
SIEBEL ANALYTICS
PERFORMANCE TUNING

GUIDE

VERSION 7.5

JULY 2002

12-BD363V

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2002 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photographic, magnetic, or other record, without the prior agreement and written
permission of Siebel Systems, Inc.

The full text search capabilities of Siebel eBusiness Applications include technology used under license from
Fulcrum Technologies, Inc. and are the copyright of Fulcrum Technologies, Inc. and/or its licensors.

Siebel, the Siebel logo, TrickleSync, TSQ, Universal Agent, and other Siebel product names referenced herein
are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered trademarks of their
respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial computer
software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial Computer Software
Documentation, and as such, any use, duplication and disclosure of the Programs, Ancillary Programs and
Documentation shall be subject to the restrictions contained in the applicable Siebel license agreement. All
other use, duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions contained in
subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted Rights (June 1987), or
FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987), as applicable. Contractor/licensor
is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information
Siebel Systems, Inc. considers information included in this documentation and
in Siebel eBusiness Applications Online Help to be Confidential Information.
Your access to and use of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems software license
agreement, which has been executed and with which you agree to comply; and
(2) the proprietary and restricted rights notices included in this documentation.

Version 7.5 Siebel Analytics Performance Tuning Guide 3

Contents

Introduction
How This Guide Is Organized . 8

Revision History . 8

Chapter 1. Performance Tuning
Overview of Performance Tuning . 10

Working Assumptions . 12

Suggested Approach . 12

Siebel Analytics . 13

Underlying Database Servers . 14

The Extract, Load, and Transform Process . 16

Chapter 2. Siebel Analytics
Analytics Considerations . 18

Enable Query Caching . 19

Benefits . 19

Costs . 20

Reference Materials . 20

Add Aggregate Tables . 21

Aggregates Shipped with Siebel Analytics . 22

Identify Candidates . 22

Basic Guidelines . 24

Adding and Managing Aggregate Tables . 25

Packaged Aggregate Tables . 26

Contents

4 Siebel Analytics Performance Tuning Guide Version 7.5

Subset Large Physical Dimension Tables . 27

Subset Dimension Tables . 27

Review Configuration Parameters . 35

Siebel Analytics Configuration Parameters . 35

Chapter 3. The Database Servers
Overview of Database Indexing . 38

More Than One Kind of Index . 38

Database Optimizers . 38

Index Selection . 39

B-Tree Indexes . 39
Bitmap Indexes . 48

Vendor Index Evaluation Tools . 51

Determinants of Index Efficiency . 52

Periodic Tuning Tasks . 55

Periodic Index Evaluation . 55

Refresh Optimizer Statistics . 57

Reorganize Indexes . 60

Drop Indexes . 62

Review Configuration Parameters . 64

Computer Host . 65

Miscellaneous Tips . 65

Chapter 4. The ETL Process
Remove Unused Batches . 68

Example Company . 68

Rearrange Batches for Balance . 77

Example . 77

Version 7.5 Siebel Analytics Performance Tuning Guide 5

Contents

Drop and Recreate Indexes . 79

Create and Drop Batch Scripts . 79
Dummy Sessions and Initialization . 81

Batches for the Initial Extract . 82

Split Index Script Files for Parallelism . 89

Contents

6 Siebel Analytics Performance Tuning Guide Version 7.5

Version 7.5 Siebel Analytics Performance Tuning Guide 7

Introduction

This document, the Siebel Analytics Performance Tuning Guide, shows you how to
improve the query performance of Siebel Analytics applications by addressing
performance issues that yield the highest payoff.

This guide is useful for those who perform one or more of the following roles:

This guide assumes that you are knowledgeable in the areas of relational databases,
decision support systems, dimensional design, and the operating system which
supports the Siebel Analytics components.

Database
Administrators

Persons who administer the database system, including data
loading; system monitoring, backup, and recovery; space
allocation and sizing; and user account management.

Siebel Application
Administrators

Persons responsible for planning, setting up, and maintaining
Siebel applications.

Siebel Application
Developers or
Configurators

Persons who plan, implement, and configure Siebel applications,
possibly adding new functionality.

Siebel System
Administrators

Persons responsible for the whole implementation, including
installing, maintaining, and upgrading Siebel applications.

Introduction

How This Guide Is Organized

8 Siebel Analytics Performance Tuning Guide Version 7.5

How This Guide Is Organized
This guide shows you how to improve the performance of the Siebel Analytics
server by taking steps which have proven to be effective in a large number of cases.
The suggested actions represent what database and data warehouse performance
analysts consider standard practices.

This guide consists of four chapters:

■ Chapter 1, “Performance Tuning,” summarizes the principal actions you can
take to improve the performance of Siebel Analytics.

■ Chapter 2, “Siebel Analytics,” describes how you can improve the performance
of Siebel Analytics using Query Caching, Aggregates, and Configuration
parameters.

■ Chapter 3, “The Database Servers,” describes how to improve performance by
evaluating and tuning the underlying databases.

■ Chapter 4, “The ETL Process,” describes how to improve the performance of the
process that extracts, transforms, and loads data into the underlying databases.

Revision History
Siebel Analytics Performance Tuning Guide, Version 7.5

Version 7.5 Siebel Analytics Performance Tuning Guide 9

Performance Tuning 1

This chapter provides an overview of the three areas of performance tuning
described in this document:

■ Siebel Analytics on page 13

■ Underlying Database Servers on page 14

■ The Extract, Load, and Transform Process on page 16

Performance Tuning

Overview of Performance Tuning

10 Siebel Analytics Performance Tuning Guide Version 7.5

Overview of Performance Tuning
Siebel Analytics allows users to access data distributed across multiple independent
databases through a single, unified, and easily understood business model.
Therefore, when you tune Siebel Analytics for optimal performance, you must also
tune the underlying database servers, the communication network, and the extract,
transform, and load routines. Otherwise, performance will fall below optimal.

You must also make sure that sufficient hardware resources are available to support
the entire workload. That means, a sufficient amount of memory, a sufficient
number of processors, a sufficient amount of physical disk space with the requisite
characteristics, and ample network bandwidth to support the entire workload.

This chapter summarizes specific actions you can take to improve the performance
of Siebel Analytics, the underlying database servers, and the extract, transform, and
load routines. The actions are organized into three areas:

■ Siebel Analytics server

■ Underlying database servers

■ Extract, transform, and load routines

Subsequent chapters describe these actions in more detail and provide examples.

All the actions described represent steps which have proven effective in a large
number of cases, and most database administrators and performance analysts
consider these actions as part of their standard practices.

Version 7.5 Siebel Analytics Performance Tuning Guide 11

Performance Tuning

Overview of Performance Tuning

Keep in mind that these actions are intended as guidelines, and the results depend
highly on your particular workload, data shape, and requirements. Before
summarizing the performance actions, the next section reviews a few working
assumptions as well as a suggested approach to performance tuning. You should
also review the logical and physical database schemas from a performance point of
view. Figure 1 shows the three performance areas addressed in this guide.

Figure 1. The Three Areas

Metadata
Repositories
Metadata

Repositories

Informix

OLAP
server

IBM DB2SQL
serverETL Process

Oracle

Aggregate Navigator

Join, Sort, Calculate, Filter

Multi-Database Processing

Query Cache

Business Model

Metadata
Repositories

Siebel Analytics

Performance Tuning

Working Assumptions

12 Siebel Analytics Performance Tuning Guide Version 7.5

Working Assumptions
The suggested performance improvement actions assume that sufficient computing
and network resources are available to support your actual workload, and the
workloads have been isolated to minimize interference:

■ CPU, Memory, and I/O system

■ Network Services

■ Connection pooling (Siebel Analytics server relief)

■ Isolation of the Data Warehouse Workload from Transaction Workloads

Without sufficient capacity, resource bottlenecks at constraining resources will
result in poor query response time. A single bottleneck could be the source of all
user complaints about performance. Any serious effort starts with a high-level
survey of the computer host and its operating system to determine whether obvious
bottlenecks exist.

Suggested Approach
When you address performance issues, follow a deliberate approach: Make a single
change at a time, evaluates the impact of that change, and then continue on with
the next change. Before you make a change, you should develop a plan to recover
from the change should unintended consequences ensue.

NOTE: As you start taking actions to improve performance, the initial actions can be
dramatic and come at a relatively small cost. As a consequence, later actions will
be less dramatic and require much more effort. Performance tuning is a balancing
act. A change that improves the performance of one area may adversely impact the
performance of another area. You should evaluate the overall impact of a change
based on your requirements. For example, adding new indexes or aggregate tables
may help in improving the performance of a report but may also slow down ETL
processing time.

Version 7.5 Siebel Analytics Performance Tuning Guide 13

Performance Tuning

Siebel Analytics

Siebel Analytics
You can take several actions to improve the performance of the Siebel Analytics
server. Table 1 summarizes the principal actions.

These are the most common actions you can take to improve the performance of
the Siebel Analytics server.

Table 1. Performance Improvements for Siebel Analytics

Action Description

Enable Query Caching Verify that query caching is enabled.

Create Aggregates Create aggregates that the Siebel Analytics server can use to
rewrite queries.

Evaluate Design Make your logical objects efficient.

For example, divide large dimension into a set of smaller ones.

Evaluate Reports Evaluate your reports and optimize.

For example, look at frequently run Dashboard reports and make
sure that only the columns required by the reports are selected.
Remove all superfluous columns.

Review Configuration Verify that the configuration of Siebel Analytics matches your
actual workload.

For example, configure a pool sufficient to support connections,
case sensitive character comparisons, driving tables within
queries, and query caching.

Performance Tuning

Underlying Database Servers

14 Siebel Analytics Performance Tuning Guide Version 7.5

Underlying Database Servers
Several actions can be taken to improve the performance of underlying database
servers. Some of these can be taken immediately while others require some thought.
Table 2 summarizes the principal actions you can take to improve database server
performance.

Table 2. Performance Improvements for Underlying Database Servers

Action Description

Update Optimizer Statistics All the database servers which Siebel Analytics supports
store statistics used by their optimizers. If these statistics are
stale, the optimizer can choose a suboptimal plan.

Reorganize Indexes When tables in a database are modified by insert, delete, or
load operations, the indexes on the tables become less
efficient. The indexes on tables subject to updates should be
periodically reorganized.

Drop Indexes Indexes occupy storage space, provide alternate access paths
which must be evaluated by the optimizers, must be
maintained, and degrade update operations. Periodic
surveys should be made to determine whether an index is
being referenced by user queries. If not, remove the index.

