
INTEGRATION PLATFORM TECHNOLOGIES: SIEBEL
eBUSINESS APPLICATION INTEGRATION VOLUME II
VERSION 7.5.3

AUGUST 2003

12-FRX5O5

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2003 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photographic, magnetic, or other record, without the prior agreement and written
permission of Siebel Systems, Inc.

Siebel, the Siebel logo, TrickleSync, TSQ, Universal Agent, and other Siebel product names referenced herein
are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered trademarks of their
respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial computer
software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial Computer Software
Documentation, and as such, any use, duplication and disclosure of the Programs, Ancillary Programs and
Documentation shall be subject to the restrictions contained in the applicable Siebel license agreement. All
other use, duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions contained in
subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted Rights (June 1987), or
FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987), as applicable. Contractor/licensor
is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information
Siebel Systems, Inc. considers information included in this documentation and
in Siebel eBusiness Applications Online Help to be Confidential Information.
Your access to and use of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems software license
agreement, which has been executed and with which you agree to comply; and
(2) the proprietary and restricted rights notices included in this documentation.

Contents
Integration Platform Technologies: Siebel eBusiness Application Integration Volume II 1

Introduction
How This Guide Is Organized . 11

Additional Resources . 12

Revision History . 13

Chapter 1. About Integration Objects
Integration Objects Terminology . 15

Siebel Integration Objects . 16

Integration Object Base Object Type . 18

Integration Object and Integration Object Instance 19

Siebel Integration Object Wizards . 21

Structure of Siebel Integration Objects . 22

Associations . 26

Multi-Value Groups . 27

Picklists . 33

Calculated Fields . 35

Inner Joins . 35

Operation Control . 36

Field Dependencies . 37

Primaries . 37

Repository Objects . 37
Integration Component Keys . 38

User Keys . 38
Version 7.5.3 eAI Volume II: Integration Platform Technologies 3

Contents
Status Keys . 44

Hierarchy Parent Key . 44

Hierarchy Root Key . 45

Chapter 2. Creating and Maintaining Integration Objects
Integration Object Builder Overview . 47

Creating Integration Objects Using the EAI Siebel Wizard 48

Siebel Integration Object Fine-Tuning . 51

Integration Object Validation . 51

Integration Objects Synchronization . 52

Synchronization Considerations . 52
Synchronization Rules . 57

The EAI Siebel Wizard . 62

Siebel Integration Objects Maintenance and Upgrade 64

Permission Rules for Integration Components . 65

EAI Siebel Adapter Access Control . 66

Integration Object User Properties . 66

Example of an Integration Object With M:M Relationship 70

Generating Schemas . 72

Performance Considerations . 73

Business Component Restrictions . 74

Best Practices . 74

Chapter 3. Business Services
Overview of Business Services . 77

Creating Business Services . 78

Business Service Structure . 79

About Property Sets . 80

Creating Business Services in Siebel Tools . 82
4 eAI Volume II: Integration Platform Technologies Version 7.5.3

Contents
Defining a Business Service in Siebel Tools . 83
Defining Business Service Methods . 84

Defining Business Service Method Arguments . 84

Defining and Writing Business Service Scripts . 85

Specifying Business Service Subsystems . 86

Defining Business Service User Properties . 87

Creating a Business Service in the Siebel Client 87

Business Service Export and Import . 88

Testing Your Business Service . 89

Accessing a Business Service Using Siebel eScript or Siebel VB 90

Business Scenario . 91

Code Sample . 93

Chapter 4. Web Services
Web Services Overview . 95

Inbound Web Services . 97

Outbound Web Services .100

XML Schema Support for <xsd:any> Tag .105

Examples of Invoking Web Services .107

Troubleshooting Tips .115

Chapter 5. EAI Siebel Adapter
EAI Siebel Adapter Overview .117

EAI Siebel Adapter Methods .117

Query Method . 122

QueryPage Method . 123

Synchronize Method . 123

Upsert Method . 124

Insert Method . 125

Update Method . 125
Version 7.5.3 eAI Volume II: Integration Platform Technologies 5

Contents
Delete Method . 126

Execute Method . 126

XML Examples . 129

MVGs in EAI Siebel Adapter . 131

Search Specification . 134

Language-Independent Code . 138

EAI Siebel Adapter Concurrency Control . 139

Modification Key . 140

Modification IDs . 140

Siebel eAI and Run-Time Events . 145

Chapter 6. Siebel eAI and File Attachments
Exchange of Attachments with External Applications 147

Using MIME Messages to Exchange Attachments 148

Creating the Integration Object . 149

Creating Workflow Processes Examples . 150

The EAI MIME Hierarchy Converter . 156

Outbound Integration . 157

Inbound Integration . 158

The EAI MIME Doc Converter . 159

EAI MIME Doc Converter Properties . 160

Chapter 7. Siebel Virtual Business Components
Overview of Virtual Business Components . 163

Enhancements to VBCs for This Version . 165

Usage and Restrictions . 165

Virtual Business Components . 166

Creating a New Virtual Business Component . 167

Setting User Properties for the Virtual Business Component 168

XML Gateway Service . 169
6 eAI Volume II: Integration Platform Technologies Version 7.5.3

Contents
XML Gateway Methods . 172

XML Gateway Method Arguments . 173

Examples of Outgoing XML Format . 174

Search-Spec Node-Type Types . 179

Examples of Incoming XML Format . 180

External Application Setup . 183

Custom Business Service Methods . 183

Common Method Parameters . 184

Business Services Methods and Their Property Sets 185

Custom Business Service Example . 203

Appendix A. Predefined EAI Business Services
Predefined EAI Business Services .219

Appendix B. Property Set Representation of Integration
Objects

Property Sets and Integration Objects . 223

Property Set Node Types . 224

Example of a Sample Account . 226

Appendix C. DTDs for XML Gateway Business Service
Outbound DTDs . 229

Inbound DTDs .231

Index
Version 7.5.3 eAI Volume II: Integration Platform Technologies 7

Contents
8 eAI Volume II: Integration Platform Technologies Version 7.5.3

Introduction
This guide explains the details of Siebel eBusiness Application Integration’s (Siebel
eAI’s) integration platform technologies, including integration objects, business
services, EAI Siebel Adapter, virtual business components, and so on.

The audience for this guide consists primarily of employees in these categories:

The audience for this book also needs to have experience in data integration, data
transformation (data mapping), scripting or programming, and XML.

Business Analysts Persons responsible for analyzing application integration
challenges and planning integration solutions at an enterprise.

Database
Administrators

Persons who administer the database system, including data
loading, system monitoring, backup and recovery, space
allocation and sizing, and user account management.

Siebel Application
Administrators

Persons responsible for planning, setting up, and maintaining
Siebel applications.

Siebel Application
Developers

Persons who plan, implement, and configure Siebel applications,
possibly adding new functionality.

Siebel Integration
Developers

Persons responsible for analyzing a business situation or using the
analysis of a business analyst to build the integration solution for
Siebel applications at an enterprise.

Siebel System
Administrators

Persons responsible for the whole system, including installing,
maintaining, and upgrading Siebel applications.

System Integrators Persons responsible for analyzing a business situation or using an
analysis to build integration solutions or to develop custom
solutions for specific applications at an enterprise.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 9

Introduction
Product Modules and Options
This Siebel Bookshelf contains descriptions of modules that are optional and for
which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software
implementation may differ from descriptions in this Bookshelf. To find out more
about the modules your organization has purchased, see your corporate purchasing
agent or your Siebel sales representative.
10 eAI Volume II: Integration Platform Technologies Version 7.5.3

Introduction

How This Guide Is Organized
How This Guide Is Organized
This book is organized in a way that presents the most important information up
front. It describes how to create and maintain integration objects and then provides
description of individual components of the EAI integration platform, such as
virtual business components.

This book is Volume 2 of a five-volume set. The full set includes:

■ Overview: Siebel eBusiness Application Integration Volume I

■ Integration Platform Technologies: Siebel eBusiness Application Integration
Volume II

■ Transports and Interfaces: Siebel eBusiness Application Integration Volume III

■ Business Processes and Rules: Siebel eBusiness Application Integration Volume IV

■ XML Reference: Siebel eBusiness Application Integration Volume V
Version 7.5.3 eAI Volume II: Integration Platform Technologies 11

Introduction

Additional Resources
Additional Resources
The product documentation set for Siebel eBusiness Applications is provided on the
Siebel Bookshelf CD-ROM or in Siebel Online Help. The following integration related
books and online help describe all the tools required to implement integration:

■ Siebel Tools Online Help.

■ Siebel Tools Reference.

■ Siebel Business Process Designer Administration Guide.

■ Siebel Enterprise Integration Manager Administration Guide if you perform bulk
loading or unloading of data.

■ Application Services Interface Reference.

The Connector books provide specifics on each of the associated connectors.
12 eAI Volume II: Integration Platform Technologies Version 7.5.3

Introduction

Revision History
Revision History
eAI Volume II: Integration Platform Technologies

Version 7.5.3

Version 7.5, Rev. A

Table 1. Changes Made in Version 7.5.3

Topics Revision

“XML Schema Support for <xsd:any>
Tag”

New for 7.5.3: Support of the <xsd:any> tag
added to Chapter 4, “Web Services.”

“Web Services Support for Transport
Headers”

New for 7.5.3: Support for Transport Headers
in Chapter 4, “Web Services.”

Table 2. Changes Made in Version 7.5, Rev. A

Topics Revision

“Integration Object Base Object Type” Added a new table presenting Integration
Object Types. Chapter 1, “About Integration
Objects.”

“Picklists” Changed PicklistUserKey to PicklistUserKeys
and added requirements in Chapter 1, “About
Integration Objects.”

“Picklists” Added this user property to Table 6 in
Chapter 2, “Creating and Maintaining
Integration Objects.”

“Example of an Integration Object With
M:M Relationship”

Added a new section discussing integration
objects with M:M in Chapter 2, “Creating and
Maintaining Integration Objects.”

“Inner Joins” Added new content in Chapter 2, “Creating
and Maintaining Integration Objects.”

“Best Practices” Added new scenarios in Chapter 2, “Creating
and Maintaining Integration Objects.”
Version 7.5.3 eAI Volume II: Integration Platform Technologies 13

Introduction

Revision History
“Code Sample” Changed CanInvoke == "TRUE" to
CanInvoke = "TRUE" in Chapter 3, “Business
Services.”

“Accessing a Business Service Using
Siebel eScript or Siebel VB”

New examples on calling business services in
Chapter 3, “Business Services.”

“Web Services Overview” Provided more details throughout the
Chapter 4, “Web Services”.

Chapter 7, “Siebel Virtual Business
Components”

Updated all the examples in Chapter 7,
“Siebel Virtual Business Components.”

“Insert Method” Updated the definition for Update method in
Chapter 5, “EAI Siebel Adapter.”

“Query Method” Added a new example for Query method in
Chapter 5, “EAI Siebel Adapter.”

“Custom Business Service Example” Added a new example in Chapter 7, “Siebel
Virtual Business Components.”

Table 2. Changes Made in Version 7.5, Rev. A

Topics Revision
14 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects 1
This chapter describes the structure of Siebel integration objects. It describes the
Integration Object Builder wizard, which assists you in building your own
integration objects based on Siebel objects.

Integration Objects Terminology
This chapter describes the concepts that are often referred to using different
terminology from one system to another. Table 3 has been included to clarify the
information in this chapter by providing a standard terminology for these concepts.

Table 3. Terminology

Term Description

Metadata Data that describes data. For example, the term datatype describes data elements
such as char, int, Boolean, time, date, and float.

Siebel business object A Siebel object type that creates a logical business model using links to tie
together a set of interrelated business components. The links provide the one-
to-many relationships that govern how the business components interrelate in
this business object.

Component A constituent part of any generic object.

Siebel business
component

A Siebel object type that defines a logical representation of columns in one or
more database tables. A business component collects columns from the business
component’s base table, its extension tables, and its joined tables into a single
structure. Business components provide a layer of abstraction over tables.
Applets in Siebel applications reference business components; they do not
directly reference the underlying tables.

Field A generic reference to a data structure that can contain one data element.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 15

About Integration Objects

Siebel Integration Objects
Siebel Integration Objects
Siebel integration objects allow you to represent integration metadata for Siebel
business objects, XML, SAP IDOCs, and SAP BAPIs as common structures that the
EAI infrastructure can understand. Because these integration objects adhere to a set
of structural conventions, they can be traversed and transformed programmatically,
using Siebel eScript objects, methods, and functions, or transformed declaratively
using Siebel Data Mapper.

NOTE: For more information, see Business Processes and Rules: Siebel eBusiness
Application Integration Volume IV.

Siebel integration
component field

A data structure that can contain one data element in a Siebel integration
component.

Siebel integration
component

A constituent part of a Siebel integration object.

Integration object An integration object of any type, including the Siebel integration object, the
SAP BAPI integration object, and the SAP IDOC integration objects.

Integration object instance Actual data, usually the result of a query or other operation, which is passed
from one business service to another, that is structurally modeled on a Siebel
integration object.

Siebel integration object An object stored in the Siebel repository that represents some Siebel business
object.

Integration message A bundle of data consisting of two major parts: header information that
describes what should be done with or to the message itself, and instances of
integration objects, that is, data in the structure of the integration object.

Table 3. Terminology

Term Description
16 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Siebel Integration Objects
The typical integration project involves transporting data from one application to
another. For example, you may want to synchronize data from a back-office system
with the data in your Siebel application. You may want to generate a quote in the
Siebel application and perform a query against your Enterprise Resource Planning
(ERP) system transparently. In the context of Siebel eAI, data is transported in the
form of an integration message. A message, in this context, typically consists of
header data that identifies the message type and structure, and a body that contains
one or more instances of data—for example, orders, accounts, or employee records.

When planning your integration project, you should consider several issues:

■ How much data transformation does your message require?

■ At what point in the process do you perform the data transformation?

■ Is a confirmation message response to the sender required?

■ Are there data items in the originating data source that should not be replicated
in the receiving data source, or that should replace existing data in the receiving
data source?

This guide can help you understand how Siebel eAI represents the Siebel business
object structure. It also provides descriptions of how Siebel eAI represents external
SAP R/3 structures.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 17

About Integration Objects

Siebel Integration Objects
Integration Object Base Object Type
Each integration object created in Siebel Tools has to be based on one of the base
object types presented in Table 4. This property is used by adapters to determine
whether the object is a valid object for them to process.

NOTE: XML converters can work with any of the base object types.

Table 4. Base Object Types

Name Description

None For internal use only.

OLE DB Used to expose Siebel business component as OLEDB rowset that can
be used by OLEDB consumers such as Excel, Word, and so on. The
OLE DB Provider only accepts integration objects of this type.

SAP BAPI Input Used to represent the input structure of an SAP RFC or BAPI function
call. For details, see Siebel eBusiness Connector for SAP R/3
Guide.

SAP BAPI Output Used to represent the output structure of an SAP RFC or BAPI
function call. For details, see Siebel eBusiness Connector for SAP
R/3 Guide.

SAP IDOC Used with the IDOC Adapter and Receiver in version 6.x and 7.0. For
details, see Siebel eBusiness Connector for SAP R/3 Guide.

SAP IDOC
Adapter

Used to represent an SAP IDOC structure. For details, see Siebel
eBusiness Connector for SAP R/3 Guide.

SQL Used for manually creating integration objects. Only the EAI SQL
Adapter accepts integration objects of this type.

SQL Database
Wizard

Used by the Database Wizard for the integration object it creates.
Only the EAI SQL Adapter accepts integration objects of this type.

SQL Oracle
Wizard

Used by the Oracle Wizard for the integration object it creates. Only
the EAI SQL Adapter accepts integration objects of this type.

Siebel Business
Object

Used by the Integration Object Builder wizard for the integration
object it creates. EAI Siebel Adapter only accepts integration object of
this type.
18 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Integration Object and Integration Object Instance
Integration Object and Integration Object Instance
Understanding the difference between integration objects and integration object
instances is important, especially in regard to the way they are discussed in this
chapter.

An integration object, in the context of Siebel eAI, is metadata; that is, it is a
generalized representation or model of a particular set of data. It is a schema of a
particular thing.

An integration object instance is also referred to as a Siebel Message object.

Table Obsolete.

XML Used to represent external XML Schema such as DTD or XSD. For
details on DTD and XSD, see XML Reference: Siebel eBusiness
Application Integration Volume V.

Table 4. Base Object Types

Name Description
Version 7.5.3 eAI Volume II: Integration Platform Technologies 19

About Integration Objects

Integration Object and Integration Object Instance
An integration object instance is actual data organized in the format or structure of
the integration object. Figure 1 illustrates a simple example of an integration object
and an integration object instance, using partial data.

Any discussion of integration objects in this book will include clarifying terms to
help make the distinction—for example, metadata or Siebel instance.

Figure 1. Integration Object and Integration Object Instance
20 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Siebel Integration Object Wizards
Siebel Integration Object Wizards
Within Siebel Tools, there are multiple wizards associated with integration objects:
one that creates integration objects for internal use by the Siebel application, and
others that create integration objects for external systems based on Siebel objects.
Figure 2 shows the logic of Integration object Wizard and Generate Schema Wizard.
The Generate Code wizard (not shown) works in the same manner as the Generate
Schema wizard, but it generates Java classes.

Figure 2. Integration Object Wizards
Version 7.5.3 eAI Volume II: Integration Platform Technologies 21

About Integration Objects

Structure of Siebel Integration Objects
■ Integration Object Builder wizard. This wizard lets you create a new object. It
supplies the functionality for creating integration objects from Siebel business
objects or integration objects based on representations of external business
objects using XML Schema Definition (XSD) or Document Type Definition
(DTD). To access this wizard, navigate to the New Object dialog box in Siebel
Tools and after selecting the EAI tab, double-click the Integration Object icon to
start the Integration Object Builder wizard.

■ Generate XML Schema wizard. This wizard lets you choose an integration object
and output XML schema in XML Schema Definition (XSD) standard, Document
Type Definition (DTD), or Microsoft’s XDR (XML Data Reduced) format. To
access this wizard, navigate to the Integration Objects list in Siebel Tools and
select an integration object. Then click Generate Schema to start the Generate
XML Schema wizard.

■ Code Generator wizard. The third wizard lets you create a set of Java class files
based on any available integration object or Siebel business service. To access
this wizard, navigate to the Integration Objects list in Siebel Tools object explorer
and select an integration object. Then click Generate Code to start the Code
Generator wizard.

NOTE: Specific instructions on how to use these wizards appear throughout the
Siebel eBusiness Application Integration documentation set where appropriate.

Structure of Siebel Integration Objects
The Siebel integration object provides a hierarchical structure that represents a
complex data type. Most specifically, prebuilt eAI integration objects describe the
structure of Siebel business objects, SAP IDOCs, SAP BAPIs, XML, and external
data. Most integration projects require the use of an integration object that describes
Siebel business objects, either in an outbound direction such as a query operation
against a Siebel integration object or in an inbound direction such as a synchronize
operation against a Siebel integration object.
22 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Structure of Siebel Integration Objects
Chapter 2, “Creating and Maintaining Integration Objects” continues with
descriptions of how to create integration objects. The initial process of using the
Integration Object Builder wizard is essentially the same for every integration object
type currently supported.

CAUTION: You should avoid using or modifying integration objects in the EAI Design
project. Using or modifying any objects in the EAI Design project can cause
unpredictable results.

Siebel business objects conform to a particular structure in memory. Although it is
generally not necessary to consider this structure when working with Siebel
applications, when you are planning and designing an integration project it is
helpful to understand how a Siebel eAI integration object represents that internal
structure.

An integration object consists of one Parent Integration Component, sometimes
referred to as the root component or the primary integration component. The Parent
Integration Component corresponds to the primary business component of the
business object you chose as the model for your integration object. Figure 3 shows
the Account business object in Siebel Tools.

For example, assume you chose the Account business object (on the first panel of
the Integration Object Builder wizard) to base your integration object
myAccount_01 on. The Account business object in Siebel Tools has an Account
business component as its primary business component. In the myAccount_01
integration object, every child component will be represented as either a direct or
indirect child of the primary business component named Account.

Figure 3. Account Parent Business Component
Version 7.5.3 eAI Volume II: Integration Platform Technologies 23

About Integration Objects

Structure of Siebel Integration Objects
Each child component can have one or more child components. In Siebel Tools, if
you look at the integration components for an integration object you have created,
you will see that each component can have one or more fields. Figure 4 on page 25
illustrates a partial view of a Siebel integration object based on the Account
business object, with the Business Address component and the Contact component
activated.
24 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Structure of Siebel Integration Objects
Figure 4 represents part of the structure of the Account integration object. The
Account parent integration component can have both fields and child integration
components. Each integration component can also have child integration
components and fields. A structure of this sort represents the metadata of an
Account integration object. You may choose to inactivate components and fields. By
inactivating components and fields, you can define the structure of the integration
object instances entering or leaving the system.

Figure 4. Representation of Partial Account Integration Object
Version 7.5.3 eAI Volume II: Integration Platform Technologies 25

About Integration Objects

Structure of Siebel Integration Objects
Associations
Siebel business objects are made up of business components that are connected by
a link. An association is a business component that represents the intersection table
that contains these links. The integration component definition of associations is
similar to that of multi-value groups (MVGs). User properties Association and
MVGAssociation on the integration component denote that the corresponding
business component is an associated business component or an associated MVG,
respectively. For fields that are defined on MVG associations, External Name
denotes the name of the business component field as it appears on the parent
business component, and the user property AssocFieldName denotes the name of
the business component field as it appears on the MVG business component.
26 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Structure of Siebel Integration Objects
For example, the Contact business object is partly made up of the Contact and
Opportunity business components. The association between these two business
components is represented by the Contact/Opportunity link with a value or a table
name in the Inter Table column. The Integration Object Builder wizard creates a
new integration component for the integration object based on the Contact business
object that represents the association. As shown in Figure 5, the Opportunity
integration component has one user property defined: the Association user
property, set to a value of Y.

NOTE: When building an integration object, if an integration component is an
association based on an intersection table, the user key for this integration
component cannot contain fields based directly or indirectly on the same
association intersection table.

Multi-Value Groups
Multi-value groups (MVGs) are used within Siebel business components to
represent database multivalued attributes. MVGs can be one of two types: regular
MVGs or MVG Associations.

Figure 5. Integration Component Representation of Association
Version 7.5.3 eAI Volume II: Integration Platform Technologies 27

About Integration Objects

Structure of Siebel Integration Objects
An integration object instance most often has multiple integration component
instances. For example, an Account can have multiple Business Addresses but only
one of these addresses is marked as the primary address. A business requirement
may require that only the integration component instance that corresponds to the
primary MVG be part of the integration object instance. In relation to Account and
Business Addresses this means that only the primary address should be part of the
Account integration object instance. The primary address can be obtained by one of
the following steps:

■ Creating a new MVG on the Account business component that uses a link with
a search specification only returning the primary address record.

■ Exposing the primary address information on the Account business component
level using a join that has the primary ID as source field. Note that in this case
the primary address information corresponds to fields on the Account
integration component instance and not the fields on a separate Address
component instance.

In Siebel Tools, if a Siebel business component contains an MVG, the MVG is
represented in several screens as illustrated in the following sections.

Screen 1: Fields View
For example, as illustrated in Figure 6, the Account business component contains a
multi-value group field, the Address Id.

Figure 6. Address Id MVG Field in the Account Business Component
28 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Structure of Siebel Integration Objects
Screen 2: Multi-Value Links
As shown in Figure 7, the multi-value link property has the value Business Address.
If you navigate to the Multi Value Link screen, you see that the Business Address
multi-value link has the value Business Address as its Destination Business
Component.

Figure 7. Destination Business Component
Version 7.5.3 eAI Volume II: Integration Platform Technologies 29

About Integration Objects

Structure of Siebel Integration Objects
Screen 3: Fields View
As shown in Figure 8, the Business Address multi-value link has Business Address
as its Destination Business Component. This means that there is another business
component named Business Address that contains the fields that are collectively
represented by Address Id in the Account business component.

Figure 8. Business Address Business Component
30 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Structure of Siebel Integration Objects
Graphical Representation
Figure 9 shows a graphical way to represent the relationship between Account
business component and the Business Address multi-value link.

The more table-like representation above shows how the Business Address multi-
value link connects the two business components. The child points to the Business
Address business component, which contains the multiple fields that make up the
MVG.

NOTE: Two business components are used to represent an MVG.

Figure 9. Address Id Field and Business Address MVG
Version 7.5.3 eAI Volume II: Integration Platform Technologies 31

About Integration Objects

Structure of Siebel Integration Objects
Creating an Integration Component
To create a Siebel integration component to represent an MVG, it is necessary also
to create two integration components:

■ The first integration component represents the parent business component. In
the example, this is the Account business component. This integration
component contains only the fields that are defined in the parent business
component, but which are not based on MVGs. The Multi-value Link property
and the Multi-value property are empty for these fields.

■ The second integration component represents the MVG business component. In
the example, this is the Business Address business component. The second
integration component has one integration field for each field based on the given
MVG in the parent business component. An integration component user
property will be set on this integration component to tell the EAI Siebel Adapter
that it is based on an MVG business component. If the MVG is a regular MVG,
the user property is named MVG. If the MVG is an Association MVG, then the
user property is named MVGAssociation. In both cases, the value of the user
property is Y.

Figure 10 shows an integration component based on an MVG and its user property
value in Siebel Tools.

Figure 10. Integration Component Based on MVG Business Component
32 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Structure of Siebel Integration Objects
The EAI Siebel Adapter needs to know the names of the MVG fields as they are
defined in the parent business component—in this example, Account—and also the
names of the MVG fields as they are known in the business component that
represents the MVG—in this example, Account Business Address. As shown in
Figure 11, the integration component fields represent the MVG.

To represent both names, each field is assigned an integration component field user
property that contains the entry MVGFieldName or AssocFieldName if the user
property is MVGAssoc. Its value is the name of the field shown in the parent
business component—in this example, Business Address.

Picklists
If an integration component field is created for a Siebel business component field
and the business component field is based on a picklist, validation of the field can
be done in EAI Siebel Adapter or Object Manager. To have the validation done in
EAI Siebel Adapter, the integration component field should have a user property
with the name PICKLIST and a value of Y; otherwise, validation is done by Object
Manager.

Figure 11. Integration Component Fields Representing MVG
Version 7.5.3 eAI Volume II: Integration Platform Technologies 33

About Integration Objects

Structure of Siebel Integration Objects
If validation is done by EAI Siebel Adapter, and the pickmap for the picklist contains
more than one field, when designing the integration object, you need to decide
which of the fields to use as a search criterion and which to simply update if input
values are different than those in the picklist (provided that picklist allows updates).

An example would be an integration object based on Order Entry business object.
The root component of the Order Entry business object is Order Entry - Orders with
a field Account, whose pickmap contains a large number of fields such as Account,
Account Location, Account Integration Id, Currency Code, Price List and so on. One
of the tasks the integration object designer needs to perform is to determine which
of these fields should be used to identify the account for an order.

If the PicklistUserKeys user property on the integration component field that is
mapped to the field with the picklist (in the example above: Account) is not defined,
then any integration component fields that are mapped to columns in the U1 index
of business component's base table, and are present in the pickmap will be used by
EAI Siebel Adapter to find the matching record in the picklist. (In the example
above, this would be Account and Account Location.)

In cases where the default user key for the picklist does not satisfy your business
requirements (for example, Account Integration Id should be solely used instead of
the default user key to pick an Account), or you want to make the user key explicit
for performance reasons, then the PicklistUserKeys user property should be used.

The value of the PicklistUserKeys user property is a comma separated list of
integration component fields that are used to find the matching record in the picklist
(for example, 'Account, Account Location' or 'Account Integration Id').

In order for EAI Siebel Adapter to use the fields referenced in PicklistUserKeys user
property, the fields must be included in the pickmap of the underlying business
component field. Please note that if the business component field names and
integration component field names, listed in the PicklistUserKeys property, are not
the same, then the picklist should contain external names of the fields listed in the
PicklistUserKeys user property.
34 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Structure of Siebel Integration Objects
If there is a field present in the business component and in the pickmap, and it is
stored in the base table, then EAI Siebel Adapter can use the picklist to populate this
field, only if this field is present and active in the integration component. This field
should also be present and empty in the input property set.

NOTE: Picklist validation in EAI Siebel Adapter is required for dynamic picklists. For
details, see “Picklist Validation” on page 73.

Calculated Fields
Calculated fields are inactive in the integration object when they are created. If your
business needs require it, you need to activate the calculated fields in the
integration object.

NOTE: Calculated fields are those integration component fields that have the
Calculated flag checked on the corresponding business component field.

Inner Joins
When inner joins are used, records for which the inner joined field is not set are not
returned in any query. By default the wizard inactivates such fields. If your business
needs require these fields, you need to activate them.

NOTE: If the inner join has a join specification that is based on a required field, then
the wizard will not inactivate the fields that are using that particular join.

For example, assume that Account business component has an inner join to S_PROJ
table, with Project Id field being the source field in the join specification, and the
Project Name field being based on that join.

If an integration component, with an active Project Name field is mapped to the
Account business component, then when this integration component is queried
only accounts with Project Id field populated will be considered.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 35

About Integration Objects

Structure of Siebel Integration Objects
Because Project Id is not a required field in Account business component, not every
account in Siebel Database is associated with a project. So, having Project Name
active in the integration component would limit the scope of the integration
component to only accounts associated with a project. This typically is not
desirable, so the wizard inactivates the Project Name field in this example.

If the business requirement is to include the Project Name field, but not to limit the
integration component’s scope to only accounts with project, then you can change
the join to S_PROJ in the Account business component to an outer join. For details
on join, see Siebel Tools Reference.

NOTE: Activating an inner join may cause a query on that integration component to
not find existing rows.

Operation Control
Each integration component has user properties that indicate if an Insert, Update,
or Delete can be performed on the corresponding business component, indicated by
a NoInsert, NoUpdate, or NoDelete. A similar user property NoUpdate may be set
on an integration component field. If any of these user properties are set to Y, the
corresponding business component method is used to validate the operation.

The user properties NoQuery and NoSynchronize are defined on integration
components to specify to the Siebel Adapter if a corresponding operation is to be
performed on an instance of that type. These properties take values Y or N.

