SIEBEL./

eBusiness

INTEGRATION PLATFORM TECHNOLOGIES: SIEBEL
eBUSINESS APPLICATION INTEGRATION VOLUME Il

VERSION 7.5.3
AUGUST 2003

12-FRX505

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2003 Siebel Systems, Inc.

All rights reserved.

Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photographic, magnetic, or other record, without the prior agreement and written
permission of Siebel Systems, Inc.

Siebel, the Siebel logo, TrickleSync, TSQ, Universal Agent, and other Siebel product names referenced herein
are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered trademarks of their
respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial computer
software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial Computer Software
Documentation, and as such, any use, duplication and disclosure of the Programs, Ancillary Programs and
Documentation shall be subject to the restrictions contained in the applicable Siebel license agreement. All
other use, duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions contained in
subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted Rights (June 1987), or

FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987), as applicable. Contractor/licensor
is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in this documentation and
in Siebel eBusiness Applications Online Help to be Confidential Information.
Your access to and use of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems software license
agreement, which has been executed and with which you agree to comply; and
(2) the proprietary and restricted rights notices included in this documentation.

Contents

Version 7.5.3

Introduction

How This Guide Is Organized 1
Additional Resources 12
Revision History o e 13

Chapter 1. About Integration Objects

Integration Objects Terminology 15
Siebel Integration Objects 16
Integration Object Base Object Type i, 18
Integration Object and Integration Object Instance 19
Siebel Integration Object Wizards 21
Structure of Siebel Integration Objects 22
ASSOCIAtIONS ot 26
Multi-Value GIOUPS . . .o vttt e e e e e e e e 27
Picklists 33
Calculated Fieldst e 35
InnerJOIns 35
Operation Control 36
Field Dependencies 37
Primariest e e e e 37
Repository Objects 37
Integration Component Keys i 38
User Keys . .o oo e 38

eAl Volume lI: Integration Platform Technologies 3

‘ Contents

Status Keys e 44
Hierarchy Parent Key, 44
Hierarchy Root Key 45

Chapter 2. Creating and Maintaining Integration Objects

Integration Object Builder Overview 47
Creating Integration Objects Using the EAI Siebel Wizard 48
Siebel Integration Object Fine-Tuning 51
Integration Object Validation 51
Integration Objects Synchronization 52

Synchronization Considerations, 52

Synchronization Rules 57
The EAI Siebel Wizard 62
Siebel Integration Objects Maintenance and Upgrade 64
Permission Rules for Integration Components 65
EAI Siebel Adapter Access Control 66
Integration Object User Properties 66
Example of an Integration Object With M:M Relationship 70
Generating Schemas 72
Performance Considerations, 73
Business Component Restrictions 74
Best PTacCtiCesttt e e e e 74

Chapter 3. Business Services

Overview of Business Services, 77
Creating Business Services 78
Business Service Structure 79
ADbout PToperty Sets it e 80

Creating Business Services in Siebel Tools 82

4 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Contents

Version 7.5.3

Defining a Business Service in Siebel Tools 83
Defining Business Service Methods 84
Defining Business Service Method Arguments 84
Defining and Writing Business Service Scripts 85
Specifying Business Service Subsystems, 86
Defining Business Service User Properties 87
Creating a Business Service in the Siebel Client 87
Business Service Export and Import 88
Testing Your Business Service 89
Accessing a Business Service Using Siebel eScript or Siebel VB 90
Business Scenario 91
Code Sample e 93

Chapter 4. Web Services

Web Services OVEIVIEWo 95
Inbound Web Services 97
Outbound Web Services 100
XML Schema Support for <xsd:any> Tag 105
Examples of Invoking Web Services 107
Troubleshooting Tips i 115

Chapter 5. EAI Siebel Adapter

EAI Siebel Adapter OVEIVIEW ittt e e e e 117
EAI Siebel Adapter Methods 117
Query Method e 122
QueryPage Method 123
Synchronize Method 123
Upsert Method 124
Insert Method e 125
Update Method 125

eAl Volume IlI: Integration Platform Technologies 5

‘ Contents

Delete Method 126
Execute Method 126
XML Examples e 129
MVGs in EAI Siebel Adapter 131
Search Specification 134
Language-Independent Code 138
EAI Siebel Adapter Concurrency Control 139
Modification Key 140
Modification IDso 140
Siebel eAl and Run-Time Events 145

Chapter 6. Siebel eAl and File Attachments

Exchange of Attachments with External Applications 147
Using MIME Messages to Exchange Attachments 148
Creating the Integration Object 149
Creating Workflow Processes Examples 150
The EAI MIME Hierarchy Convertero o.... 156
Outbound Integration 157
Inbound Integration 158
The EAI MIME Doc Converter, 159
EAI MIME Doc Converter Propertiesc.u.iiiie.... 160

Chapter 7. Siebel Virtual Business Components

Overview of Virtual Business Components 163
Enhancements to VBCs for This Version 165
Usage and Restrictions, 165

Virtual Business Components, .. 166
Creating a New Virtual Business Component 167
Setting User Properties for the Virtual Business Component 168

XML Gateway ServiCe it e e e 169

6 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Contents

Version 7.5.3

XML Gateway Methods 172
XML Gateway Method Arguments, 173
Examples of Outgoing XML Format 174
Search-Spec Node-Type Types i 179
Examples of Incoming XML Format 180
External Application Setup 183
Custom Business Service Methods 183
Common Method Parameters 184
Business Services Methods and Their Property Sets 185
Custom Business Service Example 203

Appendix A. Predefined EAl Business Services

Predefined EAI Business Services 219

Appendix B. Property Set Representation of Integration

Objects
Property Sets and Integration Objects 223
Property Set Node TyPes oo ittt e 224
Example of a Sample Account 226

Appendix C. DTDs for XML Gateway Business Service

Outbound DTDS e e e 229
Inbound DTDS e 231
Index

eAl Volume lI: Integration Platform Technologies 7

‘ Contents

8 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Introduction

Version 7.5.3

This guide explains the details of Siebel eBusiness Application Integration’s (Siebel
eAl’s) integration platform technologies, including integration objects, business
services, EAI Siebel Adapter, virtual business components, and so on.

The audience for this guide consists primarily of employees in these categories:

Business Analysts

Database
Administrators

Siebel Application
Administrators

Siebel Application
Developers

Siebel Integration
Developers

Siebel System
Administrators

System Integrators

Persons responsible for analyzing application integration
challenges and planning integration solutions at an enterprise.

Persons who administer the database system, including data
loading, system monitoring, backup and recovery, space
allocation and sizing, and user account management.

Persons responsible for planning, setting up, and maintaining
Siebel applications.

Persons who plan, implement, and configure Siebel applications,
possibly adding new functionality.

Persons responsible for analyzing a business situation or using the
analysis of a business analyst to build the integration solution for
Siebel applications at an enterprise.

Persons responsible for the whole system, including installing,
maintaining, and upgrading Siebel applications.

Persons responsible for analyzing a business situation or using an
analysis to build integration solutions or to develop custom
solutions for specific applications at an enterprise.

The audience for this book also needs to have experience in data integration, data
transformation (data mapping), scripting or programming, and XML.

eAl Volume lI: Integration Platform Technologies 9

‘ Introduction

Product Modules and Options

This Siebel Bookshelf contains descriptions of modules that are optional and for
which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software
implementation may differ from descriptions in this Bookshelf. To find out more
about the modules your organization has purchased, see your corporate purchasing
agent or your Siebel sales representative.

10 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Introduction ‘

How This Guide Is Organized

How This Guide Is Organized

This book is organized in a way that presents the most important information up
front. It describes how to create and maintain integration objects and then provides
description of individual components of the EAI integration platform, such as
virtual business components.

Version 7.5.3

This book is Volume 2 of a five-volume set. The full set includes:

Overview: Siebel eBusiness Application Integration Volume I

Integration Platform Technologies: Siebel eBusiness Application Integration
Volume 11

Transports and Interfaces: Siebel eBusiness Application Integration Volume III
Business Processes and Rules: Siebel eBusiness Application Integration Volume IV

XML Reference: Siebel eBusiness Application Integration Volume V

eAl Volume lI: Integration Platform Technologies 11

‘ Introduction

Additional Resources

Additional Resources

The product documentation set for Siebel eBusiness Applications is provided on the
Siebel Bookshelf CD-ROM or in Siebel Online Help. The following integration related
books and online help describe all the tools required to implement integration:

m Siebel Tools Online Help.
m Siebel Tools Reference.
m Siebel Business Process Designer Administration Guide.

n Siebel Enterprise Integration Manager Administration Guide if you perform bulk
loading or unloading of data.

m Application Services Interface Reference.

The Connector books provide specifics on each of the associated connectors.

12 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Introduction

Revision History

eAl Volume II: Integration Platform Technologies

Version 7.5.3

Version 7.5.3
Table 1. Changes Made in Version 7.5.3

Revision History

Topics

“XML Schema Support for < xsd:any >
Tag”

“Web Services Support for Transport
Headers”

Revision

New for 7.5.3: Support of the < xsd:any > tag
added to Chapter 4, “Web Services.”

New for 7.5.3: Support for Transport Headers
in Chapter 4, “Web Services.”

Version 7.5, Rev. A

Table 2. Changes Made in Version 7.5, Rev. A

Topics

“Integration Object Base Object Type”

“Picklists”

“Picklists”

“Example of an Integration Object With
M:M Relationship”

“Inner Joins”

“Best Practices”

Revision

Added a new table presenting Integration
Object Types. Chapter 1, “About Integration
Objects.”

Changed PicklistUserKey to PicklistUserKeys
and added requirements in Chapter 1, “About
Integration Objects.”

Added this user property to Table 6 in
Chapter 2, “Creating and Maintaining
Integration Objects.”

Added a new section discussing integration
objects with M:M in Chapter 2, “Creating and
Maintaining Integration Objects.”

Added new content in Chapter 2, “Creating
and Maintaining Integration Objects.”

Added new scenarios in Chapter 2, “Creating
and Maintaining Integration Objects.”

eAl Volume IlI: Integration Platform Technologies 13

‘ Introduction

Revision History

Table 2. Changes Made in Version 7.5, Rev. A

Topics

“Code Sample”

“Accessing a Business Service Using
Siebel eScript or Siebel VB”

“Web Services Overview”

Chapter 7, “Siebel Virtual Business
Components”

“Insert Method”

“Query Method”

“Custom Business Service Example”

Revision

Changed Canlnvoke = = "TRUE" to
Canlnvoke = "TRUE" in Chapter 3, “Business
Services.”

New examples on calling business services in
Chapter 3, “Business Services.”

Provided more details throughout the
Chapter 4, “Web Services”.

Updated all the examples in Chapter 7,
“Siebel Virtual Business Components.”

Updated the definition for Update method in
Chapter 5, “EAI Siebel Adapter.”

Added a new example for Query method in
Chapter 5, “EAI Siebel Adapter.”

Added a new example in Chapter 7, “Siebel
Virtual Business Components.”

14 eAl Volume IlI: Integration Platform Technologies

Version 7.5.3

About Integration Objects 1

This chapter describes the structure of Siebel integration objects. It describes the
Integration Object Builder wizard, which assists you in building your own
integration objects based on Siebel objects.

Integration Objects Terminology

This chapter describes the concepts that are often referred to using different
terminology from one system to another. Table 3 has been included to clarify the
information in this chapter by providing a standard terminology for these concepts.

Table 3. Terminology

Term

Metadata

Siebel business object

Component

Siebel business
component

Field

Version 7.5.3

Description

Data that describes data. For example, the term datatype describes data elements
such as char, int, Boolean, time, date, and float.

A Siebel object type that creates a logical business model using links to tie
together a set of interrelated business components. The links provide the one-
to-many relationships that govern how the business components interrelate in
this business object.

A constituent part of any generic object.

A Siebel object type that defines a logical representation of columns in one or
more database tables. A business component collects columns from the business
component’s base table, its extension tables, and its joined tables into a single
structure. Business components provide a layer of abstraction over tables.
Applets in Siebel applications reference business components; they do not
directly reference the underlying tables.

A generic reference to a data structure that can contain one data element.

eAl Volume ll: Integration Platform Technologies 15

‘ About Integration Objects

Siebel Integration Objects

Table 3. Terminology

Term

Siebel integration
component field

Siebel integration
component

Integration object

Integration object instance

Siebel integration object

Integration message

Description

A data structure that can contain one data element in a Siebel integration
component.

A constituent part of a Siebel integration object.

An integration object of any type, including the Siebel integration object, the
SAP BAPI integration object, and the SAP IDOC integration objects.

Actual data, usually the result of a query or other operation, which is passed
from one business service to another, that is structurally modeled on a Siebel
integration object.

An object stored in the Siebel repository that represents some Siebel business
object.

A bundle of data consisting of two major parts: header information that
describes what should be done with or to the message itself, and instances of
integration objects, that is, data in the structure of the integration object.

Siebel Integration Objects

Siebel integration objects allow you to represent integration metadata for Siebel
business objects, XML, SAP IDOCs, and SAP BAPIs as common structures that the
EAI infrastructure can understand. Because these integration objects adhere to a set
of structural conventions, they can be traversed and transformed programmatically,
using Siebel eScript objects, methods, and functions, or transformed declaratively
using Siebel Data Mapper.

NOTE: For more information, see Business Processes and Rules: Siebel eBusiness
Application Integration Volume IV.

16 eAl Volume lI: Integration Platform Technologies Version 7.5.3

About Integration Objects

Version 7.5.3

Siebel Integration Objects

The typical integration project involves transporting data from one application to
another. For example, you may want to synchronize data from a back-office system
with the data in your Siebel application. You may want to generate a quote in the
Siebel application and perform a query against your Enterprise Resource Planning
(ERP) system transparently. In the context of Siebel eAl, data is transported in the
form of an integration message. A message, in this context, typically consists of
header data that identifies the message type and structure, and a body that contains
one or more instances of data—for example, orders, accounts, or employee records.

When planning your integration project, you should consider several issues:
s How much data transformation does your message require?

= At what point in the process do you perform the data transformation?

= [s a confirmation message response to the sender required?

= Are there data items in the originating data source that should not be replicated
in the receiving data source, or that should replace existing data in the receiving
data source?

This guide can help you understand how Siebel eAl represents the Siebel business
object structure. It also provides descriptions of how Siebel eAl represents external
SAP R/3 structures.

eAl Volume IlI: Integration Platform Technologies 17

‘ About Integration Objects

Siebel Integration Objects

Integration Object Base Object Type

Each integration object created in Siebel Tools has to be based on one of the base
object types presented in Table 4. This property is used by adapters to determine
whether the object is a valid object for them to process.

NOTE: XML converters can work with any of the base object types.

Table 4. Base Object Types

None

OLE DB

SAP BAPI Input

SAP BAPI Output

SAP IDOC

SAP IDOC
Adapter

SQL
SQL Database
Wizard

SQL Oracle
Wizard

Siebel Business
Object

18 eAl Volume lI: Integration Platform Technologies

Description
For internal use only.

Used to expose Siebel business component as OLEDB rowset that can
be used by OLEDB consumers such as Excel, Word, and so on. The
OLE DB Provider only accepts integration objects of this type.

Used to represent the input structure of an SAP RFC or BAPI function
call. For details, see Siebel eBusiness Connector for SAP R/3
Guide.

Used to represent the output structure of an SAP RFC or BAPI
function call. For details, see Siebel eBusiness Connector for SAP
R/3 Guide.

Used with the IDOC Adapter and Receiver in version 6.x and 7.0. For
details, see Siebel eBusiness Connector for SAP R/3 Guide.

Used to represent an SAP IDOC structure. For details, see Siebel
eBusiness Connector for SAP R/3 Guide.

Used for manually creating integration objects. Only the EAI SQL
Adapter accepts integration objects of this type.

Used by the Database Wizard for the integration object it creates.
Only the EAI SQL Adapter accepts integration objects of this type.

Used by the Oracle Wizard for the integration object it creates. Only
the EAI SQL Adapter accepts integration objects of this type.

Used by the Integration Object Builder wizard for the integration
object it creates. EAI Siebel Adapter only accepts integration object of
this type.

Version 7.5.3

About Integration Objects ‘

Integration Object and Integration Object Instance

Table 4. Base Object Types

Name Description
Table Obsolete.
XML Used to represent external XML Schema such as DTD or XSD. For

details on DTD and XSD, see XML Reference: Siebel eBusiness
Application Integration Volume V.

Integration Object and Integration Object Instance

Understanding the difference between integration objects and integration object
instances is important, especially in regard to the way they are discussed in this
chapter.

An integration object, in the context of Siebel eAl, is metadata; that is, it is a
generalized representation or model of a particular set of data. It is a schema of a
particular thing.

An integration object instance is also referred to as a Siebel Message object.

Version 7.5.3 eAl Volume ll: Integration Platform Technologies 19

‘ About Integration Objects

Integration Object and Integration Object Instance

An integration object instance is actual data organized in the format or structure of
the integration object. Figure 1 illustrates a simple example of an integration object
and an integration object instance, using partial data.

Integration Object (Partial)

Contact

Contact_Business Address

Contact_Position

Contact_Oppartunity

Integration Object Instance

Susan Grant

1000 Industrial Way

200 Park Avenue

President and CEQ

Pentiurm Servers - Q3 00 -
Commercial

Figure 1. Integration Object and Integration Object Instance

Any discussion of integration objects in this book will include clarifying terms to

help make the distinction—for example, metadata or Siebel instance.

20 eAl Volume llI: Integration Platform Technologies

Version 7.5.3

About Integration Objects ‘

Siebel Integration Object Wizards

Within Siebel Tools, there are multiple wizards associated with integration objects:
one that creates integration objects for internal use by the Siebel application, and
others that create integration objects for external systems based on Siebel objects.
Figure 2 shows the logic of Integration object Wizard and Generate Schema Wizard.
The Generate Code wizard (not shown) works in the same manner as the Generate
Schema wizard, but it generates Java classes.

Using Siebel Wizard to Create a
Siebel eAl Integration Object

Siebel Integration Object Wizards

Using Siebel Wizard to Create an External
Representation of a Siebel eAl Integration Object

Siebel Tools

Create Mew
Internal Object

Integration Object Wizard

Siebel Tools

Gzneratz Schema

Create Mew
External Object

Generate Schema Wizard

o

Siebel Integration Object
[Based on Siebel
Business Object)

Integration Object
(Based on External OTO)

Siebel Repository

Figure 2. Integration Object

Version 7.5.3

Wizards

#ML Document Type
Definition (OTO]

¥OR Schema

0f3 File System

eAl Volume lI: Integration Platform Technologies 21

‘ About Integration Objects

Structure of Siebel Integration Objects

Integration Object Builder wizard. This wizard lets you create a new object. It
supplies the functionality for creating integration objects from Siebel business
objects or integration objects based on representations of external business
objects using XML Schema Definition (XSD) or Document Type Definition
(DTD). To access this wizard, navigate to the New Object dialog box in Siebel
Tools and after selecting the EAI tab, double-click the Integration Object icon to
start the Integration Object Builder wizard.

Generate XML Schema wizard. This wizard lets you choose an integration object
and output XML schema in XML Schema Definition (XSD) standard, Document
Type Definition (DTD), or Microsoft’s XDR (XML Data Reduced) format. To
access this wizard, navigate to the Integration Objects list in Siebel Tools and
select an integration object. Then click Generate Schema to start the Generate
XML Schema wizard.

Code Generator wizard. The third wizard lets you create a set of Java class files
based on any available integration object or Siebel business service. To access
this wizard, navigate to the Integration Objects list in Siebel Tools object explorer
and select an integration object. Then click Generate Code to start the Code
Generator wizard.

NOTE: Specific instructions on how to use these wizards appear throughout the
Siebel eBusiness Application Integration documentation set where appropriate.

Structure of Siebel Integration Objects

The Siebel integration object provides a hierarchical structure that represents a
complex data type. Most specifically, prebuilt eAl integration objects describe the
structure of Siebel business objects, SAP IDOCs, SAP BAPIs, XML, and external
data. Most integration projects require the use of an integration object that describes
Siebel business objects, either in an outbound direction such as a query operation
against a Siebel integration object or in an inbound direction such as a synchronize
operation against a Siebel integration object.

22 eAl Volume llI: Integration Platform Technologies Version 7.5.3

About Integration Objects

Version 7.5.3

Structure of Siebel Integration Objects

Chapter 2, “Creating and Maintaining Integration Objects” continues with
descriptions of how to create integration objects. The initial process of using the
Integration Object Builder wizard is essentially the same for every integration object
type currently supported.

CAUTION: You should avoid using or modifying integration objects in the EAI Design
project. Using or modifying any objects in the EAI Design project can cause
unpredictable results.

Siebel business objects conform to a particular structure in memory. Although it is
generally not necessary to consider this structure when working with Siebel
applications, when you are planning and designing an integration project it is
helpful to understand how a Siebel eAl integration object represents that internal
structure.

An integration object consists of one Parent Integration Component, sometimes
referred to as the root component or the primary integration component. The Parent
Integration Component corresponds to the primary business component of the
business object you chose as the model for your integration object. Figure 3 shows
the Account business object in Siebel Tools.

Object Explorer

Project: | “ Al Projects ** j

[w | Mame Changed | Praject Primary Business Companent Query
Types | Detail | Flat | Abs Admin Parameter Appointment Cuery
= iebel Objects | Abs Admin Service Region Appointment Query
Applet | Abs Admin Time Window Map Appointment Ler
S| Application = AcceptReject Acd Query
Business Comporent 1| | Access Group Access Group Cuery
-84 Business Object > & Account Account Account Ler

Figure 3. Account Parent Business Component

For example, assume you chose the Account business object (on the first panel of
the Integration Object Builder wizard) to base your integration object
myAccount_01 on. The Account business object in Siebel Tools has an Account
business component as its primary business component. In the myAccount_01
integration object, every child component will be represented as either a direct or
indirect child of the primary business component named Account.

eAl Volume IlI: Integration Platform Technologies 23

‘ About Integration Objects

Structure of Siebel Integration Objects

Each child component can have one or more child components. In Siebel Tools, if
you look at the integration components for an integration object you have created,
you will see that each component can have one or more fields. Figure 4 on page 25
illustrates a partial view of a Siebel integration object based on the Account
business object, with the Business Address component and the Contact component
activated.

24 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

About Integration Objects ‘

Version 7.5.3

Figure 4 represents part of the structure of the Account integration object. The

Structure of Siebel Integration Objects

Account parent integration component can have both fields and child integration

components. Each integration component can also have child integration
components and fields. A structure of this sort represents the metadata of an

Account integration object. You may choose to inactivate components and fields. By
inactivating components and fields, you can define the structure of the integration
object instances entering or leaving the system.

| Account Competitors |Acc0unt Condition ‘

—{ Business Address

\—{ Account Id | City |

4| Contact

-

Accomplishments ‘

_‘ Contact_Business Address |

—{ City ‘ Country ‘

—{ Contact_|

FPosition ‘

<{ Division ‘ Employee First Mame

. Parent Integration Camponent

D Integration Components

D Integration Component Fields

Figure 4. Representation of Partial Account Integration Object

eAl Volume II: Integration Platform Technologies

25

‘ About Integration Objects

Structure of Siebel Integration Objects

Associations

Siebel business objects are made up of business components that are connected by
a link. An association is a business component that represents the intersection table
that contains these links. The integration component definition of associations is
similar to that of multi-value groups (MVGs). User properties Association and
MVGAssociation on the integration component denote that the corresponding
business component is an associated business component or an associated MVG,
respectively. For fields that are defined on MVG associations, External Name
denotes the name of the business component field as it appears on the parent
business component, and the user property AssocFieldName denotes the name of
the business component field as it appears on the MVG business component.

26 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

About Integration Objects ‘

Structure of Siebel Integration Objects

For example, the Contact business object is partly made up of the Contact and
Opportunity business components. The association between these two business
components is represented by the Contact/Opportunity link with a value or a table
name in the Inter Table column. The Integration Object Builder wizard creates a
new integration component for the integration object based on the Contact business
object that represents the association. As shown in Figure 5, the Opportunity
integration component has one user property defined: the Association user
property, set to a value of Y.

Integration Companents

| ' | External Marme Context| Mame | Changed| Parent Integration Component| External Marne

Contact v Contact

Contact

Oppartunity v Contack Oppartunity

Integration Compaonent User Props
| ' | Mame | Changed | Walue | Inactive | Comments
ﬂ & Association v ¥

Figure 5. Integration Component Representation of Association

NOTE: When building an integration object, if an integration component is an
association based on an intersection table, the user key for this integration
component cannot contain fields based directly or indirectly on the same
association intersection table.

Multi-Value Groups

Multi-value groups (MVGs) are used within Siebel business components to
represent database multivalued attributes. MVGs can be one of two types: regular
MVGs or MVG Associations.

Version 7.5.3 eAl Volume IlI: Integration Platform Technologies 27

‘ About Integration Objects

Structure of Siebel Integration Objects

An integration object instance most often has multiple integration component

instances. For example, an Account can have multiple Business Addresses but only
one of these addresses is marked as the primary address. A business requirement
may require that only the integration component instance that corresponds to the
primary MVG be part of the integration object instance. In relation to Account and
Business Addresses this means that only the primary address should be part of the
Account integration object instance. The primary address can be obtained by one of

the following steps:

» Creating a new MVG on the Account business component that uses a link with

a search specification only returning the primary address record.

= Exposing the primary address information on the Account business component
level using a join that has the primary ID as source field. Note that in this case
the primary address information corresponds to fields on the Account
integration component instance and not the fields on a separate Address

component instance.

In Siebel Tools, if a Siebel business component contains an MVG, the MVG is

represented in several screens as illustrated in the following sections.

Screen 1: Fields View
For example, as illustrated in Figure 6, the Account business component contains a
multi-value group field, the Address Id.

55 Components
| W| Mame | Changed| Praject Cache Crata | Class
| Access Contral Party Reparting Systemn CSSBusComp
| Access Contral Test Systemn CSSBusComp
Accesz Group Accesz Group
Access Group Member Accesz Group 25
Account CSSECBaze
Fields
| Required| ' | Mame | Changed | [Drest Field | Multi Walue Link
Address Active Status Active Status Business Address
ﬂ # Addresz1d 1d Business Address

Figure 6. Address Id MVG Field in the Account Business Component

28 eAl Volume IlI: Integration Platform Technologies

Version 7.5.3

About Integration Objects ‘

Structure of Siebel Integration Objects

Screen 2: Multi-Value Links

As shown in Figure 7, the multi-value link property has the value Business Address.
If you navigate to the Multi Value Link screen, you see that the Business Address
multi-value link has the value Business Address as its Destination Business
Component.

amponents
| ' | Mame | Changed | Praject | Cache Crata | Class [rata Source| Dirty Reads| Distinct |
J Access Contral Party Reporting Relation Systemn CSSBusComp v
J Access Contral Test Systemn CSSBusComp v
J Accesz Group Accesz Group CSSBCGroun. v
J Access Group Member Accesz Group CSSBCBane v
|T Account Account CSSECBaze v
4

LIt Yalue Links

| ' | Mame Auta Primary | Primary Id Field | Drestination Business Component| Drestination Link
J / Account Category Crefault Primary Category Id Account Category Account/fccount Categary
J # Account Credit Profle Default Account Credit Profile AccountfAccount Credit Prafile
J / Account Synonym Drefault Primary Synonym Id Account Synonym Accountffccount Synonym
J # Bill To Business Address Selected Primary Bill To Address Id Business Address Account/Business Address
J # Bill Ta Contact Selected Primary Bill Ta Person Id Contact Account/Contact
ﬂ # Business Address Drefault Primary Address Id Business Address Account/Business Address

Figure 7. Destination Business Component

Version 7.5.3 eAl Volume IlI: Integration Platform Technologies 29

‘ About Integration Objects

Structure of Siebel Integration Objects

Screen 3: Fields View

As shown in Figure 8, the Business Address multi-value link has Business Address
as its Destination Business Component. This means that there is another business
component named Business Address that contains the fields that are collectively
represented by Address Id in the Account business component.

| W| Mame Praject | Table |
| 2 # Business Address Contact S ADDFR_ORG
Business Service Business Service S5 RT SWC

Business Service Input Argurment Properties Business Serwice

|| Buziness Service Method Buziness Service S RT SWC METH
|| Business Service Method Arg Business Service S RT SWC M ARG
4
Fields

| Required| ' | Mame | Changed | Calurmn | [Drest Field
|| & Account Id oI
J Active Status ACTIVE_FLG
|T Address Mame ADDR_MAME
J Address Mame Locked MAME_LOCK_FLS

Figure 8. Business Address Business Component

30 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

About Integration Objects ‘

Structure of Siebel Integration Objects

Graphical Representation
Figure 9 shows a graphical way to represent the relationship between Account
business component and the Business Address multi-value link.

Account Business Component (Parent)

Address 1D Alias Full Mame I

123 4,

Business Address
Multi-alue Link

Business Address Business Compaonent

Account 1D Street Address

123

123

123

Figure 9. Address Id Field and Business Address MVG

The more table-like representation above shows how the Business Address multi-
value link connects the two business components. The child points to the Business
Address business component, which contains the multiple fields that make up the
MVG.

NOTE: Two business components are used to represent an MVG.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 31

‘ About Integration Objects

Structure of Siebel Integration Objects

32

Creating an Integration Component
To create a Siebel integration component to represent an MVG, it is necessary also
to create two integration components:

= The first integration component represents the parent business component. In
the example, this is the Account business component. This integration
component contains only the fields that are defined in the parent business
component, but which are not based on MVGs. The Multi-value Link property
and the Multi-value property are empty for these fields.

s The second integration component represents the MVG business component. In
the example, this is the Business Address business component. The second
integration component has one integration field for each field based on the given
MVG in the parent business component. An integration component user
property will be set on this integration component to tell the EAI Siebel Adapter
that it is based on an MVG business component. If the MVG is a regular MVG,
the user property is named MVG. If the MVG is an Association MVG, then the
user property is named MVGAssociation. In both cases, the value of the user
property is Y.

Figure 10 shows an integration component based on an MVG and its user property
value in Siebel Tools.

Integration Companents

| L | External Marne Context Marne | Parent Integration
J # Account_Bill Ta Contact Account_Eill To Contact Account
|T | Account Business Address i Account_Business Address Account
J & Account_Industry Account_Industry Account
J p/’ Account_Organization Account_Organization Account
J p/’ Account_Organization Unit Type Account_Organization Unit Type Account

4
Integration Compaonent User Props

| | ' | Mame | Changed | Walue
|l| P v ¥

Figure 10. Integration Component Based on MVG Business Component

eAl Volume Il: Integration Platform Technologies Version 7.5.3

About Integration Objects

Picklists

Version 7.5.3

Structure of Siebel Integration Objects

The EAI Siebel Adapter needs to know the names of the MVG fields as they are
defined in the parent business component—in this example, Account—and also the
names of the MVG fields as they are known in the business component that
represents the MVG—in this example, Account Business Address. As shown in
Figure 11, the integration component fields represent the MVG.

Integration Companents

| L | External Marne Context Marne | Parent Integration

Account_Eill To Contact Account_Eill To Contact Account

i Account_Business Address Account_Business Address Account

& Account_Industry Account_Industry Account
| p/’ Account_Organization Account_Organization Account
p/’ Account_Organization Unit Type Account_Organization Unit Type Account

Integration Component Fields

Inactive | ' | Mame Changed | Drata Type | Length |
Address Active Status DTYPE_TEXT

Addresz1d CTYPE_ID 30
Address Integration Ic DTYPE_TEXT 20
Address Mame DTYPE_TEXT 100

I

RN R

Eill Address Flag DTYPE_TEXT

Figure 11. Integration Component Fields Representing MVG

To represent both names, each field is assigned an integration component field user
property that contains the entry MVGFieldName or AssocFieldName if the user
property is MVGAssoc. Its value is the name of the field shown in the parent
business component—in this example, Business Address.

If an integration component field is created for a Siebel business component field
and the business component field is based on a picklist, validation of the field can
be done in EAI Siebel Adapter or Object Manager. To have the validation done in
EAI Siebel Adapter, the integration component field should have a user property
with the name PICKLIST and a value of Y; otherwise, validation is done by Object
Manager.

eAl Volume IlI: Integration Platform Technologies 33

‘ About Integration Objects

Structure of Siebel Integration Objects

If validation is done by EAI Siebel Adapter, and the pickmap for the picklist contains
more than one field, when designing the integration object, you need to decide

which of the fields to use as a search criterion and which to simply update if input
values are different than those in the picklist (provided that picklist allows updates).

An example would be an integration object based on Order Entry business object.
The root component of the Order Entry business object is Order Entry - Orders with
a field Account, whose pickmap contains a large number of fields such as Account,
Account Location, Account Integration Id, Currency Code, Price List and so on. One
of the tasks the integration object designer needs to perform is to determine which
of these fields should be used to identify the account for an order.

If the PicklistUserKeys user property on the integration component field that is
mapped to the field with the picklist (in the example above: Account) is not defined,
then any integration component fields that are mapped to columns in the U1 index
of business component's base table, and are present in the pickmap will be used by
EAI Siebel Adapter to find the matching record in the picklist. (In the example
above, this would be Account and Account Location.)

In cases where the default user key for the picklist does not satisfy your business
requirements (for example, Account Integration Id should be solely used instead of
the default user key to pick an Account), or you want to make the user key explicit
for performance reasons, then the PicklistUserKeys user property should be used.

The value of the PicklistUserKeys user property is a comma separated list of
integration component fields that are used to find the matching record in the picklist
(for example, 'Account, Account Location' or 'Account Integration Id").

In order for EAI Siebel Adapter to use the fields referenced in PicklistUserKeys user
property, the fields must be included in the pickmap of the underlying business
component field. Please note that if the business component field names and
integration component field names, listed in the PicklistUserKeys property, are not
the same, then the picklist should contain external names of the fields listed in the
PicklistUserKeys user property.

34 eAl Volume llI: Integration Platform Technologies Version 7.5.3

About Integration Objects

Structure of Siebel Integration Objects

If there is a field present in the business component and in the pickmap, and it is
stored in the base table, then EAI Siebel Adapter can use the picklist to populate this
field, only if this field is present and active in the integration component. This field
should also be present and empty in the input property set.

NOTE: Picklist validation in EAI Siebel Adapter is required for dynamic picklists. For
details, see “Picklist Validation” on page 73.

Calculated Fields

Inner Joins

Version 7.5.3

Calculated fields are inactive in the integration object when they are created. If your
business needs require it, you need to activate the calculated fields in the
integration object.

NOTE: Calculated fields are those integration component fields that have the
Calculated flag checked on the corresponding business component field.

When inner joins are used, records for which the inner joined field is not set are not
returned in any query. By default the wizard inactivates such fields. If your business
needs require these fields, you need to activate them.