Version 7.5 Siebel Analytics Performance Tuning Guide 15

Performance Tuning

Underlying Database Servers

Create Indexes After query caching and aggregates, indexes are the most
effective way to improve query performance. Create indexes
to speed-up access times and improve join operations.

Speedup access times by:

■ Creating B-tree indexes on dimension table columns that
have a large number of distinct values.

■ Creating Bitmap indexes on dimension columns that
have few distinct values. These are most effective when
queries constrain multiple columns which have bitmap
indexes (Oracle only).

Speedup join operations by:

■ Creating multicolumn B-tree indexes on foreign key
reference columns of fact tables, and multicolumn B-tree
indexes including the primary key and selected columns
from the dimension tables. Indexes should be designed
sensibly and ideally should not contain more than 5
columns.

■ Creating bitmap indexes on foreign key reference
columns where the index value has a low degree of
selectivity (more than 3 - 5% of the table values on
average per value). (Oracle only).

Increase Parallel Query If you have sufficient computing resources, configure the
database server for an optimal degree of parallel processing.
Given sufficient resources, this can greatly improve query
response time.

Table 2. Performance Improvements for Underlying Database Servers

Action Description

Performance Tuning

The Extract, Load, and Transform Process

16 Siebel Analytics Performance Tuning Guide Version 7.5

These are the most common actions you can take to improve the performance of
database servers.

The Extract, Load, and Transform Process
Several actions can be taken to improve the performance of the extract, transform,
and load process. They are described in Chapter 4, “The ETL Process.” For
additional guidelines on performance tuning of the ETL process, refer to the
Informatica documentation.

Manage I/O Traffic Manage the input and output accesses to disk storage by
striping the disk storage. The best and simplest action is to
install disk storage arrays (RAID), the second best is to stripe
volumes using a Logical Volume Manager.

Review Configuration Database vendor all have suggested configurations for
specific kinds of workloads. Evaluate your workload, and
configure the database server accordingly.

■ Oracle
Oracle9i Data warehousing Guide and the Oracle9i
Database Performance Guide and Reference

■ IBM
DB2 Administration Guide V7.1, Volume 3: Performance.

■ Microsoft SQL Server
RDBMS Performance Tuning Guide for Data
Warehousing.

Table 2. Performance Improvements for Underlying Database Servers

Action Description

Version 7.5 Siebel Analytics Performance Tuning Guide 17

Siebel Analytics 2

This chapter describes the following actions you can take to directly improve the
performance of Siebel Analytics:

■ Enable Query Caching on page 19

■ Add Aggregate Tables on page 21

■ Subset Large Physical Dimension Tables on page 27

■ Review Configuration Parameters on page 35

Siebel Analytics

Analytics Considerations

18 Siebel Analytics Performance Tuning Guide Version 7.5

Analytics Considerations
Keep in mind that you must have sufficient hardware resources to support the query
workload. While changes in the business model or queries can reduce the demand
for computer resources, enabling query caching and creating aggregate tables can
increase the demand for some resources (see Figure 2).

Figure 2. Siebel Analytics Server

Metadata
Repositories
Metadata

Repositories

Aggregate Navigator

Join, Sort, Calculate, Filter

Multi-Database Processing

Query Cache

Business Model

Metadata
Repositories

Siebel Analytics

Version 7.5 Siebel Analytics Performance Tuning Guide 19

Siebel Analytics

Enable Query Caching

Enable Query Caching
Decision support queries are usually complex and process a large number of rows.
The fastest way to process such a query is to process the query once, save its result
set in a cache, and then use the cached results to answer subsequent queries. The
cached results can also be used to answer queries that request a logical subset of
the cached results.

That is the basic idea of query caching, a technique Siebel Analytics uses which can
dramatically improve query response time as well as reduce the overall demand for
computing resources. Moreover, the user benefits without any knowledge of the
underlying machinery.

Siebel Analytics is shipped with query caching enabled. You do need to configure
the cache storage and decide on a strategy for flushing the outdated entries. The
parameters that control query caching are located in the NQSConfig.ini file, which
are described in the Siebel Analytics Installation and Configuration Guide.

Benefits
Query caching is similar to the technique used by database servers to rewrite
queries to use precomputed results stored in aggregate tables. The advantage of
query caching is that Siebel Analytics answers the query from its cache instead of
forwarding it on to the database server for processing. Note that query caching still
takes full advantage of query rewrites by the database on the first time the query is
issued.

Query caching actually extends beyond a single query to the class of queries that
can make use of the cached results. For example, Siebel Analytics can use the
cached result set for queries that require a qualified subset of the cached results.
Thus, a single cached result set can improve the average response time of a family
of similar queries.

Query caching also conserves network resources and processing time. The demand
on the network is reduced because intermediate results do not need to be
transferred over the network to Siebel Analytics. The demand of the database server
and computer host is reduced because the query workload has been reduced.
Therefore the efficiency of query caching improves query performance and
increases the capacity of computer and network resources.

Siebel Analytics

Enable Query Caching

20 Siebel Analytics Performance Tuning Guide Version 7.5

Costs
Query caching incurs the following costs:

■ Disk space for the cache

■ Administrative costs of managing the cache

■ Potential for cached results being stale

■ Minor CPU and disk I/O on server machine

With proper cache management, the benefits will far outweigh the costs. Using
cache, the cost of database processing need only be paid once for a query, not every
time the query is run.

Reference Materials
Siebel Analytics Server Administration Guide describes how query caching operates
in detail, and the Siebel Analytics Installation and Configuration Guide describes
how to configure query caching for your Siebel applications.

Version 7.5 Siebel Analytics Performance Tuning Guide 21

Siebel Analytics

Add Aggregate Tables

Add Aggregate Tables
Aggregate tables are among the most important methods that can be used to
improve query performance. Ralph Kimball asserts in his books on Data
Warehousing that they are the single most effective method a designer or
administrator has to improve query performance.

The reason why aggregate tables are so powerful is clear; once aggregate tables have
been created and identified as data sources, the Siebel Analytics server can rewrite
queries to reference the smaller, more compact aggregate tables instead of larger
detail tables. Any server can read thousands of rows much faster than it can read,
join, group, order, and process millions of rows.

Typically, aggregate tables greatly improve performance when the table compresses
detail data by a factor of ten or more. By reducing the demand on resources,
aggregate tables also effectively increase the capacity of a computer system.

Figure 3 illustrates a situation where a Monthly aggregate table would improve the
performance of queries that summarize data to a monthly level. Siebel Analytics
can also use the Monthly table to rewrite queries that summarize data at quarterly
and yearly levels. Thus, there is no need to create, load, and manage the two
additional higher-level aggregate tables.

Figure 3. Detail Versus Aggregate Tables

Data
Compression

Siebel Analytics

Add Aggregate Tables

22 Siebel Analytics Performance Tuning Guide Version 7.5

Aggregates Shipped with Siebel Analytics
Siebel ships many aggregate tables with Siebel Analytics which are used to improve
query performance.

For example, the aggregate table W_PLREVN_OP_A summarizes revenue measures
across Product Lines. In many cases, this aggregate table can greatly compress the
rows stored in the W_REVN_F base fact table, a fact table that stores revenue
measures at the product level.

For a list of aggregate tables shipped with Siebel Analytics, see the Siebel eBusiness
Data Warehouse Data Model Reference guide.

Identify Candidates
You will need to identify a set of candidates for aggregate tables as it is unrealistic
to create and load every combination of possible aggregate tables. To see this,
enumerate the number of possible aggregate tables for a simple fact table that has
three dimensions, and each dimension has four possible aggregations.

To identify candidates for aggregate tables, you need to consider two factors:

■ Query access patterns

■ Distribution of data, or the “shape” of your data

Query access patterns directly point to data that is actually being summarized and
how often this summarization occurs. If the summarization occurs infrequently and
the query has little importance, then this would not point to a situation where a
aggregate table would provide much value.

TIP: If a table has fewer than a half million rows, you might try indexing the table
before creating one or more aggregates.

Once you have identified a set of candidates that promise value, you can evaluate
each according to how much it compresses the data. For example, an aggregate table
that allows a query to read one row that sums one hundred rows of detail data,
would provide great value. On the other hand, a aggregate table that saves the query
from reading three rows would provide little.

Version 7.5 Siebel Analytics Performance Tuning Guide 23

Siebel Analytics

Add Aggregate Tables

You can quickly calculate the compression factor using the Siebel Analytics
Administrative Tool’s Update Row Count function which is illustrated in Figure 4.

The degree to which a aggregate table compresses detail data depends on the
distribution of data. For more information on how to characterize the density and
sparsity of these distributions and aggregate tables, see Chapter 14 of Ralph
Kimball’s book, The Data Warehouse Lifecycle Toolkit (Wiley, 1998). Identifying and
qualifying candidates for aggregate tables is a matter of studying the query
workload and determining the savings. In many cases, it is useful to simply
experiment because the actual benefits are sometimes difficult to quantify with a
pencil and paper.

Figure 4. Update Row Count

Siebel Analytics

Add Aggregate Tables

24 Siebel Analytics Performance Tuning Guide Version 7.5

Basic Guidelines
When you build aggregate tables, do not combine multiple-levels of aggregation.
Instead, put each level of summarization in its own table. This simplifies writing
queries and maintaining the aggregate tables.

When you create a aggregate table that spans dimensions and contains a large
number of rows, create a star schema consisting of the aggregate table and
corresponding dimensions. In this way, you can take advantage of the star schema
structure and its usual indexing strategies.

For example, suppose you create a aggregate table that summarizes weekly product
sales by city. The star schema would include a single aggregate table and three
“shrunken” dimension tables:

Each dimension represents a summarization of a detail dimension. For example, the
Weekly Dimension table is a shrunken dimension of a more detailed Daily
dimension table as Figure 5 shows.

To further improve query performance, you can index the dimension and fact tables
depending on the characteristics of their columns.

Figure 5. Aggregate Table with Dimensions

Weekly Product
Sales by City

Weekly
Dimension

Product
Dimension

City
Dimension

Version 7.5 Siebel Analytics Performance Tuning Guide 25

Siebel Analytics

Add Aggregate Tables

Too Many Aggregate Tables
Beware of too many aggregate tables. As the workload changes, aggregate tables
like indexes fall into disuse. When this occurs, you should remove the aggregate
tables. Similarly, should the data distribution shift so that the aggregate table fails
to compress data adequately, you should remove the table.

Storage Space
Aggregate tables are effective and they do occupy physical storage space.

Adding and Managing Aggregate Tables
To add a aggregate table to the data warehouse, you must create the table itself and
then develop a routine to load and maintain the table. Siebel Systems suggests that
you develop a set of Informatica mappings to load and maintain aggregate tables.

