including hidden fields) must have a valid request packet number in their name if they
are to form a multiple DataPacket request. If the request is to be a single DataPacket request then no
packet numbers are needed.

 This number must be immediately preceded with '[' and immediate followed by ']'.

 No additional characters may follow the ']' character.

 All characters between '[' and ']' must be numeric.

 The 'REQUEST_ID' and 'DATA PACKET NAME' fields must be followed with [0], i.e. they must be
contained in the first DataPacket of the request.

 There must be a sequential order for the packets numbers. I.e. if a field exists that has a packet
number 5, then there must exist a field with packet number 4.

It should be noted that all fields in the form will get encoded as HTTP parameters and the Server
processing them will process these HTTP parameters. However HTTP requests can also contain
attributes. These can be set in Java code, and may be set in some classes that extend the
BankFramePage class. These attributes should be named according to the above syntax. Failure to do
this will result in these attributes being ignored. However an exception will not be thrown for an
incorrectly formatted attribute as happens for incorrectly formatted parameters. This is because many
application servers will introduce their own attributes. This means that when processing attributes
there is no way of distinguishing between a Siebel attribute and an application server attribute, so
incorrectly formatted attributes will be ignored to ensure that an exception is not raised for a server
attribute.

Examples
Valid fields includes

REQUEST_ID[0]

DATA PACKET NAME[0]

ADDRESS1[3] - provided there exists a field with packet number 2.

Invalid fields include

REQUEST_ID[3] – REQUEST_ID must be in packet number 0.

DATA PACKET NAME[56] – must be in packet number 0.

ADDRE[1]SS1 – ‘]’ is not at the end of the string.

[1]ADDRESS1 – ‘]’ is not at the end of the string.

ADDRESS1[3] – if there does not exist a field with packet number 2.

 MCA Services Developer Guide Version 2005, Rev. B 39

Channel Management RMI and HTTP

ADDRESS1[c3] – packet number is not numeric.

Sample valid form

<form method="post" action="jspservertest.jsp">

<table>

<tr>

<td>Field 1:</td>

<td><input type="text" name="FIELD1[1]"></td>

</tr>

<tr>

<td>Field 2:</td>

<td><input type="text" name="FIELD2[2]"></td>

</tr>

<tr>

<td>Field 3:</td>

<td><input type="text" name="FIELD3[1]"></td>

</tr>

</table>

<input type="hidden" name="REQUEST_ID[0]" value="MC999">

<input type="hidden" name="DATA PACKET NAME[0]" value="TEST">

<input type="submit" value="Submit">

</form>

Configuring BankframeResource.properties
The channel management function of MCA adds some additional properties to the
BankframeResource.properties file. This is done to allow Siebel clients to specify which channel
client they are going to use without having to do so in code. The ChannelManagerFactory class will
pick up these properties and supply an appropriate channel client class based on these properties.

Some properties are generic to all channel clients, while some are specific to a given channel client. All
the generic properties are prefixed with the keyword channel only, while all specific properties are
prefixed with a prefix specific to that client. The default constructer of all clients should accept no
parameters and read all information needed to construct from the BankframeResource.properties
file.

MCA Services Developer Guide Version 2005, Rev. B 40

Channel Management RMI and HTTP

Codec Mapping Properties
These properties map MIME types to codec class names and are used by the HTTP client and server
classes. All mappings are prefixed with channel.http.codec.mapping and followed with the actual
mapping.

E.g. channel.http.codec.mapping.application/x-eontec-datapacket-
xml=com.bankframe.ei.channel.codec.DPTPCodec will map the codec class

DPTPCodec to the MIME type application/x-eontec-datapacket-xml.

By using these mappings, all the valid codecs that a Http server can support are not hard coded into
MCA. It is important to be aware that a HTTP channel property (channel.http.client.contentType)
must match one of the mappings specified in the BankframeResource.properties file.

Valid Properties
channel.client – The fully qualified class name of the channel client to be used. This allows the
client channel factory to supply instances of this class.

channel.http.client.url - This specifies the URL of the Http Server (Servlet URL) that the HTTP
client will connect to.

channel.http.client.contentType - A property specific to the Http client manager. This specifies
the MIME type of the encoding that the client will use.

 channel.http.codec.mapping.application/x-eontec-datapacket-
xml=com.bankframe.ei.channel.codec.DPTPCodec - A mapping property

 channel.http.codec.mapping.application/x-eontec-datapacket-
hex=com.bankframe.ei.channel.codec.JOTPCodec - A mapping property

Configuring HttpsClient
The BankframeResource.properties file requires the following changes in order to configure the
HTTPS client settings:

channel.client=com.bankframe.ei.channel.client.HttpsClient

channel.http.client.url=https://<URL of the HTTP server>

channel.https.truststore=<path to truststore>

channel.https.keystore=<path to identity keystore>

channel.https.keystorePassword=<keystore password>

channel.https.ssl.protocol=<class name of the SSL protocol>. Possible values are:

com.sun.net.ssl.internal.www.protocol for WebLogic and

com.ibm.net.ssl.internal.www.protocol for WebSphere.

channel.https.ssl.provider=<class name of the SSL provider>. Possible values are

com.sun.net.ssl.internal.ssl.Provider for WebLogic and com.ibm.jsse.JSSEProvider for

WebSphere.

 MCA Services Developer Guide Version 2005, Rev. B 41

Channel Management RMI and HTTP

Developing Custom Channel Clients and Servers
If there is a channel that a Siebel client wishes to communicate over, but channel clients do not exist
then developers can write their own channel client and server classes to handle that particular
channel.

If this new channel uses HTTP then the developer need only write a custom codec class that adheres
to the codec interface and edit the BankframeResource.properties file to include the new codec in
the MIME type to codec class name mappings to use this new codec.

If however the channel is not over HTTP then the developer should write a server class (possibly a
servlet) that can process incoming requests in the channel specific format. This means that the server
will accept requests in the channel specific format and convert this to a Vector of DataPackets that is
forwarded to the RequestRouter. The server must then read the response (in DataPackets) from the
RequestRouter and return this over the channel in the channel specific format.

The developer must also develop a channel client class that implements the
com.bankframe.ei.channel.client.ChannelClient interface that mandates that there must be a
send(Vector) method. The developer should write this method to take a Vector of DataPackets and
send it to the server encoded in the channel specific format, handling any channel specific
communication issues that may arise on the way. The aim is to make sending and receiving
DataPackets transparent to the Siebel client. This method should always return a Vector of
DataPackets to the Siebel client even if communication errors occur.

Thin and Fat Client Examples
The following examples illustrate how both thin client and fat client solutions can communicate with
MCA over HTTP. For the sake of simplicity the following assumptions are made:

 There exists a Siebel Financial Component called eontec.bankframe.examples.CreditTransfer.

 The Financial Component is an implementation of a Credit Transfer.

 The Financial Component is deployed on Route: EX330.

 The Financial Component expects a request DataPacket with the following format as input:

Key Value

DATA PACKET NAME CREDIT_TRANSFER

REQUEST_ID EX330

FROM_ACCOUNT A/C Number money comes from

TO_ACCOUNT A/C Number money goes to

AMOUNT Amount to transfer

MCA Services Developer Guide Version 2005, Rev. B 42

Channel Management RMI and HTTP

 The Financial Component returns a Vector of DataPackets containing a single DataPacket with the
following format:

Key Value

DATA PACKET NAME CREDIT_TRANSFER_RESPONSE

REQUEST_ID 00000

FROM_ACCOUNT A/C Number money came from

TO_ACCOUNT A/C Number money went to

AMOUNT Amount transferred

NEW_BALANCE New balance of a/c money was transferred from

The following example illustrates how a HTML based solution communicates with MCA. Siebel HTML
solutions are built using Java Server Pages (JSPs) The following example illustrates a simple JSP that
submits some information to a Financial Component.

Thin client example

credittransfer.html
<html>

<head><title>Credit Transfer</title></head>

<body bgcolor="#ffffff">

<form method="post" action="credittransfer.jsp">

<table border="0" width="50%">

<tr><td>To Account:</td><td><input type="text" name="TO_ACCOUNT"

size="25"></td></tr>

<tr><td>From Account:</td><td><input type="text" name="FROM_ACCOUNT"

size="25"></td></tr>

<tr><td>Amount:</td><td><input type="text" name="AMOUNT" size="25"></td></tr>

</table>

<input type="hidden" name="REQUEST_ID" value="EX330">

<input type="hidden" name="DATA PACKET NAME" value="CREDIT_TRANSFER">

<input type="submit" value="Submit">

 MCA Services Developer Guide Version 2005, Rev. B 43

Channel Management RMI and HTTP

</form>

</body>

</html>

This HTML code will produce a form that looks like this:

credittransfer.html explanation

This is the HTML form used to submit the credit transfer information:

Note that the name of the input fields must match the name of the corresponding entry in the
DataPacket. This is a single DataPacket request so we do not use ‘[‘ or ‘]’.

The first hidden input field contains the REQUEST_ID value to put in the DataPacket.

The second hidden input field contains the name to give the DataPacket.

When the Submit button on the HTML form is pressed the form data will be submitted to a JSP called
credittransfer.jsp.

credittransfer.jsp
<%@ page import="com.BankFrame.examples.credittransfer.jsp.CreditTransferPage" %>

<jsp:useBean id="creditTransferPage" scope="page"

class="com.BankFrame.examples.credittransfer.jsp.CreditTransferPage" />

<%= creditTransferPage.executeRequest(config,request,response) %>

<html>

<head><title>Credit Transfer Completed</title></head>

<body bgcolor="#ffffff">

<table border="0" width="50%">

<tr><td>To Account:</td><td><jsp:getProperty name="creditTransferPage"

property="toAccount" /></td></tr>

<tr><td>From Account:</td><td><jsp:getProperty name="creditTransferPage"

property="fromAccount" /></td></tr>

<tr><td>Amount:</td><td><jsp:getProperty name="creditTransferPage"

property="amount" /></td></tr>

MCA Services Developer Guide Version 2005, Rev. B 44

Channel Management RMI and HTTP

<tr><td>New Balance:</td><td><jsp:getProperty name="creditTransferPage"

property="newBalance" /></td></tr>

</table>

</body>

</html>

credittransfer.jsp Code Explanation

credittransfer.jsp carries out the following steps:

Imports a java bean called com.BankFrame.examples.credittransfer.jsp.CreditTransferPage.

Creates an instance of this java bean called creditTransferPage.

Invokes the creditTransferPage.executeRequest() method to send the data from the HTML form to
MCA.

When the executeRequest() method is invoked, the HTML Form data is translated into a DataPacket
and the DataPacket is passed to the Financial Component specified by the REQUEST_ID in the
DataPacket. The response data from the Financial Component is returned to the CreditTransferPage
java bean. The CreditTransferPage java bean parses and caches the response data.

The JSP uses the <jsp:getProperty/> tags to retrieve the response data cached in the
CreditTransferPage java bean.

credittransfer.jsp is parsed by the JSP Engine to produce the HTML output. The output HTML will
look something like this:

CreditTransferPage
package com.BankFrame.examples.credittransfer.jsp;

import java.util.Vector;

import com.BankFrame.bo.DataPacket;

import com.BankFrame.fe.jsp.BankFramePage;

public class CreditTransferPage extends BankFramePage {

 private String fromAccount = null;

 private String toAccount = null;

 MCA Services Developer Guide Version 2005, Rev. B 45

Channel Management RMI and HTTP

 private String amount = null ;

 private String newBalance = null;

 public CreditTransferPage() {}

 public String getFromAccount() { return this.fromAccount; }

 public String getToAccount() { return this.toAccount; }

 public String getAmount() { return this.amount;}

 public String getNewBalance() { return this.newBalance; }

 public void setFromAccount(String fromAccount) { this.fromAccount =

fromAccount; }

 public void setToAccount(String toAccount) {this.toAccount = toAccount; }

 public void setAmount(String amount) {this.amount = amount; }

 public void setNewBalance(String newBalance) {this.newBalance = newBalance; }

 public void handleResponse(Vector DataPackets) {

 super.handleResponse(DataPackets);

 if (this.isError() == false) {

 DataPacket dp = (DataPacket)DataPackets.elementAt(0);

 this.fromAccount = dp.getString("FROM_ACCOUNT");

 this.toAccount = dp.getString("TO_ACCOUNT");

 this.amount = dp.getString("AMOUNT");

 this.newBalance = dp.getString("NEW_BALANCE");

 }

 }

}

CreditTransferPage Code Explanation

This java bean enables the JSP and the Financial Component to communicate. The bean has four
attributes: toAccount, fromAccount, amount and newBalance. The first three represent information
input by the user and the final attribute represents data returned from the Financial Component.

MCA Services Developer Guide Version 2005, Rev. B 46

Channel Management RMI and HTTP

The bean is derived from the com.BankFrame.fe.jsp.BankFramePage class. This means the bean
inherits BankFramePage's executeRequest() method.

The JSP invokes the bean's executeRequest() method to send the data to the Financial Component.
When the Financial Component has completed processing the bean's handleResponse() method will
be invoked. This enables the bean to process the data returned from the Financial Component. In this
case it stores the toAccount, fromAccount, amount, and newBalance values returned by the Financial
Component. The JSP then uses the <jsp:getProperty/> tags to retrieve these values from the bean.

Fat client example
The following example illustrates a console based Client application that communicates with MCA over
HTTP. The application expects the following command line parameters:

to - A/C number to transfer money to.

from - A/C number to transfer money from.

amount - Amount of money to transfer.

Code
package com.BankFrame.examples.credittransfer;

import java.util.Vector;

import com.BankFrame.bo.DataPacket;

import com.BankFrame.ei.comms.EHTTPCommsManager;

public class Client {

 private String toAccount;

 private String fromAccount;

 private String amount;

 public Client() {}

 public void init(String[] args) {

 for (int i = 0 ; i < args.length ; ++i) {

 if (args[i].equals("-to")) {

 this.toAccount = args[++i];

 }

 MCA Services Developer Guide Version 2005, Rev. B 47

Channel Management RMI and HTTP

 if (args[i].equals("-from")) {

 this.fromAccount = args[++i];

 }

 if (args[i].equals("-amount")) {

 this.amount = args[++i];

 }

 }

 }

 public void doCreditTransfer() {

 try {

 HttpClient client = new HttpClient();

 DataPacket dp = new DataPacket("CREDIT TRANSFER");

 dp.put(DataPacket.REQUEST_ID,"EX330");

 dp.put("TO_ACCOUNT",this.toAccount);

 dp.put("FROM_ACCOUNT",this.fromAccount);

 dp.put("AMOUNT",this.amount);

 Vector responses = client.send(dp);

 dp = (DataPacket)responses.elementAt(0);

 System.out.println("Transferred: " + dp.getString("AMOUNT") +

 " from a/c: " + dp.getString("FROM_ACCOUNT") +

 " to a/c: " + dp.getString("TO_ACCOUNT") +

 " new balance: " + dp.getString("NEW_BALANCE"));

 } catch (Exception e) {

 System.out.println("An exception occurred: " + ex.toString());

 }

 }

 public static void main(String[] args) {

MCA Services Developer Guide Version 2005, Rev. B 48

Channel Management XML B2B

 Client client = new Client();

 client.init(args);

 client.doCreditTransfer();

 }

}

Code Explanation

The above code carries out the following actions:

 Parses the command-line flags, this is done in the init() method.

 Sends a DataPacket to the Financial Component, with the credit transfer details.

 Parses the response returned from the Financial Component and displays the results.

The doCreditTransfer() method does the following:

 Creates a HttpClient instance. This is the channel client used to communicate with MCA. The
HttpClient instance is initialized with no parameters. This indicates that the channel specific
properties from the BankframeResource.properties file should be read to initialize parameters.

 Creates a DataPacket with the information expected by the eontec.bankframe.CreditTransfer
Financial Component.

 Uses the HttpClient.send() method to send the DataPacket to MCA.

 Parses the information returned from the Financial Component and displays this information.

XML B2B
The XML/XSL support in MCA Services uses DPTP (DataPacket Transmission Protocol) XML format.
MCA provides three different options for communicating with Financial Components via XML. These
options are:

 A custom XML parser that supports the parsing of DPTP only. This parser is optimized for speed
but requires that all input be formatted correctly. This option is the best choice when performance
is of paramount importance and the client is able to generate correctly formatted DPTP XML.

 A DPTP parser that uses the JAXP parser to parse the XML. This parser is not as fast as the first
option but is more robust in handling incorrectly formatted XML. This option is a good choice for
use during the development phase of a project as the JAXP parser will provide detailed error
messages about any formatting issues with the incoming data.

 An XSL parser that uses XSL to transform an incoming request from an arbitrary XML format into
DPTP XML. This option is the best choice when the client is not able to generate DPTP XML, it
provides the most flexibility in the types of XML that can be processed. However the XSL
transform requires a certain amount of overhead so this option will not be able to deliver the same
levels of performance as the other two options.

These three options are implemented by a number of different codec classes described below:

 MCA Services Developer Guide Version 2005, Rev. B 49

Channel Management XML B2B

Package: com.bankframe.ei.channel.codec

XMLDOMCodec

This is an abstract class that serves as a base class for codecs that use JAXP to encode XML data. This
class provides methods for transforming String data to an XML DOM object and vice versa.

DPTPDOMCodec

This codec is similar to DPTPCodec in that it encodes XML data encoded in DPTP format, however it
uses JAXP to parse the XML data. This provides more robust error handling at the expense of slower
performance.

XMLXSLCodec

This is an abstract class which sub-classes DPTPDOMCodec. This class serves as a base class for codecs
that use XSL to transform arbitrary XML into DPTP XML The incoming XML is parsed into a DOM tree,
the transformation is applied to transform this DOM tree into DPTP XML and then the transformed data
is parsed by the DPTPDOMCodec. On the return trip the reverse process is applied.

Package: com.bankframe.ei.xml
The codec classes defined above rely on the classes defined in the com.bankframe.ei.xml package to
carry out processing of XML streams.

com.bankframe.ei.xml.EDocumentBuilder

This class is used to build an XML Document from an XML InputSource, the resulting Document can be
XML of any type. The parse method in the EDocumentBuilder class is used to create XML Document
objects. The EDocumentBuilder class also provides a newDocument() method to create an empty XML
Document object, as well as methods that will let you determine the properties of the underlying XML
parser being used.

The default implementation of the EDocumentBuilder class utilizes the Java API for XML Processing
(JAXP), version 1.1 released by Sun. Therefore, the underlying XML parser that you wish the
EDocumentBuilder to use can be specified using Java environment variables as described in the JAXP
specification.

com.bankframe.ei.xml.EDocumentBuilderFactory

This class is used to obtain an instance of an EDocumentBuilder. The current release of MCA uses
only the default implementation of an EDocumentBuilder, which is described above.

com.bankframe.ei.xml.XMLTransformer

This class is used to transform an XML Document object from one XML format to another. In most
cases, this class will be used to transform non-Siebel XML Documents into Siebel XML Documents, or to
transform Siebel XML Documents into non-Siebel XML Documents. The XMLTransformer class
provides a transform(Document, Document, String) method that will accept a source XML
Document, a result XML Document and the URL of the style sheet to carry out the transformation. The

MCA Services Developer Guide Version 2005, Rev. B 50

Channel Management XML B2B

default implementation of the XMLTransformer utilizes the Java API for XML Processing, version 1.1
released by Sun. It transforms Documents using a user-defined XSL style sheet. Since the Siebel
XMLTransformer utilizes JAXP, the underlying XML processor that you wish to use can be specified in
Java environment variables, as noted in the JAXP specification.

com.bankframe.ei.xml.XMLErrorHandler

This class is used to report errors encountered during the processing of XML streams. This class
redirects the error messages produced by the underlying JAXP parser to the BankFrame logging
framework.

Mapping XML Requests to Financial Components
There are two scenarios to consider when MCA handles a request to a Financial Component in XML
format:

XML Transactions In Siebel Format

The first scenario is when a client (typically some third party B2B application) sends a request that
adheres to the Siebel XML format. Therefore the client sends an XML request encoded in the DPTP
XML format. The client also expects a response from MCA in the same format. In this instance, the
Siebel XML Channel Manager does not require any extra configuration. Since the client will be using
the MCA XML format, the request will be automatically converted into a Vector of DataPackets and
passed through the RequestRouter to the appropriate Financial Component. The Vector of
DataPackets response from the Financial Component will automatically be re-formatted into a Siebel
XML Document and sent back to the client.

 MCA Services Developer Guide Version 2005, Rev. B 51

Channel Management XML B2B

XML Transactions in Non-Siebel Format

In the second scenario, the client will be sending MCA a request that is in an arbitrary XML format (i.e.
FpXML, cXML, fooXML etc.) In this instance, incoming requests must first be transformed into the
Siebel XML format so that it can be parsed into a Vector of DataPackets for processing. In order to
accomplish this, the developer must determine a correspondence between the client XML transaction
types, and Siebel Financial Components. It is assumed that it will be possible to find a mapping
pattern between the client XML format and Siebel Financial Components. Once these mappings are
defined, the developer is responsible for writing an XSL style sheet that transforms the incoming XML
Document into a Siebel XML Document.

After the request is processed, the Vector of DataPackets returned by the Financial Component must
be re-formatted back into an XML format that the client expects. Once again, this is accomplished by
defining an XSL stylesheet to transform the Siebel XML format into the client’s XML format. Note that
you will generally write two separate XSL stylesheets for each mapping. One stylesheet to transform
incoming requests into Siebel XML format, and one stylesheet to transform outgoing responses back
into the client XML format. The entire process is represented in the following diagram:

MCA Services Developer Guide Version 2005, Rev. B 52

Channel Management XML B2B

The name of the XSL stylesheets to be used in the transformation is defined by sub-classing the
XMLXSLCodec class and defining the content types that the sub-class handles (It is assumed that each
different XML encoding will have a different MIME content type). These content types are then mapped
to the URL of an XSL file via settings defined in the BankFrameResource.properties file.

Configuring BankframeResource.properties

XML Properties
xml.eDocBuilder.systemId Specify a default location for DTD files of incoming XML

Documents. (This is used as a back-up if the DTD is not
specified with a full URL in incoming XML Documents)

E.g.

http://localhost/dtd

So, if an incoming XML doc specifies its DTD with a line

SYSTEM “fooXML.dtd”, the parser will look for this file at the
location specified by the systemId property. If the incoming
XML doc specifies its DTD with a line SYSTEM
http://www.siebel.com/xml/dtd/fooXML.dtd then the
systemId property is ignored.

xml.parser.validating Specify whether the underlying XML parser used should be

 MCA Services Developer Guide Version 2005, Rev. B 53

http://localhost/dtd

Channel Management XML B2B

validating or non-validating. Can be: true or false.

xml.parser.ignoreComments Specify whether the underlying XML parser should ignore

comments or not. Can be: true or false.

xml.parser.ignoreElementC

ontentWhiteSpace

Specify whether the underlying XML parser should ignore
white space or not. Can be: true or false.

xml.parser.nameSpaceAware Specify whether the underlying XML parser is namespace

aware or not. Can be: true or false.

XSL Properties
For each XML request/response that is processed by applying an XSL transformation a mapping must
be defined to associate the MIME content-type of the request/response with the appropriate XSL
style-sheet to apply. For example:

channel.http.xml.xsl.request.content-type.application/x-foo-request-

xml=http://localhost/eontec/mca/stylesheets/foo-xml-request.xsl

channel.http.xml.xsl.response.content-type.application/x-foo-response-

xml=http://localhost/eontec/mca/stylesheets/foo-xml-response.xsl

The settings above specify that for requests of type: application/x-foo-request-xml the style-sheet
located at: http://localhost/eontec/mca/stylesheets/foo-xml-request.xsl should be applied to
the incoming request.

Similarly for responses of type: application/x-foo-response-xml the style-sheet located at:

http://localhost/eontec/mca/stylesheets/foo-xml-response.xsl should be applied to the
outgoing response.

Developing Custom XML and XSL Codecs

Custom XML Codecs
Codecs that must manipulate an XML stream can sub-class the XMLDOMCodec class which provides
methods for marshalling String data to DOM trees and vice versa.

Custom XSL Codecs
Codecs that must use XSL to transform XML into DPTP format can sub-class the XMLXSLCodec class.
The sub-class need only specify the content-type of the incoming request and outgoing response.
Once this is done and the relevant BankframeResource.properties settings (see above) are
configured this class will apply the appropriate XSL style-sheet to the incoming request and the
outgoing response.

MCA Services Developer Guide Version 2005, Rev. B 54

http://localhost/eontec/mca/stylesheets/foo-xml-request.xsl
http://localhost/eontec/mca/stylesheets/foo-xml-response.xsl

Channel Management XML B2B

The DPTPCodec transmission format
The DPTPCodec marshals Vectors of DataPackets to and from an XML based String representation.
The XML format used is very simple and very compact, in order to keep the request and response
message sizes as small as possible. The DPTPCodec parses the XML directly, it does not rely on third-
party XML parsers such as Xerces or JAXP. This ensures that the DPTPCodec marshals data very
quickly, but also requires that the XML data is formatted exactly as described below. The XML data is
not validated before parsing so it is essential that the data is well formed.

Sample request file
The example below shows how the CREDIT_TRANSFER request described in the previous example would
be encoded:

<?xml version="1.0"?>

<v n="r">

 <d n="CREDIT_TRANSFER">

 Siebel Ltd

 1400.00

 11236745

 11246890

 EX330

 </d>

</v>

 The file starts with the standard XML processing instruction.

 Vectors are denoted by the <v> element, every request will have a containing Vector, this
Vector is given the name “r” (denoting root element) by convention.

 DataPackets are denoted by the <d> element, each DataPacket has a name which is defined
by the ‘n’ (name) attribute.

 DataPacket attributes are denoted by the <a> element. Each attribute has a name defined by
the ‘n’ attribute. The value of the attribute is given between the enclosing <a> and tags.

 The XML element and attribute tags are kept short to ensure the message size is as small as
possible.

 The DPTPCodec strips all unnecessary white-space between elements for the same reason.
Carriage returns and indentation have been added to the example above for clarity. The actual
request would look like this:

<?xml version="1.0"?><v n="r"><d n="CREDIT_TRANSFER">Siebel

Ltd1400.001123674511246890EX330</d></v>

 MCA Services Developer Guide Version 2005, Rev. B 55

Channel Management XML B2B

XML Format Description
 The Document must commence with an XML processing instruction.

 The root element must a have a Vector element (<v>).

 All <v> elements must have a name attribute (n).

 The root Vector element’s name is always: r.

 The root Vector element can contain one or more DataPacket (<d>) elements.

 Each DataPacket element must have a name (n) attribute.

 Each DataPacket element can contain one or more DataPacket attribute (<a>) elements.

 Each DataPacket attribute element must have a name (n) attribute.

 The DataPacket attribute’s value is located between the <a> and tags.

XML and XSL Examples
This example assumes the reader is familiar with XSL and the DPTP XML format. This example builds
on the example used to explain how the channel management framework works.

This example assumes that an XML stream encoded in the third-party foo-corp-xml format must be
transformed to and from DPTP XML format so that it can be processed by a Siebel Financial
component. The XML contains a credit transfer request which must be processed by a Siebel Financial
component. Below is the input XML:

Input XML
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE foo-corp-xml SYSTEM "foo-corp-xml.dtd">

<foo-corp-xml>

 <payment type="credit-transfer">

 <source-account>1234567890</source-account>

 <destination-account>1111222245</destination-account>

 <amount currency="EUR">1200.00</amount>

 <narrative>J Bloggs</narrative>

 </payment>

</foo-corp-xml>

The data in this request must be converted to DataPackets of information so that they can be passed
to a Siebel Financial Component which expects data as described in the previous example.

MCA Services Developer Guide Version 2005, Rev. B 56

Channel Management XML B2B

The sender of the above request must ensure that the content-type header field in the HTTP request
is set to the correct MIME type for the XML format. MCA uses the content-type field to determine the
appropriate codec to use to decode the XML.

XSL Style-sheet
We must define an XSL style-sheet to transform the foo-corp-xml request into a DPTP request. Below
is a style-sheet which does this:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

 xmlns:xalan="http://xml.apache.org/xslt">

<xsl:template match ="/">

 <xsl:call-template name="payment-template"/>

</xsl:template>

<xsl:template name="payment-template">

 <v n="r">

 <xsl:for-each select="//payment">

 <d n="CREDIT_TRANSFER">

 EX330

 <xsl:value-of select="source-

account"/>

 <xsl:value-of select="destination-

account"/>

 <xsl:value-of select="amount"/>

 </d>

 </xsl:for-each>

 </v>

</xsl:template>

</xsl:transform>

This style-sheet supplies the DataPacket name and REQUEST_ID which is essential for routing the
request to the correct Financial Component.

 MCA Services Developer Guide Version 2005, Rev. B 57

Channel Management XML B2B

XSL Codec
Now we must define a codec that is capable of applying the above XSL to the incoming request. Below
is the code for this codec:

package com.bankframe.examples.channel.xmlxsl;

import com.bankframe.ei.channel.codec.XMLXSLCodec;

public class FooXmlXslCodec extends XMLXSLCodec {

 public static final String REQUEST_CONTENT_TYPE="application/x-foo-request-

xml";

 public static final String RESPONSE_CONTENT_TYPE="application/x-foo-response-

xml";

 public FooXmlXslCodec() {

 super(REQUEST_CONTENT_TYPE,RESPONSE_CONTENT_TYPE);

 }

 public String getName() {

 return this.getClass().getName();

 }

}

XSL Codec Code Explanation
This class sub-classes com.bankframe.ei.channel.codec.XMLXSLCodec. XMLXSLCodec provides all the
functionality required for applying an XSL transformation to incoming requests and outgoing
responses. All that the FooXmlXslCodec class needs to do is define the content-types of the incoming
and outgoing requests. XMLXSLCodec uses the content-type to determine the XSL file to apply for the
specified request or response.

Configuring BankframeResource.properties
To enable XMLXSLCodec to determine which XSL file to apply to the request and response the following
properties must be added to BankframeResource.properties:

channel.http.xml.xsl.request.content-type.application/x-foo-request-

xml=http://localhost/eontec/mca/stylesheets/foo-request.xsl

channel.http.xml.xsl.response.content-type.application/x-foo-response-

xml=http://localhost/eontec/mca/stylesheets/foo-response.xsl

These settings assume that the appropriate style-sheets are located in
http://localhost/eontec/mca/stylesheets/

MCA Services Developer Guide Version 2005, Rev. B 58

http://localhost/eontec/mca/stylesheets/

Channel Management Web Services

Web Services
A Web service is any piece of software that makes itself available over the Internet and communicates
with clients using a standardized XML messaging.

XML is used to encode all requests to a Web service. All responses from a Web service will similarly be
encoded in XML. Because all requests and responses are in XML Web services are not tied down to any
single platform or operating system.

This document is a guide to using the Web services provided by MCA Services. It is not a tutorial on
Web services. There is a research pack available from Siebel Engineering that gives a more in-depth
overview of Web services. This will give the reader a good insight into the Web services architecture.

MCA Services Web Services

Description
MCA services exposes the Request Router session bean as a Web service. This means that any request
that is currently processed by the Request Router can be invoked via this Web service. The Request
Router contains a processDataPackets(Vector dataPackets) method which allows any DataPacket
request to reach any given EJB listed in the Routes database table. The Web service allows this
method to be invoked on the RequestRouter. The Web service allows the processDataPacket method
of the RequestRouter EJB to be invoked by any client regardless of the programming language the
client is written in or operating system that it is run from.

Implementation
MCA Services provides a WSDL description of the Request Router Web service. This description
describes the location of the Web service and how a client can interact with it. The WebLogic WSDL is
shown below:

<definitions

targetNamespace="java:com.bankframe.services.requestrouter.webservice"

xmlns:tns="java:com.bankframe.services.requestrouter.webservice"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

>

<types>

<schema targetNamespace='java:com.bankframe.services.requestrouter.webservice'

xmlns='http://www.w3.org/1999/XMLSchema'>

 MCA Services Developer Guide Version 2005, Rev. B 59

Channel Management Web Services

</schema>

</types>

<message name="processDataPacketsRequest">

<part name="arg0" type="xsd:string" />

</message>

<message name="processDataPacketsResponse">

<part name="return" type="xsd:string" />

</message>

<portType name="WebserviceRequestRouterPortType">

<operation name="processDataPackets">

<input message="tns:processDataPacketsRequest"/>

<output message="tns:processDataPacketsResponse"/>

</operation>

</portType>

<binding name="WebserviceRequestRouterBinding"

type="tns:WebserviceRequestRouterPortType"><soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="processDataPackets">

<soap:operation soapAction="urn:processDataPackets"/>

<input><soap:body use="encoded" namespace='urn:WebserviceRequestRouter'

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/></input>

<output><soap:body use="encoded" namespace='urn:WebserviceRequestRouter'

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/></output>

</operation>

</binding>

<service name="WebserviceRequestRouter"><documentation>todo</documentation><port

name="WebserviceRequestRouterPort"

binding="tns:WebserviceRequestRouterBinding"><soap:address

location="http://localhost:7001/BankFrameMCA/WebServices/RequestRouter"/></port><

/service></definitions>

The <service> tag in the WSDL defines the Web service. The sub-tag <port> defines where to find
the Web service and the operations (methods) supported. In this WSDL we can see the port is called

MCA Services Developer Guide Version 2005, Rev. B 60

Channel Management Web Services

WebserviceRequestRouterPort. It has one operation called processDataPackets which itself
declares its input and output message. These are defined earlier in the WSDL. The second sub-tag is
the <soap:address> tag which defines the actual location of the Web Service. In this case the Web
service can be invoked by sending a SOAP request adhering to the definitions provided in the WSDL to
http://localhost:7001/BankFrameMCA/WebServices/RequestRouter.

The data types that can be defined in the WSDL must be SOAP data types. SOAP data types map to
primitive java data types such as long, double, float, string, but not to object data types such a
DataPacket, Vector, etc. So in the example WSDL we can see that both messages are defined with a
single part type. The part says that the argument to the message is of type xsd:String. When using
WSDL all the arguments to operations that are declared must be a valid SOAP data type. This means
that DataPackets which are used internally throughout MCA Services and by the Request Routers
processDataPacket() method cannot be used as an input to or an output from the Web service.

Because of this limitation all requests to the Request Router Web service must be represented in XML.
This means that a DataPacket or a Vector of DataPackets request must first be mapped to XML
before it can be invoked using the Web service. To do this the
com.bankframe.ei.channel.codec.DPTPCodec should be used. If the client is not a Java client or
does not have this codec class, then they should ensure that the requests that they submit are
correctly encoded. There is a later section describing the format of the XML produced by the
DPTPCodec. This codec will convert a Vector of DataPackets to an XML string. This string can then be
used as the request parameter to the Web service’s processDataPackets method.

Web Services Application Servers
The MCA Services RequestRouter service provides access to all Siebel Retail Finance Financial
Components. The RequestRouter can be deployed as a web service, effectively web enabling all the
underlying services. For more details on how to do this please consult your application server vendor’s
documentation.

Class Descriptions

Package com.bankframe.services.requestrouter.webservice
This package defines a session bean that talks to the Request Router EJB. This session will map the
incoming XML request to a Vector of DataPacket(s) before forwarding the DataPacket(s) to the
Request Router.

Class WebserviceRequestRouterBean

This class contains a single method with the following signature:

public String processDataPackets(String request) throws ProcessingErrorException,

RemoteException

This method takes a String as a parameter and uses the DPTPCodec to convert it to a Vector of
DataPackets. It then calls the RequestRouterUtils.processDataPackets(Vector dataPackets)
which passes the generated DataPacket(s) to the Request Router EJB which then processes them.

 MCA Services Developer Guide Version 2005, Rev. B 61

http://localhost:7001/BankFrameMCA/WebServices/RequestRouter

Channel Management Web Services

When a response from the Request Router is received it converts it back to an XML string using the
codec and returns this XML.

Package com.bankframe.ei.channel.codec
This package contains codecs that are used in MCA Services. The WebserviceRequestRouter session
bean that that Web service is built on uses the DPTPCodec. An explanation of the codec and its usage
follows.

Class DPTPCodec

The DPTPCodec marshals Vectors of DataPackets to and from an XML based String representation.
The XML format used is very simple and very compact, in order to keep the request and response
message sizes as small as possible. The DPTPCodec parses the XML directly, it does not rely on third-
party XML parsers such as Xerces or JAXP. This ensures that the DPTPCodec marshals data very
quickly, but also requires that the XML data is formatted exactly as described below. The XML data is
not validated before parsing so it is essential that the data is well formed.

Sample request file. The example below shows how a sample credit transfer request might be
encoded using the DPTP codec:

<?xml version="1.0"?>

<v n="r">

 <d n="CREDIT_TRANSFER">

 eontec Ltd

 1400.00

 11236745

 11246890

 EX330

 </d>

</v>

 The file starts with the standard XML processing instruction.

 Vectors are denoted by the <v> element, every request will have a containing Vector, this
Vector is given the name “r” (denoting root element) by convention.

 DataPackets are denoted by the <d> element, each DataPacket has a name which is defined
by the ‘n’ (name) attribute.

 DataPacket attributes are denoted by the <a> element. Each attribute has a name defined by
the ‘n’ attribute. The value of the attribute is given between the enclosing <a> and tags.

 The XML element and attribute tags are kept short to ensure the message size is as small as
possible.

MCA Services Developer Guide Version 2005, Rev. B 62

Channel Management Session Affinity

 The DPTPCodec strips all unnecessary white-space between elements for the same reason.
Carriage returns and indentation have been added to the example above for clarity.

Session Affinity
Session Affinity is a mechanism whereby a unique string token is placed into all requests under a
configurable key for the duration of a client’s HTTP session. The unique token is placed into a request
by the State Machine and added to the HTTP request’s header within the HTTP Channel Client under a
configurable key specified in the BankframeResource.properties file.

Configuring Session Affinity
To configure Session Affinity the BankframeResource.properties file must be modified in two places.

 Firstly to notify the State Machine to include a unique token with every request the following must
be set to true:

include.session.id=true

 Secondly a configurable name must be specified as a key for the unique token when placed within
a HTTP request’s header. Therefore set the following:

channel.http.client.header.HTTP_HEADER_ID=SM_SESSION_ID

where HTTP_HEADER_ID is the configurable key.

NOTE: The State Machine always places a key named SM_SESSION_ID in each request so
this is not to be altered in the above setting.

Sample Application of Session Affinity
Suppose one has an application environment running multiple Java Virtual Machines, e.g. a cluster.
Caching occurs at each node in the cluster so at certain points in time it is possible to have
inconsistent caches of data across each node. To ensure that all requests within a user’s session
process data from the same cache all requests within the user’s session must be routed to the same
node in the cluster. Session Affinity can address this need to route requests to the same node by
configuring the load balancing mechanism for the cluster to determine if requests have come from the
same user session via the configured unique token in the HTTP request’s header. When a request hits
the load balancing mechanism the HTTP request’s header is checked for a pre-defined key, e.g.
HTTP_HEADER_ID, that will have been added by the Channel Client, and the load balancer will search
for a mapping between HTTP_HEADER_IDs and IP addresses of the nodes in the cluster. If a record is
not found then a node is chosen at random to route the request to and a mapping between the
HTTP_HEADER_ID and an IP address is created. Otherwise, if a matching record is found, the request is
routed to the node with the IP address matching that of the HTTP_HEADER_ID.

 MCA Services Developer Guide Version 2005, Rev. B 63

Channel Management Session Affinity

MCA Services Developer Guide Version 2005, Rev. B 64

 MCA Services Developer Guide Version 2005, Rev. B

4 Financial Process Integration

About Financial Process Integration
There are two types of component in Siebel Modules such as Branch Teller & Internet Banking: entity
beans and session beans. Entity beans model the data in the solution and session beans model the
business logic.

Session beans communicate with host systems via entity beans. Entity beans use the Financial Process
Integrator to communicate with the host system, as illustrated in the diagram below:

Host systems are accessed via software known as middleware. MCA can use a number of different
middleware technologies (IMS, MQ, TUXEDO, and CICS) to communicate with Host systems. These
middleware technologies send request data to host systems and pass back response data from the
host system. However, each middleware layer does this in a different way. One of MCA's main
strengths is that it provides an abstraction layer that hides the differences between different
middleware technologies. This provides Siebel Modules with a simple interface for communicating with
host systems. This layer is called the Financial Process Integrator.

65

Financial Process Integration About Financial Process Integration

Overview of Interfacing with a Host System
Typically a session bean needs to read some information stored on a host system. At a high level, this
is how this would be modeled:

 The data stored on the host system is modeled as an entity bean.

 The session bean requests a specific instance of the entity bean.

 This request is transformed by the Financial Process Integrator into a host transaction.

 The host system processes the request, and returns some response data.

 The Financial Process Integrator transforms this response data into a format the entity bean can
understand.

 The entity bean is initialized with the response data.

 The initialized entity bean instance is returned to the session bean.

The key point to note here is that the session bean does not interact directly with the Financial Process
Integrator. In Siebel Modules all data in the system is modeled as entity beans. Session beans
manipulate these entity beans, rather than interacting directly with the data-store (which, in the
example above, is the host system). This approach maximizes the flexibility of Siebel Modules: the
complexity of interacting with the data store is hidden within the implementation of entity beans.

Components of the Financial Process Integrator

Persister
Entity beans can be implemented using either container managed persistence (CMP) or bean-managed
persistence (BMP). With CMP the task of persisting the entity bean’s state is delegated to the EJB
Container, whereas with BMP the entity bean is responsible for persisting its state itself.

When entity beans are used to model data on host systems they must be implemented using BMP. To
do this they must interact with the Financial Process Integrator.

The task of communicating with the Financial Process Integrator is delegated to a persister helper
object.

Cache
Typically communication with host systems is expensive, it can take a significant amount of time for a
request to be processed by a host system. In addition the process of transforming data to/from the
format understood by the host system can also be expensive. It is important to cache information so
that communication with the host system and transformation of data is minimized. Caching is used in
several places in the Financial Process Integrator to improve performance. The cache can be keyed by
the entity primary key or the cache can be indexed.

Cache Indexing

To facilitate the retrieval of cached data by non-primary key attributes, the cache can be indexed.
Cache indexing provides the following benefits:

MCA Services Developer Guide Version 2005, Rev. B 66

Financial Process Integration About Financial Process Integration

 Results from non-key host transactions can be reused without the overhead of firing the host
transaction again.

 Data returned by another host transaction can be retrieved even when a corresponding host
transaction does not exist. For example, a host system may have a retrieveCustomerProfile
transaction that returns customer details as well as account details, but may not have a single
transaction for returning the account details alone.

Indexing does have its own overhead and not all host transaction responses need to be indexed. All
cache index implementations must implement the basic methods defined in the CacheIndexer
interface in the com.bankframe.services.cache package. The cache index structures are defined
using the IndexMetaData entity. The Cache Indexing implementation is completely configurable. See
the Caching Framework section for more information on indexing a cache.

Meta-Data
Meta-data is the information that describes how to transform data into the format that the host
system understands. Meta-data information is modeled as follows:

 Meta-data information for creating the host request is modeled using the
RequestTransactionField entity EJB.

 Meta-data information for processing the host system response is defined by the
TransactionMetaData and ResponseTransactionField entity EJBs.

 Meta-data information for handling host system error responses is modeled using the
TransactionErrorCondition entity EJB.

 Meta-data information on which host transaction responses should be indexed is modeled
using the ResponseIndex entity EJB.

Data Formatter
The data formatter class is responsible for interpreting the meta-data and using it to transform the
request data into the format that the host system understands, and conversely to transform the
response data into a format the Siebel Module can understand.

Transaction Route
The TransactionRoute entity defines the Siebel connector to use for each transaction.

Destination
The Destination entity stores the configuration information required by the Siebel connector to locate
and communicate with the host system.

Siebel Connector
The Siebel connector is responsible for delivering data to and receiving data from the host system.

 MCA Services Developer Guide Version 2005, Rev. B 67

Financial Process Integration About Financial Process Integration

Store and Forward
The Store and Forward mechanism operates between the Siebel mid-tier (i.e. the Siebel Financial
Components) and the host. The Financial Process Integrator’s Store and Forward framework provides
the means to store transactions, in the event of a host going offline, in order to forward them to the
host at a later time. It will only enable the storing of data for update to the host, it will not store data
retrieved from the host.

Interaction of Financial Process Integrator Components
The diagram below illustrates how the various components in the Financial Process Integrator interact
and how the Financial Process Integrator interacts with Siebel Financial Components.

Outline of how the various components in the Financial Process Integrator typically interact and how
the Financial Process Integrator interacts with Siebel Financial Components:

 The client makes a request of a Session EJB.

 This request is routed to the session bean by MCA Services.

 To fulfil the request the session bean must retrieve some data from the host.

 All data on the host is modelled as entity EJBs so the session bean must retrieve an entity EJB
instance.

 The entity bean must populate itself with data from the host system. It delegates this task to the
persister.

MCA Services Developer Guide Version 2005, Rev. B 68

Financial Process Integration Financial Process Integrator Meta-Data

 The persister checks if the data is already in the cache either directly by primary key, or through
an index if one is configured. If data is found in the cache, the persister populates the entity bean
with the cached data, otherwise it sends a request to the host for the required data.

 The Financial Process Integrator retrieves the request meta-data for the specified request, and
passes the request and the associated meta-data to the Data Formatter.

 The Data Formatter uses the meta-data to transform the request into a format the host can
understand.

 The Financial Process Integrator retrieves the Transaction Route information for the specified
request and locates the appropriate Siebel connector.

 If the Siebel connector is not already initialized, it initializes itself using the Destination
information.

 The Siebel connector then passes the formatted request to the host system (using some
middleware technology such as CICS or MQ).

 The host processes the request and returns a response.

 The Siebel connector passes the response back to the Financial Process Integrator.

 The Financial Process Integrator retrieves the response meta-data and passes the response and
associated meta-data to the Data Formatter.

 The Data Formatter uses the meta-data to transform the response from the host into a format the
persister can understand.

 The Financial Process Integrator returns the response to the persister.

 The persister populates the entity bean with the returned data, and stores the data in the cache.
The response data in the cache can also be indexed.

 The session bean interacts with the entity bean as necessary and returns its response to the
client.

Financial Process Integrator Meta-Data
The metadata defines the structure of the data that is sent to the host system for a transaction and
the response data from the host system to a transaction request. The metadata is broken into
transaction fields. Each transaction field represents an individual block of data in the host system
data. To form a transaction request the all the appropriate transaction fields are extracted from the
metadata and combined. To process a transaction response the transaction fields that are part of that
type of transaction are extracted from the metadata and used to process and extract information from
the host system response. The following sub-sections introduce some of the features of the Financial
Process Integrator.

Separation of Request and Response
There are two sets of data that are represented by the Financial Process Integrator metadata:

 The structure of the host system request, which will be a host-specific format.

 The mapping of host system response fields to response DataPacket fields.

 MCA Services Developer Guide Version 2005, Rev. B 69

Financial Process Integration Financial Process Integrator Meta-Data

These two sets of data are represented separately.

The request metadata specifies the sequential transaction fields required for the host system request.
Values necessary for the transaction are extracted from the DataPacket transaction request.

In the case of the host system response the metadata specifies the mappings of result DataPackets to
the host system response data. Only the required fields are extracted from the host system response.
The required fields are referenced in the host system response by offset, the entire host system
response does not have to be parsed, only the required fields.

Support for Error Conditions
The Financial Process Integrator has support for error condition responses from the host system. The
Financial Process Integrator can determine if the host system response is an error response from the
host system. Once it has been determined that an error has occurred appropriate action can be taken.

Support for Tiered Fields
The meta-data supports tiered fields. This concept is detailed in a later section.

Meta-Data Response Access by Offset
The Financial Process Integrator metadata for the host system response specifies the location of
required transaction fields by offset and not by sequence. This means only the required transaction
fields will be parsed out of the host system response. Previously the metadata contained a sequence
number to locate transaction fields in the response. This meant every transaction field in the host
system response had to be parsed in sequence to get to the field that was actually required. Even if
only one field in a host system response of a hundred fields was required for the result all one
hundred fields had to be parsed. Now the metadata contains the offset and not the sequence.
Therefore if only one field is required in a host system response of one hundred fields only that one
field is parsed and the remaining fields don’t have to be read. This greatly improves performance.

Request Transaction Fields
The Financial Process Integrator creates transaction requests using the RequestTransactionField
entity:

com.bankframe.ei.txnhandler.transactionlayout.impl.request.RequestTransactionFiel

dBean

This entity maps to Table 4. REQUEST_TXN_LAYOUT database.

Table 4. REQUEST_TXN_LAYOUT database

TXN_CODE TXN_TYPE FIELDNAME SEQUENCE LENGTH DP_FIELD

TXN01 TYPE1 Cust-Number 1 2 Customer_Number

TXN01 TYPE1 Acc-Name 2 10 Account_Name

…

MCA Services Developer Guide Version 2005, Rev. B 70

Financial Process Integration Financial Process Integrator Meta-Data

MANDATORY DATA FIELD_PAD_CHAR FIELD_ALIGN FIELD_ENCODING

Yes 0 LEFT COMP

No RIGHT ASCII ‘ ‘

…

ISSIGNED_FIELD DEC_BEFORE DEC_AFTER

0 0 0

0 0 0

The main body of a transaction request, which will be passed to the Siebel Connector, is built by
determining all the necessary transaction fields for the required transaction request. The
REQUEST_TXN_LAYOUT database table specifies the transaction fields necessary for host system
requests. Each row of the REQUEST_TXN_LAYOUT database table represents a transaction field.

A bank’s COBOL Copybook is a typical source for determining the necessary entries in the request
meta-data. Each transaction field, as defined in the COBOL Copybook, must be defined in the
metadata to correctly form a host system request. Typically the TXN_CODE code is the NAME section of
the COBOL Copybook.

The total number and type of columns in the REQUEST_TXN_LAYOUT table depends on the host system
requirements and may be customized for a specific host.

The main columns in the REQUEST_TXN_LAYOUT table are as follows:

 The transaction code, TXN_CODE, specifies the transaction id as defined on the host system, this is
an alphanumeric string that uniquely identifies the transaction.

 The transaction type, TXN_TYPE, indicates which host system the transaction request is being
passed to.

 The FIELDNAME element identifies the transaction field as defined for the host system.

 The SEQUENCE element specifies the order in which the transaction fields are ordered for sending
to the host and receiving from the host system. This element starts at 1.

 The LENGTH element is the length of the transaction field as required by the host system.

 DP_FIELD defines the name of the field in the Request DataPacket that maps to the request
transaction field FIELDNAME.

 The MANDATORY element specifies if the request DataPacket, passed to the Financial Process
Integrator, must contain an element called DP_FIELD with a value to place in the transaction field.
The MANDATORY element has the value ‘yes’ or ‘no’. An Exception is thrown if a transaction
request DataPacket passed to the Financial Process Integrator does not specify a value for a
mandatory element. E.g. CUSTOMER_NAME for a “customer details” request, this element would
likely be mapped to CUST-NAME in the host system data request and would be a mandatory
element in the DataPacket for this type of request.

 The DATA element is a default value for the transaction field which will be passed to the host
system.

 MCA Services Developer Guide Version 2005, Rev. B 71

Financial Process Integration Financial Process Integrator Meta-Data

 The FIELD_PAD_CHAR element specifies the padding character to fill the transaction field data with
if the data is less than LENGTH.

 The FIELD_ALIGN element specifies the alignment of padding data in the transaction field. ‘LEFT’
specifies that padding is placed to the left of the data in the transaction field. ‘RIGHT’ specifies
that padding is placed to the right of the data in the transaction field.

 The FIELD_ENCODING element specifies the encoding used to format the host system data.
Examples for textual data are ASCII, EBCDIC. Examples for numeric data are the Cobol types
COMP-3, COMP, X, STD.

 The ISSIGNED_FIELD element specifies if the transaction field is signed.

 The DEC_BEFORE element specifies the number of places before the decimal point for numeric data.

 The DEC_AFTER element specifies the number of places after the decimal point for numeric data.

The Financial Process Integrator passes all transaction processing duties to the BasicDataFormat
class. The BasicDataFormat class calls the RequestTransactionField entity bean home method
findByTransactionCodeAndType (txnCode, txnType) to get the appropriate transaction fields
required for the transaction request being processed by the Financial Process Integrator. This method
returns a List of RequestTransactionField entity beans which are accessed using the interface
TransactionField.

Example Transaction Request
The CustomerSearch example findByLastName operation has a transaction request defined by the
following Cobol Copybook:

000400 01 MAIN-CUSTOMERSEARCH.

001400* INPUT DATA

001600 05 T-CODE PIC X(12).

001800 05 T-RESTART-INDEX PIC X(4).

002000 05 C-LAST-NAME PIC X(20).

The request transaction fields for this transaction have the following form in Table 5.
REQUEST_TXN_LAYOUT.

Table 5. REQUEST_TXN_LAYOUT database

TXN_CODE TXN_TYPE FIELDNAME SEQUENCE LENGTH DP_FIELD MANDATORY

TESTFIND0002 TEST T-CODE 1 12 TXN_
CODE

YES

TESTFIND0002 TEST T-RESTART-
INDEX

2 4 RESTART_
INDEX

NO

TESTFIND0002 TEST C-LAST-NAME 3 20 LAST_
NAME

YES

MCA Services Developer Guide Version 2005, Rev. B 72

Financial Process Integration Financial Process Integrator Meta-Data

The transaction is identified with TXN_CODE=TESTFIND0002 and the host system is defined as
TXN_TYPE=TEST. There are three transaction fields defined according to the Cobol Copybook definition.

 T-CODE is the first transaction field, this field is mapped to TXN_CODE in the request DataPacket
which is passed to the Financial Process Integrator. This field is mandatory in the request
DataPacket.

 T-RESTART-INDEX is the second transaction field, this field is mapped to RESTART_INDEX in the
request DataPacket which is passed to the Financial Process Integrator. This field is not
mandatory in the request DataPacket. The field is used for maintaining an index while making
repeated calls to the host system for results.

 C-LAST-NAME is the third transaction field, this field is mapped to LAST_NAME in the request
DataPacket which is passed to the Financial Process Integrator. This field is mandatory in the
request DataPacket.

Processing Host System Response
The BasicDataFormat class determines the transaction fields in the host system response necessary
for the transaction response by using the following steps:

1 The mapping of entity DataPackets elements to required transaction fields in the host system
response is specified by the TransactionMetaData entities.

2 The form of the transaction fields in the host system response data that are required for step 1 are
specified by the ResponseTransactionField entities.

Response Meta Data Mapping
The response from a host system has to be converted from the host system specific format into entity
results which are passed to the persister, which calls the Financial Process Integrator, as
DataPackets.

Therefore, the first step in extracting the necessary result data from the host system response is to
determine which elements are necessary for the DataPacket result and map these required elements
to transaction fields in the host system response.

For example, a Customer entity might make a request to the Financial Process Integrator, via the
persister, to obtain the customer name and ID from the host system. The result DataPacket would
have to contain the elements CUSTOMER_NAME and CUSTOMER_ID. These elements in the result
DataPacket would be mapped to the host system response fields CUST-ID and CUST_NAME.

The BasicDataFormat class determines the required mappings using the TransactionMetaData
entity:

com.bankframe.ei.txnhandler.transactionresponse.metadata.MetaDataBean

This entity maps to Table 6. RESPONSE_META_DATA.

 MCA Services Developer Guide Version 2005, Rev. B 73

Financial Process Integration Financial Process Integrator Meta-Data

Table 6. RESPONSE_META_DATA database

TXN_
CODE

TXN_T
YPE

DP_NAME DP_FIELD TXN_FIELDNA
ME

DP_IN
DEX

DP_PK_
FIELD

DEFAULT_V
ALUE

TXN01 TYPE1 ACCOUNT_
INFO

ACCOUNT_
NUMBER

Account_Info[0].
ACCOUNT_NUMB
ER

1 No defaultValue

TXN01 TYPE1 ACCOUNT_
INFO

ACCOUNT_
NUMBER

Account_Info[0].
Account_Number

1 Yes defaultValue

TXN01 TYPE1 ACCOUNT_
INFO

ACCOUNT_
NUMBER

Account_Info[1].
ACCOUNT_NUMB
ER

2 No defaultValue

TXN01 TYPE1 ACCOUNT_
INFO

ACCOUNT_
NUMBER

2 Yes defaultValue Account_Info[1].
Account_Number

The columns in the RESPONSE_META_DATA table are as follows:

 The transaction code, TXN_CODE, specifies the transaction ID as defined on the host system, this is
an alphanumeric string that uniquely identifies the transaction.

 The transaction type, TXN_TYPE, indicates which host system the transaction request is being
passed to.

 The DP_NAME element specifies the name of the entity bean that a response from the host system
belongs to, e.g. ‘TestBean’.

 The DP_FIELD element identifies the field member name in the entity bean that the result maps
to.

 The DP_INDEX element identifies the entity that the response value belongs to. This is used to
uniquely store each entity result returned from the host system. This number must be greater
than or equal to 1.

 The DP_PK_FIELD element determines if the field is an element of the primary key for the entity
object that is being mapped to. Each entity has a primary key to uniquely identify itself. This
primary key may consist of several elements constructed from the host system response data
during processing. If DP_PK_FIELD is ‘Yes’ then the field is a primary key element for the entity
result.

 The TXN_FIELDNAME element identifies the transaction field in the RESPONSE_TXN_LAYOUT table that
this meta-data element maps to.

 The DEFAULT_VALUE element specifies a default value for this field.

The Financial Process Integrator passes all response processing duties to the BasicDataFormat class.
The BasicDataFormat class calls the TransactionMetaData entity bean home method
findByTransactionCodeAndType (txnCode, txnType) to get the required transaction field mappings
for the transaction being processed. This method returns a List of TransactionMetaData entity
beans.

MCA Services Developer Guide Version 2005, Rev. B 74

Financial Process Integration Financial Process Integrator Meta-Data

Response Transaction Fields
Once the required mappings from entity DataPackets elements to transaction fields have been
determined it is necessary to obtain the form of each transaction field to be extracted from the host
system response. The Financial Process Integrator determines the form of the required response
transaction fields using the ResponseTransactionField entity:

com.bankframe.ei.txnhandler.transactionlayout.impl.response.ResponseTransactionFi

eldBean

This entity maps to Table 7. RESPONSE_TXN_LAYOUT database.

Table 7. RESPONSE_TXN_LAYOUT database

OFFSET LENGTH FIELD_PAD_CHAR FIELDNAME

0 10 0 Account_Info[0].Account_Number

10 10 ‘ ‘ Account_Info[0].Account_Name

20 10 0 Account_Info[1].Account_Number

Account_Info[1].Account_Name 30 10 ‘ ‘

…

FIELD_ALIGN FIELD_ENCODING ISSIGNED_FIELD DEC_BEFORE DEC_AFTER

LEFT COMP 0 10 0

RIGHT ASCII 0 0 0

LEFT COMP 0 10 0

RIGHT ASCII 0 0 0

The total number and type of columns in the RESPONSE_TXN_LAYOUT table depends on the host system
requirements and can be customized for a specific host.

The main columns in the RESPONSE_TXN_LAYOUT table are as follows:

 The FIELDNAME element identifies the transaction field as defined for the host system.

 The OFFSET element specifies the offset of the transaction field in the host system data.

 The LENGTH element is the length of the transaction field in the host system data.

 The FIELD_PAD_CHAR element specifies the padding character to fill the transaction field data with
if the data is less than LENGTH.

 The FIELD_ALIGN element specifies the alignment of padding data in the transaction field. ‘LEFT’
specifies that padding is placed to the left of the data in the transaction field. ‘RIGHT’ specifies
that padding is placed to the right of the data in the transaction field.

 MCA Services Developer Guide Version 2005, Rev. B 75

Financial Process Integration Financial Process Integrator Meta-Data

 The FIELD_ENCODING element specifies the encoding used to format the host system data.
Examples for textual data are ASCII, EBCDIC. Examples for numeric data are the Cobol types
COMP-3, COMP, X, STD.

 The ISSIGNED_FIELD element specifies if the transaction field is signed.

 The DEC_BEFORE element specifies the number of places before the decimal point for numeric data.

 The DEC_AFTER element specifies the number of places after the decimal point for numeric data.

The BasicDataFormat class creates a Map of ResponseTransactionField entity beans. The
BasicDataFormat class processes the meta-data mappings using necessary
ResponseTransactionField entities from the Map. The transaction field data is extracted from the
host system data using the ResponseTransactionField. The ResponseTransactionField entity
beans are accessed using the interface TransactionField.

Each of the transaction fields defined in this table must have a unique name and therefore it may be
necessary to append the TXN_CODE and TXN_TYPE to the name of the field where many transactions
might be defined in the meta-data. The naming convention therefore for transaction fields is
TXN_CODE-TXN_TYPE-GROUP_NAME[INDEX]-FIELD_NAME-OFFSET.

Caching the Meta-Data (Transaction Fields)
To improve performance the Financial Process Integrator metadata can be cached. The
transactionHandler.metaData.cache entry in the BankframeResource.properties file specifies
whether caching of metadata is used by the Financial Process Integrator. This is either true or false.

This caching applies to the RequestTransactionField, ResponseTransactionField, ResponseMetaData
and ResponseErrorCondition entities.

If metadata caching is enabled then meta-data is obtained from the database tables and stored to
memory for quick access. The meta-data elements are accessed through the same interface as the
entity beans.

The Financial Process Integrator uses the MCA generic caching framework for caching of meta-data.

It may be necessary for the BasicDataFormat class to determine if caching is being enabled. The
BasicDataFormat class can determine this using the following method:

boolean metaDataCached =

com.bankframe.ei.txnhandler.TransactionHandlerUtils.isMetaDataCached();

TransactionField Interface
The BasicDataFormat class interacts with the RequestTransactionField and
ResposneTransactionField entity beans through the interface
com.bankframe.ei.txnhandler.transactionlayout.TransactionField.

The remote interface of these entity beans uses the same interface as the caching mechanism
allowing the entity beans and cached entities to be accessed in the same manner.

The TransactionField interface is defined as follows:

public interface TransactionField {

MCA Services Developer Guide Version 2005, Rev. B 76

Financial Process Integration Financial Process Integrator Meta-Data

public String getValue(String colName) throws ProcessingErrorException,

RemoteException;

public Map getValuesMap() throws ProcessingErrorException, RemoteException;

}

The generic method getValue(String colName) allows the RequestTransactionField entity bean to
work against a REQUEST_TXN_LAYOUT database table with any combination of database columns. This
is necessary to avoid recoding of the RequestTransactionField entity bean for each host system as
each host system may require a different definition of the REQUEST_TXN_LAYOUT database table. The
same applies to the ResponseTransactionField entity with the RESPONSE_TXN_LAYOUT database
table.

The argument to the getValue(String colName) method specifies the column name in the database
table. The method returns the value of the specified column as a java.lang.String. This value has to
be converted to the correct type. See the following BasicDataFormat code example for obtaining a
String entry and an int value from a previously obtained transaction field:

 Transaction txnField;

int fieldLength = new Integer(txnField.getValue("LENGTH")).intValue();

String dataPacketField = txnField.getValue("DP_FIELD");

The method getValuesMap() returns the java.util.Map interface to all the column elements. The
keys to entries in the Map are the column names. The Map values are
com.bankframe.ei.txnhandler.transactionlayout.HashTableElement objects describing the value
of the database column.

Example Response Mapping
Say we have the following COBOL copybook:

05 Account_Info occurs 2.

 010 Account_Number Pic X(10).

 010 Account_Name Pic X(10).

This would be represented in Table 8. RESPONSE_TXN_LAYOUT.

Table 8. RESPONSE_TXN_LAYOUT

FIELDNAME OFFSET LENGTH DATA FIELD_PAD_CHAR

Account_Info[0].Account_Number 0 10 0

Account_Info[0].Account_Name 10 10 ‘ ‘

Account_Info[1].Account_Number 20 10 0

Account_Info[1].Account_Name 30 10 ‘ ‘

 MCA Services Developer Guide Version 2005, Rev. B 77

Financial Process Integration Financial Process Integrator Meta-Data

…

FIELD_ALIGN FIELD_ENCODING ISSIGNED_FIELD DEC_BEFORE DEC_AFTER

LEFT COMP 0 10 0

RIGHT ASCII 0 0 0

LEFT COMP 0 10 0

RIGHT ASCII 0 0 0

Now say we have a DataPacket called ACCOUNT_INFO that we want to map to the above copy book.
The ACCOUNT_INFO DataPacket contains the following fields:

ACCOUNT_NAME

ACCOUNT_NUMBER

We map these fields to the copybook using Table 9. RESPONSE_META_DATA.

Table 9. RESPONSE_META_DATA

TXN_
CODE

TXN_T
YPE

DP_NAME DP_FIELD TXN_FIELDNA
ME

DP_IN
DEX

DP_PK_
FIELD

DEFAULT_V
ALUE

TXN01 TYPE1 ACCOUNT_
INFO

ACCOUNT_
NUMBER

Account_Info[0].
ACCOUNT_NUMB
ER

1 No defaultValue

TXN01 TYPE1 ACCOUNT_
INFO

ACCOUNT_
NUMBER

Account_Info[0].
Account_Number

1 Yes defaultValue

TXN01 TYPE1 ACCOUNT_
INFO

ACCOUNT_
NUMBER

Account_Info[1].
ACCOUNT_NUMB
ER

2 No defaultValue

TXN01 TYPE1 ACCOUNT_
INFO

ACCOUNT_
NUMBER

2 Yes defaultValue Account_Info[1].
Account_Number

 The TXN_CODE and TXN_TYPE define what transaction the mapping belongs to.

 The DataPacket name, DP_NAME, defines the name of the DataPacket that the persister expects
as a result for this transaction.

 The DataPacket field, DP_FIELD, defines the name of the field in the DataPacket result.

 The transaction field name, TXN_FIELDNAME, defines the name of the field in the
RESPONSE_TXN_LAYOUT table that this result element maps to.

 The DataPacket index, DP_INDEX, value specifies the index of the result entity that the element
belongs to, the index always starts from 1.

MCA Services Developer Guide Version 2005, Rev. B 78

Financial Process Integration Financial Process Integrator Meta-Data

 The DP_PK_FIELD column determines if the field is a primary key field of the result entity,
ACCOUNT_NUMBER is the primary key for the entities in the example above.

Support for Tier Fields
To understand the concept of tiered fields see the following example copybook:

05 Card_Number Pic X(10).

05 Account_Info occurs 2.

 010 Account_Number Pic X(10).

 010 Account_Name Pic X(10).

For the purpose of this example all the above fields map to two instances of an Account entity. This
means that to map this data properly we need to create two Account DataPackets, and we need to
treat Card_Number as if it belongs to the Account_Info tier, i.e. the Card_Number field will occur in
both Account DataPackets.

This is an example of a more general problem that can occur when mapping from entities to cobol
copybooks, the cobol copybook defines a hierarchy or grouping of fields that we do not want to impose
on our entity beans.

Table 10 below illustrates how the REQUEST_TXN_LAYOUT database table would be defined for this
situation:

Table 10. RESPONSE_TXN_LAYOUT

FIELDNAME OFFSET LENGTH FIELD_PAD_CHAR FIELD_ALIGN

Card_Number 0 10 0 LEFT

Account_Info[0].Account_Number 10 10 0 LEFT

Account_Info[0].Account_Name 20 10 ‘ ‘ RIGHT

Account_Info[1].Account_Number 30 10 0 LEFT

Account_Info[1].Account_Name 40 10 ‘ ‘ RIGHT

…

ISSIGNED_FIELD DEC_BEFORE DEC_AFTER FIELD_ENCODING

0 10 0 COMP

0 10 0 COMP

0 0 0 ASCII

0 10 0 COMP

ASCII 0 0 0

 MCA Services Developer Guide Version 2005, Rev. B 79

Financial Process Integration Financial Process Integrator Meta-Data

 The Card_Number is defined once for the host system data.

 A group of entries is put in the RESPONSE_TXN_LAYOUT for each instance of the group
Account_Info. The name of these group fields start with the group name and index of the group
occurrence, e.g. Account_Info[0] being the first occurrence of the group in the host system data.

Table 11. RESPONSE_META_DATA, then defines how we map these fields to our entity DataPackets.

Table 11. RESPONSE_META_DATA

TXN_
CODE

TXN_TYPE DP_NAME DP_FIELD TXN_FIELDNAME DP_
INDEX

DP_PK_
FIELD

DEFAULT_
VALUE

TXN01 TYPE1 ACCOUNT_
INFO

ACCOUNT_
NAME

Account_Info[0].
Account_Name

1 No defaultValue

TXN01 TYPE1 ACCOUNT_
INFO

ACCOUNT_
NUMBER

Account_Info[0].
Account_Number

1 Yes defaultValue

TXN01 TYPE1 ACCOUNT_
INFO

CARD_
NUMBER

Card_Number 1 No defaultValue

TXN01 TYPE1 ACCOUNT_
INFO

ACCOUNT_
NAME

Account_Info[1].
Account_Name

2 No defaultValue

TXN01 TYPE1 ACCOUNT_
INFO

ACCOUNT_
NUMBER

Account_Info[1].
Account_Number

2 Yes defaultValue

TXN01 TYPE1 ACCOUNT_
INFO

CARD_
NUMBER

Card_Number 2 No defaultValue

Since each field in the host system data is given an individual explicit name, we can easily map from
any DataPacket element to any transaction field in the host system data.

Deeply Nested Cobol Copybooks
What if a cobol copybook has a deeply nested structure like the one below, and we want to map it to a
single flat entity bean?

01 Customer_Details.

 02 Customer_Number Pic X(10).

 02 Last_Name Pic X(10).

 02 First_Name Pic X(10).

 02 Contact_Details.

 05 Best_Contact_Time Pic X(10).

 05 Preffered_Contact Pic X(10).

 05 Work_Details.

MCA Services Developer Guide Version 2005, Rev. B 80

Financial Process Integration Financial Process Integrator Meta-Data

 010 Employer_Name Pic X(10).

 010 Phone_No Pic X(10).

 05 Home_Details.

 010 Phone_No Pic X(10).

 010 Home_Address Pic X(20).

Table 12 below illustrates how the RESPONSE_TXN_LAYOUT table would be defined.

Table 12. RESPONSE_TXN_LAYOUT

FIELDNAME OFFSET LENGTH Fill Char …

Customer_Details.Customer_Number 0 10 0

Customer_Details.Last_Name 20 10 ‘ ’

Customer_Details.First_Name 30 10 ‘ ‘

Customer_Details.Contact_Details.Best_Contact_Time 40 10 ‘ ‘

Customer_Details.Contact_Details.Prefferred_Contact 50 10 ‘ ‘

Customer_Details.Contact_Details.Work_Details.

Employer_Name

60 10 ‘ ‘

Customer_Details.Contact_Details.Work_Details.

Phone_No

70 10 ‘ ‘

Customer_Details.Contact_Details.Home_Details.

Phone_No

80 10 ‘ ‘

Customer_Details.Contact_Details.Home_Details.