The user property AdminMode set to Y indicates that the update of the
corresponding business component is to be performed in admin mode. This can be
defined on either integration object or integration component definitions.

The user properties IgnorePermissionErrorsOnUpdate,
IgnorePermissionErrorsOnInsert, and IgnorePermissionErrorsOnDelete can be used
to suppress the errors that arise from having the NoUpdate, NoInsert, and NoDelete
user properties set to Y. The error is ignored and processing will continue when
properties IgnorePermissionErrorsOnUpdate, IgnorePermissionErrorsOnInsert and
IgnorePermissionErrorsOnDelete are set to Y.
36 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Structure of Siebel Integration Objects
Field Dependencies
Dependency between fields can be defined by user properties of the integration
component field. The names of these user properties must start with
FieldDependency, and the value of each property should contain the name of the
field that the associated field is dependent on. The Siebel Adapter processes fields
in the order defined by these dependencies and errors out if cyclic dependencies
exist.

Siebel Adapter automatically takes into account dependencies of fields set by a
PickList on the fields used as constraints in that PickList. For example, if a PickList
on field A also sets field B, and is constrained by the field C, then this implies
dependencies of both A and B on C. As a consequence, Siebel Adapter will set field
C before fields A and B.

Primaries
Primaries are set through multi-value links. However, you should not use multi-
value links for modifying the linked component. To modify the linked component
you should use links. If you need to set primaries in addition to modifying the linked
component, use both links and multi-value links in your integration object. EAI
Siebel Adapter should use the multi-value link only after it processes the component
through the link; therefore, the link or the Association component should have a
smaller external sequence number than the related MVG or MVGAssociation
component. See “Structure of Siebel Integration Objects” on page 22 for an
example.

Repository Objects
For the Siebel adapter to deal with repository objects, a user property REPOBJ needs
to be defined on the root integration component. If this is set to Y, the Siebel adapter
sets a context on the repository so that the rest of the operations are performed in
that context.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 37

About Integration Objects

Structure of Siebel Integration Objects
Integration Component Keys
There are multiple types of integration component keys.

■ User Key. See “User Keys” on page 38.

■ Status Key. See “Status Keys” on page 44.

■ Hierarchy Parent Key. See “Hierarchy Parent Key” on page 44.

■ Hierarchy Root Key. See “Hierarchy Root Key” on page 45.

■ Modification Key. See “EAI Siebel Adapter Concurrency Control” on page 139.

■ Foreign Key. See Siebel eBusiness Connector for Oracle Guide.

■ Target Key. See Siebel eBusiness Connector for Oracle Guide.

NOTE: There should be just one integration component key for every type of key
except the user key. For example, if there are two Hierarchy Parent Keys defined for
an integration component, EAI Siebel Adapter picks the first one and ignores the
second one.

User Keys
User key is a group of fields whose values must uniquely identify a Siebel business
component record. During inbound integration, user keys are used to determine
whether the incoming data updates an existing record or inserts a new one. The
Integration Object Builder wizard automatically creates some user keys based on
characteristics discussed in “User Key Generation Algorithm” on page 40. You
should make sure that the generated user keys match your business requirements;
otherwise, inactivate them or add new user keys as appropriate.

Integration component keys are built by the Integration Object Builder wizard based
on values in the underlying table of the business component that the integration
component is based on. Integration objects that represent Siebel business objects,
and that are used in insert, update, synchronize, or execute operations, must have
at least one user key defined for each integration component.

In Siebel Tools, user keys are defined as integration component key objects, with
Key Type property set to User Key.
38 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Structure of Siebel Integration Objects
A sequence of integration component user keys is defined on each integration
component definition, each of which contains a set of fields. During processing of
integration component instance, EAI Siebel Adapter chooses to use the first user key
in the sequence that satisfies the condition that all the fields of that user key are
present in an integration component instance. The first instance of each integration
component type determines the user key used by all instances of that type.

For example, consider the Account integration object instance with only Account
Name and Account Integration Id field present. When EAI Siebel Adapter performs
validation, it first checks the Account and Account Location field (the first user key
for the Account integration component). In this example, because the Account
Location field is missing, EAI Siebel Adapter moves to the second user key—
Account Integration Id. The Account Integration Id field is present in the integration
component instance and has a value, so EAI Siebel Adapter uses that as the user
key to match the record. Now if the same instance also had Account Location field
present, but set to null, then EAI Siebel Adapter would have picked the Account
Name and Account Location combination as the user key. This is because Account
Location is not a required field.

A new user key is picked for each integration object instance (root component
instance). However, for the child component instances, the user key is picked based
on the first child instance, and then used for matching of all instances of that
integration component within the parent integration component instance.

For example, if a Siebel Message contains two orders, then the user key for order
items is picked twice, once for each order. Each time, the user key is selected based
on the first order item record and then used for all the siblings.

NOTE: EAI Siebel Adapter uses user keys to match integration component instances
with business component records. Since the match is case sensitive there is a
chance that records are not matched if the case of the user key fields do not match.
To avoid this, use the Force Case property on the business component field to make
sure that user key fields are always stored in one case.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 39

About Integration Objects

Structure of Siebel Integration Objects
User Key Generation Algorithm
The Integration Object Builder wizard computes the user keys by traversing several
Siebel objects, including the business object, business component, table, and link.
This is because not every table user key meets the requirements to be used as the
basis for integration object user keys.

To understand how the Integration Object Builder wizard determines valid
integration component keys, you can simulate the process of validating the user
keys.

For example, determine the table on which your business component is based. In
Siebel Tools, you can look up this information yourself. Navigate to the Business
Components screen and select a business component and check the Table column.

You can then navigate to the Tables screen, locate the table you want—in this
example, S_CONTACT—and open the User Keys applet to see the user keys defined
for that table.

For example, as shown in Figure 12, the table S_CONTACT has several user keys.

Not every user key will necessarily be valid for a given business component.
Multiple business components can map to the same underlying table; therefore, it
is possible that a table’s user key is not valid for a particular business component
but is specific to another business component.

Figure 12. User Keys for Table S_CONTACT
40 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Structure of Siebel Integration Objects
Each User Key Column defined for a given user key must be exposed to the business
component in which you are interested. For example, Figure 13 shows three user
key columns for the user key S_CONTACT_U1.

If the columns of the user key are exposed in the business component and those
columns are not foreign keys, the Integration Object Builder wizard creates an
integration component key based on the table’s user key. The Integration Object
Builder wizard also defines one integration component key field corresponding to
each of the table’s user key columns. For example, in Figure 14, the user key
columns are exposed in the Integration Component Fields applet for the Contact
integration component.

Figure 13. User Key Columns for the S_CONTACT_U1 User Key

Figure 14. Integration Component Field List
Version 7.5.3 eAI Volume II: Integration Platform Technologies 41

About Integration Objects

Structure of Siebel Integration Objects
The Integration Object Builder wizard, for the preceding example, builds the
integration component keys based on these table user keys. As illustrated in
Figure 15, the wizard defines one integration component key field for each table
user key column.

Figure 15. Integration Component Keys for Each Table User Key Column
42 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Structure of Siebel Integration Objects
Each valid integration component key contains fields. For example, as shown in
Figure 16, for the Contact integration component, User Key 3 is made up of five
fields: CSN, First Name, Last Name, Middle Name, and Personal Contact.

NOTE: You should only modify user keys if you have a good understanding of the
business component and integration logic.

When the Integration Object Builder wizard creates these integration component
keys, it attempts to use the appropriate table user keys, that is, the user keys that
will help uniquely identify a given record. In some cases, you may find that certain
integration component keys created by the Integration Object Builder wizard are not
useful for your particular needs. In that case, you can manually inactivate the keys
you do not want to use by checking the Inactive flag on that particular user key in
Siebel Tools. You can also inactivate user key fields within a given user key.

NOTE: For ease of maintenance and upgrade, inactivate unnecessary generated user
keys and user key fields instead of deleting them.

Figure 16. Contact Integration Component Key Fields
Version 7.5.3 eAI Volume II: Integration Platform Technologies 43

About Integration Objects

Structure of Siebel Integration Objects
Status Keys
In the context of Siebel business objects, user keys are a group of fields whose
values must uniquely identify only one Siebel business component record.
Integration components within a corresponding integration object also contain user
keys.

For many integrations, you want to know the status. For example, if you are sending
an order request you want to know the ID of the Order created so that you can query
on the order in the future. You can set the Status Object of EAI Siebel Adapter to
True to return an integration object instance as a status object.

The status returned is defined in the Integration Component using Status Keys. A
Status Key is an Integration Component key of the type Status Key. Fields defined
as part of the Status Key are included in the returned Status Object. If a Status Key
is not defined for the Integration Component then neither the component nor any
of its children are included in the returned object.

■ To include descendants of an Integration Component without including any of
its fields in the returned status object, specify an empty Status Key.

■ To include information about which one of the update, insert, or delete
operations was performed during an upsert or synchronize request, include a
field named Operation in the Status Key.

Hierarchy Parent Key
The Hierarchy Parent Key is used for integration objects that have a homogeneous
hierarchy. This key should only have the Parent Id. The Hierarchy Parent Key is used
for maintaining the hierarchy and keeping the data normalized.

For example, when you insert quotes, each quote item in turn can have more quote
items. In this case, the very first quote item inserted by EAI Siebel Adapter has the
Parent Id set to blank, but for each child quote item, EAI Siebel Adapter checks the
keys to figure out which fields are to be set. If Hierarchy Parent Key is not defined,
then the child quote item is inserted as a new quote item without a link to its parent
(denormalized).
44 eAI Volume II: Integration Platform Technologies Version 7.5.3

About Integration Objects

Structure of Siebel Integration Objects
Hierarchy Root Key
The Hierarchy Root Key is an optional key that is useful only when integration
objects have a homogeneous hierarchy. You can use this key to improve
performance. The Hierarchy Root Key should have only one field, Root Id, which
EAI Siebel Adapter populates with the value of the ID field in the component
instance that is in the root of the homogenous hierarchy. For example, assume quote
Q1 has quote items A, B, and C where each of the quote items has child quote items
(A1, A2, B1, B2,...). If you want to update the quantity requested for all quote items
starting with the root quote item B, then it is faster if the data is denormalized.
Using the Hierarchy Root Key, you can search for all records with Root Id equal to
the Row Id of B and set the QuantityRequested field for each item.

NOTE: When the business component is hierarchy enabled, then the wizard
automatically sets the Hierarchy Parent Key for the complex integration component.
To have a business component hierarchy enabled you need to set the property
Hierarchy Parent Field.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 45

About Integration Objects

Structure of Siebel Integration Objects
46 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects 2
This chapter describes how to use the Integration Object Builder wizard in Siebel
Tools to create new Siebel integration objects. This wizard guides you through the
process of selecting objects (either from the Siebel repository or from an external
system) on which you can base your new Siebel integration object. This chapter
also describes how to fine-tune and refine the integration object you have created.

Integration Object Builder Overview
The Integration Object Builder builds a list of valid components from which you can
choose the components to include in your Siebel integration object.

NOTE: The Integration Object Builder provides a partial rendering of your data in the
integration object format. You must review the integration object definition and
complete the definition of your requirements. In particular, you should confirm that
user key definitions are defined properly. You may need to enter keys and user
properties manually or inactivate unused keys and fields in Siebel Tools. You should
not expect to use the integration object without modification.

The following checklist gives the high-level procedure for creating an integration
object.

Checklist

❑ Create integration objects using the EAI Siebel Wizard.

For details, see “Creating Integration Objects Using the EAI Siebel Wizard” on
page 48.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 47

Creating and Maintaining Integration Objects

Creating Integration Objects Using the EAI Siebel Wizard
Creating Integration Objects Using the EAI Siebel Wizard
Siebel Tools provides a wizard to walk you through creating an integration object.
You should use this wizard to create your integration object.

To create a new Siebel integration object

1 Start Siebel Tools.

2 Create a new project and lock it, or lock an existing project in which you want
to create your integration object.

3 Choose File > New Object... to display the New Object Wizards dialog box.

4 Select the EAI tab and double-click the Integration Object icon.

5 In the Integration Object Builder wizard:

a Select the project you locked in Step 2.

b Select the EAI Siebel Wizard.

6 Click Next and in the second page of the Integration Object Builder wizard:

a Select the source object. This is the object model for the new Siebel
integration object. Only business objects with Primary Business Components
appear on this picklist.

❑ Fine-tune your integration object.

For details, see “Siebel Integration Object Fine-Tuning” on page 51.

❑ Validate your integration object.

For details, see “Integration Object Validation” on page 51.

Checklist
48 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Creating Integration Objects Using the EAI Siebel Wizard
b Type a unique name in the field for the new Siebel integration object and
click Next.

NOTE: The name of an integration object must be unique among other
integration objects.

The next page of the wizard, the Integration Object Builder - Choose
Integration Components page, displays the available components of the
object you chose.

7 Deselect the components you would like the wizard to ignore. This means you
will not be able to integrate data for that component between the Siebel
application and another system.

NOTE: Any component that has a plus sign (+) next to it is a parent in a parent-
child relationship with one or more child components. If you deselect the parent
component, the children below that component are deselected as well. You
cannot include a child component without also including the parent. The
Integration Object Builder enforces this rule by automatically selecting the
parent of any child you choose to include.

For example, assume you have chosen to build your Siebel integration object on
the Siebel Account business object and you want to create an integration
component based on the Account and Contact business components.

a Deselect the Account integration component at the top of the scrolling list.
This action deselects the entire tree below Account.

b Select the Contact component. When selecting a child component, its parent
component is also selected, but none of the components below the child
component are selected. You must individually select the ones you want.

8 Click Next. The next page displays error or warning messages generated during
the process. Review the messages and take the appropriate actions to address
them.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 49

Creating and Maintaining Integration Objects

Creating Integration Objects Using the EAI Siebel Wizard
9 Click Finish to complete the process of creating a new Siebel integration object.

NOTE: After creating integration objects in Siebel Tools, you must compile a new
.srf file and copy the .srf file to the SIEBSRVR_ROOT/OBJECTS directory.

Your new Siebel integration object appears in the list of integration objects in
Siebel Tools.

On the Integration Components screen, the Account integration component is
the only component that has a blank field in the Parent Integration Component
column. The blank field identifies Account as the root component. The Siebel
integration object also contains the other components selected, such as Contact
and its child components.

NOTE: Once you create your integration object based on a Siebel business object, you
should not change its integration component’s External Name Context; otherwise,
the synchronization process will not recognize the integration component and will
remove it from the integration object.

10 To view the fields that make up each integration component, select a component
from the integration component list in Siebel Tools.

The Integration Component Fields applet displays the list of fields for that
component. Note the system fields Conflict Id, Created, Id, Mod Id, Updated,
operation, and searchspec in the list. This setting prevents EAI Siebel Adapter
Query and QueryPage method from outputting these fields. For more details, see
“System Fields” on page 74 and “Search Specification” on page 134.

NOTE: The XML Sequence property in this applet defines the order in which the
XML tags appear when an integration object is created.
50 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Siebel Integration Object Fine-Tuning
Siebel Integration Object Fine-Tuning
After you create your integration object you need to fine-tune and customize your
integration object based on your business requirements. Following is a list of the
most common practices in fine-tuning an integration object.

■ Deactivate the fields that do not apply to your business requirements.

■ If necessary, activate the fields that have been deactivated by the Siebel wizard.
For details, see Chapter 1, “About Integration Objects.”

■ Add the fields that have not been included by the Siebel wizard. For details on
the implications of activating such fields, see “Calculated Fields” on page 35 and
“Inner Joins” on page 35.

■ Validate the user keys. For details, see Chapter 1, “About Integration Objects.”

■ Update the user properties for your integration object to reflect your business
requirements. For details, see “Integration Object User Properties” on page 66.

Integration Object Validation
Once you have created your integration object and made the necessary
modifications to meet your business requirements, you need to validate your
integration object.

To validate your integration object

1 Open Siebel Tools.

2 Select your integration object.

3 Click Validate.

NOTE: Review the report and modify your integration object as needed.Integration
objects you create in Siebel Tools must be compiled into the Siebel.srf file. Once you
test the integration object, you must copy the compiled .srf to your
SIEBSRVR_ROOT\OBJECTS directory.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 51

Creating and Maintaining Integration Objects

Integration Objects Synchronization
Integration Objects Synchronization
Business objects often require updates to their definitions to account for changes in
data type, length, edit format, or other properties. It is common to want to alter
database metadata, but if you do so you have to also update your integration objects
to account for these updates. Otherwise, you can cause undesirable effects on your
integration projects.

Some examples of these changes are:

■ A field removed

■ A new required field

■ A new picklist for a field

■ A change of relationship from one-to-many to many-to-many

■ An upgrade to a new version of Siebel applications

Synchronization Considerations
To help simplify the synchronization task, Siebel eAI provides an integration object
synchronization utility. Although the process of synchronizing your integration
object with its underlying business object is straightforward, you should review the
integration objects you have modified to make sure that you have not inadvertently
altered them by performing a synchronization. After synchronization, you should
validate your integration object.

The following checklist gives the high-level steps for updating an integration object.

Checklist

❑ Run the Synchronization wizard.

For details, see “Updating the Entire Integration Object” on page 57.
52 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Integration Objects Synchronization
To update an integration object

1 Access the integration object you want to update in Siebel Tools.

2 Run the Synchronization wizard by double-clicking the Synchronization button.

NOTE: The update process overrides the integration object and deletes user keys,
user properties, and so on. You can use the copy of the integration object made
by the Synchronization wizard to see how you modified the object.

❑ Modify the newly updated integration object as needed, using the DIFF tool and the
copy of the integration object as reference.

For details, see Siebel Tools Reference.

❑ Run Validation.

For details, see “Integration Object Validation” on page 51.

Checklist
Version 7.5.3 eAI Volume II: Integration Platform Technologies 53

Creating and Maintaining Integration Objects

Integration Objects Synchronization
a On the Integration Objects Builder, click on the plus sign to list all the related
integration components, as shown in the following figure.

The process of retrieving Siebel integration object and Siebel business object
definitions can take varying amounts of time depending on the size and
detail of the selected objects.

b Uncheck the boxes beside the objects and components you do not want to
include in the synchronization of your Siebel integration object. Note that
only the objects that are included in the new integration object are marked.
The process of performing the synchronization can take some time,
depending on the complexity of the selected objects.
54 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Integration Objects Synchronization
c Click Finish to synchronize the Siebel integration object and the Siebel
business object. The Compare Objects dialog box, shown below, appears.

This tool allows you to move properties and objects between versions using
arrow buttons.

When you synchronize the Siebel integration object and the Siebel business
object, the Synchronization wizard performs update, insert, and delete
operations. The Synchronization wizard selects or deselects components to
make the Siebel integration object look like the representation of the Siebel
business object you chose.

The wizard generally updates the Siebel integration object either by updating
the object and its components or by updating some components and deleting
others. For details, see “Updating the Entire Integration Object” on page 57
and “Deleting a Component from the Integration Object” on page 60.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 55

Creating and Maintaining Integration Objects

Integration Objects Synchronization
3 Copy custom properties and custom user keys as needed. The wizard includes
any new fields added to the business object in your integration object for the
new version of your Siebel application. All these fields are set to active.

4 Deactivate any new field that you do not need as a component of your updated
integration object.

5 Right-click on your integration object, and select the Validate option to validate
your integration object.

NOTE: If you need to synchronize any of the external integration objects, you should
also follow this general procedure to perform a synchronization operation.
56 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Integration Objects Synchronization
Synchronization Rules
During the synchronization process, the Synchronization wizard follows particular
update rules. Consider a simple example involving the Siebel Account integration
object with only Contact and its child components marked as active in the object.
Figure 17 helps you to visualize this example.

Since the Account component is the parent of Contact, it is also selected, even
though you cannot see it in Figure 17.

Updating the Entire Integration Object
After initiating the Synchronization wizard, if you check the boxes in the wizard,
the wizard creates a new integration object in memory. If the underlying Siebel
business object has been changed, then the new, in-memory integration object will
be different from the integration object in the database. As a result, the wizard
synchronizes the outdated integration object in the database with the new, in-
memory integration object.

Figure 17. Example of Selected Integration Components
Version 7.5.3 eAI Volume II: Integration Platform Technologies 57

Creating and Maintaining Integration Objects

Integration Objects Synchronization
Figure 18 illustrates this concept.

Figure 18. Synchronizing the Integration Object
58 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Integration Objects Synchronization
Figure 19 shows how the resulting integration object is structured after the
synchronization.

The integration object now contains two new components, Business Address and
Opportunity. Other components have been updated with the definitions of the
corresponding components in the business object.

Figure 19. Completely Updated Integration Object
Version 7.5.3 eAI Volume II: Integration Platform Technologies 59

Creating and Maintaining Integration Objects

Integration Objects Synchronization
Deleting a Component from the Integration Object
If you choose to deselect a component in the Synchronization wizard, you specify
to the wizard that it should delete the component in the integration object with the
matching External Name Context property. The integration object that exists in the
database has a component with the same External Name, External Name Sequence,
and External Name Context as the deselected component in the new, in-memory
integration object.

Figure 20 illustrates this concept.

Figure 20. Deleting a Component from the Integration Object
60 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Integration Objects Synchronization
Figure 21 shows the integration object after synchronization.

The component Contact_Personal Address has been deleted. When you use the
updated integration object, you will not be able to pass data for that component
between Siebel application and an external application.

This example is intended to show how you might cause unexpected results by
deselecting components. However, if you do want to delete a particular component
from the integration object, deleting a component from the integration object
method accomplishes that goal.

Figure 21. Synchronization Resulting in a Deleted Component
Version 7.5.3 eAI Volume II: Integration Platform Technologies 61

Creating and Maintaining Integration Objects

The EAI Siebel Wizard
As the examples illustrate, you need to be aware of the possible changes that can
occur when you are synchronizing business objects and integration objects. The
Synchronization wizard can provide assistance in managing your integration
objects, but you need to have a clear understanding of your requirements, your data
model, and the Siebel business object structure before undertaking a task as
important as synchronization.

The EAI Siebel Wizard
You can use the EAI Siebel Wizard to create integration objects that represent Siebel
business objects. During the process of creating a new integration object, described
in “Integration Object Builder Overview” on page 47, you can choose the EAI Siebel
Wizard as the business service to help create the object. This wizard understands
the structure of Siebel business objects. As shown in Figure 22, the wizard returns
a list of the available business objects from which you can choose one to base your
integration object on.
62 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

The EAI Siebel Wizard
The wizard also returns a list of the available components contained within the
object you have chosen. When you select certain components in the wizard, you
are activating those components in your integration object. Your integration object
actually contains the entire structural definition of the business object you selected
in the first wizard dialog box. Only the components you checked, or left selected,
are active within your integration object. That means any instances you retrieve of
that integration object contains only data represented by the selected components.

Figure 22. Activated Components in the Contact Integration Object
Version 7.5.3 eAI Volume II: Integration Platform Technologies 63

Creating and Maintaining Integration Objects

Siebel Integration Objects Maintenance and Upgrade
After the wizard creates your integration object, you can edit the object in Siebel
Tools, as shown in Figure 23. You might choose to drill down into the integration
components and activate or inactivate particular components or even particular
fields within one or more components.

NOTE: You should always deactivate the fields rather than delete them, even though
the net effect (as well as the DTD generated) will be the same. When you execute
the synchronization task, using the Siebel eAI sync utility in Siebel Tools,
inactivated fields remain inactive, while the deleted fields are created as active fields
in the integration object.

Siebel Integration Objects Maintenance and Upgrade
Sometimes you may change the underlying business objects, which necessitates
maintenance of the integration object. Synchronize the integration object by
clicking the synchronize button.

To make maintenance of integration objects easier, adhere to the following
guidelines when creating or editing your integration objects:

■ Name any user key that you add differently from the generated user keys. Using
meaningful names helps with debugging.

Figure 23. Activated Components in the Contact Integration Object
64 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Permission Rules for Integration Components
■ Inactivate user keys instead of deleting them.

■ Inactivate fields instead of deleting them.

Permission Rules for Integration Components
Each business component, link, MVG, and integration object user property has
settings such as No Update, No Delete, and No Insert. These settings indicate the
type of operations that cannot be performed on that object. In order for EAI Siebel
Adapter to successfully perform an operation, that operation needs to be allowed at
all levels. If the operation is allowed at every level but the field level, a warning
message is logged in the log file and processing continues. Otherwise, an error
message is returned and the transaction is rolled back.

Table 5 illustrates which permissions influence which operation type on an
integration component.

NOTE: The transaction is rolled back if any of the permissions (excluding field-level
permissions) are denied.

Table 5. Permission Rules for an Integration Component

Integration Component Type

Permission Layer Checked by... Standard MVG Association

Integration Object Component EAI Siebel Adapter ✔ ✔ ✔

Integration Component ✔ ✔ ✔

Integration Field (Update Only) ✔ ✔ ✔

Link Object Manager ✔ ✔ ✔

Multi-Value Link (MVL) ✔

Business Component
(Overridden by AdminMode)

✔ ✔ ✔

Business Component Field ✔ ✔ ✔
Version 7.5.3 eAI Volume II: Integration Platform Technologies 65

Creating and Maintaining Integration Objects

EAI Siebel Adapter Access Control
EAI Siebel Adapter Access Control
You can use the following mechanisms to control EAI Siebel Adapter access to the
database:

■ Restricted access to a static set of integration objects. You can configure the EAI
Siebel Adapter business service, or any business service that is based on the
CSEEAISiebelAdapterService, to restrict access to a static set of integration
objects. To do this, set a business service user property called
AllowedIntObjects, which contains a comma-separated list of integration
object names that this configuration of EAI Siebel Adapter can use. This allows
you to minimize the number of integration objects your users need to expose
outside of Siebel applications through HTTP inbound or MQSeries Receiver
server components. If this user property is not specified, EAI Siebel Adapter uses
any integration objects defined in the current Siebel Repository.

■ ViewMode. You can specify the visibility mode of business components that EAI
Siebel Adapter uses. This mode is specified as the integration object user
property ViewMode. This user property can take different values, as defined by
LOV type REPOSITORY_BC_VIEWMODE_TYPE.

NOTE: For details on ViewMode, see Siebel Tools Online Help.

Integration Object User Properties
You can define user properties for your integration objects. These user properties
help determine special processing and behavioral requirements of integration
objects for a specific eAI adapter.

The Level column shown in Table 6 can take on the following values:

■ O, for Object Level

■ C, for Component Level
66 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Integration Object User Properties
■ F, for Field Level

Table 6. Integration Objects User Properties

User Property
Allowable
Values Level Description

Association Y,N C Default is N. If set to Y, it labels the integration component as
having a many-to-many relationship with its parent
integration component configured by a Link with an
intersection table. Not applicable to root integration
component.

MVG Y,N C Default is N. If set to Y, it labels the integration component as
having a many-to-one relationship with its parent integration
component configured by a Multi Value Link defined over a
Link without an intersection table. Not applicable to root
integration component.

Picklist Y,N F Default is N. If set to Y, the field is based on a picklist and the
EAI Siebel Adapter validates the field value using an
associated picklist, bounded or non-bounded. If the picklist
is non-bounded and the value does not match, then the EAI
Siebel Adapter logs a warning but the value is set accordingly.
If this property is set to N, or is not defined, then the EAI
Siebel Adapter leaves the validation to the Object Manager,
aborts the processing if the validation fails for the bounded
picklist, and logs a warning. See “Performance
Considerations” on page 73.

PicklistUserKeys F The value of this user property is a comma separated list of
integration component fields that are used to find the
matching record in the picklist (for example, Account,
Account Location). For details, see “Picklists” on page 33.

Ignore Bounded
Picklist

Y,N O,C,
F

Default is N. If this property is set to N and the Picklist is set
to Y, and the value provided does not match any of the values
in the picklist, then the EAI Siebel Adapter stops processing,
writes an error to the log file, and rolls back the transaction.
If this property is set to Y and the value provided does not
match any of the values in the picklist, then the EAI Siebel
Adapter reports a warning in the log file and sets the field to
Null.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 67

Creating and Maintaining Integration Objects

Integration Object User Properties
MVGAssociation Y,N C Default is N. If set to Y, it means the integration component
has a many-to-many relationship with its parent integration
component configured by a Multi-Value Link defined over a
Link with an intersection table. Not applicable to the root
integration component.

MVGFieldName Any valid
field name in
the business
component

F If the component that owns this integration field is labeled
MVG, this user property gives the name of the business
component field as the value known by the MVG component.
In this case, the External Name property of the integration
component field references the field name in the parent
business component.

AssocFieldName Any valid
field name in
the business
component

F If the component that owns this integration field is labeled
MVGAssociation, this user property gives the name of the
business component field as the value known by the
Association MVG component. In this case, the External Name
property of integration component field references the field
name in the parent business component.

NoInsert Y,N C Default is N. If this property is set to Y at the component
level, the EAI Siebel Adapter is prevented from inserting a
new record into the component. The EAI Siebel Adapter
aborts the processing of the EAI Message and returns an error
message. This allows you to limit the functionality of an
integration object to a subset of what the underlying business
object allows. This user property cannot override limitations
imposed by the Business Object, Business Component, Link,
and Multi-Value-Link.

NoDelete Y,N C Default is N. If this property is set to Y at the component
level, no records in that component can be deleted. The EAI
Siebel Adapter aborts the processing of the message and
returns an error message. This allows you to limit the
functionality of the integration object to a subset of what the
underlying business object allows. This user property cannot
override limitations imposed by the business object, business
component, Link, and Multi-Value-Link.

Table 6. Integration Objects User Properties

User Property
Allowable
Values Level Description
68 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Integration Object User Properties
NoUpdate Y,N C,F Default is N. If this property is set to Y at the Component
level, no fields in that component can be updated. If an
existing record needs to be updated, EAI Siebel Adapter
aborts the processing of the EAI Message and returns an error
message. If this property is set to Y on the field level, then EAI
Siebel Adapter only logs a warning message and skips
updating the field, and continues processing. This allows you
to limit the functionality of the integration object to a subset
of what the underlying business object allows. This user
property cannot override limitations imposed by the business
object, business component, Link, Multi-Value-Link, or Field.