NOTE: If the inner join has a join specification that is based on a required field, then
the wizard will not inactivate the fields that are using that particular join.

For example, assume that Account business component has an inner join to S_PROJ
table, with Project Id field being the source field in the join specification, and the
Project Name field being based on that join.

If an integration component, with an active Project Name field is mapped to the
Account business component, then when this integration component is queried
only accounts with Project Id field populated will be considered.

eAl Volume IlI: Integration Platform Technologies 35

‘ About Integration Objects

Structure of Siebel Integration Objects

Because Project Id is not a required field in Account business component, not every
account in Siebel Database is associated with a project. So, having Project Name
active in the integration component would limit the scope of the integration
component to only accounts associated with a project. This typically is not
desirable, so the wizard inactivates the Project Name field in this example.

If the business requirement is to include the Project Name field, but not to limit the
integration component’s scope to only accounts with project, then you can change
the join to S_PROJ in the Account business component to an outer join. For details
on join, see Siebel Tools Reference.

NOTE: Activating an inner join may cause a query on that integration component to
not find existing rows.

Operation Control

Each integration component has user properties that indicate if an Insert, Update,
or Delete can be performed on the corresponding business component, indicated by
a Nolnsert, NoUpdate, or NoDelete. A similar user property NoUpdate may be set
on an integration component field. If any of these user properties are set to Y, the
corresponding business component method is used to validate the operation.

The user properties NoQuery and NoSynchronize are defined on integration
components to specify to the Siebel Adapter if a corresponding operation is to be
performed on an instance of that type. These properties take values Y or N.

The user property AdminMode set to Y indicates that the update of the
corresponding business component is to be performed in admin mode. This can be
defined on either integration object or integration component definitions.

The user properties IgnorePermissionErrorsOnUpdate,
IgnorePermissionErrorsOnlnsert, and IgnorePermissionErrorsOnDelete can be used
to suppress the errors that arise from having the NoUpdate, Nolnsert, and NoDelete
user properties set to Y. The error is ignored and processing will continue when
properties IgnorePermissionErrorsOnUpdate, IgnorePermissionErrorsOnlnsert and
IgnorePermissionErrorsOnDelete are set to Y.

36 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

About Integration Objects ‘

Structure of Siebel Integration Objects

Field Dependencies

Dependency between fields can be defined by user properties of the integration
component field. The names of these user properties must start with
FieldDependency, and the value of each property should contain the name of the
field that the associated field is dependent on. The Siebel Adapter processes fields
in the order defined by these dependencies and errors out if cyclic dependencies
exist.

Siebel Adapter automatically takes into account dependencies of fields set by a
PickList on the fields used as constraints in that PickList. For example, if a PickList
on field A also sets field B, and is constrained by the field C, then this implies
dependencies of both A and B on C. As a consequence, Siebel Adapter will set field
C before fields A and B.

Primaries

Primaries are set through multi-value links. However, you should not use multi-
value links for modifying the linked component. To modify the linked component
you should use links. If you need to set primaries in addition to modifying the linked
component, use both links and multi-value links in your integration object. EAI
Siebel Adapter should use the multi-value link only after it processes the component
through the link; therefore, the link or the Association component should have a
smaller external sequence number than the related MVG or MVGAssociation
component. See “Structure of Siebel Integration Objects” on page 22 for an
example.

Repository Objects

For the Siebel adapter to deal with repository objects, a user property REPOBJ needs
to be defined on the root integration component. If this is set to Y, the Siebel adapter
sets a context on the repository so that the rest of the operations are performed in
that context.

Version 7.5.3 eAl Volume ll: Integration Platform Technologies 37

‘ About Integration Objects

Structure of Siebel Integration Objects

Integration Component Keys

User Keys

There are multiple types of integration component keys.

m User Key. See “User Keys” on page 38.

m Status Key. See “Status Keys” on page 44.

= Hierarchy Parent Key. See “Hierarchy Parent Key” on page 44.

= Hierarchy Root Key. See “Hierarchy Root Key” on page 45.

= Modification Key. See “EAI Siebel Adapter Concurrency Control” on page 139.

m Foreign Key. See Siebel eBusiness Connector for Oracle Guide.

Target Key. See Siebel eBusiness Connector for Oracle Guide.

NOTE: There should be just one integration component key for every type of key
except the user key. For example, if there are two Hierarchy Parent Keys defined for
an integration component, EAI Siebel Adapter picks the first one and ignores the
second one.

User key is a group of fields whose values must uniquely identify a Siebel business
component record. During inbound integration, user keys are used to determine
whether the incoming data updates an existing record or inserts a new one. The
Integration Object Builder wizard automatically creates some user keys based on
characteristics discussed in “User Key Generation Algorithm” on page 40. You
should make sure that the generated user keys match your business requirements;
otherwise, inactivate them or add new user keys as appropriate.

Integration component keys are built by the Integration Object Builder wizard based
on values in the underlying table of the business component that the integration
component is based on. Integration objects that represent Siebel business objects,
and that are used in insert, update, synchronize, or execute operations, must have
at least one user key defined for each integration component.

In Siebel Tools, user keys are defined as integration component key objects, with
Key Type property set to User Key.

38 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

About Integration Objects ‘

Structure of Siebel Integration Objects

A sequence of integration component user keys is defined on each integration
component definition, each of which contains a set of fields. During processing of
integration component instance, EAI Siebel Adapter chooses to use the first user key
in the sequence that satisfies the condition that all the fields of that user key are
present in an integration component instance. The first instance of each integration
component type determines the user key used by all instances of that type.

For example, consider the Account integration object instance with only Account
Name and Account Integration Id field present. When EAI Siebel Adapter performs
validation, it first checks the Account and Account Location field (the first user key
for the Account integration component). In this example, because the Account
Location field is missing, EAI Siebel Adapter moves to the second user key—
Account Integration Id. The Account Integration Id field is present in the integration
component instance and has a value, so EAI Siebel Adapter uses that as the user
key to match the record. Now if the same instance also had Account Location field
present, but set to null, then EAI Siebel Adapter would have picked the Account
Name and Account Location combination as the user key. This is because Account
Location is not a required field.

A new user key is picked for each integration object instance (root component
instance). However, for the child component instances, the user key is picked based
on the first child instance, and then used for matching of all instances of that
integration component within the parent integration component instance.

For example, if a Siebel Message contains two orders, then the user key for order
items is picked twice, once for each order. Each time, the user key is selected based
on the first order item record and then used for all the siblings.

NOTE: EAI Siebel Adapter uses user keys to match integration component instances
with business component records. Since the match is case sensitive there is a
chance that records are not matched if the case of the user key fields do not match.
To avoid this, use the Force Case property on the business component field to make
sure that user key fields are always stored in one case.

Version 7.5.3 eAl Volume ll: Integration Platform Technologies 39

‘ About Integration Objects

Structure of Siebel Integration Objects

User Key Generation Algorithm

The Integration Object Builder wizard computes the user keys by traversing several
Siebel objects, including the business object, business component, table, and link.
This is because not every table user key meets the requirements to be used as the
basis for integration object user keys.

To understand how the Integration Object Builder wizard determines valid
integration component keys, you can simulate the process of validating the user
keys.

For example, determine the table on which your business component is based. In
Siebel Tools, you can look up this information yourself. Navigate to the Business
Components screen and select a business component and check the Table column.

You can then navigate to the Tables screen, locate the table you want—in this
example, S_CONTACT—and open the User Keys applet to see the user keys defined
for that table.

For example, as shown in Figure 12, the table S_CONTACT has several user keys.

Extend | Apply | Activate ‘

[w | Mame [changed | Project [User Hame
s 5_CONTACT Maitable Parsan

["w | Mame Changed | User Key Type Source Inkerface Table | Inactive | Index

S_CONTACT: ERP Interface ERP Iterface v S_COMTACT EI

S_CONTACT: Mew_S2K_S0 Hew_52K_S0 S_COMTACT UL

S_CONTACT: Scopus Migration Scopus Migration S_COMTACT M8

5_COMTACT EL EI Index 5_COMTACT EI
v

S_CONTACT U1 Traditional UL Index S_COMTACT_L

S_CONTACT U1 - Std Replaced Replaced S_COMTACT UL

Figure 12. User Keys for Table S_CONTACT

Not every user key will necessarily be valid for a given business component.
Multiple business components can map to the same underlying table; therefore, it
is possible that a table’s user key is not valid for a particular business component
but is specific to another business component.

40 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

About Integration Objects

Version 7.5.3

Structure of Siebel Integration Objects

Each User Key Column defined for a given user key must be exposed to the business
component in which you are interested. For example, Figure 13 shows three user
key columns for the user key S_CONTACT_U1.

Wi | Mame Changed User Key Type
|| S_COMTACT: Scopus Migration Scopus Migration
|| S_COMTACT EI EI Index
| | S_CONTACT_IT Integration Id
|3 S_CONTACT UL Traditional Ut Index
|| S_COMTACT U1 - Std Replaced Replaced
4

[[Mame Changed | Column
> | BUID ELI_ID
|| PERSOM_LID PERSOM_LID
|| PRIV FLG PRIV FLG

Figure 13. User Key Columns for the S_CONTACT_U1 User Key

If the columns of the user key are exposed in the business component and those
columns are not foreign keys, the Integration Object Builder wizard creates an
integration component key based on the table’s user key. The Integration Object
Builder wizard also defines one integration component key field corresponding to
each of the table’s user key columns. For example, in Figure 14, the user key
columns are exposed in the Integration Component Fields applet for the Contact
integration component.

mponents

[w [Mame | Changed | Praject | Cache Dats| Class | Dats Source | Dirty Resds Distinct
W 4~ Contact v Contact { CSSBCUser v

4

[Required | w [Mame [changed [3o [alumn, [pickLis
1> Accamplishments S_CONTACTT ACCOMPLISH
|| 7 Account
| | # Account Currency Code Conlact - 5_ORG BASE_CLRCY_CI
|| # Account Id 5_COMTACT PR_DEPT_OU_IC
|| & Account Integration 1d Contact - 5_ORG INTEGRATION I PickList Account

Figure 14. Integration Component Field List

eAl Volume lI: Integration Platform Technologies 41

‘ About Integration Objects

Structure of Siebel Integration Objects

42

The Integration Object Builder wizard, for the preceding example, builds the
integration component keys based on these table user keys. As illustrated in
Figure 15, the wizard defines one integration component key field for each table

user key column.

Integration Companents

| i | External Hame Context | Mame Changed | Parent Integration Component] External Hame
5] # contact Cantact v Cantact
|| # contactmote Cortact Mote v Cortact Cortact Mote
|| # contact_ccount Contact_Account v Contact Accaunt
|| # Contact Business Address Conlacl_Business Address ¢ Contact Business Address
Conlact_Pasttion Contact_Position v Contact Foslion

Integration Component

[changed] Key Sequence| Target Key Mame| Key Type| Inactive| Comments

Figure 15. Integration Component Keys for Each Table User Key Column

eAl Volume Il: Integration Platform Technologies

ol
W70 Wizard-Generated User Key:1 v User Key

| | # w70 Wizard-Generated User Key:t & 10 User Key
|| # ur0Wizsrd-Genersted User Key:1t o 11 User Key
|| # w70 wizard-Generated User Key:2 v 2 User Key
|| # w70 wizard-Generated User Key:3 v 2 User Key
|| & w70 Wizard-Genersted User Keyid Vo4 User Key
| | # 70 Wizard-Generated User Key:S v 5 User Key
|| # 70 Wizard-Genersted User Key:6 voE User Key
|| # 70 Wizsrd-Genersted User Key:? Vo7 User Key
A W70 Wizard-Generated User Key:d v g User Key

{7 § u7n Wizard-Generated User Key:9 Vo3 User Key

Version 7.5.3

About Integration Objects

Version 7.5.3

Structure of Siebel Integration Objects

Each valid integration component key contains fields. For example, as shown in
Figure 16, for the Contact integration component, User Key 3 is made up of five
fields: CSN, First Name, Last Name, Middle Name, and Personal Contact.

NOTE: You should only modify user keys if you have a good understanding of the
business component and integration logic.

Integration Component Keys

[[Mame Changed | Key Sequence Mumber
| | # wrowizard-Generated User key i1 v
| | # wrowizard-Ganerated User Key 10 v
| | # wrowizard-Generated User Key 111 v 1
| | # wrowizard-Generated User Key 2 v
M 70 vicar - Generated User Key:i3 v
[

Integration Cormponent key Fields

[[e Changed | Field Mame [
C5H C5M

First Marne

First Mame
Last Mame

Middle Marme

Last Mame
Middle Marme

| | # Personal contact

B
RN

RN R

Personal Contact

Figure 16. Contact Integration Component Key Fields

When the Integration Object Builder wizard creates these integration component
keys, it attempts to use the appropriate table user keys, that is, the user keys that
will help uniquely identify a given record. In some cases, you may find that certain
integration component keys created by the Integration Object Builder wizard are not
useful for your particular needs. In that case, you can manually inactivate the keys
you do not want to use by checking the Inactive flag on that particular user key in
Siebel Tools. You can also inactivate user key fields within a given user key.

NOTE: For ease of maintenance and upgrade, inactivate unnecessary generated user
keys and user key fields instead of deleting them.

eAl Volume ll: Integration Platform Technologies 43

‘ About Integration Objects

Structure of Siebel Integration Objects

Status Keys

In the context of Siebel business objects, user keys are a group of fields whose
values must uniquely identify only one Siebel business component record.
Integration components within a corresponding integration object also contain user
keys.

For many integrations, you want to know the status. For example, if you are sending
an order request you want to know the ID of the Order created so that you can query
on the order in the future. You can set the Status Object of EAI Siebel Adapter to
Tr ue to return an integration object instance as a status object.

The status returned is defined in the Integration Component using Status Keys. A
Status Key is an Integration Component key of the type Status Key. Fields defined
as part of the Status Key are included in the returned Status Object. If a Status Key
is not defined for the Integration Component then neither the component nor any
of its children are included in the returned object.

» To include descendants of an Integration Component without including any of
its fields in the returned status object, specify an empty Status Key.

m To include information about which one of the update, insert, or delete
operations was performed during an upsert or synchronize request, include a
field named Operation in the Status Key.

Hierarchy Parent Key

44 eAl Volume

The Hierarchy Parent Key is used for integration objects that have a homogeneous
hierarchy. This key should only have the Parent Id. The Hierarchy Parent Key is used
for maintaining the hierarchy and keeping the data normalized.

For example, when you insert quotes, each quote item in turn can have more quote
items. In this case, the very first quote item inserted by EAI Siebel Adapter has the
Parent Id set to blank, but for each child quote item, EAI Siebel Adapter checks the
keys to figure out which fields are to be set. If Hierarchy Parent Key is not defined,
then the child quote item is inserted as a new quote item without a link to its parent
(denormalized).

II: Integration Platform Technologies Version 7.5.3

About Integration Objects ‘

Structure of Siebel Integration Objects

Hierarchy Root Key

The Hierarchy Root Key is an optional key that is useful only when integration
objects have a homogeneous hierarchy. You can use this key to improve
performance. The Hierarchy Root Key should have only one field, Root Id, which
EAI Siebel Adapter populates with the value of the ID field in the component
instance that is in the root of the homogenous hierarchy. For example, assume quote
Q1 has quote items A, B, and C where each of the quote items has child quote items
(A1, A2, B1, B2,...). If you want to update the quantity requested for all quote items
starting with the root quote item B, then it is faster if the data is denormalized.
Using the Hierarchy Root Key, you can search for all records with Root Id equal to
the Row Id of B and set the QuantityRequested field for each item.

NOTE: When the business component is hierarchy enabled, then the wizard
automatically sets the Hierarchy Parent Key for the complex integration component.
To have a business component hierarchy enabled you need to set the property
Hierarchy Parent Field.

Version 7.5.3 eAl Volume ll: Integration Platform Technologies 45

‘ About Integration Objects

Structure of Siebel Integration Objects

46 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects 2

This chapter describes how to use the Integration Object Builder wizard in Siebel
Tools to create new Siebel integration objects. This wizard guides you through the
process of selecting objects (either from the Siebel repository or from an external
system) on which you can base your new Siebel integration object. This chapter
also describes how to fine-tune and refine the integration object you have created.

Integration Object Builder Overview

Version 7.5.3

The Integration Object Builder builds a list of valid components from which you can
choose the components to include in your Siebel integration object.

NOTE: The Integration Object Builder provides a partial rendering of your data in the
integration object format. You must review the integration object definition and
complete the definition of your requirements. In particular, you should confirm that
user key definitions are defined properly. You may need to enter keys and user
properties manually or inactivate unused keys and fields in Siebel Tools. You should
not expect to use the integration object without modification.

The following checklist gives the high-level procedure for creating an integration
object.

Checklist

O Create integration objects using the EAI Siebel Wizard.

For details, see “Creating Integration Objects Using the EAI Siebel Wizard” on
page 48.

eAl Volume ll: Integration Platform Technologies 47

‘ Creating and Maintaining Integration Objects

Creating Integration Objects Using the EAI Siebel Wizard

Checklist

g Fine-tune your integration object.
For details, see “Siebel Integration Object Fine-Tuning” on page 51.
ad Validate your integration object.

For details, see “Integration Object Validation” on page 51.

Creating Integration Objects Using the EAl Siebel Wizard

Siebel Tools provides a wizard to walk you through creating an integration object.
You should use this wizard to create your integration object.

To create a new Siebel integration object
1 Start Siebel Tools.

2 Create a new project and lock it, or lock an existing project in which you want
to create your integration object.

3 Choose File > New Object... to display the New Object Wizards dialog box.
4 Select the EAI tab and double-click the Integration Object icon.
5 In the Integration Object Builder wizard:
a Select the project you locked in Step 2.
b Select the EAI Siebel Wizard.
6 Click Next and in the second page of the Integration Object Builder wizard:

a Select the source object. This is the object model for the new Siebel
integration object. Only business objects with Primary Business Components
appear on this picklist.

48 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Version 7.5.3

Creating Integration Objects Using the EAI Siebel Wizard

b Type a unique name in the field for the new Siebel integration object and
click Next.

NOTE: The name of an integration object must be unique among other
integration objects.

The next page of the wizard, the Integration Object Builder - Choose
Integration Components page, displays the available components of the
object you chose.

7 Deselect the components you would like the wizard to ignore. This means you

will not be able to integrate data for that component between the Siebel
application and another system.

NOTE: Any component that has a plus sign (+) next to it is a parent in a parent-
child relationship with one or more child components. If you deselect the parent
component, the children below that component are deselected as well. You
cannot include a child component without also including the parent. The
Integration Object Builder enforces this rule by automatically selecting the
parent of any child you choose to include.

For example, assume you have chosen to build your Siebel integration object on
the Siebel Account business object and you want to create an integration
component based on the Account and Contact business components.

a Deselect the Account integration component at the top of the scrolling list.
This action deselects the entire tree below Account.

b Select the Contact component. When selecting a child component, its parent
component is also selected, but none of the components below the child
component are selected. You must individually select the ones you want.

Click Next. The next page displays error or warning messages generated during
the process. Review the messages and take the appropriate actions to address
them.

eAl Volume IlI: Integration Platform Technologies 49

‘ Creating and Maintaining Integration Objects

Creating Integration Objects Using the EAI Siebel Wizard

9 Click Finish to complete the process of creating a new Siebel integration object.

NOTE: After creating integration objects in Siebel Tools, you must compile a new
.srf file and copy the .sr1f file to the SIEBSRVR_ROOT/OBJECTS directory.

Your new Siebel integration object appears in the list of integration objects in
Siebel Tools.

On the Integration Components screen, the Account integration component is
the only component that has a blank field in the Parent Integration Component
column. The blank field identifies Account as the root component. The Siebel
integration object also contains the other components selected, such as Contact
and its child components.

NOTE: Once you create your integration object based on a Siebel business object, you
should not change its integration component’s External Name Context; otherwise,
the synchronization process will not recognize the integration component and will
remove it from the integration object.

10 To view the fields that make up each integration component, select a component

from the integration component list in Siebel Tools.

The Integration Component Fields applet displays the list of fields for that
component. Note the system fields Conflict Id, Created, Id, Mod Id, Updated,
operation, and searchspec in the list. This setting prevents EAI Siebel Adapter
Query and QueryPage method from outputting these fields. For more details, see
“System Fields” on page 74 and “Search Specification” on page 134.

NOTE: The XML Sequence property in this applet defines the order in which the
XML tags appear when an integration object is created.

50 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects ‘

Siebel Integration Object Fine-Tuning

Siebel Integration Object Fine-Tuning

After you create your integration object you need to fine-tune and customize your
integration object based on your business requirements. Following is a list of the
most common practices in fine-tuning an integration object.

» Deactivate the fields that do not apply to your business requirements.

m If necessary, activate the fields that have been deactivated by the Siebel wizard.
For details, see Chapter 1, “About Integration Objects.”

m Add the fields that have not been included by the Siebel wizard. For details on
the implications of activating such fields, see “Calculated Fields” on page 35 and
“Inner Joins” on page 35.

= Validate the user keys. For details, see Chapter 1, “About Integration Objects.”

m Update the user properties for your integration object to reflect your business
requirements. For details, see “Integration Object User Properties” on page 66.

Integration Object Validation

Version 7.5.3

Once you have created your integration object and made the necessary
modifications to meet your business requirements, you need to validate your
integration object.

To validate your integration object
1 Open Siebel Tools.
2 Select your integration object.

3 Click Validate.

NOTE: Review the report and modify your integration object as needed.Integration
objects you create in Siebel Tools must be compiled into the Siebel.srf file. Once you
test the integration object, you must copy the compiled .srf to your
SIEBSRVR_ROOT\OBJECTS directory.

eAl Volume lI: Integration Platform Technologies 51

‘ Creating and Maintaining Integration Objects

Integration Objects Synchronization

Integration Objects Synchronization

Business objects often require updates to their definitions to account for changes in
data type, length, edit format, or other properties. It is common to want to alter
database metadata, but if you do so you have to also update your integration objects
to account for these updates. Otherwise, you can cause undesirable effects on your
integration projects.

Some examples of these changes are:

= A field removed

= A new required field

» A new picklist for a field

= A change of relationship from one-to-many to many-to-many

= An upgrade to a new version of Siebel applications

Synchronization Considerations

To help simplify the synchronization task, Siebel eAl provides an integration object
synchronization utility. Although the process of synchronizing your integration
object with its underlying business object is straightforward, you should review the
integration objects you have modified to make sure that you have not inadvertently
altered them by performing a synchronization. After synchronization, you should
validate your integration object.

The following checklist gives the high-level steps for updating an integration object.

Checklist

g Run the Synchronization wizard.

For details, see “Updating the Entire Integration Object” on page 57.

52 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects ‘

Integration Objects Synchronization

Checklist

ad Modify the newly updated integration object as needed, using the DIFF tool and the
copy of the integration object as reference.

For details, see Siebel Tools Reference.

a Run Validation.

For details, see “Integration Object Validation” on page 51.

To update an integration object

1 Access the integration object you want to update in Siebel Tools.

2 Run the Synchronization wizard by double-clicking the Synchronization button.

NOTE: The update process overrides the integration object and deletes user keys,
user properties, and so on. You can use the copy of the integration object made
by the Synchronization wizard to see how you modified the object.

Version 7.5.3 eAl Volume ll: Integration Platform Technologies 53

‘ Creating and Maintaining Integration Objects

Integration Objects Synchronization

a On the Integration Objects Builder, click on the plus sign to list all the related
integration components, as shown in the following figure.

Integration Object Builder - Choose Integration Components X

Select the integration components that you would like to activate for this Integration
Object by checking the appropriate items.

[#] &ccount_Business Address
[V] Account_Service Agreement
[&ccount_DeDuplication - 554 Account Key
[V] &ccount_Pasition
[#] &ccount_Organization
- [¥] &ccount_Bill To Business Address
- [¥] Account_Bill To Contact
-[#¥] &ccount_Account Credit Prafile
[7] &ccount_Industy

[W] &ccount_Ship To Business Address

[&ccount_Ship To Contact

=

—

Account_Account Synonym =
P S
] ;IJ

Include component O Ignore component

< Back I Mest > I Cancel |

The process of retrieving Siebel integration object and Siebel business object
definitions can take varying amounts of time depending on the size and
detail of the selected objects.

b Uncheck the boxes beside the objects and components you do not want to
include in the synchronization of your Siebel integration object. Note that
only the objects that are included in the new integration object are marked.
The process of performing the synchronization can take some time,
depending on the complexity of the selected objects.

54 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Version 7.5.3

Integration Objects Synchronization

¢ Click Finish to synchronize the Siebel integration object and the Siebel

business object. The Compare Objects dialog box, shown below, appears.

Compare Objects x|
First Selection: Second Selection

=4 Integration Object - =14 Integration Object =
=@ Account - 1-25343 =@ Account
[El-{#4| Integration Component - Intearation Component
- H-€» Account
A€ Account - Get SAP Order List Header
H-p Account Attachment
+-p socount Category
74P Account_becount Credit Profile
: - Account_Acocount Spnonpm
-&» Account_Bil Ta Business Address
o ¥ Account_Bil Ta Contact
€ Account_Business Address * -y Account_Business Address
R Y- _“‘I +- @ Account_lndustry

< Account_Organization - +-€» Account_Diganization -
‘ o » T |4 o »
5 Delete [Ielete: |
Properties:

Mame | Walue | Mame | Walue |

oo B e
-
x
g
g
g
=
1
=
=
B
=
E
)
2
3
a
g
=
Y
=3
s
g
g

oo B e

r Dizplas & Differing instance
¥ Show all ohjects <» Mon-differing instance
Object type with differing instances

Object type with non-differing instances Close |

™ Show all user properties I Show svstem properties

This tool allows you to move properties and objects between versions using
arrow buttons.

When you synchronize the Siebel integration object and the Siebel business
object, the Synchronization wizard performs update, insert, and delete
operations. The Synchronization wizard selects or deselects components to
make the Siebel integration object look like the representation of the Siebel
business object you chose.

The wizard generally updates the Siebel integration object either by updating
the object and its components or by updating some components and deleting
others. For details, see “Updating the Entire Integration Object” on page 57
and “Deleting a Component from the Integration Object” on page 60.

eAl Volume IlI: Integration Platform Technologies 55

‘ Creating and Maintaining Integration Objects

Integration Objects Synchronization

3 Copy custom properties and custom user keys as needed. The wizard includes
any new fields added to the business object in your integration object for the
new version of your Siebel application. All these fields are set to active.

4 Deactivate any new field that you do not need as a component of your updated
integration object.

5 Right-click on your integration object, and select the Validate option to validate
your integration object.

NOTE: If you need to synchronize any of the external integration objects, you should
also follow this general procedure to perform a synchronization operation.

56 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Integration Objects Synchronization

Synchronization Rules

Version 7.5.3

During the synchronization process, the Synchronization wizard follows particular
update rules. Consider a simple example involving the Siebel Account integration
object with only Contact and its child components marked as active in the object.
Figure 17 helps you to visualize this example.

Integration Object Builder - Choose Integration Components

Select the integration components that you would like to activate for this Integration
Object by checking the appropriate items.

&[] CPG Fund Check |

&[] CPG Fund Child

[Commurnication Subject

- [#] Contact

- [¥] Contact_Account

P] Contact_DeDuplication - 554 Contact Key

P] Contact_Communication Address J

P] Contact_Buziness Address

[#] Contact_Pozition

[#] Contact_Houzeholds

[#] Contact_Oppartunity

P] Contact_Personal Address

P] Contact_Contact Relationzhip -
‘ E= Ty [N o PR WRPRTY | o PUIPRY FAPUI R ' PP | _}I—I

Include component O lanore component

< Back I Mest » I Cancel | Help |

Figure 17. Example of Selected Integration Components

Since the Account component is the parent of Contact, it is also selected, even
though you cannot see it in Figure 17.

Updating the Entire Integration Object

After initiating the Synchronization wizard, if you check the boxes in the wizard,
the wizard creates a new integration object in memory. If the underlying Siebel
business object has been changed, then the new, in-memory integration object will
be different from the integration object in the database. As a result, the wizard
synchronizes the outdated integration object in the database with the new, in-
memory integration object.

eAl Volume IlI: Integration Platform Technologies 57

‘ Creating and Maintaining Integration Objects

Integration Objects Synchronization

Figure 18 illustrates this concept.

Business Object/MNew In-Memary Existing Integration Object
Integration Object in Database

Arcount | |:{> ‘ Account ‘
—' Business Address ‘ :{>
—| contact ‘ |:>

—{ Contact_Business Address ‘

>

Contact ‘

—{ Contact_Business Address ‘

<{ Contact_Puosition ‘ <{ Contact_Puosition ‘

<{ Contact_Opportunity ‘ <{ Contact_Opportunity ‘

4{ Contact_Personal Address ‘ «‘ Contact_Personal Address ‘

LWL —

4{ Contact_Contact Relationship ‘

—| Oppartunity ‘ |:{>

Figure 18. Synchronizing the Integration Object

«‘ Contact_Contact Relationship ‘

<) [[[[[[[

58 eAl Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects ‘

Integration Objects Synchronization

Figure 19 shows how the resulting integration object is structured after the
synchronization.

Synchronized Integration
Ohject in Databaze

Account UPDATED
Business Address MEW
Contact UPDATED

F Contact_Business Address | UPDATED

— Contact_Position UPDATED

- Contact_Opportunity UPDATED

I Contact_Perzonal Address UPDATED

L{ Contact_Cortact Relationship UPDATED

Crpportunity MEWW

Figure 19. Completely Updated Integration Object

The integration object now contains two new components, Business Address and
Opportunity. Other components have been updated with the definitions of the
corresponding components in the business object.

Version 7.5.3 eAl Volume ll: Integration Platform Technologies 59

‘ Creating and Maintaining Integration Objects

Integration Objects Synchronization

Deleting a Component from the Integration Object

If you choose to deselect a component in the Synchronization wizard, you specify
to the wizard that it should delete the component in the integration object with the
matching External Name Context property. The integration object that exists in the
database has a component with the same External Name, External Name Sequence,
and External Name Context as the deselected component in the new, in-memory
integration object.

Figure 20 illustrates this concept.

Business Object/Mew In-Memary Existing Integration Object
Integration Object in Database

Account | |:> | Account |

—l Business Address | :{>

—| Contact ‘ ::> Contact ‘

% Contact_Business Address ‘ :D% Contact_Business Address ‘

~| Contact_Position ‘ |:{> ~| Contact_Position ‘

% Contact_Opportunity ‘ |:{> % Contact_Opportunity ‘
L W p

% Contact_Personal Address ‘ |::> % Cuntact_PMll Address ‘
[

% Contact_Contact Relationship ‘ |::> % Contact_Contact Relationship ‘

—| Qpportunity | ::>

Figure 20. Deleting a Component from the Integration Object

>

) D= L D]) [[

60 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects ‘

Integration Objects Synchronization

Figure 21 shows the integration object after synchronization.

Synchronized Integration
Ohject in Databaze

Account UPDATED
Business Address MEW
Contact UPDATED

F Contact_Business Address | UPDATED

— Contact_Position UPDATED

- Contact_Opportunity UPDATED

— Contact_Personal Address DELETED

L{ Contact_Cortact Relationship UPDATED

Crpportunity MEWW

Figure 21. Synchronization Resulting in a Deleted Component

The component Contact_Personal Address has been deleted. When you use the
updated integration object, you will not be able to pass data for that component
between Siebel application and an external application.

This example is intended to show how you might cause unexpected results by
deselecting components. However, if you do want to delete a particular component
from the integration object, deleting a component from the integration object
method accomplishes that goal.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 61

‘ Creating and Maintaining Integration Objects

The EAI Siebel Wizard

As the examples illustrate, you need to be aware of the possible changes that can
occur when you are synchronizing business objects and integration objects. The
Synchronization wizard can provide assistance in managing your integration
objects, but you need to have a clear understanding of your requirements, your data
model, and the Siebel business object structure before undertaking a task as
important as synchronization.

The EAI Siebel Wizard

You can use the EAI Siebel Wizard to create integration objects that represent Siebel
business objects. During the process of creating a new integration object, described
in “Integration Object Builder Overview” on page 47, you can choose the EAI Siebel
Wizard as the business service to help create the object. This wizard understands
the structure of Siebel business objects. As shown in Figure 22, the wizard returns
a list of the available business objects from which you can choose one to base your
integration object on.

62 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects ‘

The EAI Siebel Wizard

The wizard also returns a list of the available components contained within the
object you have chosen. When you select certain components in the wizard, you
are activating those components in your integration object. Your integration object
actually contains the entire structural definition of the business object you selected
in the first wizard dialog box. Only the components you checked, or left selected,
are active within your integration object. That means any instances you retrieve of
that integration object contains only data represented by the selected components.

Integration Object Builder - Choose Integration Components %

Select the integration components that you would like to activate for this Integration
Object by checking the appropriate items.

&[] CPG Fund Check]

[T] CPG Fund Child

[Commurnication Subject

[#] Contact

- [#] Contact_Account

- P] Contact_DeDuplication - 554 Contact Key

- P] Contact_Communication Address J

- P] Contact_Buziness Address

- [#] Contact_Pozition

- [#] Contact_Houzeholds

- [#] Contact_Oppartunity

- P] Contact_Personal Address
P] Contact_Contact Relationzhip -
‘ E= Ty [N o PR WRPRTY | o PUIPRY FAPUI R ' PP | Ll—l

Include component O lanore component

< Back I Mest » I Cancel | Help |

Figure 22. Activated Components in the Contact Integration Object

Version 7.5.3 eAl Volume IlI: Integration Platform Technologies 63

‘ Creating and Maintaining Integration Objects

Siebel Integration Objects Maintenance and Upgrade

After the wizard creates your integration object, you can edit the object in Siebel
Tools, as shown in Figure 23. You might choose to drill down into the integration
components and activate or inactivate particular components or even particular
fields within one or more components.

NOTE: You should always deactivate the fields rather than delete them, even though
the net effect (as well as the DTD generated) will be the same. When you execute
the synchronization task, using the Siebel eAl sync utility in Siebel Tools,
inactivated fields remain inactive, while the deleted fields are created as active fields
in the integration object.

Integration Companents
] | External Mame Context Name | Changed | Patent Integration Component \ Eute] 2
| | # Contact_Contact Relationship Contact_Contact Relationship v Contact Cant
| | # contact DeDuplication - 554 Contact Key Contact_DeDuplication - 554 Contact v Contact DeD
| | # contact Households Contact_Houzeholds v Contact How:
| | # contact_Opporturity Contact_Opparturity v Contact Opp ||
| 2| # cortact_ Personal address Contact_Personal Address v Contact Pers: j
4 »
Integration Component Fields
i | Hame Changed | Data Type [Length I Erzsten]|2 |
Address Mame v DTYPE_TEXT 100
Integration Id v DTYPE_TEXT Ell
Personal City v DTYPE_TEXT 50
Personal Country v DTYPE_TEXT 50
Personal Postal Code v DTYPE_TEXT 30
Personal State v DTYPE_TEXT 10
Personal Street Address v DTYPE_TEXT 200

Figure 23. Activated Components in the Contact Integration Object

Siebel Integration Objects Maintenance and Upgrade

Sometimes you may change the underlying business objects, which necessitates
maintenance of the integration object. Synchronize the integration object by
clicking the synchronize button.