Home_Address

 90 20 ‘ ‘

Now if we want to map this copybook to a DataPacket with the following fields:

CUSTOMER_NUMBER

LAST_NAME

FIRST_NAME

BEST_CONTACT_TIME

PREFERRED_CONTACT_METHOD

EMPLOYER_NAME

WORK_PHONE_NO

 MCA Services Developer Guide Version 2005, Rev. B 81

Financial Process Integration Financial Process Integrator Meta-Data

HOME_ADDRESS

HOME_PHONE_NO

We just need to define Table 13. RESPONSE_META_DATA, as follows:

Table 13. RESPONSE_META_DATA

TXN_TYPE DP_NAME DP_FIELD TXN_CODE

TYPE1 CUSTOMER_DETAILS CUSTOMER_NUMBER TXN01

TYPE1 CUSTOMER_DETAILS LAST_NAME TXN01

TYPE1 CUSTOMER_DETAILS FIRST_NAME TXN01

TYPE1 CUSTOMER_DETAILS BEST_CONTACT_TIME TXN01

TYPE1 CUSTOMER_DETAILS PREFFERRED_CONTACT_METHOD TXN01

TYPE1 CUSTOMER_DETAILS EMPLOYER_NAME TXN01

TYPE1 CUSTOMER_DETAILS WORK_PHONE_NO TXN01

TYPE1 CUSTOMER_DETAILS HOME_ADDRESS TXN01

CUSTOMER_DETAILS HOME_PHONE_NO TXN01 TYPE1

…

TXN_FIELDNAME DP_INDEX DP_PK_FIELD

Customer_Details.Customer_Number 1 Yes

Customer_Details.Last_Name 1 No

Customer_Details.First_Name 1 No

Customer_Details.Contact_Details.Best_Contact_Time 1 No

Customer_Details.Contact_Details.Preferred_Contact 1 No

Customer_Details.Contact_Details.Work_Details.Employer_Name 1 No

Customer_Details.Contact_Details.Work_Details.Phone_No 1 No

Customer_Details.Contact_Details.Home_Details.Home_Address 1 No

Customer_Details.Contact_Details.Home_Details.Phone_No 1 No

Each cobol field has its own name so it can be easily mapped to any entity bean layout.

Mapping a Subset of Transaction Fields
This is one situation that this solution makes easy. Taking the previous example, if instead of mapping
all the fields in the copybook we’re only interested in mapping:

MCA Services Developer Guide Version 2005, Rev. B 82

Financial Process Integration Financial Process Integrator Meta-Data

CUSTOMER_NUMBER

CUSTOMER_LAST_NAME

CUSTOMER_FIRST_NAME

HOME_ADDRESS

For this case only define the mappings for those fields in the RESPONSE_META_DATA table, don’t add
mappings for the other fields. If the transaction fields are not required by any entity then eliminate
the fields from the RESPONSE_TXN_LAYOUT table.

Padding or “Filler” fields are not required, e.g., to deal with the gap between the
CUSTOMER_FIRST_NAME field and the HOME_ADDRESS field in the host system data. Transaction fields
are extracted by their OFFSET, and not a sequence number, so only the necessary fields have to be
processed.

Recurring Fields
The host system data may contain recurring fields as follows:

05 Address_Details

 010 Street_Address Pic X(10) occurs 3

 010 State Pic X(2)

 010 Postcode Pic X(5)

For the system in question this has to be mapped to a single Address Entity. The entity members
must be mapped to the Street_Address field. Entity beans cannot have array fields therefore we
need to define 3 separate fields in the entity bean to represent each entry in the array, for example
we could define the following fields:

STREET_ADDRESS1

STREET_ADDRESS2

STREET_ADDRESS3

Now its just a matter of mapping the above fields to the correct transaction fields as follows:

TXN_

CODE

TXN_TYPE DP_NAME DP_FIELD TXN_
FIELDNAME

DP_
INDEX

DP_PK_
FIELD

DEFAULT_
VALUE

TXN01 TYPE1 ADDRESS STATE Address_Details.
State

1 No default

TXN01 TYPE1 ADDRESS POSTCODE Address_Details.
Postcode

1 No default

TXN01 TYPE1 ADDRESS STREET_
ADDRESS1

Address_Details.
Street_Address[0]

1 No default

 MCA Services Developer Guide Version 2005, Rev. B 83

Financial Process Integration Financial Process Integrator Meta-Data

TXN_ TXN_TYPE DP_NAME DP_FIELD TXN_
FIELDNAME

CODE

DP_
INDEX

DP_PK_
FIELD

DEFAULT_
VALUE

TXN01 TYPE1 ADDRESS STREET_
ADDRESS2

Address_Details.
Street_Address[1]

1 No default

TXN01 TYPE1 ADDRESS STREET_
ADDRESS3

1 No default Address_Details.
Street_Address[2]

The above approach is the only way that array fields can really be handled in the MCA.

Handling Error Conditions
To determine if the host system response data is an error response the BasicDataFormat class must
analyse the host system data for transaction field values that indicate that the response data is error
data. The TransactionErrorCondition entity provides the information necessary for the
BasicDataFormat class to determine if the host system data is an error result.

TransactionErrorCondition entity maps to Table 14. RESPONSE_ERROR_CONDITION:

Table 14. RESPONSE_ERROR_CONDITION

TXN_CODE TXN_TYPE SEQUENCE TXN_FIELDNAME CONDITION VALUE

ACCOUNTFIND TEST 1 Error-Flag EQUALS ‘TRUE’

ACCOUNTFIND TEST NOT_EQUALS ‘ ‘ 2 Error-Type

…

COMBINE_WITH_NEXT ERROR_TXN_CODE ERROR_TXN_TYPE

AND ACCFIND_ERROR TEST

NO ACCFIND_ERROR TEST

TXN_CODE Defines the transaction the error condition applies to.

TXN_TYPE Defines the transaction the error condition applies to.

SEQUENCE Determines the order in which the error-conditions are used to
determine if a host system response is an error. SEQUENCE starts at
1.

TXN_FIELDNAME Defines the name of the transaction field in the host system response
that is tested, the transaction field being defined in the
RESPONSE_TXN_LAYOUT table.

CONDITION Defines the condition that must be met to indicate an error, this
column can have the following values:

EQUALS - the value of the TXN_FIELDNAME must match the VALUE

MCA Services Developer Guide Version 2005, Rev. B 84

Financial Process Integration Financial Process Integrator Meta-Data

column exactly.

STARTS_WITH - the value of the TXN_FIELDNAME must start with the
string defined in the VALUE column.

ENDS_WITH - the value of the TXN_FIELDNAME must end with the
string defined in the VALUE column.

CONTAIN - the value of the TXN_FIELDNAME must contain the string
defined in the VALUE column somewhere in its contents.

NOT_EQUAL - reverse of EQUALS.

NOT_START_WITH - reverse of STARTS_WITH.

VALUE Specifies the value to compare the transaction field value to. If the
CONDITION is ‘EQUALS’ then the VALUE must be the same length as
the LENGTH specified in the RESPONSE_TXN_LAYOUT table for the
transaction field. The VALUE for Error-Type in the above sample has
to specify 20 spaces as the transaction field Error-Type defined in
RESPONSE_TXN_LAYOUT table has a LENGTH of 20 bytes.

COMBINE_WITH_NEXT Allows for combinations of error tests on the host system data. The
logical tests can not be complex nested logical tests, only direct
combinations as follows:

AND - the result of this error test will be logically AND’d with the next
error test; If the error is true and the next error is true then the
combined error result is true.

OR - the result of this error test will be logically OR’d with the next
error test; If this error is true or the next error is true then the
combined error result is true.

XOR - the result of this error test will be logically Exclusively OR’d with
the next error test; If this error is true or the next error is true, but
both are not true, then the combined error result is true.

No - the result of this error test will not be combined with the next
error test; This is used for the last error test only, otherwise the error
result will not be combined in the next or final result.

‘ ‘ - same as No

 The ERROR_TXN_CODE and ERROR_TXN_TYPE allow the error condition to specify a specific meta-data
format for the parsing of the remainder of the error result from the host system. The remainder of
the error result may contain error information specific to that error result which has to be parsed
and returned in a ProcessingErrorException to the user.

 The BasicDataFormat method handleHostSystemError() is over-ridden to specify what action
to take when it has been determined that an error has occurred. This may involve parsing the
remainder of the host system data using the error transaction meta data, defined by
ERROR_TXN_CODE and ERROR_TXN_TYPE, to extract further error information from the host system
response and/or throwing a ProcessingErrorException.

 MCA Services Developer Guide Version 2005, Rev. B 85

Financial Process Integration Financial Process Integrator Meta-Data

 The ERROR_TXN_CODE and ERROR_TXN_TYPE need not be specified or can be the same as the
TXN_CODE and TXN_TYPE of the transaction currently being processed. This allows the
BasicDataFormat method handleHostSystemError() method to use the meta-data of the
current transaction to be used to extract the remainder of the host system response if required.

Example Error Condition
For demonstration purposes a transaction with TXN_CODE=TESTFIND and TXN_TYPE=TEST has a host
system response defined by the following Cobol copybook:

000400 01 MAIN-ACCOUNTFIND.
000410 010 ERROR-FLAG PIC X(5).
000420 010 ERROR-TYPE PIC X(20).
001300 010 CARD-NUMBER PIC 9(5).
001500 05 ACCOUNT-INFO OCCURS 10 TIMES.
001700 010 ACCOUNT-NUMBER PIC 9(5).
This results in a transaction defined with the following entries in Table 15. RESPONSE_TXN_LAYOUT:

Table 15. RESPONSE_TXN_LAYOUT

FIELDNAME OFFSET LENGTH Data Fill Char …

Error-flag 0 5 FALSE 0

Error-Type 5 20 ‘ ‘ ‘ ’

Card-Number 25 5 ‘ ‘

…

…

If it was determined that an error was indicated by the field ERROR-FLAG having a value equal to TRUE
and ERROR-TYPE not being empty then the designer creates two entries in Table 16.
RESPONSE_ERROR_CONDITION like:

Table 16. RESPONSE_ERROR_CONDITION

TXN_CODE TXN_TYPE SEQUENCE TXN_FIELDNAME CONDITION VALUE

ACCOUNTFIND TEST 1 Error-Flag EQUALS ‘TRUE’

ACCOUNTFIND TEST NOT_EQUALS ‘ ‘ 2 Error-Type

…

COMBINE_WITH_NEXT ERROR_TXN_CODE ERROR_TXN_TYPE

AND ACCOUNTFIND TEST

NO ACCOUNTFIND TEST

MCA Services Developer Guide Version 2005, Rev. B 86

Financial Process Integration Financial Process Integrator Meta-Data

NOTE: The length of the VALUE field must be equal to the length of the field specified in the cobol
copybook, i.e. the host response field length, the VALUE for the ERROR-TYPE field must be 20 bytes in
RESPONSE_ERROR_CONDITION.

The designer then has to determine what the remainder of the error response contains. The designer
will implement the BasicDataFormat method handleHostSystemError() to handle the error. This
might involve immediately throwing a ProcessingErrorException or might involve parsing the
remainder of the response to extract error information to fill the ProcessingErrorException with
useful information.

The RESPONSE_ERROR_CONDITION elements ERROR_TXN_CODE and ERROR_TXN_TYPE specify what
response fields and response metadata to use to parse the error host response.

NOTE: The values of these two elements can be the same as the TXN_CODE and TXN_TYPE of the
transaction that called the host in which case the current response fields and response metadata are
used to extract information from the host system response.

So it might be determined that the remainder of the error response is described the following Cobol
copybook:

002020 01 HOST-SYSTEM-ERROR.
002030 05 ERROR-CODE PIC 9(5).
002040 05 ERROR-MESSAGE PIC X(30).
Therefore this metadata is entered in the response fields and response metadata tables and given the
transaction code and type: TXN_CODE=ACCOUNTFIND_ERR and TXN_TYPE=TEST.

Now Table 17. RESPONSE_ERROR_CONDITION, is updated to contain the following:

Table 17. RESPONSE_ERROR_CONDITION

TXN_CODE TXN_TYPE SEQUENCE TXN_FIELDNAME CONDITION VALUE

ACCOUNTFIND TEST 1 Error-Flag EQUALS ‘TRUE’

ACCOUNTFIND TEST NOT_EQUALS ‘
‘

2 Error-Type

…

COMBINE_WITH_NEXT ERROR_TXN_CODE ERROR_TXN_TYPE

AND ACCOUNTFIND_ERR TEST

NO ACCOUNTFIND_ERR TEST

Now the BasicDataFormat method handleHostSystemError() is coded to get the metadata for
TXN_CODE=TESTFIND_ERR and TXN_TYPE=TEST and processes the response extracting the ERROR-CODE
and ERROR-MESSAGE. The method creates a ProcessingErrorException containing the error
information, i.e. "Error processing transaction, host system error code: 1000, host system
error message: ACCOUNT-NUMBER invalid"

Some systems embed the error information in the original transaction response, in that each field in
the host response is appended with an error-flag field and so the same metadata is used for
processing the error response as the normal response.

 MCA Services Developer Guide Version 2005, Rev. B 87

Financial Process Integration Financial Process Integrator Meta-Data

For example a host response may be defined by the following Cobol copybook:

000400 01 MAIN-ACCOUNTFIND.
000410 010 ERROR-FLAG PIC X(5).
001300 010 CARD-NUMBER PIC 9(5).
001300 010 CARD-NUMBER-ERR PIC X(5).
001500 05 ACCOUNT-INFO OCCURS 10 TIMES.
001700 010 ACCOUNT-NUMBER PIC 9(5).
001700 010 ACCOUNT-NUMBER-ERR PIC X(5).
Each value field in the above transaction definition is followed by an error flag field. I.e. the error flag
fields are CARD-NUMBER-ERR and ACCOUNT-NUMBER-ERR. The host system during processing marks the
value field that caused an error by setting the corresponding error-flag field to TRUE.

In this case the designer codes the handleHostSystemError() method to use the original metadata
for the transaction to parse the remainder of the transaction response as normal. The code then
determines which field in the response is causing the error by checking each error field, CARD-NUMBER-
ERR and ACCOUNT-NUMBER-ERR.

The error flag field that has a value TRUE is shown in the resulting ProcessingErrorException. I.e.
the host system determined that the ACCOUNT-NUMBER is invalid so ACCOUNT-NUMBER-ERR=" TRUE" and
the ProcessingErrorException is created containing the information "Error processing
transaction, host system error field: ACCOUNT-NUMBER".

Notes:

 If ERROR_TXN_CODE and ERROR_TXN_TYPE are equal to TXN_CODE and TXN_TYPE respectively then
the original metadata is used to process the remainder of the host response.

 The RESPONSE_ERROR_CONDITION table only allows specification of one form of error for each
transaction code and type. I.e., only one form of checking for an error condition, checking ERROR-
FLAG and ERROR-TYPE in the example above. And only one form of error response metadata, i.e.
ERROR-CODE and ERROR-MESSAGE in the example above. This should suffice as the error can contain
any error message and so theoretically handle any error.

 error-conditions functionality only handles simple logic combinations of error condition fields, no
nested combinations of error condition fields.

 The last error-condition field checked for a given transaction code and type determines the
ERROR_TXN_CODE and ERROR_TXN_TYPE to use. I.e. the error-condition with the last SEQUENCE.

Transaction Field Naming
The names used for FIELDNAME, in the RESPONSE_TXN_LAYOUT table can be of any form. However, the
following rules are guide lines for how the transaction field name, FIELDNAME, in the
RESPONSE_TXN_LAYOUT table should be named:

 Each row in the RESPONSE_TXN_LAYOUT and REQUEST_TXN_LAYOUT tables represents a single
transaction field. Only fields have entries, field groupings do not have an entry, instead each field
in the group has an entry. If a group is repeated then each group of transaction fields is repeated
in the metadata table.

 The field name will be preceded by the TXN_CODE and TXN_TYPE and OFFSET if necessary to make
the field unique to that transaction code and type.

 The field name will be the name of the field preceded by the name of each of the groups it is
nested within.

MCA Services Developer Guide Version 2005, Rev. B 88

Financial Process Integration Mapping Entity Beans to Transactions

 group names are delimited by the ‘.’ Character, e.g. Header-info.restart-flag.

 If a group has an occurs clause then the fields for that group must be repeated N times where N is
the value immediately after the occurs clause.

 If a group has an occurs clause then each occurrence of the group will be named as follows:
groupname[n] where n is the actual occurrence of the group.

 If a field has an occurs clause then each occurrence of that field must be repeated N times where
N is the value immediately after the occurs clause.

 If a field has an occurs clause then each occurrence of the field will be named as follows:
fieldname[n] where n is actual occurrence of the group.

The example below illustrates these rules:

01 Level1

 02 Field1 Pic X(10)

 02 Field2 Pic X(15) occurs 2

 02 Level2 occurs 2

 03 FieldA Pic X(10)

 03 FieldB Pic X(20) occurs 2

This copybook will be mapped as follows:

FIELDNAME OFFSET LENGTH FIELD_PAD_CHAR …

Level1.Field1 0 10 ‘ ’

Level1.Field2[0] 10 15 ‘ ’

Level1.Field2[1] 25 15 ‘ ‘

Level2[0].FieldA 40 10 ‘ ‘

Level2[0].FieldB[0] 50 20 ‘ ‘

Level2[0].FieldB[1] 70 20 ‘ ‘

Level2[1].FieldA 90 10 ‘ ‘

Level2[1].FieldB[0] 100 20 ‘ ‘

Level2[1].FieldB[1] 120 20 ‘ ‘

Mapping Entity Beans to Transactions
Until now we have implicitly assumed that there is a one-to-one mapping between each entity bean
and each transaction, however this is often not the case. A single transaction may contain the
information to populate several entity beans, or conversely a single entity bean may need to be
populated from the results of several transactions.

 MCA Services Developer Guide Version 2005, Rev. B 89

Financial Process Integration Entity Bean Persistence and the FPI

One Transaction to One Entity
This is the simplest scenario. The data in the transaction is mapped to a single entity bean instance.

One Transaction to Many Entities
There are several different scenarios where one transaction may map to many entity instances:

Repeating Entities of the Same Type
A search transaction returns one or more results. Each result corresponds to a single entity bean
instance. All entity instances are of the same type. For example a search for all accounts could return
several results, each corresponding to a single account instance.

Single Entity of One Type Plus Repeating Entities of the Same Type
A search transaction returns several results. The first result corresponds to an entity of one type,
while the subsequent results correspond to repeating instances of an entity of a different type. For
example an account statement transaction would return the statement details entity plus one or more
account movement entities.

Master Entity with Dependent Entity
A search transaction returns data, which is modeled as two entities of different types. However there
is a dependency between the two objects. For example a customer details transaction could contain
the information for both a Customer entity and its dependent Address entity.

Entity Bean Persistence and the FPI
The job of a Persister is to manage writing and reading data in an Entity Bean instance to/from the
data store. This means all the code for interacting with the data store is encapsulated in the Persister
class. The Entity Bean instance talks to the Persister (through a well-defined interface) rather than
directly to the data store.

This approach has the following advantages:

 The EJB developer does not have to worry about the complexities of talking to the Financial
Process Integrator (e.g. knowing transaction codes etc.) making the EJB simpler to code.

 The EJB is protected from changes to the design of the Financial Process Integrator.

com.bankframe.ejb.bmp
This package contains the EBMPEntity and the EPersister class interfaces. It also contains the
EPersisterFactory class that is used by an entity to get an instance of the persister.

MCA Services Developer Guide Version 2005, Rev. B 90

Financial Process Integration Entity Bean Persistence and the FPI

com.bankframe.ejb.bmp.EBMPEntity
This interface defines the methods that all Siebel BMP Entity Beans must provide. To make it possible
to define a single generic Financial Process Integrator persister that can be used by all BMP Entity
Beans the EBMPEntity contains the populate() and the createPrimaryKey() methods, these
methods are defined in the Entity Bean.

getPersister() This method returns an instance of this Entity Bean’s
persister.

getPrimaryKey() This method returns an instance of this Entity Bean’s
primary key.

This method returns the JNDI name of the Entity
Bean.

getEntityName()

This method must be implemented by all sub-
classes. It takes a DataPacket containing the
information necessary to create a primary-key and
returns an instance of the correctly initialised
EPrimaryKey class.

createPrimaryKey(DataPacket dp)

This method must be implemented by all sub-
classes. It takes a DataPacket containing the data
for the Entity Bean’s attributes. The populate()
method must initialise the Entity Bean’s attributes
from this information.

populate(DataPacket dp)

Please refer to the ‘Writing a Persister’ section for more detail on how two write a BMP entity bean
using the EBMPEntity interface.

com.bankframe.ejb.bmp.EPersister
This interface defines the methods that all Siebel EJB persisters must provide.

public interface EPersister {

public Enumeration find(EBMPEntity entityBean, String methodName, DataPacket

finderData) throws ProcessingErrorException;

public void load(EBMPEntity entityBean) throws ProcessingErrorException;

public void store(EBMPEntity entityBean) throws ProcessingErrorException;

public void amend(EBMPEntity entityBean, String methodName) throws

ProcessingErrorException;

public EPrimaryKey create(EBMPEntity entityBean) throws ProcessingErrorException;

public void remove(EBMPEntity entityBean) throws ProcessingErrorException;}

find(EBMPEntity entityBean,

String methodName, DataPacket

This method takes an instance of the calling entity;
a methodName that specifies the name of the find
operation to carry out and a finderData

 MCA Services Developer Guide Version 2005, Rev. B 91

Financial Process Integration Entity Bean Persistence and the FPI

finderData) DataPacket that specifies the parameters of the find
operation. This method will be called from Entity
Bean ejbFindBy…() methods. It returns an
Enumeration containing the matching primary keys
for the specified search.

This method takes an instance of the entity and
loads its instance data from the data store. This
method will be called from the Entity Bean’s
ejbLoad() method.

load(EBMPEntity entityBean)

This method takes an instance of the entity and
writes it to the data store. This method will be called
from the Entity Bean’s ejbStore() method.

store(EBMPEntity entityBean)

This method takes an instance of the entity and a
methodName that contains the name of the calling
method and writes it to the data store. This method
will be called from an Entity Bean’s amend method
when some or all of the entity is being updated.

amend(EBMPEntity entityBean,

String methodName)

This method takes an instance of the entity and
creates it in the data store and returns an instance
of the entity’s EPrimaryKey class.

create(EBMPEntity entityBean)

This method takes an instance of the entity and
removes it from the data store.

remove(EBMPEntity entityBean)

com.bankframe.ejb.bmp.EPersisterFactory
The EPersisterFactory class is responsible for creating and returning an instance of the Entity
Bean's persister.

getPersister(String jndiName)

This method takes a String containing the JNDI name of the entity bean and returns an instance of the
EJB's persister class.

The persister is returned by appending persister. to the JNDI name of the entity bean and checking
the BankframeResource.properties file for the corresponding persister class. If there is no
persister.<EJB_JNDI_NAME> key the default persister will be used instead.

Below is an example of the persister class settings in the BankframeResource.properties:

persister.default=com.bankframe.ei.txnhandler.persister.TxnPersister

 The default persister to be used for all BMP EJBs.

persister.eontec.bankframe.examples.bo.customer=com.bankframe.ei.txnhandler.persi
ster.MasterEntityPersister

Specifies the persister to use for the specified EJB JNDI name.

Once the persister class has been identified the factory class checks to see if an instance of the class
exists if one does it will return it, other wise it creates a new instance.

MCA Services Developer Guide Version 2005, Rev. B 92

Financial Process Integration Entity Bean Persistence and the FPI

The persister is a stateless class that provides utility functions that need no more information than
their parameters. No state information can be stored in the class.

The factory creates the persister as a singleton, for more information on the singleton design pattern
please refer to the following:

http://c2.com/cgi-bin/wiki?SingletonPattern

Writing a Persister
The following are examples of how to implement methods declared in the EPersister interface using
the com.bankframe.ei.txnhandler.persister.TxnPersister as an example. TxnPersister is the
Financial Process Integrator implementation of the EPersister.

find(EBMPEntity entityBean, String methodName, DataPacket
finderData)
The find() method is the entry-point to all search transactions that can be run against the host-
system. This method maps the Entity Bean’s name and the methodName to a transaction code and a
transaction type; it also retrieves the cache policy and decay time for the transaction. If the
transaction can be cached it checks the cache for the data, to do this it calls the Cache’s
checkPrimaryKeyInCache() method which takes a DataPacket containing the primary key of the
entity and a long containing the time-out value of the Transaction. If the transaction is not cached or
the decay time has elapsed the transaction code and the transaction type are added to a DataPacket
containing the parameters of the find operation and this DataPacket is sent to the Financial Process
Integrator. The Financial Process Integrator will return a Map containing the search results. The
persister stores the results in the cache by calling the Cache’s store() method passing it the Map of
results returned from the Financial Process Integrator.

public Enumeration find(EBMPEntity entityBean, String methodName, DataPacket
finderData) throws ProcessingErrorException {

 Enumeration result = null;

 //Using the entity name and the methodName get the txnCode, //txnType,
cachePolicy, and timeOutValue of the transaction from //the
PERSISTER_TXN_MAP database table.

 DataPacket txnMap = this.mapTxn(entityBean.getEntityName(), methodName);

 String cachePolicy = txnMap.getString(PersisterTxnMapConstants.CACHE_POLICY);

 long timeOutValue = new
Long(txnMap.getString(PersisterTxnMapConstants.TIME_OUT_VALUE)).longValue();

//check the cache policy to see if the data is cached

 if (!cachePolicy.equalsIgnoreCase(TxnPersisterConstants.NOT_CACHED)) {

 //check cache for the primary key

 if (!this.checkPrimaryKeyInCache(finderData, timeOutValue)) {

//calling the processTxnRequest() method to send request to //the
Financial Process Integrator and to receive and cache the //response.

 result = this.processTxnRequest(entityBean, this.getTxnData(finderData,
txnMap), cachePolicy);

 MCA Services Developer Guide Version 2005, Rev. B 93

Financial Process Integration Entity Bean Persistence and the FPI

 }

 else {

 //the data is in the cache so return an enumeration of the
 //primary key

 Vector entityPk = new Vector();

 entityPk.addElement(entityBean.createPrimaryKey(finderData));

 result = new IteratorEnumeration(entityPk.iterator());

 }

 }

 else {

 //calling the processTxnRequest() method to send request to //the
Financial Process Integrator and to receive and cache the
//response.

 result = this.processTxnRequest(entityBean, this.getTxnData(finderData,
txnMap), cachePolicy);

 }

 return result;

}

processTxnRequest(EBMPEntity entityBean, DataPacket txnData,
String cachePolicy)
This protected method is called by the find() method. It is responsible for passing the transaction
details to the Financial Process Integrator, receiving the response, placing it in the cache and
returning an enumeration of primary keys.

protected Enumeration processTxnRequest(EBMPEntity entityBean, DataPacket txnData,
String cachePolicy) throws ProcessingErrorException {

 try {

 Vector entityPk = new Vector();

 String txnCode = txnData.getString(TransactionHandlerConstants.TXN_CODE);

 if ((txnCode == null) ||
txnCode.equalsIgnoreCase(TransactionHandlerConstants.FIELD_NA)) {

 // do nothing

 }

 else {

//Get an instance of the Financial Process Integrator and send the transaction
//data to the processFindRequest() method.

 TransactionHandler transactionHandler = this.getTxnHandler();

 Map map = transactionHandler.processFindRequest(txnData);

 boolean persistant;

//Before caching the data check to see if it is persistent or not. //Persistent
data will be written to a database as well as to memory.

MCA Services Developer Guide Version 2005, Rev. B 94

Financial Process Integration Entity Bean Persistence and the FPI

 if
(cachePolicy.equalsIgnoreCase(TxnPersisterConstants.CACHE_PERSISTENT)) {

 persistant = true;

 }

 else if
(cachePolicy.equalsIgnoreCase(TxnPersisterConstants.CACHE_NON_PERSISTENT) ||
cachePolicy.equalsIgnoreCase(TxnPersisterConstants.NOT_CACHED)) {

 persistant = false;

 }

 else {

 //throw an exception

 }

//get the timeout value for the data and then store it in the cache.

 long timeOutValue = new
Long(txnData.getString(PersisterTxnMapConstants.TIME_OUT_VALUE)).longValue();

 this.storeInCache(map, timeOutValue, persistant);

//Process the keys of the map returned from the Financial Process Integrator to
//return an enumeration of primary keys.

 Set keys = map.keySet();

 Enumeration enum = Collections.enumeration(keys);

 while (enum.hasMoreElements()) {

 EPrimaryKey pk = entityBean.createPrimaryKey((DataPacket)
enum.nextElement());

 if (pk != null) {

 entityPk.addElement(pk);

 }

 }

 }

 return new IteratorEnumeration(entityPk.iterator());

 }

 catch (CreateException ce) {

 throw new ProcessingErrorException(ce);

 }

 catch (RemoteException re) {

 throw new ProcessingErrorException(re);

 }

}

 MCA Services Developer Guide Version 2005, Rev. B 95

Financial Process Integration Entity Bean Persistence and the FPI

mapTxn(String entityName, String methodName)
The persister class to get instances of the PersisterTxnMap Entity uses this protected method. Using
the entity name and the methodName the txnCode, txnType, cachePolicy, and timeOutValue of the
transaction from the PERSISTER_TXN_MAP database table.

protected DataPacket mapTxn(String entityName, String methodName) throws
ProcessingErrorException {

 try {

 PersisterTxnMapHome txnMaphome = (PersisterTxnMapHome)
ObjectLookup.lookup(PersisterTxnMapConstants.PERSISTERTXNMAP_JNDI_NAME,
PersisterTxnMapHome.class);

 PersisterTxnMapPK primaryKey = new PersisterTxnMapPK();

 primaryKey.entityName = entityName;

 primaryKey.methodName = methodName;

 PersisterTxnMap persisterTxnMap = (PersisterTxnMap)
txnMaphome.findByPrimaryKey(primaryKey);

 DataPacket result = persisterTxnMap.toDataPacket();

 return result;

 }

 catch (FinderException fe) {

 throw new ProcessingErrorException(fe);

 }

 catch (RemoteException re) {

 throw new ProcessingErrorException(re);

 }

}

load(EBMPEntity entityBean)
The load() method is called by the entity bean’s ejbLoad() method. All data returned by the
Financial Process Integrator from the host is cached. The load() method uses the Entity Bean's
primary key to retrieve the entity's data from the cache. It then calls the Entity Bean's populate()
method to update the entity's attributes with the cached data.

public void load(EBMPEntity entityBean) throws ProcessingErrorException {

 EPrimaryKey pk = entityBean.getPrimaryKey();

 //retrieve the data from the cache.

 DataPacket cacheData = cache.retrieve(pk.toDataPacket());

 if (cacheData == null) {

 //throw an exception

 }

 //call the entity’s populate method

entityBean.populate(cacheData);

}

MCA Services Developer Guide Version 2005, Rev. B 96

Financial Process Integration Entity Bean Persistence and the FPI

amend(EBMPEntity entityBean, String methodName)
The amend() method is called by an entity’s amend…() method. It takes an instance of the entity and
the methodName, calls the toDataPacket() on the entity bean and then calls the persister’s
amend(EBMPEntity entityBean, String methodName, DataPacket amendData). The amend() is
used for updating some or all of an entity's attributes.

public void amend(EBMPEntity entityBean, String methodName) throws
ProcessingErrorException {

 try {

 this.amend(entityBean, methodName, entityBean.toDataPacket);

 }

 catch (RemoteException re) {

 throw new ProcessingErrorException(re);

 }

}

amend(EBMPEntity entityBean, String methodName)
The amend() method is called by an entity’s amend…() method, it takes an instance of the entity, the
methodName and a DataPacket of data to use to update the entity and then calls the persister’s
protected amend(EBMPEntity entityBean, String methodName, DataPacket data, Vector
primaryKeys, boolean removeOperation) method. The amend() is used for updating some or all of
an entity's attributes.

public void amend(EBMPEntity entityBean, String methodName, DataPacket amendData)
throws ProcessingErrorException {

 Vector pksOfEntitiesToAmend = new Vector();

 pksOfEntitiesToAmend.add(entityBean.getPrimaryKey().toDataPacket());

 this.amend(entityBean, methodName, amendData, pksOfEntitiesToAmend, false);

}

amend(EBMPEntity entityBean, String methodName, DataPacket
data, Vector primaryKeys, boolean removeOperation)
The protected amend() method is called by the persister’s amend…() method. The amend() checks if
the txnCode is set to CACHE_ONLY, if it is then it will only update the cache, otherwise it adds the
transaction code and the transaction type to a DataPacket containing the entity bean's update
attributes and sends the DataPacket to the Financial Process Integrator. It also takes a boolean value
which indicates if a remove operation is to be carried out on the host or from the cache. The amend()
is used for updating some or all of an entity's attributes.

The key persister.cache.updateOnAmend in BankframeResource.properties determines if the
cache is updated or removed after the amend operation is sent to the Financial Process Integrator.

protected void amend(EBMPEntity entityBean, String methodName, DataPacket data, Vector
primaryKeys, boolean removeOperation) throws ProcessingErrorException {
 try {
 //Using the entity name and the methodName get the txnCode,

 MCA Services Developer Guide Version 2005, Rev. B 97

Financial Process Integration Entity Bean Persistence and the FPI

 //txnType, cachePolicy, and timeOutValue of the transaction from
 //the PERSISTER_TXN_MAP database table.
 DataPacket amendData = this.mapTxn(entityBean.getEntityName(), methodName);
 String txnCode = amendData.getString(TransactionHandlerConstants.TXN_CODE);
 String txnType = amendData.getString(TransactionHandlerConstants.TXN_TYPE);
 long timeOutValue = new
Long(amendData.getString(PersisterTxnMapConstants.TIME_OUT_VALUE)).longValue();

 if (getIgnoreHost(txnCode) == false) {
 TransactionHandler transactionHandler = this.getTxnHandler();
 DataPacket update = new DataPacket(data.DATA_PACKET_NAME);
 update.append(update, data);
 //Add txnCode and txnType
 update.put(TransactionHandlerConstants.TXN_CODE, txnCode);
 update.put(TransactionHandlerConstants.TXN_TYPE, txnType);
 //send data to the Financial Process Integrator processRequest() method
 transactionHandler.processRequest(update);
 }
 if (removeOperation || getRemoveFromCache()) {
 this.removeFromCache(primaryKeys);
 }
 else {
 //put data into a map (same data used for each primary key):
 Map entityMap = new HashMap();
 for (int index = 0; index < primaryKeys.size(); index++) {
 entityMap.put(primaryKeys.elementAt(index), data);
 }
 String cachePolicy =
amendData.getString(PersisterTxnMapConstants.CACHE_POLICY);
 boolean bCachePolicy =
(cachePolicy.equalsIgnoreCase(TxnPersisterConstants.CACHE_PERSISTENT)) ? true : false;
 this.storeInCache(entityMap, timeOutValue, bCachePolicy);
 }
 }
 catch (RemoteException re) {
 throw new ProcessingErrorException(re);
 }
 catch (CreateException ce) {
 throw new ProcessingErrorException(ce);
 }
}

store(EBMPEntity entityBean)
The store() method notifies the Financial Process Integrator of a change to an Entity Bean instance.
This method maps the Entity Bean’s name to a transaction code and a transaction type. It adds the
transaction code and the transaction type to a DataPacket containing the entity bean’s update
attributes and sends the DataPacket to the Financial Process Integrator. The store() is used for
updating all of an entity’s attributes. The store() method is called from the Entity Bean’s ejbStore.
This store() method is provided to allow for it to be overwritten for a specific implementation but
typically it calls the amend(EBMPEntity entityBean, String methodName) method with a
methodName variable with a value of store.

 public void store(EBMPEntity entityBean) throws ProcessingErrorException {

 this.amend(entityBean, TxnPersisterConstants.STORE_NAME);

 }

MCA Services Developer Guide Version 2005, Rev. B 98

Financial Process Integration Entity Bean Persistence and the FPI

storeInCache(Map data, long timeOutValue, boolean persistent)
The protected storeInCache() method used by the persister to determine which cache to store the
host data in either the default cache or the time out cache.

protected void storeInCache(Map data, long timeOutValue, boolean persistent)
throws ProcessingErrorException {

 if (this.timeoutCache != null) {

 this.timeoutCache.store(data, timeOutValue, persistent);

 }

 else {

 cache.store(data, persistent);

 }

}

create(EBMPEntity entityBean)
The create() method notifies the Financial Process Integrator that a new record needs to be created
on the Host System. The create() method is called form the entity bean’s ejbPostCreate() method
to create a new record on the Host System. This create() method is provided to allow for it to be
overwritten for a specific implementation but typically it calls the amend(EBMPEntity entityBean,
String methodName) method with a methodName variable with a value of create. Returns the primary
key if the create was successful.

 public EPrimaryKey create(EBMPEntity entityBean)

 throws ProcessingErrorException {

 try {

 this.amend(entityBean, TxnPersisterConstants.CREATE_NAME);

 EPrimaryKey pk =
entityBean.createPrimaryKey(entityBean.toDataPacket());

 return pk;

 } catch (RemoteException re) {

 throw new ProcessingErrorException(re);

 }

 }

remove(EBMPEntity entityBean)
The remove() method notifies the Financial Process Integrator that a record on the Host System
should be deleted. The remove() method notifies the Financial Process Integrator that a record on the
Host System should be deleted. This remove() method is provided to allow for it to be overwritten for
a specific implementation but typically it calls the amend(EBMPEntity entityBean, String
methodName) method with a methodName variable with a value of remove.

 public void remove(EBMPEntity entityBean) throws ProcessingErrorException {

 this.amend(entityBean, TxnPersisterConstants.REMOVE_NAME, true);

 MCA Services Developer Guide Version 2005, Rev. B 99

Financial Process Integration Entity Bean Persistence and the FPI

 }

removeFromCache(EBMPEntity entityBean)
The removeFromCache() method is used to delete an Entity’s cached data from the cache.

public void removeFromCache(EBMPEntity entityBean) throws
ProcessingErrorException {

 try {

 DataPacket pk =
entityBean.createPrimaryKey(entityBean.toDataPacket()).toDataPacket();

 Vector pks = new Vector();

 pks.addElement(pk);

 this.removeFromCache(primaryKeys);

 }

 catch (RemoteException re) {

 throw new ProcessingErrorException(re);

 }

}

removeFromCache(Vector primaryKeys)
This protected method is used by the persister to delete an Entity’s cached data from the cache.

protected void removeFromCache(Vector primaryKeys) throws
ProcessingErrorException {

 cache.remove(primaryKeys, true);

}

PersisterTxnMap

PERSISTER_TXN_MAP Table
The Persister transfers information to and from the Financial Process Integrator. In order to do this the
persister must be able to match the entity and method called to the txnCode and txnType and does so
using the PERSISTER_TXN_MAP table. The Persister retrieves the txnCode and txnType by using the
method name and the entity’s JNDI name. The PERSISTER_TXN_MAP table also contains details of the
caching policy and decay time for the specified Transaction. The persister checks the cache to see if
the information it needs is stored there. If the Transaction is cached a time out value is specified so
that the persister can check if the data in the cache needs to be refreshed or is still valid.

MCA Services Developer Guide Version 2005, Rev. B 100

Financial Process Integration Entity Bean Persistence and the FPI

Table 18. PERSISTER_TXN_MAP

ENTITY_
NAME

METHOD_
NAME

TXN_
CODE

TXN_
TYPE

CACHE_
POLICY

INDEX_

NAME

TIME_OUT
_VAULE

eontec.

bankframe.Account

getAccountDetails() MQ_ACC01 MQIMS none 5

ENTITY_NAME

The ENTITY_NAME attribute in the PERSISTER_TXN_MAP table maps to the entityName attribute in the
Persister class. The entityName is the JNDI name of the bean e.g. eontec.bankframe.Account.

METHOD_NAME

The METHOD_NAME attribute in the PERSISTER_TXN_MAP table maps to the methodName attribute in the
Persister class. The methodName is the name of the method which is being called e.g.
getAccountDetails().

TXN_CODE

This attribute contains the code number for the host transaction.

TXN_TYPE

This attribute identifies the middleware associated with a transaction such as MQSeries, IMS, TUXEDO
or CICS.

CACHE_POLICY

The CACHE_POLICY field states whether the data from the Financial Process Integrator is cached or
not. The CACHE_POLICY should be configured as follows:

CACHE_POLICY Setting Description

none The transaction results cannot be cached.

persistent The cache is to be written to a database so it is available even if
there is a system failure.

memory The transaction results are to be cached in memory.

Note that unless an INDEX_NAME is provided, the cache will be queried by the primary key.

INDEX_NAME

The name of the cache index to use to look up request data in the cache. This column is only
applicable if CACHE_POLICY is set to memory. The INDEX_NAME value corresponds to the name of a
cache index defined in the BankframeResource.properties file under the cache.index key. If there
is no entry in the BankframeResource.properties file, the CacheIndexFactory returns an instance of

 MCA Services Developer Guide Version 2005, Rev. B 101

Financial Process Integration Entity Bean Persistence and the FPI

CacheIndex by default. The CacheIndex class uses the IndexMetaData bean to determine the index
structure and the name of the index to cache.

TIME_OUT_VALUE

The TIME_OUT_VALUE attribute in the PERSISTER_TXN_MAP specifies the length of time in milliseconds
that the stored data remains valid. When data is retrieved from the cache its creation time is
compared to the current time and if the difference is greater than the TIME_OUT_VALUE the data is
requested from the host.

Configuring the PERSISTER_TXN_MAP Table
Please refer to the CustomerSearch and AccountSearch examples section for more details on how to
configure the PERSISTER_TXN_MAP table.

com.bankframe.ei.txnhandler.persistertxnmap

PersisterTxnMapBean
PersisterTxnMapBean is a container-managed entity bean that houses information about the relation
of an entity bean’s methods to host transactions. It maps to the PERSISTER_TXN_MAP table in the
database. The PersisterTxnMapBean solution set layer is located in the
com.bankframe.ei.txnhandler.persistertxnmap package and its implementation is in the
com.bankframe.ei.impl.txnhandler.persistertxnmap package.

Configuring BankframeResource.properties

Table 19. Configuring BankframeResource.properties

Key Name Example Value Description

persister.cache.

updateOnAmend

yes Determines if the cache is updated or
removed after an amend operation.
Possible values are yes or no.

persister.default com.bankframe

.ei.txnhandler

.persister.

TxnPersister

The default persister to be used for all
BMP EJBs.

persister.

<EJB_JNDI_NAME>

com.bankframe.

ei.txnhandler.

persister.

MasterEntityPersister

Specifies the persister to use for the
specified EJB JNDI name.

MCA Services Developer Guide Version 2005, Rev. B 102

Financial Process Integration Financial Process Integrator Caching

Financial Process Integrator Caching
The host cache package supersedes by the caching framework package. Each cache class in the
com.bankrame.ei.txnhandler.hostcache package can be described by a Cache/CachePolicy
combination from the com.bankframe.services.cache package. Please read the Caching Framework
section in the Enterprise Services chapter for more information on caches and cache policies.

Host Cache Examples
Generally it is recommended to create a new com.bankframe.services.cache.Cache instance with a
given cache policy whenever caching is needed. However should you need to create a cache based on
the deprecated host cache settings in BankFrameResource.properties then the following method
should be used:

com.bankframe.services.cache.CacheFactory.getHostCache(String cacheName)

This method will return an instance of com.bankframe.services.cache.Cache. This cache can be
manipulated by methods described in the Caching Framework document. This cache will also have a
Caching Policy associated with it that describes how the cache deals with removal of expired entries.

Configuring BankframeResource.properties
These settings are legacy settings from BankframeResource.properties related to the host cache
and are deprecated. Since all caching should be done through the caching framework, these are
retained for backwards compatibility. These settings are used by the
com.bankframe.services.cache.CacheFactory.getHostCache(String cacheName) method to
return a cache instance from the caching framework that correctly reflects the cache properties
described in these settings.

Deprecated Host Cache Settings

Table 20. Deprecated Host Cache Settings

Key Name Example Value Description

transactionHandler.hostcache.maxMemCacheSize 500 The maximum
memory cache size.

transactionHandler.hostcache.threshold 20 Used to determine
how many entries
to move at once.

transactionHandler.hostcache.cacheType SINGLEJVM,
CLUSTERABLE or
MEMORY

The cache
implementation to
use.

We also require that 0 < threshold < maxMemCacheSize < maxDbCacheSize.

 MCA Services Developer Guide Version 2005, Rev. B 103

Financial Process Integration Financial Process Integrator Engine

Financial Process Integrator Engine
The Financial Process Integrator engine is the core of the Financial Process Integrator; it must perform
the following tasks:

 Transform DataPacket requests into data messages of the correct format for the host system.

 Route data messages to the appropriate host system using a Siebel Connector.

 Transform incoming data responses from Siebel Connector into DataPacket results.

The Financial Process Integrator has two usage scenarios:

 It is invoked by a persister class, this is usually done in response to a call from an Entity Bean
finder method, i.e. a search operation.

 It is invoked from a session bean, this is usually done for amend operations.

The Financial Process Integrator provides an interface to support both these usage scenarios.

For each new host system that MCA Services is to transact with, the following customizations have to
be made in the Financial Process Integrator Engine:

1 The DESTINATION and TXN_ROUTE database tables have to be edited to specify a Siebel Connector
appropriate for the type of host system.

2 The meta-data has to be designed and edited. The meta-data defines the form of the host system
requests and responses. The Financial Process Integrator engine uses the meta-data definitions to
process the transaction requests to and from the host system. The meta-data is explained further
in the meta-data chapter.

3 The BasicDataFormat class may have to be customized. The Financial Process Integrator engine
uses the BasicDataFormat class for host system specific formatting and processing of transaction
requests and responses.

4 The necessary entries in BankframeResource.properties have to be edited. This is detailed
further in the section on configuring BankframeResource.properties.

These steps are described in the following sections.

Financial Process Integrator Engine Interface
The Financial Process Integrator engine is implemented as a stateless EJB session bean called
TransactionHandler. The TransactionHandler solution set layer is located in the
com.bankframe.ei.txnhandler.transactionhandler package and its implementation is in the
com.bankframe.ei.impl.txnhandler.transactionhandler package. Its remote interface provides
the following methods:

java.util.Map processFindRequest

(DataPacket txnData)

process a findBy request transaction. This
is a search.

Vector processRequest

(DataPacket txnData)

process a create, amend or remove
operation.

MCA Services Developer Guide Version 2005, Rev. B 104

Financial Process Integration Financial Process Integrator Engine

processFindRequest (DataPacket dataPacket)
This method is called whenever a findBy request transaction needs to be sent to the host system. The
DataPacket parameter txnData specifies values that will be placed in the transaction request that is
sent to the host system. The method processFindRequest() returns a Map that contains all the
entities that make up the host system response. The key to a Map element is a DataPacket of the
primary key for that entity in the Map. This method throws a java.rmi.RemoteException or a
com.bankframe.ejb.ProcessingErrorException if an error occurs.

processRequest (DataPacket dataPacket)
This method is called by a session bean to update data on the host system. It takes a DataPacket
indicating what fields to amend. The session bean creates a DataPacket of all the values in the host
system that have to be updated and passes the DataPacket to this method on the Financial Process
Integrator.

The processRequest() returns a Vector containing all the entities that make up the host system
response.

This method throws a java.rmi.RemoteException or a
com.bankframe.ejb.ProcessingErrorException if an error occurs.

Transaction Request DataPacket
The transaction request DataPacket is the DataPacket passed to the Financial Process Integrator by a
client, i.e., the persister, to request that a transaction be processed. The table below shows the
elements of a sample transaction request DataPacket.

TXN_CODE TEST_ACC

TXN_TYPE TXNMQ

ACCOUNT_NAME John Williams

The transaction code, TXN_CODE, specifies the transaction ID as defined on the host system.

The transaction type, TXN_TYPE, specifies which host system the transaction is sent to.

TXN_CODE and TXN_TYPE are used to determine:

 Which Siebel Connector will be used to communicate with the host system.

 Which transaction fields the specific transaction request to the host system must contain.

 Which transaction fields the specific transaction response from the host system contains.

In the sample DataPacket shown above ACCOUNT_NAME is the data value that is required for the host
system to process the transaction request. The name of the customer in this case is ‘John
Williams’. This name will be used in all the transaction fields passed to the host system that require
an ACCOUNT_NAME value.

 MCA Services Developer Guide Version 2005, Rev. B 105

Financial Process Integration Financial Process Integrator Engine

Transaction Request Processing Steps
A transaction request data object has to be created from the transaction request DataPacket, shown
in the previous section, to pass to the host system. The form of this transaction request depends on
the host system and the Siebel Connector being used to connect to the host system. The transaction
request has to be built by the Financial Process Integrator to work with the appropriate Siebel
Connector and host system, this requires a conversion from the string based transaction request
DataPacket to a host system specific format.

The steps the Financial Process Integrator performs to handle a transaction request are:

1 Build all the necessary fields for the transaction request by querying the entity bean
RequestTransactionField with the TXN_CODE, TXN_TYPE, i.e. obtain all the transaction fields that
are necessary for this type of transaction request to be processed on the host system. This entity
bean is covered further in the meta-data chapter.

2 The BasicDataFormat class fills the appropriate transaction fields with data from the transaction
request DataPacket i.e., using the transaction request DataPacket shown in the previous section
the transaction field values that require a value for the ACCOUNT_NAME are filled with the value
‘John Williams’. The BasicDataFormat class is described in a later section.

3 The BasicDataFormat class forms a host system formatted data object request consisting of the
selected transaction fields.

4 The host system data object is passed to the appropriate Siebel Connector. The appropriate
Siebel Connector is determined by querying the TransactionRoute and Destination entity
beans.

5 The Connector’s responsibility is to pass the request on to the host system. This is covered
further in the Connectors chapter.

6 The data object response is returned by the host system via the Siebel Connector.

7 The necessary transaction fields for the host system response are determined by querying the
entity beans ResponseTransactionField and TransactionMetaData with the TXN_CODE,
TXN_TYPE. These entity beans are covered further in the meta-data chapter.

8 The BasicDataFormat class extracts the appropriate fields from the host system response using
the transaction fields determined in 7.

9 The BasicDataFormat class determines if the host system response is an error result by querying
the entity bean TransactionErrorCondition with the TXN_CODE, TXN_TYPE and the host system
response data. This is described in more detail in the meta-data chapter.

10 The BasicDataFormat class creates a Map or Vector (depending if the operation is a find or an
amend) of response DataPackets from the extracted data.

11 The BasicDataFormat determines if another request has to be sent to the host system due to the
host sending the response data in sub-parts, the entire process is repeated if necessary.

The Response DataPackets are returned to the calling client in the form of a Map or Vector.

Transaction Data-Format Class
The Financial Process Integrator uses a data-format class for:

 Processing of request DataPackets into host system specific data.

MCA Services Developer Guide Version 2005, Rev. B 106

Financial Process Integration Financial Process Integrator Engine

 Processing of host system response data into DataPackets.

 Creating/removing and processing of the transaction headers.

 Pre-processing the response before the transaction fields are processed.

 Formatting the transaction fields for making a request to the Siebel Connector.

 Formatting the transaction fields in the response from the Siebel Connector.

 Determine if repeated requests are required to be sent to the host system.

The Financial Process Integrator engine determines the correct data-format class to use at run-time by
querying the TransactionRoute entity bean (the TransactionRoute entity bean will be covered in
more detail in a later section).

For each form of host system the BasicDataFormat class may have to be customized. The Siebel
MCA class com.bankframe.ei.txnhandler.dataformat.basic.BasicDataFormat is a generic base
data-format class implementation. This can be sub-classed to reuse the main functionality.

DataFormat Class Interface
All data-format classes must implement the DataFormat interface
com.bankframe.ei.txnhandler.dataformat.DataFormat. This interface has the following definition:

import com.bankframe.ejb.ProcessingErrorException;

public interface DataFormat {

 public void toDataPacketsMap(Object txnData, Map responseEntitiesMap,

DataPacket txnDataPacket, String txnCode, String txnType) throws

ProcessingErrorException;

 public void toDataPacketsVector(Object txnData, Vector

responseEntitiesVector, DataPacket txnDataPacket, String txnCode, String txnType)

throws ProcessingErrorException;

 public Object buildRequestTxn(DataPacket txnDataPacket, String txnCode,

String txnType) throws ProcessingErrorException;

 public boolean moreToRequest();

 public void notifyProcessingFinished();

 MCA Services Developer Guide Version 2005, Rev. B 107

Financial Process Integration Financial Process Integrator Engine

 public void setConnectionSpecification(Object command, String

connectorProperties) throws ProcessingErrorException;

}

Any modifications necessary for transaction processing can be made in the data-format class without
modifying the Financial Process Integrator source code.

The methods buildRequestTxn(), toDataPacketsMap() and toDataPacketsVector() use:

 the utility class com.bankframe.ei.txnhandler.dataformat.DataFormatUtils to perform
common routines such as converting ASCII text to EBCDIC format.

 the following class to get all meta-data required to process the transaction:

com.bankframe.ei.txnhandler.dataformat.TransactionHandlerUtils

Instantiating the Data-Format Class
The Financial Process Integrator instantiates the specified data-format class as shown in the following
pseudo-code:

//The Transaction Route Entity Bean used to get the DataFormat class name:

TransactionRoute txnRoute;

//Obtain DataFormat class name from the Transaction Route Entity Bean

String dataFormatClass = txnRoute.getDataFormatName();

//load and instantiate class using reflection

Class classFactory = Class.forName(dataFormatClass);

DataFormat dataFormat = (DataFormat) classFactory.newInstance();

//call the required method, e.g.,

boolean moretoRequest = dataFormat.moreToRequest();

Data-Format Class Request Processing Steps
The Financial Process Integrator creates the host system request using the Data-Format method
buildRequestTxn(txnDataPacket, txnCode, txnType). The implementation of the
BasicDataFormat processing depends on the host system format and can be customized depending
on the host system requirements.

buildRequestTxn(txnDataPacket, txnCode, txnType) makes the following processing steps:

MCA Services Developer Guide Version 2005, Rev. B 108

Financial Process Integration Financial Process Integrator Engine

 A byte stream is created to contain the transaction request that will be passed to the host
system via the host Connector.

 The request transaction fields necessary for the specified transaction code and type are
obtained by calling the TransactionHandlerUtils method
generateTxnRequestFields(txnCode, txnType).

 For each request transaction field a value for the field is obtained from the request
DataPacket, txnDataPacket. If the field value is not a MANDATORY field in the request
DataPacket then the default value specified in REQUEST_TXN_LAYOUT is used.

 Each request transaction field value is formatted according to the settings specified in
REQUEST_TXN_LAYOUT and added to the byte stream. This is performed by the method
fillTxnField(TransactionField txnField, String dataValue).

 The byte stream is returned to the Financial Process Integrator.

Data-Format Class Response Processing Steps
The Financial Process Integrator calls the method toDataPacketsMap() to process the host system
response for a find operation. The Financial Process Integrator calls the method
toDataPacketsVector() to process the host system response for an amend operation.

The implementation of the BasicDataFormat processing depends on the host system format and can
be customized depending on the host system requirements.

The two methods make the following processing steps:

1 processTxnResponse () is called for the host system response data.

2 processTxnResponse () calls the method checkForErrorCondition() to test the host system
response to determine if it is an error result from the host system.

3 checkForErrorCondition() calls checkForErrorValue() to determine if a transaction field value
matches an error condition.

4 If an error occurred then processTxnResponse () calls the method handleHostSystemError().
The method handleHostSystemError() is customised if error handling is required for a host
system. It takes appropriate action such as further processing of meta-data and throwing of a
ProcessingErrorException. See BasicDataFormat class for an example.

5 If no error occurred then processTxnResponse() calls the method processTransactionRecord().

6 The method processTransactionRecord() gets the necessary meta-data specified by the TXN_CODE
and TXN_TYPE in the request DataPacket using the class
com.bankframe.ei.txnhandler.dataformat.TransactionHandlerUtils.

7 The method processTransactionRecord() calls the method preProcessTxnData() to pre-
process the response data, i.e., removes the header information if necessary.

8 The method processTransactionRecord() processes the host system data extracting data
necessary for each entity specified by the meta-data. Entity DataPacket results processed from
the host system data are added to the Vector of entity bean results, responseEntities. If a Map
of entities is being created (due to toDataPacketMap() starting the process) then for each
element in the Vector responseEntities a Vector of all the associated primary key
DataPackets is added for later processing. The Vector of associated primary keys is updated as
primary key values are extracted from the host system response data.

 MCA Services Developer Guide Version 2005, Rev. B 109

Financial Process Integration Financial Process Integrator Engine

9 Processing returns at this point to toDataPacketsMap() and toDataPacketsVector().

10 checkIfNoEntitiesFound() is called to check if any entity DataPackets were processed from the
host system data. If none were processed then the BasicDataFormat class returns from
processing.

11 checkIfMoreToRequest() is called to update the flag indicating if this transaction requires further
calls to the host system.

12 The method postProcessResponseData() is called to perform any necessary post processing of
the Vector of entities, responseEntities, which were created from the host system data.

13 At this point the method toDataPacketsMap() converts the Vector of entities into a Map of
entities. The key to each entity in the Map is the primary key DataPacket created previously
during step 8.

14 The method toDataPacketsMap()returns the Map of entities to the Financial Process Integrator
engine. The method toDataPacketsVector()returns the Vector of entities to the Financial
Process Integrator engine.

The Financial Process Integrator engine will call moreToRequest(…) to check if the request has to be
generated again, more data retrieved from the host system and the above steps repeated to process
the response.

toDataPacketsVector()
The method toDataPacketsVector(Object txnData, Vector responseEntitiesVector, DataPacket
txnDataPacket, String txnCode, String txnType) converts the host system response data object
elements into DataPackets to respond to the client. The method returns the results in a Vector of
DataPackets called responsEntitiesVector that will be sent to the client.

The resulting DataPacket contents depend on the meta-data definition.

The names of the DataPackets in the Vector are specified by the DP_NAME field in the meta-data table
RESPONSE_META_DATA. The names of the elements in the DataPacket are the DP_FIELD values
specified in the meta-data table RESPONSE_META_DATA, this is described in detail in the meta-data
chapter.

This is called by the Financial Process Integrator method processRequest() for amending data on the
host system. The session bean that called the Financial Process Integrator in this case expects a
Vector of results DataPackets.

toDataPacketsMap()
The method toDataPacketsMap(Object txnData, Map responseEntitiesMap, DataPacket
txnDataPacket, String txnCode, String txnType) converts the response from the host system
into DataPackets to respond to the client. The method returns the results in the Map
responseEtitiesMap in the form of DataPackets which will be sent to the client. This is called by the
Financial Process Integrator method processFindRequest() for getting data on the host system. The
entity bean that called the Financial Process Integrator in this case expects a Map of results
DataPackets

The Map elements are the entity elements determined from the host system response.

The key to an element in the map is a DataPacket object containing the primary key elements of the
entity in question.

MCA Services Developer Guide Version 2005, Rev. B 110

Financial Process Integration Financial Process Integrator Engine

The name of the DataPacket takes the form: <ENTITYNAME>

For example an entity called TEST could have a primary key DataPacket with the following values:

DATA PACKET NAME = TEST

SORT_CODE = 99-99-99

ACCOUNT_NUMBER = 11223344

This is the key to the entity element in the Map. Associated with the key is an element containing the
DataPacket of values for the entity in question.

The name of the DataPacket is specified by the DP_NAME field in the meta-data table
RESPONSE_META_DATA. The names of the elements in the DataPacket are the DP_FIELD values
specified in the meta-data table RESPONSE_META_DATA, these are the names understood by the
persister object that calls the Financial Process Integrator. The meta-data tables are described in
detail in the meta-data chapter.

For example the element associated with the key shown previously could be a DataPacket with the
following values:

DATAPACKET NAME = TEST

ACCOUNT_NAME = John Williams

SORT_CODE = 99-99-99

ACCOUNT_NUMBER = 11223344

moreToRequest ()
When the Financial Process Integrator uses the BasicDataFormat class to process the response data
from the host system the BasicDataFormat class determines if there is more data still to process from
the host system. This may be the case where the header in the response data specifies that the
response from the host system has been broken into several parts. This method allows the Financial
Process Integrator to detect if the host system is finished sending response data or if there is more
data to be received and processed.

The BasicDataFormat class generally determines if there are more requests to send to the host
system as follows:

1 The definition of the meta-data for the host system defines two header fields: a flag indicating
that the host system has to be called again and a counter for the current count of calls made to
the host system for the request.

2 After processing the host system response the BasicDataFormat checks the above flags, this is
performed in the BasicDataFormat method checkIfMoreToRequest(DataPacket txnRequest,
Vector responseEntities).

3 checkIfMoreToRequest(DataPacket txnRequest, Vector responseEntities) modifies the
request settings in txnRequest if necessary for the next call to the host system, i.e. the current
count of calls is incremented and updated in the request settings.

4 If the method checkIfMoreToRequest(DataPacket txnRequest, Vector
responseEntities)determines from the flags in the header fields that there are more requests to

 MCA Services Developer Guide Version 2005, Rev. B 111

Financial Process Integration Financial Process Integrator Engine

be made then a boolean flag is set to true. The request DataPacket is updated if necessary with
new settings if further requests will be needed to the host system. The method moreToRequest()
returns the value of this boolean flag when called by the Financial Process Integrator engine.

5 The Financial Process Integrator calls the method moreToRequest(). If the result is true then the
Financial Process Integrator generates another transaction request and posts the request to the
host system requesting further data. The updated request settings are used by the
BasicDataFormat class to process the transaction request.

6 The Financial Process Integrator Engine repeats this process until moreToRequest() returns
false. The default value returned by moreToRequest() is false.

See the example data-format class:
com.bankframe.examples.txnhandler.dataformat.testcustomer. TestCustomerDataFormat

notifyProcessingFinished()
The method notifyProcessingFinished() is called by the Financial Process Integrator engine when
all processing of a transaction is complete. This allows the data-format class to clean up any
temporary data and variables.

setConnectionSpecification(Object command, String
connectorProperties)
The method setConnectionSpecification(Object command, String connectorProperties) is
called by the Financial Process Integrator engine to set the Connector Specification of an EAB
Command Bean. These are the Connector properties obtained from the Destination EJB.

TransactionHandlerUtils helper class
The methods buildRequestTxn(), toDataPacketsMap() and toDataPacketsVector() use the helper
class com.bankframe.ei.txnhandler.TransactionHandlerUtils to obtain the necessary meta-data
for processing of transactions.

This class has the following helper methods:

boolean isMetaDataCached() Determines from
BankframeResource.properties
if caching has been enabled for
the meta-data.

boolean isRoutesCached() Determines from
BankframeResource.properties
if caching has been enabled for
the routes.

TransactionField getTxnFieldFromList(Iterator
txnFields)

Returns the next
TransactionField interface from
the List.

MetaData getMetaDataFromIterator(Iterator
txnMetaData)

Returns the interface of the next
MetaData interface from a List.

MCA Services Developer Guide Version 2005, Rev. B 112

Financial Process Integration Financial Process Integrator Engine

TransactionField
getTxnResponseFieldFromName(ResponseTransactio
nFieldHome txnFieldHome, String txnFieldName,
boolean metaDataCached)

Finds the TransactionField
interface to a transaction field
entity from the transaction field
name.

List generateTxnRequestFields(String txnCode,
String txnType)

Generates the Transaction
Request fields List for specified
transaction code and type.

List generateTxnResponseMetaData(String
txnCode, String txnType)

Generates the Transaction
Response Meta-data List of
entity mappings for specified
transaction code and type.

Map generateTxnResponseFields(List
txnMetaDataList)

Generates a Map of the Response
Transaction Fields from the field
names that are specified in the
Meta-data List.

Map generateTxnResponseErrorConditions(String
txnCode, String txnType)

Generates the Map of Transaction
Response Error-Conditions for the
specified transaction code and
type.

getErrorConditionFromEnum(Enumeration
txnErrorConditions)

Returns a
TransactionErrorCondition
interface from the Enumeration.

RequestTransactionFieldHome
getRequestTransactionFieldHome()

Returns a
RequestTransactionFieldHome
object.

ResponseTransactionFieldHome
getResponseTransactionFieldHome()

Returns a
ResponseTransactionFieldHome
interface.

MetaDataHome getMetaDataHome() Returns a MetaDataHome interface
representation.

TransactionErrorConditionHome
getTxnErrorConditionHome()

Returns a
TransactionErrorConditionHome
interface.

DataFormatUtils helper class
The methods buildRequestTxn(), toDataPacketsMap() and toDataPacketsVector() use the helper
class com.bankframe.ei.txnhandler.dataformat.DataFormatUtils to perform common routines
such as converting ASCII text to EBCDIC format.

This class has the following helper methods:

byte[] subset(byte data[], int
startIndex, int endIndex)

extracts the specified amount from the data
byte-array and returns the result

 MCA Services Developer Guide Version 2005, Rev. B 113

Financial Process Integration Financial Process Integrator Engine

byte[] toEbcdic(String input) converts ASCII to EBCDIC

String ebcdicToString(byte ebcdic[]) converts EBCDIC to ASCII String

byte[] toComp(String input, Boolean
signed, int inputSize)

converts the numerical string to a Cobol
number

byte[] toComp3(String input, boolean
signed, int maxWholeDigits, int
maxFractionalDigits)

converts numerical String to a Cobol
number COMP-3 format

String compToString(byte input[]) converts a Cobol number into a numerical
String

String comp3ToString(byte input[], int
numWholeDigits, int
numFractionalDigits)

converts a Cobol number, Comp 3, into a
numerical String

byte[] toStandard(String input,
boolean signed, int maxWholeDigits,
int maxFractionalDigits)

converts a numerical String to a Cobol
Standard format

String standardToString(byte input[],
int numWholeDigits, int
numFractionalDigits)

converts a Cobol Standard to a numerical
String

ToHex(byte input, StringBuffer buf) converts an input byte into a StringBuffer
hexadecimal representation

ToHex(byte input[], StringBuffer buf) converts an input byte[] into a
StringBuffer hexadecimal representation

ToHex(int input, StringBuffer buf) converts an input int into a StringBuffer
hexadecimal representation

String toHexString(byte input) converts an input byte into a String
hexadecimal representation

String toHexString(byte input[]) converts an input byte[] into a String
hexadecimal representation

String toHexString(int input) converts an input int into a String
hexadecimal representation

Transaction Route Entity Bean
To determine which Siebel Connector the Financial Process Integrator will use to communicate with
the host system the TransactionRoute and Destination entity beans are queried. The
TransactionRoute solution set layer is located in the
com.bankframe.ei.txnhandler.transactionroute package and its implementation is in the
com.bankframe.ei.txnhandler.impl.transactionroute package.

MCA Services Developer Guide Version 2005, Rev. B 114

Financial Process Integration Financial Process Integrator Engine

The TransactionRoute entity bean maps to Table 21. TXN_ROUTE Database, which has the following
form:

Table 21. TXN_ROUTE Database

TXN_TYPE DESTINATION_ID DATAFORMAT TXN_CODE

TEST_ACC TXN_DUMMY C002 com.ims.DataFormat

TEST_ACC TXNMQ C001 com.mqs.DataFormat

The TransactionRoute entity bean is queried with the TXN_CODE and TXN_TYPE specified in the
transaction request DataPacket to determine:

 The Siebel Connector used to communicate with the host system; the DESTINATION_ID is a key
into the DESTINATION database table.

 The data-format class used to convert the request transaction into a host-specific format and to
convert the response into a Siebel-specific format.

Caching of Transaction Routes
The Financial Process Integrator can cache the queried transaction routes to improve performance.

The transactionHandler.routes.cache entry in the BankframeResource.properties file specifies
whether caching of Transaction Routes is enabled for the Financial Process Integrator.

The caching is performed by the class
com.bankframe.ei.txnhandler.transationroute.TransactionRouteCache. This class uses the
MCA generic caching framework.

Destination Entity Bean
To determine which Siebel Connector to instantiate and which Connector properties to use the
Destination entity bean is queried. The Destination solution set layer is located in the
com.bankframe.ei.txnhandler.destination package and its implementation is in the
com.bankframe.ei.txnhandler.impl.destination package.

The Destination entity bean maps to Table 22. DESTINATION database, which has the following form:

Table 22. DESTINATION database

DESTINATION_ID CONNECTOR_FACTORY_
CLASSNAME

CONNECTOR_
PROPERTIES

C001 com.bankframe.examples.

txnhandler.connector.

testcustomer.TestCusto

merConnectionFactory

offlineMode=disable;

 Port=9999;

channel=SENDER.CHANNEL;

hostname=99.999.999.99;

 MCA Services Developer Guide Version 2005, Rev. B 115

Financial Process Integration Financial Process Integrator Engine

DESTINATION_ID CONNECTOR_FACTORY_
CLASSNAME

CONNECTOR_
PROPERTIES

queueManager=QM_test;

requestQueue=QUEUE.REQ;

responseQueue=QUEUE.REPLY;

wait.interval=200;

characterset=37

C002 com.bankframe.examples.

txnhandler.connector.

coboltest.

CobolTestConnectionFactory

offlineMode=fetch;

The DESTINATION table has three fields:

 The DESTINATION_ID is a key index into the table from the TXN_ROUTE table.

 The CONNECTOR_FACTORY_CLASSNAME is the Factory class name of the Siebel Connector Factory,
which is instantiated to obtain a Connector.

 The CONNECTOR_PROPERTIES is a semi-colon delimited string containing connector properties,
which the Siebel Connector Factory uses during initialization.

The Siebel Connector properties determine if an off-line Connector will be used for testing the system.

The off-line Connector setting can be either:

 “disable”, not to be used.

 “fetch” mode.

 “store” mode.

The Siebel Connector properties has the following key to specify the off-line mode:

offlineMode=<mode>;

The Siebel Connector properties string is passed to the open() method of the instantiated Siebel
Connector Factory.

Caching of Destinations
The Financial Process Integrator can cache the queried destinations to improve performance.

The transactionHandler.routes.cache entry in the BankframeResource.properties file specifies
whether caching of destinations is enabled for the Financial Process Integrator.

The caching is performed in the class
com.bankframe.ei.txnhandler.destination.DestinationCache. This class uses the MCA generic
caching framework.

MCA Services Developer Guide Version 2005, Rev. B 116

Financial Process Integration Financial Process Integrator Engine

Posting the Transaction Request data Object to the Host
Connector
Once the transaction request DataPacket has been converted into the appropriate data format for the
host system the data object is passed to the specified Siebel Connector. All Connectors implement the
interface:

com.bankframe.ei.txnhandler.connector.EConnection

The Financial Process Integrator interacts with all Connectors through the methods of this interface.
The steps to post the transaction request java.lang.Object to the Siebel Connector are:

The Siebel Connector Factory class specified by the DESTINATION table is instantiated.

1 An interface to the required Connector is obtained from the Connector Factory

using the method getConnection(String connectorProperties). The parameter
connectionProperties is the Connector Properties String obtained from the
DESTINATION entity bean.

2 The EConnection method public Object post(Object txns) is called. The parameter Object
txns is the host system specific transaction request data object.

3 The method post(Object txns) returns a data Object containing the results from the host
system.

Configuring BankframeResource.properties
The Financial Process Integrator requires a number of entries in the BankframeResource.properties
file to function.

transactionHandler.dataSource.jndiName= jdbc/bankfrm The data source
that the Financial
Process Integrator
uses for database
access, for
example,
jdbc/bankfrm.

transactionHandler.metaData.cache Specifies if the
meta data caching
is enabled, true or
false.

transactionHandler.routes.cache Specifies if caching
for the transaction
routes and
destinations is
enabled, true or
false.

transactionHandler.routes.cache.maxSize Max size of the
routes cache.

 MCA Services Developer Guide Version 2005, Rev. B 117

Financial Process Integration Financial Process Integrator Engine

transactionHandler.requesttxnlayout.cache.maxSize Max size of the
request transaction
layout cache.

transactionHandler.responsetxnlayout.cache.maxSize Max size of the
response
transaction layout
cache.

transactionHandler.errorConditions.cache.maxSize Max size of the
response error
conditions cache.

transactionHandler.metaData.cache.maxSize Max size of the
response metadata
cache.