FieldDependencyXXX Any active
integration
component
field name
within the
same
integration
component

F Defines a dependency between the integration field that has
this user property and the integration field specified by the
value of the user property. Multiple dependencies are
specified by separate user property entries. The field
specified in the value must be from the same component as
the field that has the user property. Dependencies constrain
the order of field processing within an integration
component. If field A depends on field B, then field B is
processed before field A. Also see Chapter 1, “About
Integration Objects.”

AdminMode Y,N C,O Default is N. Sets AdminMode on the business component.
Some business components, such as Internal Product, allow
only administrators to make modifications. You may allow
modification of such components during integration, by
setting the AdminMode property to Y on the integration
component or the integration object level. The setting at the
integration component level overrides the setting at the
business object level. This property can not be used in MVGs.
For details, see Siebel Tools Online Help

Table 6. Integration Objects User Properties

User Property
Allowable
Values Level Description
Version 7.5.3 eAI Volume II: Integration Platform Technologies 69

Creating and Maintaining Integration Objects

Example of an Integration Object With M:M Relationship
Example of an Integration Object With M:M Relationship
Following is an example of how to create an integration object with two components
that have a many-to-many (M:M) relationship. For illustration purposes, we are
using an integration object that uses Contact business object with Contact and
Opportunity business components.

To create an integration object with a many-to-many business component

1 Start Siebel Tools.

2 Create a new project and lock it, or lock an existing project in which you want
to create your integration object.

3 Choose File > New Object... to display the New Object Wizards dialog box.

4 Select the EAI tab and double-click the Integration Object icon.

5 In the Integration Object Builder wizard:

a Select the project you locked in Step 2.

ViewMode Manager,
Sales Rep,
Personal,
Catalog,
Group,
Organization
, All

O Default is All. Specifies the visibility mode of the business
component that EAI Siebel Adapter uses. The allowable
values are based on REPOSITORY_BC_VIEWMODE_TYPE
LOV.

AllLangIndependent
Vals

Y,N O Default is N. If set to Y, this user property forces the EAI
Siebel Adapter to use language-independent values for LOV-
based integration component fields. This is useful when there
is a requirement to support integration between systems that
use multiple languages. If set to N, all LOV-based fields use
language-dependent values. If this user property is not
defined for the integration object, multilingual LOV-based
fields (MLOV) use language independent values, while
single-language LOV fields use language dependent values.

Table 6. Integration Objects User Properties

User Property
Allowable
Values Level Description
70 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Example of an Integration Object With M:M Relationship
b Select the EAI Siebel Wizard.

6 Click Next and in the second page of the Integration Object Builder wizard:

a Select the source object Contact to be the base for the new Siebel integration
object.

b Type a unique name in the field for the new Siebel integration object and
click Next—for example, Sample Contact M:M.

7 From the list of components, select Contact and Opportunity. There is also a
component named Contact_Opportunity in the list. This component is an
MVGAssociation component, and should be picked only if you need this
integration object to set the primary opportunity for contact. For details on MVG,
see “MVGs in EAI Siebel Adapter” on page 131.

8 Deactivate all integration component fields in the Contact integration
component except First Name, Last Name, Login Name, and Comment. (In this
example, these are the only fields we need for Contact.)

9 Deactivate all integration component fields in the Opportunity integration
component except Account, Account Location, Budget Amt, Name, and
Description. (In this example, these are the only fields we need for Opportunity.)

10 Compile a new .srf file and copy the .srf file to the SIEBSRVR_ROOT/OBJECTS
directory.

To test the newly created integration object

1 Start Siebel client connected to Sample database.

2 Copy and modify the Import Account (File) and the Export Account (File)
sample workflow processes to work with the Contact business object, instead of
the Account business object.

3 Modify the Export Account (File) workflow process to invoke the EAI Siebel
Adapter against the Sample Contact M:M integration object that you created in
“To create an integration object with a many-to-many business component” on
page 70.

4 Run the workflow processes using the Workflow Process Simulator.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 71

Creating and Maintaining Integration Objects

Generating Schemas
Generating Schemas
At certain points in your integration project, you may want to generate schemas
from an integration object. If you export Siebel integration objects as XML to other
applications, you may need to publish the schemas of such objects so that other
applications can learn about the structure of the XML to expect.

To generate an integration object schema

1 In Siebel Tools, click on an integration object to make it the active object.

2 Click Generate Schema to access the Generate XML Schema wizard shown in the
following figure.,

3 Choose the EAI XML DTD Generator business service.

4 Choose an envelope type to use in generated DTD.

5 Choose a location where you want to save the resulting DTD file and click Finish.
The wizard generates a DTD of the integration object you selected. Use this DTD
to help you map external data directly to the integration object. The DTD serves
as the definition for the XML elements you can create using an external
application or XML editing tool.
72 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Performance Considerations
Performance Considerations
To optimize your integration object performance, you may want to consider the
following.

Size of Integration Object
The size of an integration object and its underlying business components can have
an impact on the latency of EAI Siebel Adapter operations. You should inactivate
unnecessary fields and components in your integration objects.

Force-Active Fields
You should reexamine any fields in the underlying business component that are
force-active. Such fields are processed during integration even if they are not
included in the integration component. You might want to consider removing the
force-active specification from such fields, unless you absolutely need them.

Picklist Validation
Siebel applications have two classes of picklists, static picklists based on list of
values and dynamic picklists based on joins.

Setting the property PICKLIST to Y in the integration object field directs the EAI
Siebel Adapter to validate that all operations conform to the picklist specified in the
field. For dynamic picklists, this setting is essential to make sure the joins are
resolved properly. However, for unbounded static picklists, this validation may be
unnecessary and can be turned off by setting the PICKLIST property to N. Even for
bounded static picklists, validation in the adapter can be turned off because the
Object Manager can perform the validation. Turning off the validation at the EAI
Siebel Adapter level means that picklist related warnings and debugging messages
will not show up along with other EAI Siebel Adapter messages. This also means
that bounded picklist errors will not be ignored, even if Ignore Bounded Picklist is
set to Y.

NOTE: Validation of a bounded picklist done in EAI Siebel Adapter is about 10%
faster than performing the validation in the Object Manager.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 73

Creating and Maintaining Integration Objects

Business Component Restrictions
Business Component Restrictions
The business components underlying the Integration Components may have certain
restrictions. For example, Internal Product can only be modified by an
administrator. The same restrictions apply during integration. In many cases, the
Siebel Integration Object Builder wizard detects the restrictions and sets properties
such as No Insert or No Update on the integration components.

System Fields
Integration object fields marked as System are not exported during a query
operation. This setting prevents the EAI Siebel Adapter from treating the field as a
data field, which means for Query and QueryPage method the EAI Siebel Adapter
will not output the field. For the Synchronize and Update method, the field will not
be directly set in the business component unless the ISPrimaryMVG is set to Y.

NOTE: If you want to include System fields in the exported message, change the
Integration Component field type to Data. System fields are read only. If you attempt
to send in a message with the value set for a System field, the setting will be ignored
and a warning message will be logged.

Best Practices
■ Familiarize yourself with the business logic in the business components.

Integration designers should use the presentation layer or the user interface to
get a good sense of how the business component behaves and what operations
are allowed and not allowed.

■ Design with performance in mind. See “Performance Considerations” on
page 73.

■ Design with maintenance in mind. See “Siebel Integration Objects Maintenance
and Upgrade” on page 64.
74 eAI Volume II: Integration Platform Technologies Version 7.5.3

Creating and Maintaining Integration Objects

Best Practices
■ Resolve configuration conflicts. During the development of your integration
points, you might encounter issues with the configuration of business
components that are configured to support interactive GUI usage, but do not
satisfy your integration requirements. The following scenarios demonstrate
three different situations in which you might encounter such conflicts and a
possible solution for each case.

Scenario 1. Your integration requires explicitly setting a primary child, but the
business component configuration does not allow that because the related
MVLink has Auto Primary property set to Default.

Solution. Change the Auto Primary property from Default to Selected. This
enables EAI Siebel Adapter to change the Auto Primary property according to the
input request, while making sure that there is always a primary child selected.

Scenario 2. A business component such as Internal Product is made read-only for
regular GUI usage, but you want your integration process to be able to update
the Internal Product business component.

Solution. Set the AdminMode user property on the integration object to Y. This
allows the EAI Siebel Adapter to use the business component in an administrator
mode.

Scenario 3. Similar to scenario 2, a business component such as Internal Product
is made read-only for regular GUI usage, but you want your integration process
to be able to update the Internal Product business component. The only
difference in this scenario is that the business component is used through a link
that has NoUpdate property set to Y.

Solution. Since there is a link with NoUpdate property set to Y, setting the
AdminMode user property on the integration object to Y is not going to help. You
need the create the following exclusively for integration purposes:

■ A new link based on the original link with NoUpdate property Set to N.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 75

Creating and Maintaining Integration Objects

Best Practices
■ A copy of the original business object referencing the new link instead of the
original. Note that the same business component should be used by both
links.

NOTE: Customized configurations are not automatically upgraded during the
Siebel Repository upgrade, so this option should be used as a last resort.
76 eAI Volume II: Integration Platform Technologies Version 7.5.3

Business Services 3
This chapter outlines the basic concepts of a business service, its structure and
purpose, and how you can customize and create your own business service. This
chapter also describes how to test your business service before it is implemented.

Overview of Business Services
A business service is an object that encapsulates and simplifies the use of some set
of functionality. Business components and business objects are objects that are
typically tied to specific data and tables in the Siebel data model. Business services,
on the other hand, are not tied to specific objects, but rather operate or act upon
objects to achieve a particular goal.

Business services can simplify the task of moving data and converting data formats
between the Siebel application and external applications. Business services can also
be used outside the context of Siebel eAI to accomplish other types of tasks, such
as performing a standard tax calculation, a shipping rate calculation, or other
specialized functions.

These services can then be accessed by Siebel VB or Siebel eScript code that you
write and call from workflow processes. For the purposes of your integration
projects using Siebel eAI, you can use Siebel eScript to write your scripts to use the
DTE scripts.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 77

Business Services

Overview of Business Services
Creating Business Services
A Siebel application provides a number of prebuilt business services to assist you
with your integration tasks. These are based on specialized classes and are called
Specialized Business Services. Many of these are used internally to manage a variety
of tables.

CAUTION: As with other specialized code such as Business Components, you should
use only the specialized services that are documented in Siebel documentation. The
use of undocumented services is not supported and can lead to undesired and
unpredictable results.

In addition to the prebuilt business services, you can build your own business
service and its functionality in two different ways to suit your business
requirements:

■ In Siebel Tools. Created at design time in Siebel Tools using Siebel VB or Siebel
eScript. Design-time business services are stored in the Siebel repository (*.srf),
so you have to compile the repository before testing them. Once your test is
completed, you need to compile and disseminate the .srf to your clients. The
business services stored in the repository will automatically come over to the
new repository during the upgrade process. General business services are based
on the class CSSService; however, for the purposes of Siebel eAI, you base your
data transformation business services on the CSSEAIDTEScriptService class. For
details, see “Creating Business Services in Siebel Tools” on page 82.

■ In Siebel Client. Created at run time in the Siebel Client using the Business Service
Administration screens. Run-time business services are stored in the Siebel
Database, so they can be tested right away. The run-time business services have
to be manually moved over after an upgrade process. For details, see “Creating
a Business Service in the Siebel Client” on page 87.

NOTE: To use the DTE scripts, you need to write your business service in eScript;
otherwise, you can write them in Siebel VB.
78 eAI Volume II: Integration Platform Technologies Version 7.5.3

Business Services

Overview of Business Services
Business Service Structure
Business services allow developers to encapsulate business logic in a central
location, abstracting the logic from the data it may act upon. A business service is
much like an object in an object-oriented programming language.

A service has properties and methods and maintains a state. Methods take
arguments that can be passed into the object programmatically or, in the case of
Siebel eAI, declaratively by way of workflows.

NOTE: For more details on business service methods and method arguments, see
Siebel Tools Online Help.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 79

Business Services

Overview of Business Services
About Property Sets
Property sets are used internally to represent Siebel eAI data. A property set is a
logical memory structure that is used to pass the data between business services.
Figure 24 illustrates the concept of a property set.

The property set consists of four parts:

■ Type. Used to describe what type of object is being represented.

Figure 24. Property Set Structure
80 eAI Volume II: Integration Platform Technologies Version 7.5.3

Business Services

Overview of Business Services
■ Value. Used to hold serialized data, such as a string of XML data.

NOTE: In Siebel Tools, a Value argument to a method is shown with the name of
<Value>, including the brackets. You can also define a Display Name for the
Value argument in the Business Service Simulator. This Display Name appears
in the Workflow Process Designer when you are building integration workflows.
In this guide, the Display Name Message Text is shown when referring to the
Value argument and the Name <Value> is shown when referring to the Value
of the value argument.

■ Properties. A table containing name-value pairs. The properties can be used to
represent column names and data, field names and data, or other types of name-
value pairs.

■ Children. An array of child-level property sets. The array can be used to represent
instances of integration objects; for example, a result set may contain an
Account with some set of contact records from the database. Each contact record
is represented as a child property set.

NOTE: For details on property sets and their methods, see Siebel Tools Online Help.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 81

Business Services

Creating Business Services in Siebel Tools
Creating Business Services in Siebel Tools
The following sections explain how to create business services and business service
scripts in Siebel Tools.

NOTE: Business services you create in Siebel Tools must be compiled into the Siebel
.srf file. If you intend to run the business services on your Siebel Server, then copy
the compiled .srf file to your SIEBSRVR_ROOT\Object\lang directory.

Checklist

❑ Define the Business Service

For details, see “To define a business service in Siebel Tools” on page 83.

❑ Define the Business Service Methods

For details, see “To define a business service method” on page 84.

❑ Define the Business Service Methods Arguments

For details, see “To define the business service method arguments” on page 84.

❑ Define Business Service Scripts

For details, see “To define and write the business service script” on page 85.

❑ Define Business Service Subsystem

For details, see “To specify a business service subsystem” on page 86.

❑ Define Business Service User Properties

For details, see “To define business service user properties” on page 87.
82 eAI Volume II: Integration Platform Technologies Version 7.5.3

Business Services

Creating Business Services in Siebel Tools
Defining a Business Service in Siebel Tools
You declaratively define the business service in Siebel Tools and then add your
scripts to the business service in the Script Editor.

To define a business service in Siebel Tools

1 Start Siebel Tools.

2 Select and lock the project you want to associate your business service with.

NOTE: Each business service must belong to a project and the project must be
locked. For details, see Siebel Tools Reference.

3 Select the EAI Business Services object in the Tools Object Explorer.

The list of predefined business services appears in the right panel.

4 Choose Edit New Record to create a new business service.

5 Type a name for your business service in the Name field.

6 Type the name of the project you locked in Step 2, in the Project field.

7 Choose the appropriate class for your business service, from the Class picklist.

■ Data transformation business services should use the
CSSEAIDTEScriptService class.

■ Other business services will typically use the CSSService class.

8 Step off the current record to save your changes.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 83

Business Services

Creating Business Services in Siebel Tools
Defining Business Service Methods
Business services contain related methods that provide the ability to perform a
particular task or set of tasks.

NOTE: For details on business service methods, see Siebel Tools Online Help.

To define a business service method

1 With your business service selected, double-click the Business Services Methods
folder in the Siebel Tools Object Explorer.

The Business Services Methods list appears below the list of business services.
If you have already defined methods for the selected business service, the
method names appear in the Business Services Methods list.

2 Choose Edit > New Record to create a new method.

3 Type the name of the method in the Name field.

Defining Business Service Method Arguments
Each method can take one or more arguments. The argument is passed to the
method and consists of some data or object that the method processes to complete
its task.

To define the business service method arguments

1 With your business service selected, double-click the Business Service Method
Arg folder, in the Tools Object Explorer, to display the Business Service Method
Args list.

2 Choose Edit > New Record to create a blank method argument record.

3 Type the name of the argument in the Name field.

NOTE: If you plan to use this business service in a Siebel Client, you need to
specify the Display Name as well.

4 Enter the data type in the Data Type field.
84 eAI Volume II: Integration Platform Technologies Version 7.5.3

Business Services

Creating Business Services in Siebel Tools
5 Check the Optional check box if you do not want the argument to be required
for the method.

6 Choose a Type for the argument. Refer to the following table for a list of different
types and their descriptions.

Defining and Writing Business Service Scripts
Business service scripts supply the actual functionality of the business service in
either Siebel VB or Siebel eScript. As with any object, the script you provide is
attached to the business service.

To define and write the business service script

1 Start Siebel Tools.

2 Select the business service for which you want to write a script.

3 Right-click to display a pop-up menu.

4 Choose Edit Server Scripts.

5 Select either eScript or Visual Basic for your scripting language.

Service-PreInvokedMethod is selected as the service.

NOTE: To write any Siebel VB script in the Business Services, your deployment
platform must support Siebel VB.

Argument Description

Input This type of argument serves as input to the method.

Input/Output This type of argument serves as both input to the method and output
from the method.

Output This type of argument serves as output from the method.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 85

Business Services

Creating Business Services in Siebel Tools
6 Type your script into the Script Editor.

NOTE: You need to write your business service in eScript if you want to use the
DTE scripts. For details on scripting, see Siebel Tools Online Help.

Specifying Business Service Subsystems
You can optionally specify a business service subsystem. A business service
subsystem is a server component that encapsulates a large amount of functionality
and that is already included in the Siebel repository. Business service subsystems
define particular events upon which the subsystem will be called. The subsystems
can also trigger other events, depending on how they are defined. Examples of
business service subsystems are presented in Table 7.

To specify a business service subsystem

1 With your business service selected, double-click the Business Service
Subsystem folder in the Tools Object Explorer to display a list of subsystems.

2 Choose Edit > New Record to create a blank business service subsystem record.

3 Choose an existing business service subsystem name from the Subsystem
picklist.

Table 7. Business Service Subsystems

Subsystem Description

EAISubsys Defines events for a variety of eAI operations, including the initiation of eAI
wizards, calls to eAI adapters, and calls to eAI validation routines.

SAPSubsys Defines a variety of parameters to help determine the type of SAP object
being integrated, the transport mechanism, user name and password
combinations, and SAP program ID.

Workflow Defines both events and parameters to signal and determine behaviors
based on the initiation of workflow processes, search specifications, and
Row Id.

XMLCnv Defines events regarding debugging information and responses from the
XML parser.
86 eAI Volume II: Integration Platform Technologies Version 7.5.3

Business Services

Creating a Business Service in the Siebel Client
Defining Business Service User Properties
User properties, also known as User Props, are optional variables that you can use
to define default values for your business services. When a script or control invokes
your business service, one of the first tasks the service performs is to check the user
properties to gather any default values that will become input arguments to the
service’s methods.

To define business service user properties

1 With your business service selected, double-click the Business Service User Prop
folder in the Tools Object Explorer to display the list of Business Service User
Props.

2 Choose Edit > New Record to create a blank user property record.

3 Type the name of the user property in the Name field.

4 Type a value in the Value field.

The value can be an integer, a quoted string, or a Boolean.

Creating a Business Service in the Siebel Client
You can define business services in the Siebel client using the Business Service
Administration screens. The business services you create in the client are stored in
the Siebel Database. This section illustrates the creation of business services using
the Business Service Methods screen, which includes applets to create and display
the business service.

To define a business service in the Siebel Client

1 From the application-level menu, choose View > Site Map > Business Service
Administration > Business Service Methods.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 87

Business Services

Business Service Export and Import
2 Click New to create a new record in the Business Service list applet.

Name. Name of the business service.

Cache. If checked then the business service instance remains in existence until
the user’s session is finished; otherwise, the business service instance will be
deleted after it finishes executing.

Inactive. Check if you do not want to use the business service.

3 Define methods for the business service in the Methods list applet.

Name. Name of the method.

Inactive. Check if you do not want to use the method.

4 Define method arguments for the methods in the Method Arguments list applet.

Name. Name of the method argument.

Type. The type of the business service method argument. Valid values are
Output, Input, and Input/Output.

Optional. Check if you do not want this argument be optional.

Inactive. Check if you do not want to use the argument.

5 Write your Siebel eScript or VB code in the Business Service Scripts list applet.

NOTE: To write any Siebel VB script in the Business Services, your deployment
platform must support Siebel VB.

6 Click Check Syntax to check the syntax of the business service script.

Business Service Export and Import
Business services can be exported into an XML file by clicking the Export Service
button in the Business Service list applet. This writes the definition of the business
service including every method, method argument, and script into the XML file.
88 eAI Volume II: Integration Platform Technologies Version 7.5.3

Business Services

Testing Your Business Service
You can also import a business service from an external XML file by clicking the
Import Service button in the Business Service list applet.

Testing Your Business Service
You can use the Business Service Simulator to test your business services in an
interactive mode.

To run the Business Service Simulator

1 From the application-level menu, choose View > Site Map > Business Service
Administration > Business Service Simulator.

NOTE: The contents of the Simulator screen are not persistent. To save the data
entered in the applets, click the Save To File button. This will save the data for
the active applet in an XML file. The data can then be loaded into the next
session from an XML file by clicking on the Load From File button.

2 In the Service Methods list applet, click New to add the business service you
want to test.

3 Specify the Service Name and the Method Name.

4 Enter the number of iterations you want to run the business service.

■ Specify the input parameters for the Business Service Method in the Input
Property Set applet. Multiple Input Property Sets can be defined and are
identified by specifying a Test Case #.

■ If the Input Property Set has multiple properties, these can be specified by
clicking on the glyph in the Property Name field. Hierarchical Property Sets
can also be defined by clicking on the glyph in the Child Type field.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 89

Business Services

Testing Your Business Service
5 Click Run to run the business service.

The Simulator runs the specified number of iterations and loops through the test
cases in order. If you have defined multiple input arguments, you can choose to
run only one argument at a time by clicking Run On One Input.

The result appears in the Output Property Set applet.

NOTE: Once the Output arguments are created, you can click Move To Input to
test the outputs as inputs to another method.

Accessing a Business Service Using Siebel eScript or Siebel VB
In addition to accessing a business service through a workflow process, you can use
Siebel VB or eScript to call a business service. The following Siebel eScript code
calls the business service EAI XML Read from File to read an XML file and produce
a property set as an output. The output property set is used by EAI Siebel Adapter
to insert a new account into the Siebel application:

var svcReadFile = TheApplication().GetService("EAI XML Read from
File") ;

var svcSaveData = TheApplication().GetService("EAI Siebel
Adapter");

var child = TheApplication().NewPropertySet();

var psInputs = TheApplication().NewPropertySet();

var psOutputs = TheApplication().NewPropertySet();

var psOutputs2 = TheApplication().NewPropertySet();

var svcSaveData = TheApplication().GetService("EAI Siebel
Adapter");

psInputs.SetProperty("FileName", "c:\\NewAccount.xml");

psOutputs.SetType "SiebelMessage";

psOutputs.SetProperty "IntObjectName","Sample Account";

psOutputs.SetProperty "MessageId", "";
90 eAI Volume II: Integration Platform Technologies Version 7.5.3

Business Services

Business Scenario
psOutputs.SetProperty "MessageType", "Integration Object";

svcReadFile.InvokeMethod("ReadEAIMsg",psInputs, psOutputs);

svcSaveData.InvokeMethod("Upsert",psOutputs,psOutputs2);

The following Siebel VB sample code shows how to call the EAI File Transport
business service to read an XML file. It also shows how to use the XML Converter
business service to produce a property set.

Set Inp = TheApplication.NewPropertySet

Inp.SetProperty "FileName", "c:\test.xml"

Inp.SetProperty "DispatchService", "XML Converter"

Inp.SetProperty "DispatchMethod" , "XMLToPropSet"

Set svc = theApplication.GetService("EAI File Transport")

Set XMLOutputs = theApplication.NewPropertySet

svc.InvokeMethod "ReceiveDispatch", Inp, XMLOutputs

msgbox Cstr(XMLOutputs.GetChildCount)

Business Scenario
Consider an example of a form on a corporate Web site. Many visitors during the
day enter their personal data into the fields on the Web form. The field names
represent arguments, whereas the personal data represent data. When the visitor
clicks Submit on the form, the form’s CGI script formats and sends the data by way
of the HTTP transport protocol to the corporate Web server. The CGI script can be
written in JavaScript, Perl, or another scripting language.

The CGI script may have extracted the field names and created XML elements from
them to resemble the following XML tags.

First Name = <FirstName></FirstName>

Last Name = <LastName></LastName>

The CGI script may then have wrapped each data item inside the XML tags:
Version 7.5.3 eAI Volume II: Integration Platform Technologies 91

Business Services

Business Scenario
<FirstName>Hector</FirstName>

<LastName>Alacon</LastName>

To insert the preceding data into the Siebel Database as a Contact, your script calls
a business service that formats the XML input into a property set structure that the
Siebel application recognizes.
92 eAI Volume II: Integration Platform Technologies Version 7.5.3

Business Services

Business Scenario
Code Sample
An example of the code you need to write to create the property set may look
something like this:

x = TheApplication.InvokeMethod("WebForm", inputs, outputs);

var svc; // variable to contain the handle to the Service

var inputs; // variable to contain the XML input

var outputs; // variable to contain the output property set

svc = TheApplication().GetService("EAI XML Read from File");

inputs = TheApplication().ReadEAIMsg("webform.xml");

outputs = TheApplication().NewPropertySet();

svc.InvokeMethod("Read XML Hierarchy", inputs, outputs);

The following functions could be called from the preceding code. You attach the
function to a business service in Siebel Tools:

NOTE: You cannot pass a business object as an argument to a business service
method.

Function Service_PreInvokeMethod(MethodName, inputs, outputs)

{

if (MethodName=="GetWebContact")

{

fname = inputs.GetProperty("<First Name>");

lname = inputs.GetProperty("<Last Name>");

outputs.SetProperty("First Name",fname);

outputs.SetProperty("Last Name", lname);

return(CancelOperation);

}

Version 7.5.3 eAI Volume II: Integration Platform Technologies 93

Business Services

Business Scenario
return(ContinueOperation);

}

Function Service_PreCanInvokeMethod(MethodName, CanInvoke)

{

if (MethodName=="GetWebContact")

{

CanInvoke ="TRUE";

return (CancelOperation);

}

else

{

return (ContinueOperation);

}

}

94 eAI Volume II: Integration Platform Technologies Version 7.5.3

Web Services 4
This chapter describes Web Services, their uses, and how to create, implement, and
publish Siebel Web Services. This chapter also provides examples of how to invoke
an external Web Service and a Siebel Web Service.

Web Services Overview
Web Services combine component-based development and Internet standards and
protocols that include HTTP, XML, Simple Object Application Protocol (SOAP), and
Web Services Description Language (WSDL). Web Services can be reused regardless
of how they are implemented. Web Services can be developed on any computer
platform and in any development environment as long as they can communicate
with other Web Services using these common protocols.

Web Services can be implemented in Siebel eBusiness applications as business
services or workflow processes. The Siebel Web Services Framework can consume
a WSDL document and create a proxy business service through the WSDL Import
Wizard provided in Siebel Tools.

To specify the structure of XML used in the body of SOAP messages, Web Services
use an XML Schema Definition (XSD) standard. The XSD standard describes an
XML document structure in terms of XML elements and attributes. It also specifies
abstract data types, and defines and extends the value domains.

Users or programs interact with Web Services by exchanging XML messages that
conform to Simple Object Access Protocol (SOAP). For Web Services support, SOAP
provides a standard SOAP envelope, standard encoding rules that specify mapping
of data based on an abstract data type into an XML instance and back, and
conventions for how to make remote procedure calls (RPC) using SOAP messages.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 95

Web Services

Web Services Overview
Supported Web Services Standards
The following are the Web Services standards supported by Siebel application:

■ Web Services Description Language (WSDL) 1.1. For details, see http://
www.w3.org/TR/2001/NOTE-wsdl-20010315.

■ Simple Object Access Protocol (SOAP) 1.1. For details, see http://
www.w3.org/TR/2000/NOTE-SOAP-20000508.

■ Hypertext Transfer Protocol -- HTTP/1.0. For details, see http://www.w3.org/
Protocols/rfc1945/rfc1945.

■ Extensible Markup Language (XML) 1.0. For details, see http://www.w3.org/
TR/1998/REC-xml-19980210

■ XML Schema. For details, see http://www.w3.org/TR/2001/REC-xmlschema-
1-20010502, and http://www.w3.org/TR/2001/REC-xmlschema-2-

20010502

NOTE: For more details on supported elements and attributes, see XML Reference:
Siebel eBusiness Application Integration Volume V.

Web Services Inbound Dispatcher Defined
The Web Service Inbound Dispatcher is a business service that is called by an
inbound transport server component (or an outbound Web Service dispatcher) and
analyzes input XML, converts XML data to business service method arguments, and
calls the appropriate method for the appropriate service. After the called method
has finished, the Web Service Inbound Dispatcher converts the output arguments
to XML data, or creates a SOAP fault block (if there is an exception) and then returns
the XML embedded in the SOAP envelope.

Web Services Support for Transport Headers
The outbound Web Service dispatcher supports input arguments for user-defined
(or standard) transport headers.
96 eAI Volume II: Integration Platform Technologies Version 7.5.3

Web Services

Inbound Web Services
The following is the format for the outbound Web Service dispatcher input
arguments:

Name: siebel_transport_header:headerName

Value: Header value

The following are examples of input arguments.

Name: siebel_transport_header:UserDefinedHeader

Value: myData

Name: siebel_transport_header:Authorization

Value: 0135DFDJKLJ

Inbound Web Services
The Inbound Web Service allows an external system to call a Siebel published Web
Service. You can publish a business service or a business process as a Web Service
and generate a Web Service Definition Language (WSDL) file that an external
system can import. The Inbound Web Services can only be published from Siebel C
using SOAP-RPC binding.

Publishing Inbound Web Services
You can create and publish an inbound Web Service using the Inbound Web
Services view, as illustrated in the following procedure. You can then use the new
Inbound Web Service when generating a WSDL document.

To create a new Inbound Web Service record

1 From the application-level menu, choose View > Site Map > Web Services
Administration> Inbound Web Services view.

2 In the Inbound Web Services list applet, create a new Inbound Web Services
record.

a Enter the namespace for your organization’s Web Services in the Namespace
column.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 97

Web Services

Inbound Web Services
b Enter the name of the inbound Web Service in the Name column.

c Select Active or Inactive in the Status field.