To make maintenance of integration objects easier, adhere to the following
guidelines when creating or editing your integration objects:

= Name any user key that you add differently from the generated user keys. Using
meaningful names helps with debugging.

64 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Permission Rules for Integration Components

= Inactivate user keys instead of deleting them.

» Inactivate fields instead of deleting them.

Permission Rules for Integration Components

Each business component, link, MVG, and integration object user property has

settings such as No Update, No Delete, and No Insert. These settings indicate the
type of operations that cannot be performed on that object. In order for EAI Siebel
Adapter to successfully perform an operation, that operation needs to be allowed at
all levels. If the operation is allowed at every level but the field level, a warning

message is logged in the log file and processing continues. Otherwise, an error

message is returned and the transaction is rolled back.

Table 5 illustrates which permissions influence which operation type on an

integration component.

Table 5. Permission Rules for an Integration Component

Integration Component Type

Permission Layer Checked by... Standard MVG Association
Integration Object Component EAI Siebel Adapter O g o

Integration Component a o 0O

Integration Field (Update Only) 0 O O

Link Object Manager a o 0O
Multi-Value Link (MVL) ad

Business Component g g bl
(Overridden by AdminMode)

Business Component Field a O Ol

NOTE: The transaction is rolled back if any of the permissions (excluding field-level

permissions) are denied.

Version 7.5.3 eAl Volume II: Integration Platform Technologies

65

‘ Creating and Maintaining Integration Objects

EAI Siebel Adapter Access Control

EAI Siebel Adapter Access Control

You can use the following mechanisms to control EAI Siebel Adapter access to the
database:

Restricted access to a static set of integration objects. You can configure the EAI
Siebel Adapter business service, or any business service that is based on the
CSEEAISiebelAdapterService, to restrict access to a static set of integration
objects. To do this, set a business service user property called

Al | owedI nt Obj ect s, which contains a comma-separated list of integration
object names that this configuration of EAI Siebel Adapter can use. This allows
you to minimize the number of integration objects your users need to expose
outside of Siebel applications through HTTP inbound or MQSeries Receiver
server components. If this user property is not specified, EAI Siebel Adapter uses
any integration objects defined in the current Siebel Repository.

ViewMode. You can specify the visibility mode of business components that EAI
Siebel Adapter uses. This mode is specified as the integration object user
property Vi ewvbde. This user property can take different values, as defined by
LOV type REPOSITORY_BC_VIEWMODE_TYPE.

NOTE: For details on ViewMode, see Siebel Tools Online Help.

Integration Object User Properties

You can define user properties for your integration objects. These user properties
help determine special processing and behavioral requirements of integration
objects for a specific eAl adapter.

The Level column shown in Table 6 can take on the following values:

O, for Object Level

C, for Component Level

66 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Table 6. Integration Objects User Properties

m F, for Field Level

Integration Object User Properties

User Property

Association

MVG

Picklist

PicklistUserKeys

Ignore Bounded
Picklist

Version 7.5.3

Allowable
Values

YN

YN

Y,N

Y,N

Level

C

Description

Default is N. If set to Y, it labels the integration component as
having a many-to-many relationship with its parent
integration component configured by a Link with an
intersection table. Not applicable to root integration
component.

Default is N. If set to Y, it labels the integration component as
having a many-to-one relationship with its parent integration
component configured by a Multi Value Link defined over a
Link without an intersection table. Not applicable to root
integration component.

Default is N. If set to Y, the field is based on a picklist and the
EAI Siebel Adapter validates the field value using an
associated picklist, bounded or non-bounded. If the picklist
is non-bounded and the value does not match, then the EAI
Siebel Adapter logs a warning but the value is set accordingly.
If this property is set to N, or is not defined, then the EAI
Siebel Adapter leaves the validation to the Object Manager,
aborts the processing if the validation fails for the bounded
picklist, and logs a warning. See “Performance
Considerations” on page 73.

The value of this user property is a comma separated list of
integration component fields that are used to find the
matching record in the picklist (for example, Account,
Account Location). For details, see “Picklists” on page 33.

Default is N. If this property is set to N and the Picklist is set
to Y, and the value provided does not match any of the values
in the picklist, then the EAI Siebel Adapter stops processing,
writes an error to the log file, and rolls back the transaction.
If this property is set to Y and the value provided does not
match any of the values in the picklist, then the EAI Siebel
Adapter reports a warning in the log file and sets the field to
Null.

eAl Volume ll: Integration Platform Technologies 67

‘ Creating and Maintaining Integration Objects

Integration Object User Properties

Table 6. Integration Objects User Properties

User Property

MVGAssociation

MVGFieldName

AssocFieldName

Nolnsert

NoDelete

Allowable
Values

YN

Any valid
field name in
the business
component

Any valid
field name in
the business
component

Y,N

YN

Level

C

Description

Default is N. If set to Y, it means the integration component
has a many-to-many relationship with its parent integration
component configured by a Multi-Value Link defined over a
Link with an intersection table. Not applicable to the root
integration component.

If the component that owns this integration field is labeled
MVG, this user property gives the name of the business
component field as the value known by the MVG component.
In this case, the External Name property of the integration
component field references the field name in the parent
business component.

If the component that owns this integration field is labeled
MVGAssociation, this user property gives the name of the
business component field as the value known by the
Association MVG component. In this case, the External Name
property of integration component field references the field
name in the parent business component.

Default is N. If this property is set to Y at the component
level, the EAI Siebel Adapter is prevented from inserting a
new record into the component. The EAI Siebel Adapter
aborts the processing of the EAI Message and returns an error
message. This allows you to limit the functionality of an
integration object to a subset of what the underlying business
object allows. This user property cannot override limitations
imposed by the Business Object, Business Component, Link,
and Multi-Value-Link.

Default is N. If this property is set to Y at the component
level, no records in that component can be deleted. The EAI
Siebel Adapter aborts the processing of the message and
returns an error message. This allows you to limit the
functionality of the integration object to a subset of what the
underlying business object allows. This user property cannot
override limitations imposed by the business object, business
component, Link, and Multi-Value-Link.

68 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Table 6. Integration Objects User Properties

Integration Object User Properties

Allowable
User Property Values Level
NoUpdate YN CF

FieldDependencyXXX = Any active F
integration
component
field name
within the
same
integration
component

AdminMode YN C,0

Version 7.5.3

Description

Default is N. If this property is set to Y at the Component
level, no fields in that component can be updated. If an
existing record needs to be updated, EAI Siebel Adapter
aborts the processing of the EAI Message and returns an error
message. If this property is set to Y on the field level, then EAI
Siebel Adapter only logs a warning message and skips
updating the field, and continues processing. This allows you
to limit the functionality of the integration object to a subset
of what the underlying business object allows. This user
property cannot override limitations imposed by the business
object, business component, Link, Multi-Value-Link, or Field.

Defines a dependency between the integration field that has
this user property and the integration field specified by the
value of the user property. Multiple dependencies are
specified by separate user property entries. The field
specified in the value must be from the same component as
the field that has the user property. Dependencies constrain
the order of field processing within an integration
component. If field A depends on field B, then field B is
processed before field A. Also see Chapter 1, “About
Integration Objects.”

Default is N. Sets AdminMode on the business component.
Some business components, such as Internal Product, allow
only administrators to make modifications. You may allow
modification of such components during integration, by
setting the AdminMode property to Y on the integration
component or the integration object level. The setting at the
integration component level overrides the setting at the
business object level. This property can not be used in MVGs.
For details, see Siebel Tools Online Help

eAl Volume ll: Integration Platform Technologies 69

‘ Creating and Maintaining Integration Objects

Example of an Integration Object With M:M Relationship

Table 6. Integration Objects User Properties

Allowable
User Property Values Level Description
ViewMode Manager, 0 Default is All. Specifies the visibility mode of the business
Sales Rep, component that EAI Siebel Adapter uses. The allowable
Personal, values are based on REPOSITORY_BC_VIEWMODE_TYPE
Catalog, LOV.
Group,
Organization
, All
AllLangIndependent = Y:N (0] Default is N. If set to Y, this user property forces the EAI
Vals Siebel Adapter to use language-independent values for LOV-

based integration component fields. This is useful when there
is a requirement to support integration between systems that
use multiple languages. If set to N, all LOV-based fields use
language-dependent values. If this user property is not
defined for the integration object, multilingual LOV-based
fields (MLOV) use language independent values, while
single-language LOV fields use language dependent values.

Example of an Integration Object With M:M Relationship

Following is an example of how to create an integration object with two components
that have a many-to-many (M:M) relationship. For illustration purposes, we are
using an integration object that uses Contact business object with Contact and
Opportunity business components.

To create an integration object with a many-to-many business component
1 Start Siebel Tools.

2 Create a new project and lock it, or lock an existing project in which you want
to create your integration object.

3 Choose File > New Object... to display the New Object Wizards dialog box.
4 Select the EAI tab and double-click the Integration Object icon.
5 In the Integration Object Builder wizard:

a Select the project you locked in Step 2.

70 eAl Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Version 7.5.3

10

Example of an Integration Object With M:M Relationship

b Select the EAI Siebel Wizard.
Click Next and in the second page of the Integration Object Builder wizard:

a Select the source object Contact to be the base for the new Siebel integration
object.

b Type a unique name in the field for the new Siebel integration object and
click Next—for example, Sample Contact M:M.

From the list of components, select Contact and Opportunity. There is also a
component named Contact_Opportunity in the list. This component is an
MVGAssociation component, and should be picked only if you need this
integration object to set the primary opportunity for contact. For details on MVG,
see “MVGs in EAI Siebel Adapter” on page 131.

Deactivate all integration component fields in the Contact integration
component except First Name, Last Name, Login Name, and Comment. (In this
example, these are the only fields we need for Contact.)

Deactivate all integration component fields in the Opportunity integration
component except Account, Account Location, Budget Amt, Name, and
Description. (In this example, these are the only fields we need for Opportunity.)

Compile a new .srf file and copy the .srf file to the SIEBSRVR_ROOT/OBJECTS
directory.

To test the newly created integration object

1
2

4

Start Siebel client connected to Sample database.

Copy and modify the Import Account (File) and the Export Account (File)
sample workflow processes to work with the Contact business object, instead of
the Account business object.

Modify the Export Account (File) workflow process to invoke the EAI Siebel
Adapter against the Sample Contact M:M integration object that you created in
“To create an integration object with a many-to-many business component” on
page 70.

Run the workflow processes using the Workflow Process Simulator.

eAl Volume IlI: Integration Platform Technologies 71

Creating and Maintaining Integration Objects

Generating Schemas

Generating Schemas

At certain points in your integration project, you may want to generate schemas
from an integration object. If you export Siebel integration objects as XML to other
applications, you may need to publish the schemas of such objects so that other

applications can learn about the structure of the XML to expect.

To generate an integration object schema

1 In Siebel Tools, click on an integration object to make it the active object.

2 Click Generate Schema to access the Generate XML Schema wizard shown in the

following figure.,

Generate XML Schema

Chooze the Business Service to generate a schema.

Select a Business Service from the list.

|EAI XML DTD Generator d|

Select an envelope type from the list.

I Siebel Meszage envelope j

Chooze the file name to save the schema object.

& Ic:\temp\ListhM}\Abcount Browse. .. |

< Back I Finizh I

Cancel

3 Choose the EAI XML DTD Generator business service.

4 Choose an envelope type to use in generated DTD.

5 Choose alocation where you want to save the resulting DTD file and click Finish.
The wizard generates a DTD of the integration object you selected. Use this DTD
to help you map external data directly to the integration object. The DTD serves
as the definition for the XML elements you can create using an external

application or XML editing tool.

72 eAl Volume IlI: Integration Platform Technologies

Version 7.5.3

Creating and Maintaining Integration Objects

Performance Considerations

Performance Considerations

Version 7.5.3

To optimize your integration object performance, you may want to consider the
following.

Size of Integration Object

The size of an integration object and its underlying business components can have
an impact on the latency of EAI Siebel Adapter operations. You should inactivate
unnecessary fields and components in your integration objects.

Force-Active Fields

You should reexamine any fields in the underlying business component that are
force-active. Such fields are processed during integration even if they are not
included in the integration component. You might want to consider removing the
force-active specification from such fields, unless you absolutely need them.

Picklist Validation

Siebel applications have two classes of picklists, static picklists based on list of
values and dynamic picklists based on joins.

Setting the property PICKLIST to Y in the integration object field directs the EAI
Siebel Adapter to validate that all operations conform to the picklist specified in the
field. For dynamic picklists, this setting is essential to make sure the joins are
resolved properly. However, for unbounded static picklists, this validation may be
unnecessary and can be turned off by setting the PICKLIST property to N. Even for
bounded static picklists, validation in the adapter can be turned off because the
Object Manager can perform the validation. Turning off the validation at the EAI
Siebel Adapter level means that picklist related warnings and debugging messages
will not show up along with other EAI Siebel Adapter messages. This also means
that bounded picklist errors will not be ignored, even if Ignore Bounded Picklist is
set to Y.

NOTE: Validation of a bounded picklist done in EAI Siebel Adapter is about 10%
faster than performing the validation in the Object Manager.

eAl Volume ll: Integration Platform Technologies 73

‘ Creating and Maintaining Integration Objects

Business Component Restrictions

Business Component Restrictions

The business components underlying the Integration Components may have certain
restrictions. For example, Internal Product can only be modified by an
administrator. The same restrictions apply during integration. In many cases, the
Siebel Integration Object Builder wizard detects the restrictions and sets properties
such as No Insert or No Update on the integration components.

System Fields

Integration object fields marked as System are not exported during a query
operation. This setting prevents the EAI Siebel Adapter from treating the field as a
data field, which means for Query and QueryPage method the EAI Siebel Adapter
will not output the field. For the Synchronize and Update method, the field will not
be directly set in the business component unless the ISPrimaryMVG is set to Y.

NOTE: If you want to include System fields in the exported message, change the
Integration Component field type to Data. System fields are read only. If you attempt
to send in a message with the value set for a System field, the setting will be ignored
and a warning message will be logged.

Best Practices

m Familiarize yourself with the business logic in the business components.
Integration designers should use the presentation layer or the user interface to
get a good sense of how the business component behaves and what operations
are allowed and not allowed.

» Design with performance in mind. See “Performance Considerations” on
page 73.

= Design with maintenance in mind. See “Siebel Integration Objects Maintenance
and Upgrade” on page 64.

74 eAl Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects ‘

Best Practices

= Resolve configuration conflicts. During the development of your integration
points, you might encounter issues with the configuration of business
components that are configured to support interactive GUI usage, but do not
satisfy your integration requirements. The following scenarios demonstrate
three different situations in which you might encounter such conflicts and a
possible solution for each case.

Scenario 1. Your integration requires explicitly setting a primary child, but the
business component configuration does not allow that because the related
MVLink has Auto Primary property set to Default.

Solution. Change the Auto Primary property from Default to Selected. This
enables EAI Siebel Adapter to change the Auto Primary property according to the
input request, while making sure that there is always a primary child selected.

Scenario 2. A business component such as Internal Product is made read-only for
regular GUI usage, but you want your integration process to be able to update
the Internal Product business component.

Solution. Set the AdminMode user property on the integration object to Y. This
allows the EAI Siebel Adapter to use the business component in an administrator
mode.

Scenario 3. Similar to scenario 2, a business component such as Internal Product
is made read-only for regular GUI usage, but you want your integration process
to be able to update the Internal Product business component. The only
difference in this scenario is that the business component is used through a link
that has NoUpdate property set to Y.

Solution. Since there is a link with NoUpdate property set to Y, setting the
AdminMode user property on the integration object to Y is not going to help. You
need the create the following exclusively for integration purposes:

= A new link based on the original link with NoUpdate property Set to N.

Version 7.5.3 eAl Volume ll: Integration Platform Technologies 75

‘ Creating and Maintaining Integration Objects

Best Practices

= A copy of the original business object referencing the new link instead of the
original. Note that the same business component should be used by both
links.

NOTE: Customized configurations are not automatically upgraded during the
Siebel Repository upgrade, so this option should be used as a last resort.

76 eAl Volume II: Integration Platform Technologies Version 7.5.3

Business Services 3

This chapter outlines the basic concepts of a business service, its structure and
purpose, and how you can customize and create your own business service. This
chapter also describes how to test your business service before it is implemented.

Overview of Business Services

A business service is an object that encapsulates and simplifies the use of some set
of functionality. Business components and business objects are objects that are
typically tied to specific data and tables in the Siebel data model. Business services,
on the other hand, are not tied to specific objects, but rather operate or act upon
objects to achieve a particular goal.

Business services can simplify the task of moving data and converting data formats
between the Siebel application and external applications. Business services can also
be used outside the context of Siebel eAl to accomplish other types of tasks, such
as performing a standard tax calculation, a shipping rate calculation, or other
specialized functions.

These services can then be accessed by Siebel VB or Siebel eScript code that you
write and call from workflow processes. For the purposes of your integration
projects using Siebel eAl, you can use Siebel eScript to write your scripts to use the
DTE scripts.

Version 7.5.3 eAl Volume ll: Integration Platform Technologies 77

‘ Business Services

Overview of Business Services

Creating Business Services

A Siebel application provides a number of prebuilt business services to assist you
with your integration tasks. These are based on specialized classes and are called
Specialized Business Services. Many of these are used internally to manage a variety
of tables.

CAUTION: As with other specialized code such as Business Components, you should
use only the specialized services that are documented in Siebel documentation. The
use of undocumented services is not supported and can lead to undesired and
unpredictable results.

In addition to the prebuilt business services, you can build your own business
service and its functionality in two different ways to suit your business
requirements:

= In Siebel Tools. Created at design time in Siebel Tools using Siebel VB or Siebel
eScript. Design-time business services are stored in the Siebel repository (*.srf),
so you have to compile the repository before testing them. Once your test is
completed, you need to compile and disseminate the .srf to your clients. The
business services stored in the repository will automatically come over to the
new repository during the upgrade process. General business services are based
on the class CSSService; however, for the purposes of Siebel eAl, you base your
data transformation business services on the CSSEAIDTEScriptService class. For
details, see “Creating Business Services in Siebel Tools” on page 82.

= InSiebel Client. Created at run time in the Siebel Client using the Business Service
Administration screens. Run-time business services are stored in the Siebel
Database, so they can be tested right away. The run-time business services have
to be manually moved over after an upgrade process. For details, see “Creating
a Business Service in the Siebel Client” on page 87.

NOTE: To use the DTE scripts, you need to write your business service in eScript;
otherwise, you can write them in Siebel VB.

78 eAl Volume II: Integration Platform Technologies Version 7.5.3

Business Services ‘

Overview of Business Services

Business Service Structure

Business services allow developers to encapsulate business logic in a central
location, abstracting the logic from the data it may act upon. A business service is
much like an object in an object-oriented programming language.

A service has properties and methods and maintains a state. Methods take
arguments that can be passed into the object programmatically or, in the case of
Siebel eAl, declaratively by way of workflows.

NOTE: For more details on business service methods and method arguments, see
Siebel Tools Online Help.

Version 7.5.3 eAl Volume ll: Integration Platform Technologies 79

‘ Business Services

Overview of Business Services

About Property Sets

Property sets are used internally to represent Siebel eAl data. A property set is a
logical memory structure that is used to pass the data between business services.
Figure 24 illustrates the concept of a property set.

Property Set Properties

Hame Walue
Type | |

Zhipping CHE-
‘alue | | Company FedEx

Weight 1500

ShipTo CA

Children

Figure 24. Property Set Structure

The property set consists of four parts:

= Type. Used to describe what type of object is being represented.

80 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Business Services

Version 7.5.3

Overview of Business Services

Value. Used to hold serialized data, such as a string of XML data.

NOTE: In Siebel Tools, a Value argument to a method is shown with the name of
< Value >, including the brackets. You can also define a Display Name for the
Value argument in the Business Service Simulator. This Display Name appears
in the Workflow Process Designer when you are building integration workflows.
In this guide, the Display Name Message Text is shown when referring to the
Value argument and the Name < Value> is shown when referring to the Value
of the value argument.

Properties. A table containing name-value pairs. The properties can be used to
represent column names and data, field names and data, or other types of name-
value pairs.

Children. An array of child-level property sets. The array can be used to represent
instances of integration objects; for example, a result set may contain an
Account with some set of contact records from the database. Each contact record
is represented as a child property set.

NOTE: For details on property sets and their methods, see Siebel Tools Online Help.

eAl Volume IlI: Integration Platform Technologies 81

‘ Business Services

Creating Business Services in Siebel Tools

Creating Business Services in Siebel Tools

The following sections explain how to create business services and business service
scripts in Siebel Tools.

Checklist
O Define the Business Service
For details, see “To define a business service in Siebel Tools” on page 83.
O Define the Business Service Methods
For details, see “To define a business service method” on page 84.
O Define the Business Service Methods Arguments
For details, see “To define the business service method arguments” on page 84.
O Define Business Service Scripts
For details, see “To define and write the business service script” on page 85.
O Define Business Service Subsystem
For details, see “To specify a business service subsystem” on page 86.
O Define Business Service User Properties

For details, see “To define business service user properties” on page 87.

NOTE: Business services you create in Siebel Tools must be compiled into the Siebel
. srf file. If you intend to run the business services on your Siebel Server, then copy
the compiled . srf file to your SIEBSRVR_ROOT\Object\lang directory.

82 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Business Services

Creating Business Services in Siebel Tools

Defining a Business Service in Siebel Tools

You declaratively define the business service in Siebel Tools and then add your
scripts to the business service in the Script Editor.

To define a business service in Siebel Tools

1
2

N oo a s

Version 7.5.3

Start Siebel Tools.

Select and lock the project you want to associate your business service with.

NOTE: Each business service must belong to a project and the project must be
locked. For details, see Siebel Tools Reference.

Select the EAI Business Services object in the Tools Object Explorer.

The list of predefined business services appears in the right panel.

Choose Edit New Record to create a new business service.

Type a name for your business service in the Name field.

Type the name of the project you locked in Step 2, in the Project field.

Choose the appropriate class for your business service, from the Class picklist.

» Data transformation business services should use the
CSSEAIDTEScriptService class.

= Other business services will typically use the CSSService class.

Step off the current record to save your changes.

eAl Volume ll: Integration Platform Technologies 83

‘ Business Services

Creating Business Services in Siebel Tools

Defining Business Service Methods

Business services contain related methods that provide the ability to perform a
particular task or set of tasks.

NOTE: For details on business service methods, see Siebel Tools Online Help.

To define a business service method

1

With your business service selected, double-click the Business Services Methods
folder in the Siebel Tools Object Explorer.

The Business Services Methods list appears below the list of business services.
If you have already defined methods for the selected business service, the
method names appear in the Business Services Methods list.

Choose Edit > New Record to create a new method.

Type the name of the method in the Name field.

Defining Business Service Method Arguments

Each method can take one or more arguments. The argument is passed to the
method and consists of some data or object that the method processes to complete
its task.

To define the business service method arguments

1

84 eAl Volume II:

With your business service selected, double-click the Business Service Method
Arg folder, in the Tools Object Explorer, to display the Business Service Method
Args list.

Choose Edit > New Record to create a blank method argument record.

Type the name of the argument in the Name field.

NOTE: If you plan to use this business service in a Siebel Client, you need to
specify the Display Name as well.

Enter the data type in the Data Type field.

Integration Platform Technologies Version 7.5.3

Business Services ‘

Creating Business Services in Siebel Tools

5 Check the Optional check box if you do not want the argument to be required
for the method.

6 Choose a Type for the argument. Refer to the following table for a list of different
types and their descriptions.

Argument Description

Input This type of argument serves as input to the method.

Input/Output This type of argument serves as both input to the method and output
from the method.

Output This type of argument serves as output from the method.

Defining and Writing Business Service Scripts

Business service scripts supply the actual functionality of the business service in
either Siebel VB or Siebel eScript. As with any object, the script you provide is
attached to the business service.

To define and write the business service script

1 Start Siebel Tools.

Select the business service for which you want to write a script.
Right-click to display a pop-up menu.

Choose Edit Server Scripts.

a » W N

Select either eScript or Visual Basic for your scripting language.

Service-PreInvokedMethod is selected as the service.

NOTE: To write any Siebel VB script in the Business Services, your deployment
platform must support Siebel VB.

Version 7.5.3 eAl Volume ll: Integration Platform Technologies 85

‘ Business Services

Creating Business Services in Siebel Tools

6 Type your script into the Script Editor.

NOTE: You need to write your business service in eScript if you want to use the
DTE scripts. For details on scripting, see Siebel Tools Online Help.

Specifying Business Service Subsystems

You can optionally specify a business service subsystem. A business service
subsystem is a server component that encapsulates a large amount of functionality
and that is already included in the Siebel repository. Business service subsystems
define particular events upon which the subsystem will be called. The subsystems
can also trigger other events, depending on how they are defined. Examples of
business service subsystems are presented in Table 7.

Table 7. Business Service Subsystems

Subsystem

EAISubsys

SAPSubsys

Workflow

XMLCnv

Description

Defines events for a variety of eAl operations, including the initiation of eAl
wizards, calls to eAl adapters, and calls to eAl validation routines.

Defines a variety of parameters to help determine the type of SAP object
being integrated, the transport mechanism, user name and password
combinations, and SAP program ID.

Defines both events and parameters to signal and determine behaviors
based on the initiation of workflow processes, search specifications, and
Row Id.

Defines events regarding debugging information and responses from the
XML parser.

To specify a business service subsystem

1 With your business service selected, double-click the Business Service
Subsystem folder in the Tools Object Explorer to display a list of subsystems.

2 Choose Edit > New Record to create a blank business service subsystem record.

3 Choose an existing business service subsystem name from the Subsystem

picklist.

86 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Business Services

Creating a Business Service in the Siebel Client

Defining Business Service User Properties

User properties, also known as User Props, are optional variables that you can use
to define default values for your business services. When a script or control invokes
your business service, one of the first tasks the service performs is to check the user
properties to gather any default values that will become input arguments to the
service’s methods.

To define business service user properties

1 With your business service selected, double-click the Business Service User Prop
folder in the Tools Object Explorer to display the list of Business Service User
Props.

2 Choose Edit > New Record to create a blank user property record.
3 Type the name of the user property in the Name field.
4 Type a value in the Value field.

The value can be an integer, a quoted string, or a Boolean.

Creating a Business Service in the Siebel Client

Version 7.5.3

You can define business services in the Siebel client using the Business Service
Administration screens. The business services you create in the client are stored in
the Siebel Database. This section illustrates the creation of business services using
the Business Service Methods screen, which includes applets to create and display
the business service.

To define a business service in the Siebel Client

1 From the application-level menu, choose View > Site Map > Business Service
Administration > Business Service Methods.

eAl Volume lI: Integration Platform Technologies 87

‘ Business Services

Business Service Export and Import

2 Click New to create a new record in the Business Service list applet.

Name. Name of the business service.

Cache. If checked then the business service instance remains in existence until
the user’s session is finished; otherwise, the business service instance will be
deleted after it finishes executing.

Inactive. Check if you do not want to use the business service.

Define methods for the business service in the Methods list applet.

Name. Name of the method.

Inactive. Check if you do not want to use the method.

Define method arguments for the methods in the Method Arguments list applet.
Name. Name of the method argument.

Type. The type of the business service method argument. Valid values are
Output, Input, and Input/Output.

Optional. Check if you do not want this argument be optional.
Inactive. Check if you do not want to use the argument.

Write your Siebel eScript or VB code in the Business Service Scripts list applet.

NOTE: To write any Siebel VB script in the Business Services, your deployment
platform must support Siebel VB.

6 Click Check Syntax to check the syntax of the business service script.

Business Service Export and Import

Business services can be exported into an XML file by clicking the Export Service
button in the Business Service list applet. This writes the definition of the business
service including every method, method argument, and script into the XML file.

88 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Business Services

Testing Your Business Service

You can also import a business service from an external XML file by clicking the
Import Service button in the Business Service list applet.

Testing Your Business Service

You can use the Business Service Simulator to test your business services in an
interactive mode.

To run the Business Service Simulator

1 From the application-level menu, choose View > Site Map > Business Service
Administration > Business Service Simulator.

NOTE: The contents of the Simulator screen are not persistent. To save the data
entered in the applets, click the Save To File button. This will save the data for
the active applet in an XML file. The data can then be loaded into the next
session from an XML file by clicking on the Load From File button.

2 In the Service Methods list applet, click New to add the business service you
want to test.

3 Specify the Service Name and the Method Name.
4 Enter the number of iterations you want to run the business service.

= Specify the input parameters for the Business Service Method in the Input
Property Set applet. Multiple Input Property Sets can be defined and are
identified by specifying a Test Case #.

= If the Input Property Set has multiple properties, these can be specified by
clicking on the glyph in the Property Name field. Hierarchical Property Sets
can also be defined by clicking on the glyph in the Child Type field.

Version 7.5.3 eAl Volume ll: Integration Platform Technologies 89

‘ Business Services

Testing Your Business Service

5 Click Run to run the business service.

The Simulator runs the specified number of iterations and loops through the test
cases in order. If you have defined multiple input arguments, you can choose to
run only one argument at a time by clicking Run On One Input.

The result appears in the Output Property Set applet.

NOTE: Once the Output arguments are created, you can click Move To Input to
test the outputs as inputs to another method.

Accessing a Business Service Using Siebel eScript or Siebel VB

In addition to accessing a business service through a workflow process, you can use
Siebel VB or eScript to call a business service. The following Siebel eScript code
calls the business service EAI XML Read from File to read an XML file and produce
a property set as an output. The output property set is used by EAI Siebel Adapter
to insert a new account into the Siebel application:

var svcReadFile = TheApplication().GetService("EAl XM Read from
File")

var svcSaveData = TheApplication(). GetService("EAl Siebel
Adapter");

var child = TheApplication().NewPropertySet();

var pslnputs = TheApplication().NewPropertySet();
var psQutputs = TheApplication().NewPropertySet();
var psQutputs2 = TheApplication().NewPropertySet();

var svcSaveData = TheApplication(). GetService("EAl Siebel
Adapter");

psl nputs. Set Property("Fil eName", "c:\\NewAccount.xm");
psCQut put s. Set Type " Si ebel Message”;
psCQut put s. Set Property "I nt Obj ect Nane", " Sanpl e Account";

psQut put s. Set Property "Messagel d",

90 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Business Services ‘

Business Scenario

psCut put s. Set Property "MessageType", "Integration Cbject”;
svcReadFi | e. | nvokeMet hod(" ReadEAI Msg", psl nputs, psQutputs);
svcSaveDat a. | nvokeMet hod(" Upsert ™, psQut put s, psQut put s2) ;

The following Siebel VB sample code shows how to call the EAI File Transport
business service to read an XML file. It also shows how to use the XML Converter
business service to produce a property set.

Set I np = TheApplication. NewPropertySet

I np. Set Property "Fil eNanme", "c:\test.xm"

I np. Set Property "Di spatchService", "XM. Converter"

I np. Set Property "Di spat chMet hod" , " XM.ToPropSet"

Set svc = theApplication. GetService("EAl File Transport")
Set XMLQut puts = t heApplication. NewPropertySet

svc. | nvokeMet hod " Recei veDi spatch”, 1np, XM.OQutputs

nmsgbox Cstr (XMLQut put s. Get Chi | dCount)

Business Scenario

Version 7.5.3

Consider an example of a form on a corporate Web site. Many visitors during the
day enter their personal data into the fields on the Web form. The field names
represent arguments, whereas the personal data represent data. When the visitor
clicks Submit on the form, the form’s CGI script formats and sends the data by way
of the HTTP transport protocol to the corporate Web server. The CGI script can be
written in JavaScript, Perl, or another scripting language.

The CGI script may have extracted the field names and created XML elements from
them to resemble the following XML tags.

First Nane = <FirstNanme></First Nane>
Last Nane = <Last Nane></Last Nanme>

The CGI script may then have wrapped each data item inside the XML tags:

eAl Volume IlI: Integration Platform Technologies 91

Business Services

Business Scenario

<Fi r st Nane>Hect or </ Fi r st Nanme>
<Last Name>Al acon</ Last Nane>

To insert the preceding data into the Siebel Database as a Contact, your script calls
a business service that formats the XML input into a property set structure that the
Siebel application recognizes.

92 eAl Volume llI: Integration Platform Technologies Version 7.5.3

Business Services ‘

Business Scenario

Code Sample

An example of the code you need to write to create the property set may look
something like this:

x = TheApplication. | nvokeMet hod("WebForn', inputs, outputs);
var svc; // variable to contain the handle to the Service
var inputs; // variable to contain the XM input
var outputs; // variable to contain the output property set
svc = TheApplication().GetService("EAl XM. Read fromFile");
i nputs = TheApplication(). RReadEAl Msg("webform xm ");
out puts = TheApplication().NewPropertySet();
svc. | nvokeMet hod(" Read XML Hi erarchy”, inputs, outputs);

The following functions could be called from the preceding code. You attach the
function to a business service in Siebel Tools:

NOTE: You cannot pass a business object as an argument to a business service
method.

Functi on Servi ce_Prel nvokeMet hod(Met hodNane, inputs, outputs)

{
if (MethodName=="GCet WebCont act ")

{
fname = inputs. GetProperty("<First Name>");
I name = inputs. GetProperty("<Last Name>");
out puts. Set Property("First Name", fnane);
out puts. Set Property("Last Nane", |nane);

return(Cancel Operation);

}

Version 7.5.3 eAl Volume ll: Integration Platform Technologies 93

‘ Business Services

Business Scenario

return(Conti nueQperation);

}
Functi on Servi ce_PreCanl nvokeMet hod(Met hodNanme, Canl nvoke)
{
if (Met hodName=="Get WebCont act")
{
Canl nvoke ="TRUE";
return (Cancel Operation);
}
el se
{
return (Conti nueQperation);
}

94 eAl Volume llI: Integration Platform Technologies Version 7.5.3

Web Services 4

This chapter describes Web Services, their uses, and how to create, implement, and
publish Siebel Web Services. This chapter also provides examples of how to invoke
an external Web Service and a Siebel Web Service.

Web Services Overview

Version 7.5.3

Web Services combine component-based development and Internet standards and
protocols that include HTTP, XML, Simple Object Application Protocol (SOAP), and
Web Services Description Language (WSDL). Web Services can be reused regardless
of how they are implemented. Web Services can be developed on any computer
platform and in any development environment as long as they can communicate
with other Web Services using these common protocols.