To use this method, you must develop the mappings that load and maintain the
aggregate tables and you must include entries in the Siebel metadata so that the
Siebel Analytics server can rewrite queries to use the aggregate table rather than the
detail tables whenever possible.

Names
You should use the standard naming conventions for aggregate tables so their
names match those of other tables in the data warehouse.

Siebel Data Warehouse names aggregate tables as “W_XXX_A” where “XXX”
references the star schema. This usage is consistent with the usage of names for fact
and dimension tables.

Manage Aggregate Tables
You can manage loading and updating aggregate tables by developing Informatica
mappings that extract data from fact tables, transform the data, and load it into the
aggregate tables. You can develop mappings using the SQL Override feature or the
Aggregator Transformation.

Siebel Analytics

Add Aggregate Tables

26 Siebel Analytics Performance Tuning Guide Version 7.5

SQL Override
Create mappings to extract data from the fact tables, use SQL override to select the
data, and use the Expression calculator to obtain summarized values as the server
reads individual rows. The mapping then stores the summarized values in the
aggregate table.

This approach can be implemented when you can not sort the data before it is
routed to the Informatica server. This avoids memory cache problems with
Aggregator transformations.

TIP: The SQL Override approach is the recommend method.

Aggregator Transformation
Create mappings to extract data from the fact tables and the Aggregator
transformation to group and summarize the input data. This approach is more
flexible because you can use conditional clauses to filter records. The output from
the mapping is routed to the aggregate table.

When you use this method, you need to use presorted input data. Otherwise, the
server demand for memory results in poor and usually unacceptable performance.

Packaged Aggregate Tables
Siebel eBusiness Data Warehouse includes several packaged aggregate tables to
speed-up query performance. Aggregate tables are precomputed answer sets which
are one of the most effective means to improve query performance. Siebel Analytics
can substitute in place of detail tables to improve query performance. The server
makes this substitution by rewriting the query, an operation that is transparent to
the user. Aggregate tables are similar to indexes: the server, not the user, determines
whether to use the aggregate table, and the decision rests on the expected
performance improvement.

Version 7.5 Siebel Analytics Performance Tuning Guide 27

Siebel Analytics

Subset Large Physical Dimension Tables

Subset Large Physical Dimension Tables
Often, a family of queries references only a well-defined subset of a large physical
dimension. Suppose a family of queries references only competitor accounts in a
large Accounts dimension table. To improve the performance of these queries,
create a CompetitorAccounts dimension table and direct this family of queries to
this smaller min-dimension table rather than to the larger dimension table.

You can accomplish this readily by identifying the subsets, creating the table, and
including the subsets in the Business Model.

Subset Dimension Tables
The Siebel eBusiness Data Warehouse contains several large dimension tables that
include well-defined subsets.

For example, the Person dimension (W_PERSON_D) includes contacts as well as
employees. Similarly, the Organization dimension (W_ORG_D) includes accounts,
partner accounts, competitor account, owner organization, and so forth.

These tables are shipped with the Data Warehouse and are mapped into the Siebel
Analytics metadata as well as standard reports.

Creating a physical subset dimension makes sense only if you can identify a family
of queries that reference only the rows in the subset. Otherwise, you incur the
expense of additional physical storage, additional update management, overhead in
the metadata and processing of your Business Model but receive no benefits.

Example
Suppose you have identified a set of frequently executed queries that reference only
employees in a 2 million row Person dimension table. Of these 2 million rows, only
5000 represent employees, the remainder represent contacts.

To improve the performance of this family of queries, create a physical Employee
table and direct queries that reference only Employees to the smaller table. This
strategy makes sense because the query can scan the smaller table much faster than
it can the larger one.

The W_EMPLOYEE_D table is already mapped into the Siebel metadata, and you
can use it as an example for any custom subset dimension you might create. For a
list of subset tables shipped with Siebel Analytics, see Siebel eBusiness Data
Warehouse Data Model Reference guide.

Siebel Analytics

Subset Large Physical Dimension Tables

28 Siebel Analytics Performance Tuning Guide Version 7.5

To create and map a subset dimension

1 Create a W_EMPLOYEE_D table which is a subset of the W_PERSON_D table
(rows which have ‘Y’ in their EMP_FLG column).

CREATE TABLE SIEBEL.W_EMPLOYEE_D
AS (select *

from “W_PERSON_D”
where EMP_FLG = ‘Y’);

2 Create indexes that can improve access performance on the W_EMPLOYEE
table. See Review Configuration Parameters on page 64.

3 Open the Analytics repository using the Siebel Analytics Administrator tool.

Version 7.5 Siebel Analytics Performance Tuning Guide 29

Siebel Analytics

Subset Large Physical Dimension Tables

4 Import the new table from the Siebel Data Warehouse into the Physical layer.

This step modifies the Siebel Analytics metadata so that it points to the newly
created W_EMPLOYEE_D table as illustrated below.

NOTE: You will need to refresh the contents of the W_EMPLOYEE table anytime
the contents of the W_PERSON_D table are refreshed or loaded.

Siebel Analytics

Subset Large Physical Dimension Tables

30 Siebel Analytics Performance Tuning Guide Version 7.5

5 Create the required joins (copy from the W_PERSON_D).

See illustration below.

6 Map Employee in the Business Model to the W_EMPLOYEE_D.

Siebel Analytics will now retrieve data from the smaller W_EMPLOYEE_D table
when a query references Employee, and the query will run faster.

Version 7.5 Siebel Analytics Performance Tuning Guide 31

Siebel Analytics

Subset Large Physical Dimension Tables

Remove Columns Not Required by a Report
Look at frequently run Dashboard reports and make sure that only the columns that
are required by your reports occur are selected. Remove any superfluous columns.
This simple action can improve query performance for those cases where a large
number of columns not required by the report occur in the query select list.

Example
This example shows you how to remove columns that are not required by a report.

1 Suppose you have a report named “Product Lines with Open-Critical SRs”
similar to the one shown below.

Siebel Analytics

Subset Large Physical Dimension Tables

32 Siebel Analytics Performance Tuning Guide Version 7.5

2 To see the criteria for selecting columns, click “Modify Request.”

3 The “# of SRs” fact is selected although it is not required in the “Product Lines
with Open-Critical SRs” report. See the figure above.

Version 7.5 Siebel Analytics Performance Tuning Guide 33

Siebel Analytics

Subset Large Physical Dimension Tables

4 Remove this column from the selection criteria.

5 Click the Results tab, as shown in the figure above, to verify whether the report
remained the same.

Siebel Analytics

Subset Large Physical Dimension Tables

34 Siebel Analytics Performance Tuning Guide Version 7.5

6 Save your changes.

7 Continue to search for other columns that force the database server to retrieve
data that is not required by the report. See the figure above.

Version 7.5 Siebel Analytics Performance Tuning Guide 35

Siebel Analytics

Review Configuration Parameters

Review Configuration Parameters
This technique applies to both the application software, Siebel Analytics software,
and database server software.

Siebel Analytics Configuration Parameters
Consider changing the following parameters in the NQSConfig.ini configuration
file for the Siebel Analytics server:

■ Query Caching

■ Case-Sensitive Character Comparison

■ Driving Table per Siebel Analytics example

Query Caching
This was the first technique described in this guide. For the details, see Enable
Query Caching on page 19.

Case-Sensitive Character Comparison
The parameter that determines whether the Siebel Analytics Server differentiates
between lower and upper case characters can impact query performance. When the
CASE_SENSITIVE_CHARACTER_COMPARISION parameter in NQSConfig.ini file
is set to ON, the server does not retrieve values for the result set that fail to exactly
by case. When set to ON, the server can process the query more efficiently.

For instructions that describe how to set this parameter to ON, see Siebel Analytics
Installation and Configuration Guide.

Driving Table
■ Table Joins (driving table, see Siebel Analytics Server Administration Guide)

Repository Configuration
Make sure to select the correct database type in your repository configuration to use
the optimal database specific feature for underlying queries.

Siebel Analytics

Review Configuration Parameters

36 Siebel Analytics Performance Tuning Guide Version 7.5

Version 7.5 Siebel Analytics Performance Tuning Guide 37

The Database Servers 3

This chapter shows you how to improve the performance of the database servers
accessed by Siebel Analytics. The chapter emphasizes how to select, evaluate, and
manage indexes for database servers, although database configuration and the
capacity of the host system are also important factors to consider.

The chapter covers these topics:

■ Overview of Database Indexing on page 38

■ Index Selection on page 39

■ More Than One Kind of Index on page 38

■ B-Tree Indexes on page 39

■ Bitmap Indexes on page 48

■ Vendor Index Evaluation Tools on page 51

■ Determinants of Index Efficiency on page 52

■ Periodic Tuning Tasks on page 55

■ Periodic Index Evaluation on page 55

■ Refresh Optimizer Statistics on page 57

■ Reorganize Indexes on page 60

NOTE: The examples in this chapter are based on an Oracle database and illustrate
performance tuning techniques. In many cases, you can adapt the technique to DB2
and SQL Server databases.

The Database Servers

Overview of Database Indexing

38 Siebel Analytics Performance Tuning Guide Version 7.5

Overview of Database Indexing
Indexes are database objects designed to improve query performance by shortening
access paths to data and accelerating join operations. Indexes improve performance
and are transparent to users; the server, not the user, determines which index to use,
although some optimizers allow users to include hints.

Indexes can improve query performance by reducing access time and accelerating
join operations. Nevertheless, they occupy storage space, they must be maintained,
and they can interfere with database update and load operations. Consequently,
indexes should be selected with care, and their benefits balanced against their costs.

More Than One Kind of Index
All database vendors support B-Tree indexes, and a few support bitmap indexes.

A B-Tree index is an ordered set of entries. Each entry contains a search-key value
and a pointer to a row in the table that contains the value. The server can attack the
ordered structure of B-Trees predictably and efficiently, and a B-Tree index is smaller
than the underlying table. B-Tree indexes improve performance most when a
column contains mostly distinct values (index cardinality is low). They are also
used to enforce uniqueness.

A bitmap index is also a set of entries. Each entry contains a search-key value and
a bitmap (or pointer to a bitmap). Each bit corresponds with a row in the table, and
the presence of a bit indicates the row contains the search-key. Bitmap indexes are
often useful in many situations where B-Tree indexes are not. Namely, for columns
which have a large number of duplicate values (index cardinality is high). For
example, a Size column that contains only five distinct values (tiny, small, medium,
large, grand) is a good candidate. Oracle Corporation supports bitmap indexes.

