
Oracle® Application Development Framework
Developer’s Guide

10g Release 3 (10.1.3.0)

B28967-02

June 2008

Oracle Application Development Framework Developer’s Guide, 10g Release 3 (10.1.3.0)

B28967-02

Copyright © 1997, 2008, Oracle. All rights reserved.

Primary Author: Ken Chu, Orlando Cordero, Ralph Gordon, Rosslynne Hefferan, Mario Korf, Robin
Merrin, Steve Muench, Kathryn Munn, Barbara Ramsey, Jon Russell, Deborah Steiner, Odile Sullivan-Tarazi,
Poh Lee Tan, Robin Whitmore, Martin Wykes

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xix

Audience... xix
Documentation Accessibility ... xix
Related Documents ... xx
Conventions ... xx

1 Introduction to Oracle ADF Applications

1.1 Overview of Oracle Application Development Framework .. 1-1
1.1.1 Framework Architecture and Supported Technologies... 1-1
1.1.1.1 View Layer Technologies Supported... 1-2
1.1.1.2 Controller Layer Technologies Supported.. 1-2
1.1.1.3 Business Services Technologies Supported by ADF Model................................... 1-2
1.1.1.4 Recommended Technologies for J2EE Enterprise Developers 1-3
1.1.2 Declarative Development with Oracle ADF and JavaServer Faces.............................. 1-3
1.1.2.1 Declarative J2EE Technologies You May Have Already Used.............................. 1-4
1.1.2.2 JSF Offers Dependency Injection, Page Handling, EL and More 1-4
1.1.2.3 Oracle ADF Further Raises the Level of Declarative Development for JSF......... 1-6
1.1.3 Key ADF Binding Features for JSF Development... 1-7
1.1.3.1 Comprehensive JDeveloper Design-Time Support ... 1-8
1.1.3.2 More Sophisticated UI Functionality Without Coding... 1-8
1.1.3.3 Centralize Common Functionality in Layered Model Metadata 1-9
1.1.3.4 Simplified Control Over Page Lifecycle .. 1-9
1.2 Development Process with Oracle ADF and JavaServer Faces... 1-10
1.2.1 Overview of the Steps for Building an Application .. 1-10
1.2.1.1 Starting by Creating a New Application.. 1-11
1.2.1.2 Building the Business Service in the Model Project ... 1-12
1.2.1.3 Creating a Data Control for Your Service to Enable Data Binding 1-12
1.2.1.4 Dragging and Dropping Data to Create a New JSF Page.................................... 1-14
1.2.1.5 Examining the Binding Metadata Files Involved ... 1-15
1.2.1.6 Understanding How Components Reference Bindings via EL 1-16
1.2.1.7 Configuring Binding Properties If Needed ... 1-18
1.2.1.8 Understanding How Bindings Are Created at Runtime 1-18

iv

1.2.2 Making the Display More Data-Driven... 1-19
1.2.2.1 Hiding and Showing Groups of Components Based on Binding Properties ... 1-19
1.2.2.2 Toggling Between Alternative Sets of Components Based on Binding

Properties .. 1-20

2 Oracle ADF Service Request Demo Overview

2.1 Introduction to the Oracle ADF Service Request Demo ... 2-1
2.1.1 Requirements for Oracle ADF Service Request Application... 2-2
2.1.2 Overview of the Schema ... 2-2
2.2 Setting Up the Oracle ADF Service Request Demo ... 2-4
2.2.1 Downloading and Installing the Oracle ADF Service Request Application............... 2-4
2.2.2 Installing the Oracle ADF Service Request Schema ... 2-5
2.2.3 Creating the Oracle JDeveloper Database Connection .. 2-7
2.2.4 Running the Oracle ADF Service Request Demo in JDeveloper 2-8
2.2.5 Running the Oracle ADF Service Request Demo Unit Tests in JDeveloper 2-9
2.3 Quick Tour of the Oracle ADF Service Request Demo .. 2-11
2.3.1 Customer Logs In and Reviews Existing Service Requests .. 2-11
2.3.2 Customer Creates a Service Request.. 2-13
2.3.3 Manager Logs In and Assigns a Service Request... 2-16
2.3.4 Manager Views Reports and Updates Technician Skills .. 2-18
2.3.5 Technician Logs In and Updates a Service Request .. 2-21

3 Building and Using Application Services

3.1 Introduction to Business Services... 3-1
3.2 Implementing Services with EJB Session Beans ... 3-2
3.2.1 How to Create a Session Bean.. 3-2
3.2.1.1 Remote and Local Interfaces ... 3-2
3.2.1.2 Generating Session Facade Methods ... 3-2
3.2.2 What Happens When You Create a Session Bean .. 3-3
3.2.3 What You May Need to Know When Creating a Session Bean.................................... 3-7
3.2.4 How to Update an Existing Session Bean With New Entities....................................... 3-8
3.3 Creating Classes to Map to Database Tables .. 3-8
3.3.1 How to Create Classes .. 3-8
3.3.2 What Happens when you Create a Class... 3-9
3.3.3 What You May Need to Know.. 3-10
3.3.3.1 Associating Descriptors with Different Database Tables 3-10
3.3.3.2 Using Amendment Methods ... 3-10
3.3.3.3 Modifying the Generated Code... 3-11
3.4 Mapping Classes to Tables ... 3-11
3.4.1 Types of Mappings ... 3-12
3.4.2 Direct Mappings ... 3-12
3.4.3 How to Create Direct Mappings... 3-12
3.4.4 What Happens when you Create a Direct Mapping ... 3-13
3.4.5 What You May Need to Know.. 3-13

v

3.5 Mapping Related Classes with Relationships.. 3-14
3.5.1 How to Create Relationship Mappings ... 3-15
3.5.2 What Happens when you Create a Relationship ... 3-15
3.5.3 What You May Need to Know.. 3-15
3.6 Finding Objects by Primary Key.. 3-17
3.7 Querying Objects ... 3-17
3.7.1 How to Create a Query .. 3-17
3.7.2 What You May Need to Know.. 3-18
3.7.2.1 Using a Query By Example .. 3-18
3.7.2.2 Sorting Query Results ... 3-18
3.8 Creating and Modifying Objects with a Unit of Work ... 3-18
3.8.1 How to Create a Unit of Work .. 3-19
3.8.1.1 Creating Objects with Unit of Work ... 3-19
3.8.1.2 Typical Unit of Work Usage... 3-20
3.8.2 What Happens when you Modify a Unit of Work .. 3-21
3.8.2.1 Deleting Objects ... 3-22
3.8.3 What You May Need to Know.. 3-22
3.8.3.1 Unit of Work and Change Policy .. 3-22
3.8.3.2 Nested and Parallel Units of Work ... 3-22
3.9 Interacting with Stored Procedures... 3-23
3.9.1 Specifying an Input Parameter ... 3-23
3.9.2 Specifying an Output Parameter .. 3-24
3.9.3 Specifying an Input / Output Parameter.. 3-25
3.9.4 Using an Output Parameter Event ... 3-25
3.9.5 Using a StoredFunctionCall .. 3-25
3.9.6 Query Sequencing... 3-26
3.10 Exposing Services with ADF Data Controls .. 3-26
3.10.1 How to Create ADF Data Controls .. 3-26
3.10.2 Understanding the Data Control Files... 3-27
3.10.2.1 About the DataControls.dcx File... 3-27
3.10.2.2 About the Structure Definition Files... 3-27
3.10.2.3 About the Entity XML Files ... 3-27
3.10.2.4 About the Design-time XML Files... 3-28
3.10.3 Understanding the Data Control Palette... 3-28
3.10.3.1 Overview of the Data Control Business Objects ... 3-29
3.10.3.2 Refreshing ADF Data Controls After Modifying Business Services 3-30

4 Getting Started with ADF Faces

4.1 Introduction to ADF Faces... 4-1
4.2 Setting Up a Workspace and Project .. 4-3
4.2.1 What Happens When You Use an Application Template to Create a Workspace 4-3
4.2.1.1 Starter web.xml File.. 4-5
4.2.1.2 Starter faces-config.xml File .. 4-6
4.2.2 What You May Need to Know About the ViewController Project 4-7
4.2.3 What You May Need to Know About Multiple JSF Configuration Files 4-8

vi

4.3 Creating a Web Page .. 4-9
4.3.1 How to Add a JSF Page... 4-9
4.3.2 What Happens When You Create a JSF Page ... 4-11
4.3.3 What You May Need to Know About Using the JSF Navigation Diagram 4-12
4.3.4 What You May Need to Know About ADF Faces Dependencies and Libraries..... 4-13
4.4 Laying Out a Web Page... 4-13
4.4.1 How to Add UI Components to a JSF Page .. 4-14
4.4.2 What Happens When You First Insert an ADF Faces Component 4-15
4.4.2.1 More About the web.xml File .. 4-17
4.4.2.2 More About the faces-config.xml File... 4-18
4.4.2.3 Starter adf-faces-config.xml File .. 4-18
4.4.3 What You May Need to Know About Creating JSF Pages ... 4-20
4.4.3.1 Editing in the Structure Window .. 4-21
4.4.3.2 Displaying Errors... 4-21
4.4.4 Using the PanelPage Component... 4-22
4.4.4.1 PanelPage Facets.. 4-24
4.4.4.2 Page Body Contents .. 4-27
4.5 Creating and Using a Backing Bean for a Web Page .. 4-28
4.5.1 How to Create and Configure a Backing Bean... 4-29
4.5.2 What Happens When You Create and Configure a Backing Bean............................ 4-29
4.5.3 How to Use a Backing Bean in a JSF Page... 4-30
4.5.4 How to Use the Automatic Component Binding Feature .. 4-31
4.5.5 What Happens When You Use Automatic Component Binding in JDeveloper..... 4-32
4.5.6 What You May Need to Know About Backing Beans and Managed Beans............ 4-33
4.5.7 Using ADF Data Controls and Backing Beans ... 4-34
4.6 Best Practices for ADF Faces .. 4-35

5 Displaying Data on a Page

5.1 Introduction to Displaying Data on a Page... 5-1
5.2 Using the Data Control Palette ... 5-2
5.2.1 How to Understand the Items on the Data Control Palette .. 5-3
5.2.2 How to Use the Data Control Palette.. 5-5
5.2.3 What Happens When You Use the Data Control Palette .. 5-7
5.2.4 What Happens at Runtime... 5-8
5.3 Working with the DataBindings.cpx File ... 5-9
5.3.1 How to Create a DataBindings.cpx File ... 5-9
5.3.2 What Happens When You Create a DataBindings.cpx File 5-10
5.4 Configuring the ADF Binding Filter ... 5-10
5.4.1 How to Configure the ADF Binding Filter.. 5-10
5.4.2 What Happens When You Configure an ADF Binding Filter.................................... 5-11
5.4.3 What Happens at Runtime.. 5-12
5.5 Working with Page Definition Files .. 5-12
5.5.1 How to Create a Page Definition File .. 5-12
5.5.2 What Happens When You Create a Page Definition File ... 5-13
5.5.2.1 Binding Objects Defined in the parameters Element ... 5-14
5.5.2.2 Binding Objects Defined in the executables Element... 5-15
5.5.2.3 Binding Objects Defined in the bindings Element.. 5-17

vii

5.5.3 What Happens at Runtime.. 5-19
5.5.4 What You May Need to Know About Binding Container Scope 5-19
5.6 Creating ADF Data Binding EL Expressions ... 5-19
5.6.1 How to Create an ADF Data Binding EL Expression.. 5-19
5.6.2 How to Use the Expression Builder ... 5-21
5.6.3 What Happens When You Create ADF Data Binding Expressions 5-23
5.6.3.1 EL Expressions That Reference Attribute Binding Objects 5-23
5.6.3.2 EL Expressions That Reference Table Binding Objects.. 5-24
5.6.3.3 EL Expressions That Reference Action Binding Objects...................................... 5-25
5.6.4 What You May Need to Know About ADF Binding Properties................................ 5-27
5.6.5 What You May Need to Know About Binding to Values in Other Pages................ 5-27

6 Creating a Basic Page

6.1 Introduction to Creating a Basic Page.. 6-1
6.2 Using Attributes to Create Text Fields... 6-2
6.2.1 How to Use the Data Control Palette to Create a Text Field ... 6-2
6.2.2 What Happens When You Use the Data Control Palette to Create a Text Field........ 6-3
6.2.2.1 Creating and Using Iterator Bindings .. 6-3
6.2.2.2 Creating and Using Value Bindings .. 6-4
6.2.2.3 Using EL Expressions to Bind UI Components .. 6-5
6.2.3 What Happens at Runtime: The JSF and ADF Lifecycles .. 6-6
6.3 Creating a Basic Form... 6-9
6.3.1 How to Use the Data Control Palette to Create a Form ... 6-9
6.3.2 What Happens When You Use the Data Control Palette to Create a Form............. 6-11
6.3.2.1 Using Facets.. 6-12
6.4 Incorporating Range Navigation into Forms... 6-13
6.4.1 How to Insert Navigation Controls into a Form .. 6-13
6.4.2 What Happens When Command Buttons Are Created Using the Data Control

Palette ... 6-14
6.4.2.1 Using Action Bindings for Built-in Navigation Operations................................ 6-14
6.4.2.2 Iterator RangeSize Attribute .. 6-15
6.4.2.3 Using EL Expressions to Bind to Navigation Operations 6-16
6.4.3 What Happens at Runtime: About Action Events and Action Listeners 6-17
6.4.4 What You May Need to Know About the Browser Back Button............................... 6-17
6.5 Modifying the UI Components and Bindings on a Form .. 6-18
6.5.1 How to Modify the UI Components and Bindings.. 6-18
6.5.1.1 Changing the Value Binding for a UI Component ... 6-20
6.5.1.2 Changing the Action Binding for a UI Component.. 6-20
6.5.2 What Happens When You Modify Attributes and Bindings 6-20

viii

7 Adding Tables

7.1 Introduction to Adding Tables ... 7-1
7.2 Creating a Basic Table .. 7-2
7.2.1 How to Create a Basic Table... 7-2
7.2.2 What Happens When You Use the Data Control Palette to Create a Table 7-4
7.2.2.1 Iterator and Value Bindings for Tables ... 7-4
7.2.2.2 Code on the JSF Page for an ADF Faces Table ... 7-5
7.3 Incorporating Range Navigation into Tables.. 7-6
7.3.1 How to Use Navigation Controls in a Table.. 7-7
7.3.2 What Happens When You Use Navigation Controls in a Table................................... 7-7
7.3.3 What Happens at Runtime... 7-8
7.3.4 What You May Need to Know About the Browser Back Button.................................. 7-8
7.4 Modifying the Attributes Displayed in the Table .. 7-9
7.4.1 How to Modify the Displayed Attributes ... 7-9
7.4.2 How to Change the Binding for a Table.. 7-11
7.4.3 What Happens When You Modify Bindings or Displayed Attributes 7-11
7.5 Adding Hidden Capabilities to a Table.. 7-11
7.5.1 How to Use the DetailStamp Facet .. 7-12
7.5.2 What Happens When You Use the DetailStamp Facet ... 7-13
7.5.3 What Happens at Runtime.. 7-13
7.6 Enabling Row Selection in a Table .. 7-14
7.6.1 How to Use the TableSelectOne Component in the Selection Facet 7-16
7.6.2 What Happens When You Use the TableSelectOne Component 7-17
7.6.3 What Happens at Runtime.. 7-17
7.6.4 How to Use the TableSelectMany Component in the Selection Facet 7-18
7.6.5 What Happens When You Use the TableSelectMany Component 7-19
7.6.6 What Happens at Runtime.. 7-21
7.7 Setting the Current Object Using a Command Component .. 7-22
7.7.1 How to Manually Set the Current Row... 7-22
7.7.2 What Happens When You Set the Current Row.. 7-23
7.7.3 What Happens At Runtime... 7-23

8 Displaying Master-Detail Data

8.1 Introduction to Displaying Master-Detail Data.. 8-1
8.2 Identifying Master-Detail Objects on the Data Control Palette ... 8-2
8.3 Using Tables and Forms to Display Master-Detail Objects .. 8-4
8.3.1 How to Display Master-Detail Objects in Tables and Forms .. 8-5
8.3.2 What Happens When You Create Master-Detail Tables and Forms 8-6
8.3.2.1 Code Generated in the JSF Page ... 8-6
8.3.2.2 Binding Objects Defined in the Page Definition File... 8-7
8.3.3 What Happens at Runtime... 8-8
8.3.4 What You May Need to Know About Master-Detail on Separate Pages 8-8

ix

8.4 Using Trees to Display Master-Detail Objects .. 8-9
8.4.1 How to Display Master-Detail Objects in Trees... 8-10
8.4.2 What Happens When You Create ADF Databound Trees ... 8-13
8.4.2.1 Code Generated in the JSF Page .. 8-13
8.4.2.2 Binding Objects Defined in the Page Definition File.. 8-13
8.4.3 What Happens at Runtime.. 8-15
8.5 Using Tree Tables to Display Master-Detail Objects .. 8-15
8.5.1 How to Display Master-Detail Objects in Tree Tables .. 8-16
8.5.2 What Happens When You Create a Databound Tree Table....................................... 8-16
8.5.2.1 Code Generated in the JSF Page .. 8-17
8.5.2.2 Binding Objects Defined in the Page Definition File.. 8-17
8.5.3 What Happens at Runtime.. 8-17
8.6 Using an Inline Table to Display Detail Data in a Master Table....................................... 8-18
8.6.1 How to Display Detail Data Using an Inline Table ... 8-19
8.6.2 What Happens When You Create an Inline Detail Table .. 8-20
8.6.2.1 Code Generated in the JSF Page .. 8-20
8.6.2.2 Binding Objects Defined in the Page Definition File.. 8-21
8.6.3 What Happens at Runtime ... 8-22

9 Adding Page Navigation

9.1 Introduction to Page Navigation .. 9-1
9.2 Creating Navigation Rules .. 9-2
9.2.1 How to Create Page Navigation Rules ... 9-2
9.2.1.1 About Navigation Rule Elements .. 9-2
9.2.1.2 Using the Navigation Modeler to Define Navigation Rules 9-3
9.2.1.3 Using the JSF Configuration Editor ... 9-5
9.2.2 What Happens When You Create a Navigation Rule .. 9-8
9.2.3 What Happens at Runtime.. 9-10
9.2.4 What You May Need to Know About Navigation Rules and Cases......................... 9-11
9.2.4.1 Defining Rules in Multiple Configuration Files.. 9-11
9.2.4.2 Overlapping Rules... 9-11
9.2.4.3 Conflicting Navigation Rules .. 9-12
9.2.4.4 Splitting Navigation Cases Over Multiple Rules.. 9-12
9.2.5 What You May Need to Know About the Navigation Modeler................................ 9-13
9.3 Using Static Navigation .. 9-14
9.3.1 How to Create Static Navigation.. 9-14
9.3.2 What Happens When You Create Static Navigation... 9-15
9.4 Using Dynamic Navigation.. 9-16
9.4.1 How to Create Dynamic Navigation ... 9-17
9.4.2 What Happens When You Create Dynamic Navigation .. 9-18
9.4.3 What Happens at Runtime.. 9-20
9.4.4 What You May Need to Know About Using Default Cases 9-20
9.4.5 What You May Need to Know About Action Listener Methods 9-21
9.4.6 What You May Need to Know About Data Control Method Outcome Returns 9-21

x

10 Creating More Complex Pages

10.1 Introduction to More Complex Pages... 10-1
10.2 Using a Managed Bean to Store Information... 10-2
10.2.1 How to Use a Managed Bean to Store Information ... 10-2
10.2.2 What Happens When You Create a Managed Bean.. 10-3
10.3 Creating Command Components to Execute Methods ... 10-4
10.3.1 How to Create a Command Component Bound to a Service Method...................... 10-5
10.3.2 What Happens When You Create Command Components Using a Method 10-6
10.3.2.1 Using Parameters in a Method .. 10-6
10.3.2.2 Using EL Expressions to Bind to Methods .. 10-7
10.3.3 What Happens at Runtime.. 10-8
10.4 Setting Parameter Values Using a Command Component ... 10-8
10.4.1 How to Set Parameters Using Command Components.. 10-8
10.4.2 What Happens When You Set Parameters ... 10-9
10.4.3 What Happens at Runtime.. 10-9
10.5 Overriding Declarative Methods... 10-10
10.5.1 How to Override a Declarative Method.. 10-10
10.5.2 What Happens When You Override a Declarative Method..................................... 10-13
10.6 Creating a Form or Table Using a Method that Takes Parameters 10-14
10.6.1 How to Create a Form or Table Using a Method That Takes Parameters.............. 10-15
10.6.2 What Happens When You Create a Form Using a Method that Takes

Parameters 10-15
10.6.3 What Happens at Runtime.. 10-16
10.7 Creating an Input Form for a New Record .. 10-16
10.7.1 How to Use Constructors to Create an Input Form... 10-17
10.7.2 What Happens When You Use a Constructor.. 10-18
10.7.3 How to Use a Custom Method to Create an Input Form.. 10-20
10.7.4 What Happens When You Use Methods to Create a Parameter Form................... 10-20
10.7.4.1 Using Variables and Parameters ... 10-20
10.7.5 What Happens at Runtime.. 10-22
10.8 Creating Search Pages ... 10-23
10.8.1 How to Create a Search Form ... 10-23
10.8.2 What Happens When You Use Parameter Methods ... 10-24
10.8.3 What Happens at Runtime.. 10-26
10.8.4 Creating a QBE Search Form With Results on a Separate Page............................... 10-26
10.8.4.1 How to Create a Search Form and Separate Results Page................................. 10-27
10.8.4.2 What Happens When You Create A Search Form.. 10-28
10.8.4.3 What You May Need to Know .. 10-29
10.8.5 Creating Search and Results on the Same Page ... 10-29
10.8.5.1 How To Create Search and Results on the Same Page....................................... 10-30
10.8.5.2 What Happens When Search and Results are on the Same Page..................... 10-31
10.9 Conditionally Displaying the Results Table on a Search Page.. 10-32
10.9.1 How to Add Conditional Display Capabilities .. 10-33
10.9.2 What Happens When you Conditionally Display the Results Table...................... 10-34

xi

11 Using Complex UI Components

11.1 Introduction to Complex UI Components ... 11-1
11.2 Using Dynamic Menus for Navigation... 11-2
11.2.1 How to Create Dynamic Navigation Menus .. 11-2
11.2.1.1 Creating a Menu Model.. 11-3
11.2.1.2 Creating the JSF Page for Each Menu Item.. 11-13
11.2.1.3 Creating the JSF Navigation Rules.. 11-16
11.2.2 What Happens at Runtime.. 11-17
11.2.3 What You May Need to Know About Menus .. 11-18
11.3 Using Popup Dialogs... 11-19
11.3.1 How to Create Popup Dialogs .. 11-22
11.3.1.1 Defining a JSF Navigation Rule for Launching a Dialog................................... 11-22
11.3.1.2 Creating the JSF Page That Launches a Dialog .. 11-23
11.3.1.3 Creating the Dialog Page and Returning a Dialog Value.................................. 11-25
11.3.1.4 Handling the Return Value .. 11-28
11.3.1.5 Passing a Value into a Dialog .. 11-29
11.3.2 How the SRDemo Popup Dialogs Are Created ... 11-30
11.3.3 What You May Need to Know About ADF Faces Dialogs....................................... 11-35
11.3.4 Other Information... 11-35
11.4 Enabling Partial Page Rendering... 11-35
11.4.1 How to Enable PPR .. 11-36
11.4.2 What Happens at Runtime.. 11-38
11.4.3 What You May Need to Know About PPR and Screen Readers 11-38
11.5 Creating a Multipage Process .. 11-38
11.5.1 How to Create a Process Train.. 11-40
11.5.1.1 Creating a Process Train Model .. 11-40
11.5.1.2 Creating the JSF Page for Each Train Node... 11-45
11.5.1.3 Creating the JSF Navigation Rules.. 11-47
11.5.2 What Happens at Runtime.. 11-48
11.5.3 What You May Need to Know About Process Trains and Menus.......................... 11-48
11.6 Providing File Upload Capability ... 11-49
11.6.1 How to Support File Uploading on a Page ... 11-50
11.6.2 What Happens at Runtime.. 11-54
11.6.3 What You May Need to Know About ADF Faces File Upload 11-54
11.6.4 Configuring File Uploading Initialization Parameters ... 11-55
11.6.5 Configuring a Custom Uploaded File Processor ... 11-55
11.7 Creating Databound Dropdown Lists .. 11-56
11.7.1 How to Create a Dropdown List with a Fixed List of Values 11-56
11.7.2 What Happens When You Create a Dropdown List Bound to a Fixed List 11-58
11.7.3 How to Create a Dropdown List with a Dynamic List of Values............................ 11-59
11.7.4 What Happens When You Create a Dropdown List Bound to a Dynamic List 11-60
11.7.5 How to Use Variables with Dropdown Lists.. 11-61
11.8 Creating a Databound Shuttle.. 11-62
11.8.1 How to Create a Databound Shuttle.. 11-63
11.8.2 What Happens at Runtime.. 11-70

xii

12 Using Validation and Conversion

12.1 Introduction to Validation and Conversion... 12-1
12.2 Validation, Conversion, and the Application Lifecycle ... 12-2
12.3 Adding Validation ... 12-3
12.3.1 How to Add Validation ... 12-3
12.3.1.1 Adding ADF Faces Validation... 12-3
12.3.1.2 Adding ADF Model Validation .. 12-7
12.3.2 What Happens When You Create Input Fields Using the Data Control Palette..... 12-8
12.3.3 What Happens at Runtime.. 12-10
12.3.4 What You May Need to Know.. 12-11
12.4 Creating Custom JSF Validation.. 12-11
12.4.1 How to Create a Backing Bean Validation Method... 12-12
12.4.2 What Happens When You Create a Backing Bean Validation Method.................. 12-12
12.4.3 How to Create a Custom JSF Validator ... 12-13
12.4.4 What Happens When You Use a Custom JSF Validator... 12-16
12.5 Adding Conversion ... 12-16
12.5.1 How to Use Converters.. 12-18
12.5.2 What Happens When You Create Input Fields Using the Data Control Palette... 12-18
12.5.3 What Happens at Runtime.. 12-19
12.6 Creating Custom JSF Converters... 12-19
12.6.1 How to Create a Custom JSF Converter.. 12-19
12.6.2 What Happens When You Use a Custom Converter .. 12-21
12.7 Displaying Error Messages... 12-22
12.7.1 How to Display Server-Side Error Messages on a Page.. 12-23
12.7.2 What Happens When You Choose to Display Error Messages 12-23
12.8 Handling and Displaying Exceptions in an ADF Application.. 12-23
12.8.1 How to Change Exception Handling... 12-24
12.8.2 What Happens When You Change the Default Error Handling 12-31

13 Adding ADF Bindings to Existing Pages

13.1 Introduction to Adding ADF Bindings to Existing Pages ... 13-1
13.2 Designing Pages for ADF Bindings... 13-2
13.2.1 Creating the Page.. 13-2
13.2.2 Adding Components to the Page ... 13-3
13.2.3 Other Design Considerations.. 13-4
13.2.3.1 Creating Text Fields in Forms.. 13-4
13.2.3.2 Creating Tables .. 13-4
13.2.3.3 Creating Buttons and Links ... 13-4
13.2.3.4 Creating Lists ... 13-5
13.2.3.5 Creating Trees or Tree Tables .. 13-5
13.3 Using the Data Control Palette to Bind Existing Components ... 13-5
13.3.1 How to Add ADF Bindings Using the Data Control Palette...................................... 13-5
13.3.2 What Happens When You Use the Data Control Palette to Add ADF Bindings.... 13-7
13.4 Adding ADF Bindings to Text Fields.. 13-7
13.4.1 How to Add ADF Bindings to Text Fields.. 13-7
13.4.2 What Happens When You Add ADF Bindings to a Text Field 13-8

xiii

13.5 Adding ADF Bindings to Tables.. 13-8
13.5.1 How to Add ADF Bindings to Tables ... 13-8
13.5.2 What Happens When You Add ADF Bindings to a Table 13-10
13.6 Adding ADF Bindings to Actions ... 13-11
13.6.1 How to Add ADF Bindings to Actions ... 13-12
13.6.2 What Happens When You Add ADF Bindings to an Action................................... 13-12
13.7 Adding ADF Bindings to Selection Lists.. 13-13
13.7.1 How to Add ADF Bindings to Selection Lists ... 13-13
13.7.2 What Happens When You Add ADF Bindings to a Selection List.......................... 13-13
13.8 Adding ADF Bindings to Trees and Tree Tables .. 13-14
13.8.1 How to Add ADF Bindings to Trees and Tree Tables... 13-15
13.8.2 What Happens When You Add ADF Bindings to a Tree or Tree Table................. 13-15

14 Changing the Appearance of Your Application

14.1 Introduction to Changing ADF Faces Components ... 14-1
14.2 Changing the Style Properties of a Component .. 14-2
14.2.1 How to Set a Component’s Style Attributes .. 14-2
14.2.2 What Happens When You Format Text .. 14-3
14.3 Using Skins to Change the Look and Feel.. 14-3
14.3.1 How to Use Skins.. 14-5
14.3.1.1 Creating a Custom Skin.. 14-6
14.3.1.2 Configuring an Application to Use a Skin... 14-10
14.4 Internationalizing Your Application... 14-11
14.4.1 How to Internationalize an Application.. 14-14
14.4.2 How to Configure Optional Localization Properties for ADF Faces 14-19

15 Optimizing Application Performance with Caching

15.1 About Caching.. 15-1
15.2 Using ADF Faces Cache to Cache Content .. 15-2
15.2.1 How to Add Support for ADF Faces Cache.. 15-6
15.2.2 What Happens When You Cache Fragments ... 15-7
15.2.2.1 Logging ... 15-7
15.2.2.2 AFC Statistics Servlet .. 15-7
15.2.2.3 Visual Diagnostics ... 15-8
15.2.3 What You May Need to Know.. 15-9

16 Testing and Debugging Web Applications

16.1 Getting Started with Oracle ADF Model Debugging ... 16-1
16.2 Correcting Simple Oracle ADF Compilation Errors ... 16-2
16.3 Correcting Simple Oracle ADF Runtime Errors.. 16-4
16.4 Understanding a Typical Oracle ADF Model Debugging Session 16-6
16.4.1 Turning on Diagnostic Logging.. 16-7
16.4.2 Creating an Oracle ADF Debugging Configuration.. 16-7
16.4.3 Understanding the Different Kinds of Breakpoints... 16-8
16.4.4 Editing Breakpoints to Improve Control... 16-9
16.4.5 Filtering Your View of Class Members.. 16-9

xiv

16.4.6 Communicating Stack Trace Information to Someone Else 16-10
16.5 Debugging the Oracle ADF Model Layer .. 16-10
16.5.1 Correcting Failures to Display Pages... 16-11
16.5.1.1 Fixing Binding Context Creation Errors .. 16-11
16.5.1.2 Fixing Binding Container Creation Errors... 16-12
16.5.2 Correcting Failures to Display Data... 16-15
16.5.2.1 Fixing Executable Errors... 16-15
16.5.2.2 Fixing Render Value Errors Before Submit.. 16-19
16.5.3 Correcting Failures to Invoke Actions and Methods .. 16-22
16.5.4 Correcting Page Validation Failures .. 16-25
16.6 Tracing EL Expressions... 16-27

17 Working Productively in Teams

17.1 Using CVS with an ADF Project .. 17-1
17.1.1 Choice of Internal or External CVS Client .. 17-1
17.1.2 Preference Settings.. 17-1
17.1.3 File Dependencies ... 17-1
17.1.4 Use Consistent Connection Definition Names ... 17-2
17.1.5 General Advice for Committing ADF Work to CVS ... 17-2
17.1.5.1 Other Version Control Tips and Techniques... 17-2
17.1.6 Check Out or Update from the CVS Repository .. 17-3
17.1.7 Special Consideration when Manually Adding Navigation Rules to the

faces-config.xml File ... 17-3
17.2 General Advice for Using CVS with JDeveloper... 17-3
17.2.1 Team-Level Activities .. 17-3
17.2.2 Developer-Level Activities .. 17-4
17.2.2.1 Typical Workflow When Checking Your Work Into CVS................................... 17-4
17.2.2.2 Handling CVS Repository Configuration Files... 17-5

18 Adding Security to an Application

18.1 Introduction to Security in Oracle ADF Web Applications... 18-1
18.2 Specifying the JAZN Resource Provider .. 18-2
18.2.1 How To Specify the Resource Provider... 18-2
18.2.2 What You May Need to Know About Oracle ADF Security and Resource

Providers .. 18-3
18.3 Configuring Authentication Within the web.xml File.. 18-4
18.3.1 How to Enable J2EE Container-Managed Authentication ... 18-4
18.3.2 What Happens When You Use Security Constraints without Oracle ADF

Security... 18-8
18.3.3 How to Enable Oracle ADF Authentication ... 18-9
18.3.4 What Happens When You Use Security Constraints with Oracle ADF................. 18-11
18.4 Creating a Login Page ... 18-12
18.4.1 Wiring the Login and Error Pages.. 18-15
18.4.2 What Happens When You Wire the Login and Error Pages.................................... 18-16
18.5 Creating a Logout Page... 18-17
18.5.1 Wiring the Logout Action.. 18-18
18.5.2 What Happens When You Wire the Logout Action.. 18-20

xv

18.6 Implementing Authorization Using Oracle ADF Security .. 18-20
18.6.1 Configuring the Application to Use Oracle ADF Security Authorization 18-22
18.6.1.1 How to Configure Oracle ADF Security Authorization 18-22
18.6.1.2 What Happens When You Configure An Application to Use Oracle ADF

Security.. 18-22
18.6.1.3 What You May Need to Know About the Authorization Property................. 18-23
18.6.2 Setting Authorization on ADF Binding Containers .. 18-23
18.6.3 Setting Authorization on ADF Iterator Bindings... 18-23
18.6.4 Setting Authorization on ADF Attribute and MethodAction Bindings 18-24
18.6.5 What Happens When Oracle ADF Security Handles Authorization...................... 18-24
18.7 Implementing Authorization Programmatically .. 18-25
18.7.1 Making User Information EL Accessible... 18-25
18.7.1.1 Creating a Class to Manage Roles ... 18-26
18.7.1.2 Creating a Managed Bean for the Security Information 18-28
18.7.2 Integrating the Managed Bean with Oracle ADF Model .. 18-31
18.7.2.1 Creating a TopLink Named Query To Return a User Object............................ 18-31
18.7.2.2 Create a Session Facade Method to Wrap the Named Query........................... 18-32
18.7.2.3 Create a Page Definition to Make the Method an EL Accessible Object 18-32
18.7.2.4 Executing the Session Facade Method from the UserInfo Bean 18-34

19 Advanced TopLink Topics

19.1 Introduction to Advanced TopLink Topics ... 19-1
19.2 Using Advanced Parameters (databindings.cpx) ... 19-1
19.2.1 Performing Deletes First .. 19-2
19.2.2 Specifying the TopLink Session File .. 19-2
19.2.3 Specifying the Sequencing... 19-3
19.3 Configuring Method Access for Relationship ... 19-3
19.4 Using sessions.xml with a TopLink Data Control ... 19-4
19.5 Using Multiple Maps with a TopLink Data Control .. 19-5
19.6 Compiling TopLink Classes with Specific JDK Versions... 19-7

20 Creating Data Control Adapters

20.1 Introduction to the Simple CSV Data Control Adapter ... 20-1
20.2 Overview of Steps to Create a Data Control Adapter .. 20-2
20.3 Implement the Abstract Adapter Class .. 20-3
20.3.1 Location of JAR Files .. 20-3
20.3.2 Abstract Adapter Class Outline.. 20-4
20.3.3 Complete Source for the SampleDCAdapter Class ... 20-4
20.3.4 Implementing the initialize Method .. 20-7
20.3.5 Implementing the invokeUI Method ... 20-7
20.3.6 Implementing the getDefinition Method .. 20-8
20.4 Implement the Data Control Definition Class ... 20-9
20.4.1 Location of JAR Files .. 20-9
20.4.2 Data Control Definition Class Outline .. 20-9
20.4.3 Complete Source for the SampleDCDef Class.. 20-10
20.4.4 Creating a Default Constructor... 20-13

xvi

20.4.5 Collecting Metadata from the User .. 20-13
20.4.6 Defining the Structure of the Data Control... 20-15
20.4.7 Creating an Instance of the Data Control.. 20-16
20.4.8 Setting the Metadata for Runtime .. 20-16
20.4.9 Setting the Name for the Data Control .. 20-17
20.5 Implement the Data Control Class .. 20-17
20.5.1 Location of JAR Files .. 20-18
20.5.2 Data Control Class Outline ... 20-18
20.5.3 Complete Source for the SampleDataControl Class .. 20-19
20.5.4 Implementing the invokeOperation Method.. 20-21
20.5.4.1 About Calling processResult.. 20-23
20.5.4.2 Return Value for invokeOperation ... 20-23
20.5.5 Implementing the getName Method ... 20-23
20.5.6 Implementing the release Method ... 20-24
20.5.7 Implementing the getDataProvider Method .. 20-24
20.6 Create any Necessary Supporting Classes ... 20-24
20.7 Create an XML File to Define Your Adapter ... 20-25
20.8 Build Your Adapter ... 20-26
20.9 Package and Deploy Your Adapter to JDeveloper ... 20-26
20.10 Location of Javadoc Information ... 20-28
20.11 Contents of Supporting Files.. 20-29
20.11.1 sampleDC.xsd ... 20-29
20.11.2 CSVHandler Class .. 20-29
20.11.3 CSVParser .. 20-37