Financial Process Integrator Testing using Test Servlet
MCA Services supplies several servlets for testing the core functionality of the Financial Process
Integrator Engine. The servlets are described in the following sections.

TransactionHandlerHomePage
The main Financial Process Integrator servlet is

com.bankframe.ei.txnhandler.TransactionHandlerHomePage

This servlet provides links to all the Financial Process Integrator test servlets and is accessible from
the main MCA ServiceServlet.

TransactionHandlerTestServlet
The main servlet for testing the functionality of the Financial Process Integrator is

com.bankframe.ei.txnhandler.TransactionHandlerTestServlet

TransactionHandlerTestServlet tests the entire transaction processing cycle of the Financial
Process Integrator engine. It generates the specified transaction, determines the route and
destination, sends the generated request to the specified Connector, processes the response from the
host system and displays the results of the request. The caching configuration specified in the
BankframeResource.properties file is used for the processing cycle.

To use the servlet to test the Financial Process Integrator the user first creates the necessary request
DataPacket that will be sent to the Financial Process Integrator. The two operations provided for this
are:

 “Add a new field”, adds a field to the request DataPacket. The user specifies the DataPacket
field name and its value and clicks on the button “Add”.

 “Remove a field”, removes a field from the request DataPacket. The user specifies the
DataPacket field name to remove and clicks on the button “Remove”.

MCA Services Developer Guide Version 2005, Rev. B 118

Financial Process Integration Financial Process Integrator Engine

After the necessary request DataPacket fields have been created and given the correct values for the
transaction request the “Update” button is clicked to update the text box displaying the “Current
DataPacket”.

The user can choose the following requests to send to the Financial Process Integrator:

 find operation, this calls the Financial Process Integrator method processFindRequest() with
the specified DataPacket to simulate a findBy operation being performed.

 amend operation, this calls the Financial Process Integrator method processRequest() with the
specified DataPacket to simulate an amend operation being performed.

For example the AccountSearch findBy example requires the following settings:

 TXN_CODE=ACCOUNTFIND

 TXN_TYPE=TEST

The CustomerSearch findBy example requires the following settings:

 TXN_CODE=TESTFIND0001

 TXN_TYPE=TEST

 OWNER_ID=1234560010

The CustomerSearch findBy example operation requires that the OWNER_ID field is added to the
request DataPacket. The Financial Process Integrator throws an exception if this is missing because it
is specified in the metadata for the example as a mandatory field.

The CustomerSearch amend example requires the following settings:

 TXN_CODE=TESTAMND0001

 TXN_TYPE=TEST

 OWNER_ID=1234560010

 FIRST_NAME=JOHN

This amend operation will amend the first name of the user with the OWNER_ID 1234560010 to JOHN
and remove all the other settings for this user.

The results of the transaction request are displayed on a result page. The results consist of a table of
all the entity DataPacket results. The time to process the transaction request is determined by the
servlet and shown on the result page.

TransactionRouteTestServlet
The servlet for testing the transaction route functionality of the Financial Process Integrator is

com.bankframe.ei.txnhandler.transactionroute.TransactionRouteTestServlet

TransactionRouteTestServlet tests that the transaction route details for a given TXN_CODE and
TXN_TYPE can be determined from the MCA database. These details are used for determining which
data-format class to instantiate and which DESTINATION_ID to use. This test however does not
instantiate the data-format class or use the DESTINATION_ID, it just displays details for the transaction
route.

The caching configuration specified in the BankframeResource.properties file is used.

 MCA Services Developer Guide Version 2005, Rev. B 119

Financial Process Integration Financial Process Integrator Engine

The TXN_CODE and TXN_TYPE are modified for the transaction route that has to be tested and the
“Update” button clicked. The transaction route details are requested by clicking on the “Request”
button.

If the details are obtained successfully than they are displayed.

The AccountSearch example uses TXN_CODE=ACCOUNTFIND and TXN_TYPE=TEST.

DestinationTestServlet
The servlet for testing the destination functionality of the Financial Process Integrator is

com.bankframe.ei.txnhandler.destination.DestinationTestServlet.

DestinationTestServlet tests that the destination details for a given DESTINATION_ID can be
determined from the MCA database. These details are used for creating and initializing the Connector
for communicating with the host system. This test however does not communicate with the host
system, it just displays details for the host Connector.

The caching configuration specified in the BankframeResource.properties file is used.

The DESTINATION_ID is modified for the destination that has to be tested and the “Update” button
clicked. The destination details are requested by clicking on the “Request” button.

If the details are obtained successfully than they are displayed.

The AccountSearch example uses the DESTINATION_ID=C002.

RequestTransactionFieldServlet
The servlet for testing the transaction request fields functionality of the Financial Process Integrator is

com.bankframe.ei.txnhandler.transactionlayout.impl.request.

RequestTransactionFieldServlet

RequestTransactionFieldServlet tests that the transaction request field details for a given
TXN_CODE and TXN_TYPE can be determined from the MCA database. These details are used for
creating the transaction request to send to the host system. This test however does not generate the
host system specific request, it just displays details for the transaction request fields.

The caching configuration specified in the BankframeResource.properties file is used.

The TXN_CODE and TXN_TYPE are modified for the transaction request fields that have to be tested and
the “Update” button clicked. The transaction request field details are requested by clicking on the
“Request” button.

If the details are obtained successfully than they are displayed as bullet points for each transaction
request field.

The AccountSearch example uses TXN_CODE=ACCOUNTFIND and TXN_TYPE=TEST.

ResponseTransactionFieldServlet
The servlet for testing the transaction response fields functionality of the Financial Process Integrator
is

MCA Services Developer Guide Version 2005, Rev. B 120

Financial Process Integration Financial Process Integrator Engine

com.bankframe.ei.txnhandler.transactionlayout.impl.response.ResponseTransactionFi

eldServlet.

ResponseTransactionFieldServlet tests that the transaction response field details for a given
transaction FIELDNAME can be determined from the MCA database. These details are used for
processing the transaction response data from the host system. This test however does not process a
host system response, it just displays details for the specified transaction response field.

The caching configuration specified in the BankframeResource.properties file is used.

The FIELDNAME is modified for the transaction response field to be tested and the “Update” button
clicked. The transaction response field details are requested by clicking on the “Request” button.

If the details are obtained successfully than they are displayed.

The AccountSearch example uses a transaction field with FIELDNAME=CARD-NUMBER.

MetaDataServlet
The servlet for testing the transaction response metadata functionality of the Financial Process
Integrator is

com.bankframe.ei.txnhandler.transactionresponse.metadata.MetaDataServlet.

MetaDataServlet tests that the transaction response metadata details for a given TXN_CODE and
TXN_TYPE can be determined from the MCA database. These details are used for mapping transaction
fields in the host system response to result entity DataPacket results. This test however does not
process the mappings, it just displays details for the transaction response metadata.

The caching configuration specified in the BankframeResource.properties file is used.

The TXN_CODE and TXN_TYPE are modified for the transaction response metadata that have to be
tested and the “Update” button clicked. The transaction response metadata details are requested by
clicking on the “Request” button.

If the details are obtained successfully than each entity mapping is displayed as a bullet point.

The AccountSearch example uses TXN_CODE=ACCOUNTFIND and TXN_TYPE=TEST.

TransactionErrorConditionServlet
The servlet for testing the transaction response error-condition functionality of the Financial Process
Integrator is

com.bankframe.ei.txnhandler.transactionresponse.errorcondition.TransactionErrorCo

nditionServlet.

TransactionErrorConditionServlet tests that the transaction response error-condition details for a
given TXN_CODE and TXN_TYPE can be determined from the MCA database. These details are used to
determine if a host system response is an error. This test however does not process any host system
response, it just displays details for the transaction response error-conditions.

The caching configuration specified in the BankframeResource.properties file is used.

 MCA Services Developer Guide Version 2005, Rev. B 121

Financial Process Integration EIS Connectors

The TXN_CODE and TXN_TYPE are modified for the transaction response error-conditions that have to be
tested and the “Update” button clicked. The transaction response error-condition details are
requested by clicking on the “Request” button.

If the details are obtained successfully than each response error-condition is displayed as a bullet
point, otherwise there are no error-conditions for the specified transaction code and type.

The AccountSearch example uses TXN_CODE=ACCOUNTFIND and TXN_TYPE=TEST.

EIS Connectors
The first section discusses the MCA Services Connector Architecture. The second section discusses JCA
support.

MCA Services Connector Architecture
The MCA Services Connector architecture defines a standard architecture for connecting Siebel
applications to heterogeneous host or middleware systems. Examples of systems that a host
connector might communicate with include MQSeries, IMS, CICS etc. The Connector architecture
allows you utilize pre-built connectors provided with MCA, or build customized Connectors for any
number of enterprise host systems.

An MCA Connector is a package of Java classes, which are used to connect an enterprise Java
application to a Host or middleware system. The connector architecture enables a developer to provide
a standard connector for a given host system. The connector plugs into an application server and
provides connectivity between the Siebel application, the application server, and the host system.

The Siebel Host Connector Architecture is similar in structure to the Java Database Connectivity
(JDBC) interfaces. A Host Connector provides similar functionality to a JDBC driver, except that it
connects to a host system instead of a relational database. In fact, it is possible to write a host
connector for a DBMS quite easily.

Host Connectors can also optionally provide functionality for connection pooling and connection
management. The Connector architecture defines a standard interface for integrating with connection
management implementations, whether they are provided by the connector provider or an application
server.

The Connector architecture also defines the manner in which all clients connect to host system
resources. Once a connector has been successfully deployed on an application server, Siebel
applications call the post(Object) method of the desired connector to forward the request onto the
host system. When used within the Siebel Financial Process Integrator environment, the connectors
are called automatically from the Financial Process Integrator engine. Refer also to the section on JCA
support.

MCA Services Developer Guide Version 2005, Rev. B 122

Financial Process Integration EIS Connectors

Siebel Connector Interfaces/Components
A Siebel Connector is made up of several Java components that make it easy to support connection
pooling and management. The following interfaces make up the generic Siebel Connector
architecture, and are implemented by all MCA Host Connectors. They are found in the package
com.bankframe.ei.txnhandler.connector. They are as follows:

EConnection Interface

An EConnection represents an application-level handle that is used by a client to access the
underlying physical connection. The actual physical connection associated with an EConnection
instance is represented by an EManagedConnection instance. A client gets an EConnection instance
by using the getConnection() method on an EConnectionFactory instance.

All Siebel Host Connectors must implement the post(Object) and close() methods of the
EConnection interface. The post() method of all connectors should forward a client’s transaction
request to the middleware or host system that the Connector interfaces with, and should return an
object representing the response from the system. The close() method must close the physical
connection between the connector and its host system, or if it is running in a pooled environment it
must release the connection back to the connection pool, for re-use by another client.

EConnectionEvent Class

The EConnectionEvent class provides information about the source of a connection related event. An
EConnectionEvent instance contains the following information:

 MCA Services Developer Guide Version 2005, Rev. B 123

Financial Process Integration EIS Connectors

 The type of the connection event, i.e. CONNECTION_CLOSED or CONNECTION_ERROR_OCCURRED.

 The EManagedConnection instance that generated the connection event. An EManagedConnection
instance is returned from the method EConnectionEvent.getSource().

 The EConnection handle associated with the EManagedConnection instance. This is required for
the CONNECTION_CLOSED event and optional for the other event types.

 Optionally, an exception indicating the connection related error. Note that the exception is used
for CONNECTION_ERROR_OCCURRED.

The EConnectionEvent class defines a CONNECTION_CLOSED and a CONNECTION_ERROR_OCCURRED type
of event notifications.

EConnectionEventListener Interface

The EConnectionEventListener interface provides an event callback mechanism to enable a
Connection Manager to receive notifications from an EManagedConnection instance. A Connection
Manager uses these event notifications to manage its connection pool, and to clean up any invalid or
terminated connections. Typically, the Connection Manager will implement a
ConnectionEventListener interface (or one of its helper classes will). The Connection Manager
registers a connection listener with an EManagedConnection instance by using
EManagedConnection.addConnectionEventListener(EventListener) method.

The Connection Manager (or helper class that implements the EConnectionEventListener interface)
must ensure that it handles the events to close a connection and to handle errors. It does this by
implementing the connectionClosed(EConnectionEvent) and
connectionErrorOccurred(EConnectionEvent) interfaces of the EconnectionEventListener.

EConnectionFactory Interface

The EConnectionFactory provides an interface for getting a connection to a

Host system. Each individual Siebel connector will provide an implementation of the
EConnectionFactory interface. A client application that wishes to use a Siebel Host Connector must
first instantiate the Connection Factory class.

A client application obtains an EConnection from an EconnectionFactory implementation in the
following manner:

String connectorFactoryClassName=”com.test.MyConnectionFactory”;

Class classFactory = Class.forName(connectorFactoryClass);

EConnectionFactory cxf = (EConnectionFactory) classFactory.newInstance();

EConnection connection = cxf.getConnection(connectorProperties);

EConnectionManager Interface

The EConnectionManager interface provides a hook for a Siebel Connector to pass a connection
request to the application server or Connection Manager. The application server or the Connector
provider typically provides an implementation of the EConnectionManager interface. The
EConnectionManager implementation handles or delegates connection pooling and management. The

MCA Services Developer Guide Version 2005, Rev. B 124

Financial Process Integration EIS Connectors

connector architecture does not specify how a Connection Manager implements these services; the
implementation can be specific to an application server, or to a specific connector.

After a Connection Manager hooks-in its services, the connection request gets delegated to an
EManagedConnectionFactory instance either for the creation of a new physical connection or for the
matching of an already existing physical connection.

An implementation class for EConnectionManager interface is required to implement the
java.io.Serializable interface. In the non-managed application scenario, the EConnectionManager
implementation class can be provided either by a connector (as a default EConnectionManager
implementation) or by application developers.

EManagedConnection Interface

The EManagedConnection class represents a physical connection to the underlying Host system.
Managed connections are often re-cycled and used in connection pools to improve performance.

EManagedConnectionFactory Interface

The EManagedConnectionFactory instance is a factory of both EManagedConnection and connector-
specific connection factory instances. This interface supports connection pooling by providing methods
for the matching and creation of EManagedConnection instances. Implementations of this interface
must provide a createManagedConnection(String) method and a matchManagedConnections(Set,
String) method.

Using a Siebel Connector with the Financial Process Integrator
The Siebel Financial Process Integrator engine is set-up to automatically format data for a host or
middleware system, and pass these requests to the Siebel connector that corresponds to that system.
This section of the documentation will describe how the Financial Process Integrator engine integrates
with MCA Connectors. Details on other aspects of the Financial Process Integrator Engine can be
found in the previous section about the Financial Process Integrator engine.

There is a Database table (that is created when you install MCA Services) named DESTINATION. This
table is the key mediator between the Financial Process Integrator engine and Siebel Connectors. The
schema of this table contains the following columns:

DESTINATION_ID This column corresponds to the foreign key DESTINATION_ID
in the TXN_ROUTE database table. It is used to correlate a
particular host transaction request to its corresponding Siebel
Host Connector information in the DESTINATION table.

e.g. C001

CONNECTOR_FACTORY_CLA

SSNAME

This column specifies the Connection Factory class to
instantiate. From this Factory class an EConnection is
obtained to the Host Connector. The Host Connector is used
to send a transaction to its destination host system. This
name must correspond to the value of the
transactionHandler.connector.~~.ConnectionFactory_Im
pl key specified in the BankframeResource.properties file
for the Connector:

 MCA Services Developer Guide Version 2005, Rev. B 125

Financial Process Integration EIS Connectors

CONNECTOR_PROPERTIES This column is a list of properties that are specific to a
connection created by an MCA connector. The properties must
be in the format: <name>=<value>;<name2>=<value2>. Note
that multiple properties are separated by a semi-colon
delimiter.

e.g. offlineMode=fetch;user=bankfrm;password=bankfrm…

Note that all Connectors that support OffLine processing must
contain a property called offlineMode in the
CONNECTOR_PROPERTIES field. Details on the OffLine
Connector are covered in a subsequent section.

Therefore, to configure which connector you want to use through the Financial Process Integrator
engine, you will have to manipulate the DESTINATION database table. For each transaction code you
have, you must insert the correct Connector Factory class name of the connector that you wish to use
(in the CONNECTOR_FACTORY_CLASSNAME column), and insert the desired properties of that connector
(in the CONNECTOR_PROPERTIES column), where individual properties are separated by semi-colons.

For more details on how to configure the Financial Process Integrator engine for processing and
formatting requests, refer to the chapter on the Financial Process Integrator engine.

OffLine Connector
One of the pre-built connectors that are provided with MCA is the OffLine Connector. This connector is
designed for testing and development purposes, to simulate posting transactions to a live host
system. The OffLine Connector sits between a standard Siebel connector and a middleware or host
system. The OffLine Connector simulates transactions to a live host system by capturing request and
response data that passes through the original Siebel connector and storing it in a relational database
table. Then, the original Siebel connector has the option of setting its offlineMode property to either
fetch, store or disable.

OffLine Disable Mode

If a Siebel connector is running in OffLine disable mode (i.e. it is not in fetch or store), then the
original Siebel connector sends all requests directly to the host system, and returns responses directly
to the Financial Process Integrator engine. There is no interaction with the OffLine Connector. This
mode should be the default mode for all connectors.

MCA Services Developer Guide Version 2005, Rev. B 126

Financial Process Integration EIS Connectors

OffLine Store Mode

A Siebel connector can run in OffLine store mode by setting its offlineMode property to store. When
a connector is in store mode, it continues to send transaction requests to its live middleware or host
system. However, after the response has been obtained from the host or middleware system, the
original connector makes a call to the OffLine connector to store both the transaction request and the
transaction response in the OffLine database. This ensures that the connector can process this same
request at a future time when running in offline fetch mode.

 MCA Services Developer Guide Version 2005, Rev. B 127

Financial Process Integration EIS Connectors

1 Financial Process Integrator forwards client request to an MCA Connector.

2 MCA Connector posts request to the Host system and waits for the response.

3 MCA Connector sends original request and host response to the OffLine Connector before sending
host response back to the Financial Process Integrator.

4 Siebel OffLine Connector stores the request and response in a Database.

OffLine Fetch Mode

A Siebel connector can run in OffLine fetch mode by setting its offlineMode property to fetch. When
a connector is in fetch mode, it re-directs all transaction requests to the OffLine Connector, instead of
making a connection to the live host or middleware system. The OffLine Connector will then look-up
the response to the transaction request in the OffLine Database and return the expected response
back to the original connector, which in turn returns to the Financial Process Integrator engine. Note
that a request sent to the OffLine Connector will only be retrieved properly if that same transaction
request had previously been made while the connector was in offline store mode.

MCA Services Developer Guide Version 2005, Rev. B 128

Financial Process Integration EIS Connectors

OffLine Connector Implementation

The Siebel OffLine Connector is a standard implementation of the Siebel Connector interfaces. It also
provides an implementation of a connection manager and a connection pool, which utilize JDBC
DataSource objects to obtain sql connections to the OffLine database table.

The OffLine Connector contains the following Java classes, found in the
com.bankframe.ei.txnhandler.connector.offline package.

OffLineConnection. This class represents an application-level handle to the OffLine Database that is
used by a client to access the underlying physical connection. Siebel Host Connectors will call the
post(Object) method of this connection to either fetch requests from the offline database when they
do not want to run against the live host system, or they will call the post(Object, Object) method
to store requests and responses in the offline database for later offline transactions. All objects sent
through the post() method must be serializable, so that they can be stored offline. If they are not
serializable then the post() method will return null, and requests will not be stored or fetched from
the OffLine database. The OffLine connector writes and retrieves the objects passed into the post()
methods as serializable byte streams to the OffLine Database. The OffLineConnection also provides
a close() method that must be called when you are finished with the connection, so that it can be
released back to the pool, or destroyed.

OffLineConnectionFactory. This class provides a means for an MCA Connector to obtain a
connection to the OffLine Connector database. The OffLineConnectionFactory is instantiated by a
Connector to enable access to the Offline Connector. The application then uses the
getConnection(String) method to obtain an instance of the corresponding EConnection class.

The only parameter that needs to be passed in to the getConnection(String) method of the OffLine
Connector is the offlineMode value. This value can be set to disable, fetch, or store (as described
in the sections above). The getConnection(String) method for setting the OffLine Connector to
store mode would be:

 MCA Services Developer Guide Version 2005, Rev. B 129

Financial Process Integration EIS Connectors

EConnection con = cf.getConnection(“offlineMode=store”);

When an MCA Connector calls the post(Object) method of the OffLine Connector, it will receive back
the exact same type of object that it would expect to receive from the host or middleware system that
it communicates with.

OffLineConnectionManager. This class acts as a resource manager for the OffLine Connector. It
provides connection pooling and management for an application that is using multiple OffLine
Connectors. The connection manager is initialized and associated with the connector at deploy time,
and its execution is invisible to the developer during connector interaction. There are two settings in
the BankframeResource.properties file for configuring the OffLine connection manager. The
maxConnections setting lets you specify a maximum number of settings that you want the OffLine
Connector to be allowed. Setting this to 0 will allow unlimited number of connections to be created
by the connector (although, this is in turn limited by a DataSource and the connection pool settings
that you have in your application server).

transactionHandler.connector.OffLineConnector.maxConnections=3

The timeOut setting lets you specify the amount of time to wait for a connection that is in use. If all
of the connections in a pool are currently in use, the connector will wait for a period of timeOut
seconds for a connection. If it does not obtain a connection when this time has expired, it will stop
waiting and return null.

transactionHandler.connector.OffLineConnector.timeOut=10

OffLineConnectionPool. This class is a Connection Pool for the OffLine Connector. It stores and
manages a series of physical (EManaged) connections to the offline database. This class is used in
conjunction with the OffLineConnectionManager, for situations where a JDBC DataSource object is
available from the application server. The OffLineConnectionPool is used by the
OffLineConnectionManager, and its interaction with the connector is invisible to the user.

OffLineManagedConnection. This class is an implementation of the EManagedConnection class for
the OffLine Connector. It represents the physical connection to the offline database. All interaction
with the OffLine Connector should be through the OffLineConnection, and you should never need to
use the OffLineManagedConnection directly.

OffLineManagedConnectionFactory. The OffLineManagedConnectionFactory class is a factory for
OffLineManagedConnection instances. This class supports connection pooling by providing methods
for the matching and creation of OffLineManagedConnection instances. All interaction with the
OffLine Connector should be through the OffLineConnection, and you should never need to use the
OffLineManagedConnection directly.

HTTPConnector
One of the pre-built connectors provided with MCA is the HTTPConnector. This connector is designed
for connecting to systems over the HTTP protocol and can be used in a message based SOAP
environment. It has one connection property: URL_STRING. Use the Financial Process Integration tool
to config the URL_STRING connection property for the HTTPConnector.

XMLDataFormat

HTTPConnector uses XMLDataFormat to encode and decode the request for transport over HTTP.
XMLDataFormat uses DPTPDomCodec to convert a Vector of DataPackets to and from an XML string.

MCA Services Developer Guide Version 2005, Rev. B 130

Financial Process Integration EIS Connectors

When using DPTPDomCodec, XML validation should be disabled. To do this, set
xml.parser.validating=false in the properties file BankframeResource.properties. The XMLDataFormat
can transform the DPTPDomCodex XML string by applying an XML stylesheet. Different XSLT strings
can be defined for requests and responses using the XSL_STYLESHEET column in
REQUEST_TXN_LAYOUT, RESPONSE_META_DATA and RESPONSE_TXN_LAYOUT tables. Note that for a
request or response, because the XSLT will define the record structure, and the DPTPDomCodec will
be used to convert to and from a Vector of DataPackets, there is only one record required in
REQUEST_TXN_LAYOUT, RESPONSE_META_DATA and RESPONSE_TXN_LAYOUT tables for each host
request and response.

For example, RESPONSE_TXN_LAYOUT normally defines the response field positions and the
RESPONSE_META_DATA is used to define the mapping of fields to DataPacket keys. Since the XSLT
will define the response structure, and the DPTPDomCodec will be used to produce the Vector of
DataPackets, there is only one record required for RESPONSE_TXN_LAYOUT with the TXN_CODE and
XSL_STYLESHEET columns set. Other columns, while can have default values. Similarly, the
RESPONSE_META_DATA also only requires one record with the TXN_CODE and XSL_STYLESHEET
columsn set.

JCA Support
This section outlines how the MCA Financial Process Integrator facilitates support for JCA connectors.
JCA is an open-ended specification for connecting to EIS systems from within an application server
environment. JCA resource adapters are packaged within .rar files and deployed on an application
server in the same way as EJBs or Web applications. Generally a middleware vendor will supply this
resource adapter for interaction with their software. These resource adapters are likely to support
connection management, transaction management and security management. To interact with an EIS
via a resource adapter a client API is needed. This can be a standard API such as the Client
Connection Interface (CCI) from JCA, or a proprietary API supplied by the middleware vender. It is at
the discretion of the middleware vendor as to which API they support.

To demonstrate the potential use of JCA within the Financial Process Integrator, we have developed a
simple resource adapter that mimics a resource adapter that is supplied by a middleware vendor. This
is deployed in the application server. For this example the resource adapter will interact with a file
containing customer data. This is the same file used by the customer search example. Only a brief
examination of the resource adapter follows because in any real world scenario using JCA the resource
adapter will be available from the middleware vendor, and its actual working should be hidden from a
client developer.

Defining the Resource adapter
Below is a resource adapter deployment descriptor that is bundled within our .rar file. The important
elements in this XML are the following tags:

<managedconnectionfactory-class> - This class will be the class that the application server
interacts with to match requests to connections or to create new connections when required.

<connectionfactory-interface> - This is the interface that the above class implements.

<connectionfactory-impl-class> - This is the factory class that allows an application component to
get a connection to the EIS. This class will be used by the managedconnectionfactory-class defined
above to get the actual connection, thus handing over responsibility to the application server for

 MCA Services Developer Guide Version 2005, Rev. B 131

Financial Process Integration EIS Connectors

connection pooling etc. An object of this type will be returned from the application when a component
does a JNDI lookup on the connector component.

<connection-interface> - This is the interface that the connection class implements. It must
contain a getConnection() method.

<connection-impl-class> - This is the class that provides connectivity to the EIS. This is got from
the connectionfactory implementation class.

The complete descriptor follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE connector PUBLIC '-//Sun Microsystems, Inc.//DTD Connector 1.0//EN'

'http://java.sun.com/j2ee/dtds/connector_1_0.dtd'>

<connector>

 <display-name>Some JCA</display-name>

 <vendor-name>Some Vendor</vendor-name>

 <spec-version>1.0</spec-version>

 <eis-type>EIS definition</eis-type>

 <version>1.0</version>

 <resourceadapter>

 <managedconnectionfactory-

class>com.bankframe.jca.samplefileadapter.SampleManagedConnectionFactory</managed

connectionfactory-class>

 <connectionfactory-

interface>javax.resource.cci.ConnectionFactory</connectionfactory-interface>

 <connectionfactory-impl-

class>com.bankframe.jca.samplefileadapter.SampleConnectionFactory</connectionfact

ory-impl-class>

 <connection-interface>javax.resource.cci.Connection</connection-

interface>

 <connection-impl-

class>com.bankframe.jca.samplefileadapter.SampleConnection</connection-impl-

class>

 <transaction-support>NoTransaction</transaction-support>

MCA Services Developer Guide Version 2005, Rev. B 132

Financial Process Integration Store and Forward

 <authentication-mechanism>

 <authentication-mechanism-type>BasicPassword</authentication-

mechanism-type>

 <credential-

interface>javax.resource.security.PasswordCredential</credential-interface>

 </authentication-mechanism>

 <reauthentication-support>false</reauthentication-support>

 </resourceadapter>

</connector>

Interacting with the resource adapter
Since the adapter is a standard J2EE component it can be found via a JNDI lookup. When we perform
a JNDI lookup on our resource adapter we will get a reference to the ConnectionFactory class. Using
this class the application component (e.g. the Financial Process Integrator bean) can call the
getConnection() method on the ConnectionFactory object. This will return an object with which the
Financial Process Integrator can send requests to the EIS and receive responses. It should be noted
that JCA supports asynchronous communication only.

For the sake of simplicity the sample resource adapter can be sent requests and receive responses in
the form of DataPackets. This is within the scope of the JCA specification as it doesn’t restrict the
resource adapter vendor to follow any specific interface. Rather it specifies that any interfaces that are
used must contain at least a specific method, such as getConnection(), in the case of the
ConnectionFactory class.

In order for the FPI to support a specific JCA adapter a data formatter class will have to be developed
to format the data between DataPackets and the correctly formatted request object needed to
interact with the EIS through the resource adapter. For our sample JCA adapter we just deal with
DataPackets. This negates the need for a data formatter, as we can just pass the DataPacket request
to the resource adapter, which will return a DataPacket response.

To demonstrate the use of JCA from an application component there is a JSP that will perform a JNDI
lookup for the resource adapter and then send a request in DataPacket format, wait for a response
and then display the response. This example demonstrates the core functionality of JCA.

Store and Forward
The Financial Process Integrator’s Store and Forward framework provides the means to store
transactions, e.g. in the event of a host going offline, in order to forward them to the host at a later
time.

Refer also to the sample file storeandforward.sql supplied in the MCA Services Install folder.

This document describes a store and forward system that operates between the Siebel mid-tier (i.e.
the Siebel Financial Components) and the host. The Store and Forward system will only enable the
storing of data for update to the host, it will not store data retrieved from the host.

 MCA Services Developer Guide Version 2005, Rev. B 133

Financial Process Integration Store and Forward

Overview

Determining if the host is offline
When a transaction fails to go to the host, the host is marked as offline and the transaction is stored
for forwarding. The flow of execution is as follows:

 Each time a transaction is passed to the Financial Process Integrator it will attempt to send it to
the host.

 The Financial Process Integrator will check with the host that it received the transaction.

 If the host did not receive the transaction or the host cannot be contacted then the transaction is
stored for later forwarding and the host status will be set to offline.

 When a host is marked as offline it will remain marked as such for a specified period (e.g. 5
minutes). During that specified period no further attempts will be made to send transactions to
that host; all transactions will instead be stored (except for transactions that are not permitted to
be stored, these instead will result in an exception being thrown). This time period is configurable.

 When the time period has expired the forwarding mechanism will try to send the first entry on the
queue to the host.

 If the first entry is forwarded successfully then the host is determined to be back online. The host
status will be set to read-only and the forwarding thread will commence forwarding all stored
transactions in batches. This batch figure will be configurable.

 If the first entry is not forwarded successfully then the forwarder will wait for the time period
mentioned above, and then attempt to forward the first entry again. It will repeat this process
until the host comes back online.

 When the store has been emptied of stored transactions the host will be marked online.

 When the host is forwarding the transactions those which are completed successfully will be added
to the SUCCESSFUL_TRANSACTION table while those transactions which return an error from the
host will be added to the ERROR_TRANSACTION table.

Host Status
The host has three states; these are:

ON_LINE

When the host status is set to ON_LINE all transactions are processed normally.

OFF_LINE

When the host status is set to OFF_LINE any read transactions will throw an exception while write
transactions will be stored to be forwarded later.

MCA Services Developer Guide Version 2005, Rev. B 134

Financial Process Integration Store and Forward

FORCE_OFF_LINE

When the host is set to FORCE_OFF_LINE any read transactions will throw an exception while write
transactions will be stored to be forwarded later. This ensures that when the host is set offline no
attempts will be made to check if the host is back online until it has been set to online.

Host Operation types
The Financial Process Integrator Meta data must identify which transactions are read transactions and
which transactions are write transactions.

Read transactions

 Read transactions cannot be carried out when the host is offline.

 Read transactions should not be stored if the host is offline, an exception should be thrown if an
attempt is made to carry out a read transaction when the host is offline.

 Read transactions should become available as soon as the host comes back online.

Write transactions

 Write transactions cannot be carried out when the host is offline, but it is permissible to store
some kinds of write transactions when the host is offline, and forward them when the host is back
online.

Destination Entity Bean
To determine which Siebel Connector to instantiate and which Connector properties to use the
Destination entity bean is queried. The DESTINATION table has been extended to include a new field;
HOST_STATUS, which is used by the Financial Components and the Persister to check if the host is
online.

The HOST_STATUS field has three settings:

 ON_LINE: host is online - transactions carried out normally.

 OFF_LINE: host is offline - transactions are either stored or an offline exception is thrown.

 FORCE_OFF_LINE: host is set to offline - no transactions will be sent to the host until the host is set
back to online.

DestinationEjbMap Entity Bean
The Financial Components will need to know if the host is online or offline so they can apply the
appropriate business logic. In order to do this it must be able to match the EJB and method called to
the host destination, to do this it uses the DESTINATION_EJB_MAP table. Using the method name and
the JNDI name the isHostOnline() method in the StoreAndForwardUtils class retrieves the host
destination. The DESTINATION_EJB_MAP table also contains details of the host operation type; whether
the transaction is read or write, and a setting for backwards compatibility. When current versions of
existing Financial Components are updated to add Store and Forward functionality they must be
guaranteed to be able to be configured to work exactly as they used to work, i.e. any new version of a

 MCA Services Developer Guide Version 2005, Rev. B 135

Financial Process Integration Store and Forward

Financial Component with no change apart from support for store and forward behavior must continue
to work identically to the older version. This means the call to the Financial Process Integrator to
determine if the host is online must always return true (even if the host is not online), to assure the
online business logic is always invoked. This is done by setting the ALWAYS_ONLINE field to Y. The
STOREABLE field is used to check if a transaction, that was initiated when the host was online but now
encounters an offline host, should be stored, or if a HostOfflineException should be thrown instead.
The DestinationEjbMap solution set layer is located in the
com.bankframe.ei.txnhandler.destinationejbmap package and its implementation is in the
com.bankframe.ei.txnhandler.impl.destinationejbmap package.

EJB_NAME EJB_
OPERATION

DESTINATION_
ID

OPERATION_
TYPE

STOREABLE ALWAYS_
ONLINE

eontec.bp.

retail.

customersearch

retrieveCu

stomerDeta

ilsBy

AccountNum

berAndBran

chCode

C0004 READ N N

Store and Forward Classes and Package Structure
The Store and Forward solution is located in the com.bankframe.ei.txnhandler.storeandforward
package and its implementation is in the com.bankframe.ei.txnhandler.storeandforward.impl
package.

StoreAndForwardConstants
The Constants class for Store and Forward is located in the
com.bankframe.ei.txnhandler.storeandforward package.

StoreAndForwardUtils
This class provides utility methods for allowing Financial Processes to use the store and forward
features of the Financial Process Integrator and is located in the
com.bankframe.ei.txnhandler.storeandforward package.

It contains the following methods:

isHostOnline(String ejbName,

String ejbOperation)

This method takes two Strings, containing
the name of the calling EJB and the name of
the method, and determines if the host(s)
used by the specified transaction is/are online.

isHostOnline(String ejbName,

String ejbOperation, String

companyCode)

As above except it also takes a String
containing the company code.

MCA Services Developer Guide Version 2005, Rev. B 136

Financial Process Integration Store and Forward

setOffline() This method is used to force the host offline by
setting the hostStatus to FORCE_OFF_LINE.

setOnline() This method is used to update the host
destinations to ON_LINE.

transactionStoreable(String

ejbName, String ejbOperation)

This method determines if the specified
transaction can be stored if the host goes
offline, after it was initiated online.

isHostOnline() methods

This method allows the Financial Components to ascertain the host status when initiating a transaction
in order to use the correct set of business rules as often differing rules will apply to online and offline
transactions. In order to check the host status the isHostOnline() method is passed the name of the
calling EJB and the name of the method being called. Using these values the method performs a look
up on the DESTINATION_EJB_MAP table to get the host(s) destination(s) for the transaction as well as
the transaction type. The method then performs the following checks:

 If the ALWAYS_ONLINE value is set to Y then true is returned

 If the transactionHandler.storeAndForward.status setting in the
BankframeResource.Properties is set OFF_LINE and the operation type is WRITE then false is
returned or if the operation type is READ a HostOfflineException is thrown

 If the DESTINATION hostStatus is ON_LINE true is returned

 If the DESTINATION hostStatus is OFF_LINE and the operation type is WRITE false is returned or
if the operation type is READ a HostOfflineException is thrown

 If the DESTINATION hostStatus is READ_ONLY and the operation type is WRITE false is returned
or if the operation type is READ true is returned

InternalStoreAndForwardUtils
This class provides utility methods for use by the Store and Forward features of the Financial Process
Integrator and is located in the com.bankframe.ei.txnhandler.storeandforward.impl package.

It contains the following methods:

addToStore(DataPacket txnData) This method takes a DataPacket of request
data and adds it to the store using the
StoreQueueBean.

convertSortedSetToString(SortedSe

t set)

This method is a convenience method to
convert a sorted set to a String that can be
passed over HTTP using the channel
management API. This is only to be used by
Store and Forward because it assumes that
the objects in the set are all of type
Integer.

convertStringToSortedSet(String This method is a convenience method to
convert a String back to a sorted set. This

 MCA Services Developer Guide Version 2005, Rev. B 137

Financial Process Integration Store and Forward

string) is only to be used by Store and Forward
because it assumes that the objects in the
set are all of type Integer.

getNextSequenceNo(String

sequencePk)

This method takes a String containing a
primary key value to retrieve the next
sequence number from the
SequenceGeneratorBean. It does this by
getting the current sequence number value
and incrementing it by one then updating
the table with the new value. Returns an
int.

hostDestinationStatus() This method checks to see if any of the host
destinations in the DESTINATION table have
been set to OFF_LINE or FORCE_OFF_LINE, if
so it returns same, otherwise it returns
ON_LINE. Returns a String containing the
host status. (This method only checks the
destination table).

hostOnline() This method is used to determine the host
status. It returns true if the host is online or
false if it is offline.

resetSequenceNo(String

sequencePk)

This method is used to reset the sequence
number on the SequenceGeneratorBean
initializing it back to 0.

setAllDestinations(String status) This method takes a String containing a
status to update all the host destinations
with.

updateDestination(String txnCode,

String txnType)

This method is used to update the host
destination to OFF_LINE when a
HostConnectivityException is
encountered.

StoreTransactionBean
The host transactions are stored in a database table called STORE_TRANSACTION which is mapped by
the StoreTransactionBean. The implementation of this bean is located in the package
com.bankframe.ei.txnhandler.storeandforward.impl.storetransaction.

The request DataPacket is converted to a string to be stored using the DPTPCodec which is also used
to convert it back into a DataPacket.

SEQUENCE_NO TIMESTAMP REQUEST_TRANSACTION BATCHED_FOR_FORWARD

Sequence number
of the transaction.

Timestamp when the
transaction is added
to the store.

A string containing the
request transaction
details.

Boolean value which indicates
if the transaction has already
been added to a forwarding
batch.

MCA Services Developer Guide Version 2005, Rev. B 138

Financial Process Integration Store and Forward

StoreQueueBean
This session bean is responsible for processing the transactions contained in the store. The
implementation of this bean is located in the package
com.bankframe.ei.txnhandler.storeandforward.impl.storequeue. It contains the following
methods:

addTransactionToCompleted(int

sequenceNo)

This method removes the transaction
from the store queue and adds the
transaction to the successful queue,
with the given sequence number.

This method removes the transaction
from the store queue and adds it to the
error queue, with the given sequence
number.

addTransactionToError(int

sequenceNo)

createStoredTransaction(Vector

request)

This method adds a new transaction to
the store queue.

This method will find all the
transactions on the error queue.

findAllErrorTransactions()

This method will find all the
transactions on the successful queue.

findAllSuccessfulTransactions()

This method will determine if the store
has transactions in it.

isStoreEmpty()

This method removes the transaction
from the error queue with the given
sequenceNo.

removeTransactionFromError(int

sequenceNo)

This method removes the transaction
from the successful queue with the
given sequenceNo.

removeTransactionFromSuccessful(int

sequenceNo)

This method will find all the
transactions on the store queue.

findAllStoredTransactions()

This method will return the transaction
at the head of the store queue.

findNextStoredTransaction()

findStoredTransactionBySequenceNo(i

nt sequenceNo)

This method performs a lookup on the
Store queue by sequenceNo.

findStoredTransactionsInTimePeriod(

long startTime, long endTime)

This method performs a lookup on the
store queue for a specified time period.

nextStoredTransactionBatch()

This method will returns a Vector
containing a “-” delimited String of
Sequence Numbers to be forwarded in
the batch. This method also updates
the BATCHED_FOR_FORWARD flag on the
STORE_TRANSACTION from false to true

 MCA Services Developer Guide Version 2005, Rev. B 139

Financial Process Integration Store and Forward

to prevent the transaction from being
added to any additional batches.

CompletedForwardTransactionBean
The completed host transactions are stored in a database table mapped by the
CompletedForwardTransactionBean. There are two implementations of this bean located in the
packages:
com.bankframe.ei.txnhandler.storeandforward.completedforwardtransaction.impl.successfu
ltransaction and
com.bankframe.ei.txnhandler.storeandforward.completedforwardtransaction.impl.errortran
saction

SuccessfulTransactionBean

This entity maps to the SUCCESSFUL_TRANSACTION database and is used to record successfully
forwarded transactions.

SEQUENCE_NO STORED_TIMESTAMP COMPLETED_TIMESTAMP REQUEST_TRANSACTION

Sequence number
of the transaction.

Timestamp when the
transaction is added to
the store.

Timestamp when the
transaction was forwarded
successfully to the host.

A string containing the
request transaction
details.

ErrorTransactionBean

This entity maps to the ERROR_TRANSACTION database and is used to record host transactions which
return a ProcessingErrorException when forwarded to the host.

SEQUENCE_NO STORED_TIMESTAMP ERROR_TIMESTAMP REQUEST_TRANSACTION

Sequence number
of the transaction.

Timestamp when the
transaction is added to
the store.

Timestamp when the
transaction was forwarded
erroneously to the host.

A string containing the
request transaction details.

ForwardTransactionBean
This session bean is responsible for coordinating the forwarding of the stored host transactions. It is
responsible for initiating the host status monitor and once the host is back online starting a thread to
forward all the transactions. It contains the following methods:

forwardAll(String threadName)

This method takes a String containing the
name to call the Forwarding thread. It is
used to forward all the transactions to the
host. It will terminate when the queue is
empty or if the queue goes offline.

forwardAll(String threadName, int

rate)

This method takes a String containing the
name to call the Forwarding thread and an
int value which is the time interval to wait

MCA Services Developer Guide Version 2005, Rev. B 140

Financial Process Integration Store and Forward

between each batch of transactions it
forwards to the host. It will terminate when
the queue is empty or if the queue goes
offline.

This method takes a String containing the
name to call the Forwarding thread. It will
forward an individual request identified by
the sequenceNumber from the queue.

forwardSingle(String threadName, int

sequenceNumber)

This method takes a String containing the
name to call the Forwarding thread. It will
forward a SortedSet of stored transactions
to the host in batches using the given time
interval.

forwardSubset(String threadName,

SortedSet transactions, int rate)

This method will set the status of the host
monitor. This method assigns the rate
parameter as the number of milliseconds to
delay between each try to forward a
request to the store. If this is set to -1 then
the monitor is suspended.

setMonitorStatus(int rate)

ForwardOperationsBean
This session bean is responsible for controlling the rate at which transactions are forwarded to the
host. It contains the following methods:

forwardNextRequest()

This method will try and forward the
request transaction at the head of the store
queue. When the host is offline this method
is used to check if it has gone back online
by sending the request to the host and
checking if it has been successfully sent.

This method will try and forward a
transaction by sequenceNumber.

forwardRequest(int sequenceNumber)

This method will test if there are any
requests on the store.

isStoreEmpty()

This method will amend the online/offline
status of the destination associated with
the transaction at the head of the store
queue.

updateDestination(String status)

HostStatusMonitor
This thread class monitors the connection to the host system. It is used with the store class to
determine whether requests in the store can be released to the host system. Every n seconds the
thread will attempt to send a request to the host system. This will only happen if the store is non-
empty. The class has the following constructors:

 MCA Services Developer Guide Version 2005, Rev. B 141

Financial Process Integration Store and Forward

Default HostStatusMonitor constructor. It
reads the BankframeResource.properties
file for the monitor delay value.

HostStatusMonitor()

HostStatusMonitor(int delay)
HostStatusMonitor constructor. This
constructor takes an int value for the
monitor delay.

And contains the following methods:

run()

This method will check if the store is empty
every n seconds. If it is and the host status
is currently offline, then it tries to send a
request from the store to the host system.
If this request is successful then the online
attribute of the destination entity
corresponding to that host is set to true.

This method sets the time that the thread
waits between checking the host status.

setDelay(int newDelay)

This method starts the monitor thread at
the lowest priority.

start()

stop() This method will shut down the thread.

ForwardingThread
This thread class will attempt to send a request to the host system. This class has the following
constructors:

ForwardingThread()

Forwarding thread constructor. This
constructor reads the delay time from the
BankFrameResource.properties file and is
set to forward all transactions in the store.

Forwarding thread constructor. This
constructor takes the delay time from the
passed parameter and is set to forward all
transactions in the store.

ForwardingThread(int delay)

Forwarding thread constructor. This
constructor takes the delay time from the
BankframeResource.properties file and is
set to forward a passed subset of
transactions in the store.

ForwardingThread(SortedSet list)

ForwardingThread(SortedSet list,

int delay)

Forwarding thread constructor. This
constructor takes the delay time from the
passed parameter and is set to forward a
passed subset of transactions in the store.

It contains the following methods.

MCA Services Developer Guide Version 2005, Rev. B 142

Financial Process Integration Store and Forward

This method will forward all the
transactions in the store delaying for the
specified delay time between each forward.

forwardAll(ForwardOperations

operations)

This method will forward a subset of the
transactions in the store, delaying for the
specified time between each forward.

forwardSubset(ForwardOperations

operations)

This method forwards transactions from the
store.

run()

This method starts the forwarding thread at
the lowest priority.

start()

Forcing the host online or offline
It must be possible to force the status of a host to online or offline. This is required for the following
reasons:

 To test the store and forward functionality. Since a host is not available for testing, it must be
possible to manually force the host online or offline.

 For maintenance reasons. The Financial Institution may want to restrict access to certain hosts to
carry out maintenance on the host. The Financial Institution will want to be able to do this in an
orderly manner.

The forwarding process should not be invoked and transactions should not attempt to be sent until the
host has been forced back online. There are two set…() methods in the StoreAndForwardUtils class
for setting the host either offline or online. The setOffline() method updates all the host
destinations with a hostStatus of FORCE_OFF_LINE, this will ensure that the forwarding process will
not be invoked until the setOnline() method has been used to set all the hostStatus back to
ON_LINE.

Exceptions
To apply the appropriate business logic the Financial Component must determine at the start of
execution of the Financial Component whether the host is online or offline. Three new exception
classes that extend the ProcessingErrorException class were added to MCA for Store and Forward:

HostConnectivityException
This class is located in the com.bankframe.ei.txnhandler package and is thrown when the Financial
Process Integrator fails to connect to the host.

HostOfflineException
This class is located in the com.bankframe.ei.txnhandler package. There are two instances when
this exception will be thrown:

 MCA Services Developer Guide Version 2005, Rev. B 143

Financial Process Integration Store and Forward

 At the start of execution the host is determined to be online, but when the Financial Process
Integrator attempts to post the transaction the host is offline. In this case the Financial
Component will have applied the ‘online’ business rules, but the host is offline, however online
transactions should never be stored.

 When the host is offline and a read transaction is attempted against the host.

HostProcessingErrorException
This class is located in the com.bankframe.ei.txnhandler package and is thrown when the host
returns an error response.

BankframeResource.properties settings
A number of new settings have been added to the BankframeResource.properties file for Store and
Forward. In order to locate them search for the following key:

Transaction Handler Store and Forward Settings

The settings are as follows:

transactionHandler.storeAndForward.forwardingDelay
This setting is used by the default constructor of the ForwardingThread to set the time interval, in
milliseconds, between batches being sent to the host:

transactionHandler.storeAndForward.forwardingDelay=2000

transactionHandler.storeAndForward.hostStatusDelay
This setting is used by the default constructor of the HostStatusMonitor to set the time interval, in
milliseconds, to wait between checks on the host status:

transactionHandler.storeAndForward.hostStatusDelay=30000

transactionHandler.storeAndForward.url
This setting is used to specify the URL of the ForwardTransactionServlet

transactionHandler.storeAndForward.url=http://localhost:7001/ForwardTransactionSe

rvlet

transactionHandler.storeAndForward.startHostMonitorAutomatically
This setting is used to specify whether or not the HostStatusMonitor starts up automatically when
the App server is started or not. It can have a setting of either true or false.

transactionHandler.storeAndForward.startHostMonitorAutomatically=true

MCA Services Developer Guide Version 2005, Rev. B 144

Financial Process Integration Store and Forward

transactionHandler.storeAndForward.nextTransactionBatchAmount
This setting is used to specify the amount of transactions the ForwardingThread is to forward in a
batch:

transactionHandler.storeAndForward.nextTransactionBatchAmount=50

Implementing Store and Forward
It is assumed that the reader is familiar with the Siebel Financial Process Integrator and EJB lifecycle
before reading this document.

StoreAndForwardPersister
This persister class extends from the TxnPersister class. The class overwrites the TxnPersisters
processTxnRequest() and the amend() method.

processTxnRequest(EBMPEntity entityBean, DataPacket txnData, String cachePolicy)

This protected method is called by the find() method. It is responsible for passing the transaction
details to the Financial Process Integrator, receiving the response, placing it in the cache and
returning an enumeration of primary keys. The StoreAndForwardPersister version also checks the
host status against the host status when the transaction was initiated, this is so the persister will know
whether to store the transaction, send it to the host or throw an exception.

protected Enumeration processTxnRequest(EBMPEntity entityBean, DataPacket txnData,
String cachePolicy) throws ProcessingErrorException {

 try {

 Vector entityPk = new Vector();

 String txnCode = txnData.getString(TransactionHandlerConstants.TXN_CODE);

 String hostStatus =
txnData.getString(StoreAndForwardConstants.HOST_ONLINE_STATUS);

 if (StoreAndForwardUtils.hostOnline()) {

 if ((txnCode == null) ||
txnCode.equalsIgnoreCase(TransactionHandlerConstants.FIELD_NA)) {

 // do nothing

 }

 else {

//Get an instance of the transaction handler and send the transaction //data to the
processFindRequest() method.

 TransactionHandler transactionHandler = this.getTxnHandler();

 try {

 map = transactionHandler.processFindRequest(txnData);

 }

 catch (HostProcessingErrorException hpex) {

 MCA Services Developer Guide Version 2005, Rev. B 145

Financial Process Integration Store and Forward

 throw new ProcessingErrorException(hpex);

 }

 catch (HostConnectivityException hcex) {

 BankFrameLog.log(BankFrameLog.DEBUG,
BankFrameLogConstants.TXNHANDLER_SUBSYSTEM, "Store Persister::processTxnRequest::
HostConnectivityException");

 StoreAndForwardUtils.updateDestination(txnCode,
txnData.getString(TransactionHandlerConstants.TXN_TYPE),
StoreAndForwardConstants.OFF_LINE);

 throw new ProcessingErrorException(new
BankFrameMessage(HOST_OFFLINE_EXCEPTION));

 }

 boolean persistant;

//Before caching the data check to see if it is persistent or not. //Persistent
data will be written to a database as well as to memory.

 if
(cachePolicy.equalsIgnoreCase(TxnPersisterConstants.CACHE_PERSISTENT)) {

 persistant = true;

 }

 else if
(cachePolicy.equalsIgnoreCase(TxnPersisterConstants.CACHE_NON_PERSISTENT) ||
cachePolicy.equalsIgnoreCase(TxnPersisterConstants.NOT_CACHED)) {

 persistant = false;

 }

 else {

 //throw an exception

 }

//get the timeout value for the data and then store it in the cache.

 long timeOutValue = new
Long(txnData.getString(PersisterTxnMapConstants.TIME_OUT_VALUE)).longValue();

 this.storeInCache(map, timeOutValue, persistant);

//Process the keys of the map returned from the transaction handler to //return an
enumeration of primary keys.

 Set keys = map.keySet();

 Enumeration enum = Collections.enumeration(keys);

 while (enum.hasMoreElements()) {

 EPrimaryKey pk = entityBean.createPrimaryKey((DataPacket)
enum.nextElement());

 if (pk != null) {

 entityPk.addElement(pk);

 }

 }

MCA Services Developer Guide Version 2005, Rev. B 146

Financial Process Integration Store and Forward

 }

 return new IteratorEnumeration(entityPk.iterator());

 }

 else {

 BankFrameLog.log(BankFrameLog.DEBUG,
BankFrameLogConstants.TXNHANDLER_SUBSYSTEM, "TxnPersister::processTxnRequest::
offline");

 throw new ProcessingErrorException(new
BankFrameMessage(HOST_OFFLINE_EXCEPTION));

 } catch (CreateException ce) {

 throw new ProcessingErrorException(ce);

 }

 catch (RemoteException re) {

 throw new ProcessingErrorException(re);

 }

}

amend(EBMPEntity entityBean, String methodName, DataPacket data, Vector primaryKeys,
boolean removeOperation)

The protected amend() method is called by the persister’s amend…() method. The amend() method
checks if the transaction policy is set to CACHE_ONLY, if it is then it will only update the cache,
otherwise it adds the transaction code and the transaction type to a DataPacket containing the entity
bean's update attributes and sends the DataPacket to the Financial Process Integrator. It also takes a
boolean value which indicates if a remove operation is to be carried out on the host or from the
cache. The amend() method is used for updating some or all of an entity's attributes. The
StoreAndForwardPersister version also checks the current host status against the host status when
the transaction was initiated, this is so the persister will know whether to store the transaction, send it
to the host or throw an exception.

protected void amend(EBMPEntity entityBean, String methodName, DataPacket data, Vector
primaryKeys, boolean removeOperation) throws ProcessingErrorException,
HostOfflineException, HostConnectivityException {

 //DataPacket of data to be updated on the host
 DataPacket update = new DataPacket(data.DATA_PACKET_NAME);
 //Get txnCode and txnType from PERSISTER_TXN_MAP
 DataPacket amendData = this.mapTxn(entityBean.getEntityName(), methodName);
 String txnCode = amendData.getString(TransactionHandlerConstants.TXN_CODE);
 String txnType = amendData.getString(TransactionHandlerConstants.TXN_TYPE);
 long timeOutValue = new
Long(amendData.getString(PersisterTxnMapConstants.TIME_OUT_VALUE)).longValue();
 //the host status when the transaction was initiated
 String hostTransactionStatus =
data.getString(StoreAndForwardConstants.HOST_ONLINE_STATUS);
 try {

 update.append(update, data);
 //Add txnCode and txnType
 update.put(TransactionHandlerConstants.TXN_CODE, txnCode);
 update.put(TransactionHandlerConstants.TXN_TYPE, txnType);

 MCA Services Developer Guide Version 2005, Rev. B 147

Financial Process Integration Store and Forward

 //check the host online status
 String hostOnlineStatus = StoreAndForwardUtils.hostOnline();
 boolean storeable = StoreAndForwardUtils.transactionStoreable(txnCode,
txnType);
 //if the host is offline and an offline transaction was initiated store the
transaction
 if (hostOnlineStatus == StoreAndForwardConstants.OFF_LINE &&
hostTransactionStatus == StoreAndForwardConstants.OFF_LINE) {
 StoreAndForwardUtils.addToStore(update);
 }
 //if an online transaction was initiated but the host is offline
 else if (hostOnlineStatus == StoreAndForwardConstants.OFF_LINE &&
hostTransactionStatus == StoreAndForwardConstants.ON_LINE) {
 throw new HostOfflineException(new
BankFrameMessage(HOST_OFFLINE_EXCEPTION));
 }
 //otherwise forward the transaction to the host
 else {
 if (getIgnoreHost(txnCode) == false) {

 TransactionHandler transactionHandler = this.getTxnHandler();

 try {
 transactionHandler.processRequest(update);
 }
 catch (HostProcessingErrorException hpex) {
 throw new ProcessingErrorException(hpex);
 }
 catch (HostConnectivityException hcex) {
 StoreAndForwardUtils.updateDestination(txnCode, txnType,
StoreAndForwardConstants.OFF_LINE);
 throw new HostConnectivityException(new
BankFrameMessage(HOST_CONNECTIVITY_EXCEPTION));
 }
 }

 if (removeOperation || getRemoveFromCache()) {
 this.removeFromCache(primaryKeys);
 }
 else {
 //put data into a map (same data used for each primary key):
 Map entityMap = new HashMap();
 for (int index = 0; index < primaryKeys.size(); index++) {
 entityMap.put(primaryKeys.elementAt(index), data);
 }
 String cachePolicy =
amendData.getString(PersisterTxnMapConstants.CACHE_POLICY);
 boolean bCachePolicy =
(cachePolicy.equalsIgnoreCase(TxnPersisterConstants.CACHE_PERSISTENT)) ? true : false;
 this.storeInCache(entityMap, timeOutValue, bCachePolicy);
 }
 }
 }
 catch (CreateException ce) {
 throw new ProcessingErrorException(ce);
 }
 catch (RemoteException re) {
 throw new ProcessingErrorException(re);
 }

MCA Services Developer Guide Version 2005, Rev. B 148

Financial Process Integration Store and Forward

}

Teller Example of Store and Forward
One of the Financial Components of Teller to be enhanced with Store and Forward is Deposit. The
changes to the deposit component are as follows:

TransactionDetails
The BMP version of this bean was written implementing the com.bankframe.ejb.bmp.EBMPEntity
interface, for details on this please refer to the Persister documentation. A new variable
hostOnLineStatus was added to the BMP class to pass along the host status at the time the
transaction was initiated. This variable is used to determine if the transaction should be processed or if
a HostOfflineException should be thrown, depending on the host status.

IsSystemAvailabilityBean
This session bean is used to interact with the StoreAndForwardUtils class to ascertain the host
status. It contains the following two methods:

 imIsHostOnline(String sessionName, String processName, String companyCode) this
method is used to check if the Host is offline or online.

 imIsTransactionStoreable(String sessionName, String processName) this method is used to
check whether or not a transaction can be stored.

IsMakeDeposit
This has been changed to throw new transaction handler exceptions: HostConnectivityException
and HostOfflineException.

MakeDeposit
The makeDepositBC method was updated as follows: to process an online transaction when true is
returned from the imIsHostOnline() method and to process an offline transaction when false is
returned from the imIsHostOnline() method. One of the requirements for Store and Forward is the
status of the host at the time the transaction was initiated. If the host was online when the transaction
was started but has subsequently gone offline either a HostConnectivityException or a
HostOfflineException will be thrown. In the example below these exceptions are caught and if the
transaction is storeable then an offline transaction is sent to the host, otherwise the exception is re-
thrown.

public Vector makeDepositBC(FinancialTransactionCommonAttributesVO

financialTransactionCommonAttributesVO, FinancialTransactionDestinationAccountVO

financialTransactionDestinationAccountVO, Vector

financialTransactionNegotiableInstrumentVOVector) throws

ProcessingErrorException, ValidationException, HostOfflineException,

HostConnectivityException {

 MCA Services Developer Guide Version 2005, Rev. B 149

Financial Process Integration Store and Forward

 Vector batchStateMessageVector = new Vector();

 try {

 //check the host status

 this.online =

this.getIsSystemAvailability().imIsHostOnline(MakeDepositHome.JNDI_LOOKUP_NAME,

"makeDepositBC",

financialTransactionCommonAttributesVO.getCompanyCode()).booleanValue();

 //if the host is online try to send an online request

 if (online) {

 this.getUserAdministration().imIsUserValidForOperation(

financialTransactionCommonAttributesVO.getCompanyCode(),

financialTransactionCommonAttributesVO.getUserId(),

com.bankframe.bfa.Constants.getValueInList(0,

TellerConstantsKeysImpl.TASK_ID_MAKE_DEPOSIT_ONLINE).toString(),

DataTypeConvertor.getDouble(com.bankframe.bfa.Constants.getText(TellerConstantsKe

ysImpl.DEFAULT_LIMIT_VALUE_TEXT)));

 try {

 batchStateMessageVector =

this.getIsMakeDeposit().imMakeOnlineDepositBC(financialTransactionCommonAttribute

sVO, financialTransactionDestinationAccountVO,

financialTransactionNegotiableInstrumentVOVector, "ON_LINE");

 }

 //if a HostConnectivityException is returned then check if

 //the transaction is storeable

 catch (HostConnectivityException hex) {

 if

(this.getIsSystemAvailability().imIsTransactionStoreable(MakeDepositHome.JNDI_LOO

KUP_NAME, "makeDepositBC").booleanValue()) {

MCA Services Developer Guide Version 2005, Rev. B 150

Financial Process Integration Store and Forward

this.getUserAdministration().imIsUserValidForOperation(financialTransactionCommon

AttributesVO.getCompanyCode(),

financialTransactionCommonAttributesVO.getUserId(),

com.bankframe.bfa.Constants.getValueInList(0,

TellerConstantsKeysImpl.TASK_ID_MAKE_DEPOSIT_OFFLINE).toString(),

DataTypeConvertor.getDouble(com.bankframe.bfa.Constants.getText(TellerConstantsKe

ysImpl.DEFAULT_LIMIT_VALUE_TEXT)));

 batchStateMessageVector =

this.getIsMakeDeposit().imMakeOfflineDepositBC(financialTransactionCommonAttribut

esVO, financialTransactionDestinationAccountVO,

financialTransactionNegotiableInstrumentVOVector, "OFF_LINE");

 }

 else

 throw new HostConnectivityException(hex);

 }

 //if a HostOfflineException is returned then check if the

 //transaction is storeable

 catch (HostOfflineException hex) {

 if

(this.getIsSystemAvailability().imIsTransactionStoreable(MakeDepositHome.JNDI_LOO

KUP_NAME, "makeDepositBC").booleanValue()) {

this.getUserAdministration().imIsUserValidForOperation(financialTransactionCommon

AttributesVO.getCompanyCode(),

financialTransactionCommonAttributesVO.getUserId(),

com.bankframe.bfa.Constants.getValueInList(0,

TellerConstantsKeysImpl.TASK_ID_MAKE_DEPOSIT_OFFLINE).toString(),

DataTypeConvertor.getDouble(com.bankframe.bfa.Constants.getText(TellerConstantsKe

ysImpl.DEFAULT_LIMIT_VALUE_TEXT)));

 batchStateMessageVector =

this.getIsMakeDeposit().imMakeOfflineDepositBC(financialTransactionCommonAttribut

esVO, financialTransactionDestinationAccountVO,

financialTransactionNegotiableInstrumentVOVector, "OFF_LINE");

 MCA Services Developer Guide Version 2005, Rev. B 151

Financial Process Integration Store and Forward

 }

 else

 throw new HostOfflineException(hex);

 }

 }

 //if the host is offline send an offline request

 else if (!online) {

this.getUserAdministration().imIsUserValidForOperation(financialTransactionCommon

AttributesVO.getCompanyCode(),

financialTransactionCommonAttributesVO.getUserId(),

com.bankframe.bfa.Constants.getValueInList(0,

TellerConstantsKeysImpl.TASK_ID_MAKE_DEPOSIT_OFFLINE).toString(),

DataTypeConvertor.getDouble(com.bankframe.bfa.Constants.getText(TellerConstantsKe

ysImpl.DEFAULT_LIMIT_VALUE_TEXT)));

 batchStateMessageVector =

this.getIsMakeDeposit().imMakeOfflineDepositBC(financialTransactionCommonAttribut

esVO, financialTransactionDestinationAccountVO,

financialTransactionNegotiableInstrumentVOVector, "OFF_LINE");

 }

 }

 catch (RemoteException remoteException) {

 //throw new

ProcessingErrorException(TellerErrorNumberImpl.REMOTE_EXCEPTION_NUMBER, new

String[] { "MakeDeposit", "makeDepositBC" });

 throw new ProcessingErrorException(remoteException);

 }

 return batchStateMessageVector;

}

MCA Services Developer Guide Version 2005, Rev. B 152

Financial Process Integration Financial Process Integrator Examples

MaintainFinancialTransaction
Has been changed to throw new transaction handler exceptions; HostConnectivityException and
HostOfflineException.

About Branch Teller Offline Transaction Processing
This section provides an overview of Branch Teller Offline Transaction Processing. A transaction is
written to the store is if the host is offline or if a HostConnectivityException is encountered. The
session EJBs should be coded as per the MakeDeposit example.

Processing a Timeout between Siebel Retail Finance and the Host
System
If there is a timeout between Siebel Retail Finance and the host system it should be detected when
the connector tries to post the transaction. It should throw a ProcessingErrorException which is
converted to a HostConnectivityException. If you are using the StoreAndForwardPersister then this
HostConnectivityException is caught and it marks the host as offline. You need to use the
StoreAndForwardPersister if you want to use level two offline support. If a new connector is developed
it should throw an exception if it cannot post the transaction correctly.

Store and Forward Mid-Tier Processing when the Host is Offline
The host will be marked as offline by the StoreAndForwardPersister. The mid-tier session has to be
written to take a different path depending on whether the host is offline or online. The MakeDeposit
session in the MCA Services Developer guide provides a good example.

Processing Failed Stored Transactions
If a stored transaction fails it is written to an error queue. The custom implementation will determine
how the transaction in the error queue is handled.

Financial Process Integrator Examples

Extracting the Source Code for the FPI Examples
The source code for the FPI examples referred to in this section is provided on the software CD for
reference as follows:

 If you have licensed the Siebel Retail Finance banking application the FPI example files are
available on the Common Software Resources CD, typically located at
siebel\Common\mcaresources\examples.jar.

 If you have licensed Siebel Foundation Services the FPI example files are available on the
Foundation Services CD, typically located at FoundationServices\examples\examples.jar

This source code is for reference purposes only and should not be amended.

 MCA Services Developer Guide Version 2005, Rev. B 153

Financial Process Integration Financial Process Integrator Examples

Launching the FPI Examples
To launch the Financial Process Integrator examples, the application server must be configured and
the EAR must be deployed. For a banking application deployment refer to the banking application
installation guide. For a Foundation Services deployment refer to the MCA Services installation guide.

The Financial Process Integrator examples can be launched from the following URL:

http://localhost:<port_number>/BankFrameMCA/CustomerSearchServlet

The CustomerSearch Example
This section illustrates how the Financial Process Integrator works using two entity beans and a
session bean:

Name EJB Type Description

Address Entity Models the common attributes of a postal address

Customer Entity Models the name attributes of a customer

CustomerSearch Searches for Customer instances and their associated
Address instances

Session

Allows Customer and Address details to be amended

These examples illustrate the following:

 How entity beans interact with the persister

 How the persister interacts with the Financial Process Integrator

 How to configure the Financial Process Integrator meta-data

 How to configure the Financial Process Integrator routes and destinations

Scope

It is assumed that the reader is familiar with the best practices for modeling entity beans and session
beans.

The Address Entity EJB
The Address entity has the following attributes:

Attribute Description

ownerId The ID of the entity that the
address belongs to

MCA Services Developer Guide Version 2005, Rev. B 154

http://localhost:%3Cport_number%3E/BankFrameMCA/CustomerSearchServlet

Financial Process Integration Financial Process Integrator Examples

Attribute Description

addressLine1 The first line of the address

addressLine2 The second line of the address

addressLine3 The third line of the address

addressLine4 The fourth line of the address

country The country of the address

postcode The postal code

The Customer Entity EJB
The Customer entity has the following attributes:

Attribute Description

ownerId The customer’s unique ID number

title The customer’s formal title

firstName The customer’s first name

lastName The customer’s last name

Relationship between the Customer and Address Entity EJBs
Every Customer entity must have an associated Address entity. This means that a Customer entity
cannot exist without having a corresponding Address entity. We say that the existence of an Address
entity is dependent on the existence of a Customer entity.

Each Customer entity has a unique ownerId attribute. For each Customer entity there will be a
corresponding Address entity whose ownerId is equal to the Customer’s ownerId attribute.

The CustomerSearch Session EJB
The CustomerSearch session EJB must be able to:

 Find a Customer by ownerId

 Find one or more Customers by last name

 Find one or more Customers by first name. This finder method uses cache indexing as there is no
corresponding host transaction to do a lookup by customer first name. The example configuration
has the response from find by last name being indexed by first name.

 Amend Customer details, including Address details.

 MCA Services Developer Guide Version 2005, Rev. B 155

Financial Process Integration Financial Process Integrator Examples

Interfacing the Entities with the Financial Process Integrator
Below we will describe how we have modelled the Address entity bean, concentrating on issues
relevant to connecting the entity bean to the Financial Process Integrator.

com.bankframe.examples.impl.address.AddressBMPBean

This class is the Bean Managed Persistence (BMP) implementation of the Address entity bean.

This class must persist its attributes to/from the host system.

EBMPEntity Methods

As described previously all BMP entity beans must implement the

com.bankframe.ejb.bmp.EBMPEntity interface. Below we will describe how AddressBMPBean
implements each of the methods defined in the EBMPEntity interface.

createPrimaryKey()

 public EPrimaryKey createPrimaryKey(DataPacket dp) throws

ProcessingErrorException {

 if (dp.getName().equals("ADDRESS")) {

 return new AddressPK(dp.getString("OWNER_ID"));

 } else {

 return null;

 }

 }

This method must create an instance of the entity bean’s primary key type from the information in the
supplied DataPacket. The method must check that the DataPacket being passed in is of the correct
type, i.e. that the DataPacket name matches the entity bean’s name.

getEntityName()

 public String getEntityName() {

 return AddressHome.JNDI_NAME;

 }

This method must provide a String that uniquely identifies this type of entity bean. By convention
this name must be the JNDI name of the entity bean.

getPersister()

 public EPersister getPersister() {

 try {

MCA Services Developer Guide Version 2005, Rev. B 156

Financial Process Integration Financial Process Integrator Examples

 return EPersisterFactory.getPersister(this.getEntityName());

 } catch (ProcessingErrorException pex) {

 BankFrameLog.log(BankFrameLog.WARN, "BANKFRAME.MCA",pex);

 throw new RuntimeException(pex.getMessage());

 }

 }

This method must return an instance of the persister object to be used for persisting this entity bean.
This method delegates the task of locating the persister to the
com.bankframe.ejb.bmp.EPersisterFactory class. This enables the persister used by an entity bean
to be changed without having to recompile or re-deploy the entity bean. Note that all BMP entity
beans will use the exact code shown above.

getPrimaryKey()

 public EPrimaryKey getPrimaryKey() {

 return (EPrimaryKey)this.ctx.getPrimaryKey();

 }

This method must return an instance of this entity bean instance’s primary key object. The primary
key for each entity bean instance is stored in the entity bean’s EntityContext, so this method just
returns the primary key reference stored in the EntityContext. Note that all BMP entity beans will
use the exact code shown above.

populate()

 public void populate(DataPacket dp) {

 this.ownerId = dp.getString("OWNER_ID");

 this.addressLine1 = dp.getString("ADDRESS_LINE1");

 this.addressLine2 = dp.getString("ADDRESS_LINE2");

 this.addressLine3 = dp.getString("ADDRESS_LINE3");

 this.addressLine4 = dp.getString("ADDRESS_LINE4");

 this.country = dp.getString("COUNTRY");

 this.postCode = dp.getString("POST_CODE");

 }

This method must populate the entity bean’s attributes with the data retrieved from the supplied
DataPacket.

 MCA Services Developer Guide Version 2005, Rev. B 157

Financial Process Integration Financial Process Integrator Examples

AddressBMPBean methods

AddressBMPBean must implement the methods required by the javax.ejb.EntityBean interface.