Web Services can be implemented in Siebel eBusiness applications as business
services or workflow processes. The Siebel Web Services Framework can consume
a WSDL document and create a proxy business service through the WSDL Import
Wizard provided in Siebel Tools.

To specify the structure of XML used in the body of SOAP messages, Web Services
use an XML Schema Definition (XSD) standard. The XSD standard describes an
XML document structure in terms of XML elements and attributes. It also specifies
abstract data types, and defines and extends the value domains.

Users or programs interact with Web Services by exchanging XML messages that
conform to Simple Object Access Protocol (SOAP). For Web Services support, SOAP
provides a standard SOAP envelope, standard encoding rules that specify mapping
of data based on an abstract data type into an XML instance and back, and
conventions for how to make remote procedure calls (RPC) using SOAP messages.

eAl Volume II: Integration Platform Technologies 95

‘ Web Services

Web Services Overview

Supported Web Services Standards
The following are the Web Services standards supported by Siebel application:

m Web Services Description Language (WSDL) 1.1. For details, see http://
www. W3. or g/ TR/ 2001/ NOTE- wsdl - 20010315.

= Simple Object Access Protocol (SOAP) 1.1. For details, see http://
www. W3. or g/ TR/ 2000/ NOTE- SCAP- 20000508.

m Hypertext Transfer Protocol -- HTTP/1.0. For details, see htt p: / / wwaw. w3. or g/
Prot ocol s/ rfc1945/rfc1945.

» Extensible Markup Language (XML) 1.0. For details, see htt p: / / www. w3. or g/
TR/ 1998/ REC- xmi - 19980210

m XML Schema. For details, see ht t p: / / www. w3. or g/ TR/ 2001/ REC- xml schenma-
1- 20010502, and http://ww. wW3. or g/ TR/ 2001/ REC- xm schena- 2-
20010502

NOTE: For more details on supported elements and attributes, see XML Reference:
Siebel eBusiness Application Integration Volume V.

Web Services Inbound Dispatcher Defined

The Web Service Inbound Dispatcher is a business service that is called by an
inbound transport server component (or an outbound Web Service dispatcher) and
analyzes input XML, converts XML data to business service method arguments, and
calls the appropriate method for the appropriate service. After the called method
has finished, the Web Service Inbound Dispatcher converts the output arguments
to XML data, or creates a SOAP fault block (if there is an exception) and then returns
the XML embedded in the SOAP envelope.

Web Services Support for Transport Headers
The outbound Web Service dispatcher supports input arguments for user-defined
(or standard) transport headers.

96 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Web Services

Inbound Web Services

The following is the format for the outbound Web Service dispatcher input
arguments:

Name: siebel_transport_header:headerName
Value: Header value

The following are examples of input arguments.
Name: siebel_transport_header:UserDefinedHeader
Value: myData
Name: siebel_transport_header: Authorization

Value: 0135DFDJKLJ

Inbound Web Services

Version 7.5.3

The Inbound Web Service allows an external system to call a Siebel published Web
Service. You can publish a business service or a business process as a Web Service
and generate a Web Service Definition Language (WSDL) file that an external
system can import. The Inbound Web Services can only be published from Siebel C
using SOAP-RPC binding.

Publishing Inbound Web Services

You can create and publish an inbound Web Service using the Inbound Web
Services view, as illustrated in the following procedure. You can then use the new
Inbound Web Service when generating a WSDL document.

To create a new Inbound Web Service record

1 From the application-level menu, choose View > Site Map > Web Services
Administration > Inbound Web Services view.

2 In the Inbound Web Services list applet, create a new Inbound Web Services
record.

a Enter the namespace for your organization’s Web Services in the Namespace
column.

eAl Volume IlI: Integration Platform Technologies 97

‘ Web Services

Inbound Web Services

Enter the name of the inbound Web Service in the Name column.

Select Active or Inactive in the Status field.

NOTE: If the Web Service is inactive, then the external applications cannot
invoke the Web Service. If the status is changed, the server component
running the inbound transport, such as HTTP, requires a restart for the
change to take effect.

3 Enter a description of the Web Service in the Comment column.

4 Create a new inbound service port record in the Service Ports list applet.

b

Enter the name of the port in the Name column.
Pick the type of object published.

If the required type is not available, add a new type following Step c on
page 98 through Step f on page 98; otherwise, move to Step g on page 98.

Click New and select the implementation type (Business Service or
Workflow).

Select the implementation name (the business service or workflow that
implements the port type).

Enter a name for the new type in the Name field and click Save.

Click Pick in the Inbound Web Services Pick Applet to complete the process
of adding a new Type.

Select the protocol or transport to publish the Web Service on.

Enter the URL or queue to publish the Web Service on.

NOTE: When publishing over EAI MQSeries or EAI MSMQ, you cannot
generate WSDL files.

o The format to publish over EAI MQSeries or EAI MSMQ Server transports
is:

ng: // send receive service point name@ol icy name

nmsnyg: / / queue name@ueue machi ne name

98 eAl Volume llI: Integration Platform Technologies Version 7.5.3

Web Services ‘

Version 7.5.3

Inbound Web Services

o The URL format to publish over HTTP is:

http://webserver/eai _| ang/
start.swe?SWEExt Sour ce=WebSer vi ce&SWEExt Cmd=Execut e&User Na
me=user nanme&Passwor d=passwor d

Where:

| ang is the default language of Object Manager to handle the request.
webser ver is the machine name of the Siebel Web Server.

user nane is the Siebel user to execute the request.

passwor d is the password of the Siebel user.

NOTE: The Siebel application supports only one type of binding, SOAP_RPC,
for each Inbound Web Service.

5 Enter a description of the Port in the Comment column.

6 In the Operations list applet, create a new operation record for the new service
port you created in Step 4 on page 98 and want to publish.

NOTE: Only the operations created in this step will be published and usable by
applications calling the Web Service. Other business service methods will not be
available to external applications and can only be used for internal business
service calls.

a Enter the name of the Web Service operation.

b Select the name of the business service method in the Business Service
Method column to complete the process.

NOTE: The Business Service Method column defaults to RunProcess if you
have chosen Workflow Process in Step 4 on page 98 as the Type for your
Service Port.

eAl Volume IlI: Integration Platform Technologies 99

‘ Web Services

Outbound Web Services

Generating a WSDL File

Once you have created a new Inbound Web Service record you can generate a WSDL
document, as described in the following procedure.

To generate a WSDL file

1 Choose the inbound Web Services you want to publish and click GenerateWSDL.
A WSDL file is generated that describes the Web Service.

2 Save the generated file.

3 Import the WSDL to the external system using one of the following utilities.

= In VisualStudio.Net, use the wsdl.exe utility—for example, wsdl.exe /1:CS
mywsdlfile.wsdl.

= In Apache’s AXIS, use the wsdl2java utility—for example, java
org.apache.axis.wsdl. WSDL2Java mywsdlfile.wsd]l.

= InIBM’s WSADIE, add the WSDL file to the Services perspective and run the
Create Service Proxy wizard.

NOTE: These utilities only generate proxy classes. Developers are responsible
for writing code that uses the proxy classes.

Outbound Web Services

An outbound Web Service definition acts as a proxy to a Web Service published by
an external application. The outbound Web Service can be based on one of the
following:

s External Web Service definition (WSDL) file

= Outbound Application Service Interface (ASI)

Outbound Web Services Based on an External WSDL File

The following procedure describes how to use the WSDL Import Wizard to read an
external WSDL document.

100 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Web Services

Version 7.5.3

Outbound Web Services

To read an external WSDL document

1
2

9
10

Start Siebel Tools.

Create a new project and lock the project, or lock an existing project in which
you want to create your integration object.

Choose File > New Obiject... to display the New Object Wizards.
Select the EAI tab, select the Web Service icon, and click OK.
The WSDL Import Wizard appears.

Select the Project where you want the objects to be held after they are created
from the WSDL document.

Specify the WSDL document that contains the Web Service or Web Services
definition that you want to import.

Specify the file where you want to store the run-time data extracted from the
WSDL document.

Specify the log file where you want errors, warnings, and other information
related to the import process to be logged.

Click Next to view and verify a summary of your import information.

Click Finish to complete the process of importing the business service into the
Siebel repository.

This procedure generates three objects in Siebel repository.

An outbound proxy business service of CSSWSOutboundDisptacher class.

NOTE: For RPC services, the order of input arguments is important. You can set
the order through the Preferred Sequence property of the business service
method argument in Siebel Tools. By specifying this parameter, the outbound
dispatcher makes sure that the sequence parameters for an operation are in the
correct order. The Preferred Sequence property is only supported with outbound
services.

One or more integration objects representing input and output parameters of the
service methods.

eAl Volume lI: Integration Platform Technologies 101

‘ Web Services

Outbound Web Services

= An XML document containing the run-time parameters that should be imported
into the Siebel client. For details, see “To import run-time data about external
Web Service” on page 102.

Outbound Web Services Administration
The WSDL Import Wizard exports the data to a file that you must import to the run-
time database (the Web Services address) using the Outbound Web Services screen.

To import run-time data about external Web Service

1 Restart the Siebel Server (or Mobile Web Client) with a recompiled version of the
.srf file that includes the new objects created by the Web Services Import
Wizard.

NOTE: You do not need to update your .srf file at design time. However, the
service definition must exist in the .srf file during run time.

2 From the application-level menu, choose View > Site Map > Web Services
Administration > Outbound Web Services view.

3 In the Outbound Web Services list applet, click Import to bring up the EAI Web
Service Import dialog box.

4 Specify the export file created by the Web Services Import Wizard.
5 Click Import to import the Web Service definition into the database.

WSDL does not provide native bindings for EAI MQSeries and EAl MSMQ
transports. If your business requires you to pick up messages using these transports,
you can manually create an outbound Web Service definition and update a
corresponding business service in Siebel Tools to point to that Web Service. The
following procedure describes this process.

To manually create a new outbound Web Service

1 From the application-level menu, choose View > Site Map > Web Services
Administration > Outbound Web Services view.

2 In the Outbound Web Services list applet, create a new record.

a Enter the namespace of the Web Service in the Namespace column.

102 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Web Services ‘

Outbound Web Services

b Enter the name of the Web Service in the Name column.
¢ Select Active or Inactive in the Status field.

3 Enter a description of the Web Service in the Comment column.

NOTE: When importing an external Web Service, you do not need to specify the
proxy business service, integration objects, or the run-time parameters.

4 In the Service Ports list applet, create a new outbound service ports record.
Enter the name of the Web Service port in the Name column.

a
b Select a type of proxy for the Port Type column.

o

Select a transport name for the protocol or queuing system for the Transport.
d Enter the address appropriate for the transport chosen.

o For the Local Workflow or the Local Business Service transports, enter the
name of a Business Process or Business Service that should be called.

o For the Local Web Service transport, enter the name of the inbound port.

o For the HTTP Transport, enter an HTTP address of the Web Service to be
called—for example,ht t p: / / myconpany. coni webser i vi ce/
or derservi ce.

o For the EAI MQSeries AMI or EAI MSMQ Server transports, enter one of
the following:

ny: // send receive service point name@olicy nane
nmsny: / / queue name@ueue machi ne nane

5 Select whether the port uses SOAP document, SOAP RPC, or property set
Binding.

NOTE: Property Set Binding should be used when the input Property Set to the
proxy service is forwarded without changes to the destination address. This is
intended primarily for use in combination with Local Workflow or Local
Business Service transport to avoid overhead of processing XML.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 103

‘ Web Services

Outbound Web Services

6 Enter a description of the Port in the Comment column.
7 In the Operations Bindings applet, create a new Operations record.
a Enter the name of the Web Service in the Name column.

b Enter the name of the Binding Property in the Binding Property column; for
example, SOAPAction.

¢ Enter the value of the Binding Property in the Binding Value column; for
example, CreateOrder.

8 Generate the WSDL file. For details, see “To generate a WSDL file” on page 100.

Once you have created your outbound Web Service, you need to update a
corresponding outbound proxy business service in Siebel Tools to point to that Web
Service. This associates the outbound proxy business service and the outbound
Web Service. The following procedure outlines the steps you need to take to
accomplish this task.

To update an outbound Web Service proxy business service to point to an outbound
Web Service

1 Open Siebel Tools.

2 Select the outbound Web Service proxy business service you want to use to call
your outbound Web Service.

3 Add the following user properties for this business service and set their values
based on the outbound service port of your Web Service.

= siebel_port_name
= siebel web_service_name

= siebel_web_service_namespace

Integration Objects as Input Arguments to an Outbound Web
Service

The property set that is used as an input argument to the outbound Web Service
should have the same name as the input argument's name of the outbound Web
Service proxy.

104 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Web Services ‘

XML Schema Support for <xsd:any> Tag

You can do this using one of the following options:

= Change the output from all your business services that provide the input to the
outbound Web Service from SiebelMessage to the actual outbound Web Service
argument name specified in Siebel Tools. You need to change the output from
your business services in Siebel Tools, as well as the name of the property set
child that contains integration object instance.

» Change the property set name from SiebelMessage to the actual outbound Web
Service argument name by using an eScript service before calling the outbound
Web Service.

XML Schema Support for <xsd:any> Tag

In the current framework, WSDL Import Wizard makes use of XML Schema Import
Wizard to create integration objects to represent hierarchical data. Integration
objects are meant to be strongly typed in the Siebel application. You are now able
to import a schema that uses the <xsd:any > tag, which indicates a weakly typed
data representation, and to create an integration object from it.

Mapping the <xsd:any> Tag in the WSDL Import Wizard

In the WSDL Import Wizard, two possible mappings exist for the <xsd:any > tag.
The tag can be mapped as an integration component or as an XMLHierarchy on the
business service method argument.

The <xsd:any > tag can contain an attribute called namespace. If the value for that
attribute is known, then one or more integration components or even an integration
object can be created. If not known, then the business service method argument for
that particular < wsdl:part > tag will be changed to data type Hierarchy,
consequently losing any type information.

Being known refers to the following situations:

m A schema of targetNamespace value, being the same as that of the namespace
attribute value, is imported by way of the <xsd:import > tag.

= A schema of targetNamespace value, being the same as that of the namespace
attribute value, is a child of the <wsdl:types > tag.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 105

‘ Web Services

XML Schema Support for <xsd:any> Tag

For the case of being known, all the global elements belonging to the particular
schema of that targetNamespace will be added in place of the tag. One or more
integration components can potentially be created.

Another tag similar to <xsd:any > tag is < xsd:anyAttribute >. The mapping is
similar to that of <xsd:any > tag. In this case, one or more integration component
fields can be created.

The < xsd:anyAttribute > tag has an attribute called namespace. If the namespace
value is known (the conditions for being known were noted in this section), then
all the global attributes for that particular schema will be added in place of this tag.
Therefore, one or more integration component fields can potentially be created.

In the case where the namespace value is not known, then the < wsdl:part> tag
that is referring to the schema element and type will be created as data type
Hierarchy.

Mapping the <xsd:any> Tag in the XML Schema Wizard
For the case of the XML Schema Wizard, there is only one possible mapping for the
<xsd:any > tag, namely as an integration component.

The < xsd:any > tag can contain an attribute called namespace. If the value for that
attribute is known, then one or more integration components or even an integration
object can be created. If not, an error will be returned to the user saying that the
integration object cannot be created for a weakly typed schema.

Being known refers to this situation for XML Schema Wizard where a schema of
targetNamespace value, being the same as that of the namespace value, has been
imported by way of the < xsd:import > tag.

For the case of being known, all the global elements belonging to the particular
schema of that targetNamespace will be added in place of the tag. So, one or more
integration components can potentially be created.

The mapping of the < xsd:anyAttribute > is similar to that of the <xsd:any > tag.
In this case, one or more integration component fields can be created.

The <xsd:anyAttribute > tag has an attribute called namespace. If the namespace
value is known (the condition for being known was noted in this section), then all
the global attributes for that particular schema will be added in place of this tag.
Therefore, one or more integration component fields can potentially be created.

106 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Web Services ‘

Examples of Invoking Web Services

In the case where the namespace value is not known, then an error is returned to
the user stating that an integration object cannot be created for a weakly typed
schema.

Examples of Invoking Web Services

The following two examples show sample flows of how to invoke an external Web
Service from a Siebel application or how to invoke a Siebel Web Service from an
external application.

Invoking an External Web Service Using Workflow or Scripting

As illustrated on Figure 25 on page 108, the following steps are executed to invoke
an external Web Service.

1 The developer obtains Web Service description as a WSDL file.
2 The WSDL Import Wizard is called.

3 The WSDL Import Wizard generates definitions for outbound proxy, integration
objects for complex parts, and administration entries.

4 The Outbound Web Service proxy is called with request property set.

5 The request is converted to an outbound SOAP request and sent to external
application.

6 The external application returns SOAP response.

7 The SOAP response is converted to a property set that can be processed by the
caller—for example, Calling Function.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 107

‘ Web Services

Examples of Invoking Web Services

Registry of
YWeb Services

——y
@ Siehel Application
o WWSOL ~
L
'\-__u_,_o-/—'_\-\
Weh
Ca”mg Outbound Proxies Service
Function and Integration Irnport
Object Definitions .
ld—— and Outbound Wizard
Meb Senrice
Administration
Entries
Rezp Request
FropSet FropSet
Outbound YWeh

Service Proxy

e

Response Request
External @

Application

Figure 25. Invoking an External Web Service

The following example shows how to invoke Web Services using eScript.

108 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Web Services ‘

Version 7.5.3

Examples of Invoking Web Services

function Service_PreCanl nvokeMet hod (Met hodNane, &Canl nvoke)

{
if (MethodNane == "invoke") {
Canl nvoke = "TRUE";
return (Cancel Qperation);
}
el se
return (ContinueQOperation);
}

function Service_Prel nvokeMet hod (Met hodNane, |nputs, Cutputs)

{
i f (MethodNane == "invoke") {
var svc = TheApplication().GetService("CustonerDBd ientSinpl eSoap");
var wsl nput = TheApplication().NewPropertySet();
var wsCQut put = TheApplication().NewPropertySet();
var get Cust | nput = TheApplication().NewPropertySet();
var |istOf Get Cust oner Nanme = TheAppl i cation(). NewPropertySet();
var get Cust ormer Nane = TheApplication().NewPropertySet();
try {

/] obtain the customer IDto query on. This value will be provided in the
i nput property set

var custld = I nputs. Get Property("custld");
/] set property to query for a custonmer IDwith a value of '1'

get Cust oner Nane. Set Type("get Cust oner Nane") ;

get Cust oner Nare. Set Property("custid", custld);

eAl Volume lI: Integration Platform Technologies 109

Web Services

Examples of Invoking Web Services

/1 set Type for |istOf GetCustoner Nane

|'i st OF Get Cust oner Nane. Set Type("Li st Of get Cust omer Nane") ;

/1 set Type for getCustlnput

get Cust | nput . Set Type(" get Cust oner NaneSoapl n: par anet ers");

/Il assenble input property set for the service.
|'i st OF Get Cust oner Nane. AddChi | d(get Cust orrer Nane) ;
get Cust | nput. AddChi | d(|i st OF Get Cust oner Nane) ;

ws| nput . AddChi | d(get Cust | nput) ;

/1 invoke the getCustomer Nane operation

svc. | nvokeMet hod(" get Cust omer Nane", wslnput, wsCQutput);

/| parse the output to obtain the custonmer full nane check the type el enent
on each PropertySet (parent/child) to make sure we are at the el enent to obtain the
cust omer nane

if (wsQutput. GetChildCount() > 0) {

var get Cust Qut put = wsQut put . Get Chi I d(0);
if (getCustQutput.GetType() == "get Cust onmer NanmeSoapQut : par aneters") {
i f (getCustCutput.CGetChildCount() > 0) {
var out put Li st Of Names = get Cust Qut put. Get Chi 1 d(0);

i f (outputListO Nanes. Get Type() ==
"Li st Of get Cust oner NameResponse") {

if (outputlListO Nanes. Get ChildCount() > 0) {
var out put Cust Name = out put Li st Of Nanmes. Get Chi | d(0);

i f (outputCust Name. Get Type() ==
"get Cust omer NameResponse") {

var custNane =
out put Cust Nane. Get Property("get Cust oner NaneResul t");

Qut put s. Set Property("custoner Nane", cust Nane);

110 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Web Services ‘

Examples of Invoking Web Services

return (Cancel Operation);

}
catch (e) {
TheApplication(). RaiseErrorText(e);

return (Cancel Qperation);
}

el se

return (ContinueQperation);

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 111

‘ Web Services

Examples of Invoking Web Services

112

Invoking a Siebel Web Service From an External Application

As illustrated in Figure 26 on page 113, the following steps are executed to invoke
a Siebel Web Service from an external application.

1

The WSDL document for an active Web Service is published in Siebel Inbound
Web Services screen. To allow processing of the Web Service requests, the
developer has to make sure:

a The Web Server and the Siebel Server are up and running.
b The appropriate setup is done in the Siebel Server.

In the external application, the WSDL document is imported in order to create a
proxy that can be used to call the Siebel Web Service from Step 1.

The external application sends SOAP request into Siebel application.

The Web Service Inbound Dispatcher converts the SOAP request to a property
set. Depending on the inbound Web Service configuration, the property set is
passed to a business service or a business process.

The property set gets returned from business service or business process to the
Web Service Inbound Dispatcher.

Response is converter to a SOAP message and sent back to the calling external
application.

eAl Volume II: Integration Platform Technologies Version 7.5.3

Web Services ‘

Examples of Invoking Web Services

Registry of
Web Serices

External Application

Fy

¥
Response L% @
h

HTTF Listener and Inbound Web Serice
Dispatcher

@ QP PropSet P PropSet@

Business Serice or a Business Process

Siebel Application

Figure 26. Invoking a Siebel Web Service

The following is an example of invoking Siebel published Web Service using .NET.

/1 rermoved using declaration

nanespace si eOppd nt

{
public class sieCppdnt : System Web. Servi ces. WbService

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 113

‘ Web Services

Examples of Invoking Web Services

{
public siebOptyC nt()
{
InitializeConmponent();
}

/1 VEEB SERVI CE CLI ENT EXAMPLE

/1 The opty@BE returns a list of opty based upon the required input parans.
Since the i nput to the Siebel opty. Quer yByExanpl e net hod uses an | nput/ Qut put param
ListOf InterOptyl ntfaceTopElmt will be passed by ref to Siebel. To add the Siebel
Opportunity Web Service definition to the project, | chose to run the wsdl.exe
utility to generate the necessary hel per C# class for the service definition.

[VebMet hod]

public ListOflnterOptylntfaceTopEl nt optyQBE(string acctName, string
acctLoc, string sal esStage)

{
Si ebel opty svec = new Si ebel opty();
Li st Of I nter Opt yl nt f aceTopE! nt si ebel Message = new
Li st Of I nter Opt yl nt faceTopEl mt () ;
Li st Of I nteroptyl nterface opt yLi st = new ListOfInteroptylnterface();
opty[] opty = new opty[1];
opty[0] = new opty();

opty[0] . Account = acct Nane;
opty[0] . Account Locati on = acct Loc;

opty[0] . Sal esSt age = sal esSt age;

/lassenbl e input to be provided to the Siebel Wb Service. For the sake
of sinplicity the client will query on the Account Nane, Location, and Sal es Stage.
Ideal |y additional checking to nake sure that correct data is entered.

optylList.opty = opty;

si ebel Message. Li st Of I nteroptylnterface = optyList;

/1 invoke the QBE method of the Siebel Opportunity business service

114 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Web Services ‘

Troubleshooting Tips

svc. Si ebel opt yQBE(ref si ebel Message) ;

/1 return the raw XML of the result set returned by Siebel. Additional
processing could be done to parse the response.

return si ebel Message;

Troubleshooting Tips

You can enable Web Services Tracing on the Server to write all inbound and
outbound SOAP documents to a log file.

To enable Web Services Tracing

1 From the application-level menu, choose View > Site Map > Server
Administration.

2 Go to the Servers view.
3 Select the Server Event Configuration tab.
4 Set the Log Level parameter to 4 for the following Event Types:
= Web Service Inbound Argument Tracing
= Web Service Outbound Argument Tracing
= Web Service Inbound
= Web Service Outbound
5 Navigate to the Components view.

6 Select the EAI Object Manager component, and select the Component
Parameters tab.

7 Set the Enable Business Service Argument Tracing parameter to True.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 115

‘ Web Services

Troubleshooting Tips

8 Restart or reconfigure the server component. For details, see Siebel Server
Administration Guide.

Integration Components Cardinality

The cardinality of the root integration component used by inbound Web Services
has to be set to Zero or More. Cardinality of other integration components is not
restricted.

The reason for the constraint on root component cardinality is that Siebel Web
Services infrastructure generally returns multiple instances of root integration
component for any given request. Thus, having cardinality set to anything other
than Zero or More would prevent external clients to correctly interoperate with
Siebel Web Services.

NOTE: When modifying run-time parameters, the server component needs to be
restarted. For details, see Siebel Server Administration Guide.

116 eAl Volume lI: Integration Platform Technologies Version 7.5.3

EAl Siebel Adapter 5

This chapter describes the functionality of the EAI Siebel Adapter and the different
methods and arguments you can use with the EAI Siebel Adapter to manipulate the
data in the Siebel Database.

EAI Siebel Adapter Overview

The EAI Siebel Adapter is a general purpose integration business service that allows
you to:

= Read Siebel business objects from the Siebel Database into integration objects.

= Write an integration object whose data originates externally into a Siebel
business object.

s Update multiple corresponding top-level parent business component records
with data from one XML file—for examples, see “XML Examples” on page 129.

NOTE: EAI Message is considered to be one transaction. The transaction is
committed when there is no error. If there is an error, the transaction is aborted
and rolled back.

The EAI Siebel Adapter business service is implemented by the class
CSSEAISiebelAdapter that inherits from the CSSService class.

EAl Siebel Adapter Methods

The EAI Siebel Adapter uses DolnvokeMethod in order to provide an interface that
performs the following methods:

= Query

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 117

‘ EAI Siebel Adapter

EAI Siebel Adapter Methods

m QueryPage

= Synchronize
m Upsert

= Insert

= Update

= Delete

n Execute

The implementation of DoInvokeMethod creates CSSEAIMessageln and
CSSEAIMessageOut objects by parsing the input property sets and invokes Execute,
which does the right thing depending on the method. If an output is generated, it is

stored into the CSSEAIMessageOut object.
class CSSEAISiebelAdapter : public CSSService
{
public:
BOOLCanInvokeMethod (LPCSTR methodName);
ErrCodeDolInvokeMethod (LPCSTR methodName,
const CSSPropertySetEx& inArgs,
CSSPropertySetEx& outArgs);
protected:
ErrCodeExecute(CSSEAIMessageln* pObjlnst,

CSSEAIMessageOut*& pOutObijlnst);

118 eAl Volume ll: Integration Platform Technologies

Version 7.5.3

EAI Siebel Adapter \

EAl Siebel Adapter Method Arguments

EAI Siebel Adapter Methods

Each of the EAI Siebel Adapter methods takes arguments that allow you to specify
required and optional information to the adapter. You can locate the arguments for
each method in Table 8.

Table 8. EAI Siebel Adapter Method Arguments

Argument
IntObjectName
NumOutputObjects
OutputIntObjectName

PrimaryRowlId

QueryByUserKey
DeleteByUserKey
ErrorOnNonExistingDelete

SiebelMessage

SearchSpec
StatusObject
Messageld
BusObjCacheSize
LastPage
NewQuery
PageSize

StartRowNum

Version 7.5.3

Query

Output
Input

Input

Input

Input/
Output

Input

Input

Input

QueryPage Sync

Output

Input

Input/
Output

Input

Input
Input
Output
Input
Input

Input

Output

Output

Input/
Output

Input
Input

Input

Upsert

Output

Output

Input/
Output

Input
Input

Input

Update

Output

Output

Input/
Output

Input
Input

Input

Insert

Output

Output

Input/
Output

Input
Input

Input

Delete

Output

Input

Input
Input

Input/
Output

Input
Input
Input

Input

Execute
Input
Output
Input

Input/
Output

Input
Input
Input

Input/
Output

Input
Input
Input
Input
Output
Input
Input

Input

eAl Volume lI: Integration Platform Technologies 119

EAI Siebel Adapter

EAI Siebel Adapter Methods

Table 8. EAI Siebel Adapter Method Arguments

Argument Query QueryPage Sync Upsert Update Insert Delete Execute
ViewMode Input Input Input Input Input Input Input Input
SortSpec - Input - - - - - Input

Table 9 presents each argument of EAI Siebel Adapter methods.

Table 9. EAI Siebel Adapter Method Arguments

Argument

IntObjectName

NumOutputObjects

OutputIntObjectName

PrimaryRowlId

QueryByUserKey

DeleteByUserKey

ErrorOnNonExistingDelete

SiebelMessage

120

Display Name

Integration Object
Name

Number of Output
Integration Objects

Output Integration
Object Name

Object Id

Query By Key

Delete By User Key

Error On Non
Existing Delete

Siebel Message

eAl Volume II: Integration Platform Technologies

Description

The name of the integration object that is to be deleted.

Number of output integration objects.

The name of the integration object that is to be output.

The PrimaryRowld refers to the Id field in the Business
Component, Row_Id at the table level.

PrimaryRowId is only returned as an output argument if
you are passing in one integration object instance. If you
are passing multiple integration object instances, then
this argument is not returned as an output argument. To
obtain the ID field when multiple integration objects are
processed, use the StatusObject argument.

A Boolean argument. Forces the EAI Siebel Adapter to
only use the user keys to perform query.

A Boolean argument. Forces the EAI Siebel Adapter to
only use the user keys to identify a record.

A Boolean argument. Determines whether or not the EAI
Siebel Adapter should abort the operation if no match is
found.

The input or the output integration object instance.

Version 7.5.3

EAI Siebel Adapter

Table 9. EAI Siebel Adapter Method Arguments

EAI Siebel Adapter Methods

Argument

SearchSpec

StatusObject

Messageld

BusObjCacheSize

LastPage

NewQuery

PageSize

StartRowNum

Version 7.5.3

Display Name
Search
Specification

Status Object

Message Id

Business Object
Cache Size

Last Page

New Query

Page Size

Starting Row
Number

Description

This argument allows you to specify complex search
specifications as free text in a single method argument.
See “Search Specification” on page 134 for details.

This argument tells EAI Siebel Adapter whether or not to
return a status message.

The Messageld can be used to specify the ID for the
generated message. By default, the EAI Siebel Adapter
generates a unique ID for each message. However, if you
want to use the workflow process instance ID, then you
can use this argument to specify the ID.

Default is 5. Maximum number of Business Objects
instances cached by the current instance of the EAI Siebel
Adapter. If set to zero, then the EAI Siebel Adapter does
not use the cache.

Boolean indicating whether or not the last record in the
query result set has been returned.

Default is False. Boolean indicating whether a new query
should be executed. If set to True, a new query is
executed flushing the cache for that particular integration
object.

Default is 10. Indicates the maximum number of
integration object instances to be returned.

Default is 0 (first page). Indicates the row in the result set
for the QueryPage method to start retrieving a page of
records.

eAl Volume lI: Integration Platform Technologies 121

‘ EAI Siebel Adapter

EAI Siebel Adapter Methods

Table 9. EAI Siebel Adapter Method Arguments

Argument

ViewMode

SortSpec\

Display Name Description

View Mode Default is All. Visibility mode to be applied to the
Business Object. Valid values are: Manager, Sales Rep,
Personal, Organization, Sub-Organization, Group,
Catalog, and All. Note that the ViewMode user property
on the integration object has priority over the ViewMode
method argument.

Sort Specification Default is the SortSpec of the underlying business
component. This argument allows you to specify
complex sort criteria as a free text in a single method
argument, using any business component fields and
standard Siebel sort syntax—for examples, see Siebel
Tools Reference.

Query Method

You pass the Query method a Query By Example (QBE) integration object instance,
a Primary Row Id, or a Search Specification. The adapter uses this input as criteria
to query the base business object and to return a corresponding integration object
instance. For example, to query Contact records with first name David you need to
pass the following required input arguments to the Query method of EAI Siebel
Adapter:

m SiebelMessage.IntObjName with value set to Test Contact
m SiebelMessage.ListOfTest Contact.Contact.First Name with value set to David

Now, if you need to further limit the output based on a value in the child component
of the Test Contact (for example, to only query the Contact records with first name
David and Action Type of Call), then you need the following required input
arguments:

m SiebelMessage.ListOfTest Contact.Contact.First Name with Value set to David
m SiebelMessage.IntObjName with value set to Test Contact

= SiebelMessage.ListOfTest Contact.Contact.ListOfAction.Action.Type, with Value
set to Call

122 eAl Volume lI: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

EAI Siebel Adapter Methods

Note that this still returns the contacts with the first name David, even if they do
not have an activity of type Call, but it does not list their activities. For an example
of using the search specification method argument to limit the scope of your query
see “Search Specification” on page 134.

NOTE: When using the EAI Siebel Adapter, to query all the business component
records, you do not need to specify any value in the Object Id process property of
the workflow process. In this case not specifying an ID works as a wildcard. If you
want to query Siebel data using the EAI Siebel Adapter with the Query method and
a property set containing a query by example search criteria, then all the fields that
make up the user key for the underlying integration object component must exist in
the property set. You can use an asterisk (*) as a wildcard for each one of the fields,
but all of the user key fields must exist; otherwise, no record is returned.

QueryPage Method

This method is useful when the search specification retrieves a large number of
records at the root component. To avoid returning one huge Siebel Message, you can
specify the number of records to be returned using the PageSize argument, as
presented in Table 9 on page 120. You can also use method arguments such as
OutputIntObjectName, SearchSpec, SortSpec, ViewMode, and StartRowNum to
dictate which records to be returned.

Even though the QueryPage returns a limited number of records, it keeps the data
in the cache, which you can then retrieve by calling the EAI Siebel Adapter with a
new value for the StartRowNum method argument. Please note that this is only
possible if the method arguments OutputIntObjectName, PageSize, SearchSpec,
SortSpec, and ViewMode are not changed and the NewQuery method argument is
set to False.

Synchronize Method

Version 7.5.3

You can use the Synchronize method to make the values in a business object
instance match those of an integration object instance. This operation can result in
updates, inserts, or deletes on business components. Some rules apply to the results
of this method:

eAl Volume lI: Integration Platform Technologies 123

‘ EAI Siebel Adapter

EAI Siebel Adapter Methods

If a child component is not present in the integration object instance, the
corresponding business component rows are left untouched.

If a child component is present in the integration object instance, but contains
no instances so that there is only an empty container, then records in the
corresponding business component are deleted.