21 Working with Web Services

21.1 What are Web Services.. 21-1
21.1.1 SOAP .. 21-2
21.1.2 WSDL.. 21-2
21.1.3 UDDI... 21-2
21.1.4 Web Services Interoperability ... 21-3
21.2 Creating Web Service Data Controls... 21-4
21.2.1 How to Create a Web Service Data Control.. 21-4
21.3 Securing Web Service Data Controls .. 21-5
21.3.1 WS-Security Specification.. 21-5
21.3.2 Creating and Using Keystores .. 21-6
21.3.2.1 How to Create a Keystore .. 21-6
21.3.2.2 How to Request a Certificate ... 21-7
21.3.2.3 How to Export a Public Key Certificate ... 21-8
21.3.3 Defining Web Service Data Control Security ... 21-9
21.3.3.1 How to Set Authentication... 21-9
21.3.3.2 How to Set Digital Signatures.. 21-12
21.3.3.3 How to Set Encryption and Decryption... 21-13
21.3.3.4 How to Use a Key Store.. 21-13

xvii

22 Deploying ADF Applications

22.1 Introduction to Deploying ADF Applications... 22-1
22.2 Deployment Steps .. 22-2
22.3 Deployment Techniques ... 22-7
22.4 Deploying Applications Using Ant... 22-8
22.5 Deploying the SRDemo Application... 22-8
22.6 Deploying to Oracle Application Server .. 22-9
22.6.1 Oracle Application Server Versions Supported ... 22-9
22.6.2 Oracle Application Server Release 2 (10.1.2) Deployment Notes.............................. 22-9
22.6.3 Oracle Application Server Deployment Methods.. 22-10
22.6.4 Oracle Application Server Deployment to Test Environments ("Automatic

Deployment") .. 22-10
22.6.5 Oracle Application Server Deployment to Clustered Topologies 22-11
22.7 Deploying to JBoss ... 22-11
22.7.1 JBoss Versions Supported.. 22-11
22.7.2 JBoss Deployment Notes ... 22-11
22.7.3 JBoss Deployment Methods .. 22-13
22.8 Deploying to WebLogic .. 22-13
22.8.1 WebLogic Versions Supported ... 22-13
22.8.2 WebLogic Versions 8.1 and 9.0 Deployment Notes... 22-13
22.8.3 WebLogic 8.1 Deployment Notes... 22-13
22.8.4 WebLogic 9.0 Deployment Notes... 22-14
22.8.5 WebLogic Deployment Methods.. 22-14
22.9 Deploying to WebSphere.. 22-14
22.9.1 WebSphere Versions Supported... 22-14
22.9.2 WebSphere Deployment Notes .. 22-15
22.9.3 WebSphere Deployment Methods ... 22-15
22.10 Deploying to Tomcat ... 22-15
22.10.1 Tomcat Versions Supported.. 22-15
22.10.2 Tomcat Deployment Notes.. 22-15
22.11 Deploying to Application Servers That Support JDK 1.4 .. 22-16
22.11.1 Switching Embedded OC4J to JDK 1.4 .. 22-16
22.12 Installing ADF Runtime Library on Third-Party Application Servers 22-17
22.12.1 Installing the ADF Runtime Libraries from JDeveloper ... 22-17
22.12.2 Configuring WebSphere 6.0.1 to Run ADF Applications ... 22-20
22.12.2.1 Source for install_adflibs_1013.sh Script.. 22-21
22.12.2.2 Source for install_adflibs_1013.cmd Script .. 22-23
22.12.3 Installing the ADF Runtime Libraries Manually ... 22-24
22.12.3.1 Installing the ADF Runtime Libraries from a Zip File 22-26
22.12.4 Deleting the ADF Runtime Library.. 22-27
22.13 Verifying Deployment and Troubleshooting ... 22-27
22.13.1 How to Test Run Your Application ... 22-28
22.13.2 "Class Not Found" or "Method Not Found" Errors ... 22-28
22.13.3 Application Is Not Using data-sources.xml File on Target Application Server 22-28
22.13.4 Using jazn-data.xml with the Embedded OC4J Server ... 22-28

xviii

A Reference ADF XML Files

A.1 About the ADF Metadata Files .. A-1
A.2 ADF File Overview Diagram ... A-2
A.2.1 Oracle ADF Data Control Files ... A-3
A.2.2 Oracle ADF Data Binding Files... A-3
A.2.3 Oracle ADF Faces and Web Configuration Files.. A-4
A.3 ADF File Syntax Diagram... A-4
A.4 DataControls.dcx.. A-7
A.4.1 Syntax of the DataControls.dcx File... A-7
A.4.2 Sample of the DataControls.dcx File.. A-9
A.4.3 Sample of the adfm.xml File.. A-11
A.5 Structure Definition Files .. A-11
A.5.1 Syntax for the Structure Definition for a JavaBean.. A-12
A.5.2 Sample Structure Definition for the <sessionbeanname>.xml File A-14
A.5.3 Sample Structure Definition for the <entitybeanname>.xml File.............................. A-16
A.5.4 Collection and SingleValue Sample Files .. A-17
A.6 DataBindings.cpx ... A-18
A.6.1 DataBindings.cpx Syntax... A-18
A.6.2 DataBindings.cpx Sample.. A-20
A.7 <pageName>PageDef.xml... A-21
A.7.1 PageDef.xml Syntax.. A-21
A.7.2 PageDef.xml Sample for a Method That Returns a String.. A-30
A.7.3 PageDef.xml Sample for a Method that Returns a Collection.................................... A-30
A.8 web.xml ... A-31
A.8.1 Tasks Supported by the web.xml File.. A-33
A.8.1.1 Configuring for State Saving ... A-33
A.8.1.2 Configuring for Application View Caching .. A-34
A.8.1.3 Configuring for Debugging ... A-34
A.8.1.4 Configuring for File Uploading... A-35
A.8.1.5 Configuring for ADF Model Binding ... A-35
A.8.1.6 Other Context Configuration Parameters for JSF ... A-36
A.8.1.7 What You May Need to Know .. A-36
A.9 j2ee-logging.xml ... A-37
A.9.1 Tasks Supported by the j2ee-logging.xml ... A-37
A.9.1.1 Change the Logging Level for Oracle ADF Packages .. A-37
A.9.1.2 Redirect the Log Output... A-37
A.9.1.3 Change the Location of the Log File ... A-38
A.10 faces-config.xml.. A-38
A.10.1 Tasks Supported by the faces-config.xml.. A-38
A.10.1.1 Registering a Render Kit for ADF Faces Components... A-39
A.10.1.2 Registering a Phase Listener for ADF Binding.. A-39
A.10.1.3 Registering a Message Resource Bundle.. A-40
A.10.1.4 Configuring for Supported Locales .. A-40
A.10.1.5 Creating Navigation Rules and Cases .. A-40
A.10.1.6 Registering Custom Validators and Converters ... A-42
A.10.1.7 Registering Managed Beans... A-42

xix

A.11 adf-faces-config.xml... A-44
A.11.1 Tasks Supported by adf-faces-config.xml ... A-44
A.11.1.1 Configuring Accessibility Levels... A-45
A.11.1.2 Configuring Currency Code and Separators for Number Groups and

Decimals ...A-45
A.11.1.3 Configuring For Enhanced Debugging Output .. A-46
A.11.1.4 Configuring for Client-Side Validation and Conversion..................................... A-46
A.11.1.5 Configuring the Language Reading Direction.. A-46
A.11.1.6 Configuring the Skin Family.. A-47
A.11.1.7 Configuring the Output Mode .. A-47
A.11.1.8 Configuring the Number of Active ProcessScope Instances............................... A-47
A.11.1.9 Configuring the Time Zone and Year Offset ... A-47
A.11.1.10 Configuring a Custom Uploaded File Processor .. A-48
A.11.1.11 Configuring the Help Site URL ... A-48
A.11.1.12 Retrieving Configuration Property Values From adf-faces-config.xml A-48
A.12 adf-faces-skins.xml .. A-49
A.12.1 Tasks Supported by adf-faces-skins.xml ... A-49

B Reference ADF Binding Properties

B.1 EL Properties of Oracle ADF Bindings ... B-1

Index

xx

xxi

Preface

Welcome to the Oracle Application Development Framework Developer’s Guide!

Audience
This manual is intended for software developers who are creating and deploying
applications using the Oracle Application Development Framework with JavaServer
Faces, ADF Faces, TopLink Java Objects, and EJB 3.0 session beans.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

xxii

Related Documents
For more information, see the following:

■ Oracle Application Development Framework Developer’s Guide for Forms/4GL
Developers for enterprise developers who are familiar with 4GL tools like Oracle
Forms, PeopleTools, SiebelTools, and Visual Studio, and who need to create and
deploy database-centric J2EE applications with a service-oriented architecture
using the Oracle Application Development Framework (Oracle ADF). This guide
explains how to build these applications using ADF Business Components,
JavaServer Faces, and ADF Faces: the same technology stack Oracle employs to
build the web-based Oracle EBusiness Suite.

■ Oracle JDeveloper 10g Release Notes, included with your JDeveloper 10g installation,
and on Oracle Technology Network

■ Oracle JDeveloper 10g Online Help

■ Oracle Application Server 10g Release Notes

■ Oracle Application Server 10g Documentation Library available on CD-ROM and on
Oracle Technology Network

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Getting Started with Oracle ADF

Applications

Part I contains the following chapters:

■ Chapter 1, "Introduction to Oracle ADF Applications"

■ Chapter 2, "Oracle ADF Service Request Demo Overview"

■ Chapter 3, "Building and Using Application Services"

Introduction to Oracle ADF Applications 1-1

1
Introduction to Oracle ADF Applications

This chapter describes the architecture and key functionality of the Oracle Application
Development Framework and highlights the typical development process for using
JDeveloper 10g Release 3 (10.1.3) to build web applications using Oracle ADF,
Enterprise JavaBeans, Oracle TopLink, and JSF.

This chapter includes the following sections:

■ Section 1.1, "Overview of Oracle Application Development Framework"

■ Section 1.2, "Development Process with Oracle ADF and JavaServer Faces"

1.1 Overview of Oracle Application Development Framework
The Oracle Application Development Framework (Oracle ADF) is an end-to-end
application framework that builds on J2EE standards and open-source technologies to
simplify and accelerate implementing service-oriented applications. If you develop
enterprise solutions that search, display, create, modify, and validate data using web,
wireless, desktop, or web services interfaces, Oracle ADF can simplify your job. Used
in tandem, Oracle JDeveloper 10g and Oracle ADF give you an environment that
covers the full development lifecycle from design to deployment, with drag-and-drop
data binding, visual UI design, and team development features built-in.

1.1.1 Framework Architecture and Supported Technologies
In line with community best practices, applications you build using Oracle ADF
achieve a clean separation of concerns by adhering to a model, view, controller
architecture. Figure 1–1 illustrates where each ADF module fits in this architecture.
The core module in the framework is Oracle ADF Model, a declarative data binding
facility that implements the JSR-227 specification. The Oracle ADF Model layer enables
a unified approach to bind any user interface to any business service with no code. The
other modules Oracle ADF comprises are:

■ Oracle ADF Controller integrates Struts and JSF with Oracle ADF Model

■ Oracle ADF Faces offers a library of components for web applications built with JSF

■ Oracle ADF Swing extends Oracle ADF Model to desktop applications built with
Swing

■ Oracle ADF Business Components simplifies building business services for
developers familiar with 4GL tools like Oracle Forms.

Overview of Oracle Application Development Framework

1-2 Oracle Application Development Framework Developer’s Guide

Figure 1–1 Simple ADF Architecture

1.1.1.1 View Layer Technologies Supported
In the view layer of your application, where you design the web user interface, you
can develop using either classic JavaServer Pages (JSP) or the latest JavaServer Faces
(JSF) standard. Alternatively, you can choose the polish and interactivity of a desktop
UI, and develop using any off-the-shelf Swing components or libraries to ensure just
the look and feel you need. Whatever your choice, you work with WYSIWYG visual
designers and drag-and-drop data binding. One compelling reason to choose JSF is the
comprehensive library of nearly one hundred JSF components that the ADF Faces
module provides.

ADF Faces components include sophisticated features like look and feel "skinning"
and the ability to incrementally update only the bits of the page that have changed
using the latest AJAX programming techniques. The component library supports
multiple JSF render kits to allow targeting users with web browsers and roaming users
with PDA telnet devices. In short, these components dramatically simplify building
highly attractive and functional web and wireless UIs without getting your hands
"dirty" with HTML and JavaScript.

1.1.1.2 Controller Layer Technologies Supported
In the controller layer, where handling page flow of your web applications is a key
concern, Oracle ADF integrates both with the popular Apache Struts framework and
the built-in page navigation functionality included in JSF. In either case, JDeveloper
offers visual page flow diagrammers to design your page flow, and the ADF Controller
module provides appropriate plug-ins to integrate the ADF Model data binding
facility with the controller layer’s page processing lifecycle.

1.1.1.3 Business Services Technologies Supported by ADF Model
In the model layer, Oracle ADF Model implements the JSR-227 service abstraction
called the data control and provides out-of-box data control implementations for the
most common business service technologies. Whichever ones you employ, JDeveloper
and Oracle ADF work together to provide you a declarative, drag-and-drop data
binding experience as you build your user interfaces. Supported technologies include:

■ Enterprise JavaBeans (EJB) Session Beans

Since most J2EE applications require transactional services, EJB session beans are a
logical choice because they offer declarative transaction control. Behind the EJB
session bean facade for your business service, you use plain old Java objects
(POJOs) or EJB entity beans to represent your business domain objects. JDeveloper

O
ra

cl
e

JD
ev

el
op

er

View

Controller

Model

Business
Services

ADF Business
Components

EJB +
TopLink

Web
ServicesXML JavaBeans

Swing

ADF Swing

ADF Faces

JSFJSP

Struts Faces controller

ADF Controller

ADF Model

Overview of Oracle Application Development Framework

Introduction to Oracle ADF Applications 1-3

offers integrated support for creating EJB session beans, generating initial session
facade implementations, and creating either Java classes or entity beans. You can
also use Oracle TopLink in JDeveloper to configure the object/relational mapping
of these classes.

■ JavaBeans

You can easily work with any Java-based service classes as well, including the
ability to leverage Oracle TopLink mapping if needed.

■ Web Services

When the services your application requires expose standard web services
interfaces, just supply Oracle ADF with the URL to the relevant Web Services
Description Language (WSDL) for the service endpoints and begin building user
interfaces that interact with them and present their results.

■ XML

If your application needs to interact with XML or comma-separated values (CSV)
data that is not exposed as a web service, this is easy to accomplish, too. Just
supply the provider URL and optional parameters and you can begin to work with
the data.

■ ADF Application Modules

These service classes are a feature of the ADF Business Components module, and
expose an updateable dataset of SQL query results with automatic business rules
enforcement.

1.1.1.4 Recommended Technologies for J2EE Enterprise Developers
The remainder of this guide focuses attention on using Oracle ADF with the
technologies Oracle recommends to J2EE developers building new web applications:
JavaServer Faces for the view and controller layers, and the combination of an EJB
session bean with mapped Java classes for the business service implementation.
However, this chapter begins with a very simple Oracle ADF application built with
these technologies to acquaint you with typical development process.

1.1.2 Declarative Development with Oracle ADF and JavaServer Faces
For seasoned Java developers, choosing to develop declaratively instead of coding
admittedly takes some getting used to. However, most developers will acknowledge a
true time-saver, and they are also likely to have some exposure to declarative
techniques through their experience with frameworks like Spring or Apache Struts
and tag libraries like the JSP Standard Tag Library (JSTL). JavaServer Faces

Note: If you are a developer coming to J2EE development with
experience in 4GL tools like Oracle Forms, Oracle Designer, Visual
Basic, PowerBuilder, and so on, Oracle recommends that you take
advantage of the additional declarative development features offered
by the Oracle ADF Business Components module. Oracle ADF
Developer’s Guide for Forms/4GL Developers covers using Oracle ADF
with additional framework functionality in the business services tier
using this module. You can access the developer’s guide for
Forms/4GL developers from
http://www.oracle.com/technology/products/adf/learna
df.html.

Overview of Oracle Application Development Framework

1-4 Oracle Application Development Framework Developer’s Guide

incorporates similar declarative functionality and Oracle ADF complements it by
adding declarative data binding to the mix.

1.1.2.1 Declarative J2EE Technologies You May Have Already Used
Using the Spring Framework, developers configure the instantiation of JavaBeans
through a beans XML file, declaratively specifying dependencies between them. At
runtime, generic framework code reads the XML file, instantiates the beans as
directed, and resolves the dependencies between beans. This design pattern is
commonly known as dependency injection, and Spring provides a declaratively
configured way to leverage its generic implementation to set up your application’s
beans.

Using the Struts struts-config.xml file, developers configure the mapping of
HTTP requests to action handler classes and other page flow information. At runtime,
the generic Struts front-controller servlet uses the information contained in the
configuration XML file to route the requests as directed. When you use Struts, you
leave the request routing to the declaratively configured Struts infrastructure, and
concentrate on writing the interesting code that will handle particular requests.

Using the JSTL tag library, developers indicate the model data to iterate over and
present on the page using declarative expressions, as shown in this snippet:

<c:when test="${not empty UserList}">
 <c:forEach var="user" items="${UserList.selectedUsers}">
 <tr>
 <td><c:out value="${user.name}"/></td>
 <td><c:out value="${user.email}"/>
 </tr>
 </c:forEach>
</c:when>
Rather than resorting to an unmaintainable mix of Java scriptlet code and tags in their
page, developers embed expressions like ${not empty UserList},
${UserList.selectedUsers}, and ${user.name} into tag attributes. At runtime
a generic expression evaluator returns the boolean-, List- and String-valued
results, respectively, performing work to access beans and their properties without
writing code. This same declarative expression language, nicknamed "EL," that
originally debuted as part of the JSTL tag library has been improved and incorporated
into the current versions of the JSP and JSF standards.

1.1.2.2 JSF Offers Dependency Injection, Page Handling, EL and More
JavaServer Faces simplifies building web user interfaces by introducing web UI
components that have attributes, events, and a consistent runtime API. Instead of
wading knee-high through tags and script, you assemble web pages from libraries of
off-the-shelf, data-aware components that adhere to the JSF standard. As part of
fulfilling their mission to simplify web application building, the industry experts who
collaborated to design the JavaServer Faces standard incorporated numerous
declarative development techniques. In fact, JSF supports all three of the facilities
discussed above: instantiation and dependency injection for beans, page request
handling and page navigation, and use of the standard expression language.

At runtime, the value of a JSF component is determined by its value attribute. While
a component can have static text as its value, typically the value attribute will contain
an EL expression that the runtime infrastructure evaluates to determine what data to
display. For example, an outputText component that displays the name of the
currently logged-in user might have its value attribute set to the expression
#{UserInfo.name} to accomplish this. Since any attribute of a component can be
assigned a value using an EL expression, it’s easy to build dynamic, data-driven user

Overview of Oracle Application Development Framework

Introduction to Oracle ADF Applications 1-5

interfaces. For example, you could hide a component when a collection of beans you
need to display is empty by setting the component’s rendered attribute to a
boolean-valued EL expression like #{not empty UserList.selectedUsers}. If
the list of selected users in the bean named UserList is empty, then the rendered
attribute evaluates to false and the component disappears from the page.

To simplify maintenance of controller-layer application logic, JSF offers a declarative
bean creation mechanism similar to the Spring Framework. To use it, you configure
your beans in the JSF faces-config.xml file. They are known as "managed beans"
since the JSF runtime manages instantiating them on demand when any EL expression
references them for the first time. JSF also offers a declarative dependency injection
feature. Managed beans can have managed properties whose runtime value is
assigned by the JSF runtime based on a developer-supplied EL expression. Managed
properties can depend on other beans that, in turn, also have managed properties of
their own, and the JSF runtime will guarantee that the "tree" of related beans is created
in the proper order.

As illustrated in Figure 1–2, JSF managed beans serve two primary roles.

Figure 1–2 Basic Architecture of a JSF Application

Request-scoped managed beans that are tightly related to a given page are known
colloquially as "backing" beans, since they support the page at runtime with properties
and methods. The relationship between a UI component in the page and the backing
bean properties and methods is established by EL expressions in appropriate attributes
of the component like:

■ value="#{expr}"

References a property with data to display or modify

■ action="#{expr}"

References a method to handle events

■ binding="#{expr}"

References a property holding a corresponding instance of the UI component that
you need to manipulate programmatically — show/hide, change color, and so on.

Think of managed beans that aren’t playing the role of a page’s backing bean simply as
"application logic beans." They contain code and properties that are not specific to a
single page. While not restricted to this purpose, they sometimes function as business

Overview of Oracle Application Development Framework

1-6 Oracle Application Development Framework Developer’s Guide

service wrappers to cache method results in the controller layer beyond a single
request and to centralize pre- or post-processing of business service methods that
might be used from multiple pages.

In addition to using managed beans, you can also write application code in a so-called
PhaseListener class to augment any of the standard processing phases involved in
handling a request for a JSF page. These standard steps that the JSF runtime goes
through for each page are known as the "lifecycle" of the page. Most real-world JSF
applications will end up customizing the lifecycle by implementing a custom phase
listener of some kind, typically in order to perform tasks like preparing model data for
rendering when a page initially displays, among other things.

1.1.2.3 Oracle ADF Further Raises the Level of Declarative Development for JSF
The Oracle ADF Model layer follows the same declarative patterns as other J2EE
technologies, by using XML configuration files to drive generic framework facilities.
The only interesting difference is that ADF Model focuses on adding value in the data
binding layer. It implements the two concepts in JSR-227 that enable decoupling the
user interface technology from the business service implementation: data controls and
declarative bindings.

Data controls abstract the implementation technology of a business service by using
standard metadata interfaces to describe its public interface. This includes information
about the properties, methods, and types involved. At design time, visual tools
leverage the service metadata to let you bind your UI components declaratively to any
public member of a data control. At runtime, the generic Oracle ADF Model layer
reads the information describing your data controls and bindings from appropriate
XML files and implements the two-way "wiring" that connects your user interface to
your service. This combination enables three key benefits:

■ You write less code, so there are fewer lines to test and debug.

■ You work the same way with any UI and business service technologies.

■ You gain useful runtime features that you don’t have to code yourself.

There are three basic kinds of binding objects that automate the key aspects of data
binding that all enterprise applications require:

■ Action bindings invoke business service methods to perform a task or retrieve data.

■ Iterator bindings keep track of the current row in a data collection.

■ Attribute bindings connect UI components to attributes in a data collection.

Typically UI components like hyperlinks or buttons use action bindings. This allows
the user to click on the component to invoke a business service without code. UI
components that display data use attribute bindings. Iterator bindings simplify
building user interfaces that allow scrolling and paging through collections of data
and drilling-down from summary to detail information.

The group of bindings supporting the UI components on a page are described in a
page-specific XML file called the page definition file. Generic bean factories provided by
ADF Model use this file at runtime to instantiate the page’s bindings. These bindings
are held in a request-scoped Map called the binding container accessible during each
page request using the EL expression #{bindings}. This expression always evaluates
to the binding container for the current page. Figure 1–3 shows how EL value binding
expressions relate the UI components in a page to the binding objects in the binding
container.

Overview of Oracle Application Development Framework

Introduction to Oracle ADF Applications 1-7

Figure 1–3 Bindings in the Binding Container Are EL Accessible at Runtime

Figure 1–4 illustrates the architecture of a JSF application when leveraging ADF Model
for declarative data binding. When you combine Oracle ADF Model with JavaServer
Faces, it saves you from having to write a lot of the typical managed bean code that
would be required for real-world applications. In fact, many pages you build won’t
require a "backing bean" at all, unless you perform programmatic controller logic that
can’t be handled by a built-in action or service method invocation (which ADF Model
can do without code for you). You can also do away with any application logic beans
that wrap your business service, since the ADF Model’s data control implements this
functionality for you. And finally, you can often avoid the need to write any custom
JSF phase listeners because ADF Model offers a generic JSF phase listener that
performs most of the common operations you need in a declarative way based on
information in your page definition metadata.

Figure 1–4 Architecture of a JSF Application Using ADF Model Data Binding

1.1.3 Key ADF Binding Features for JSF Development
With the fundamentals of ADF Model data binding for JSF applications described, it’s
time to describe the full breadth of added-value functionality that ADF Model brings
to the table. The following sections give an overview of the key functional areas that
further improve your development productivity.

Controller
page flow

Data
control

ADF Model Binding Context Business ServicesController Page Flow

Binding Container
Action

bindings

#{...}

Attribute
bindings

Iterator
bindings

Data
control

Web
service

EJB
session

bean

#{binding expression}

View page

Overview of Oracle Application Development Framework

1-8 Oracle Application Development Framework Developer’s Guide

1.1.3.1 Comprehensive JDeveloper Design-Time Support
JDeveloper’s comprehensive design- time support for ADF Model declarative data
binding includes:

■ Data Control Wizards

Quickly create a data control for EJB session beans, Java service classes, web
services, XML or CSV data from a URL, and ADF application modules. When
additional information is required, helpful wizards guide you step by step.

■ Data Control Palette

Visualize all business services that you have exposed as data controls and drag
service properties, methods, method parameters, and method results to create
appropriate bound user interface elements. Easily create read-only and editable
forms, tables, master/detail displays, and individual bound UI components
including single and multiselect lists, checkboxes, radio groups, and so on.
Creating search forms, data creation pages, and parameter forms for invoking
methods is just as easy. If your process involves collaboration with page designers
in another team, you can drop attributes onto existing components in the page to
bind them after the fact. In addition to the UI components created, appropriate
declarative bindings are created and configured for you in the page definition file
with robust undo support so you can experiment or evolve your user interface
with confidence that your bindings and UI components will stay in sync.

■ Page Definition Editor

Visualize page definition metadata in the Structure window and configure
declarative binding properties using the appropriate editor or the Property
Inspector. Create new bindings by inserting them into the structure where desired.

■ Binding Metadata Code Insight

Edit binding metadata with context-sensitive, XML schema-driven assistance on
the structure and valid values. Visualize page definition metadata in the Structure
window and configure declarative binding properties using the appropriate editor
or the Property Inspector.

1.1.3.2 More Sophisticated UI Functionality Without Coding
The JSF reference implementation provides a bare-bones set of basic UI components
that includes basic HTML input field types and a simple table display, but these won’t
take you very far when building real-world applications. The ADF Model layer
implements several features that work hand-in-hand with the more sophisticated UI
components in the Oracle ADF Faces library to make quick work of the rich
functionality your end users crave, including:

■ More Sophisticated Table Model

Tables are a critical element of enterprise application UIs. By default, JSF doesn’t
support paging or sorting in tables. The ADF Faces table and the ADF Model table
binding cooperate to display pageable, editable or read-only, tables with sorting
on any column.

■ Key-Based Current Selection Tracking

One of the most common tasks of web user interfaces is presenting lists of
information and allowing the user to scroll through them or to select one or more
entries in the list. The ADF Model iterator binding simplifies tracking the selected
row in a robust way, using row keys instead of relying on positional indicators that
can change when data is refreshed and positions have changed. In concert with the

Overview of Oracle Application Development Framework

Introduction to Oracle ADF Applications 1-9

ADF Faces table and multiselection components, it’s easy to work with single or
multiple selections, and build screens that navigate master/detail information.

■ Declarative Hierarchical Tree Components and Grids

Much of the information in enterprise applications is hierarchical, but JSF doesn’t
support displaying or manipulating hierarchical data out of the box. The ADF
Model layer provides hierarchical bindings that you can configure declaratively
and use with the ADF Faces tree or hierarchical grid components to implement
interactive user interfaces that present data in the most intuitive way to your
users.

■ More Flexible Models for Common UI Components

Even simple components like the checkbox can be improved upon. By default, JSF
supports binding a checkbox only to boolean properties. ADF Model adds the
ability to map the checkbox to any combination of true or valid values your data
may present. List components are another area where ADF Model excels. The
valid values for the list can come from any data collection in a data control and the
list can perform updates or be used for row navigation, depending on your needs.
The ADF Model list binding also makes null-handling easy by optionally adding a
translatable "<No Selection>" choice to the list.

1.1.3.3 Centralize Common Functionality in Layered Model Metadata
ADF Model can improve the reuse of several aspects of application functionality by
allowing you to associate layered metadata with the data control structure definitions
that can be reused by any page presenting their information. Examples of functionality
that ADF Model allows you to reuse includes:

■ Translatable Prompts, Tooltips, and Format Masks

JSF supports a simple mechanism to reference translatable strings in resource
bundles, but it has no knowledge about what the strings are used for and no way
to associate the strings with specific business domain objects. With ADF Model,
you can associate translatable prompts, tooltips, and format masks with any
attribute of any data type used in the data control service interface so that the
attribute’s data is presented in a consistent, locale-sensitive way on every page
where it appears.

■ Declarative Validation

JSF supports validators that can be associated with a UI component; however, it
offers no mechanism to simplify validating the same business domain data in a
consistent way on every screen where it’s used. With ADF Model, you can
associate an extensible set of validator objects with the data control structure
definition metadata so that the validations will be enforced consistently, regardless
of which page the user employs to enter or modify the object’s data.

■ Declarative Security

JSF has no mechanism for integrating authorization information with UI
components. With ADF Model, you can associate user or role authorization
information with each attribute in the data control structure definition metadata so
that pages can display the information consistently only to users authorized to see
it.

1.1.3.4 Simplified Control Over Page Lifecycle
JSF rigorously defines the page processing lifecycle, but for some very common tasks it
requires you to write code in your own phase listener to implement it. What’s more,

Development Process with Oracle ADF and JavaServer Faces

1-10 Oracle Application Development Framework Developer’s Guide

until a future version of the JSF specification, phase listeners are global in nature,
requiring you to write conditional code based on the current page’s name when the
functionality applies only to a specific page. The ADF Model and ADF Controller
layers cooperate to simplify per-page control over the most common things you would
typically code in a custom phase listener, including:

■ Declarative Method Invocation

Configure business service method invocations with EL expression-based
parameter passing, and bind to method results with options to cache results until
method parameters change to avoid unnecessary requerying of data. You can have
methods invoked by the press of a command component like a link or button, or
configure your page definition to automatically invoke the method at an
appropriate phase of the JSF lifecycle

■ Declarative Page Lifecycle Control

Declaratively configure an iterator binding to refresh its data during a specific JSF
lifecycle phase, and optionally provide a conditional EL expression for finer
control over when that refresh is desired. You have the same control over when
any automatic method invocation should invoke its method as well.

■ Centralized Error Reporting

Customize the error reporting approach for your application in a single point
instead of on each page.

1.2 Development Process with Oracle ADF and JavaServer Faces
In this section, describes a simple example to acquaint you with the typical
development process of building an Oracle ADF application with JavaServer Faces.
This information is intended as a high-level overview of the basic workflow of J2EE
application building with Oracle ADF.

1.2.1 Overview of the Steps for Building an Application
Our example is based on a highly-simplified version of the Service Request tracking
system (the SRDemo sample), the real-world sample application used throughout the
remainder of this guide. In the Service Request tracking system, external users log
requests for technical assistance with products they’ve purchased. Internal users try to
assist the customers in the area in which they have expertise. This introduction focuses
on the basics, and examines a small slice of the system’s functionality related to users
and their areas of technical expertise.

You’ll examine the steps involved in building a simple JSF page like the one you see in
Figure 1–5 that allows the end user to browse for users by name, scroll through the
results, and for each user found, see their areas of technical expertise.

Development Process with Oracle ADF and JavaServer Faces

Introduction to Oracle ADF Applications 1-11

Figure 1–5 Simple Browse Users Page with Search and Master/Detail Data

1.2.1.1 Starting by Creating a New Application
The first step in building a new application is to assign it a name and to specify the
directory where its source files will be saved. Selecting Application from the
JDeveloper New Gallery launches the Create Application dialog shown in Figure 1–6.
Here you give the application a name, set a working directory, and provide a package
prefix for the classes you’ll create in the application. Suppose that you enter a package
prefix of oracle.srdemo so that, by default, all of the classes will be created in
packages whose names will begin with oracle.srdemo.*. Since you will be
building a web application using JSF, EJB, and TopLink, Figure 1–6 shows the
corresponding application template selected from the list. This application template is
set up to create separate projects named Model and ViewController with appropriate
technologies selected to build the respective layers of the application.

Figure 1–6 Creating a New Application Using an Application Template

Development Process with Oracle ADF and JavaServer Faces

1-12 Oracle Application Development Framework Developer’s Guide

1.2.1.2 Building the Business Service in the Model Project
You will typically start by building your business service interface, which by default is
done in the project named Model. Your Model project will comprise an EJB 3.0 session
bean to function as the service facade, and Java classes that represent the business
domain objects you need to work with. The model doesn’t need to be functionally
complete to proceed on to the subsequent steps of developing the UI, but defining the
service interface forces you to think about the data the view layer will need and the
information it may need to supply as parameters to your service methods to complete
the job. Since you’ll want to work with users and areas of expertise, the Java classes
named User and ExpertiseArea are created. Each class will contain properties to
reflect the data needed to represent users and areas of expertise.

Based on the requirements, suppose the business service needs to support finding
users by name. For this purpose, you can use the EJB Session Bean wizard to create a
stateless EJB 3.0 session bean using a container-managed transaction. Next you can
add a method called findUsersByName() to its local interface that accepts the
matching pattern as a parameter called name. To clearly communicate the type of the
result and obtain the best compile-time type checking possible, it is best practice to
declare the return type of the method to be List<User>, a strongly typed list of User
beans. Finally, you can write the method in the SRServiceBean class that
implements the service interface. Figure 1–7 shows what the service and its classes
look like in the Java class diagram in JDeveloper. You can see that the class also
contains the useful findAllUsers() method to return all users if needed.

Figure 1–7 SRService Session Bean Facade and Supporting Domain Classes

Because of the clean separation that ADF Model affords between the service and the
user interface, the remaining steps to build the page depend only on the service
interface, not its implementation. You can begin with a service that returns static test
data, but eventually you will want to map the User and ExpertiseArea classes to
appropriate tables in your database. This is where Oracle TopLink excels, and
JDeveloper’s integrated support for configuring your TopLink session and mappings
makes quick work of the task. If you already have database tables with similar
structure to your classes, Oracle TopLink can "automap" the classes to the tables for
you, and then you can adjust the results as needed. If the database tables do not exist
yet, you can use JDeveloper’s database diagrammer to design them before performing
the mapping operation. To implement the findUsersByName() method, you will
create a named query as part of the User mapping descriptor and provide the criteria
required to retrieve users matching a name supplied as a parameter. At runtime, the
Oracle TopLink runtime handles retrieving the results of the parameterized query
from the database based on XML-driven object/relational mapping information.

1.2.1.3 Creating a Data Control for Your Service to Enable Data Binding
With the business service in place, you can begin to think about building the user
interface. The first step in enabling drag-and-drop data binding for the business
service is to create a data control for it. Creating the data control publishes the service

Development Process with Oracle ADF and JavaServer Faces

Introduction to Oracle ADF Applications 1-13

interface to the rest of the Oracle ADF Model design time using JSR-227 service and
structure descriptions. To create a data control, you just drag the SRServiceBean
class onto JDeveloper’s Data Control Palette. Figure 1–8 shows the Data Control
Palette following this operation. You can see it reflects all of the service methods, any
parameters they expect, and the method return types. For the findUsersByName()
method, you can see that it expects a name parameter and that its return type contains
beans of type User. The nested email, lastName, and expertiseAreas properties
of the user are also displayed. Since expertiseAreas is a collection-typed property
(of type List<ExpertiseArea>), you also see its nested properties. The Operations
folder, shown collapsed in the figure, contains the built-in operations that the ADF
Model layer supports on collections like Previous, Next, First, Last, and so on.

Figure 1–8 Data Control Palette Displays Services Declarative Data Binding

As you build your application, when you add additional methods on your service
interface or change existing ones, simply drag and drop the SRServiceBean class
again on to the Data Control Palette and the palette—as well as its underlying data
binding metadata—will be refreshed to reflect your latest changes. The data control
configuration information resides in an XML file named DataControls.dcx that
JDeveloper adds to your Model project when you create the first data control. If you
create multiple data controls, the information about the kind of data control they are
(for example EJB, JavaBean, XML, web service, and so on.) and how to construct them
at runtime lives in this file. In addition, JDeveloper creates an XML structure definition
file for each data type involved in the service interface in a file whose name matches
the name of that data type. For an EJB service interface, this means one structure
definition file for the service class itself, and one for each JavaBean that appears as a
method return value or method argument in the service interface.

These structure definition files drive the Data Control Palette display and come into
play when you leverage the declarative, model-layer features like validators, prompts,
tooltips, format masks, and declarative security. Since you defined these features at the
model layer in these structure definition files, all your pages that present information
related to these types display and validate the information in a consistent way.
Figure 1–9 shows all of these files in the Model project in the Application Navigator
after the data control for SRServiceBean has been created.

Development Process with Oracle ADF and JavaServer Faces

1-14 Oracle Application Development Framework Developer’s Guide

Figure 1–9 Service Classes and Data Control Metadata Files in Model Project

1.2.1.4 Dragging and Dropping Data to Create a New JSF Page
With the data control created, you can begin doing drag-and-drop data binding to
create your page. Since you’ll be using ADF Faces components in your page, you first
ensure that the project’s tag libraries are configured to use them. Double-clicking the
ViewController project in the Application Navigator brings up the Project Properties
dialog where you can see what libraries are configured on the JSP Tag Libraries page.
If the ADF Faces Components and ADF Faces HTML libraries are missing, you can
add them from here. Figure 1–10 shows the Project Properties dialog with the
correction libraries for the ViewController project.

Figure 1–10 Configuring ViewController Project Tag Libraries to Use ADF Faces

Next, you use the Create JSF JSP wizard to create a page called browseusers.jspx.
You may be more familiar working with JSP pages that have a *.jsp extension, but
using a standard XML-based JSP "Document" instead is a best practice for JSF
development since it:

■ Simplifies treating your page as a well-formed tree of UI component tags

■ Discourages you from mixing Java code and component tags

■ Allows you to easily parse the page to create documentation or audit reports

When the Create JSF JSP wizard completes, JDeveloper opens the new page in the
visual editor. From there, creating the databound page shown in Figure 1–11 is a
completely drag-and-drop experience. As you drop elements from the Data Control

Development Process with Oracle ADF and JavaServer Faces

Introduction to Oracle ADF Applications 1-15

Palette onto the page, a popup menu appears to show the sensible options for UI
elements you can create for that element.