Below we will describe how AddressBMPBean implements each of these methods.

ejbActivate(). This method is called by the EJB container when an entity bean instance is about to be
used. In this method the entity bean should acquire any resources it requires. The AddressBMPBean
does not need to acquire any resources so this method is empty.

ejbCreate(). This method is called by the EJB container when a new entity bean instance is being
created. This method must create the corresponding data in the data-store, and return a primary key
object for the new instance.

 public AddressPK ejbCreate(String ownerId,String addressLine1, String

addressLine2, String addressLine3, String addressLine4,String

country,String postCode) throws CreateException,ValidationException,

ProcessingErrorException {

super.create(ownerId,addressLine1,addressLine2,addressLine3,addressLine4,

country,postCode);

 return (AddressPK)this.getPersister().create(this);

 }

This method first calls the super-classes’ create() method to initialise the new instance. It then calls
the persister’s create() method, which takes care of creating the data on the host system. The
persister’s create() method also returns a primary key object for the new instance.

ejbLoad() . This method is called by the EJB container when the entity bean must refresh its
attributes from the data-store.

 public void ejbLoad() {

 try {

 this.getPersister().load(this);

 } catch (ProcessingErrorException pex) {

 BankFrameLog.log(BankFrameLog.WARN, "BANKFRAME.MCA",pex);

 }

 }

This method calls the persister’s load() method, which takes care of reading the data from the data-
store, and calling the entity bean’s populate() method to initialise the entity bean’s attributes.

ejbPassivate(). This method is called by the EJB container when an entity bean instance is about to
be de-activated. In this method the entity bean should release any resources it has been using. The
AddressBMPBean does not use any resources, so this method is empty.

MCA Services Developer Guide Version 2005, Rev. B 158

Financial Process Integration Financial Process Integrator Examples

ejbPostCreate(). This method is called by the EJB container immediately after a new entity bean
instance has been created.

 public void ejbPostCreate(String ownerId,String addressLine1, String

addressLine2, String addressLine3, String addressLine4,String

country,String postCode) {

 setModified(false); // reset the modified status

 }

This method sets the modified flag to false. This will be explained in more detail in the ejbStore()
section. All BMP entity beans will use the exact code shown above.

ejbRemove(). This method is called by the EJB container when the entity bean instance should be
deleted from the data store.

 public void ejbRemove() {

 try {

 this.getPersister().remove(this);

 } catch (ProcessingErrorException pex) {

 BankFrameLog.log(BankFrameLog.WARN, "BANKFRAME.MCA",pex);

 }

 }

This method calls the persister’s remove() method to remove the data from the data store. All BMP
entity beans will use the exact code shown above.

ejbStore(). This method is called by the EJB container when the entity bean instance should be
written to the data store.

 public void ejbStore() {

 try {

 if (this.modified == true) {

 this.getPersister().store(this);

 this.setModified(false);

 }

 } catch (ProcessingErrorException pex) {

 BankFrameLog.log(BankFrameLog.WARN, "BANKFRAME.MCA",pex);

 }

 MCA Services Developer Guide Version 2005, Rev. B 159

Financial Process Integration Financial Process Integrator Examples

 }

This method calls the persister’s store() method to actually store the data to the data store. This
method will only call the persister’s store() method if the modified flag is set to true. This is an
optimisation to prevent unnecessary updates to the data store. It is imperative that all entity bean
methods which modify an entity bean’s attributes must set the modified flag to true.

All BMP entity beans will use the exact code shown above.

setEntityContext(). This method is called by the EJB Container when an entity bean is about to be
used. The entity bean must store the supplied context.

 public void setEntityContext(EntityContext newCtx) {

 this.ctx = newCtx;

 this.setModified(false);

 }

All BMP entity beans will use the exact code shown above.

unsetEntityContext(). This method is called by the EJB Container when it is finished using an entity
bean. The entity bean must null its context.

 public void unsetEntityContext() {

 this.ctx = null;

 }

All BMP entity beans will use the exact code shown above.

ejbFindByPrimaryKey(). This method is called by the EJB Container when a findByPrimaryKey() is
invoked on the entity bean’s home interface. It must verify that the specified entity bean instance
exists in the data store. If it does exist then this method must return the supplied primary key,
otherwise this method must throw a javax.ejb.ObjectNotFoundException

 public AddressPK ejbFindByPrimaryKey(AddressPK primaryKey) throws

FinderException, ValidationException {

 try {

 this.validator.validateOwnerId(primaryKey.ownerId);

 Enumeration enum =

this.getPersister().find(this,"findByPrimaryKey",primaryKey.toDataPacket(

));

 if (enum.hasMoreElements() == false) {

 throw new

javax.ejb.ObjectNotFoundException(primaryKey.toDataPacket().toString());

MCA Services Developer Guide Version 2005, Rev. B 160

Financial Process Integration Financial Process Integrator Examples

 }

 return primaryKey;

 } catch (ProcessingErrorException pex) {

 throw new FinderException(pex.getMessage());

 }

 }

This method first validates that the primary key object contains a legal value for the ownerId. It then
calls the persister’s find() method passing it the primary key object in DataPacket form. If the
instance does exist then the find() method will return an Enumeration containing the entity’s
primary key object, otherwise it will return an empty Enumeration. If the Enumeration is empty then
this method will throw a javax.ejb.ObjectNotFoundException().

ejbFind<Method>() Methods. The AddressBMPBean has a number of ejbFind<Method>() methods,
each of which has a corresponding method in the AddressHome interface. These methods must return
an Enumeration of primary key objects that match the specified search criteria. It no matches are
found then it must return an empty Enumeration.

Below is the code for the ejbFindByPostCode() method.

 public Enumeration ejbFindByPostCode(String postCode) throws

FinderException, ValidationException {

 try {

 this.validator.validatePostCode(postCode);

 DataPacket dp = new DataPacket("FIND_BY_POST_CODE");

 dp.put("POST_CODE",postCode);

 return this.getPersister().find(this,"findByPostCode",dp);

 } catch (ProcessingErrorException pex) {

 throw new FinderException(pex.getMessage());

 }

 }

The amend() method

All Siebel entity beans have an amend() method which is used to modify the entity bean’s attributes.

 public void amend(String addressLine1, String addressLine2, String

addressLine3, String addressLine4,String country,String postCode) throws

ValidationException {

 MCA Services Developer Guide Version 2005, Rev. B 161

Financial Process Integration Financial Process Integrator Examples

super.amend(addressLine1,addressLine2,addressLine3,addressLine4,country,p

ostCode);

this.setModified(true);

}

This method calls its super-classes’ amend() method to actually perform the amend, and then sets the
modified flag to true (as explained in the ejbStore() section).

CustomerBMPBean Methods
The com.bankframe.examples.bo.impl.customer.CustomerBMPBean has very similar methods to the
AddressBMPBean. The only difference is some extra methods to handle the relationship between
Customer Entities and Address Entities.

Modeling the Customer and Address Entity Relationship
The Customer entity is called a master entity because it has an associated entity (or dependent entity)
that cannot exist by itself. An Address entity cannot exist without a corresponding Customer entity
also existing.

In a real system, an Address entity could be associated with other types of entity other than a
Customer entity; for example, an Address entity could be associated with a BranchOffice entity. This
means that an Address entity cannot know which entity it is associated with.

The example host system has only one amend transaction, which must be used for amending both
Customer and Address information. This transaction requires that all the attributes from the Customer
entity and the Address entity be present in the transaction. Therefore, to generate the transaction we
must merge the data from the Customer and Address entities.

When amending the Customer entity it is straightforward to locate the corresponding Address entity,
and merge the two entities to produce the complete amend transaction.

However when amending the Address entity we cannot determine which entity it is associated with.
This means that the Address entity does not have enough information to create a complete amend
transaction.

The solution to this problem is to add a new method to the Customer method called amendAddress().
This method is used when the Address details associated with a Customer must be updated. This
method takes care of locating the Address associated with the Customer and calling the Address’s
amend() method, and then merging the data from the two entities to create the complete amend
transaction required by the host.

There is a second problem which must also be addressed: since data is cached when it is read from
the host, we must make sure to remove old entries from the cache when entities are amended. When
an address is amended, it must be removed from the cache and its associated Customer must also be
removed from the cache.

To make sure this happens the Customer entity must implement the
com.bankframe.ejb.bmp.EBMPMasterEntity interface, and must also be configured to use the
com.bankframe.ei.txnhandler.persister.MasterEntityPersister persister.

MCA Services Developer Guide Version 2005, Rev. B 162

Financial Process Integration Financial Process Integrator Examples

MasterEntityPersister extends CacheIndexPersister therefore the EJBs using it support cache
indexing.

CustomerBean Methods
The com.bankframe.examples.bo.impl.customer.CustomerBean has the following methods to model
the relationship between the Customer entity and the Address entity.

getAddress()

This method returns an instance of the Address entity associated with the Customer entity.

 try {

 AddressHome home =

(AddressHome)ObjectLookup.lookup(AddressHome.JNDI_NAME,AddressHome.class)

;

 return home.findByPrimaryKey(new AddressPK(this.ownerId));

 } catch (javax.ejb.FinderException fex) {

 BankFrameLog.log(BankFrameLog.WARN, "BANKFRAME.MCA",fex);

 throw ExceptionUtils.toProcessingErrorException(fex);

 } catch (ValidationException vex) {

 BankFrameLog.log(BankFrameLog.WARN, "BANKFRAME.MCA",vex);

 throw ExceptionUtils.toProcessingErrorException(vex);

 }

This method does a findByPrimaryKey() to find the corresponding Address instance and returns the
corresponding instance.

amendAddress()

This method amends the Address entity associated with the Customer entity. This method should be
called rather than calling the Address.amend() method directly.

 public Address amendAddress(String addressLine1, String addressLine2,

String addressLine3, String addressLine4,String country,String postCode)

throws ProcessingErrorException, ValidationException, RemoteException {

 Address address = this.getAddress();

 MCA Services Developer Guide Version 2005, Rev. B 163

Financial Process Integration Financial Process Integrator Examples

address.amend(addressLine1,addressLine2,addressLine3,addressLine4,country

,postCode);

 this.setModified(true);

 return address;

 }

This method sets the modified flag to true so that the Customer entity data is stored to the host.
This will cause the Address entity data to be stored as well.

CustomerBMPBean Methods
The CustomerBMPBean class has very similar methods to the AddressBMPBean. The only extra methods
are for managing the Customer-Address relationship.

Since CustomerBMPBean is a master entity, it must implement the
com.bankframe.ejb.bmp.EBMPMasterEntity interface. The EBMPMasterEntity interface extends the
com.bankframe.ejb.bmp.EBMPEntity interface, adding the following method:

public Vector getDependentEntities() throws ProcessingErrorException,

RemoteException ;

This method must return a Vector of com.bankframe.ejb.bmp.EEntity instances, where each
instance is a dependent entity of the master entity.

Below is CustomerBMPBean’s implementation of this method:

 public Vector getDependentEntities() throws ProcessingErrorException,

RemoteException {

 Vector dependents = new Vector(1);

 dependents.add(this.getAddress());

 return dependents;

 }

This method calls the getAddress() method and adds the returned instance to the Vector of
dependent instances.

Configuring the PERSISTER_TXN_MAP Table for CustomerSearch
The PERSISTER_TXN_MAP database table must be correctly configured to connect the BMP (bean
managed persistence) entity beans to the Financial Process Integrator. Table 23 below illustrates the
data used to configure the PERSISTER_TXN_MAP table for the Customer and Address entities. These
entities use different persister classes in their examples. Cache indexing is used in the Customer entity
where findByFirstName looks up the cache populated by the findByLastName responses.

MCA Services Developer Guide Version 2005, Rev. B 164

Financial Process Integration Financial Process Integrator Examples

Table 23. PERSISTER_TXN_MAP Database

ENTITYNAME METHODNAME TXNCODE TXNTYPE
CACHE
POLICY

TIMEOUT
VALUE

INDEX
NAME

eontec.bankfr
ame.
examples.bo.c
ustomer

findByPrimaryK
ey

TESTFIND0
001 TEST memory 100000

eontec.bankfr
ame.
examples.bo.c
ustomer findByLastName

TESTFIND0
002 TEST none 100000

eontec.bankfr
ame.
examples.bo.c
ustomer findAll

TESTFIND0
004 TEST none 100000

eontec.bankfr
ame.
examples.bo.c
ustomer store

TESTAMND0
001 TEST none 100000

eontec.bankfr
ame.
examples.bo.a
ddress

findByPrimaryK
ey

TESTFIND0
001 TEST memory 100000

eontec.bankfr
ame.
examples.bo.a
ddress store NA NA memory 100000

eontec.bankfr
ame.
examples.bo.c
ustomer amendAddress

TESTAMND0
001 TEST none 100000

eontec.bankfr
ame.
examples.bo.c
ustomer

findByFirstNam
e NA

CUSTOMER_
FIRST_NAM
E_INDEX

NA memory 100000

This table maps entity names and method names to transaction codes and transaction types. Note
that some entity name, method name pairs may be mapped to a special transaction code: ‘NA’. The
‘NA’ value indicates that the specified method is not connected to the Financial Process Integrator. In
the above example the store() method for the Address entity is marked ‘NA’ because the Address
entity is unable to persist itself.

The CACHEPOLICY value specifies whether the results of the transaction are cacheable. If they are,
then the TIMEOUTVALUE specifies the number of milliseconds the results should be cached. In cases

 MCA Services Developer Guide Version 2005, Rev. B 165

Financial Process Integration Financial Process Integrator Examples

where the cache response could be used by looking up a cache index, the timeout value should be set
to make sure the data is still in the cache when it is needed. The INDEX_NAME value, when set,
specifies the name of the cache index to do the data lookup on.

Configuring the Meta-Data Tables for CustomerSearch
The REQUEST_TXN_LAYOUT, RESPONSE_TXN_LAYOUT, RESPONSE_META_DATA, RESPONSE_INDEX and
INDEX_META_DATA database tables must be correctly configured to map the DataPackets received
from the persister to the host transaction fields, and vice versa. The INDEX_META_DATA table contains
both the index structure and the name of the cache that it is indexed by. Since CacheIndexPersister
extends TxnPersister, the cache name used is txnPersister.

NOTE: In the interests of clarity some of the columns in the tables have been omitted from the
representation of the tables below. Consult the txnsampledata.sql file supplied with MCA Services for
the complete meta-data.

Format of TESTFIND0001

Transaction TESTFIND0001 corresponds to the Customer entity bean’s findByPrimaryKey() method.

Table 24. REQUEST_TXN_LAYOUT has the following format:

Table 24. REQUEST_TXN_LAYOUT

FIELDNAME DP_FIELD LENGTH SEQUENCE Sample value

T-CODE TXN_CODE 12 1 TESTFIND0001

T-RESTART-INDEX RESTART_INDEX 4 2 0000

C-OWNER-ID OWNER_ID 10 3 1234560010

Table 25. RESPONSE_META_DATA has the following format:

Table 25. RESPONSE_META_DATA

DP_INDEX DP_FIELD TXN_FIELDNAME DP_NAME

HEADER 1 RECORD_COUNT H-RECORDS

HEADER 1 RESTART_FLAG H-RESTART

CUSTOMER 2 OWNER_ID C-OWNER-ID

CUSTOMER 2 FIRST_NAME C-FIRST-NAME

CUSTOMER 2 LAST_NAME C-LAST-NAME

CUSTOMER 2 TITLE C-TITLE

MCA Services Developer Guide Version 2005, Rev. B 166

Financial Process Integration Financial Process Integrator Examples

DP_INDEX DP_FIELD TXN_FIELDNAME DP_NAME

ADDRESS 3 POST_CODE A-POST-CODE

ADDRESS 3 ADDRESS_LINE1 A-LINE-1

ADDRESS 3 ADDRESS_LINE2 A-LINE-2

ADDRESS 3 ADDRESS_LINE3 A-LINE-3

ADDRESS 3 ADDRESS_LINE4 A-LINE-4

ADDRESS 3 COUNTRY A-COUNTRY

The response is parsed into three DataPackets:

 The header DataPacket which contains the header information

 The Customer DataPacket which contains the data for the Customer entity

 The Address DataPacket which contains the data for the Address entity associated with the
Customer entity

Format of TESTFIND0002

Transaction TESTFIND0002 corresponds to the Customer entity bean’s findByLastName() method.

Table 26. REQUEST_TXN_LAYOUT, has the following format:

Table 26. REQUEST_TXN_LAYOUT

FIELDNAME DP_FIELD LENGTH SEQUENCE Sample value

T-CODE TXN_CODE 12 1 TESTFIND0002

T-RESTART-INDEX RESTART_INDEX 4 2 0000

C-LAST-NAME LAST_NAME 20 3 Walsh

Table 27. RESPONSE_META_DATA, has the following format:

Table 27. RESPONSE_META_DATA

DP_NAME DP_FIELD DP_INDEX TXN_FIELDNAME

H-RECORDS HEADER RECORD_COUNT 1

H-RESTART HEADER RESTART_FLAG 1

C-OWNER-ID CUSTOMER OWNER_ID 2

 MCA Services Developer Guide Version 2005, Rev. B 167

Financial Process Integration Financial Process Integrator Examples

DP_NAME DP_FIELD DP_INDEX TXN_FIELDNAME

C-FIRST-

NAME CUSTOMER FIRST_NAME 2

C-LAST-

NAME CUSTOMER LAST_NAME 2

C-TITLE CUSTOMER TITLE 2

A-POST-

CODE ADDRESS POST_CODE 3

A-LINE-1 ADDRESS ADDRESS_LINE1 3

A-LINE-2 ADDRESS ADDRESS_LINE2 3

A-LINE-3 ADDRESS ADDRESS_LINE3 3

A-LINE-4 ADDRESS ADDRESS_LINE4 3

A-COUNTRY ADDRESS COUNTRY 3

C-OWNER-ID CUSTOMER OWNER_ID 4

C-FIRST-

NAME CUSTOMER FIRST_NAME 4

C-LAST-

NAME CUSTOMER LAST_NAME 4

C-TITLE CUSTOMER TITLE 4

A-POST-

CODE ADDRESS POST_CODE 5

A-LINE-1 ADDRESS ADDRESS_LINE1 5

A-LINE-2 ADDRESS ADDRESS_LINE2 5

A-LINE-3 ADDRESS ADDRESS_LINE3 5

A-LINE-4 ADDRESS ADDRESS_LINE4 5

A-COUNTRY ADDRESS COUNTRY 5

C-OWNER-ID CUSTOMER OWNER_ID 6

MCA Services Developer Guide Version 2005, Rev. B 168

Financial Process Integration Financial Process Integrator Examples

DP_NAME DP_FIELD DP_INDEX TXN_FIELDNAME

C-FIRST-

NAME CUSTOMER FIRST_NAME 6

C-LAST-

NAME CUSTOMER LAST_NAME 6

C-TITLE CUSTOMER TITLE 6

A-POST-

CODE ADDRESS POST_CODE 7

A-LINE-1 ADDRESS ADDRESS_LINE1 7

A-LINE-2 ADDRESS ADDRESS_LINE2 7

A-LINE-3 ADDRESS ADDRESS_LINE3 7

A-LINE-4 ADDRESS ADDRESS_LINE4 7

A-COUNTRY ADDRESS COUNTRY 7

C-OWNER-ID CUSTOMER OWNER_ID 8

C-FIRST-

NAME CUSTOMER FIRST_NAME 8

C-LAST-

NAME CUSTOMER LAST_NAME 8

C-TITLE CUSTOMER TITLE 8

A-POST-

CODE ADDRESS POST_CODE 9

A-LINE-1 ADDRESS ADDRESS_LINE1 9

A-LINE-2 ADDRESS ADDRESS_LINE2 9

A-LINE-3 ADDRESS ADDRESS_LINE3 9

A-LINE-4 ADDRESS ADDRESS_LINE4 9

A-COUNTRY ADDRESS COUNTRY 9

 MCA Services Developer Guide Version 2005, Rev. B 169

Financial Process Integration Financial Process Integrator Examples

As you can see, the response is quite long! TESTFIND003 is an example of a transaction that has
repeating groups. The response may contain the data for zero or more Customer and Address entities,
furthermore the host will only return four results at a time, so the transaction must be fired against
the host multiple times to get the complete result set.

The H-RECORDS field in the response indicates how many records were returned by the host.

The H-RESTART field indicates whether there are more records to be retrieved from the host. If this
field has a value of ‘1’ then there are more results to be retrieved, otherwise there are no more
results.

Since the host returns four results at a time the meta-data for the Customer and Address entities
must be repeated four times, with each entity instance being given a different entity occurrence value.

Format of TESTAMND0001

Transaction TESTAMND0001 corresponds to the Customer entity’s store() or amendAddress()
methods. Both store() and amendAddress() must use this transaction to amend Customer and/or
Address data because the host only provides a single transaction for amending Customer and Address
attributes.

Table 28. REQUEST_TXN_LAYOUT, has the following format:

Table 28. REQUEST_TXN_LAYOUT

SEQUENCE DP_FIELD LENGTH FIELDNAME

T-CODE 1 TXN_CODE 12

C-OWNER-ID 2 OWNER_ID 10

C-FIRST-NAME 3 FIRST_NAME 20

C-LAST-NAME 4 LAST_NAME 20

C-TITLE 5 TITLE 5

A-POST-CODE 6 POST_CODE 15

A-LINE-1 7 ADDRESS_LINE1 20

A-LINE-2 8 ADDRESS_LINE2 20

A-LINE-3 9 ADDRESS_LINE3 20

A-LINE-4 10 ADDRESS_LINE4 20

A-COUNTRY 11 COUNTRY 20

MCA Services Developer Guide Version 2005, Rev. B 170

Financial Process Integration Financial Process Integrator Examples

Table 29. RESPONSE_META_DATA, has the following format:

Table 29. RESPONSE_META_DATA

DP_INDEX DP_NAME DP_FIELD TXN_FIELDNAME

H-STATUS 1 CUSTOMER STATUS

The request transaction contains the transaction code and all the attributes of the Customer and

Address entities. The response transaction contains a single field indicating if the amend operation

succeeded. If the operation succeeds the field will contain ‘OK’, otherwise the field will contain ‘ERROR’.

Configuring the TXN_ROUTE Table for CustomerSearch
The TXN_ROUTE table must be correctly configured to map requests to the correct connector and to
specify which data formatter class to use. Table 30 below illustrates the data used to configure the
TXN_ROUTE table:

Table 30. TXN_ROUTE

TXN_
TYPE

DESTIONATION_
ID

DATAFORMAT TXN_CODE

 TEST C001 com.bankframe.examples.txnhandler.
dataformat.testcustomer.TestCustomerDataFormat

TESTFIND0001

 TEST C001 com.bankframe.examples.txnhandler.
dataformat.testcustomer.TestCustomerDataFormat

TESTFIND0002

 TEST C001 com.bankframe.examples.txnhandler.
dataformat.testcustomer.TestCustomerDataFormat

TESTFIND0004

TESTAMND0001 TEST C001 com.bankframe.examples.txnhandler.
dataformat.testcustomer.TestCustomerDataFormat

In all cases the data formatter class used is:

com.bankframe.examples.txnhandler.dataformat.testcustomer.TestCustomerDat

aFormat

Similarly all transactions use the same destination: C001

Configuring the DESTINATION Table for CustomerSearch
Table 31 must be configured to specify which connector to use for communicating with the host
system:

 MCA Services Developer Guide Version 2005, Rev. B 171

Financial Process Integration Financial Process Integrator Examples

Table 31. DESTINATION

DESTINATION_ID CONNECTOR_FACTORY_CLASSNAME CONNECTOR_PROPERTIES

com.bankframe.examples.txnhandler.

connector.testcustomer.

TestCustomerConnectionFactory C001 offlineMode=disable

Where the connector is defined in the BankframeResource.properties file.

Configuring the RESPONSE_INDEX Table for CustomerSearch
The RESPONSE_INDEX table must be configured as follows so that responses from the host system
are indexed when cached:

Table 32. RESPONSE_INDEX

TXN_CODE TXN_TYPE INDEX_NAME

TESTFIND0002 TEST CUSTOMER_FIRST_NAME_INDEX

The configuration shown above in the RESPONSE-INDEX table specifies that the response to
TESTFIND0002 (findByLastName) will be indexed. In this example the response CUSTOMER DataPacket
will be indexed by the first name attribute.

Configuring the INDEX_META_DATA Table for CustomerSearch
The INDEX_META_DATA table must be configured as follows to specify the index structures:

Table 33. INDEX_META_DATA

CACHE_NAME DP_NAME DP_FIELD INDEX_NAME

CUSTOMER_FIRST_NAME_INDEX txnPersister CUSTOMER FIRST_NAME

The CacheIndexer class for managing the index is defined in the BankframeResource.properties file
under the cache.index.<INDEX_NAME> key. If a specific CacheIndexer is not defined the default
CacheIndexer is used. The default CacheIndexer gets its index structure from the INDEX_META_DATA
table. This table contains the name of the cache to index as well as the DataPacket name and the
fields to index by. The configuration shown above in the INDEX_META_DATA table will index the
FIRST_NAME attribute in the CUSTOMER DataPacket.

Configuring the Cobol Test Connector for CustomerSearch
The Account example uses the Cobol Test Connector:

com.bankframe.examples.txnhandler.connector.coboltest.*

MCA Services Developer Guide Version 2005, Rev. B 172

Financial Process Integration Financial Process Integrator Examples

The Cobol Test Connector generates Cobol binary data from a specified Cobol copybook file and
returns the data to the Financial Process Integrator. This can be used to test the Financial Process
Integrator meta-data and entity bean’s design for a simulated host system.

The Cobol test Connector key transactionHandler.connector.CobolTestConnector.* in
BankframeResource.properties has the following options:

Setting Description

midfile Specifies the path of the cobol copybook that defines the
format of the data request to the host system.

modfile Specifies the path of the cobol copybook that defines the
format of the cobol data response from the host system.

cobol.numbtype Specifies the format of the numbers in the created cobol
data; COMP-3, COMP, X, STD

cobol.texttype Specifies the format of text created in the cobol data; ASCII,
EBCDIC

midfile.debug Specifies if debug information is displayed while host request
is being processed; TRUE, FALSE

modfile.debug Specifies if debug information is displayed while the host
response is being processed; TRUE, FALSE

modfile.fillfield.<field
name>=<value>

Specifies a specific value, <value>, for the field called
<field name> in the host response, to simulate an error
response.

Configuring the CustomerSearch Example
If your application server is installed in a folder other than the default location defined in the
deployment guide and you wish to use the CustomerSearch example then the following changes must
be made:

 Edit the BankframeResource.properties file and locate the
transactionHandler.test.customerData setting.

 Change the value of this setting to point to the correct location of the
TestCustomerData.properties (TestCustomerData.properties will be located in the same
folder as BankframeResource.properties).

 Edit the TestCustomerData.properties file and locate the this.absolutePath setting.

 Change the value of this setting to point to the correct location of the
TestCustomerData.properties.

The AccountSearch Example
This section illustrates how the Financial Process Integrator works using the Account Entity EJB and
the AccountSearch Session EJB.

 MCA Services Developer Guide Version 2005, Rev. B 173

Financial Process Integration Financial Process Integrator Examples

Name EJB Type Description

Account Entity Models the common attributes
of an account

AccountSearch Searches for Account
instances

Session

These examples aim to show:

 How an entity bean interacts with the persister

 How the persister interacts with the Financial Process Integrator

 How to configure the Financial Process Integrator meta-data

 How to configure the Financial Process Integrator routes and destinations

 How to configure the example Cobol Test Connector

The Account Entity EJB
The Account entity has the following attributes:

Attribute Description

cardNumber The customers card number

accountNumber The account number

accountName The account name

The AccountSearch Session EJB
The AccountSearch session bean must be able to find all the Account entities.

Interfacing the Account Entities with the Financial Process
Integrator
Below we will describe how we have modelled the Account entity bean, concentrating on issues
relevant to connecting the entity bean to the Financial Process Integrator.

com.bankframe.examples.impl.account.AccountBMPBean

This class is the Bean Managed Persistence (BMP) implementation of the Account entity bean.

This class must persist its attributes to/from the host system.

EBMPEntity Methods

As described previously all BMP entity beans must implement the
com.bankframe.ejb.bmp.EBMPEntity interface. This is achieved in a similar manner to the

MCA Services Developer Guide Version 2005, Rev. B 174

Financial Process Integration Financial Process Integrator Examples

CustomerBMPBean example described previously. Below we will describe how AddressBMPBean
implements each of the methods defined in the EBMPEntity interface.

Configuring the PERSISTER_TXN_MAP Table for AccountSearch
The PERSISTER_TXN_MAP database table must be correctly configured to connect the BMP entity beans
to the Financial Process Integrator. Table 34 below illustrates the data used to configure the
PERSISTER_TXN_MAP table for the Account entity:

Table 34. PERSISTER_TXN_MAP Database

ENTITYNAME METHODNAME TXNCODE TXNTYPE
CACHE
POLICY

TIMEOUT
VALUE

eontec.bankframe.

examples.bo.account findAll ACCOUNTFIND TEST none 0

This table maps entity names and method names to transaction codes and transaction types. The
CACHEPOLICY value specifies whether the results of the transaction are cacheable. If they are then the
TIMEOUTVALUE specifies how many milliseconds the results should be cached for.

Configuring the Meta-Data Tables for AccountSearch
The REQUEST_TXN_LAYOUT, RESPONSE_TXN_LAYOUT and RESPONSE_META_DATA database tables must be
correctly configured to map the DataPackets received from the persister to the host transaction fields,
and vice versa.

NOTE: In the interests of clarity some of the columns in the tables have been omitted from the tables
below. Consult the txnsampledata.sql file supplied with MCA Services for the complete meta-data.

Format of ACCOUNTFIND

Transaction ACCOUNTFIND corresponds to the Account entity’s findAll() method. Table 35.
REQUEST_TXN_LAYOUT has the following format:

Table 35. REQUEST_TXN_LAYOUT

FIELDNAME DP_FIELD LENGTH SEQUENCE Sample value

T-CODE TXN_CODE 12 1 TESTFIND0001

Table 36. RESPONSE_META_DATA, has the following format:

Table 36. RESPONSE_META_DATA

DP_NAME DP_FIELD DP_INDEX TXN_FIELDNAME

CARD-NUMBER ACCOUNT CARD_NUMBER 1

 MCA Services Developer Guide Version 2005, Rev. B 175

Financial Process Integration Financial Process Integrator Examples

TXN_FIELDNAME DP_INDEX DP_NAME DP_FIELD

ACCOUNT-

NUMBER ACCOUNT ACCOUNT_NUMBER 1

ACCOUNT-NAME ACCOUNT ACCOUNT_NAME 1

CARD-NUMBER ACCOUNT CARD_NUMBER 2

ACCOUNT-

NUMBER ACCOUNT ACCOUNT_NUMBER 2

ACCOUNT-NAME ACCOUNT ACCOUNT_NAME 2

CARD-NUMBER ACCOUNT CARD_NUMBER 3

ACCOUNT-

NUMBER ACCOUNT ACCOUNT_NUMBER 3

ACCOUNT-NAME ACCOUNT ACCOUNT_NAME 3

CARD-NUMBER ACCOUNT CARD_NUMBER 4

ACCOUNT-

NUMBER ACCOUNT ACCOUNT_NUMBER 4

ACCOUNT-NAME ACCOUNT ACCOUNT_NAME 4

… … … …

The response is parsed into ten Account DataPackets which contain the data for the Account entities.

Configuring the TXN_ROUTE Table for AccountSearch
The TXN_ROUTE table must be correctly configured to map requests to the correct connector and to
specify which data formatter class to use. Table 37 below illustrates the data used to configure the
TXN_ROUTE table:

Table 37. TXN_ROUTE

DESTINATION
_ID CONNECTOR_FACTORY_CLASSNAME CONNECTOR_PROPERTIES

com.bankframe.examples.txnhandler.

connector.coboltest.

CobolTestConnectionFactory C002 offlineMode=disable

In all cases the data formatter class used is:

MCA Services Developer Guide Version 2005, Rev. B 176

Financial Process Integration Financial Process Integrator Examples

com.bankframe.examples.txnhandler.dataformat.testaccount.TestAccountDataF

ormat

This data-format class is derived from

com.bankframe.ei.txnhandler.dataformat.basic.BasicDataFormat

Similarly all transactions use the same destination: C002

Configuring the DESTINATION Table for AccountSearch
Table 38. DESTINATION, must be correctly configured to specify the correct connector to use for
communicating with the host system:

Table 38. DESTINATION

DESTINATION
_ID CONNECTOR_FACTORY_CLASSNAME CONNECTOR_PROPERTIES

com.bankframe.examples.txnhandler.connector
.coboltest.CobolTest ConnectionFactory C002 offlineMode=disable

The settings for this connector are defined in BankframeResource.properties.

The Account example uses the following Cobol copybook, modAccountTestCobol.txt, to define the
request to the host system from the Financial Process Integrator:

000400 01 MAIN-ACCOUNTFIND.

001400* INPUT DATA

001500 03 ACCOUNTFIND-DATA.

001600 05 T-CODE PIC X(5).

The Cobol Test Connector parses the Cobol data request generated by the Financial Process Integrator
using this Cobol copybook. This parsing of Cobol data from the Financial Process Integrator is used to
test the design of the request transaction fields in the Financial Process Integrator meta-data. The
BankframeResource.properties property
transactionHandler.connector.CobolTestConnector.cobol.debug is set to TRUE to view the
results of the parsing.

The Account example uses the following Cobol copybook, midAccountTestCobol.txt, to define the
response from the host system to the Financial Process Integrator:

000400 01 MAIN-ACCOUNTFIND.

000410 010 ERROR-FLAG PIC X(5).

000420 010 ERROR-TYPE PIC X(20).

000430 010 FILLER PIC X(5).

 MCA Services Developer Guide Version 2005, Rev. B 177

Financial Process Integration Financial Process Integrator Examples

000450* FOLLOWING IS A REPEATING FIELD, USED IN EACH OF

000500* THE FOLLOWING ENTITIES:

001300 010 CARD-NUMBER PIC 9(5).

001400* EACH OCCURANCE OF THIS GROUP MAPS TO AN INSTANCE OF AN ENTITY:

001500 05 ACCOUNT-INFO OCCURS 10 TIMES.

001700 010 ACCOUNT-NUMBER PIC 9(5).

001800 010 ACCOUNT-NAME PIC X(10).

001850***

001900* APPENDING HOST-SYSTEM ERROR COBOL COPYBOOK HERE

002000* SO IT CAN BE USED BY TXN HANDLER SAMPLE META-DATA

002010* WHEN AN ERROR IS BEING SIMULATED:

002015***

002020 05 HOST-SYSTEM-ERROR.

002030 010 ERROR-CODE PIC 9(5).

002040 010 ERROR-MESSAGE PIC X(30).

The Cobol Test Connector generates the Cobol binary data host system response that is expected by
the Financial Process Integrator for the transaction being tested. This is used to test the design of the
response transaction fields in the Financial Process Integrator meta-data.

The Cobol Test Connector generates values for the transaction fields in the response by one of the
following three methods in this order:

 The BankframeResource.properties key
transactionHandler.connector.CobolTestConnector.modfile.fillfield.<field
name>=<value> can be used to generate a specific value for transaction fields in the host system
response.

 Field names in the mod Cobol copybook file that match field names in the mid Cobol copybook file
result in the response transaction field taking the value of that request field when the transaction
is being processed. The full group name is not used for comparing request and response field
names, only the transaction field name, i.e., if the sample modAccountTestCobol.txt, and hence
response, above had a transaction field called T-CODE it would use the value of the T-CODE given
in the request transaction, defined by midAccountTestCobol.txt.

 A unique sample text is generated for each field in the host response. For text fields the values are
A1, A2, etc. For number fields the values are 1,2,3, etc.

MCA Services Developer Guide Version 2005, Rev. B 178

Financial Process Integration Financial Process Integrator Advanced Topics

Financial Process Integrator Advanced
Topics

Handling Complex Amend and Find Operations
In some cases, it may be necessary to invoke amend or find operations directly from a session bean,
rather than via the amend() or findByXXX() methods of an entity bean, for example:

 If the data to be amended is not modelled as an entity bean

 If the data from many entities need to be merged, and these entities cannot be modelled using a
master-dependent relationship

To facilitate these cases a class called: com.bankframe.ei.txnhandler.broker.TxnHandlerBroker is
provided:

TxnHandlerBroker
The Financial Process Integrator Broker provides an amend() and find() interface into the Financial
Process Integrator, that is not dependant on mapping entity beans to host transactions. To provide as
flexible a framework as possible, interfaces are provided to allow behaviour to be customised at
various stages of the broker’s operation. Default implementations of these interfaces are provided with
the MCA. This can be extended to provide specific behaviour for a host transaction request and the
caching of data.

HostTransactionObject and HostTransactionObjectFactory

The HostTransactionObject is used to hold data and vector of primary keys to be used by the
TxnHandlerPersister when performing either a find or amend operation. The
HostTransactionObjectFactory is used to create HostTransactionObjects from values in a HashMap.
The factory inspects the type of object in the map and determines how the DataPacket of data and
Vector of primary keys will be created. The getHostTransactionObject method can be overridden to
provide different behaviour for a specific EJB or method name.

Amend operations

There are two static amend methods in TxnHandlerBroker. Both take EJB name and method name as
parameters. However, one also takes a DataPacket with amend data and Vector of DataPackets
representing the primary keys for data to be stored, or removed from the cache used by the
TxnPersister. The other amend method takes a HashMap of objects that the broker will pass to a
HostTransactionObjectFactory to get the amend data and vector of primary keys to pass to the
former amend method. When performing an amend the TxnHandlerBroker will also check the
transactionHandler.broker.removeFromCacheOperation.<ejb name>.<method name> boolean
property to pass to the persister. If none specified, the
transactionHandler.broker.removeFromCacheOperation.default will be used. The persister will
determine what behaviour will be implemented to remove or updated the persisters cache. The amend
methods will return the Vector of DataPackets returned by the persister.

 MCA Services Developer Guide Version 2005, Rev. B 179

Financial Process Integration Financial Process Integrator Advanced Topics

Find operations

Similar to amend, there are two static find methods in TxnHandlerBroker.Both take ejb name and
method name as parameters. However, one also takes a DataPacket with finder data to be used by
the TxnPersister. The other amend method takes a HashMap of objects that the broker will pass to a
HostTransactionObjectFactory to get the amend data to pass to the former find method. The find
methods will return the Vector of DataPackets returned by the persister.

Handling Create and Remove Operations
In the EJB model new data is created by calling the create() method of an entity bean’s home
interface, similarly data is deleted by calling the home’s remove() method. It is assumed that these
operations are carried out synchronously and immediately.

In many banking environments create and remove operations may not be performed immediately,
instead they may be batched up to be performed only once per day. For example creation of new
customer bank account’s are usually performed as a batch operation carried out after the close of
business.

Create and remove operations which are not carried out immediately should be implemented using a
session bean which calls the TxnHandlerBroker.amend() method.

Create and remove operations which are carried out immediately should be implemented by defining
the appropriate operations in the PERSISTER_TXN_MAP table, and the correct meta-data in the
TXN_FIELD table.

Immediate create operation example
The example below illustrates how to configure a create operation for the Customer entity (assuming
the create is carried out immediately by the host).

Configuring the PERSISTER_TXN_MAP table

Table 39. PERSISTER_TXN_MAP, should have the following entry:

Table 39. PERSISTER_TXN_MAP

Entity
Name

Method
Name

Transaction
Code

Transaction
Type

Cache
Policy

Time
out
value

eontec.bankframe.

examples.

bo.customer create TESTCREA0001 TEST none 0

Configuring the TXN_FIELD table

Table 40. TXN_FIELD, should have the following data:

MCA Services Developer Guide Version 2005, Rev. B 180

Financial Process Integration Financial Process Integrator Advanced Topics

Table 40. TXN_FIELD

Sequence DataPacket Field Name Length Field Name

1 TXN_CODE 12 T-CODE

2 OWNER_ID 10 C-OWNER-ID

3 FIRST_NAME 20 C-FIRST-NAME

4 LAST_NAME 20 C-LAST-NAME

5 TITLE 5 C-TITLE

6 POST_CODE 15 A-POST-CODE

7 ADDRESS_LINE1 20 A-LINE-1

8 ADDRESS_LINE2 20 A-LINE-2

9 ADDRESS_LINE3 20 A-LINE-3

10 ADDRESS_LINE4 20 A-LINE-4

11 COUNTRY 20 A-COUNTRY

H-STATUS 1 STATUS 5

An example data formatter class
The data formatter class is responsible for interpreting the meta-data and using it to transform the
request data into the format that the host system understands, and conversely to transform the
response data into a format the Financial Process Integrator can understand.

The Customer and Address examples above require a custom data formatter class which is
implemented by:

com.bankframe.examples.txnhandler.dataformat.testcustomer.TestCustomerDataFormat

This class extends the com.bankframe.ei.txnhandler.dataformat.basic.BasicDataFormat class.
The BasicDataFormat class provides a number of methods that can be overridden these are described
below:

checkIfMoreToRequest()
This method is called by BasicDataFormat after the response from the host has been parsed into
DataPackets. Its purpose is to determine if the complete result set has been received from the host, if
not then another request transaction must be sent to the host to get more results. Below is the code
for the TestCustomerDataFormat implementation of this method:

protected boolean checkIfMoreToRequest(DataPacket txnRequest, Vector

responseData) throws ProcessingErrorException {

 DataPacket header = (DataPacket)responseData.elementAt(0);

 MCA Services Developer Guide Version 2005, Rev. B 181

Financial Process Integration Financial Process Integrator Advanced Topics

 if (header != null) {

 String restartIndexString = txnRequest.getString("RESTART_INDEX");

 String recordCountString = header.getString("RECORD_COUNT");

 String restartFlagString = header.getString("RESTART_FLAG");

 if(recordCountString == null || restartFlagString == null) {

 return false;

 }

 int recordCount = Integer.parseInt(recordCountString);

 int continueFlag = Integer.parseInt(restartFlagString);

 int restartIndex = 0;

 if (restartIndexString != null) {

 restartIndex = Integer.parseInt(restartIndexString);

 } if(continueFlag == 1) {

 txnRequest.put("RESTART_INDEX", Integer.toString(restartIndex +

recordCount));

 return true;

 }

 }

 return false;

}

This method carries out the following steps:

 Extracts the header DataPacket from the response DataPackets

 Extracts the restart index from the request DataPacket

 Extracts the record count value from the header DataPacket

 Extracts the restart flag from the header DataPacket

 If the restart flag is equal to ‘1’ then modify the request DataPacket to request the next set of
results and return true

 Otherwise return false

MCA Services Developer Guide Version 2005, Rev. B 182

Financial Process Integration Financial Process Integrator Advanced Topics

checkIfNoEntitiesFound()
This method is called by BasicDataFormat after the response from the host has been parsed into
DataPackets. Its purpose is to determine if the response received from the host does not contain any
entity data. Below is the code for the TestCustomerDataFormat implementation of this method:

protected boolean checkIfNoEntitiesFound(Vector responseData) throws

ProcessingErrorException {

 if(super.checkIfNoEntitiesFound(responseData)) {

 return true;

 }

 if(responseData.size() == 1) {

 DataPacket header = (DataPacket)responseData.elementAt(0);

 int recordCount = Integer.parseInt(header.getString("RECORD_COUNT"));

 if(recordCount == 0) {

 return true;

 }

 }

 return false;

 }

This method carries out the following steps:

 Call the super-classes’ checkIfNoEntitiesFound() method to check that the response data
Vector is not empty or null.

 Check if the response data contains only a single DataPacket.

 If it does then assume the DataPacket is the header DataPacket, and check the record count
value.

 If the record count is zero return true otherwise return false.

postProcessResponseData()
This method is called by BasicDataFormat after the response from the host has been parsed into
DataPackets. Its purpose is to carry out any extra processing that may be necessary on the response
DataPackets.

 MCA Services Developer Guide Version 2005, Rev. B 183

Financial Process Integration Financial Process Integrator Advanced Topics

MCA Services Developer Guide Version 2005, Rev. B 184

 MCA Services Developer Guide Version 2005, Rev. B

5 Enterprise Services

Security Provider Framework
MCA Services provides a customizable Security Provider Framework. As part of the processing of a
client request the MCA request router dispatches the request to the specified Security Provider. A
custom security provider can be written which will invoke any necessary security implementation to
verify if the request is permitted to be processed.

Security Provider Framework Classes and Package Structure
The Security Provider Framework is located in the com.bankframe.services.security package. It
consists of a security provider interface named BankFrameSecurityProvider and comes complete
with two security provider implementations: DefaultBankFrameSecurityProvider and the
NullBankFrameSecurityProvider.

The Security Provider interface (which all providers must implement) consists of the following method:

public Vector dispatch(Vector

request, Route route) throws

ProcessingErrorException,

RemoteException

Takes a Vector of DataPackets (which is the
original client request) and a Route object
which the request router has determined is
the correct route to match the client request’s
REQUEST_ID.

This method must verify that the specified request is permitted to be processed.

If this method returns null then it is assumed that the request be permitted. However, if this method
returns a Vector of DataPackets then these will be returned to the client and the request will be
considered to be processed. If a request is not to be permitted then a ProcessingErrorException (or
subclass) will be thrown.

Configuration of the Security Provider
The Security Provider for a solution runtime is configured using the security.provider key in the
BankframeResource.properties configuration file.

The key takes a fully qualified class name of the required Security Provider implementation.

It is imperative that the configured Security Provider implementation fully implements the
com.bankframe.services.security.BankFrameSecurityProvider interface as described above.

For example, if a solution wished to switch off security (i.e. switch off user authentication, session
management and access control) and allow all client requests to attempt processing then the included
NullBankFrameSecurityProvider would be used and configured as follows:

security.provider=com.bankframe.services.security.NullBankFrameSecurityProvider

185

Enterprise Services Security Provider Framework

There is an example configuration of the Security Provider included in the default
BankframeResource.properties file – which ships with MCA Services.

It is worth noting that the individual Security Providers are likely to require implementation specific
configuration. For an example of this refer to the included DefaultBankFrameSecurityProvider which
uses the following keys: security.sessionMgmtJndiName and security.accessControljndiName.

Security Providers included with MCA Services
Included with MCA Services are the following Security Providers:

com.bankframe.services.security.NullBankFrameSecurityProvider

com.bankframe.services.security.DefaultBankFrameSecurityProvider

com.bankframe.services.security. NullBankFrameSecurityProvider

Description

The Null Security Provider will allow all client requests to be processed, and as such is a means of
turning off security if it is not required or is being debugged.

Configuration

The Null Security Provider is extremely simple to configure. All that needs to be done is set the
security.provider in the BankframeResource.properties configuration file to the
com.bankframe.services.security.NullBankFrameSecurityProvider implementation.

For example:

security.provider=com.bankframe.services.security.NullBankFrameSecurityProvider

Caution should be observed if making this change on a production solution as it will effectively disable
security.

com.bankframe.services.security.
DefaultBankFrameSecurityProvider

Description

The Default Security Provider brings together and uses the User Authentication, Session Management
and Access Control services described in later chapters and exposes them using the MCA Security
Provider Framework.

Configuration

Configuring the Default Security Provider requires the setting of the following keys in the
BankframeResource.properties configuration file:

security.provider

MCA Services Developer Guide Version 2005, Rev. B 186

Enterprise Services Security Provider Framework

security.sessionMgmtJndiName

security.accessControljndiName

The security.provider key should be set to
com.bankframe.services.security.DefaultBankFrameSecurityProvider. Both the
security.sessionMgmtJndiName and security.accessControljndiName keys should be set to the JNDI
name of the Session Management EJB and Access Control EJB respectively.

For example,

security.provider=com.bankframe.services.security.DefaultBankFrameSecurityProvide

r

security.sessionMgmtJndiName=eontec.bankframe.EJBSessionManagement

security.accessControljndiName=eontec.bankframe.EJBAccessControl

Refer to the sections on Session Management, Access Control and User Authentication for further
details.

Implementing a Security Provider
A custom security provider allows one to customize the implementation of security. To write a security
provider you need to write a class which implements the
com.bankframe.services.security.BankFrameSecurityProvider interface. This interface prescribes
the dispatch() method that will be called by the MCA RequestRouter. When implementing your own
Security Provider then any necessary logic can be inserted into dispatch() to determine if a particular
client request may be permitted. There are three valid types of returns from this method:

null – Whenever a call to dispatch returns null this will be interpreted by the RequestRouter as
having passed security and to be ready for processing.

Vector of DataPackets – Return a Vector if the security provider has fully processed the request.
This Vector will then be returned to the client by the MCA RequestRouter. This case arises if the
client requests to logon and the security provider can fully process this request and return a response
to the client.

Method throws ProcessingErrorException – This exception should be thrown if you do not wish to
continue processing a user’s request, for example, if the user has failed security checks.

The following is a brief overview of how a simple security provider can be implemented and the code
behind the NullBankFrameSecurityProvider.

public class NullBankFrameSecurityProvider implements BankFrameSecurityProvider {

 public Vector dispatch(Vector datapacket, Route route) throws

ProcessingErrorException, RemoteException {

 return null;

 }

}

 MCA Services Developer Guide Version 2005, Rev. B 187

Enterprise Services User Authentication

As can be seen from this example any request and route passed into the dispatch() method will
result in a return of null, therefore all client requests will continue to be processed.

User Authentication
User Authentication is part of the MCA Services Security Provider Framework – refer to the Security
Provider Framework section for further information on the Security Provider.

Purpose
The purpose of MCA User Authentication is:

 provide a set of standard authentication mechanisms

 provide a framework for implementing custom authentication mechanisms

User authentication is needed to facilitate the session management and access control mechanisms.

Framework for custom authentication mechanisms
In many scenarios a custom authentication mechanism will be needed to capture the data required to
authenticate a user, or to integrate with an existing authentication mechanism. MCA provides an
interface that custom authentication mechanisms must comply with. Authentication mechanisms that
implement this interface can be plugged into MCA.

Standard authentication mechanisms
MCA provides two standard authentication mechanisms:

 Authenticating users against a database table

 Authenticating users against an LDAP repository

The logon process
Before a client can access MCA it must log on. A client achieves this by carrying out the following
steps:

 Send a request for any free services that are required in carrying out user authentication (a 'free
service' is an MCA Service or a Siebel Financial Component that is not session managed). For
example a call may be made to the GenerateRandomNumbers service in order to decide which
digits from a PIN code to prompt the user for.

 Send a request to the user authentication mechanism with the necessary data to authenticate the
user.

 If the request is successful then the user authentication mechanism will return a response to the
client, otherwise an exception DataPacket will be returned to the client.

 If the request is successful then the first returned DataPacket will contain the session ID of the
user session that was created for the user. The client should store this session ID so that it can

MCA Services Developer Guide Version 2005, Rev. B 188

Enterprise Services User Authentication

pass it back to MCA with all subsequent requests. See Session Management for more detail on
this.

The logoff process
When a user is finished using the client application, then the MCA Session should be terminated. A
client achieves this by carrying out the following steps:

 Send a logoff request with the session ID for the user’s current session to the user authentication
mechanism.

 If the request is successful then a response will be sent back to the client confirming the logoff
request succeeded, otherwise an exception DataPacket will be returned to the client.

 If the logoff request is successful then the user session will be deleted. Therefore the client must
establish another session before it can again use MCA Services.

com.bankframe.services.authentication package
The com.bankframe.services.authentication package defines the interfaces that all MCA User
Authentication Mechanisms must comply with. The packages contains the following classes/interface:

Abstract EJB session bean class that defines the methods
that all authentication mechanisms must implement.

AuthenticationBean

AuthenticationException Exception class thrown when user authentication fails.

Remote Interface that the authentication EJBs must
extend.

Authentication

Utility class that provides methods for simplifying
interaction with MCA User Authentication Mechanisms.

AuthenticationUtils

com.bankframe.services.authentication.AuthenticationBean
 The basic functionality that all authentication methods must provide is defined in the
com.bankframe.services.authentication.AuthenticationBean class. This class defines two
abstract methods:

 processLogon(DataPacket data)

 processLogoff(DataPacket data)

AuthenticationBean extends the com.bankframe.ejb.ESessionBean class. It provides a standard
implementation of the required processDataPacket() method, which checks if the incoming request
is a logon or a logoff request and passes the request on to processLogon() or processLogoff() as
appropriate. This means that all MCA User Authentication Mechanisms are implicitly standard MCA
Services.

 MCA Services Developer Guide Version 2005, Rev. B 189

Enterprise Services User Authentication

processLogon(DataPacket data)
public abstract Vector processLogon(DataPacket data) throws

ProcessingErrorException;

This method is responsible for retrieving the authentication information from the DataPacket passed
in and verifying that the information is correct. If the information is not correct then it should throw an
AuthenticationException. If the information is correct it should return a Vector of DataPackets. The
first DataPacket in the Vector must have a field named
com.bankframe.services.authentication.Authentication.USER_ID. This field must have a String
value that is the unique user ID for the authenticated user. The returned Vector of DataPackets will
be passed back to the client.

processLogoff(DataPacket data)
public abstract Vector processLogoff(DataPacket data) throws

ProcessingErrorException;

This method is called whenever a user attempts to logoff. It allows the custom authentication
mechanism to be notified when the user logs off, and to perform any clean ups that need to be carried
out. If an error occurs then this method should throw a ProcessingErrorException, for example if
the user is already logged off. If the logoff attempt is successful then a Vector of DataPackets with
the logoff response is returned. This Vector of DataPackets will be passed back to the client.

com.bankframe.services.authentication. AuthenticationException
This exception class extends the com.bankframe.ejb.ProcessingErrorException class. It should be
thrown by user authentication mechanisms whenever user authentication fails. When this exception
class is converted to a DataPacket, the DataPacket name will be AUTHENTICATION EXCEPTION.

com.bankframe.services.authentication.Authentication
This remote interface extends the com.bankframe.ejb.EsessionRemote interface. All MCA
Authentication Mechanisms’ remote interfaces must extend this interface. It defines the following two
methods:

 public Vector processLogon(DataPacket data) throws AuthenticationException;

 public Vector processLogoff(DataPacket data) throws ProcessingErrorException;

com.bankframe.services.authentication.AuthenticationUtils
This utility class provides static methods to simplify interaction with MCA Authentication Mechanisms.
These methods are typically used by client applications to create DataPackets that are correctly
formatted for making user authentication requests. The methods provided are:

public static void

makeLogonPacket(DataPacket dp)

Add the data to a DataPacket that
identifies it as a logon request.

Public static void

makeLogoffPacket(DataPacket dp,

Add the data to a DataPacket that
identifies it as a logoff request.

MCA Services Developer Guide Version 2005, Rev. B 190

Enterprise Services User Authentication

String sessionId)

Public static boolean

checkIsLogonPacket(DataPacket dp)

Checks if a DataPacket is a logon
request.

Public static boolean

checkIsLogoffPacket(DataPacket dp)

Checks if a DataPacket is a logoff
request.

Public static String

getUserId(DataPacket dp)

Extracts the unique user ID from a
DataPacket.

Public static String

putUserId(DataPacket dp, String

userId)

Puts a user ID field into a DataPacket.

Implementing a custom authentication mechanism

Introduction to Custom Authentication
The best way to illustrate how to implement a custom authentication mechanism is through an
example. The example below will implement an MCA Authentication Mechanism that interfaces with an
imaginary third party authentication mechanism defined as follows:

public class ThirdPartyAuthenticationMechanism {

 public static void logon(String userId,String password) throws

ThirdPartyException;

 public static void logoff(String userId) throws ThirdPartyException;

}

We will call our example bean: SampleAuthenticationBean

Create the bean implementation

The Bean Implementation Class
import com.bankframe.bo.DataPacket;

import com.bankframe.ejb.ProcessingErrorException;

import com.bankframe.services.authentication.AuthenticationBean;

import com.bankframe.services.authentication.AuthenticationException;

import com.bankframe.services.authentication.AuthenticationUtils;

 MCA Services Developer Guide Version 2005, Rev. B 191

Enterprise Services User Authentication

public class SampleAuthenticationBean extends AuthenticationBean {

 private final static int LOGON_ERROR=10026;

 private final static int LOGOFF_ERROR=10027;

 public Vector processLogon(DataPacket data) throws AuthenticationException {

 String userId = null;

 try {

 userId = data.getString(SampleAuthentication.USER_ID);

 String password = data.getString(SampleAuthentication.PASSWORD);

 ThirdPartyAuthenticationMechanism.logon(userId,password);

 return this.getLogonResponse(userId);

 } catch (ThirdPartyException ex) {

 String[] params = new String[1];

 params[0] = userId;

 throw new AuthenticationException(this.LOGON_ERROR,params);

 }

 }

 public Vector processLogoff(DataPacket data) throws ProcessingErrorException {

 String userId = null;

 try {

 userId = data.getString(SampleAuthentication.USER_ID);

 ThirdPartyAuthenticationMechanism.logoff(userId);

 return this.getLogoffResponse(userId);

 } catch (ThirdPartyException ex) {

 String[] params = new String[1];

 params[0] = userId;

 throw new ProcessingErrorException(LOGOFF_ERROR,params);

 }

MCA Services Developer Guide Version 2005, Rev. B 192

Enterprise Services User Authentication

 }

 private Vector getLogonResponse(String userId) {

 Vector v = new Vector();

 DataPacket response = new DataPacket("LOGON RESULT");

 response.put(AuthenticationUtils.USER_ID,userId);

 v.addElement(response);

 return v;

 }

 private Vector getLogoffResponse(String userId) {

 Vector v = new Vector();

 DataPacket response = new DataPacket("LOGOFF RESULT");

 response.put(AuthenticationUtils.USER_ID,userId);

 v.addElement(response);

 return v;

 }

}

The Bean Implementation Code explanation

The bean implementation is fairly straightforward. The SampleAuthenticationBean class extends the
com.bankframe.services.authentication.AuthenticationBean class. It provides implementations
of the two abstract methods: processLogon() and processLogoff().

SampleAuthenticationBean.processLogon()

This method carries out the following steps:

 Extract the user ID and password from the incoming DataPacket.

 Attempt to authenticate the user by invoking ThirdPartyAuthenticationMechanism.logon().

 If the authentication is successful then produce a response to be sent back to the client by calling
the getLogonResponse() method.

 If the authentication fails then a ThirdPartyException is raised. This is caught and a
AuthenticationException is thrown.

SampleAuthenticationBean.processLogoff()

This method carries out the following steps:

 MCA Services Developer Guide Version 2005, Rev. B 193

Enterprise Services User Authentication

 Extract the user ID from the incoming DataPacket.

 Attempt to logoff the user by invoking ThirdPartyAuthenticationMechanism.logoff().

 If the logoff is successful then produce a response to be sent back to the client by calling the
getLogoffResponse() method.

 If the logoff fails then a ThirdPartyException is raised. This is caught and a
AuthenticationException is thrown.

SampleAuthenticationBean.getLogonResponse()

This method simply produces a response DataPacket to be sent back to the client confirming that the
logon was successful.

SampleAuthenticationBean.getLogoffResponse()

This method simply produces a response DataPacket to be sent back to the client confirming that the
logoff was successful.

Define the Remote Interface
The Remote Interface for the SampleAuthenticationBean is defined as follows:

import com.bankframe.services.authentication.Authentication;

public interface SampleAuthentication extends Authentication {

 public final String USER_ID=”userId”;

 public final String PASSWORD=”password”;

}

This interface defines two constants; USER_ID and PASSWORD, that define the names of the fields in
logon request DataPackets that the user ID and password, required by the third party authentication
mechanism, are stored in.

Define the Home Interface
The Home Interface for the SampleAuthenticationBean is defined as follows:

import java.rmi.RemoteException;

import javax.ejb.EJBHome;

import javax.ejb.CreateException;

public interface SampleAuthenticationHome extends EJBHome {

 public SampleAuthentication create() throws CreateException,RemoteException;

MCA Services Developer Guide Version 2005, Rev. B 194

Enterprise Services User Authentication

}

This interface simply defines the create() method used to create instances of the
SampleAuthenticationBean.

Define the Deployment Descriptor
The deployment descriptor format differs from one application server to another. Consult your
application server documentation for details on how to create a deployment descriptor.

Build & Deploy the bean
Build SampleAuthenticationBean the same as any other session bean using the tools appropriate for
the application server you are targeting. Deploy the bean to the application server as normal. Finally
register the bean with MCA as detailed below.

Conclusions
Developing a custom authentication mechanism is a straightforward process. The main task is
implementing the processLogon() and processLogoff() methods. Apart from that the process is
identical to developing any EJB session bean.

Registering Authentication Mechanisms with MCA Services
See the Administrating MCA Services documentation.

Implementing a client application that can authenticate against
MCA
In order for client applications to be able to access MCA Services the client must be able to
authenticate itself with MCA. The example below illustrates a simple Java application that
authenticates itself with MCA using the SampleAuthenticationBean example above. The
SampleAuthenticationBean is deployed to Route 30003.

The SampleAuthenticationBean
import java.util.Vector;

import com.bankframe.bo.DataPacket;

import com.bankframe.ei.comms.EHTTPCommsManager;

import com.bankframe.services.sessionmgmt.SessionManagementUtils;

import com.bankframe.services.authentication.AuthenticationUtils;

public class SampleClient {

 MCA Services Developer Guide Version 2005, Rev. B 195

Enterprise Services User Authentication

public final static String AUTH_REQUEST_ID=”30003”;

public static void main(String[] args) {

 try {

 String appserver = args[0];

 String userId = args[1];

 String password = args[2];

 DataPacket dp = new DataPacket("SAMPLE LOGON REQUEST");

 AuthenticationUtils.makeLogonPacket(dp);

 dp.put(SampleAuthentication.USER_ID,userId);

 dp.put(SampleAuthentication.PASSWORD,password);

 dp.put(DataPacket.REQUEST_ID,AUTH_REQUEST_ID);

 EHTTPCommsManager commsMgr = new EHTTPCommsManager("sample",appserver);

 Vector response = commsMgr.sendDataPacket(dp);

 String sessionId =

SessionManagementUtils.getSessionId((DataPacket)response.elementAt(0));

 if (sessionId != null) {

 System.out.println("user: " + userId + " was successfully authenticated");

 dp = new DataPacket("SAMPLE LOGOFF REQUEST");

 AuthenticationUtils.makeLogoffRequest(dp,sessionId);

 dp.put(DataPacket.REQUEST_ID,AUTH_REQUEST_ID);

 response = commsMgr.sendDataPacket(dp);

 userId = AuthenticationUtils.getUserId((DataPacket)response.elementAt(0));

 if (userId != null) {

 System.out.println("logged off successfully");

 } else {

 System.out.println("failed to logoff successfully");

 }

 } else {

MCA Services Developer Guide Version 2005, Rev. B 196

Enterprise Services User Authentication

 System.out.println("user: " + userID + " was not successfully authenticated");

 }

 } catch (Exception ex) {

 System.out.println(ex.toString());

 }

}

SampleAuthenticationBean Code explanation
The sample client carries out the following steps

Create the logon request

 The client creates a DataPacket, the name is unimportant, (in this case it is: ‘SAMPLE LOGON
REQUEST’)

 Uses the AuthenticationUtils.makeLogonRequest() to turn the DataPacket into a logon
request

 Adds the userId and password information required by SampleAuthenticationBean to the
DataPacket

 Sets the DataPacket REQUEST_ID to 30003, so that the request is routed to the
SampleAuthenticationBean

Send the DataPacket to MCA

 The client creates an EHTTPCommsManager instance, passing it the URL of the application server
where MCA is running.

 The client calls the comms manager’s sendDataPacket() method to send the logon request to
MCA.

 MCA receives the request and routes it to SampleAuthenticationBean, which in turn
authenticates the request.

 MCA passes back the response from SampleAuthenticationBean to the client. This is the return
value from the sendDataPacket() method call.

Check if the logon was successful

 The client uses the SessionManagementUtils.getSessionId() method to see if the returned
response contains a session ID.

 If it does then the logon attempt was successful, because MCA will only generate a sessionId when
the client has been successfully authenticated.

 If it does not then the user authentication must have failed.

 MCA Services Developer Guide Version 2005, Rev. B 197

Enterprise Services User Authentication

Logoff

 If the logon attempt was successful, then the client attempts to logoff

 The client creates another DataPacket.

 It calls AuthenticationUtils.makeLogoffPacket() to convert the DataPacket to a logoff
request.

 It sets the REQUEST_ID of the DataPacket to 30003 so the logoff request is routed to the
SampleAuthenticationBean.

 If the logoff attempt is successful then, the returned DataPacket will contain an
AuthenticationUtils.USER_ID field.

 If the attempt is not successful then, the DataPacket will not contain an
AuthenticationsUtils.USER_ID field.

LDAP Authentication

Introduction to LDAP Authentication
LDAP based Authentication is implemented in the com.bankframe.services.authentication.ldap
package. It can authenticate any user defined in an LDAP repository.

Configuring LDAP Authentication
 Deploy the ldapauthentication.jar EJB on the application server.

 Register the ldap authentication bean with MCA. The JNDI for the ldap authentication bean is:
eontec.bankframe.LDAPAuthentication.

LDAP Authentication uses the ldap context named: bankframeusers to connect to the LDAP server
(See the MCA LDAP documentation for more detail on LDAP contexts).

The configuration settings for the bankframeusers ldap context must be specified in
BankframeResource.properties as follows:

The following settings are required, if they are not defined then LDAP Authentication will not be able to
function:
bankframeusers.ldap.baseDn – Specifies the location in the LDAP server hierarchy within which to
search for users, e.g. ou=Users,o=SomeOrganization.
bankframeusers.ldap.defaultSearchFilter - Specifies the search filter to use to find a specific user
e.g. cn={0}

All other LDAPServerContext settings can optionally be specified for the bankframeusers context. If
they are not specified then default values will be inherited from the ldap.default.* settings defined
elsewhere in BankframeResource.properties.

MCA Services Developer Guide Version 2005, Rev. B 198

Enterprise Services User Authentication

RDBMS Authentication

Introduction to RDBMS Authentication
User authentication within a typical RDBMS is implemented in the
com.bankframe.services.authentication.ejb.user package. It uses one session bean,
EJBUserAuthenticationBean, and one entity bean, EJBUserBean.

Component Overview

EJBUserBean

EJBUserBean is a container-managed entity bean that houses information about Users. It maps to the
EJBUSERS table in the database. This table has the following attributes.

USERID VARCHAR2(80) NOT NULL

PASSWORD VARCHAR2(80)

USERNAME VARCHAR2(80)

The Primary Key Field here is the USERID.

The EJBUserBean provides the following functionality.

 getUserId()

 getName()

 validatePassword()

 toDataPacket()

EJBUserAuthenticationBean

The EJBUserAuthenticationBean is a session bean used to validate users against passwords and to
process user logon and logoff requests. This session bean is a subclass and implementation of the
abstract com.bankframe.services.authentication.AuthenticationBean discussed previously in
this document. It provides the following functionality:

This takes a DataPacket with userId and password
and returns a Vector of logon responses.

processLogon()

Takes a DataPacket containing a sessionId and
returns a Vector of logoff responses.

processLogoff()

EJBUser table and Access Control to EJBs. The EJBUSER Table is used elsewhere within MCA to
perform access control on specific EJBs. This is discussed further in the “MCA Access Control”
document.

 MCA Services Developer Guide Version 2005, Rev. B 199

Enterprise Services Session Management

Configuring RDBMS User Authentication
 Deploy userauthentication.jar and ejbuser.jar EJBs on the server.

 Register the beans with MCA. The JNDI for the EJB authentication bean is
eontec.bankframe.EJBUserAuthentication.

The JNDI name for the EJB user entity bean is eontec.bankframe.EJBUser.

Encrypting Sensitive Data

Message Digest Overview
A Message Digest is a digital fingerprint of a block of data. A number of algorithms have been
designed to compute message digests – two of the most widely used are SHA, the secure hash
algorithm and MD5.

MCA Message Digest service
MCA Services provides a Message Digest service enabling customers to ensure that sensitive
information, e.g. customer passwords, are stored/transmitted in a non-clear text format. The hashing
service is implemented in the com.bankframe.services.security.MessageDigestUtils class.

MCA Message Digest Configuration
The Message Digest service is configured in the BankframeResource.properties file - a name/value
pair entry is configured to the indicate which Message Digest algorithm is to be used. The entry in
BankframeResource.properties is as follows:

Defines the message digest algorithm to use

Possible values are defined by the JCA

Typical values are: MD5 | SHA-1

messageDigest.algorithm=SHA-1

Calling the MessageDigest.digest(clearText) service will return a String in non-clear text format.
This non-clear text string will be based on the MessageDigest algorithm configured in
BankframeResource.properties.

Refer to your JCA documentation and the Configuring MCA Services documentation for further
information.

Session Management
Session Management is part of the MCA Security Provider Framework – refer to the Security Provider
Framework section for further info on the Security Provider.

MCA Services Developer Guide Version 2005, Rev. B 200

Enterprise Services Session Management

Purpose
The purpose of session management is to track which users are logged on. MCA provides both a
framework for implementing session management and a standard implementation of session
management. This allows custom solutions to be implemented which are integrated with MCA

Relationship to other session management systems
MCA Session Management is independent of, and does not rely on, other session management systems
such as HTTP sessions.

Components of MCA Services Session Management
Client Can be a Java applet, application, servlet or JSP.
User Authentication Mechanism.

Channel Managers BankframeServlet or
BankframePage

Validates and routes requests to business
processes.

RequestRouter

Manages user sessions. SessionManagment implementation
BankFrameSessionServlet Provides administration facilities for session

management.

Use Cases
There are four use cases for MCA session management:

Free Services Services that can be used without a user being logged on.

Logging On Authenticating the user.

Normal Use Normal use of Financial Components

Logging Off Ending an MCA Services session.

Free Services
Free Services are Financial Components which can be accessed without requiring a user to be logged
on. Typically these services are required in the process of establishing the user session. For example
the GenerateRandomNumbers service is normally a free service because it is required to generate the
random selection of PIN digits that a user logging on should enter.

Logging On
Logging on is part of the user authentication process and is covered in more detail in the User
Authentication document. MCA Services requires that all user authentication mechanisms provide a
user ID that uniquely identifies the user. This user ID is used to generate the session ID that uniquely
identifies each user session. When a user is successfully authenticated and a user ID is passed to the
session management system, a new session is created for the user.

 MCA Services Developer Guide Version 2005, Rev. B 201

Enterprise Services Session Management

Normal Use
Once a session has been established the client can access the Siebel Financial Components. Each time
the client sends a request to MCA Services it must include the session ID in the request. If the client
does not include the session ID then MCA will refuse to process the request. When MCA receives the
request it validates the session ID (e.g. to make sure that the user session has not timed out through
inactivity). If the session is determined to be valid the request is passed on to the access control
mechanism (which will determine if the user has access rights to the requested business service). If
the session is not valid then an exception will be returned to the client.

Logging Off
When a user wishes to log off they must inform MCA. When MCA receives a log off request, it informs
the user authentication mechanism that the user is logging off, and deletes the user’s session.

com.bankframe.services.sessionmgmt
MCA Session Management is implemented in the com.bankframe.services.sessionmgmt package.
This package defines the functionality that all session management implementations must support.
The package contains the following classes/interfaces

An interface that declares the methods all user
sessions must expose.

BankFrameSession

Abstract base class that all session management
beans must extend.

SessionManagementBean

Remote Interface that declares the methods that
session management beans must expose.

SessionManagement

Utility class that facilitates the use of session
management functionality.

SessionManagementUtils

Exception thrown when an attempt is made to use
an invalid session ID.

InvalidSessionException

Test application for testing user authentication and
session management functionality

Client

BankFrameSession
This interface defines the methods that all user sessions must have. It is up to the specific
implementation to provide an implementation of this interface.