NOTE: If the Web Service is inactive, then the external applications cannot
invoke the Web Service. If the status is changed, the server component
running the inbound transport, such as HTTP, requires a restart for the
change to take effect.

3 Enter a description of the Web Service in the Comment column.

4 Create a new inbound service port record in the Service Ports list applet.

a Enter the name of the port in the Name column.

b Pick the type of object published.

If the required type is not available, add a new type following Step c on
page 98 through Step f on page 98; otherwise, move to Step g on page 98.

c Click New and select the implementation type (Business Service or
Workflow).

d Select the implementation name (the business service or workflow that
implements the port type).

e Enter a name for the new type in the Name field and click Save.

f Click Pick in the Inbound Web Services Pick Applet to complete the process
of adding a new Type.

g Select the protocol or transport to publish the Web Service on.

h Enter the URL or queue to publish the Web Service on.

NOTE: When publishing over EAI MQSeries or EAI MSMQ, you cannot
generate WSDL files.

❏ The format to publish over EAI MQSeries or EAI MSMQ Server transports
is:

mq://send receive service point name@policy name

msmq://queue name@queue machine name
98 eAI Volume II: Integration Platform Technologies Version 7.5.3

Web Services

Inbound Web Services
❏ The URL format to publish over HTTP is:

http://webserver/eai_lang/
start.swe?SWEExtSource=WebService&SWEExtCmd=Execute&UserNa
me=username&Password=password

Where:

lang is the default language of Object Manager to handle the request.

webserver is the machine name of the Siebel Web Server.

username is the Siebel user to execute the request.

password is the password of the Siebel user.

NOTE: The Siebel application supports only one type of binding, SOAP_RPC,
for each Inbound Web Service.

5 Enter a description of the Port in the Comment column.

6 In the Operations list applet, create a new operation record for the new service
port you created in Step 4 on page 98 and want to publish.

NOTE: Only the operations created in this step will be published and usable by
applications calling the Web Service. Other business service methods will not be
available to external applications and can only be used for internal business
service calls.

a Enter the name of the Web Service operation.

b Select the name of the business service method in the Business Service
Method column to complete the process.

NOTE: The Business Service Method column defaults to RunProcess if you
have chosen Workflow Process in Step 4 on page 98 as the Type for your
Service Port.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 99

Web Services

Outbound Web Services
Generating a WSDL File
Once you have created a new Inbound Web Service record you can generate a WSDL
document, as described in the following procedure.

To generate a WSDL file

1 Choose the inbound Web Services you want to publish and click GenerateWSDL.

A WSDL file is generated that describes the Web Service.

2 Save the generated file.

3 Import the WSDL to the external system using one of the following utilities.

■ In VisualStudio.Net, use the wsdl.exe utility—for example, wsdl.exe /l:CS
mywsdlfile.wsdl.

■ In Apache’s AXIS, use the wsdl2java utility—for example, java
org.apache.axis.wsdl.WSDL2Java mywsdlfile.wsdl.

■ In IBM’s WSADIE, add the WSDL file to the Services perspective and run the
Create Service Proxy wizard.

NOTE: These utilities only generate proxy classes. Developers are responsible
for writing code that uses the proxy classes.

Outbound Web Services
An outbound Web Service definition acts as a proxy to a Web Service published by
an external application. The outbound Web Service can be based on one of the
following:

■ External Web Service definition (WSDL) file

■ Outbound Application Service Interface (ASI)

Outbound Web Services Based on an External WSDL File
The following procedure describes how to use the WSDL Import Wizard to read an
external WSDL document.
100 eAI Volume II: Integration Platform Technologies Version 7.5.3

Web Services

Outbound Web Services
To read an external WSDL document

1 Start Siebel Tools.

2 Create a new project and lock the project, or lock an existing project in which
you want to create your integration object.

3 Choose File > New Object... to display the New Object Wizards.

4 Select the EAI tab, select the Web Service icon, and click OK.

The WSDL Import Wizard appears.

5 Select the Project where you want the objects to be held after they are created
from the WSDL document.

6 Specify the WSDL document that contains the Web Service or Web Services
definition that you want to import.

7 Specify the file where you want to store the run-time data extracted from the
WSDL document.

8 Specify the log file where you want errors, warnings, and other information
related to the import process to be logged.

9 Click Next to view and verify a summary of your import information.

10 Click Finish to complete the process of importing the business service into the
Siebel repository.

This procedure generates three objects in Siebel repository.

■ An outbound proxy business service of CSSWSOutboundDisptacher class.

NOTE: For RPC services, the order of input arguments is important. You can set
the order through the Preferred Sequence property of the business service
method argument in Siebel Tools. By specifying this parameter, the outbound
dispatcher makes sure that the sequence parameters for an operation are in the
correct order. The Preferred Sequence property is only supported with outbound
services.

■ One or more integration objects representing input and output parameters of the
service methods.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 101

Web Services

Outbound Web Services
■ An XML document containing the run-time parameters that should be imported
into the Siebel client. For details, see “To import run-time data about external
Web Service” on page 102.

Outbound Web Services Administration
The WSDL Import Wizard exports the data to a file that you must import to the run-
time database (the Web Services address) using the Outbound Web Services screen.

To import run-time data about external Web Service

1 Restart the Siebel Server (or Mobile Web Client) with a recompiled version of the
.srf file that includes the new objects created by the Web Services Import
Wizard.

NOTE: You do not need to update your .srf file at design time. However, the
service definition must exist in the .srf file during run time.

2 From the application-level menu, choose View > Site Map > Web Services
Administration> Outbound Web Services view.

3 In the Outbound Web Services list applet, click Import to bring up the EAI Web
Service Import dialog box.

4 Specify the export file created by the Web Services Import Wizard.

5 Click Import to import the Web Service definition into the database.

WSDL does not provide native bindings for EAI MQSeries and EAI MSMQ
transports. If your business requires you to pick up messages using these transports,
you can manually create an outbound Web Service definition and update a
corresponding business service in Siebel Tools to point to that Web Service. The
following procedure describes this process.

To manually create a new outbound Web Service

1 From the application-level menu, choose View > Site Map > Web Services
Administration> Outbound Web Services view.

2 In the Outbound Web Services list applet, create a new record.

a Enter the namespace of the Web Service in the Namespace column.
102 eAI Volume II: Integration Platform Technologies Version 7.5.3

Web Services

Outbound Web Services
b Enter the name of the Web Service in the Name column.

c Select Active or Inactive in the Status field.

3 Enter a description of the Web Service in the Comment column.

NOTE: When importing an external Web Service, you do not need to specify the
proxy business service, integration objects, or the run-time parameters.

4 In the Service Ports list applet, create a new outbound service ports record.

a Enter the name of the Web Service port in the Name column.

b Select a type of proxy for the Port Type column.

c Select a transport name for the protocol or queuing system for the Transport.

d Enter the address appropriate for the transport chosen.

❏ For the Local Workflow or the Local Business Service transports, enter the
name of a Business Process or Business Service that should be called.

❏ For the Local Web Service transport, enter the name of the inbound port.

❏ For the HTTP Transport, enter an HTTP address of the Web Service to be
called—for example,http://mycompany.com/webserivice/
orderservice.

❏ For the EAI MQSeries AMI or EAI MSMQ Server transports, enter one of
the following:

mq://send receive service point name@policy name

msmq://queue name@queue machine name

5 Select whether the port uses SOAP document, SOAP RPC, or property set
Binding.

NOTE: Property Set Binding should be used when the input Property Set to the
proxy service is forwarded without changes to the destination address. This is
intended primarily for use in combination with Local Workflow or Local
Business Service transport to avoid overhead of processing XML.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 103

Web Services

Outbound Web Services
6 Enter a description of the Port in the Comment column.

7 In the Operations Bindings applet, create a new Operations record.

a Enter the name of the Web Service in the Name column.

b Enter the name of the Binding Property in the Binding Property column; for
example, SOAPAction.

c Enter the value of the Binding Property in the Binding Value column; for
example, CreateOrder.

8 Generate the WSDL file. For details, see “To generate a WSDL file” on page 100.

Once you have created your outbound Web Service, you need to update a
corresponding outbound proxy business service in Siebel Tools to point to that Web
Service. This associates the outbound proxy business service and the outbound
Web Service. The following procedure outlines the steps you need to take to
accomplish this task.

To update an outbound Web Service proxy business service to point to an outbound
Web Service

1 Open Siebel Tools.

2 Select the outbound Web Service proxy business service you want to use to call
your outbound Web Service.

3 Add the following user properties for this business service and set their values
based on the outbound service port of your Web Service.

■ siebel_port_name

■ siebel_web_service_name

■ siebel_web_service_namespace

Integration Objects as Input Arguments to an Outbound Web
Service
The property set that is used as an input argument to the outbound Web Service
should have the same name as the input argument's name of the outbound Web
Service proxy.
104 eAI Volume II: Integration Platform Technologies Version 7.5.3

Web Services

XML Schema Support for <xsd:any> Tag
You can do this using one of the following options:

■ Change the output from all your business services that provide the input to the
outbound Web Service from SiebelMessage to the actual outbound Web Service
argument name specified in Siebel Tools. You need to change the output from
your business services in Siebel Tools, as well as the name of the property set
child that contains integration object instance.

■ Change the property set name from SiebelMessage to the actual outbound Web
Service argument name by using an eScript service before calling the outbound
Web Service.

XML Schema Support for <xsd:any> Tag
In the current framework, WSDL Import Wizard makes use of XML Schema Import
Wizard to create integration objects to represent hierarchical data. Integration
objects are meant to be strongly typed in the Siebel application. You are now able
to import a schema that uses the <xsd:any> tag, which indicates a weakly typed
data representation, and to create an integration object from it.

Mapping the <xsd:any> Tag in the WSDL Import Wizard
In the WSDL Import Wizard, two possible mappings exist for the <xsd:any> tag.
The tag can be mapped as an integration component or as an XMLHierarchy on the
business service method argument.

The <xsd:any> tag can contain an attribute called namespace. If the value for that
attribute is known, then one or more integration components or even an integration
object can be created. If not known, then the business service method argument for
that particular <wsdl:part> tag will be changed to data type Hierarchy,
consequently losing any type information.

Being known refers to the following situations:

■ A schema of targetNamespace value, being the same as that of the namespace
attribute value, is imported by way of the <xsd:import> tag.

■ A schema of targetNamespace value, being the same as that of the namespace
attribute value, is a child of the <wsdl:types> tag.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 105

Web Services

XML Schema Support for <xsd:any> Tag
For the case of being known, all the global elements belonging to the particular
schema of that targetNamespace will be added in place of the tag. One or more
integration components can potentially be created.

Another tag similar to <xsd:any> tag is <xsd:anyAttribute>. The mapping is
similar to that of <xsd:any> tag. In this case, one or more integration component
fields can be created.

The <xsd:anyAttribute> tag has an attribute called namespace. If the namespace
value is known (the conditions for being known were noted in this section), then
all the global attributes for that particular schema will be added in place of this tag.
Therefore, one or more integration component fields can potentially be created.

In the case where the namespace value is not known, then the <wsdl:part> tag
that is referring to the schema element and type will be created as data type
Hierarchy.

Mapping the <xsd:any> Tag in the XML Schema Wizard
For the case of the XML Schema Wizard, there is only one possible mapping for the
<xsd:any> tag, namely as an integration component.

The <xsd:any> tag can contain an attribute called namespace. If the value for that
attribute is known, then one or more integration components or even an integration
object can be created. If not, an error will be returned to the user saying that the
integration object cannot be created for a weakly typed schema.

Being known refers to this situation for XML Schema Wizard where a schema of
targetNamespace value, being the same as that of the namespace value, has been
imported by way of the <xsd:import> tag.

For the case of being known, all the global elements belonging to the particular
schema of that targetNamespace will be added in place of the tag. So, one or more
integration components can potentially be created.

The mapping of the <xsd:anyAttribute> is similar to that of the <xsd:any> tag.
In this case, one or more integration component fields can be created.

The <xsd:anyAttribute> tag has an attribute called namespace. If the namespace
value is known (the condition for being known was noted in this section), then all
the global attributes for that particular schema will be added in place of this tag.
Therefore, one or more integration component fields can potentially be created.
106 eAI Volume II: Integration Platform Technologies Version 7.5.3

Web Services

Examples of Invoking Web Services
In the case where the namespace value is not known, then an error is returned to
the user stating that an integration object cannot be created for a weakly typed
schema.

Examples of Invoking Web Services
The following two examples show sample flows of how to invoke an external Web
Service from a Siebel application or how to invoke a Siebel Web Service from an
external application.

Invoking an External Web Service Using Workflow or Scripting
As illustrated on Figure 25 on page 108, the following steps are executed to invoke
an external Web Service.

1 The developer obtains Web Service description as a WSDL file.

2 The WSDL Import Wizard is called.

3 The WSDL Import Wizard generates definitions for outbound proxy, integration
objects for complex parts, and administration entries.

4 The Outbound Web Service proxy is called with request property set.

5 The request is converted to an outbound SOAP request and sent to external
application.

6 The external application returns SOAP response.

7 The SOAP response is converted to a property set that can be processed by the
caller—for example, Calling Function.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 107

Web Services

Examples of Invoking Web Services
The following example shows how to invoke Web Services using eScript.

Figure 25. Invoking an External Web Service
108 eAI Volume II: Integration Platform Technologies Version 7.5.3

Web Services

Examples of Invoking Web Services
function Service_PreCanInvokeMethod (MethodName, &CanInvoke)

{

if (MethodName == "invoke") {

CanInvoke = "TRUE";

return (CancelOperation);

}

else

return (ContinueOperation);

}

function Service_PreInvokeMethod (MethodName, Inputs, Outputs)

{

if (MethodName == "invoke") {

var svc = TheApplication().GetService("CustomerDBClientSimpleSoap");

var wsInput = TheApplication().NewPropertySet();

var wsOutput = TheApplication().NewPropertySet();

var getCustInput = TheApplication().NewPropertySet();

var listOfGetCustomerName = TheApplication().NewPropertySet();

var getCustomerName = TheApplication().NewPropertySet();

try {

// obtain the customer ID to query on. This value will be provided in the
input property set

var custId = Inputs.GetProperty("custId");

// set property to query for a customer ID with a value of '1'

getCustomerName.SetType("getCustomerName");

getCustomerName.SetProperty("custid", custId);
Version 7.5.3 eAI Volume II: Integration Platform Technologies 109

Web Services

Examples of Invoking Web Services
// set Type for listOfGetCustomerName

listOfGetCustomerName.SetType("ListOfgetCustomerName");

// set Type for getCustInput

getCustInput.SetType("getCustomerNameSoapIn:parameters");

// assemble input property set for the service.

listOfGetCustomerName.AddChild(getCustomerName);

getCustInput.AddChild(listOfGetCustomerName);

wsInput.AddChild(getCustInput);

// invoke the getCustomerName operation

svc.InvokeMethod("getCustomerName", wsInput, wsOutput);

// parse the output to obtain the customer full name check the type element
on each PropertySet (parent/child) to make sure we are at the element to obtain the
customer name

if (wsOutput.GetChildCount() > 0) {

var getCustOutput = wsOutput.GetChild(0);

if (getCustOutput.GetType() == "getCustomerNameSoapOut:parameters") {

if (getCustOutput.GetChildCount() > 0) {

var outputListOfNames = getCustOutput.GetChild(0);

if (outputListOfNames.GetType() ==
"ListOfgetCustomerNameResponse") {

if (outputListOfNames.GetChildCount() > 0) {

var outputCustName = outputListOfNames.GetChild(0);

if (outputCustName.GetType() ==
"getCustomerNameResponse") {

var custName =
outputCustName.GetProperty("getCustomerNameResult");

Outputs.SetProperty("customerName", custName);
110 eAI Volume II: Integration Platform Technologies Version 7.5.3

Web Services

Examples of Invoking Web Services
}

}

}

}

}

}

return (CancelOperation);

}

catch (e) {

TheApplication().RaiseErrorText(e);

return (CancelOperation);

}

}

else

return (ContinueOperation);

}

Version 7.5.3 eAI Volume II: Integration Platform Technologies 111

Web Services

Examples of Invoking Web Services
Invoking a Siebel Web Service From an External Application
As illustrated in Figure 26 on page 113, the following steps are executed to invoke
a Siebel Web Service from an external application.

1 The WSDL document for an active Web Service is published in Siebel Inbound
Web Services screen. To allow processing of the Web Service requests, the
developer has to make sure:

a The Web Server and the Siebel Server are up and running.

b The appropriate setup is done in the Siebel Server.

2 In the external application, the WSDL document is imported in order to create a
proxy that can be used to call the Siebel Web Service from Step 1.

3 The external application sends SOAP request into Siebel application.

4 The Web Service Inbound Dispatcher converts the SOAP request to a property
set. Depending on the inbound Web Service configuration, the property set is
passed to a business service or a business process.

5 The property set gets returned from business service or business process to the
Web Service Inbound Dispatcher.

6 Response is converter to a SOAP message and sent back to the calling external
application.
112 eAI Volume II: Integration Platform Technologies Version 7.5.3

Web Services

Examples of Invoking Web Services
The following is an example of invoking Siebel published Web Service using .NET.

// removed using declaration

namespace sieOppClnt

{

public class sieOppClnt : System.Web.Services.WebService

Figure 26. Invoking a Siebel Web Service
Version 7.5.3 eAI Volume II: Integration Platform Technologies 113

Web Services

Examples of Invoking Web Services
{

public siebOptyClnt()

{

InitializeComponent();

}

// WEB SERVICE CLIENT EXAMPLE

// The optyQBE returns a list of opty based upon the required input params.
Since the input to the Siebelopty.QueryByExample method uses an Input/Output param,
ListOfInterOptyIntfaceTopElmt will be passed by ref to Siebel. To add the Siebel
Opportunity Web Service definition to the project, I chose to run the wsdl.exe
utility to generate the necessary helper C# class for the service definition.

[WebMethod]

public ListOfInterOptyIntfaceTopElmt optyQBE(string acctName, string
acctLoc, string salesStage)

{

Siebelopty svc = new Siebelopty();

ListOfInterOptyIntfaceTopElmt siebelMessage = new
ListOfInterOptyIntfaceTopElmt();

ListOfInteroptyInterface optyList = new ListOfInteroptyInterface();

opty[] opty = new opty[1];

opty[0] = new opty();

opty[0].Account = acctName;

opty[0].AccountLocation = acctLoc;

opty[0].SalesStage = salesStage;

//assemble input to be provided to the Siebel Web Service. For the sake
of simplicity the client will query on the Account Name, Location, and Sales Stage.
Ideally additional checking to make sure that correct data is entered.

optyList.opty = opty;

siebelMessage.ListOfInteroptyInterface = optyList;

// invoke the QBE method of the Siebel Opportunity business service
114 eAI Volume II: Integration Platform Technologies Version 7.5.3

Web Services

Troubleshooting Tips
svc.SiebeloptyQBE(ref siebelMessage);

// return the raw XML of the result set returned by Siebel. Additional
processing could be done to parse the response.

return siebelMessage;

}

}

}

Troubleshooting Tips
You can enable Web Services Tracing on the Server to write all inbound and
outbound SOAP documents to a log file.

To enable Web Services Tracing

1 From the application-level menu, choose View > Site Map > Server
Administration.

2 Go to the Servers view.

3 Select the Server Event Configuration tab.

4 Set the Log Level parameter to 4 for the following Event Types:

■ Web Service Inbound Argument Tracing

■ Web Service Outbound Argument Tracing

■ Web Service Inbound

■ Web Service Outbound

5 Navigate to the Components view.

6 Select the EAI Object Manager component, and select the Component
Parameters tab.

7 Set the Enable Business Service Argument Tracing parameter to True.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 115

Web Services

Troubleshooting Tips
8 Restart or reconfigure the server component. For details, see Siebel Server
Administration Guide.

Integration Components Cardinality
The cardinality of the root integration component used by inbound Web Services
has to be set to Zero or More. Cardinality of other integration components is not
restricted.

The reason for the constraint on root component cardinality is that Siebel Web
Services infrastructure generally returns multiple instances of root integration
component for any given request. Thus, having cardinality set to anything other
than Zero or More would prevent external clients to correctly interoperate with
Siebel Web Services.

NOTE: When modifying run-time parameters, the server component needs to be
restarted. For details, see Siebel Server Administration Guide.
116 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter 5
This chapter describes the functionality of the EAI Siebel Adapter and the different
methods and arguments you can use with the EAI Siebel Adapter to manipulate the
data in the Siebel Database.

EAI Siebel Adapter Overview
The EAI Siebel Adapter is a general purpose integration business service that allows
you to:

■ Read Siebel business objects from the Siebel Database into integration objects.

■ Write an integration object whose data originates externally into a Siebel
business object.

■ Update multiple corresponding top-level parent business component records
with data from one XML file—for examples, see “XML Examples” on page 129.

NOTE: EAI Message is considered to be one transaction. The transaction is
committed when there is no error. If there is an error, the transaction is aborted
and rolled back.

The EAI Siebel Adapter business service is implemented by the class
CSSEAISiebelAdapter that inherits from the CSSService class.

EAI Siebel Adapter Methods
The EAI Siebel Adapter uses DoInvokeMethod in order to provide an interface that
performs the following methods:

■ Query
Version 7.5.3 eAI Volume II: Integration Platform Technologies 117

EAI Siebel Adapter

EAI Siebel Adapter Methods
■ QueryPage

■ Synchronize

■ Upsert

■ Insert

■ Update

■ Delete

■ Execute

The implementation of DoInvokeMethod creates CSSEAIMessageIn and
CSSEAIMessageOut objects by parsing the input property sets and invokes Execute,
which does the right thing depending on the method. If an output is generated, it is
stored into the CSSEAIMessageOut object.

class CSSEAISiebelAdapter : public CSSService

{

 public:

 BOOLCanInvokeMethod(LPCSTR methodName);

 ErrCodeDoInvokeMethod(LPCSTR methodName,

 const CSSPropertySetEx& inArgs,

 CSSPropertySetEx& outArgs);

 protected:

 ErrCodeExecute(CSSEAIMessageIn* pObjInst,

 CSSEAIMessageOut*& pOutObjInst);

};
118 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

EAI Siebel Adapter Methods
EAI Siebel Adapter Method Arguments
Each of the EAI Siebel Adapter methods takes arguments that allow you to specify
required and optional information to the adapter. You can locate the arguments for
each method in Table 8.

Table 8. EAI Siebel Adapter Method Arguments

Argument Query QueryPage Sync Upsert Update Insert Delete Execute

IntObjectName - - - - - ‘ ‘‘ Input

NumOutputObjects Output Output Output Output Output Output Output Output

OutputIntObjectName Input Input - - - - - Input

PrimaryRowId Input - Output Output Output Output Input Input/
Output

QueryByUserKey Input - - - - - - Input

DeleteByUserKey - - - - - - Input Input

ErrorOnNonExistingDelete - - - - - - Input Input

SiebelMessage Input/
Output

Input/
Output

Input/
Output

Input/
Output

Input/
Output

Input/
Output

Input/
Output

Input/
Output

SearchSpec Input Input - - - - Input Input

StatusObject - - Input Input Input Input Input Input

MessageId Input Input Input Input Input Input Input Input

BusObjCacheSize Input Input Input Input Input Input Input Input

LastPage - Output - - - - - Output

NewQuery - Input - - - - - Input

PageSize - Input - - - - - Input

StartRowNum - Input - - - - - Input
Version 7.5.3 eAI Volume II: Integration Platform Technologies 119

EAI Siebel Adapter

EAI Siebel Adapter Methods
Table 9 presents each argument of EAI Siebel Adapter methods.

ViewMode Input Input Input Input Input Input Input Input

SortSpec - Input - - - - - Input

Table 8. EAI Siebel Adapter Method Arguments

Argument Query QueryPage Sync Upsert Update Insert Delete Execute

Table 9. EAI Siebel Adapter Method Arguments

Argument Display Name Description

IntObjectName Integration Object
Name

The name of the integration object that is to be deleted.

NumOutputObjects Number of Output
Integration Objects

Number of output integration objects.

OutputIntObjectName Output Integration
Object Name

The name of the integration object that is to be output.

PrimaryRowId Object Id The PrimaryRowId refers to the Id field in the Business
Component, Row_Id at the table level.

PrimaryRowId is only returned as an output argument if
you are passing in one integration object instance. If you
are passing multiple integration object instances, then
this argument is not returned as an output argument. To
obtain the ID field when multiple integration objects are
processed, use the StatusObject argument.

QueryByUserKey Query By Key A Boolean argument. Forces the EAI Siebel Adapter to
only use the user keys to perform query.

DeleteByUserKey Delete By User Key A Boolean argument. Forces the EAI Siebel Adapter to
only use the user keys to identify a record.

ErrorOnNonExistingDelete Error On Non
Existing Delete

A Boolean argument. Determines whether or not the EAI
Siebel Adapter should abort the operation if no match is
found.

SiebelMessage Siebel Message The input or the output integration object instance.
120 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

EAI Siebel Adapter Methods
SearchSpec Search
Specification

This argument allows you to specify complex search
specifications as free text in a single method argument.
See “Search Specification” on page 134 for details.

StatusObject Status Object This argument tells EAI Siebel Adapter whether or not to
return a status message.

MessageId Message Id The MessageId can be used to specify the ID for the
generated message. By default, the EAI Siebel Adapter
generates a unique ID for each message. However, if you
want to use the workflow process instance ID, then you
can use this argument to specify the ID.

BusObjCacheSize Business Object
Cache Size

Default is 5. Maximum number of Business Objects
instances cached by the current instance of the EAI Siebel
Adapter. If set to zero, then the EAI Siebel Adapter does
not use the cache.

LastPage Last Page Boolean indicating whether or not the last record in the
query result set has been returned.

NewQuery New Query Default is False. Boolean indicating whether a new query
should be executed. If set to True, a new query is
executed flushing the cache for that particular integration
object.

PageSize Page Size Default is 10. Indicates the maximum number of
integration object instances to be returned.

StartRowNum Starting Row
Number

Default is 0 (first page). Indicates the row in the result set
for the QueryPage method to start retrieving a page of
records.

Table 9. EAI Siebel Adapter Method Arguments

Argument Display Name Description
Version 7.5.3 eAI Volume II: Integration Platform Technologies 121

EAI Siebel Adapter

EAI Siebel Adapter Methods
Query Method
You pass the Query method a Query By Example (QBE) integration object instance,
a Primary Row Id, or a Search Specification. The adapter uses this input as criteria
to query the base business object and to return a corresponding integration object
instance. For example, to query Contact records with first name David you need to
pass the following required input arguments to the Query method of EAI Siebel
Adapter:

■ SiebelMessage.IntObjName with value set to Test Contact

■ SiebelMessage.ListOfTest Contact.Contact.First Name with value set to David

Now, if you need to further limit the output based on a value in the child component
of the Test Contact (for example, to only query the Contact records with first name
David and Action Type of Call), then you need the following required input
arguments:

■ SiebelMessage.ListOfTest Contact.Contact.First Name with Value set to David

■ SiebelMessage.IntObjName with value set to Test Contact

■ SiebelMessage.ListOfTest Contact.Contact.ListOfAction.Action.Type, with Value
set to Call

ViewMode View Mode Default is All. Visibility mode to be applied to the
Business Object. Valid values are: Manager, Sales Rep,
Personal, Organization, Sub-Organization, Group,
Catalog, and All. Note that the ViewMode user property
on the integration object has priority over the ViewMode
method argument.

SortSpec\ Sort Specification Default is the SortSpec of the underlying business
component. This argument allows you to specify
complex sort criteria as a free text in a single method
argument, using any business component fields and
standard Siebel sort syntax—for examples, see Siebel
Tools Reference.

Table 9. EAI Siebel Adapter Method Arguments

Argument Display Name Description
122 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

EAI Siebel Adapter Methods
Note that this still returns the contacts with the first name David, even if they do
not have an activity of type Call, but it does not list their activities. For an example
of using the search specification method argument to limit the scope of your query
see “Search Specification” on page 134.

NOTE: When using the EAI Siebel Adapter, to query all the business component
records, you do not need to specify any value in the Object Id process property of
the workflow process. In this case not specifying an ID works as a wildcard. If you
want to query Siebel data using the EAI Siebel Adapter with the Query method and
a property set containing a query by example search criteria, then all the fields that
make up the user key for the underlying integration object component must exist in
the property set. You can use an asterisk (*) as a wildcard for each one of the fields,
but all of the user key fields must exist; otherwise, no record is returned.

QueryPage Method
This method is useful when the search specification retrieves a large number of
records at the root component. To avoid returning one huge Siebel Message, you can
specify the number of records to be returned using the PageSize argument, as
presented in Table 9 on page 120. You can also use method arguments such as
OutputIntObjectName, SearchSpec, SortSpec, ViewMode, and StartRowNum to
dictate which records to be returned.

Even though the QueryPage returns a limited number of records, it keeps the data
in the cache, which you can then retrieve by calling the EAI Siebel Adapter with a
new value for the StartRowNum method argument. Please note that this is only
possible if the method arguments OutputIntObjectName, PageSize, SearchSpec,
SortSpec, and ViewMode are not changed and the NewQuery method argument is
set to False.

Synchronize Method
You can use the Synchronize method to make the values in a business object
instance match those of an integration object instance. This operation can result in
updates, inserts, or deletes on business components. Some rules apply to the results
of this method:
Version 7.5.3 eAI Volume II: Integration Platform Technologies 123

EAI Siebel Adapter

EAI Siebel Adapter Methods
■ If a child component is not present in the integration object instance, the
corresponding business component rows are left untouched.

■ If a child component is present in the integration object instance, but contains
no instances so that there is only an empty container, then records in the
corresponding business component are deleted.

■ If a child component is present in the integration object instance, and contains
some instances, the business component rows corresponding to the instances
are updated or created and any business component row that does not have a
corresponding integration component instance is deleted.

■ The Sync method applies the operation sequentially to each root Integration
Component (because each previous Integration Component is written to the
database) but does not do this for any child Integration Component.

NOTE: The Synchronize method only updates the fields specified in the integration
component instance.

Upsert Method
The Upsert method is similar to the Synchronize method with the following
exceptions:

■ The Upsert method does not delete any records.