Figure 1–11 Browse Users JSF Page in the Visual Designer

The basic steps to create this page are:

1. Drop a panelForm component from the ADF Faces Core page of the Component
Palette onto the page and set its text attribute in the Property Inspector to "Browse
Users and Expertise Areas".

2. Drop the findUsersByName() method from the Data Control Palette to create an
ADF parameter form. This operation creates a panelForm component containing
the label, field, and button to collect the value of the name parameter for passing
to the method when the button is clicked.

3. Drop the User return value of the findUsersByName() node from the Data Control
Palette to create an ADF read-only form. This operation creates a panelForm
component containing the label and fields for the properties of the User bean.

4. Expand the Operations folder child of the User return value in the Data Control
Palette and drop the built-in Previous operation to the page as a command button.
Repeat to drop a Next button to the right of it.

5. Drop the expertiseAreas property nested inside the User return value in the Data
Control Palette as an ADF read-only table. Select Enable Sorting in the Edit Table
Columns dialog that appears to enable sorting the data by clicking on the column
headers.

At any time you can run or debug your page to try out the user interface that you’ve
built.

1.2.1.5 Examining the Binding Metadata Files Involved
The first time you drop a databound component from the Data Control Palette on a
page, JDeveloper will create the page definition file for it. Figure 1–12 shows the
contents of the browseusersPageDef.xml file in the Structure window. You can see
that an action binding named findUsersByName will be created to invoke the service

Development Process with Oracle ADF and JavaServer Faces

1-16 Oracle Application Development Framework Developer’s Guide

method of the same name. Iterator bindings named findUsersByNameIter and
expertiseAreasIterator will be created to handle the collection of User beans
returned from the service method and to handle the nested collection of
ExpertiseArea beans. Action bindings named Next and Previous will be created
to support the buttons that were dropped. And finally, attribute bindings of
appropriate names will be created to support the read-only outputText fields and
the table.

Figure 1–12 Page Definition XML File for browseusers.jsp

The very first time you perform Oracle ADF Model data binding in a project,
JDeveloper creates one additional XML file called DataBindings.cpx that stores
information about the mapping between page names and page definition names and
lists the data controls that are in use in the project. Figure 1–13 shows what the
DataBindings.cpx file looks like in the Structure window. At runtime, this file is
used to create the overall Oracle ADF Model binding context. In addition, page map
and page definition information from this file are used to instantiate the binding
containers for pages as they are needed by the pages the user visits in your
application.

Figure 1–13 Structure of DataBindings.cpx

1.2.1.6 Understanding How Components Reference Bindings via EL
As you perform drag-and-drop data binding operations, JDeveloper creates the
required ADF Model binding metadata in the page definition and creates the JSF
components you’ve requested. Importantly it also ties the two together by configuring

Note: For complete details on the structure and contents of the
DataControls.dcx, DataBindings.cpx, and PageDef.xml
metadata files, see Appendix A, "Reference ADF XML Files".

Development Process with Oracle ADF and JavaServer Faces

Introduction to Oracle ADF Applications 1-17

various properties on the components to have EL expression values that reference the
bindings. Figure 1–14 summarizes how the components on the page reference the
bindings from the page’s binding container at runtime.

Figure 1–14 EL Expressions Related Page Components to Bindings

As a simple example, take the Previous button. When you drop this built-in operation
as a button, an action binding named Previous is created in the page definition file,
and two properties of the commandButton component are set:

■ actionListener="#{bindings.Previous.execute}"

■ disabled="#{!bindings.Previous.enabled}"

These two EL expressions "wire" the button to invoke the built-in Previous operation
and to automatically disable the button when the Previous operation does not make
sense, such as when the user has navigated to the first row in the collection.

Studying another example in the page, like the read-only outputText field that
displays the user’s email, you would see that JDeveloper sets up the following
properties on the component to refer to its binding:

■ value="#{bindings.email.inputValue}"

■ label="#{bindings.email.label}"

The combination of these two binding attribute settings tells the component to pull its
value from the email binding, and to use the email binding’s label property as a
display label. Suppose you had configured custom prompts for the User and
ExpertiseArea beans in the Model project, the bindings can then expose this
information at runtime allowing the prompts to be referenced in a generic way by
components on the page.

The drag-and-drop data binding steps above did not account for how the current
record display (for example "N of M") appeared on the page. Since information about
the current range of visible rows, the starting row in the range, and the total number of
rows in the collection are useful properties available for reference on the iterator
binding, to create this display, just drop three outputText components from the
Component Palette and set each’s value attribute to an appropriate expression. The
first one needs to show the current row number in the range of results from the
findUsersByName method, so it is necessary to set its value attribute to an EL
expression that references the (zero-based!) rangeStart property on the
findUsersByNameIter binding.

Development Process with Oracle ADF and JavaServer Faces

1-18 Oracle Application Development Framework Developer’s Guide

#{bindings.findUsersByNameIter.rangeStart + 1}
The second outputText component just needs to show the word "of", so setting its
value property to the constant string "of" will suffice. The third outputText
component needs to show the total number of rows in the collection. Here, just a
reference to an attribute on the iterator binding called estimatedRowCount is
needed.

1.2.1.7 Configuring Binding Properties If Needed
Any time you want to see or set properties on bindings in the page definition, you can
select Go to Page Definition in the context menu on the page. For example, you would
do this to change the number of rows displayed per page for each iterator binding by
setting its RangeSize property. In the example shown in Figure 1–14, after visiting
the page definition, the Property Inspector was used to set the RangeSize of the
findUsersByNameIter iterator binding to 1 and the same property of the
expertiseAreasIterator to 2. Setting the RangeSize property for each iterator
causes one user and two expertise areas to display at a time on the page.

1.2.1.8 Understanding How Bindings Are Created at Runtime
The final piece of the puzzle to complete your basic understanding of Oracle ADF
Model involves knowing how your data controls and declarative bindings are created
at runtime based on the XML configuration files you’ve created. As part of configuring
your project for working with Oracle ADF data binding, JDeveloper registers a servlet
filter called ADFBindingFilter in the web.xml file of your ViewController
project and maps this filter by default to URLs matching the pattern *.jsp and
*.jspx.

This ADFBindingFilter servlet filter is responsible for finding your
DataBindings.cpx file, based on the information in the web.xml file and creating
the ADF binding context. The binding context is a Map that contains all binding
containers, data controls, and the mapping of page names to page definition files. You
can reference it at any time in your application using the EL expression #{data}. It’s
also the place where the centralized error handler is registered, and APIs are provided
to set a custom error handler if needed (together with numerous other useful APIs).

When the page request is received the application invokes both the JSF lifecycle and
the ADF lifecycle. Specifically, during execution of the ADF lifecycle execution,
another object, the ADFPhaseListener, lazily instantiates the bindings in a binding
container and data controls the first time they are needed to service a page request.
The ADFPhaseListener references the information in the page map on the binding
context to know which binding container to use for which page; it also references
information in the DataControls.dcx file to know what data control factory to use.
On each request, it ensures that the binding container of the current page being
requested is available for reference via EL using the expression #{bindings}.
Figure 1–15 summarizes the relationships between these metadata files.

Development Process with Oracle ADF and JavaServer Faces

Introduction to Oracle ADF Applications 1-19

Figure 1–15 How ADF Binding Metadata Is Used at Runtime

Once the binding container is set up for a given page, the ADFPhaseListener
integrates the JSF page handling lifecycle with the bindings. It coordinates the
per-page execution of the iterators and service methods based on information in the
appropriate page definition file. The iterators and method invocation bindings are
known as "executable" bindings for this reason.

1.2.2 Making the Display More Data-Driven
After you have a basic page working, you will likely notice some aspects that you’d
like to make more sophisticated. For example, you can use the properties of ADF
bindings to hide or show groups of components or to toggle between alternative sets
of components.

1.2.2.1 Hiding and Showing Groups of Components Based on Binding Properties
If the application user enters a last name in the browseusers.jspx page that
matches a single user, it doesn’t look very nice to show disabled Next and Previous
navigation buttons and a "1 of 1" record counter. Instead, you might want a result like
what you see in Figure 1–16, where these components disappear when only a single
row is returned.

Figure 1–16 Hiding Panel with Navigation Buttons When Not Relevant

.dcx

Model Data Control
Description File

Client Project
Description File Binding Context

Page
Definition File

ADF Data Binding Files

Data control

Data control

.cpx

Data control ref

Binding container ref1

Binding container ref2

.xml

Data control iterator

Data control binding1

Data control binding2

Development Process with Oracle ADF and JavaServer Faces

1-20 Oracle Application Development Framework Developer’s Guide

Luckily, this is easy to accomplish. You start by organizing the navigation buttons and
the record counter display into a containing panel component like
panelHorizontal. After creating the panel to contain them, you can drag and drop
in the visual editor, or drag and drop in the Structure window to place the existing
controls inside another container. Then, to hide or show all the components in the
panel, you just need to set the value of the panel’s rendered attribute to a data-driven
EL expression.

Recall that the number of rows in an iterator binding’s collection can be obtained using
its estimatedRowCount property. Figure 1–17 shows the EL picker dialog that
appears when you select the panelHorizontal component, click in the Property
Inspector on its rendered attribute, and click the ... button. If you expand the
bindings for the current page you will see the findUsersByNameIter iterator
binding. You can then expand it further to see the most common properties that
developers reference in EL. By picking estimatedRowCount and clicking the >
button, you can then change the expression to a boolean expression by introducing a
comparison operator to compare the row count to see if it is greater than one. When
you set such an expression, the panel will be rendered at runtime only when there are
two or more rows in the result.

Figure 1–17 Setting a Panel’s Rendered Attribute Based on Binding Properties

1.2.2.2 Toggling Between Alternative Sets of Components Based on Binding
Properties
Consider another situation in the sample page. When no rows are returned, by default
the read-only form would display its prompts next to empty space where the data
values would normally be, and the table of experience areas would display the column
headings and a blank row containing the words "No rows yet". To add a little more
polish to the application, you might decide to display something different when no
rows are returned in the iterator binding’s result collection. For example, you might
simply display a "No matches. Try again" message as shown in Figure 1–18.

Development Process with Oracle ADF and JavaServer Faces

Introduction to Oracle ADF Applications 1-21

Figure 1–18 Alternative Display If Search Produces Empty Collection

JSF provides a basic feature called a "facet" that allows a UI component to contain one
or more named, logical groups of other components that become rendered in a specific
way at runtime. ADF Faces supplies a handy switcher component that can evaluate
an EL expression in its FacetName attribute to determine which of its facets becomes
rendered at runtime. Using this component effectively lets you switch between any
groups of components in a dynamic and declarative way. If you group the components
that present the user information and experience area table into a panel, then you can
use the switcher component to switch between showing that panel and a simple
message depending on the number of rows returned.

Figure 1–19 shows the Structure window for the browseusers.jsp page reflecting
the hierarchical containership of JSF components after the switcher component is
introduced. First, you would set up two JSF facets and give them meaningful names
like found and notfound. Then you can organize the existing components into the
appropriate facet using drag and drop in the Structure window. In the found facet,
you want a panel containing all of the components that show the user and experience
area information. In the notfound facet, you want just an outputText component
that displays the "No matches. Try again" message.

Figure 1–19 Structure Window View of browseusers.jsp

By setting the facetName attribute of switcher to the EL expression, the found
facet will be used when the row count is greater than zero, and the notfound facet
will be used when the row count equals zero:

Development Process with Oracle ADF and JavaServer Faces

1-22 Oracle Application Development Framework Developer’s Guide

#{bindings.findUsersByNameIter.estimatedRowCount > 0
 ?'found':'notfound'}

The combination of Oracle ADF declarative bindings, ADF Faces components, and EL
expressions demonstrates another situation that previously required tedious, repetitive
coding which now can be handled with ease.

This concludes the introduction to building J2EE applications with Oracle ADF. The
rest of this guide describes the details of building a real-world sample application
using Oracle ADF, EJB, and JSF.

Oracle ADF Service Request Demo Overview 2-1

2
Oracle ADF Service Request Demo Overview

Before examining the individual web pages and their source code in depth, you may
find it helpful to become familiar with the functionality of the Oracle ADF Service
Request demo (SRDemo) application.

This chapter contains the following sections:

■ Section 2.1, "Introduction to the Oracle ADF Service Request Demo"

■ Section 2.2, "Setting Up the Oracle ADF Service Request Demo"

■ Section 2.3, "Quick Tour of the Oracle ADF Service Request Demo"

2.1 Introduction to the Oracle ADF Service Request Demo
The SRDemo application is a simplified, yet complete customer relationship
management sample application that lets customers of a household appliance
servicing company attempt to resolve service issues over the web. The application,
which consists of sixteen web pages, manages the customer-generated service request
through the following flow:

1. A customer enters the service request portal on the web and logs in.

2. A manager logs in and assigns the request to a technician.

Additionally, while logged in, managers can view and adjust the list of products
that technicians are qualified to service.

3. The technician logs in and reviews their assigned requests, then supplies a
solution or solicits more information from the customer.

4. The customer returns to the site to check their service request and either provides
further information or confirms that the technician’s solution resolved their
problem.

5. The technician returns to view their open service requests and closes any
confirmed by the customer as resolved.

6. While a request is open, managers can review an existing request for a technician
and if necessary reassign it to another technician.

After the user logs in, they see only the application functionality that fits their role as a
customer, manager, or technician.

Technically, the application design adheres to the Model-View-Controller (MVC)
architectural design pattern and is implemented using these existing J2EE application
frameworks:

■ EJB Session Bean to encapsulate the application services of the entity classes

Introduction to the Oracle ADF Service Request Demo

2-2 Oracle Application Development Framework Developer’s Guide

■ JavaBean entity classes created from TopLink mappings and database tables

■ JavaServer Faces navigation handler and declarative navigation rules

■ Oracle ADF Faces user interface components in standard JSF web pages

■ Oracle ADF Model layer components to provide data binding

As with all MVC-style web applications, the SRDemo application has the basic
architecture illustrated in Chapter One, "Getting Started with Oracle ADF
Applications".

This developer’s guide describes in detail the implementation of each of these layers.
Each chapter describes features of Oracle JDeveloper 10g and how these features can
be used to build J2EE web applications using techniques familiar to enterprise J2EE
developers.

2.1.1 Requirements for Oracle ADF Service Request Application
The SRDemo application has the following basic requirements:

■ An Oracle database (any edition) is required for the sample schema.

■ You must create a database connection named "SRDemo" to connect to the
SRDemo application schema. If you install the SRDemo application using the
Update Center, this connection will have been created for you (see Section 2.2.3,
"Creating the Oracle JDeveloper Database Connection").

■ The JUnit extension for JDeveloper must be installed. If you install the SRDemo
application using the Update Center, this extension will also be installed for you
(see Section 2.2.5, "Running the Oracle ADF Service Request Demo Unit Tests in
JDeveloper").

2.1.2 Overview of the Schema
Figure 2–1 shows the schema for the SRDemo application.

Introduction to the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 2-3

Figure 2–1 Schema Diagram for the SRDemo Application

The schema consists of five tables and three database sequences. The tables include:

■ USERS: This table stores all the users who interact with the system, including
customers, technicians, and managers. The e-mail address, first and last name,
street address, city, state, postal code, and country of each user is stored. A user is
uniquely identified by an ID.

■ SERVICE_REQUESTS: This table represents both internal and external requests for
activity on a specific product. In all cases, the requests are for a solution to a
problem with a product. When a service request is created, the date of the request,
the name of the individual who opened it, and the related product are all
recorded. A short description of the problem is also stored. After the request is
assigned to a technician, the name of the technician and date of assignment are
also recorded. All service requests are uniquely identified by a sequence-assigned
ID.

■ SERVICE_HISTORIES: For each service request, there may be many events
recorded. The date the request was created, the name of the individual who
created it, and specific notes about the event are all recorded. Any internal
communications related to a service request are also tracked. The service request
and its sequence number uniquely identify each service history.

■ PRODUCTS: This table stores all of the products handled by the company. For
each product, the name and description are recorded. If an image of the product is
available, that too is stored. All products are uniquely identified by a
sequence-assigned ID.

■ EXPERTISE_AREAS: This table defines specific areas of expertise of each
technician. The areas of expertise allow service requests to be assigned based on
the technician’s expertise.

The sequences include:

■ USERS_SEQ: Populates the ID for new users.

Setting Up the Oracle ADF Service Request Demo

2-4 Oracle Application Development Framework Developer’s Guide

■ PRODUCTS_SEQ: Populates the ID for each product.

■ SERVICE_REQUESTS_SEQ: Populates the ID for each new service request.

2.2 Setting Up the Oracle ADF Service Request Demo
These instructions assume that you are running Oracle JDeveloper 10g, Studio Edition,
version 10.1.3.x. The application will not work with earlier versions of JDeveloper. To
obtain JDeveloper, you may download it from the Oracle Technology Network (OTN):

http://www.oracle.com/technology/software/products/jdev/index.ht
ml

To complete the following instructions, you must have access to an Oracle database,
and privileges to create new user accounts to set up the sample data.

2.2.1 Downloading and Installing the Oracle ADF Service Request Application
The SRDemo application is available for you to install as a JDeveloper extension. In
JDeveloper, you use the Check for Updates wizard to begin the process of installing
the extension.

To install the SRDemo application from the Update Center:
1. If you are using JDeveloper, save your work and close. You will be asked to restart

JDeveloper to complete the update.

2. Open JDeveloper and choose Help > Check for Updates.

3. In the wizard, click Next and make sure that Search Update Centers and Internal
Automatic Updates are both selected. Click Next.

4. Among the available updates, locate Oracle ADF SRDemo Application and select
it. Click Next to initiate the download.

Note that the Update Center may display two versions of the SRDemo Sample
application. For this guide, you want to choose the one that shows "EJB 3.0 session
beans and TopLink persistence" in the description.

5. When prompted, restart JDeveloper.

6. When JDeveloper restarts, select Yes to open the SRDemo application workspace
in the Application Navigator.

7. JDeveloper displays the SRDemo Application Schema Install dialog to identify the
database to use for the sample data.

Setting Up the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 2-5

Figure 2–2 SRDemo Application Schema Dialog

8. If you want to install the sample data and have access to a SYSTEM DBA account,
enter the connection information in the Sample Install dialog.

Note: The connection information you provide may be for either a local or a
remote database, and that database may be installed with or without an existing
SRDemo schema.

The SRDemo application will appear in the directory <JDEV_
INSTALL>/jdev/samples/SRDemoSample. The Update Center also installs the
extension JAR file <JDEV_
INSTALL>/jdev/extensions/oracle.jdeveloper.srdemo.10.1.3.jar
which allows JDeveloper to create the SRDemo application workspace.

2.2.2 Installing the Oracle ADF Service Request Schema
The SRDemo schema is defined in a series of SQL scripts stored in the <JDEV_
INSTALL>/jdev/samples/SRDemoSample/DatabaseSchema/scripts
directory. The schema will automatically be created when you install the application
using the Update Center; however, for manual purposes, you can install or reinstall
the schema in several ways.

Follow these instructions to manually create the SRDemo schema.

To manually install the SRDemo schema:
■ From the command line, run the SRDemoInstall.bat/.sh command line script

from the SRDemoSample root directory.

Note: You may skip the following procedure if you installed the
SRDemo application using the Update Center in JDeveloper and
proceeded with the schema installer. For details, see Section 2.2.1,
"Downloading and Installing the Oracle ADF Service Request
Application".

Setting Up the Oracle ADF Service Request Demo

2-6 Oracle Application Development Framework Developer’s Guide

or

■ In JDeveloper, open the ANT build file build.xml in the BuildAndDeploy
project of the SRDemoSample workspace and run the setupDBOracle task by
choosing Run Ant Target from the task’s context menu.

or

■ From SQL*Plus, run the build.sql script when connected as a DBA such as
SYSTEM.

When you install the schema manually, using the setupDBOracle task, the following
questions and answers will appear:

SRDemo Database Schema Install 10.1.3
(c) Copyright 2006 Oracle Corporation. All rights reserved.

This script installs the SRDemo database schema into an
Oracle database.
The script uses the following defaults:

Schema name: SRDEMO
Schema password: ORACLE
Default tablespace for SRDEMO: USERS
Temp tablespace for SRDEMO: TEMP
DBA account used to create the Schema: SYSTEM
If you wish to change these defaults update the file
BuildAndDeploy/build.properties with your values

What happens next depends on how the demo was installed and what kind of
JDeveloper installation yours is (either FULL or BASE).

■ If the SRDemo application was installed manually and is not in the expected
<JDEV_HOME>/jdev/samples/SRDemoSample directory, you will be prompted
for the JDeveloper home directory.

■ If JDeveloper is a BASE install (one without a JDK), then you will be prompted for
the location of the JDK (1.5).

■ If the SRDemo application was installed using the Update Center into a FULL
JDeveloper install. The task proceeds.

You will next be prompted to enter database information. Two default choices are
given, or you can supply the information explicitly:

Information about your database:

Select one of the following database options:
1. Default local install of Oracle Personal, Standard or Enterprise edition
 Host=localhost, Port=1521, SID=ORCL
2. Default local install of Oracle Express Edition
 Host=localhost, Port=1521, SID=XE
3. Any other non-default or remote database install
Choice [1]:
If you choose 1 or 2, the install proceeds to conclusion. If you choose 3, then you will
need to supply the following information: (defaults shown in brackets)

Host Name or IP Address for your database machine [localhost]:
Database Port [1521]:
Database SID [orcl]:
The final question is for the DBA Account password:

Enter password for the SYSTEM DBA account [manager]:

Setting Up the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 2-7

The install continues.

2.2.3 Creating the Oracle JDeveloper Database Connection
You must create a database connection called "SRDemo" to connect to the sample data
schema. If you installed the SRDemo application using the Update Center, this
connection will have been created for you.

Follow these instructions to manually create a new database connection to the Service
Request schema.

To manually create a database connection for the SRDemo application:
1. In JDeveloper, choose View > Connections Navigator.

2. Right-click the Database node and choose New Database Connection from the
context menu.

3. Click Next on the Welcome page.

4. In the Connection Name field, type the connection name SRDemo. Then click
Next.

Note: The name of the connection (SRDemo) is case sensitive and must be typed
exactly to match the SRDemo application’s expected connection name.

5. On the Authentication page, enter the following values. Then click Next.

Username: SRDEMO

Password: Oracle

Deploy Password: Select the checkbox.

6. On the Connection page, enter the following values. Then click Next.

Host Name: localhost

JDBC Port: 1521

SID: ORCL (or XE)

Note: If you are using Oracle 10g Express Edition, then the default SID is "XE"
instead of "ORCL".

7. Click Test Connection. If the database is available and the connection details are
correct, then continue. If not, click the Back button and check the values.

8. Click Finish. The connection now appears below the Database Connection node
in the Connections Navigator.

You can now examine the schema from JDeveloper. In the Connections Navigator,
expand Database > SRDemo. Browse the database elements for the schema and
confirm that they match the schema definition described in Section 2.1.2, "Overview of
the Schema".

Note: You may skip the following procedure if you installed the
SRDemo application using the Update Center in JDeveloper. In that
case, the database connection will automatically be created when you
download the application.

Setting Up the Oracle ADF Service Request Demo

2-8 Oracle Application Development Framework Developer’s Guide

2.2.4 Running the Oracle ADF Service Request Demo in JDeveloper
If you installed the SRDemo application using the Update Center, choose Help > Open
SRDemo Application Workspace to open the application workspace.

■ Run the application in JDeveloper by selecting the UserInterface project in the
Application Navigator and choosing Run from the context menu, as shown in
Figure 2–3.

Figure 2–3 Running the SRDemo Application in JDeveloper

Running the index.jspx page from inside JDeveloper will start the embedded
Oracle Application Server 10g Oracle Containers for J2EE (OC4J) server, launch your
default browser, and cause it to request the following URL:

http://130.35.103.198:8988/SRDemo/faces/app/SRWelcome.jspx

If everything is working correctly, the index.jspx page’s simple scriptlet
response.sendRedirect("faces/app/SRWelcome.jspx"), will redirect to
display the login page of the SRDemo application, as shown in Figure 2–4.

Tip: The UserInterface project defines index.jspx to be the default
run target. This information appears in the Runner page of the Project
Properties dialog for the UserInterface project. This allows you to
simply click the Run icon in the JDeveloper toolbar when this project
is active, or right-click the project and choose Run. To see the project’s
properties, select the project in the navigator, right-click, and choose
Property Properties.

Setting Up the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 2-9

Figure 2–4 SRWelcome.jspx: SRDemo Login Page

See Section 2.3, "Quick Tour of the Oracle ADF Service Request Demo" to become
familiar with the web pages that are the subject of this developer’s guide.
Additionally, read the tour to learn about ADF functionality used in the SRDemo
application and to find links to the implementation details documented in this guide.

2.2.5 Running the Oracle ADF Service Request Demo Unit Tests in JDeveloper
JUnit is a popular framework for building regression tests for Java applications. Oracle
JDeveloper 10g features native support for creating and running JUnit tests, but this
feature is installed as a separately downloadable JDeveloper extension. You can tell if
you already have the JUnit extension installed by choosing File > New from the
JDeveloper main menu and verifying that you have a Unit Tests (JUnit) category
under the General top-level category in the New Gallery.

If you do not already have the JUnit extension installed, then use the Update Center in
JDeveloper to install it.

Tip: If your machine uses DHCP to get an automatically-assigned IP
address, then after JDeveloper launches your default browser and
starts embedded OC4J you may see an HTTP error stating that the
web page does not exist. To correct this issue, you can specify the host
name, localhost. Choose Embedded OC4J Preferences from the Tools
menu and on the Startup tab set the Host Name or IP Address Used
to Refer to the Embedded OC4J preference to use the Specify Host
Name option, and enter the value localhost. Then, edit the URL
above to use localhost instead of 130.35.103.198.

Note: You may skip the following procedure if you installed the
SRDemo application using the Update Center in JDeveloper. In that
case, the JUnit extension will automatically be installed when you
download the application.

Setting Up the Oracle ADF Service Request Demo

2-10 Oracle Application Development Framework Developer’s Guide

To install the JUnit extension from the Update Center:
1. If you are using JDeveloper, save your work and close. You will be asked to restart

JDeveloper to complete the update.

2. Open JDeveloper and choose Help > Check for Updates.

3. In the wizard, click Next and make sure that Search Update Centers and Internal
Automatic Updates are both selected. Click Next.

4. Among the available updates, locate JUnit Integration 10.1.3.xx and select it. Click
Next to initiate the download.

5. When prompted, restart JDeveloper.

6. When JDeveloper restarts, the new extension will be visible in the Unit Tests
category in the New Gallery.

The UnitTests project in the SRDemo application workspace contains a suite of
JUnit tests that are configured in the AllModelTests.java class shown in
Figure 2–5. To run the regression test suite, select the AllModelTests.java class in
the Application Navigator and choose Run from the context menu. Since this class is
configured as the default run target of the UnitTests project, alternatively you can
select the project itself in the Application Navigator and choose Run from its context
menu.

Figure 2–5 Running the SRDemo Unit Tests in JDeveloper

JDeveloper opens the JUnit Test Runner window to show you the results of running all
the unit tests in the suite. Each test appears in a tree display at the left, grouped into
test cases. Green checkmark icons appear next to each test in the suite that has
executed successfully, and a progress indicator gives you visual feedback on the
percentage of your tests that are passing.

Tip: You can find more details on JUnit on the web at
http://www.junit.org/index.htm.

Quick Tour of the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 2-11

2.3 Quick Tour of the Oracle ADF Service Request Demo
The SRDemo application is a realistic web portal application that allows customers to
obtain appliance servicing information from qualified technicians. After the customer
opens a new service request, a service manager assigns the request to a technician with
suitable expertise. The technician sees the open request and updates the customer’s
service request with information that may help the customer solve their problem.

The application recognizes three user roles (customer, manager, and technician). As the
following sections show, the application features available to the user depend on the
user’s role.

2.3.1 Customer Logs In and Reviews Existing Service Requests
Enter the log in information for a customer:

■ User name: dfaviet

■ Password: welcome

Click the Sign On button to proceed to the web portal home page.

To enter the web portal click the Start button.

This action displays the customer’s list of open service requests, as shown in
Figure 2–6.

Figure 2–6 SRList.jspx: List Page for a Customer

Note: The remainder of this chapter provides an overview of the
web pages you will see when you run the SRDemo application. You
can quickly find implementation details in this guide from the list at
the end of each section. For an overview of the underlying business
logic, read Chapter Three.

Quick Tour of the Oracle ADF Service Request Demo

2-12 Oracle Application Development Framework Developer’s Guide

When you log in as the customer, the list page displays a menu with only two tabs,
with the subtabs for My Service Requests selected.

Note that additional tabs will be visible when you log in as the manager or technician.

Select the menu subtab All Requests to display both closed and open requests.

To browse the description of any request, select the radio button corresponding to the
row of the desired request and click View.

The same operation can also be performed by clicking on the service request link in
Request Id column.

The customer uses the resulting page to update the service request with their response.
To append a note to the current service request, click Add a note.

Figure 2–7 shows an open service request selected by a customer and the note they are
about to append. Notice that the buttons above the text input field appear disabled to
prevent the user from selecting those operations until the task is completed. Below the
note field, is the list of previous notes for this master service request.

Figure 2–7 SRMain.jspx: Main Page for a Customer

Where to Find Implementation Details
The Oracle ADF Developers Guide describes the following major features of this
section.

■ Using dynamic navigation menus: The menu tabs and subtabs which let the user
access the desired pages of the application, are created declaratively by binding
each menu component to a menu model object and using the menu model to

Quick Tour of the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 2-13

display the appropriate menu items. See Section 11.2, "Using Dynamic Menus for
Navigation".

■ Displaying data items in tables: The list of service requests is formatted by a UI
table component bound to a collection. The Data Control Palette lets you easily
drop databound components into your page. See Section 7.2, "Creating a Basic
Table".

■ Displaying a page by passing parameter values: The user may select a service
request from the list of open requests and edit the details in the edit page. The
commandLink is used to both navigate to the detail page and to send the
parameters that the form creation method uses to display the detail page data. See
Section 10.4, "Setting Parameter Values Using a Command Component".

■ Using a method with parameters to create a form: The user drills down to a
browse form that gets created using a finder method from the service. Instead of
the method returning all service requests, it displays only the specific service
request passed by the previous page. See Section 10.6, "Creating a Form or Table
Using a Method that Takes Parameters".

■ Displaying master-detail information: The user can browse the service history for
a single service request in one form. The enter form can be created using the Data
Control Palette. See Section 8.3, "Using Tables and Forms to Display Master-Detail
Objects".

2.3.2 Customer Creates a Service Request
To create a new service request, select the New Service Request tab.

This action displays the first page of a two-step process train for creating the service
request. Figure 2–8 shows the first page.

Figure 2–8 SRCreate.jspx: Step One, Create-Service-Request Page

Quick Tour of the Oracle ADF Service Request Demo

2-14 Oracle Application Development Framework Developer’s Guide

The input fields that your page displays can raise validation errors when the user fails
to supply required information. To see how the application handles a validation error,
by clicking the Logout menu item before entering a problem description for the new
service request.

Figure 2–9 shows the validation error that occurs in the create-service-request page
when the problem description is not entered. The error message that displays below
the problem description field directs the user to enter a description.

Figure 2–9 SRCreate.jspx: Step One Validation Error in Page

You can see another way of handling validation errors by clicking the Continue button
before entering a problem description.

Figure 2–10 shows the validation error that displays within a dialog when the problem
description is not entered.

Figure 2–10 SRCreate.jspx: Step One Validation Error in Separate Dialog

To proceed to the next page of the process train, first type some text into the problem
description field, then either choose Confirm from the dropdown menu or click the
Continue button.

Quick Tour of the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 2-15

In the next step, the customer confirms that the information is correct before
submitting the request. Figure 2–11 shows the final page. Notice that the progress bar
at the top of the page identifies Confirm is the last step in this two-page
create-service-request process chain.

Figure 2–11 SRCreateConfirm.jspx: Step Two, Create-Service-Request Page

Click the Submit Request button to enter the new service request into the database. A
confirmation page displays after the new entry is created, showing the service request
ID assigned to the newly created request.

To continue the application as the manager role, click the Logout menu item to return
to the login page.

Where to Find Implementation Details
The Oracle ADF Developers Guide describes the following major features of this
section.

■ Creating a new record: The user creates a new service request using a form that
commits the data to the data source. JDeveloper lets you create default constructor
methods on the service as an easy way to drop record creation forms.
Alternatively, custom methods on the service may be used. See Section 10.7,
"Creating an Input Form for a New Record".

■ Multipage process: The ADF Faces components processTrain and
processChoiceBar guide the user through the process of creating a new service
request. See Section 11.5, "Creating a Multipage Process".

■ Showing validation errors in the page: There are several ways to handle data-entry
validation in an ADF application. You can take advantage of validation rules
provided by the ADF Model layer. See Section 12.3, "Adding Validation".

Quick Tour of the Oracle ADF Service Request Demo

2-16 Oracle Application Development Framework Developer’s Guide

■ Handling page navigation using a command button: The application displays the
appropriate page when the user chooses the Cancel or Submit button. Navigation
rules, with defined outcomes, determine which pages is displayed after the button
click. See Section 9.1, "Introduction to Page Navigation".

2.3.3 Manager Logs In and Assigns a Service Request
Enter the log in information for a manager:

■ User name: sking

■ Password: welcome

Click the Sign On button to proceed to the web portal home page.

Click the Start button.

This action displays the manager’s list of open service requests. The list page displays
four menu tabs, with the subtabs for the My Service Requests tab selected.

To see a description of any request, select a radio button corresponding to the row of
the desired request and click View.

Figure 2–12 shows an open service request. Notice that when logged in as the
manager, the page displays an Edit button and a Delete Service History Record
button. These two operations are role-based and only available to the manager.

Figure 2–12 SRMain.jspx: Main Page for a Manager

To edit the current service request, click Edit.

Quick Tour of the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 2-17

Figure 2–13 shows the detail edit page for a service request. Unlike the page displayed
for the technician, the manager can change the status and the assigned technician.

Figure 2–13 SREdit.jspx: Edit Page for a Manager

To find another technician to assign, click the symbol next to the assigned person’s
name.

Figure 2–14 shows the query by criteria search page that allows the manager to search
for staff members (managers and technicians). This type of search allows wild card
characters, such as the % and * symbols.

Figure 2–14 SRStaffSearch.jspx: Staff Search Page for a Manager

To assign another staff member to this service request, click the selection button next to
the desired staff’s name.

Quick Tour of the Oracle ADF Service Request Demo

2-18 Oracle Application Development Framework Developer’s Guide

To update the open service request with the selected staff member, click the Select
button.

Where to Find Implementation Details
The Oracle ADF Developers Guide describes the following major features of this
section.

■ Databound dropdown lists: The ADF Faces component selectOneChoice
allows the user to change the status of the service request or to pick the type of
service request to perform a search on. See Section 11.7, "Creating Databound
Dropdown Lists".

■ Searching for a record: The user can search existing service requests using a
query-by-example search form. In this type of query, the user enters criteria info a
form based on known attributes of an object. Wild card search is supported. See
Section 10.8, "Creating Search Pages".

■ Using a popup dialog: At times you may prefer to display information in a
separate dialog that lets the user postback information to the page. The search
window uses a popup dialog rather than display the search function in the page.
See Section 12.7, "Displaying Error Messages" and Section 11.3, "Using Popup
Dialogs".

■ Using Partial Page Rendering: When the user clicks the flashlight icon (which is a
commandLink component with an objectImage component), a popup dialog
displays to allow the user to search and select a name. After selecting a name, the
popup dialog closes and the Assigned to display-only fields are refreshed with the
selected name; other parts of the edit page are not refreshed. See Section 11.4,
"Enabling Partial Page Rendering".

■ Using managed bean to store information: Pages often require information from
other pages in order to display correct information. Instead of setting this
information directly on a page, which essentially hardcodes the information, you
can store this information on a managed bean. For example, the managed bean
allows the application to save the page which displays the SREdit page and to use
the information in order to determine where to navigate for the Cancel action. See
Section 10.2, "Using a Managed Bean to Store Information".

■ Passing parameters between pages: The commandLink component is used to both
navigate to the SREdit page and to set the needed parameter for the
findServiceRequestById(Integer) method used to create the form that
displays the data on the SREdit page. You can use the ADF Faces
setActionListener component to set parameters. See Section 10.4, "Setting
Parameter Values Using a Command Component".

2.3.4 Manager Views Reports and Updates Technician Skills
To access the manager-only page, select the Management tab.

Quick Tour of the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 2-19

This action displays the staff members and their service requests in a master-detail
ADF Faces tree table component. Figure 2–15 shows the tree table with an expanded
technician node.

Figure 2–15 SRManage.jspx: Management Reporting Page

Each child node in the tree table is linked to a detail service request report. Click the
child node link Defroster is not working properly to display the detail:

Each staff name is linked to a detail of the staff member’s assigned skills. Click the
staff name link Alexander Hunold to display the list of assigned skills:

Quick Tour of the Oracle ADF Service Request Demo

2-20 Oracle Application Development Framework Developer’s Guide

To access the skills assignment page, select the Technician Skills subtab.

This action displays a staff selection dropdown list and an ADF Faces shuttle
component. Figure 2–16 shows the shuttle component populated with the skills of the
selected staff member.

Figure 2–16 SRSkills.jspx: Technician Skills Assignment Page

Use the supplied Move, Move All, Remove, or Remove All links to shuttle items
between the two lists. The manager can make multiple changes to the Assigned Skills
list before committing the changes. No changes to the list are committed until the Save
skill changes button is clicked.

Quick Tour of the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 2-21

To continue the application as the technician role, click the Logout menu item to return
to the login page.

Where to Find Implementation Details
The Oracle ADF Developers Guide describes the following major features of this
section.

■ Creating a shuttle control: The ADF Faces component selectManyShuttle lets
managers assign product skills to a technician. The component renders two list
boxes, and buttons that allow the user to select multiple items from the leading (or
"available") list box and move or shuttle the items over to the trailing (or
"selected") list box, and vice versa. See Section 11.8, "Creating a Databound
Shuttle".