SessionManagementBean
This abstract base class defines the functionality that all session management implementations must
provide. The class defines the following abstract methods:

createSession() Create a new user session.

MCA Services Developer Guide Version 2005, Rev. B 202

Enterprise Services Session Management

deleteSession() Delete an existing user session.

Retrieve a user session instance, using the
specified session ID.

retrieveSession()

getNumValidSessions() Get the number of valid user sessions.

getSessions() Retrieve a vector of all valid user sessions.

removeInvalidSessions() Remove all invalid (expired) user sessions.

Remove all users sessions, effectively logging off all
users.

removeAllSessions()

SessionManagement
This remote interface defines the functionality exposed by all session management implementations.

SessionManagementUtils
This class is a Utility class that facilitates the use of session management

InvalidSessionException
This exception is thrown whenever an attempt is made to use an invalid session ID A session ID is
invalid if:

 The session it corresponds to has been deleted because the user has logged off

 The session it corresponds to has timed out through user inactivity

 MCA has not created a session for the specified ID.

com.bankframe.services.sessionmgmt.Client
This class is a test application used to test session management functionality

Implementing a session management aware client application
Before a client application can access MCA services it must establish a user session. This requires the
client to authenticate itself with MCA. When the client application is finished it should inform MCA by
logging off.

A detailed example of how to logon, access Siebel Services and logoff is provided in the MCA User
Authentication documentation in the section titled ‘Implementing a client application that can
authenticate against MCA’

 MCA Services Developer Guide Version 2005, Rev. B 203

Enterprise Services Session Management

Implementing a custom session management implementation
In most cases one of the standard MCA implementations of session management should be sufficient,
however in some cases it may be necessary to provide a custom implementation; for example if the
session management system must integrate with some third party product.

All custom implementations must extend the
com.bankframe.services.sessionmgmt.SessionManagementBean class. As described this class
defines a number of abstract methods that must be implemented by the custom implementation.

The custom implementation must also provide an implementation of the
com.bankframe.services.sessionmgmt.BankFrameSession interface.

Consult the JavaDocs reference for a full explanation of what behavior the above methods must
implement.

Configuring and Administering Session Management

Deploying a Session Management Implementation
The session management implementation must be deployed on the application server, the same as
any other service.

Secondly the session management implementation must be registered with MCA by assigning the
implementation a Siebel Route. Assigning services to routes is covered in the MCA Deployment and
Administration documentation.

Finally MCA must be told which EJB the session management implementation is deployed on. Setting
the security.sessionMgmtJndiName property in BankframeResource.properties does this, e.g.
security.sessionMgmtJndiName=eontec.bankframe.EJBSessionManagement

Administering MCA Sessions
MCA sessions are administered using the BankFrameSessionServlet. Check that this servlet has been
deployed on your application server (The servlet is implemented in the
com.bankframe.ei.servlet.BankFrameSessionServlet). The BankFrameSessionServlet allows you
to carry out the following operations:

 List all current sessions

 Remove expired sessions

 Remove all sessions

 Delete a specific session

List all current sessions

This option presents a list of all users currently logged on to MCA Services

Remove expired sessions

This option removes all sessions that have timed out due to user inactivity

MCA Services Developer Guide Version 2005, Rev. B 204

Enterprise Services Access Control

Remove all sessions

This option logs off all users from MCA by deleting their sessions

Delete a specific session

This logs off a specific user by deleting their session

Standard Session Management Implementations
MCA Services provides two standard implementations of session management:

 A container managed Entity bean implementation that stores user sessions in an RDBMS

 A bean managed Entity bean implementation that stores user sessions in an LDAP repository

The first implementation generally gives better performance because user sessions need to have their
time-stamp updated every time the user accesses an MCA service and LDAP servers are typically
optimized for reads, not updates. This causes the LDAP implementation to perform slower than the
RDBMS implementation.

The LDAP implementation may be useful for customers who want to keep all user related information
in an LDAP repository.

RDBMS implementation
The RDBMS implementation is contained in the ejbsessionmgmt.jar JAR file. The RDBMS
implementation has the following JNDI name: eontec.bankframe.EJBSessionManagement

The RDBMS implementation requires a database table called SESSIONMGMT to be created. The script to
create this table is supplied with MCA Services.

LDAP Implementation
The ldap implementation is contained in the ldapsessionmgmt.jar JAR file. The ldap implementation
has the following JNDI name: eontec.bankframe.LDAPSessionManagement

The LDAP implementation requires that a new object class is defined in the LDAP server’s schema. The
script to define this object class is supplied with MCA

Access Control
Access Control is part of the MCA Security Provider Framework – refer to the Security Provider
Framework section.

Purpose
MCA Access Control provides secure access to MCA Financial Components. It controls which users can
access which Financial Components.

 MCA Services Developer Guide Version 2005, Rev. B 205

Enterprise Services Access Control

Scope

This document assumes familiarity with MCA and Enterprise Java Beans.

Overview

Actors

The following actors exist in the MCA Access Control Model:

Users Individual MCA Users.

Arbitrary groupings of Users. A User Group contains one or
more members. A User can belong to zero or more Groups.

User Groups

Financial Component A service available to Users.

MCA Access Control limits access to Financial Components to only those Users and/or Groups that
have been granted access to the Financial Component.

Before a Siebel user can access Siebel Financial Components, they must authenticate themselves. This
process is covered in the MCA User Authentication documentation.

When a user is successfully authenticated, a Siebel Session is created for that user. This session is
uniquely identified by a session ID. Every time the user wishes to access a Siebel Financial Component
they must provide a session ID. Before being granted access to the Financial Component the session
ID is checked to ensure it is valid. After the session ID has been validated the access control rights for
the corresponding user are checked to see if the user has access to the requested Financial
Component. The user must have been granted access rights to the Financial Component, or
alternatively be a member of a group with access to the Financial Component, before s/he can access
the Financial Component. If the user does not have access an error will be reported.

Dependencies

MCA Access Control is dependent on the MCA User Authentication service to uniquely identify MCA
Users.

MCA Access Control is dependent on the MCA Session Management service to ensure users are
currently logged on.

Implementations

MCA provides two standard implementations of access control:

 An LDAP based Access Control Mechanism that leverages the access control mechanisms inherent
in LDAP servers

 A CMP EJB based mechanism that uses several database tables to implement access control

Customisation

MCA provides an architecture for custom access control mechanisms to be implemented.

MCA Services Developer Guide Version 2005, Rev. B 206

Enterprise Services Access Control

com.bankframe.services.accesscontrol
The MCA Access Control mechanism is implemented in the com.bankframe.services.accesscontrol
package. This package provides a framework for implementing access control mechanisms. The
package contains the following classes/interfaces:

Abstract base class that all access control
mechanisms must extend.

AccessControlBean

Remote Interface that defines what functionality
access control mechanisms expose.

AccessControl

Exception thrown when an attempt is made to
access a prohibited resource.

AccessControlException

com.bankframe.services.accesscontrol.AccessControlBean
This base class defines the functionality that all access control mechanisms should implement. The
class extends com.bankframe.ejb.ESessionBean. This means that access control mechanisms are
standard Siebel Services. AccessControlBean provides a standard implementation of the required
processDataPacket() method. AccessControlBean defines the following abstract method that must
be defined by implementations:

public abstract boolean validateUserRequest(String userId,String requestId)

throws AccessControlException ;

This method takes a userId and a requestId as parameters and returns true if the user is allowed to
access the Financial Component identified by requestId. If the user is not allowed access to the
Financial Component then an AccessControlException will be thrown. An AccessControlException
should also be thrown if the specified user or Financial Component cannot be located.

com.bankframe.services.accesscontrol.AccessControl
This remote interface defines the functionality exposed by access control mechanisms. The interface
extends the com.bankframe.ejb.EsessionRemote interface. It defines the following method:

public boolean validateUserRequest(String userId,String requestId) throws

AccessControlException, RemoteException ;

This method can be invoked to check if a user has access to the Financial Component identified by
requested.

com.bankframe.services.accesscontrol.AccessControlException
This exception is thrown when a user attempts to access a prohibited service.

 MCA Services Developer Guide Version 2005, Rev. B 207

Enterprise Services Access Control

Implementing a custom access control mechanism
To illustrate how to implement a custom access control mechanism we will use an imaginary example
where we need to integrate with a third party product that determines access rights. Assume the third
party product has the following interface:

Public class ThirdPartyAccessControl {

 Public static Boolean checkAccess(String user,String resource) throws

ThirdPartyException ;

 }

 We will call this example: SampleAccessControlBean

Create the bean implementation

The Bean Implementation
import com.bankframe.services.authentication.ldap.LDAPAuthentication;

import com.bankframe.services.accesscontrol.AccessControlBean;

import com.bankframe.services.accesscontrol.AccessControlException;

public class SampleAccessControlBean extends AccessControlBean {

 public boolean validateUserRequest(String userId,String requestId) throws

AccessControlException {

 try {

 ThirdPartyAccessControl.checkAccess(userId,requestId);

 return true;

 } catch (ThirdPartyException ex) {

 String[] errparams = new String[2];

 errparams[0] = userId;

 errparams[1] = requestId;

 return new AccessControlException(10030,errparams);

 }

 }

}

MCA Services Developer Guide Version 2005, Rev. B 208

Enterprise Services Access Control

The Bean Implementation Code Explanation

The bean implementation needs to implement a single method: validateUserRequest(). In this
example the implementation of validateUserRequest() delegates the task of verifying access rights
to the ThirdPartyAccessControl.checkAccess() method. This method call is wrapped in a try-catch
block which catches any ThirdPartyExceptions. If the user does have access to the resource
(requestId) then the method will return true, otherwise a ThirdPartyException is thrown. This
exception is caught and an AccessControlException is thrown instead.

Remote Interface
The remote interface for this bean just extends the
com.bankframe.services.accesscontrol.AccessControl remote interface. It does not add an extra
members or fields:

Import com.bankframe.services.accesscontrol.AccessControl;

Public interface SampleAccessControl extends AccessControl {

}

Home Interface
The home interface defines the create() method used to create bean instances:

Import java.rmi.RemoteException;

Import javax.ejb.EJBHome;

Import javax.ejb.CreateException;

Public interface SampleAccessControlHome extends EJBHome {

 SampleAccessControl create() throws CreateException,RemoteException;

}

Deployment Descriptor
The deployment descriptor format differs from one application server to another. Consult your
application server documentation for details on how to create a deployment descriptor.

Conclusion
Implementing a custom access control mechanism is very similar to implementing any other MCA
Service; the only difference is that the validateUserRequest() method must be implemented.

 MCA Services Developer Guide Version 2005, Rev. B 209

Enterprise Services Access Control

LDAP Access Control Mechanism

Introduction to LDAP Access Control Mechanism
The LDAP based Access Control Mechanism is implemented in the:
com.bankframe.services.accesscontrol.ldap package. This implementation leverages the access
control facilities inherent in LDAP servers such as IBM SecureWay Directory.

Configuring LDAP Access Control
 Deploy the ldapaccesscontrol.jar EJB on the application server

 Register the ldap access control bean with MCA (see the MCA routing documentation for details on
how to do this). The JNDI for the ldap access control bean is:
eontec.bankframe.LDAPAccessControl.

 LDAP Authentication uses two ldap contexts (bankframeusers & bankframeroutes) to connect to
the LDAP server (See the MCA LDAP documentation for more details on LDAP contexts). The
bankframeusers context is used for validating users, and the bankframeroutes context is used for
validating Financial Components.

The configuration settings for the bankframeusers ldap context must be specified in
BankframeResource.properties as follows:

The following settings are required, if they are not defined then LDAP access control will not be able to
function: bankframeusers.ldap.baseDn – Specifies the location in the LDAP server hierarchy within
which to search for users, e.g. ou=Users,o=SomeOrganization
bankframeusers.ldap.defaultSearchFilter- Specifies the search filter to use to find a specific user
e.g. cn={0}.

All other LDAPServerContext settings can optionally be specified for the bankframeusers context. If
they are not specified then default values will be inherited from the ldap.default.* settings defined
elsewhere in BankframeResource.properties.

The configuration settings for the bankframeroutes ldap context must be specified in
BankframeResource.properties as follows:

The following settings are required, if they are not defined then LDAP access control will not be able to
function: bankframeroutes.ldap.baseDn – specifies the base distinguished name where MCA route
information is stored. bankframeroutes.ldap.rdnAttribute – specifies the name of the attribute
used to form the relative distinguished name of each object.

All other LDAPServerContext settings can optionally be specified for the bankframeroutes context. If
they are not specified then default values will be inherited from the ldap.default.* settings defined
elsewhere in BankframeResource.properties.

Configuring Access Rights

Overview

Since the LDAP access control mechanism leverages the access control facilities in the LDAP server,
the process for configuring Siebel Access Rights is identical to the process used to configure access
rights to any other kind of resource in the LDAP server. You will need to consult your LDAP server

MCA Services Developer Guide Version 2005, Rev. B 210

Enterprise Services Access Control

documentation for details of how to configure access control, since each LDAP server product has
differing implementations of access control.

The worked example below illustrates how to configure access control rights using IBM SecureWay
Directory.

Worked Example

This worked example assumes the following settings for the bankframeusers and bankframeroutes
ldap contexts:

bankframeusers.ldap.baseDn=ou=users,ou=usergroups,dc=example,dc=com

bankframeusers.ldap.defaultSearchFilter=uid={0}

bankframeroutes.ldap.basedDn=ou=routes,o=bankframemca,dc=example,dc=com

bankframeroute.ldap.rdnAttribute=eontecServiceId

The example assumes the following tree structure in the LDAP server:

UserId0 and UserId1 are both members of the usergroup0

In this example we want to grant access to the Siebel Financial Component assigned to route 40004.
We do this as follows

1 Launch the IBM Secureway Directory Management Tool

2 Log in using the administrator account

3 Select Browse Tree from the menu on the left

4 Expand the tree until you have selected the
eontecServiceId=40004,ou=routes,o=bankframemca,dc=example,dc=com node.

5 Press the ACL button on the toolbar above the ldap tree window, the following window will appear:

 MCA Services Developer Guide Version 2005, Rev. B 211

Enterprise Services Access Control

6 In the edit box indicated by the red arrow type:
cn=usergroup0,ou=usergroups,dc=example,dc=com

7 Select group from the drop down list and press the Add button

8 A new ACL entry will appear for usergroup0. Tick all the boxes under the Granted rights heading
for this ACL entry

9 Press the change button.

The members of usergroup0 have now been granted access to the Siebel Financial Component
assigned to route 40004

EJB Access Control Implementation

Introduction to EJB Access Control Implementation
MCA supports access control for EJBs within a conventional relational database system. A user can
therefore be configured to only have access to certain Financial Components within this framework.

Configuring access rights

Model overview

There are conceptually two entities within this ejb access control system, users and groups. It behaves
as follows:

 A group can be named and assigned various permissions.

MCA Services Developer Guide Version 2005, Rev. B 212

Enterprise Services Access Control

 A user can be assigned to one or more groups. That user in turn inherits all the permissions
assigned to his/her group(s).

 A user can be assigned specific permissions but does not have to be a member of a group.

This model has several advantages:

 Users can be grouped according to organizational status.

 Although a user is part of a group, a user can have permissions that extend beyond those of their
predefined group.

 A user can use Financial Components independently of a group should the need arise.

Table overview

The system uses the following five database tables.

 EJBUSERS

 EJBUSER_PERMISSIONS

 EJBGROUPS

 EJBGROUP_MEMBERS

 EJBGROUP_PERMISSIONS

EJBUSERS. This table, discussed in the MCA Services User Authentication document, is a
representation of all registered Siebel MCA Users. It has the following fields:

USERID VARCHAR2(80) NOT NULL

PASSWORD VARCHAR2(80)

USERNAME VARCHAR2(80)

The Primary Key field here is the USERID. This field should be denoted preferably by a non-numeric
code, which is similar to the real name of the user. For example, the userId of “Joe Bloggs” should
resemble something like “jbloggs”.

EJBUSER_PERMISSSIONS. This table will have one entry for each permission a user is assigned.
This table will only have an entry if either of these conditions is satisfied:

 The user is not a member of a group and wants specific permissions.

 The user wants to be a member of a group but also wants extra permissions beyond the current
scope of his/her assigned group.

It contains the following fields:

USERID VARCHAR2(20) NOT NULL

REQUESTID VARCHAR2(15) NOT NULL

The primary key field here is composed of both the userId and requestId to uniquely identify a
userId/requestId pairing.

 MCA Services Developer Guide Version 2005, Rev. B 213

Enterprise Services Access Control

The userId in this table is a foreign key of userId in the EJBUSERS table. This means that for a user
to have an entry in this table, they must have a corresponding entry in the EJBUSERS table. Similarly,
a user cannot be removed from the EJBUSERS table if they are being referenced by an entry in this
table.

EJBGROUPS. This table is a representation of the various user groups within MCA. It contains the
following fields.

GROUPID VARCHAR2(20) NOT NULL

GROUPNAME VARCHAR2(20)

The primary key field here is the groupId.

EJBGROUP_MEMBERS. This table assigns users to groups. It contains the following fields. Note that
a user can be a member of more than one group.

USERID VARCHAR2(20) NOT NULL

GROUPID VARCHAR2(20) NOT NULL

The primary key field here is a combination of the userId and groupId. This uniquely identifies a
userId/groupId pairing.

UserId here is a foreign key of userId in the EJBUSERS table. A user therefore cannot be removed
from the EJBUSERS table if a record in this table references them. Likewise, a user cannot be added to
this table if they do not have a record to reference in the EJBUSERS table.

EJBGROUP_PERMISSIONS. This table is a list of the permissions assigned to each group. This table
will have one entry for each permission a group is assigned. It is conceptually equivalent to the
EJBUSER_PERMISSIONS table. It contains the following fields,

GROUPID VARCHAR2(20) NOT NULL

REQUESTID VARCHAR2(20) NOT NULL

The primary key field here is a combination of the GROUPID and REQUESTID. It uniquely identifies a
groupid/requestId pairing.

GroupId here is a foreign key of groupId in the EJBGROUPS table. This constraint means that a record
in the EJBGroups table cannot be deleted if referenced by an entry in this table. Also, a record cannot
be entered in this table if there is not a corresponding entry for it to reference in the EJBGROUPS table.
The overall layout of these tables is shown through the following entity-relationship diagram.

MCA Services Developer Guide Version 2005, Rev. B 214

Enterprise Services Access Control

EJB Overview
The access control system is implemented via one session bean, (EJBAccessControlBean) and five
entity beans. They are:

An instance of this bean represents one record in the
EJBUsers table.

EJBUserBean

An instance of this bean represents one record in the
EJBGROUPS table.

EJBGroupBean

An instance of this bean represents one record in the
EJBGROUP_MEMBERS table.

EJBGroupMemberBean

An instance of this bean represents a record in the
EJBGROUP_PERMISSIONS table.

EJBGroupPermissionBean

EJBUserPermissionBean An instance of this bean represents one row in the

 MCA Services Developer Guide Version 2005, Rev. B 215

Enterprise Services Access Control

EJBUSER_PERMISSIONS table.

Session Bean Overview
The only session bean involved here is the EJBAccessControlBean. This session bean represents an
implementation and subclass of the abstract AccessControlBean, a bean that declares common
functionality to be implemented by all Siebel Access Control Mechanisms.

An instance of this bean exposes a single public method to a client.

Validates a user against a requestId or permission.
Returns true if user has access to the specified
REQUEST_ID. Otherwise throws an
AccessControlException.

validateUserRequest()

User and Group Administration Session Beans

UserAdministrationBean
This session bean represents an implementation and subclass of the abstract ESessionBean, it is the
class responsible for the creation and removal of users and their permissions for Siebel MCA.

com.bankframe.services.accesscontrol.adminstration.user

The MCA User Administration mechanism is implemented in the
com.bankframe.services.accesscontrol.adminstration.user package. This package provides a
framework for implementing User Administration mechanisms. The package contains the following
classes/interfaces:

UserAdministrationBean The User Administration bean implementation.

Remote Interface to the User Administration
Bean

UserAdministration

UserAdministrationHome User Administration home interface.

Application to test User Administration bean
functionality

Client

The JNDI name of the UserAdministrationBean is eontec.bankframe.UserAdministration

The UserAdministrationBean’s Methods

An instance of this bean exposes the following public methods to a client.

Returns an Enumeration of User objects for
all users registered with MCA Services.

getAllUsers()

getUser(String userId) Finds a user by userId and returns an
instance of that user.

MCA Services Developer Guide Version 2005, Rev. B 216

Enterprise Services Access Control

getUserPermissions(String

userId)

Takes a userId and returns a Vector of that
users permissions.

Finds a user by userId and deletes that user.
Returns void.

deleteUser(String userId)

createUser(String userId,

String userName, String

password)

Creates a new user. Returns void.

Takes a userId and a permission and
removes the permission from the user.
Returns void.

deleteUserPermission(String

userId, String permission)

Takes a userId and a permission and
assigns the permission to the user. Returns
void.

addUserPermission(String

userId, String permission)

addUserToGroup(String userId,

String group)

Takes a userId and a group and adds the
user to the group. Returns void.

deleteUserFromGroup(String

userId, String group)

Takes a userId and a group and removes the
user from the group. Returns void.

unassignedUserPermissions(Str

ing userId)

Takes a userId and returns a Vector of the
permissions the user doesn’t have.

processDataPacket()

In order to invoke the methods of the UserAdministrationBean the client uses the
processDataPacket() method.

getAllUsers(). To invoke this method using the processDataPacket() method a DataPacket with
the following structure is sent by the client.

DATA PACKET NAME GET_ALL_USERS

REQUEST_ID MC054

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector of one or more DataPackets containing a
DataPacket for each user with the following structure.

DATA PACKET NAME USERS_DETAILS

USER_ID The userId of the user

USER_NAME The full name of the user

REQUEST_ID Default REQUEST_ID always 00000

 MCA Services Developer Guide Version 2005, Rev. B 217

Enterprise Services Access Control

OWNER Usually Eontec LTD

getUser(String userId). To invoke this method using the processDataPacket() method a
DataPacket with the following structure is sent by the client.

DATA PACKET NAME GET_USER

REQUEST_ID MC054

USER_ID The userId of the user

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with the user details in
it. This DataPacket has the same structure as one of the DataPackets returned by getAllUsers().

getUserPermissions(String userId). To invoke this method using the processDataPacket()
method a DataPacket with the following structure is sent by the client.

DATA PACKET NAME GET_USER_PERMISSIONS

REQUEST_ID MC054

USER_ID The userId of the user

OWNER Usually Eontec LTD

The processDataPacket() method returns a vector of one or more DataPackets containing a
DataPacket for each permission with the following structure.

DATA PACKET NAME ROUTE

REQUEST_ID The requestID of the permission

JNDI_NAME JNDI name of the permission

IS_SESSION_MANAGED yes or no

DESCRIPTION Description of the permission

OWNER Usually Eontec LTD

deleteUser(String userId). To invoke this method using the processDataPacket() method a
DataPacket with the following structure is sent by the client.

DATA PACKET NAME DELETE_USER

REQUEST_ID MC054

USER_ID The userId of the user

OWNER Usually Eontec LTD

MCA Services Developer Guide Version 2005, Rev. B 218

Enterprise Services Access Control

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET
NAME of DELETE_USER if successful or USER_ADMINISTRATION_EXCEPTION if unsuccessful.

createUser(String userId, String userName, String password). To invoke this method using the
processDataPacket() method a DataPacket with the following structure is sent by the client.

DATA PACKET NAME CREATE_USER

REQUEST_ID MC054

USER_ID The userId of the user

USER_NAME The full name of the user

PASSWORD A password for the user

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET
NAME of CREATE_USER if successful or USER_ADMINISTRATION_EXCEPTION if unsuccessful.

deleteUserPermission(String userId, String permission). To invoke this method using the
processDataPacket() method a DataPacket with the following structure is sent by the client:

DATA PACKET NAME DELETE_USER_PERMISSION

REQUEST_ID MC054

USER_ID The userId of the user

PERMISSION The requestId of the permission to be removed.

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET
NAME of DELETE_USER_PERMISSION if successful or USER_ADMINISTRATION_EXCEPTION if unsuccessful.

addUserPermission(String userId, String permission). To invoke this method using the
processDataPacket() method a DataPacket with the following structure is sent by the client:

DATA PACKET NAME ADD_USER_PERMISSION

REQUEST_ID MC054

USER_ID The userId of the user

PERMISSION The requestId of the permission to be assigned.

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET
NAME of ADD_USER_PERMISSION if successful or USER_ADMINISTRATION_EXCEPTION if unsuccessful.

addUserToGroup(String userId, String group). To invoke this method using the
processDataPacket() method a DataPacket with the following structure is sent by the client:

DATA PACKET NAME ADD_USER_TO_GROUP

 MCA Services Developer Guide Version 2005, Rev. B 219

Enterprise Services Access Control

REQUEST_ID MC054

USER_ID The userId of the user

GROUP The groupId of the group to add user to.

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET
NAME of DELETE_USER_PERMISSION if successful or USER_ADMINISTRATION_EXCEPTION if unsuccessful.

deleteUserFromGroup(String userId, String permission). To invoke this method using the
processDataPacket() method a DataPacket with the following structure is sent by the client.

DATA PACKET NAME DELETE_USER_FROM_GROUP

REQUEST_ID MC054

USER_ID The userId of the user

GROUP The groupId of the group to remove user from.

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET
NAME of ADD_USER_PERMISSION if successful or USER_ADMINISTRATION_EXCEPTION if unsuccessful.

unassignedUserPermissions(String userId). To invoke this method using the
processDataPacket() method a DataPacket with the following structure is sent by the client.

DATA PACKET NAME UNASSIGNED_USER_PERMISSIONS

REQUEST_ID MC054

USER_ID The userId of the user

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector of one or more DataPackets containing a
DataPacket for each permission with the following structure:

DATA PACKET NAME ROUTE

REQUEST_ID The requestID of the permission

JNDI_NAME JNDI name of the permission

IS_SESSION_MANAGED yes or no

DESCRIPTION Description of the permission

OWNER Usually Eontec LTD

USER_ADMINISTRATION_EXCEPTION. When an exception is thrown by the above methods a
Vector is returned containing a DataPacket with the following structure.

MCA Services Developer Guide Version 2005, Rev. B 220

Enterprise Services Access Control

DATA PACKET NAME USER_ADMINISTRATION_EXCEPTION

REQUEST_ID Default REQUEST_ID always 00000

A description of the problem which caused the exception
to be thrown

Message

OWNER Usually Eontec LTD

GroupAdministrationBean
This session bean represents an implementation and subclass of the abstract ESessionBean, it is the
class responsible for the creation and removal of groups, their permissions and members.

com.bankframe.services.accesscontrol.adminstration.group

The MCA Group Administration mechanism is implemented in the
com.bankframe.services.accesscontrol.adminstration.group package. This package provides a
framework for implementing Group Administration mechanisms. The package contains the following
classes/interfaces:

GroupAdministrationBean The Group Administration bean implementation.

Remote Interface to the Group Administration
Bean

GroupAdministration

GroupAdministrationHome Group Administration home interface.

Application to test Group Administration bean
functionality

Client

The JNDI name of the GroupAdministrationBean is eontec.bankframe.GroupAdministration

The GroupAdministrationBean’s Methods

An instance of this bean exposes the following public methods to a client:

Returns an Enumeration of Group
objects for all groups registered with
MCA.

getAllGroups()

Finds a group by groupId and returns
an instance of that group.

getGroup(String groupId)

getGroupPermissions(String

groupId)

Takes a groupId and returns a Vector
of that groups permissions.

Finds a group by groupId and deletes
that group. Returns void.

deleteGroup(String groupId)

createGroup(String groupId, String

groupName)

Creates a new group. Returns void.

 MCA Services Developer Guide Version 2005, Rev. B 221

Enterprise Services Access Control

Takes a groupId and a permission and
removes the permission from the group.
Returns void.

deleteGroupPermission(String

groupId, String permission)

Takes a groupId and a permission and
assigns the permission to the group.
Returns void.

addGroupPermission(String groupId,

String permission)

Takes a userId and returns a Vector of
the groups the user is not assigned to.

getUnassignedGroups(String userId)

Takes a groupId and returns a Vector
of the users assigned to it.

getGroupMembers(String groupId)

Takes a userId and returns a Vector of
the groups the user is assigned to.

getUserGroups(String userId)

Takes a groupId and returns a Vector
of the permissions the group doesn’t
have.

unassignedGroupPermissions(String

groupId)

processDataPacket()

In order to invoke the methods of the GroupAdministrationBean the client uses the
processDataPacket() method.

getAllGroups(). To invoke this method using the processDataPacket() method a DataPacket with
the following structure is sent by the client:

DATA PACKET NAME GET_ALL_GROUPS

REQUEST_ID MC053

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector of one or more DataPackets containing a
DataPacket for each group with the following structure.

DATA PACKET NAME GROUPS_DETAILS

GROUP_ID The groupId of the group

GROUP_NAME The name of the group

REQUEST_ID Default REQUEST_ID always 00000

OWNER Usually Eontec LTD

getGroup(String groupId). To invoke this method using the processDataPacket() method a
DataPacket with the following structure is sent by the client:

DATA PACKET NAME GET_GROUP

MCA Services Developer Guide Version 2005, Rev. B 222

Enterprise Services Access Control

REQUEST_ID MC053

GROUP_ID The groupId of the group

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with the group details
in it. This DataPacket has the same structure as one of the DataPackets returned by
getAllGroups().

getGroupPermissions(String groupId). To invoke this method using the processDataPacket()
method a DataPacket with the following structure is sent by the client:

DATA PACKET NAME GET_GROUP_PERMISSIONS

REQUEST_ID MC053

GROUP_ID The groupId of the group

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector of one or more DataPackets containing a
DataPacket for each permission with the following structure:

DATA PACKET NAME ROUTE

REQUEST_ID The requestID of the permission

JNDI_NAME JNDI name of the permission

IS_SESSION_MANAGED yes or no

DESCRIPTION Description of the permission

OWNER Usually Eontec LTD

deleteGroup(String groupId). To invoke this method using the processDataPacket() method a
DataPacket with the following structure is sent by the client:

DATA PACKET NAME DELETE_GROUP

REQUEST_ID MC053

GROUP_ID The groupId of the group

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET
NAME of DELETE_GROUP if successful or GROUP_ADMINISTRATION_EXCEPTION if unsuccessful.

createGroup(String groupId, String groupName). To invoke this method using the
processDataPacket() method a DataPacket with the following structure is sent by the client:

DATA PACKET NAME CREATE_GROUP

 MCA Services Developer Guide Version 2005, Rev. B 223

Enterprise Services Access Control

REQUEST_ID MC053

GROUP_ID The groupId of the group

GROUP_NAME The name of the group

PASSWORD A password for the group

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET
NAME of CREATE_GROUP if successful or GROUP_ADMINISTRATION_EXCEPTION if unsuccessful.

deleteGroupPermission(String groupId, String permission). To invoke this method using the
processDataPacket() method a DataPacket with the following structure is sent by the client:

DATA PACKET NAME DELETE_GROUP_PERMISSION

REQUEST_ID MC053

GROUP_ID The groupId of the group

PERMISSION The requestId of the permission to be removed.

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET
NAME of DELETE_GROUP_PERMISSION if successful or GROUP_ADMINISTRATION_EXCEPTION if
unsuccessful.

addGroupPermission(String groupId, String permission). To invoke this method using the
processDataPacket() method a DataPacket with the following structure is sent by the client:

DATA PACKET NAME ADD_GROUP_PERMISSION

REQUEST_ID MC053

GROUP_ID The groupId of the group

PERMISSION The requestId of the permission to be assigned.

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET
NAME of ADD_GROUP_PERMISSION if successful or GROUP_ADMINISTRATION_EXCEPTION if unsuccessful.

getUnassignedGroups(String userId). To invoke this method using the processDataPacket()
method a DataPacket with the following structure is sent by the client:

DATA PACKET NAME GET_UNASSIGNED_GROUPS

REQUEST_ID MC053

USER_ID The userId of the user

OWNER Usually Eontec LTD

MCA Services Developer Guide Version 2005, Rev. B 224

Enterprise Services Access Control

The processDataPacket() method returns a Vector containing a DataPacket for each group with the
following structure:

DATA PACKET NAME GROUPS_DETAILS

GROUP_ID The groupId of the group

GROUP_NAME The name of the group

REQUEST_ID Default REQUEST_ID always 00000

OWNER Usually Eontec LTD

getGroupMembers(String groupId). To invoke this method using the processDataPacket()
method a DataPacket with the following structure is sent by the client:

DATA PACKET NAME GET_GROUP_MEMBERS

REQUEST_ID MC053

GROUP_ID The groupId of the Group

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector of one or more DataPackets containing a
DataPacket for each user with the following structure:

DATA PACKET NAME USERS_DETAILS

USER_ID The userId of the user

USER_NAME The full name of the user

REQUEST_ID Default REQUEST_ID always 00000

OWNER Usually Eontec LTD

getUserGroups(String userId). To invoke this method using the processDataPacket() method a
DataPacket with the following structure is sent by the client:

DATA PACKET NAME GET_USER_GROUPS

REQUEST_ID MC053

USER_ID The userId of the user

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector of one or more DataPackets containing a
DataPacket for each group with the following structure:

DATA PACKET NAME GROUPS_DETAILS

 MCA Services Developer Guide Version 2005, Rev. B 225

Enterprise Services Routing

GROUP_ID The groupId of the group

GROUP_NAME The name of the group

REQUEST_ID Default REQUEST_ID always 00000

OWNER Usually Eontec LTD

unassignedGroupPermissions(String groupId). To invoke this method using the
processDataPacket() method a DataPacket with the following structure is sent by the client:

DATA PACKET NAME UNASSIGNED_GROUP_PERMISSIONS

REQUEST_ID MC053

GROUP_ID The groupId of the group

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector of one or more DataPackets containing a
DataPacket for each permission with the following structure:

DATA PACKET NAME ROUTE

REQUEST_ID The requestID of the permission

JNDI_NAME JNDI name of the permission

IS_SESSION_MANAGED Yes or no

DESCRIPTION Description of the permission

OWNER Usually Eontec LTD

GROUP_ADMINISTRATION_EXCEPTION. When an exception is thrown by the above methods a
Vector is returned containing a DataPacket with the following structure.

DATA PACKET NAME GROUP_ADMINISTRATION_EXCEPTION

REQUEST_ID Default REQUEST_ID always 00000

A description of the problem which caused the exception
to be thrown

Message

OWNER Usually Eontec LTD

Routing
MCA Services Routing provides a flexible means for multiple clients communicating over multiple
delivery channels to interact with Siebel Financial Components. The Routing Service takes care of

MCA Services Developer Guide Version 2005, Rev. B 226

Enterprise Services Routing

delivering requests from clients to the correct Financial Components and returning the response data
from those Financial Components to the client.

How MCA Services Routing works
Rather than hard-code the name of the Financial Component into a client it is preferable to identify the
Financial Component using a unique identifier called a REQUEST_ID and couple this to the Financial
Component’s name at runtime. (This allows a Financial Component’s implementation to be replaced
with a different implementation without affecting the client). This coupling is what the Routing Service
provides.

The Routing Service is implemented using an EJB session bean that contains the business logic for the
Routing Service and an EJB entity bean that is used to store the routing data. The EJB Session bean is
called the RequestRouter bean. The EJB Entity Bean is called the Route bean.

Each channel manager invokes the RequestRouter to route client requests to the correct Financial
Component. The RequestRouter looks for the REQUEST_ID in each DataPacket sent from the client. It
uses this five digit identifier to find a particular service. The RequestRouter maintains a mapping from
REQUEST_IDs to Financial Components. Each time a request is received the RequestRouter looks up
this mapping and translates the REQUEST_ID into the Financial Component name. Once the
RequestRouter has discovered the Financial Components name, it creates an instance of the Financial
Component and passes the client request on to the Financial Component. When the Financial
Components has dealt with the request the RequestRouter returns the response data to the channel
manager, which in turn passes the response back to the client.

This design is dependent on all the Financial Components conforming to the same interface - namely
implementing the method processDataPacket(). This method is defined as abstract in the class
com.bankframe.ejb.EsessionBean class. All Siebel Financial Components extend this class and
provide an implementation of this method.

Note that clients never interact directly with the RequestRouter service; they always interact with the
service via the client connectivity framework.

In addition to performing routing of requests, the RequestRouter bean also uses the User
Authentication, Session Management, and Access Control Services to ensure that clients only access
the Financial Components they have been granted access to.

RequestRouter and Transactions
Accessing more than one database within the course of a single J2EE container managed transaction
requires the application server and the JDBC driver to support the Java Transaction API (JTA). Many
application servers and JDBC drivers do not provide full support for JTA specification.

The RequestRouter EJB accesses the BANKFRM database (via the EJBRoute EJB), to determine the
appropriate Financial Component to invoke. In turn the Financial Component will usually access some
other application specific database. If the RequestRouter EJB did use a transaction when either the
application server or JDBC does not support JTA then the application server will produce a runtime
exception when the Financial Component attempts to access the second database.

To work around this issue by default the RequestRouter EJB is configured not to use a transaction,
thus only the Financial Component will access a database within the context of a transaction.

 MCA Services Developer Guide Version 2005, Rev. B 227

Enterprise Services Routing

This workaround has one caveat which is that the Audit Provider and Security Provider which are
invoked by the RequestRouter EJB cannot participate in the same transaction as the one used by the
Financial Component, therefore it is impossible for the Audit Provider or the Security Provider to cause
the rollback of the Financial Component transaction.

If the application server and JDBC driver being used do fully support the JTA specification then this
issue can be remedied by updating the RequestRouter EJB deployment descriptor to use a container
managed transaction, consult your application server vendor’s documentation for information on how
to do this.

If the application server and JDBC driver do not fully support JTA then the only workaround is to
change all Financial Components to use the BANKFRM database, and to update the RequestRouter EJB
deployment descriptor to use a container managed transaction.

The com.bankframe.services.requestrouter package
The business logic for the Routing Service is implemented in the
com.bankframe.services.requestrouter package. This package consists of the following
classes/interfaces:

The session bean that implements MCA’s routing
logic.

RequestRouterBean

The remote Interface that declares the functionality
RequestRouterBean exposes.

RequestRouter

The home interface used to create
RequestRouterBean instances.

RequestRouterHome

Exception thrown when an error occurs during the
routing process.

RequestRouterException

Utility class to simplify channel manager's
interactions with the RequestRouterBean.

RequestRouterUtils

RequestRouterBean
This class provides the implementation of MCA’s Routing Service. Every time the RequestRouterBean
receives a DataPacket it carries out the following operations:

 Check the DataPacket has a non-zero REQUEST_ID.

 Look up the Route identified by the REQUEST_ID.

 Check the DataPacket has a valid session ID.

 If the session ID is not present check to see if the DataPacket is a logon or logoff request; if so
send the request to the User Authentication and Session Management Services.

 Otherwise use the Session Management service.

 Create an instance of the named Financial Component named in the Route and pass the
DataPacket to the Financial Component, by invoking the EJB’s processDataPacket() method.

 Pass back the returned response data from the Financial Component.

MCA Services Developer Guide Version 2005, Rev. B 228

Enterprise Services Routing

RequestRouter
This remote interface defines the methods that RequestRouterBean exposes. RequestRouterBean is a
standard MCA Enterprise Service and exposes only the standard processDataPacket() method.

RequestRouterHome
This home interface has a single create() method used to create instances of the
RequestRouterBean

RequestRouterException
Exception is thrown when an error occurs during the routing process.

RequestRouterUtils
This utility class contains a single static method:

Vector processDataPacket(DataPacket data) throws RequestRouterException;

This method creates an instance of the RequestRouterBean and passes it the specified DataPacket.

Channel Managers that need to pass DataPackets to the RequestRouterBean should use the above
method to do so.

The com.bankframe.services.route package
This package contains the implementations of two entity beans that are used to persist the mapping of
REQUEST_IDs to JNDI names. The two beans are EJBRouteBean and LDAPRouteBean. EJBRouteBean
persists data to an RDBMS, LDAPRouteBean persists data to an LDAP server. Apart from the datastore
that the beans persist to, they are identical. This is reflected in the fact that both beans share the
same home and remote interfaces and primary key class.

The com.bankframe.services.route package contains the following classes/interfaces:

EJBRouteBean Container managed bean implementation.

LDAPRouteBean Bean managed bean implementation that persists to LDAP server.

Remote Interface that declares the methods of the Route Entity
bean.

Route

RouteHome Home Interface used to create instances of the Route Entity bean.

Primary key class used to uniquely identify Route Entity bean
instances.

RoutePK

EJBRouteBean
This is the standard container managed implementation of the Route bean

 MCA Services Developer Guide Version 2005, Rev. B 229

Enterprise Services Routing

LDAPRouteBean
This is the ldap based implementation of the Route bean. It uses the bankframeroutes ldap context
specified in the BankframeResource.properties configuration file

Route
This remote interface defines the attributes that the Route bean has. These are:

REQUEST_ID The REQUEST_ID this Financial Component is mapped to.

JNDI_NAME The JNDI name of the Financial Component.

DESCRIPTION Brief description of the Financial Component.

SESSION_MANAGED

Boolean value that indicates if the Financial Component
requires a user session to be established before it can be
accessed. Refer to the MCA Services Session Management
documentation for further detail.

RouteHome
This home interface declares the methods that can be used to create Route instances; these are:

Create() Create a new Route instance.

FindByPrimaryKey() Retrieve a specific instance.

FindAll() Retrieve an enumeration of all instances.

RoutePK
This class uniquely identifies Route bean instances. The Route bean’s primary key attribute is the
REQUEST_ID.

Route Administration Session Bean
This session bean represents an implementation and subclass of the abstract ESessionBean, it is the
class responsible for the creation and removal of Routes.

com.bankframe.services.route.adminstration
The MCA Route Administration mechanism is implemented in the
com.bankframe.services.route.administration package. This package provides a framework for
implementing Route Administration mechanisms. The package contains the following
classes/interfaces:

RouteAdministrationBean The Route Administration implementation bean.

RouteAdministration Route Administration remote interface.

MCA Services Developer Guide Version 2005, Rev. B 230

Enterprise Services Routing

RouteAdministrationHome Route Administration home interface.

Application to test Route Administration bean
functionality.

Client

The JNDI name of the RouteAdministrationBean is eontec.bankframe.RouteAdministration

The RouteAdministrationBean’s Methods
An instance of this bean exposes the following public methods to a client:

Returns an Enumeration of Route objects
for all MCA routes.

getAllRoutes()

Finds a route by requestId and returns an
instance of that route.

getRoute(String requestId)

Finds a route by requestId and deletes that
route. Returns void.

deleteRoute (String requestId)

createRoute(String requestId,

String ejbName, String

description, boolean

isSessionManaged)

Creates a new route. Returns void.

processDataPacket()
In order to invoke the methods of the RouteAdministrationBean the client uses the
processDataPacket() method.

getAllRoutes()

To invoke this method using the processDataPacket() method a DataPacket with the following
structure is sent by the client:

DATA PACKET NAME GET_ALL_ROUTES

REQUEST_ID MC002

OWNER Usually Eontec LTD

The processDataPacket() method returns a vector of one or more DataPackets containing a
DataPacket for each route with the following structure.

DATA PACKET NAME ROUTE

REQUEST_ID The requestId of the route

JNDI_NAME JNDI name of the route

IS_SESSION_MANAGED yes or no

 MCA Services Developer Guide Version 2005, Rev. B 231

Enterprise Services Routing

DESCRIPTION Description of the route

OWNER Usually Eontec LTD

getRoute(String requestId)

To invoke this method using the processDataPacket() method a DataPacket with the following
structure is sent by the client:

DATA PACKET NAME GET_ROUTE

REQUEST_ID MC002

ROUTE_REQUEST_ID The requestId of the route to be found.

OWNER Usually Eontec LTD

The processDataPacket() method returns a vector containing a DataPacket with the route details in
it. This DataPacket has the same structure as one of the DataPackets returned by getAllRoutes().

deleteRoute(String requestId)

To invoke this method using the processDataPacket() method a DataPacket with the following
structure is sent by the client:

DATA PACKET NAME DELETE_ROUTE

REQUEST_ID MC002

ROUTE_REQUEST_ID The requestId of the route

OWNER Usually Eontec LTD

The processDataPacket() method returns a vector containing a DataPacket with a DATA PACKET
NAME of DELETE_ROUTE if successful, or ROUTE_ADMINISTRATION_EXCEPTION if unsuccessful.

createRoute(String requestId, String ejbName, String description, boolean
isSessionManaged)

To invoke this method using the processDataPacket() method a DataPacket with the following
structure is sent by the client:

DATA PACKET NAME CREATE_ROUTE

REQUEST_ID MC002

ROUTE_REQUEST_ID The requestId of the route

JNDI_NAME JNDI name of the route

SESSION_MANAGED yes or no

DESCRIPTION Description of the route

MCA Services Developer Guide Version 2005, Rev. B 232

Enterprise Services Routing

OWNER Usually Eontec LTD

The processDataPacket() method returns a vector containing a DataPacket with a DATA PACKET
NAME of CREATE_ROUTE if successful, or ROUTE_ADMINISTRATION_EXCEPTION if unsuccessful.

ROUTE_ADMINISTRATION_EXCEPTION

When an exception is thrown by the above methods a Vector is returned containing a DataPacket
with the following structure:

DATA PACKET NAME ROUTE_ADMINISTRATION_EXCEPTION

REQUEST_ID Default REQUEST_ID always 00000

A description of the problem which caused the
exception to be thrown

Message

OWNER Usually Eontec LTD

Request Contexts
Request Contexts are objects associated with requests that store some state. This state can then be
maintained across all method invocations within the request call stack. One application of storing this
state is for tracking transactions from start to finish.

Request Contexts and Threads
Request Contexts are based on the fact that in an application server a request corresponds to a single
thread of execution. Leveraging this fact it is possible to associate some information with each thread.
At the start of the processing of a request the Request Context object is created and initialized in the
RequestRouterBean.processDataPackets() method. This information then exists for the duration of
the request and can be accessed at any time.

The com.bankframe.services.requestcontext package
The business logic for the Request Context Service is implemented in the

com.bankframe.services.requestcontext package. This package consists of the following

classes/interfaces:

A wrapper object that maps a Vector of DataPackets
to a Request object.

DataPacketsRequest

The default RequestContextFactory. It does not
associate any context with a request.

NullRequestContextFactory

This is a tagging interface to identify the data that
makes up a request.

Request

RequestContext This is a tagging interface used to identify objects that
are associated with a request.

 MCA Services Developer Guide Version 2005, Rev. B 233

Enterprise Services Routing

RequestContextFactory This class creates and configures RequestContext
instances.

A sample factory for creating RequestContext objects
that store the request DataPacket’s REQUEST_ID and
DATA PACKET NAME.

SampleRequestContextFactory

Configuring Request Contexts
To configure Request Contexts the BankframeResource.properties file must be modified as follows:

Specify a RequestContextFactory like below

requestContext.factory=com.bankframe.services.requestcontext.PreferredRequestContextFa
ctory
where PreferredRequestContextFactory is used to create and associate state with the preferred
RequestContext.

NOTE: If this setting is not modified the default NullRequestContextFactory is used which doesn’t
associate any context with a request.

Accessing the state of a RequestContext
If one needs to access the state associated with a RequestContext object, then the following code can
be used to obtain the instance of the RequestContext and access the information it holds.

RequestContext rc = RequestContextFactory.getRequestContext()

PreferredRequestContext src = (PreferredRequestContext)rc;

Object state = src.get();

The PreferredRequestContextFactory will be the same Request Context Factory specified in
BankframeResource.properties. In the above example the variable state will contain the
information PreferredRequestContext associated with the thread of execution.

Writing Custom Request Context Factory Classes
When needing to employ the Request Context mechanism it will be necessary to write a customised
RequestContextFactory and RequestContext to associate one’s desired information with the thread
of execution. This information to be stored needs to be available in the request sent to the
RequestRouter i.e. the Vector of DataPackets. The RequestRouter will then wrap the request in a
DataPacketRequest object and send it to the RequestContextFactory class. At this point the
customised RequestContextFactory and RequestContext will be called. Customising the
RequestContext and RequestContextFactory are described below.

Customising the Request Context

Firstly write a RequestContext class e.g. MyRequestContext that will specify the data from the
request to be associated with the thread of execution. The MyRequestContext class must implement
the RequestContext interface. The MyRequestContext class should be a simple class with some setter
and getter methods to enable access to the desired fields. However there are performance issues to

MCA Services Developer Guide Version 2005, Rev. B 234

Enterprise Services Routing

consider when deciding what to associate with the thread. This is discussed later in the section
‘Request Contexts and Performance’

Customising the Request Context Factory

Once the customised RequestContext, MyRequestContext, is written a RequestContextFactory, e.g.
MyRequestContextFactory must be written. To do this one should subclass the
RequestContextFactory class and implement its abstract methods newRequestContext() and
configureRequestContext(RequestContext, Request).

 The newRequestContext() method should instantiate and return an instance of the new Request
Context class MyRequestContext.

 The configureRequestContext(RequestContext, Request) method should take the
RequestContext object passed as parameter and if it is an instance of the MyRequestContext
class (which it should be), then cast it to the MyRequestContext class. Now extract the
information one wants to associate with the thread of execution from the Request passed as a
parameter and use the setter methods on MyRequestContext to associate this information with
the thread.

Now the information is available at any point in the request through accessing the MyRequestContext
object.

Request Contexts and Performance
When deciding what information one wants to associate with a thread, one must take some points into
consideration.

 The first point to understand is the lifecycle of the RequestContext object. One and only one
RequestContext instance will be created for each thread in the application server. This instance
will be re-initialized at the start of each request. This avoids unnecessary object creation overhead
by re-using the RequestContext instance for multiple requests.

 The second point is that since there is one instance created per thread and the application may
have hundreds or thousands of threads it is imperative that the RequestContext object does not
require much memory. For example if each RequestContext object required 20Kb of storage and
the application server is serving 5000 customers, with one thread per customer then you will need
20*5000 = ~100Mb of storage. Obviously this amount of data will cause a lot of extra page faults
and will significantly decrease performance and scalability.

 The third point is that since the RequestContext object may be used several times in the course
of a request, the methods invoked on the RequestContext object should be of reasonable
performance. For example a poor RequestContext implementation might use a Map or other
Collection type internally to store some state. This is inadvisable since manipulating or
interacting with Collection type objects is likely to lead to a lot of temporary objects being
created. When this is being done thousands of times per second this is likely to significantly
impact system performance.

Hence it is important to choose a reasonable amount of data to store and a suitable storage type for
the customized RequestContext object.

 MCA Services Developer Guide Version 2005, Rev. B 235

Enterprise Services Routing

Request Context Example
When a DataPacket is sent to the Request Router, this corresponds to a request on some channel.
The Request Router then processes the DataPackets associated with this request. Within the
processing the DataPackets for a request are wrapped inside a DataPacketRequest object, then the
RequestContextFactory is called and this creates a RequestContext object which is used to store the
state information for the request which then exists for the duration of the request.

The RequestContextFactory uses the java.lang.ThreadLocal to store the relevant RequestContext
data for a request. Remember that it was previously stated that a request corresponds to a single
thread of execution. ThreadLocal is used to store state for a Thread as long as it remains alive, and
hence is used. The RequestContext can be customized in order to store specific state information for
a request. In the following example the RequestId and Data Packet Name are the only state
information that is stored for each request.

//Customized Request Context
public static class MyRequestContext implements RequestContext {
 //declare the state information required
 private String requestId;
 private String dataPacketName;

 protected MyRequestContext() {
 super();
 }
 //get and set methods for request Id
 public String getRequestId() {
 return requestId;
 }
 public void setRequestId(String string) {
 requestId = string;
 }
 //get and set methods for the Data Packet Name
 public String getDataPacketName() {
 return dataPacketName;
 }
 public void setDataPacketName(String string) {
 dataPacketName = string;
 }
}
Next the customized Request Context Factory is defined, which allows the creation of new instances of
the customized Request Context (MyRequestContext), and also the setting of the state information.

MCA Services Developer Guide Version 2005, Rev. B 236

Enterprise Services Remote Notification

//Customized Request Context Factory
public class MyRequestContextFactory extends RequestContextFactory {
 public MyRequestContextFactory() {
 super();
 }

protected RequestContext newRequestContext() {
 return new MyRequestContext();
 }
protected void configureRequestContext(RequestContext requestContext,Request request)
{
 if (request instanceof DataPacketsRequest) {
MyRequestContext sample = (MyRequestContext) requestContext;

 DataPacketsRequest dps =(DataPacketsRequest) request;
 //set the state information
 sample.setRequestId(dps.getRequestId());
sample.setDataPacketName(((DataPacket)dps.getDataPackets().elementAt(0)).getName());
 }
 }
}

Remote Notification
The Siebel Remote Notification Service provides a means for client applications to transmit notification
messages to any remote machine that is registered with the notification server.

How Siebel Notification Works

Peer to peer using mid-tier server
The mid tier acts as a repository in which targets register when they log on. The server maintains a
list of registered addresses, which correspond to users who are logged on. Initially when a user
registers as a registered address any previous entries for that user are removed to ensure that only
the latest IP address is maintained for that user.

When a user logs off the corresponding registered address are removed from the repository. The only
details that must be maintained are a user ID, the IP address from where the user logged on and the
Port number that the target server is listening on. This implementation allows all types of users who
are registered with the Notification Server and who have a local server running on their specific
machines awaiting incoming connections, to communicate with each other.

High Level overview
At logon the target user sends the registration request via the HttpClient to the EJB server. This then
creates a record of the registration along with the IP address of the target, in the mid tier database by
means of a RegisteredAddress container managed bean. The source front end communicates with the
mid-tier in the usual manner. Once the target’s IP address is retrieved from the mid-tier the
communication from source to target is carried out by the mid tier forwarding the request to the
target on behalf of the client source – this communication is outlined in the diagram below

 MCA Services Developer Guide Version 2005, Rev. B 237

Enterprise Services Remote Notification

Meanwhile the target front-end starts a server listening on the agreed port. This port number is
configured through the BankframeResource.properties file, and is passed to the NotificationServer
when the Target registers and is stored in the database. The NotificationServer communicates with the
Target machine via this port. The server is started upon target logon. This server receives incoming
requests from clients and passes them to a Java thread whose job it is to deal with the message.

Remote Notification Architecture
If an event occurs on the Source workstation requiring notification then the
notifyUser(sourceId,targetId,action,date,payload) method on the NotificationServer is called.
A targetId representing the target user may or may not be passed into this method, if it is then the
targetIp representing the target user’s IP address is obtained using the targetId which is the primary
key. If no targetId is passed in (the source doesn’t know the target’s ID) then the notification server
selects a recipient based on a target selection algorithm specified in
com.bankframe.services.notification.targetselection.

The steps involved in Remote Notification are outlined in the following diagram and explained below:

MCA Services Developer Guide Version 2005, Rev. B 238

Enterprise Services Remote Notification

The following steps are involved in creating a target RegisteredAddress:

 The target registers with the notification server.

 The NotificationServer creates the new RegisteredAddress entity using the targets’s ID, target’s IP
address and port number passed in.

The following steps are involved when a Notification Event occurs:

 Notification event occurs on the source workstation which initiates a business process on the
server side. The business process then calls notifyUser passing source id, destination id, action,
date and payload to the NotificationServer.

 If a targetId was passed in with the notify message then this is used to determine the appropriate
IP address for the target, if no targetId is passed in then the method getTargetIPForSource is
called. The default implementation of this method is to retrieve all registered addresses (targets)
and select the frst one. This method can be over-ridden to reflect the actual algorithm for
selecting the appropriate target IP address.

 Using the selected target IP address a TCP connection is made to the target machine using the IP
address and a known Port number. The notification event object is constructed and sent to the
target via this connection.

 The target responds with an appropriate message - either Fail/Success.

NotificationServer and Target Communication Procedure
The locations of the response and payload log files, as shown in the diagram below, are configured
through the BankframeResource.properties file. The notification event message is in standard
DataPacket format, within the NotificationServer this DataPacket is transformed into a
NotificationEvent object. This notification event object message is a serialisable object.

 MCA Services Developer Guide Version 2005, Rev. B 239

Enterprise Services Remote Notification

The NotificationEvent object consists of the following:

sourceIp The IP address of the Source workstation that the message
originated on.

targetIp The IP address of the Target workstation that the NotificationServer
connected to

Date The date the message was sent

Action The action to perform on the client

payload The notification event message details. This is a serializable object

Timeout and Retry Mechanism
A timeout and retry mechanism is included, which:

 prevents a socket blocking indefinitely while waiting for a response from a machine which may not
be alive

 ensures that a target actually receives the Notification Event message and if not reports back a
failure message

A certain number of retries is allowed until eventually a response is received or the notification fails.
An appropriate message is forwarded back to the Source. Two types of messages are reported back to
the Source - either Success or Failure. The timeout value and number of retries are configured in the
BankframeResource.properties file – refer to the Configuring MCA Services documentation for
further information.

Receiving Notification Event messages
When a Target machine registers to receive notifications:

 The NotificationServer first checks to see if the TargetId is already in the RegisteredAddress table

 If it is then the TargetId is deleted and the TargetId along with the new TargetIp is updated to the
RegisteredAddress table

Carrying out the registration in this way ensures that:

MCA Services Developer Guide Version 2005, Rev. B 240

Enterprise Services Remote Notification

 If a Target workstation crashes and the TargetId remains in the RegisteredAddress table then this
old value is over written

 if a Target user logs off without sending the unregister message to the NotificationServer and re-
logs in on another machine the new IP address associated with this TargetId is updated to the
RegisteredAddress table.

In order for a client to recevive NotificationEvent messages they must have a local server running on
their machines which is listening on a specified port for incoming connections. The registering process
can be seen in the diagram below.

Remote Notification API

The com.bankframe.services.notification package
The com.bankframe.services.notification package contains the following:

NotificationEvent This is the NotificationEvent class which encapsulates the
message to be sent to the Target

SourceFrame This is an example Source front-end GUI which imitates
the functionality of the Source machine

TargetFrame This is an example Target front-end GUI which imitates
the functionality of the Target machine

TargetServer The is an example of how the target server listens for
notification event messages from the notification server
via a TCP connection

WorkerThread This is an example worker class which shows how the
notification message can be processed by the Target

 MCA Services Developer Guide Version 2005, Rev. B 241

Enterprise Services Remote Notification

The NotificationEvent Methods
toString() Returns a String representation of the

NotificationEvent details

getSourceId() This method returns the Source ID

setSourceId(String

sourceId)

This method sets the Source ID

getTargetIp() This method gets the Target IP address

setTargetIp(String

targetIp)

This method sets the Target IP address

getPayload() This method gets the payload object

setPayload(Object payload) This method sets the payload

getDate() This method gets the date the message was
sent

setDate(String date) This method sets the date

getAction() This method gets the action

setAction(String action) This method sets the action

The com.bankframe.services.notification.notificationserver package
NotificationServer The remote Interface that declares the functionality

NotificationServerBean exposes.

NotificationServerBean The session bean that implements MCA Service’s
notification logic.

The NotificationServer Methods
registerUser(String targetId,

String targetIp,String

targetPort)

This method allows a target machine to
register with the NotificationServer

unregisterUser(String

targetId, String

targetIp,String targetPort)

This method allows a target machine to
un-register from the NotificationServer

notifyUser(String

sourceId,String

targetId,String action,String

date,Object payload)

This method is called by the source in
order to notify a target about a particular
notification event

MCA Services Developer Guide Version 2005, Rev. B 242

Enterprise Services Remote Notification

The com.bankframe.services.notification.registeredaddress package
This package contains the implementations of the entity bean RegisteredAddress

RegisteredAddress Remote Interface that declares the methods of
the RegisteredAddress Entity bean.

RegisteredAddressBean Container managed bean implementation.

RegisteredAddressFinders The RegisteredAddress finders interface

The RegisteredAddressBean Methods
create(String targetId,String

targetIp,String targetPort)

This method creates a new
RegisteredAddress

getTargetId() This method gets the Target ID

setTargetId(String targeted) This method sets the Target ID

getTargetIp() This method gets the Target IP
address

setTargetIp(String targetIp) This method sets the Target IP
address

getTargetPort() This method gets the Target Port

SetTargetPort(String targetPort) This method sets the Target Port

The com.bankframe.services.notification.targetselection package
This package contains a TargetSelectionFactory which, creates new instances of the
TrargetSelectionFactoryImpl class that is used to select a target specified by the algorithm in the
getTargetForSource(String sourceId) method.

TargetSelectionFactory This class is used to create a new instance
of the TargetSelectionFactory
implementation specified by the
targetSelectionFactory setting in
BankframeResource.properties

DefaultTargetSelectionFactoryImpl This is the default
TargetSelectionFactory implementation,
this default algorithm returns the first
Target IP address found in the
RegisteredAddress table. The method
getTargetForSource(String sourceId)
must be implemented by any new factory
implementations.

 MCA Services Developer Guide Version 2005, Rev. B 243

Enterprise Services Internationalization

The TargetSelectionFactory Methods
getInstance() This method returns a TargetSelectionFactory

instance

getTargetIPForSource(String

sourceId)

This method returns a target IP address based on the
sourceId passed in.

Internationalization
This section describes the internationalization facilities provided by MCA Services. For information on
date & time localization refer to the MCA Services Data Validation section.

All SRF internationalization is done on the client-side. This involves making sure that all data that
needs to be localised is passed to the client in addition to any additional information that is required
by the client to localise the data.

It may be appropriate to provide further localization to message arguments. For example the message
MSG001=Can not withdraw funds because account status is {0} can be localized, however the
status value in the message at {0} would not be. The MCA internalization framework allows for further
localization by adding an additional attribute to the message key. The message can be stored in
BankframeMessages.properties as MSG001=Can not withdraw funds because account status is
{0, l8n}. The l8n attribute tells MCA Services to replace the message argument value with a
corresponding value from BankframeMessages.properties. The message can have another key
CLOSED=closed. Therefore, a message MSG001 with argument CLOSED would cause the MCA to look up
the CLOSED key in BankframeMessages.properties to support status values. The resulting text
message will read Can not withdraw funds because account status is closed.

Resource Bundles
Localised resources (i.e. localised messages) are organised into resource bundles. A resource bundle is
a set of property files, which contain locale specific text. For each locale a property file containing the
localised text is required. The property files must follow the following naming convention:
BundleName_language_country. The country is optional, it is only used if a language has a sub dialect
specific to a country. This naming convention is required as the Java resource manager uses the class
name to locate the most appropriate resource bundle for a locale. For example if a resource bundle for
the Swiss-German locale was requested the resource manager would search for an appropriate
resource bundle class using the following pattern:

 BundleName_de_CH - Swiss-German locale resource bundle.

 BundleName_de - general German language resource bundle.

 BundleName - root resource bundle.

So first of all the resource manager searches for the Swiss German resource bundle, if it cannot find
Swiss German resources it will search for the German resource bundle, and if it cannot find German
resources it will use the default resource bundle.

MCA Services Developer Guide Version 2005, Rev. B 244

Enterprise Services Internationalization

BankframeMessages.properties

All messages are stored in a file called BankframeMessages.properties. Each locale will have a
separate file containing the localised text for that locale. The file is named using the convention
described above:

BankframeMessages.properties The default messages file

BankframeMessages_en_US.properties The US English message file

BankframeMessages_de.properties The generic German message file

BankframeMessages_de_CH.properties The Swiss German message file

MCA Internationalization Framework
The MCA Internationalization framework is implemented in the com.bankframe.localization
package. This package contains the following classes:

BankFrameMessage
This class represents a message that can be localized. This class has the following methods:

BankFrameMessage(String messageKey)

This constructor creates a BankFrameMessage instance that uses the specified messageKey to obtain
the localized message from the BankframeMessages.properties file

BankFrameMessage(String messageKey, String[] arguments)

This constructor creates a BankFrameMessage instance that uses the specified messageKey to obtain
the localized message from the BankframeMessages.properties file and substitutes the specified
arguments into the localized message.

BankFrameMessage(DataPacket bankframeMessageDataPacket)

This constructor creates a BankFrameMessage instance that uses the localization information in the
specified DataPacket.

setMessageKey()

This method is used to set the message key. This method has the following signature:

public void setMessageKey(String messageKey);

 The messageKey parameter identifies the key of the localised message stored in the
BankframeMessages.properties file

setMessageArguments()

This method is used to set the arguments for a message. This method has the following signature:

 MCA Services Developer Guide Version 2005, Rev. B 245

Enterprise Services Internationalization

public void setMessageArguments(String[] arguments);

 The arguments parameter contains the arguments for the message

toString()

This method converts the BankFrameMessage to a localised String. This method has two forms:

public String toString();

 This method converts the BankFrameMessage using the default system locale. Use of this
method is not recommended because the system locale may not match the user’s locale.

public String toString(Locale locale);

 This method converts the BankFrameMessage using the specified locale.

toDataPacket()

This method converts the BankFrameMessage to a DataPacket. This method has the following
signature:

public DataPacket toDataPacket();

 This method returns a DataPacket containing the information necessary for localising the
message

fromDataPacket()

This method sets the messageKey and arguments for this BankFrameMessage from the information
contained in the specified DataPacket. This method has the following signature:

public void fromDataPacket(DataPacket data);

 The data parameter specifies a DataPacket containing the information for the
BankFrameMessage

BankFrameException
This class is the base class for all exceptions. This class works hand in hand with the
BankFrameMessage class. Whereas most Java exceptions are created using a String error message,
BankFrameExceptions are created using a BankFrameMessage error message.

This class contains the following methods:

BankFrameException()

This constructor creates an instance of BankFrameException using the specified BankFrameMessage
for the error message. This constructor has the following signature:

public BankFrameException(BankFrameMessage message);

MCA Services Developer Guide Version 2005, Rev. B 246

Enterprise Services Internationalization

getBankFrameMessage()

This method returns the BankFrameMessage associated with this exception. This method has the
following signature:

public BankFrameMessage getBankFrameMessage();

getMessage()

This method gets the error message for this BankFrameException. This method has two forms:

public String getMessage();

 Using this method is not recommended since it uses the default system locale to localise the
error message, which may not match the user’s locale

public String getMessage(Locale locale);

 This method gets the error message for this exception, localising the message using the
specified locale

toDataPacket()

This method converts the exception to a DataPacket. This method has the following signature:

public DataPacket toDataPacket();

BankFrameMessageUtils
This class contains utility methods for manipulating BankFrameMessages. This class contains the
following methods:

parseDataPacket()

This method converts a DataPacket to a BankFrameMessage. This method has the following signature:

public static BankFrameMessage parseDataPacket(DataPacket data);

 The data parameter is a DataPacket containing the information necessary to construct a
BankFrameMessage.

 A BankFrameMessage instance is returned, or null if the DataPacket does not contain any
BankFrameMessage data.

toString()

This method converts a DataPacket containing BankFrameMessage data to a String. This method has
the following signature:

public static String toString(DataPacket bankframeMessageDataPacket, Locale

locale);

 The bankframeMessageDataPacket parameter is a DataPacket containing the information
necessary to construct a BankFrameMessage.

 MCA Services Developer Guide Version 2005, Rev. B 247

Enterprise Services Internationalization

 The locale parameter specifies the Locale to use for localizing the message

 The localized message is returned or null if the DataPacket does not contain any
BankFrameMessage data.

containsBankFrameMessage()

This method determines if the specified DataPacket contains BankFrameMessage data. This method
has the following signature:

public static boolean containsBankFrameMessage(DataPacket data);

 The data parameter is a DataPacket containing the information necessary to construct a
BankFrameMessage.

 This method returns true if the DataPacket contains BankFrameMessage data, false
otherwise.

BankFrameExceptionUtils
This class contains utility methods for manipulating BankFrameExceptions. This class contains the
following methods:

containsBankFrameException()

This method determines if the specified Vector of DataPackets contains BankFrameException data.
This method has the following signature:

public static boolean containsBankFrameException(Vector dataPackets);

 The dataPackets parameter is a Vector of one or more DataPackets.

 This method returns true if the first DataPacket in the Vector contains BankFrameException
data, or false otherwise.

getMessage()

This method gets the error message for the BankFrameException data contained in the specified
Vector of DataPackets. This method has the following signature:

public static String getMessage(Vector dataPackets, Locale locale);

 The dataPackets parameter is a Vector of one or more DataPackets.

 The locale parameter specifies the Locale to use for localizing the message

 The localized message is returned or null if the Vector of DataPackets does not contain any
BankFrameException data.

toBankFrameException()

This method converts a Vector of DataPackets to a BankFrameException. This method has the
following signature:

public static BankFrameException toBankFrameException(Vector dataPackets);

MCA Services Developer Guide Version 2005, Rev. B 248

Enterprise Services Internationalization

 The dataPackets parameter is a Vector of one or more DataPackets

 The BankFrameException is returned or null if the Vector of DataPackets does not contain
any BankFrameException data.

toVectorResponse()

This method converts a BankFrameException to a Vector of DataPackets. This method has the
following signature:

public static Vector toVectorResponse(BankFrameException ex);

 The ex parameter is the BankFrameException to be converted.

 A Vector containing a single DataPacket with the BankFrameException data is returned.

Examples

Using BankFrameMessage
Below is some sample code that uses the com.bankframe.localization.BankFrameMessage class:

import com.bankframe.localization.BankFrameMessage;

public class Sample {

 public static final String HELLO_MSG_KEY="HELLO";

 public static void main(String[] args) {

 BankFrameMessage msg = new BankFrameMessage(HELLO_MSG_KEY,new

String[]{getUserName()});

 System.out(msg);

 }

}

Assuming BankframeMessages.properties contains the following line:

HELLO=Hello {0}

the host system locale is English - en and the getUserName() method returns a string containing
'John Doe' the above application will produce the following output:

Hello John Doe

Using BankFrameException
Below is some sample code that uses the com.bankframe.localization.BankFrameException class:

import com.bankframe.localization.BankFrameMessage;

 MCA Services Developer Guide Version 2005, Rev. B 249

Enterprise Services Internationalization

import com.bankframe.localization.BankFrameException;

public class Sample {

 public static final String ERROR_MSG_KEY="ERROR";

 public static void main() {

 try {

 BankFrameMessage msg = new BankFrameMessage(ERROR_MSG_KEY);

 throw new BankFrameException(msg);

 } catch (BankFrameException ex) {

 System.out.println(ex.getMessage());

 }

}

Assuming BankframeMessages.properties contains the line ERROR=An error occurred

And the host system locale is English (en) the above application will produce the output: An error
occurred

References

The Java Tutorial on internationalisation
http://web2.java.sun.com/docs/books/tutorial/i18n/index.html

ISO-639 - Language codes
Official site:

 http://www.infoterm.org/

W3C's List:

http://www.w3.org/WAI/ER/IG/ert/iso639.htm

ISO-3166 - Country Codes
Official site:

http://www.din.de/gremien/nas/nabd/iso3166ma/

Official site full list:

MCA Services Developer Guide Version 2005, Rev. B 250

http://web2.java.sun.com/docs/books/tutorial/i18n/index.html
http://www.infoterm.org/
http://www.w3.org/WAI/ER/IG/ert/iso639.htm
http://www.din.de/gremien/nas/nabd/iso3166ma/

Enterprise Services Logging

http://www.din.de/gremien/nas/nabd/iso3166ma/codlstp1/en_listp1.html

Logging
Financial Components need messages to be logged at different times while performing processing; to
meet this requirement MCA Services provides an extensible logging service.