■ The Upsert method applies the operation sequentially to each root Integration
Component (because each previous Integration Component is written to the
database) but does not do this for any child Integration Component.
124 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

EAI Siebel Adapter Methods
Insert Method
This method is also similar to the Synchronize method with the exception that the
EAI Siebel Adapter errors out if a match is found; otherwise, it inserts the root
component and synchronizes all the children. It is important to note that when you
insert a record, there is a possibility that the business component would create
default children for the record, which need to be removed by the Insert method. The
Insert method synchronizes the children, which deletes all the default children. For
example, if you insert an account associated with a specific organization, it will also
be automatically associated with a default organization. As part of the Insert
method, the EAI Siebel Adapter deletes the default association and associates the
new account with only the organization that was originally defined in the input
integration object instance. The EAI Siebel Adapter achieves this by synchronizing
the children.

Update Method
This method is similar to the Synchronize method, except that the EAI Siebel
Adapter returns an error if no match is found for the root component; otherwise, it
updates the matching record and synchronizes all the children. For example, if you
send an order with one order item to the EAI Siebel Adapter, it will take the
following actions:

1 Queries for the order and if it finds a match, it updates the record.

2 Updates or inserts the new order item depending on if a match was found for
the new order item.

3 Deletes any other order items associated with that order.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 125

EAI Siebel Adapter

EAI Siebel Adapter Methods
Delete Method
You can delete one or more records in a business component that is mapped to the
root integration component, given an integration object. A business component is
deleted as specified by an integration object. If you specify any child integration
component instances, then the fields of an integration component instance are used
to query a business component.

NOTE: To have the EAI Siebel Adapter perform a delete operation, define an
integration object that contains the minimum fields on the primary business
component for the business object. EAI Siebel Adapter attempts to delete matching
records in the business component before deleting the parent record.

Execute Method
The Execute method can be specified on EAI Siebel Adapter to perform
combinations of various operations on components in an integration object
instance. This method uses the following operations:

■ query

■ querypage (same as query when used as children operation)

■ sync (default operation)

■ upsert

■ update

■ updatesync

■ insert

■ insertsync

■ delete

■ none

NOTE: A none operation is equivalent to operation sync.
126 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

EAI Siebel Adapter Methods
These operations perform the same tasks as the related methods. For example, the
delete operation makes the EAI Siebel Adapter delete the business component
record matched to the particular integration component instance. However, what
will be done to the children depends on the combination of the parent operation
and the child operation. For details, see Table 11 on page 129.

Operations that include the word sync in the name cause deletion of unmatched
child records, whereas update, insert, and upsert do not delete any children.
Table 10 presents the overview of the six related operations.

NOTE: You should use the Execute method when you need to mix different
operations on different components within a single integration object; otherwise,
you should use the other methods.

An XML document sent to a Siebel application can include operations that describe
whether a particular data element needs to be inserted, updated, deleted,
synchronized, and so on. These operations can be specified as an attribute at the
component level. They cannot be specified for any other element.

Table 10. EAI Siebel Adapter Execute Method Operations

EAI Siebel Adapter Action upsert sync update updatesync insert insertsync

Error on Match Found No No No No Yes Yes

Error on Match Not Found No No Yes Yes No No

Delete Unmatched Children No Yes No Yes No Yes
Version 7.5.3 eAI Volume II: Integration Platform Technologies 127

EAI Siebel Adapter

EAI Siebel Adapter Methods
Execute Method Operations
Specify an attribute named operation, in lowercase, to the component’s XML
element. The legal values for this attribute are upsert, sync, delete, query, update,
insert, updatesync, insertsync, and none. If the operation is not specified on the root
component, the sync operation is used as the default.

NOTE: Specifying operation within <ListOf> tag is not supported. For details on the
<ListOf> tag, see XML Reference: Siebel eBusiness Application Integration Volume
V.
128 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

XML Examples
Supported Operations for the Parent and Its Child Components
Table 11 presents the operation performed for a child component based on its parent
component’s operation and its own operation.

XML Examples
The following XML example demonstrates using upsert and delete operation to
delete a particular child without updating the parent.

<SiebelMessage MessageId="" MessageType="Integration Object"
IntObjectName="Sample Account">

Table 11. Supported Operations

Parent Operation

query
query
page sync upsert update

update
sync insert

insert
sync delete

Ch
ild

 O
pe

ra
tio

n

query query query upsert upsert update update insert insert delete

query
page

query query upsert upsert update update insert insert delete

sync query query sync sync sync sync sync sync delete

upsert query query upsert upsert upsert upsert upsert upsert delete

update query query update update update update upsert upsert delete

update
sync

query query update
sync

update
sync

update
sync

update
sync

sync sync delete

insert query query insert insert insert insert insert insert delete

insert
sync

query query insert
sync

insert
sync

insert
sync

insert
sync

insert
sync

insert
sync

delete

delete query query delete delete delete delete delete delete delete
Version 7.5.3 eAI Volume II: Integration Platform Technologies 129

EAI Siebel Adapter

XML Examples
<ListofSampleAccount>

<Account operation="upsert">

<Name>A. K. Parker Distribution</Name>

<Location>HQ-Distribution</Location>

<Organization>North American Organization</
Organization>

<Division/>

<CurrencyCode>USD</CurrencyCode>

<Description>This is the key account in the AK Parker
Family</Description>

<HomePage>www.parker.com</HomePage>

<LineofBusiness>Manufacturing</LineofBusiness>

<ListOfContact>

<Contact operation="delete">

<FirstName>Stan</FirstName>

<JobTitle>Senior Mgr of MIS</JobTitle>

<LastName>Graner</LastName>

<MiddleName>A</MiddleName>

<PersonalContact>N</PersonalContact>

<Account>A. K. Parker Distribution</Account>

<AccountLocation>HQ-Distribution</AccountLocation>

</Contact>

</ListOfContact>

</Account>

</ListofSampleAccount>

</SiebelMessage>
130 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

MVGs in EAI Siebel Adapter
The following example illustrates updating multiple corresponding top level parent
business component records with one XML file.

<SiebelMessage MessageId="" MessageType="Integration Object"
IntObjectName="Transaction">

<ListofTransaction>

<Transaction>

<Field1>xxxx</Field1>

<Field2>yyyy</Field2>

.....

</Transaction>

<Transaction>

<Field1>aaaa</Field1>

<Field2>bbbb</Field2>

.....

</Transaction>

..............

</ListofTransaction>

</SiebelMessage>

MVGs in EAI Siebel Adapter
Multi-value groups (MVGs) in the business components are mapped to separate
integration components. Such integration components are denoted by setting a user
property MVG on the integration component to Y. For details on MVGs, see
Chapter 1, “About Integration Objects.”

An integration component instance that corresponds to a primary MVG is denoted
by the attribute IsPrimaryMVG set to Y. This attribute is a hidden integration
component field and does not have a corresponding business component field.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 131

EAI Siebel Adapter

MVGs in EAI Siebel Adapter
Each MVG that appears on the client UI is mapped to a separate integration
component. For example, in the Orders Entry - Orders screen, there is an Account
Address, a Bill-to Address, and a Ship-to Address. Each of these MVGs needs a
separate integration component definition. Each field defined for an integration
component (represented by the class CSSEAIIntCompFieldDef) maps to a field in
the MVG. For such fields, External Name denotes the name of the business
component field as it appears on the master business component, and the user
property MVGFieldName denotes the name of the business component field as it
appears on the MVG business component.

NOTE: Setting a primary record in an MVG is supported only when the Auto Primary
property of the underlying MVLink is specified as Selected or None. If Auto Primary
is defined as Default, then the Object Manager does not allow the EAI Siebel
Adapter to set the primary. The exception to this rule are all the visibility MVG
components (components whose records are used by Object Manager to determine
who is going to see their parent records). For details on Auto Primary property, see
Siebel Tools Reference.

Setting a Primary Address for an Account
You have an account with multiple shipping addresses in a Siebel application. None
of these addresses are marked as the primary address for the account and you want
to select one of them as the primary shipping address.

To specify an address as a primary

1 Create your XML file and insert <IsPrimaryMVG= 'Y'> before the address you
want to identify as the primary address for the account as shown below:

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="false"?>

- <SiebelMessage MessageId="1-69A" IntObjectFormat="Siebel
Hierarchical" MessageType="Integration Object"
IntObjectName="Sample Contact">

- <ListOfSampleContact>

- <Contact>

<FirstName>Pal888</FirstName>
132 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

MVGs in EAI Siebel Adapter
<IntegrationId>65454398</IntegrationId>

<JobTitle>Manager</JobTitle>

<LastName>John888</LastName>

<MiddleName />

<PersonUId>1-Y88H</PersonUId>

<PersonalContact>N</PersonalContact>

- <ListOfContact_Position>

- <Contact_Position IsPrimaryMVG="Y">

<EmployeeFirstName>Siebel</EmployeeFirstName>

<EmployeeLastName>Administrator</EmployeeLastName>

<Position>Siebel Administrator</Position>

<RowStatus>N</RowStatus>

<SalesRep>SADMIN</SalesRep>

</Contact_Position>

</ListOfContact_Position>

</Contact>

</ListOfSampleContact>

</SiebelMessage>.

2 Use the Upsert or Sync method to update the account.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 133

EAI Siebel Adapter

Search Specification
Search Specification
The SearchSpec input method argument is applicable to QueryPage, Query, Delete,
and Execute methods. This method argument allows you to specify complex search
specifications as free text in a single method argument. Expressions within a single
integration component are restricted only by the Siebel Query Language supported
by the Object Manager. Integration components and fields are referenced using the
following notation:

[IntCompName.IntCompFieldName]

For example, given an integration object definition with two integration
components, Account as the root component and Contact as the child component,
the following search specification is allowed:

([Account.Site] LIKE "A*" OR [Account.Site] IS NULL) AND
[Contact.PhoneNumber] IS NOT NULL

This search specification queries accounts that either have a site that starts with the
character A, or do not have a site specified. In addition, for the queried accounts, it
queries only those associated contacts that have a phone number.

NOTE: The AND operator is the only allowed operator among different integration
components. You use DOT notation to refer to integration components and their
fields.

You can include the child integration component in a search specification only if its
parent components are also included. For example, using the same integration
object definition as in previous examples, the [Contact.PhoneNumber] IS NOT
NULL queries every account. Then for each account, it queries only contacts that
have a phone number. If you want to query only accounts that are associated with
contacts that have a phone number specified, then you need to create another
business object, and an integration object based on that business object, which has
contact as a root component, and account as its child component.

The following procedure illustrates how to use the SearchSpec to query specific
accounts.
134 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

Search Specification
To query accounts and addresses based on integration object’s SearchSpec field

1 From the application-level menu, choose View > Site Map > Business Process
Administration > Workflow Processes.

2 Create a new workflow process based on the Sample Account business object.

NOTE: Make sure all the fields you need are activated in the object.

3 Define the process properties.

Workflow process properties are global to the entire workflow. The Account
Message is defined to identify the outbound Account as a hierarchical structure.
The Error Message, Error Code, Object Id, and Siebel Operation Object Id
properties are included in each workflow by default.

4 Click on the Process Designer tab in the bottom applet and design your workflow
process as follows.

Name Data Type In/Out

Account Message Hierarchy In/Out

Error Code String In/Out

Error Message String In/Out

Object Id String In/Out

Process Instance Id String In/Out

Siebel Operation Object Id String In/Out
Version 7.5.3 eAI Volume II: Integration Platform Technologies 135

EAI Siebel Adapter

Search Specification
5 Double-click on the first step, after Start, and set it up to invoke the EAI Siebel
Adapter to query the accounts and addresses for all records that match the
desired search specification—for example, accounts created today with State
equal to “IL.” To achieve this you need the following input and output
arguments.

6 Double-click on the second step and set it up to write the record set to a text file
using the EAI XML Write to File business service. Use the following arguments
with the Write Siebel Message method.

The EAI XML Write to File business service converts the hierarchical message to
XML and writes the result to the text file named in the File Name argument as
follows:

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="false"?>

- <SiebelMessage MessageId="1IS-7LT" IntObjectFormat="Siebel
Hierarchical" MessageType="Integration Object"
IntObjectName="Sample Account">

- <ListOfSampleAccount>

- <Account>

Input Arguments Type Value

Account Message Literal Sample Account

Search Specification Expression '[Account.Created] =' +Today()
+'[Account_BusinessAddress.State] = “IL”'

Input Arguments Type Value Property Name Property Data Type

File Name Literal c:\accnt&add.xml - -

Siebel Message Process
Property

- Account
Message

Hierarchy
136 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

Search Specification
<Created>04/05/2002 07:41:10</Created>

<CSN>1IS-1DBRT</CSN>

<Location>Princeton</Location>

<Name>1st Account created today</Name>

- <ListOfAccount_BusinessAddress>

- <Account_BusinessAddress IsPrimaryMVG="N">

<City>Abbott Park</City>

<Country>USA</Country>

<State>IL</State>

<StreetAddress>1 Abbott Rd. D3m, B 3</StreetAddress>

<AddressName>1 Abbott Rd. D3m, B 3, Abbott Park, IL</
AddressName>

</Account_BusinessAddress>

</ListOfAccount_BusinessAddress>

</Account>

- <Account>

<Created>04/05/2002 07:42:27</Created>

<CSN>1IS-1DBRY</CSN>

<Location>Orange</Location>

<Name>2nd Account created today</Name>

- <ListOfAccount_BusinessAddress>

- <Account_BusinessAddress IsPrimaryMVG="Y">

<City>Chicago</City>

<Country>USA</Country>

<State>IL</State>
Version 7.5.3 eAI Volume II: Integration Platform Technologies 137

EAI Siebel Adapter

Language-Independent Code
<StreetAddress>1 BOP, 7th Floor</StreetAddress>

<AddressName>1 BOP, 7th Floor, Chicago, IL</AddressName>

</Account_BusinessAddress>

</ListOfAccount_BusinessAddress>

</Account>

</ListOfSampleAccount>

</SiebelMessage>

Language-Independent Code
If the user Property AllLangIndependentVals is set to Y at the integration object
level, then EAI Siebel Adapter uses the language-independent code for its LOVs.

In the outbound direction, for example the Query method, if the
AllLangIndependentVals is set to Y, then the EAI Siebel Adapter translates the
language-dependent values in the Siebel Database to their language-independent
counterpart based on the List Of Values entries in the database.

In the inbound direction, for example the Synchronize method, if the
AllLangIndependentVals is set to Y, then the EAI Siebel Adapter expects language-
independent values in the input message, and translates them to language-
dependent values based on the current language setting and the entries in the List
Of Values in the database.

NOTE: The LOV-based fields are always validated using language-dependent values.
Using language independent values for (M)LOVs increases the EAI Siebel Adapter
CPU usage by about 5%, but allows easier communication between systems that
operate on different languages.

LOV Translation
The Siebel application distinguishes two types of lists of values (LOV): multilingual
LOV (MLOV) and single-language LOV.
138 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

EAI Siebel Adapter Concurrency Control
Multilingual LOV (MLOV) stores a language-independent code (LIC) in the Siebel
Database that gets translated to a language-dependent value (LDV) for active
language by Object Manager. MLOVs are distinguished by having Translation Table
specified on the Column definition.

Single-language LOV stores the LDV for the current language in the Siebel Database.
The Boolean integration object user property AllLangIndependentVals determines
whether the EAI Siebel Adapter should use LDV (N = no translation necessary) or
LIC (Y = translation needed) for such LOVs. For details, see Table 6 on page 67.

Translating to LIC impacts performance but allows easier cooperation between
systems that operate on different languages. This option should be especially used
by various import and export utilities. Default value is undefined for backward
compatibility with 6.x release behavior.

Table 12 explains the behavior of Siebel Adapter according to the integration object
user property AllLangIndependentVals values.

EAI Siebel Adapter Concurrency Control
The EAI Siebel Adapter supports concurrency control to guarantee data integrity
and avoid overriding data by simultaneous users or integration processes. To do so,
the EAI Siebel Adapter uses the Integration Component Key called Modification Key.

Table 12. Siebel Adapter’s Behavior for the User Property AllLangIndependentVals

AllLangIndependentVals Y N Undefined

LOV LIC LDV LDV

MLOV LIC LDV LIC
Version 7.5.3 eAI Volume II: Integration Platform Technologies 139

EAI Siebel Adapter

EAI Siebel Adapter Concurrency Control
Modification Key
A Modification Key is an Integration Component Key of the type Modification Key.
A Modification Key is a collection of fields that together should be used to verify the
version of an integration component instance. Typically, Modification Key fields are
Mod Id fields for the tables used. Multiple Modification Key fields may be needed
because a business component may be updating multiple tables, either as extension
tables or through implicit or explicit joins.

EAI Siebel Adapter methods (Insert, Update, Synchronize, Upsert) check for the
existence of a Modification Key. If no Modification Key is specified in the integration
component definition, or if Modification Key fields are not included in the XML
request, the EAI Siebel Adapter does not check for the record version and proceeds
with the requested operation. If a valid Modification Key is found, but the
corresponding record can not be found, the EAI Siebel Adapter assumes that the
record has been deleted by other users and returns the error
SSASqlErrWriteConflict.

If a valid Modification Key as well as the corresponding record can be found, the
EAI Siebel Adapter checks if the Modification Key fields in the XML request and the
matched record are consistent. If any of the fields are inconsistent, the EAI Siebel
Adapter assumes that the record has been modified by other users and returns the
error SSASqlErrWriteConflict. If all the fields are consistent, the EAI Siebel Adapter
proceeds with the requested operation.

Modification IDs
To determine which Mod Id fields need to be used as part of a Modification Key, you
expose Mod Id fields for tables whose columns may be updated by that integration
object. In some situations you might need to add corresponding integration
component fields as well as business component fields.

NOTE: EAI Siebel Adapter can update base and extension tables. It may even update
joined table columns through picklists that allow updates.
140 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

EAI Siebel Adapter Concurrency Control
Modification ID for a Base Table
The integration component field Mod Id for a base table is created by the Integration
Object Builder Wizard, but you need to make sure it is active if it is needed for your
business processes.

Modification ID for an Extension Table
An extension table’s Mod Id field is accessible as extension table name.Mod Id
in the business component—for example, S_ORG_EXT_X.Mod Id. However, if your
business processes require this field, you need to manually add it to the integration
object definition by copying the Mod Id field and changing the properties.

Modification ID for a Joined Table
A joined table’s Mod Id field needs to be manually added in both business
component and integration object definitions. Business component Mod Id fields for
joined tables should:

■ Be prefixed with CX string and preferably followed by the name of the join

■ Be Joined over the correct join

■ Have MODIFICATION_NUM specified as underlying column of type
DTYPE_INTEGER

MVG and MVGAssociation Integration Components
For integration components that are of type MVG or MVGAssociation, in addition to
the above steps, you need to create user properties MVGFieldName and
AssocFieldName for each Modification ID integration component field, respectively,
and set the name of the field shown in the parent business component as the value.

To configure EAI Siebel Adapter for concurrency control

1 For each integration component, identify all needed Modification IDs.

NOTE: In addition to the Modification ID for the base table, Modification IDs for
tables that are used through one-to-one extension as well as through implicit
joins are relevant. For example, on modifying an account record
MODIFICATION_NUM column on S_ORG_EXT is updated, not the
MODIFICATION_NUM column on S_PARTY.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 141

EAI Siebel Adapter

EAI Siebel Adapter Concurrency Control
a Identify all active fields in an integration component that will be updated and
have to be concurrency safe.

b Select the corresponding business component, the value in the External
Name property of the integration component.

c For each field identified in Step a, check the value of the Join property of the
field. If the join is not specified, then the field belongs to the base table;
otherwise, note the name of the join.

d In the Object explorer, select Business Component > Join and query for the
business component from Step b. Search whether there is an entry whose
Alias property matches the name of the join from Step c.

❏ If a matching Alias is found, then this field belongs to a Joined Table. The
name of the join in Step c is the join name and the value of the Table
property is the joined table.

❏ If no Alias matches, then this is an implicit join to an Extension Table. The
name of the join in Step c is the name of the extension table.

2 Create business component fields for Mod Ids of Joined Tables. For the above
example, create a new field in business component Account with the following
settings:

Name. CX_Primary Organization-S_BU.Mod Id

Join. Primary Organization-S_BU

Column. MODIFICATION_NUM

Type. DTYPE_INTEGER

3 Expose all Modification IDs identified in Step 1 as integration component fields.

4 For MVG and MVG Association integration components, add user property
MVGFieldName and AssocFieldName respectively, on all Modification ID fields
as follows:

a Check the Integration Component User Prop sub type for user properties of
the integration component.
142 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

EAI Siebel Adapter Concurrency Control
b If there is a user property called MVGAssociation then the integration
component is a MVG Association, but if there is a user property called
Association then the integration component is a MVG.

NOTE: If the integration component is neither an MVG nor an MVG
Association, then nothing needs to be done.

5 Repeat the following steps for each Modification ID field on the integration
component.

a Add user property MVGFieldName if MVG, or AssocFieldName if MVG
Association.

b Set the value of the user property to the same as the field name—for example,
Mod Id, extension table name.Mod Id, or CX_join.Mod Id.

6 Create Modification Key.

Define a new integration component key of type Modification Key, and include
all the integration component fields exposed in Step 3 to this key.

7 Validate integration objects and compile a new .srf.

8 Modify client program to use the Modification Key mechanism.

a The client program should store the value of the Modification IDs when it
queries data from Siebel Database.

b The client program should send exactly the same values of the Modification
IDs that it retrieved from Siebel Database when sending an update.

c The client program should not send in any Modification IDs when sending a
new record to the Siebel application. If this is violated, the client program
generates an error indicating that the record has been deleted by another
user.

Integration Component Account Example
Consider an integration component Account of the business component Account:

■ Field Home Page has property Join set to S_ORG_EXT. This is an implicit join
because it is not listed in the joins; therefore, this field belongs to Extension
Table S_ORG_EXT.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 143

EAI Siebel Adapter

EAI Siebel Adapter Concurrency Control
■ Field Primary Organization has property Join set to Primary Organization-S_BU.
This is an explicit join as it is listed in the joins. The value of Table property is
S_BU; therefore, this field belongs to Joined Table S_BU joined over Primary
Organization-S_BU.

1 Activate integration component field Mod Id.

a Set Name, External Name, XML Tag properties to Mod Id

b Set External Data Type property to DTYPE_NUMBER

c Set External Length property to 30

d Set Type property to System

2 Add integration component field S_ORG_EXT.Mod Id.

a Set Name, External Name, XML Tag properties to S_ORG_EXT.Mod Id

b Set External Data Type property to DTYPE_NUMBER

c Set External Length property to 30

d Set Type property to System

3 Add integration component field CX_Primary Organization-S_BU.Mod Id.

a Set Name, External Name, XML Tag properties to CX_Primary Organization-
S_BU.Mod Id

b Set External Data Type property to DTYPE_NUMBER

c Set External Length property to 30

d Set Type property to System

Integration Component Account_Organization Example
Consider the integration component Account_Organization of the Sample Account
integration object. Account_Organization is an MVG Association as denoted by the
presence of the user property MVGAssociation. Assume two Modification IDs, Mod
Id and S_ORG_EXT.Mod Id, were exposed on this integration component.

1 For field Mod Id create a new user property with the name of AssocFieldName
with a value of Mod Id.
144 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI Siebel Adapter

Siebel eAI and Run-Time Events
2 For field S_ORG_EXT.Mod Id create a new user property with the name of
AssocFieldName with a value of S_ORG_EXT.Mod Id.

In the integration component example, Account (created in “Integration Component
Account_Organization Example” on page 144) of Sample Account integration
object, takes the following action:

1 Create a new Integration Component key called Modification Key.

2 Set the type of the key as Modification Key.

3 Add integration component fields Mod Id, S_ORG_EXT.Mod Id, and S_BU.Mod
Id to the Modification Key.

Siebel eAI and Run-Time Events
The Siebel application allows triggering workflows based on run-time events or
workflow policies.

Run-Time Events. Siebel eAI supports triggering workflows based on run-time events
such as Write Record, which gets triggered whenever a record is written. If you use
both EAI Siebel Adapter to import data into Siebel application and run-time events,
you should pay attention to the following:

For EAI Siebel Adapter, one call to EAI Siebel Adapter with an input message is a
transaction. Within a transaction, EAI Siebel Adapter makes multiple Write Record
calls. At any point in the transaction, if EAI Siebel Adapter encounters a problem
the transaction is rolled back entirely. However, if you have specified events to
trigger at Write Record, such events are invoked as soon as EAI Siebel Adapter
makes Write Record calls even though EAI Siebel Adapter may be in the middle of
a transaction. If you have export data workflows triggered on such events, this may
lead to exporting data from Siebel applications that is not committed in Siebel
applications and may get rolled back. It is also possible that your events get
triggered when the record is not completely populated, which leads to situations
that are not handled by your specified event processing workflow.

To avoid the effects of this interaction between EAI Siebel Adapter and run-time
events use the business service EAI Transaction Service to figure out if a transaction
(typically, EAI Siebel Adapter) is in progress. You may then want to skip processing
that is not desirable when EAI Siebel Adapter is in progress.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 145

EAI Siebel Adapter

Siebel eAI and Run-Time Events
For example, suppose you have a workflow to export Orders from Siebel
applications that is triggered whenever the Order record is written. You also import
Orders into Siebel applications using EAI. In such a situation, you do not want to
export Orders while they are being imported because the import may get aborted
and rolled back. You achieve this using the business service EAI Transaction Service
as the first step of the export workflow. If you find that a transaction is in process
you can branch directly to the end step.

Workflow Policies. In addition to Run-Time Events, Siebel applications also support
Workflow Policies as a triggering mechanism for workflows. You can use workflow
policies instead of run-time events to avoid the situation discussed above. You
should use Workflow Policies instead of Run-Time Events when possible.
146 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel eAI and File Attachments 6
Siebel eAI supports file attachments for exchanging business documents such as
sales literature, activity attachments, and product defect attachments with another
Siebel instance or an external system such as Oracle Applications.

For example, if you are exchanging service requests with another application or
partner, you can include attachments such as screen captures, email, log files, and
contract agreements that are associated with the service request in the information
being exchanged. Siebel eAI support for file attachments allows comprehensive
integration.

In order to use file attachments you first need to create Integration Objects. For
details, see Chapter 1, “About Integration Objects,” and Chapter 2, “Creating and
Maintaining Integration Objects.”

Siebel eAI offers the choice of integrating file attachments using MIME (the industry
standard for exchanging multi-part messages), or including the attachment within
the body of the XML document, referred to as an inline XML attachment. You
should consider using inline XML attachments when integrating two instances of
Siebel applications using file attachments.

Exchange of Attachments with External Applications
Siebel eAI supports bidirectional attachments exchange with external applications
using the following two message types:

■ MIME (Multipurpose Internet Mail Extensions). MIME is the industry standard for
exchanging multipart messages. The first part of the MIME message is an XML
document representing the business object being exchanged and attachments to
the object are included as separate parts of the multipart message. MIME is the
recommended choice for integrating Siebel applications with other applications.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 147

Siebel eAI and File Attachments

Using MIME Messages to Exchange Attachments
■ Inline XML attachments (Inline Extensible Markup Language). With inline XML
attachments, the entire business object you are exchanging, including any
attachments, is sent as a single XML file. In this case, attachments are included
within the body of the inline XML attachment. Inline XML attachments should
be considered when integrating two instances of Siebel applications using file
attachments. For details, see XML Reference: Siebel eBusiness Application
Integration Volume V.

Using MIME Messages to Exchange Attachments
To send or receive file attachments using MIME messages, Siebel eAI uses the MIME
Hierarchy Converter and MIME Doc Converter.

The following checklist shows the high-level procedures you need to perform to use
MIME to exchange attachments between Siebel applications and another external
system.

Checklist

❑ Create an integration object using the EAI Siebel Wizard.

For details, see “Creating the Integration Object” on page 149.

❑ Create an inbound or outbound Workflow process.

For details, see “Creating Workflow Processes Examples” on page 150.

❑ Test your workflow process using Workflow Process Simulator.

For details, see “The EAI MIME Hierarchy Converter” on page 156.
148 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel eAI and File Attachments

Using MIME Messages to Exchange Attachments
Creating the Integration Object
The following procedure guides you through the steps of creating an integration
object.

To create a new Siebel integration object

1 Start Siebel Tools.

2 Create a new project and lock the project, or lock an existing project in which
you want to create your integration object.

3 Choose File > New Object... to display the New Object Wizards.

4 Select the EAI tab, select the Integration Object icon, and click OK.

NOTE: When creating your integration object you need to select the Attachment
integration object. The following figure illustrates this when the source object is
Account.

5 Click Next to see a list of the warnings and errors generated by the Integration
Object Builder.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 149

Siebel eAI and File Attachments

Using MIME Messages to Exchange Attachments
6 Review and take necessary actions to address the issue.

7 Click Finish to complete the process of building the integration object.

8 In the Object Explorer, select Integration Object >
Integration Component >Integration Component Field object.

The Integration Component and Integration Component Field applets appear.

9 Select the XXX_Attachment Component and the Attachment Id Component
fields, and verify that the Data Type for the Attachment Id field is set to
DTYPE_ATTACHMENT.

10 Compile the .srf file and copy it to the object directory under your Siebel Server
directory as well as under your Tools directory.

NOTE: You need to stop the services before copying the .srf file. For details on the
.srf file, see Siebel Tools Reference.

Creating Workflow Processes Examples
Depending on whether you are preparing for an outbound or an inbound
attachment exchange, you need to design different workflow process as described
in the following two procedures.

Outbound Workflow Process
To process the attachment for an outbound request you need to create a workflow
process to query the database, convert the Integration Object and its attachments
into a MIME hierarchy, and then create a MIME document to send to the File
Transport business service.

To create an outbound workflow process

1 Navigate to Workflow Process Designer.

2 Create a workflow process consisting of Start, End, and four Business Services.
Set up each Business Service according to the task it needs to accomplish.
150 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel eAI and File Attachments

Using MIME Messages to Exchange Attachments
3 Define your process properties.

Set workflow process properties when you need a global property for the entire
workflow.