■ Role-based authorization: You can set authorization policies against resources and
users. For example, you can allow only certain groups of users the ability to view,
create or change certain data or invoke certain methods. Or you can prevent
components from rendering based on the group a user belongs to. See Section 18.7,
"Implementing Authorization Programmatically".

2.3.5 Technician Logs In and Updates a Service Request
Enter the log in information for a technician:

■ User name: ahunold

■ Password: welcome

Click the Sign On button to proceed to the web portal home page.

Click the Start button.

This action displays the technician’s list of open service requests. The list page displays
two tabs, with the subtabs for the My Service Requests tab selected.

To open a request, select a radio button corresponding to the row with the desired
request and click View.

The technician uses the displayed page to update the service request with their
response. To attach a document to the current service request, click Upload a
document.

Quick Tour of the Oracle ADF Service Request Demo

2-22 Oracle Application Development Framework Developer’s Guide

Figure 2–17 shows the file upload window. (Please note the SRDemo application
currently provides no means to view the contents of the uploaded document.)

Figure 2–17 SRFileUpload.jspx: File Upload Page Displayed for a Technician

Where to Find Implementation Details
File uploading: Standard J2EE technologies such as Servlets and JSP, and JSF 1.1.x, do
not directly support file uploading. The ADF Faces framework, however, has
integrated file uploading support at the component level via the inputFile
component. See Section 11.6, "Providing File Upload Capability".

Changing application look and feel: Skins allow you to globally change the appearance
of ADF Faces components within an application. A skin is a global style sheet that
only needs to be set in one place for the entire application. Instead of having to style
each component, or having to insert a style sheet on each page, you can create one skin
for the entire application. See Section 14.3, "Using Skins to Change the Look and Feel".

Automatic locale-specific UI translation: ADF Faces components provide automatic
translation. The resource bundle used for the components’ skin (which determines
look and feel, as well as the text within the component) is translated into 28 languages.
For example, if a user sets the browser to use the German language, any text contained
within the components will automatically display in German. See Section 14.4,
"Internationalizing Your Application".

Building and Using Application Services 3-1

3
Building and Using Application Services

This chapter describes how to build and use application services in JDeveloper

This chapter includes the following sections:

■ Section 3.1, "Introduction to Business Services"

■ Section 3.2, "Implementing Services with EJB Session Beans"

■ Section 3.3, "Creating Classes to Map to Database Tables"

■ Section 3.4, "Mapping Classes to Tables"

■ Section 3.5, "Mapping Related Classes with Relationships"

■ Section 3.6, "Finding Objects by Primary Key"

■ Section 3.7, "Querying Objects"

■ Section 3.8, "Creating and Modifying Objects with a Unit of Work"

■ Section 3.9, "Interacting with Stored Procedures"

■ Section 3.10, "Exposing Services with ADF Data Controls"

3.1 Introduction to Business Services
Oracle recommends developing the model portion of an application using TopLink to
persist POJO (plain old Java objects) for your business services, EJB session beans to
implement a session facade, and how to expose the functionality through a data
control. Oracle JDeveloper includes several wizards to quickly and easily create your
model project.

Refer to Chapter 19, "Advanced TopLink Topics" for additional information on using
TopLink ADF.

For detailed information on Oracle TopLink, refer to the complete Oracle TopLink
Developer’s Guide and Oracle TopLink Javadoc.

Tip: Most teams have their own respective source control
management (SCM) procedures, policies, and common philosophies
towards what constitutes a transaction or unit of work for the SCM
system. In the absence of a policy, you should group logical changes
into a transaction, and also commit your changes when you need to
share your modifications with another member of your team. In
general, it is not advisable to commit changes when they do not
compile cleanly or pass the unit test created for them.

Implementing Services with EJB Session Beans

3-2 Oracle Application Development Framework Developer’s Guide

3.2 Implementing Services with EJB Session Beans
A session bean exposes the functionality of the business layer to the client.

The most common use of a session bean is to implement the session facade J2EE
design pattern. A session facade is a session bean that aggregates data and presents it
to the application through the model layer. Session facades have methods that access
entities as well as methods that expose services to clients. Session beans have a
transactional context via the container, so they automatically support basic CRUD
functionality.

Figure 3–1 Session Facade Functionality

3.2.1 How to Create a Session Bean
To create a session bean, use the Create Session Bean wizard. This wizard is available
from the New Gallery, in the Business Tier category.

The Create Session Bean wizard offers several options, such as EJB version, stateful
and stateless sessions, remote and/or local interfaces, container- or bean-managed
transactions (CMT or BMT), and choosing how to implement session facade methods.
When you create a session bean for a TopLink project, you must choose an EJB 3.0
version session bean and a stateless session. You should also choose
container-managed transactions (CMT), as bean-managed transactions (BMT) are
beyond the scope of this book. The other options in the Create Session Bean wizard are
discussed below.

3.2.1.1 Remote and Local Interfaces
The type of interface required depends on the client. If the client is running in the same
virtual machine (VM), a local interface is usually the best choice. If the client runs on a
separate VM, a remote interface is required. Most Web applications (JSF/JSP/Servlet)
have the client and service running in the same VM, so a local interface is the best
practice. Java clients (ADF Swing) run in a separate VM and require a remote interface.

3.2.1.2 Generating Session Facade Methods
A session facade contains core CRUD methods for transactions as well as methods to
access entities. To generate session facade methods, select the checkbox for Generate
Session Facade Methods in the Create Session Bean wizard, and use the following

Note: While you can expose methods on a TopLink entity directly as
a business service, this is not the best practice for a Web application.
This model will work for basic CRUD functionality, but even simple
operations that include interactions between business layer objects
require custom code that becomes difficult and unwieldy.

Expertise
Areas

- CRUD methods
- Business methods
- Service methods

- Container-managed transactions
- Search functionality
- TopLink session management

TopLink
POJOs

EJB 3.0
Session

Bean

Products Users
Service
Histories

Service
Requests

Implementing Services with EJB Session Beans

Building and Using Application Services 3-3

page to specify which methods to generate. JDeveloper automatically detects all the
entities in the project and allows you to choose which entities and methods you want
to create session facade methods for.

You can generate session facade methods for every entity in the same project, which
can be useful for testing purposes, but is often too much clutter in a single session
bean. Session beans are often tailored to a specific task, and contain no more
information than is required for that task. Use the tree control to explicitly choose
which methods to generate.

Figure 3–2 Selecting Session Facade Methods

3.2.2 What Happens When You Create a Session Bean
The session bean class contains session-wide fields and service methods. When you
create a session bean, JDeveloper generates the bean class and a separate file for the
local and/or remote interfaces. The remote interface is the name of the session bean,
for example, SRAdminFacade.java, while the bean class is appended with Bean.java
and the local interface is appended with Local.java. You should not need to modify the
interface files directly, so they are not visible in the Application Navigator. To view the
interface files, use the System Navigator or the Structure Pane.

Example 3–1 SRAdminFacade.java Interface

package oracle.srdemo.model;
import java.util.List;
import javax.ejb.Local;
import oracle.srdemo.model.entities.ExpertiseArea;

Implementing Services with EJB Session Beans

3-4 Oracle Application Development Framework Developer’s Guide

import oracle.srdemo.model.entities.Product;
import oracle.srdemo.model.entities.User;
import oracle.toplink.sessions.Session;

@Local
public interface SRAdminFacade {
 Object mergeEntity(Object entity);
 Object persistEntity(Object entity);
 Object refreshEntity(Object entity);

 void removeEntity(Object entity);

 List<ExpertiseArea> findExpertiseByUserId(Integer userIdParam);

 ExpertiseArea createExpertiseArea(Product product, User user, Integer prodId,
 Integer userId, String expertiseLevel,
 String notes);

 Product createProduct(Integer prodId, String name, String image,
 String description);

 List<User> findAllStaffWithOpenAssignments();

 User createUser(Integer userId, String userRole, String email,
 String firstName, String lastName, String streetAddress,
 String city, String stateProvince, String postalCode,
 String countryId);

 void updateStaffSkills(Integer userId, List<Integer> prodIds);
}

Example 3–2 SRAdminFacadeBean.java Bean Class

package oracle.srdemo.model;

import java.util.ArrayList;
import java.util.List;
import java.util.Vector;
import javax.ejb.Stateless;
import oracle.srdemo.model.entities.ExpertiseArea;
import oracle.srdemo.model.entities.Product;
import oracle.srdemo.model.entities.User;
import oracle.toplink.sessions.Session;
import oracle.toplink.sessions.UnitOfWork;
import oracle.toplink.util.SessionFactory;

@Stateless(name="SRAdminFacade")
public class SRAdminFacadeBean implements SRAdminFacade {
 private SessionFactory sessionFactory;

 public SRAdminFacadeBean() {
 this.sessionFactory =
 new SessionFactory("META-INF/sessions.xml", "SRDemo");
 }

 /**
 * Constructor used during testing to use a local connection
 * @param sessionName
 */
 public SRAdminFacadeBean(String sessionName) {

Implementing Services with EJB Session Beans

Building and Using Application Services 3-5

 this.sessionFactory =
 new SessionFactory("META-INF/sessions.xml", sessionName);

 }

 public Object mergeEntity(Object entity) {
 UnitOfWork uow = getSessionFactory().acquireUnitOfWork();
 Object workingCopy = uow.readObject(entity);
 if (workingCopy == null)
 throw new RuntimeException("Could not find entity to update");
 uow.deepMergeClone(entity);
 uow.commit();

 return workingCopy;
 }

 public Object persistEntity(Object entity) {
 UnitOfWork uow = getSessionFactory().acquireUnitOfWork();
 Object newInstance = uow.registerNewObject(entity);
 uow.commit();

 return newInstance;
 }

 public Object refreshEntity(Object entity) {
 Session session = getSessionFactory().acquireUnitOfWork();
 Object refreshedEntity = session.refreshObject(entity);
 session.release();

 return refreshedEntity;
 }

 public void removeEntity(Object entity) {
 UnitOfWork uow = getSessionFactory().acquireUnitOfWork();
 Object workingCopy = uow.readObject(entity);
 if (workingCopy == null)
 throw new RuntimeException("Could not find entity to update");
 uow.deleteObject(workingCopy);
 uow.commit();
 }

 private SessionFactory getSessionFactory() {
 return this.sessionFactory;
 }

 public List<ExpertiseArea> findExpertiseByUserId(Integer userIdParam) {
 List<ExpertiseArea> result = null;

 if (userIdParam != null){
 Session session = getSessionFactory().acquireSession();
 Vector params = new Vector(1);
 params.add(userIdParam);
 result = (List<ExpertiseArea>)session.executeQuery("findExpertiseByUserId",
ExpertiseArea.class, params);
 session.release();
 }

 return result;
 }

Implementing Services with EJB Session Beans

3-6 Oracle Application Development Framework Developer’s Guide

 public ExpertiseArea createExpertiseArea(Product product, User user,
 Integer prodId, Integer userId,
 String expertiseLevel,
 String notes) {
 UnitOfWork uow = getSessionFactory().acquireUnitOfWork();
 ExpertiseArea newInstance =
(ExpertiseArea)uow.newInstance(ExpertiseArea.class);

 if (product == null) {
 product = (Product)uow.executeQuery("findProductById", Product.class,
prodId);
 }

 if (user == null){
 user = (User)uow.executeQuery("findUserById", User.class, userId);
 }

 newInstance.setProduct(product);
 newInstance.setUser(user);
 newInstance.setProdId(prodId);
 newInstance.setUserId(userId);
 newInstance.setExpertiseLevel(expertiseLevel);
 newInstance.setNotes(notes);
 uow.commit();

 return newInstance;
 }

 public Product createProduct(Integer prodId, String name, String image,
 String description) {
 UnitOfWork uow = getSessionFactory().acquireUnitOfWork();
 Product newInstance = (Product)uow.newInstance(Product.class);
 newInstance.setProdId(prodId);
 newInstance.setName(name);
 newInstance.setImage(image);
 newInstance.setDescription(description);
 uow.commit();

 return newInstance;
 }

 public List<User> findAllStaffWithOpenAssignments() {
 Session session = getSessionFactory().acquireSession();
 List<User> result =
 (List<User>)session.executeQuery("findAllStaffWithOpenAssignments",
User.class);
 session.release();
 return result;
 }

 public User createUser(Integer userId, String userRole, String email,
 String firstName, String lastName,
 String streetAddress, String city,
 String stateProvince, String postalCode,
 String countryId) {
 UnitOfWork uow = getSessionFactory().acquireUnitOfWork();
 User newInstance = (User)uow.newInstance(User.class);
 newInstance.setUserId(userId);
 newInstance.setUserRole(userRole);
 newInstance.setEmail(email);

Implementing Services with EJB Session Beans

Building and Using Application Services 3-7

 newInstance.setFirstName(firstName);
 newInstance.setLastName(lastName);
 newInstance.setStreetAddress(streetAddress);
 newInstance.setCity(city);
 newInstance.setStateProvince(stateProvince);
 newInstance.setPostalCode(postalCode);
 newInstance.setCountryId(countryId);
 uow.commit();

 return newInstance;
 }

 public void updateStaffSkills(Integer userId, List<Integer> prodIds) {
 List<Integer> currentSkills;

 if (userId != null) {
 List<ExpertiseArea> currentExpertiseList = findExpertiseByUserId(userId);
 currentSkills = new ArrayList(currentExpertiseList.size());

 //Look for deletions
 for(ExpertiseArea expertise:currentExpertiseList){
 Integer prodId = expertise.getProdId();
 currentSkills.add(prodId);

 if (!prodIds.contains(prodId)){
 removeEntity(expertise);
 }
 }

 //Look for additions
 for (Integer newSkillProdId: prodIds){
 if(!currentSkills.contains(newSkillProdId)){
 //need to add
 this.createExpertiseArea(null,
null,newSkillProdId,userId,"Qualified",null);
 }
 }
 }
 }
}

3.2.3 What You May Need to Know When Creating a Session Bean
Typically you create one session facade for every logical unit in your application. A
task could be defined in a large scope, by a role for instance, such as creating a session
facade for administrative client operations and another session facade for customer
client operations.How you create and name your session facades can facilitate UI
development, so tailoring your session facades toward a particular task and using
names that describe the task is a good practice.

When you generate session facade methods, a findAll() method is created by default
for each entity. If you do not want to generate this method, deselect it in the tree
control on the Session Facade Options page.

When creating or editing session facade methods, you cannot select both TopLink and
EJB entities. If the project is enabled for TopLink entities, only those entities will be
available as session facade methods. Support for combining TopLink and EJB entities
in a single session facade is planned for a future release.

Creating Classes to Map to Database Tables

3-8 Oracle Application Development Framework Developer’s Guide

3.2.4 How to Update an Existing Session Bean With New Entities
New session beans can be created at any time using the wizard. However, you may
have an existing session bean that already contains custom implementation code that
you want to update with new persistent data objects or methods.

To update an existing session bean, right click on the session bean and choose Edit
Session Facade. Use the Session Facade Options dialog to select the entities and
methods to expose. Note that if you have created new entities, the Session Facade
Options dialog will display new entities in the same project, but cannot detect entities
in different projects.

3.3 Creating Classes to Map to Database Tables
The TopLink map (.mwp file) contains the information required to represent database
tables as Java classes. You can use the Create TopLink Map wizard or the Mapping
editor to create this data, or manually code the file using Java and the TopLink API.

Use this information, or metadata, to pass configuration information into the run-time
environment. The run-time environment uses the information in conjunction with the
persistent entities (Java objects or EJB entity beans) and the code written with the
TopLink API, to complete the application.

Figure 3–3 TopLink Metadata

Descriptors
Descriptors describe how a Java class relates to a data source representation. They
relate object classes to the data source at the data model level. For example, persistent
class attributes may map to database columns.

TopLink uses descriptors to store the information that describes how an instance of a
particular class can be represented in a data source (see Section 3.4, "Mapping Classes
to Tables"). Most descriptor information can be defined by TopLink, then read from the
project XML file at run time.

Persistent Classes
Any class that registers a descriptor with a TopLink database session is called a
persistent class. TopLink does not require that persistent classes provide public
accessor methods for any private or protected attributes stored in the database.

3.3.1 How to Create Classes
To automatically create Java classes from your database table, use the Create Java
Objects from Tables wizard. With this wizard you can create the following:

■ Java class for each table

■ TopLink map

■ Mapped attributes for each tables’ columns

Creating Classes to Map to Database Tables

Building and Using Application Services 3-9

Figure 3–4 Create Java Objects from Tables Wizard

After creating the initial Java classes and TopLink mappings, use the Mapping editor
to customize the information. Refer to the Oracle JDeveloper online help for additional
information.

3.3.2 What Happens when you Create a Class
After completing the Create Java Objects from Tables wizard JDeveloper creates a
TopLink map and adds it to the project.

Figure 3–5 Navigation Window

The wizard will also create TopLink descriptor and mappings for each Java attribute
(as defined by the structure and relationships in the database).

Creating Classes to Map to Database Tables

3-10 Oracle Application Development Framework Developer’s Guide

Figure 3–6 Structure Window

3.3.3 What You May Need to Know
After creating a Java class from a database table, you can modify the generated
TopLink descriptor and mappings. This section includes information on the following:

■ Associating Descriptors with Different Database Tables

■ Using Amendment Methods

■ Modifying the Generated Code

3.3.3.1 Associating Descriptors with Different Database Tables
The Create Java Objects from Tables wizard will associate the TopLink descriptor with
a specific database table.

Use the Multitable Info tab in the Mapping editor (as shown in Figure 3–7) to associate
an amendment method with a descriptor.

Figure 3–7 Sample Multitable Info Tab

3.3.3.2 Using Amendment Methods
You can associate a static Java method to be called when a descriptor is loaded at run
time. This method can amend the run-time descriptor instance through the descriptor
Java code API. Use this method to make some advanced configuration options that
may not be currently supported by the TopLink.

Mapping Classes to Tables

Building and Using Application Services 3-11

The Java method must have the following characteristics:

■ Be public static.

■ Take a single parameter of type
oracle.toplink.descriptors.ClassDescriptor.

Use the After Load tab in the Mapping editor (as shown in Figure 3–8) to associate an
amendment method with a descriptor.

Figure 3–8 Sample After Load Tab

3.3.3.3 Modifying the Generated Code
When using the Create Java Objects from Tables wizard, Oracle JDeveloper
automatically generates the basic code for your Java classes.

Example 3–3 Sample Generated Java Class

package mypackage;
import java.util.ArrayList;
import java.util.List;

public class Address {
/**Map employeeCollection <-> mypackage.Employee
* @associates <{mypackage.Employee}>
*/

private List employeeCollection;
private Long addressId;
private String pCode;

...

3.4 Mapping Classes to Tables
One of the greatest strengths of TopLink is its ability to transform data between an
object representation and a representation specific to a data source. This
transformation is called mapping and it is the core of a TopLink project.

A mapping corresponds to a single data member of a domain object. It associates the
object data member with its data source representation and defines the means of
performing the two-way conversion between object and data source.

TopLink uses the metadata produced by Mapping editor to describe how objects and
beans map to the data source. This approach isolates persistence information from the
object model—developers are free to design their ideal object model and DBAs are free
to design their ideal schema.

Mapping Classes to Tables

3-12 Oracle Application Development Framework Developer’s Guide

3.4.1 Types of Mappings
Within ADF, TopLink supports relational and object-relational mappings.

■ Relational Mappings – Mappings that transform any object data member type to a
corresponding relational database (SQL) data source representation in any
supported relational database. Relational mappings allow you to map an object
model into a relational data model.

■ Object-Relational Mappings – Mappings that transform certain object data
member types to structured data source representations optimized for storage in
specialized object-relational databases such as Oracle Database. Object-relational
mappings allow you to map an object model into an object-relational data model.

3.4.2 Direct Mappings
You can create the following direct mappings in TopLink:

■ Direct-to-field mappings – Map a Java attribute directly to a database field.

■ Type conversion mappings – Map Java values with simple type conversions, such
as character to string.

■ Object type mappings – Use an association to map values to the database.

■ Serialized object mappings – Map serializable objects, such as multimedia objects,
to database BLOB fields.

■ Transformation mappings – Allow you to create custom mappings where one or
more fields can be used to create the object be stored in the attribute.

3.4.3 How to Create Direct Mappings
To map create Java classes directly to database tables, select the Java attribute in the
TopLink Map – Structure window. Oracle JDeveloper displays a list of the available
mappings for the selected attribute (as shown in Figure 3–9).

Figure 3–9 Mapping Editor

You can also use TopLink Automap feature to automatically map the attributes in a
specific Java class or package. Refer to the Oracle JDeveloper online help for more
information.

Mapping Classes to Tables

Building and Using Application Services 3-13

3.4.4 What Happens when you Create a Direct Mapping
Example 3–4 illustrates the Java code that Oracle JDeveloper generates when you
create a direct-to-field direct mapping. In this example, the description attribute of
the Products class maps directly to a field on the database table.

Example 3–4 Java Code for a Direct Mapping

...
package oracle.srdemo.model;
public class Products {

private String description;

public String getDescription() {
return this.description;

}

public void setDescription(String description) {
this.description = description;

}
}

3.4.5 What You May Need to Know
Use the Mapping editor to customize the TopLink mappings. Some common
customizations for direct mappings include:

■ Specifying the mapping as "read only." These mappings will not be included
during update or delete operations.

■ Using custom get and set methods.

■ Defining a default value. This value will be used if the actual field in the database
is null.

Figure 3–10 shows the General tab of a direct-to-field mapping in the Mapping editor.
Each direct mapping (see Section 3.4.2, "Direct Mappings") may have additional,
specific options as well. Refer to the Oracle JDeveloper online help for more
information.

Mapping Related Classes with Relationships

3-14 Oracle Application Development Framework Developer’s Guide

Figure 3–10 Sample DIrect-to-Field Mapping

3.5 Mapping Related Classes with Relationships
Relational mappings define how persistent objects reference other persistent objects.
TopLink provides the following relationship mappings:

■ Direct collection mappings - Map Java collections of objects that do not have
descriptors.

■ Aggregate object mappings - Strict one-to-one mappings that require both objects
to exist in the same database row.

■ One-to-one mappings - map a reference to another persistent Java object to the
database.

■ Variable one-to-one mappings - Map a reference to an interface to the database.

■ One-to-many mappings - Map Java collections of persistent objects to the
database.

■ Aggregate collection mappings also map Java collections of persistent objects to
the database.

■ Many-to-many mappings use an association table to map Java collections of
persistent objects to the database

Do not confuse relational mappings with object-relational mappings. Object-relational
mappings let you map an object model into an object-relational data model, such as
Oracle Database. TopLink can create the following mappings:

■ Object-Relational Structure Mapping – Map to object-relational aggregate
structures (the Struct type in JDBC and the OBJECT type in Oracle Database)

■ Object-Relational Reference Mapping – Map to object-relational references (the
Ref type in JDBC and the REF type in Oracle Database)

■ Object-Relational Array Mapping – Map a collection of primitive data to
object-relational array data types (the Array type in JDBC and the VARRAY type in
Oracle Database).

■ Object-Relational Object Array Mapping – Map to object-relational array data
types (the Array type in JDBC and the VARRAY type in Oracle Database).

Mapping Related Classes with Relationships

Building and Using Application Services 3-15

■ Object-Relational Nested Table Mapping – Map to object-relational nested tables
(the Array type in JDBC and the NESTED TABLE type in Oracle Database)

Although the Oracle TopLink runtime supports these mappings, they must be created
in Java code – you cannot use the Mapping editor.

3.5.1 How to Create Relationship Mappings
Similarly to direct mappings (see Section 3.4.3, "How to Create Direct Mappings"), to
map create Java classes directly to database tables, select the Java attribute in the
TopLink Map – Structure window.

Relationship mappings contain a Table Reference tab in the Mapping editor to define
(or create) relationships on the database tables.

Figure 3–11 Sample Table Reference Tab

Refer to the Oracle JDeveloper online help for more information.

3.5.2 What Happens when you Create a Relationship
Example 3–5 illustrates the Java code that Oracle JDeveloper generates when you
create a direct-to-field direct mapping. In this example, the address attribute of the
ServiceRequest class has a one-to-one relationship to another class, User (that is,
each ServiceRequest was created by one User)

Example 3–5 Java Code for a Relationship Mapping

package oracle.srdemo.model;

 /**Map createdBy <-> oracle.srdemo.model.Users
 * @associates <{oracle.srdemo.model.Users}>
 */
private ValueHolderInterface createdBy;

public Users getCreatedBy() {
return (Users)this.createdBy.getValue();

}

public void setCreatedBy(Users createdBy) {
this.createdBy.setValue(createdBy);

}

3.5.3 What You May Need to Know
Use the Mapping editor to customize the TopLink mappings. Some common
customizations for relationship mappings include:

Mapping Related Classes with Relationships

3-16 Oracle Application Development Framework Developer’s Guide

■ Specifying the mapping as "read only." These mappings will not be included
during update or delete operations.

■ Using custom get and set methods.

■ Defining a default value. This value will be used if the actual field in the database
is null.

■ Using indirection. When using indirection, TopLink uses an indirection object as a
placeholder for the referenced object: TopLink defers reading the dependent object
until you access that specific attribute.

■ Configuring private or independent relationships. In a private relationship, the
target object is a private component of the source object; destroying the source
object will also destroy the target object. In an independent relationship, the source
and target objects exist independently; destroying one object does not necessarily
imply the destruction of the other.

■ Specifying bidirectional relationship in which the two classes in the relationship
reference each other with one-to-one mappings

Figure 3–12 shows the General tab of a one-to-one mapping in the Mapping editor.
Use the Table Reference tab (see Figure 3–13) to define the foreign key reference for
the mapping. Each direct mapping (see Section 3.5, "Mapping Related Classes with
Relationships") may have additional, specific options as well. Refer to the Oracle
JDeveloper online help for more information.

Figure 3–12 Sample One-to-One Mapping, General Tab

Querying Objects

Building and Using Application Services 3-17

Figure 3–13 Sample One-to-One Mapping, Table Reference Tab

3.6 Finding Objects by Primary Key
TopLink provides a predefined finder (findByPrimaryKey) that takes a primary key
as an Object. This finder is defined at runtime – not in the Mapping editor

Example 3–6 Executing a Primary Key Finder

{
Employee employee = getEmployeeHome().findByPrimaryKey(primraryKey);

}

3.7 Querying Objects
To query objects, you can create a TopLink Named query then create a data control for
the class specified in the query. This will expose the TopLink query to the data control.

A named query is a TopLink query that you create and store for later retrieval and
execution. Named queries improve application performance because they are
prepared once and they (and all their associated supporting objects) can be efficiently
reused thereafter making them well suited for frequently executed operations.

You can create the following queries:

■ ReadAllQuery

■ ReadObjectQuery

3.7.1 How to Create a Query
You can create TopLink Named Queries by using the TopLink expression builder, SQL
expressions, or EJB QL expressions. Using the Mapping editor (see Figure 3–14), you
can configure queries at the descriptor- or session-level.

Creating and Modifying Objects with a Unit of Work

3-18 Oracle Application Development Framework Developer’s Guide

Figure 3–14 Named Queries Tab

3.7.2 What You May Need to Know

3.7.2.1 Using a Query By Example
A query by example enables you to specify query selection criteria in the form of a
sample object instance that you populate with only the attributes you want to use for
the query. To define a query by example, provide a ReadObjectQuery or a
ReadAllQuery with a sample persistent object instance and an optional query by
example policy.

With ADF, a TopLink query by example performs only in-memory querying.

3.7.2.2 Sorting Query Results
You cannot configure the sort criteria of a TopLink query from Oracle JDeveloper. You
must write a Java method, using descriptor amendment method. See Section 3.3.3.2,
"Using Amendment Methods" for more information.

3.8 Creating and Modifying Objects with a Unit of Work
A database transaction is a set of operations (create, read, update, or delete) that either
succeed or fail as a single operation. The database discards, or rolls back, unsuccessful
transactions, leaving the database in its original state.

In TopLink, transactions are contained in the unit of work object. You acquire a unit of
work from a session and using its API, you can control transactions directly or through
a Java 2 Enterprise Edition (J2EE) application server transaction controller such as the
Java Transaction API (JTA).

The unit of work isolates changes in a transaction from other threads until it
successfully commits the changes to the database. Unlike other transaction
mechanisms, the unit of work automatically manages changes to the objects in the
transaction, the order of the changes, and changes that might invalidate other TopLink
caches.

Creating and Modifying Objects with a Unit of Work

Building and Using Application Services 3-19

The unit of work manages these issues by calculating a minimal change set, ordering
the database calls to comply with referential integrity rules and deadlock avoidance,
and merging changed objects into the shared cache. In a clustered environment, the
unit of work also synchronizes changes with the other servers in the coordinated
cache.

3.8.1 How to Create a Unit of Work
Example 3–7 shows how to acquire a unit of work from a client session object.

Example 3–7 Acquiring a Unit of Work

public UnitOfWork acquireUnitOfWork() {

Server server = getServer();

if (server.hasExternalTransactionController()) {
return server.getActiveUnitOfWork();

server.acquireUnitOfWork();

}

3.8.1.1 Creating Objects with Unit of Work
When you create new objects in the unit of work, use the registerObject method
to ensure that the unit of work writes the objects to the database at commit time.

The unit of work calculates commit order using foreign key information from
one-to-one and one-to-many mappings. If you encounter constraint problems during a
commit transaction, verify your mapping definitions. The order in which you register
objects with the registerObject method does not affect the commit order.

Example 3–8 and Example 3–9 show how to create and persist a simple object (without
relationships) using the clone returned by the unit of work registerObject method.

Example 3–8 Creating an Object: Preferred Method

UnitOfWork uow = session.acquireUnitOfWork();
Pet pet = new Pet();
Pet petClone = (Pet)uow.registerObject(pet);
petClone.setId(100);
petClone.setName("Fluffy");
petClone.setType("Cat");

uow.commit();
Example 3–9 shows a common alternative.

Example 3–9 Creating an Object: Alternative Method

UnitOfWork uow = session.acquireUnitOfWork();
Pet pet = new Pet();
pet.setId(100);
pet.setName("Fluffy");
pet.setType("Cat");
uow.registerObject(pet);

uow.commit();

Both approaches produce the following SQL:

INSERT INTO PET (ID, NAME, TYPE, PET_OWN_ID) VALUES (100, 'Fluffy', 'Cat', NULL)

Creating and Modifying Objects with a Unit of Work

3-20 Oracle Application Development Framework Developer’s Guide

Example 3–8 is preferred: it gets you into the pattern of working with clones and
provides the most flexibility for future code changes. Working with combinations of
new objects and clones can lead to confusion and unwanted results.

3.8.1.2 Typical Unit of Work Usage
TopLink uses the unit of work as follows:

1. The client application acquires a unit of work from a session object.

2. The client application queries TopLink to obtain a cache object it wants to modify,
and then registers the cache object with the unit of work.

3. The unit of work registers the object according to the object’s change policy.

By default, as each object is registered, the unit of work accesses the object from
the session cache or database and creates a backup clone and working clone. The
unit of work returns the working clone to the client application.

4. The client application modifies the working object returned by the unit of work.

5. The client application (or external transaction controller) commits the transaction.

6. The unit of work calculates the change set for each registered object according to
the object’s change policy.

By default, at commit time, the unit of work compares the working clones to the
backup clones and calculates the change set (that is, determines the minimum
changes required). The comparison is done with a backup clone so that concurrent
changes to the same objects will not result in incorrect changes being identified.
The unit of work then attempts to commit any new or changed objects to the
database.

If the commit transaction succeeds, the unit of work merges changes into the
shared session cache. Otherwise, no changes are made to the objects in the shared
cache. If there are no changes, the unit of work does not start a new transaction.

Figure 3–15 The Life Cycle of a Unit of Work

Example 3–10 shows the default life cycle in code.

Example 3–10 Unit of Work Life Cycle

// The application reads a set of objects from the database
Vector employees = session.readAllObjects(Employee.class);

// The application specifies an employee to edit
. . .
Employee employee = (Employee) employees.elementAt(index);

try {
// Acquire a unit of work from the session
UnitOfWork uow = session.acquireUnitOfWork();

// Register the object that is to be changed. Unit of work returns a clone
// of the object and makes a backup copy of the original employee

Creating and Modifying Objects with a Unit of Work

Building and Using Application Services 3-21

Employee employeeClone = (Employee)uow.registerObject(employee);

// Make changes to the employee clone by adding a new phoneNumber.
// If a new object is referred to by a clone, it does not have to be
// registered. Unit of work determines it is a new object at commit time
PhoneNumber newPhoneNumber = new PhoneNumber("cell","212","765-9002");
employeeClone.addPhoneNumber(newPhoneNumber);

// Commit the transaction: unit of work compares the employeeClone with
// the backup copy of the employee, begins a transaction, and updates the
// database with the changes. If successful, the transaction is committed
// and the changes in employeeClone are merged into employee. If there is an
// error updating the database, the transaction is rolled back and the
// changes are not merged into the original employee object
uow.commit();

} catch (DatabaseException ex) {

// If the commit fails, the database is not changed. The unit of work should
// be thrown away and application-specific action taken

}
// After the commit, the unit of work is no longer valid. Do not use further

3.8.2 What Happens when you Modify a Unit of Work
In Example 3–11, a Pet is read prior to a unit of work: the variable pet is the cache
copy clone for that Pet. Inside the unit of work, register the cache copy to get a
working copy clone. We then modify the working copy clone and commit the unit of
work.

Example 3–11 Modifying an Object

// Read in any pet
Pet pet = (Pet)session.readObject(Pet.class);
UnitOfWork uow = session.acquireUnitOfWork();

Pet petClone = (Pet) uow.registerObject(pet);
petClone.setName("Furry");

uow.commit();

In Example 3–12, we take advantage of the fact that you can query through a unit of
work and get back clones, saving the registration step. However, the drawback is that
we do not have a handle to the cache copy clone.

If we wanted to do something with the updated Pet after the commit transaction, we
would have to query the session to get it (remember that after a unit of work is
committed, its clones are invalid and must not be used).

Example 3–12 Modifying an Object: Skipping the Registration Step

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet) uow.readObject(Pet.class);
petClone.setName("Furry");

uow.commit();

Both approaches produce the following SQL:

UPDATE PET SET NAME = 'Furry' WHERE (ID = 100)

Take care when querying through a unit of work. All objects read in the query are
registered in the unit of work and therefore will be checked for changes at commit
time. Rather than do a ReadAllQuery through a unit of work, it is better for

Creating and Modifying Objects with a Unit of Work

3-22 Oracle Application Development Framework Developer’s Guide

performance to design your application to do the ReadAllQuery through a session,
and then register in a unit of work only the objects that need to be changed.

3.8.2.1 Deleting Objects
To delete objects in a unit of work, use the deleteObject or deleteAllObjects
method. When you delete an object that is not already registered in the unit of work,
the unit of work registers the object automatically.

When you delete an object, TopLink deletes the object’s privately owned child parts,
because those parts cannot exist without the owning (parent) object. At commit time,
the unit of work generates SQL to delete the objects, taking database constraints into
account.

3.8.2.1.1 Explicitly Deleting Objects from the Database If there are cases where you have
objects that will not be garbage collected through privately owned relationships
(especially root objects in your object model), then you can explicitly tell TopLink to
delete the row representing the object using the deleteObject API, as shown in
Example 3–13.

Example 3–13 Explicitly Deleting

UnitOfWork uow = session.acquireUnitOfWork();
pet petClone = (Pet)uow.readObject(Pet.class);
uow.deleteObject(petClone);

uow.commit();

The preceding code generates the following SQL:

DELETE FROM PET WHERE (ID = 100)

3.8.3 What You May Need to Know
The TopLink unit of work is a powerful transaction model. In addition to the items
listed in this section, you should review the "Understanding TopLink Transactions"
chapter in the Oracle TopLink Developer’s Guide.

3.8.3.1 Unit of Work and Change Policy
The unit of work tracks changes for a registered object based on the change policy you
configure for the object’s descriptor. If there are no changes, the unit of work will not
start a new transaction.

Table 3–1 lists the change policies that TopLink provides.

3.8.3.2 Nested and Parallel Units of Work
You can use TopLink to create the following:

Table 3–1 TopLink Change Policies

Change Policy Applicable to...

Deferred Change Detection Policy Wide range of object change characteristics.

The default change policy.

Object-Level Change Tracking Policy Objects with few attributes or with many attributes and many
changed attributes.

Attribute Change Tracking Policy Objects with many attributes and few changed attributes.

The most efficient change policy.

The default change policy for EJB 3.0 or 2.x CMP on OC4J.

Interacting with Stored Procedures

Building and Using Application Services 3-23

■ Nested Unit of Work

■ Parallel Unit of Work

3.8.3.2.1 Nested Unit of Work You can nest a unit of work (the child) within another
unit of work (the parent). A nested unit of work does not commit changes to the
database. Instead, it passes its changes to the parent unit of work, and the parent
attempts to commit the changes at commit time. Nesting units of work lets you break a
large transaction into smaller isolated transactions, and ensures that:

■ Changes from each nested unit of work commit or fail as a group.

■ Failure of a nested unit of work does not affect the commit or rollback transaction
of other operations in the parent unit of work.

■ Changes are presented to the database as a single transaction.

3.8.3.2.2 Parallel Unit of Work You can modify the same objects in multiple unit of work
instances in parallel because the unit of work manipulates copies of objects. TopLink
resolves any concurrency issues when the units of work commits the changes.

3.9 Interacting with Stored Procedures
You can provide a StoredProcedureCall object to any query instead of an
expression or a SQL string, but the procedure must return all data required to build an
instance of the class you query.

Example 3–14 A Read-All Query with a Stored Procedure

ReadAllQuery readAllQuery = new ReadAllQuery();
call = new StoredProcedureCall();
call.setProcedureName("Read_All_Employees");
readAllQuery.setCall(call);
Vector employees = (Vector) session.executeQuery(readAllQuery);

Using a StoredProcedureCall, you can access the following:

■ Specifying an Input Parameter

■ Specifying an Output Parameter

■ Specifying an Input / Output Parameter

■ Using an Output Parameter Event

3.9.1 Specifying an Input Parameter
In Example 3–15, you specify the parameter POSTAL_CODE as an input parameter
using the StoredProcedureCall method addNamedArgument, and you can
specify the value of the argument using method addNamedArgumentValue.