The MCA logging service is a thin bridge between different logging libraries. Logging libraries
supported include:

 BEA WebLogic 6.1 Logging Framework

 Apache Foundation LOG4J framework

 Generic Console output

The WebLogic Logging framework is a proprietary API available in WebLogic 6.1 and later. It enables
logging messages to be logged directly into WebLogic’s own log file. The benefits of this are:

 MCA logging messages are logged in sequence in the same file as WebLogic logging messages.
This aids problem determination since it is possible to see the exact order in which events
occurred

 Administration and configuration of the logging system can be done via the WebLogic
Administration Console

 Logging Messages can be viewed in the WebLogic Administration Console

The LOG4J framework is a widely used logging framework developed under the auspices of the Apache
Foundation. It provides an extremely rich library that be configured to format logging messages into
any required format and to be logged to a number of different destinations including:

 Console output

 File output

 Rolling file output

 UDP datagrams

 Unix Syslog

 NT Event Log

The Generic console support enables log messages to be printed directly to the console. This option is
provided for when neither of the two options above is available.

Classes and Package Structure
The logging service is implemented by the com.bankframe.services.logger package and its sub-
packages.

 MCA Services Developer Guide Version 2005, Rev. B 251

http://www.din.de/gremien/nas/nabd/iso3166ma/codlstp1/en_listp1.html

Enterprise Services Logging

The com.bankframe.services.logger package
The ELogger interface defines the methods that the logging service provides:

boolean isDebugEnabled() Indicates whether DEBUG level messages should
be logged. This method should be called before
logging large DEBUG messages, in order to
improve overall performance

void debug(String msg) Logs the specified message at DEBUG level

void debug(String s, Throwable

throwable)

Logs the specified exception at DEBUG level

void info(String msg) Logs the specified message at INFO level

void info(String s, Throwable

throwable)

Logs the specified exception at INFO level

void warn(String msg) Logs the specified message at WARN level

void warn(String s, Throwable

throwable)

Logs the specified exception at WARN level

void error(String msg) Logs the specified message at ERROR level

void error(String s, Throwable

throwable)

Logs the specified exception at ERROR level

void fatal(String msg) Logs the specified message at FATAL level

void fatal(String s, Throwable

throwable)

Logs the specified exception at FATAL level

The ELoggerFactory class is used to create ELogger instances. This class provides the following
method:

public static ELogger

getLogger(Class subsystem)

This method returns the logger for the specified
subsystem. This method should be called by
Siebel Financial Components to create ELogger
instances.

The com.bankframe.services.logger.wl61 package
This package contains classes that provide an ELogger instance that communicates with the WebLogic
6.1 Logging Framework. The classes in this package must not be called directly by Siebel Financial
Components

MCA Services Developer Guide Version 2005, Rev. B 252

Enterprise Services Logging

The com.bankframe.services.logger.log4j package
This package contains classes that provide an ELogger instance that communicate with the LOG4J
logging framework. The classes in this package must not be called directly by Siebel Financial
components

The com.bankframe.services.logger.console package
This package contains classes that provide an ELogger instance that prints logging messages directly
to the System.out stream. The classes in this package must not be called directly by Siebel Financial
components

Using the Logging Service

Logging Levels
There are five levels of logging which can be used:

FATAL Use only in cases where it is impossible for the Siebel application to
recover or continue.

ERROR Use when the request cannot be processed but the overall system is still
functioning.

WARN Use the WARN level for recording exceptions that indicate that something
may be wrong but do not prevent the request being processed.

INFO Use the INFO level for providing information about the running system, for
example timing information.

DEBUG Use the DEBUG level for recording information about how the system works,
to aid in determining the cause of runtime problems.

These log levels are used to determine if a log message is of interest for a particular runtime
configuration. For example, in a production system MCA Services could be configured to only log
messages which are FATAL and the actual Siebel Modules could log messages of WARN or higher.

Logging Subsystems
In a production system it is useful to be able to filter log messages by the functional area that they
belong to, for example to be able to only view log messages relating to funds transfer. To enable this
to be done we must categorise the logging messages produced by the Siebel Solution. The simplest
way to do this is to categorise messages by the name of the class from which the message was
produced. Since the names of all Siebel classes indicate which functional area they belong too, this
becomes a powerful means for filtering messages by functional area.

Logging Best Practices
When writing a log statement in your code you have to determine what the message will be, what log
level it requires and what subsystem it should be sent to. Follow the guidelines below to ensure you
log messages appropriately

 MCA Services Developer Guide Version 2005, Rev. B 253

Enterprise Services Logging

Define a private static log variable

Each Financial component should define a private static final log variable coded as follows:

import com.bankframe.services.logger.ELogger;

import com.bankframe.services.logger.ELoggerFactory;

...

public class Foo {

private static final ELogger log = ELoggerFactory.getLogger(Foo.class);

}

Defining a log instance for each class enables logging to be switched on and off by functional area.
This is important when trying to detect the cause of problems in a production system. In a production
system it will not be feasible to turn on logging in all classes because this would produce such a large
volume of logging information that it would degrade the performance of the system. Instead it must
be possible to configure only a subset of logging messages to be turned on. The full name of each
class is used to uniquely identify each ELogger instance. The ELoggerFactory class caches ELogger
instances so that only one instance will be created per ELogger subsystem.

The log variable must be static so that it can be shared between all instances of that class. It must
be private so that it is not visible by sub-classes. Making the variable final guarantees that it
cannot be reassigned, thus assuring that there will only ever be one logger instance per class, in effect
the logger instance becomes a singleton.

Always invoke the logger via the log variable

Always invoke the logger via the log variable as defined above, for example:

public class SomeClass {

 ...

 public void someMethod() {

 log.debug(“This is a debug message”);

 }

...

}

This ensures that the correct logger for the current class is always invoked.

Logging exceptions

Always use the overridden logging method provided for logging exceptions, for example:

...

try {

MCA Services Developer Guide Version 2005, Rev. B 254

Enterprise Services Logging

 <some code which throws an exception>

} catch (Exception ex) {

 log.warn(“An error occurred”, ex);

}

...

This will ensure that the full stack trace for the exception is logged. Having a full stack trace for an
exception makes it much easier to determine the root cause of a problem.

Use the isDebugEnabled() method

Even though logging output may be turned off in a production system the method calls to the logging
framework are still invoked. If the arguments to the logging method involve time consuming
evaluations then the overall performance of the system will be degraded, sometimes by a large
amount. This is particularly true of DEBUG level log messages, which often print out large amounts of
information such as the contents of a DataPacket. Therefore it is extremely important to ensure that
these expensive DEBUG level log messages are not invoked when the system is running in production
mode. This can be accomplished using code similar to the following:

...

if (log.isDebugEnabled()) {

 log.debug(“These are the contents of the datapacket : “ + someDataPacket);

}

...

Use the correct log level

When a system is running in production mode it should produce very little log output, therefore it is
important to ensure that logging messages are logged at the correct level. For example it might be
tempting to log all exceptions at ERROR level, however this would not be correct. Only exceptions that
actually represent a true error condition, such as a RemoteException should be logged at this level.

The Logging context
When examining a large log file that contains many different log messages from many different
threads it can be difficult to determine which log messages are related. Therefore it can be helpful to
prepend information to each log message to better identify the source of the message. The
ELogger.Context interface provides the means to do this. This interface has the following methods:

void push(String context) This method pushes the specified String onto the
context stack.

void pop() This method removes the topmost element on the
context stack.

 MCA Services Developer Guide Version 2005, Rev. B 255

Enterprise Services Logging

Each thread will get its own logging context. This means by pushing a descriptive string onto the
logging context it becomes possible to identify which thread produced a particular log message.

The ELogger.Context interface is accessed via the getContext() method of the ELogger interface.

As an example imagine we want to identify all logging messages from within a financial component, or
any other financial components it invokes - we could do the following:

public class SomeFinancialComponentBean {

...

 public Vector processDataPacket(DataPacket dataPacket) {

 try {

 log.getContext().push(“SomeFinancialComponent”);

 log.debug(“This is a debug message”);

 ...

 } finally {

 log.getContext().pop();

 }

 }

}

Now all logging calls from within SomeFinancialComponentBean will be prefaced with the string:
‘SomeFinancialComponentBean’ making it easier to identify those logging messages.

Techniques for problem resolution using the logging framework

Examine logged stack traces
When an exception is logged, the full stack trace for that exception is logged. This stack trace should
show the class and line number where the exception was raised. Often this information is sufficient to
identify the cause of a problem

Filter by functional area
If you are attempting to identify the cause of a problem in a production system you can opt to turn on
logging for only a subset of code. For example, assume we are trying to identify a problem in the
Transfers component of the Teller Module, and we are using LOG4J for doing our logging.

The Transfers component is implemented in two packages:

com.bankframe.bp.retail.solutionset.transfers

com.bankframe.bp.retail.solutionset.impl.transfers

MCA Services Developer Guide Version 2005, Rev. B 256

Enterprise Services Logging

Since we create loggers by passing a Class object to the ELogger.getLogger() method, each logger
instance is categorised by the name of the class that created it. Thus we can configure LOG4J to only
log messages produced by a specific class or package. In this case we want to configure LOG4J to only
display messages produced by the two packages above, to do this we need to configure the LOG4J
configuration file; log4j.properties, as follows:

Default to only logging ERRORs

log4j.rootLogger=ERROR, CONSOLE

log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender

Turn on logging of DEBUG and above messages for the Transfers functional area

log4j.logger.com.bankframe.bp.retail.solutionset.transfers=DEBUG

log4j.logger.com.bankframe.bp.retail.solutionset.impl.transfers=DEBUG

Filter by logging context
When there is a large volume of logging information being produced by logs it can become difficult to
determine the flow or order in which events occurred. E.g. if we think we are having a problem
somewhere within the Transfers component but we’re not sure where exactly the problem is arising,
we can use the logging context to easily identify all method calls that are invoked from within the
transfers component.

We can do this by adding the code below to the processDataPackets() method of the
TransfersSessionBean class:

public Vector processDataPackets(Vector allData) throws ProcessingErrorException

{

try {

 log.push(“Transfers”);

 Vector response = super.processDataPackets(allData);

 if (!DataPacketUtils.isAValidResponse(response, false, null, false)) {

 this.getSessionContext().setRollbackOnly();

 }

 return response;

} finally {

 log.getContext().pop();

}

}

 MCA Services Developer Guide Version 2005, Rev. B 257

Enterprise Services Logging

The log.getContext().push(“Transfers”) method call will cause the text ‘Transfers’ to be
prepended to all log messages generated within the Transfers component, or any other components
that the Transfers component calls. Then when examining the log files you can search for the
‘Transfers’ string to quickly identify those methods invoked from within the Transfers component.

Configuring the Logging Service
This section describes how to configure the Logging Service.

Configuration Parameters
The logging service is configured by entries placed in the Java System Properties, or
eloggerfactory.properties in the application classpath. These entries are defined at application
server startup time, and cannot be changed once the application server has started.

Configuring the Logging Implementation factory Class

The first parameter to set is the one that determines which logging implementation to use. The
parameter is set by specifying the following argument in the application server startup script:

java -Dcom.eontec.mca.elogger.factory=<logging implementation factory class>

Where <logging implementation factory class> is the full name of the factory class for the
logging framework that you wish to use

The valid values for this setting are as follows:

com.bankframe.services.logger.wl61.WL61LoggerFactory WebLogic 6.1
logging

com.bankframe.services.logger.log4j.LOG4JLoggerFactory LOG4J logging

com.bankframe.services.logger.console.ConsoleLoggerFactory Console logging

If this setting is not defined as a Java System property, the logging service will look for the property in
a eloggerfactory.properties file. If the file does not exist, or the object defined cannot be instanciated,
then the logging service will default to using an instance of
com.bankframe.services.logger.console.ConsoleLoggerFactory

By checking Java System property first, and then eloggerfactory.properties, the logging service allows
for enterprise applications deployed in the same server to have separate logging factories.

Enabling or Disabling All Logging

The entire logging framework can be enabled or disabled by specifying the following argument in the
application server startup script to true or false:

java -Dcom.eontec.mca.elogger.enabled=<true|false>

The value of this setting is case sensitive.

MCA Services Developer Guide Version 2005, Rev. B 258

Enterprise Services Logging

Configuring WebLogic Settings

The following settings can be configured in the BankframeResource.properties file when using the
WebLogic logging framework:

wl61.debugLoggingEnabled=<true|false>

This setting determines whether DEBUG level log messages should be forwarded to the WebLogic
logging framework. This setting is case sensitive

wl61.redirectDebugToInfo=<true|false>

This setting determines whether DEBUG level log messages should be forwarded as INFO level
messages to the WebLogic logging framework. This setting is case sensitive

Configuring LOG4J Settings

The following settings can be configured in the BankframeResource.properties file when using the
LOG4J logging framework:

log4j.config.path=</path/to/some/log4j.properties>

This setting determines which LOG4J configuration file to use for configuring LOG4J. This setting must
specify the absolute path to the properties file

log4j.config.refresh=<some time value in seconds>

This sets how often LOG4J checks its configuration file to see if any configuration changes have
occurred. This value is specified in seconds

Please consult the LOG4J website for more detailed information on configuring LOG4J

Configuring Generic Console Logger Settings

The following setting can be configured in the BankframeResource.properties file when using the
Generic Console logging framework:

console.logger=<logging level to use>.

Only DEBUG level messages are currently available. To switch debug level messages off in the console
logger leave the console.logger value blank. This reduces console output and improves performance.

Configuring the value as console.logger=DEBUG enables debug level messages.

Integrating with other Logging Frameworks
The MCA Logging Service is designed to be extensible so that it can be adapted to direct logging
messages to any logging service. This section describes the steps required to do this using the
com.bankframe.services.logger.console package as an example

Create a class that implements the ELogger interface
This class must do the actual logging of the logging messages. In most implementations this class will
really be an adaptor class that redirects the logging message to third party logging framework. In the

 MCA Services Developer Guide Version 2005, Rev. B 259

Enterprise Services Logging

case of ConsoleLogger this class prints the message to the console using calls to
System.out.println().

Create a class that implements the ELogger.Context interface
This class must maintain a stack of per thread context information. Most implementations can just
delegate this task to the com.bankframe.services.logger.E:oggerContext class:

 protected static class ConsoleContext implements ELogger.Context {

 public void push(String context) {

 ELoggerContext.push(context);

 }

 public String pop() {

 return ELoggerContext.pop();

 }

 public ConsoleContext() {

 }

 }

Create a factory class that extends ELoggerFactory
This class is responsible for creating ELogger instances. This class must extend ELoggerFactory and
provide an implementation for the abstract createLogger() method. This method must create an
ELogger instance for the specified subsystem. It should not cache instances as ELoggerFactroy does
this itself. Below is the source code for ConsoleLoggerFactory:

public class ConsoleLoggerFactory extends ELoggerFactory {

 public ConsoleLoggerFactory() {

 super();

 }

 protected ELogger createLogger(String subsystem) {

 return instance;

 }

 protected final static ELogger instance = new ConsoleLogger();

}

Since the console based logger only ever has one instance it creates a single static instance and
always returns that through the createLogger() method.

MCA Services Developer Guide Version 2005, Rev. B 260

Enterprise Services Audit

Update application server startup script
To use your custom logger you must update the com.eontec.mca.elogger.factory setting in your
application server startup script as follows:

java -Dcom.eontec.mca.elogger.factory=<logging implementation factory class>

Where <logging implementation factory class> is the full name of the factory class for the
logging framework that you wish to use.

Deprecations

BankFrameLog
The com.bankframe.services.log.BankFrameLog class has been deprecated and the BankFrameLog
class has been updated to redirect all logging messages to the Logging Service described in this
chapter

ESystem.out
The com.bankframe.ESystem object has been deprecated. The ESystem class has been updated to
redirect all logging messages to the Logging Service described in this chapter. As there is no argument
for subsystems all messages logged using the ESystem object will be sent to the com.bankframe
subsystem.

References
Apache LOG4J service:

http://jakarta.apache.org/log4j/

WebLogic Logging Framework:

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/logging/NonCatalogLogger.html

Audit
The MCA Audit Service provides the means to record an audit of transactions carried out by Siebel
Modules.

Audit Classes and Package Structure
The Audit Service is located in the com.bankframe.services.audit package and its implementation is
in the com.bankframe.services.impl.audit package.

 MCA Services Developer Guide Version 2005, Rev. B 261

http://jakarta.apache.org/log4j/
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/logging/NonCatalogLogger.html

Enterprise Services Audit

Configuring the Audit Service
The Audit Service uses an Audit Provider framework (similar in operation to the Security Provider) to
dispatch Audit requests to an Audit Implementation. The interface of the Audit Provider is
com.bankframe.services.audit.BankFrameAuditProvider and all custom Audit Providers must
implement this interface. MCA is supplied with two Audit Provider implementations:

com.bankframe.services.audit.NullBankFrameAuditProvider

com.bankframe.services.audit.DefaultBankFrameAuditProvider

The Audit Provider is configured in the BankframeResource.properties file using the
audit.provider key and its value is set to the Audit Provider class, which is required for use in the
runtime system.

For example, if a test MCA installation does not require any audit functionality then the Null Audit
Provider would be configured as follows:

audit.provider=com.bankframe.services.audit.NullBankFrameAuditProvider

com.bankframe.services.audit.NullBankFrameAuditProvider
The com.bankframe.services.audit.NullBankFrameAuditProvider provides a dummy
implementation which does not send any dispatched requests to an Audit Service. This Audit Provider
can be used to switch off all Auditing of an MCA system and is often used in test installations which
don’t require an audit function.

com.bankframe.services.audit.DefaultBankFrameAuditProvider
The com.bankframe.services.audit.DefaultBankFrameAuditProvider dispatches to the default
MCA Audit Service. This default service is implemented by three EJBs:

EJB Bean Name EJB Implementation Package EJB Type

AuditBean com.bankframe.services.impl.audit Session

AuditRoute com.bankframe.services.impl.audit.auditroute CMP Entity

AuditRecord com.bankframe.services.impl.audit.auditrecord CMP Entity

The AuditBean session EJB contains the logic of the audit service. The AuditRoute is an entity EJB
that maps to a lookup table on the database which maps a Fianancial Component’s REQUEST_ID to the
Audit Service. This allows a BankFrame system to be configured to only a specified set of routes.
Finally, the AuditRecord entity EJB maps to the AUDIT_TRAIL table on the database and contain the
details of an audit.

An AuditRecord stores the following attributes for each Audit event:

AUDIT_DATE

AUDIT_TIME

REQUEST_ID

MCA Services Developer Guide Version 2005, Rev. B 262

Enterprise Services Audit

REQUEST

RESPONSE

The REQUEST and RESPONSE attributes are large strings (stored as VARCHAR(7000) in the underlying
database) which contain an XML representation of the client request and the servers response
respectively.

When MCA is configured to use this Audit Provider then the RequestRouter behaves as follows:

 Just before the RequestRouter returns a response to a client it invokes the
com.bankframe.services.audit.DefaultBankFrameAuditProvider

 This provider performs a lookup on the Audit session EJB.

 The provider then calls the audit() method, passing in the current REQUEST_ID, the request and
the response which is about to be returned.

 The Audit Session EJB then looks up the AuditRoutes entity EJB to enquire if the current
REQUEST_ID represents a Fianancial Component which needs to be audited.

 If the route is auditable, then the Audit session EJB creates an AuditRecord entity EJB instance to
contain the current date, time, REQUEST_ID, request and response and then stores them to the
database.

Configuring Routes to the Audit Service
If the audit.provider is set to DefaultBankFrameAuditProvider, than the RouteServlet will show
an extra option, as follows:

 Configure Default Audit Service

Selecting this displays the options available within the AuditServlet, which are as follows:

 Add a route to the Audit Service

 Delete a route from the Audit Service

 List all routes mapped to the Audit Service

Using these features any Fianancial Component may be added or deleted from the Audit Service, or a
list of all the Fianancial Components currently mapped to the Audit Service is available. It is worth
noting that deleting a Fianancial Component (using its REQUEST_ID) from the Audit Service does not
delete it from the Routing Service.

Calling the Audit Service from within custom code
If an Audit event is required in custom code then the com.bankframe.services.audit.AuditUtils
class can be used. This class contains the following methods,

audit(String requestId, Vector

request, Vector response)

This method is the same as used by the
RequestRouter. It takes a REQUEST_ID and a
request/response set of DataPackets.

 MCA Services Developer Guide Version 2005, Rev. B 263

Enterprise Services Timing Points

audit(Vector datapackets) This method is used when the concept of a
REQUEST_ID and a request/response set of
DataPackets make no sense within the context of the
audit call. In this case then the database will have the
text ‘AUDIT’ in the place of REQUEST_ID and both the
request and response will contain the same XML
representation of the DataPackets.

Exceptions in the Audit Service
Because the Audit Service partakes in the overall transaction (often initiated by the RequestRouter)
and is a critical component, if an exception occurs within the Audit Service then the entire transaction
is rolled back.

If you want this behavior in custom code which calls the Audit Service then calls to the AuditUtils
class should be nested within a try/catch block which catches exceptions of type
ProcessingErrorException and rollback the current transaction (using the setRollbackOnly()
method on the EJBContext object) if the exception is caught.

If should be noted that the EJBContext object is usually only available within the context of an EJB.

For example,

try {

 AuditUtils.audit(requestId, request, responses);

} catch (ProcessingErrorException ex) {

 this.getSessionContext().setRollbackOnly(); //rollback tx

Timing Points
The Timing Point Service provides a facility for determining the length of time required for Siebel
components to carry out their actions. The service is very useful in aiding the identification of
performance bottlenecks. The service is highly flexible; allowing configuration of output into different
formats while writing to either file or console, providing a framework for writing custom factory classes
to create specialized Timing Points, and allowing for plug-in analyzer classes to carry out heuristics
and analysis.

The com.bankframe.services.trace package
The business logic for the Timing Point Service is implemented in the com.bankframe.services.trace
package. This package consists of the following classes/interfaces:

BankFrameTrace

(deprecated - to be replaced by

Provides a facility for determining the length of
time required for Siebel components to carry
out their actions.

MCA Services Developer Guide Version 2005, Rev. B 264

Enterprise Services Timing Points

Timing Point created through

TimingPointFactory class)

DefaultTimingPointAnalyser This class logs a Timing Point. It provides no
analyzing of the Timing Point.

DefaultTimingPointFactory This class is the default class used for the
creation of Timing Points.

EndToEndTrace This class enables the sampling of elapsed time
between timing points, aiding the identification
of performance bottlenecks. (deprecated: to be replaced by

Timing Point created through

TimingPointFactory class)

This class logs a Timing Point. It provides no
analyzing of the Timing Point.

NullTimingPointAnalyser

This class is a Timing Point. It is used in order
to time events or actions within Siebel code.

TimingPoint

Implementers of this interface analyze a timing
point. The TimingPointUtil class will call the
analyse() method of an implementing class to
allow some additional custom analysis to be
done.

TimingPointAnalyser

TimingPointConstants Constants used for Timing Points.

This class creates and configures Timing Point
instances.

TimingPointFactory

This class is used for the storing of optional key
value pairs for inclusion in the logging of Timing
Points.

TimingPointProperties

This class provides utilities to work with Timing
Points.

TimingPointUtil

BankFrameTrace
This class provides a mechanism for creating a Trace object, calling Trace.start() to start recording
the elapsed time, and finally calling Trace.stop() to finish recording. When Trace.stopAndReport()
is called an informational message is displayed in the log indicating the elapsed time, e.g.

Trace trace = new Trace();

trace.start("A sample description here");

...some code here ...

trace.stopAndReport();

 MCA Services Developer Guide Version 2005, Rev. B 265

Enterprise Services Timing Points

NOTE: The use of this mechanism for time measurement has been deprecated and has been replaced
by the use of a TimingPointFactory for creation of Timing Points.

EndToEndTrace
The EndToEndTrace class is similar to the BankFrameTrace class, however it provides the added extra
of being able to specify the logging of timing points at specific intervals through the following setting
in the BankframeResource.properties file:

trace.sampleSize

Configuring this setting to e.g. trace.sampleSize =20 means that after every 20 requests, the
tracing times for the previous 20 requests will be written to the console. The default setting is 1000.

It is also possible to disable the EndToEndTrace utility through the BankframeResource.properties
file. This was not possible in the BankFrameTrace class. Do so by modifying the trace.enabled
setting in the BankframeResource.properties file as follows:

trace.enabled=false

this will disable the utility while setting it to true will enable it.

NOTE: This class has now been deprecated. This is because recorded timing points are stored by
associating them with the java.lang.ThreadLocal variable via a HashMap. This has a performance
overhead, especially if e.g. one is storing 1000 timing points within the ThreadLocal variable. The
EndToEndTrace class is to be replaced by creating a TimingPoint through a TimingPointFactory
class.

TimingPoint
The TimingPoint class is used to time events or actions within Siebel code. A Timing Point records the
start time, object and also the subsystem in which the timing point occurs. Subsystems are a
mechanism by which it is possible to group Timing Points together i.e. creating a Timing Point as part
of a subsystem and enabling that subsystem ensures the Timing Point, and all other Timing Points in
that subsystem, are logged to file or disk as appropriate. The Timing Point is recorded by calling the
exit() method which will pass the Timing Point onto a utility class that will then process it.

TimingPointProperties
This class is used for the storing of mandatory and optional key/value pairs for inclusion in the logging
of timing points. Its constructor takes as parameter an array of Objects. These objects form the
properties to be included in the timing point logging. This array of Objects must be instantiated in the
form:

Object[] objects = new Object[]{key0, value0, key1, value1, key2, value2};

where keyx is the key that indexes valuex.

This array of Objects is then used to instantiate a TimingPointProperties object as follows:

TimingPointProperties properties = new TimingPointProperties(objects);

The variable properties then forms the parameter for the construction of a TimingPoint.

MCA Services Developer Guide Version 2005, Rev. B 266

Enterprise Services Timing Points

TimingPointFactory
This abstract class is used for the creation of Timing Points. The createTimingPointFactory()
method creates an instance of the concrete singleton TimingPointFactory class as specified by the
following setting in the BankframeResource.properties file:

timingPoint.factory=com.bankframe.services.trace.DefaultTimingPointFactory

where DefaultTimingPointFactory is the default TimingPointFactory class.

Writing Timing Points into Code

To place a Timing Point in a suitable location in the code, the following must be done:

 Create an Object Array containing all the properties one wishes to associate with the Timing
Point.

 Create a TimingPointProperties object using this Object Array.

 Use the TimingPointFactory.getTimingPoint() method to create a Timing Point.

Use the following code as an example:
//create the Object Array

Object[] objects = new Object[]{TimingPointConstants.TIMING_POINT_SUBSYSTEM,

BankFrameLogConstants.MCA_SUBSYSTEM, TimingPointConstants.TIMING_POINT_TYPE,

"Request Router", TimingPointConstants.TIMING_POINT_MAJOR_TYPE,

TimingPointUtil.MAJORTYPE_SERVLET_STRING,

TimingPointConstants.TIMING_POINT_REQUEST, this};

//create the TimingPointProperties object and create the Timing Point

TimingPoint tp = TimingPointFactory.getTimingPoint(new

TimingPointProperties(objects));

And to stop or exit this Timing Point:

tp.exit(this);

Customized TimingPointFactory classes

It is possible to write a customized TimingPointFactory class and specify its use instead of the
DefaultTimingPointFactory. A customized class is useful when adding some extra properties to a
Timing Point which may not be available in the client of the TimingPointFactory.getTimingPoint()
method. It can also serve as a place for doing operations on the contents of the
TimingPointProperties object used to create a Timing Point.

Guidelines for writing a Customized TimingPointFactory class. This customized class must, at
the least, extend the com.bankframe.services.trace.TimingPointFactory class and provide an
implementation of the configureTimingPoint() method. The configureTimingPoint() method
must do the following:

 create a new instance of a TimingPoint.

 MCA Services Developer Guide Version 2005, Rev. B 267

Enterprise Services Timing Points

 set the startTime on the newly created TimingPoint.

 set the user on the newly created TimingPoint.

The following step should be done for any of the following values which appear as a key in the
TimingPointProperties object passed as parameter to the configureTimingPoint() method

 TimingPointConstants.TIMING_POINT_START_TIME

 TimingPointConstants.TIMING_POINT_END_TIME

 TimingPointConstants.TIMING_POINT_ELAPSED_TIME

 TimingPointConstants.TIMING_POINT_SUBSYSTEM

 TimingPointConstants.TIMING_POINT_USER

 TimingPointConstants.TIMING_POINT_REQUEST

 TimingPointConstants.TIMING_POINT_RESPONSE

 TimingPointConstants.TIMING_POINT_TIMING_POINT_ID

 TimingPointConstants.TIMING_POINT_THREAD_ID

 TimingPointConstants.TIMING_POINT_TYPE

 TimingPointConstants.TIMING_POINT_MAJOR_TYPE

 TimingPointConstants.TIMING_POINT_HOST_RECORDING

 TimingPointConstants.TIMING_POINT_SERVLET_RECORDING

 TimingPointConstants.TIMING_POINT_CUSTOM_RECORDING

 TimingPointConstants.TIMING_POINT_TXN_HANDLER_RECORDING

So for example, if the TimingPointProperties object had a key of
TimingPointConstants.TIMING_POINT_MAJOR_TYPE, one should do the following:

set the majorType on the newly created TimingPoint, if there was a value returned for majorType in
the following code:

String

majorType=(String)properties.getProperty(TimingPointConstants.TIMING_POINT_MAJOR_

TYPE);

At this point, if a value was found, the property should be removed from the TimingPointProperties object

named properties using the following code:

properties.removeProperty(TimingPointConstants.TIMING_POINT_MAJOR_TYPE);

Once all these keys have been addressed and removed from properties, any additional processing or
setting values in the properties object should be done now.

Finally the remaining properties from the passed TimingPointProperties object should be set on
the TimingPoint as follows:

MCA Services Developer Guide Version 2005, Rev. B 268

Enterprise Services Timing Points

timingPoint.setProperties(properties)

where timingPoint is the TimingPoint created as first step of this configureTimingPoint()
method.

DefaultTimingPointFactory
This class is used for the creation of Timing Points. The class extends the abstract class
TimingPointFactory and provides an implementation for the configureTimingPoint() method. The
configureTimingPoint() method uses the TimingPointProperties object passed as parameter to
create and set values on a Timing Point.

TimingPointAnalyser
Classes that implement this interface are used to analyze a Timing Point. Implementing classes will
write an analyse() method, taking a TimingPoint object as parameter. The TimingPointUtil class
will call the analyse() method of an implementing class to allow some additional custom analysis to be
done. The default TimingPointAnalyser is the
com.bankframe.services.trace.DefaultTimingPointAnalyzer class that only prints the
TimingPoint object passed as parameter to the console/file log. It is possible to write Custom
TimingPointAnalyser classes and have their analyse() method called during execution. Simply
implement the TimingPointAnalyser interface, replace the default setting in
BankframeResource.properties file with the new custom TimingPointAnalyser class as follows:

timingPoint.analyzerClassName=com.bankframe.services.trace.myCustomTimingPointAna

lyzer

where com.bankframe.services.trace.myCustomTimingPointAnalyzer is the fully qualified name of
this new custom class.

Configuring Timing Points
The settings in the BankframeResource.properties file that control the configuration of Timing Point
Services are as follows:

EndToEndTrace
EndToEndTrace is set as follows:

trace.sampleSize=1000

trace.enabled=true

timingPoint
Timing Points are set as follows:

timingPoint.enabled=true

where timingPoint.enabled can have value of true or false

 MCA Services Developer Guide Version 2005, Rev. B 269

Enterprise Services Timing Points

timingPoint.writePointsToDisk
timingPoint.writePointsToDisk is set as follows:

timingPoint.writePointsToDisk=true

where timingPoint.writePointsToDisk can have a value of true or false and
timingPoint.writePointsToDisk=true means data will be written to console and not to file.

timingPoint.subsystem.BANKFRAME.MCA
timingPoint.subsystem.BANKFRAME.MCA is set as follows:

timingPoint.subsystem.BANKFRAME.MCA=BANKFRAME.MCA

where Timing Points can be grouped in a subsystem named BANKFRAME.MCA. It is possible to have
many settings with the prefix timingPoint.subsystem and this means all subsystems listed here will
have their data flushed to file or console.

timingPoint.doSummary
timingPoint.doSummary is set as follows:

timingPoint.doSummary=false

this will flush a summary all timing points to file or console.

timingPoint.fileName
timingPoint.fileName is set as follows:

timingPoint.fileName=/export/home/server/bea/user_projects/eontec/timingpoints.log
this will flush the timing points to the file
/export/home/server/bea/user_projects/eontec/timingpoints.log

timingPoint.bufferSize
timingPoint.bufferSize is set as follows:

timingPoint.bufferSize=1000

the maximum size of buffer to hold timing points. Once this is exceeded all timing points will be
flushed to file or console.

timingPoint.analyzerClassName
timingPoint.analyzerClassName is set as follows:

timingPoint.analyzerClassName=com.bankframe.services.trace.DefaultTimingPointAnal

yzer

where com.bankframe.services.trace.DefaultTimingPointAnalyzer is the name of the analyzer
class to process timing points.

MCA Services Developer Guide Version 2005, Rev. B 270

Enterprise Services Timing Points

timingPoint.transactionHandler.recording
timingPoint.transactionHandler.recording is set as follows:

timingPoint.transactionHandler.recording=true

where timingPoint.transactionHandler.recording is an alternative to subsystems and would be
placed within Financial Process Integrator code. It can have the value true or false, specifying
whether the timing point is to be recorded or not.

timingPoint.custom.recording
timingPoint.custom.recording is set as follows:

timingPoint.custom.recording=true

where timingPoint.custom.recording is an alternative to subsystems and could be placed anywhere
in code. It can have the value true or false, specifying whether the timing point is to be recorded or
not.

timingPoint.host.recording
timingPoint.host.recording is set as follows:

timingPoint.host.recording=true

where timingPoint.host.recording is an alternative to subsystems and would be placed within host
transaction code. It can have the value true or false, specifying whether the timing point is to be
recorded or not.

timingPoint.servlet.recording
timingPoint.servlet.recording is set as follows:

timingPoint.servlet.recording=true

where timingPoint.servlet.recording is an alternative to subsystems and would be placed within
servlet code. It can have the value true or false, specifying whether the timing point be recorded or
not.

timingPoint.format
timingPoint.format is set as follows:

timingPoint.format=TIMING_POINT_ID;THREAD_ID;MAJOR_TYPE;SUBSYSTEM;
TYPE;USER;START_TIME;END_TIME;ELAPSED_TIME;REQUEST;RESPONSE

above is the format string representing how a timing point will be logged to console or file. Above are
all the possible base values that can be arranged in any order as long as they are delimited by a semi-
colon.

If upon instantiation of a TimingPoint object in the code an additional parameter has been added to be
output with the Timing Point, e.g. if one has a Timing Point constructed as follows with an additional
string named ‘TRACE_ID’:

 MCA Services Developer Guide Version 2005, Rev. B 271

Enterprise Services Mail

Object[] objects = new Object[]{TimingPointConstants.TIMING_POINT_SUBSYSTEM,

BankFrameLogConstants.MCA_SUBSYSTEM, TimingPointConstants.TIMING_POINT_TYPE,

"Request Router", "TRACE_ID", “1234”};

Then the timingPoint.format setting should include the ‘TRACE_ID’ as follows:

timingPoint.format=TRACE_ID;TIMING_POINT_ID;THREAD_ID;MAJOR_TYPE;

SUBSYSTEM;TYPE;USER;START_TIME;END_TIME;ELAPSED_TIME;REQUEST;RESPONSE

NOTE: TRACE_ID can appear anywhere in the format string.

Mail
It is often necessary to provide an application with the ability to send e-mail messages to an
administrator or user on the system, for example, when a user's account is updated, the system might
send an e-mail message to the account holder containing details of the transaction.

The Mail service allows an MCA Services based system to send e-mail messages to a specified user
over the Internet or Intranet. It uses Sun's javax.mail API to create and send e-mail messages and
is implemented using a stateless session EJB. Note that the MCA mail service only sends e-mail.

Classes and Package Structure
The mail service is contained in the following package.

 com.bankframe.services.mail

It consists of the following files:

The Actual Mail Bean SendMailBean

Remote Interface to the Mail Bean SendMail

SendMailBean home interface SendMailHome

Application to test mail bean functionality Client

Here is a rundown of the methods in the SendMailBean that can be invoked by a MailBean client.

Pulls out all the details from the DataPacket and
passes them to sendMail() processDataPacket()

sendMail(String mailFrom,
String[] addresses, String
subject, String message)

Sends the mail via the javax.mail API. This method
takes a String message

sendMail(String mailFrom,
String[] addresses, String
subject, StringBuffer
message)

Sends the mail via the javax.mail API. This method
takes a StringBuffer message

sendMail(String mailFrom,
String[] addresses, String[]
ccAddresses, String subject,
String text,
String content, String

Sends the mail via the javax.mail API. This method
takes a String message. This method has optional
parameters for CC’d addresses, content type,
connection timeout and enabling the javax.mail API
debug mode

MCA Services Developer Guide Version 2005, Rev. B 272

Enterprise Services Mail

connTimeout, String debug)
sendMail(String mailFrom,
String[] addresses, String[]
ccAddresses, String subject,
StringBuffer message,
String content, String
connTimeout, String debug)

Sends the mail via the javax.mail API. This method
takes a StringBuffer message. This method has
optional parameters for CC’d addresses, content type,
connection timeout and enabling the javax.mail API in
debug mode

DataPacket Structure
In order for the processDataPacket() method in the mail service to work properly, the DataPacket
passed as an argument must conform to the following structure:

Name of the DataPacket NAME

REQUEST_ID Request ID of the mail bean

FROM String containing the sender of the mail

SUBJECT String containing mail subject

MESSAGE String containing mail message

ADDRESS_1-n 1- n number of addresses to send the mail to

NUMBER_OF_RECEIVERS Number of receivers for the mail

This is an optional parameter specifying the connection
timeout period for sending the email. E.g., 15000 => 15
seconds

CONNECTION_TIMEOUT

This is an optional parameter specifying the content type
of the e-mail message. E.g., text/html

CONTENT

1- n number of addresses to CC the mail to. This is an
optional parameter

CC_ADDRESS_1-n

Number of CC receivers for the mail. This is an optional
parameter

NUMBER_OF_CC_RECEIVERS

DEBUG This is an optional parameter specifying that the
javax.mail API operates in debug mode

The response DataPacket passed back to the client will be of the following form:

NAME SENT MAIL

TO String concatenated with all the addresses the mail was intended for.

SUBJECT String containing mail subject

 MCA Services Developer Guide Version 2005, Rev. B 273

Enterprise Services Mail

Also note that in addition to deploying the mail bean on the server you must provide a name for an
SMTP mail server using the property mail.smtpServer in the BankframeResource.properties file.

Using the Mail Service
In order to use the mail service, the client must communicate with the EHHTPCommsManager on the
server and pass to it a DataPacket matching the structure discussed previously.

The following client example shows how to do this:

import java.util.Vector;

import com.bankframe.bo.DataPacket;

import com.bankframe.ei.channel.client.HttpClient

public class MailClient {

 public static void main(String [] args) {

 DataPacket dp = new DataPacket("SEND MAIL");

 dp.put("REQUEST_ID", "MC201");

 dp.put("FROM", "Administrator@eontec.com");

 dp.put("SUBJECT", "Test");

 dp.put("MESSAGE", "Testing Mail Bean");

 dp.put("ADDRESS_1", "User1@eontec.com");

 dp.put("ADDRESS_2", "User2@eontec.com");

 dp.put("ADDRESS_3", "User3@eontec.com");

 dp.put("NUMBER_OF_RECEIVERS", "3");

 dp.put("CC_ADDRESS_1", "User4@eontec.com");

 dp.put("NUMBER_OF_CC_RECEIVERS", "1");

 dp.put("CONNECTION_TIMEOUT", "10000");//10 seconds timeout

 HttpClient client = new HttpClient();

Vector responses = client.send(dp);

 }

MCA Services Developer Guide Version 2005, Rev. B 274

Enterprise Services Ping

}

This client will return a Vector of response DataPackets, each one matching the structure discussed in
the previous section.

Ping
The Ping utility is used to confirm that an MCA Services installation is working and that the servlets on
the web server are communicating with the MCA installation correctly. This utility should be used when
setting up the environment. It is part of MCA and can be executed from a browser or from the
command line.

When a request is sent to the Ping EJB, it will respond with a DataPacket that gives the time of the
request and a message indicating that the deployment environment is live.

Classes and Package Structure
The ping service is contained in the following package.

 com.bankframe.services.ping

It consists of the following files:

PingBean The Actual Ping Bean.

Ping Remote Interface to the Ping Bean.

PingHome PingBean home interface.

Client Application to test ping bean functionality.

DataPacket Structure
The DataPacket passed to the server must be supplied the REQUEST_ID of the Ping bean so the server
can find it and route the DataPacket to it.

NAME Name of the DataPacket

REQUEST_ID Request ID of the Ping bean

The returned DataPacket will have the following fields.

NAME PING RESULT

RESULT String representing the result of the Ping

 MCA Services Developer Guide Version 2005, Rev. B 275

Enterprise Services Ping

Using the Ping Service

Calling the Ping Service using a client
The following piece of client code will generate a DataPacket by supplying the REQUEST_ID and
sending it to the server via the EHTTPCommsManager for processing.

This client uses the URL http://host name:portnumber as an example http server.

NOTE: The REQUEST_ID of the Ping bean is usually “MC999”, but verify this.

import java.util.Vector;

import com.bankframe.bo.DataPacket;

import com.bankframe.ei.comms.EHTTPCommsManager;

public class PingClient {

 public static void main(String [] args) {

DataPacket dp = new DataPacket("TEST PING");

dp.put("REQUEST_ID", "MC999");

EHTTPCommsManager commsManager = new EHTTPCommsManager("",

"http://hostname:portnumber/BankframeServlet");

Vector response = commsManager.sendDataPacket(dp);

DataPacket data = (DataPacket) response.elementAt(0);

System.out.println(data.getString(“Result”));

 }

}

This client will result in the following being printed to the console:

Tue Nov 28 16:57:47 GMT 2000 EJB Server is t3://hostname:portnumber is alive

Calling the Ping Service using a browser
The Ping Service can also be called from a browser using the MonitorServlet to do this type in the
following url:

http://hostname:portnumber/MonitorServlet

Using the GUI you can input the REQUEST_ID of the Ping Service usually ‘MC999’. The result will be
displayed in a table as illustrated in the screen shot below.

MCA Services Developer Guide Version 2005, Rev. B 276

Enterprise Services LDAP Connectivity

Refer to the Administrating MCA documentation for more information on how to use the
MonitorServlet.

LDAP Connectivity
LDAP stands for: Lightweight Directory Access Protocol. LDAP defines a standard protocol for accessing
information stored in directory services. Typically directory services are used for storing information
such as User information, names & addresses, phone numbers, e-mail addresses and user ID’s, etc.
Information in LDAP repositories is stored in a hierarchical structure. Each LDAP repository has a
schema, which defines the types of objects that can be stored in the repository.

MCA Services & LDAP
In order to ease integration with customers’ existing IT infrastructure MCA needs to be able to access
information stored in LDAP repositories. MCA provides this connectivity through the
com.bankframe.ei.ldap package. This package provides facilities for accessing LDAP repositories
directly and for creating Bean Managed Entity beans that persist data to/from LDAP repositories.

 MCA Services Developer Guide Version 2005, Rev. B 277

Enterprise Services LDAP Connectivity

com.bankframe.ei.ldap
The com.bankframe.ei.ldap package provides MCA’s LDAP connectivity. The package contains the
following classes/interfaces:

LDAPServerContext Represents a connection to an LDAP server.

LDAPServerContextFactory Creates and manages connections to the LDAP server.

Abstract class used for implementing BMP Entity beans
that map attributes to data stored in the LDAP server.

LDAPEntityBean

Interface used to encapsulate the data that comprises
the primary key of an LDAPEntityBean instance.

LDAPPrimaryKey

LDAPEntityBeanPK Standard implementation of LDAPPrimaryKey

com.bankframe.ei.ldap.LDAPServerContext
This class provides the connectivity to an LDAP server. Connecting to the server requires several
configuration parameters; these are defined as the following constant fields in this class:

PROVIDER_URL URL of the ldap server

INITIAL_CONTEXT_FACTORY The JNDI factory class to use to make the connection.

SECURITY_AUTHENTICATION The authentication method.

SECURITY_PRINCIPAL The user to authenticate.

SECURITY_CREDENTIALS The password to use for authentication.

Specifies whether to connect using Secure Sockets
Layer.

SECURITY_PROTOCOL

BASE_DN Specifies the base distinguished name of this context.

Specifies the name of the attribute that is used to
form the dn.

RDN_ATTRIBUTE

DEFAULT_SEARCH_FILTER Specifies a default search filter to use for searches.

Specifies the name of the alias that defines the above
settings.

CONTEXT_ALIAS

These parameters are passed to the constructor as key-value pairs in a Hashtable. All the parameters
may not be required, for example the LDAP server may not require authentication, so the security
parameters will not need to be specified.

NOTE: When an LDAPServerContext instance is created the physical connection to the server is not
immediately established. It will only be created when it is required, i.e. when one of its methods is
invoked. The physical connection will be closed when the context is destroyed, it can also be closed
explicitly by calling the close() method. The open() method can be used to explicitly establish the
physical connection. See the JavaDocs for this class for more details of the methods it implements.

MCA Services Developer Guide Version 2005, Rev. B 278

Enterprise Services LDAP Connectivity

com.bankframe.ei.ldap.LDAPServerContextFactory
This class simplifies the task of creating correctly configured LDAPServerContext instances. It maps
an alias to sets of LDAPServerContext configuration properties, which are stored in the
BankFrameResource.properties configuration file. Instead of explicitly specifying all the configuration
properties in order to create an LDAPServerContext instance, you can call the
LDAPServerContextFactory.getServerContext(String aliasName) method, which will retrieve the
settings from BankFrameResource.properties and create an LDAPServerContext with those settings.
Here’s an example set of configuration settings:

samplecontext.java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

samplecontext.java.naming.security.authentication=simple

samplecontext.java.naming.security.principal=someUserId

samplecontext.java.naming.security.credentials=somePassword

samplecontext.java.naming.security.protocol=SSL

samplecontext.ldap.baseDn=ou=someOrganizationalUnit,o=someOrganization

samplecontext.ldap.rdnAttribute=cn

samplecontext.ldap.defaultSearchFilter=cn={0}

See the section on LDAPServerContext for an explanation of these values. To retrieve these values
and instantiate an LDAPServerContext with the above values you would do the following:

LDAPServerContext ctx =

LDAPServerContextFactory.getServerContext(“samplecontext”);

When you are finished using the LDAPServerContext instance you should release it as follows:

LDAPServerContextFactory.releaseServerContext(ctx);

LDAPServerContextFactory caches LDAPServerContexts. The first time a request is made for a
specific LDAPServerContext, the context is instantiated, and a reference to the instance is cached. If a
second request is made for the same context, then the reference to the existing context is passed
back, rather than creating another instance of the same context.

Configuring LDAP Caching

To specify whether the server context is cached or not, configure the following setting:

ldap.context.cache=

Set the value to true to enable caching.

Set the value to false to disable caching.

com.bankframe.ei.ldap.LDAPEntityBean
While it is possible to access data in LDAP repositories directly using the only the methods in
LDAPServerContext, it is recommended that a Bean Managed Entity Bean is developed to wrap any
data that needs to be accessed in the LDAP repository. This has a number of benefits:

 MCA Services Developer Guide Version 2005, Rev. B 279

Enterprise Services LDAP Connectivity

 Scalability, since the Data Access is being managed via an EJB, the application server can manage
and share bean instances

 Reusability, The bean can be changed to Container managed or to some other Bean Managed
implementation, without affecting the business logic that uses the bean.

 Consistency, The bean will be consistent with the MCA Architecture where data is represented as
Entity Beans.

The LDAPEntityBean class simplifies the process of creating an LDAP based BMP Entity Bean. It takes
care of writing and reading data to/from the LDAP repository. It provides standard implementations of
all the methods required by the EJB specification including standard ejbFindByPrimaryKey() and
ejbFindAll() implementations. LDAPEntityBean extends the com.bankframe.ejb.EntityBean class,
therefore LDAPEntityBean subclasses can be treated the same as any other MCA Entity Bean.

See the section below for an example of how to create an LDAPEntityBean based EJB

com.bankframe.ei.ldap.LDAPPrimaryKey
The LDAPPrimaryKey interface defines the methods that LDAPEntityBean expects Primary key classes
to implement:

 // Get the value of the relative distinguished name attribute

 public String getRdnAttributeValue() ;

 // set the value of the relative distinguished name attribute

 public void setRdnAttributeValue(String value) ;

 // required by the EJB 1.1 specification

 public boolean equals(java.lang.Object o) ;

 // required by the EJB 1.1 specification

 public int hashCode() ;

In LDAP terminology the relative distinguished name is the name that uniquely identifies an object. It
is always of the form: attribute-name=attribute-value, where attribute-name is the name of one
of the attributes in the object. The rdn is equivalent to a primary key.

com.bankframe.ei.ldap.LDAPEntityBeanPK
LDAPEntityBeanPK is a standard implementation of the LDAPPrimaryKey class. It can be used as the
primary key class for most LDAP based entity beans. See the section below for an example of how
LDAPEntityBeanPK is used

Sample Bean Managed LDAP based Entity Bean
The best way to illustrate how to use MCA’s LDAP functionality is through an example. This example
below defines an Entity Bean that wraps the standard LDAP Person objectclass: The Person objectclass
has the following attributes:

MCA Services Developer Guide Version 2005, Rev. B 280

Enterprise Services LDAP Connectivity

Attributes cn

sn

Optional Attributes userPassword

telephoneNumber

seeAlso

description

Bean Implementation
Here’s a bean implementation to wrap the above attributes:

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import com.bankframe.ei.ldap.LDAPEntityBean;

public class LDAPPersonBean extends LDAPEntityBean {

 private final String ATTRIBUTE_COMMON_NAME="cn";

 private final String ATTRIBUTE_SURNAME="sn";

 private final String ATTRIBUTE_PASSWORD="userPassword";

 private final String ATTRIBUTE_PHONE_NUMBER="telephoneNumber";

 private final String ATTRIBUTE_SEE_ALSO="seeAlso";

 private final String ATTRIBUTE_DESCRIPTION="description";

 private final String OBJECT_CLASS="person";

 // ejb creation method

 public LDAPEntityBeanPK ejbCreate(String commonName,String surName,String

password,String phoneNumber,String seeAlso,String description) throws

CreateException {

 this.putObjectClass(this.OBJECT_CLASS); // set the object class of this object

 // set the attributes of this object

 this.put(this.ATTRIBUTE_COMMON_NAME,commonName);

 this.put(this.ATTRIBUTE_SURNAME,surName);

 MCA Services Developer Guide Version 2005, Rev. B 281

Enterprise Services LDAP Connectivity

 this.put(this.ATTRIBUTE_PASSWORD,password);

 this.put(this.ATTRIBUTE_PHONE_NUMBER,phoneNumber);

 this.put(this.ATTRIBUTE_SEE_ALSO,seeAlso);

 this.put(this.ATTRIBUTE_DESCRIPTION,description);

 // initialize

 return super.ejbCreate();

 }

 // required method

 public void ejbPostCreate(String commonName,String surName,String

password,String phoneNumber,String seeAlso,String description) {

 }

 // return the name of the attribute that is used as to form the rdn

 public String getRdnAttributeName() {

 return this.ATTRIBUTE_COMMON_NAME;

 }

 // EntityBean attribute getter

 public String getCommonName() {

 return this.get(this.ATTRIBUTE_COMMON_NAME);

 }

 public String getSurName() {

 return this.get(this.ATTRIBUTE_SURNAME);

 }

 public String getPassword() {

 return this.get(this.ATTRIBUTE_PASSWORD);

 }

 public String getPhoneNumber() {

 return this.get(this.ATTRIBUTE_PHONE_NUMBER);

 }

 public String getSeeAlso() {

MCA Services Developer Guide Version 2005, Rev. B 282

Enterprise Services LDAP Connectivity

 return this.get(this.ATTRIBUTE_SEE_ALSO);

 }

 public String getDescription() {

 return this.get(this.ATTRIBUTE_DESCRIPTION);

 }

 public void setDescription(String description) {

 this.put(this.ATTRIBUTE_DESCRIPTION,description);

 }

}

Bean Implementation Explained
As can be seen from the example above the bean implementation only needs to do a few things to be
able to access the data stored in the LDAP repository:

Specify the ldap objectclass

This is done in the ejbCreate() method using the following method call:

 this.putObjectClass(this.OBJECT_CLASS);

This tells LDAPEntityBean what the LDAP objectclass is, so that LDAPEntityBean can create the
correct type of object in the LDAP repository.

Specify the ldap attributes

This is also done in the ejbCreate() method by calling the LDAPEntityBean.put() method. The put
method takes two parameters, the name of the attribute and the value of the attribute. The value can
be any simple Java type such as String, Long, Double etc. For example the ‘common name’ attribute is
set using the following method call:

this.put(this.ATTRIBUTE_COMMON_NAME,commonName);

Create the Primary Key instance

The EJB Specification requires that all Bean Managed Entity Beans’ ejbCreate() methods return an
instance of the Primary Key class. LDAPEntityBean provides a standard ldapCreate() method that
creates an initialized instance of LDAPEntityBeanPK.

Specify the Rdn Attribute Name

In order for LDAPEntityBean to be able to manage primary keys, it must know which attribute in the
object is used to form the relative distinguished name. In the case of the Person object, this is the ‘cn’
attribute. This is done using the following code:

public String getRdnAttributeName() {

 MCA Services Developer Guide Version 2005, Rev. B 283

Enterprise Services LDAP Connectivity

 return this.ATTRIBUTE_COMMON_NAME;

 }

Implementing getter methods

To provide read access to the Entity Bean’s attributes, ‘getter’ methods must be implemented, for
example:

public String getDescription() {

 return this.get(this.ATTRIBUTE_DESCRIPTION);

 }

This method uses the LDAPEntityBean.get() method to retrieve the current value of the description
attribute.

Implementing setter methods

To enable the value of entity bean attributes to be changed, we must provide ‘setter’ methods, for
example:

public void setDescription(String description) {

 this.put(this.ATTRIBUTE_DESCRIPTION,description);

 }

Implementing ejbFindByPrimaryKey() and ejbFindAll()

All entity beans must provide an ejbFindByPrimaryKey() method. The ejbFindByPrimaryKey()
method in the above example wraps the LDAPEntityBean.ldapFindByPrimaryKey() method casting
the returned primary key instance to the correct type. Entity beans can optionally provide custom
finder methods, one such common method is an ejbFindAll() method. LDAPEntityBean provides a
method: ldapFindAll() that retrieves all entries in the current ldap context. The ejbFindAll()
method in the above example uses ldapFindAll() passing it the primary key class to use to uniquely
identify each entry.

Conclusion

Writing an LDAP based Entity Bean is straightforward if you use the LDAPEntityBean class.
LDAPEntityBean takes care of all the EJB implementation code. It provides fully functional
implementations of the ejbLoad(), ejbStore(), ejbActivate(), ejbPassivate(), ejbRemove(),
ejbFindByPrimaryKey(),ejbFindAll(), and toDataPacket() methods. Classes that extend
LDAPEntityBean only need to provide ejbCreate(), ejbPostCreate(), and attribute access methods
and finder() methods.

The Remote Interface
The Remote Interface for an LDAP based Entity bean is defined in exactly the same manner as any
other Siebel Entity Bean. The interface should extend the com.bankframe.EEntityRemote interface

MCA Services Developer Guide Version 2005, Rev. B 284

Enterprise Services LDAP Connectivity

and define the methods used to access the entity bean’s attributes. The Remote Interface for the
example above would be:

import java.rmi.RemoteException;

import com.bankframe.ejb.EEntityRemote;

public interface LDAPPerson extends EEntityRemote {

 public String getCommonName() throws RemoteException;

 public String getSurName() throws RemoteException;

 public String getPassword() throws RemoteException;

 public String getPhoneNumber() throws RemoteException;

 public String getSeeAlso() throws RemoteException;

 public String getDescription() throws RemoteException;

}

The Home Interface
The home interface is also defined in the same manner as other Siebel Entity Beans:

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

import javax.ejb.EJBHome;

import com.bankframe.ei.ldap.LDAPEntityBeanPK;

public interface LDAPPersonHome extends EJBHome {

 public LDAPEntityBeanPK create(String commonName,String surName,String

password,String phoneNumber,String seeAlso,String description) throws

CreateException, RemoteException ;

 public LDAPEntityBeanPK findByPrimaryKey() throws

FinderException,RemoteException;

 public Enumeration findAll() throws FinderException,RemoteException;

}

 MCA Services Developer Guide Version 2005, Rev. B 285

Enterprise Services LDAP Connectivity

The Deployment Descriptor
The deployment descriptor format differs from one application server to another. Consult your
application server documentation for details on how to create a deployment descriptor.

Advanced Topics

Using Custom Primary Keys
In some cases it may not be possible or desirable to use the
com.bankframe.ei.ldap.LDAPEntityBeanPK class as the primary key class for an LDAP Entity Bean.
In these cases a custom Primary Key class needs to be developed that implements the
LDAPPrimaryKey interface. To illustrate how to do this we will modify the example in the previous
section to use a custom primary key class called CustomPK.

Class Definition

import com.bankframe.ei.ldap.LDAPPrimaryKey;

public class CustomPK implements LDAPPrimaryKey {

 public String commonName;

 public CustomPK() {}

 public CustomPK(String commonName) { this.commonName = commonName ;}

 public String getRdnAttributeValue() { return this.commonName; }

 public void setRdnAttributeValue(String value) { this.commonName = value;}

 public boolean equals(java.lang.Object o) {

 if (o instanceof CustomPK) {

 CustomPK otherKey = (CustomPK) o;

 return ((this.commonName.equalsIgnoreCase(otherKey.commonName)));

 } else {

 return false;

 }

 }

 public int hashCode() { return commonName.hashCode();}

}

MCA Services Developer Guide Version 2005, Rev. B 286

Enterprise Services LDAP Connectivity

Modifying the LDAPPerson example to use CustomPK

Change the ejbCreate() method

The ejbCreate() method must return an instance of the primary key class, i.e. CustomPK. We need to
change the LDAPPerson.ejbCreate() method as follows:

Public CustomPK ejbCreate(…parameters as before…) {

… configure objectclass and attributes as before…

super.ejbCreate();

return new CustomPK((String)this.get(this.ATTRIBUTE_COMMON_NAME));

}

The changes are as follows:

1 Change the return type of the ejbCreate() method to CustomPK

2 Call super.ejbCreate()(to initialize the bean) but do not return the primary key it creates

3 Create a CustomPK() instance, initializing it with the current value of the commonName attribute

Define type correct ejbFindByPrimaryKey()method

We need an ejbFindByPrimaryKey() method that has a return type of CustomPK. LDAPEntityBean
has a protected method LDAPPrimaryKey (LDAPPrimarykey primaryKey). This method can be
overridden to implement a type correct ejbFindByPrimaryKey() as follows:

CustomPK ejbFindByPrimaryKey(CustomPK primaryKey) throws FinderException {

 return (CustomPK)super.ldapFindByPrimaryKey(primaryKey);

}

Define type correct ejbFindAll() method

We need an ejbFindAll() method that creates instances of the CustomPK. LDAPEntityBean has a
protected method: Enumeration ejbFindAll(Class primaryKeyClass). This method can be used to
create an enumeration of instances of the specified primary key class as follows:

Enumeration ejbFindAll() throws FinderException {

 return super.ejbFindAll(CustomPK.class);

}

Modify the LDAPPersonHome.findByPrimaryKey() method

The primary key type for the LDAPPersonHome.findByPrimaryKey() method needs to be changed to
CustomPK:

CustomPK findByPrimaryKey(CustomPK primaryKey) throws

FinderException,RemoteException;

 MCA Services Developer Guide Version 2005, Rev. B 287

Enterprise Services LDAP Connectivity

Modify the Deployment Descriptor

The primaryKeyClassName field in the deployment descriptor should be changed to: CustomPK

Handling multiple values
Some LDAP attributes can have multiple values. LDAPEntityBean provides two methods for accessing
these kinds of attributes: LDAPEntityBean.getMultiple() and LDAPEntityBean.putMultiple().
getMultiple() retrieves the values of the specified attribute and returns them as an Enumeration.
putMultiple() takes the name of the attribute, and an Enumeration of values to store.

Implementing custom finder methods
In some cases the findByPrimaryKey() and findAll() methods will not be sufficient. Custom EJB
finder methods can be implemented as follows:

Define the method in the implementation bean

We will build on the example above and define a custom finder called ejbFindBySurName():

Enumeration ejbFindBySurname(String surname) throws FinderException {

 try {

 LDAPServerContext ctx = this.getServerContext();

 String[] filterArgs = new String[1];

 FilterArgs[0] = surname;

 NamingEnumeration enum = ctx.search(“sn={0}”,filterArgs);

 Vector v = new Vector();

 While (enum.hasMore()) {

 SearchResult res = (SearchResult)enum.next();

 String surname =

(String)res.getAttributes().get(this.ATTRIBUTE_SURNAME).get();

 v.addElement(new CustomPK(surname));

 }

 this.releaseServerContext(ctx);

 return v.elements();

} catch (Exception ex) {

 throw new FinderException(ex.toString());

}

 }

MCA Services Developer Guide Version 2005, Rev. B 288

Enterprise Services Data Validation

LDAPEntityBean contains a protected method getServerContext(), which returns a reference to the
current LDAP connection. The LDAPServerContext.search() method is then used to find all entries
with the specified surname. The search() method returns an Enumeration, which is iterated through,
creating Primary key instances for each result. Finally an Enumeration of these primary key instances
is returned.

Add the corresponding method to the LDAPPersonHome interface

The second and final step is to add the corresponding finder method in the home interface:

Enumeration findBySurname(String surname) throws FinderException,RemoteException;

Data Validation
During the execution of Financial Components, certain data types will need to be formatted, validated,
or converted to another data type. The functionality to do this is provided within a number of classes
in MCA Services.

Classes and Package Structure
The validation and data conversion classes are implemented in the package
com.bankframe.validation - this package contains the following classes:

com.bankframe.validation.ValidationException

com.bankframe.validation.DataTypeValidator

com.bankframe.validation.DataTypeConvertor

com.bankframe.validation.DateValidator

com.bankframe.validation.DateConvertor

com.bankframe.validation.ValidationException
This exception is thrown whenever a validation error occurs. This class replaces the
com.bankframe.ejb.ValidationException class. This class extends the
com.bankframe.EonException class. This class has the following public methods:

ValidationException(int

errorNumber)

Create a validation exception identified by the
specified errorNumber

ValidationException(int

errorNumber,String[] params

Create a validation exception identified by the
specified errorNumber and with the arguments
specified by the params[] array

ValidationException(int

errorNumber,Locale locale)

Create a validation exception identified by the
specified errorNumber, using the specified Locale
to localise the error message

 MCA Services Developer Guide Version 2005, Rev. B 289

Enterprise Services Data Validation

ValidationException(int

errorNumber,String[]

params,Locale locale)

Create a validation exception identified by the
specified errorNumber and with the arguments
specified by the params[] array, using the
specified Locale to localize the error message

DataPacket toDataPacket() Convert the exception to a DataPacket

com.bankframe.DataTypeValidator
This class contains useful methods that can be used to validate various data-types. This class contains
the following public static methods:

boolean isDigitsOnly(String value) This method returns true if the specified
String contains only digits.

isExactLength(String value,int

length)

This method returns true if the specified
String is exactly the specified length.

isLengthLessThanOrEqual(String

value, int maxLength)

This method returns true if the specified
String is less than or equal to the specified
length.

boolean

isLetterOrDigitsOnly(String value)

This method returns true if the specified
String contains only letters or digits

boolean isLettersOnly(String

value)

This method returns true if the specified
String contains only letters.

boolean isNullOrEmpty(Object

value)

This method returns true if the specified
value is null, or empty, or contains the
value: ‘null’

com.bankframe.DataTypeConvertor
This class contains useful methods that can be used for converting data from one type to another. This
class contains the following public static methods:

Boolean getBoolean(String value)

throws ValidationException

This method converts a String value to a
Boolean value. It throws a
ValidationException if the String cannot be
converted to a Boolean value

Double getDouble(String value)

throws ValidationException

This method converts a String value to a
Double value. It throws a
ValidationException if the String cannot be
converted to a Double value

Float getFloat(String value)

throws ValidationException

This method converts a String value to a
Float value. It throws a
ValidationException if the String cannot be
converted to a Float value

MCA Services Developer Guide Version 2005, Rev. B 290

Enterprise Services Data Validation

Integer getInteger(String value)

throws ValidationException

This method converts a String value to an
Integer value. It throws a
ValidationException if the String cannot be
converted to an Integer value

String getString(Object value)

throws ValidationException

This method converts an Object value to a
String value. It throws a
ValidationException if the Object cannot be
converted to a String value

String padString(String

value,char padChar,int

length,boolean padRight) throws

ValidationException

This method returns a String padded with the
specified amount of padding characters. The
String can be padded to the left or to the
right. This method throws a
ValidationException if the value is null or
too long to be padded

Double round(Double value,int

decimalPlaces)

This method rounds up the specified value to
the specified number of decimal places

Double round(Double value,int

decimalPlaces,int roundMethod)

This method rounds the specified value to the
specified number of decimal place using the
specified rounding method. See the Java API
documentation of java.lang.BigDecimal for
information on rounding methods.

com.bankframe.validation.DateValidator
This class contains useful methods for validating dates, times and timestamps. This class contains the
following public static methods:

int compare(Date dateOrTime1,

Date dateOrTime2) throws

ValidationException

This method compares two Date objects it
returns an int value, DateValidator.EQUALS
if the argument is a Date equal to this Date;
DateValidator.AFTER if the argument is a
Date after this Date; DateValidator.BEFORE
if the argument is a Date before this Date. It
throws a ValidationException if the
date/time inputs are null or empty.

int compare(Date date1, Date

date2) throws

ValidationException

This method compares two Date objects
ignoring the hours minutes and seconds
portion of the Date object. It returns an int
value, DateValidator.EQUALS if the argument
is a Date equal to this Date;
DateValidator.AFTER if the argument is a
Date after this Date; DateValidator.BEFORE
if the argument is a Date before this Date. It
throws a ValidationException if the
date/time inputs are null or empty.

int compare(Time time1, Time This method compares two Time objects

 MCA Services Developer Guide Version 2005, Rev. B 291

Enterprise Services Data Validation

time2) throws

ValidationException

ignoring the day month and year portion of
the Time object. It returns an int value,
DateValidator.EQUALS if the argument is a
Time equal to this Time;
DateValidator.AFTER if the argument is a
Time after this Time; DateValidator.BEFORE
if the argument is a Time before this Time. It
throws a ValidationException if the
date/time inputs are null or empty.

boolean isValid(String pattern,

String dateOrTime) throws

ValidationException

This method compares a date/time string with
a SimpleDateFormat pattern to ensure that it
is valid. It throws a ValidationException if
the pattern or the date/time inputs are null or
empty.

com.bankframe.validation.DateConvertor
This class contains methods that can be used to convert Strings to Date, Time or Timestamp objects
and vice versa. This class contains the following public static methods:

Date getDate(String pattern,

String date) throws

ValidationException

This method uses the SimpleDateFormat class
to convert a String to a Date Object. It
throws a ValidationException if the pattern
or the date inputs are null or empty and if the
date is invalid.

Time getTime(String pattern,

String time) throws

ValidationException

This method uses the SimpleDateFormat class
to convert a String to a Date Object and then
gets a Time object from the Date. It throws a
ValidationException if the pattern or the
time inputs are null/empty or if the time is
invalid.

Timestamp getTimestamp (String

pattern, String timestamp)

throws ValidationException

This method uses the SimpleDateFormat class
to convert a String to a Date Object and then
gets a Timestamp object from the Date. It
throws a ValidationException if the pattern
or the timestamp inputs are null/empty or if
the time is invalid.

String getString(String pattern,

Date dateOrTime) throws

ValidationException

This method uses a SimpleDateFormat
pattern to convert a Date object into a
String. It throws a ValidationException if
the pattern or the date/time inputs are null or
empty.