If a child component is present in the integration object instance, and contains
some instances, the business component rows corresponding to the instances

are updated or created and any business component row that does not have a
corresponding integration component instance is deleted.

The Sync method applies the operation sequentially to each root Integration
Component (because each previous Integration Component is written to the
database) but does not do this for any child Integration Component.

NOTE: The Synchronize method only updates the fields specified in the integration
component instance.

Upsert Method

The Upsert method is similar to the Synchronize method with the following
exceptions:

The Upsert method does not delete any records.

The Upsert method applies the operation sequentially to each root Integration
Component (because each previous Integration Component is written to the
database) but does not do this for any child Integration Component.

124 eAl Volume lI: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter \

EAI Siebel Adapter Methods

Insert Method

This method is also similar to the Synchronize method with the exception that the
EAI Siebel Adapter errors out if a match is found; otherwise, it inserts the root
component and synchronizes all the children. It is important to note that when you
insert a record, there is a possibility that the business component would create
default children for the record, which need to be removed by the Insert method. The
Insert method synchronizes the children, which deletes all the default children. For
example, if you insert an account associated with a specific organization, it will also
be automatically associated with a default organization. As part of the Insert
method, the EAI Siebel Adapter deletes the default association and associates the
new account with only the organization that was originally defined in the input
integration object instance. The EAI Siebel Adapter achieves this by synchronizing
the children.

Update Method

This method is similar to the Synchronize method, except that the EAI Siebel
Adapter returns an error if no match is found for the root component; otherwise, it
updates the matching record and synchronizes all the children. For example, if you
send an order with one order item to the EAI Siebel Adapter, it will take the
following actions:

1 Queries for the order and if it finds a match, it updates the record.

2 Updates or inserts the new order item depending on if a match was found for
the new order item.

3 Deletes any other order items associated with that order.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 125

‘ EAI Siebel Adapter

EAI Siebel Adapter Methods

Delete Method

You can delete one or more records in a business component that is mapped to the
root integration component, given an integration object. A business component is
deleted as specified by an integration object. If you specify any child integration
component instances, then the fields of an integration component instance are used
to query a business component.

NOTE: To have the EAI Siebel Adapter perform a delete operation, define an
integration object that contains the minimum fields on the primary business
component for the business object. EAI Siebel Adapter attempts to delete matching
records in the business component before deleting the parent record.

Execute Method

The Execute method can be specified on EAI Siebel Adapter to perform
combinations of various operations on components in an integration object
instance. This method uses the following operations:

= query

= querypage (same as query when used as children operation)
m sync (default operation)

= upsert

= update

= updatesync

= insert

= insertsync

n delete

= Nnone

NOTE: A none operation is equivalent to operation sync.

eAl Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter \

EAI Siebel Adapter Methods

These operations perform the same tasks as the related methods. For example, the
delete operation makes the EAI Siebel Adapter delete the business component
record matched to the particular integration component instance. However, what
will be done to the children depends on the combination of the parent operation
and the child operation. For details, see Table 11 on page 129.

Operations that include the word sync in the name cause deletion of unmatched
child records, whereas update, insert, and upsert do not delete any children.
Table 10 presents the overview of the six related operations.

Table 10. EAI Siebel Adapter Execute Method Operations

EAI Siebel Adapter Action upsert sync update updatesync insert insertsync
Error on Match Found No No No No Yes Yes
Error on Match Not Found No No Yes Yes No No
Delete Unmatched Children NO Yes No Yes No Yes

NOTE: You should use the Execute method when you need to mix different
operations on different components within a single integration object; otherwise,
you should use the other methods.

An XML document sent to a Siebel application can include operations that describe
whether a particular data element needs to be inserted, updated, deleted,
synchronized, and so on. These operations can be specified as an attribute at the
component level. They cannot be specified for any other element.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 127

‘ EAI Siebel Adapter

EAI Siebel Adapter Methods

Execute Method Operations

Specify an attribute named operation, in lowercase, to the component’s XML
element. The legal values for this attribute are upsert, sync, delete, query, update,
insert, updatesync, insertsync, and none. If the operation is not specified on the root
component, the sync operation is used as the default.

NOTE: Specifying operation within < ListOf > tag is not supported. For details on the
< ListOf > tag, see XML Reference: Siebel eBusiness Application Integration Volume
V.

128 eAl Volume lI: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter ‘

Supported Operations for the Parent and Its Child Components
Table 11 presents the operation performed for a child component based on its parent
component’s operation and its own operation.

Table 11. Supported Operations

XML Examples

query

query
page

sync
upsert
update

update
sync

insert

insert
sync

Child Operation

delete

Parent Operation

query

query

query

query

query

query

query

query

query

query

query
page

query

query

query

query

query

query

query

query

query

sync
upsert

upsert

sync
upsert
update

update
sync

insert

insert
sync

delete

upsert

upsert

upsert

sync
upsert
update

update
sync

insert

insert
sync

delete

update

update

update

sync
upsert
update

update
sync

insert

insert
sync

delete

update
sync

update

update

sync
upsert
update

update
sync

insert

insert
sync

delete

insert
insert

insert

sync
upsert
upsert

sync

insert

insert
sync

delete

insert
sync

insert

insert

sync
upsert
upsert

sync

insert

insert
sync

delete

delete

delete

delete

delete

delete

delete

delete

delete

delete

delete

XML Examples

Version 7.5.3

The following XML example demonstrates using upsert and delete operation to
delete a particular child without updating the parent.

<Si ebel Message Messagel d=

eAl Volume II: Integration Platform Technologies

MessageType="I ntegrati on Cbject"”
I nt Cbj ect Nane="Sanpl e Account">

129

‘ EAI Siebel Adapter

XML Examples

<Li st of Sanpl eAccount >
<Account operation="upsert">
<Name>A. K. Parker Distribution</Name>
<Locati on>HQ Di stri buti on</Locati on>

<Organi zati on>North Anmerican Organi zation</
Or gani zat i on>

<Di vi si on/ >
<Cur r encyCode>USD</ Cur r encyCode>

<Description>This is the key account in the AK Parker
Fami | y</ Descri ption>

<HonePage>www. par ker . conk/ HonmePage>
<Li neof Busi ness>Manuf act uri ng</ Li neof Busi ness>
<Li st O Cont act >
<Cont act operation="delete">
<Fi r st Name>St an</ Fi r st Nanme>
<JobTi tl e>Seni or Mgr of M S</JobTitl e>
<Last Nane>G aner </ Last Nane>
<M ddI eNane>A</ M ddI eNane>
<Per sonal Cont act >N</ Per sonal Cont act >
<Account >A. K. Parker Distribution</Account>
<Account Locat i on>HQ Di st ri buti on</ Account Locati on>
</ Cont act >
</ Li st O Cont act >
</ Account >
</ Li st of Sanpl eAccount >

</ Si ebel Message>

130 eAl Volume lI: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

MVGs in EAI Siebel Adapter

The following example illustrates updating multiple corresponding top level parent
business component records with one XML file.

<Si ebel Message Messagel d=
I nt Cbj ect Nane="Tr ansacti on">

MessageType="I| ntegrati on Cbject"

<Li st of Transacti on>
<Transacti on>
<Fi el d1>xxxx</ Fi el d1>
<Fi el d2>yyyy</ Fi el d2>
</ Transacti on>
<Transacti on>
<Fi el d1>aaaa</ Fi el d1>

<Fi el d2>bbbb</ Fi el d2>

</ Li st of Transacti on>

</ Si ebel Message>

MVGs in EAI Siebel Adapter

Multi-value groups (MVGs) in the business components are mapped to separate
integration components. Such integration components are denoted by setting a user
property MVG on the integration component to Y. For details on MVGs, see
Chapter 1, “About Integration Objects.”

An integration component instance that corresponds to a primary MVG is denoted
by the attribute IsPrimaryMVG set to Y. This attribute is a hidden integration
component field and does not have a corresponding business component field.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 131

‘ EAI Siebel Adapter

MVGs in EAI Siebel Adapter

132

Each MVG that appears on the client Ul is mapped to a separate integration
component. For example, in the Orders Entry - Orders screen, there is an Account
Address, a Bill-to Address, and a Ship-to Address. Each of these MVGs needs a
separate integration component definition. Each field defined for an integration
component (represented by the class CSSEAIIntCompFieldDef) maps to a field in
the MVG. For such fields, External Name denotes the name of the business
component field as it appears on the master business component, and the user
property MVGFieldName denotes the name of the business component field as it
appears on the MVG business component.

NOTE: Setting a primary record in an MVG is supported only when the Auto Primary
property of the underlying MVLinKk is specified as Selected or None. If Auto Primary
is defined as Default, then the Object Manager does not allow the EAI Siebel
Adapter to set the primary. The exception to this rule are all the visibility MVG
components (components whose records are used by Object Manager to determine
who is going to see their parent records). For details on Auto Primary property, see
Siebel Tools Reference.

Setting a Primary Address for an Account

You have an account with multiple shipping addresses in a Siebel application. None
of these addresses are marked as the primary address for the account and you want
to select one of them as the primary shipping address.

To specify an address as a primary

1 Create your XML file and insert <I sPri mar yWG= 'Y'> before the address you
want to identify as the primary address for the account as shown below:

<?xm version="1.0" encodi ng="UTF-8" ?>
<?Si ebel - Property-Set EscapeNanes="fal se"?>
- <Si ebel Message Messagel d="1- 69A" | nt Obj ect For mat =" Si ebel
Hi erarchical " MessageType="Integrati on Cbject"
I nt Cbj ect Nane="Sanpl e Contact">
- <Li st O Sanpl eCont act >

- <Cont act >

<Fi r st Nane>Pal 888</ Fi r st Nane>

eAl Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter \

MVGs in EAI Siebel Adapter

<l ntegrationl d>65454398</| ntegrati onl d>
<JobTi t | e>Manager </ JobTi t| e>
<Last Name>John888</ Last Nanme>
<M ddl eNane />
<Per sonUl d>1- Y88H</ Per sonUl d>
<Per sonal Cont act >N</ Per sonal Cont act >
- <Li st O Contact _Position>
- <Contact_Position |IsPrimryWG"Y">
<Enpl oyeeFi r st Name>Si ebel </ Enpl oyeeFi r st Nane>
<Enpl oyeelLast Name>Adni ni st rat or </ Enpl oyeelLast Name>
<Posi ti on>Si ebel Admi ni strator</Position>
<RowSt at us>N</ RowSt at us>
<Sal esRep>SADM N</ Sal esRep>
</ Cont act _Position>
</ Li st O Cont act _Posi ti on>
</ Cont act >
</ Li st O Sanpl eCont act >
</ Si ebel Message>.

2 Use the Upsert or Sync method to update the account.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 133

‘ EAI Siebel Adapter

Search Specification

Search Specification

The SearchSpec input method argument is applicable to QueryPage, Query, Delete,
and Execute methods. This method argument allows you to specify complex search
specifications as free text in a single method argument. Expressions within a single
integration component are restricted only by the Siebel Query Language supported
by the Object Manager. Integration components and fields are referenced using the
following notation:

[I nt ConpNane.l nt ConpFi el dName]

For example, given an integration object definition with two integration
components, Account as the root component and Contact as the child component,
the following search specification is allowed:

([Account.Site] LIKE "A*" OR [Account.Site] IS NULL) AND
[Cont act. PhoneNunber] 1S NOT NULL

This search specification queries accounts that either have a site that starts with the
character A, or do not have a site specified. In addition, for the queried accounts, it
queries only those associated contacts that have a phone number.

NOTE: The AND operator is the only allowed operator among different integration
components. You use DOT notation to refer to integration components and their
fields.

You can include the child integration component in a search specification only if its
parent components are also included. For example, using the same integration
object definition as in previous examples, the [Cont act . PhoneNunber] 1S NOT
NULL queries every account. Then for each account, it queries only contacts that
have a phone number. If you want to query only accounts that are associated with
contacts that have a phone number specified, then you need to create another
business object, and an integration object based on that business object, which has
contact as a root component, and account as its child component.

The following procedure illustrates how to use the SearchSpec to query specific
accounts.

eAl Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

Search Specification

To query accounts and addresses based on integration object’s SearchSpec field

1 From the application-level menu, choose View > Site Map > Business Process
Administration > Workflow Processes.

2 Create a new workflow process based on the Sample Account business object.

NOTE: Make sure all the fields you need are activated in the object.

3 Define the process properties.

Workflow process properties are global to the entire workflow. The Account
Message is defined to identify the outbound Account as a hierarchical structure.
The Error Message, Error Code, Object 1d, and Siebel Operation Object Id
properties are included in each workflow by default.

Name Data Type In/Out

Account Message Hierarchy In/Out
Error Code String In/Out
Error Message String In/Out
Object Id String In/Out
Process Instance Id String In/Out

Siebel Operation Object Id String

In/Out

4 Click on the Process Designer tab in the bottom applet and design your workflow

process as follows.

Get Account b

Write to File {

End

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 135

EAI Siebel Adapter

Search Specification

5 Double-click on the first step, after Start, and set it up to invoke the EAI Siebel
Adapter to query the accounts and addresses for all records that match the
desired search specification—for example, accounts created today with State
equal to “IL.” To achieve this you need the following input and output

arguments.
Input Arguments Type Value
Account Message Literal Sample Account
Search Specification Expression '[Account.Created] =" + Today()

+ '[Account_BusinessAddress.State] = “IL”"

6 Double-click on the second step and set it up to write the record set to a text file
using the EAI XML Write to File business service. Use the following arguments
with the Write Siebel Message method.

Input Arguments Type Value Property Name Property Data Type

File Name Literal c:\accnt&add.xml - -

Siebel Message Process - Account Hierarchy
Property Message

The EAI XML Write to File business service converts the hierarchical message to
XML and writes the result to the text file named in the File Name argument as
follows:

<?xm version="1.0" encodi ng="UTF-8" ?>
<?Si ebel - Property-Set EscapeNanes="fal se"?>
- <Si ebel Message Messagel d="11S-7LT" | nt Obj ect For mat =" Si ebel
Hi erarchical " MessageType="Integrati on Chject"
I nt Cbj ect Nane="Sanpl e Account">
- <Li st Of Sanpl eAccount >

- <Account >

136 eAl Volume lI: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter \

Search Specification

<Cr eat ed>04/ 05/ 2002 07: 41: 10</ Cr eat ed>
<CSN>1l S- 1DBRT</ CSN>
<Locati on>Pri ncet on</ Locati on>
<Name>1st Account created today</ Nane>
- <Li st Of Account _Busi nessAddr ess>
- <Account _Busi nessAddress | sPrinmaryMWG"N"'>
<Ci ty>Abbott Park</Cty>
<Count r y>USA</ Count r y>
<St at e>| L</ St at e>
<Street Address>1 Abbott Rd. D3m B 3</Street Address>

<Addr essName>1 Abbott Rd. D3m B 3, Abbott Park, IL</
Addr essNane>

</ Account _Busi nessAddr ess>
</ Li st OF Account _Busi nessAddr ess>
</ Account >
- <Account >
<Cr eat ed>04/ 05/ 2002 07: 42: 27</ Cr eat ed>
<CSN>1l S- 1DBRY</ CSN>
<Locat i on>Or ange</ Locat i on>
<Name>2nd Account created today</ Nane>
- <Li st Of Account _Busi nessAddr ess>
- <Account _Busi nessAddress |sPrimaryWG"Y">
<Ci ty>Chi cago</City>
<Count r y>USA</ Count ry>

<Stat e>| L</ St at e>

Version 7.5.3 eAl Volume II: Integration Platform Technologies

137

‘ EAI Siebel Adapter

Language-Independent Code

<Street Address>1 BOP, 7th Fl oor</Street Address>

<Addr essNane>1 BOP, 7th Fl oor, Chicago, |L</AddressNane>
</ Account _Busi nessAddr ess>

</ Li st OF Account _Busi nessAddr ess>

</ Account >

</ Li st O Sanpl eAccount >

</ Si ebel Message>

Language-Independent Code

If the user Property AllLangIndependentVals is set to Y at the integration object
level, then EAI Siebel Adapter uses the language-independent code for its LOVs.

In the outbound direction, for example the Query method, if the
AllLangIndependentVals is set to Y, then the EAI Siebel Adapter translates the
language-dependent values in the Siebel Database to their language-independent
counterpart based on the List Of Values entries in the database.

In the inbound direction, for example the Synchronize method, if the
AllLangIndependentVals is set to Y, then the EAI Siebel Adapter expects language-
independent values in the input message, and translates them to language-
dependent values based on the current language setting and the entries in the List
Of Values in the database.

NOTE: The LOV-based fields are always validated using language-dependent values.
Using language independent values for (M)LOVs increases the EAI Siebel Adapter
CPU usage by about 5%, but allows easier communication between systems that
operate on different languages.

LOV Translation

The Siebel application distinguishes two types of lists of values (LOV): multilingual
LOV (MLOV) and single-language LOV.

eAl Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter \

EAI Siebel Adapter Concurrency Control

Multilingual LOV (MLOV) stores a language-independent code (LIC) in the Siebel
Database that gets translated to a language-dependent value (LDV) for active
language by Object Manager. MLOVs are distinguished by having Translation Table
specified on the Column definition.

Single-language LOV stores the LDV for the current language in the Siebel Database.
The Boolean integration object user property AllLangindependentVals determines
whether the EAI Siebel Adapter should use LDV (N = no translation necessary) or
LIC (Y = translation needed) for such LOVs. For details, see Table 6 on page 67.

Translating to LIC impacts performance but allows easier cooperation between
systems that operate on different languages. This option should be especially used
by various import and export utilities. Default value is undefined for backward
compatibility with 6.x release behavior.

Table 12 explains the behavior of Siebel Adapter according to the integration object
user property AllLangindependentVals values.

Table 12. Siebel Adapter’s Behavior for the User Property AllLangindependentVals

AllLangindependentVals Y N Undefined
LOV LIC LDV LDV
MLOV LIC LDV LIC

EAI Siebel Adapter Concurrency Control

The EAI Siebel Adapter supports concurrency control to guarantee data integrity
and avoid overriding data by simultaneous users or integration processes. To do so,
the EAI Siebel Adapter uses the Integration Component Key called Modification Key.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 139

‘ EAI Siebel Adapter

EAI Siebel Adapter Concurrency Control

Modification Key

A Modification Key is an Integration Component Key of the type Modification Key.
A Modification Key is a collection of fields that together should be used to verify the
version of an integration component instance. Typically, Modification Key fields are
Mod 1d fields for the tables used. Multiple Modification Key fields may be needed
because a business component may be updating multiple tables, either as extension
tables or through implicit or explicit joins.

EAI Siebel Adapter methods (Insert, Update, Synchronize, Upsert) check for the
existence of a Modification Key. If no Modification Key is specified in the integration
component definition, or if Modification Key fields are not included in the XML
request, the EAI Siebel Adapter does not check for the record version and proceeds
with the requested operation. If a valid Modification Key is found, but the
corresponding record can not be found, the EAI Siebel Adapter assumes that the
record has been deleted by other users and returns the error
SSASqlErrWriteConflict.

If a valid Modification Key as well as the corresponding record can be found, the
EAI Siebel Adapter checks if the Modification Key fields in the XML request and the
matched record are consistent. If any of the fields are inconsistent, the EAI Siebel
Adapter assumes that the record has been modified by other users and returns the
error SSASqlErrWriteConflict. If all the fields are consistent, the EAI Siebel Adapter
proceeds with the requested operation.

Modification IDs

140

To determine which Mod 1d fields need to be used as part of a Modification Key, you
expose Mod Id fields for tables whose columns may be updated by that integration
object. In some situations you might need to add corresponding integration
component fields as well as business component fields.

NOTE: EAI Siebel Adapter can update base and extension tables. It may even update
joined table columns through picklists that allow updates.

eAl Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter \

EAI Siebel Adapter Concurrency Control

Modification ID for a Base Table

The integration component field Mod Id for a base table is created by the Integration
Object Builder Wizard, but you need to make sure it is active if it is needed for your
business processes.

Modification ID for an Extension Table

An extension table’s Mod Id field is accessible as ext ensi on t abl e nane.Mod Id
in the business component—for example, S_ORG_EXT_X.Mod Id. However, if your
business processes require this field, you need to manually add it to the integration
object definition by copying the Mod Id field and changing the properties.

Modification ID for a Joined Table

A joined table’s Mod Id field needs to be manually added in both business
component and integration object definitions. Business component Mod Id fields for
joined tables should:

m Be prefixed with CX string and preferably followed by the name of the join
= Be Joined over the correct join

= Have MODIFICATION_NUM specified as underlying column of type
DTYPE_INTEGER

MVG and MVGAssociation Integration Components

For integration components that are of type MVG or MVGAssociation, in addition to
the above steps, you need to create user properties MVGFieldName and
AssocFieldName for each Modification ID integration component field, respectively,
and set the name of the field shown in the parent business component as the value.

To configure EAI Siebel Adapter for concurrency control

1 For each integration component, identify all needed Modification IDs.

NOTE: In addition to the Modification ID for the base table, Modification IDs for
tables that are used through one-to-one extension as well as through implicit
joins are relevant. For example, on modifying an account record
MODIFICATION_NUM column on S_ORG_EXT is updated, not the
MODIFICATION_NUM column on S_PARTY.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 141

‘ EAI Siebel Adapter

EAI Siebel Adapter Concurrency Control

a Identify all active fields in an integration component that will be updated and
have to be concurrency safe.

b Select the corresponding business component, the value in the External
Name property of the integration component.

¢ For each field identified in Step a, check the value of the Join property of the
field. If the join is not specified, then the field belongs to the base table;
otherwise, note the name of the join.

d In the Object explorer, select Business Component > Join and query for the
business component from Step b. Search whether there is an entry whose
Alias property matches the name of the join from Step c.

o If a matching Alias is found, then this field belongs to a Joined Table. The
name of the join in Step c is the join name and the value of the Table
property is the joined table.

o If no Alias matches, then this is an implicit join to an Extension Table. The
name of the join in Step c is the name of the extension table.

2 Create business component fields for Mod Ids of Joined Tables. For the above
example, create a new field in business component Account with the following
settings:

Name. CX_Primary Organization-S_BU.Mod Id
Join. Primary Organization-S_BU
Column. MODIFICATION_NUM
Type. DTYPE_INTEGER
3 Expose all Modification IDs identified in Step 1 as integration component fields.

4 For MVG and MVG Association integration components, add user property
MVGFieldName and AssocFieldName respectively, on all Modification ID fields
as follows:

a Check the Integration Component User Prop sub type for user properties of
the integration component.

142 eAl Volume lI: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter \

EAI Siebel Adapter Concurrency Control

b If there is a user property called MVGAssociation then the integration
component is a MVG Association, but if there is a user property called
Association then the integration component is a MVG.

NOTE: If the integration component is neither an MVG nor an MVG
Association, then nothing needs to be done.

5 Repeat the following steps for each Modification ID field on the integration
component.

a Add user property MVGFieldName if MVG, or AssocFieldName if MVG
Association.

b Set the value of the user property to the same as the field name—for example,
Mod Id, ext ensi on tabl e name.Mod Id, or CX_j oi n.Mod Id.

6 Create Modification Key.

Define a new integration component key of type Modification Key, and include
all the integration component fields exposed in Step 3 to this key.

7 Validate integration objects and compile a new .srf.
8 Modify client program to use the Modification Key mechanism.

a The client program should store the value of the Modification IDs when it
queries data from Siebel Database.

b The client program should send exactly the same values of the Modification
IDs that it retrieved from Siebel Database when sending an update.

¢ The client program should not send in any Modification IDs when sending a
new record to the Siebel application. If this is violated, the client program
generates an error indicating that the record has been deleted by another
user.

Integration Component Account Example
Consider an integration component Account of the business component Account:

s Field Home Page has property Join set to S_ORG_EXT. This is an implicit join
because it is not listed in the joins; therefore, this field belongs to Extension
Table S_ORG_EXT.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 143

‘ EAI Siebel Adapter

EAI Siebel Adapter Concurrency Control

m Field Primary Organization has property Join set to Primary Organization-S_BU.
This is an explicit join as it is listed in the joins. The value of Table property is
S_BU; therefore, this field belongs to Joined Table S_BU joined over Primary
Organization-S_BU.

1 Activate integration component field Mod Id.
a Set Name, External Name, XML Tag properties to Mod Id
b Set External Data Type property to DTYPE_NUMBER
¢ Set External Length property to 30
d Set Type property to System
2 Add integration component field S_ORG_EXT.Mod Id.
a Set Name, External Name, XML Tag properties to S_ORG_EXT.Mod Id
b Set External Data Type property to DTYPE_NUMBER
¢ Set External Length property to 30
d Set Type property to System
3 Add integration component field CX_Primary Organization-S_BU.Mod Id.

a Set Name, External Name, XML Tag properties to CX_Primary Organization-
S_BU.Mod Id

b Set External Data Type property to DTYPE_NUMBER
¢ Set External Length property to 30
d Set Type property to System

Integration Component Account_Organization Example

Consider the integration component Account_Organization of the Sample Account
integration object. Account_Organization is an MVG Association as denoted by the
presence of the user property MVGAssociation. Assume two Modification IDs, Mod
Id and S_ORG_EXT.Mod Id, were exposed on this integration component.

1 For field Mod Id create a new user property with the name of AssocFieldName
with a value of Mod Id.

144 eAl Volume lI: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

Siebel eAl and Run-Time Events

2 For field S_ORG_EXT.Mod Id create a new user property with the name of
AssocFieldName with a value of S_ORG_EXT.Mod Id.

In the integration component example, Account (created in “Integration Component
Account_Organization Example” on page 144) of Sample Account integration
object, takes the following action:

1 Create a new Integration Component key called Modification Key.
2 Set the type of the key as Modification Key.

3 Add integration component fields Mod Id, S_ORG_EXT.Mod Id, and S_BU.Mod
Id to the Modification Key.

Siebel eAl and Run-Time Events

Version 7.5.3

The Siebel application allows triggering workflows based on run-time events or
workflow policies.

Run-Time Events. Siebel eAl supports triggering workflows based on run-time events
such as Write Record, which gets triggered whenever a record is written. If you use
both EAI Siebel Adapter to import data into Siebel application and run-time events,
you should pay attention to the following:

For EAI Siebel Adapter, one call to EAI Siebel Adapter with an input message is a
transaction. Within a transaction, EAI Siebel Adapter makes multiple Write Record
calls. At any point in the transaction, if EAI Siebel Adapter encounters a problem
the transaction is rolled back entirely. However, if you have specified events to
trigger at Write Record, such events are invoked as soon as EAI Siebel Adapter
makes Write Record calls even though EAI Siebel Adapter may be in the middle of
a transaction. If you have export data workflows triggered on such events, this may
lead to exporting data from Siebel applications that is not committed in Siebel
applications and may get rolled back. It is also possible that your events get
triggered when the record is not completely populated, which leads to situations
that are not handled by your specified event processing workflow.

To avoid the effects of this interaction between EAI Siebel Adapter and run-time
events use the business service EAI Transaction Service to figure out if a transaction
(typically, EAI Siebel Adapter) is in progress. You may then want to skip processing
that is not desirable when EAI Siebel Adapter is in progress.

eAl Volume lI: Integration Platform Technologies 145

‘ EAI Siebel Adapter

Siebel eAl and Run-Time Events

For example, suppose you have a workflow to export Orders from Siebel
applications that is triggered whenever the Order record is written. You also import
Orders into Siebel applications using EAIL. In such a situation, you do not want to
export Orders while they are being imported because the import may get aborted
and rolled back. You achieve this using the business service EAI Transaction Service
as the first step of the export workflow. If you find that a transaction is in process
you can branch directly to the end step.

Workflow Policies. In addition to Run-Time Events, Siebel applications also support
Workflow Policies as a triggering mechanism for workflows. You can use workflow
policies instead of run-time events to avoid the situation discussed above. You
should use Workflow Policies instead of Run-Time Events when possible.

146 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel eAl and File Attachments 6

Siebel eAl supports file attachments for exchanging business documents such as
sales literature, activity attachments, and product defect attachments with another
Siebel instance or an external system such as Oracle Applications.

For example, if you are exchanging service requests with another application or
partner, you can include attachments such as screen captures, email, log files, and
contract agreements that are associated with the service request in the information
being exchanged. Siebel eAl support for file attachments allows comprehensive
integration.

In order to use file attachments you first need to create Integration Objects. For
details, see Chapter 1, “About Integration Objects,” and Chapter 2, “Creating and
Maintaining Integration Objects.”

Siebel eAl offers the choice of integrating file attachments using MIME (the industry
standard for exchanging multi-part messages), or including the attachment within
the body of the XML document, referred to as an inline XML attachment. You
should consider using inline XML attachments when integrating two instances of
Siebel applications using file attachments.

Exchange of Attachments with External Applications

Version 7.5.3

Siebel eAl supports bidirectional attachments exchange with external applications
using the following two message types:

= MIME (Multipurpose Internet Mail Extensions). MIME is the industry standard for
exchanging multipart messages. The first part of the MIME message is an XML
document representing the business object being exchanged and attachments to
the object are included as separate parts of the multipart message. MIME is the
recommended choice for integrating Siebel applications with other applications.

eAl Volume lI: Integration Platform Technologies 147

‘ Siebel eAl and File Attachments

Using MIME Messages to Exchange Attachments

= Inline XML attachments (Inline Extensible Markup Language). With inline XML
attachments, the entire business object you are exchanging, including any
attachments, is sent as a single XML file. In this case, attachments are included
within the body of the inline XML attachment. Inline XML attachments should
be considered when integrating two instances of Siebel applications using file
attachments. For details, see XML Reference: Siebel eBusiness Application
Integration Volume V.

Using MIME Messages to Exchange Attachments

To send or receive file attachments using MIME messages, Siebel eAl uses the MIME
Hierarchy Converter and MIME Doc Converter.

The following checklist shows the high-level procedures you need to perform to use
MIME to exchange attachments between Siebel applications and another external
system.

Checklist

O Create an integration object using the EAI Siebel Wizard.
For details, see “Creating the Integration Object” on page 149.

O Create an inbound or outbound Workflow process.

For details, see “Creating Workflow Processes Examples” on page 150.

O Test your workflow process using Workflow Process Simulator.

For details, see “The EAI MIME Hierarchy Converter” on page 156.

148 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel eAl and File Attachments

Using MIME Messages to Exchange Attachments

Creating the Integration Object

The following procedure guides you through the steps of creating an integration

object.

To create a new Siebel integration object

1 Start Siebel Tools.

2 Create a new project and lock the project, or lock an existing project in which

you want to create your integration object.

3 Choose File > New Obiject... to display the New Object Wizards.

4 Select the EAI tab, select the Integration Object icon, and click OK.

NOTE: When creating your integration object you need to select the Attachment
integration object. The following figure illustrates this when the source object is

Account.

Integration Object Builder - Choose Integration Components

Object by checking the appropriate items.

Select the integration components that you would like to activate for this Integration

[] Account_Account Synorym

[~] Account_Termitary
Account_Drganization Unit Type
Account - Get 5AP Order List Header
Account Attachment

Account Category

Account External Product

Account Mote

Account Private Note

1111113111811

- [] Action
[H-[] Activity Plan
& H-[| Agreement
- Agzet Mamt - Asset
. L S A AT

i

|

Include component O lanore component

< Back I Mest » I

Cancel |

5 Click Next to see a list of the warnings and errors generated by the Integration

Object Builder.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 149

‘ Siebel eAl and File Attachments

Using MIME Messages to Exchange Attachments

6 Review and take necessary actions to address the issue.
7 Click Finish to complete the process of building the integration object.

8 In the Object Explorer, select Integration Object >
Integration Component > Integration Component Field object.

The Integration Component and Integration Component Field applets appear.

9 Select the XXX_Attachment Component and the Attachment Id Component
fields, and verify that the Data Type for the Attachment Id field is set to
DTYPE_ATTACHVENT.

10 Compile the .srf file and copy it to the object directory under your Siebel Server
directory as well as under your Tools directory.

NOTE: You need to stop the services before copying the .srf file. For details on the
.srf file, see Siebel Tools Reference.

Creating Workflow Processes Examples

Depending on whether you are preparing for an outbound or an inbound
attachment exchange, you need to design different workflow process as described
in the following two procedures.

Outbound Workflow Process

To process the attachment for an outbound request you need to create a workflow
process to query the database, convert the Integration Object and its attachments
into a MIME hierarchy, and then create a MIME document to send to the File
Transport business service.

To create an outbound workflow process
1 Navigate to Workflow Process Designer.

2 Create a workflow process consisting of Start, End, and four Business Services.
Set up each Business Service according to the task it needs to accomplish.

eAl Volume II: Integration Platform Technologies Version 7.5.3

Siebel eAl and File Attachments \

Using MIME Messages to Exchange Attachments

3 Define your process properties.

Set workflow process properties when you need a global property for the entire

workflow.
Name Data Type Default String
SiebelMessage Hierarchy
Error Message String
Error Code String
Object Id String
Process Instance Id String

Siebel Operation Object Id String

MIMEHierarchy Hierarchy
SearchSpec String [Account.Name] = 'Sample Account’
MIMEMsg String

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 151

‘ Siebel eAl and File Attachments

Using MIME Messages to Exchange Attachments

4 The first business service queries the Account information from the database
using the EAI Siebel Adapter business service with the Query method. This step

requires the following input and output arguments.

Input Argument Type Value Property Name Property Data Type
Output Integration Literal Sample Account
Object Name
SearchSpec Process String
Property
Property Name Type Output Argument

SiebelMessage Output Argument Siebel Message

NOTE: For more information on using EAI Siebel Adapter, see Chapter 5, “EAI

Siebel Adapter.”

152 eAl Volume lI: Integration Platform Technologies

Version 7.5.3

Siebel eAl and File Attachments \

Using MIME Messages to Exchange Attachments

5 The second business service in the workflow converts the Account integration
object and its attachments to a MIME hierarchy using the EAI MIME Hierarchy
Converter business service with the SiebelMessage to MIME Hierarchy method.
This step requires the following input and output arguments.

Input Argument Type Property Name Property Data Type

Siebel Message Process Property SiebelMessage Hierarchy

Property Name Type Output Argument

MIMEHierarchy Output Argument MIME Hierarchy

NOTE: For more information on the EAI MIME Hierarchy Converter, see “The EAI
MIME Hierarchy Converter” on page 156.

6 The third business service of the workflow converts the MIME hierarchy to a
document to be sent to File Transport business service. This step uses the EAI
MIME Doc Converter business service with the MIME Hierarchy To MIME Doc
method. This step requires the following input and output arguments.