Note: You no longer need to use DatabaseQuery method
bindAllParameters when using a StoredProcedureCall with
OUT or INOUT parameters. However, you should always specify the
Java type for all OUT and INOUT parameters. If you do not, be aware
of the fact that they default to type String.

Interacting with Stored Procedures

3-24 Oracle Application Development Framework Developer’s Guide

Example 3–15 Stored Procedure Call with an Input Parameter

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("CHECK_VALID_POSTAL_CODE");
call.addNamedArgument("POSTAL_CODE");
call.addNamedArgumentValue("L5J1H5");
call.addNamedOutputArgument(

"IS_VALID", // procedure parameter name
"IS_VALID", // out argument field name
Integer.class // Java type corresponding to type returned by procedure

);
ValueReadQuery query = new ValueReadQuery();
query.setCall(call);
Number isValid = (Number) session.executeQuery(query);

The order in which you add arguments must correspond to the order in which you
add argument values. In Example 3–16, the argument NAME is bound to the value
Juliet and the argument SALARY is bound to the value 80000.

Example 3–16 Matching Arguments and Values in a Stored Procedure Call

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("CHECK_VALID_POSTAL_CODE");
call.addNamedArgument("NAME");
call.addNamedArgument("SALARY");
call.addNamedArgumentValue("Juliet");
call.addNamedArgumentValue(80000);

3.9.2 Specifying an Output Parameter
Output parameters enable the stored procedure to return additional information. You
can use output parameters to define a readObjectQuery if they return all the fields
required to build the object.

In Example 3–17, you specify the parameter IS_VALID as an output parameter using
the StoredProcedureCall method addNamedOutputArgument.

Example 3–17 Stored Procedure Call with an Output Parameter

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("CHECK_VALID_POSTAL_CODE");
call.addNamedArgument("POSTAL_CODE");
call.addNamedOutputArgument(

"IS_VALID", // procedure parameter name
"IS_VALID", // out argument field name
Integer.class // Java type corresponding to type returned by procedure

);
ValueReadQuery query = new ValueReadQuery();
query.setCall(call);
query.addArgument("POSTAL_CODE");
Vector parameters = new Vector();
parameters.addElement("L5J1H5");
Number isValid = (Number) session.executeQuery(query,parameters);

Note: Not all databases support the use of output parameters to
return data. However, because these databases generally support
returning result sets from stored procedures, they do not require
output parameters.

Interacting with Stored Procedures

Building and Using Application Services 3-25

If you are using an Oracle database, you can make use of TopLink cursor and stream
query results.

3.9.3 Specifying an Input / Output Parameter
In Example 3–18, you specify the parameter LENGTH as an input/output parameter
and specify the value of the argument when it is passed to the stored procedure using
the StoredProcedureCall method addNamedInOutputArgumentValue. If you
do not want to specify a value for the argument, use method
addNamedInOutputArgument.

Example 3–18 Stored Procedure Call with an Input/Output Parameter

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("CONVERT_FEET_TO_METERs");
call.addNamedInOutputArgumentValue(

"LENGTH", // procedure parameter name
new Integer(100), // in argument value
"LENGTH", // out argument field name
Integer.class // Java type corresponding to type returned by procedure

)
ValueReadQuery query = new ValueReadQuery();
query.setCall(call);
Integer metricLength = (Integer) session.executeQuery(query);

3.9.4 Using an Output Parameter Event
TopLink manages output parameter events for databases that support them. For
example, if a stored procedure returns an error code that indicates that the application
wants to check for an error condition, TopLink raises the session event
OutputParametersDetected to allow the application to process the output
parameters.

Example 3–19 Stored Procedure with Reset Set and Output Parameter Error Code

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("READ_EMPLOYEE");
call.addNamedArgument("EMP_ID");
call.addNamedOutputArgument(

"ERROR_CODE", // procedure parameter name
"ERROR_CODE", // out argument field name
Integer.class // Java type corresponding to type returned by procedure

);
ReadObjectQuery query = new ReadObjectQuery();
query.setCall(call);
query.addArgument("EMP_ID");
ErrorCodeListener listener = new ErrorCodeListener();
session.getEventManager().addListener(listener);
Vector args = new Vector();
args.addElement(new Integer(44));
Employee employee = (Employee) session.executeQuery(query, args);

3.9.5 Using a StoredFunctionCall
You use a StoredProcedureCall to invoke stored procedures defined on databases
that support them. You can also use a StoredFunctionCall to invoke stored
functions defined on databases that support them, that is, on databases for which the
DatabasePlatform method supportsStoredFunctions returns true.

Exposing Services with ADF Data Controls

3-26 Oracle Application Development Framework Developer’s Guide

In general, both stored procedures and stored functions let you specify input
parameters, output parameters, and input and output parameters. However, stored
procedures need not return values, while stored functions always return a single
value.

The StoredFunctionCall class extends StoredProcedureCall to add one new
method: setResult. Use this method to specify the name (and alternatively both the
name and type) under which TopLink stores the return value of the stored function.

When TopLink prepares a StoredFunctionCall, it validates its SQL and throws a
ValidationException under the following circumstances:

■ If your current platform does not support stored functions

■ If you fail to specify the return type

In Example 3–20, note that the name of the stored function is set using
StoredFunctionCall method setProcedureName.

Example 3–20 Creating a StoredFunctionCall

StoredFunctionCall functionCall = new StoredFunctionCall();
functionCall.setProcedureName("READ_EMPLOYEE");
functionCall.addNamedArgument("EMP_ID");
functionCall.setResult("FUNCTION_RESULT", String);
ReadObjectQuery query = new ReadObjectQuery();
query.setCall(functionCall);
query.addArgument("EMP_ID");
Vector args = new Vector();
args.addElement(new Integer(44));
Employee employee = (Employee) session.executeQuery(query, args);

3.9.6 Query Sequencing
With query sequencing, you can access a sequence resource using custom read
(ValueReadQuery) and update (DataModifyQuery) queries and a preallocation
size that you specify. This allows you to perform sequencing using stored procedures
and allows you to access sequence resources that are not supported by the other
sequencing types that TopLink provides.

3.10 Exposing Services with ADF Data Controls
The easiest way to bind services to a user interface is by using the ADF Data Control.

This section includes information on the following:

■ How to Create ADF Data Controls

■ Understanding the Data Control Files

■ Understanding the Data Control Palette

3.10.1 How to Create ADF Data Controls
To create an ADF data control from an EJB session bean, right-click a session bean in
the Navigator and choose Create Data Control or drag a session bean onto the Data
Control Palette.

Exposing Services with ADF Data Controls

Building and Using Application Services 3-27

When you create a data control from an EJB 3.0 session bean, several XML files are
generated and displayed in the Navigator. The generated files and the Data Control
Palette are covered in the following sections.

3.10.2 Understanding the Data Control Files
When you create a data control, the following XML files are generated in the model

■ DataControls.dcx - data control definition file

■ <session_bean>.xml - structure definition file

■ ReadOnlyCollection.xml - design-time XML file

■ ReadOnlySingleValue.xml - design-time XML file

■ UpdateableCollection.xml - design-time XML file

■ UpdateableSingleValue.xml - design-time XML file

■ <entity_name>.xml - entity definition file, one per entity

How these files are related and used are covered in greater detail in Appendix A,
"Reference ADF XML Files".

3.10.2.1 About the DataControls.dcx File
The DataControls.dcx file is created when you register data controls on the business
services. The .dcx file identifies the Oracle ADF model layer adapter classes that
facilitate the interaction between the client and the available business service. In the
case of EJB, web services, and bean-based data controls, you can edit this file in the
Property Inspector to add or remove parameters and to alter data control settings. For
example, you can use the .dcx file to set global properties for various items, such as
whether to turn on/off sorting.

3.10.2.2 About the Structure Definition Files
When you register a session bean as an Oracle ADF data control, an XML definition
file is created in the Model project for every session bean. This file is commonly
referred to as the structure definition file. The structure definition file has the same
name as the session bean, but has a .xml extension.

A structure definition is made up of three types of objects:

■ Attributes

■ Accessors

■ Operations

3.10.2.3 About the Entity XML Files
When you create a data control, an XML file is generated for each entity (TopLink, EJB,
or Java bean). These files are used for both ADF design-time and runtime. These files
describe the structure of the class as well as UI hints, validators and labels for each
attribute.

Note: J2EE developers who do not want to rely on Oracle-specific
libraries may use managed beans instead of the ADF data control.
This is more complex and beyond the scope of this book.

Exposing Services with ADF Data Controls

3-28 Oracle Application Development Framework Developer’s Guide

3.10.2.4 About the Design-time XML Files
Four files are generated solely for the design-time:

■ ReadOnlyCollection.xml

■ ReadOnlySingleValue.xml

■ UpdateableCollection.xml

■ UpdateableSingleValue.xml

These files are referenced by MethodAccessor definitions as the CollectionBeanClass
which describes the available operations. Typically you do not edit this file by hand,
but you could customize items on the Data Control Palette.

3.10.3 Understanding the Data Control Palette
Client developers use the Data Control Palette to create databound HTML elements
(for JSP pages), databound Faces elements (for JSF JSP pages), and databound Swing
UI components (for ADF Swing panels). The Data Control Palette comprises two
selection lists:

■ Hierarchical display of available business objects, methods, and data control
operations

■ Dropdown list of appropriate visual elements that you can select for a given
business object and drop into your open client document

Additionally, web application developers use the Data Control Palette to select
methods provided by the business services that can be dropped onto the data pages
and data actions of a page flow.

The Palette is a direct representation of the XML files examined in the previous
sections, so by editing the files, you can change the elements contained in the Palette.

The hierarchical structure of the business services displayed in the Data Control
Palette is determined by which business services you have registered with the data
controls in your model project. The palette displays a separate root node for each
business service that you register.

Exposing Services with ADF Data Controls

Building and Using Application Services 3-29

Figure 3–16 Data Control Palette

3.10.3.1 Overview of the Data Control Business Objects
The root node of the Data Control Palette represents the data control registered for the
business service. Proceeding down the hierarchy from the root data control node, the
palette represents bean-based business services as constructors, attributes, accessors or
operations:

■ Constructors - Createable types are contained within the Constructors node.
These types call the default constructor for the object.

■ Attributes - such as bean properties, which can define simple scalar value objects,
structured objects (beans), or collections.

■ Accessors - get() and set() methods.

■ Operations - such as bean methods, which may or may not return a value or take
method parameters. For Web Services, the Data Control Palette displays only
operations.

Exposing Services with ADF Data Controls

3-30 Oracle Application Development Framework Developer’s Guide

For more information on using the Data Control Palette, see Chapter 5, "Displaying
Data on a Page". For more information on the Data Control files and how they related
to each other, see Appendix A, "Reference ADF XML Files".

3.10.3.2 Refreshing ADF Data Controls After Modifying Business Services
After you have already created the data control definition for your Model project, you
may decide to update the data control after modifying your business services.
Refreshing the data control definition makes the latest business service changes
available to the ADF application.

The action you take to refresh the data control definition depends upon the type of
change to the model project.

3.10.3.2.1 Viewing modified data controls in the Data Control Palette: If the palette is not yet
displayed, select the View menu and choose Data Control Palette. If the palette is
already displayed, right-click in the palette and choose Refresh.

3.10.3.2.2 Refreshing a data control definition for business services you have modified In the
model project, define the new properties of the bean or other business service you
want to create. Compile the .java file to regenerate the business service's metadata in
its corresponding .xml file. If the modified business service is bean-based (such as an
EJB session bean), right-click the bean's .xml file and choose Refresh.

Note: In the case of ADF Business Components, the data control definition is
automatically updated whenever you make changes to your ADF BC project files.

3.10.3.2.3 Removing a data control definition for business services that have been removed: To
To remove a data control definition, in the view project, select the DataBindings.dcx
file and in the Structure window, select the data control node that represents the
business service that no longer appears in your Model project. Right-click the data
control node and choose Delete.

JDeveloper updates the data control definition file (DataBindings.dcx) in the Model
project. The DataBindings.dcx file identifies the Oracle ADF model layer adapter
classes that facilitate the interaction between the client and the available business
services.

3.10.3.2.4 Updating a data control after renaming or moving a business services In the model
project, if you rename your business service or move it to a new package, you must
update the reference to the model project in the client's data control definition.

In the view project, select the DataBindings.dcx file. In the Structure window, select the
data control node that represents the moved business service. In the Property
Inspector, edit the Package attribute to supply the new package name.

Part II
Building the Web Interface

Part II contains the following chapters:

■ Chapter 4, "Getting Started with ADF Faces"

■ Chapter 5, "Displaying Data on a Page"

■ Chapter 6, "Creating a Basic Page"

■ Chapter 7, "Adding Tables"

■ Chapter 8, "Displaying Master-Detail Data"

■ Chapter 9, "Adding Page Navigation"

■ Chapter 10, "Creating More Complex Pages"

■ Chapter 11, "Using Complex UI Components"

■ Chapter 12, "Using Validation and Conversion"

■ Chapter 13, "Adding ADF Bindings to Existing Pages"

■ Chapter 14, "Changing the Appearance of Your Application"

■ Chapter 15, "Optimizing Application Performance with Caching"

■ Chapter 16, "Testing and Debugging Web Applications"

Getting Started with ADF Faces 4-1

4
Getting Started with ADF Faces

This chapter describes the process of setting up your user interface project to use ADF
Faces. It also supplies basic information about creating and laying out a web page that
will rely on ADF Faces components for the user interface.

The chapter includes the following sections:

■ Section 4.1, "Introduction to ADF Faces"

■ Section 4.2, "Setting Up a Workspace and Project"

■ Section 4.3, "Creating a Web Page"

■ Section 4.4, "Laying Out a Web Page"

■ Section 4.5, "Creating and Using a Backing Bean for a Web Page"

■ Section 4.6, "Best Practices for ADF Faces"

4.1 Introduction to ADF Faces
Oracle ADF Faces is a 100% JavaServer Faces (JSF) compliant component library that
offers a broad set of enhanced UI components for JSF application development. Based
on the JSF JSR 127 specification, ADF Faces components can be used in any IDE that
supports JSF. More specifically, ADF Faces works with Sun's JSF Reference
Implementation 1.1_01 (or later) and Apache MyFaces 1.0.8 (or later).

ADF Faces ensures a consistent look and feel for your application, allowing you to
focus more on user interface interaction than look and feel compliance. The
component library supports multi–language and translation implementations, and
accessibility features. ADF Faces also supports multiple render kits for HTML, mobile,
and telnet users—this means you can build web pages with the same components,
regardless of the device that will be used to display the pages.

Using the partial-page rendering features of ADF Faces components, you can build
interactive web pages that update the display without requiring a complete page
refresh. In the future, Oracle plans to provide render kits that make even more
sophisticated use of AJAX technologies—JavaScript, XML, and the Document Object
Model (DOM)—to deliver more Rich Internet Applications with interactivity nearing
that of desktop-style applications.

ADF Faces has many of the framework and component features most needed by JSF
developers today, including:

■ Partial-page rendering

■ Client-side conversion and validation

■ A process scope that makes it easier to pass values from one page to another

Introduction to ADF Faces

4-2 Oracle Application Development Framework Developer’s Guide

■ A hybrid state-saving strategy that provides more efficient client-side state saving

■ Built-in support for label and message display in all input components

■ Built-in accessibility support in components

■ Support for custom skins

■ Support for mobile applications

ADF Faces UI components include advanced tables with column sorting and row
selection capability, tree components for displaying data hierarchically, color and date
pickers, and a host of other components such as menus, command buttons, shuttle
choosers, and progress meters.

ADF Faces out-of-the-box components simplify user interaction, such as the input file
component for uploading files, and the select input components with built-in dialog
support for navigating to secondary windows and returning to the originating page
with the selected values.

For more information about ADF Faces, refer to the following resources:

■ ADF Faces Core tags at

http://www.oracle.com/technology/products/jdev/htdocs/partner
s/addins/exchange/jsf/doc/tagdoc/core/index.html

■ ADF Faces HTML tags at

http://www.oracle.com/technology/products/jdev/htdocs/partner
s/addins/exchange/jsf/doc/tagdoc/html/index.html

■ ADF Faces Javadocs at

http://www.oracle.com/technology/products/jdev/htdocs/partner
s/addins/exchange/jsf/doc/apidocs/index.html

■ ADF Faces developer’s guide at

http://www.oracle.com/technology/products/jdev/htdocs/partner
s/addins/exchange/jsf/doc/devguide/index.html

When you create JSF JSP pages that use ADF Faces components for the UI and use JSF
technology for page navigation, you can leverage the advantages of the Oracle
Application Development Framework (Oracle ADF) by using the ADF Model binding
capabilities for the components in the pages. For information about data controls and
the ADF Model, see Section 1.1.2, "Declarative Development with Oracle ADF and
JavaServer Faces".

Table 4–1 shows the platforms currently supported for ADF Faces.

Table 4–1 Supported Platforms for ADF Faces

User Agent Windows Solaris Mac OS X
Red Hat
Linux

Windows
Mobile Palm OS

Internet
Explorer

6.0 * 2003+

Mozilla 1.7.x 1.7.x

Firefox 1.0.x 1.0.x

Safari 1.3, 2.0 **

WebPro
(Mobile)

3.0

http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/core/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/core/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/html/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/html/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/apidocs/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/apidocs/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/devguide/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/devguide/index.html

Setting Up a Workspace and Project

Getting Started with ADF Faces 4-3

* Accessibility and BiDi is only supported on IE on Windows.

** Apple bug fixes provided in Safari 1.3 patch 312.2 and Safari 2.0 patch 412.5
required.

Read this chapter to understand:

■ How to create a workspace using an application template in JDeveloper

■ What files are created for you in the view project when you add a JSF page and
insert UI components

■ How to use panel and layout components to create page layouts

■ What JDeveloper does for you when you work with backing beans

4.2 Setting Up a Workspace and Project
JDeveloper provides application templates that enable you to quickly create the
workspace and project structure with the appropriate combination of technologies
already specified. The SRDemo application uses the Web Application [JSF, EJB,
TopLink] application template, which creates one project for the data model, and one
project for the controller and view (user interface) components in a workspace.

To create a new application workspace in JDeveloper and choose an application
template:
1. Right-click the Applications node in the Application Navigator and choose New

Application.

2. In the Create Application dialog, select the Web Application [JSF, EJB, TopLink]
application template from the list.

You don’t have to use JDeveloper application templates to create an application
workspace—they are provided merely for your convenience.

At times you might already have an existing WAR file and you want to import it into
JDeveloper.

To import a WAR file into a new project in JDeveloper:
1. Right-click your application workspace in the Application Navigator and choose

New Project.

2. In the New Gallery, expand General in the Categories tree, and select Projects.

3. In the Items list, double-click Project from WAR File.

4. Follow the wizard instructions to complete creating the project.

4.2.1 What Happens When You Use an Application Template to Create a Workspace
By default, JDeveloper names the project for the data model Model, and the project for
the user interface and controller ViewController. You can rename the projects using
File > Rename after you’ve created them, or you can use Tools > Manage Templates
to change the default names that JDeveloper uses.

Tip: On a UNIX server box, button images may not render as
expected. Assuming you're using JDK 1.4 or later, Oracle strongly
recommends using -Djava.awt.headless=true as a
command-line option with UNIX boxes.

Setting Up a Workspace and Project

4-4 Oracle Application Development Framework Developer’s Guide

Figure 4–1 shows the Application Navigator view of the ViewController project after
you create the workspace.

Figure 4–1 ViewController Project in the Navigator After You Create a Workspace

Figure 4–2 shows the actual folders JDeveloper creates in the <JDEV_
HOME>/jdev/mywork folder in the file system.

Figure 4–2 ViewController Folders in the File System After You Create a Workspace

For example, if you created a workspace named Application1, the ViewController
folder and its subfolders would be located in <JDEV_
HOME>/jdev/mywork/Application1 in the file system.

When you use the Web Application [JSF, EJB, TopLink] template to create a
workspace, JDeveloper does the following for you:

■ Creates a ViewController project that uses JSF technology. The project properties
include:

– JSP Tag Libraries: JSF Core, JSF HTML. See Table 4–2.

– Libraries: JSF, Commons Beanutils, Commons Digester, Commons Logging,
Commons Collections, JSTL.

– Technology Scope: JSF, JSP and Servlets, Java, HTML.

When you work in the ViewController project, the New Gallery will be filtered to
show standard web technologies (including JSF) in the Web Tier category.

By default, JDeveloper uses JSTL 1.1 and a J2EE 1.4 web container that supports
Servlet 2.4 and JSP 2.0.

Note: The illustrations and project names used in this chapter are the
JDeveloper default names. The SRDemo application, however, uses
the project name UserInterface for the JSF view and controller
components, and DataModel for the project that contains the EJB
session beans and TopLink using plain old Java objects. The SRDemo
application also has additional projects in the Application Navigator
(for example, BuildAndDeploy), which you create manually to
organize your application components into logical folders.

Setting Up a Workspace and Project

Getting Started with ADF Faces 4-5

■ Creates a starter web.xml file with default settings in /WEB-INF of the
ViewController project. See Section 4.2.1.1, "Starter web.xml File" if you want to
know what JDeveloper adds to web.xml.

■ Creates an empty faces-config.xml file in /WEB-INF of the ViewController
project. See Section 4.2.1.2, "Starter faces-config.xml File" if you want to learn more
about faces-config.xml.

Note that if you double-click faces-config.xml in the Application Navigator to
open the file, JDeveloper creates a model folder in the ViewController folder in the
file system, and adds the file faces-config.oxd_faces in the model folder.
For information about the faces-config.oxd_faces file, see Section 4.3.2,
"What Happens When You Create a JSF Page".

■ Adds jsf-impl.jar in /WEB-INF/lib of the ViewController project.

■ Creates a Model project that uses TopLink and EJB technology. For more
information about the Model project, see Section 1.2.1.2, "Building the Business
Service in the Model Project".

4.2.1.1 Starter web.xml File
Part of a JSF application's configuration is also determined by the contents of its J2EE
application deployment descriptor, web.xml. The web.xml file defines everything
about your application that a server needs to know (except the root context path,
which is assigned by JDeveloper or the system administrator when the application is
deployed). Typical runtime settings include initialization parameters, custom tag
library location, and security settings.

Example 4–1 shows the starter web.xml file JDeveloper first creates for you.

Example 4–1 Starter web.xml File Created by JDeveloper

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee">
 <description>Empty web.xml file for Web Application</description>

 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
...
</web-app>

The JSF servlet and servlet mapping configuration settings are automatically added to
the starter web.xml file when you first create a JSF project.

■ JSF servlet: The JSF servlet is javax.faces.webapp.FacesServlet, which
manages the request processing lifecycle for web applications utilizing JSF to
construct the user interface. The configuration setting maps the JSF servlet to a
symbolic name.

Setting Up a Workspace and Project

4-6 Oracle Application Development Framework Developer’s Guide

■ JSF servlet mapping: The servlet mapping maps the URL pattern to the JSF
servlet’s symbolic name. You can use either a path prefix or an extension suffix
pattern.

By default, JDeveloper uses the path prefix /faces/*. This means that when the
URL http://localhost:8080/SRDemo/faces/index.jsp is issued, the
URL activates the JSF servlet, which strips off the faces prefix and loads the file
/SRDemo/index.jsp.

To edit web.xml in JDeveloper, right-click web.xml in the Application Navigator and
choose Properties from the context menu to open the Web Application Deployment
Descriptor editor. If you’re familiar with the configuration element names, you can
also use the XML editor to modify web.xml.

For reference information about the configuration elements you can use in web.xml
when you work with JSF, see Section A.8, "web.xml".

4.2.1.2 Starter faces-config.xml File
The JSF configuration file is where you register a JSF application's resources such as
custom validators and managed beans, and define all the page-to-page navigation
rules. While an application can have any JSF configuration filename, typically the
filename is faces-config.xml. Example 4–2 shows the starter
faces-config.xml file JDeveloper first creates for you when you create a project
that uses JSF technology.

Small applications usually have one faces-config.xml file. For information about
using multiple configuration files, see Section 4.2.3, "What You May Need to Know
About Multiple JSF Configuration Files".

Example 4–2 Starter faces-config.xml File Created by JDeveloper

<?xml version="1.0" encoding="windows-1252"?>
<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_1.dtd">
<faces-config xmlns="http://java.sun.com/JSF/Configuration">

</faces-config>

In JDeveloper you can use either editor to edit faces-config.xml:

■ JSF Configuration Editor: Oracle recommends you use the JSF Configuration
Editor because it provides visual editing.

■ XML Source Editor: Use the source editor to edit the file directly, if you’re familiar
with the JSF configuration elements.

To launch the JSF Configuration Editor:
1. In the Application Navigator, double-click faces-config.xml to open the file.

By default JDeveloper opens faces-config.xml in Diagram mode, as indicated
by the active Diagram tab at the bottom of the editor window. When creating or

Note: If you use ADF data controls to build databound web pages,
JDeveloper adds the ADF binding filter and a servlet context
parameter for the application binding container in web.xml. For more
information, see Section 5.4, "Configuring the ADF Binding Filter".

Setting Up a Workspace and Project

Getting Started with ADF Faces 4-7

modifying JSF navigation rules, Oracle suggests you use the Diagram mode of the
JSF Configuration Editor.

In JDeveloper a diagram file, which lets you create and manage page flows
visually, is associated with faces-config.xml. For information about creating
JSF navigation rules, see Chapter 9, "Adding Page Navigation".

2. To create or modify configuration elements other than navigation rules, use the
Overview mode of the JSF Configuration Editor. At the bottom of the editor
window, select Overview.

Both Overview and Diagram modes update the faces-config.xml file.

For reference information about the configuration elements you can use in
faces-config.xml, see Section A.10, "faces-config.xml".

4.2.2 What You May Need to Know About the ViewController Project
The ViewController project contains the web content that includes the web pages and
other resources of the web application. By default, the JDeveloper web application
template you select adds the word "controller" to the project name to indicate that the
web application will include certain files that define the application’s flow or page
navigation (controller), in addition to the web pages themselves (view).

The technology that you use to create web pages in JDeveloper will determine the
components of the ViewController project and the type of page controller your
application will use. The SRDemo application uses JSF combined with JSP to build the
web pages:

■ JSF provides a component-based framework for displaying dynamic web content.
It also provides its own page controller to manage the page navigation.

■ JSP provides the presentation layer technology for JSF user interfaces. The JSF
components are represented by special JSP custom tags in the JSP pages.

JDeveloper tools will help you to easily bind the JSF components with the Java objects
of the Model project, thus creating databound UI components. As described earlier, the
ViewController project contains the web pages for the user interface. To declaratively

Tip: JSF allows more than one <application> element in a single
faces-config.xml file. The JSF Configuration Editor only allows
you to edit the first <application> instance in the file. For any
other <application> elements, you'll need to edit the file directly
using the XML editor.

Note: If you use ADF data controls to build databound web pages,
JDeveloper adds the ADF phase listener in faces-config.xml, as
described in Section 5.2.3, "What Happens When You Use the Data
Control Palette".

Note: The concept of separating page navigation from page
display is often referred to as Model 2 to distinguish from earlier
style (Model 1) applications that managed page navigation entirely
within the pages themselves. In a Model 2 style application, the
technology introduces a specialized servlet known as a page
controller to handle page navigation events at runtime.

Setting Up a Workspace and Project

4-8 Oracle Application Development Framework Developer’s Guide

bind UI components in web pages to a data model, the ViewController project must be
able to access data controls in the Model project. To enable the ViewController project
to access the data controls, a dependency on the Model project must be specified. The
first time you drag an item from the Data Control Palette and drop it onto a JSF page,
JDeveloper configures the dependency for you. If you wish to set the dependency on
the Model project manually, use the following procedure.

To set dependency on a Model project for a ViewController project in
JDeveloper:
1. Double-click ViewController in the Application Navigator to open the Project

Properties dialog.

2. Select Dependencies and then select the checkbox next to Model.jpr.

4.2.3 What You May Need to Know About Multiple JSF Configuration Files
A JSF application can have more than one JSF configuration file. For example, if you
need individual JSF configuration files for separate areas of your application, or if you
choose to package libraries containing custom components or renderers, you can
create a separate JSF configuration file for each area or library.

To create another JSF configuration file, simply use a text editor or use the JSF Page
Flow & Configuration wizard provided by JDeveloper.

To launch the JSF Page Flow & Configuration wizard:
1. In the Application Navigator, right-click ViewController and choose New.

2. In the New Gallery window, expand Web Tier. Select JSF and then double-click
JSF Page Flow & Configuration (faces-config.xml).

When creating a JSF configuration file for custom components or other JSF classes
delivered in a library JAR:

■ Name the file faces-config.xml if you desire.

■ Store the new file in /META-INF.

■ Include this file in the JAR that you use to distribute your custom components or
classes.

This is helpful for applications that have packaged libraries containing custom
components and renderers.

When creating a JSF configuration file for a separate application area:

■ Give the file a name other than faces-config.xml.

■ Store the file in /WEB-INF.

■ For JSF to read the new JSF configuration file as part of the application’s
configuration, specify the path to the file using the context parameter
javax.faces.CONFIG_FILES in web.xml. The parameter value is a
comma-separated list of the new configuration file names, if there is more than one
file.

If using the JSF Page Flow & Configuration wizard, select the Add Reference to
web.xml checkbox to let JDeveloper register the new JSF configuration file for you
in web.xml. Example 4–3 shows how multiple JSF configuration files are set in
web.xml by JDeveloper if you select the checkbox.

This is helpful for large-scale applications that require separate configuration files for
different areas of the application.

Creating a Web Page

Getting Started with ADF Faces 4-9

Example 4–3 Configuring for Multiple JSF Configuration Files in the web.xml File

<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/faces-config1.xml,/WEB-INF/faces-config2.xml</param-value>
</context-param>

Any JSF configuration file, whether it is named faces-config.xml or not, must
conform to Sun's DTD located at
http://java.sun.com/dtd/web-facesconfig_1_x.dtd. If you use the wizard
to create a JSF configuration file, JDeveloper takes care of this for you.

If an application uses several JSF configuration files, at runtime JSF finds and loads the
application's configuration settings in the following order:

1. Searches for files named META-INF/faces-config.xml in any JAR files for the
application, and loads each as a configuration resource (in reverse order of the
order in which they are found).

2. Searches for the javax.faces.CONFIG_FILES context parameter set in the
application's web.xml file. JSF then loads each named file as a configuration
resource.

3. Searches for a file named faces-config.xml in the WEB-INF directory and
loads it as a configuration resource.

JSF then instantiates an Application class and populates it with the settings found
in the various configuration files.

4.3 Creating a Web Page
While JSF supports a number of presentation layer technologies, JDeveloper uses JSP
as the presentation technology for creating JSF web pages. When you use JSF with JSP,
the JSF pages can be JSP pages (.jsp) or JSP documents (.jspx). JSP documents are
well-formed XML documents, and the XML standard offers many benefits such as
validation against a document type definition. Hence, Oracle recommends that you
use JSP documents when you build your web pages using ADF Faces components.
Unless otherwise noted, the term JSF page in this guide refers to both JSF JSP pages and
JSF JSP documents.

JDeveloper gives you two ways to create JSF pages that will appear in your
ViewController project:

■ Launch the Create JSF JSP wizard from the JSF category in the New Gallery.

OR

■ Drag a JSF Page from the Component Palette onto the faces-config.xml file
when the file is open in the Diagram mode of the JSF Configuration Editor.

Section 4.3.1, "How to Add a JSF Page" uses the latter technique. It also introduces the
JSF Navigation Modeler, which allows you to plan out your application pages in the
form of a diagram, to define the navigation flow between the pages, and to create the
pages.

4.3.1 How to Add a JSF Page
Oracle recommends using the JSF navigation diagram to plan out and build your
application page flow. Because the JSF navigation diagram visually represents the
pages of the application, it is also an especially useful way to drill down into
individual web pages when you want to edit them in the JSP/HTML Visual Editor.

Creating a Web Page

4-10 Oracle Application Development Framework Developer’s Guide

To add a JSF page to your ViewController project using the JSF navigation
diagram:
1. Expand the ViewController - Web Content - WEB-INF folder in the Application

Navigator and double-click faces-config.xml or choose Open JSF Navigation
from the ViewController context menu to open the faces-config.xml file.

By default, JDeveloper opens the file in the Diagram tab, which is the JSF
navigation diagram. If you’ve just started the ViewController project, the
navigation diagram would be an empty drawing surface. If you don’t see a blank
drawing surface when you open faces-config.xml, select Diagram at the
bottom of the editor.

2. In the Component Palette, select JSF Navigation Diagram from the dropdown list,
and then select JSF Page.

3. Click on the diagram in the place where you want the page to appear. A page icon
with a label for the page name appears on the diagram. The page icon has a yellow
warning overlaid–this means you haven’t created the actual page yet, just a
representation of the page.

4. To create the new page, double-click the page icon and use the Create JSF JSP
wizard.

When creating a page in JDeveloper for the first time, be sure to complete all the
steps of the wizard.

5. In Step 1 of the Create JSF JSP wizard, select JSP Document (*.jspx) for the JSP file
Type.

6. Enter a filename and accept the default directory name or choose a new location.
By default, JDeveloper saves files in /ViewController/public_html in the
file system.

7. In Step 2 of the wizard, keep the default selection for not using component
binding automatically.

8. In Step 3 of the wizard, make sure that these libraries are added to the Selected
Libraries list:

■ ADF Faces Components

■ ADF Faces HTML

■ JSF Core

■ JSF HTML

9. Accept the default selection for the remaining page and click Finish.

Your new JSF page will open in the JSP/HTML Visual Editor where you can begin to
lay out the page using ADF Faces components from the Component Palette or
databound components dropped from the Data Control Palette.

If you switch back to the JSF navigation diagram (by clicking the faces-config.xml
editor tab at the top), you will notice that the page icon no longer has the yellow
warning overlaid.

Tip: If you create new JSF pages using the wizard from the New
Gallery, you can drag them from the Application Navigator to the JSF
navigation diagram when designing the application page flow.

Creating a Web Page

Getting Started with ADF Faces 4-11

4.3.2 What Happens When You Create a JSF Page
Figure 4–3 shows the Application Navigator view of the ViewController project after
you complete the wizard steps to add a JSF page.

Figure 4–3 ViewController Project in the Navigator After You Add a JSF Page

Figure 4–4 shows the actual folders JDeveloper creates in the <JDEV_
HOME>/jdev/mywork folder in the file system.

Figure 4–4 ViewController Folders in the File System After You Add a JSF Page

JDeveloper does the following when you create your first JSF page in a ViewController
project via the JSF navigation diagram:

■ Adds adf-faces-impl.jar to /WEB-INF/lib.

■ Adds these libraries to the ViewController project properties:

– JSP Tag Libraries: ADF Faces Components, ADF Faces HTML. See Table 4–2.

– Libraries: JSP Runtime, ADF Faces Runtime, ADF Common Runtime

■ Creates the faces-config.oxd_faces file in the file system only, for example,
in <JDEV_
HOME>/jdev/mywork/Application1/ViewController/model/public_
html/WEB-INF. When you plan out and build your page flow in the JSF
navigation diagram, this is the file that holds all the diagram details such as layout
and annotations. JDeveloper always maintains this file alongside its associated
XML file, faces-config.xml. The faces-config.oxd_faces file is not
visible in the Application or System Navigator.

Whether you create JSF pages by launching the Create JSF JSP wizard from the JSF
navigation diagram or the New Gallery, by default JDeveloper creates starter pages
that are JSF JSP 2.0 files, and automatically imports the JSF tag libraries into the starter
pages. If you select to add the ADF Faces tag libraries in step 3 of the wizard,
JDeveloper also imports the ADF Faces tag libraries into the starter pages.
Example 4–4 shows a starter page for a JSF JSP document.

Creating a Web Page

4-12 Oracle Application Development Framework Developer’s Guide

Example 4–4 Starter JSF JSP Document Created by JDeveloper

<?xml version='1.0' encoding='windows-1252'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces"
 xmlns:afh="http://xmlns.oracle.com/adf/faces/html"
 <jsp:output omit-xml-declaration="true" doctype-root-element="HTML"
 doctype-system="http://www.w3.org/TR/html4/loose.dtd"
 doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"/>
 <jsp:directive.page contentType="text/html;charset=windows-1252"/>
 <f:view>
 <html>
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=windows-1252"/>
 <title>untitled1</title>
 </head>
 <body>
 <h:form></h:form>
 </body>
 </html>
 </f:view>
</jsp:root>

4.3.3 What You May Need to Know About Using the JSF Navigation Diagram
In the JSF navigation diagram, you will notice that the label of the page icon has an
initial slash (/), followed by the name of the page. The initial slash is required so that
the page can be run from the diagram. If you remove the slash, JDeveloper will
automatically reinstate it for you.

Be careful when renaming and deleting pages from the JSF navigation diagram:

■ Renaming pages: If you rename a JSF page on a JSF navigation diagram, this is
equivalent to removing a page with the original name from the diagram and
adding a new one with the new name; the page icon changes to a page icon
overlaid with the yellow warning, indicating that the page does not yet exist. If
you have already created the underlying page, that page remains with its original
name in the Application Navigator.

Similarly, if you have a JSF page in the Application Navigator and the page icon is
displayed on the diagram, if you now rename the page in the Application
Navigator, this is equivalent to removing the original file and creating a new file.
The diagram, however, retains the original name, and now displays the page icon
overlaid with the yellow warning, indicating that the page does not exist.

■ Deleting pages: When you delete a page icon in the JSF navigation diagram, the
associated web page is no longer visible in the diagram. If you have created the
actual file, it is still available from the Web Content folder in the ViewController
project in the Application Navigator.

For information about the JSF navigation diagram and creating navigation rules, see
Chapter 9, "Adding Page Navigation".