MCA Services Developer Guide Version 2005, Rev. B 292

Enterprise Services Data Validation

Examples

DataTypeValidator Example
Below is some sample code that illustrates how to use the DataTypeValidator class:

public class TestDataTypeValidator {

 public static void main(String[] args) {

 String value1 = "345123";

 String value2 = "Hello World";

 boolean result = DataTypeValidator.isDigitsOnly(value1);

 // result will be true

 result = DataTypeValidator.isDigitsOnly(value2);

 // result will be false

 result = DataTypeValidator.isExactLength(value1,6);

 // result will be true

 result = DataTypeValidator.isExactLength(value1,7);

 // result will be false

 result = DataTypeValidator.isLengthLessThanOrEqual(value1,7);

 // result will be true

 result = DataTypeValidator.isLengthLessThanOrEqual(value1,5);

 // result will be false

 String nullReference = null;

 String emptyString = "";

 String nullString = "null";

 result = DataTypeValidator.isNullOrEmpty(value1);

 // result will be false

 result = DataTypeValidator.isNullOrEmpty(nullReference);

 // result will be true

 result = DataTypeValidator.isNullOrEmpty(emptyString);

 // result will be true

 result = DataTypeValidator.isNullOrEmpty(nullString);

 MCA Services Developer Guide Version 2005, Rev. B 293

Enterprise Services Data Validation

 // result will be true

 }

}

DataTypeConvertor Example
Below is some sample code that illustrates how to use the DataTypeConvertor class:

public class TestDataTypeConvertor {

 public static void main(String[] args) {

 try {

 Boolean booleanValue = DataTypeConvertor.getBoolean("True");

 // booleanValue will be true

 booleanValue = DataTypeConvertor.getBoolean("FALSE");

 // booleanValue will be false (Note case of String is unimportant)

 booleanValue = DataTypeConvertor.getBoolean("yes");

 // booleanValue will be true, (getBoolean() treats 'yes' as true and 'no'

as false)

 booleanValue = DataTypeConvertor.getBoolean("No");

 // booleanValue will be false, (getBoolean() treats 'yes' as true and 'no'

as false)

 Double doubleValue = DataTypeConvertor.getDouble("2.3123");

 // double value will be 2.3123

 Integer integerValue = DataTypeConvertor.getInteger("1000");

 // integerValue will be 1000

 String stringValue = DataTypeConvertor.getString(integerValue);

 // stringValue will be '1000'

 String paddedString = DataTypeConvertor.padString(stringValue,'0',8,false);

 // paddedString will be '00001000'

 Double roundedValue = DataTypeConvertor.round(new Double(2.0/3.3),3);

 // roundedValue will be 0.607

 roundedValue = DataTypeConvertor.round(new

Double(2.0/3.3),3,DataTypeConvertor.ROUND_DOWN);

MCA Services Developer Guide Version 2005, Rev. B 294

Enterprise Services Data Validation

 // roundedValue will be 0.606

 } catch (ValidationException vex) {

 vex.printStackTrace();

 }

 }

}

DateValidator Example
public class TestDateValidator {

 public static void main(String[] args) {

 try {

 Date date1 = DateConvertor.getDate("dd/MM/yyyy HH:mm:ss", "26/03/2001

14:00:51");

 //this creates the following date object: Mon Mar 26 14:00:51 GMT 2001

 Date date2 = DateConvertor.getDate("dd/MM/yyyy", "26/02/2001");

 //this creates the following date object: Mon Feb 26 00:00:00 GMT 2001;

 Date date3 = DateConvertor.getDate("dd/MM/yyyy hh:mm:ss", "26/03/2001

12:05:00");

 //this creates the following date object: Mon Mar 26 00:05:00 GMT 2001;

 Date date4 = DateConvertor.getDate("dd/MM/yyyy HH:mm:ss", "26/04/2001

16:30:05");

 //this creates the following date object: Thu Apr 26 16:30:05 GMT 2001;

 Time time1 = DateConvertor.getTime("HH:mm:ss", "13:56:01");

 //this creates the following date object: 13:56:01;

 Time time2 = DateConvertor.getTime("HH:mm:ss", "11:20:01");

 //this creates the following date object: 11:20:01;

 Time time3 = DateConvertor.getTime("HH:mm:ss", "13:56:01");

 //this creates the following date object: 13:56:01;

 Time time4 = DateConvertor.getTime("HH:mm:ss", "22:30:05");

 //this creates the following date object: 22:30:05;

 MCA Services Developer Guide Version 2005, Rev. B 295

Enterprise Services Data Validation

 int result = DateValidator.compare(date1, date2);

 // result will be DateValidator.AFTER

 result = DateValidator.compare(date1, date3);

 // result will be DateValidator.AFTER dates not equal because of time

 result = DateValidator.compare(date1, date4);

 // result will be DateValidator.BEFORE

 result = DateValidator.compareDateOnly(date1, date2);

 // result will be DateValidator.AFTER

 result = DateValidator.compareDateOnly(date1, date3);

 // result will be DateValidator.EQUALS as without time element dates are

equal

 result = DateValidator.compareDateOnly(date1, date4);

 // result will be DateValidator.BEFORE

 result = DateValidator.compareTimeOnly(time1, time2);

 // result will be DateValidator.AFTER

 result = DateValidator.compareTimeOnly(time1, time3);

 // result will be DateValidator.EQUALS

 result = DateValidator.compareTimeOnly(time1, time4);

 // result will be DateValidator.BEFORE

 }

 catch (ValidationException vex) {

 System.out.println(vex);

 }

 String date = "26/03/2001";

 String time = "22:25:23";

 String timestamp = "20/06/2001 22:25:23";

 String pattern1 = "dd/MM/yyyy";

 String pattern2 = "dd/MMM/yyyy";

 String pattern3 = "hh/mm/ss";

MCA Services Developer Guide Version 2005, Rev. B 296

Enterprise Services Data Validation

 String pattern4 = "HH/mm/ss";

 String pattern5 = "dd/MM/yyyy hh/mm/ss ";

 try {

 boolean reponse = DateValidator.isValid(pattern1, date);

 // result will be true

 reponse = DateValidator.isValid(pattern2, date);

 // result will be false

 reponse = DateValidator.isValid(pattern3, time);

 // result will be false

 reponse = DateValidator.isValid(pattern4, time);

 // result will be true

 reponse = DateValidator.isValid(pattern5, timestamp);

 // result will be true

 reponse = DateValidator.isValid(pattern1, timestamp);

 // result will be false

 }

 catch (ValidationException vex) {

 System.out.println(vex);

 }

 }

}

DateConvertor Example
public class TestDateConvertor {

 public static void main(String[] args) {

 String date1 = "23/03/2001";

 String time1 = "22:25:23";

 String timestamp1 = "20/06/2001 22:25:23";

 String pattern1 = "dd/MM/yyyy";

 String pattern2 = "HH:mm:ss";

 MCA Services Developer Guide Version 2005, Rev. B 297

Enterprise Services Data Validation

 String pattern3 = "dd/MM/yyyy HH:mm:ss";

 try {

 Date result = DateConvertor.getDate(pattern1, date1);

 // result will be Fri Mar 23 00:00:00 GMT 2001

 result = DateConvertor.getTime(pattern2, time1);

 // result will be 22:25:23

 result = DateConvertor.getTimestamp(pattern3, timestamp1);

 // result will be 20-06-2001 22:25:23.0

 }

 catch (ValidationException vex) {

 System.out.println(vex);

 }

 String pattern4 = "dd/MM/yyyy";

 String pattern5 = "hh:mm:ss";

 String pattern6 = "dd/MM/yyyy hh:mm:ss ";

 try {

 Date date2 = DateConvertor.getDate("dd/MM/yyyy", "23/03/2001");

 //creates the following date object Fri Mar 23 00:00:00 GMT 2001

 Time time2 = DateConvertor.getTime("HH:mm:ss", "22:25:23");

 //creates the following time object 22:25:23

 Timestamp timestamp2 = DateConvertor.getTimestamp("dd/MM/yyyy HH:mm:ss",

"26/04/2001 16:30:05");

 //creates the following timestamp object 20-06-2001 22:25:23.0";

 String response = DateConvertor.getString(pattern4, date2);

 // result will be 23/03/2001

 response = DateConvertor.getString(pattern5, time2);

 // result will be 10:25:23

 response = DateConvertor.getString (pattern6, timestamp2);

 // result will be 20/06/2001 22:25:23

MCA Services Developer Guide Version 2005, Rev. B 298

Enterprise Services Peripherals Support

 }

 catch (ValidationException vex2) {

 System.out.println(vex2);

 }

 }

}

Peripherals Support
This document describes the framework of the peripheral device support built into MCA Services. This
support allows the user to use peripheral devices connected to the system. The architecture of the
MCA device support allows the addition of support for new types of peripherals if required.

Scope
This document is a development guide for using the MCA peripheral support. This includes using the
currently supported peripherals and writing support for new types of peripherals into MCA.

MCA currently has implementations for three types of peripheral devices;

 The MagTek MiniMicr cheque reader.

 The MagTek IntelliPIN swipe-card reader.

 The Epson TMU375 slip printer.

These implementations allow the user to control these devices at a basic level. They do not contain
any business logic such as calculating cheque amount totals or swipe card amounts. The device
implementations allow the user access to the raw information processed by the devices.

MagTek MiniMicr cheque reader

The MCA implementation for this peripheral allows the developer to:

 setup the connection to the peripheral

 prompt the user to swipe a cheque

 read the raw cheque details. The details are read from the foot of the cheque by the MiniMicr
peripheral and MCA returns the raw data to the user for further processing.

MagTek IntelliPIN swipe-card reader

The MCA implementation for this peripheral implements a basic subset of the MagTek IntelliPIN Pad
functionality. This subset allows the developer to:

 MCA Services Developer Guide Version 2005, Rev. B 299

Enterprise Services Peripherals Support

 setup the device in interactive mode (PC controlled) with a Master encryption key (used to encrypt
and decrypt pin data passed to the PC from the physical device.)

 prompt for a card swipe and read the card track details from the physical device.

 decrypt the pin data returned by the physical device when a user enters a pin number.

 Display string messages and modify the default messages displayed on the physical MagTek
IntelliPIN device LCD display.

It is up to the developer to process the card track details and pin number information and validate the
details.

Epson TM-U375 slip printer

The MCA implementation for this peripheral allows the user to

 Print text to the printer

 Perform basic printing operations such as line-feed and carriage-return. MCA does not have
business logic for creating receipt information for printing. It is up to the developer to write the
business logic to create specific types of receipts which are then passed to MCA for printing on the
peripheral.

Adding new types of peripherals to MCA Services

New types of peripherals can be supported by MCA by extending the classes in MCA. This involves
coding and subclassing of the appropriate classes and is not a plug-in mechanism.

Currently MCA has a general Serial-Port implementation which can be subclassed for any peripheral
connected to the serial port (other types of connections will be supported in the future.)

The serial-port support in MCA encapsulates the Java Communications Extension API.

MCA Device Base Classes
MCA has a set of base classes for supporting peripherals. These classes can be subclassed to support
new types of peripherals. Currently MCA has base classes for supporting peripherals connected to the
serial-port. Support for any peripheral device connected to the serial-port can be added to MCA by
subclassing these classes. General base classes for peripherals connected to the system by other
means will be added in the future.

All the base classes for device support in MCA are contained in the package
com.bankframe.services.devices. All implemented classes for specific device types are contained as
sub-packages of this package.

MCADevice base interface
Every type of device object in the MCA framework must implement the
com.bankframe.services.devices.MCADevice interface. This defines the basic set of commands
that an MCA device must implement.

MCA Services Developer Guide Version 2005, Rev. B 300

Enterprise Services Peripherals Support

MCASerialPort base class
The basic class for serial port communication is the abstract class
com.bankframe.services.devices.MCASerialPort. This class implements the
com.bankframe.services.devices.MCADevice interface and manages the connection to,
communication with and initialization of a serial port. This class encapsulates the Java
Communications Extension API.

Classes subclassing this base class can transmit and receive information on the serial port.

MCASerialPort.InputReaderThread class

The MCASerialPort class implements a thread

com.bankframe.services.devices.MCASerialPort.InputReaderThread

to asynchronously detect serial port events. MCASerialPort.InputReaderThread implements the
interface javax.comm.SerialPortEventListener in the Java Communications Extension API.
Therefore when an event occurs on the serial port the method
InputReaderThread.serialEvent(javax.comm.SerialPortEvent event) is called by the Java Comm
API.

MCASerialPort.handleEvent(…)

The MCASerialPort.InputReaderThread class always calls the method

 protected void handleEvent(java.util.EventObject theEvent) which is defined in
com.bankframe.services.devices.MCASerialPort. This method is over-ridden to customize the
handling of serial-port device events. This method processes data from the physical device
asynchronously because it is called by MCASerialPort.InputReaderThread. The method
handleEvent(java.util.EventObject theEvent) calls the method dataAvailable(Object data) to
store the received data for retrieval by the user. The method waitforDataAvailable() retrieves this
data when called by the user.

If a class subclasses MCASerialPort then its implementation of
handleEvent(java.util.EventObject theEvent) parses and validates the data received and stores
the result using dataAvailable(Object data), thereby making more specific information available
for the user.

Any exceptions that occur in handleEvent(java.util.EventObject theEvent) should be stored as
com.bankframe.services.devices.DeviceException using dataAvailable(Object data). This
allows the user to retrieve any exceptions that might have occurred during parsing of the data from
the physical device.

MCASerialPort.waitforDataAvailable()

After a user has instantiated an MCA serial device object the user can query the serial device object
for available data. The method:

 public Object waitforDataAvailable(int timeOut) waits the specified timeout period for data
to be received by the serial device object from the peripheral device connected to the serial port.

 MCA Services Developer Guide Version 2005, Rev. B 301

Enterprise Services Peripherals Support

MCASerialPort read() and write() and available()

com.bankframe.services.devices.MCASerialPort wraps the standard serial-port read(), write(
) and available() methods for interacting directly with the serial port.

 read(byte[] bytes, int off, int len) and read() reads data from the serial port.

 write(byte[] bytes, int off, int len) and write(int theByte) write data from the serial port.

 available() determines the number of bytes that can be read from the serial port without
blocking the program.

MCASerialPort.open() and MCASerialPort.setup()

After a user has instantiated an MCA serial device object the open() method is called to setup the
device for use by the user. In the case of MCA serial port devices this method always calls the
method:

 abstract protected void setup()

If MCASerialPort is subclassed the method setup() is over-ridden to initialize the device as required
by the peripheral.

MCADeviceProperties class
The class com.bankframe.services.devices.MCADeviceProperties is a class that wraps a static
hashtable of all the properties for the MCA device classes being instantiated by the user. The
properties for the MCA device classes are contained in a single properties file
BankframeDevices.properties which must be on the classpath of the system. The
MCADeviceProperties object when created allows a device to access its properties during
initialization. The MCADeviceProperties class contains a hashtable (called serialPortValueData) of
values which translate string values in the BankframeDevices.properties file into
javax.comm.SerialPort defined values for initializing the serial port.

NOTE: If the properties file is modified while the program is running the changes will not be detected
until the program is restarted.

Basic serial port entries in the file BankframeDevices.properties are of the form:

COM1.MiniMicr.serialport.portname=COM1

COM1.MiniMicr.serialport.baud=9600

COM1.MiniMicr.serialport.databits=DATABITS_8

COM1.MiniMicr.serialport.stopbits=STOPBITS_1

COM1.MiniMicr.serialport.parity=PARITY_NONE

COM1.MiniMicr.serialport.flowcontrol=FLOWCONTROL_RTSCTS_OUT,FLOWCONTROL_RTSCTS_IN

where “COM1.MiniMicr” is the name of the device specified in the constructor when the MCA device
object is created. The serialport entries are settings required for an MCASerialPort derived object.
These entries are used to initialize the serial port. serialport.portname is the name of the port that
the device is attached to on the PC/Unix machine.

On an Windows machine this is of the form:

MCA Services Developer Guide Version 2005, Rev. B 302

Enterprise Services Peripherals Support

serialport.portname=COM1

On a Unix machine this would be of the form:

serialport.portname=/dev/term/a

Each property value in the BankframeDevice.properties file is parsed as a comma-separated line.
Using the logical bitwise operator OR (|) the comma separated values are combined to produce the
serial port value required. I.e., the property serialport.flowcontrol shown above will result in the
two serial port defined values FLOWCONTROL_RTSCTS_OUT and FLOWCONTROL_RTSCTS_IN being combined
using the logical bitwise operator OR to produce the serial port flowcontrol type for the device
COM1.MiniMicr.

The BankframeDevice.properties can contain specific settings for each instantiated device object
e.g. a MagTek MiniMicr object has the following specific settings:

COM1.MiniMicr.commtype=BAUD_9600,DATAPARITY_8N,CTS_DSR_IGNORE,STOPBITS_1,INTERCHA

R_DELAY_NO

DeviceException class
All exceptions thrown back to a calling class by an MCA device object are of the type
com.bankframe.services.devices.DeviceException. This class inherits from the class
com.bankframe.EonException. This class allows localizable messages to be defined in the
BankframeMessages.properties file.

MCADeviceProtocol class
The class com.bankframe.services.devices.MCADeviceProtocol wraps the message protocol
creation for the device. All subclassed device objects should subclass
com.bankframe.services.devices.MCADeviceProtocol for generation of device-specific protocol
messages. Messages or commands which are transmitted to the physical device are created in the
subclassed MCADeviceProtocol class. MCADeviceProtocol contains a byte stream which can be
passed to the peripheral.

MCA device implementations
MCA currently has implementations for three types of peripheral devices:

 The MagTek Mini Micr cheque reader.

 The MagTek IntelliPIN swipe-card reader.

 The Epson TMU375 slip printer.

MagTek MiniMicr cheque reader device
The classes for this device implementation are in the package:

com.bankframe.services.devices.MTMiniMicr.

MTMiniMicr is a subclass of the base class

 MCA Services Developer Guide Version 2005, Rev. B 303

Enterprise Services Peripherals Support

com.bankframe.services.devices.MCASerialPort.

The physical MagTek Mini Micr device is connected to the serial port. The class MTMiniMicr over-rides
the method handleEvent(…) and therefore asynchronously handles serial port events. All the MagTek
Mini Micr specific communication codes are defined in the
com.bankframe.services.devices.MTMiniMicr.MagTekMiniMicrDeviceCodes interface.

The class com.bankframe.services.devices.MTMiniMicr.MagTekMiniMicrDeviceProtocol defines
methods for creating MagTek Mini Micr specific serial commands to send to the physical device. The
class is a subclass of com.bankframe.services.devices.MCADeviceProtocol.

MTMiniMicr(String deviceName) Constructor

The MTMiniMicr(String deviceName) is used to instantiate a Mini Micr device object. The String
parameter is the unique device name for the device object. This string is used in the
BankframeDevices.properties file to define the serial communications settings for the device object.
The setup() method reads the settings for the device object from BankframeDevices.properties to
setup the device correctly.

MTMiniMicr.setup()

This method is called by the base class method MCASerialPort.open(…). This method does the
following:

 Sets up the serial communications to the physical device.

 Configures the format of the cheque data that the physical Mini Micr device will send to the PC
when a cheque is swiped.

MTMiniMicr.setCommand(…) and requestCommand(…)

The two forms of the method MTMiniMicr.setCommand(…) creates a MagTek MiniMicr command-
message which is sent to the physical device by the MTMiniMicr object. This is used to set up various
settings in the physical Mini Micr device. The method MTMiniMicr.requestCommand(…) formats a
MagTek MiniMicr request-command which is sent to the physical device by the MTMiniMicr object.
The method requestCommand(…) is used to request information from the physical MiniMicr device.
See "Installation and Configuration of Hardware" section for a description of the commands.

Using the MiniMicr Device in a client application
See the class com.bankframe.services.devices.unittest.MiniMicrTest for a basic example of a
java client using the Mini Micr device classes. The MCA Example
com.bankframe.examples.devices.fe.ui demonstrates a full Swing front-end example using the
device classes.

The following code is a sample client class using a Mini Micr device object:

import com.bankframe.services.devices.*;

import com.bankframe.services.devices.MTMiniMicr.*;

public class myClientClass {

MCA Services Developer Guide Version 2005, Rev. B 304

Enterprise Services Peripherals Support

 ...

 MagTekMiniMicr miniMicr;

 public void run() {

 try {

 //The name passed to the device corresponds to the entries

 //used in the BankframeDevices.properties file

 //These names have to match for the device to be setup

 //with the correct serial port setting and specific settings.

 miniMicr = new MagTekMiniMicr("COM1.MiniMicr");

 //Opens the port device specified in the

 //BankframeDevices.properties file:-

 miniMicr.open();

 } catch (DeviceException ex) {

 //exceptions thrown back from device are of type DeviceException

 ex.printStackTrace();

 }

 System.out.println("Swipe check now...");

 //Make the MiniMicr object wait for

 //data received from the connected device

 //(This call times-out after 10 seconds):-

 String data = (String)miniMicr.waitforDataAvailable(10000);

 if(data!= null && data.length() != 0) {

 //

 //Check it is data of the correct format, i.e., <ESC>CHEQUE_DATA<CR>

 //

 MCA Services Developer Guide Version 2005, Rev. B 305

Enterprise Services Peripherals Support

 if(data.length() > 0 &&

 data.charAt(0) == MagTekMiniMicrDeviceCodes.ESC) {

 System.out.println("\nGot Check code:" + data.substring(1) + "\n");

 }

 }

 miniMicr.close();

 miniMicr = null;

 }//end of run()

}//end of myClientClass

Notes:

1 The MagTekMiniMicr class handles serial events itself including device replies containing the
cheque data. The java sample code shown waits for available cheque data by calling the method
waitforDataAvailable(...).

2 The method open() contains the standard setup procedure for the MiniMicr device. The setup can
be modified by editing the BankframeDevices.properties file before running the test example.

3 The method waitforDataAvailable(int timeoutMillseconds) waits the specified time for a
message from the Mini Micr physical device. If the data received from the physical Mini Micr is
cheque data then the device classes will return this data when waitforDataAvailable(int
timeoutMillseconds) is called. The cheque data returned is the raw cheque data as displayed at
the foot of the cheque, it is not parsed into separate fields. The device classes do not do any
calculations on the cheque data, such as the cheque amount or account number details. It is left
to the client class using the Mini Micr device classes to parse the cheque data and calculate the
cheque amount or any other details.

4 When the Mini Micr is no longer required the connection is shut-down using close()

5 The classpath must include mca.jar. The Java Communications Extension API jar (comm.jar)
must also be included in the classpath. mca.jar is located in eontec/Common/lib/eontec/.

6 The standard serial port settings for the Mini Micr are: Baud=9600, data Bits = 8, stop
Bits=1, parity = none, flow control = none.

Epson TM-U375 Slip-printer device
The classes for this device implementation are in the package:

com.bankframe.services.devices.SlipPrinter.

The Epson slip-printer device is a subclass of the base class

com.bankframe.services.devices.MCASerialPort.

The physical slip-printer device is connected to the serial port.

The class SlipPrinter over-rides the method handleEvent(…) and therefore asynchronously handles
serial port events.

MCA Services Developer Guide Version 2005, Rev. B 306

Enterprise Services Peripherals Support

All the Epson slip-printer specific communication codes are defined in the
com.bankframe.services.devices.SlipPrinter.SlipPrinterDeviceCodes interface.

The class com.bankframe.services.devices.SlipPrinter.SlipPrinterDeviceProtocol defines
methods for creating the slip-printer specific serial commands to send to the physical device. The
class contains methods for implementing all the standard printing facilities on an Epson slip-printer.

SlipPrinter(String deviceName) Constructor

The SlipPrinter(String deviceName) is used to instantiate a Slip Printer device object. The String
parameter is the unique device name for the device object. This string is used in the
BankframeDevices.properties file to define the serial communications settings for the device object.
The setup() method reads the settings for the device object from BankframeDevices.properties to
setup the device correctly.

SlipPrinter.setup()

This method is called by the base class method MCASerialPort.open(…). This method does the
following sets up the serial communications to the physical device.

Using the SlipPrinter Device in a Client Application
See the class com.bankframe.services.devices.unittest.SlipPrinterTest for a basic example of
a java client using the slip-printer device object. The MCA Example
com.bankframe.examples.devices.fe.ui demonstrates a full Swing front-end example using the
device classes.

The following code is a sample client using the slip-printer device object:

import com.bankframe.services.devices.*;

import com.bankframe.services.devices.SlipPrinter.*;

import javax.comm.SerialPortEvent;

public class myClient Class {

 String deviceName = "COM2.SlipPrinter";

 SlipPrinter slipPrinter;

 Public void run() {

 try {

 //The name passed to the device

 //corresponds to the entries used in the

 MCA Services Developer Guide Version 2005, Rev. B 307

Enterprise Services Peripherals Support

 // BankframeDevices.properties file.

 //These names have to match for the device

 //to be setup with the correct serial port setting and specific settings.

 slipPrinter = new SlipPrinter(deviceName);

 //Opens the port device specified

 //in the BankframeDevices.properties file:-

 slipPrinter.open();

 System.out.println("Testing now...");

 slipPrinter.print("hello Ruairi");//prints to printer

 slipPrinter.lineFeed();

 slipPrinter.clearPrinter();

 slipPrinter.test();//prints a few things to printer.

 } catch (DeviceException ex) {

 ex.printStackTrace();

 }

 slipPrinter.close();

 slipPrinter = null;

 }

}

Notes:

1 The slip-printer device is created passing the device name to the constructor. The device name
identifies the device's settings in the bankframeDevices.properties file.

2 After the slip-printer device is opened methods on the slip-printer are called to do some sample
printing. No replies are obtained from the printer for these method calls.

3 When the slip-printer device is no longer required the connection is shut-down using close()

4 The classpath must include mca.jar. The Java Communications Extension API jar (comm.jar)
must also be included in the classpath. mca.jar is located in eontec/Common/lib/eontec/.

5 The standard serial port settings for the Epson TM-U375 slip-printer are: Baud=9600, data Bits
= 8, stop Bits=1, parity = none, flow control = none.

MCA Services Developer Guide Version 2005, Rev. B 308

Enterprise Services Peripherals Support

MagTek IntelliPin Plus swipe-card device
The classes for this device implementation are in the package:
com.bankframe.services.devices.MTPinPad.

The MTPinPad class subclasses the base class

com.bankframe.services.devices.MCASerialPort.

The physical MagTek IntelliPIN device is connected to the serial port.

The class implements the method handleEvent(..) and therefore asynchronously handles serial port
events

All the MagTek MiniMicr specific communication codes are defined in the
com.bankframe.services.devices.MTPinPad.MagTekIntelliPINDeviceCodes interface.

The class com.bankframe.services.devices.MTPinPad.MagTekIntelliPINDeviceProtocol defines
methods for creating MagTek IntelliPIN specific serial commands to send to the physical device.

See "Installation and Configuration of Hardware" section for a description of the hardware.

See "Installation and Configuration of Software" section for a description of the software configuration
process.

As stated earlier the MCA MagTekIntelliPIN object only implements a basic subset of the MagTek
IntelliPIN Pad functionality.

MagTekIntelliPIN(String deviceName) Constructor

The MagTekIntelliPIN(String deviceName, boolean decryptPinData) is used to instantiate an
IntelliPIN device object. The String parameter deviceName is the unique device name for the device
object. This string is specified in the BankframeDevices.properties file to define the serial
communications settings for the device object. The setup() method reads the settings for the device
object from BankframeDevices.properties to setup the device correctly. The boolean parameter
decryptPinData specifies if pin number data received from the physical device is decrypted by the
MagTekIntelliPIN device object or remains encrypted. It may be desirable not to decrypt the pin
number in the client but to transmit the pin number while still encrypted to a Server where the pin
number will be decrypted and validated.

MagTekIntelliPIN.open(…)

Once the MagTekIntelliPIN object has been instantiated one of the two open() methods is called to
set up and connect to the physical IntelliPIN device. The open() method has the following two
forms:

1 open(long masterKeyResponseTimeout). This form generates a unique master encryption key
for encrypting pin data during communication with the physical IntelliPIN device. The Java
Cryptography API generates the unique encryption key. This open() method is slower than the
second form.

2 open(byte[] theMasterKey, long masterKeyResponseTimeout). This form allows the user to
specify a master encryption key for encrypting pin data during communication with the physical
IntelliPIN device. The byte[] array is an 8 byte DES encryption key.

In both cases the MagTekIntelliPIN object must download the master encryption key to the physical
device. The long argument masterKeyResponseTimeout is the time-out period for a positive

 MCA Services Developer Guide Version 2005, Rev. B 309

Enterprise Services Peripherals Support

response from the physical device verifying that the encryption key was successfully downloaded. If
the device does not respond in this time then a DeviceException is thrown.

The sequence of method calls within the open() method are as follows:

1 an encryption key is generated using the com.bankframe.util.Cryptography class. This class
wraps the standard Java Cryptography API.

2 the base class MCASerialPort.open() method is called.

3 the base class MCASerialPort.open() method calls the over-ridden MagTekIntelliPIN.setup(
) method which sets up the serial communications parameters for the physical device. The
master encryption key is downloaded to the physical IntelliPIN device. This throws a
DeviceException if the physical device does not respond confirming the key within the period
masterKeyResponseTimeout.

MagTekIntelliPIN.setup()

This method is called by the base class method MCASerialPort.open(…). This method does the
following:

 Sets up the serial communications to the physical device.

 The master encryption key is downloaded to the physical IntelliPIN device. This throws a
DeviceException if the physical device does not respond confirming the key within the period
masterKeyResponseTimeout.

MagTekIntelliPIN.replaceDefaultDisplay(…)

The method

MagTekIntelliPIN.replaceDefaultDisplay(String displayNumber, String lineOne, String
lineTwo)

replaces one of the default displays on the physical MagTek IntelliPIN pad’s LCD display. This
command can be used to customize the IntelliPIN display for a particular language/bank. This
customized display is stored in the physical device so it appears again when it is next turned on. See
java docs for usage.

MagTekIntelliPIN.enableDefaultDisplay(…)

The method MagTekIntelliPIN.enableDefaultDisplay() disables any previously customized default
displays. The factory installed displays are all enabled on the physical device.

MagTekIntelliPIN.cardDataEntryRequest (…)

The method

MagTekIntelliPIN.cardDataEntryRequest(String firstMessage, String secondMessage, long
timeOut)

instructs the physical IntelliPIN device to prompt the user for a card swipe. The two messages are
displayed on the IntelliPIN's LCD display. The user has the period timeOut to swipe a card before the
method returns.

MCA Services Developer Guide Version 2005, Rev. B 310

Enterprise Services Peripherals Support

MagTekIntelliPIN.pinEntryRequest (…)

The method

MagTekIntelliPIN.pinEntryRequest(String accountNumber, char keyNumber, String
transactionAmount, long timeout)

instructs the physical IntelliPIN device to prompt the user for a pin number entry. The accountNumber
is used for encrypting the returned pin number. KeyNumber specifies whether to use the Master Key
or a session key. Currently only the master key is supported by the MCA object . The keyNumber to
specify use of a Master Key is ‘4’. TransactionAmount is a decimal string to two decimal places which
is displayed on the IntelliPIN LCD display. The user has the period timeOut to enter a pin number.

MagTekIntelliPIN.cancelSessionRequest (…)

The method

MagTekIntelliPIN.cancelSessionRequest()

instructs the physical IntelliPIN device to cancel the current request in progress.

MagTekIntelliPIN.displaySingleString (…)

The method

MagTekIntelliPIN.displaySingleString(String firstMessage, String secondMessage)

instructs the physical IntelliPIN device to display the two strings on its LCD display.

MagTekIntelliPIN.requestSoftSwitch (…)

The method

MagTekIntelliPIN.requestSoftSwitch(char switchNumber, long timeout)

requests the current configuration settings of the physical IntelliPIN device.

MagTekIntelliPIN.setSoftSwitch (…)

The method

MagTekIntelliPIN.setSoftSwitch(char switchNumber, byte theSettingData, long timeOut)

sets the specified configuration settings in the physical IntelliPIN device.

MagTekIntelliPIN.waitCondition…(…)

The methods

MagTekIntelliPIN.waitConditionCardData(long timeout)

MagTekIntelliPIN.waitConditionKeyLoaded(long timeout)

MagTekIntelliPIN.waitConditionPinData(long timeout)

MagTekIntelliPIN.waitConditionRequestSettings(long timeout)

start a wait cycle in the IntelliPIN device object until the specified condition has occurred.

 MCA Services Developer Guide Version 2005, Rev. B 311

Enterprise Services Peripherals Support

 waitConditionCardData(…) waits until a card has been swiped and the device object has received
card track details from the physical device.

 waitConditionKeyLoaded(…) waits until the physical device responds indicating that it has
accepted the downloaded Master Encryption key.

 waitConditionPinData(…) waits until a pin number has been entered by the user and the device
object has received the pin number.

 waitConditionRequestSettings(…) waits until the physical device has responded to a request to
change its settings.

PinPadListener interface

The class com.bankframe.services.devices.MTPinPad.PinPadListener interface has one method
handlePinPad(PinPadEvent event). A client implements this listener interface and calls the method
MagTekIntelliPIN.addPinPadListener(PinPadListener ppl) to register its listener. The method
handlePinPad(PinPadEvent event) is called by the MagTekIntelliPIN device object when an event
occurs. See the next section.

MagTekIntelliPIN.addPinPadListener (…)

The method

MagTekIntelliPIN.addPinPadListener(PinPadListener ppl)

allows a client object to register a listener class to receive notification of asynchronous
MagTekIntelliPIN events. The listener class will receive PinPadEvent objects when one of the
following events occur:

 When a card is swiped

 A pin number is entered

 An Exception occurs parsing data received from the physical IntelliPIN device.

An alternative to this asynchronous method of receiving IntelliPIN events is to use the base class
method waitforDataAvailable(long timeout) specifying the period to wait for the data to be
available. This method will return any of the above events that occur to the java client object.

PinPadEvent class

The com.bankframe.services.devices.MTPinPad.PinPadEvent class stores event details to be
passed to the client object. Card track details, Pin number and exception details can be obtained from
this object when passed to the client object.

PinDataBlock class

The com.bankframe.services.devices.MTPinPad.PinDataBlock class has two purposes:

 It stores the encrypted pin number received from the physical device.

 It provides a method decrypt(SecretKey masterKey, String algorithm, String provider)
for decrypting and un-mangling the received pin data from the physical IntelliPIN. This method
uses the com.bankframe.util.Cryptography class. This class wraps the standard Java
Cryptography API. The masterKey must be the same master encryption key originally downloaded

MCA Services Developer Guide Version 2005, Rev. B 312

Enterprise Services Peripherals Support

to the physical device during the device setup. The algorithm and provider must be of the same
form used to generate the original encryption key. If the encryption key was generated using
algorithm=”DES” and provider=”SunJCE” then the decrypt() method has to be called using a
form of the DES algorithm, e.g. “DES/ECB/NoPadding”

CardData class

The com.bankframe.services.devices.MTPinPad.CardData class stores the card track details
obtained from the physical IntelliPIN device. The object parses the raw card data into the three track
details.

Using the IntelliPIN Pad Card-Swipe Device in a Client Application
See the class com.bankframe.services.devices.unittest.PinPadTest for a basic example of a java
client using the slip-printer device. The MCA Example com.bankframe.examples.devices.fe.ui
demonstrates a full Swing front-end example using the device classes.

The following are the basic steps that a client java class generally takes to use the IntelliPIN device
classes:

1 Instantiate the IntelliPIN device object.

2 Open the IntelliPIN device passing it a Master encryption key. The pin data returned by the
physical IntelliPIN device to the PC will be encrypted using this key.

3 Request the user to swipe their card through the physical IntelliPIN device.

4 Wait for a card to be swiped by the user.

5 Request the user to enter their pin number on the physical IntelliPIN device.

6 Wait for the pin to be entered by the user.

7 Close the IntelliPIN device.

For steps 3 and 5 the returned data can be parsed and validated by the client java class as required.

The following code is a sample client using the MagTekIntelliPIN device object:

 import com.bankframe.services.devices.*;

 import com.bankframe.services.devices.SlipPrinter.*;

public class PinPadTest extends Object implements PinPadListener{

 MagTekIntelliPIN pinPad;

 void run() {

 try {

 //The name passed to the device corresponds to the entries used in the

 //BankframeDevices.properties file

 MCA Services Developer Guide Version 2005, Rev. B 313

Enterprise Services Peripherals Support

 //These names have to match for the device to be setup with the correct

 //serial port setting and specific settings.

 pinPad = new MagTekIntelliPIN("COM1.IntelliPinPad",true);

 //PinPad object notifys this test object when a check is swiped,

 //a pin is entered, or when an exception occurs.

 pinPad.addPinPadListener(this);

 //Open the port device specified in the BankframeDevices.properties file:-

 //

 //There are two forms of this method,

 //First Form of open(...):-

 //Takes a parameter which is the Master Encryption key

 //sent to the IntelliPIN to encrypt all messages.

 //Second parameter is the time-out to wait for response

 //from device after loading master key.

 //DeviceException is thrown if pinPad times-out.

 //Encryption key specified in MagTek Programing reference

 // manual:"23AB4589EF6701CD", passed in as a byte array:-

 byte[] theMasterKey = {(byte)0x23,(byte)0xAB,(byte)0x45

 ,(byte)0x89,(byte)0xEF,(byte)0x67

 ,(byte)0x01,(byte)0xCD};

 pinPad.open(theMasterKey, 30000);

 //Second form of open(...):-

 //Parameter is the time-out to wait for

 //response from device after loading master key.

 //This method generates an Encryption Master key

MCA Services Developer Guide Version 2005, Rev. B 314

Enterprise Services Peripherals Support

 //and is therefore slower than the above method.

 //DeviceException is thrown if pinPad times-out.

 //pinPad.open(30000);

 ...

 BankframeLog.log(Bankframe.DEBUG,BankframeLogConstants.

BANKFRAME_SUBSYSTEM,"Swipe card now...");

 if (pinPad.cardDataEntryRequest("swipe your", "card now",10000)) {

 //First param = an Account Number which is used in the

 //encryption of the returned PIN number, can be blank "":-

 //Second param = use the Master key:-

 //Third param = the transaction amount to two decimal places,

 //can be blank "":-

 if (!pinPad.pinEntryRequest("4761234567812348"

 ,MagTekIntelliPINDeviceCodes.UseMasterKey

 ,"12300", 20000);

 //wait 30 seconds for pin entry then cancel

 pinPad.cancelSessionRequest();

 }

 }

 } catch (DeviceException ex) {

 BankframeLog.log(Bankframe.ERROR,BankframeLogConstants.

BANKFRAME_SUBSYSTEM,ex);

 }

 MCA Services Developer Guide Version 2005, Rev. B 315

Enterprise Services Peripherals Support

 BankframeLog.log(Bankframe.DEBUG,BankframeLogConstants.

BANKFRAME_SUBSYSTEM,"Closing down pinPad...");

 pinPad.close();

 pinPad = null;

}

public void handlePinPad(PinPadEvent event) {

 if (event.getType() == event.EXCEPTION_OCURRED) {

BankframeLog.log(Bankframe.DEBUG,BankframeLogConstants.

BANKFRAME_SUBSYSTEM,event.toString());

 BankframeLog.log(Bankframe.DEBUG,BankframeLogConstants.

BANKFRAME_SUBSYSTEM,"Closing down pinPad...");

 pinPad.close();

 System.exit(1);

 }

 BankframeLog.log(Bankframe.DEBUG,BankframeLogConstants.

BANKFRAME_SUBSYSTEM,event.toString());

 // TODO:

 // Do something with the result here, ie., display it or validate it.

 //

 }

}

Notes:

1 The IntelliPIN Pad device is created passing the device name to the constructor. The device name
identifies the devices settings in the bankframeDevices.properties file.

2 The test class implements the com.bankframe.services.devices.MTPinPad.PinPadListener
interface and therefore is directly notified when a card has been swiped or a pin entered by a user.
The test class registers itself as a Pin Pad listener by calling the method addPinPadListener().
When an IntelliPIN pad event occurs the method handlePINPad() is called on the test class. This
event handler is also used to capture exceptions which may occur on the input thread of the
IntelliPIN device allowing the test class to handle all exceptions/errors.

NOTE: IntelliPIN events/exceptions could also be detected directly by using the following
code:

MCA Services Developer Guide Version 2005, Rev. B 316

Enterprise Services Peripherals Support

// E.g., to wait for pin entry do the following in the code:-

 Object data = null;

 if (pinPad.waitConditionPinData(30000)) {

 data = pinPad.getReceivedData();

 //do something with the pin data.

 }

3 There are two forms of the IntelliPIN Pad device open() method. The first form of the open()
method takes an array of 8 bytes representing a standard DES encryption key. This key is sent to
the physical IntelliPIN device as a Master Key for encrypting all pin data sent back to the PC. The
second form of the open() method generates a DES encryption key itself, this method is slower
but generates a unique Master Key. The second parameter is the time-out value, the physical
IntelliPIN device must accept the Master Key within this time.

4 The test class tells the IntelliPIN device to request a card swipe by calling the method
cardDataEntryRequest(). The two strings are the text that are shown on the IntelliPIN device
during the request. The third parameter is the time-out period in milliseconds, this specifies the
length of time that the user has to swipe a card

5 The test class tells the IntelliPIN device to request a pin entry from the user by calling the method
pinPad.pinEntryRequest("4761234567812348",MagTekIntelliPINDeviceCodes.UseMasterKey,
"12300", 20000). The first parameter is an account number which is used in the encryption of
the pin number entered by the user on the physical IntelliPIN device. The second parameter tells
the device to use the Master key created previously. The third parameter is the amount of the
transaction to two decimal places. The two strings can be empty. The fourth parameter is the
time-out period in milliseconds, if the user does not enter a pin in this time then the session is
cancelled by calling the method pinPad.cancelSessionRequest().

6 When the IntelliPIN device is no longer required the connection is shut-down using pinPad.close(
)

7 The classpath must include mca.jar. The Java Communications Extension API jar (comm.jar)
must also be included in the classpath. mca.jar is located in eontec/Common/lib/eontec/.

8 The Java Cryptography API jar files must also be on the classpath or in the jre\lib\ext folder if
the jre is being used to compile and run the test class.

9 The standard serial port settings for the MagTek IntelliPIN card-swipe are: Baud=9600, data Bits
= 7, stop Bits=1, parity = even, flow control = none.

Implementing a new type of MCA Device
The basic requirements for implementing a new type of MCA device object are:

1 The device classes must be in a subpackage of the package com.bankframe.services.devices

2 The device object must implement the interface com.bankframe.services.devices.MCADevice.
This interface declares all the standard device methods.

3 The device object must instantiate the com.bankframe.services.devices.MCADeviceProperties
object to obtain the settings for the device.

 MCA Services Developer Guide Version 2005, Rev. B 317

Enterprise Services Peripherals Support

4 To create messages and commands to transmit to the physical device the class
com.bankframe.services.devices.MCADeviceProtocol is subclassed. The subclass implements
message-generating code specific to the physical device's communication protocol.

5 The BankframeDevices.properties file must be present on the classpath and must contain the
necessary entries for each device object being instantiated in the client application. If the file or
necessary entries are missing then the device initialization will fail.

6 All exceptions must be returned to the calling class/client as a
com.bankframe.services.devices.DeviceException. This is generally achieved by converting
an exception to a com.bankframe.services.devices.DeviceException as follows:

throw (DeviceException) new DeviceException(0).fromException(theGeneralException);

Implementing a new type of Serial-Port device
To design and implement a new type of MCA serial-port device you must, as well as the requirements
in the previous section, implement the following:

4 A serial port device must subclass the basic com.bankframe.services.devices.MCASerialPort
abstract class. MCASerialPort implements the MCADevice interface, and contains a
com.bankframe.services.devices.MCADeviceProperties object.

5 The derived device class must implement the MCASerialPort abstract method protected void
setup()

6 The String deviceName member of the MCASerialPort must be initialized during creation of the
derived device class, e.g. “Com1.SlipPrinter”. This is normally performed in the constructor.
During initialization deviceName is passed to the MCADeviceProperties object to obtain the
correct settings for the device object.

7 The device class subclassing MCASerialPort implements void
handleEvent(java.util.EventObject event) if it has to use data sent by the physical device to
the PC. When a serial event occurs this method will always be called by MCASerialPort.

8 Any data captured, parsed and validated by the method handleEvent(…) must be stored in the
MCASerialPort variable Object receivedData. This is accomplished by calling the
MCASerialPort method dataAvailable(Object data). Therefore the client object can then
query the device object for available data by calling the method public Object
waitforDataAvailable(int timeOut).

Hardware Requirements
MCA has implementations for the following devices:

 A MagTek MiniMicr cheque reader with RS-232 connection, part number 22522003. This requires
a 12v, 800mA power supply Adapter.

 A MagTek non-portable IntelliPIN Plus swipe card reader with RS-232 connection. This requires a
12V 300mA power supply which is plugged into the RS-232 cable supplied with the device,
partnumber 30019304.

 An Epson TM-U375 Slip Printer. This requires a 24V 2A power supply available from PC Cubed
(see References).

MCA Services Developer Guide Version 2005, Rev. B 318

Enterprise Services Peripherals Support

The devices are connected to the PC/Unix machine via the Serial port using an RS-232 serial lead.
The IntelliPIN Plus has a serial cable with integrated power supply jack, part number 300115119.

Software Requirements
The Java Communications Extension API is required, see download section.

 The Java Cryptography Extension API is required for the MagTek IntelliPIN device classes, see the
download section.

 The MagTek device drivers for Windows are not used for controlling the MagTek devices. Control
of the MagTek devices is performed directly from the java code using low-level serial port
communication.

Installation and configuration of required hardware
See Hardware Requirements section for necessary power supplies for each device. The correct power
supply must be used with each device. The devices are connected to the serial port of the PC/Unix
machine. The serial port is a nine pin RS232 connection.

Epson Slip-Printer
The Epson Slip Printer requires no hardware setup other than plugging in the power supply and
connecting the serial lead to the serial port of the PC.

MagTek MiniMicr cheque reader
The MagTek MiniMicr cheque reader device configuration is controlled from the PC using text
commands sent via the serial connection. The commands are described in the "MiniMicr RS232
technical reference manual", part-number 99875057.

The following sub-sections show a subset of these commands necessary for basic operations on the
Mini Micr.

The commands are sent to the physical MiniMicr device by using the following methods in the class
com.bankframe.services.devices.MTMiniMicr.MagTekMiniMicr:

 public void setCommand(String command)

 public void setCommand(String command, byte commandByte)

The current command settings are requested from the physical MiniMicr device by using the following
method in the class com.bankframe.services.devices.MTMiniMicr.MagTekMiniMicr:

 public String requestCommand(String command, boolean bWait, int waitTimeout)

MiniMicr Command Syntax

The commands are of the following format:

[COMMAND][DATA]<CR>

 MCA Services Developer Guide Version 2005, Rev. B 319

Enterprise Services Peripherals Support

where:

[COMMAND] is 2 or 3 alphabetical characters.

[DATA] is optional depending on the command.

<CR> carriage return, 0x0D byte, is always required.

All characters are ASCII.

No spaces, brackets, or angle brackets required.

All the values shown in the following sections are defined in the interface
com.bankframe.services.devices.MTMiniMicr.MagTekMiniMicrDeviceCodes.

SWA - SWITCH A command

The SWA command controls the communications parameters, shown in Table 41. Communications
Parameters:

Table 41. Communications Parameters

Bits

7 6 5 4 3 2 1 0 Parameters

 0 0 0 Reserved

 0 0 1 Baud Rate: 300

 0 1 0 Baud Rate: 600

 0 1 1 Baud Rate: 1200

 1 0 0 Baud Rate: 2400

 1 0 1 Baud Rate: 4800

 1 1 0 Baud Rate: 9600

 1 1 1 Baud Rate: 19200

 0 0 Data and Parity: 8, None.

 0 1 Data and Parity: 7, Mark (1).

 1 0 Data and Parity: 7, Even.

 1 1 Data and Parity: 7, Odd.

 0 CTS/DSR: Use

 1 CTS/DSR:Ignore

 0 Number of Stop Bits:1

 1 Number of Stop Bits:2

0 Intercharacter Delay: No

MCA Services Developer Guide Version 2005, Rev. B 320

Enterprise Services Peripherals Support

Bits

7 6 5 4 3 2 1 0 Parameters

1 Intercharacter Delay: Yes

The data for this command consists of 8 ASCII characters representing each bit of the above table.
To execute the SWA command the following ASCII text is sent to the serial port output stream:

SWA00100110<CR>

This tells the MiniMicr device to use:

baud rate: 9600,

data and parity: 8 and None,

CTS/DSR: ignore,

Number of stop bits: 1,

intercharacter delay: No.

Each bit of the command shown in the table above is sent as a separate ASCII character. There are
no spaces and the carriage-return, 0x0D, is sent to finish the command. The MiniMicr will not reply
after executing the command. To make the command permanent after the MiniMicr is switched off,
use the SA (Save) command.

NOTE: The new settings for the serial port will not become effective until the RS (Reset) command is
executed.

To request the MiniMicr for its current settings the command is sent to the device as follows:

If the following command is sent:

SWA<CR>

The device replies with its current settings in the following form:

SWA=00100110<CR>

 MCA Services Developer Guide Version 2005, Rev. B 321

Enterprise Services Peripherals Support

SWB - SWITCH B command

The SWB command controls the message format. When a cheque is swiped the MiniMicr will send the
cheque data to the PC serial port wrapped in the chosen message format. The message formats are
shown in Table 42. Message Formats:

Table 42. Message Formats

Bits

7 6 5 4 3 2 1 0 Parameters

 0 <LF>: No

 1 <LF>: Yes

 0 <CR>: No

 1 <CR>: Yes

 0 <ETX>: No

 1 <ETX>: Yes

 0 <ESC>: No

 1 <ESC>: Yes

 0 <STX>: No

 1 <STX>: Yes

 0 Send Data after Error?: No

 1 Send Data after Error?: Yes

 0 Send Status after Error?: No

 1 Send Status after Error?: Yes

0 0 0 0 0 0 Comm Mode: 0 - Data Only

1 0 0 0 0 0 Comm Mode: 1 - Data<CR>

0 0 0 0 0 1 Comm Mode: 2 - Data<LF>

0 0 0 0 1 1 Comm Mode: 3 - Data<CR><LF>

0 0 1 0 0 0 Comm Mode: 4 - <ESC>Data

0 0 1 0 1 0 Comm Mode: 5 - <ESC>Data<CR>

0 1 0 1 0 0 Comm Mode: 6 - <STX>Data<ETX>

1 0 0 0 0 1 Comm Mode: 7 -
<STX>Data<ETX><LRC>

MCA Services Developer Guide Version 2005, Rev. B 322

Enterprise Services Peripherals Support

The data for this command consists of 8 ASCII characters representing each bit of the above table.
To execute, send the SWB command as follows to the serial port output stream:

SWB00001010<CR>

Each bit of the command shown in the table above is sent as a separate ASCII character. There are
no spaces and the carriage-return, 0x0D, is sent to finish the command. The MiniMicr will not reply
after executing the command. The new settings become effective immediately. To make the
command permanent after the MiniMicr is switched off, use the SA (Save) command.

The above sample tells the MiniMicr device to use Comm Mode 5 for sending cheque data to the PC
serial port, which has the following form:

<ESC>DATA<CR>

This message format facilitates easy parsing of the returned cheque data as the start (ESC, 0x1B) and
the end (CR, 0x0D) of the cheque data can be detected in a long stream of data.

The selection of Comm Modes, shown in the above table, is a quick way of selecting multiple control
characters.

If the following command is sent:

SWB<CR>

The device replies with its current settings in the following form:

SWB=00000010<CR>

When used in combination the message format always has the following order of elements:

<STX><ESC>DATA<ETX><CR><LF>

Send Data After Error. The request ‘Send Data After’ Error specifies whether the MiniMicr reader will
return data to the HOST after a read error. If YES is selected and the MiniMicr detects a read error,
the MiniMicr will still send the data back to the Host. If NO is selected and the MiniMicr finds an error,
it will discard the data and nothing will be sent. The error conditions are listed in the table following.

Send Status After Data. The Send Status After Data option makes the MICR append a two-digit
error/status code to the end of the MICR data. For most formats, the error/status code will always be
preceded by a forward slash (/). The error/status codes are listed in the table following. For
example, if a Canadian cheque (code 08) is read and has no errors, and the cheque data is
"1234567890", and the message format is <STX>DATA<ETX> then the message from the MICR will
look: <STX>123456780/08<ETX>

The status code is always at the end of the data, not the end of the message.

Priority Code Type Description

9 01 Error No MICR data: no transit and no account found

8 09 Status Mexican cheque

7 08 Status Canadian cheque

6 05 Error Transit error: No transit, bad character, bad length, bad cheque

 MCA Services Developer Guide Version 2005, Rev. B 323

Enterprise Services Peripherals Support

Priority Code Type Description

digit

5 07 Error Account Error: No account, bad character

4 04 Error Cheque # error: Bad character in cheque number

4 04 Status No cheque number

3 03 Status Low MICR signal, good read

2 10 Status Business Cheque

1 11 Status Amount field present

0 00 Status Good read

Notes:

1 The LED indicator on the MICR will turn red on all error conditions.

9 The absence of a cheque number is not considered an error.

10 If a multiple error condition occurs, the error or status code with the highest priority is reported.

11 All unreadable MICR characters are transmitted as an "?" ASCII character (hex 3F).

FC - Format change command

Different formats are used by the MICR to process and transmit the cheque data read by the MICR
back to the host (not the same as the message format). This command allows for the selection of a
format for transmitting the cheque data.

The MICR has a built-in list of formats from which the user may select one to become the active
format every time a cheque is read. Each format has a 4-digit number. The first two digits indicate
the format number, and the last two digits are specific parameters used for various functions by each
format. For example, in format "0415" , the "04" refers to the format number 4 and the 15 refers to
the maximum number of characters allowed for the account field as specified in that format.

For a full list of supported formats refer to the MiniMicr RS232 technical reference manual.

The format used in the MCA device is the raw data format, FC0000. This format sends the entire
cheque data to the Host when a cheque is read and does not process the individual fields of the
cheque data. This format can be changed using the FC command at any stage.

To execute, the command is sent in the following form:

FC6600<CR>

To obtain the current format send:

FC<CR>

and the MICR will reply with the format such as follows:

FC=0000<CR>

MCA Services Developer Guide Version 2005, Rev. B 324

Enterprise Services Peripherals Support

Data Format 00xx: Raw Data Format. This format sends the entire MICR cheque data back to the
Host. The Host then parses it as necessary.

xx -specify what symbol set to use. Choose from the table below.

Add xx + 16 - change multiple spaces to one space.

Add xx + 32 - Remove all spaces.

Examples of received data from the MiniMicr:

FC0000: T122000218T 1234 5678 9U 1321

FC0001: t122000218t 1234 5678 9o 1321

FC0017: t122000218t 1234 5678 9o 1321

FC0033: t122000218t123456789o1321

XX Transit
symbol

On-Us
symbol

Amount
symbol

Dash
symbol

Read
Error

00 T U $ - ?

01 t O a d ?

02 T O A D ?

03 T U $ - *

04 T U $ 0 ?

05 T U $ 0 *

06 t O a 0 ?

07 T U $ none ?

VR - Version command

The Version command gives the current software revision in the MICR Reader device. To execute,
send the VR command followed by a carriage return as follows:

VR<CR>

The MiniMicr response is of the following format:

Version AR3.00.13A

SA - Save command

All changes are considered temporary until the Save command is executed. The Save command saves
all changes to the MICR Reader memory and makes them permanent. The MICR Reader will execute
the command but it will not reply. This command is not necessary as the device can be reinitialized
each time it is started in the desired format without changing the memory settings of the MICR device.
To execute, send the SA command followed by a carriage return as follows:

 MCA Services Developer Guide Version 2005, Rev. B 325

Enterprise Services Peripherals Support

SA<CR>

RS - Reset command

The Reset command resets the MICR firmware to the normal operating state of waiting for a cheque to
read. The command also resets the serial port to the most recent settings provided by the SWA
command. To execute, send the RS command followed by a carriage return as follows:

RS<CR>

NOTE: It was found that this command updated the serial communications settings and stopped the
MiniMicr working. So the default serial communications on the device have to be used.

MagTek IntelliPIN Plus card-swipe reader
When plugged in the device's console displays the message "Calculating CRC" and "Boot Loader xxx"
where xxx is the boot loader identifier. If the physical IntelliPIN device is configured already for
Interactive mode then the greeting message "Welcome" is displayed on the LCD display. If the
physical IntelliPIN device is configured already for another mode then the message "Ready for
program data" is displayed on the LCD display.

The physical IntelliPIN device can be configured in two ways:

 It can be configured from its console using the LCD display.

 It can also be configured programmatically from the PC.

Configuring the IntelliPIN device from its console

The three soft round keys at the top of the console under the LCD display are used for menu operation
during device configuration and for activating menus during normal operation. The soft keys allow the
use of display-based prompts.

The mode of operation that is required for the MCA to control the IntelliPIN is the Interactive(PC)
mode. In this mode the device requires the PC, or Host, to interactively control the functions of the
IntelliPIN Plus. In this mode the IntelliPIN Plus cannot initiate any operation without a command from
the PC. The steps to set up the physical IntelliPIN device from its console are described in the
following sections. The complete list of console operations is contained in the “IntelliPIN Installation
and Operation Manual”, manual part number: 99875066.

Configuring the IntelliPIN operating mode. To change the mode of operation of the IntelliPIN
device to Interactive the following steps are performed on the device's console:

1 Press the F1 function key (first button on the left below the LCD), and immediately press the 5
numeric key. (This may take a few practice tries as immediately means less than a second.) The
display will be:

Enter Password

_ _ _ _

If the password is not entered within 30 seconds, or if CLEAR is pressed, the display will revert
back to the idle state.

2 Enter the password and press the Enter key. The default password is 7638 or SOFT.

MCA Services Developer Guide Version 2005, Rev. B 326

Enterprise Services Peripherals Support

If the password is entered correctly, the next display to appear will be:

Set Operate Mode

Next Edit Exit

3 The function buttons shown above (second line) are from left to right; F1, F2 and F3. If Next is
selected (F1), each setup option will be displayed sequentially. If Edit is selected (F2), the
parameters within each setup option will be selected. If Exit is selected (F3), the display will
revert to the idle state.

If Set Operate Mode is not displayed, press Next until it is displayed.

4 With Set Operate Mode displayed, press Edit, then Sel until the following appears:

Mode:Interactive

Sel Acpt Skip

5 Press Acpt and the display will return to Set Operate Mode, and the Interactive mode is selected.

6 The next display will be:

Insert Hdr:No

Sel Acpt Skip

The default is No. A header is inserted when the Mag-Tek Micr Plus is used with the IntelliPin
Plus. Press Acpt after Yes or No is selected.

7 Press Next continually to cycle through the menu. The Setup menu for the Interactive Mode is as
follows:

Set Operate Mode

Communications

Card Reader Trks

PIN Options

Power Time Out

Key Parity Check

Configuring the IntelliPIN RS-232 serial communications. To change the communications mode
of the physical IntelliPIN device from the console then the following steps are performed:

1 From the main menu press the F1 function button, Next, until the following appears:

Communications

Next Edit Exit

2 Press Edit (F2) and the following will appear:

Baud: 9600

Sel Acpt Skip

 MCA Services Developer Guide Version 2005, Rev. B 327

Enterprise Services Peripherals Support

3 The default value is 9600 baud. To change this value, press Sel until the required value appears.
The baud rates that will appear sequentially as Sel is pressed are 300, 600, 1200, 2400, 4800 and
9600.

4 When the required baud rate appears, press Acpt. The program will accept the value and display
the next option:

Parity: EVEN

Sel Acpt Skip

5 The default is Even. To change parity, press Sel until the required parity appears. The options
shown will be ODD, SPACE, MARK and EVEN.

6 When the required parity appears, press Acpt. The program will accept the parity and display the
next option:

CTS/DSR: Ignore

Sel Acpt Skip

7 The CTS/DSR default is Ignore. The alternative is Use. To change this option, press Sel until Use
appears. This option might be enabled in cases where the PC uses control signal hand-shaking to
synchronize communication with the device.

8 When the selection is made, press Acpt. The program will return to Communications.

Installation and configuration of required software

Java Communications Extension API on Windows
To distribute the Java Comms API with a release product the following files must be present on the
client Windows machine:

The comm.jar must be in the JDK or JRE /lib/ext folder.

The javax.comm.properties must be in the JDK or JRE /lib folder or if that is not possible then in
the same folder as the comm.jar. This file must not be edited.

The win32com.dll must be in the JRE or JDK /bin folder, which must be on the system path. If there
are several JREs or JDKs on the system only the one being used must be on the system path, the
Comms Driver will fail otherwise. If the Java Comms API is being used by an applet in a web page
then the applet must have access permissions to win32com.dll.

Java Communications Extension API on Solaris
The Solaris implementation of the Java communications API requires the "Solaris Native Threads Pack"
for older, un-patched versions of Solaris and JDK 1.1.6 only.

MCA Services Developer Guide Version 2005, Rev. B 328

Enterprise Services Peripherals Support

To install the Java Communications Extension API on Solaris:

Ensure that the library libSolarisSerialParallel.so can be loaded. You can do this either by
adding libSolarisSerialParallel.so to the environment LD_LIBRARY_PATH or by copying
libSolarisSerialParallel.so to /usr/lib.

Example: Assuming your current working directory is where you extracted the distribution,

 % setenv LD_LIBRARY_PATH `pwd`:$LD_LIBRARY_PATH

or

 $ export LD_LIBRARY_PATH=$PWD:$LD_LIBRARY_PATH

or, if you have administrative privileges on your machine,

 % cp libSolarisSerialParallel.so /usr/lib

If you are using the JDK (not the JRE) add comm.jar to your classpath.

Example: If you don't have a CLASSPATH set currently,

 % setenv CLASSPATH `pwd`/comm.jar

or, if you have something in your CLASSPATH already,

 % setenv CLASSPATH `pwd`/comm.jar:$CLASSPATH

Copy the file javax.comm.properties to your <JDK>/lib or your <JRE>/lib directory.

If you don't have write permission to <JDK>/lib or <JRE>/lib, you can keep

javax.comm.properties in the same directory as comm.jar. The search order for
javax.comm.properties is:

1 <JDK>/lib

2 The directory that contains the first valid comm.jar that is included in the classpath.

The javax.comm.properties file must be installed. If it is not, no ports will be found by the system.

Make sure you have the JDK native thread package installed. This implementation only works with
native thread. Look at http://java.sun.com/products/jdk/ for details.

See the Sun documentation for known limitations of the Solaris Java Comm API.

Java Communications API Trouble Shooting
If an applet using the devices fails to start up use the web browser’s java console to view the
complete error messages.

To start the java console in Internet Explorer go to the following menu:

Tools\Internet Options…

Choose the Advanced tab.

In the Microsoft VM section click on the “Java console enabled” . Restart the web browser. The
Java console will be shown the next time an applet is started in the web browser.

 MCA Services Developer Guide Version 2005, Rev. B 329

Enterprise Services Peripherals Support

The following message is displayed during device initialization if the system has been set up correctly,
this message can be ignored:

Caught java.lang.NullPointerException: name can't be null while loading driver

<driver name>

If an error of the following form is displayed:

java.lang.ExceptionInInitializerError: java.security.AccessControlException

check the security permissions in the JRE or JDK policy file:

/lib/security/java.policy

or check the security permissions in the policy file in the Windows profile folder:

.java.policy

A sample policy file, javaDev.policy, is in the MCA package:
com.bankframe.examples.devices.fe.ui

The following message is displayed during device initialization if the system has not been set up
correctly as described above:

java.lang.NullPointerException: name can't be null

Check the location of the above files. Ensure there is only one win32com.dll on the system and that
it is in the JRE or JDK /bin folder and that this is the only JRE or JDK /bin folder on the classpath.

The following message is displayed during device initialization if the win32com.dll is not on the
system path:

Error loading win32com: java.lang.UnsatisfiedLinkError: no win32com in

java.library.path

If the applet still fails still then reinstall the Java Plugin, which is required for the Swing front-end
examples.

Java Cryptography Extension API
To distribute the Java Cryptography API with a release product the following files must be present on
the client machine:

The jce1_2_1.jar, local_policy.jar, sunjce_provider.jar and US_export_policy.jar files must
either be in the jre\lib\ext folder if the JRE is being used to run or compile the classes or the jars
must be in the classpath if the JDK is being used to run or compile the code.

A sample policy file, javaDev.policy, is in the MCA package:
com.bankframe.examples.devices.fe.ui

MagTek Device Drivers for Windows
As stated previously the MagTek device drivers for Windows are NOT used for controlling the MagTek
devices in the MCA and therefore are not required to be installed at all. Control of the MagTek devices
is performed directly from the java code using low-level serial port communication.

MCA Services Developer Guide Version 2005, Rev. B 330

Enterprise Services Peripherals Support

Topology
Currently the MCA devices support is for client software. It is not in the form of Enterprise Java
Beans, this will be built into the architecture in the future. Currently a java client can use the MCA
classes as are contained in the jar file mca.jar.

Client-side Application
For a client-side application to use MCA devices support the classpath must include mca.jar and the
Java Communications API comm.jar.

To use the MagTek IntelliPIN peripheral the Java Cryptography API jar files must also be on the
classpath or in the jre\lib\ext folder if the jre is being used to compile and run the client.

Also found that there are issues with Unix implementations of the Comm extension API (see the Sun
developers' forum pages referenced in the links section of this document). There is a Solaris package,
but this implementation is more restricted than the Windows version, see download instructions for
more details. Support for other flavours of Unix require third party packages.

Server-side
Enterprise Java Beans will be developed for the MCA devices in the future. A server-side Servlet can
use the MCA devices support as it is included in mca.jar.

Client-side Applet
There are problems using the Comm extension API from an Applet. There is a bug registered by Sun:
BUG 4251547 categorized as javax_commapi.

To use the MCA devices support in an Applet a policy file is required with entries of the following form:

grant codebase "http://theAppletSite" signedBy "THE_ALIAS_HERE" {

permission java.lang.RuntimePermission "loadLibrary.win32com";

permission java.io.FilePermission "${java.home}\\lib\\win32com.dll", "read";

permission java.io.FilePermission "${java.home}\\lib\\javax.comm.properties",

"read";

permission java.io.FilePermission "${java.home}\\lib\\javax.comm.properties",

"delete";

permission java.util.PropertyPermission "java.home", "read";

permission java.util.PropertyPermission "javax.comm.properties", "read";

permission java.io.FilePermission "BankframeFrontendApplication.properties",

"read";

permission java.util.PropertyPermission "BankframeFrontendApplication.properties",

"read";

permission java.io.FilePermission "BankframeDatePatterns.properties", "read";

permission java.util.PropertyPermission "BankframeDatePatterns.properties", "read";

 MCA Services Developer Guide Version 2005, Rev. B 331

Enterprise Services Peripherals Support

permission java.io.FilePermission "BankframeDevices.properties", "read";

permission java.util.PropertyPermission "BankframeDevices.properties", "read";

permission java.io.FilePermission "BankframeFrontend.properties", "read";

permission java.util.PropertyPermission "BankframeFrontend.properties", "read";

permission java.io.FilePermission "BankframeMessages.properties", "read";

permission java.util.PropertyPermission "BankframeMessages.properties", "read";

permission java.io.FilePermission "BankframeResource.properties", "read";

permission java.util.PropertyPermission "BankframeResource.properties", "read";

};
The MCA example com.bankframe.examples.devices.fe.ui demonstrates a full Swing front-end
example using the device classes. To use this example as an Applet the Sun Java Plug-in is required:

http://java.sun.com/products/plugin/

Unit Test classes
The MCA device support classes can be tested by using the unit-test classes in mca.jar. The device
unit tests are in the package com.bankframe.services.devices.unittest. These can be used as
standalone console applications or as an applet. They initialise and start an MCA device. To use a unit
test class the following command is used:

java -classpath ./myClasses/mca.jar $JAVA_HOME/lib/ext/comm.jar

where $JAVA_HOME is the location of the JDK/JRE being used

The Java Communications API must be installed on the machine and the
BankframeDevices.properties file must contain the correct settings to initialize the required device.

The unit-tests can be used:

 As a simple console application with no graphical user interface or

 As an applet in a html page

The MagTek MiniMicr is tested by the class
com.bankframe.services.devices.unittest.MiniMicrTest. If the device is working then the user
will be prompted to swipe a cheque or to exit.

The MagTek IntelliPIN is tested by the class
com.bankframe.services.devices.unittest.PinPadTest. If the device is working then the user will
be prompted to swipe a card or to exit. The Java Cryptography API must be installed on the machine.

The MagTek MiniMicr is tested by the class
com.bankframe.services.devices.unittest.SlipPrinterTest. If the device is working then the
slip-printer will print out test information.

MCA Services Developer Guide Version 2005, Rev. B 332

http://java.sun.com/products/plugin/

Enterprise Services Peripherals Support

 Future development
Server-side Java Beans implementation of the MCA devices support will be developed. Further device
implementations will be added to the MCA. Support for further basic forms of communication to
peripherals will be added, such as communication to parallel port devices, etc.

References

Links:
 http://www.magtek.com/

 http://developer.java.sun.com/

Downloads
Java Comm Extension API for Serial communications is located at:

 http://java.sun.com/products/javacomm/

In Unix the .tar.Z file must first be unpacked using GZip -d *.tar.Z and then the .tar file is
decompressed using tar xvf *.tar

Once decompressed, follow the readme instructions to integrate it into the jdk /jre already installed on
the machine, see "Installation and Configuration of Software" section above.

Sun currently support only the Solaris/SPARC and Windows platforms, support for other flavours of
unix has been developed by other third-party developers, see the download readmes for more
information.

Java Cryptography Extension API is located at:

 http://java.sun.com/products/jce/index.html/

See the download readme for more information.

Sample source code
Sample Serial Port Communication classes are contained in the javacomm extension pack.

See the package com.bankframe.services.devices.unittest for a basic examples of using the MCA
implemented device types. The MCA example com.bankframe.examples.devices.fe.ui
demonstrates a full Swing front-end example using the device classes.

Printed Matter
Technical documents on the MagTek devices are downloadable from the MagTek site if you have a
password. E-mail MagTek support for a username and password.

 MCA Services Developer Guide Version 2005, Rev. B 333

http://www.magtek.com/
http://developer.java.sun.com/
http://java.sun.com/products/javacomm/
http://java.sun.com/products/jce/index.html/

Enterprise Services Printing Framework

Printing Framework
The MCA Services printing framework supports high quality form printing via the third party Accelio
product. The framework includes a Session EJB which accepts a Vector of DataPackets and generates
an XML file through XSLT. The XML file is then processed by Accelio to produce an output to the
specified printing device.

The MCA Services printing framework is implemented as a standard two layer Session Bean EJB as
follows:

 The solution set is provided in the com.bankframe.services.print package.

 The implementation is provided in the com.bankframe.services.impl.print package.

com.bankframe.services.print
This package defines the MCA printing framework to produce the XML file necessary for use with
Accelio. It contains the following classes:

PrintBean
This class provides all the methods for accepting a vector of DataPackets and exporting an XML file
for use with Accelio.

imPrint()

This method has the following signature:

public Vector imPrint(Vector data)

 throws ProcessingErrorException, RemoteException;

This method accepts a Vector of DataPackets containing the data to be printed. This method
transforms the data in the vector into an XML file, acceptable for processing with Accelio.

XML files do not accept tags with white space however the keys in the DataPacket contain white
space. This method replaces space characters within the keys in the DataPacket with underscores _ ,
before parsing the Vector of data, transforming the data from the Vector to Siebel XML format then
using a stylesheet, again transforming it to the resulting Accelio XML format.

The first DataPacket in the Vector must contain a Key named JF_JOB_CARD. This key is a requirement
for the Printing process for Accelio. The key specifies values, which define printing information, a
minimum requirement is a jobname to be carried out in Accelio and/or also contains further values for
example printer information. For further reading on JF_JOB_CARD values visit www.accelio.com

Generating the Service
The REQUEST_ID of the first DataPacket in the Vector must have a REQUEST_ID of MC065.

It must also carry forward the JF_JOB_CARD required by Accelio.

NOTE: For JF_JOB_CARD details refer to the Accelio Architecture section.

MCA Services Developer Guide Version 2005, Rev. B 334

http://www.accelio.com/

Enterprise Services Printing Framework

For example, from a JSP front end, the following would be specified within the JSP:

<FORM NAME="printPage" ACTION="" METHOD="post">

<p>Title

 <input type="text" name="Title">

</p>

<p>First Name

 <input type="text" name="FirstName">

</p>

<p>Surname

 <input type="text" name="Surname">

</p>

<input type="hidden" name="REQUEST_ID" value="MC065">

<input type="hidden" name="JF_JOB_CARD" value="jobname printername">

<input type="submit" name="Submit" value="Submit">

Consult JSP front-end Architecture documentation for further details.

Calling the Service from another Session
When calling the Print service from another session, a Vector of DataPackets must be passed to the
PrintBean and the imPrint method, for example:

import com.bankframe.services.impl.PrintHome;

import com.bankframe.services.Print;

Class SampleBankingProcessBean {

 Public testPrint() {

 PrintHome home = (PrintHome)Server.lookup("eontec.bankframe.print");

 Print print = home.create();

 ---- create DataPackets

 dp.put("JF_JOB_CARD", "jobname printername");

 print.imPrint(dataPackets);

}

 MCA Services Developer Guide Version 2005, Rev. B 335

Enterprise Services Printing Framework

}

NOTE: The JF_JOB_CARD must be specified within the Vector, and should be placed as the first
DataPacket in the Vector. For details on JF_JOB_CARD see the following section

Accelio Architecture
BankframeResource.properties holds three properties relating to the XML file produced by the print
service. These three properties are:

Collector Directory location: e.g. print.datFilePath=D:\\JetForm\\Central\\Server\\data\\

The stylesheet location used by the print service e.g.
print.styleSheetLocation=D:\\Mca\\Printing\\stylesheets\\

The stylesheet name used by the print service e.g.

print.styleSheetName=JetFormXSL.XSL

Control Process
The MCA Services printing framework requires two instances of Accelio, this involves two installs which
sets up the following directory structure:

MCA Services Developer Guide Version 2005, Rev. B 336

Enterprise Services Printing Framework

 The XML file produced by the printing service is stored temporarily in the Accelio collector
directory and has the extension .DAT

 This .DAT file is then picked up by the Accelio control, and converted to a Field-Nominated Format
file and dropped into another collector directory in the second instance of Accelio. E.g.
D:\JetForm\Central\Server2\data Field-Nominated Format is structured keys and values from
the Vector of DataPackets e.g.