Database Optimizers
All the database servers supported by Siebel Analytics have optimizers that generate
a set of execution plans and then select the most optimal plan. These optimizers can
generate plans based on rules and on processing costs. The cost-based optimizers
rely on data distribution statistics stored in the database catalog which much be
generated and periodically refreshed by the administrator, but they generally out-
perform rules-based optimizers in data warehousing environments.

Version 7.5 Siebel Analytics Performance Tuning Guide 39

The Database Servers

Index Selection

Index Selection
Indexes should be selected on the basis of how much they improve query
performance versus their cost in terms of physical storage, maintenance, and
interference with the ETL load process. This section describes a basic method for
index selection, guidelines for individual indexes, and a few cases where indexes
would not be appropriate.

B-Tree Indexes
Generally speaking, in an online transaction processing environment, a B-tree is
most effective when it is highly selective. When this is the case, the index is said to
have “high selectivity” because a low percentage of rows in the table have the same
index key value.

General Guidelines
With high selectivity in mind, evaluate creating B-tree indexes on columns that:

■ Occur frequently in WHERE clauses

■ Often used to join tables (include aggregate tables)

■ Occur in ORDER BY clauses (the index can facilitate ordering)

■ Occur in a foreign key reference constraint

■ Used to enforce PRIMARY KEY and UNIQUENESS constraints

You can also look at your query workload and identify families of queries that
include tight table constraints on tables (point, multi-point, and range queries).

When you have star schemas, both DB2 and Oracle database servers can exploit
multi-column B-Tree indexes to accelerate join processing when they are created
over the foreign key reference columns of “fact” tables. DB2 and Oracle can also
accelerate star join operations when single column indexes are created on the fact
table’s foreign key reference columns. In the Oracle case, these indexes are
specialized Bitmap indexes which are used by the server’s star transformation
algorithm. See “Bitmap Indexes” on page 48.

The Database Servers

Index Selection

40 Siebel Analytics Performance Tuning Guide Version 7.5

Where B-Trees Should Not Be Created
Several situations are worth noting where you should not create B-Tree indexes on
columns. These cases include columns which:

■ Have only a few distinct values in their domains. For example, a Type column
that has only four distinct values (A, B, C, and D). The index would be said to
have “low selectivity.” If you have an Oracle database, then these columns of
low selectivity are ideal candidates for Bitmap indexes.

■ Occur in WHERE clauses but within functions other than MIN or MAX.

Indexes in these cases waste space and slow down the load process.

Siebel Recommended Methodology
You can follow the methodology described in the following example procedure to
create new indexes to speed up a slow running report. The slow running report used
in this example is “Abandoned Carts Detail.”

To analyze a slow running report

1 Log into Siebel Analytics and run the Abandoned Carts Detail report.

2 Click the Results tab.

3 After waiting for unacceptably long period of time, cancel the query.

4 Trace the SQL using the Siebel Analytics Admin Mode.

a Return to the dashboard.

b Click the Admin hyperlink.

Analytics returns the Siebel Analytics Administration page.

Version 7.5 Siebel Analytics Performance Tuning Guide 41

The Database Servers

Index Selection

c Click the Manage Sessions hyperlink.

Analytics returns the Sessions page shown in the figure below.

5 Look in the Cursor Cache window for your session.

In this case, there is only one session in the window and it ran 2 minutes and
52 seconds.

The Database Servers

Index Selection

42 Siebel Analytics Performance Tuning Guide Version 7.5

6 Click the View Log hyperlink.

Analytics returns another window that contains the SQL generated for the
session, the logical SQL inside the Analytics server and the SQL sent to the
database, which is shown in the following sections.

Note the time between each section marked by lines such as:

+++Administrator:30000:30002:----2002/07/01 22:20:42

Version 7.5 Siebel Analytics Performance Tuning Guide 43

The Database Servers

Index Selection

In the screen shot below, note that the mean time between these lines is just
short of 3 minutes.

The Database Servers

Index Selection

44 Siebel Analytics Performance Tuning Guide Version 7.5

7 Run the SQL sent to the database using the EXPLAIN PLAN command.

You can generate the execution plan for a query in a variety of ways such as
SQL*Plus, Oracle Enterprise Manager, or TOAD (Tools for Oracle Application
Development). This example copies and pastes the SQL into TOAD.

The figure below shows the generated SQL in a TOAD window.

The SQL text including the explain plan output was copied and pasted on the
next page.

Version 7.5 Siebel Analytics Performance Tuning Guide 45

The Database Servers

Index Selection

select T1035949.TYPE as c1,
T1034992.NAME as c2,
concat(T1042934.FST_NAME,
concat(' ', T1042934.LAST_NAME)) as c3,
T1035949.QUOTE_NUM as c4
T1038921.DAY_DT as c5,
sum(T1035847.QUOTED_NET_PRI * 1 * T1035847.QTY_REQUESTED
* T1035847.INCL_CALC_IND - T1035847.ADJUSTMENT
+ T1035847.FREIGHT_AMT + T1035847.TAX_AMT) as c6

from W_PERSON_D T1042934, W_DAY_D T1038921, W_QUOTE_D T1035949, W_ORG_D
T1034992, W_QUOTEITEM_F T1035847

where T1035847.CREATED_DT_WID = T1038921.ROW_WID
and T1035847.CONTACT_WID = T1042934.ROW_WID
and T1035847.QUOTE_WID = T1035949.ROW_WID
and T1034992.ROW_WID = T1035847.TGT_ACCNT_WID
and T1034992.ACCNT_FLG = 'Y'

group by T1034992.NAME, T1035949.QUOTE_NUM, T1035949.TYPE,
T1038921.DAY_DT, T1038921.INTEGRATION_ID, T1042934.INTEGRATION_ID,
concat(T1042934.FST_NAME, concat(' ',T1042934.LAST_NAME))

order by c1, c2, c3, c4, c5

SELECT STATEMENT Optimizer=ALL_ROWS (Cost=2325184460
Card=1880231459032250

Bytes=691925176923868000)
SORT (GROUP BY) (Cost=2325184460 Card=1880231459032250

Bytes=691925176923868000)
HASH JOIN (Cost=88222326 Card=1880231459032250 Bytes=691925176923868000)

TABLE ACCESS (FULL) OF W_PERSON_D (Cost=22838 Card=3520816
Bytes=295748544)

HASH JOIN (Cost=392 Card=8010492990 Bytes=2274980009160)
TABLE ACCESS (FULL) OF W_DAY_D (Cost=10 Card=6325 Bytes=246675)

HASH JOIN (Cost=39 Card=18997217 Bytes=4654318165)
TABLE ACCESS (FULL) OF W_QUOTE_D (Cost=25 Card=17394 Bytes=817518)

NESTED LOOPS (Cost=5 Card=16383 Bytes=3243834)
TABLE ACCESS (FULL) OF W_QUOTEITEM_F (Cost=1

Card=15 Bytes=1950)
TABLE ACCESS (BY INDEX ROWID) OF W_ORG_D (Cost=1 Card=16383

Bytes=1114044)
INDEX (UNIQUE SCAN) OF W_ORG_D_P1 (UNIQUE)

The processing costs for each operation within the query is a relative estimate
which highlights the costliest operations within the query. These are the
operations that you need to analyze closely.

The most expensive table to access within this plan is to W_PERSON_D. This
also happens to be the largest table in the test database (4 GB). If the hash area
of the columns from this table can be reduced, this will reduce access time.

The Database Servers

Index Selection

46 Siebel Analytics Performance Tuning Guide Version 7.5

One method to reduce this access time is to index the columns in the table so
that the query scans the indexes instead of the table.

8 Locate all occurrences of the table’s columns within the query.

The columns FST_NAME and LAST_NAME occur in the query’s select list and
the column ROW_WID occurs in its where clause.

9 Create and analyze an index that covers these columns.

Create index w_person_d_x7
on w_person_d (row_wid, fst_name, last_name)
tablespace idx nologging pctfree 0 ;

Analyze index w_person_d_x7 compute statistics ;

TIP: The columns referenced in the WHERE clause should be the leading
columns for a particular index. If the columns were created in another order, say
(LAST_NAME, FST_NAME, ROW_WID), the optimizer would not generate a
query that uses the index.

10 Generate the explain plan for the query and compare query plans.

SELECT STATEMENT Optimizer=ALL_ROWS (Cost=2325173878 Card=1880231459032250
Bytes=691925176923868000)

SORT* (ORDER BY) (Cost=2325173878 Card=1880231459032250
Bytes=691925176923868000)

SORT* (GROUP BY) (Cost=2325173878 Card=1880231459032250
Bytes=691925176923868000)

SORT* (GROUP BY) (Cost=2325173878 Card=1880231459032250
Bytes=691925176923868000)

HASH JOIN* (Cost=88211744 Card=1880231459032250
Bytes=691925176923868000)

VIEW* OF index$_join$_001 (Cost=12256 Card=3520816
Bytes=295748544)

HASH JOIN* (Cost=88211744 Card=1880231459032250
Bytes=691925176923868000)

INDEX* (FAST FULL SCAN) OF W_PERSON_D_X7 (NON-UNIQUE)
(Cost=1 Card=3520816 Bytes=295748544)

INDEX* (FAST FULL SCAN) OF W_PERSON_D_U1 (UNIQUE)
(Cost=1 Card=3520816 Bytes=295748544)

HASH JOIN* (Cost=392 Card=8010492990 Bytes=2274980009160)
TABLE ACCESS (FULL) OF W_DAY_D (Cost=10 Card=6325 Bytes=246675)
HASH JOIN (Cost=39 Card=18997217 Bytes=4654318165)

Version 7.5 Siebel Analytics Performance Tuning Guide 47

The Database Servers

Index Selection

TABLE ACCESS (FULL) OF W_QUOTE_D (Cost=25 Card=17394
Bytes=817518)

NESTED LOOPS (Cost=5 Card=16383 Bytes=3243834)
TABLE ACCESS (FULL) OF W_QUOTEITEM_F (Cost=1 Card=15

Bytes=1950)
TABLE ACCESS (BY INDEX ROWID) OF W_ORG_D (Cost=1

Card=16383
Bytes=1114044)

INDEX (UNIQUE SCAN) OF W_ORG_D_P1 (UNIQUE)

The plan shows that the full table scan of the W_PERSON_D was replaced with
a hash join of two indexed lookups.

11 Verify the performance improvement.

Copy the query from the explain plan, paste it into TOAD, and then execute the
query with TOAD. The elapsed time reported by TOAD is now 48 seconds. This
is roughly one-fourth the original time.

12 Flush the query cache from the Analytics server.

Navigate to the Admin View - Manage Session, and click the Close All Cursors
hyperlink.