Laying Out a Web Page

Getting Started with ADF Faces 4-13

4.3.4 What You May Need to Know About ADF Faces Dependencies and Libraries
ADF Faces is compatible with JDK 1.4 (and higher), and cannot run on a server that
supports only Sun’s JSF Reference Implementation 1.0. The implementation must be
JSF 1.1_01 (or later) or Apache MyFaces 1.0.8 (or later).

The ADF Faces deliverables are:

■ adf-faces-api.jar: All public APIs of ADF Faces are in the
oracle.adf.view.faces package.

■ adf-faces-impl.jar: All private APIs of ADF Faces are in the
oracle.adfinternal.view.faces package.

ADF Faces provides two tag libraries that you can use in your JSF pages:

■ ADF Faces Core library

■ ADF Faces HTML library

Table 4–2 shows the URIs and default prefixes for the ADF Faces and JSF tag libraries
used in JDeveloper.

JDeveloper also provides the ADF Faces Cache and ADF Faces Industrial tag libraries,
which use the prefix afc and afi, respectively. For information about ADF Faces
Cache, see Chapter 15, "Optimizing Application Performance with Caching". For
information about ADF Faces Industrial, see the JDeveloper online help topic
"Developing ADF Mobile Applications".

All JSF applications must be compliant with the Servlet specification, version 2.3 (or
later) and the JSP specification, version 1.2 (or later). The J2EE web container that you
deploy to must provide the necessary JAR files for the JavaServer Pages Standard Tag
Library (JSTL), namely jstl.jar and standard.jar. The JSTL version to use
depends on the J2EE web container:

■ JSTL 1.0—Requires a J2EE 1.3 web container that supports Servlet 2.3 and JSP 1.2

■ JSTL 1.1—Requires a J2EE 1.4 web container that supports Servlet 2.4 and JSP 2.0

For complete information about ADF Faces and JSF deployment requirements, see
Chapter 22, "Deploying ADF Applications".

4.4 Laying Out a Web Page
Most of the SRDemo pages use the ADF Faces panelPage component to lay out the
entire page. The panelPage component lets you define specific areas on the page for
branding images, navigation menus and buttons, and page-level or application-level
text, ensuring that all web pages in the application will have a consistent look and feel.
Figure 4–5 shows an example of a page created by using a panelPage component.

Table 4–2 ADF Faces and JSF Tag Libraries

Library URI Prefix

ADF Faces Core http://xmlns.oracle.com/adf/faces af

ADF Faces HTML http://xmlns.oracle.com/adf/faces/html afh

JSF Core http://java.sun.com/jsf/core f

JSF HTML http://java.sun.com/jsf/html h

Laying Out a Web Page

4-14 Oracle Application Development Framework Developer’s Guide

Figure 4–5 Page Layout Created with a PanelPage Component

After you create a new JSF page using the wizard, JDeveloper automatically opens the
blank page in the JSP/HTML Visual Editor. To edit a page, you can use any
combination of JDeveloper’s page design tools you’re comfortable with, namely:

■ Structure window

■ JSP/HTML Visual Editor

■ XML Source Editor

■ Property Inspector

■ Component Palette

When you make changes to a page in one of the design tools, the other tools are
automatically updated with the changes you made.

4.4.1 How to Add UI Components to a JSF Page
You can use both standard JSF components and ADF Faces components within the
same JSF page. For example, to insert and use the panelPage component in a starter
JSF page created by JDeveloper, you could use the following procedure.

To insert UI components into a JSF page:
1. If not already open, double-click the starter JSF page in the Application Navigator

to open it in the visual editor.

2. In the Component Palette, select ADF Faces Core from the dropdown list.

3. Drag and drop PanelPage from the palette to the page in the visual editor.

As you drag a component on the page in the visual editor, notice that the Structure
window highlights the h:form component with a box outline, indicating that the
h:form component is the target component. The target component is the
component into which the source component will be inserted when it is dropped.

4. In the Structure window, right-click the newly inserted af:panelPage or any of the
PanelPage facets, and choose from the Insert before, Insert inside, or Insert after
menu to add the UI components you desire.

Laying Out a Web Page

Getting Started with ADF Faces 4-15

You create your input or search forms, tables, and other page body contents inside
the panelPage component. For more information about panelPage and its
facets, see Section 4.4.4, "Using the PanelPage Component".

5. To edit the attributes for an inserted component, double-click the component in
the Structure window to open a property editor, or select the component and then
use the Property Inspector.

As you build your page layout by inserting components, you can also use the Data
Control Palette to insert databound UI components. Simply drag the item from the
Data Control Palette and drop it into the desired location on the page. For further
information about using the Data Control Palette, see Chapter 5, "Displaying Data on a
Page".

4.4.2 What Happens When You First Insert an ADF Faces Component
Figure 4–6 shows the Application Navigator view of the ViewController project after
adding your first ADF Faces component in a page.

Figure 4–6 ViewController Project in the Navigator After You Insert the First ADF Faces
Component

Tip: Using the context menu in the Structure window to add
components ensures that you are inserting components into the
correct target locations. You can also drag components from the
Component Palette to the Structure window. As you drag a
component on the Structure window, JDeveloper highlights the target
location with a box outline or a line with an embedded arrow to
indicate that the source component will be inserted in that target
location when it is dropped. See Section 4.4.3.1, "Editing in the
Structure Window" for additional information about inserting
components using the Structure window.

Laying Out a Web Page

4-16 Oracle Application Development Framework Developer’s Guide

When you first add an ADF Faces component to a JSF page, JDeveloper automatically
does the following:

■ Imports the ADF Faces Core and HTML tag libraries (if not already inserted) into
the page. See Example 4–4.

■ Replaces the html, head, and body tags with afh:html, afh:head, and
afh:body, respectively. See Example 4–5.

■ Adds the ADF Faces filter and mapping configuration settings to web.xml. See
Section 4.4.2.1, "More About the web.xml File".

■ Adds the ADF Faces default render kit configuration setting to
faces-config.xml. See Section 4.4.2.2, "More About the faces-config.xml File".

■ Creates a starter adf-faces-config.xml in /WEB-INF of the ViewController
project. See Section 4.4.2.3, "Starter adf-faces-config.xml File".

■ Creates the /ViewController/public_html/WEB-INF/temp/adf folder in
the file system. This folder contains images and styles that JDeveloper uses for
ADF Faces components. You might not see the folder in the Application Navigator
until you close and reopen the workspace.

Example 4–5 JSF JSP Document After You Add the First ADF Faces Component

<?xml version='1.0' encoding='windows-1252'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:afh="http://xmlns.oracle.com/adf/faces/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces">
 <jsp:output omit-xml-declaration="true" doctype-root-element="HTML"
 doctype-system="http://www.w3.org/TR/html4/loose.dtd"
 doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"/>
 <jsp:directive.page contentType="text/html;charset=windows-1252"/>
 <f:view>
 <afh:html>
 <afh:head title="untitled1">
 <meta http-equiv="Content-Type"
 content="text/html; charset=windows-1252"/>
 </afh:head>
 <afh:body>
 <h:form>
 <af:panelPage title="Title 1">
 <f:facet name="menu1"/>
 <f:facet name="menuGlobal"/>
 <f:facet name="branding"/>
 <f:facet name="brandingApp"/>
 <f:facet name="appCopyright"/>
 <f:facet name="appPrivacy"/>
 <f:facet name="appAbout"/>
 </af:panelPage>
 </h:form>
 </afh:body>

Tip: The WEB-INF/lib and WEB-INF/temp/adf folders are used
by JDeveloper at runtime only. To reduce clutter in the Application
Navigator, you may exclude them from the ViewController project.
Double-click ViewController to open the Project Properties dialog.
Under Project Content, select Web Application and then use the
Excluded tab to add the folders you wish to exclude.

Laying Out a Web Page

Getting Started with ADF Faces 4-17

 </afh:html>
 </f:view>
</jsp:root>

4.4.2.1 More About the web.xml File
When you insert an ADF Faces component into a JSF page for the first time,
JDeveloper automatically inserts the following ADF Faces configuration settings into
web.xml:

■ ADF Faces filter: Installs
oracle.adf.view.faces.webapp.AdfFacesFilter, which is a servlet filter
to ensure that ADF Faces is properly initialized by establishing a
AdfFacesContext object. AdfFacesFilter is also required for processing file
uploads. The configuration setting maps AdfFacesFilter to a symbolic name.

■ ADF Faces filter mapping: Maps the JSF servlet’s symbolic name to the ADF Faces
filter.

■ ADF Faces resource servlet: Installs
oracle.adf.view.faces.webapp.ResourceServlet, which serves up web
application resources (such as images, style sheets, and JavaScript libraries) by
delegating to a ResourceLoader. The configuration setting maps
ResourceServlet to a symbolic name.

■ ADF Faces resource mapping: Maps the URL pattern to the ADF Faces resource
servlet’s symbolic name.

Example 4–6 shows the web.xml file after you add the first ADF Faces component.

Example 4–6 Configuring for ADF Faces in the web.xml File

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee">
 <description>Empty web.xml file for Web Application</description>

 <!-- Installs the ADF Faces filter -- >
 <filter>
 <filter-name>adfFaces</filter-name>
 <filter-class>oracle.adf.view.faces.webapp.AdfFacesFilter</filter-class>
 </filter>

 <!-- Adds the mapping to ADF Faces filter -- >
 <filter-mapping>
 <filter-name>adfFaces</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 </filter-mapping>

 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <!-- Installs the ADF Faces ResourceServlet -- >
 <servlet>
 <servlet-name>resources</servlet-name>
 <servlet-class>oracle.adf.view.faces.webapp.ResourceServlet</servlet-class>

Laying Out a Web Page

4-18 Oracle Application Development Framework Developer’s Guide

 </servlet>

 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>

 <!-- Maps URL pattern to the ResourceServlet's symbolic name -->
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/adf/*</url-pattern>
 </servlet-mapping>
...
</web-app>

For reference information about the configuration elements you can use in web.xml
when you work ADF Faces, see Section A.8.1, "Tasks Supported by the web.xml File".

4.4.2.2 More About the faces-config.xml File
As mentioned earlier, JDeveloper creates one empty faces-config.xml file for you
when you create a new project that uses JSF technology. When you insert an ADF
Faces component into a JSF page for the first time, JDeveloper automatically inserts the
default render kit for ADF components into faces-config.xml, as shown in
Example 4–7.

Example 4–7 Configuring for ADF Faces Components in the faces-config.xml File

<?xml version="1.0" encoding="windows-1252"?>
<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_1.dtd">
<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <!-- Default render kit for ADF components -->
 <application>
 <default-render-kit-id>oracle.adf.core</default-render-kit-id>
 </application>
 ...
</faces-config>

4.4.2.3 Starter adf-faces-config.xml File
When you create a JSF application using ADF Faces components, you configure ADF
Faces–specific features (such as skin family and level of page accessibility support) in
the adf-faces-config.xml file. The adf-faces-config.xml file has a simple
XML structure that enables you to define element properties using the JSF expression
language (EL) or static values.

In JDeveloper, when you insert an ADF Faces component into a JSF page for the first
time, a starter adf-faces-config.xml file is automatically created for you in the
/WEB-INF directory of your ViewController project. Example 4–8 shows the starter
adf-faces-config.xml file.

Tip: If you use multiple filters in your application, make sure that
they are listed in web.xml in the order in which you want to run
them. At runtime, the filters are called in the sequence listed in that
file.

Laying Out a Web Page

Getting Started with ADF Faces 4-19

Example 4–8 Starter adf-faces-config.xml File Created by JDeveloper

<?xml version="1.0" encoding="windows-1252"?>
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/view/faces/config">

 <skin-family>oracle</skin-family>

</adf-faces-config>

By default JDeveloper uses the Oracle skin family for a JSF application. You can
change this to minimal or use a custom skin. The SRDemo application uses the
srdemo skin. If you wish to use a custom skin, you need to create the
adf-faces-skins.xml configuration file, and modify adf-faces-config.xml to
use the custom skin. For more information, see Section 14.3.1, "How to Use Skins".

To edit the adf-faces-config.xml file in JDeveloper, use the following procedure.

To edit the adf-faces-config.xml file:
1. In the Application Navigator, double-click adf-faces-config.xml to open the file in

the XML editor.

2. If you’re familiar with the element names, enter them in the editor. Otherwise use
the Structure window to help you insert them.

3. To use the Structure window, follow these steps:

a. Right-click any element to choose from the Insert before or Insert after menu,
and click the element you wish to insert.

b. Double-click the newly inserted element in the Structure window to open it in
the properties editor.

c. Enter a value or select one from a dropdown list (if available).

In most cases you can enter either a JSF EL expression (such as
#{view.locale.language=='en' ? 'minimal' : 'oracle'}) or a
static value (e.g., <debug-output>true</debug-output>). EL
expressions are dynamically reevaluated on each request, and must return an
appropriate object (for example, a Boolean object).

Typically, you would want to configure the following in adf-faces-config.xml:

■ Level of page accessibility support (See Section 4.6, "Best Practices for ADF Faces")

■ Skin family (See Section 14.3, "Using Skins to Change the Look and Feel")

■ Time zone (See Section 14.4.2, "How to Configure Optional Localization Properties
for ADF Faces")

■ Enhanced debugging output (See Section A.11.1.3, "Configuring For Enhanced
Debugging Output")

■ Oracle Help for the Web (OHW) URL (See Section A.11.1.11, "Configuring the
Help Site URL")

Note: All elements can appear in any order within the root element
<adf-faces-config>. You can include multiple instances of any
element. For reference information about the configuration elements
you can use in adf-faces-config.xml, see Section A.11,
"adf-faces-config.xml".

Laying Out a Web Page

4-20 Oracle Application Development Framework Developer’s Guide

You can also register a custom file upload processor for uploading files. For
information, see Section 11.6.5, "Configuring a Custom Uploaded File Processor".

Once you have configured elements in the adf-faces-config.xml file, you can
retrieve the property values programmatically or by using JSF EL expressions. For
more information, see Appendix A.11.1.12, "Retrieving Configuration Property Values
From adf-faces-config.xml".

4.4.3 What You May Need to Know About Creating JSF Pages
Consider the following when you’re developing JSF web pages:

■ Do not use JSTL and HTML tags in a JSF page. JSTL tags cannot work with JSF at
all prior to J2EE 1.5, and HTML tags inside of JSF tags often mean you need to use
f:verbatim.

For example you can’t use c:forEach around JSF tags at all. When you nest a JSF
tag inside a non-JSF tag that iterates over its body, the first time the page is
processed the nested tag is invoked once for each item in the collection, creating a
new component on each invocation. On subsequent requests because the number
of items might be different, there is no good way to resolve the problem of needing
a new component ID for each iteration: JSP page scoped variables cannot be seen
by JSF; JSF request scoped variables in a previous rendering phase are not
available in the current postback request.

Other non-JSF tags may be used with JSF tags but only with great care. For
example, if you use c:if and c:choose, the id attributes of nested JSF tags must
be set; if you nest non-JSF tags within JSF tags, you must wrap the non-JSF tags in
f:verbatim; if you dynamically include JSP pages that contain JSF content, you
must use f:subview and also wrap all included non-JSF content in f:verbatim.

■ In the SRDemo user interface, all String resources (for example, page titles and
field labels) that are not retrieved from the ADF Model are added to a resource
properties file in the ViewController project. If you use a resource properties file to
hold the UI strings, use the f:loadBundle tag to load the properties file in the
JSF page. For more information about resource bundles and the f:loadBundle
tag, see Section 14.4, "Internationalizing Your Application".

■ There is no requirement to use the ADF Faces af:form tag when you're using
ADF Faces components—you can use the standard JSF h:form with all ADF Faces
components. If you do use af:form, note that the af:form component does not
implement the JSF NamingContainer API. This means a component’s ID in the
generated HTML does not include the form's ID as a prefix. For pages with
multiple forms, this implies you can’t reuse ID values among the forms. For
example, this code snippet generates the component ID foo:bar for inputText:

<h:form id="foo">
 <af:inputText id="bar"/>
</h:form>

But the following code snippet generates the component ID bar2 for inputText:

<af:form id="foo2">
 <af:inputText id="bar2"/>
</af:form>

The advantages of using af:form are:

– It is easier to write JavaScript because it does not result in prefixed "name" and
"id" attributes in its contents (as explained above).

Laying Out a Web Page

Getting Started with ADF Faces 4-21

– It results in more concise HTML, for example, in cases where you may not
know the form's ID.

– You can use some CSS features on the fields.

– You can set a default command for form submission. Set the
defaultCommand attribute on af:form to the ID of the command button
that is to be used as the default submit button when the Enter key is pressed.
By defining a default command button for a form, when the user presses the
Enter key, an ActionEvent is created and the form submitted. If a default
command button is not defined for a form, pressing Enter will not submit the
form, and the page simply redisplays.

■ The afh:body tag enables partial page rendering (PPR) in a page. If a page
cannot use the afh:body tag and PPR support is desired, use the
af:panelPartialRoot tag in place of the afh:body tag. For information about
PPR, see Section 11.4, "Enabling Partial Page Rendering".

■ The af:document tag generates the standard root elements of an HTML page,
namely html, head, and body, so you can use af:document in place of
afh:html, afh:head, and afh:body.

For more tips on using ADF Faces components, see Section 4.6, "Best Practices for ADF
Faces".

4.4.3.1 Editing in the Structure Window
In the Structure window while inserting, copying, or moving elements, you select an
insertion point on the structure that is shown for the page, in relation to a target
element. JDeveloper provides visual cues to indicate the location of the insertion point
before, after, or contained inside a target element.

When dragging an element to an insertion point, do one of the following:

■ To insert an element before a target element, drag it towards the top of the element
until you see a horizontal line with an embedded up arrow, and then release the
mouse button.

■ To insert an element after a target element, drag it towards the bottom of the
element until you see a horizontal line with an embedded down arrow, and then
release the mouse button.

■ To insert or contain an element inside a target element, drag it over the element
until it is surrounded by a box outline, and then release the mouse button. If the
element is not available to contain the inserted element, the element will be
inserted after the target element.

4.4.3.2 Displaying Errors
Most of the SRDemo pages use the af:messages tag to display error messages.
When you create databound pages using the Data Control Palette, ADF Faces
automatically inserts the af:messages tag for you at the top of the page. When there
are errors at runtime, ADF Faces automatically displays the messages in a message box

Tip: A disallowed insertion point is indicated when the drag cursor
changes to a circle with a slash.

Laying Out a Web Page

4-22 Oracle Application Development Framework Developer’s Guide

offset by color. For more information about error messages, see Section 12.7,
"Displaying Error Messages".

In addition to reporting errors in a message box, you could use a general JSF error
handling page for displaying fatal errors such as stack traces in a formatted manner. If
you use a general error handling page, use the <error-page> element in web.xml to
specify a type of exception for the error page (as shown in Example 4–9), or specify the
error page using the JSP page directive (as shown in Example 4–10).

Example 4–9 Configuring Error-Page and Exception-Type in the web.xml File

<error-page>
 <exception-type>java.lang.Exception</exception-type>
 <location>/faces/infrastructure/SRError.jspx</location>
</error-page>

Example 4–10 Specifying ErrorPage in a JSF Page Using JSP Directive

<jsp:root ...>
 <jsp:output ...>
 <jsp:directive.page contentType="text/html;charset=windows-1252"
 errorPage="faces/SRError.jspx"/>
 <f:view></f:view>
</jsp:root>

Consider the following if you intend to create and use a general JSF JSP error page:

■ Due to a current limitation in Sun’s JSF reference implementation, if you use the
Create JSF JSP wizard in JDeveloper to create a JSF JSP error page, you need to
replace <f:view></f:view> with <f:subview></f:subview>.

■ In web.xml you need to add the following settings to ADF Faces filter mapping:

<dispatcher>REQUEST</dispatcher>
<dispatcher>ERROR</dispatcher>

■ In the JSF page that uses the error page, <jsp:directive errorPage=""/>
needs to include the faces/ prefix in the errorpage URI, as shown in this code
snippet:

<jsp:directive.page contentType="text/html;charset=windows-1252"
 errorPage="faces/SRError.jspx"/>

4.4.4 Using the PanelPage Component
The SRDemo pages use panelPage as the main ADF Faces layout component, which
lets you lay out an entire page with specific areas for navigation menus, branding
images, and page body contents, as illustrated in Figure 4–5.

The panelPage component uses facets (or JSF f:facet tags) to render children
components in specific, predefined locations on the page. Consider a facet as a
placeholder for one child component. Each facet has a name and a purpose, which
determines where the child component is to be rendered relative to the parent
component. The child component is often a container component for other child
components.

The panelPage component uses menu1, menu2, and menu3 facets for creating
hierarchical, navigation menus that enable users to go quickly to related pages in the
application. In the menu facets you could either:

Laying Out a Web Page

Getting Started with ADF Faces 4-23

■ Manually insert the menu components (such menuTabs and menuBar) and their
children menu items. By manually inserting individual children components, you
need a lot of code in your JSF pages, which is time-consuming to create and
maintain.

For example, to create two menu tabs with subtabs, you would need code like this:

<f:facet name="menu1">
 <af:menuTabs>
 <af:commandMenuItem text="Benefits" selected="true"
 action="go.benefits"/>
 <af:commandMenuItem text="Employee Data" action="go.emps"/>
 </af:menuTabs>
</f:facet>
<f:facet name="menu2">
 <af:menuBar>
 <af:commandMenuItem text="Insurance" selected="true"
 action="go.insurance"/>
 <af:commandMenuItem text="Paid Time Off" selected="false"
 action="go.pto"/>
 </af:menuBar>
</f:facet>

■ Bind the menu components to a MenuModel object, and for each menu component
use a nodeStamp facet to stamp out the menu items (which does not require
having multiple menu item components in each menu component). By binding to
a MenuModel object and using a nodeStamp facet, you use less code in your JSF
pages, and almost any page (regardless of its place in the hierarchy) can be
rendered using the same menu code. For example, to create the same two menu
tabs shown earlier:

<f:facet name="menu1">
 <af:menuTabs var="menutab" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menutab.label}"
 action="#{menutab.getOutcome}"/>
 </f:facet>
 </af:menuList>
</f:facet>
<f:facet name="menu2">
 <af:menuBar startDepth="1" var="menusubtab" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menusubtab.label}"
 action="#{menusubtab.getOutcome}"/>
 </f:facet>
 </af:menuList>
</f:facet>

In the SRDemo pages, the menu components are bound to a menu model object
that is configured via managed beans. For information about how to create a menu
structure using managed beans, see Section 11.2, "Using Dynamic Menus for
Navigation".

In addition to laying out hierarchical menus, the panelPage component supports
other facets for laying out page-level and application-level text, images, and action
buttons in specific areas, as illustrated in Figure 4–7 and Figure 4–8.

For instructions on how to insert child components into facets or into panelPage
itself, see Section 4.4.1, "How to Add UI Components to a JSF Page".

Laying Out a Web Page

4-24 Oracle Application Development Framework Developer’s Guide

4.4.4.1 PanelPage Facets
Figure 4–7 shows panelPage facets (numbered 1 to 12) for laying out branding
images, global buttons, menu tabs, bars, and lists, and application-level text.

Figure 4–7 Basic Page Layout with Branding Images, Navigation Menus, and
Application-Level Text

Table 4–3 shows the panelPage facets (as numbered in Figure 4–7), and the preferred
children components that you could use in them. In JDeveloper, when you right-click a
facet in the Structure window, the Insert inside context menu shows the preferred
component to use, if any.

Table 4–3 PanelPage Facets for Branding Images, Navigation Menus, and
Application-Level Text

No. Facet Description

1 branding For a corporate logo or organization branding using
objectImage. Renders its child component at the top
left corner of the page.

2 brandingApp For an application logo or product branding using
objectImage. Renders its child component after a
branding image, if used. If chromeType on
panelPage is set to "expanded", the brandingApp
image is placed below the branding image.

3 brandingAppContextual Typically use with outputFormatted text to show the
application's current branding context. Set the
styleUsage attribute on outputFormatted to
inContextBranding.

4 menuSwitch For a menuChoice component that allows the user to
switch to another application from any active page.
Renders its child component at the top right corner of the
page. The menuChoice component can be bound to a
menu model object.

Laying Out a Web Page

Getting Started with ADF Faces 4-25

Figure 4–8 shows panelPage facets (numbered 1 to 7) for laying out page-level
actions and text.

5 menuGlobal For a menuButtons component that lays out a series of
menu items as global buttons. Global buttons are buttons
that are always available from any active page in the
application (for example a Help button). Renders its
children components at the top right corner of the page,
before a menuSwitch child if used. A text link version of
a global button is automatically repeated at the bottom of
the page. The menuButtons component can be bound to
a menu model object.

6 menu1 For a menuTabs component that lays out a series of
menu items as tabs. Renders its children components
(right justified) at the top of the page, beneath any
branding images, menu buttons, or menu switch. A text
link version of a tab is automatically repeated at the
bottom of the page. Menu tab text links are rendered
before the text link versions of global buttons. Both types
of text links are centered in the page. The menuTabs
component can be bound to a menu model object.

7 menu2 For a menuBar component that lays out a series of menu
items in a horizontal bar, beneath the menu tabs. The
children components are left justified in the bar, and
separated by vertical lines. The menuBar component can
be bound to a menu model object.

8 menu3 For a menuList component that lays out a bulleted list
of menu items. Renders the children components in an
area offset by color on the left side of a page, beneath a
menu bar. The menuList component can be bound to a
menu model object.

9 search For a search area using an inputText component.
Renders its child component beneath the horizontal
menu bar. A dotted line separates it from the page title
below.

10 appAbout For a link to more information about the application
using commandLink. The link text appears at the bottom
left corner of the page.

11 appCopyright For copyright text using outputText. The text appears
above the appAbout link.

12 appPrivacy For a link to a privacy policy statement for the
application using commandLink. The link text appears
at the bottom right corner of the page.

Tip: Many UI components support facets, not only panelPage. To
quickly add or remove facets on a component, right-click the
component in the Structure window and choose Facets - <component
name>, where <component name> is the name of the UI component.
If the component supports facets, you’ll see a list of facet names. A
checkmark next to a name means the f:facet element for that facet
is already inserted in the page, but it may or not contain a child
component.

Table 4–3 (Cont.) PanelPage Facets for Branding Images, Navigation Menus, and
Application-Level Text

No. Facet Description

Laying Out a Web Page

4-26 Oracle Application Development Framework Developer’s Guide

Figure 4–8 Basic Page Layout with Page-Level Actions and Informational Text

Table 4–4 shows the panelPage facets (as numbered in Figure 4–8), and the preferred
children components that you could use in them.

Table 4–4 PanelPage Facets for Page-Level Actions and Informational Text

No. Facet Description

1 actions For page-level actions that operate on the page content.
Typically use with a panelButtonBar to lay out a
series of buttons, a processChoiceBar, or a
selectOneChoice. Renders its children components
below the page title, right-justified. The children
components are also automatically repeated near the
bottom of the page (above any text link versions of menu
tabs and global buttons) on certain devices and skins.

2 contextSwitcher A context switcher lets the user change the contents of
the page based on the context. For example, when a user
is viewing company assets for a department, the user can
use the context switcher to switch to the assets of another
department. All the pages will then change to the
selected context. Typically use with a
selectOneChoice component. The facet renders its
child component on the same level as the page title,
right-justified.

3 infoFootnote For page-level information that is ancillary to the task at
hand. Typically use with an outputFormatted
component, with styleClass or styleUsage set to an
appropriate value. The facet renders its child component
near the bottom of the page, left-justified and above the
infoReturn link.

4 infoReturn For a "Return to X" link using commandLink. For the
user to move quickly back to the default page of the
active menu tab. The facet renders its child component
near the bottom of the page, left-justified and above the
text link versions of menu tabs and global buttons.

Laying Out a Web Page

Getting Started with ADF Faces 4-27

4.4.4.2 Page Body Contents
After you’ve set up the panelPage facets, create your forms, tables, and other page
body contents inside the panelPage component. ADF Faces panel components (and
others) help you to organize content on a page. Use Table 4–5 to decide which
components are suitable for your purposes.

For information about the component attributes you can set on each component, see
the JDeveloper online help. For an image of what each component looks like, see the
ADF Faces Core tag document at

http://www.oracle.com/technology/products/jdev/htdocs/partners/a
ddins/exchange/jsf/doc/tagdoc/core/imageIndex.html

5 infoStatus For page-level status information about the task at hand.
Could also use to provide a key notation. A key notation
is a legend used to define icons, elements, or terms used
within the page contents. Typically use with an
outputFormatted component, with styleClass or
styleUsage set to an appropriate value. The facet
renders its child component below the page title,
left-justified.

6 infoSupplemental For any other additional information. Typically use with
a panelBox to show the information in an area offset by
color. In the panelBox you could use for example
panelList or outputFormatted text to provide
additional information that might help the user, but is
not required for completing a task. The facet renders its
children components on the right side of the page, below
the infoUser facet child component.

7 infoUser For presenting user login and connection information.
Typically use with an outputFormatted component,
with styleClass or styleUsage set to an appropriate
value. The facet renders its child component on the right
side of the page, immediately below the menu bars.

Tip: Like panelPage, the page component also lets you lay out an
entire page with specific content areas. Unlike panelPage, you can
bind the value of page to a menu model object to create the page’s
hierarchical menus—you don't have to bind individual menu
components to a menu model object.

Table 4–5 ADF Faces Layout and Panel Components

To... Use these components...

Align form input components in one or more
columns, with the labels right-justified and the
fields left-justified

panelForm

Arrange components horizontally, optionally
specifying a horizontal or vertical alignment

panelHorizontal

Arrange components consecutively with
wrapping as needed, horizontally in a single
line, or vertically

panelGroup

Create a bulleted list in one or more columns panelList

Table 4–4 (Cont.) PanelPage Facets for Page-Level Actions and Informational Text

No. Facet Description

http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/core/imageIndex.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/core/imageIndex.html

Creating and Using a Backing Bean for a Web Page

4-28 Oracle Application Development Framework Developer’s Guide

4.5 Creating and Using a Backing Bean for a Web Page
In JSF, backing beans are JavaBeans used mainly to provide UI logic and to manage
data between the web tier and the business tier of the application (similar to a data
transfer object). Typically you have one backing bean per JSF page. The backing bean
contains the logic and properties for the UI components used on the page. For
example, to programmatically change a UI component as a result of some user activity
or to execute code before or after an ADF declarative action method, you provide the
necessary code in the page’s backing bean and bind the component to the
corresponding property or method in the bean.

For a backing bean to be available when the application starts, you register it as a
managed bean with a name and scope in faces-config.xml. At runtime, whenever
the managed bean is referenced on a page through a JSF EL value or method binding
expression, the JSF implementation automatically instantiates the bean, populates it
with any declared, default values, and places it in the managed bean scope as defined
in faces-config.xml.

Lay out one or more components with a label,
tip, and message

panelLabelAndMessage

Place multiple panelLabelAndMessage
components in a panelForm

When laying out input component, the
simple attribute on the input component
must be set to true.

Place components in a container offset by
color

panelBox

Typically use a single child inside panelBox
such as panelGroup or panelForm, which
then contains the components for display

Place components in predefined locations
using facets

panelBorder

Lay out a series of buttons panelButtonBar

Display additional page-level or section-level
hints to the user

panelTip

Create page sections and subsections with
headers

panelHeader, showDetailHeader

Add quick links to sections in long pages Set the quickLinksShown attribute on
panelPage to true

Let the user toggle a group of components
between being shown (disclosed) and hidden
(undisclosed)

showDetail

Let the user select and display a group of
contents at a time

A ShowOne component with
showDetailItem components

ShowOne components include showOneTab,
showOneChoice, showOneRadio, and
showOnePanel

Insert separator lines or space in your layout objectSeparator, objectSpacer

Table 4–5 (Cont.) ADF Faces Layout and Panel Components

To... Use these components...

Creating and Using a Backing Bean for a Web Page

Getting Started with ADF Faces 4-29

4.5.1 How to Create and Configure a Backing Bean
The Overview mode of the JSF Configuration Editor lets you create and configure a
backing bean declaratively. Suppose you have a JSF page with the filename
SRDemopage.jspx. Now you want to create a backing bean for the page.

To create and configure a backing bean as a managed bean:
1. In the Application Navigator, double-click faces-config.xml to open it in the

default mode of the JSF Configuration Editor.

2. At the bottom of the editor, select the Overview tab to switch to the Overview
mode, if necessary.

3. In the element list on the left, select Managed Beans.

4. Click New to open the Create Managed Bean dialog.

5. In the dialog, specify the following for a managed bean:

■ Name: Enter a unique identifier for the managed bean (e.g., backing_
SRDemopage). This identifier determines how the bean will be referred to
within the application using EL expressions, instead of using the bean's
fully-qualified class name.

■ Class: Enter the fully qualified class name (e.g.,
oracle.srdemo.view.backing.SRDemopage). This is the JavaBean that
contains the properties that hold the data for the UI components used on the
page, along with the corresponding accessor methods and any other methods
(such as navigation or validation). This can be an existing or a new class.

■ Scope: This determines the scope within which the bean is stored. The valid
scope values are:

– application: The bean is available for the duration of the web application.
This is helpful for global beans such as LDAP directories.

– request: The bean is available from the time it is instantiated until a
response is sent back to the client. This is usually the life of the current
page. Backing beans for pages usually use this scope.

– session: The bean is available to the client throughout the client's session.

– none: The bean is instantiated each time it is referenced.

6. Select the Generate Class If It Does Not Exist checkbox to let JDeveloper create
the Java class for you. If you’ve already created the Java class, don’t select this
checkbox.

4.5.2 What Happens When You Create and Configure a Backing Bean
If you select the Generate Class If It Does Not Exist checkbox, JDeveloper creates a
new Java class using the fully qualified class name set as the value of Class. The new
file appears within the Application Sources node of the ViewController project in the
Application Navigator, as illustrated in Figure 4–9.

Note: At this point, you haven’t defined a strict relationship between
the JSF page and the backing bean. You’ve simply configured a
backing bean in faces-config.xml, which you can now reference
via JSF EL expressions on a page. To define a strict relationship
between a page and a backing bean, see Section 4.5.3, "How to Use a
Backing Bean in a JSF Page".

Creating and Using a Backing Bean for a Web Page

4-30 Oracle Application Development Framework Developer’s Guide

Figure 4–9 Backing Bean for SRDemopage.jspx in the Navigator

To edit the backing bean class, double-click the file in the Application Navigator (for
example, SRDemopage.java) to open it in the source editor. If it’s a new class, you
would see something similar to Example 4–11.

Example 4–11 Empty Java Class Created by JDeveloper

package oracle.srdemo.view.backing;

public class SRDemopage {
 public SRDemopage() {
 }
}

In faces-config.xml, JDeveloper adds the backing bean configuration using the
<managed-bean> element, as shown in Example 4–12.

Example 4–12 Registering a Managed Bean in the faces-config.xml File

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <!-- Page backing beans typically use request scope-->
 <managed-bean>
 <managed-bean-name>backing_SRDemopage</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.backing.SRDemopage</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 ...
</faces-config>

4.5.3 How to Use a Backing Bean in a JSF Page
Once a backing bean is defined with the relevant properties and methods, you use JSF
EL expressions such as #{someBean.someProperty} or
#{someBean.someMethod} to bind a UI component attribute to the appropriate
property or method in the bean.

For example, the following code snippets illustrate value binding expressions and
method binding expressions:

<af:inputText value="#{someBean.someProperty}"/>

Note: For a backing bean to access the ADF Model binding layer at
runtime, the backing bean could inject the ADF binding container. For
information about how this is done, see Section 4.5.7, "Using ADF
Data Controls and Backing Beans".

Creating and Using a Backing Bean for a Web Page

Getting Started with ADF Faces 4-31

..
<af:inputText disabled="#{someBean.anotherProperty}"/>
..
<af:commandButton action=#{someBean.someMethod}"/>
..
<af:inpuText valueChangeListener="#{someBean.anotherMethod}"/>

When such expressions are encountered at runtime, JSF instantiates the bean if it does
not already exist in the bean scope that was configured in faces-config.xml.

In addition to value and method bindings, you can also bind the UI component’s
instance to a bean property using the binding attribute:

<af:commandButton binding="#{backing_SRDemopage.commandButton1}"

When the binding attribute of a UI component references a property in the bean, the
bean has direct access to the component, and hence, logic in the bean can
programmatically manipulate other attributes of the component, if needed. For
example, you could change the color of displayed text, disable a button or field, or
cause a component not to render, based on some UI logic in the backing bean.

To reiterate, you can bind a component’s value attribute or any other attribute value
to a bean property, or you can bind the component instance to a bean property. Which
you choose depends on how much control you need over the component. When you
bind a component attribute, the bean's associated property holds the value for the
attribute, which can then be updated during the Update Model Values phase of the
component's lifecycle. When you bind the component instance to a bean property, the
property holds the value of the entire component instance, which means you can
dynamically change any other component attribute value.

4.5.4 How to Use the Automatic Component Binding Feature
JDeveloper has a feature that lets you automatically bind a UI component instance on
a JSF page to a backing bean property. When you turn on the Auto Bind feature for a
page, for any UI component that you insert into the page, JDeveloper automatically
adds property code in the page’s backing bean, and binds the component’s binding
attribute to the corresponding property in the backing bean. If your backing bean
doesn’t have to modify the attributes of UI components on a page programmatically,
you don’t need to use the automatic component binding feature.

To turn on automatic component binding for a JSF page:
1. Open the JSF page in the visual editor. Select Design at the bottom of the editor

window.

2. Choose Design > Page Properties to display the Page Properties dialog.

3. Select Component Binding.

4. Select Auto Bind.

5. Select a managed bean from the dropdown list or click New to configure a new
managed bean for the page.

Note: By turning on automatic component binding in a JSF page,
you are defining a strict relationship between a page and a backing
bean in JDeveloper.