Input Argument Type Property Name Property Data Type

MIME Hierarchy Process Property MIMEHierarchy Hierarchy

Property Name Type Output Argument

MIMEMsg Output Argument MIME Message

NOTE: For more information on the EAI MIME Doc Converter, see “The EAl MIME
Doc Converter” on page 159.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 153

Siebel eAl and File Attachments

Using MIME Messages to Exchange Attachments

7 For the final step, you need to set up the last business service of the workflow
to write the information into a file using the EAI File Transport business service
with the Send method. This step requires the following input arguments.

Property
Input Argument Type Value Property Name Data Type
Message Text Process Property - MIMEMsg String

File Name Literal c:\temp\account.txt - -

NOTE: For details on File Transport, see Transports and Interfaces: Siebel
eBusiness Application Integration Volume III.

Inbound Workflow Process Example

To process the attachment for an inbound request, you need to create a workflow
process to read the content from a file, convert the information into a Siebel
Message, and send to EAI Siebel Adapter to update the database accordingly.

To create an inbound workflow process
1 Navigate to Workflow Process Designer.

2 Create a workflow process consisting of Start, End and four Business Services.
Set up each Business Service according to the task it needs to accomplish.

3 Define your process properties.

Set workflow process properties when you need a global property for the entire
workflow.

154 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel eAl and File Attachments \

Using MIME Messages to Exchange Attachments

4 The first business service in the workflow reads the Account information from a
file using the EAI File Transport business service with Receive method. This step
requires the following input and output arguments.

Input Argument Type Value

File Name Literal c:\temp\account.txt
Property Name Type Output Argument
MIMEMsg Output Argument Message Text

NOTE: For details on File Transport, see Transports and Interfaces: Siebel
eBusiness Application Integration Volume III.

5 The second business service of the workflow converts the Account information
to a MIME hierarchy using the EAI MIME Doc Converter business service with
the MIME Doc to MIME Hierarchy method. This step requires the following input
and output arguments.

Input Argument Type Property Name Property Data Type
MIME Message Process Property MIMEMsg String
Property Name Type Output Argument

MIMEHierarchy Output Argument MIME Hierarchy

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 155

Siebel eAl and File Attachments

The EAI MIME Hierarchy Converter

6 The third business service of the workflow converts the MIME hierarchy to a
document and sends it to the EAI Siebel Adapter business service. This step uses
the EAI MIME Hierarchy Converter business service with the MIME Hierarchy to
Siebel Message method. This step requires the following input and output
arguments.

Input Argument Type Property Name Property Data Type

MIME Hierarchy Process Property MIMEHierarchy Hierarchy

Property Name Type Output Argument

SiebelMessage Output Argument Siebel Message

7 The last step of the workflow writes the information into the database using the
EAI Siebel Adapter business service with the Insert or Update method. This step
requires the following input argument.

Input Argument Type Property Name Property Data Type

Siebel Message Process Property SiebelMessage Hierarchy

The EAl MIME Hierarchy Converter

The EAI MIME Hierarchy Converter transforms the Siebel Message into a MIME
(Multipurpose Internet Mail Extensions) hierarchy for outbound integration. For
inbound integration, it transforms the MIME Hierarchy into a Siebel Message.

156 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel eAl and File Attachments

The EAl MIME Hierarchy Converter

Outbound Integration

The EAI MIME Hierarchy Converter transforms the input Siebel Message into a
MIME Hierarchy. Figure 27 illustrates the Siebel Message of a sample Account with
attachments. This figure represents both input and output to the MIME Hierarchy

Converter.
SiebelMeszage
iy
¥ ¥
ListOfSamplescocounts Attachments
{—) X
+ ¥
Samplescoount Contact txt Contact2 txt

|

Figure 27. Sample Account with Attachments as Input to the MIME Hierarchy Converter

The output of this process is illustrated in Figure 28.

MIMEHierarchy

.

¥ » ¥

Integraticn Okject in
XML format Contactt Contact2

Figure 28. Output of a MIME Hierarchy Converter

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 157

‘ Siebel eAl and File Attachments

The EAI MIME Hierarchy Converter

The first child of a MIME Hierarchy is the XML format of the Sample Account
Integration Object instance found in the Siebel Message. The remaining two
children are the corresponding children found under Attachments. In the event that
there is no child of type Attachments in the Siebel Message, the output is just a
MIME Hierarchy with a child of type Document. This document will contain the
XML format of the Sample Account integration object instance.

Inbound Integration

The MIME Hierarchy Converter transforms a MIME Hierarchy input into a Siebel
Message. For the inbound process, the first child of the MIME Hierarchy has to be
the XML format of the Integration Object instance; otherwise, an error is generated.
Figure 29 illustrates the incoming hierarchy.

MIMEHigrarchy

.

¥ ¥ ¥

Integraticn Object in
XML format Contact1 Contact?

Figure 29. Output of a MIME Hierarchy Converter

The output of this process is illustrated in Figure 27 on page 157. The output for this
process is the same as the input.

158 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel eAl and File Attachments \

The EAI MIME Doc Converter

The EAlI MIME Doc Converter

The MIME Doc Converter converts a MIME Hierarchy into a MIME Message and a
MIME Message into a MIME Hierarchy. A MIME Hierarchy consists of two different
types of property sets.

Property Description

MIME Hierarchy = Mapping to a MIME multi-part

Document Mapping to MIME basic-part

Table 13 illustrates some examples of how a MIME Message maps to a MIME
Hierarchy.

Table 13. Examples of MIME Message and MIME Hierarchy

MIME Message MIME Hierarchy

MIME-Version: 1.0

Content-Type: application/xml Type: Document
P bp / Walue: This is a test

Content-Transfer-Encoding: 7bit

This is a test.

MIME-Version: 1.0

Content-Type: multipart/related; type = "application/xml"; Type: MIMEHierarchy
boundary = --abc

----abc <
Content-Type: application/xml Type: Document

Value: Thiz iz test2

Content-Transfer-Encoding: 7bit
This is test2.

----abc--

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 159

‘ Siebel eAl and File Attachments

The EAI MIME Doc Converter

EAlI MIME Doc Converter Properties

The business service needs the following properties on the child property set as
shown in Table 14. These properties reflect the most accurate information on the
data contained in the child property set.

Table 14. Properties for EAl MIME Doc Converter

Property

Contentld

Extension

Possible Values Type

Any value Document

txt, java, ¢, C, cc, CC, h, Document
hxx, bat, rc, ini, cmd, awk,

html, sh, ksh, pl, DIC, EXC,

LOG, SCP, WT, mk, htm,

xml, pdf, AIF, AIFC, AIFF,

AU, SND, WAV. gif, jpg,

jpeg, tif, XBM, avi, mpeg,

ps, EPS, tar, zip, js, doc,

nsc, ARC, ARJ, B64, BHX,

GZ, HQX

160 eAl Volume lI: Integration Platform Technologies

Description

No Default. The Contentld is the value used to
identify the file attachment when the receiver
parses the MIME message. When importing
attachments, you should use a unique value
for this property and not repeat it for the rest
of the file attachments. This is required in the
actual document as well as in the
SiebelMessage. This property is automatically
populated when you are exporting an
attachment from Siebel application.

No Default. If ContentType and
ContentSubType are not defined, the
Extension is used to retrieve the appropriate
values from this property. If all three values
are specified, the ContentType and
ContentSubType values override the values
retrieved from the Extension. If either the
Extension or both ContentType and
ContentSubType are not specified, the
ContentType will be set to application and
ContentSubType will have the value of octet-
stream.

Version 7.5.3

Siebel eAl and File Attachments

Table 14. Properties for EAl MIME Doc Converter

The EAI MIME Doc Converter

Property Possible Values Type

ContentType application, audio, image, = Document
text, video

ContentSubType | plain, richtext, html, xml Document

(used with ContentType of
Text)

octet-stream, pdf,
postscript, x-tar, zip, x-
javascript, msword, x-
conference, x-gzip (used
with ContentType of
application)

aiff, basic, wav (used with
ContentType of audio)

gif, jpeg, tiff, x-xbitmap
(used with ContentType of
image)

avi, mpeg (used with
ContentType of video)

Description

Default is application. The ContentType value
has to be specified if you want to set the
content type of the document instead of using
the extension to get a value from the MIME
utility function. If the value is not provided,
the default value is used. The ContentType of
multipart is used to represent file attachments
in a MIME message. Other forms of values to
describe a multipart is not supported.

Default is octet-stream. The ContentSubType
value has to be specified if you want to set the
content subtype of the document instead of
using the extension to get a value from the
MIME utility function. If the value is not
provided the default value is used.

NOTE: On the inbound direction, the business service is independent of the
transport. It assumes that the input property set contains the MIME message and
outputs a property set representation of the MIME message. A property set is used
to represent each part of the MIME message. When decoding the MIME message,
the business service automatically sets the properties based on the values in the

MIME message.

Version 7.5.3

eAl Volume lI: Integration Platform Technologies

161

‘ Siebel eAl and File Attachments

The EAI MIME Doc Converter

162 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components 7

This chapter describes the virtual business component (VBC), and its uses and
restrictions. This chapter also describes how you can create a new VBC in Siebel
Tools.

Overview of Virtual Business Components

A virtual business component (VBC) provides a way to access data that resides in
an external data source using a Siebel business component. The VBC does not map
to an underlying table in the Siebel Database. You create a new VBC in Siebel Tools
and compile it into the siebel.srf file. The VBC calls a Siebel business service to
provide a transport mechanism.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 163

‘ Siebel Virtual Business Components

Overview of Virtual Business Components

You can take two approaches to use virtual business components, as illustrated in

Transport Mechanisms

Figure 30.

HhAL

ad Gateway

Yirtual Business
Component 4

Custom

~w DBusiness
Semice

Wweb Server ar
HTTP Transport —w» Other HTTP
Destination
MASeries Transport MO Series > E}{t_ern_al
Application
MESMO Transport — SR
Transport Mechanisms
HTTF Transport L
MiaZeries Transport —
External
] o
MSMG Transport S Application
External DLLS0 (Shared

Objects)

Figure 30. Two Approaches to Building Virtual Business Components

m Use the XML Gateway business service to pass data between the virtual business
component and one of the Siebel transports, such as the EAI HTTP Transport,
the EAI MQSeries AMI Transport, or the EAl MSMQ Transport.

m Write your own business service in Siebel eScript or in Siebel VB to implement
the methods described in this chapter.

164 eAl Volume lI: Integration Platform Technologies

Version 7.5.3

Siebel Virtual Business Components

Overview of Virtual Business Components

Enhancements to VBCs for This Version

The following new features and enhancements have been implemented in this
version to enhance the functionality of the VBCs to better assist you in meeting your
business requirements:

Virtual business components (VBCs) support drill down from a VBC. You can
drill down to a VBC from a standard BC, another VBC, or the same VBC.

A parent applet can be based on a VBC.

You can define virtual business components that can participate as a parent in a
business object. The VBC you define can be a parent to a standard BC or a VBC.

You still can use an older version of XML format or property set by setting the
VBC Compatibility Mode parameter to the appropriate version. For details, see
Table 15 on page 168.

You can pass search and sort specifications to the business service used by a
VBC.

You can use Validation, Pre Default Value, Post Default Value, Link Specification,
and No Copy attributes of VBC fields.

You can use predefined queries with VBC.

You can have picklists based on VBC and use the picklist properties such as No
Insert, No Delete, No Update, No Merge, Search Specification, and Sort
Specification.

You can use the Cascade Delete, Search Spec, Sort Spec, No Insert, No Update,
and No Delete link properties when a VBC is the child business component on
the link.

You can use No Insert, No Update, No Delete, Search Spec, Sort Spec, and
Maximum Cursor Size business component properties.

Usage and Restrictions

Version 7.5.3

You can define a business object as containing both standard business
components and virtual business components.

eAl Volume lI: Integration Platform Technologies 165

‘ Siebel Virtual Business Components

Virtual Business Components

When configuring applets based on VBCs, use CSSFrame (Form) and
CSSFramelList (List) instead of specialized applet classes.

Using the same name for the VBC field names and the remote data source field
names may reduce the amount of required programming. (Optional)

Virtual business components cannot be docked, so they do not apply to remote
users.

Virtual business components cannot contain a multi-value group (MVG).
Virtual business components do not support many-to-many relationships.

Virtual business components cannot be loaded using Enterprise Integration
Manager.

Standard business components can not contain multi-value group based on
virtual business components.

Virtual business components cannot be implemented using any business
component class other than CSSBCVExtern. This means specialized business
components such as Quotes and Forecasts cannot be implemented as virtual
business components.

You cannot use Workflow Monitor to monitor virtual business components.

Virtual Business Components

To use VBCs to share data with an external applications you need to perform the
following high-level tasks:

Checklist

Create a new Virtual Business Component.

For details, see “Creating a New Virtual Business Component.”

eAl Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

Virtual Business Components

O Set the User Properties on Virtual Business Components (VBCs).
For details, see “Setting User Properties for the Virtual Business Component” on
page 168.

O Configure your VBC Business Service:

= Configure your XML Gateway Service or write your own Business Service.
For details, see “XML Gateway Service” on page 169 and “Custom Business
Service Methods” on page 183.

» Configure your external application.
For details, see “External Application Setup” on page 183.

Creating a New Virtual Business Component
You create a new virtual business component in Siebel Tools.
To create a new virtual business component
Start Siebel Tools.
Lock the appropriate project.
Create a new record in the Business Component list applet in Siebel Tools.
Name the business component.

Select the project you locked in Step 2.

A G A W N =

Set the Class to the CSSBCVExtern class. This class provides the virtual business
component functionality.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 167

‘ Siebel Virtual Business Components

Virtual Business Components

Setting User Properties for the Virtual Business Component

When defining the virtual business component, you must provide the user
properties shown in Table 15.

Table 15. Setting Virtual Business Component User Properties

User Property Description
Service Name The name of the business service.

Service Parameters (Optional) Any parameters required by the business service.The
Siebel application passes this user property, as an input argument,
to the business service.

Remote Source (Optional) External data source that the business service is to use.
This property allows the VBC to pass a root property argument to
the underlying Business Service, but it does not allow a connection
directly to the external datasource. The Siebel application only
passes this user property as an input argument.

VBC Compatibility (Optional) Determining the format of the property set passed from

Mode a VBC to a business service, or the format in which the outgoing
XML from the XML Gateway will be. A valid value is Siebel xxx,
where xxx can be any Siebel release number. Some examples
would be Siebel 6 or Siebel 7.0.4. If xxx is less than 7.5, the format
will be in pre-7.5. Otherwise, a new property set and XML format
will be passed.

If you are creating a VBC in 7.5, there is no need to define this new
user property since the default would be to use the new PropertySet
from VBC and the new outgoing XML from the XML Gateway.

For your existing VBC implementation you need to update your
VBC definition by adding this new user property and setting it to
Siebel xxx, where xxx is your desired version number.

To define user properties

1 Start Siebel Tools.
2 Lock the appropriate project.

3 Click the Business Component folder in the Object Explorer to expand the
hierarchical tree.

168 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

XML Gateway Service

Select the business component you want to define user properties for.
Click the Business Component User Prop folder in the Object Explorer.
Choose Edit New Record to create a new blank user property record.

Type the name of the user property, such as Service Name, in the Name field.

W N 6o a A

Type the value of the user property, such as a business service name, in the Value
field.

9 Repeat the process for every user property you want to define for this virtual
business component.

NOTE: For list of different property sets and their format, see “Examples of Outgoing
XML Format” on page 174 and “Examples of Incoming XML Format” on page 180.

XML Gateway Service

The XML Gateway business service communicates between Siebel applications and
external data sources using XML as the data format. For details on XML format, see
“Examples of Outgoing XML Format” on page 174 and “Examples of Incoming XML
Format” on page 180. The XML Gateway business service can be configured to use
one of the following transports:

m EAI MQSeries AMI Server Transport
» EAI MQSeries Server Transport

m EAI HTTP Transport

= EAI MSMQ Transport

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 169

‘ Siebel Virtual Business Components

XML Gateway Service

170

You can configure the XML Gateway by specifying the transport protocol and the
transport parameters you use in the Service Parameters User Property of the virtual
business component as shown in Table 16. When using the XML Gateway, you need
to specify the following user properties for your virtual business component.

Table 16. User Properties

Name Value
Service Name XML Gateway
Service Parameters vari abl el nane=vari abl el val ue;

vari abl e2 nane=vari abl e2 val ue>;...

Remote Source Ext ernal Data Source

VBC Compatibility Mode = Siebel xxx, where xxx can be any Siebel release number.

NOTE: You can concatenate multiple name-value pairs using a semicolon (;), but
should not use any spaces between the name, the equal sign, the value, and the
semicolon.

For example, if you want to specify the EAI HTTP Transport, you may use something
like the following which is also illustrated in Figure 31:

eAl Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Version 7.5.3

XML Gateway Service

"Transport =EAl HTTP Transport; HTTPRequest URLTenpl at e=<your
URL>; HTTPRequest Met hod=PCOST"

Business Components

[| ame Changed | Project [Cache Data[class
] Accept/Reject Acd CESECYAcceptRaiect
1] Access Control Catalog System CSSBusComp.
[Access Control Category System £55BusComp.
3] # myvec v myProject CSSBCYExtern
4

Business Component User Properties

[wi [e [changed] value [Tnactive]
| 7 [SeviesMeme iV ML Gateway
| | # Service Parameters v Transport=EAI HTTP TransportHTTPRequestURLTemplate=<your URL=HTTPR

| | # vBCcompatbilty Mode & Siebel 704

Figure 31. Setting Virtual Business Component User Properties

or if you want to specify the EAI MQSeries AMI Transport, you may use something
like:
"Transport=EAl MQXeries AM Transport; MjPol i cyNanme=<pol i cy
nane>; MySender Ser vi ceNanme=<sender servi ce nane>;
MyModel QueueNane=<queue nane>; MjPhysi cal QueueNanme=<p queue
nane>;..."

You can also implement VBC with MQSeries. The following procedure lists the steps
you need to take to implement this.

To implement VBC with MQSeries

1 Call the EAI Business Integration Manager (Server Request) business service.

NOTE: You do not need to define the EAI MQSeries Server Transport business
service as the transport on the service parameters line. MQSeries is usually
installed on the same machine as the Siebel Server and not installed on the client
machine; therefore, references to the EAI MQSeries Server Transport as the
transport parameter for the VBC will not work.

2 Define another service parameter for the name of a workflow process to run,
with the following user properties on the VBC.

eAl Volume lI: Integration Platform Technologies 171

‘ Siebel Virtual Business Components

XML Gateway Service

= Service Name. XML Gateway

= Service Parameters. Transport = EAI Business Integration Manager (Server
Request);ProcessName = EAITEST

3 Define a workflow process, EAITEST, to call the EAI MQSeries Server Transport
with the SendReceive method.

4 Define a new process property, < Value >, on the workflow process and use it
as an output argument on the EAI MQSeries Server Transport step in the
workflow process.

XML Gateway Methods
The XML Gateway provides the methods presented in Table 17.

Table 17. XML Gateway Methods

Method Description

Init Initializes the XML Gateway business service for every business component.
Delete Deletes a given record in the remote data source.
Insert Inserts a record into a remote data source.

Prelnsert = Performs an operation that tests for the existence of the given business
component.Only default values are returned from the external application.

Query Queries the given business component from the given data source.

Update Updates a record in the remote data source.

172 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

XML Gateway Service

XML Gateway Method Arguments

The XML Gateway init, delete, insert, prelnsert, query, and update methods take the
arguments presented in Table 18.

Table 18. XML Gateway Arguments

Argument

Remote Source

Business Component Id

Business Component
Name

Parameters

Description

The VBC Remote Source user property. The remote source from
which the service is to retrieve data for the business component.
This must be a valid connect string. When configuring the
repository business component on top of the specialized
business component class CSSBCVExten, a user property
Remote Source can be defined to allow the Transport Services to
determine the remote destination and any connect information.
If this user property is defined, it is passed to every request as
the <remote-source > tag.

Unique key for the given business component.

Name of the business component or its equivalent, such as a
table name.

The VBC Service Parameters user property. A set of string
parameters required for initializing the XML Gateway.

Version 7.5.3

eAl Volume lI: Integration Platform Technologies 173

‘ Siebel Virtual Business Components

Examples of Outgoing XML Format

Examples of Outgoing XML Format

Examples of the XML documents generated and sent by the XML Gateway to the
external system are presented in Table 19. These examples are based on the
example in “Custom Business Service Example” on page 203. See Appendix C,
“DTDs for XML Gateway Business Service,” for examples of the DTDs that
correspond to each of these methods.

NOTE: The XML examples provided in this chapter have extraneous carriage returns
and line feeds for ease of reading. Please delete all the carriage returns and line
feeds before using any of the examples.

174 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Examples of Outgoing XML Format

Table 19. Outgoing XML Tags and Descriptions

Method

Delete Request

Init Request

Version 7.5.3

Format of the XML Stream Description
<si ebel - xnl ext - del ete-req> siebel-xmlext-delete-req. This tag
<busconp i d="1">Cont act </ busconp> requests removal of a single record

in the remote system.
<renot e- source>http://throth/

servl et/ VBCCont act s</ r enpt e- sour ce>
<r ow>

<val ue fi el d="Account|d">146</
val ue>

<val ue fiel d="Nanme">Max Adans</
val ue>

<val ue fi el d="Phone">(408) 234-
1029</ val ue>

<val ue fiel d="Locati on">San Jose</
val ue>

<val ue fiel d="Accessl d">146</
val ue>

</ row>
</ si ebel - xm ext - del et e-req>

<si ebel -xm ext-fiel ds-reqg> siebel-xmlext-fields-req. This tag
Sy fetches the list of fields supported
<busconp id="1">Cont act </ busconp> by this instance.
<renot e-source>http://throth/servlet/)

VBCCont act s</ r enot e- sour ce> buscomp Id. The business

. . component ID.
</ si ebel -xm ext-fiel ds-reqg>

remote-source. The remote source
from which the service is to retrieve
data for the business component.

eAl Volume lI: Integration Platform Technologies 175

Siebel Virtual Business Components

Examples of Outgoing XML Format

Table 19. Outgoing XML Tags and Descriptions

Method Format of the XML Stream Description

Insert Request | <si ebel - xm ext-i nsert-req> siebel-xmlext-Insert-req. This tag
S oq_wqm requests the commit of a new

< ="1"> < > -
busconp i d="1">Cont act </ busconp record in the remote system.

<renot e- source>http://throth/

servl et/ VBCCont act s</ r enot e- sour ce> The insert-req XML stream
contains values for fields entered
<r ow> through the business component.
<val ue fiel d="Account|d">1-6</
val ue>

<val ue fiel d="Nanme">Max Adans</
val ue>

<val ue fi el d="Phone">(398) 765-
1290</ val ue>

<val ue fiel d="Location">Troy</
val ue>

<val ue fiel d="Accessl d"></val ue>
</ row>
</ si ebel -xm ext -i nsert-reqg>

Prelnsert <si ebel - xm ext - prei nsert-req> siebel-xmlext-preinsert-req. This
Request <busconp i d="1">Cont act </ busconp> tag allows the connector to provide
default values. This operation is
<renot e- sour ce>http://throth/ called when a new row is created,
servl et/ VBCCont act s</r enpt e- sour ce> but before any values are entered
</ si ebel - xm ext - prei nsert - req> through the BusComp interface.

176 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

Table 19. Outgoing XML Tags and Descriptions

Examples of Outgoing XML Format

Method Format of the XML Stream

Query Request = <si ebel - xm ext - query-req>
<busconp i d="1">Cont act </ busconp>

<renot e- source>http://throth/
servl et/ VBCCont act s</ r enpt e- sour ce>

<max- r ows>6</ nax- r onws>

<sear ch-string>=([Phone] |1 S NOT NULL)
AND ([Accountld] = "1-6")</search-
string>

<sear ch- spec>

<node node-type="Bi nary
Qper at or " >AND

<node node-type="Unary
Operator">I'S NOT NULL

<node node-
type="ldentifier">Phone</ node>

</ node>

<node node-type="Bi nary
Operat or">=

<node node-
type="ldentifier">Account| d</ node>

<node val ue-type="TEXT" node-
type="Const ant " >1- 6</ node>

</ node>
</ node>
</ sear ch- spec>
<sort-spec>

<sort field="Location">ASCENDI NG/
sort>

<sort fi el d="Nane">DESCENDI NG</ sort >
</ sort-spec>
</ Si ebel - xm ext - query-req>

Description

siebel-xmlext-query-req. This tag
queries by example. The query-req
XML stream contains parameters
necessary to set up the query. In
this example, the query requests
that record information be returned
from the remote system.

max-rows. Maximum number of
rows to be returned. The value is
the Maximum Cursor Size defined
at the VBC plus one. If the
Maximum Cursor Size property is
not defined at the VBC, then the
max-rows property is not passed.

search-string. The search
specification used to query and
filter the information.

search-spec. Hierarchical
representation of the search-string.
For details, see “Search-Spec Node-
Type Types” on page 179.

sort-spec. List of sort fields and
sort order.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 177

Siebel Virtual Business Components

Examples of Outgoing XML Format

Table 19. Outgoing XML Tags and Descriptions

Method Format of the XML Stream
Update <si ebel - xm ext - updat e-req>
Request

<busconp i d="2">Cont act </ busconp>

<renot e- source>http://throth/
servl et/ VBCCont act s</ r enpt e- sour ce>

<r ow>

<val ue changed="fal se"
field="Accountl|d">1-6</val ue>

<val ue changed="fal se"
fiel d="Nanme">Max Adans</val ue>

<val ue changed="true"
fi el d="Phone" >(408) 234- 1029</ val ue>

<val ue changed="true"
field="Location">San Jose</val ue>

<val ue changed="fal se"
fiel d="Accessl d">146</val ue>

</ row>
</ si ebel - xm ext - updat e-req>

Description

siebel-xmlext-Update-req. This tag
requests changes to the field values
for an existing row.

All values for the record are passed
in with <value> tags, with the
changed attribute identifying the
ones that have been changed
through the Siebel application.

178 eAl Volume lI: Integration Platform Technologies

Version 7.5.3

Siebel Virtual Business Components ‘

Search-Spec Node-Type Types

Search-Spec Node-Type Types

The search-string is in the Siebel query language format. The search-string is parsed
by the Siebel query object and then turned into the hierarchical search-spec.
Table 20 shows the different search-spec node-types and their values.

Table 20. Search-Spec Node-Types

node-type

Constant

Identifier

Unary
Operator

Binary
Operator

PropertySet/XML Representation

Example: <node node-type = "Constant"
val ue-type="NUMBER' >1000</ node>

The valid value-types are TEXT, NUMBER, DATETIME, UTCDATETIME,
DATE, and TIME.

Example: <node node-type="Identifier">Name</node>
The value Name is a valid business component field name.

Example: <node node-type="Unary Operat or" >NOTI</ node>
The valid values are NOT, EXISTS, IS NULL, IS NOT NULL.

Example: <node node-type= "Bi nary Qperator" >AND</ node>

The valid values are LIKE, NOT LIKE, SOUNDSLIKE, =, <>, <=, <,
>=,>,AND, OR, +,-, %, /, "

Version 7.5.3

eAl Volume lI: Integration Platform Technologies 179

\ Siebel

Virtual Business Components

Examples of Incoming XML Format

Examples of Incoming XML Format

Table 21 contains examples of XML documents that are sent from an external
system to the XML Gateway in response to a request. These examples are based on
the example in “Custom Business Service Example” on page 203. See Appendix C,
“DTDs for XML Gateway Business Service,” for examples of the DTDs that

correspond to each of these methods.

Table 21. Incoming XML Tags and Descriptions

Method Format of the XML Stream
Delete Return <si ebel - xnm ext-del ete-ret />
Error <si ebel - xm ext - st at us>

180

<st at us- code>4</ code>

<error-fiel d>Nanme</error-
field>

<error-text>Nane nust not be
enpty</error-text>

</ si ebel - xm ext - st at us>

eAl Volume II: Integration Platform Technologies

Description

siebel-xmlext-delete-ret. Only the XML
stream tag is returned.

Format of the XML stream expected by the
Siebel application in case of an error in the
external application. The tags for this XML
stream, including the entire XML stream, are
optional. If the error is specific to a field, the
field name should be specified.

siebel-xmlext-status. This tag is used to
check the status returned by the external
system.

status-code. This tag overrides the return
value.

error-text. This tag specifies textual
representation of the error, if it is available.
This tag appears in addition to the standard
error message. For example, if Siebel
application attempts to update a record in the
external system with a NULL Name, and this
is not allowed in the external system, then the
error text is set to “Name must not be
empty.”

Version 7.5.3

Siebel Virtual Business Components

Table 21. Incoming XML Tags and Descriptions

Examples of Incoming XML Format

Method

Init Return

Insert Return

Prelnsert Return

Version 7.5.3

Format of the XML Stream

<si ebel -xm ext-fields-ret>
<support fiel d="Accountld"/>
fiel d="Nane"/>
fiel d="Phone"/ >
field="Location"/>

<support
<support
<support
<support field="Accessld"/>

</siebel -xm ext-fields-ret>

<si ebel -xm ext-insert-ret>
<r ow>

<val ue
field="Accountld">1-6</val ue>

<val ue fi el d="Nane" >Max
Adans</ val ue>

<val ue
fi el d="Phone">(398) 765- 1290</
val ue>

<val ue
fiel d="Location">Troy</val ue>

<val ue
field="Accessl|d">146</val ue>

</ r ow>
</ si ebel -xm ext-insert-ret>

<si ebel - xm ext-preinsert-ret>
<r ow>

<val ue
field="Location">San Jose</
val ue>

</ row>
</ si ebel - xm ext -prei nsert-ret>

eAl Volume II: Integration Platform Technologies

Description

siebel-xmlext-fields-ret. The fields-ret XML
stream return contains the list of VBC fields
supported by the external application for this
instance.

The following field names are reserved by the
Siebel application and should not appear in
this list:

Id, Created, Created By, Updated, Updated
By.

siebel-xmlext-insert-ret. If the remote system
has inserted records, they can be returned to
be reflected in the business component in an
insert-ret XML stream in the <row > tag
format as the insert-ret stream.

siebel-xmlext-preinsert-ret. Returns default
values for each field, if there is any default
value.

181

Siebel Virtual Business Components

Examples of Incoming XML Format

Table 21. Incoming XML Tags and Descriptions

Method

Query Return

Format of the XML Stream

<si ebel - xm ext - query-ret>
<r ow>

<val ue
field="Accountld">1-6</val ue>

<val ue fi el d="Nane">Sara
Chen</ val ue>

<val ue
fi el d="Phone" >(415) 298- 7890</
val ue>

<val ue
fiel d="Location">San
Fr anci sco</ val ue>

<val ue
field="Accessld">128</val ue>

</ row>
<r ow>

<val ue
field="Accountl|d">1-6</val ue>

<val ue field="Nane">Eric
Br own</ val ue>

<val ue
fi el d="Phone">(650)123-1000</
val ue>

<val ue
field="Location">Pal o Alto</
val ue>

<val ue
field="Accessld">129</val ue>

</ row>
</ si ebel - xm ext - query-ret>

182 eAl Volume lI: Integration Platform Technologies

Description

siebel-xmlext-query-ret. The query-ret XML
stream contains the result set that matches
the criteria of the query.

row. This tag indicates the number of rows
returned by query. Each row should contain
one or more < values > . The attributes which
appear in <row > tags must be able to
uniquely identify rows. If there is a unique
key in the remote data source, it should
appear in the result set. If not, a unique key
should be generated. It is necessary to
identify specific rows for DML operations.

value. This tag specifies the field and value
pairs and should be the same for each row in
the set.

Version 7.5.3

Siebel Virtual Business Components ‘

External Application Setup

Table 21. Incoming XML Tags and Descriptions

Method Format of the XML Stream Description
Update Return = <si ebel - xm ext - update-ret > siebel-xmlext-update-ret. If the remote
<r ow> system updated fields, they can be returned
to be reflected in the business component in
_ _fval ue an update-ret XML stream in the <row > tag
fiel d="Location">San Jose</ format as the update-ret stream.
val ue>
<val ue
fi el d="Phone">(408) 234-1029</
val ue>
</row>

</ si ebel - xm ext - updat e-ret >

External Application Setup

Once you have your XML Gateway Service configured, you need to set up your
external application accordingly to be able to receive and respond to the requests.
At a minimum, the external application needs to support the Init() and Query()
methods, and depending upon the functionality provided by the VBC, the remaining
methods may or may not be necessary.

Custom Business Service Methods

Your business service must implement the Init and Query methods as described in
this section. The Delete, Prelnsert, Insert, and Update methods are optional, and
dependent upon the functionality required by the Virtual Business Component.

NOTE: Custom business services can be only based on the CSSService class, as
specified in Siebel Tools.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 183

‘ Siebel Virtual Business Components

Custom Business Service Methods

These methods pass property sets between the virtual business component and the
business service. Virtual business component methods take property sets as
arguments. Each method takes two property sets: an Inputs property set and an
Outputs property set. The methods are called by the CSSBCVEXxtern class in
response to requests from other objects that refer to or are based on the virtual
business component.

When you are building a custom business service to allow virtual business
component functionality with Siebel VB or Siebel eScript you can use one of the
following methods to connect to an external database in the Service code:

= Siebel VB Only. Use the SQL functions using ODBC.

= Siebel eScript Only. Call out to a CORBA interface using the CORBACreateObject
function.

= Siebel VB or eScript. Use a COM connection through the CreateObject or
COMCreateObject functions to call an API supported by your RDBMS vendor or
to call a COM object such as ActiveX DLL.

You may also choose to use the XML Gateway service to allow the connection for
your VBC. For details, see “XML Gateway Service” on page 169.

NOTE: For more information about property sets, programming in Siebel eScript, and
programming in Siebel VB, see Siebel Tools Reference and Siebel Tools Online Help.

Common Method Parameters

Table 22 shows the input parameters common to every method. Please note that all
these parameters are at the root property set.

Table 22. Common Input Parameters

Parameter Description

Remote Source Optional. Specifies the name of an external data source. This
is the VBC’s Remote Source user property, if defined. For
details, see Table 15 on page 168.

Business Component Name = Name of the active virtual business component.

eAl Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

Custom Business Service Methods

Table 22. Common Input Parameters

Parameter Description

Business Component Id Internally generated unique value that represents the virtual
business component.

Parameters Optional. The VBC’s Service Parameters user property, if
defined. For details, see Table 15 on page 168. A set of
parameters required by the business service.

VBC Compatibility Mode Optional. This is the VBC’s Compatibility Mode user
property, if defined. For details, see Table 15 on page 168.

Once a response has been received, the method packages the response from the
external data source into the outputs property set.

Business Services Methods and Their Property Sets

The following examples display each method's input and output property sets for a
virtual business component Contact that displays simple contact information for a
given account. These examples are based on the example in the “Custom Business
Service Example” on page 203.