13 Run the Analytics report again.

14 Return to Admin mode and verify that the report ran faster (47 seconds).

Thus, a multicolumn B-Tree index on the W_PERSON_D dimension table improves
query performance roughly 300 percent.

The Database Servers

Index Selection

48 Siebel Analytics Performance Tuning Guide Version 7.5

Bitmap Indexes
Oracle supports bitmap indexes which are often useful in many situations where B-
tree indexes are not optimal. Namely, for columns which have a large number of
duplicate values. For example, a Size column that contains only five distinct values
(tiny, small, medium, large, grand).

Oracle’s “star transformation algorithm” uses bitmap indexes to join a fact table to
its dimensions when they exist on the foreign key constraint columns in a fact table.
Actually, this algorithm is robust enough to use a combination of bitmap and B-tree
indexes. IBM DB2 takes advantage of this technology in selected situations by
dynamically building bitmaps from a single-column B-tree to join tables. Unlike
Oracle, however, these are highly specialized cases.

Entries in a bitmap index consist of a search key value and a bitmap which
describes rows that contain the search key value. Each bit in the map corresponds
with a row in the table, and a bit on signals a row that contains the value in the
search key. key value.

Candidates for Bitmap Indexes
Bitmap indexes are most advantageous whenever the cardinality of the index is less
than one percent, or lowly-selective. This criterion is nearly the opposite of the
guideline for B-Tree indexes.

Look for cases where:

■ A query constrains multiple columns which have few distinct values in their
domains (large number of duplicate values).

■ A large number of rows satisfy the constraints on these columns.

■ Bitmap indexes have been created on some or all of these columns.

■ The referenced table contains a large number of rows.

Given this kind of scenario, the server can evaluate the constraints by ANDing the
bitmaps and potentially eliminate a large number of rows without ever accessing a
row in the table.

Version 7.5 Siebel Analytics Performance Tuning Guide 49

The Database Servers

Index Selection

The Oracle database server can also generate query execution plans to join a fact
table to its dimensions using its star transformation algorithm when bitmap indexes
exist on the fact table foreign key reference columns. When this execution plan is
the least costly, the server joins the tables using the bitmap indexes.

CAUTION: Bitmap indexes should be used only for static tables and are not suited for
highly volatile tables in online transaction processing systems.

Also, the Oracle optimizer generates query plans only when the cost-based
optimizer has been enabled.

To create a bitmap index, use the “bitmap” keyword:

create bitmap index w_srvreq_d_m2 on w_srvreq(area_I)
nologging tablespace idx pctfree 0 ;

You can analyze a bitmap index just like you do any other index:

analyze index w_srvreq_d_m2 compute statistics ;

Example Bitmap Index
Bitmap indexes are useful for low-selectivity cases. For example, consider the
AREA_I column on the W_SRVREQ_D table of a sample database. A simple query
against this query shows that this column has a very small domain (few distinct
values).

NOTE: Be sure that you understand your data shape when evaluating the need for
indexes. Also be aware that this example is heavily dependent on a particular data
shape.

SQL> select area_i, count (*) cnt from w_srvreq_d group by area_i;

AREA_I CNT
---------------------- ------------
3rd Party Software 171,456
Abnormal Usage 77,988
CD-ROM 171,717
Disk Drive 115,379
Ethernet Card 59,076

The Database Servers

Index Selection

50 Siebel Analytics Performance Tuning Guide Version 7.5

Hard Drive 59,328
Installation 1,850,376
Internet Registration Request 199,272
Memory 258,352
Network 199,850
Operating System 168,396
Performance 140,895
Unspecified 1,368,797
Upgrade 278,136
Usage 199,178
User Interface 276,738

This table contains only 16 distinct values that occur in 5,594,934 rows. Clearly, this
is not a candidate for a B-Tree index. Such an index would more likely degrade
rather than improve query performance. This column is, nevertheless, an excellent
candidate for a bitmap index. With a cardinality of 1 / 350,000 (0.00028%), it is
nearly perfect for a bitmap index.

TIP: Bitmap indexes are most effective when a query constrains a set of columns
that have bitmap indexes or a combination of single-column bitmap and B-Tree
indexes. When these conditions are ANDed, then the server can AND the bitmaps
rather than data fetched from individual rows.

When Bitmap Indexes Should Not Be Created
Bitmap indexes should not be created in the following cases:

■ A column with a UNIQUE constraint

■ A column that mostly contains distinct values

■ Where the table is frequently updated or loaded with new data

Indexes incur several costs and you need to balance their cost against their actual
benefits. Use a performance monitor to evaluate their actual benefits.

Version 7.5 Siebel Analytics Performance Tuning Guide 51

The Database Servers

Index Selection

Vendor Index Evaluation Tools
The database vendors provide tools that can assist you in choosing an optimal set
of indexes.

Database Tool Description

DB2 Index Advisor For additional information see the DB2
Administration Guide V7.1, Volume 3:
Performance.

Oracle 8i and 9i ALTER INDEX ...
MONITORING
USAGE

Oracle Tuning Pack

For additional information, see the Oracle9i
Database Performance Guide and Reference.

SQL Server 2000 For additional information, see the Microsoft
white paper RDBMS Performance Tuning Guide
for Data Warehousing.

The Database Servers

Index Selection

52 Siebel Analytics Performance Tuning Guide Version 7.5

Determinants of Index Efficiency
The distribution of data within a table’s column largely determines the performance
of indexes. Earlier sections have already pointed out that if the column contains
mostly distinct values, then B-Tree indexes can be quite effective; otherwise, a
bitmap index may perform better.

This general notion of selectivity needs to be moderated with a little perspective on
how selectivity can be skewed. When this occurs, the index seems magical;
sometimes it is very effective and other times it seems to get in the way.

Consider a million row table of contacts used by a medical insurance provider for a
state dominated by one large city. Suppose that one borough dominates the large
city and the distribution of zip codes throughout the state is not evenly distributed
as illustrated in the table below.

If you create a B-Tree index in this situation, then the performance of queries
generated by rule-based optimizers will vary by borough. The efficiency of a search
for all contacts within a certain zip code would depend largely on the zip code, and
the data itself is the determinant. This explains why a query that performs well in
some situations is absolutely sluggish in others.

Specifically, a query that searches for 200 contacts in a suburb of a city outside of
the Large City, will have an almost instantaneous response time. Oracle would
invoke the index on an index range scan, and for each value, the server would go
and fetch the corresponding row from the table. Once the dataset is built, Oracle
would process the rest of the query.

Region Contacts Number of Zip Codes

LC Borough 1 400,000 1

LC Borough 2 125,000 1

LC Borough 3 125,000 1

LC Borough 4 125,000 1

LC Borough 5 125,000 1

Outside LC 100,000 495

Version 7.5 Siebel Analytics Performance Tuning Guide 53

The Database Servers

Index Selection

What about a query against Borough 1 of the Large City? The Rules Based Optimizer
in this case performs an index range scan, and iteratively fetches 400,000 records,
one at a time. This is going to take a long time.

A solution in this case is to turn to cost-based optimizers which generate query
execution plans based on statistics stored in the system catalog and match the
granularity of the histograms they generate to your particular workload. These
statistics describe the distribution of index key values, and the server can generate
plans accordingly.

You can control the granularity of the histograms using options on the analyze
statements. For example, this statement creates histograms with 75 buckets:

Analyze table w_person_d
compute statistics for all indexed columns ;

To create a histogram on the LAST_NAME column with 200 buckets, you can use
the following statement:

Analyze table w_person_d
compute statistics for column LAST_NAME size 200 ;

To create a histogram on each of the LAST_NAME and FST_NAME columns with
250 buckets each, use the following statement:

Analyze table w_person_d
compute statistics for columns
LAST_NAME, FST_NAME size 250 ;

Remember to drop and recreate the histograms after each ETL load, because the
histogram is just a representation of values that can become stale if not recomputed
when the table is updated. Stale statistics can lead to suboptimal query plans.

The Database Servers

Index Selection

54 Siebel Analytics Performance Tuning Guide Version 7.5

After you create statistics, you can retrieve histograms generated for specific
columns using an SQL statement.

You can see the various buckets in the figure above that cost-based optimizers use
for a BETWEEN comparison to get the right histogram bucket and the distribution
of values. This gives you some insight into the shape of your data.

Version 7.5 Siebel Analytics Performance Tuning Guide 55

The Database Servers

Periodic Tuning Tasks

Periodic Tuning Tasks
Tuning a database for query performance is an ongoing, periodic activity. As the
tables in the underlying databases change during load and other update operations,
the indexes themselves change. The changes to tables can be sufficient to render
some indexes useless and provide opportunities to add new indexes. These changes
also necessitate reorganizing indexes and refreshing their statistics.

This section describes these tasks:

■ Periodic index evaluation

■ Refresh optimizer statistics

■ Reorganize indexes

These tasks should always be performed immediately after you complete an ETL
load on one of the underlying databases.

Periodic Index Evaluation
After you complete an ETL load of an underlying database, you should always
analyze and evaluate all database indexes to determine whether individual indexes
remain effective. A load operation, or successive load operations, can change the
distribution of the data enough to alter the effectiveness of an index.

To illustrate how this can happen, consider an example based on an index supplied
with Siebel Analytics. Siebel Systems recommendation to use this index is based on
expected usage patterns against laboratory data. In practice, the index improves
performance for a large number of customers but fails to be effective for a few. The
failure occurs when the laboratory data is not representative of a customer’s data.

The following example uses the index W_REVN_F_F23, a B-Tree index supplied
with Siebel Analytics. After loading your data into the database, you may find that
this particular index is ineffective, depending on your data shape.

The Database Servers

Periodic Tuning Tasks

56 Siebel Analytics Performance Tuning Guide Version 7.5

Preliminary Analysis
To evaluate the index, analyze the index and retrieve a few statistics from the system
catalog table all_indexes using the following query.

SQL> analyze index w_revn_f_f23 compute statistics ;
Index analyzed.
Elapsed: 00:00:12.48
SQL> select num_rows, distinct_keys, avg_leaf_blocks_per_key
from all_indexes
where index_name = ‘w_revn_f_f23’
num_rows distinct_keys avg_leaf_blocks_per_key
2789291 1 4539

For this particular data, the B-Tree index is useless because there is exactly one
index key. The same would be true of a bitmap index. You can learn a little more
by looking at the contents of the column:

SQL> select pr_offer_wid, count (*) from w_revn_f
group by pr_offer_wid ;

PR_OFFER_WID COUNT(*)
------------ ----------
0 2789291

For this customer’s data, the index is useless. This does not imply that the index is
not useful at a large number of other sites; just not in this situation at this particular
time. To take advantage of indexes, you must thoroughly understand your data.