Creating and Using a Backing Bean for a Web Page

4-32 Oracle Application Development Framework Developer’s Guide

4.5.5 What Happens When You Use Automatic Component Binding in JDeveloper
If the Auto Bind feature is turned on for a JSF page, you’ll see a special comment line
near the end of the page:

...
 </f:view>
 <!--oracle-jdev-comment:auto-binding-backing-bean-name:backing_SRDemopage-->
</jsp:root>

In faces-config.xml, a similar comment line is inserted at the end of the page’s
backing bean configuration:

<managed-bean>
 <managed-bean-name>backing_SRDemopage</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.backing.SRDemopage</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <!--oracle-jdev-comment:managed-bean-jsp-link:1SRDemopage.jspx-->
</managed-bean>

When you turn on the Auto Bind feature for a page, JDeveloper does the following for
you every time you add a UI component to the page:

■ Adds a property and property accessor methods for the component in the backing
bean. For example, the next code snippet shows the code added for an
inputText and a commandButton component:

 private CoreInputText inputText1;
 private CoreCommandButton commandButton1;
 public void setInputText1(CoreInputText inputText1) {
 this.inputText1 = inputText1;
 }

 public CoreInputText getInputText1() {
 return inputText1;
 }

 public void setCommandButton1(CoreCommandButton commandButton1) {
 this.commandButton1 = commandButton1;
 }

 public CoreCommandButton getCommandButton1() {
 return commandButton1;
 }

■ Binds the component to the corresponding bean property using an EL expression
as the value for the binding attribute, as shown in this code snippet:

<af:inputText binding="#{backing_SRDemopage.inputText1}"
<af:commandButton binding="#{backing_SRDemopage.commandButton1}"

When you turn off the Auto Bind feature for a page, JDeveloper removes the special
comments from the JSF page and faces-config.xml. The binding EL expressions
on the page and the associated backing bean code are not deleted.

Tip: When Auto Bind is turned on and you delete a UI component
from a page, JDeveloper automatically removes the corresponding
property and accessor methods from the page’s backing bean.

Creating and Using a Backing Bean for a Web Page

Getting Started with ADF Faces 4-33

4.5.6 What You May Need to Know About Backing Beans and Managed Beans
Managed beans are any application JavaBeans that are registered in the JSF
faces-config.xml file. Backing beans are managed beans that contain logic and
properties for some or all UI components on a JSF page. If you place, for example,
validation and event handling logic in a backing bean, then the code has
programmatic access to the UI components on the page when the UI components are
bound to properties in the backing bean via the binding attribute.

In this guide, the term backing bean might be used interchangeably with the term
managed bean, because all backing beans are managed beans. You can, however, have a
managed bean that is not a backing bean—that is, a JavaBean that does not have
properties and property getter and setter methods for UI components on a page, but
the bean is configured in faces-config.xml, and has code that is not specific to any
single page. Examples of where managed beans that are not backing beans are used in
the SRDemo application include beans to:

■ Access authenticated user information from the container security

■ Create the navigation menu system (such as menu tabs and menu bars).

■ Expose String resources in a bundle via EL expressions

Managed bean properties are any properties of a bean that you would like populated
with a value when the bean is instantiated. The set method for each declared property
is run once the bean is constructed. To initialize a managed bean's properties with set
values, use the <managed-property> element in faces-config.xml. When you
configure a managed property for a managed bean, you declare the property name, its
class type, and its default value, as shown in Example 4–13.

Example 4–13 Managed Bean Property Initialization Code in the faces-config.xml File

<managed-bean>
 <managed-bean-name>tax</managed-bean-name>
 <managed-bean-class>com.jsf.databeans.TaxRateBean</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 <managed-property>
 <property-name>rate</property-name>
 <property-class>java.lang.Float</property-class>
 <value>5</value>
 </managed-property>
</managed-bean>

In Example 4–13, the rate property is initialized with a value of 5 (converted to a
Float) when the bean is instantiated using the EL expression #{tax.rate}.

Managed beans and managed bean properties can be initialized as lists or maps,
provided that the bean or property type is a List or Map, or implements
java.util.Map or java.util.List. The default types for the values within a list
or map is java.lang.String.

Example 4–14 shows an example of a managed bean that is a List.

Example 4–14 Managed Bean List in the faces-config.xml File

<managed-bean>
 <managed-bean-name>options</managed-bean-name>
 <managed-bean-class>java.util.ArrayList</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 <list-entries>
 <value>Text Only</value>

Creating and Using a Backing Bean for a Web Page

4-34 Oracle Application Development Framework Developer’s Guide

 <value>Text + HTML</value>
 <value>HTML Only</value>
 </list-entries>
</managed-bean>

When the application encounters the EL expression #{options.text}, a List object
is created and initialized with the values from the declared list-entries' values. The
managed-property element is not declared, but the list-entries are child
elements of the managed-bean element instead.

4.5.7 Using ADF Data Controls and Backing Beans
When you create databound UI components by dropping items from the Data Control
Palette on your JSF page, JDeveloper does many things for you, which are
documented in Section 5.2.3, "What Happens When You Use the Data Control Palette".
The databound UI components use ADF data binding EL expressions, such as
#{bindings.ProductName.inputValue}, to reference the associated binding
objects in the page’s binding container, where bindings is the reference to the ADF
binding container of the current page.

In the backing bean of a page that uses ADF data bindings, sometimes you might want
to reference the binding container’s binding objects. To reference the ADF binding
container, you can resolve a JSF value binding to the #{bindings} EL expression and
cast the result to an oracle.binding.BindingContainer interface. Or for
convenience, you can add a managed property named bindings that references the
same #{bindings} EL expression, to the page’s managed bean configuration in
faces-config.xml so that the backing bean can work programmatically with the
ADF binding container at runtime. Example 4–15 shows the bindings managed
property in the backing_SRMain managed bean for the SRMain page.

Example 4–15 Bindings Managed Property in the faces-config.xml File

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <managed-bean>
 <managed-bean-name>backing_SRMain</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.backing.SRMain</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>bindings</property-name>
 <value>#{bindings}</value>
 </managed-property>
 </managed-bean>
 ...
</faces-config>

In the backing bean, add the getter and setter methods for the binding container.
Example 4–16 shows the part of SRMain.java that contains the relevant code for
bindings.

Example 4–16 Bindings Getter and Setter Methods in a Backing Bean

...
import oracle.binding.BindingContainer;

Tip: Managed beans can only refer to managed properties in beans
that have the same scope or a scope with a longer lifespan. For
example a session scope bean cannot refer to a managed property
on a request scoped bean.

Best Practices for ADF Faces

Getting Started with ADF Faces 4-35

 private BindingContainer bindings;

 public BindingContainer getBindings() {
 return this.bindings;
 }

 public void setBindings(BindingContainer bindings) {
 this.bindings = bindings;
 }

...

At runtime, when the application encounters an ADF data binding EL expression that
refers to the ADF binding container, such as
#{bindings.bindingObject.propertyName}, JSF evaluates the expression and
gets the value from the binding object.

For more information about ADF data binding EL expressions and ADF binding
properties, see Section 5.6, "Creating ADF Data Binding EL Expressions".

For an overview of how JSF backing beans work with the ADF Model layer, see
Chapter 1, "Introduction to Oracle ADF Applications".

4.6 Best Practices for ADF Faces
Consider the following best practices when developing with ADF Faces:

■ While both JSP documents (.jspx) and JSP pages (.jsp) can be used, Oracle
recommends working with JSP documents (.jspx) when using ADF Faces
components in your JSF pages because JSP documents are well-formed XML
documents. The XML standard offers many benefits such as validating against a
document type definition, and parsing to create documentation or audit reports.

■ Use token-based client-side state saving instead of server-side state saving by
setting the value of javax.faces.STATE_SAVING_METHOD in web.xml to
client (which matches the default server-side behavior that will be provided in
JSF 1.2).

While server-side state saving can provide somewhat better performance,
client-side state saving is recommended as it provides better support for failover
and the back button, and for displaying multiple windows simultaneously.
Token-based client-side state saving results in better server performance because
CPU and I/O consumption is lower.

Note that javax.faces.STATE_SAVING_METHOD must be set to server for
ADF Telnet applications because the Industrial Telnet Server does not currently
support saving state on the client.

■ Remove or disable debug features to improve the performance of deployed
applications:

– In web.xml, disable oracle.adf.view.faces.CHECK_FILE_
MODIFICATION. By default, this parameter is false. If it is set to true, ADF
Faces automatically checks the modification date of your JSPs, and discards
saved state when they change. For testing and debugging in JDeveloper’s
embedded OC4J, you don’t need to explicitly set this parameter to true
because ADF Faces automatically detects the embedded OC4J and runs with
the file modification checks enabled. But when you deploy the application,
you should set the parameter to false.

Best Practices for ADF Faces

4-36 Oracle Application Development Framework Developer’s Guide

For testing and debugging in JDeveloper’s embedded OC4J, you don’t need to
explicitly set this parameter to true because ADF Faces automatically detects
the embedded OC4J and runs with the file modification checks enabled.

– In web.xml, disable oracle.adf.view.faces.DEBUG_JAVASCRIPT. The
default value of this parameter is false. This means that by default, ADF
Faces obfuscates JavaScript and removes comments and whitespace to reduce
the size of the JavaScript download to the client. During application
development, you might set the parameter to true (to turn off obfuscation) so
that you can debug JavaScript easier, but when you deploy the application,
you should set the parameter to false.

– In adf-faces-config.xml, set <debug-output> to false. ADF Faces
enhances debugging output when <debug-output> is true, by adding
automatic indenting and extra comments, and detecting for malformed
markup problems, unbalanced elements, and common HTML errors. The
enhanced debug output is not necessary in deployed applications.

■ ADF Faces input components provide support for automatic form submission via
the autoSubmit attribute. When the autoSubmit attribute is set to true, and an
appropriate action takes place (such as a value change), the input component
automatically submits the form it is enclosed in through a partial page submit.
Thus you can update a portion of a page without having to redraw the entire page,
which is known as partial page rendering. For information about using partial page
rendering, see Section 11.4, "Enabling Partial Page Rendering".

■ ADF Faces performs client-side and server-side validation upon an auto submit
execution. But if both autoSubmit and immediate attributes on ADF Faces
input components are set to true, then ADF Faces doesn't perform client-side
validation.

■ When laying out ADF Faces input components inside panelLabelAndMessage
components, you must set the simple attributes on the input components to
true. For accessibility purposes, set the for attribute on
panelLabelAndMessage to the first input component. For proper alignment,
place multiple panelLabelAndMessage components in a panelForm.

■ Although ADF Faces ignores label and message attributes on "simple" input
components, you must set the label attribute on a "simple" component in this
version of ADF Faces for component-generated error messages to display
correctly.

■ If both styleClass and styleUsage attributes are set on a component,
styleClass has precedence over styleUsage.

■ ADF Faces provides three levels of page accessibility support, which is configured
in adf-faces-config.xml using the <accessibility-mode> element. The
acceptable values for <accessibility-mode> are:

– default: By default ADF Faces generates HTML code that is accessible to
disabled users.

– screenReader: ADF Faces generates HTML code that is optimized for the
use of screen readers. The screenReader mode facilitates disabled users, but
it may degrade the output for regular users. For example, access keys are
disabled in screen reader mode.

– inaccessible: ADF Faces removes all code that does not affect sighted
users. This optimization reduces the size of the generated HTML. The
application, however, is no longer accessible to disabled users.

Best Practices for ADF Faces

Getting Started with ADF Faces 4-37

■ Images that are automatically generated by ADF Faces components have built-in
descriptions that can be read by screen readers or nonvisual browsers. For images
generated from user-supplied icons and images, make sure you set the
shortDesc or searchDesc attribute. Those attributes transform into HTML alt
attributes. For images produced by certain ADF Faces components such as
menuTabs and menuButtons, make sure you set the text or icon attribute on
commandMenuItem because ADF Faces uses those values to generate text that
describes the menu name as well as its state.

Similarly for table and outputText components, set the summary and
description attribute, respectively, for user agents rendering to nonvisual
media. If you use frames, provide links to alternative pages without frames using
the alternateContent facet on frameBorderLayout. Within each frame set
the shortDesc and longDescURL attributes.

■ Specify an access key for input, command, and go components such as
inputText, commandButton, and goLink.

– Typically, you use the component’s accessKey attribute to set a keyboard
character. For command and go components, the character specified by the
attribute must exist in the text attribute of the component instance. If it does
not exist, ADF Faces does not display the visual indication that the component
has an access key

– You can also use labelAndAccessKey on input components, or
textAndAccessKey on command and go components. Those attributes let
you set the label or text value, and an access key for the component at the
same time. The conventional ampersand notation to use is & in JSP
documents (.jspx). For example, in this code snippet:

<af:commandButton textAndAccessKey="&Home"/>

... the button text is Home and the access key is H, the letter that is immediately
after the ampersand character.

– Using access keys on goButton and goLink components may immediately
activate them in some browsers. Depending on the browser, if the same access
key is assigned to two or more go components on a page, the browser may
activate the first component instead of cycling among the components that are
accessed by the same key.

– If you use a space as the access key, you need to provide a way to tell the user
that Alt+Space or Alt+Spacebar is the access key because there is no good way
to present a blank or space visually in the component's label or textual label.
For example, you could provide some text in a component tooltip using the
shortDesc attribute.

– Access keys are not displayed if the accessibility mode is set to screen reader
mode.

■ Enable application view caching by setting the value of
oracle.adf.view.faces.USE_APPLICATION_VIEW_CACHE in web.xml to
true.

When application view caching is enabled, the first time a page is viewed by any
user, ADF Faces caches the initial page state at an application level. Subsequently,
all users can reuse the page's cached state coming and going, significantly
improving application performance.

While application view caching can improve a deployed application's
performance, it is difficult to use during development and there are some coding

Best Practices for ADF Faces

4-38 Oracle Application Development Framework Developer’s Guide

issues that should be considered. For more detailed information about using
application view caching, see "Configuring ADF Faces for Performance" in the
"Configuring ADF Faces" section of the ADF Faces Developer’s Guide.

■ For ADF Faces deployment best practices, see Chapter 22, "Deploying ADF
Applications".

■ Increase throughput and shorten response times by caching content with the ADF
Faces Cache tag library. Caching stores all or parts of a web page in memory for
use in future responses. It significantly reduces response time to client requests by
reusing cached content for future requests without executing the code that created
it. For more information, see Chapter 15, "Optimizing Application Performance
with Caching".

Displaying Data on a Page 5-1

5
Displaying Data on a Page

This chapter describes how to use the Data Control Palette to create databound UI
components that display data on a page. It also describes how to work with all the
objects that are created when you use the Data Control Palette.

This chapter includes the following sections:

■ Section 5.1, "Introduction to Displaying Data on a Page"

■ Section 5.2, "Using the Data Control Palette"

■ Section 5.3, "Working with the DataBindings.cpx File"

■ Section 5.4, "Configuring the ADF Binding Filter"

■ Section 5.5, "Working with Page Definition Files"

■ Section 5.6, "Creating ADF Data Binding EL Expressions"

The remaining chapters in this part of this guide describe how to create specific types
of pages using databound components.

5.1 Introduction to Displaying Data on a Page
The ADF data controls, which are described in Section 3.10, "Exposing Services with
ADF Data Controls", provide an abstraction of an application’s business services,
giving the ADF binding layer access to the service data. Data controls define the data
model returned by the business service. You can bind UI components to data controls
to populate a page with data from your data model at runtime.

The JDeveloper Data Control Palette exposes an application’s data controls in the IDE
and enables you to use drag and drop to create a variety of UI components on a JSF
page. The UI components created by the Data Control Palette use declarative data
binding, which means that the data binding expressions are automatically configured
and that, in most cases, you do not have to write any additional code.

The advantages of binding to ADF data controls, instead of binding to the JavaServer
Faces standard managed beans, include:

■ Declarative data binding using drag and drop from the Data Control Palette that
requires little to no additional coding.

■ A uniform (standards-based) approach to UI data binding for multiple UI
technologies

Using the Data Control Palette

5-2 Oracle Application Development Framework Developer’s Guide

Read this chapter to understand:

■ How to use the Data Control Palette to create databound UI components

■ The items that appear on the Data Control Palette

■ The objects that JDeveloper creates for you when you use the Data Control Palette

■ How to construct an ADF data binding EL expression

■ The content of the page definition file and its relationship to EL expressions

5.2 Using the Data Control Palette
You can design a databound user interface by dragging an item from the Data Control
Palette and dropping it on a page as a specific UI component. When you use the Data
Control Palette to create a UI component, JDeveloper automatically creates the various
code and objects needed to bind the component to the data control you selected.

To display the Data Control Palette, open a JSF page in the Design page of the visual
editor and choose View > Data Control Palette. By default, JDeveloper displays the
Data Control Palette in the same window as the Component Palette.

Figure 5–1 shows the Data Control Palette for the SRDemo application, which uses
TopLink as the business service and data controls created from EJB session facades.

Note: If no data controls have been created for the application’s
business services, the Data Control Palette will be empty. For
information about creating data controls, see Chapter 3, "Building and
Using Application Services".

Using the Data Control Palette

Displaying Data on a Page 5-3

Figure 5–1 Data Control Palette

5.2.1 How to Understand the Items on the Data Control Palette
The Data Control Palette shows all the data controls that have been created for the
application’s business services and exposes all the data objects, data collections,
methods, and built-in operations that are available for binding to UI components. A
data collection represents a set of data objects (also known as a rowset) in the data
model. Each object in a data collection represents a specific structured data item (also
known as a row) in the data model.

Each root node in the Data Control Palette represents a specific data control. Under
each data control is a hierarchical list of objects, collections, methods, and operations.
How this hierarchy appears on the Data Control Palette depends on the type of
business service represented by the data control and how the business services were
defined.

In the Data Control Palette, each data control object is represented by a specific icon.
Table 5–1 describes what each icon represents, where it appears in the Data Control
Palette hierarchy, and what components it can be used to create.

Using the Data Control Palette

5-4 Oracle Application Development Framework Developer’s Guide

Table 5–1 The Data Control Palette Icons and Object Hierarchy

Icon Name Description Used to Create...

Data
Control

Represents a data control. You cannot use the data control itself
to create UI components, but you can use any of the child
objects listed under it. Depending on how your business
services were defined, there may be more than one data control,
each representing a logical grouping of data functions.

Not used to create
anything. Serves as a
container for the other
objects.

Create
Method

Represents a built-in method that creates a new instance of an
object in a data collection. Create method icons are located in a
folder named after the data collection to which they belong.
These data collection folders are located in the Constructors
folder under the data control. The Attributes folder, which
appears as a child under a create method, contains all the
attributes of the data collection in which the object will be
created. If the objects in a collection contain an attribute from
another collection (called a foreign key in relational databases),
that attribute is represented by an accessor return icon. I this
case, the accessor returns a single value and has no children. For
more information about using constructors, see Section 10.7,
"Creating an Input Form for a New Record".

Creation forms

Method Represents a custom method on the data control that may
accept parameters, perform some action or business logic, and
return single values or data collections.

If the method is a get method of a Map and returns a value or a
collection, a method return icon appears as a child under it. If a
method requires a parameter, a folder appears under the
method, which lists the required parameters. For more
information about using methods that accept parameters, see
Section 10.6, "Creating a Form or Table Using a Method that
Takes Parameters".

Command components

For methods that accept
parameters: command
components and
parameterized forms

Method
Return

Represents an object that is returned by a custom method. The
returned object may be a single value or a collection. A method
return appears as a child under the method that returns it. The
objects that appear as children under a method return may be
attributes of the collection, accessor returns that represent
collections related to the parent collection, other methods that
perform actions related to the parent collection, and operations
that can be performed on the parent collection.

For collections: forms,
tables, trees, and range
navigation components

For single values: text
fields and selection lists

Accessor
Return

Represents an object returned by an accessor method on the
business service. An accessor method is used when the objects
returned are JavaBeans.

Accessor returns appear as children under method returns,
other accessor returns, or in the Attributes folder under built-in
create methods. Accessor returns are objects that are related to
the current object in the parent collection. This relationship is
usually based on a common unique attribute in both objects. For
example, if a method returns a collection of users, an accessor
return that is a child of that collection might be a collection of
service requests that are assigned to a particular user. In ADF,
the relationship between parent and child collections is called a
master-detail relationship. For more information about accessor
returns and master-detail objects, see Chapter 8, "Displaying
Master-Detail Data".

The children under an accessor return may be attributes of the
object, other accessor returns, custom methods that return a
value from the accessor return, and operations that can be
performed on the accessor return.

For collections: forms,
tables, trees, range
navigation components,
and master-detail widgets

For single objects: forms,
master-detail widgets, and
selection lists

For single objects under a
constructor: selection lists
only

Using the Data Control Palette

Displaying Data on a Page 5-5

5.2.2 How to Use the Data Control Palette
To create a databound UI component, drag an item from the Data Control Palette and
drop it on a JSF page.

When you drag an item from the Data Control Palette and drop it on a page,
JDeveloper displays a context menu of all the default UI components available for the
item you dropped. From the context menu, select the component you want to create.

Figure 5–2 shows the context menu displayed when a method return from the Data
Control Palette is dropped on a page.

Figure 5–2 Data Control Palette Context Menu

Attribute Represents a discrete data element in an object. Attributes
appear as children under the method returns or accessor returns
to which they belong.

Label, text field, and
selection list components.

Operation Represents a built-in data control operation that performs
actions on the parent object. Data control operations are located
in an Operations folder under method returns or accessor
returns and under the root data control node. The operations
that are children of a particular method or accessor return
operate on that return object only, while operations under the
data control node operate on all the objects represented by the
data control.

If an operation requires one or more parameters, they are listed
in a Parameters folder under the operation.

UI actions such as buttons
or links.

Parameter Represents a parameter value that is declared by the method or
operation under which it appears. Parameters appear in the
Parameters folder under a method or operation.

Label, text, and selection
list components.

Note: When you drag and drop a built-in create method from the
Data Control Palette, the context menu does not appear. This is
because create methods can be used to create only one type of
component—creation forms.

Tip: By default, the Data Control Palette context menu displays only
ADF Faces components. However, you can use equivalent JSF
components instead. To have JSF components appear in the Data
Control Palette context menu, select the Include JSF HTML Widgets
for JSF Databinding option in the ADF View Settings page of the
project properties. However, using ADF Faces components, especially
with ADF bindings, provide greater functionality than JSF
components.

Table 5–1 (Cont.) The Data Control Palette Icons and Object Hierarchy

Icon Name Description Used to Create...

Using the Data Control Palette

5-6 Oracle Application Development Framework Developer’s Guide

Depending on the component you select from the context menu, JDeveloper may
display a dialog that enables you to define how you want the component to look. For
example, if you select ADF Read-only Table from the context menu, the Edit Table
Columns dialog appears. This dialog enables you to define which attributes you want
to display in the table columns, the column labels, what types of text fields you want
use for each column, and what functionality you want to include, such as selection
facets or column sorting. (For more information about creating tables, see Chapter 7,
"Adding Tables".)

The resulting UI component appears in the JDeveloper visual editor. For example, if
you drag a method return from the Data Control Palette, and choose ADF Read-only
Table from the context menu, a read-only table appears in the visual editor, as shown
in Figure 5–3.

Figure 5–3 Databound UI Component: ADF Read-only Table

Notice that the column labels in the sample table contain binding expressions, which
bind each column label to an attribute in the data collection. The default table includes
a selection facet, which is bound to a data collection iterator through an iterator
binding. The selection facet was included by selecting the Enable Selection option in
the Edit Table Columns dialog, which appears after you drop the table component.
(Binding expressions are discussed later in Section 5.6, "Creating ADF Data Binding EL
Expressions".)

By default, the UI components created when you use the Data Control Palette use ADF
Faces components, are bound to collections and collection attributes in the ADF data
control, and may have one or more built-in features including:

■ Databound labels

■ Tooltips

■ Formatting

■ Basic navigation buttons

■ Validation (if validation rules are attached to a particular attribute; see Chapter 12,
"Using Validation and Conversion" for information about validation)

The default components are fully functional without any further modifications.
However, you can modify them to suit your particular needs. Each component and its
various features are discussed further in the remaining chapters in this part of this
guide.

Using the Data Control Palette

Displaying Data on a Page 5-7

5.2.3 What Happens When You Use the Data Control Palette
While an ADF web application is built using the JSF framework, it requires a few
additional application object definitions to render and process a page containing ADF
databound UI components. If you do not use the Data Control Palette, you will have to
manually configure these various files yourself. However, when you use the Data
Control Palette, JDeveloper does all the required steps for you, which are:

■ Create a DataBindings.cpx file in the view package in the Application Sources
directory (if one does not already exist), and add an entry for the page.

The DataBindings.cpx file defines the binding context for the application. It
maps individual pages to their corresponding page definition files and registers
the data controls used by those pages. The data controls are defined in the
DataControls.dcx file. For more information, see Section 5.3, "Working with
the DataBindings.cpx File".

■ Register the ADF binding filter in the web.xml file.

The ADF binding filter preprocesses any HTTP requests that may require access to
the binding context. For more information about the binding filter configuration,
see Section 5.4, "Configuring the ADF Binding Filter".

■ Register the ADF phase listener in the faces-config.xml file, as shown in
Example 5–1.

Example 5–1 ADF Phase Listener Entry in the faces-config.xml File

<lifecycle>
 <phase-listener>oracle.adf.controller.faces.lifecycle.ADFPhaseListener
 </phase-listener>
</lifecycle>

The ADF phase listener is used to execute the ADF page lifecycle. It listens for all
the JSF phases before which and after which it needs to execute its own phases,
which are concerned with preparing the model, validating model updates, and
preparing pages to be rendered. For more information about the ADF lifecycle, see
Section 6.2.3, "What Happens at Runtime: The JSF and ADF Lifecycles".

■ Add the following ADF runtime libraries to the project properties of the view
project:

– ADF Model Runtime (adfm.jar)

– ADF Controller (adf-controller.jar)

■ Add a page definition file (if one does not already exist for the page) to the page
definition subpackage, the name of which is defined in the ADFm settings of the
project properties. The default subpackage is view.pageDefs in the
Application Sources directory.

The page definition file (<pageName>PageDef.xml) defines the ADF binding
container for each page in an application’s view layer. The binding container

Tip: If you want to change the type of ADF databound component
used on a page, the easiest method is to delete the component and
drag and drop a new one from the Data Control Palette. When you
delete a databound component from a page, if the related binding
objects in the page definition file are not referenced by any other
component, JDeveloper automatically deletes those binding objects for
you.

Using the Data Control Palette

5-8 Oracle Application Development Framework Developer’s Guide

provides runtime access to all the ADF binding objects. In later chapters, you will
see how the page definition files are used to define and edit the binding object
definitions for specific UI components. For more information about the page
definition file, see Section 5.5, "Working with Page Definition Files".

■ Configure the page definition file, which includes adding definitions of the
binding objects referenced by the page.

■ Add prebuilt components to the JSF page.

These prebuilt components include ADF data binding expression language (EL)
expressions that reference the binding objects in the page definition file. For more
information, see Section 5.6, "Creating ADF Data Binding EL Expressions".

■ Add all the libraries, files, and configuration elements required by ADF Faces
components, if ADF Faces components are used. For more information, see
Section 4.4.2, "What Happens When You First Insert an ADF Faces Component".

5.2.4 What Happens at Runtime
When a page contains ADF bindings, at runtime, the interaction with the business
services initiated from the client or controller is managed by the application through a
single object known as the Oracle ADF binding context. The ADF binding context is a
container object that contains a list of data controls and data binding objects derived
from the Oracle ADF Model layer.

The ADF lifecycle creates the Oracle ADF binding context from the
DataControls.dcx, DataBindings.cpx, and page definition files, as shown in
Figure 5–4. The DataControls.dcx file defines all the data controls available to the
application. The DataBindings.cpx file references the data controls that are
currently being used by pages in the application and maps the binding containers,
which contain the binding objects defined in the page definition files, to web page
URLs. The page definition files define the binding objects used the application pages.
There is one page definition for each page. For information about the ADF lifecycle,
see Section 6.2.3, "What Happens at Runtime: The JSF and ADF Lifecycles".

Working with the DataBindings.cpx File

Displaying Data on a Page 5-9

Figure 5–4 ADF Binding File Runtime Usage

5.3 Working with the DataBindings.cpx File
The DataBindings.cpx file maps individual pages to page definition files and
declares which data controls defined in the DataControls.dcx file are being used
by the application. (For information about the DataControls.dcx file, see
Section 3.10.2, "Understanding the Data Control Files".) The DataBindings.cpx file
defines the Oracle ADF binding context for the entire application and provides the
metadata from which the Oracle ADF binding objects are created at runtime.

5.3.1 How to Create a DataBindings.cpx File
The first time you use the Data Control Palette to add a component to a page in an
application, JDeveloper automatically creates the DataBindings.cpx file in the view
package of the Application Sources directory of the view project. Once the
DataBindings.cpx file is created, JDeveloper adds an entry for the first page. Each
subsequent time you use the Data Control Palette to add a component to a page,
JDeveloper adds an entry to the DataBindings.cpx for that page, if one does not
already exist.

CAUTION: If you change the name of a JSF page, a page definition
file, or a data control, the Databindings.cpx file is not
automatically refactored. You must manually update the page
mapping in the DataBindings.cpx file.

Configuring the ADF Binding Filter

5-10 Oracle Application Development Framework Developer’s Guide

5.3.2 What Happens When You Create a DataBindings.cpx File
Example 5–2 shows the DataBindings.cpx file for the SRDemo application. The
pageMap element maps each JSF page to its corresponding page definition file. The
pageDefintionUsages element identifies each page definition file in the
application. The dataControlUsages element identifies the data controls being used
by the binding objects defined in the page definition files. For more information about
the elements and attributes in the DataBindings.cpx file, see Appendix A,
"Reference ADF XML Files".

Example 5–2 DataBindings.cpx File

<?xml version="1.0" encoding="UTF-8" ?>
<Application xmlns="http://xmlns.oracle.com/adfm/application"
 version="10.1.3.35.65" id="DataBindings" SeparateXMLFiles="false"
 Package="oracle.srdemo.view" ClientType="Generic">
 <pageMap>
 <page path="/app/SRList.jspx" usageId="SRListPageDef"/>
 <page path="/app/SRCreate.jspx" usageId="SRCreatePageDef"/>
 <page path="/app/SRCreateConfirm.jspx" usageId="SRCreateConfirmPageDef"/>
 ...
 </pageMap>
 <pageDefinitionUsages>
 <page id="SRListPageDef"
 path="oracle.srdemo.view.pageDefs.app_SRListPageDef"/>
 <page id="UserInfoPageDef"
 path="oracle.srdemo.view.pageDefs.headless_UserInfoPageDef"/>
 <page id="SRCreatePageDef"
 path="oracle.srdemo.view.pageDefs.app_SRCreatePageDef"/>
 <page id="SRCreateConfirmPageDef"
 path="oracle.srdemo.view.pageDefs.app_SRCreateConfirmPageDef"/>
 ...
 </pageDefinitionUsages>
 <dataControlUsages>
 <dc id="EmailService" path="oracle.srdemo.emailService.EmailService"/>
 <dc id="SRDemoFAQ" path="oracle.srdemo.faq.SRDemoFAQ"/>
 <dc id="SRAdminFacade" path="oracle.srdemo.model.SRAdminFacade"/>
 <dc id="SRPublicFacade"
 path="oracle.srdemo.model.SRPublicFacade"/>
 </dataControlUsages>
</Application>

5.4 Configuring the ADF Binding Filter
The ADF binding filter is a servlet filter that is an instance of the
oracle.adf.model.servlet.ADFBindingFilter class. ADF web applications
use the ADF binding filter to preprocess any HTTP requests that may require access to
the binding context.

5.4.1 How to Configure the ADF Binding Filter
The first time you add a databound component to a page using the Data Control
Palette, JDeveloper automatically configures the filter for you in the application's
web.xml file.

Configuring the ADF Binding Filter

Displaying Data on a Page 5-11

5.4.2 What Happens When You Configure an ADF Binding Filter
To configure the binding filter, JDeveloper adds the following elements to the
web.xml file:

■ A Servlet context parameter: Specifies which DataBindings.cpx file the binding
filter reads at runtime to define the application binding context.

The servlet context parameter is defined in the web.xml file, as shown in
Example 5–3. The param-name element must contain the value CpxFileName,
and the param-value element must contain the fully qualified name of the
application’s DataBindings.cpx file without the .cpx extension.

Example 5–3 Servlet Context Parameter Defined in the web.xml File

<context-param>
 <param-name>CpxFileName</param-name>
 <param-value>oracle.srdemo.view.DataBindings</param-value>
</context-param>

■ An ADF binding filter class: Specifies the name of the binding filter object, which
implements the javax.servlet.Filter interface.

The ADF binding filter is defined in the web.xml file, as shown in Example 5–4.
The filter-name element must contain the value adfBindings, and the
filter-class element must contain the fully qualified name of the binding
filter class, which is oracle.adf.model.servlet.ADFBindingFilter.

Example 5–4 Binding Filter Class Defined in the web.xml File

<filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>oracle.adf.model.servlet.ADFBindingFilter</filter-class>
</filter>

■ Filter mappings: Link filters to static resources or servlets in the web application.

At runtime, when a mapped resource is requested, a filter is invoked. Filter
mappings are defined in the web.xml file, as shown in Example 5–5. The
filter-name element must contain the value adfBindings. Notice that in the
example there is a filter mapping for both types of page formats: jsp and jspx.

Example 5–5 Filter Mapping Defined in the web.xml File

 <filter-mapping>
 <filter-name>adfBindings</filter-name>
 <url-pattern>*.jsp</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>adfBindings</filter-name>
 <url-pattern>*.jspx</url-pattern>
 </filter-mapping>

Tip: If you have multiple filters defined in the web.xml file, be sure
to list them in the order in which you want them to run. At runtime,
the filters are executed in the sequence they appear in the web.xml
file.

Working with Page Definition Files

5-12 Oracle Application Development Framework Developer’s Guide

5.4.3 What Happens at Runtime
 At runtime, the ADF binding filter performs the following functions:

■ Overrides the character encoding when the filter is initialized with the name
specified as a filter parameter in the web.xml file. The parameter name of the
filter init-param element is encoding.

■ Instantiates the ADFContext object, which is the execution context for an ADF
application and contains context information about ADF, including the security
context and the environment class that contains the request and response object.

■ Initializes the binding context for a user's HTTP session.

■ Serializes incoming HTTP requests from the same browser (for example, from
framesets) to prevent multithreading problems.

■ Notifies data control instances that they are about to receive a request, allowing
them to do any necessary per-request setup.

■ Notifies data control instances after the response has been sent to the client,
allowing them to do any necessary per-request cleanup.

5.5 Working with Page Definition Files
Page definition files define the binding objects that populate the data in UI
components at runtime. For every page that has ADF bindings, there must be a
corresponding page definition file that defines the binding object used by that page.
Page definition files provide design time access to all the ADF bindings. At runtime,
the binding objects defined by a page definition file are instantiated in a binding
container, which is the runtime instance of the page definition file.

5.5.1 How to Create a Page Definition File
The first time you use the Data Control Palette, JDeveloper automatically creates a
page definition file for that page and adds definitions for each binding object
referenced by the component. For each subsequent databound component you add to
the page, JDeveloper automatically adds the necessary binding object definitions to the
page definition file.

By default, the page definition files are located in the view.PageDefs package in the
Application Sources directory of the view project. You can change the location of
the page definition files using the ADFm Settings page of the project properties.

JDeveloper names the page definition files using the following convention:

<pageName>PageDef.xml

where <pageName> is the name of the JSF page. For example, if the JSF page is named
SRList.jsp, the default page definition filename is SRListPageDef.xml. If you
organize your pages into subdirectories, JDeveloper prefixes the directory name to the
page definition filename using the following convention:

<directoryName>_<pageName>PageDef.xml

For example, in the SRDemo application, the name of the page definition file for the
SRMain page, which is in the app subdirectory of the Web Content folder is
app_SRMainPageDef.xml.

Working with Page Definition Files

Displaying Data on a Page 5-13

To open a page definition file, right-click on the page in the visual editor or in the
Application Navigator, and choose Go to Page Definition.

5.5.2 What Happens When You Create a Page Definition File
Example 5–6 shows a sample page definition file that was created for the SRList page
in the SRDemo application. Notice that the page definition file groups the binding
object definitions under the following wrapper elements:

■ parameters (for more information, see Section 5.5.2.1, "Binding Objects Defined
in the parameters Element")

■ executables (for more information, see Section 5.5.2.2, "Binding Objects Defined
in the executables Element")

■ bindings (for more information, see Section 5.5.2.3, "Binding Objects Defined in
the bindings Element")

Each wrapper element contains specific types of binding object definitions. The id
attribute of each binding object definition specifies the name of the binding object.
Each binding object name must be unique within the page definition file. By default,
the binding objects are named after the data control object that was used to create it. If
a data control object is used more than once on a page, JDeveloper adds a number to
the default binding object names to keep them unique. In Section 5.6, "Creating ADF
Data Binding EL Expressions", you will see how the ADF data binding EL expressions
reference the binding object names.

Example 5–6 Page Definition File

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.35.65" id="SRListPageDef"
 Package="oracle.srdemo.view.pageDefs">
 <parameters/>
 <executables>
 <methodIterator id="findServiceRequestsIter"
 Binds="findServiceRequests.result"
 DataControl="SRPublicFacade" RangeSize="10"
 BeanClass="oracle.srdemo.model.entities.ServiceRequest"/>
 <invokeAction Binds="findServiceRequests" id="tableRefresh"
 Refresh="ifNeeded"
 RefreshCondition="${(userState.refresh) and
 (!adfFacesContext.postback)}"/>
 <variableIterator id="variables">
 <variable Type="java.lang.String" Name="setCurrentRowWithKey_rowKey"
 IsQueriable="false"/>
 </variableIterator>
 </executables>

Caution: The DataBindings.cpx file maps JSF pages to their
corresponding page definition files. If you change the name of a page
definition file or a JSF page, JDeveloper does not automatically
refactor the DataBindings.cpx file. You must manually update the
page mapping in the DataBindings.cpx file.