Name Data Type Default String

SiebelMessage Hierarchy

Error Message String

Error Code String

Object Id String

Process Instance Id String

Siebel Operation Object Id String

MIMEHierarchy Hierarchy

SearchSpec String [Account.Name] = 'Sample Account'

MIMEMsg String
Version 7.5.3 eAI Volume II: Integration Platform Technologies 151

Siebel eAI and File Attachments

Using MIME Messages to Exchange Attachments
4 The first business service queries the Account information from the database
using the EAI Siebel Adapter business service with the Query method. This step
requires the following input and output arguments.

NOTE: For more information on using EAI Siebel Adapter, see Chapter 5, “EAI
Siebel Adapter.”

Input Argument Type Value Property Name Property Data Type

Output Integration
Object Name

Literal Sample Account - -

SearchSpec Process
Property

- SearchSpec String

Property Name Type Output Argument

SiebelMessage Output Argument Siebel Message
152 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel eAI and File Attachments

Using MIME Messages to Exchange Attachments
5 The second business service in the workflow converts the Account integration
object and its attachments to a MIME hierarchy using the EAI MIME Hierarchy
Converter business service with the SiebelMessage to MIME Hierarchy method.
This step requires the following input and output arguments.

NOTE: For more information on the EAI MIME Hierarchy Converter, see “The EAI
MIME Hierarchy Converter” on page 156.

6 The third business service of the workflow converts the MIME hierarchy to a
document to be sent to File Transport business service. This step uses the EAI
MIME Doc Converter business service with the MIME Hierarchy To MIME Doc
method. This step requires the following input and output arguments.

NOTE: For more information on the EAI MIME Doc Converter, see “The EAI MIME
Doc Converter” on page 159.

Input Argument Type Property Name Property Data Type

Siebel Message Process Property SiebelMessage Hierarchy

Property Name Type Output Argument

MIMEHierarchy Output Argument MIME Hierarchy

Input Argument Type Property Name Property Data Type

MIME Hierarchy Process Property MIMEHierarchy Hierarchy

Property Name Type Output Argument

MIMEMsg Output Argument MIME Message
Version 7.5.3 eAI Volume II: Integration Platform Technologies 153

Siebel eAI and File Attachments

Using MIME Messages to Exchange Attachments
7 For the final step, you need to set up the last business service of the workflow
to write the information into a file using the EAI File Transport business service
with the Send method. This step requires the following input arguments.

NOTE: For details on File Transport, see Transports and Interfaces: Siebel
eBusiness Application Integration Volume III.

Inbound Workflow Process Example
To process the attachment for an inbound request, you need to create a workflow
process to read the content from a file, convert the information into a Siebel
Message, and send to EAI Siebel Adapter to update the database accordingly.

To create an inbound workflow process

1 Navigate to Workflow Process Designer.

2 Create a workflow process consisting of Start, End and four Business Services.
Set up each Business Service according to the task it needs to accomplish.

3 Define your process properties.

Set workflow process properties when you need a global property for the entire
workflow.

Input Argument Type Value Property Name
Property
Data Type

Message Text Process Property - MIMEMsg String

File Name Literal c:\temp\account.txt - -
154 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel eAI and File Attachments

Using MIME Messages to Exchange Attachments
4 The first business service in the workflow reads the Account information from a
file using the EAI File Transport business service with Receive method. This step
requires the following input and output arguments.

NOTE: For details on File Transport, see Transports and Interfaces: Siebel
eBusiness Application Integration Volume III.

5 The second business service of the workflow converts the Account information
to a MIME hierarchy using the EAI MIME Doc Converter business service with
the MIME Doc to MIME Hierarchy method. This step requires the following input
and output arguments.

Input Argument Type Value

File Name Literal c:\temp\account.txt

Property Name Type Output Argument

MIMEMsg Output Argument Message Text

Input Argument Type Property Name Property Data Type

MIME Message Process Property MIMEMsg String

Property Name Type Output Argument

MIMEHierarchy Output Argument MIME Hierarchy
Version 7.5.3 eAI Volume II: Integration Platform Technologies 155

Siebel eAI and File Attachments

The EAI MIME Hierarchy Converter
6 The third business service of the workflow converts the MIME hierarchy to a
document and sends it to the EAI Siebel Adapter business service. This step uses
the EAI MIME Hierarchy Converter business service with the MIME Hierarchy to
Siebel Message method. This step requires the following input and output
arguments.

7 The last step of the workflow writes the information into the database using the
EAI Siebel Adapter business service with the Insert or Update method. This step
requires the following input argument.

The EAI MIME Hierarchy Converter
The EAI MIME Hierarchy Converter transforms the Siebel Message into a MIME
(Multipurpose Internet Mail Extensions) hierarchy for outbound integration. For
inbound integration, it transforms the MIME Hierarchy into a Siebel Message.

Input Argument Type Property Name Property Data Type

MIME Hierarchy Process Property MIMEHierarchy Hierarchy

Property Name Type Output Argument

SiebelMessage Output Argument Siebel Message

Input Argument Type Property Name Property Data Type

Siebel Message Process Property SiebelMessage Hierarchy
156 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel eAI and File Attachments

The EAI MIME Hierarchy Converter
Outbound Integration
The EAI MIME Hierarchy Converter transforms the input Siebel Message into a
MIME Hierarchy. Figure 27 illustrates the Siebel Message of a sample Account with
attachments. This figure represents both input and output to the MIME Hierarchy
Converter.

The output of this process is illustrated in Figure 28.

Figure 27. Sample Account with Attachments as Input to the MIME Hierarchy Converter

Figure 28. Output of a MIME Hierarchy Converter
Version 7.5.3 eAI Volume II: Integration Platform Technologies 157

Siebel eAI and File Attachments

The EAI MIME Hierarchy Converter
The first child of a MIME Hierarchy is the XML format of the Sample Account
Integration Object instance found in the Siebel Message. The remaining two
children are the corresponding children found under Attachments. In the event that
there is no child of type Attachments in the Siebel Message, the output is just a
MIME Hierarchy with a child of type Document. This document will contain the
XML format of the Sample Account integration object instance.

Inbound Integration
The MIME Hierarchy Converter transforms a MIME Hierarchy input into a Siebel
Message. For the inbound process, the first child of the MIME Hierarchy has to be
the XML format of the Integration Object instance; otherwise, an error is generated.
Figure 29 illustrates the incoming hierarchy.

The output of this process is illustrated in Figure 27 on page 157. The output for this
process is the same as the input.

Figure 29. Output of a MIME Hierarchy Converter
158 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel eAI and File Attachments

The EAI MIME Doc Converter
The EAI MIME Doc Converter
The MIME Doc Converter converts a MIME Hierarchy into a MIME Message and a
MIME Message into a MIME Hierarchy. A MIME Hierarchy consists of two different
types of property sets.

Table 13 illustrates some examples of how a MIME Message maps to a MIME
Hierarchy.

Property Description

MIME Hierarchy Mapping to a MIME multi-part

Document Mapping to MIME basic-part

Table 13. Examples of MIME Message and MIME Hierarchy

MIME Message MIME Hierarchy

MIME-Version: 1.0

Content-Type: application/xml

Content-Transfer-Encoding: 7bit

This is a test.

MIME-Version: 1.0

Content-Type: multipart/related; type="application/xml";
boundary=--abc

----abc

Content-Type: application/xml

Content-Transfer-Encoding: 7bit

This is test2.

----abc--
Version 7.5.3 eAI Volume II: Integration Platform Technologies 159

Siebel eAI and File Attachments

The EAI MIME Doc Converter
EAI MIME Doc Converter Properties
The business service needs the following properties on the child property set as
shown in Table 14. These properties reflect the most accurate information on the
data contained in the child property set.

Table 14. Properties for EAI MIME Doc Converter

Property Possible Values Type Description

ContentId Any value Document No Default. The ContentId is the value used to
identify the file attachment when the receiver
parses the MIME message. When importing
attachments, you should use a unique value
for this property and not repeat it for the rest
of the file attachments. This is required in the
actual document as well as in the
SiebelMessage. This property is automatically
populated when you are exporting an
attachment from Siebel application.

Extension txt, java, c, C, cc, CC, h,
hxx, bat, rc, ini, cmd, awk,
html, sh, ksh, pl, DIC, EXC,
LOG, SCP, WT, mk, htm,
xml, pdf, AIF, AIFC, AIFF,
AU, SND, WAV. gif, jpg,
jpeg, tif, XBM, avi, mpeg,
ps, EPS, tar, zip, js, doc,
nsc, ARC, ARJ, B64, BHX,
GZ, HQX

Document No Default. If ContentType and
ContentSubType are not defined, the
Extension is used to retrieve the appropriate
values from this property. If all three values
are specified, the ContentType and
ContentSubType values override the values
retrieved from the Extension. If either the
Extension or both ContentType and
ContentSubType are not specified, the
ContentType will be set to application and
ContentSubType will have the value of octet-
stream.
160 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel eAI and File Attachments

The EAI MIME Doc Converter
NOTE: On the inbound direction, the business service is independent of the
transport. It assumes that the input property set contains the MIME message and
outputs a property set representation of the MIME message. A property set is used
to represent each part of the MIME message. When decoding the MIME message,
the business service automatically sets the properties based on the values in the
MIME message.

ContentType application, audio, image,
text, video

Document Default is application. The ContentType value
has to be specified if you want to set the
content type of the document instead of using
the extension to get a value from the MIME
utility function. If the value is not provided,
the default value is used. The ContentType of
multipart is used to represent file attachments
in a MIME message. Other forms of values to
describe a multipart is not supported.

ContentSubType plain, richtext, html, xml
(used with ContentType of
Text)

octet-stream, pdf,
postscript, x-tar, zip, x-
javascript, msword, x-
conference, x-gzip (used
with ContentType of
application)

aiff, basic, wav (used with
ContentType of audio)

gif, jpeg, tiff, x-xbitmap
(used with ContentType of
image)

avi, mpeg (used with
ContentType of video)

Document Default is octet-stream. The ContentSubType
value has to be specified if you want to set the
content subtype of the document instead of
using the extension to get a value from the
MIME utility function. If the value is not
provided the default value is used.

Table 14. Properties for EAI MIME Doc Converter

Property Possible Values Type Description
Version 7.5.3 eAI Volume II: Integration Platform Technologies 161

Siebel eAI and File Attachments

The EAI MIME Doc Converter
162 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components 7
This chapter describes the virtual business component (VBC), and its uses and
restrictions. This chapter also describes how you can create a new VBC in Siebel
Tools.

Overview of Virtual Business Components
A virtual business component (VBC) provides a way to access data that resides in
an external data source using a Siebel business component. The VBC does not map
to an underlying table in the Siebel Database. You create a new VBC in Siebel Tools
and compile it into the siebel.srf file. The VBC calls a Siebel business service to
provide a transport mechanism.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 163

Siebel Virtual Business Components

Overview of Virtual Business Components
You can take two approaches to use virtual business components, as illustrated in
Figure 30.

■ Use the XML Gateway business service to pass data between the virtual business
component and one of the Siebel transports, such as the EAI HTTP Transport,
the EAI MQSeries AMI Transport, or the EAI MSMQ Transport.

■ Write your own business service in Siebel eScript or in Siebel VB to implement
the methods described in this chapter.

Figure 30. Two Approaches to Building Virtual Business Components
164 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Overview of Virtual Business Components
Enhancements to VBCs for This Version
The following new features and enhancements have been implemented in this
version to enhance the functionality of the VBCs to better assist you in meeting your
business requirements:

■ Virtual business components (VBCs) support drill down from a VBC. You can
drill down to a VBC from a standard BC, another VBC, or the same VBC.

■ A parent applet can be based on a VBC.

■ You can define virtual business components that can participate as a parent in a
business object. The VBC you define can be a parent to a standard BC or a VBC.

■ You still can use an older version of XML format or property set by setting the
VBC Compatibility Mode parameter to the appropriate version. For details, see
Table 15 on page 168.

■ You can pass search and sort specifications to the business service used by a
VBC.

■ You can use Validation, Pre Default Value, Post Default Value, Link Specification,
and No Copy attributes of VBC fields.

■ You can use predefined queries with VBC.

■ You can have picklists based on VBC and use the picklist properties such as No
Insert, No Delete, No Update, No Merge, Search Specification, and Sort
Specification.

■ You can use the Cascade Delete, Search Spec, Sort Spec, No Insert, No Update,
and No Delete link properties when a VBC is the child business component on
the link.

■ You can use No Insert, No Update, No Delete, Search Spec, Sort Spec, and
Maximum Cursor Size business component properties.

Usage and Restrictions
■ You can define a business object as containing both standard business

components and virtual business components.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 165

Siebel Virtual Business Components

Virtual Business Components
■ When configuring applets based on VBCs, use CSSFrame (Form) and
CSSFrameList (List) instead of specialized applet classes.

■ Using the same name for the VBC field names and the remote data source field
names may reduce the amount of required programming. (Optional)

■ Virtual business components cannot be docked, so they do not apply to remote
users.

■ Virtual business components cannot contain a multi-value group (MVG).

■ Virtual business components do not support many-to-many relationships.

■ Virtual business components cannot be loaded using Enterprise Integration
Manager.

■ Standard business components can not contain multi-value group based on
virtual business components.

■ Virtual business components cannot be implemented using any business
component class other than CSSBCVExtern. This means specialized business
components such as Quotes and Forecasts cannot be implemented as virtual
business components.

■ You cannot use Workflow Monitor to monitor virtual business components.

Virtual Business Components
To use VBCs to share data with an external applications you need to perform the
following high-level tasks:

Checklist

❑ Create a new Virtual Business Component.

For details, see “Creating a New Virtual Business Component.”
166 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Virtual Business Components
Creating a New Virtual Business Component
You create a new virtual business component in Siebel Tools.

To create a new virtual business component

1 Start Siebel Tools.

2 Lock the appropriate project.

3 Create a new record in the Business Component list applet in Siebel Tools.

4 Name the business component.

5 Select the project you locked in Step 2.

6 Set the Class to the CSSBCVExtern class. This class provides the virtual business
component functionality.

❑ Set the User Properties on Virtual Business Components (VBCs).

For details, see “Setting User Properties for the Virtual Business Component” on
page 168.

❑ Configure your VBC Business Service:

■ Configure your XML Gateway Service or write your own Business Service.
For details, see “XML Gateway Service” on page 169 and “Custom Business
Service Methods” on page 183.

■ Configure your external application.
For details, see “External Application Setup” on page 183.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 167

Siebel Virtual Business Components

Virtual Business Components
Setting User Properties for the Virtual Business Component
When defining the virtual business component, you must provide the user
properties shown in Table 15.

To define user properties

1 Start Siebel Tools.

2 Lock the appropriate project.

3 Click the Business Component folder in the Object Explorer to expand the
hierarchical tree.

Table 15. Setting Virtual Business Component User Properties

User Property Description

Service Name The name of the business service.

Service Parameters (Optional) Any parameters required by the business service.The
Siebel application passes this user property, as an input argument,
to the business service.

Remote Source (Optional) External data source that the business service is to use.
This property allows the VBC to pass a root property argument to
the underlying Business Service, but it does not allow a connection
directly to the external datasource. The Siebel application only
passes this user property as an input argument.

VBC Compatibility
Mode

(Optional) Determining the format of the property set passed from
a VBC to a business service, or the format in which the outgoing
XML from the XML Gateway will be. A valid value is Siebel xxx,
where xxx can be any Siebel release number. Some examples
would be Siebel 6 or Siebel 7.0.4. If xxx is less than 7.5, the format
will be in pre-7.5. Otherwise, a new property set and XML format
will be passed.

If you are creating a VBC in 7.5, there is no need to define this new
user property since the default would be to use the new PropertySet
from VBC and the new outgoing XML from the XML Gateway.

For your existing VBC implementation you need to update your
VBC definition by adding this new user property and setting it to
Siebel xxx, where xxx is your desired version number.
168 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

XML Gateway Service
4 Select the business component you want to define user properties for.

5 Click the Business Component User Prop folder in the Object Explorer.

6 Choose Edit New Record to create a new blank user property record.

7 Type the name of the user property, such as Service Name, in the Name field.

8 Type the value of the user property, such as a business service name, in the Value
field.

9 Repeat the process for every user property you want to define for this virtual
business component.

NOTE: For list of different property sets and their format, see “Examples of Outgoing
XML Format” on page 174 and “Examples of Incoming XML Format” on page 180.

XML Gateway Service
The XML Gateway business service communicates between Siebel applications and
external data sources using XML as the data format. For details on XML format, see
“Examples of Outgoing XML Format” on page 174 and “Examples of Incoming XML
Format” on page 180. The XML Gateway business service can be configured to use
one of the following transports:

■ EAI MQSeries AMI Server Transport

■ EAI MQSeries Server Transport

■ EAI HTTP Transport

■ EAI MSMQ Transport
Version 7.5.3 eAI Volume II: Integration Platform Technologies 169

Siebel Virtual Business Components

XML Gateway Service
You can configure the XML Gateway by specifying the transport protocol and the
transport parameters you use in the Service Parameters User Property of the virtual
business component as shown in Table 16. When using the XML Gateway, you need
to specify the following user properties for your virtual business component.

NOTE: You can concatenate multiple name-value pairs using a semicolon (;), but
should not use any spaces between the name, the equal sign, the value, and the
semicolon.

For example, if you want to specify the EAI HTTP Transport, you may use something
like the following which is also illustrated in Figure 31:

Table 16. User Properties

Name Value

Service Name XML Gateway

Service Parameters variable1 name=variable1 value;
variable2 name=variable2 value>;...

Remote Source External Data Source

VBC Compatibility Mode Siebel xxx, where xxx can be any Siebel release number.
170 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

XML Gateway Service
"Transport=EAI HTTP Transport;HTTPRequestURLTemplate=<your
URL>;HTTPRequestMethod=POST"

or if you want to specify the EAI MQSeries AMI Transport, you may use something
like:

"Transport=EAI MQSeries AMI Transport;MqPolicyName=<policy
name>;MqSenderServiceName=<sender service name>;
MqModelQueueName=<queue name>;MqPhysicalQueueName=<p queue
name>;..."

You can also implement VBC with MQSeries. The following procedure lists the steps
you need to take to implement this.

To implement VBC with MQSeries

1 Call the EAI Business Integration Manager (Server Request) business service.

NOTE: You do not need to define the EAI MQSeries Server Transport business
service as the transport on the service parameters line. MQSeries is usually
installed on the same machine as the Siebel Server and not installed on the client
machine; therefore, references to the EAI MQSeries Server Transport as the
transport parameter for the VBC will not work.

2 Define another service parameter for the name of a workflow process to run,
with the following user properties on the VBC.

Figure 31. Setting Virtual Business Component User Properties
Version 7.5.3 eAI Volume II: Integration Platform Technologies 171

Siebel Virtual Business Components

XML Gateway Service
■ Service Name. XML Gateway

■ Service Parameters. Transport=EAI Business Integration Manager (Server
Request);ProcessName=EAITEST

3 Define a workflow process, EAITEST, to call the EAI MQSeries Server Transport
with the SendReceive method.

4 Define a new process property, <Value>, on the workflow process and use it
as an output argument on the EAI MQSeries Server Transport step in the
workflow process.

XML Gateway Methods
The XML Gateway provides the methods presented in Table 17.

Table 17. XML Gateway Methods

Method Description

Init Initializes the XML Gateway business service for every business component.

Delete Deletes a given record in the remote data source.

Insert Inserts a record into a remote data source.

PreInsert Performs an operation that tests for the existence of the given business
component.Only default values are returned from the external application.

Query Queries the given business component from the given data source.

Update Updates a record in the remote data source.
172 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

XML Gateway Service
XML Gateway Method Arguments
The XML Gateway init, delete, insert, preInsert, query, and update methods take the
arguments presented in Table 18.

Table 18. XML Gateway Arguments

Argument Description

Remote Source The VBC Remote Source user property. The remote source from
which the service is to retrieve data for the business component.
This must be a valid connect string. When configuring the
repository business component on top of the specialized
business component class CSSBCVExten, a user property
Remote Source can be defined to allow the Transport Services to
determine the remote destination and any connect information.
If this user property is defined, it is passed to every request as
the <remote-source> tag.

Business Component Id Unique key for the given business component.

Business Component
Name

Name of the business component or its equivalent, such as a
table name.

Parameters The VBC Service Parameters user property. A set of string
parameters required for initializing the XML Gateway.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 173

Siebel Virtual Business Components

Examples of Outgoing XML Format
Examples of Outgoing XML Format
Examples of the XML documents generated and sent by the XML Gateway to the
external system are presented in Table 19. These examples are based on the
example in “Custom Business Service Example” on page 203. See Appendix C,
“DTDs for XML Gateway Business Service,” for examples of the DTDs that
correspond to each of these methods.

NOTE: The XML examples provided in this chapter have extraneous carriage returns
and line feeds for ease of reading. Please delete all the carriage returns and line
feeds before using any of the examples.
174 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Examples of Outgoing XML Format
Table 19. Outgoing XML Tags and Descriptions

Method Format of the XML Stream Description

Delete Request <siebel-xmlext-delete-req>

 <buscomp id="1">Contact</buscomp>

 <remote-source>http://throth/
servlet/VBCContacts</remote-source>

 <row>

 <value field="AccountId">146</
value>

 <value field="Name">Max Adams</
value>

 <value field="Phone">(408)234-
1029</value>

 <value field="Location">San Jose</
value>

 <value field="AccessId">146</
value>

 </row>

</siebel-xmlext-delete-req>

siebel-xmlext-delete-req. This tag
requests removal of a single record
in the remote system.

Init Request <siebel-xmlext-fields-req>

<buscomp id="1">Contact</buscomp>

<remote-source>http://throth/servlet/
VBCContacts</remote-source>

</siebel-xmlext-fields-req>

siebel-xmlext-fields-req. This tag
fetches the list of fields supported
by this instance.

buscomp Id. The business
component ID.

remote-source. The remote source
from which the service is to retrieve
data for the business component.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 175

Siebel Virtual Business Components

Examples of Outgoing XML Format
Insert Request <siebel-xmlext-insert-req>

 <buscomp id="1">Contact</buscomp>

 <remote-source>http://throth/
servlet/VBCContacts</remote-source>

 <row>

 <value field="AccountId">1-6</
value>

 <value field="Name">Max Adams</
value>

 <value field="Phone">(398)765-
1290</value>

 <value field="Location">Troy</
value>

 <value field="AccessId"></value>

 </row>

</siebel-xmlext-insert-req>

siebel-xmlext-Insert-req. This tag
requests the commit of a new
record in the remote system.

The insert-req XML stream
contains values for fields entered
through the business component.

PreInsert
Request

<siebel-xmlext-preinsert-req>

 <buscomp id="1">Contact</buscomp>

 <remote-source>http://throth/
servlet/VBCContacts</remote-source>

</siebel-xmlext-preinsert-req>

siebel-xmlext-preinsert-req. This
tag allows the connector to provide
default values. This operation is
called when a new row is created,
but before any values are entered
through the BusComp interface.

Table 19. Outgoing XML Tags and Descriptions

Method Format of the XML Stream Description
176 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Examples of Outgoing XML Format
Query Request <siebel-xmlext-query-req>

 <buscomp id="1">Contact</buscomp>

 <remote-source>http://throth/
servlet/VBCContacts</remote-source>

 <max-rows>6</max-rows>

 <search-string>=([Phone] IS NOT NULL)
AND ([AccountId] = "1-6")</search-
string>

 <search-spec>

 <node node-type="Binary
Operator">AND

 <node node-type="Unary
Operator">IS NOT NULL

 <node node-
type="Identifier">Phone</node>

 </node>

 <node node-type="Binary
Operator">=

 <node node-
type="Identifier">AccountId</node>

 <node value-type="TEXT" node-
type="Constant">1-6</node>

 </node>

 </node>

 </search-spec>

 <sort-spec>

 <sort field="Location">ASCENDING</
sort>

 <sort field="Name">DESCENDING</sort>

 </sort-spec>

</Siebel-xmlext-query-req>

siebel-xmlext-query-req. This tag
queries by example. The query-req
XML stream contains parameters
necessary to set up the query. In
this example, the query requests
that record information be returned
from the remote system.

max-rows. Maximum number of
rows to be returned. The value is
the Maximum Cursor Size defined
at the VBC plus one. If the
Maximum Cursor Size property is
not defined at the VBC, then the
max-rows property is not passed.

search-string. The search
specification used to query and
filter the information.

search-spec. Hierarchical
representation of the search-string.
For details, see “Search-Spec Node-
Type Types” on page 179.

sort-spec. List of sort fields and
sort order.

Table 19. Outgoing XML Tags and Descriptions

Method Format of the XML Stream Description
Version 7.5.3 eAI Volume II: Integration Platform Technologies 177

Siebel Virtual Business Components

Examples of Outgoing XML Format
Update
Request

<siebel-xmlext-update-req>

 <buscomp id="2">Contact</buscomp>

 <remote-source>http://throth/
servlet/VBCContacts</remote-source>

 <row>

 <value changed="false"
field="AccountId">1-6</value>

 <value changed="false"
field="Name">Max Adams</value>

 <value changed="true"
field="Phone">(408)234-1029</value>

 <value changed="true"
field="Location">San Jose</value>

 <value changed="false"
field="AccessId">146</value>

 </row>

</siebel-xmlext-update-req>

siebel-xmlext-Update-req. This tag
requests changes to the field values
for an existing row.

All values for the record are passed
in with <value> tags, with the
changed attribute identifying the
ones that have been changed
through the Siebel application.

Table 19. Outgoing XML Tags and Descriptions

Method Format of the XML Stream Description
178 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Search-Spec Node-Type Types
Search-Spec Node-Type Types
The search-string is in the Siebel query language format. The search-string is parsed
by the Siebel query object and then turned into the hierarchical search-spec.
Table 20 shows the different search-spec node-types and their values.

Table 20. Search-Spec Node-Types

node-type PropertySet/XML Representation

Constant Example: <node node-type = "Constant"

 value-type="NUMBER">1000</node>

The valid value-types are TEXT, NUMBER, DATETIME, UTCDATETIME,
DATE, and TIME.

Identifier Example: <node node-type="Identifier">Name</node>

The value Name is a valid business component field name.

Unary
Operator

Example: <node node-type="Unary Operator">NOT</node>

The valid values are NOT, EXISTS, IS NULL, IS NOT NULL.

Binary
Operator

Example: <node node-type= "Binary Operator" >AND</node>

The valid values are LIKE, NOT LIKE, SOUNDSLIKE, =, <>, <=, <,
>=, >, AND, OR, +, -, *, /, ^.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 179

Siebel Virtual Business Components

Examples of Incoming XML Format
Examples of Incoming XML Format
Table 21 contains examples of XML documents that are sent from an external
system to the XML Gateway in response to a request. These examples are based on
the example in “Custom Business Service Example” on page 203. See Appendix C,
“DTDs for XML Gateway Business Service,” for examples of the DTDs that
correspond to each of these methods.

Table 21. Incoming XML Tags and Descriptions

Method Format of the XML Stream Description

Delete Return <siebel-xmlext-delete-ret /> siebel-xmlext-delete-ret. Only the XML
stream tag is returned.

Error <siebel-xmlext-status>

<status-code>4</code>

<error-field>Name</error-
field>

<error-text>Name must not be
empty</error-text>

</siebel-xmlext-status>

Format of the XML stream expected by the
Siebel application in case of an error in the
external application. The tags for this XML
stream, including the entire XML stream, are
optional. If the error is specific to a field, the
field name should be specified.

siebel-xmlext-status. This tag is used to
check the status returned by the external
system.

status-code. This tag overrides the return
value.

error-text. This tag specifies textual
representation of the error, if it is available.
This tag appears in addition to the standard
error message. For example, if Siebel
application attempts to update a record in the
external system with a NULL Name, and this
is not allowed in the external system, then the
error text is set to “Name must not be
empty.”
180 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Examples of Incoming XML Format
Init Return <siebel-xmlext-fields-ret>

 <support field="AccountId"/>

 <support field="Name"/>

 <support field="Phone"/>

 <support field="Location"/>

 <support field="AccessId"/>

</siebel-xmlext-fields-ret>

siebel-xmlext-fields-ret. The fields-ret XML
stream return contains the list of VBC fields
supported by the external application for this
instance.

The following field names are reserved by the
Siebel application and should not appear in
this list:

Id, Created, Created By, Updated, Updated
By.

Insert Return <siebel-xmlext-insert-ret>

 <row>

 <value
field="AccountId">1-6</value>

 <value field="Name">Max
Adams</value>

 <value
field="Phone">(398)765-1290</
value>

 <value
field="Location">Troy</value>

 <value
field="AccessId">146</value>

 </row>

</siebel-xmlext-insert-ret>

siebel-xmlext-insert-ret. If the remote system
has inserted records, they can be returned to
be reflected in the business component in an
insert-ret XML stream in the <row> tag
format as the insert-ret stream.

PreInsert Return <siebel-xmlext-preinsert-ret>

 <row>

 <value
field="Location">San Jose</
value>

 </row>

</siebel-xmlext-preinsert-ret>

siebel-xmlext-preinsert-ret. Returns default
values for each field, if there is any default
value.

Table 21. Incoming XML Tags and Descriptions

Method Format of the XML Stream Description
Version 7.5.3 eAI Volume II: Integration Platform Technologies 181

Siebel Virtual Business Components

Examples of Incoming XML Format
Query Return <siebel-xmlext-query-ret>

 <row>

 <value
field="AccountId">1-6</value>

 <value field="Name">Sara
Chen</value>

 <value
field="Phone">(415)298-7890</
value>

 <value
field="Location">San
Francisco</value>

 <value
field="AccessId">128</value>

 </row>

 <row>

 <value
field="AccountId">1-6</value>

 <value field="Name">Eric
Brown</value>

 <value
field="Phone">(650)123-1000</
value>

 <value
field="Location">Palo Alto</
value>

 <value
field="AccessId">129</value>

 </row>

</siebel-xmlext-query-ret>

siebel-xmlext-query-ret. The query-ret XML
stream contains the result set that matches
the criteria of the query.

row. This tag indicates the number of rows
returned by query. Each row should contain
one or more <values>. The attributes which
appear in <row> tags must be able to
uniquely identify rows. If there is a unique
key in the remote data source, it should
appear in the result set. If not, a unique key
should be generated. It is necessary to
identify specific rows for DML operations.

value. This tag specifies the field and value
pairs and should be the same for each row in
the set.