You need to analyze and evaluate every index within the database each time you
complete an ETL load. This evaluation is for all indexes: those initially supplied
with Siebel Analytics and others which you have added to improve performance.

Suggested Action
In the previous case, the best solution is to simply drop the index.

You could take a further step and disable the index in the ddlsme.ctl file, the file
that controls creation of the index. Of course, if the data makes another shift in the
future, the index could become useful at that time.

Version 7.5 Siebel Analytics Performance Tuning Guide 57

The Database Servers

Periodic Tuning Tasks

Refresh Optimizer Statistics
Given a query, a database server generates a set of potential execution plans, and
then executes the optimal plan. If cost-based optimization is enabled, the optimizer
chooses the least costly plan. The server estimates the cost of each plan based on
statistics stored in the database catalog, statistics that include characteristics of
tables, indexes, aggregate tables, and other structures that determine access paths.
If the statistics are not fresh, the optimizer can generate a suboptimal plan.

Cost-Based Optimization
To take advantage of cost-based optimizers, you must:

1 Select and evaluate indexes for the database.

2 Enable the cost-based optimizer.

3 Generate statistics for database objects.

4 Periodically update the statistics so they reflect the current situation.

Cost-based optimizers are well-suited for data warehousing environments.

CAUTION: Do not assume that a technique that works well for one database will
work similarly for others. Oracle, DB2, and SQL Server each have their own
optimizers which generate query execution plans peculiar to their individual
background assumptions. Query execution plans can differ markedly.

The Necessity of Current Statistics
Databases change over time, and as they change the statistics become stale and
must be updated. Otherwise, the generated query plan may not be optimal.

To insure optimal query performance, the administrator must periodically calculate
statistics for the database using tools provided by the database vendor. These tool
vary by vendor. Statistics should be calculated for all tables and indexes which
include those used by the server’s query rewriter (aggregate tables in DB2 and
materialized views in Oracle).

The Database Servers

Periodic Tuning Tasks

58 Siebel Analytics Performance Tuning Guide Version 7.5

When You Refresh Statistics
To refresh statistics for a table, you submit a single Oracle DDL statement. This
statement refreshes statistics for the table and all the indexes defined on the table.
Oracle recursively splits up the analyze statement to analyze the table and its
indexes.

When you execute the default statement, such as:

Analyze table w_person_d compute statistics ;

Oracle processes the entire analyze statement as an autonomous unit contained
within a single undo transaction. This will also be held in a single instance of the
SORT_AREA_SIZE in the PGA.

To speed up an analyze statement, use this sequence of steps:

Alter session set sort_area_size = 50000000
Analyze table w_person_d compute statistics for table;
Analyze index w_person_d_idx1 compute statistics ;

Fresh statistics for an index are critical to the cost-based optimizer.

Version 7.5 Siebel Analytics Performance Tuning Guide 59

The Database Servers

Periodic Tuning Tasks

Vendor Tools to Refresh Statistics
All three database vendors provide tools that calculate and update statistics for the
cost-based optimizers. The table below lists these tools by vendor.

Database Tool Description

DB2 RUNSTATS SQL command that calculates statistics for the physical
characteristics of a table and its indexes, which include
number of records, number of pages, and average
record length.

For additional information see DB2 Administration
Guide V7.1, Volume 3: Performance.

Oracle 8i and 9i

Pre-Oracle 8i

DBMS_STATS

ANALYZE

DBMS_STATS is a PL/SQL package that generates and
manages statistics for cost-based optimization. Use
this package to gather, modify, view, statistics on
indexes, tables, columns, and partitions.

The SQL ANALYZE command updates statistics for
pre-8i database tables.

For additional information, see Oracle9i Database
Performance Guide and Reference.

SQL Server 2000 sp_createstats A system stored procedure that creates indexes on all
eligible columns in all user tables in the current
database.

Microsoft recommends that the database option
AUTO_CREATE_STATISTICS is set to ON, which is the
default and which automatically updates statistics.

For additional information, see the Microsoft white
paper RDBMS Performance Tuning Guide for Data
Warehousing.

The Database Servers

Periodic Tuning Tasks

60 Siebel Analytics Performance Tuning Guide Version 7.5

When To Update Statistics
The following events signal that statistics for the data warehouse should be
updated.

1 During the initial load of data into the data warehouse.

a Update statistics for the general tables (_G) immediately after they have been
loaded and before the staging and dimension table loads.

b Update statistics for the dimension tables (_D) immediately after they have
been loaded but before loading the fact tables.

c Update statistics for the fact tables (_F) immediately after they have been
loaded but before running the remaining ETL.

d After the data warehouse has been loaded with the initial ETL and the query
indexes have been created, update statistics for the indexes.

2 After an incremental update or load.

3 Any time when an index within the data warehouse is created or dropped.

4 After an index has been reorganized.

NOTE: For information on the Query indexes in the Siebel Data Warehouse refer to
Siebel Analytics Server Administration Guide and Siebel Analytics Installation and
Configuration Guide.

Reorganize Indexes
When you initially create an index, the database server attempts to store the index
entries in contiguous physical pages linked with pointers. This structure reflects the
sequential nature of B-tree indexes and optimizes the sequential read operations the
database server makes when it scans an index.

At some point, the additional read operations required to scan an index degrades
query performance. In some cases, the increase in scan time can be dramatic. The
remedy for this kind of fragmentation is index reorganization, an operation that
compacts the index pages to minimize fragmentation and restores to a greater
degree the sequential order of the physical pages.

Version 7.5 Siebel Analytics Performance Tuning Guide 61

The Database Servers

Periodic Tuning Tasks

Administrators always have the option to drop and recreate indexes. This two-
statement operation allocates a new set of index pages which are roughly
contiguous and sequential. All the database vendors also supply tools which the
administrator can use to reorganize indexes.

Vendor Tools
The easiest way to reorganize an index is to simply drop and recreate the index
using the DROP and CREATE INDEX commands. This manual operation two-step
operation usually results in a clean index but can be inefficient, consume too many
computer resources, and in some cases be impractical. Each of the database vendors
has additional tools that reorganize indexes more efficiently.

Database Tool Description

DB2 REORG Utility that rebuilds and compresses the physical
structure of indexes.

For additional information see DB2
Administration Guide V7.1, Volume 3:
Performance.

Oracle 8i and 9i ALTER INDEX ...
REBUILD

SQL command that reorganizes an existing
index to make it more compact. You can also use
this command to change the index storage
characteristics. This statement uses the existing
index as the basis for the new one and is usually
much faster than drop and create statements.

For additional information, see Oracle9i
Database Performance Guide and Reference.

SQL Server 2000 DBCC DBREINDEX

DROP_EXISTING

Statement that can rebuild just a single specified
index for a table or all of its indexes and takes
advantage of optimizations not available with
individual drop and create statements.

Clause for the CREATE INDEX command that
makes the reorganization more efficient than a
simple drop and create statement.

For additional information, see the Microsoft
white paper RDBMS Performance Tuning Guide
for Data Warehousing.

The Database Servers

Periodic Tuning Tasks

62 Siebel Analytics Performance Tuning Guide Version 7.5

When to Reorganize
Index reorganization may help when the index’s data is not be arranged efficiently.
The index’s data becomes scattered when the table is modified by insert or delete
statements. You can gain a measure of index fragmentation by looking at trends in
statistics generated for the indexes. Look for overflow pages, rapidly increasing page
counts, increasing number of leaf pages, and an increase in the number of levels for
B-tree indexes (NLEVELS in DB2 statistics).

Periodic Reorganizations
Periodically reorganizing indexes is important for query performance and is a task
that should not be overlooked by the data warehouse administrator. You can set up
and schedule jobs to automatically reorganize indexes using the tools provided by
your database vendor.

Drop Indexes
Indexes can greatly improve query performance and are among the most effective
means to improve query performance. They should always be considered in a data
warehousing environment which is a “read-mostly” environment. Nevertheless,
indexes do incur significant costs, and you should drop any indexes which are not
being used by queries.

Indexes incur the following costs:

■ Occupy physical database storage.

The amount of space an index occupies depends on the size of the table, the size
and number of columns in the index, and the kind of index.

■ Require more processing time for update operations.

■ Require periodic maintenance.

■ Can require more query compilation time.

Indexes provide alternative access paths. The cost-based optimizers generate
execution plans for potential indexes, calculate the cost of executing the
alternative, and then compares the cost of each plan. If the database server never
references an index, then these indexes are adding time to the compilation of
some queries, and this can bear on the query’s performance.

Version 7.5 Siebel Analytics Performance Tuning Guide 63

The Database Servers

Periodic Tuning Tasks

Which Indexes Are Used
You can determine whether queries are using an index with tools provided by
database vendors. You can use the EXPLAIN PLAN command to determine whether
a specific query uses an index. You can reduce the time require when you follow
this approach by looking at a representative sample of you queries.

Oracle 9i Databases
Oracle includes an ALTER INDEX MONITORING USAGE command that collects
statistics over a period of time. The most effective approach is to monitor your query
workload during a representative interval.

The Database Servers

Review Configuration Parameters

64 Siebel Analytics Performance Tuning Guide Version 7.5

Review Configuration Parameters
Several options can improve query performance such as parallel query, partitioning,
local indexes, and so on.

Evaluate Parallel Query Operations
Databases support Parallel Query operations. Give sufficient resources, decision
support queries can be improved when several server processes work in behalf of a
single query.

Version 7.5 Siebel Analytics Performance Tuning Guide 65

The Database Servers

Computer Host

Computer Host
At minimum, a high-level survey should be made of the computer host and its
operating system to determine whether obvious bottlenecks exist. A single
bottleneck could be the source of user complaints about poor query response time.

■ CPU, Memory, I/O system

■ Network Services

■ Connection pooling (Siebel Analytics server relief)

■ Workload Isolation of Data Warehouse and Transaction Systems

Miscellaneous Tips
Another thing you can do to increase the performance of queries is measure how
many users you will have, or more correctly, how many sessions in the database
you will have at any given time. Then see how much memory is on the available
server, and set the values for SORT_AREA_SIZE and SORT_AREA_RETAINED_SIZE
rather high. 20, 30 or 40 MB per session is not uncommon in a data warehouse
situation. Also set HASH_AREA_SIZE rather large.

Never use Oracle MTS (multi-threaded server) for an OLAP DSS type database, it
does not lend itself well, as the one long-running process will consume shared
server resources and slow down all others. In this case, dedicated connections is
without any doubt the way to go.