NOTE: All the optional parameters have been omitted from these example to simplify
them.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 185

‘ Siebel Virtual Business Components

Custom Business Service Methods

Delete = The Delete method is called when a record is deleted. Figure 32 illustrates the
property set for the Delete input and is followed by its XML representation.

Property Set

Type

.

Mull

Yalue

i

Mull

Property Mam

1=

Walue

Child Arrary

—

Property Set
Type - Bl
Yalue - Bl
Property Mame Walue
AccourtiDy fa 16
Marme el Mlax Adams
Phone e (40872341029
Location [a San Joze
Accessid 146

Figure 32. Delete Input Property Set

<?xm version="1.0" encodi ng="UTF-8" ?>

<?Si ebel - Property-Set EscapeNames="true"?>

<Pr opertySet

Busi ness_spcConponent _spcl d="1"

Busi ness_spcConponent _spcNane="Cont act " >

<Pr opert ySet

186 eAl Volume lI: Integration Platform Technologies

Version 7.5.3

Siebel Virtual Business Components ‘

Custom Business Service Methods

Account | d="1-6"
Name="Max Adans"
Phone="(408) 234- 1029"
Locati on="San Jose"
Accessl d="146" />

</ PropertySet >

Figure 33 illustrates the property set for Delete output and is followed by its XML

representation.
Property Set
Type e Mull
Walue] Mull
Property Mame Walue

Figure 33. Delete Output Property Set

<?xm version="1.0" encodi ng="UTF-8" ?>
<?Si ebel - Property-Set EscapeNanmes="true"?>

<PropertySet />

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 187

‘ Siebel Virtual Business Components

Custom Business Service Methods

Error Return Figure 32 illustrates the property set for the Error Return, when an error is detected.
The illustration is followed by its XML representation.

Property Set
Type i Bl
Walue e Mull
Property Mame Yalue
Child Array
Property Set
Type] Status
Walue - Mull
Property Mame Walue
Status e 4
Error Field e Marme
Mame must not
Error Text he empty

Figure 34. Error Return Property Set

<?xm version="1.0" encodi ng="UTF-8" ?>
<?Si ebel - Property-Set EscapeNanmes="true"?>
<Pr opertySet >
<Status Status="4"
Error_spcFi el d="Nane"
Error _spcText ="Name nust not be empty"/>

</ PropertySet >

188 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

Custom Business Service Methods

Init The Init method is called when the virtual business component is first instantiated.
It initializes the virtual business component. It expects to receive the list of fields
supported by the external system. Figure 35 illustrates the property set for Init input
and is followed by its XML representation.

Property Set
Trype > Hull
“alue | rull
Property Mame Yalue
Busines:s Component Id e 1
Busziness Component Mame La—g Contact

Figure 35. Init Input Property Set

<?xm version="1.0" encodi ng="UTF-8""?>

<?Si ebel - Property- Set EscapeNanmes="true"?>

<Pr opert ySet

Busi ness_spcConponent _spcl d="1"

Busi ness_spcConponent _spcNane="Cont act"/ >

Version 7.5.3

eAl Volume II: Integration Platform Technologies

189

‘ Siebel Virtual Business Components

Custom Business Service Methods

Figure 36 illustrates the property set for Init output and is followed by its XML
representation.

Property Set

Type - Mull
Yalue i Bl

Property Mami
AccourtiD
Marme

Yalue

Phione

Location

I

Acceszld

Figure 36. Init Output Property Set

<?xm version="1.0" encodi ng="UTF-8" ?>
<?Si ebel - Property-Set EscapeNames="true"?>
<PropertySet

Account | d=""

Nare=""

Phone=""

Locati on=

Accessl d="" />

190 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

Custom Business Service Methods

Insert The Insert method is called when a New Record is committed. Figure 37 illustrates

the property set for Insert input and is followed by its XML representation.

Property Set

Type

.

Mull

Yalue

i

Mull

Property Mam

1=

Walue

Child Arrary

—

Property Set
Type - Bl
Yalue - Bl
Property Mame Walue
AccourtiCr e 16
Marme = Mlax Adams
Phone el (3957 YES-1290
Location - Trovy
Accezsid e

Figure 37. Insert Input Property Set

<?xm version="1.0" encodi ng="UTF-8" ?>

<?Si ebel - Property-Set EscapeNames="true"?>

<Pr opertySet

Busi ness_spcConponent _spcl d="1"

Busi ness_spcConponent _spcNane="Cont act " >

<Pr opert ySet

Version 7.5.3

eAl Volume II: Integration Platform Technologies

191

‘ Siebel Virtual Business Components

Custom Business Service Methods

Account | d="1-6"
Name="Max Adans"
Phone="(398) 765- 1290"
Locati on="Tr oy"
Accessld="" />

</ PropertySet >

Figure 38 illustrates the property set for Insert output and is followed by its XML

representation.
Property Set
Type e Mull
Walue i Mull
Property Mame Walue
Child Array
Property Set
Type] Bl
Walue - Mull
Property Mame Yalue
AccourtiCr e 16
Marme el Mo Adams
Phone e [395) 7621290
Location fae Troy
Accessld e 146

Figure 38. Insert Output Property Set

<?xm version="1.0" encodi ng="UTF-8" ?>

192 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

Prelnsert

Version 7.5.3

Custom Business Service Methods

<?Si ebel - Property- Set EscapeNanmes="true"?>
<Pr opertySet
<Pr opert ySet

Account | d="1-6"

Nanme="Max Adans"

Phone="(398) 765- 1290"

Locati on="Tr oy"

Accessl d="146" />

</ PropertySet >

The Prelnsert method is called when a New Record operation is performed. It
supplies default values. Figure 39 illustrates the property set for Prelnsert input and
is followed by its XML representation.

Property Set
Type b Mull
Walue b rull
Property Maime Walue
Busziness Component 1D - 1
Business Component Mame ¥ Contact

Child Array

Figure 39. Prelnsert Input Property Set

<?xm version="1.0" encodi ng="UTF-8"?>
<?Si ebel - Property-Set EscapeNames="true" ?>
<PropertySet

Busi ness_spcConponent _spcl d="1"

eAl Volume lI: Integration Platform Technologies 193

‘ Siebel Virtual Business Components

Custom Business Service Methods

Busi ness_spcConponent _spcNanme="Cont act "/ >

Figure 40 illustrates the property set for Prelnsert output and is followed by its XML

representation.
Property Set
Type i Bl
Walue i~ Mull
Property Mame Walue
Child Array
L [[[[|
Property Set
Type —e] Bl
Walue el Mull
Property Maime Walue

Location |4—b-| San Joze |

Figure 40. Prelnsert OQutput Property Set

<?xm version="1.0" encodi ng="UTF-8" ?>
<?Si ebel - Property-Set EscapeNanmes="true"?>
<Pr opertySet >

<PropertySet Location="San Jose" />

</ PropertySet >

194 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

Query

Version 7.5.3

Custom Business Service Methods

The Query method is called when a search is performed. The Query method must
be supported by every virtual business component. Each record that matches the
query is represented as a property set. For example, if 5 records match the query,
there will be 5 child property sets. Each property set will contain a list of field
names—field value pairs representing the values of each field for that particular
record. Figure 42 illustrates the property set for Query input and is followed by its
XML representation.

eAl Volume lI: Integration Platform Technologies 195

‘ Siebel Virtual Business Components

Custom Business Service Methods

Property Set
Froperty Mame “alue
Business
Companent Id ¥ !
Business
Component Name (- Contact
search-string = ([Phone] IS NOT NULL)
- AMND ([Accountld] = "1-B")
[EE B
Child Array
¥ ¥ ¥
Property Set Property Set Property Set
| Type |—>| search-spec | Froperty Mame Walug | Type H sort-spec
Child Array | Accountld |e—s] 15 | Child Array
| | | | | | Child Array. .. | J | | | |
¥
Property Set Property Set Property Set
Type [node Type 1 sort Type s0ort
Walue AND Yaloe | —w ASCENDING Yalue | —m DESCENDING
Property Mame “alue Property Mame “alue Property Mame Walue
| node-type }4—»{ Binary Operator | | field |<—h-| Location | | field |-1—h| Mame
Child Array

See following figure.

Figure 41. Query Input Property Set (Part 1)

196 eAl Volume ll: Integration Platform Technologies

V

ersion 7.5.3

Siebel Virtual Business Components ‘

Custom Business Service Methods

From previous figure.

T ;,

Property Set Property Set
Type] node Type] node
“alue = IS MOT MULL YWalue = =
Property Mame Walue Property Mame “alue
| node-type |<—>| Unary Operator | | node-type |<—>| Binary Operator |
Child Array Child Array

¥ ¥

Property Set Property Set Property Set

Type node Type [node Type node
Yalue Phane YWalue e Accountld Yalue . 1-6
Froperty Mame Yalue Froperty Mame “alue Froperty Mame Yalue
node-type |-1—h| [dentifier | | node-type H Identifier node-type e Constant

Child Array... Child Array... value-type by TERT

Child Array. ..

Figure 42. Query Input Property Set (Part 2)

<?xm version="1.0" encodi ng="UTF-8" ?>
<?Si ebel - Property-Set EscapeNames="true" ?>
<PropertySet
max-r ows="6"
search-string="([Phone] I'S NOT NULL) AND ([Accountld] = "1-6")"
Busi ness_spcConponent _spcl d="1"
Busi ness_spcConponent _spcNanme="Cont act " >

<PropertySet Accountld="1-6" />

Version 7.5.3 eAl Volume II: Integration Platform Technologies 197

Siebel Virtual Business Components

Custom Business Service Methods

<sear ch- spec>
<node node-type="Bi nary Operator">AND
<node node-type="Unary Operator">lS NOT NULL
<node node-type="Identifier">Phone</ node>
</ node>
<node node-type="Bi nary Operator">=
<node node-ype="Identifier">Account| d</node>
<node val ue-type="TEXT" node-type="Const ant " >1- 6</ node>
</ node>
</ node>
</ sear ch- spec>
<sort-spec>
<sort field="Location">ASCENDI NG/ sort >
<sort fi el d="Nanme">DESCENDI NG</ sort >
</ sort-spec>

</ PropertySet >

198 eAl Volume lI: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

Custom Business Service Methods

Figure 43 illustrates the property set for Query output and is followed by its XML

representation.

Property Set

Property Name Walue
Value [Nul Child Array

h 4 \

Property Set Property Set

Froperty MName Walue Property Mame Yalue

‘ Accountld |<->| 16 | |Accuumld |1-)| 16

|Va|ue H Mul | ‘ MName |(-p-| Sara Chen | |\"'3‘|LIE H Ml | | Name |1-)| Eric Brown

| Phone lew{ (415)298-7890 | | Phone lew{ {B50)123-1000
‘ Location |(-b-| San Francisco | | Location |1-)| Palo Alto
| Accessld |em| 128 | | Accessld |an| 129

Figure 43. Query Output Property Set

<?xm version="1.0" encodi ng="UTF-8" ?>
<?Si ebel - Property-Set EscapeNanmes="true"?>
<Pr opertySet >
<Pr opertySet
Account | d="1-6"
Name="Sara Chen"
Phone="(415) 298- 7890"
Locat i on="San Franci sco"
Accessl d="128" />
<Pr opert ySet

Account | d="1-6"

Version 7.5.3 eAl Volume II: Integration Platform Technologies

199

‘ Siebel Virtual Business Components

Custom Business Service Methods

Name="Eri c Brown"
Phone="(650) 123- 1000"
Locati on="Pal 0 Al'to"
Accessl d="129" />

</ PropertySet >

Update = The Update method is called when a record is modified. Figure 44 illustrates the
property set for Update input and is followed by its XML representation.

Property Set
Type I~ MNull
Walue . Ml
Property Name “alue
Child Array
Property Set Property Set
Type] Mull Type = Mull
Walue] Mull Walue - Ml
Property Mame “Yalue Property Name YWalue
Field Name [Accountld Field MName la» Accessld
Changed [false Changed false
Field %alue [16 Field Walue | 146
+ ! }
Property Set Property Set Property Set
Type] Mull Type] MNull Type = Ml
Walue . Ml Value] Ml Walue [Ml
Property Mame alue Property Name “alue Property Name Walue
Field Mame fa-m Mame Field Mame s Phane Figld Mame | Location
Changed | false Changed [true Changed (- frue
Field Walue (- Max Adams Field Value |[e-m (403) 234-1029 Field Value & San.Jose

Figure 44. Update Input Property Set

<?xm version="1.0" encodi ng="UTF-8" ?>

<?Si ebel - Property-Set EscapeNames="true" ?>

200 eAl Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

Custom Business Service Methods

<Pr opertySet
Busi ness_spcConponent _spcl d="1"
Busi ness_spcConponent _spcName=" Cont act " >
<Pr opert ySet
Fi el d_spcName="Account | d"
Changed="f al se"
Fi el d_spcVal ue="1-6" />
<Pr opertySet
Fi el d_spcNanme=" Nane"
Changed="f al se"
Fi el d_spcVal ue="Max Adans" />
<Pr opertySet
Fi el d_spcNanme="Phone"
Changed="tr ue"
Fi el d_spcVal ue="(408) 234-1029" />
<Pr opertySet
Fi el d_spcNane="Locati on"
Changed="t r ue"
Fi el d_spcVal ue="San Jose" />
<Pr opertySet
Fi el d_spcNanme="Accessl d"
Changed="f al se"
Fi el d_spcVal ue="146" />

</ PropertySet >

Version 7.5.3 eAl Volume II: Integration Platform Technologies

201

‘ Siebel Virtual Business Components

Custom Business Service Methods

Figure 45 illustrates the property set for the Update output and is followed by its
XML representation.

Property Set
Type i Bl
Walue e Mull
Property Mame Yalue
Child Array
L [[[[|
Property Set
Type] Bl
Walue e Mull
Property Mame Yalue

Phone e (4057 234-1029
Location fae San Joze

Figure 45. Update Output Property Set

<?xm version="1.0" encodi ng="UTF-8" ?>
<?Si ebel - Property-Set EscapeNanmes="true"?>
<Pr opertySet
<Pr opert ySet
Phone=="(408) 234- 1029"
Locati on="San Jose" />

</ PropertySet >

202 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

Custom Business Service Example

Custom Business Service Example

Version 7.5.3

function Service_Prel nvokeMet hod (Met hodNane, |nputs, Qutputs)

if (MethodName == "Init") {

return(lnit(lnputs, Qutputs));

}

el se if (MethodName == "Query") {
return(Query(lnputs, CQutputs));

}

else if (MethodName == "Prelnsert") {
return(Prelnsert(lnputs, Qutputs));

}

else if (MethodName == "Insert") {
return(lnsert(lnputs, Qutputs));

}

else if (MethodName == "Update") {
return(Update(lnputs, Qutputs));

}

else if (MethodName == "Delete") {

return(Del ete(lnputs, Qutputs));

eAl Volume lI: Integration Platform Technologies

The following is an example of Siebel eScript implementation of a business service
for a virtual business component. The fields configured for this simple virtual
business component are Accountld, Name, Phone, Location, and Accessld.
Accessld is the primary key in the external data source. Accessld is included in the
virtual business component fields to make update and delete simple and is
configured as a hidden field.

203

‘ Siebel Virtual Business Components

Custom Business Service Example

}
el se {

return (ContinueQperation);

}
function Init (Inputs, Qutputs)

{
/] For debuggi ng purpose...

| ogPropSet (I nputs, "Initlnputs.xm");
Qut put s. Set Property("Accountld", "");
Qut put s. Set Property("Name", "");

Cut put s. Set Property("Phone", "");

Qut put s. Set Property("Accessld", "");
Qut put s. Set Property("Location", "");

/1 For debuggi ng purpose...

| ogPropSet (Qutputs, "InitQutputs.xm");
return (Cancel Operation);

}
function Query(lnputs, Qutputs)

{
/1 For debuggi ng purpose. ..

| ogPropSet (1 nputs, "Querylnputs.xm");

var selectStnt = "select * from Contacts ";
var whereC ause = " where ";
var orderbyC ause = " order by ";

/1 You have the followi ng properties if you want to use them

204 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

Custom Business Service Example

/1 1 nputs. GetProperty("Business Conponent Nane")

/1 1 nputs. GetProperty("Business Conponent |d")

/'l I nputs. Get Property("Renpte Source")

/1 1f you configured Maxi mum Cursor Size at the busconp,
/1 get max-rows property

var maxRows = I nputs. Get Property("max-rows");

Il get search-string

var searchString = Inputs. GetProperty("search-string");
/'l convert the search-string into a where cl ause

searchString = stringRepl ace(searchString, "*', "%);

searchString = stringRepl ace(searchString, '[', ' ');
searchString = stringRepl ace(searchString, '1', ' ');
searchString = stringRepl ace(searchString, '~', ' ');
searchString = stringRepl ace(searchString, '"', "'");

wher eCl ause = whereC ause + searchString;
/1 match, search-spec, sort-spec
var childCount = Inputs. GetChildCount();
var child, sortProp;
for (var i = 0; i < childCount; i++)
{
child = Inputs. GetChild(i);
if (child. GetType() == "")
{
/1 Use this child property set if you want to use the old match field list.

/1 W are not using this in this exanple. W'Il|l use search-string instead.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 205

‘ Siebel Virtual Business Components

Custom Business Service Example

}

else if (child. GetType() == "search-spec")

{

/1 Use this child property set if you want to use the hierarchical

/'l representation of the search-string.

/1 W are not using this in this exanple. We'I|l use search-string instead.
}

else if (child. GetType() == "sort-spec")

{

/1 This child property set has the sort spec. W'Il use this in this exanple
var sortFieldCount = child. Get ChildCount();
for (var j = 0; j < sortFieldCount; j++)
{
/1 conmpose the order by clause
sortProp = child. GetChild(j);
orderbyCl ause += sortProp. GetProperty("field");
var sortOrder = sortProp. GetVal ue();
if (sortOrder == "DESCENDI NG')
orderbyC ause += " desc";
if (j < sortFieldCount-1)

orderbyd ause += ", ";

}

/1 Now, our conplete select statement is...

206 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

Custom Business Service Example

sel ect Stnt += whereC ause + orderbyd ause;
/1 Now, query the data source
var conn = get Connection();
var rs = getRecordset();
rs. Open(sel ectStnt, conn);
/1l We're only going to return no nore than maxRows of records.
var count = rs.RecordCount();
if (maxRows != "")

if (count > maxRows)

count = maxRows

/1 We'll go through the recordset and add themto the Qutputs PropertySet.
var fcount, fields, row,
for (i =0; i < count; i++)
{

row = TheApplication(). NewPropertySet();

fields = rs.Fields();

fcount = fields. Count();

for (j =0; j < fcount; j++)
{
var fieldvalue = fields.lten(j). Value();
if (fieldvalue == null)
row. Set Property(fields.lten(j).Nanme(), "");
el se

row. Set Property(fields.lten(j).Nanme(), fieldVvalue);

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 207

‘ Siebel Virtual Business Components

Custom Business Service Example

Qut put's. AddChi | d(row);
rs. MoveNext () ;

}

/] For debuggi ng purpose...

| ogPropSet (Qut puts, "QueryQutputs.xm ");

/'l clean up

child = null;

sortProp = null;

row = null;

rs.Close();

rs = null;

conn. d ose();

conn = null;

return (Cancel Operation);

}

function Prelnsert (lnputs, Qutputs)

{
/1 For debuggi ng purpose. ..

| ogPropSet (I nputs, "Prelnsertlnputs.xm");

var defaults = TheApplication().NewPropertySet();

defaul ts. Set Property("Location", "KO');
Qut put s. AddChi | d(def aul ts);

/1 For debuggi ng purpose...

| ogPropSet (Qut puts, "PrelnsertQutputs.xm");

/'l clean up

defaults = null;

208 eAl Volume ll: Integration Platform Technologies

Version 7.5.3

Siebel Virtual Business Components ‘

Version 7.5.3

return (Cancel Operation);

function Insert (lnputs,

{

Custom Business Service Example

/1 For debuggi ng purpose...

| ogPropSet (I nputs, "lInsertlnputs.xm");

var fieldList = ;

var val uelList = ;

/1 1nputs should have only 1 child property set.

var child = Inputs. GetChild(0);

var fieldName = child. GetFirstProperty();

var fiel dval ue;

while (fieldName !="")

{
fieldvalue = child. GetProperty(fieldNane);
if (fieldvalue !'="")
{

if (fieldList t="")

{
fieldList += ", ";

val ueList +=", ";

}
fieldList += fiel d\Nane;

valueList += """ + fieldvalue + "'";

}

eAl Volume lI: Integration Platform Technologies

209

‘ Siebel Virtual Business Components

Custom Business Service Example

210

fiel dName = chil d. Get Next Property();

}

/1 The insert statenent is...

var insertStnt = "insert into Contacts (" + fieldList +") values (" + val ueli st

")

/1 Now, inserting into the data source...
var conn = get Connection();
conn. Execute (insertStnt);
/1 In this exanple, we need to query back the record just inserted to get
/1 the value of its primary key. W nade this primary key part of the busconp
/'l to make update and del ete easy. The primary key is "Accessld".
var selectStm = "select * from Contacts where ";
var whereC ause = "";
child = I nputs. Get Chil d(0)
fiel dNanme = child. GetFirstProperty();
while (fieldName !="")
{
fieldvalue = child. Get Property(fiel dNane);
if (fieldName != "Accessld")
{
if (wheredause !="")
whereCl ause += " and ";
if (fieldvalue == "")
whereCl ause += fieldName + " is null";

el se

eAl Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

Version 7.5.3

Custom Business Service Example

wher eCl ause += fieldNanme + "='" + fieldvalue + "'";
}
fiel dNane = chil d. Get Next Property();
}
/] The select statement is...
sel ectStnt += whereCd ause;
/1 Now, let's select the new record back
var rs = getRecordset();
rs. Open(selectStnt, conn);
/1 We're expecting only one row back in this exanple.
var fcount, fields, row fieldValue;
row = TheApplication().NewPropertySet();

fields = rs.Fields();

fcount = fields.Count();

for (var =0; j < fcount; j++)

{
fieldvalue = fields.lten(j). Value();
if (fieldvalue == null)
row. Set Property(fields.ltenm(j).Name(), "");
el se
row. Set Property(fields.ltem(j).Name(), fieldValue);
}
Qut put's. AddChi | d(row);
/] For debuggi ng purpose...

| ogPropSet (Qutputs, "lInsertQutputs.xm");

eAl Volume lI: Integration Platform Technologies

211

‘ Siebel Virtual Business Components

Custom Business Service Example

/'l clean up

child = null;

row = nul | ;

rs.Close();

rs = null;

conn. d ose();

conn = null;

return (Cancel Qperation);

}
function Update (Inputs, Qutputs)

{
/1 For debuggi ng purpose. ..

| ogPropSet (1 nputs, "Updatelnputs.xm");

var child;

var childCount = Inputs. GetChil dCount();

var fieldNane, fieldVvalue;

var updateStnt = "update Contacts set

var setCl ause = "";

var wher ed ause;

/1 Go through each child in Inputs and construct
/1 necessary sql statenments for update and query

for (var i =0; i < childCount; i++)

{

child = Inputs. GetChil d(i);

fiel dName = child. GetProperty("Field Nane");

fieldvalue = child. GetProperty("Field Value");

212 eAl Volume ll: Integration Platform Technologies

Version 7.5.3

Siebel Virtual Business Components ‘

Version 7.5.3

Custom Business Service Example

/1 We only need to update changed fi el ds.

if (child. GetProperty("Changed") == "true")

if (setClause I="")
setClause += ", ",
if (fieldvalue == "")

set Cl ause += fieldNane + "=null";

el se
setCl ause += fieldNanme + "="" + fieldvalue + "'";
}
if (fiel dName == "Accessld")
wher eCl ause = " where Accessld = " + fieldVal ue;

}

/'l The update statenment is...

updateStm += setC ause + whereC ause;

/1 Now, updating the data source...

var conn = get Connection();

conn. Execute (updateStnt);

/1 How to construct the Qutputs PropertySet can vary, but in this exanple
/1 We'll query back the updated record fromthe data source.
var selectStm = "select * from Contacts" + whered ause;

/Il Now, let's select the updated record back

var rs = getRecordset();

rs. Open(sel ectStnt, conn);

/1 We're expecting only one row back in this exanple.

eAl Volume lI: Integration Platform Technologies 213

‘ Siebel Virtual Business Components

Custom Business Service Example

/1 In this exanple, we're returning all the fields and not just

/1 the updated fields. You can only return those updated
/1l fields with the new value in the Qutputs property set.
var fcount, fields, row, fieldValue;

row = TheApplication().NewPropertySet();

fields = rs.Fields();

fcount = fields.Count();

for (var =0; j < fcount; j++)

{
fieldvalue = fields.lten(j). Value();
if (fieldvalue == null)
row. Set Property(fields.lten(j).Nanme(), "");
el se
row. Set Property(fields.lten(j).Name(), fieldVvalue);
}
Qut put's. AddChi I d(row);
/] For debuggi ng purpose...
| ogPropSet (Qut puts, "UpdateQutputs.xm");
Il clean up
child = null;
row = null;
rs.Close();
rs = null;
conn. d ose();

conn = null;

eAl Volume II: Integration Platform Technologies

Version 7.5.3

Siebel Virtual Business Components ‘

Custom Business Service Example

return (Cancel Operation);

function Delete (Inputs, Qutputs)

{
/1 For debuggi ng purpose. ..

| ogPropSet (1 nputs, "Deletelnputs.xm");

/1 1nputs should have only 1 child property set.
var child = I nputs. GetChild(0);

/1 In this exanple, we're only using the Accessld
/Il (it's the primary key in the Contacts db)

/1 for delete statenent for sinmplicity.

var deleteStnt = "delete from Contacts where Accessld = " +
chil d. Get Property("Accessld");

/! Now, let's delete the record fromthe data source.
var conn = get Connection();

conn. Execute(del eteStnt);

/1 For debuggi ng purpose...

| ogPropSet (Qut puts, "Del eteQutputs.xm");

/1 Returning enpty Qutputs property set.

/'l clean up

conn. d ose();

conn = null;

return (Cancel Operation);

The follow ng functions are hel per functions.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 215

‘ Siebel Virtual Business Components

Custom Business Service Example

function getConnection ()

{
/1 VBCContact is the ODBC data source nane
var connectionString = "DSN=VBCContact";
var uid ="";
var passwd = "";
var conn = COMCr eat eCbj ect (" ADCDB. Connection");
conn. Mode = 3;
conn. Cur sor Location = 3;
conn. Open(connectionString , uid, passwd);
return conn;

}

function get Recordset ()

{
var rs = COMCreat e(bj ect (" ADODB. Recordset");
return rs;

}

function | ogPropSet (i nputPS, fil eNanme)
{

/1 Use EAl XML Wite to File business service to wite

/1 inputPS property set to fileNane file in c:\tenp directory.

var fileSvc = TheApplication().GetService("EAl XM. Wite to File");
var outPS = TheApplication().NewPropertySet();

var fileLoc = "c:\\temp\\" + fil eNane;

var tnpProp = inputPS. Copy();

t npProp. Set Property("Fil eName", fileLoc);

216 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components ‘

Custom Business Service Example

fileSvc. | nvokeMet hod("WitePropSet", tnpProp, outPS);
Il clean up
outPS = null;

fileSvec = null;

tmpProp = null;

function stringReplace (string, from to)
{

/1 Replaces fromwith to in string
var stringLength = string.!length;
var fronLength = fromlength;
if ((stringLength == 0) || (fronLength == 0))
return string;
var from ndex = string.indexOf (from;
if (from ndex < 0)
return string;
var newString = string.substring(0, from ndex) + to;
if ((from ndex + fronLength) < stringLength)

newString += stringRepl ace(string.substring(from ndex+fromniLength,
stringLength), from to);

return newString;

NOTE: For more examples of VBCs, see Developing and Deploying Siebel eBusiness
Applications.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 217

‘ Siebel Virtual Business Components

Custom Business Service Example

218 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Predefined EAl Business Services A

Siebel eBusiness Applications provide a number of business services. These
services do not require any modification, but they do require that you choose and
configure them to suit your requirements.

NOTE: For general information on using business services, refer to Chapter 3,
“Business Services.”

Predefined EAIl Business Services

Table 23 presents the predefined Siebel eAl business services.

Table 23. Predefined EAl Business Services

Business Service Class Description

EAI XSD Wizard Used to create integration objects based on
XSD files.

EAI XML XSD Generator Used to generate an XSD file from an
integration object.

EAI Database Adapter Used to interact with databases directly
using SQL based on integration object
definitions.

EAI Transaction Service CSSBeginEndTransactionService = EAI Transaction service for working with

Siebel transactions such as begin, end, or
find out whether in transaction.

Workflow Process Manager | CSSSrmService Submits workflow requests to a workflow
(Server Request) process manager server component
(WfProcMgr).

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 219

‘ Predefined EAl Business Services

Predefined EAI Business Services

Table 23. Predefined EAl Business Services

Business Service
EAI MSMQ Transport

EAI MQSeries Server
Transport

EAI MQSeries AMI
Transport

EAI HTTP Transport

EAI Utility Service

Oracle Adapter

EAI Siebel Adapter

EAI Query Spec Service

Oracle Procedure Adapter

EAI Import Export

EAI BTS COM Transport

EAI DLL Transport

Class
CSSMsmqTransService

CSSMqSrvTransService

CSSMgAmiTransService

CSSHTTPTransService

CSSEAIUtilService

CSSEAISqlAdapterService

CSSEAISiebelAdapterService

CSSEAIQuerySpecService

CSSEAIODBCService

CSSEAIImportExportService

CSSEAIBtsComService

CSSDIITransService

220 eAl Volume ll: Integration Platform Technologies

Description
EAI MSMQ Transport.

EAI MQSeries Server Transport.

EAI MQSeries AMI Transport. For details,
see Transports and Interfaces: Siebel
eBusiness Application Integration Volume
III.

EAI HTTP Outbound Transport. For details,
see Transports and Interfaces: Siebel
eBusiness Application Integration Volume
III.

EAI Utility Service.

EAI SQL Adapter. For details, see Siebel
eBusiness Connector for Oracle Guide.

EAI Siebel Adapter. For details, see
Chapter 5, “EAI Siebel Adapter.”

Used internally by EAI Siebel Adapter to
convert SearchSpec method argument as
string to an Integration Object Instance that
EAI Siebel Adapter can use as a Query By
Example object.

ODBC Service for Oracle connector. For
details, see Siebel eBusiness Connector for
Oracle Guide.

EAI Import Export Service (import and
export integration object from or to XML).

EAI Siebel to BTS COM Transport.
EAI DLL Transport. For details, see

Transports and Interfaces: Siebel eBusiness
Application Integration Volume III.

Version 7.5.3

Predefined EAl Business Services

Table 23. Predefined EAl Business Services

Predefined EAIl Business Services

Business Service

EAI Data Mapping Engine

No Envelope

Siebel Message Envelope

EAI Dispatch Service

EAI Integration Object
to XML Hierarchy
Converter

EAI MIME Hierarchy
Converter

EAI MIME Doc Converter

EAI XML Converter

EAI XML Write to File

Version 7.5.3

Class

CSSDataTransformationEngine

CSSEAINullEnvelopeService

CSSEAISMEnvelopeService

CSSEAIDispatchService

CSSEAIIntObjHierCnvService

CSSEAIMimePropSetService

CSSEAIMimeService

CSSEAIXMLCnvService

CSSEAIXMLPrtService

eAl Volume lI: Integration Platform Technologies

Description

EAI Data Transformation Engine. For
details, see Business Processes and Rules:
Siebel eBusiness Application Integration
Volume IV.

EAI Null Envelope Service. For details, see
XML Reference: Siebel eBusiness
Application Integration Volume V.

EAI Siebel Message Envelope Service. For
details, see XML Reference: Siebel eBusiness
Application Integration Volume V.

Dispatch Service. For details, see Business
Processes and Rules: Siebel eBusiness
Application Integration Volume IV.

EAI Integration Object Hierarchy (also
known as SiebelMessage) to XML hierarchy
converter service. For details, see XML
Reference: Siebel eBusiness Application
Integration Volume V.

EAI MIME Hierarchy Conversion Service.
For details, see Chapter 6, “Siebel eAl and
File Attachments.”

MIME Document Conversion Service. For
details, see Chapter 6, “Siebel eAl and File
Attachments.”

Converts between XML and EAI Messages.
For details, see XML Reference: Siebel
eBusiness Application Integration Volume
V.

Print a property set to a file as XML. For
details, see XML Reference: Siebel eBusiness
Application Integration Volume V.

221

‘ Predefined EAl Business Services

Predefined EAI Business Services

Table 23. Predefined EAl Business Services

Business Service Class Description

EAI XML Read from File CSSEAIXMLPrtService Read an XML file and parse to a property
set. For details, see XML Reference: Siebel

eBusiness Application Integration Volume
V.

XML Converter CSSXMLCnvService Converts between XML documents and
arbitrary Property Sets. For details, see XML

Reference: Siebel eBusiness Application
Integration Volume V.

XML Hierarchy Converter = CSSXMLCnvService Converts between XML documents and
XML Property Set or Arbitrary Property Set.

For details, see XML Reference: Siebel
eBusiness Application Integration Volume
V.

222 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Property Set Representation of Integration B
Objects

Property sets are in-memory representations of integration objects. This appendix
describes the relationship between the property set and the integration object. For
an overview of property sets, see Siebel Tools Reference.

Property Sets and Integration Objects

Many eAl business services operate on integration object instances. Since business
services take property sets as inputs and outputs, it is necessary to represent
integration objects as property sets. The mapping of integration objects,
components, and fields to property sets is known as the Integration Object
Hierarchy.

Using this representation, you can pass a set of integration object instances of a
specified type to an eAl business service. You pass the integration object instances
as a child property set of the business service method arguments. This property set
always has a type of SiebelMessage. You can pass the SiebelMessage property set
from one business service to another in a workflow without knowing the internal
representation of the integration objects.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 223

‘ Property Set Representation of Integration Objects

Property Sets and Integration Objects

Property Set Node Types

Table 24. Property Set Node Types

When passing integration object instances as the input or output of a business
service, you can use property sets to represent different node types, as presented in
Table 24.

Service
Method
Arguments

SiebelMessage

Object List

224 eAl Volume ll: Integration Platform Technologies

Parent

N/A

Service
Method
Arguments

SiebelMessage

Value of Type Attribute

Ignored

SiebelMessage

ListOfObjectType

Properties

The properties of
this property set
contain any
service specific
parameters, such
as PrimaryRowld
for EAI Siebel
Adapter.

The properties of
this property set
contain header
attributes
associated with
the integration
object, for
example,
IntObjectName.

Not used.

Description

This is the top-level
property set of a business
service’s input or output.
The properties of this
property set contain any
service-specific parameters
(for example,
PrimaryRowld for EAI
Siebel Adapter).