Table 21. Incoming XML Tags and Descriptions

Method Format of the XML Stream Description
182 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

External Application Setup
External Application Setup
Once you have your XML Gateway Service configured, you need to set up your
external application accordingly to be able to receive and respond to the requests.
At a minimum, the external application needs to support the Init() and Query()
methods, and depending upon the functionality provided by the VBC, the remaining
methods may or may not be necessary.

Custom Business Service Methods
Your business service must implement the Init and Query methods as described in
this section. The Delete, PreInsert, Insert, and Update methods are optional, and
dependent upon the functionality required by the Virtual Business Component.

NOTE: Custom business services can be only based on the CSSService class, as
specified in Siebel Tools.

Update Return <siebel-xmlext-update-ret>

 <row>

 <value
field="Location">San Jose</
value>

 <value
field="Phone">(408)234-1029</
value>

 </row>

</siebel-xmlext-update-ret>

siebel-xmlext-update-ret. If the remote
system updated fields, they can be returned
to be reflected in the business component in
an update-ret XML stream in the <row> tag
format as the update-ret stream.

Table 21. Incoming XML Tags and Descriptions

Method Format of the XML Stream Description
Version 7.5.3 eAI Volume II: Integration Platform Technologies 183

Siebel Virtual Business Components

Custom Business Service Methods
These methods pass property sets between the virtual business component and the
business service. Virtual business component methods take property sets as
arguments. Each method takes two property sets: an Inputs property set and an
Outputs property set. The methods are called by the CSSBCVExtern class in
response to requests from other objects that refer to or are based on the virtual
business component.

When you are building a custom business service to allow virtual business
component functionality with Siebel VB or Siebel eScript you can use one of the
following methods to connect to an external database in the Service code:

■ Siebel VB Only. Use the SQL functions using ODBC.

■ Siebel eScript Only. Call out to a CORBA interface using the CORBACreateObject
function.

■ Siebel VB or eScript. Use a COM connection through the CreateObject or
COMCreateObject functions to call an API supported by your RDBMS vendor or
to call a COM object such as ActiveX DLL.

You may also choose to use the XML Gateway service to allow the connection for
your VBC. For details, see “XML Gateway Service” on page 169.

NOTE: For more information about property sets, programming in Siebel eScript, and
programming in Siebel VB, see Siebel Tools Reference and Siebel Tools Online Help.

Common Method Parameters
Table 22 shows the input parameters common to every method. Please note that all
these parameters are at the root property set.

Table 22. Common Input Parameters

Parameter Description

Remote Source Optional. Specifies the name of an external data source. This
is the VBC’s Remote Source user property, if defined. For
details, see Table 15 on page 168.

Business Component Name Name of the active virtual business component.
184 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Methods
Once a response has been received, the method packages the response from the
external data source into the outputs property set.

Business Services Methods and Their Property Sets
The following examples display each method's input and output property sets for a
virtual business component Contact that displays simple contact information for a
given account. These examples are based on the example in the “Custom Business
Service Example” on page 203.

NOTE: All the optional parameters have been omitted from these example to simplify
them.

Business Component Id Internally generated unique value that represents the virtual
business component.

Parameters Optional. The VBC’s Service Parameters user property, if
defined. For details, see Table 15 on page 168. A set of
parameters required by the business service.

VBC Compatibility Mode Optional. This is the VBC’s Compatibility Mode user
property, if defined. For details, see Table 15 on page 168.

Table 22. Common Input Parameters

Parameter Description
Version 7.5.3 eAI Volume II: Integration Platform Technologies 185

Siebel Virtual Business Components

Custom Business Service Methods
Delete The Delete method is called when a record is deleted. Figure 32 illustrates the
property set for the Delete input and is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact">

<PropertySet

Figure 32. Delete Input Property Set
186 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Methods
AccountId="1-6"

Name="Max Adams"

Phone="(408)234-1029"

Location="San Jose"

AccessId="146" />

</PropertySet>

Figure 33 illustrates the property set for Delete output and is followed by its XML
representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet />

Figure 33. Delete Output Property Set
Version 7.5.3 eAI Volume II: Integration Platform Technologies 187

Siebel Virtual Business Components

Custom Business Service Methods
Error Return Figure 32 illustrates the property set for the Error Return, when an error is detected.
The illustration is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet>

<Status Status="4"

Error_spcField="Name"

Error_spcText="Name must not be empty"/>

</PropertySet>

Figure 34. Error Return Property Set
188 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Methods
Init The Init method is called when the virtual business component is first instantiated.
It initializes the virtual business component. It expects to receive the list of fields
supported by the external system. Figure 35 illustrates the property set for Init input
and is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8"?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact"/>

Figure 35. Init Input Property Set
Version 7.5.3 eAI Volume II: Integration Platform Technologies 189

Siebel Virtual Business Components

Custom Business Service Methods
Figure 36 illustrates the property set for Init output and is followed by its XML
representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

AccountId=""

Name=""

Phone=""

Location=""

AccessId="" />

Figure 36. Init Output Property Set
190 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Methods
Insert The Insert method is called when a New Record is committed. Figure 37 illustrates
the property set for Insert input and is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact">

<PropertySet

Figure 37. Insert Input Property Set
Version 7.5.3 eAI Volume II: Integration Platform Technologies 191

Siebel Virtual Business Components

Custom Business Service Methods
AccountId="1-6"

Name="Max Adams"

Phone="(398)765-1290"

Location="Troy"

AccessId="" />

</PropertySet>

Figure 38 illustrates the property set for Insert output and is followed by its XML
representation.

<?xml version="1.0" encoding="UTF-8" ?>

Figure 38. Insert Output Property Set
192 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Methods
<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

<PropertySet

AccountId="1-6"

Name="Max Adams"

Phone="(398)765-1290"

Location="Troy"

AccessId="146" />

</PropertySet>

PreInsert The PreInsert method is called when a New Record operation is performed. It
supplies default values. Figure 39 illustrates the property set for PreInsert input and
is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8"?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

Business_spcComponent_spcId="1"

Figure 39. PreInsert Input Property Set
Version 7.5.3 eAI Volume II: Integration Platform Technologies 193

Siebel Virtual Business Components

Custom Business Service Methods
Business_spcComponent_spcName="Contact"/>

Figure 40 illustrates the property set for PreInsert output and is followed by its XML
representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet>

<PropertySet Location="San Jose" />

</PropertySet>

Figure 40. PreInsert Output Property Set
194 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Methods
Query The Query method is called when a search is performed. The Query method must
be supported by every virtual business component. Each record that matches the
query is represented as a property set. For example, if 5 records match the query,
there will be 5 child property sets. Each property set will contain a list of field
names—field value pairs representing the values of each field for that particular
record. Figure 42 illustrates the property set for Query input and is followed by its
XML representation.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 195

Siebel Virtual Business Components

Custom Business Service Methods
Figure 41. Query Input Property Set (Part 1)
196 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Methods
<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

max-rows="6"

search-string="([Phone] IS NOT NULL) AND ([AccountId] = "1-6")"

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact">

<PropertySet AccountId="1-6" />

Figure 42. Query Input Property Set (Part 2)
Version 7.5.3 eAI Volume II: Integration Platform Technologies 197

Siebel Virtual Business Components

Custom Business Service Methods
<search-spec>

<node node-type="Binary Operator">AND

<node node-type="Unary Operator">IS NOT NULL

<node node-type="Identifier">Phone</node>

</node>

<node node-type="Binary Operator">=

<node node-ype="Identifier">AccountId</node>

<node value-type="TEXT" node-type="Constant">1-6</node>

</node>

</node>

</search-spec>

<sort-spec>

<sort field="Location">ASCENDING</sort>

<sort field="Name">DESCENDING</sort>

</sort-spec>

</PropertySet>
198 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Methods
Figure 43 illustrates the property set for Query output and is followed by its XML
representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet>

<PropertySet

AccountId="1-6"

Name="Sara Chen"

Phone="(415)298-7890"

Location="San Francisco"

AccessId="128" />

<PropertySet

AccountId="1-6"

Figure 43. Query Output Property Set
Version 7.5.3 eAI Volume II: Integration Platform Technologies 199

Siebel Virtual Business Components

Custom Business Service Methods
Name="Eric Brown"

Phone="(650)123-1000"

Location="Palo Alto"

AccessId="129" />

</PropertySet>

Update The Update method is called when a record is modified. Figure 44 illustrates the
property set for Update input and is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

Figure 44. Update Input Property Set
200 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Methods
<PropertySet

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact">

<PropertySet

Field_spcName="AccountId"

Changed="false"

Field_spcValue="1-6" />

<PropertySet

Field_spcName="Name"

Changed="false"

Field_spcValue="Max Adams" />

<PropertySet

Field_spcName="Phone"

Changed="true"

Field_spcValue="(408)234-1029" />

<PropertySet

Field_spcName="Location"

Changed="true"

Field_spcValue="San Jose" />

<PropertySet

Field_spcName="AccessId"

Changed="false"

Field_spcValue="146" />

</PropertySet>
Version 7.5.3 eAI Volume II: Integration Platform Technologies 201

Siebel Virtual Business Components

Custom Business Service Methods
Figure 45 illustrates the property set for the Update output and is followed by its
XML representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

<PropertySet

Phone=="(408)234-1029"

Location="San Jose" />

</PropertySet>

Figure 45. Update Output Property Set
202 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Example
Custom Business Service Example
The following is an example of Siebel eScript implementation of a business service
for a virtual business component. The fields configured for this simple virtual
business component are AccountId, Name, Phone, Location, and AccessId.
AccessId is the primary key in the external data source. AccessId is included in the
virtual business component fields to make update and delete simple and is
configured as a hidden field.

function Service_PreInvokeMethod (MethodName, Inputs, Outputs)

{

if (MethodName == "Init") {

return(Init(Inputs, Outputs));

}

else if (MethodName == "Query") {

return(Query(Inputs, Outputs));

}

else if (MethodName == "PreInsert") {

return(PreInsert(Inputs, Outputs));

}

else if (MethodName == "Insert") {

return(Insert(Inputs, Outputs));

}

else if (MethodName == "Update") {

return(Update(Inputs, Outputs));

}

else if (MethodName == "Delete") {

return(Delete(Inputs, Outputs));
Version 7.5.3 eAI Volume II: Integration Platform Technologies 203

Siebel Virtual Business Components

Custom Business Service Example
}

else {

return (ContinueOperation);

}

}

function Init (Inputs, Outputs)

{

// For debugging purpose...

logPropSet(Inputs, "InitInputs.xml");

Outputs.SetProperty("AccountId", "");

Outputs.SetProperty("Name", "");

Outputs.SetProperty("Phone", "");

Outputs.SetProperty("AccessId", "");

Outputs.SetProperty("Location", "");

// For debugging purpose...

logPropSet(Outputs, "InitOutputs.xml");

return (CancelOperation);

}

function Query(Inputs, Outputs)

{

// For debugging purpose...

logPropSet(Inputs, "QueryInputs.xml");

var selectStmt = "select * from Contacts ";

var whereClause = " where ";

var orderbyClause = " order by ";

// You have the following properties if you want to use them
204 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Example
// Inputs.GetProperty("Business Component Name")

// Inputs.GetProperty("Business Component Id")

// Inputs.GetProperty("Remote Source")

// If you configured Maximum Cursor Size at the buscomp,

// get max-rows property

var maxRows = Inputs.GetProperty("max-rows");

// get search-string

var searchString = Inputs.GetProperty("search-string");

// convert the search-string into a where clause

searchString = stringReplace(searchString, '*', '%');

searchString = stringReplace(searchString, '[', ' ');

searchString = stringReplace(searchString, ']', ' ');

searchString = stringReplace(searchString, '~', ' ');

searchString = stringReplace(searchString, '"', "'");

whereClause = whereClause + searchString;

// match, search-spec, sort-spec

var childCount = Inputs.GetChildCount();

var child, sortProp;

for (var i = 0; i < childCount; i++)

{

child = Inputs.GetChild(i);

if (child.GetType() == "")

{

// Use this child property set if you want to use the old match field list.

// We are not using this in this example. We'll use search-string instead.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 205

Siebel Virtual Business Components

Custom Business Service Example
}

else if (child.GetType() == "search-spec")

{

// Use this child property set if you want to use the hierarchical

// representation of the search-string.

// We are not using this in this example. We'll use search-string instead.

}

else if (child.GetType() == "sort-spec")

{

// This child property set has the sort spec. We'll use this in this example

var sortFieldCount = child.GetChildCount();

for (var j = 0; j < sortFieldCount; j++)

{

// compose the order by clause

sortProp = child.GetChild(j);

orderbyClause += sortProp.GetProperty("field");

var sortOrder = sortProp.GetValue();

if (sortOrder == "DESCENDING")

orderbyClause += " desc";

if (j < sortFieldCount-1)

orderbyClause += ", ";

}

}

}

// Now, our complete select statement is...
206 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Example
selectStmt += whereClause + orderbyClause;

// Now, query the data source

var conn = getConnection();

var rs = getRecordset();

rs.Open(selectStmt, conn);

// We're only going to return no more than maxRows of records.

var count = rs.RecordCount();

if (maxRows != "")

if (count > maxRows)

count = maxRows

// We'll go through the recordset and add them to the Outputs PropertySet.

var fcount, fields, row;

for (i = 0; i < count; i++)

{

row = TheApplication().NewPropertySet();

fields = rs.Fields();

fcount = fields.Count();

for (j = 0; j < fcount; j++)

{

var fieldValue = fields.Item(j).Value();

if (fieldValue == null)

row.SetProperty(fields.Item(j).Name(), "");

else

row.SetProperty(fields.Item(j).Name(), fieldValue);

}

Version 7.5.3 eAI Volume II: Integration Platform Technologies 207

Siebel Virtual Business Components

Custom Business Service Example
Outputs.AddChild(row);

rs.MoveNext();

}

// For debugging purpose...

logPropSet(Outputs, "QueryOutputs.xml");

// clean up

child = null;

sortProp = null;

row = null;

rs.Close();

rs = null;

conn.Close();

conn = null;

return (CancelOperation);

}

function PreInsert (Inputs, Outputs)

{

// For debugging purpose...

logPropSet(Inputs, "PreInsertInputs.xml");

var defaults = TheApplication().NewPropertySet();

defaults.SetProperty("Location", "KO");

Outputs.AddChild(defaults);

// For debugging purpose...

logPropSet(Outputs, "PreInsertOutputs.xml");

// clean up

defaults = null;
208 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Example
return (CancelOperation);

}

function Insert (Inputs, Outputs)

{

// For debugging purpose...

logPropSet(Inputs, "InsertInputs.xml");

var fieldList = "";

var valueList = "";

// Inputs should have only 1 child property set.

var child = Inputs.GetChild(0);

var fieldName = child.GetFirstProperty();

var fieldValue;

while (fieldName != "")

{

fieldValue = child.GetProperty(fieldName);

if (fieldValue != "")

{

if (fieldList != "")

{

fieldList += ", ";

valueList += ", ";

}

fieldList += fieldName;

valueList += "'" + fieldValue + "'";

}

Version 7.5.3 eAI Volume II: Integration Platform Technologies 209

Siebel Virtual Business Components

Custom Business Service Example
fieldName = child.GetNextProperty();

}

// The insert statement is...

var insertStmt = "insert into Contacts (" + fieldList + ") values (" + valueList

+ ")";

// Now, inserting into the data source...

var conn = getConnection();

conn.Execute (insertStmt);

// In this example, we need to query back the record just inserted to get

// the value of its primary key. We made this primary key part of the buscomp

// to make update and delete easy. The primary key is "AccessId".

var selectStmt = "select * from Contacts where ";

var whereClause = "";

child = Inputs.GetChild(0)

fieldName = child.GetFirstProperty();

while (fieldName != "")

{

fieldValue = child.GetProperty(fieldName);

if (fieldName != "AccessId")

{

if (whereClause != "")

whereClause += " and ";

if (fieldValue == "")

whereClause += fieldName + " is null";

else
210 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Example
whereClause += fieldName + "='" + fieldValue + "'";

}

fieldName = child.GetNextProperty();

}

// The select statement is...

selectStmt += whereClause;

// Now, let's select the new record back

var rs = getRecordset();

rs.Open(selectStmt, conn);

// We're expecting only one row back in this example.

var fcount, fields, row, fieldValue;

row = TheApplication().NewPropertySet();

fields = rs.Fields();

fcount = fields.Count();

for (var j = 0; j < fcount; j++)

{

fieldValue = fields.Item(j).Value();

if (fieldValue == null)

row.SetProperty(fields.Item(j).Name(), "");

else

row.SetProperty(fields.Item(j).Name(), fieldValue);

}

Outputs.AddChild(row);

// For debugging purpose...

logPropSet(Outputs, "InsertOutputs.xml");
Version 7.5.3 eAI Volume II: Integration Platform Technologies 211

Siebel Virtual Business Components

Custom Business Service Example
// clean up

child = null;

row = null;

rs.Close();

rs = null;

conn.Close();

conn = null;

return (CancelOperation);

}

function Update (Inputs, Outputs)

{

// For debugging purpose...

logPropSet(Inputs, "UpdateInputs.xml");

var child;

var childCount = Inputs.GetChildCount();

var fieldName, fieldValue;

var updateStmt = "update Contacts set ";

var setClause = "";

var whereClause;

// Go through each child in Inputs and construct

// necessary sql statements for update and query

for (var i = 0; i < childCount; i++)

{

child = Inputs.GetChild(i);

fieldName = child.GetProperty("Field Name");

fieldValue = child.GetProperty("Field Value");
212 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Example
// We only need to update changed fields.

if (child.GetProperty("Changed") == "true")

{

if (setClause != "")

setClause += ", ";

if (fieldValue == "")

setClause += fieldName + "=null";

else

setClause += fieldName + "='" + fieldValue + "'";

}

if (fieldName == "AccessId")

whereClause = " where AccessId = " + fieldValue;

}

// The update statement is...

updateStmt += setClause + whereClause;

// Now, updating the data source...

var conn = getConnection();

conn.Execute (updateStmt);

// How to construct the Outputs PropertySet can vary, but in this example

// We'll query back the updated record from the data source.

var selectStmt = "select * from Contacts" + whereClause;

// Now, let's select the updated record back

var rs = getRecordset();

rs.Open(selectStmt, conn);

// We're expecting only one row back in this example.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 213

Siebel Virtual Business Components

Custom Business Service Example
// In this example, we're returning all the fields and not just

// the updated fields. You can only return those updated

// fields with the new value in the Outputs property set.

var fcount, fields, row, fieldValue;

row = TheApplication().NewPropertySet();

fields = rs.Fields();

fcount = fields.Count();

for (var j = 0; j < fcount; j++)

{

fieldValue = fields.Item(j).Value();

if (fieldValue == null)

row.SetProperty(fields.Item(j).Name(), "");

else

row.SetProperty(fields.Item(j).Name(), fieldValue);

}

Outputs.AddChild(row);

// For debugging purpose...

logPropSet(Outputs, "UpdateOutputs.xml");

// clean up

child = null;

row = null;

rs.Close();

rs = null;

conn.Close();

conn = null;
214 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Example
return (CancelOperation);

}

function Delete (Inputs, Outputs)

{

// For debugging purpose...

logPropSet(Inputs, "DeleteInputs.xml");

// Inputs should have only 1 child property set.

var child = Inputs.GetChild(0);

// In this example, we're only using the AccessId

// (it's the primary key in the Contacts db)

// for delete statement for simplicity.

var deleteStmt = "delete from Contacts where AccessId = " +

child.GetProperty("AccessId");

// Now, let's delete the record from the data source.

var conn = getConnection();

conn.Execute(deleteStmt);

// For debugging purpose...

logPropSet(Outputs, "DeleteOutputs.xml");

// Returning empty Outputs property set.

// clean up

conn.Close();

conn = null;

return (CancelOperation);

}

The following functions are helper functions.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 215

Siebel Virtual Business Components

Custom Business Service Example
function getConnection ()

{

// VBCContact is the ODBC data source name

var connectionString = "DSN=VBCContact";

var uid = "";

var passwd = "";

var conn = COMCreateObject("ADODB.Connection");

conn.Mode = 3;

conn.CursorLocation = 3;

conn.Open(connectionString , uid, passwd);

return conn;

}

function getRecordset()

{

var rs = COMCreateObject("ADODB.Recordset");

return rs;

}

function logPropSet(inputPS, fileName)

{

// Use EAI XML Write to File business service to write

// inputPS property set to fileName file in c:\temp directory.

var fileSvc = TheApplication().GetService("EAI XML Write to File");

var outPS = TheApplication().NewPropertySet();

var fileLoc = "c:\\temp\\" + fileName;

var tmpProp = inputPS.Copy();

tmpProp.SetProperty("FileName", fileLoc);
216 eAI Volume II: Integration Platform Technologies Version 7.5.3

Siebel Virtual Business Components

Custom Business Service Example
fileSvc.InvokeMethod("WritePropSet", tmpProp, outPS);

// clean up

outPS = null;

fileSvc = null;

tmpProp = null;

}

function stringReplace (string, from, to)

{

// Replaces from with to in string

var stringLength = string.length;

var fromLength = from.length;

if ((stringLength == 0) || (fromLength == 0))

return string;

var fromIndex = string.indexOf(from);

if (fromIndex < 0)

return string;

var newString = string.substring(0, fromIndex) + to;

if ((fromIndex + fromLength) < stringLength)

newString += stringReplace(string.substring(fromIndex+fromLength,

stringLength), from, to);

return newString;

}

NOTE: For more examples of VBCs, see Developing and Deploying Siebel eBusiness
Applications.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 217

Siebel Virtual Business Components

Custom Business Service Example
218 eAI Volume II: Integration Platform Technologies Version 7.5.3

Predefined EAI Business Services A
Siebel eBusiness Applications provide a number of business services. These
services do not require any modification, but they do require that you choose and
configure them to suit your requirements.

NOTE: For general information on using business services, refer to Chapter 3,
“Business Services.”

Predefined EAI Business Services
Table 23 presents the predefined Siebel eAI business services.

Table 23. Predefined EAI Business Services

Business Service Class Description

EAI XSD Wizard Used to create integration objects based on
XSD files.

EAI XML XSD Generator Used to generate an XSD file from an
integration object.

EAI Database Adapter Used to interact with databases directly
using SQL based on integration object
definitions.

EAI Transaction Service CSSBeginEndTransactionService EAI Transaction service for working with
Siebel transactions such as begin, end, or
find out whether in transaction.

Workflow Process Manager
(Server Request)

CSSSrmService Submits workflow requests to a workflow
process manager server component
(WfProcMgr).
Version 7.5.3 eAI Volume II: Integration Platform Technologies 219

Predefined EAI Business Services

Predefined EAI Business Services
EAI MSMQ Transport CSSMsmqTransService EAI MSMQ Transport.

EAI MQSeries Server
Transport

CSSMqSrvTransService EAI MQSeries Server Transport.

EAI MQSeries AMI
Transport

CSSMqAmiTransService EAI MQSeries AMI Transport. For details,
see Transports and Interfaces: Siebel
eBusiness Application Integration Volume
III.

EAI HTTP Transport CSSHTTPTransService EAI HTTP Outbound Transport. For details,
see Transports and Interfaces: Siebel
eBusiness Application Integration Volume
III.

EAI Utility Service CSSEAIUtilService EAI Utility Service.

Oracle Adapter CSSEAISqlAdapterService EAI SQL Adapter. For details, see Siebel
eBusiness Connector for Oracle Guide.

EAI Siebel Adapter CSSEAISiebelAdapterService EAI Siebel Adapter. For details, see
Chapter 5, “EAI Siebel Adapter.”

EAI Query Spec Service CSSEAIQuerySpecService Used internally by EAI Siebel Adapter to
convert SearchSpec method argument as
string to an Integration Object Instance that
EAI Siebel Adapter can use as a Query By
Example object.

Oracle Procedure Adapter CSSEAIODBCService ODBC Service for Oracle connector. For
details, see Siebel eBusiness Connector for
Oracle Guide.

EAI Import Export CSSEAIImportExportService EAI Import Export Service (import and
export integration object from or to XML).

EAI BTS COM Transport CSSEAIBtsComService EAI Siebel to BTS COM Transport.

EAI DLL Transport CSSDllTransService EAI DLL Transport. For details, see
Transports and Interfaces: Siebel eBusiness
Application Integration Volume III.

Table 23. Predefined EAI Business Services

Business Service Class Description
220 eAI Volume II: Integration Platform Technologies Version 7.5.3

Predefined EAI Business Services

Predefined EAI Business Services
EAI Data Mapping Engine CSSDataTransformationEngine EAI Data Transformation Engine. For
details, see Business Processes and Rules:
Siebel eBusiness Application Integration
Volume IV.

No Envelope CSSEAINullEnvelopeService EAI Null Envelope Service. For details, see
XML Reference: Siebel eBusiness
Application Integration Volume V.

Siebel Message Envelope CSSEAISMEnvelopeService EAI Siebel Message Envelope Service. For
details, see XML Reference: Siebel eBusiness
Application Integration Volume V.

EAI Dispatch Service CSSEAIDispatchService Dispatch Service. For details, see Business
Processes and Rules: Siebel eBusiness
Application Integration Volume IV.

EAI Integration Object
to XML Hierarchy
Converter

CSSEAIIntObjHierCnvService EAI Integration Object Hierarchy (also
known as SiebelMessage) to XML hierarchy
converter service. For details, see XML
Reference: Siebel eBusiness Application
Integration Volume V.

EAI MIME Hierarchy
Converter

CSSEAIMimePropSetService EAI MIME Hierarchy Conversion Service.
For details, see Chapter 6, “Siebel eAI and
File Attachments.”

EAI MIME Doc Converter CSSEAIMimeService MIME Document Conversion Service. For
details, see Chapter 6, “Siebel eAI and File
Attachments.”

EAI XML Converter CSSEAIXMLCnvService Converts between XML and EAI Messages.
For details, see XML Reference: Siebel
eBusiness Application Integration Volume
V.

EAI XML Write to File CSSEAIXMLPrtService Print a property set to a file as XML. For
details, see XML Reference: Siebel eBusiness
Application Integration Volume V.

Table 23. Predefined EAI Business Services

Business Service Class Description
Version 7.5.3 eAI Volume II: Integration Platform Technologies 221

Predefined EAI Business Services

Predefined EAI Business Services
EAI XML Read from File CSSEAIXMLPrtService Read an XML file and parse to a property
set. For details, see XML Reference: Siebel
eBusiness Application Integration Volume
V.

XML Converter CSSXMLCnvService Converts between XML documents and
arbitrary Property Sets. For details, see XML
Reference: Siebel eBusiness Application
Integration Volume V.

XML Hierarchy Converter CSSXMLCnvService Converts between XML documents and
XML Property Set or Arbitrary Property Set.
For details, see XML Reference: Siebel
eBusiness Application Integration Volume
V.

Table 23. Predefined EAI Business Services

Business Service Class Description
222 eAI Volume II: Integration Platform Technologies Version 7.5.3

Property Set Representation of Integration
Objects B
Property sets are in-memory representations of integration objects. This appendix
describes the relationship between the property set and the integration object. For
an overview of property sets, see Siebel Tools Reference.

Property Sets and Integration Objects
Many eAI business services operate on integration object instances. Since business
services take property sets as inputs and outputs, it is necessary to represent
integration objects as property sets. The mapping of integration objects,
components, and fields to property sets is known as the Integration Object
Hierarchy.

Using this representation, you can pass a set of integration object instances of a
specified type to an eAI business service. You pass the integration object instances
as a child property set of the business service method arguments. This property set
always has a type of SiebelMessage. You can pass the SiebelMessage property set
from one business service to another in a workflow without knowing the internal
representation of the integration objects.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 223

Property Set Representation of Integration Objects

Property Sets and Integration Objects
Property Set Node Types
When passing integration object instances as the input or output of a business
service, you can use property sets to represent different node types, as presented in
Table 24.

Table 24. Property Set Node Types

Name Parent Value of Type Attribute Properties Description

Service
Method
Arguments

N/A Ignored The properties of
this property set
contain any
service specific
parameters, such
as PrimaryRowId
for EAI Siebel
Adapter.

This is the top-level
property set of a business
service’s input or output.
The properties of this
property set contain any
service-specific parameters
(for example,
PrimaryRowId for EAI
Siebel Adapter).

SiebelMessage Service
Method
Arguments

SiebelMessage The properties of
this property set
contain header
attributes
associated with
the integration
object, for
example,
IntObjectName.

This property set is a
wrapper around a set of
integration object instances
of a specified type. To pass
integration objects between
two business services in a
workflow, this property set
is copied to and from a
workflow process property
of type Hierarchy.

Object List SiebelMessage ListOfObjectType Not used. This property set identifies
the object type that is being
represented. The root
components of the object
instances are children of
this property set.
224 eAI Volume II: Integration Platform Technologies Version 7.5.3

Property Set Representation of Integration Objects

Property Sets and Integration Objects
Root
Component

Object List Root Component
Name

The property
names of the
property set
represent the field
names of the
component, and
the property
values are the field
values.

This property set
represents the root
component of an
integration object instance.

Child
Component
Type

Root
Component or
Component

ListOfComponent
Name

Not used. An integration component
can have a number of child
component types, each of
which can have zero or
more instances. The
Integration Object
Hierarchy format groups
the child components of a
given type under a single
property set. This means
that child components are
actually grandchildren of
their parent component’s
property set.

Child
Components

Child
Component
Type

Component Name The property
names of the
property set
represent the field
names of the
component, and
the property
values are the field
values.

This property set
represents a component
instance. It is a grand- child
of the parent component’s
property set.

Table 24. Property Set Node Types

Name Parent Value of Type Attribute Properties Description
Version 7.5.3 eAI Volume II: Integration Platform Technologies 225

Property Set Representation of Integration Objects

Property Sets and Integration Objects
Example of a Sample Account
This example shows an Account integration object in which the object has two
component types: Account and Business Address (which is a child of Account). The
hierarchy of component types from a Siebel Tools perspective, looks like that shown
in Figure 46.