The Database Servers

Computer Host

66 Siebel Analytics Performance Tuning Guide Version 7.5

Version 7.5 Siebel Analytics Performance Tuning Guide 67

The ETL Process 4

This chapter shows you how to improve the performance of the extract, transform,
and load process. The actions you can take depend on the underlying database.

This chapter describes three steps you can take to improve the ETL process:

■ Remove Unused Batches on page 68

■ Rearrange Batches for Balance on page 77

■ Drop and Recreate Indexes on page 79

The ETL Process

Remove Unused Batches

68 Siebel Analytics Performance Tuning Guide Version 7.5

Remove Unused Batches
Siebel Analytics includes many star schemas, but you may need to load and
maintain only those you actually use. To improve the ETL process, you should
evaluate which stars you actually use, and then customize the batch jobs so they
only maintain these stars.

This action requires that you carefully define batches that load only the dimensions
and facts you actually use. This requires that you determine the sessions you need,
define them as batches, set the characteristics of each batch, and disable all other
batches shipped with Siebel Analytics.

Example Company
For example, a company named “Data Warehouse Inc.” only intends to use the
Activity and Service Request fact tables. Then, the administrator needs to maintain
only these two fact tables and the dimensions they reference.

NOTE: The examples in the following sections show you how to set up the initial
load batches; you must also set up the incremental batches in a similar fashion.

Determine the Dimension Tables
To determine the dimension tables referenced by the two fact tables, look in Siebel
eBusiness Data Warehouse Data Model Reference guide. According to this guide, the
Activity and Service Request fact tables reference these dimension tables:

■ Agreement ■ Opportunity

■ Asset ■ Person

■ Day ■ Position

■ Entitlement ■ Product

■ Geography ■ Program

■ LOV ■ Region

■ Organization ■ Service Request

Version 7.5 Siebel Analytics Performance Tuning Guide 69

The ETL Process

Remove Unused Batches

Define the Batches
Now that you have defined all the required dimensions and fact tables, you need to
set up batches to load these tables. The following procedure rearranges the batches
already defined in the Informatica repository. These batches were shipped with
Siebel Analytics.

This example rearranges the sessions into two batches so they load only the
dimension and fact tables listed above:

■ DimensionStaging3

■ DimensionStaging4

As shipped, these batches contain some of the required sessions as well as several
sessions which are not required.

To set up these batches, you need to locate the sessions that load the required
dimensions tables and move them into either batch three or four. You also need to
remove the sessions which are not required.

To rearrange batches

1 Login to the Informatica server manager and open Siebel_DW_Rep.

2 Open Full_Extract_Siebel_DW batch as shown in the figure below.

The ETL Process

Remove Unused Batches

70 Siebel Analytics Performance Tuning Guide Version 7.5

3 Locate the sessions required to load all the required fact and dimension tables.

Some of these sessions already reside in the DimensionStaging3 and
DimensionStaging4, but several do not.

4 Drag the names of the required sessions to the DimensionStaging3 and
DimensionStaging4 batches as shown in the following table.

CAUTION: ActivityTemp batch must run before SDE_ActivityCost Fact 1. For a
successful load, you must always keep dependencies among the sessions and
batches in mind.

5 Remove unnecessary sessions from the DimensionStaging3 and
DimensionStaging4 batches as illustrated in the following table.

Rather than removing and destroying the sessions that are not required, they are
moved to a batch that will be disabled. Then, if you need the session in the
future, you can retrieve it from the disabled batch.

Session Name Current Batch Destination (batch)

SDE_ProductDimension1 DimensionStaging1 DimensionStaging3

SDE_RegionDimension1 DimensionStaging2 DimensionStaging3

SDE_EntitlementDimension1 DimensionStaging2 DimensionStaging3

ActivityTemp FactStaging1 DimensionStaging3

SDE_ActivityCost Fact 1 FactStaging2 DimensionStaging4

SDE_ServiceRequestFact1 FactStaging3 DimensionStaging4

SDE_ActivityFact1 FactStaging4 DimensionStaging4

Session Name Current Batch Destination Batch

SDE_OrderDimension1 DimensionStaging3 DimensionStaging2

SDE_QuoteDimension1 DimensionStaging3 DimensionStaging2

SDE_ResponseDimension1 DimensionStaging3 DimensionStaging2

SDE_ProductAttributeDimension_L
oadQuoteItem1

DimensionStaging3 DimensionStaging2

Version 7.5 Siebel Analytics Performance Tuning Guide 71

The ETL Process

Remove Unused Batches

6 Rename and configure each batch.

a Select the batch.

b From the Menu, select Operations > modify batch name as shown in the
figure below.

c Change the names to StagingDWINC_1 and StagingDWINC_2.

d Check Concurrent.

This enables the mappings within the batch to run in parallel.

SDE_ProgramOffer_Helper1 DimensionStaging4 DimensionStaging1

SDE_ProductAttributeDimension_L
oadOrderItem1

DimensionStaging4 DimensionStaging2

SDE_ActivityFact1 FactStaging4 DimensionStaging4

Session Name Current Batch Destination Batch

The ETL Process

Remove Unused Batches

72 Siebel Analytics Performance Tuning Guide Version 7.5

7 Disable the following batches, which are not required.

■ DimensionStaging1

■ DimensionsStaging2

■ FactStaging1

■ FactStaging2

■ FactStaging3

■ FactStating4

To disable a batch, clear the Enable box.

8 Open Full_load_Siebel_DW-Dimensions batch.

Version 7.5 Siebel Analytics Performance Tuning Guide 73

The ETL Process

Remove Unused Batches

9 Rearrange the existing Dimension3 batch as shown in the following table.

CAUTION: Person dimensions have to be loaded after Househould dimension. In
the present case, the interest is not in Household dimension; otherwise when
moving you must make sure that you run one after the other.

10 Open Dimension3, MapEnabledDimensions, and Map_dimensions batches.

11 Disable the following batches.

■ Vendor

■ Territory

■ Industry

To disable the batch, clear the Enable box.

Batch Name Current Batch Destination (batch)

Region Dimension1 Dimension3

Position Dimension1 Dimension3

Agreement Dimension2 Dimension3

Entitlement Dimension2 Dimension3

Program Dimension2 Dimension3

Response Dimension3 Dimension2

ProductAttributes Dimension3 Dimension2

The ETL Process

Remove Unused Batches

74 Siebel Analytics Performance Tuning Guide Version 7.5

12 Edit MapEnabledDimensions as shown in the figure below.

■ Check Concurrent if OLAP is Oracle; clear Concurrent if OLAP is DB2 or SQL
Server 2000.

13 Open Full_Load_Siebel_DW_Facts and rearrange the Fact2 and Fact3 batches as
shown in the following table.

Batch Name Current Batch Destination (batch)

SIL_PersonFact1 Fact3 Fact2

SIL_ResponseFact1 Fact3 Fact2

SIL_CampaginHistoryFact1 Fact3 Fact2

SIL_CampaignOpportunityFact1 Fact3 Fact2

SIL_ActivityFact1 Fact4 Fact3

Version 7.5 Siebel Analytics Performance Tuning Guide 75

The ETL Process

Remove Unused Batches

14 Rename Fact3 to FactForDWINC.

15 Disable Load_Hierarchy batch if you do not want Account Hierarchy.

16 Disable the following batches:

■ Dimensions1

■ Dimensions2

■ Fact1

■ Fact2

■ Facts

■ Dimensions

■ Load_KPI

CAUTION: The dependencies among sessions which must be run must be
established. The dependencies of the DW ETL batch as shipped are listed below.

ETL Batch Dependencies for a Full Load

Batch names occur in italics.

1 Session SDE_ActivityCost Fact1 has to run after sessions in ActivityTemp batch.

2 Session SIL_HouseholdDimension1 has to run after session.
SIL_PersonDimension1.

3 Within the ProductAttributeName batch:

Session SIL_ProductAttributeNameDimension_Unspecified & session
SIL_ProductAttributeNameDimension1 should run after the session
SIL_ProductDimension1.

4 Session SIL_SurveyFact1 should run after session SIL_ServiceRequestFact1.

5 Session SIL_AgreeFact1 should run after session SIL_AgreeItemFact1.

6 Do not alter any sessions before the session Extract_RestartNextBatch4 and in
UpdateRowImage batch.

The ETL Process

Remove Unused Batches

76 Siebel Analytics Performance Tuning Guide Version 7.5

7 Any session that is loading a Dimension Staging table or a Fact Staging table can
run in parallel (concurrently with each other).

8 Dimension tables must be loaded after their counterpart Staging tables are
loaded.

9 Fact tables and Helper tables have to be loaded after Dimension tables.

10 Hierarchy tables have to be loaded after their counterpart Dimension Tables
have been loaded.

11 Load_Aggregates and Load_Pipeline batches have to be loaded after
Full_Load_Siebel_DW_Facts batch is completed.

12 Sessions in batches Facts and Dimensions (these batches are inside the
Full_Load_Siebel_DW_Facts batch) have to be loaded after the ETL process has
populated all the dimensions and facts tables. Sessions in the Dimensions batch
have to be loaded after sessions in the Facts batch.

13 KPI batch has to be run after all dimension tables have been loaded.

14 Slowly Changing Dimension (SCD) sessions should run after their counterpart
Dimension table has been loaded e.g. SIL_PriceListItemDimension_SCD1 should
be run after SIL_PriceListItemDimension1.

Version 7.5 Siebel Analytics Performance Tuning Guide 77

The ETL Process

Rearrange Batches for Balance

Rearrange Batches for Balance
You can sometimes reduce the amount of time required for a load by balancing the
batches in such a way that increases parallel processing.

Example
Suppose the company Data Warehouse Inc. uses the FactStaging2 and FactStaging3
batches to load their data warehouse. These batches are shipped with several
sessions within each batch as shown in Figure 6.

Their Activity Fact, Order Item Fact, Service Request, and Revenue Fact tables have
several million rows, and the rest of the fact tables have a few hundred rows.

Figure 6. Batches Shipped with Several Sessions

The ETL Process

Rearrange Batches for Balance

78 Siebel Analytics Performance Tuning Guide Version 7.5

The loads for the multimillion row fact tables each required nearly four hours (the
Service Request required four and a half hours), whereas the other loads required
less than thirty minutes per load.

When you run the batches as shown above, the FactStating2 batch requires four
hours, the FactStagins3 batch requires about four and a half hours: eight and a half
hours for two batches. The Batch FactStaging2 is running, Activity Fact and Order
Item is running for long time while the other sessions took less than 30 minutes
which means the load on the Informatica server is very minimal.

In a similar way, if you see the FactStaging3 Batch is running, the Service Request
and Revenue Fact ran for long time, and the other session took less than 30 minutes.