^job jobname printername

^field LoanType

car

^field Occupation

Architect

^field DOB

23/12/74

^field Basic_Income

 MCA Services Developer Guide Version 2005, Rev. B 337

Enterprise Services Printing Framework

40000

^field Home_Telephone

5556767

 Dropping the field-nominated format file in the second instance of Accelio is a result of the task
table entry in the first instance of Accelio e.g.

!x JFNOJOB * xmlimport "-config @IniFilename. data.uri=@InFile.

output.uri=D:\jetform\central\server2\data\@InFileBase..dat" "Outputs DAT to

other Central instance"

 The task above is called JFNOJOB as the original XML file contains a JF_JOB_CARD entry and no
specific header information.

 As there is a JF_JOB_CARD entry in the first file, this now gets converted to the jobname header
information in the field-nominated format file and contains the jobname to be carried out on the
second instance of Accelio.

Example conversion

 The field nominated format file will contain jobname information derived from the original
JF_JOB_CARD: The first instance XML file contains:

<?xml version="1.0" encoding="UTF-8"?>

<v>

 <d>

 <JF_JOB_CARD>jobname printername</JF_JOB_CARD>

 <OWNER>eontec Ltd</OWNER>

 <DATA_PACKET_NAME>Test1 DP</DATA_PACKET_NAME>

 </d>

 This information will be converted to the header of the field-nominated format file in the second
instance:

^job jobname printername

 The jobname then identifies the task to be carried out on the Printer task table of the second
instance of Accelio, e.g.

!f jobname HPLJETU d:\mca\printing\forms\xmltest4.mdf * 1 T JFMERGE * * C "test

print"

 This identifies the task to be carried out jobname, the printer name printername, the path of the
form name used e.g. d:\mca\printing\forms\xmltest4.mdf and other printing task information,
and the standard layout is as follows:

!f <Job name> <Printer name> <Form file> <Preamble file> <Macro number> <Load

flag> <Task id> <Input file> <Output file> <On error> <Comments>

MCA Services Developer Guide Version 2005, Rev. B 338

Enterprise Services Caching Framework

Architecture Overview

Caching Framework
This section describes the generic caching framework provided by MCA Services.

Uses of caching
Caching of data can be used anytime it is expensive (in terms of time) to access some data. By
caching data in local memory unnecessary expensive data accesses can be avoided. Below are some
examples of where caching is used in MCA:

 MCA Services Developer Guide Version 2005, Rev. B 339

Enterprise Services Caching Framework

Creating JNDI initial contexts Creating JNDI initial contexts is very expensive. By caching
initial contexts they can be re-used, meaning that each initial
context only needs to be created once

EJB Home references Looking up EJB home references is also expensive, so again
caching EJB Home references reduces the number of lookups
that have to be done, thus increasing performance

Financial Process Integrator Typically communicating with legacy systems is an expensive
process, therefore it makes sense to try and cache data
received from hosts, in order to minimise the communication
required with the legacy system

Configuration information Configuration information is stored in a file called
BankframeResource.properties. Reading from a file is an
expensive process so the contents of the file are cached in
memory to improve performance.

In Memory and Persistent Caches
Caches can be divided into two broad categories:

In Memory Cache

Local cache. This kind of cache only uses data stored in local memory, i.e. the data in the cache is
never stored in a persistent store. The initial context and EJB home caches are examples of this kind
of cache. This kind of cache is typically used to cache objects that are expensive to instantiate.

Persistent Cache

This kind of cache is used to cache data that is stored in some persistent store. The Financial Process
Integrator and configuration information are examples of this kind of cache. This kind of cache is used
to cache objects that are expensive to read from the persistent store. This category of cache can be
sub-divided into two more categories:

Read-only caches. Read-only caches contain data that is only ever read and can never be updated.

Read-write caches. Read-write caches contain data that can be read, and also re-written to the
persistent store

Functionality of a Cache
Any cache must provide the following functions:

 Associate an object with a key that can be used to retrieve the object at a later time

 Provide a means to iterate over the contents of the cache

 Provide a means to manage the size of the cache, by removing expired data from the cache

In addition persistent caches must provide the following functions:

 Maintain consistency between the in memory cache and the data stored in the persistent store,
i.e. if the data in the persistent store changes, the cache must be updated.

MCA Services Developer Guide Version 2005, Rev. B 340

Enterprise Services Caching Framework

 Read-write caches must provide a means to flush changes made to cached objects to the
persistent store

What Does the Generic Framework Provide?
The generic cache framework provides:

 A generic implementation of an in memory cache.

 A plugable CachePolicy interface that allows the policy used for removing expired objects to be
customized.

 A clean up interval to define how often the CachePolicy will be asked to check for expired objects

 A framework for implementing persistent caches that supports maintaining the cache consistency
and flushing updates to the persistent store.

 An easy to use API; the Cache class implements the java.util.Map interface so that its API will
be familiar to all Java programmers, and so that it can be easily integrated into code that
previously used Hashtables or HashMaps for caching data.

 Non key indexing of caches to facilitate retrieval of data in the cache if the primary key value is
not known.

com.bankframe.services.cache
The generic caching framework is implemented in the com.bankframe.services.cache package. This
package contains the following interfaces:

 Cache: this interface defines the basic methods that all cache implementations must provide.

 PersistentCache: this interface extends the Cache interface and must be implemented by all
persistent caches that are configured via BankframeResource.properties.

 CachePolicy; this interface defines a mechanism for customizing the policy used for removing
expired objects from the cache.

 ConfigurableCachePolicy: This interface extends CachePolicy and provides a means for policy
objects to be configured via the BankframeResource.properties file. This interface must be
implemented by all policy objects that can be configured via BankframeResource.properties

 NamedCache; this interface ensures implementing cache classes can be identified by String
names.

 CacheIndexer; this interface defines the basic methods that all cache index implementations must
provide.

 CacheListener; this interface ensures implementing classes can be notified of events in a cache
that affect a particular key.

com.bankframe.services.cache.Cache
This interface defines all the methods that all caches must implement. It extends the java.util.Map
interface which means that all caches implementing this interface must also implement the map
interface.

 MCA Services Developer Guide Version 2005, Rev. B 341

Enterprise Services Caching Framework

com.bankframe.services.cache.GenericCache
This class provides a generic implementation of a local in memory cache. It also provides the means
for this class to be extended to provide a persistent cache. To establish the clean up interval, this class
refers to cache.cleaninterval property. If not defined, the value defaults to 10000 milliseconds. This
class implements the com.bankframe.services.cache.PersistentCache interface. We list below the
constructors and most commonly used methods unique to the GenericCache class.

Constructors

The GenericCache class has a number of constructors, each of which allows the GenericCache class
to be used in a different fashion. If a constructor does not specify a CachePolicy object then the
default behaviour will be to keep an entry in the GenericCache until it is removed by calling one of:
remove(), removeAll() or clear().

GenericCache(). This constructor can be used to create an in memory cache that has no caching
policy. When a GenericCache is created with this constructor its behaviour will be the same as the
java.util.HashMap class.

GenericCache(CachePolicy policy). This constructor can be used to create an in memory cache
that uses the specified caching policy.

GenericCache(Map persistentMap). This constructor can be used to create a persistent cache. The
persistentMap parameter specifies a java.util.Map implementation that accesses the persistent
store directly. A cache created with this constructor will have no caching policy.

GenericCache(Map persistentMap, CachePolicy policy). This constructor can be used to create a
persistent cache that uses the specified caching policy.

put() method

The put() method is used to store an object in the Cache. This method is declared by the
java.util.Map interface and has the following signature:

public Object put(Object key, Object value);

 The key parameter specifies the key for the object to store in the cache

 The value parameter is the object to store in the cache

 This method returns the previous value associated with the key, or null if there was no
previous value

get() method

The get() method is used to retrieve values from the cache. This method is declared by the
java.util.Map interface and has the following signature:

public Object get(Object key);

 The key parameter specifies the object to retrieve from the cache

 This method returns the cached object or null if the object was not found in the cache

MCA Services Developer Guide Version 2005, Rev. B 342

Enterprise Services Caching Framework

enableCaching() method

The enableCaching() method is used with persistent caches, it can be used to enable or disable
caching. This method is declared in the com.bankframe.services.cache.Cache interface, it has the
following signature:

public void enableCaching(boolean enableCache);

 The enableCache parameter specifies whether to enable or disable caching.

 When caching is disabled the cache operates in pass-thru mode; it passes get() or put() calls
straight through to the persistent store. This method can be used when it is critical to read or
write values directly from or to the persistent store.

remove() method

The remove() method is used to remove an object from the cache. With persistent caches the object
is removed from the persistent store as well. The remove method notifies CacheListeners of the
removed key(s) by calling cacheChanged(CacheEvent).

The remove() method has two forms as follows:

Method Form Description

public Object remove(Object
key);

The key parameter specifies the key of the object to
remove from the cache. This method removes a single
object from the cache and from the persistent store. This
method is declared in the java.util.Map interface.

public void remove(Set keySet); The keySet parameter specifies a Set of keys that identify
the objects to remove from the cache. This method
removes the objects from the cache and the persistent
store. This method is declared in the Cache interface.

removeAll() method

The removeAll() method is used to remove all objects from the cache. With persistent caches all
objects are removed from the persistent store as well. To remove objects from the cache only use the
clear() method. The removeAll() method is specific to the Cache interface and has the following
signature:

public void removeAll();

cleanup() method

This protected method is used to remove expired objects from the cache. This method uses the
CachePolicy object to determine what objects should be removed. This method is specific to the
Cache interface and has the following signature:

protected void cleanup();

 This method is called whenever the following Cache methods are called:

 put()

 MCA Services Developer Guide Version 2005, Rev. B 343

Enterprise Services Caching Framework

 putAll()

 remove()

The cleanup method determines if the number of milliseconds specified by the cache.cleaninterval
property have passed before investigating the cache to remove expired items. This is for performance
reasons, allowing users determine appropriate cleanup times according to the requirements of the
specific application data.

The cache.cleaninterval setting is configured in the BankframeResource.properties file.

createCacheMapInstance() method

This method is used to create the java.util.Map instance that is used to store cached values. In the
GenericCache class, the implementation of this method creates an instance of the
java.util.HashMap class, however this method can be overridden if it is necessary to use another
class.

This method is specific to the GenericCache class and has the following signature:

protected Map createCacheMapInstance();

GetCacheName() method

This method returns the name of the group that this cache is a member of.

com.bankframe.services.cache.NullCache
This is a Cache class that is used at runtime when caching is not required. It may be preferred to turn
off a particular cache in some circumstances. This can be achieved by setting the corresponding cache
class property value to com.bankframe.services.cache.NullCache. Policy and persistentMap
settings will be ignored. This Cache class has a substantially less memory overhead than using another
Cache with short timeout values.

com.bankframe.services.cache.JMSCache
This class extends the com.bankframe.services.cache.GenericCache class to provide a JMS (Java
Messaging Service) supported distributed caching implementation. This service extends the current
caching framework and can be configured with the different caching policies.

In situations where an environment has caches across multiple JVMs (Java Virtual Machines) it can be
necessary to have data consistency across all instances. The MCA Services JMS Caching does this
when a remove() method is called to remove a key from the local cache. This remove()method
publishes a message onto a JMS Topic to remove all occurrences of this key in caches across the
cluster. A JMS Topic is analogous to a list of messages that is shared among multiple JVMs. Each JVM
can have a JMS Client that publishes messages to the topic and JMS Listeners in other JVMs who are
subscribed to this JMS Topic can read these messages from the topic.

The message driven bean com.bankframe.services.cache.JMSListener subscribes to this JMS Topic
and its onMessage() method is called once a message is placed onto the JMS Topic. This onMessage()
method removes the passed key from its local cache. The JMSCache class overrides the following
methods in GenericCache:

MCA Services Developer Guide Version 2005, Rev. B 344

Enterprise Services Caching Framework

put() method

The put() method is used to store an object in the local Cache and invalidate objects stored against
key in all other remote caches. This method is declared by the java.util.Map interface and has the
following signature:

public Object put(Object key, Object value);

 The key parameter specifies the key for the object to store in the cache

 The value parameter is the object to store in the cache

 This method returns the previous value associated with the key, or null if there was no
previous value

putAll() method

The putAll() method is used to store in the local cache all objects represented by the Map keys
passed as parameters. The method also invalidates objects stored against keys in all other remote
caches. This method has the following signature:

public Object put(Map keys);

 The keys parameter specifies the Map of all object keys to be removed.

remove() method

The remove() method is used to remove an object from the cache and invalidate objects stored
against key in all other remote caches. The remove() method has two forms, the first is declared by
the java.util.Map interface, the second declared in the Cache interface:

public Object remove(Object key);

 The key parameter specifies the key of the object to remove from the cache

public void remove(Set keySet);

 The keySet parameter specifies a Set of keys that identify the objects to remove from the
cache

 This method also removes the set of object keys represented by keySet in all remote caches.

removeAll() method

The removeAll() method is used to remove all objects from the cache. The method also invalidates
all objects in other remote caches. The removeAll() method is specific to the Cache interface and has
the following signature:

public void removeAll();

The following methods are specific to the com.bankframe.services.cache.JMSCache class:

initialiseTopic method

The initialiseTopic() method does a JNDI lookup on the Connection Factory which is an object
that enables JMS clients (the JMSCache class) to create JMS connections. A JNDI lookup on the JMS

 MCA Services Developer Guide Version 2005, Rev. B 345

Enterprise Services Caching Framework

Topic is also executed and a connection is made from the JMS Client to the JMS Topic so the JMS
Client can publish messages to the topic. The initialiseTopic() method has the following signature:

public void initialiseTopic();

removeDontSend() method

The removeDontSend() method is used to remove an object from the local cache. However, this
method does not invalidate objects stored in other remote caches. The removeDontSend() method
has the following signature:

public Object remove(Object key);

 The key parameter specifies the key of the object to remove from the cache

public void remove(Set keySet);

 The keySet parameter specifies a Set of keys that identify the objects to remove from the
cache

 This method does not remove any objects in remote caches.

removeAllDontSend() method

The removeAllDontSend() method is used to remove all objects from the cache. The method does not
invalidate any objects in remote caches. The removeAllDontSend() method has the following
signature:

public void removeAll();

addValueToCache method

The addValueToCache() method allows one to add an object value under an object key to a specific
JMS Topic. The method has the following signature:

public Object addValueToCache (String topicName, Object key, Object value);

 The key parameter specifies the key for the object to store in the cache

 The value parameter is the object to store in the cache

 The topicName parameter is the JMS Topic to publish the message to.

 This method returns the previous value associated with the key, or null if there was no
previous value

com.bankframe.services.cache.JMSCache.JMSCacheEvent
The JMSCacheEvent class is a holder for all the information necessary to notify JMS Listeners to
perform some action. A JMS Listener is any MDB (Message Driven Bean) that has subscribed to a JMS
Topic and listens for messages placed onto the topic. The class implements the
java.io.Serializable interface so it can be serialized when being set on the
javax.jms.ObjectMessage that is sent to the JMS Topic.

MCA Services Developer Guide Version 2005, Rev. B 346

Enterprise Services Caching Framework

com.bankframe.services.cache.JMSListener
The JMSListener class is written as an MDB (Message Driven Bean). An MDB subscribes to a JMS
Topic and listens for messages placed onto the topic. The MDBs subscription to a particular JMS Topic
is declared in its deployment descriptor. The JMSListener listens for messages placed onto its
subscribed JMS Topic, and removes the appropriate entries from its local cache according to the
message received. The onMessage() method of the JMSListener class provides the behaviour for
handling a message from the JMS Topic and determines which entries to remove from the local cache.

Configuring JMS Caching
For instructions on how to configure JMS Topic and JMS Connection Factory names in
BankframeResource.properties refer to the Configuring MCA Services documentation for the values
that should be used for these settings.

There are application server specific issues that arise when changing the JMS Topic and JMS
Connection Factory names:

In WebLogic:

When changing the JMS Topic name, it is necessary to change the weblogic-ejb-jar.xml of the
message driven bean com.bankframe.services.cache.JMSListener as the JNDI of the topic is also
specified here.

In WebSphere:

When changing the ‘Listener Port’ name for a ‘Message Listener Service’ in WebSphere Application
Server, the EJB Module WebSphere-MCAMDBs.jar must be imported into WebSphere Studio
Application Developer. The ‘Listener Port Name’ that the MDB (Message Driven Bean)
com.bankframe.services.cache.JMSListener subscribes to must be modified in the ‘EJB
Deployment Descriptor’ for the MDB as depicted below in the red circle:

 MCA Services Developer Guide Version 2005, Rev. B 347

Enterprise Services Caching Framework

com.bankframe.services.cache.CachePolicy
The CachePolicy interface defines a means for custom caching policies to be defined and plugged into
the Cache. First of all we will describe the methods defined by the CachePolicy interface and then
describe how the Cache class interacts with CachePolicy objects.

isCacheEntryValid () method

This method is called to determine if an entry is still valid. An entry is not valid if the caching policy
determines that the entry should be removed from the cache.

public boolean isCacheEntryValid(Object key,Object value);

updateCacheEntry() method

This method is called every time an entry in the cache is accessed. This enables the CachePolicy
object to determine which objects in the cache are being used.

public void updateCacheEntry(Object key,Object value);

updateCacheEntries() method

This method is called when multiple entries in the cache are accessed. This enables the CachePolicy
object to determine which objects in the cache are being used.

public void updateCacheEntries(Map values);

MCA Services Developer Guide Version 2005, Rev. B 348

Enterprise Services Caching Framework

remove() method

This method is called when entries are removed from the cache. This enables the CachePolicy object
to stop tracking objects that are no longer in the cache. This method has two forms; the first is used
when a single object is removed, the second is used when a Set of objects is removed:

public void remove(Object key);

public void remove(Set keySet);

removeAll() method

This method is called when all entries are removed from the cache. This enables the CachePolicy
object to reset itself.

cleanup() method

This method is called to determine what entries should be removed from the cache. This method has
the following signature:

public Set cleanup();

 This method returns a java.util.Set containing the keys of the objects that should be
removed.

 If no entries should be removed an empty Set is returned.

 If all entries should be removed null is returned.

Cache and Cache Index Interaction
A cache index instance is assigned to a single cache. A cache can have multiple cache indices but is
not directly aware of them. The cache indices register their interest in certain keys held in the cache
by adding themselves as Cache Listeners to the cache.

The default cache indexer implementation CacheIndex expects keys and entries in the data cache to
be instances of com.bankframe.bo.DataPacket. The cache indexer has the following two main
methods for populating the index and retrieving data via the index:

Method Description

public Object put(Object key) Adds a record to the index. Using the key value, this
method gets the corresponding data from dataCache.
The data is then used to build an index key from
indexStructure; this method stores the given key for the
data in a collection. If the key has not been added
before, the index registers as a cache listener for that
key. This method takes the key only, to make sure that
the data has been put into the dataCache first. This
method expects the data in the dataCache to be an
instance of DataPacket. If it is not, an index key cannot
be created and therefore the given key will not be added

 MCA Services Developer Guide Version 2005, Rev. B 349

Enterprise Services Caching Framework

Method Description

to the index.

public Collection get(Object
data)

This method returns a collection of keys to the
dataCache that match the indexKey produced from the
given data object. The data given must be a DataPacket
and may be a superset of the indexKey. If nothing is
found, or the indexKey cannot be created from the data
object, an empty set is returned. If a collection of keys is
found for the indexKey the cache is asked to confirm that
it contains each key. Only confirmed keys are returned in
the collection. The added benefit of this approach is that
by using containsKey, the cache makes sure that the key
does not timeout before eventual retrieval.

Similar to CacheFactory, the CacheIndexFactory is the factory class for instantiating cache indexer
classes. The CacheIndexFactory uses settings in the BankframeResource.properties file to determine
which class to use. The key is cache.index.<index name>. If no cache index is specified or there is an
exception when instantiating the given class, CacheIndex is used. CacheIndex determines the index
structure and name of the cache to index from IndexMetaData.

Cache and CachePolicy Interaction
Whenever the state of the Cache changes the Cache informs the CachePolicy object.

 When the Cache.get() method is called the CachePolicy.updateEntry() method is called

 When the Cache.put() method is called the CachePolicy.updateEntry() method is called

 When the Cache.putAll() method is called the CachePolicy.updateEntries() method is called

 When the Cache.remove() method is called the CachePolicy.remove() method is called

 When the Cache.removeAll() method is called the CachePolicy.removeAll() method is called

 When the Cache.clear() method is called the CachePolicy.removeAll() method is called

After the following methods are called the CachePolicy.cleanup() method is called:

 Cache.put()

 Cache.putAll()

 Cache.remove()

The Cache takes the following actions depending on the return value from the CachPolicy.cleanup()
method:

 If the returned value is null all entries in the Cache are removed

 If the returned value is an empty Set no entries are removed from the Cache

 Otherwise the specified objects identified by the returned Set are removed from the Cache.

MCA Services Developer Guide Version 2005, Rev. B 350

Enterprise Services Caching Framework

Creating persistent caches
Creating a persistent cache requires creating a class that implements the java.util.Map interface
and implements all its methods. This class must interact with the persistent store, for example a call
to the class’ get() method should read the requested object from the persistent store. For an example
of a persistent cache implementation see the com.bankframe.resource.cache package, and the
com.bankframe.resource.cache.BankFrameResourcePersister class.

Configuring the Caching Framework
The com.bankframe.services.cache.CacheFactory class enables the configuration of all MCA caches
to be controlled via the BankframeResource.properties file.

Configuring BankframeResource.properties
Below is a section of the BankframeResource.properties file showing the configuration for the cache
for the DESTINATION table:

cache.destinationCache.class=com.bankframe.services.cache.GenericCache

cache.destinationCache.persister=com.bankframe.ei.com.bankframe.ei.txnhandler.imp

l.destination.DestinationCachePersister

cache.destinationCache.policy=com.bankframe.services.cache.LruCachePolicy

cache.destinationCache.policy.maxSize=100

cache.destinationCache.policy.thrashAmount=10

Note how the settings are named, they start with a prefix: cache., followed by the name of the cache
(in this case destinationCache) and then a suffix indicating the name of a specific configuration
parameter (for example .class).

Below is an explanation of each setting:

Cache settings

 class: This is the fully qualified name of the cache class to use for this cache. This class must
implement the com.bankframe.services.cache.Cache interface. If the cache requires a persister
it must implement the com.bankframe.services.cache.PersistentCache interface.

 persister: This is the fully qualified name of the persister class that should be used with this
cache to retrieve data from the data store. This class must implement the java.util.Map
interface. Some caches do not have a persistent store associated with them, so they will not need
to specify a persister setting, in this case the persister setting should be omitted from the
cache configuration settings. Note that this class is not related to the Financial Process Integrator
concept of a persister.

 policy: This is the fully qualified name of the cache policy class to use for this cache. This class
must implement the com.bankframe.services.cache.ConfigurableCachePolicy interface.

 MCA Services Developer Guide Version 2005, Rev. B 351

Enterprise Services Dynamic Configuration

Policy Specific Settings

Each policy object can have its own settings that configure how it behaves. The settings for each of
the policy objects provided with MCA are detailed below:

LruCachePolicy. This policy uses a least recently used algorithm to limit the cache to a specified
maximum size. This policy has the following configurable settings:

 maxSize: This specifies the maximum number of entries permitted in the cache. When this is
exceeded the least recently used entries are removed from the cache until the cache size is
reduced to the maximum size.

 thrashAmount: When the maximum size of the cache is exceeded this policy tries to remove just
enough entries to reduce the cache to the maximum size. This setting can be used to force the
policy to reduce the number of cache entries to maxSize less thrashAmount. This means that
when the cache size is exceeded and the least recently used entries are removed space will be left
for new entries to be added.

TimeoutCachePolicy. This policy removes entries that have not been used for more than a specified
period of time. This policy has the following configurable setting:

 timeout: This value indicates the maximum time in seconds that an entry can remain in the cache
without being used.

PerEntryTimeoutCachePolicy. This policy is similar to the TimeoutCachePolicy except that each
individual entry in the cache can have its own timeout setting. This timeout value needs to be
specified programmatically for each entry in the cache by calling the setTimeout(Object key, long
timeout) or setTimeout(Set keys, long timeout) methods of this class. Therefore this policy has
no configurable settings

Extending the Caching Framework
As can be seen from the settings above it is possible to configure all aspects of the caching framework
via the BankframeResource.propertie file. This provides the means for the caching framework to be
extended and optimised to meet customer specific requirements by on-site teams. Customers can
extend or replace the standard caching implementation and policy objects with ones that meet their
specific requirements. For example a customer could extend one of the policy objects to generate
report information about the contents and performance of the cache. Please consult the MCA Services
API documentation for more information on how to extend the caching framework

Dynamic Configuration
This section describes the dynamic configuration framework in MCA Services. MCA Services provides
its own framework for reading .properties files. The MCA framework periodically refreshes the in
memory cache from the disk file. The end result is that it is possible to make changes to MCA’s
configuration without requiring the application server to be restarted. However, dynamic configuration
does have some performance overheads, primarily because methods have to be synchronized for
reloading.

Configuring com.eontec.mca.bankframeresourcebundle
By default, the dynamic configuration is not used. To enable dynamic configuration, set the Java
system property com.eontec.mca.bankframeresourcebundle to

MCA Services Developer Guide Version 2005, Rev. B 352

Enterprise Services Dynamic Configuration

com.bankframe.services.resource.BankFrameResourceBundle. The default is
com.bankframe.services.resource.NoReloadBankFrameResourceBundle. The default
implementation does not reload property values and the methods for getting property values are not
synchronized.

Grouping properties
The standard Java APIs provide no means for grouping related configuration information, the MCA
framework adds support for this facility, allowing only the configuration information relating to a
particular functional area to be retrieved. How this facility works is explained below.

com.bankframe.services.resource
This package defines the MCA dynamic configuration framework; it contains the following classes and
interface:

BankFrameResource Defines the methods that all BankFrameResource
implementations must provide

BankFrameResourceSubset This class provides the functionality for grouping
related properties

BankFrameMCAResource This class provides methods for accessing the
standard BankframeResource.properties file

BankFrameResourceBundle This class implements the BankFrameResource
interface and provides functionality for reading
data from .properties files.

BankFrameResourceFactory This class creates instances of BankFrameResource
for the specified URL. It will use the Java system
property
com.eontec.mca.bankframeresourcebundle to
determine which resource bundle to use.
NoReloadBankFrameResourceBundle is the default
value.

NoReloadBankFrameResourceBundle Performance optimized resource bundle class.
Default bundle in framework.

NoReloadBankFrameResource Performance optimized resource class. Default
resource in framework.

ResourceLocator This class provides methods for manipulating files
in the Java class path

BankFrameResource
This interface defines the following methods:

 MCA Services Developer Guide Version 2005, Rev. B 353

Enterprise Services Dynamic Configuration

get()

This method gets a value from the resource. This method has the following signature:

public Object get(String key);

 The key parameter specifies the name of the value to retrieve

 The value is returned if found, or null if the value is not found

getString()

This method gets a value and converts it to a String. This method has the following signature:

public String getString(String key);

 The key parameter specifies the name of the value to retrieve

 The value is returned if found, or null if the value is not found

getSubset()

This method gets a subset of values whose keys all begin with the specified prefix. This method has
the following signature:

public BankFrameResource getSubset(String prefix);

 The prefix parameter specifies the prefix that the subset starts with

 A BankFrameResource instance is returned containing the requested subset. An empty subset
is returned if no values with the specified prefix could be found.

put()

This method adds or updates a value in the resource. This method is used for changing or adding
configuration values. Note that not all implementations support this method. This method has the
following signature:

public Object put(String key, Object value);

 The key parameter specifies the name of the value

 The value parameter contains the value to be stored

 The previous value associated with the specified key is returned, or null if the key had no
previous association.

remove()

This method removes a value from the resource. Note that not all implementations support this
method. This method has two forms:

public Object remove(String key);

 The key parameter specifies the name of the value to remove

 The removed value is returned, or null if the key did not exist.

MCA Services Developer Guide Version 2005, Rev. B 354

Enterprise Services Dynamic Configuration

public void remove(Enumeration keys);

 The keys parameter specifies an Enumeration of one or more keys to remove.

removeAll()

This method removes all values from the resource. Note that not all implementations support this
method. This method has the following signature:

public void removeAll();

removeSubset()

This method removes a subset of values from the resource. Note that not all implementations support
this method. This method has the following signature:

public void removeSubset(String prefix);

The prefix parameter specifies the prefix that the subset starts with.

keys()

This method returns an Enumeration of key values. This method has the following signature:

public Enumeration keys();

BankFrameResourceSubset
This class implements the BankFrameResource interface and provides a standard mechanism for
BankFrameResource implementations to implement support for subsets. A subset of properties is
defined as one or more properties that start with the same prefix, for example:

ldap.default.java.naming.provider.url=ldap://localhost:389

ldap.default.java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

This class provides the same methods as BankFrameResource, in addition is has a single constructor:

BankFrameResourceSubSet()

This constructor creates a subset for the specified prefix. This method has the following signature:

public BankFrameResourceSubset(String prefix, BankFrameResource parent);

 The prefix value specifies the prefix that all members of the subset begin with

 The parent value specifies the resource which contains this subset

BankFrameMCAResource
This class provides methods for easily retrieving values from the standard
BankFrameResource.properties file. This class replaces the deprecated
com.bankframe.BankframeResource class. This class has the following methods:

 MCA Services Developer Guide Version 2005, Rev. B 355

Enterprise Services Dynamic Configuration

getString()

This method gets the value of the specified property. This method has the following signature:

public static String getString(String key);

 The key parameter specifies the name of the property to retrieve

 The specified property is returned or null if the value could not be found

getKeys()

This method returns an Enumeration containing all the keys in the BankframeResource.properties
file. This method has the following signature:

public static Enumeration getKeys();

getSubset()

This method returns a subset of keys in the BankframeResource.properties file. This method has
the following signature:

public static BankFrameResource getSubset(String prefix);

 The prefix parameter specifies the prefix that the subset starts with

 A BankFrameResource instance is returned containing the requested subset. An empty subset
is returned if no values with the specified prefix could be found.

BankFrameResourceBundle
This class provides an implementation of the BankFrameResource interface that reads data from
.properties files. The public methods of this class are the same as those of the BankFrameResource
interface. This class has the following constructor:

public BankFrameResource BankFrameResourceBundle(URL resourceUrl);

 The resourceUrl parameter specifies the URL of the .properties file to read

 This class reads the contents of the .properties file the first time a property is requested.

 It caches the entire contents of the .properties file for a specified time period. When that
time period has passed it re-reads the .properties file. This enables changes to the
.properties file to be detected.

 The time period can be configured as follows:

 The time period is specified by adding a property named:
resource.cache.refreshInterval to the .properties file. This property must be an
integer indicating the number of seconds in the time period, for example:
resource.cache.refreshInterval=120

 If the resource.cache.refreshInterval property is not present in the resource file then
the file will be refreshed every 15 minutes.

MCA Services Developer Guide Version 2005, Rev. B 356

Enterprise Services Dynamic Configuration

 If the resource.cache.refreshInterval property has a value of -1 then the resource file
will never be refreshed (This means changes made to the resource file will not be
detected).

 This class provides read only access to .properties files therefore it does not support the
remove(), put() or clear() methods of BankFrameResource.

BankFrameResourceFactory
This class is used to create instances of BankFrameResource for a specific URL.

getInstance()

This method has the following signature:

public static BankFrameResource getInstance(String resourceName);

 This method creates a BankFrameResource instance for the specified .properties file

 The .properties file must be in the class path

 The implementation of this method creates an instance of the BankFrameResourceBundle
class to read from the specified .properties file

ResourceLocator
This class provides utility methods for locating resources in the class path, and for accessing resource
files. This class contains the following methods:

getClassInClassPath()

This method gets the URL for the specified class. This method has three forms:

public static URL getClassInClassPath(String className);

 The className parameter specifies the name of the class

 The URL of the class will be returned or null if it is not found in the class path

 public static URL getClassInClassPath(String className, Locale locale);

 The className parameter specifies the name of the class

 The locale parameter specifies the locale specific version of this class to locate

 The URL of the class will be returned or null if it is not found in the class path

 public static URL getClassInClassPath(Class clazz,String className,Locale locale);

 The clazz parameter specifies the Class instance to use to search the class path

 The className parameter specifies the name of the class

 The locale parameter specifies the locale specific version of this class to locate

 The URL of the class will be returned or null if it is not found in the class path

 MCA Services Developer Guide Version 2005, Rev. B 357

Enterprise Services Dynamic Configuration

getResourceInClassPath()

This method gets the URL for the specified resource file. This method has three forms:

public static URL getResourceInClassPath(String resourceName);

 The resourceName parameter specifies the name of the resource

 The URL of the resource will be returned or null if it is not found in the class path

public static URL getResourceInClassPath(String resourceName, locale locale);

 The resourceName parameter specifies the name of the resource

 The locale parameter specifies the locale specific version of this resource to locate

 The URL of the resource will be returned or null if it is not found in the class path

public static URL getResourceInClassPath(Class clazz,String resourceName,Locale

locale);

 The clazz parameter specifies the Class instance to use to search the class path

 The resourceName parameter specifies the name of the resource

 The locale parameter specifies the locale specific version of this resource to locate

 The URL of the resource will be returned or null if it is not found in the class path

getInputStream()

This method gets an InputStream for the specified URL. This method has the following signature:

public static InputStream getInputStream(URL url) throws IOException;

 The url parameter specifies the URL of the resource

 The InputStream for the URL is returned or an IOException is thrown if the resource cannot
be accessed

getOutputStream()

This method gets an OutputStream for the specified URL. Note that the resource may be read only, in
which case calling this method will result in an IOException being thrown. This method has the
following signature:

public static OutputStream getOutputStream(URL url) throws IOException;

 The url parameter specifies the URL of the resource

 The OutputStream for the URL is returned or an IOException is thrown if the resource cannot
be accessed

getLastModified()

This method returns the time (in milliseconds) that the resource was last modified. This method has
the following signature:

public static long getLastModified(URL url);

MCA Services Developer Guide Version 2005, Rev. B 358

Enterprise Services Dynamic Configuration

 The url parameter specifies the URL of the resource

 The time of last modification is returned or zero if an error occurs

isReadOnly()

This method checks if the specified resource is read only. This method has the following signature:

public static boolean isReadOnly(URL url);

 The url parameter specifies the URL of the resource

 This method returns true if the resource is read only, false otherwise

Using the dynamic configuration framework

Accessing BankframeResource.properties
Reading values from BankframeResource.properties is straightforward. It’s a matter of using the
static methods of com.bankframe.services.resource.BankFrameMCAResource.

Reading a single value

Below is a code snippet that illustrates how to read a single value:

String ldapServer =

BankFrameMCAResource.getString(“ldap.default.java.naming.provider.url”);

Reading a subset

Below is a code snippet that illustrates how to read a subset:

BankFrameResource ldapSubset = BankFrameMCAResource.getSubset(“ldap.default”);

Working with subsets
A subset is a set of values that all start with the same prefix. Prefixes are delimited using the ‘.’
character. Below is an example of a subset:

ldap.default.java.naming.provider.url=ldap://localhost:389

ldap.default.java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

ldap.default.java.naming.security.authentication=simple

ldap.default.java.naming.security.principal=cn=bankframe,dc=eontec,dc=com

ldap.default.java.naming.security.credentials=bankframe

This subset can be retrieved by calling BankFrameMCAResource.getSubset(“ldap.default”). The
returned subset will contain all the values starting with ‘ldap.default’, however the prefix:
‘ldap.default’ will be removed from the names of the values, so the subset above will contain:

 MCA Services Developer Guide Version 2005, Rev. B 359

Enterprise Services Dynamic Configuration

java.naming.provider.url=ldap://localhost:389

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

java.naming.security.authentication=simple

java.naming.security.principal=cn=bankframe,dc=eontec,dc=com

java.naming.security.credentials=bankframe

Getting a single value from a subset

Assume we have some code similar to that below that creates a subset:

BankFrameResource ldapSubset = BankFrameMCAResource.getSubset(“ldap.default”);

To retrieve a key from this subset we need to supply its name less the ‘ldap.default’ prefix, for
example to retrieve the key whose full name is ‘ldap.default.java.naming.provider.url’ we need
to use the following code:

String providerUrl = ldapSubset.getString(“java.naming.provider.url”);

Retrieving a subset of a subset

Subsets can be nested within each other, for example if we wanted to get the security settings in the
example above we would use the following code:

BankFrameResource securitySubset = ldapSubset.getSubset(“java.naming.security”);

Accessing arbitrary resource files
The com.bankframe.services.resource.BankFrameMCAResource class provides a means to read
settings from the BankframeResource.properties file. To access properties in other files use the
com.bankframe.services.resource.BankFrameResourceFactory class.

Accessing a .properties file in the Java class path

To access a file called ‘FrontEnd.properties’ which is somewhere in the Java class path use the
following code:

BankFrameResource resource = BankFrameResourceFactory.getInstance(“FrontEnd”);

String someProperty = resource.getString(“someProperty”);

Note that you do not supply the filename extension of the .properties file.

Accessing a .properties file not located in the Java class path

To access a file not located in the class path you must provide a complete URL to the resource file.

To access a file on a http server. Below is an example of accessing a file stored on an http server

BankFrameResource resource = BankFrameResourceFactory.getInstance(new

URL(“http://webserver/SomePropertyFile.properties”));

MCA Services Developer Guide Version 2005, Rev. B 360

Enterprise Services Dynamic Configuration

String someProperty = resource.getString(“someProperty”);

To access a file on a local file system

BankFrameResource resource = BankFrameResourceFactory.getInstance(new

URL(“file:///some/path/to/SomePropertyFile.properties”));

String someProperty = resource.getString(“someProperty”);

To access a file in a .JAR on a local file system

BankFrameResource resource = BankFrameResource.getInstance(new

URL(“jar:///some/path/to/Some.jar/SomePropertyFile.properties”));

String someProperty = resource.getString(“someProperty”);

Configuring the refresh interval
To configure how often a resource file should be re-read add the following key to the resource file:

resource.cache.refreshInterval

This setting is specified in seconds, for example:

resource.cache.refreshInterval=300

will cause the resource file to re-loaded every five minutes.

If this setting is not specified in the resource file then the default refresh interval of 15 minutes will be
used.

Backwards Compatibility
In previous versions of MCA configuration values were accessed using the
com.bankframe.BankframeResource class. This class has been deprecated and the
com.bankframe.services.resource.BankFrameMCAResource class should be used instead.

However to provide backwards compatibility with existing code com.bankframe.BankframeResource
has been retrofitted to call the methods of
com.bankframe.services.resource.BankFrameMCAResource.

 MCA Services Developer Guide Version 2005, Rev. B 361

Enterprise Services Dynamic Configuration

MCA Services Developer Guide Version 2005, Rev. B 362

 MCA Services Developer Guide Version 2005, Rev. B

6 Appendix: Glossary

Baud Rate

The number of times per second that a system changes state.

BMP

Bean Managed Persistence. Applies to Entity EJBs. The Entity is responsible for managing its own
persistence.

Clustering

Connecting two or more machines together in such a way that they behave like a single machine.
Clustering is used for parallel processing, for load balancing and for fault tolerance.

CMP

Container Managed Persistence. Applies to Entity EJBs. The EJB container is responsible for managing
the persistence of the Entity.

Cobol Copybook

A file that describes the layout of transactions implemented in the COBOL programming language.
Cobol copybooks are used to determine the format of requests and responses to be sent from MCA
Services to host systems.

Container

Enterprise beans are software components that run in a special environment called an EJB container.
The container hosts and manages an enterprise bean in the same manner that a Java Web Server
hosts a Servlet or an HTML browser hosts a Java applet. An enterprise bean cannot function outside of
an EJB container. The EJB container manages every aspect of an enterprise bean at run time including
remote access to the bean, security, persistence, transactions, concurrency, and access to and pooling
of resources.

DataPacket

A DataPacket is a Siebel class through which MCA Services organizes data that is passed between
Clients and Siebel Financial Components. It provides a standard format for all data used within Siebel
Retail Finance applications, which greatly simplifies the task of passing data from Clients to Financial
Components and from Financial Components to other Financial Components. Information stored in
DataPackets can be transformed into a string representation or a serialized Java Object. This enables
DataPackets to be easily transmitted over various protocols. There are three required keys in every
DataPacket: DATA_PACKET_NAME, OWNER and REQUEST_ID. All keys in a DataPacket are unique within
that DataPacket & identify corresponding data, as in a hashtable.

363

Appendix: Glossary Dynamic Configuration

DPTP

DataPacket Transmission Protocol.

Dynamic Configuration

Standard Java APIs for reading configuration information from .properties files require the
application server to be re-started to pick up any configuration changes made. The MCA Services
Dynamic Configuration framework enables changing MCA’s configuration & enabling these changes to
take effect without having to re-start the application server. The Dynamic Configuration framework re-
reads the .properties file at set intervals (the interval period is configurable).

EAR

A JAR archive that contains a J2EE application – i.e. will contain all the EJB JARs & WARs for that
enterprise application.

EJB

Enterprise JavaBeans is a Java API developed by Sun Microsystems. It’s a component architecture for
the development and deployment of object-oriented, multi-tier client/server systems.

EJBContext

Every EJB obtains an EJBContext object, which is a reference directly to the EJB container. The
EJBContext interface provides methods for interacting with the container so that that bean can
request information about its environment like the identity of its client, the status of a transaction, or
to obtain remote references to itself.

Financial Component

A stateless session EJB. All Siebel Financial Components implement the com.bankframe.ejb.ESession
interface.

Financial Process Integrator

The Financial Process Integrator provides the facility in MCA Services to map data from Siebel Retail
Finance Entity Beans and Financial Components to host transactions.

Free Service

A Financial Component that does not involve a user logged into Siebel Retail Finance- i.e. an EJB
session bean that is not session managed e.g. the GenerateRandomNumbers service/bean which
determines which digits of the end-user’s password to request (e.g. first, third & last) when the user is
logging onto Siebel Retail Finance applications.

Home Interface

A Factory Object, it is responsible for locating or creating instances of the desired EJB, and returning
remote references. It must extend the interface EJBHome and provide method signatures for all the
desired create() and find() methods. An object that implements the Home Interface is
automatically generated by the EJB Container tools.

MCA Services Developer Guide Version 2005, Rev. B 364

Appendix: Glossary Dynamic Configuration

IIOP

Internet Inter-ORB Protocol. A protocol used for communication between CORBA object request
brokers.

Internationalization Framework

The MCA Internationalization Framework enables messages to be localized on the client-side,
supporting localization on a per-client/per-locale basis. The data that needs to be localized is passed
to the client in addition to the data required for the localization – which is held in resource bundles.
See also: Localization, Resource Bundle.

J2EE

Java 2 Platform, Enterprise Edition. A J2EE platform is an enterprise level java platform which
complies with the J2EE open standard. A J2EE platform encompasses one or more of: EJB container,
Web container (for servlets and JSPs), Application client container, Applet container.

JAR

Java Archive file. The standard, platform-independent, packaging file format for Java technology-
based application components that permits many files to be aggregated into one file.

JavaMail

A Java API for sending and receiving email. Part of the J2EE spec.

JAXP

Java API for XML Processing. Part of the J2EE spec.

JCA

Java Connector Architecture. Part of the J2EE spec.

JDBC

Java API that allows components to access data, typically from an SQL database. Part of the J2EE
spec.

JNDI

The Java Naming and Directory Interface is an API that provides naming and directory functionality
for applications written using Java. It is defined to be independent of any specific directory service
implementation. Thus a variety of directories- new, emerging, and already deployed- can be accessed
in a common way. MCA Services maintains a mapping of REQUEST_IDs to JNDI names (each Retail
Finance EJB has a unique JNDI name). JNDI is part of the J2EE spec.

 MCA Services Developer Guide Version 2005, Rev. B 365

Appendix: Glossary Dynamic Configuration

JSP

JavaServer Pages. An extensible web technology that uses template data, custom elements, scripting
languages, and server-side Java objects to return dynamic content to a client. Typically the template
data is HTML or XML elements, and in many cases the client is a web browser.

JTA

Java Transaction API. An API that allows applications and J2EE servers to participate in distributed
transactions. JTA is part of the J2EE spec.

LDAP

Lightweight Directory Access Protocol, a set of protocols for accessing information directories. LDAP is
based on the standards contained within the X.500 standard, but is significantly simpler. And unlike
X.500, LDAP supports TCP/IP, which is necessary for any type of Internet access. Because it's a
simpler version of X.500, LDAP is sometimes called X.500-lite. Although not yet widely implemented,
LDAP should eventually make it possible for almost any application running on virtually any computer
platform to obtain directory information, such as email addresses and public keys. Because LDAP is an
open protocol, applications need not worry about the type of server hosting the directory.

Localization

Using the MCA Internationalization framework messages can be localized on a system-wide basis or on
a per-client basis. The information required to convert messages to the client’s local is stored in a
ResourceBundle.

MCA Services

Multi Channel Architecture Services: an infrastructure that can support the delivery of uniform
services to all channels, and be able to incorporate new channels as they emerge. It is implemented
using open industry standards to facilitate integration with diverse channel technologies.

Meta Data

Meta Data means literally data about data. The term meta data in the context of MCA Services is used
to refer to the set of data that maps Siebel Retail Finance Entity Beans to host transactions.

Module

A Siebel Retail Finance Module is a pre-assembled solution set of Siebel Financial Components – e.g.
Siebel Branch Teller and Siebel Internet Banking.

Persistence

Pertaining to EJBs, the ability of an entity bean to record values in instance variables and then save
these values to a data store (e.g. database) i.e. the data continues to exist after the process accessing
it has finished.

MCA Services Developer Guide Version 2005, Rev. B 366

Appendix: Glossary Dynamic Configuration

Ping

Packet Internet Groper, a utility to determine whether a specific IP address is accessible. It works by
sending a packet to the specified address and waiting for a reply. Ping is used primarily to
troubleshoot Internet connections.

Pool Manager

The Container which manages EJBs acts as a pool manager- when an EJB has executed it is passivated
and cached in a pool for quick access should it need to be reused.

Process Templates and Sample Screen Code

Process Templates and Sample Screen Code are referred to in this documentation as “MCA Extension
Point”, “Domain Layer Code”, “Swing Front End Code” and “JSP Front End Code”.

Protocol

An agreed-upon format for transmitting data between two devices. The protocol determines the
following: the type of error checking to be used, the data compression method, if any, how the
sending device will indicate that it has finished sending a message and how the receiving device will
indicate that it has received a message.

RDN

Relative Distinguished Name- in LDAP it is the name that uniquely identifies an object- i.e. equivalent
to a primary key.

Remote Interface

It extends interface EJBObject, and provides method signatures for all the business methods. The EJB
Container automatically generates a Java class that implements the Remote Interface; it is this object
that is registered with RMI, and a reference to it is returned by the Home Interface.

Resource Bundle

The MCA Services Internationalization Framework uses resource bundles to define message strings.
For each locale there exists a resource bundle/class. Each resource bundle defines the message strings
for a specific locale & extends the class ResourceBundle. The getBundle method is used at run-time
to retrieve the class that matches the current locale’s language, country and, where applicable,
variant. The naming convention for a resource bundle is: BundleName_Language_Country_Variant,
e.g. the general resource bundle for the German language would be: BundleName_de, the resource
bundle for messages specific to Germany would be: BundleName_de_DE & the resource bundle for the
Swiss-German locale would be: BundleName_de_CH. The naming convention uses ISO-639 for
language codes & ISO-3166 for country codes.

RMI

Remote Method Invocation, a set of protocols that enables java objects to inter-communicate
remotely - a Java object running in one Java virtual machine can invoke methods on a Java object
running in a different Java virtual machine.

 MCA Services Developer Guide Version 2005, Rev. B 367

Appendix: Glossary Dynamic Configuration

RMI-IIOP

Remote Method Invocation - Internet Inter-ORB Protocol. A version of RMI implemented to use the
CORBA IIOP protocol. RMI over IIOP provides interoperability with CORBA objects implemented in any
language if all the remote interfaces are originally defined as RMI interfaces. RMI-IIOP is part of the
J2EE spec.

Sample Screen Code and Process Templates

Sample Screen Code and Process Templates are referred to in this documentation as “MCA Extension
Point”, “Implementation Layer Code”, “Swing Front End Code” and “JSP Front End Code”.

Servlet

An applet that runs on a server. The term usually refers to a Java applet that runs within a Web server
environment. This is analogous to a Java applet that runs within a Web browser environment. Java
servlets are becoming increasingly popular as an alternative to CGI programs. The biggest difference
between the two is that a Java applet is persistent. This means that once it is started, it stays in
memory and can fulfill multiple requests. In contrast, a CGI program disappears once it has fulfilled a
request. The persistence of Java applets makes them faster because there's no wasted time in setting
up and tearing down the process.

Session Affinity

A mechanism whereby a unique string token is placed into all requests under a configurable key for
the duration of a client’s HTTP session.

Store and Forward

When the Financial Process Integrator fails to send a transaction to the host, the host is marked as
offline and the transaction is stored for later forwarding. When a host is marked as offline it will
remain marked as such for a specified period (this period is configurable). During this period no
further attempts will be made to send transactions to that host, all transactions will instead be stored
(except for transactions that are not permitted to be stored, these will instead result in an exception
being thrown). When the time period has expired the forwarding mechanism will try to send the first
entry on the queue to the host. Only data for update to the host is stored, it will not store data
retrieved from the host.

Swing

An API for building GUIs. The biggest difference between the AWT components and Swing components
is that the Swing components are implemented with absolutely no native code. Since Swing
components aren't restricted to the features that are present on every platform -- they can have more
functionality than AWT components.

Tar

tape archive, a UNIX utility that combines a group of files into a single file. The resulting file has a
.tar extension. The tar command does not compress files. Frequently, therefore, a tar file is
compressed with the compress or gzip commands to create a file with a .tar.gz or .tar.Z
extension. These are comparable to files that have been compressed with PKZIP on a PC platform.
Most PC compression utilities, including PKZIP, can open (untar) a tar file.

MCA Services Developer Guide Version 2005, Rev. B 368

Appendix: Glossary Dynamic Configuration

Thin client

In client/server applications, a client designed to be especially small so that the bulk of the data
processing occurs on the server. Although the term thin client usually refers to software, it is
increasingly used for computers, such as network computers and Net PCs, that are designed to serve
as the clients for client/server architectures. A thin client is a network computer without a hard disk
drive, whereas a fat client includes a disk drive.

Two-phase commit

A feature of transaction processing systems that enables databases to be returned to the pre-
transaction state if some error condition occurs. A single transaction can update many different
databases. The two-phase commit strategy is designed to ensure that either all the databases are
updated or none of them, so that the databases remain synchronized.

Database changes required by a transaction are initially stored temporarily by each database. The
transaction monitor then issues a "pre-commit" command to each database that requires an
acknowledgment. If the monitor receives the appropriate response from each database, the monitor
issues the "commit" command, which causes all databases to simultaneously make the transaction
changes permanent.

WAR

A JAR archive that contains a web module.

WML

Wireless Markup Language is an XML language used to specify content and user interface for WAP
devices; the WAP forum provides a DTD (Document Type Definition) for WML. WML is supported by
almost every mobile phone browser around the world. WML pages are requested and served in the
same way as HTML pages.

 MCA Services Developer Guide Version 2005, Rev. B 369

	Contents
	1 What’s New in This Release
	What’s New in MCA Services Developer Guide, Version 2005, Rev. B
	What’s New in MCA Services Developer Guide, Version 2005, Rev. A
	What’s New in MCA Services Developer Guide, Version 2005

	2 MCA Services Overview
	Channel Management
	Clients
	Channels
	Protocols
	Channel Manager
	DataPacket
	XML

	Financial Component Framework
	Client to Financial Component Communication
	Transforming the DataPacket into the Protocol format
	Specifying the Financial Component
	Invoking the Financial Component
	Example of Client to Financial Component Communication
	Client Creates DataPacket
	Client Sends DataPacket to MCA Services
	MCA Services Converts the HTTP Request Back to a DataPacket
	MCA Services Determines which Financial Component to Invoke
	MCA Services Passes the DataPacket to the Financial Component
	CreditTransferBean Processes the DataPacket and Returns its Response Data
	MCA Services Passes the Response Data back to the Client
	The Client Converts the HTTP Response back into DataPackets

	Requester Router to EJB Sequence Diagram
	EJB to Financial Process Integrator Sequence Diagram

	Financial Process Integration
	TxnHandler Find() Sequence Diagram
	 TxnHandler Amend() Sequence Diagram

	Security Provider Framework
	User Authentication
	Session Management
	Access Control

	Enterprise Services
	Required Services
	Routing
	User Authentication, Session Management, and Access Control
	Internationalization
	Dynamic Configuration

	Optional Enterprise Services
	Audit
	Logging
	Mail
	Ping
	LDAP
	Peripherals Support
	Printing Support
	Caching Framework

	Front-End Framework
	Administration Tools

	3 Channel Management
	RMI and HTTP
	DataPackets
	Channel Clients
	Channel Management
	Channel Servers
	Codecs
	Thin and Fat Clients
	Fat Client

	Class Descriptions
	Package: com.bankframe.ei.channel.client
	Package: com.bankframe.ei.channel.server.
	Package: com.bankframe.ei.channel.codec
	com.bankframe.fe.jsp.BankframePage

	Communicating over HTTP
	Thin clients using HTML forms
	Introduction
	HTML Form Syntax
	Syntax rules
	Examples

	Configuring BankframeResource.properties
	Codec Mapping Properties
	Valid Properties
	Configuring HttpsClient

	Developing Custom Channel Clients and Servers
	Thin and Fat Client Examples
	Thin client example
	Fat client example

	XML B2B
	Package: com.bankframe.ei.channel.codec
	Package: com.bankframe.ei.xml
	Mapping XML Requests to Financial Components

	Configuring BankframeResource.properties
	XML Properties
	XSL Properties

	Developing Custom XML and XSL Codecs
	Custom XML Codecs
	Custom XSL Codecs

	The DPTPCodec transmission format
	Sample request file
	XML Format Description

	XML and XSL Examples
	Input XML
	XSL Style-sheet
	XSL Codec
	XSL Codec Code Explanation
	Configuring BankframeResource.properties

	Web Services
	MCA Services Web Services
	Description
	Implementation

	Web Services Application Servers
	Class Descriptions
	Package com.bankframe.services.requestrouter.webservice
	Package com.bankframe.ei.channel.codec

	Session Affinity
	Configuring Session Affinity
	Sample Application of Session Affinity

	4 Financial Process Integration
	About Financial Process Integration
	Overview of Interfacing with a Host System
	Components of the Financial Process Integrator
	Persister
	Cache
	Meta-Data
	Data Formatter
	Transaction Route
	Destination
	Siebel Connector
	Store and Forward

	Interaction of Financial Process Integrator Components

	Financial Process Integrator Meta-Data
	Separation of Request and Response
	Support for Error Conditions
	Support for Tiered Fields
	Meta-Data Response Access by Offset

	Request Transaction Fields
	Example Transaction Request
	Processing Host System Response
	Response Meta Data Mapping
	Response Transaction Fields
	Caching the Meta-Data (Transaction Fields)
	TransactionField Interface
	Example Response Mapping
	Support for Tier Fields
	Deeply Nested Cobol Copybooks
	Mapping a Subset of Transaction Fields
	Recurring Fields
	Handling Error Conditions
	Example Error Condition
	Transaction Field Naming

	Mapping Entity Beans to Transactions
	One Transaction to One Entity
	One Transaction to Many Entities
	Repeating Entities of the Same Type
	Single Entity of One Type Plus Repeating Entities of the Same Type
	Master Entity with Dependent Entity

	Entity Bean Persistence and the FPI
	com.bankframe.ejb.bmp
	com.bankframe.ejb.bmp.EBMPEntity
	com.bankframe.ejb.bmp.EPersister
	com.bankframe.ejb.bmp.EPersisterFactory

	Writing a Persister
	find(EBMPEntity entityBean, String methodName, DataPacket finderData)
	processTxnRequest(EBMPEntity entityBean, DataPacket txnData, String cachePolicy)
	mapTxn(String entityName, String methodName)
	load(EBMPEntity entityBean)
	amend(EBMPEntity entityBean, String methodName)
	amend(EBMPEntity entityBean, String methodName)
	amend(EBMPEntity entityBean, String methodName, DataPacket data, Vector primaryKeys, boolean removeOperation)
	store(EBMPEntity entityBean)
	storeInCache(Map data, long timeOutValue, boolean persistent)
	create(EBMPEntity entityBean)
	remove(EBMPEntity entityBean)
	removeFromCache(EBMPEntity entityBean)
	removeFromCache(Vector primaryKeys)

	PersisterTxnMap
	PERSISTER_TXN_MAP Table
	Configuring the PERSISTER_TXN_MAP Table
	com.bankframe.ei.txnhandler.persistertxnmap
	PersisterTxnMapBean

	Configuring BankframeResource.properties

	Financial Process Integrator Caching
	Host Cache Examples
	Configuring BankframeResource.properties
	Deprecated Host Cache Settings

	Financial Process Integrator Engine
	Financial Process Integrator Engine Interface
	processFindRequest (DataPacket dataPacket)
	processRequest (DataPacket dataPacket)

	Transaction Request DataPacket
	Transaction Request Processing Steps
	Transaction Data-Format Class
	DataFormat Class Interface
	Instantiating the Data-Format Class
	Data-Format Class Request Processing Steps
	Data-Format Class Response Processing Steps
	toDataPacketsVector()
	toDataPacketsMap()
	moreToRequest ()
	notifyProcessingFinished()
	setConnectionSpecification(Object command, String connectorProperties)

	TransactionHandlerUtils helper class
	DataFormatUtils helper class
	Transaction Route Entity Bean
	Caching of Transaction Routes

	Destination Entity Bean
	Caching of Destinations

	Posting the Transaction Request data Object to the Host Connector
	Configuring BankframeResource.properties
	Financial Process Integrator Testing using Test Servlet
	TransactionHandlerHomePage
	TransactionHandlerTestServlet
	TransactionRouteTestServlet
	DestinationTestServlet
	RequestTransactionFieldServlet
	ResponseTransactionFieldServlet
	MetaDataServlet
	TransactionErrorConditionServlet

	EIS Connectors
	MCA Services Connector Architecture
	Siebel Connector Interfaces/Components
	Using a Siebel Connector with the Financial Process Integrator
	OffLine Connector
	HTTPConnector

	JCA Support
	Defining the Resource adapter
	Interacting with the resource adapter

	Store and Forward
	Overview
	Determining if the host is offline
	Host Status
	Host Operation types

	Destination Entity Bean
	DestinationEjbMap Entity Bean
	Store and Forward Classes and Package Structure
	StoreAndForwardConstants
	StoreAndForwardUtils
	InternalStoreAndForwardUtils
	StoreTransactionBean
	StoreQueueBean
	CompletedForwardTransactionBean
	ForwardTransactionBean
	ForwardOperationsBean
	HostStatusMonitor
	ForwardingThread

	Forcing the host online or offline
	Exceptions
	HostConnectivityException
	HostOfflineException
	HostProcessingErrorException

	BankframeResource.properties settings
	transactionHandler.storeAndForward.forwardingDelay
	transactionHandler.storeAndForward.hostStatusDelay
	transactionHandler.storeAndForward.url
	transactionHandler.storeAndForward.startHostMonitorAutomatically
	transactionHandler.storeAndForward.nextTransactionBatchAmount

	Implementing Store and Forward
	StoreAndForwardPersister

	Teller Example of Store and Forward
	TransactionDetails
	IsSystemAvailabilityBean
	IsMakeDeposit
	MakeDeposit
	MaintainFinancialTransaction

	About Branch Teller Offline Transaction Processing
	Processing a Timeout between Siebel Retail Finance and the Host System
	Store and Forward Mid-Tier Processing when the Host is Offline
	Processing Failed Stored Transactions

	Financial Process Integrator Examples
	Extracting the Source Code for the FPI Examples
	Launching the FPI Examples
	The CustomerSearch Example
	The Address Entity EJB
	The Customer Entity EJB
	Relationship between the Customer and Address Entity EJBs
	The CustomerSearch Session EJB
	Interfacing the Entities with the Financial Process Integrator
	CustomerBMPBean Methods
	Modeling the Customer and Address Entity Relationship
	CustomerBean Methods
	CustomerBMPBean Methods
	Configuring the PERSISTER_TXN_MAP Table for CustomerSearch
	Configuring the Meta-Data Tables for CustomerSearch
	Configuring the TXN_ROUTE Table for CustomerSearch
	Configuring the DESTINATION Table for CustomerSearch
	Configuring the RESPONSE_INDEX Table for CustomerSearch
	Configuring the INDEX_META_DATA Table for CustomerSearch
	Configuring the Cobol Test Connector for CustomerSearch
	Configuring the CustomerSearch Example

	The AccountSearch Example
	The Account Entity EJB
	The AccountSearch Session EJB
	Interfacing the Account Entities with the Financial Process Integrator
	Configuring the PERSISTER_TXN_MAP Table for AccountSearch
	Configuring the Meta-Data Tables for AccountSearch
	Configuring the TXN_ROUTE Table for AccountSearch
	Configuring the DESTINATION Table for AccountSearch

	Financial Process Integrator Advanced Topics
	Handling Complex Amend and Find Operations
	TxnHandlerBroker

	Handling Create and Remove Operations
	Immediate create operation example

	An example data formatter class
	checkIfMoreToRequest()
	checkIfNoEntitiesFound()
	postProcessResponseData()

	5 Enterprise Services
	Security Provider Framework
	Security Provider Framework Classes and Package Structure
	Configuration of the Security Provider
	Security Providers included with MCA Services
	com.bankframe.services.security. NullBankFrameSecurityProvider
	com.bankframe.services.security. DefaultBankFrameSecurityProvider

	Implementing a Security Provider

	User Authentication
	Purpose
	Framework for custom authentication mechanisms
	Standard authentication mechanisms

	The logon process
	The logoff process
	com.bankframe.services.authentication package
	com.bankframe.services.authentication.AuthenticationBean
	com.bankframe.services.authentication. AuthenticationException
	com.bankframe.services.authentication.Authentication
	com.bankframe.services.authentication.AuthenticationUtils

	Implementing a custom authentication mechanism
	Introduction to Custom Authentication
	Create the bean implementation
	Define the Remote Interface
	Define the Home Interface
	Define the Deployment Descriptor
	Build & Deploy the bean
	Conclusions

	Registering Authentication Mechanisms with MCA Services
	Implementing a client application that can authenticate against MCA
	The SampleAuthenticationBean
	SampleAuthenticationBean Code explanation

	LDAP Authentication
	Introduction to LDAP Authentication
	Configuring LDAP Authentication

	RDBMS Authentication
	Introduction to RDBMS Authentication
	Component Overview
	Configuring RDBMS User Authentication

	Encrypting Sensitive Data
	Message Digest Overview
	MCA Message Digest service
	MCA Message Digest Configuration

	Session Management
	Purpose
	Relationship to other session management systems
	Components of MCA Services Session Management

	Use Cases
	Free Services
	Logging On
	Normal Use
	Logging Off

	com.bankframe.services.sessionmgmt
	BankFrameSession
	SessionManagementBean
	SessionManagement
	SessionManagementUtils
	InvalidSessionException
	com.bankframe.services.sessionmgmt.Client

	Implementing a session management aware client application
	Implementing a custom session management implementation
	Configuring and Administering Session Management
	Deploying a Session Management Implementation
	Administering MCA Sessions

	Standard Session Management Implementations
	RDBMS implementation
	LDAP Implementation

	Access Control
	Purpose
	Overview

	com.bankframe.services.accesscontrol
	com.bankframe.services.accesscontrol.AccessControlBean
	com.bankframe.services.accesscontrol.AccessControl
	com.bankframe.services.accesscontrol.AccessControlException

	Implementing a custom access control mechanism
	Create the bean implementation
	Remote Interface
	Home Interface
	Deployment Descriptor
	Conclusion

	LDAP Access Control Mechanism
	Introduction to LDAP Access Control Mechanism
	Configuring LDAP Access Control
	Configuring Access Rights

	EJB Access Control Implementation
	Introduction to EJB Access Control Implementation
	Configuring access rights
	EJB Overview
	Session Bean Overview

	User and Group Administration Session Beans
	UserAdministrationBean
	GroupAdministrationBean

	Routing
	How MCA Services Routing works
	RequestRouter and Transactions

	The com.bankframe.services.requestrouter package
	RequestRouterBean
	RequestRouter
	RequestRouterHome
	RequestRouterException
	RequestRouterUtils

	The com.bankframe.services.route package
	EJBRouteBean
	LDAPRouteBean
	Route
	RouteHome
	RoutePK

	Route Administration Session Bean
	com.bankframe.services.route.adminstration
	The RouteAdministrationBean’s Methods
	processDataPacket()

	Request Contexts
	Request Contexts and Threads
	The com.bankframe.services.requestcontext package
	Configuring Request Contexts
	Accessing the state of a RequestContext
	Writing Custom Request Context Factory Classes
	Request Contexts and Performance

	Request Context Example

	Remote Notification
	How Siebel Notification Works
	Peer to peer using mid-tier server
	High Level overview
	Remote Notification Architecture
	NotificationServer and Target Communication Procedure
	Timeout and Retry Mechanism
	Receiving Notification Event messages

	Remote Notification API
	The com.bankframe.services.notification package
	The com.bankframe.services.notification.notificationserver package
	The com.bankframe.services.notification.registeredaddress package

	The com.bankframe.services.notification.targetselection package
	The TargetSelectionFactory Methods

	Internationalization
	Resource Bundles
	MCA Internationalization Framework
	BankFrameMessage
	BankFrameException
	BankFrameMessageUtils
	BankFrameExceptionUtils

	Examples
	Using BankFrameMessage
	Using BankFrameException

	References
	The Java Tutorial on internationalisation
	ISO-639 - Language codes
	ISO-3166 - Country Codes

	Logging
	Classes and Package Structure
	The com.bankframe.services.logger package
	The com.bankframe.services.logger.wl61 package
	The com.bankframe.services.logger.log4j package
	The com.bankframe.services.logger.console package

	Using the Logging Service
	Logging Levels
	Logging Subsystems
	Logging Best Practices

	The Logging context
	Techniques for problem resolution using the logging framework
	Examine logged stack traces
	Filter by functional area
	Filter by logging context

	Configuring the Logging Service
	Configuration Parameters

	Integrating with other Logging Frameworks
	Create a class that implements the ELogger interface
	Create a class that implements the ELogger.Context interface
	Create a factory class that extends ELoggerFactory
	Update application server startup script

	Deprecations
	BankFrameLog
	ESystem.out

	References

	Audit
	Audit Classes and Package Structure
	Configuring the Audit Service
	com.bankframe.services.audit.NullBankFrameAuditProvider
	com.bankframe.services.audit.DefaultBankFrameAuditProvider

	Configuring Routes to the Audit Service
	Calling the Audit Service from within custom code
	Exceptions in the Audit Service

	Timing Points
	The com.bankframe.services.trace package
	BankFrameTrace
	EndToEndTrace
	TimingPoint
	TimingPointProperties
	TimingPointFactory
	DefaultTimingPointFactory
	TimingPointAnalyser

	Configuring Timing Points
	EndToEndTrace
	timingPoint
	timingPoint.writePointsToDisk
	timingPoint.subsystem.BANKFRAME.MCA
	timingPoint.doSummary
	timingPoint.fileName
	timingPoint.bufferSize
	timingPoint.analyzerClassName
	timingPoint.transactionHandler.recording
	timingPoint.custom.recording
	timingPoint.host.recording
	timingPoint.servlet.recording
	timingPoint.format

	Mail
	Classes and Package Structure
	DataPacket Structure
	Using the Mail Service

	Ping
	Classes and Package Structure
	DataPacket Structure
	Using the Ping Service
	Calling the Ping Service using a client
	Calling the Ping Service using a browser

	LDAP Connectivity
	MCA Services & LDAP
	com.bankframe.ei.ldap
	com.bankframe.ei.ldap.LDAPServerContext
	com.bankframe.ei.ldap.LDAPServerContextFactory
	com.bankframe.ei.ldap.LDAPEntityBean
	com.bankframe.ei.ldap.LDAPPrimaryKey
	com.bankframe.ei.ldap.LDAPEntityBeanPK

	Sample Bean Managed LDAP based Entity Bean
	Bean Implementation
	Bean Implementation Explained
	The Remote Interface
	The Home Interface
	The Deployment Descriptor

	Advanced Topics
	Using Custom Primary Keys
	Modifying the LDAPPerson example to use CustomPK
	Handling multiple values
	Implementing custom finder methods

	Data Validation
	Classes and Package Structure
	com.bankframe.validation.ValidationException
	com.bankframe.DataTypeValidator
	com.bankframe.DataTypeConvertor
	com.bankframe.validation.DateValidator
	com.bankframe.validation.DateConvertor

	Examples
	DataTypeValidator Example
	DataTypeConvertor Example
	DateValidator Example
	DateConvertor Example

	Peripherals Support
	Scope
	MCA Device Base Classes
	MCADevice base interface
	MCASerialPort base class
	MCADeviceProperties class
	DeviceException class
	MCADeviceProtocol class

	MCA device implementations
	MagTek MiniMicr cheque reader device
	Using the MiniMicr Device in a client application
	Epson TM-U375 Slip-printer device
	Using the SlipPrinter Device in a Client Application
	MagTek IntelliPin Plus swipe-card device
	Using the IntelliPIN Pad Card-Swipe Device in a Client Application

	Implementing a new type of MCA Device
	Implementing a new type of Serial-Port device

	Hardware Requirements
	Software Requirements
	Installation and configuration of required hardware
	Epson Slip-Printer
	MagTek MiniMicr cheque reader
	MagTek IntelliPIN Plus card-swipe reader

	Installation and configuration of required software
	Java Communications Extension API on Windows
	Java Communications Extension API on Solaris
	Java Communications API Trouble Shooting
	Java Cryptography Extension API
	MagTek Device Drivers for Windows

	Topology
	Client-side Application
	Server-side
	Client-side Applet
	Unit Test classes

	 Future development
	References
	Links:
	Downloads
	Sample source code
	Printed Matter

	Printing Framework
	com.bankframe.services.print
	PrintBean

	Generating the Service
	Calling the Service from another Session
	Accelio Architecture
	Control Process
	Architecture Overview

	Caching Framework
	Uses of caching
	In Memory and Persistent Caches
	Functionality of a Cache
	What Does the Generic Framework Provide?

	com.bankframe.services.cache
	com.bankframe.services.cache.Cache
	com.bankframe.services.cache.GenericCache
	com.bankframe.services.cache.NullCache
	com.bankframe.services.cache.JMSCache
	com.bankframe.services.cache.JMSCache.JMSCacheEvent
	com.bankframe.services.cache.JMSListener
	Configuring JMS Caching
	com.bankframe.services.cache.CachePolicy

	Cache and Cache Index Interaction
	Cache and CachePolicy Interaction
	Creating persistent caches
	Configuring the Caching Framework
	Configuring BankframeResource.properties
	Extending the Caching Framework

	Dynamic Configuration
	Configuring com.eontec.mca.bankframeresourcebundle
	Grouping properties

	com.bankframe.services.resource
	BankFrameResource
	BankFrameResourceSubset
	BankFrameMCAResource
	BankFrameResourceBundle
	BankFrameResourceFactory
	ResourceLocator

	Using the dynamic configuration framework
	Accessing BankframeResource.properties
	Working with subsets
	Accessing arbitrary resource files
	Configuring the refresh interval
	Backwards Compatibility

	6 Appendix: Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings true
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 100
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 100
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