Figure 46. Sample Account Integration Object
226 eAI Volume II: Integration Platform Technologies Version 7.5.3

Property Set Representation of Integration Objects

Property Sets and Integration Objects
Figure 47 on page 228 shows an example instance of this object type, using the
Integration Object Hierarchy representation. There are two Sample Account
instances. The first object instance has an Account component and two Business
Address child components. The second object instance has only an Account
component with no child components.
Version 7.5.3 eAI Volume II: Integration Platform Technologies 227

Property Set Representation of Integration Objects

Property Sets and Integration Objects
Figure 47. Partial Instance of Sample Account Integration Object
228 eAI Volume II: Integration Platform Technologies Version 7.5.3

DTDs for XML Gateway Business Service C
This appendix lists the various inbound and outbound DTDs for the XML Gateway
business service.

Outbound DTDs
The following sections contain examples of DTDs representing thtmethodName%
request sent from the XML Gateway to the external application.

Delete
<!ELEMENT siebel-xmlext-delete-req (buscomp, remote-source, row)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED>

<!ELEMENT remote-source (#PCDATA)*>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED>

Init
<!ELEMENT siebel-xmlext-fields-req (buscomp, remote-source?)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED >

<!ELEMENT remote-source (#PCDATA)*>
Version 7.5.3 eAI Volume II: Integration Platform Technologies 229

DTDs for XML Gateway Business Service

Outbound DTDs
Insert
<!ELEMENT siebel-xmlext-insert-req (buscomp, remote-source?, row)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED>

<!ELEMENT remote-source (#PCDATA)*>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED>

PreInsert
<!ELEMENT siebel-xmlext-preinsert-req (buscomp, remote-source?)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED >

<!ELEMENT remote-source (#PCDATA)*>

Query
<!ELEMENT siebel-xmlext-query-req (buscomp , remote-source?, max-
rows?, search-string?, match?, search-spec?, sort-spec?)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED>

<!ELEMENT remote-source (#PCDATA)*>

<!ELEMENT max-rows (#PCDATA)>

<!ELEMENT search-string (#PCDATA)>

<!ELEMENT match (#PCDATA)>

<!ATTLIST match field CDATA #REQUIRED>

<!ELEMENT search-spec (node)>

<!ELEMENT node (#PCDATA | node)*>
230 eAI Volume II: Integration Platform Technologies Version 7.5.3

DTDs for XML Gateway Business Service

Inbound DTDs
<!ATTLIST node node-type (Constant | Identifier | Unary Operator |
Binary Operator) #REQUIRED>

<!ATTLIST node value-type (TEXT | NUMBER | DATETIME | UTCDATETIME |
DATE | TIME) #IMPLIED>

<!ELEMENT sort-spec (sort+)>

<!ELEMENT sort (#PCDATA)>

<!ATTLIST sort field CDATA #REQUIRED>

Update
<!ELEMENT siebel-xmlext-update-req (buscomp, remote-source?, row)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED>

<!ELEMENT remote-source (#PCDATA)*>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value changed (true | false) #REQUIRED>

<!ATTLIST value field CDATA #REQUIRED>

Inbound DTDs
The following sections contain examples of DTDs representing the
%methodName% response sent from the external application to the XML Gateway.

Delete Response
<!ELEMENT siebel-xmlext-dekete-ret EMPTY >

Init Response
<!ELEMENT siebel-xmlext-fields-ret (support+)>

<!ELEMENT support EMPTY >
Version 7.5.3 eAI Volume II: Integration Platform Technologies 231

DTDs for XML Gateway Business Service

Inbound DTDs
<!ATTLIST support field CDATA #REQUIRED>

Insert Response
<!ELEMENT siebel-xmlext-preinsert-ret (row)>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED >

PreInsert Response
<!ELEMENT siebel-xmlext-preinsert-ret (row)>

<!ELEMENT row (value)*>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED >

Query Response
<!ELEMENT siebel-xmlext-query-ret (row*)>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED >

Update Response
<!ELEMENT siebel-xmlext-update-ret (row)>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)>

<!ATTLIST value field CDATA #REQUIRED >
232 eAI Volume II: Integration Platform Technologies Version 7.5.3

Index
Symbols
%methodName% request, sample inbound

DTDs 231

A
activating fields, about 64
AdminMode user property 69
AllLangIndependentVals user property 70
AllowedIntObjects business service user

property 66
application

external application, about setting
up 183

Siebel Web Service, invoking from 112
arguments

Init method, XML Gateway business
service 173

IsPrimaryMVG 131
AssocFieldName user property

associations with 26
Integration Objects user property 68

Association user property
associations with 26
Integration Objects user properties 67

association, defined 26

B
base object types (table) 18
base table, using Mod Id 141
body data, contents of 17
buscomp Id tag 175
Business Component Id argument 173
Business Component Name argument, XML

Gateway argument 173
business components

association, role of 26
integration restrictions 74
linking 31
multi-value field example 28
multi-value group example 32
relation to business services 77
specialized 166
update permission rules 65

business objects
business service methods, as arguments

to 93
EAI Siebel Adapter, role of 117
external data, creating from 117
integration object maintenance,

about 64
relation to business services 77
structure of 23
user key requirement 38

business service methods
arguments, defining 84
business objects as arguments 93
defining 84
described 79

Business Service Methods screen,
using 87

business service methods, custom
See also virtual business components
about 183
common input parameters (table) 184
connecting methods, list of 184
Delete method, example 186
Error Return property set, example 188
Init method, example 189
Insert method, example 191
output parameters (table) 184
Version 7.5.3 eAI Volume II: Integration Platform Technologies 233

PreInsert method, example 193
Query method, example 195
Update method, example 200

Business Service Simulator, running 89
business services

accessing using eScript or Siebel VB 90
customized business services, type

of 78
defined 77
EAI MIME Hierarchy Converter, creating

inbound workflow process
(example) 155

EAI MIME Hierarchy Converter, creating
outbound workflow process
(example) 153

general uses 77
importing and exporting 88
predefined business services, table

of 219
property set code example 93
property sets, about and role of 80
scripts, defining 85
Siebel Client, creating in 87
Siebel Tools, creating process

overview 82
Siebel Tools, defining in 83
Specialized Business Services, about 78
subsystem, specifying 86
subsystems (table) 86
testing 89
user properties, defining 87
XML Gateway 169

BusObjCacheSize argument, about 119,
121

C
calculated fields 35
child integration components

about 24
structure example 25
supported operations (table) 129

child property sets, about 81
classes

classes and predefined business
services 219

CSSBCVExtern 167
CSSBCVXMLExten 173
CSSEAIDTEScriptService 78
CSSEAISiebelAdapterService 117

COM connection, external database and
custom business service 184

components, defined 15
concurrency control

about support of 139
Account_Organization integration

component example 144
configuring 141
configuring example 143
Modification IDs, using 140
Modification Key, about 140

ContentId property, value and
description 160

ContentSubType property 161
ContentType property 161
CORBA connection, external database and

custom business service 184
CSEEAISiebelAdapterService 66
CSSBCVExtern class 167
CSSBCVXMLExten class 173
CSSBeginEndTransactionService 219
CSSDataTransformationEngine 221
CSSDllTransService 220
CSSEAIBtsComService 220
CSSEAIDispatchService 221
CSSEAIDTEScriptService class 78
CSSEAIImportExportService 220
CSSEAIIntObjHierCnvService 221
CSSEAIMimePropSetService 221
CSSEAIMimeService 221
CSSEAINullEnvelopeService 221
CSSEAIODBCService 220
CSSEAIQuerySpecService 220
CSSEAISiebelAdapterService 220
CSSEAISiebelAdapterService class 117
CSSEAISMEnvelopeService 221
CSSEAISqlAdapterService 220
234 eAI Volume II: Integration Platform Technologies Version 7.5.3

CSSEAIUtilService 220
CSSEAIXMLCnvService 221
CSSEAIXMLPrtService 221, 222
CSSHTTPTransService 220
CSSMqAmiTransService 220
CSSMqSrvTransService 220
CSSMsmqTransService 220
CSSSrmService 219
CSSXMLCnvService

XML Converter business service 222
XML Hierarchy Converted business

service 222
custom business service

Delete method, example 186
sample code 203

D
data and arguments, contrasted 91
Data Type Definitions

See DTDs
databases

access, controlling 66
multi-valued attributes 27

deactivating fields, about 64
Delete method

custom business service example 186
DTD example 229
overview 126
SearchSpec input method, about and

example 134
XML code example 129

Delete Response method, DTD
example 231

DeleteByUserKey argument, about 119
Display Name field 81
docking, restrictions on 166
DoInvokeMethod, about using 117
DTDs

Integration Object Builder wizard,
about 22

sample inbound DTDs 231

E
EAI BTS COM Transport business

service 220
EAI Data Mapping Engine business

service 221
EAI Design project, editing integration

objects, warning 23
EAI Dispatch Service business service 221
EAI DLL Transport business service 220
EAI HTTP Transport

business service, description 220
XML Gateway business service,

configuring for use by 169
EAI Import Export business service 220
EAI Integration Object to XML Hierarchy

Converter business service 221
EAI MIME Doc Converter business

service 221
EAI MIME Hierarchy Converter business

service 221
EAI MQSeries AMI Server Transport,

configuring for use by XML Gateway
business service 169

EAI MQSeries AMI Transport business
service 220

EAI MQSeries Server Transport business
service 220

EAI MQSeries Transport, configuring for use
by XML Gateway business
service 169

EAI MSMQ Transport business service 220
EAI MSMQ Transport, configuring for use by

XML Gateway business service 169
EAI Query Spec Service business

service 220
EAI Siebel Adapter

concurrency control, about support
of 139

database access, controlling 66
Delete method 126
described 117
Execute method, overview 126
Version 7.5.3 eAI Volume II: Integration Platform Technologies 235

Insert method, overview 125
IsPrimaryMVG argument 131
language-independent code, using, 138
method arguments, described

(table) 119
method arguments, locating arguments

for (table) 119
methods, list of 117
Modification IDs, using 140
Modification Key, about 140
multi-value groups 131
Query method, overview 122
QueryPage method, overview 123
run-time events, about using 145
SearchSpec input method, about and

example 134
Synchronize method, overview 123
Upsert method, overview 124
XML example 129

EAI Siebel Adapter business service 220
EAI Siebel Wizard

about 62
integration objects, creating 48

EAI Transaction Service business
service 219

EAI Utility Service business service 220
EAI XML Converter business service 221
EAI XML Read from File business

service 222
EAI XML Write to File adapter, export

example 136
EAI XML Write to File business service 221
EAISubsys, business service subsystem 86
Error Return property set example 188
ErrorOnNonExistingDelete

EAI Siebel Adapter Method
argument 120

ErrorOnNonExistingDelete argument,
about 119

error-text tag 180
eScripts

See scripts
Execute method

operations (table) 127
overview 126
SearchSpec input method, about and

example 134
specifying and supported parent and child

components (table) 128
export example 136
Extension property, value and

description 160
extension table, using Mod Id 141
external application

data sharing, process overview 166
sample inbound DTDs 231
setting up, about 183

external data source, specifying 168
External Name user property 26
external Web Service, invoking using

Workflow or Scripting 107

F
field, defined 15
FieldDependency

Integration Objects user property 69
fields

activating and deactivating 64
calculated 35
multi-value groups, working with 32
picklist, validating and example 33
property set fields 80
user keys, about 38

file attachments
See also MIME
message types 147
using, about 147

force active fields, performance
considerations 73

foreign keys 41
function code sample 94

G
guide

product modules and options, about 10
236 eAI Volume II: Integration Platform Technologies Version 7.5.3

revision history 13

H
header data, contents of 17
Hierarchy Parent key, about and

example 44
Hierarchy Root key, about and example 45
history of revisions 13

I
Ignore Bounded Picklist user property 67
Inbound Web Service

creating 97
WSDL file, generating 100

incoming XML format, tags and descriptions
(table) 180

Init method, DTD example 229
Init property set example 189
Init Response method, DTD example 231
Inline XML attachments 148
input parameters, common (table) 184
Input/Output type 85
Insert method, DTD example 230
Insert method, overview 125
Insert property set example 191
instance, defined 16
integration component fields

defined 16
field names, assigning 33
multi-value groups, working with 32

Integration Component Key
See user keys

integration components
activating 63
child components, supported operations

(table) 129
defined 16
deleting during synchronization 60
multi-value groups, working with 32
selecting 49
update permission rules 65

integration messages

body data 17
defined 16
header data 17

Integration Object Builder wizard
about 22
Code Generator wizard 22
EAI Siebel Wizard 63
Generate XML Schema wizard 22
integration components, selecting 49
integration objects, creating 48
user keys, about building 38
user keys, validating 40

integration object instance
actual data, about and diagram 20
defined 16

integration objects
See also child integration components
about 16
base object types (table) 18
best practices and scenarios 74
calculated fields 35
creating 48
defined 16
EAI Design project, editing warning 23
external data, creating from 117
fine tuning practices, list of 51
in-memory updating 57
integration components, deleting during

synchronization 60
maintaining, about 64
many-to-many business component,

creating with 70
metadata, about synchronizing 52
metadata, relation to 19
MIME message objects, creating 149
outbound Web Service, as input

arguments to 104
performance considerations 73
picklist, validating and example 33
primaries, about setting 37
schema, generating 72
SearchSpec field, querying accounts and

addresses based on 135
Version 7.5.3 eAI Volume II: Integration Platform Technologies 237

simple hierarchy example 226
structure example 25
System fields, about treatment of 74
terminology 15
testing newly created integration

object 71
update permission rules 65
updating 53
user properties, table of 67
validating 51
wizards process diagram 21

integration projects
integration objects, use described 22
planning 17

IntObjectName argument
described 120
locating arguments for 119

IsPrimaryMVG argument 131

J
Java class files, generating 22
joined table, using Mod Id 141

L
language-independent code

list of values, types of 138
outbound and inbound direction, about

using 138
LastPage argmument, about 121
LastPage argument, about 119
links

associations, and 26
between business components 31
update permission rules 65

LOVs, language-independent code
translation 138

M
many-to-many relationships, virtual

business components 166
MessageId argument

described 121

locating arguments for 119
metadata

defined 15
integration objects, updating 53
processing example 91
relation to integration objects 19
synchronizing, integration objects,

about 52
methods

business objects as arguments 93
business service method arguments,

defining 84
business services methods, about 79
business services methods, defining 84
EAI Siebel Adapter method arguments,

described (table) 119
EAI Siebel Adapter method arguments,

locating arguments for (table) 119
EAI Siebel Adapter, supported

methods 117
incoming XML tags by method 180
outgoing XML tags by method 175
XML Gateway business service method

arguments (table) 173
XML Gateway business service methods,

listed 172
MIME

about 147
EAI MIME Doc Converter properties

(table) 160
inbound workflow process, creating

(example) 154
integration objects, creating 149
messages and hierarchies 159
MIME hierarchy, converting to 155
outbound workflow process, creating

(example) 150
workflow process properties, create an

outbound workflow process 151
MIME Doc Converter

about 159
converting hierarchy to document 153
converting to a hierarchy 155
238 eAI Volume II: Integration Platform Technologies Version 7.5.3

EAI MIME Doc Converter properties
(table) 160

properties 161
MIME hierarchy

converting hierarchy to document 153
converting to a hierarchy 155
EAI MIME Doc Converter properties

(table) 160
inbound transformation 158
integration object, converting to MIME

hierarchy 153
MIME Doc Converter 159
outbound transformation 156
property sets 159

MIME Hierarchy Converter
business service, creating inbound

workflow process (example) 155
business service, creating outbound

workflow process (example) 153
inbound transformation 158
outbound transformation 156

mobile users and virtual business
components 166

Modification Key
about 140
Account_Organization integration

component example 144
Mod Id field, using for tables 140
MVG and MVGAssociation integration

components, configuring 141
MVG and MVGAssociation integration

components, configuring
example 143

Multi Value Link field 29
Multipurpose Internet Mail Extensions. See

MIME
multi-value groups

See also integration objects
EAI Siebel Adapter, overview 131
example 28
field names, assigning 33
integration components, creating 32

multiple fields 31
primary record, setting 132
types of 27
update permission rules 65
virtual business components,

restriction 166
multi-value links, setting primaries 37
multi-valued attributes 27
MVG integration components

Account_Organization integration
component example 144

configuring for concurrency control 141
example 143

MVG integration user property 67
MVG. See multi-value groups
MVGAssociation integration components

Account_Organization integration
component example 144

configuring for concurrency control 141
example 143

MVGAssociation integration user
property 68

MVGAssociation user property
about 26
MVG, creating a Siebel integration

component to represent 32
MVGFieldName integration user

property 68

N
name-value pairs

concatenating 170
role in property sets 81

NewQuery argument 121
No envelope business service 221
NoDelete user property 68
NoInsert user property 68
NoUpdate user property 69
NumOutputObjects argument

described 120
locating arguments for 119
Version 7.5.3 eAI Volume II: Integration Platform Technologies 239

O
ODBC connection, external database and

custom business service 184
Oracle Adapter business service 220
Oracle Procedure Adapter business

service 220
outbound Web Service

integration objects, as input arguments
to 104

new outbound Web Service, creating
manually 102

outbound Web Service proxy business
service, updating 104

run-time data, importing 102
WSDL document, reading 100

outgoing XML format, tags and descriptions
(table) 174

Output Integration Object Name argument,
about 120

output parameters, (table) 184
Output type 85
OutputIntObjectName argument,

about 119

P
PageSize

EAI Siebel Adapter Method
argument 121

locating arguments for 119
parameters

common input parameters (table) 184
output parameters (table) 184

Parameters argument, XML Gateway
argument 173

parent business component
multi-value group example 32
multi-value group field names,

assigning 33
parent integration component

about 23
child integration component, supported

operations (table) 129

identifying 50
structure example 25

performance
force-active fields, considerations 73
integration object considerations 73
picklist considerations 73

Picklist integration user property 67
picklists

performance considerations 73
validating, about and example 33

PreInsert method, DTD example 230
PreInsert property set example 193
PreInsert Response method, DTD

example 232
primaries, about setting 37
primary business component 23
primary integration component

See parent integration component
PrimaryRowId argument

described 120
locating arguments for 119

process properties
importing account information,

example 135
property sets

about 223
about and role of 80
child 81
code sample 93
Delete method example 186
Display Name field 81
EAI MIME Doc Converter properties

(table) 160
Error Return example 188
fields 80
hierarchy example 226
Init example 189
Insert example 191
integration objects, and 223
MIME hierarchy 159
nodes types (table) 224
PreInsert example 193
Query example 195
240 eAI Volume II: Integration Platform Technologies Version 7.5.3

Update example 200
publishing Inbound Web Services

creating 97
WSDL file, generating 100

publishing outbound Web Services
creating 100
new outbound Web Service, creating

manually 102
outbound Web Service proxy business

service, updating to point to an
outbound Web Service 104

run-time data, importing 102

Q
Query method

DTD example 230
overview 122
SearchSpec input method, about and

example 134
query operation

integration component keys, role of 38
role in integration projects 22

Query property set example 195
Query Response method, DTD

example 232
QueryByUserKey argument, about 119
QueryPage method

overview 123
SearchSpec input method, about and

example 134

R
Remote Source argument 173
Remote Source user property

virtual business component 168
XML Gateway business service 170

REPOSITORY_BC_VIEWMODE_TYPE 66
revision history 13
root component

See parent integration component
row tag 182
run-time events, about using 145

S
SAPSubsys, business service subsystem 86
schema

Generate XML wizard 22
generating 72

scripts
business service, attaching to 85
business service, using to access 90
external Web Service, using to

invoke 107
SearchSpec argument

described 121
locating arguments for 119

SearchSpec input method
about and example 134
querying accounts and addresses 135

Search-Spec Node-Type Types, about and
table 179

Service Name user property
virtual business component 168
XML Gateway business service 170

Service Parameters user properties, table
of 170

Service Parameters user property
virtual business component 168
XML Gateway business service 170

Siebel business component, defined 15
Siebel business objects

defined 15
structure of 23

Siebel Client, defining business
services 87

Siebel eScript, using to access a business
service 90

Siebel integration component
See integration components

Siebel integration component field,
defined 16

Siebel integration objects
See integration objects

Siebel Message envelope business
service 221
Version 7.5.3 eAI Volume II: Integration Platform Technologies 241

Siebel Message object
See integration object instance

Siebel Tools
business services, creating process

overview 82
business services, defining 83
integration objects, creating 48
user key, identifying 38
virtual business component,

creating 167
Siebel VB, using to access a business

service 90
Siebel Web Service

See Web Services
SiebelMessage argument

EAI Siebel Adapter Method
argument 120

locating arguments for 119
siebel-xmlext-delete-req tag 175
siebel-xmlext-fields-req tag 175
siebel-xmlext-fields-ret tag 181
siebel-xmlext-Insert-req tag 176
siebel-xmlext-insert-ret tag 181
siebel-xmlext-preinsert-req tag 176
siebel-xmlext-preinsert-ret tag 181
siebel-xmlext-query-req tag 177
siebel-xmlext-query-ret tag 182
siebel-xmlext-status tag 180
siebel-xmlext-Update-req tag 178
siebel-xmlext-Update-ret tag 183
simulation, business service 89
SortSpec argument

EAI Siebel Adapter Method
argument 122

locating arguments for 120
Specialized Business Services, about 78
StartRowNum argument

EAI Siebel Adapter Method
argument 121

locating arguments for 119
Status keys, about 44
status-code tag 180
StatusObject argument

described 121
locating arguments for 119

synchronization process
about 52
in-memory updating 57
integration object components,

deleting 60
integration objects, updating 53
role in integration projects 22
update rules, about 57

Synchronize method, overview 123
System fields, about treatment of 74

T
tables, using Mod Id 141
testing business services 89
transports, used with XML Gateway 169
troubleshooting

Web Services Tracing, enabling 115

U
Update method

DTD example 231
Update property set example 200
Update Response method, DTD

example 232
Upsert method

overview 124
XML code example 129

user keys
building and validating, example 40
deactivating, warning 43
defined 38
definitions, confirming after build 47
field in Siebel Tools 38
foreign keys 41
Hierarchy Parent key, about and

example 44
Hierarchy Root key, about and

example 45
Integration Component key 38
locating in Tables screen 40
242 eAI Volume II: Integration Platform Technologies Version 7.5.3

Object Builder wizard, about building
with 38

Status keys, about 44
validity, checking 40

user properties
AssocFieldName 26
Association 26
business service user properties,

defining 87
External Name 26
integration objects, table of 67
MVGAssociation 26
virtual business components (table) 168
virtual business components, defining

for 168

V
value tag 182
VBC Compatibility Mode user

property 170
VBCs. See virtual business components
ViewMode argument

EAI Siebel Adapter Method
argument 122

locating arguments for 120
ViewMode integration object user

property 66
ViewMode user property 70
virtual business components

See also virtual business components,
methods

about 163
custom code example 203
docking restrictions 166
external application setup, about 183
incoming XML format, tags and

descriptions (table) 180
mobile users, restriction 166
MQSeries, implementing with 171
multi-value groups 166
new virtual business component,

creating 167

outgoing XML format, tags and
descriptions (table) 174

process overview 166
Search-Spec Node-Type Types, about and

table 179
specialized business components,

restriction 166
usage and restrictions 165
user properties (table) 168
user properties, defining 168
XML Gateway business service,

configuring 170
virtual business components, methods

See also virtual business components
Delete method example 186
Error Return property set, example 188
Init method, example 189
Insert method, example 191
PreInsert property set, example 193
Query property set, example 195
Update property set, example 200

virtual business services
See business service methods

W
Web Service Inbound Dispatcher, about

using 96
Web Services

external application, invoking from 112
Inbound Web Service record,

creating 97
overview 95
scripting, using to invoke 107
SOAP messages, about specifying

structure in 95
standards supported, list of 96
troubleshooting 115
workflow, using to invoke 107

Web Services Tracing, enabling 115
Workflow business service subsystem,

described 86
Workflow Process Manager (Server

Request) business service 219
Version 7.5.3 eAI Volume II: Integration Platform Technologies 243

workflows
external Web Service, using to

invoke 107
inbound MIME request 154
outbound MIME request 150
policies, about using 145

WSDL file
external Web service, importing run-time

data 102
Inbound Web Services, generating 100
outbound Web service, based on 100

WSDL Import Wizard
external Web Services, importing run-

time data 102
external WSDL document, using to

read 100

X
XML

attribute-named operation,
specifying 128

business services, importing 88
Generate XML Schema wizard 22
Inline XML attachments 148
metadata example 92
upsert and delete code example 129

XML Converter business service 222
XML data, about using Web Service

Inbound Dispatcher 96
XML format

incoming tags and descriptions
(table) 180

outgoing tags and descriptions
(table) 174

XML Gateway business service
See also XML format
about 169
configuring 170
incoming XML tags and

descriptions 180
init method arguments 173
methods (table) 172
methods arguments (table) 173
name-value pairs, concatenating 170
outgoing XML tags and descriptions 175
sample inbound DTDs 231
Virtual Business Component,

implementing with MQSeries 171
XML Hierarchy Converter business

service 222
XMLCnv business service subsystem 86
244 eAI Volume II: Integration Platform Technologies Version 7.5.3

	Contents
	Introduction
	Product Modules and Options
	How This Guide Is Organized
	Additional Resources
	Revision History
	Version 7.5.3
	Version 7.5, Rev. A

	About Integration Objects
	Integration Objects Terminology
	Siebel Integration Objects
	Integration Object Base Object Type

	Integration Object and Integration Object Instance
	Siebel Integration Object Wizards
	Structure of Siebel Integration Objects
	Associations
	Multi-Value Groups
	Screen 1: Fields View
	Screen 2: Multi-Value Links
	Screen 3: Fields View
	Graphical Representation
	Creating an Integration Component

	Picklists
	Calculated Fields
	Inner Joins
	Operation Control
	Field Dependencies
	Primaries
	Repository Objects
	Integration Component Keys
	User Keys
	User Key Generation Algorithm

	Status Keys
	Hierarchy Parent Key
	Hierarchy Root Key

	Creating and Maintaining Integration Objects
	Integration Object Builder Overview
	Creating Integration Objects Using the EAI Siebel Wizard
	Siebel Integration Object Fine-Tuning
	Integration Object Validation
	Integration Objects Synchronization
	Synchronization Considerations
	Synchronization Rules
	Updating the Entire Integration Object
	Deleting a Component from the Integration Object

	The EAI Siebel Wizard
	Siebel Integration Objects Maintenance and Upgrade
	Permission Rules for Integration Components
	EAI Siebel Adapter Access Control
	Integration Object User Properties
	Example of an Integration Object With M:M Relationship
	Generating Schemas
	Performance Considerations
	Size of Integration Object
	Force-Active Fields
	Picklist Validation

	Business Component Restrictions
	System Fields

	Best Practices

	Business Services
	Overview of Business Services
	Creating Business Services
	Business Service Structure
	About Property Sets

	Creating Business Services in Siebel Tools
	Defining a Business Service in Siebel Tools
	Defining Business Service Methods
	Defining Business Service Method Arguments
	Defining and Writing Business Service Scripts
	Specifying Business Service Subsystems
	Defining Business Service User Properties

	Creating a Business Service in the Siebel Client
	Business Service Export and Import
	Testing Your Business Service
	Accessing a Business Service Using Siebel eScript or Siebel VB

	Business Scenario
	Code Sample

	Web Services
	Web Services Overview
	Supported Web Services Standards
	Web Services Inbound Dispatcher Defined
	Web Services Support for Transport Headers

	Inbound Web Services
	Publishing Inbound Web Services
	Generating a WSDL File

	Outbound Web Services
	Outbound Web Services Based on an External WSDL File
	Outbound Web Services Administration
	Integration Objects as Input Arguments to an Outbound Web Service

	XML Schema Support for <xsd:any> Tag
	Mapping the <xsd:any> Tag in the WSDL Import Wizard
	Mapping the <xsd:any> Tag in the XML Schema Wizard

	Examples of Invoking Web Services
	Invoking an External Web Service Using Workflow or Scripting
	Invoking a Siebel Web Service From an External Application

	Troubleshooting Tips
	Integration Components Cardinality

	EAI Siebel Adapter
	EAI Siebel Adapter Overview
	EAI Siebel Adapter Methods
	EAI Siebel Adapter Method Arguments
	Query Method
	QueryPage Method
	Synchronize Method
	Upsert Method
	Insert Method
	Update Method
	Delete Method
	Execute Method
	Execute Method Operations
	Supported Operations for the Parent and Its Child Components

	XML Examples
	MVGs in EAI Siebel Adapter
	Setting a Primary Address for an Account

	Search Specification
	Language-Independent Code
	LOV Translation

	EAI Siebel Adapter Concurrency Control
	Modification Key
	Modification IDs
	Modification ID for a Base Table
	Modification ID for an Extension Table
	Modification ID for a Joined Table
	MVG and MVGAssociation Integration Components
	Integration Component Account Example
	Integration Component Account_Organization Example

	Siebel eAI and Run-Time Events

	Siebel eAI and File Attachments
	Exchange of Attachments with External Applications
	Using MIME Messages to Exchange Attachments
	Creating the Integration Object
	Creating Workflow Processes Examples
	Outbound Workflow Process
	Inbound Workflow Process Example

	The EAI MIME Hierarchy Converter
	Outbound Integration
	Inbound Integration

	The EAI MIME Doc Converter
	EAI MIME Doc Converter Properties

	Siebel Virtual Business Components
	Overview of Virtual Business Components
	Enhancements to VBCs for This Version
	Usage and Restrictions

	Virtual Business Components
	Creating a New Virtual Business Component
	Setting User Properties for the Virtual Business Component

	XML Gateway Service
	XML Gateway Methods
	XML Gateway Method Arguments

	Examples of Outgoing XML Format
	Search-Spec Node-Type Types
	Examples of Incoming XML Format
	External Application Setup
	Custom Business Service Methods
	Common Method Parameters
	Business Services Methods and Their Property Sets

	Custom Business Service Example

	Predefined EAI Business Services
	Predefined EAI Business Services

	Property Set Representation of Integration Objects
	Property Sets and Integration Objects
	Property Set Node Types
	Example of a Sample Account

	DTDs for XML Gateway Business Service
	Outbound DTDs
	Delete
	Init
	Insert
	PreInsert
	Query
	Update

	Inbound DTDs
	Delete Response
	Init Response
	Insert Response
	PreInsert Response
	Query Response
	Update Response

	Index