You can rearrange the sessions in these two batches so that the Informatica Server
can be used more efficiently and therefore save time. You can place the sessions that
took a long time in one batch and move all the other sessions into another batch.

For example, you could move the Service Request and Revenue Fact into the Fact
Staging2 and the rest of the sessions into FactStaging3 as shown in Figure 7.

After rearranging the sessions, the FactStaging2 batch required five hours and the
FactStaging3 required about a half hour.

Figure 7. Separate FactStaging Sessions

Version 7.5 Siebel Analytics Performance Tuning Guide 79

The ETL Process

Drop and Recreate Indexes

Drop and Recreate Indexes
Siebel Systems recommends that you drop the indexes on the W_ tables before you
load these tables, and then recreate the indexes after the load. This can reduce the
time required to load the tables.

You can automate this process with batch files that can be attached to an
Informatica session as a post-session-script. These scripts automatically drop the
specified indexes before the session, and then recreates the indexes after the session
loads the data. Each batch file executes an .sql file to drop or create the indexes.

Create and Drop Batch Scripts
The following examples illustrate typical batch files.

Oracle
This example accepts the SQL file as a parameter and includes a hard-coded Oracle
database connection.

@echo off
echo >> index.log
echo %1 >> c:\indexes\index.log
echo start date >> c:\indexes\index.log
date /T >> c:\indexes\index.log
time /T >> c:\indexes\index.log
echo >> index.log
set cmd=SQLPLUS ORAPERF/ORAPERF@PERFSUN5 @c:\indexes\%1.sql
%cmd% >> c:\indexes\index.log
echo >> index.log
echo End date >> c:\indexes\index.log
date /T >> c:\indexes\index.log
time /T >> c:\indexes\index.log
echo >> index.log
@echo on

CAUTION: You need to modify the hard-coded connection username and password
so that they meet the security policies at your installation.

The ETL Process

Drop and Recreate Indexes

80 Siebel Analytics Performance Tuning Guide Version 7.5

You need to include this script as a post-session script to drop or re-create indexes.
The index drop and create scripts can go against the OLTP or the data warehouse
so you need to have the appropriate connect information as required. The batch
executes the script c:\indexes\%1.sql.

IBM DB2
This example illustrates a script for IBM DB2.

@echo off
set DB2CLP=-1617278812
set DB_CONNECT_STRING=OLAP703
set DB_USER=siebel
set DB_PWD=siebtest
db2 connect to %DB_CONNECT_STRING% user %DB_USER% using %DB_PWD%
db2 -tvf %1 > %1.log
db2 disconnect %DB_CONNECT_STRING%
exit

To get the db2clp parameter, enter “echo %DB2CLP%” in the
IBM Db2 -> db2 command window. You do not need to connect.

NOTE: Scripts that create and drop indexes shipped with Siebel Analytics are
available on the Siebel SupportWeb.

Even though these scripts can be executed at the end of any session, it is suggested
that you create dummy sessions and attach the postsession script to those sessions.

Version 7.5 Siebel Analytics Performance Tuning Guide 81

The ETL Process

Drop and Recreate Indexes

Dummy Sessions and Initialization
Dummy sessions are already defined for sessions shipped with Siebel Analytics. For
these cases, you can simply open the session, and reference the batch script and the
location of the create or drop script.

To initialize a session, you need to include the command in the Post Session
Commands line as shown in Figure 8.

Figure 8. Post-Session Dummy Batches

The ETL Process

Drop and Recreate Indexes

82 Siebel Analytics Performance Tuning Guide Version 7.5

Batches for the Initial Extract
You can use the following approach for the Full_load_Siebel_DW and
Full_Extract_Siebel_DW batches which perform the initial extract and load of Siebel
Data Warehouse.

The step Drop_Image_Indexes (drop_Image_indexes.sql) drops the Image table
indexes and should be executed after the session Extract_RestartNextBatch1
(Should be executed against the OLTP).

The step Create_I_Image Indexes (create_i_image_indexes.sql) creates the Image
table Index after the Image table is built and should be executed after the batch
CreateIncrementalImage (Should be executed against the OLTP).

The step Drop Dimension and Fact Indexes (drop_all_indexes.sql) drops all the
dimension and fact indexes after the staging tables are populated and prior to
executing Full_Load_Siebel_DW batch.

Version 7.5 Siebel Analytics Performance Tuning Guide 83

The ETL Process

Drop and Recreate Indexes

Figure 9 includes the batches you can use to drop and create indexes before and
after the initial extract loads.

Figure 9. Initial Extract Post Session Dummy Batches

The ETL Process

Drop and Recreate Indexes

84 Siebel Analytics Performance Tuning Guide Version 7.5

The step CreateHouseHoldIndexes (create_household_indexes.sql) should be
executed after the batch Dimension2 under the folder
Full_Load_Siebel_DW_Dimensions.

The step Create Dimension Indexes (create_Indexesfor_fact .sql) should be
executed after the batch Dimension3 under the folder
Full_Load_Siebel_DW_Dimensions as shown in Figure 10.

Figure 10. Initial Extract Post Session Dummy Batches

Version 7.5 Siebel Analytics Performance Tuning Guide 85

The ETL Process

Drop and Recreate Indexes

The step Create Service Request Indexes (create_servicerequest_indexes.sql) should
be executed after the batch Fact3 under the folder Full_Load_Siebel_DW_Facts.

The step Create Indexes For Aggregates (create_indexes_for_aggreagates.sql)
should be executed right after the batch Load_Hierarchy batch under the folder
Full_Load_Siebel_DW_Facts.

The step Create Rest Indexes (create_rest_indexes.sql) should be executed after the
batch UpdateRowImange under the folder Full_Load_Siebel_DW_Facts.

The ETL Process

Drop and Recreate Indexes

86 Siebel Analytics Performance Tuning Guide Version 7.5

The step Create R Image Index (create_r_image_indexes.sql) should be executed
after the batch UpdateRowImage. (It should be executed against the OLTP). See
Figure 11.

Figure 11. Create R Image Index

Version 7.5 Siebel Analytics Performance Tuning Guide 87

The ETL Process

Drop and Recreate Indexes

The step Create SCD Indexes (create_scd_indexes.sql) should be executed after the
batch SCD under the folder Full_Load_Siebel_DW_SCD as show in Figure 12.

The step Drop Aggregate Indexes (drop_aggregate_indexes.sql) should be as the
first session under the folder Load_Aggregates.

Figure 12. Create SCD Indexes

The ETL Process

Drop and Recreate Indexes

88 Siebel Analytics Performance Tuning Guide Version 7.5

The step Create Aggregate Indexes (create_aggregate_indexes.sql) should be
executed after the batch LoadAgg2 under the folder Load_Aggregates. See
Figure 13.

Figure 13. Create Aggregate Indexes

Version 7.5 Siebel Analytics Performance Tuning Guide 89

The ETL Process

Drop and Recreate Indexes

Split Index Script Files for Parallelism
Suppose Data Warehouse Inc. used the script Create_Rest_indexes.sql to create
indexes using the session create_rest_indexes in Figure 14.

Figure 14. Create_Rest_indexes.sql

The ETL Process

Drop and Recreate Indexes

90 Siebel Analytics Performance Tuning Guide Version 7.5

An administrator can potentially improve performance by splitting the .sql script in
to three scripts:

■ Create_rest_indexes1.sql

■ Create_rest_indexes2.sql

■ Create_rest_indexes3.sql

To create the indexes in parallel

1 Create a new batch called CreateRestIndex.

2 Check the concurrent option.

3 Move the existing session CreateRestIndex into the newly crated batch.

4 Add two new sessions after the existing session (createRestindex).

5 Modify the post session properties to point to the new .sql script files.

Version 7.5 Siebel Analytics Performance Tuning Guide 91

The ETL Process

Drop and Recreate Indexes

Splitting the index scripts reduced the load time by roughly an hour and forty-five
minutes. See Figure 15.

Look for other opportunities to split these scripts into multiple parts as shown in
the figure above so you can take advantage of processing the scripts in parallel.

Figure 15. Split Index Scripts

The ETL Process

Drop and Recreate Indexes

92 Siebel Analytics Performance Tuning Guide Version 7.5

	Contents
	Introduction
	How This Guide Is Organized
	Revision History

	Performance Tuning
	Overview of Performance Tuning
	Working Assumptions
	Suggested Approach

	Siebel Analytics
	Underlying Database Servers
	The Extract, Load, and Transform Process

	Siebel Analytics
	Analytics Considerations
	Enable Query Caching
	Benefits
	Costs
	Reference Materials

	Add Aggregate Tables
	Aggregates Shipped with Siebel Analytics
	Identify Candidates
	Basic Guidelines
	Too Many Aggregate Tables
	Storage Space

	Adding and Managing Aggregate Tables
	Names
	Manage Aggregate Tables
	SQL Override
	Aggregator Transformation

	Packaged Aggregate Tables

	Subset Large Physical Dimension Tables
	Subset Dimension Tables
	Example
	Remove Columns Not Required by a Report
	Example

	Review Configuration Parameters
	Siebel Analytics Configuration Parameters
	Query Caching
	Case-Sensitive Character Comparison
	Driving Table
	Repository Configuration

	The Database Servers
	Overview of Database Indexing
	More Than One Kind of Index
	Database Optimizers

	Index Selection
	B-Tree Indexes
	General Guidelines
	Where B-Trees Should Not Be Created
	Siebel Recommended Methodology

	Bitmap Indexes
	Candidates for Bitmap Indexes
	Example Bitmap Index
	When Bitmap Indexes Should Not Be Created

	Vendor Index Evaluation Tools
	Determinants of Index Efficiency

	Periodic Tuning Tasks
	Periodic Index Evaluation
	Preliminary Analysis
	Suggested Action

	Refresh Optimizer Statistics
	Cost-Based Optimization
	The Necessity of Current Statistics
	When You Refresh Statistics
	Vendor Tools to Refresh Statistics
	When To Update Statistics

	Reorganize Indexes
	Vendor Tools
	When to Reorganize
	Periodic Reorganizations

	Drop Indexes
	Which Indexes Are Used
	Oracle 9i Databases

	Review Configuration Parameters
	Evaluate Parallel Query Operations

	Computer Host
	Miscellaneous Tips

	The ETL Process
	Remove Unused Batches
	Example Company
	Determine the Dimension Tables
	Define the Batches

	Rearrange Batches for Balance
	Example

	Drop and Recreate Indexes
	Create and Drop Batch Scripts
	Oracle
	IBM DB2

	Dummy Sessions and Initialization
	Batches for the Initial Extract
	Split Index Script Files for Parallelism