This property set is a
wrapper around a set of
integration object instances
of a specified type. To pass
integration objects between
two business services in a
workflow, this property set
is copied to and from a
workflow process property
of type Hierarchy.

This property set identifies
the object type that is being
represented. The root
components of the object
instances are children of
this property set.

Version 7.5.3

Property Set Representation of Integration Objects ‘

Table 24. Property Set Node Types

Property Sets and Integration Objects

Root
Component

Child
Component

Type

Child
Components

Parent

Object List

Root
Component or
Component

Child
Component

Type

Value of Type Attribute

Root Component
Name

ListOfComponent
Name

Conmponent Nane

Properties

The property
names of the
property set
represent the field
names of the
component, and
the property
values are the field
values.

Not used.

The property
names of the
property set
represent the field
names of the
component, and
the property
values are the field
values.

Description

This property set
represents the root
component of an
integration object instance.

An integration component
can have a number of child
component types, each of
which can have zero or
more instances. The
Integration Object
Hierarchy format groups
the child components of a
given type under a single
property set. This means
that child components are
actually grandchildren of
their parent component’s
property set.

This property set
represents a component
instance. It is a grand- child
of the parent component’s
property set.

Version 7.5.3

eAl Volume II: Integration Platform Technologies

225

‘ Property Set Representation of Integration Objects

Property Sets and Integration Objects

Example of a Sample Account

This example shows an Account integration object in which the object has two
component types: Account and Business Address (which is a child of Account). The
hierarchy of component types from a Siebel Tools perspective, looks like that shown
in Figure 46.

Account

Figure 46. Sample Account Integration Object

226 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Property Set Representation of Integration Objects ‘

Property Sets and Integration Objects

Figure 47 on page 228 shows an example instance of this object type, using the
Integration Object Hierarchy representation. There are two Sample Account
instances. The first object instance has an Account component and two Business
Address child components. The second object instance has only an Account
component with no child components.

Version 7.5.3 eAl Volume lI: Integration Platform Technologies 227

‘ Property Set Representation of Integration Objects

Property Sets and Integration Objects

Property Set —» Service Input

Type = Unused
Properties Sve Method Arguments
PrirmaryRowld - 1-¥8YZ
Property Set —» Siebel Message
Gk Ay Type - Siebel Message
| T | | | | | Properties Header Attributes
IntObjectMame | Sample Account
Property Set —» Object List Child Array
Type = ListofSampledccount | | | | | |
Properties Unused <—)
Child Array —m Object Instances
L1 . | [[]
'

Property Set —» Root Component Property Set —» Root Component
Type] Account Type - Account
Properties Component Fields Properties Component Fields

Name [ABC Inc. Name [¥¥Z Inc.
Location [Mews Y ork Location [San Francisco
Child Array — Child Types Child Array — Child Types

Property Set —» Child Component Type

Type | ListofBusinessAddress

Properties - Unused

Child Array — Component Instances

I R
T

Property Set-»Integration Component Instance Property Set-» IntegrationlCOmponent Instance
Type = Business Address Type = Business Address
Properties aw Component Fields Properties ww Component Fields
Street b 42nd Street Street b Broadway
City - Mew ok Location [Mew ok
Child Array —w Child Types Child Array — Child Types

Figure 47. Partial Instance of Sample Account Integration Object

228 eAl Volume ll: Integration Platform Technologies Version 7.5.3

DTDs for XML Gateway Business Service

C

This appendix lists the various inbound and outbound DTDs for the XML Gateway
business service.

Outbound DTDs

The following sections contain examples of DTDs representing thtmethodName %
request sent from the XML Gateway to the external application.

Version 7.5.3

Delete
<! ELEMENT

<! ELEMENT
<I ATTLI ST
<! ELEMENT
<! ELEMENT
<! ELEMENT

<I ATTLI ST

Init
<! ELEVMENT

<! ELEMENT
<I ATTLI ST

<! ELEMENT

si ebel - xm ext -del ete-req (busconp, renote-source,
busconp (#PCDATA) >

busconp i d NMIOKEN #REQUI RED>

renot e- source (#PCDATA)*>

row (val ue+) >

val ue (#PCDATA)*>

val ue field CDATA #REQUI RED>

si ebel -xm ext-fields-req (busconp, renote-source?)>
busconp (#PCDATA) >
busconp i d NMIOKEN #REQUI RED >

renot e- sour ce (#PCDATA) * >

eAl Volume II: Integration Platform Technologies

row) >

229

‘ DTDs for XML Gateway Business Service

Outbound DTDs

Insert
<! ELEMENT

<! ELEMENT
<! ATTLI ST
<! ELEMENT
<! ELEMENT
<! ELEMENT

<I ATTLI ST

Prelnsert
<! ELEMENT si ebel - xm ext - preinsert-req (busconp,

si ebel -xm ext-insert-req (busconp,

busconp (#PCDATA) >

busconp i d NMIOKEN #REQUI RED>

renot e- sour ce (#PCDATA) * >

row (val ue+) >

val ue (#PCDATA) *

val ue field CDATA #REQUI RED>

>

<! ELEMENT busconp (#PCDATA) >

<! ATTLI ST busconp id NMIOKEN #REQUI RED >

<! ELEMENT r enot e- source (#PCDATA) *>

Query

<! ELEMENT si ebel - xm ext - query-req (busconp ,

rows?, search-string?, mat

<! ELEMENT
<I ATTLI ST
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<I ATTLI ST
<! ELEMENT

<! ELEMENT

ch?, search-spec?,

busconp (#PCDATA) >

busconp i d NMIOKEN #REQUI RED>

renot e- sour ce (#PCDATA) * >

max-rows (#PCDATA) >

search-string (#PCDATA) >

mat ch (#PCDATA) >

match field CDATA #REQUI RED>

sear ch-spec (nod

node (#PCDATA |

e)>

node) *>

230 eAl Volume IlI: Integration Platform Technologies

renot e- source?, row)>

r enot e- sour ce?) >

renot e- sour ce?, max-
sort-spec?)>

Version 7.5.3

DTDs for XML Gateway Business Service

Inbound DTDs

<I ATTLI ST node node-type (Constant | Identifier | Unary Operator |
Bi nary Operator) #REQUI RED>
<! ATTLI ST node val ue-type (TEXT | NUMBER | DATETI ME | UTCDATETI ME |

DATE | TI ME) #| MPLI ED>
<! ELEMENT sort-spec (sort+)>
<! ELEMENT sort (#PCDATA) >

<I ATTLI ST sort field CDATA #REQU RED>

Update

<! ELEMENT si ebel - xm ext -update-req (busconp, renote-source?,

row) >
<! ELEMENT busconp (#PCDATA) >

<I ATTLI ST busconp id NMIOKEN #REQUI RED>

<! ELEMENT renpt e- sour ce (#PCDATA) *>

<! ELEMENT row (val ue+)>

<! ELEMENT val ue (#PCDATA)*>

<! ATTLI ST val ue changed (true | false) #REQU RED>

<! ATTLI ST val ue field CDATA #REQUI RED>

Inbound DTDs

Version 7.5.3

The following sections contain examples of DTDs representing the
% methodName % response sent from the external application to the XML Gateway.

Delete Response

<! ELEMENT si ebel - xnl ext - deket e-ret EMPTY >

Init Response

<I ELEMENT si ebel - xm ext-fi el ds-ret (support+)>

<! ELEMENT support EMPTY >

eAl Volume lI: Integration Platform Technologies 231

‘ DTDs for XML Gateway Business Service

Inbound DTDs

<! ATTLI ST support field CDATA #REQUI RED>

Insert Response
<! ELEMENT si ebel - xm ext-preinsert-ret (row) >

<! ELEMENT row (val ue+)>
<! ELEMENT val ue (#PCDATA)*>

<I ATTLI ST value field CDATA #REQUI RED >

Prelnsert Response
<! ELEMENT si ebel - xm ext -prei nsert-ret (row)>

<! ELEMENT row (val ue)*>
<! ELEMENT val ue (#PCDATA)*>

<I ATTLI ST val ue field CDATA #REQUI RED >

Query Response
<! ELEMENT si ebel - xm ext - query-ret (row)>

<! ELEMENT row (val ue+)>
<! ELEMENT val ue (#PCDATA) *>

<I ATTLI ST val ue field CDATA #REQUI RED >

Update Response
<! ELEMENT si ebel - xm ext -update-ret (row)>

<! ELEMENT row (val ue+)>
<! ELEMENT val ue (#PCDATA) >

<I ATTLI ST value field CDATA #REQU RED >

232 eAl Volume IlI: Integration Platform Technologies Version 7.5.3

Index

Version 7.5.3

Symbols
% methodName % request, sample inbound
DTDs 231

A

activating fields, about 64
AdminMode user property 69
AllLangIndependentVals user property 70
AllowedIntObjects business service user
property 66

application

external application, about setting

up 183

Siebel Web Service, invoking from 112
arguments

Init method, XML Gateway business

service 173

IsPrimaryMVG 131
AssocFieldName user property

associations with 26

Integration Objects user property 68
Association user property

associations with 26

Integration Objects user properties 67
association, defined 26

B

base object types (table) 18

base table, using Mod Id 141

body data, contents of 17

buscomp Id tag 175

Business Component Id argument 173

Business Component Name argument, XML
Gateway argument 173

business components

association, role of 26
integration restrictions 74
linking 31
multi-value field example 28
multi-value group example 32
relation to business services 77
specialized 166
update permission rules 65
business objects
business service methods, as arguments
to 93
EAI Siebel Adapter, role of 117
external data, creating from 117
integration object maintenance,
about 64
relation to business services 77
structure of 23
user key requirement 38
business service methods
arguments, defining 84
business objects as arguments 93
defining 84
described 79
Business Service Methods screen,
using 87
business service methods, custom
See also virtual business components
about 183
common input parameters (table) 184
connecting methods, list of 184
Delete method, example 186
Error Return property set, example 188
Init method, example 189
Insert method, example 191
output parameters (table) 184

eAl Volume lI: Integration Platform Technologies 233

Prelnsert method, example 193
Query method, example 195
Update method, example 200
Business Service Simulator, running 89
business services
accessing using eScript or Siebel VB 90
customized business services, type
of 78
defined 77
EAI MIME Hierarchy Converter, creating
inbound workflow process
(example) 155
EAI MIME Hierarchy Converter, creating
outbound workflow process
(example) 153
general uses 77
importing and exporting 88
predefined business services, table
of 219
property set code example 93
property sets, about and role of 80
scripts, defining 85
Siebel Client, creating in 87
Siebel Tools, creating process
overview 82
Siebel Tools, defining in 83
Specialized Business Services, about 78
subsystem, specifying 86
subsystems (table) 86
testing 89
user properties, defining 87
XML Gateway 169
BusObjCacheSize argument, about 119,
121

C
calculated fields 35
child integration components

about 24

structure example 25

supported operations (table) 129
child property sets, about 81
classes

eAl Volume II: Integration Platform Technologies

classes and predefined business
services 219
CSSBCVExtern 167
CSSBCVXMLExten 173
CSSEAIDTEScriptService 78
CSSEAISiebelAdapterService 117
COM connection, external database and
custom business service 184
components, defined 15
concurrency control
about support of 139
Account_Organization integration
component example 144
configuring 141
configuring example 143
Modification IDs, using 140
Modification Key, about 140
Contentld property, value and
description 160
ContentSubType property 161
ContentType property 161
CORBA connection, external database and
custom business service 184
CSEEAISiebelAdapterService 66
CSSBCVExtern class 167
CSSBCVXMLExten class 173
CSSBeginEndTransactionService 219
CSSDataTransformationEngine 221
CSSDlITransService 220
CSSEAIBtsComService 220
CSSEAIDispatchService 221
CSSEAIDTEScriptService class 78
CSSEAIImportExportService 220
CSSEAIIntObjHierCnvService 221
CSSEAIMimePropSetService 221
CSSEAIMimeService 221
CSSEAINullEnvelopeService 221
CSSEAIODBCService 220
CSSEAIQuerySpecService 220
CSSEAISiebelAdapterService 220
CSSEAISiebelAdapterService class 117
CSSEAISMEnvelopeService 221
CSSEAISqlAdapterService 220

Version 7.5.3

Version 7.5.3

CSSEAIUtilService 220
CSSEAIXMLCnvService 221
CSSEAIXMLPrtService 221, 222
CSSHTTPTransService 220
CSSMg@AmiTransService 220
CSSMqSrvTransService 220
CSSMsmqTransService 220
CSSSrmService 219
CSSXMLCnvService
XML Converter business service 222
XML Hierarchy Converted business
service 222
custom business service
Delete method, example 186
sample code 203

data and arguments, contrasted 91
Data Type Definitions

See DTDs
databases

access, controlling 66

multi-valued attributes 27
deactivating fields, about 64
Delete method

custom business service example 186

DTD example 229

overview 126

SearchSpec input method, about and

example 134

XML code example 129

Delete Response method, DTD
example 231

DeleteByUserKey argument, about 119
Display Name field 81
docking, restrictions on 166
DolnvokeMethod, about using 117
DTDs

Integration Object Builder wizard,

about 22
sample inbound DTDs 231

EAI BTS COM Transport business
service 220
EAI Data Mapping Engine business
service 221
EAI Design project, editing integration
objects, warning 23
EAI Dispatch Service business service 221
EAI DLL Transport business service 220
EAI HTTP Transport
business service, description 220
XML Gateway business service,
configuring for use by 169
EAI Import Export business service 220
EAI Integration Object to XML Hierarchy
Converter business service 221
EAI MIME Doc Converter business
service 221
EAI MIME Hierarchy Converter business
service 221
EAI MQSeries AMI Server Transport,
configuring for use by XML Gateway
business service 169
EAI MQSeries AMI Transport business
service 220
EAI MQSeries Server Transport business
service 220
EAI MQSeries Transport, configuring for use
by XML Gateway business
service 169
EAI MSMQ Transport business service 220
EAI MSMQ Transport, configuring for use by
XML Gateway business service 169
EAI Query Spec Service business
service 220
EAI Siebel Adapter
concurrency control, about support
of 139
database access, controlling 66
Delete method 126
described 117
Execute method, overview 126

eAl Volume lI: Integration Platform Technologies 235

Insert method, overview 125
IsPrimaryMVG argument 131
language-independent code, using, 138
method arguments, described
(table) 119
method arguments, locating arguments
for (table) 119
methods, list of 117
Modification IDs, using 140
Modification Key, about 140
multi-value groups 131
Query method, overview 122
QueryPage method, overview 123
run-time events, about using 145
SearchSpec input method, about and
example 134
Synchronize method, overview 123
Upsert method, overview 124
XML example 129
EAI Siebel Adapter business service 220
EAI Siebel Wizard
about 62
integration objects, creating 48
EAI Transaction Service business
service 219
EAI Utility Service business service 220
EAI XML Converter business service 221
EAI XML Read from File business
service 222
EAI XML Write to File adapter, export
example 136
EAI XML Wrrite to File business service 221
EAISubsys, business service subsystem 86
Error Return property set example 188
ErrorOnNonExistingDelete
EAI Siebel Adapter Method
argument 120
ErrorOnNonExistingDelete argument,

about 119
error-text tag 180
eScripts

See scripts
Execute method

eAl Volume II: Integration Platform Technologies

operations (table) 127
overview 126
SearchSpec input method, about and
example 134
specifying and supported parent and child
components (table) 128
export example 136
Extension property, value and
description 160
extension table, using Mod Id 141
external application
data sharing, process overview 166
sample inbound DTDs 231
setting up, about 183
external data source, specifying 168
External Name user property 26
external Web Service, invoking using
Workflow or Scripting 107

F
field, defined 15
FieldDependency

Integration Objects user property 69
fields
activating and deactivating 64
calculated 35
multi-value groups, working with 32
picklist, validating and example 33
property set fields 80
user keys, about 38
file attachments
See also MIME
message types 147
using, about 147
force active fields, performance
considerations 73
foreign keys 41
function code sample 94

G
guide
product modules and options, about 10

Version 7.5.3

Version 7.5.3

revision history 13

header data, contents of 17
Hierarchy Parent key, about and
example 44
Hierarchy Root key, about and example 45
history of revisions 13

Ignore Bounded Picklist user property 67
Inbound Web Service
creating 97
WSDL file, generating 100
incoming XML format, tags and descriptions
(table) 180
Init method, DTD example 229
Init property set example 189
Init Response method, DTD example 231
Inline XML attachments 148
input parameters, common (table) 184
Input/Output type 85
Insert method, DTD example 230
Insert method, overview 125
Insert property set example 191
instance, defined 16
integration component fields
defined 16
field names, assigning 33
multi-value groups, working with 32
Integration Component Key
See user keys
integration components
activating 63
child components, supported operations
(table) 129
defined 16
deleting during synchronization 60
multi-value groups, working with 32
selecting 49
update permission rules 65
integration messages

body data 17
defined 16
header data 17

Integration Object Builder wizard

about 22

Code Generator wizard 22

EAI Siebel Wizard 63

Generate XML Schema wizard 22
integration components, selecting 49
integration objects, creating 48

user keys, about building 38

user keys, validating 40

integration object instance

actual data, about and diagram 20
defined 16

integration objects

See also child integration components

about 16

base object types (table) 18

best practices and scenarios 74

calculated fields 35

creating 48

defined 16

EAI Design project, editing warning 23

external data, creating from 117

fine tuning practices, list of 51

in-memory updating 57

integration components, deleting during
synchronization 60

maintaining, about 64

many-to-many business component,
creating with 70

metadata, about synchronizing 52

metadata, relation to 19

MIME message objects, creating 149

outbound Web Service, as input
arguments to 104

performance considerations 73

picklist, validating and example 33

primaries, about setting 37

schema, generating 72

SearchSpec field, querying accounts and
addresses based on 135

eAl Volume lI: Integration Platform Technologies 237

simple hierarchy example 226

structure example 25

System fields, about treatment of 74

terminology 15

testing newly created integration

object 71

update permission rules 65

updating 53

user properties, table of 67

validating 51

wizards process diagram 21
integration projects

integration objects, use described 22

planning 17
IntObjectName argument

described 120

locating arguments for 119
IsPrimaryMVG argument 131

J

Java class files, generating 22
joined table, using Mod Id 141

L

language-independent code
list of values, types of 138
outbound and inbound direction, about
using 138
LastPage argmument, about 121
LastPage argument, about 119
links
associations, and 26
between business components 31
update permission rules 65
LOVs, language-independent code
translation 138

many-to-many relationships, virtual
business components 166
Messageld argument
described 121

eAl Volume II: Integration Platform Technologies

locating arguments for 119

metadata

defined 15

integration objects, updating 53

processing example 91

relation to integration objects 19

synchronizing, integration objects,
about 52

methods

business objects as arguments 93

business service method arguments,
defining 84

business services methods, about 79

business services methods, defining 84

EAI Siebel Adapter method arguments,
described (table) 119

EAI Siebel Adapter method arguments,
locating arguments for (table) 119

EAI Siebel Adapter, supported
methods 117

incoming XML tags by method 180

outgoing XML tags by method 175

XML Gateway business service method
arguments (table) 173

XML Gateway business service methods,
listed 172

MIME

about 147

EAI MIME Doc Converter properties
(table) 160

inbound workflow process, creating
(example) 154

integration objects, creating 149

messages and hierarchies 159

MIME hierarchy, converting to 155

outbound workflow process, creating
(example) 150

workflow process properties, create an
outbound workflow process 151

MIME Doc Converter

about 159
converting hierarchy to document 153
converting to a hierarchy 155

Version 7.5.3

EAI MIME Doc Converter properties
(table) 160
properties 161
MIME hierarchy
converting hierarchy to document 153
converting to a hierarchy 155
EAI MIME Doc Converter properties
(table) 160
inbound transformation 158
integration object, converting to MIME
hierarchy 153
MIME Doc Converter 159
outbound transformation 156
property sets 159
MIME Hierarchy Converter
business service, creating inbound
workflow process (example) 155
business service, creating outbound
workflow process (example) 153
inbound transformation 158
outbound transformation 156
mobile users and virtual business
components 166
Modification Key
about 140
Account_Organization integration
component example 144
Mod Id field, using for tables 140
MVG and MVGAssociation integration
components, configuring 141
MVG and MVGAssociation integration
components, configuring
example 143
Multi Value Link field 29
Multipurpose Internet Mail Extensions. See
MIME
multi-value groups
See also integration objects
EAI Siebel Adapter, overview 131
example 28
field names, assigning 33
integration components, creating 32

Version 7.5.3

multiple fields 31
primary record, setting 132
types of 27
update permission rules 65
virtual business components,
restriction 166
multi-value links, setting primaries 37
multi-valued attributes 27
MVG integration components
Account_Organization integration
component example 144
configuring for concurrency control 141
example 143
MVG integration user property 67
MVG. See multi-value groups
MVGAssociation integration components
Account_Organization integration
component example 144
configuring for concurrency control 141
example 143
MVGAssociation integration user
property 68
MVGAssociation user property
about 26
MVG, creating a Siebel integration
component to represent 32
MVGFieldName integration user
property 68

name-value pairs
concatenating 170
role in property sets 81
NewQuery argument 121
No envelope business service 221
NoDelete user property 68
Nolnsert user property 68
NoUpdate user property 69
NumOutputObjects argument
described 120
locating arguments for 119

eAl Volume lI: Integration Platform Technologies 239

0

ODBC connection, external database and
custom business service 184
Oracle Adapter business service 220
Oracle Procedure Adapter business
service 220
outbound Web Service
integration objects, as input arguments
to 104
new outbound Web Service, creating
manually 102
outbound Web Service proxy business
service, updating 104
run-time data, importing 102
WSDL document, reading 100

outgoing XML format, tags and descriptions

(table) 174

Output Integration Object Name argument,
about 120

output parameters, (table) 184

Output type 85

OutputintObjectName argument,
about 119

P
PageSize
EAI Siebel Adapter Method
argument 121
locating arguments for 119
parameters
common input parameters (table) 184
output parameters (table) 184
Parameters argument, XML Gateway
argument 173
parent business component
multi-value group example 32
multi-value group field names,
assigning 33
parent integration component
about 23
child integration component, supported
operations (table) 129

eAl Volume II: Integration Platform Technologies

identifying 50

structure example 25
performance

force-active fields, considerations 73

integration object considerations 73

picklist considerations 73
Picklist integration user property 67
picklists

performance considerations 73

validating, about and example 33
Prelnsert method, DTD example 230
Prelnsert property set example 193
Prelnsert Response method, DTD

example 232

primaries, about setting 37
primary business component 23
primary integration component

See parent integration component
PrimaryRowld argument

described 120

locating arguments for 119
process properties

importing account information,

example 135

property sets

about 223

about and role of 80

child 81

code sample 93

Delete method example 186

Display Name field 81

EAI MIME Doc Converter properties

(table) 160

Error Return example 188

fields 80

hierarchy example 226

Init example 189

Insert example 191

integration objects, and 223

MIME hierarchy 159

nodes types (table) 224

Prelnsert example 193

Query example 195

Version 7.5.3

Version 7.5.3

Update example 200
publishing Inbound Web Services
creating 97
WSDL file, generating 100
publishing outbound Web Services
creating 100
new outbound Web Service, creating
manually 102
outbound Web Service proxy business
service, updating to point to an
outbound Web Service 104
run-time data, importing 102

Q

Query method
DTD example 230
overview 122
SearchSpec input method, about and
example 134
query operation
integration component keys, role of 38
role in integration projects 22
Query property set example 195
Query Response method, DTD
example 232
QueryByUserKey argument, about 119
QueryPage method
overview 123
SearchSpec input method, about and
example 134

Remote Source argument 173
Remote Source user property
virtual business component 168
XML Gateway business service 170
REPOSITORY_BC_VIEWMODE_TYPE 66
revision history 13
root component
See parent integration component
row tag 182
run-time events, about using 145

eAl Volume II:

S

SAPSubsys, business service subsystem 86
schema
Generate XML wizard 22
generating 72
scripts
business service, attaching to 85
business service, using to access 90
external Web Service, using to
invoke 107
SearchSpec argument
described 121
locating arguments for 119
SearchSpec input method
about and example 134
querying accounts and addresses 135
Search-Spec Node-Type Types, about and
table 179
Service Name user property
virtual business component 168
XML Gateway business service 170
Service Parameters user properties, table
of 170
Service Parameters user property
virtual business component 168
XML Gateway business service 170
Siebel business component, defined 15
Siebel business objects
defined 15
structure of 23
Siebel Client, defining business
services 87
Siebel eScript, using to access a business
service 90
Siebel integration component
See integration components
Siebel integration component field,
defined 16
Siebel integration objects
See integration objects
Siebel Message envelope business
service 221

Integration Platform Technologies 241

Siebel Message object
See integration object instance
Siebel Tools
business services, creating process
overview 82
business services, defining 83
integration objects, creating 48
user key, identifying 38
virtual business component,
creating 167
Siebel VB, using to access a business
service 90
Siebel Web Service
See Web Services
SiebelMessage argument
EAI Siebel Adapter Method
argument 120
locating arguments for 119
siebel-xmlext-delete-req tag 175
siebel-xmlext-fields-req tag 175
siebel-xmlext-fields-ret tag 181
siebel-xmlext-Insert-req tag 176
siebel-xmlext-insert-ret tag 181
siebel-xmlext-preinsert-req tag 176
siebel-xmlext-preinsert-ret tag 181
siebel-xmlext-query-req tag 177
siebel-xmlext-query-ret tag 182
siebel-xmlext-status tag 180
siebel-xmlext-Update-req tag 178
siebel-xmlext-Update-ret tag 183
simulation, business service 89
SortSpec argument
EAI Siebel Adapter Method
argument 122
locating arguments for 120
Specialized Business Services, about 78
StartRowNum argument
EAI Siebel Adapter Method
argument 121
locating arguments for 119
Status keys, about 44
status-code tag 180
StatusObject argument

eAl Volume II: Integration Platform Technologies

described 121

locating arguments for 119
synchronization process

about 52

in-memory updating 57

integration object components,

deleting 60

integration objects, updating 53

role in integration projects 22

update rules, about 57
Synchronize method, overview 123
System fields, about treatment of 74

T
tables, using Mod Id 141
testing business services 89
transports, used with XML Gateway 169
troubleshooting
Web Services Tracing, enabling 115

U
Update method
DTD example 231
Update property set example 200
Update Response method, DTD
example 232
Upsert method
overview 124
XML code example 129
user keys
building and validating, example 40
deactivating, warning 43
defined 38
definitions, confirming after build 47
field in Siebel Tools 38
foreign keys 41
Hierarchy Parent key, about and
example 44
Hierarchy Root key, about and
example 45
Integration Component key 38
locating in Tables screen 40

Version 7.5.3

Version 7.5.3

Object Builder wizard, about building
with 38

Status keys, about 44

validity, checking 40

user properties

AssocFieldName 26

Association 26

business service user properties,
defining 87

External Name 26

integration objects, table of 67

MVGAssociation 26

virtual business components (table) 168

virtual business components, defining
for 168

v

value tag 182
VBC Compatibility Mode user
property 170
VBCs. See virtual business components
ViewMode argument
EAI Siebel Adapter Method
argument 122
locating arguments for 120
ViewMode integration object user
property 66
ViewMode user property 70
virtual business components
See also virtual business components,
methods
about 163
custom code example 203
docking restrictions 166
external application setup, about 183
incoming XML format, tags and
descriptions (table) 180
mobile users, restriction 166
MQSeries, implementing with 171
multi-value groups 166
new virtual business component,
creating 167

outgoing XML format, tags and
descriptions (table) 174

process overview 166

Search-Spec Node-Type Types, about and
table 179

specialized business components,
restriction 166

usage and restrictions 165

user properties (table) 168

user properties, defining 168

XML Gateway business service,
configuring 170

virtual business components, methods

See also virtual business components
Delete method example 186

Error Return property set, example 188
Init method, example 189

Insert method, example 191

Prelnsert property set, example 193
Query property set, example 195
Update property set, example 200

virtual business services

See business service methods

w

Web Service Inbound Dispatcher, about

using 96

Web Services

external application, invoking from 112
Inbound Web Service record,
creating 97
overview 95
scripting, using to invoke 107
SOAP messages, about specifying
structure in 95
standards supported, list of 96
troubleshooting 115
workflow, using to invoke 107

Web Services Tracing, enabling 115
Workflow business service subsystem,

described 86

Workflow Process Manager (Server

Request) business service 219

eAl Volume lI: Integration Platform Technologies 243

244

workflows
external Web Service, using to
invoke 107
inbound MIME request 154
outbound MIME request 150
policies, about using 145

WSDL file
external Web service, importing run-time
data 102

Inbound Web Services, generating 100
outbound Web service, based on 100
WSDL Import Wizard
external Web Services, importing run-
time data 102
external WSDL document, using to
read 100

X

XML
attribute-named operation,

specifying 128

business services, importing 88
Generate XML Schema wizard 22
Inline XML attachments 148
metadata example 92
upsert and delete code example 129

eAl Volume II: Integration Platform Technologies

XML Converter business service 222
XML data, about using Web Service
Inbound Dispatcher 96
XML format
incoming tags and descriptions
(table) 180
outgoing tags and descriptions
(table) 174
XML Gateway business service
See also XML format
about 169
configuring 170
incoming XML tags and
descriptions 180
init method arguments 173
methods (table) 172
methods arguments (table) 173
name-value pairs, concatenating 170
outgoing XML tags and descriptions 175
sample inbound DTDs 231
Virtual Business Component,
implementing with MQSeries 171
XML Hierarchy Converter business
service 222
XMLCnv business service subsystem 86

Version 7.5.3

	Contents
	Introduction
	Product Modules and Options
	How This Guide Is Organized
	Additional Resources
	Revision History
	Version 7.5.3
	Version 7.5, Rev. A

	About Integration Objects
	Integration Objects Terminology
	Siebel Integration Objects
	Integration Object Base Object Type

	Integration Object and Integration Object Instance
	Siebel Integration Object Wizards
	Structure of Siebel Integration Objects
	Associations
	Multi-Value Groups
	Screen 1: Fields View
	Screen 2: Multi-Value Links
	Screen 3: Fields View
	Graphical Representation
	Creating an Integration Component

	Picklists
	Calculated Fields
	Inner Joins
	Operation Control
	Field Dependencies
	Primaries
	Repository Objects
	Integration Component Keys
	User Keys
	User Key Generation Algorithm

	Status Keys
	Hierarchy Parent Key
	Hierarchy Root Key

	Creating and Maintaining Integration Objects
	Integration Object Builder Overview
	Creating Integration Objects Using the EAI Siebel Wizard
	Siebel Integration Object Fine-Tuning
	Integration Object Validation
	Integration Objects Synchronization
	Synchronization Considerations
	Synchronization Rules
	Updating the Entire Integration Object
	Deleting a Component from the Integration Object

	The EAI Siebel Wizard
	Siebel Integration Objects Maintenance and Upgrade
	Permission Rules for Integration Components
	EAI Siebel Adapter Access Control
	Integration Object User Properties
	Example of an Integration Object With M:M Relationship
	Generating Schemas
	Performance Considerations
	Size of Integration Object
	Force-Active Fields
	Picklist Validation

	Business Component Restrictions
	System Fields

	Best Practices

	Business Services
	Overview of Business Services
	Creating Business Services
	Business Service Structure
	About Property Sets

	Creating Business Services in Siebel Tools
	Defining a Business Service in Siebel Tools
	Defining Business Service Methods
	Defining Business Service Method Arguments
	Defining and Writing Business Service Scripts
	Specifying Business Service Subsystems
	Defining Business Service User Properties

	Creating a Business Service in the Siebel Client
	Business Service Export and Import
	Testing Your Business Service
	Accessing a Business Service Using Siebel eScript or Siebel VB

	Business Scenario
	Code Sample

	Web Services
	Web Services Overview
	Supported Web Services Standards
	Web Services Inbound Dispatcher Defined
	Web Services Support for Transport Headers

	Inbound Web Services
	Publishing Inbound Web Services
	Generating a WSDL File

	Outbound Web Services
	Outbound Web Services Based on an External WSDL File
	Outbound Web Services Administration
	Integration Objects as Input Arguments to an Outbound Web Service

	XML Schema Support for <xsd:any> Tag
	Mapping the <xsd:any> Tag in the WSDL Import Wizard
	Mapping the <xsd:any> Tag in the XML Schema Wizard

	Examples of Invoking Web Services
	Invoking an External Web Service Using Workflow or Scripting
	Invoking a Siebel Web Service From an External Application

	Troubleshooting Tips
	Integration Components Cardinality

	EAI Siebel Adapter
	EAI Siebel Adapter Overview
	EAI Siebel Adapter Methods
	EAI Siebel Adapter Method Arguments
	Query Method
	QueryPage Method
	Synchronize Method
	Upsert Method
	Insert Method
	Update Method
	Delete Method
	Execute Method
	Execute Method Operations
	Supported Operations for the Parent and Its Child Components

	XML Examples
	MVGs in EAI Siebel Adapter
	Setting a Primary Address for an Account

	Search Specification
	Language-Independent Code
	LOV Translation

	EAI Siebel Adapter Concurrency Control
	Modification Key
	Modification IDs
	Modification ID for a Base Table
	Modification ID for an Extension Table
	Modification ID for a Joined Table
	MVG and MVGAssociation Integration Components
	Integration Component Account Example
	Integration Component Account_Organization Example

	Siebel eAI and Run-Time Events

	Siebel eAI and File Attachments
	Exchange of Attachments with External Applications
	Using MIME Messages to Exchange Attachments
	Creating the Integration Object
	Creating Workflow Processes Examples
	Outbound Workflow Process
	Inbound Workflow Process Example

	The EAI MIME Hierarchy Converter
	Outbound Integration
	Inbound Integration

	The EAI MIME Doc Converter
	EAI MIME Doc Converter Properties

	Siebel Virtual Business Components
	Overview of Virtual Business Components
	Enhancements to VBCs for This Version
	Usage and Restrictions

	Virtual Business Components
	Creating a New Virtual Business Component
	Setting User Properties for the Virtual Business Component

	XML Gateway Service
	XML Gateway Methods
	XML Gateway Method Arguments

	Examples of Outgoing XML Format
	Search-Spec Node-Type Types
	Examples of Incoming XML Format
	External Application Setup
	Custom Business Service Methods
	Common Method Parameters
	Business Services Methods and Their Property Sets

	Custom Business Service Example

	Predefined EAI Business Services
	Predefined EAI Business Services

	Property Set Representation of Integration Objects
	Property Sets and Integration Objects
	Property Set Node Types
	Example of a Sample Account

	DTDs for XML Gateway Business Service
	Outbound DTDs
	Delete
	Init
	Insert
	PreInsert
	Query
	Update

	Inbound DTDs
	Delete Response
	Init Response
	Insert Response
	PreInsert Response
	Query Response
	Update Response

	Index