Working with Page Definition Files

5-14 Oracle Application Development Framework Developer’s Guide

 <bindings>
 <methodAction id="findServiceRequests"
 InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade"
 MethodName="findServiceRequests" RequiresUpdateModel="true"
 Action="999"
 ReturnName="SRPublicFacade.methodResults.

SRPublicFacade_dataProvider_findServiceRequests_result">
 <NamedData NDName="userIdParam" NDValue="#{userInfo.userId}"
 NDType="java.lang.Integer"/>
 <NamedData NDName="statusParam" NDValue="#{userState.listMode}"
 NDType="java.lang.String"/>
 </methodAction>
 <table id="findServiceRequests1" IterBinding="findServiceRequestsIter">
 <AttrNames>
 <Item Value="assignedDate"/>
 <Item Value="problemDescription"/>
 <Item Value="requestDate"/>
 <Item Value="status"/>
 <Item Value="svrId"/>
 </AttrNames>
 </table>
 <action id="setCurrentRowWithKey" IterBinding="findServiceRequestsIter"
 InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" RequiresUpdateModel="false"
 Action="96">
 <NamedData NDName="rowKey" NDValue="${row.rowKeyStr}"
 NDType="java.lang.String"/>
 </action>
 </bindings>
</pageDefinition>

In later chapters, you will see how the page definition file is used to define and edit
the bindings for specific UI components. For a description of all the possible elements
and attributes in the page definition file, see Appendix A.7,
"<pageName>PageDef.xml".

5.5.2.1 Binding Objects Defined in the parameters Element
The parameters element of the page definition file defines the parameters for the
page. Parameter binding objects are argument values used by:

■ A method action binding when invoking a bound method. For information about
method action bindings, see Section 5.5.2.3, "Binding Objects Defined in the
bindings Element".

■ An iterator binding to fetch its data set. For information about iterator bindings,
see Section 5.5.2.2, "Binding Objects Defined in the executables Element".

The parameter binding objects declare the parameters that the page evaluates at the
beginning of a request (in the Prepare Model phase of the ADF lifecycle). In a web
application, the page parameters are evaluated once during the Prepare Model phase.
(For more information about the ADF lifecycle, see Section 6.2.3, "What Happens at
Runtime: The JSF and ADF Lifecycles".) You can define the value of a parameter in the
page definition file using static values, binding expressions, or EL expressions that
assign a static value.

The SRDemo application does not use parameter bindings. However, Example 5–7
shows how parameter binding objects can be defined in a page definition file.

Working with Page Definition Files

Displaying Data on a Page 5-15

Example 5–7 The parameters Element of a Page Definition File

<parameters>
 <parameter id="filedBy"
 value="${bindings.userId}"/>
 <parameter id="status"
 value="${param.status != null ? param.status : 'Open'}"/>
</parameters>
The value of the filedBy parameter is defined by a binding on the userID data
attribute, which would be an attribute binding defined later in the bindings wrapper
element. The value of the status parameter is defined by an EL expression, which
assigns a static value.

For more information about passing parameters to methods, see Chapter 10, "Creating
More Complex Pages".

5.5.2.2 Binding Objects Defined in the executables Element
The executables element of the page definition file defines the following types of
executable binding objects:

■ methodIterator: Binds to an iterator that iterates over the collections returned
by custom methods in the data control.

A method iterator binding is always related to a methodAction binding defined
in the bindings element. The methodAction binding encapsulates the details
about how to invoke the method and what parameters (if any) the method is
expecting. For more information about methodAction bindings, see
Section 5.5.2.3, "Binding Objects Defined in the bindings Element".

■ accessorIterator: Binds to an iterator that iterates over the detail objects
returned by accessors on the data control. When you drop an accessor return or an
attribute of an accessor return on a page, an accessorIterator is added to the
executables element.

Accessor iterators are always related to a method iterator that iterates over the
master objects. The MasterBinding attribute of the accessor iterator binding
defines the method iterator to which the accessor iterator is related. For more
information about master-detail objects and iterators, see Chapter 8, "Displaying
Master-Detail Data".

■ variableIterator: Binds to an iterator that exposes all the variables in the
binding container to the other bindings.

Page variables are local to the binding container and exist only while the binding
container object exists. When you use a data control method or operation that
requires a parameter that is to be collected from the page, JDeveloper
automatically defines a variable for the parameter in the page definition file.
Attribute bindings can reference the page variables.

■ invokeAction: Binds to a method that invokes the operations or methods
defined in action or methodAction bindings during any phase of the page
lifecycle.

Tip: By default, JDeveloper uses the dollar sign ($), which is a JSP EL
syntax standard, as the prefix for EL expressions that appear in the
page definition file. However, you can use the hash sign (#) prefix,
which is a JSF EL syntax standard, as well.

Working with Page Definition Files

5-16 Oracle Application Development Framework Developer’s Guide

Action and method action bindings are defined in the bindings element. For
more information about methodAction objects, see Section 5.5.2.3, "Binding
Objects Defined in the bindings Element".

Iterator binding objects bind to an underlying ADF RowSetIterator object, which
manages the current object and current range information. The iterator binding
exposes the current object and range state to the other binding objects used by the
page. The iterator range represents the current set of objects to be displayed on the
page. The maximum number of objects in the current range is defined in the
rangeSize attribute of the iterator. For example, if a collection in the data control
contains service requests and the iterator range size is 10, the first ten service requests
in the collection are displayed on the page. If the user scrolls down, the next set of 10
service requests are displayed, and so on. If the user scrolls up, the previous set of 10
are displayed.

There is one iterator binding for each collection used on the page, but there is only one
variablesIterator binding for all variables used on the page. (The variables
iterator is like an iterator pointing to a collection that contains only one object whose
attributes are the binding container variables.) All of the value bindings on the page
must refer to an iterator binding to have the component values populated with data at
runtime. (For information about value bindings, see Section 5.5.2.3, "Binding Objects
Defined in the bindings Element".)

At runtime, the bindings in the executables element are refreshed in the order in
which they appear in the page definition file. Refreshing an iterator binding reconnects
it with its underlying RowSetIterator object. Refreshing an invokeAction
binding invokes the action. However, before refreshing any bindings, the ADF runtime
evaluates any Refresh and RefreshCondition attributes specified in the iterator
and invokeAction elements. The Refresh attribute specifies the ADF lifecycle
phase within which the executable should be invoked. The RefreshCondition
attribute specifies the conditions under which the executable should be invoked. You
can specify the RefreshCondition value using a boolean EL expression. If you leave
the RefreshCondition attribute blank, it evaluates to true.

Example 5–8 shows an example of an executables element, which defines two types
of iterators, method and variable, and an invokeAction object.

Example 5–8 The executables Element in a Page Definition File

 <executables>
 <methodIterator id="findServiceRequestsIter"
 Binds="findServiceRequests.result"
 DataControl="SRPublicFacade" RangeSize="10"
 BeanClass="oracle.srdemo.model.entities.ServiceRequest"/>
 <invokeAction Binds="findServiceRequests" id="tableRefresh"
 Refresh="ifNeeded"
 RefreshCondition="${(userState.refresh) and

 (!adfFacesContext.postback)}"/>
 <variableIterator id="variables">
 <variable Type="java.lang.String" Name="setCurrentRowWithKey_rowKey"
 IsQueriable="false"/>
 </variableIterator>
 </executables>

 <bindings>
 <methodAction id="findServiceRequests"

Tip: Use the Structure window to re-order bindings in the
executables element using drag and drop.

Working with Page Definition Files

Displaying Data on a Page 5-17

 InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade"
 MethodName="findServiceRequests" RequiresUpdateModel="true"
 Action="999"
 ReturnName="SRPublicFacade.methodResults.

SRPublicFacade_dataProvider_findServiceRequests_result">
 <NamedData NDName="userIdParam" NDValue="#{userInfo.userId}"
 NDType="java.lang.Integer"/>
 <NamedData NDName="statusParam" NDValue="#{userState.listMode}"
 NDType="java.lang.String"/>
 </methodAction>

 <table id="findServiceRequests1" IterBinding="findServiceRequestsIter">
...

 </bindings>

The findServiceRequestIter method iterator binding was created by dragging
the findServiceRequest method return from the Data Control Palette onto the
page. It iterates over the collection returned by the findServiceRequest method,
which is defined in the Binds attribute. The RangeSize attribute defines the number
of objects to fetch at one time. A RangeSize value of -1 causes the iterator binding to
display all the objects from the collection. In the bindings wrapper element, notice
that the IterBinding attribute of the table binding object references the
findServiceRequestsIter iterator binding, which populates the table with data.

In the example, the method iterator binding is related to the findServiceRequests
method action binding, which is defined in the bindings element. The NamedData
elements define the parameters to be passed to the method. The table binding in the
bindings element references the findServiceRequestIter iterator binding in the
IterBinding attribute to populate the data in the table.

The invokeAction object invokes the findServiceRequests method defined in
the method action. The Refresh attribute determines when in the ADF lifecycle the
method is executed, while the RefreshCondition attribute provides a condition for
invoking the action. (For more information about the Refresh and
RefreshCondition attributes, see Section A.7, "<pageName>PageDef.xml". For
examples of using the Refresh and RefreshCondition attributes, see Section 10.8,
"Creating Search Pages".)

The variable iterator iterates over the variable called
setCurrentRowWithKey_rowKey, which is a parameter required by the
setCurrentRowWithKey operation.

5.5.2.3 Binding Objects Defined in the bindings Element
The bindings element of the page definition file defines the following types of
binding objects:

■ Value: Display data in UI components by referencing an iterator binding. Each
discrete UI component on a page that will display data from the data control is
bound to a value binding object. Value binding objects include:

– table, which binds an entire table to a data collection

– list, which binds the list items to an attribute in a data collection

– tree, which binds the root node of a tree to a data collection

– attributeValues, which binds text fields to a specific attribute in an object
(also referred to as an attribute binding)

Working with Page Definition Files

5-18 Oracle Application Development Framework Developer’s Guide

■ methodAction: Bind command components, such as buttons or links, to custom
methods on the data control. A methodAction binding object encapsulates the
details about how to invoke a method and what parameters (if any) the method is
expecting.

Method iterator bindings are bound to methodAction binding objects. There is
one method action binding for each method iterator binding used in the page.

■ action: Bind command components, such as buttons or links, to built-in data
control operations (such as, Commit or Rollback) or to built-in collection-level
operations (such as, Create, Delete, Next, Previous, or Save).

Collectively, the binding objects defined in the bindings element are referred to as
control bindings, because each databound control on a page is bound to one of these
objects, which in turn is bound to an object defined in the executables element.

Example 5–9 shows a sample bindings element, which defines one methodAction
binding called findServiceRequest, one value binding for a table called
findServiceRequest1 and one action binding called setCurrentRowWithKey.

Example 5–9 The bindings Element of a Page Definition File

<bindings>
 <methodAction id="findServiceRequests"
 InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade"
 MethodName="findServiceRequests" RequiresUpdateModel="true"
 Action="999"
 ReturnName="SRPublicFacade.methodResults.

SRPublicFacade_dataProvider_findServiceRequests_
result">

 <NamedData NDName="userIdParam" NDValue="#{userInfo.userId}"
 NDType="java.lang.Integer"/>
 <NamedData NDName="statusParam" NDValue="#{userState.listMode}"
 NDType="java.lang.String"/>
 </methodAction>
 <table id="findServiceRequests1" IterBinding="findServiceRequestsIter">
 <AttrNames>
 <Item Value="assignedDate"/>
 <Item Value="problemDescription"/>
 <Item Value="requestDate"/>
 <Item Value="status"/>
 <Item Value="svrId"/>
 </AttrNames>
 </table>
 <action id="setCurrentRowWithKey" IterBinding="findServiceRequestsIter"
 InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" RequiresUpdateModel="false"
 Action="96">
 <NamedData NDName="rowKey" NDValue="${row.rowKeyStr}"
 NDType="java.lang.String"/>
 </action>
</bindings>

Because the findServiceRequests method used in the sample accepts parameters,
the method action binding contains NamedData elements that define the parameters
expected by this method. For more information about passing parameters to methods,
see Chapter 10, "Creating More Complex Pages".

In the table binding object, the IterBinding attribute references the appropriate
iterator binding that displays the data in the component. Notice that a table is handled

Creating ADF Data Binding EL Expressions

Displaying Data on a Page 5-19

by a single binding object that references the iterator binding once for all the attributes
displayed in the table. This means that the table can only display data from a single
data collection. However, for container components like forms, each individual
attribute has a binding object, which references an iterator binding. Forms, unlike
tables, can contain attributes from multiple data collections. The AttrNames element
defines all the attribute values in the collection.

The action binding is bound to a command link that returns a specific service request
when the user clicks the link. It references the findServiceRequestsIter iterator
binding and passes it the current row key as a parameter, which is defined in the
namedData element.

5.5.3 What Happens at Runtime
At runtime, the ADF page lifecycle passes the page URL to the ADF binding context,
which matches the URL to a page definition file using the information in the
DataBindings.cpx file. Next, the binding context instantiates the binding container
if it does not already exist in the current session. The binding container is the runtime
instance object that contains all of the binding objects defined in the page definition
file. All the data that is displayed by a page’s UI components is provided by the
binding objects in the binding container. The ADF data binding expressions used by
components on a page are evaluated at runtime and are replaced by values supplied
by the binding objects when the page is rendered.

5.5.4 What You May Need to Know About Binding Container Scope
By default, the binding container and the binding objects it contains are defined in
session scope. However, the values referenced by value bindings and iterator bindings
are undefined between requests and for scalability reasons do not remain in session
scope. Therefore, the values that binding objects refer to are only valid during a
request in which that binding container has been prepared by the ADF lifecycle. What
stays in session scope are only the binding container and binding objects themselves.

Upon each request, the iterator bindings are refreshed to rebind them to the
underlying RowSetIterator objects. By default, the rowset iterator state and the
data caches are maintained between requests.

5.6 Creating ADF Data Binding EL Expressions
In the previous section, you saw how the page definition is used to define the binding
objects that are created in the binding container at runtime. To display data from the
data model, web page UI components, are bound to binding objects using JSF
Expression Language (EL) expressions. These EL expressions reference a specific
binding object in a binding container. At runtime, the JSF runtime evaluates EL
expression and pulls the value from the binding object to populate the component
with data when the page is displayed. If the user updates data in the UI component,
the JSF runtime pushes the value back into the corresponding binding object based on
the same EL expression.

5.6.1 How to Create an ADF Data Binding EL Expression
When you use the Data Control Palette to create a component, the ADF data binding
expressions are created for you. The expressions are added to every component
attribute that will either display data from or reference properties of a binding object.
Each prebuilt expression references the appropriate binding objects defined in the
page definition file.

Creating ADF Data Binding EL Expressions

5-20 Oracle Application Development Framework Developer’s Guide

You can edit these binding expressions or create your own, as long as you adhere to
the basic ADF binding expression syntax. ADF data binding expressions can be added
to any component attribute that you want to populate with data from a binding object.

In JSF pages, a typical ADF data binding EL expression uses the following syntax to
reference any of the different types of binding objects in the binding container:

#{bindingVariable.BindingObject.propertyName}

where:

■ bindingVariable is a variable that identifies where to find the binding object
being referenced by the expression. The bindings variable is the most common
variable used in ADF binding expressions. It references the binding container of
the current page. By default, all components created from the Data Control Palette
use the bindings variable in the binding expressions.

■ BindingObject is the name of the binding object as it is defined in the page
definition file. The binding object name appears in the id attribute of the binding
object definition in the page definition and is unique to that page definition. An EL
expression can reference any binding object in the page definition file, including
parameters, executables, or value bindings. When you use the Data Control Palette
to create a component, JDeveloper assigns the names to the binding objects based
on the names of the items in the data control.

■ propertyName is a variable that determines the default display characteristics of
each databound UI component and sets properties for the binding object at
runtime. There are different binding properties for each type of binding object. For
more information about binding properties, see Section 5.6.4, "What You May
Need to Know About ADF Binding Properties".

 For example, in the following expression:

#{bindings.SvrId.inputValue}

the bindings variable references a bound value in the current page’s binding
container. The binding object being referenced is SvrId, which is an attribute binding
object. The binding property is inputValue, which returns the value of the first
SvrId attribute.

For more examples of various types of ADF data binding expressions, see Section 5.6.3,
"What Happens When You Create ADF Data Binding Expressions".

To create or edit an ADF Data Binding EL Expression
You can create or edit an expression in JDeveloper using any of the following
techniques:

■ Double-click the UI component in the Structure window, and edit the value field
in the displayed editor. (Click the Bind button to go to the Expression Builder,
where you can select from available binding objects and properties. For more
information, see Section 5.6.2, "How to Use the Expression Builder".)

Tip: While the binding expressions in the page definition file can use
either a dollar sign ($) or hash sign (#) prefix, the EL expressions in
JSF pages can use only the hash sign (#) prefix.

Creating ADF Data Binding EL Expressions

Displaying Data on a Page 5-21

■ View the web page using the source view of the visual editor and edit the
expression directly in the source. JDeveloper provides Code Insight for EL
expressions in the source editor. Code Insight is also available in the Property
Inspector and the Tag Editor. To invoke Code Insight, type the leading characters
of an EL expression (for example, #{). Code Insight displays a list of valid items
for each segment of the expression from which you can select the one you want.

■ Select a UI component in the visual editor or the Structure window and open the
Property Inspector (View > Property Inspector). You can edit the expression
directly in the Property Inspector, or click the ellipses next the expression to open
the Expression Builder.

5.6.2 How to Use the Expression Builder
The JDeveloper Expression Builder is a dialog that helps you build EL expressions by
providing lists of binding objects defined in the page definition files, as well as lists of
managed beans and binding properties. It is particularly useful when creating or
editing ADF databound expressions because it provides a hierarchical list of ADF
binding objects and their most commonly used properties from which you can select
the ones you want to use in an expression. For information about binding properties,
see Section 5.6.4, "What You May Need to Know About ADF Binding Properties".

You can open the Expression Builder from either the Structure window or the Property
Inspector.

To open the Expression Builder from the Structure window:
1. Double-click an ADF databound UI component in the Structure window.

2. In the ensuing dialog, click the Bind button next to a component property to
display the Expression Builder.

To open the Expression Builder from the Property Inspector:
1. Select a UI component in the Structure window or the visual editor and open the

Property Inspector.

2. In the Property Inspector, take one of the following actions to display the
Expression Builder:

■ Click the ellipses next to an existing binding expression.

OR

■ Select a property to which you want to add a binding, and click the Bind to
data button, as shown in Figure 5–5.

(JDeveloper activates the Bind to data button only if it is valid to add a
binding expression to the selected property.)

Figure 5–5 Bind to data Button in the Property Inspector

Creating ADF Data Binding EL Expressions

5-22 Oracle Application Development Framework Developer’s Guide

To use the Expression Builder:
1. Open the Expression Builder dialog.

2. In the Expression Builder, open the ADF Bindings > bindings node to display the
ADF binding objects for the current page, as shown in Figure 5–6.

For information about using the ADF Bindings > data node, see Section 5.6.5,
"What You May Need to Know About Binding to Values in Other Pages".

Figure 5–6 The Expression Builder Dialog

3. Use the Expression Builder to edit or create ADF binding expressions using the
following features:

■ Use the Variables tree to select items that you want to include in the binding
expression. The tree contains a hierarchical representation of the binding
objects. Each icon in the tree represents various types of binding objects that
you can use in an expression (see Table 5–2 for a description of each icon).
Select an item in the tree and click the shuttle button to move it to the
Expression box.

■ If you are creating a new expression, begin typing the expression in the
Expression box. JDeveloper provides Code Insight in the Expression Builder.
To invoke Code Insight, type the leading characters of an EL expression (for
example, #{) or a period separator. Code Insight displays a list of valid items
for each segment of the expression from which you can select the one you
want.

Creating ADF Data Binding EL Expressions

Displaying Data on a Page 5-23

■ Use the operator buttons under the expression to add logical or mathematical
operators to the expression.

5.6.3 What Happens When You Create ADF Data Binding Expressions
As was previously mentioned, when you create a component using the Data Control
Palette, the ADF data binding expressions are added for you. Each expression is
slightly different depending on the type of binding object being referenced.

5.6.3.1 EL Expressions That Reference Attribute Binding Objects
Example 5–10 shows a text field that was created when a data collection was dropped
on a page as an ADF Read-only Form. Each UI component in the form, including the
text field shown in the example, contains an EL expression that references an attribute
binding object on a specific attribute in the data collection.

Table 5–2 Icons Under the ADF Bindings Node of the Expression Builder

Icon Description

Represents the bindings container variable, which references
the binding container of the current page. Opening the bindings
node exposes all the binding objects for the current page.

Represents the data binding variable, which references the
entire binding context. Opening the data node exposes all the
page definition files in the application. Opening a page
definition file exposes the binding objects it defines.

Before using the objects under this node, see Section 5.6.5, "What
You May Need to Know About Binding to Values in Other
Pages" for more information and cautions.

Represents a binding container. Each binding container node is
named after the page definition file that defines it. These nodes
appear only under the data node. Opening a binding container
node exposes the binding objects defined for that page.

Before using the object under this node, see Section 5.6.5, "What
You May Need to Know About Binding to Values in Other
Pages" for more information and cautions.

Represents an action binding object. Opening a node that uses
this icon exposes a list of valid action binding properties.

Represents an iterator binding object. Opening a node that uses
this icon exposes a list of valid iterator binding properties.

Represents an attribute binding object. Opening a node that uses
this icon exposes a list of valid attribute binding properties.

Represents a list binding object. Opening a node that uses this
icon exposes a list of valid list binding properties are displayed.

Represents a table binding object. Opening a node that uses this
icon exposes a list of valid table binding properties.

Represents a tree binding object. Opening a node that uses this
icon exposes a list of valid tree binding properties.

Represents an ADF binding object property. For more
information about ADF properties, see Section 5.6.4, "What You
May Need to Know About ADF Binding Properties".

Represents a parameter binding object.

Creating ADF Data Binding EL Expressions

5-24 Oracle Application Development Framework Developer’s Guide

Example 5–10 EL Expressions That Reference an Attribute Binding Object

<af:inputText value="#{bindings.SvrId.inputValue}"
 label="#{bindings.SvrId.label}"/>

In this example, the UI component is bound to the SvrId binding object, which is a
specific attribute in a data collection. The inputValue binding property returns the
value of the first attribute to which the binding is associated, which in this case is
SvrId. In the label attribute, the EL expression references the label binding
property, which returns the label currently assigned to the data attribute.

The value binding object, SvrId, referenced by the EL expressions is defined in the
page definition file, as shown in Example 5–11. The name of the binding object, which
is referenced by the EL expression, is defined in the id attribute of the binding object
definition.

Example 5–11 Attribute Binding Object Defined In the Page Definition File

<attributeValues id="SvrId" IterBinding="FindAllServiceRequestsIter"
 isDynamic="true">
 <AttrNames>
 <Item Value="SvrId"/>
 </AttrNames>
</attributeValues>

5.6.3.2 EL Expressions That Reference Table Binding Objects
When you drag a data collection from the Data Control Palette and drop it on a JSF
page as an ADF Read-only Table, the resulting table tag typically contains a set of EL
expressions that bind the table to a table value-binding object, as shown in
Example 5–12.

Example 5–12 EL Expression That References a Table Binding Object

<af:table value="#{bindings.findAllStaff1.collectionModel}" var="row"
 rows="#{bindings.findAllStaff1.rangeSize}"
 first="#{bindings.findAllStaff1.rangeStart}"
 emptyText="#{bindings.findAllStaff1.viewable ?

\'No rows yet.\' : \'Access Denied.\'}"

Each attribute of the table tag contains a binding expression that references the table
binding object and an appropriate binding property for that tag attribute. The binding
expression in the rows attribute references the iterator binding rangeSize property
(which defines the number of rows in each page of the iterator) so that the number of
rows rendered in the table matches the number of rows per page defined by the
iterator binding.

The table is bound to the findAllStaff1 table binding object, which is defined in
the page definition file as shown in Example 5–13.

Tip: For a value binding that was created by dragging an attribute
from an accessor return from the Data Control Palette, JDeveloper
prefixes the accessor method name to the attribute name. For example,
in the expression #{bindings.ServiceRequestsvrId.label},
the binding object name is a combination of the accessor method
name, ServiceRequest, and the attribute name, svrId.

Creating ADF Data Binding EL Expressions

Displaying Data on a Page 5-25

Example 5–13 Table Binding Object Defined in the Page Definition File

<table id="findAllStaff1" IterBinding="findAllStaffIter">
 <AttrNames>
 <Item Value="city"/>
 <Item Value="countryId"/>
 <Item Value="email"/>
 <Item Value="firstName"/>
 <Item Value="lastName"/>
 <Item Value="postalCode"/>
 <Item Value="stateProvince"/>
 <Item Value="streetAddress"/>
 <Item Value="userId"/>
 <Item Value="userRole"/>
 </AttrNames>
</table>

The IterBinding attribute in the table binding object refers to the iterator binding
that will display data in the table.

5.6.3.3 EL Expressions That Reference Action Binding Objects
Example 5–14 shows a command button that was created by dragging a built-in
operation from the Data Control Palette and dropping it on the page. The button
contains an EL expression that binds to a built-in operation, First, which displays the
first data object in the data collection to which the operation belongs.

Example 5–14 EL Expression That References an Action Binding Object for an
Operation

<af:commandButton actionListener="#{bindings.First.execute}"
 text="First"
 disabled="#{!bindings.First.enabled}"/>

The button’s action listener is bound to the execute() method on the action binding
named First in the binding container. When the user clicks the button, the action
listener mechanism resolves the binding expression and then invokes the execute()
method, which executes the operation. By default, the button label contains the name
of the operation being called. You can change the label as needed. The disabled
attribute determines if the button should be disabled on the page. Because of the not
operator (!) at the beginning of the expression, the disabled attribute evaluates to
the negation of the value of the enabled property of the action binding.

In other words, if the enabled property evaluates to false, the disabled attribute
evaluates to true. For example, in an action binding that is bound to the First
operation, if the current data object is the first one, the enabled property evaluates to
false, which causes the disabled attribute to evaluate to true, thus disabling the
button. However, if the current data object is not the first one, the enabled property
evaluates to true, which causes the disabled attribute to evaluate to false, thus
enabling the button.

Example 5–15 shows the action binding object defined in the page definition for the
command button.

Creating ADF Data Binding EL Expressions

5-26 Oracle Application Development Framework Developer’s Guide

Example 5–15 Action Binding Object Defined in the Page Definition File for an Operation

<executables>
 <methodIterator id="findAllStaffIter" Binds="findAllStaff.result"
 DataControl="SRPublicFacade" RangeSize="10"
 BeanClass="oracle.srdemo.model.entities.User"/>
</executables>
<bindings>
 <methodAction id="findAllStaff" InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" MethodName="findAllStaff"
 RequiresUpdateModel="true" Action="999"
 ReturnName="SRPublicFacade.methodResults.

SRPublicFacade_dataProvider_findAllStaff_result"/>
 <action id="First" IterBinding="findAllStaffIter"
 InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" RequiresUpdateModel="true"
 Action="12"/>
</bindings>

The action element, First, defines the action binding that is directly referenced by
the EL expression in the command button. The IterBinding attribute of the action
binding references the method iterator binding, findAllStaffIter, which iterates
over the data collection being operated on by the action. The findAllStaffIter is
bound to the methodAction, findAllStaff, which encapsulates the information
required to invoke the findAllStaff method.

Example 5–16 shows a command button that was created by dragging a method from
the Data Control Palette and dropping it on a JSF page. In this example, the command
button is bound to the removeServiceHistory method, which removes an object
from the data collection. Parameters passed to the method when it is invoked identify
which object to remove. The execute binding property in the EL expression in the
actionListener attribute invokes the method when the user clicks the button

Example 5–16 EL Expression That References an Action Binding Object for a Method

<af:commandButton actionListener="#{bindings.removeServiceHistory.execute}"
 text="removeServiceHistory"
 disabled="#{!bindings.removeServiceHistory.enabled}"/

Example 5–17 shows the binding object created in the page definition file for the
command button. When a command component is bound to a method, only one
binding object is created in the page definition file—a methodAction. The
methodAction binding defines the information needed to invoke the method,
including any parameters, which are defined in the NamedData element.

Tip: The numerical value of the Action attribute of the action
element references the number constants in the
OperationDefinition interface in the oracle.adf.model.meta
package.

Creating ADF Data Binding EL Expressions

Displaying Data on a Page 5-27

Example 5–17 Method Action Binding Defined in the Page Definition File

<bindings>
 <methodAction id="removeServiceHistory"
 InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" MethodName="removeServiceHistory"
 RequiresUpdateModel="true" Action="999">
 <NamedData NDName="serviceRequest"
 NDType="oracle.srdemo.model.entities.ServiceRequest"/>
 <NamedData NDName="serviceHistory"
 NDType="oracle.srdemo.model.entities.ServiceHistory"/>
 </methodAction>
</bindings>

5.6.4 What You May Need to Know About ADF Binding Properties
When you create a databound component using the Data Control Palette, the EL
expression references specific ADF binding properties. At runtime, these binding
properties can define such things as the default display characteristics of a databound
UI component or specific parameters for iterator bindings. The ADF binding
properties are defined by Oracle APIs. For a full list of the available properties for each
binding type, see Appendix B, "Reference ADF Binding Properties".

Values assigned to certain properties are defined in the page definition file. For
example, iterators can reference a property called RangeSize, which specifies the
number of rows the iterator should display at one time. The value assigned to
RangeSize is specified in the page definition file, as shown in Example 5–18

Example 5–18 Iterator Binding Object with the RangeSize Property

<accessorIterator id="serviceHistoryCollectionIterator" RangeSize="10"
 Binds="serviceHistoryCollection"
 DataControl="SRDemoSessionDataControl"
 BeanClass="oracle.srdemo.model.ServiceHistory"
 MasterBinding="findAllServiceRequestIter"/>

Use the JDeveloper Expression Builder to display a list of valid binding properties for
each binding object. For information about how to use the Expression builder, see
Section 5.6.2, "How to Use the Expression Builder".

5.6.5 What You May Need to Know About Binding to Values in Other Pages
While Oracle does not recommend this approach, you can access the bound values in
another page’s binding container from the current page using the data binding
variable in an EL expression. The data binding variable references the binding context
itself, which provides access to all the binding containers that are available. Use this
variable when you want to bind to an object in the binding container of another page.
The data variable must be immediately followed by the name of a page definition file
that defines the binding container being referenced. For example:

#{data.mypagePageDef.BindingObject.propertyName}

At runtime, only the current incoming page’s (or if the rendered page is different from
the incoming, the rendered page’s) binding container is automatically prepared by the
framework during the current request. Therefore, to successfully access a bound value
in another page from the current page, you must programmatically prepare that page’s
binding container in the current request (for example, using a backing bean). Otherwise,
the bound values in that page may not be available or valid in the current request.

Creating ADF Data Binding EL Expressions

5-28 Oracle Application Development Framework Developer’s Guide

You may find cases, where you need to use the data variable to bind to values across
binding containers. However, Oracle recommends that instead you use a backing bean
to store page values and make them available to other pages. For more information
about storing values in backing beans, see Section 10.2, "Using a Managed Bean to
Store Information".

Caution: As was mentioned in Section 5.5.4, "What You May Need to
Know About Binding Container Scope", the binding container, the
binding objects it contains are defined in session scope, but the values
referenced by the binding objects are not. By default, the
RowSetIterator state and the data caches are maintained between
requests, which makes the bound value referenced by a binding object
available across pages.

However, when referring to binding objects across pages, you cannot
rely on the bound values at session scope. The lifecycle of bound
values is managed by the data control. The availability of a bound
value during a given request depends on whether the data control
itself is available and whether the referenced binding container has
been prepared in the lifecycle. So, before referencing a bound value in
one binding container from another page, be sure that the binding
container being referenced is prepared during a given request.

Also, your application can, programmatically or through the use of
the CacheResults or Refresh attributes on an iterator binding,
re-execute or clear an iterator during a request. In this case, the
binding object values would no longer be available to other pages. For
more information about the iterator binding attributes that clear
(CacheResults) or refresh (Refresh) the iterator, see Section A.7,
"<pageName>PageDef.xml".

Creating a Basic Page 6-1

6
Creating a Basic Page

This chapter describes how to use the Data Control Palette to create databound forms
using ADF Faces components.

This chapter includes the following sections:

■ Section 6.1, "Introduction to Creating a Basic Page"

■ Section 6.2, "Using Attributes to Create Text Fields"

■ Section 6.3, "Creating a Basic Form"

■ Section 6.4, "Incorporating Range Navigation into Forms"

■ Section 6.5, "Modifying the UI Components and Bindings on a Form"

6.1 Introduction to Creating a Basic Page
You can create UI widgets that allow you to display and collect information using data
controls created for your business services. For example, using the Data Control
Palette, you can drag an attribute for an item, and then choose to display the value as
either read-only text or as an input text field with a label.

Instead of having to drop individual attributes, JDeveloper allows you to drop all
attributes for an object at once as a form. The actual UI components that make up the
form depend on the type of form dropped.

Once you drop the UI components, you can then drop built-in operations as command
UI components that allow users to operate on the data. For example, you can create
buttons that allow users to navigate between data objects displayed in the form. You
can also modify the default components to suit your needs.

This chapter explains the following:

■ How to create individual databound text fields

■ How to create a form consisting of multiple text fields

■ How to add operations that allow you to navigate between the data objects
displayed in a form

■ How to modify the form once it has been created

Using Attributes to Create Text Fields

6-2 Oracle Application Development Framework Developer’s Guide

6.2 Using Attributes to Create Text Fields
To create text fields, you bind ADF Faces text UI components to attributes on a data
control using an attribute binding. JDeveloper allows you to do this declaratively
without the need to write any code. Additionally, JDeveloper provides a complete
WYSIWYG development environment for your JSF pages, meaning you can design
most aspects of your pages without needing to look at the code.

6.2.1 How to Use the Data Control Palette to Create a Text Field
To create a text field that can display or update an attribute, you must bind the UI
component to the attribute using a data control. JDeveloper allows you to do this
declaratively by dragging and dropping an attribute of a collection from the Data
Control Palette.

To create a bound text field:
1. From the Data Control Palette, select an attribute for a collection (for a description

of which icon represents attributes and other objects in the Data Control Palette,
see Section 5.2.1, "How to Understand the Items on the Data Control Palette").

For example, Figure 6–1 shows the problemDescription attribute under the
ServiceRequest collection for the findAllServiceRequest() method of the
SRPublicFacade data control in the SRDemo application. This is the attribute to
drop to display the problem description for a service request.

Figure 6–1 Attributes Associated with a Returned Object in the Data Control Palette

If you wish to create input text fields used to collect data, you can use either a
custom method or one of the data control’s built-in creation methods. For
procedures, see Section 10.7, "Creating an Input Form for a New Record".

2. Drag the attribute onto the page, and from the context menu choose the type of
widget to display or collect the attribute value. For an attribute, you are given the
following choices:

■ Texts

– ADF Output Text with a Label: Creates a panelLabelAndMessage
component that holds an ADF Faces outputText component. The label
attribute on the panelLabelAndMessage component is populated.

– ADF Output Text: Creates an ADF Faces outputText component. No
label is created.

– ADF Input Text with a Label: Creates an ADF Faces inputText
component with a validator. The label attribute is populated.

Tip: For more information about validators, see Chapter 12, "Using
Validation and Conversion".

Using Attributes to Create Text Fields

Creating a Basic Page 6-3

– ADF Input Text: Creates an ADF Faces inputText component with a
validator. The label attribute is not populated.

– ADF Label: An ADF Faces outputLabel component.

■ Single selections

These widgets display lists. For the purposes of this chapter, only the text
widgets will be discussed. To learn about lists and their bindings, see
Section 11.7, "Creating Databound Dropdown Lists".

6.2.2 What Happens When You Use the Data Control Palette to Create a Text Field
When you drag an attribute onto a JSF page and drop it as a UI component, among
other things, a page definition file is created for the page (if one does not already
exist), using the name of the JSF page including the page’s package name, and
appending PageDef as the name of the page definition file. For example, the page
definition file for the SREdit page is app_staff_SREditPageDef.xml. For a
complete account of what happens when you drag an attribute onto a page, see
Section 5.2.3, "What Happens When You Use the Data Control Palette". Bindings for
the iterators and methods are created and added to the page definition file if they do
not already exist, as are the bindings for each attribute. Additionally, the necessary
JSPX page code for the UI component is added to the JSF page.

6.2.2.1 Creating and Using Iterator Bindings
Whenever you create UI components on a page by dropping an item that is part of a
collection from the Data Control Palette (or you drop the whole collection as a form or
table), JDeveloper creates a method iterator binding if it does not already exist. A
method iterator binding references an iterator for the data collection, which facilitates
iterating over its data objects. It also manages currency and state for the data objects in
the collection. An iterator binding does not actually access the data. Instead, it simply
exposes the object that can access the data, and it specifies the current data object in
the collection. Other bindings then refer to the iterator binding in order to return data
for the current object or to perform an action on the object’s data.

For example, if you drop the problemDescription attribute under the
ServiceRequest collection for the findAllServiceRequest() method,
JDeveloper creates a method iterator binding for the returned ServiceRequest
collection.

The iterator binding’s rangeSize attribute determines how many records will be
available for the page each time the iterator binding is accessed. This attribute gives
you a relative set of 1-N rows positioned at some absolute starting location in the
overall rowset. By default, it is set to 10. For more information about using this
attribute, see Section 6.4.2.2, "Iterator RangeSize Attribute". Example 6–1 shows the
method iterator binding created when you drop an attribute from the
ServiceRequest collection for the findAllServiceRequest() method.

Tip: There is one iterator created for each collection. This means that
when you drop two attributes from the same collection (or drop the
collection twice), they use the same iterator. This is fine, unless you
need the iterator to behave differently for the different components. In
that case, you will need to manually create separate iterators. For
procedures and an example, see Section 10.9, "Conditionally
Displaying the Results Table on a Search Page".

Using Attributes to Create Text Fields

6-4 Oracle Application Development Framework Developer’s Guide

Example 6–1 Page Definition Code for a Method Iterator Binding When You Drop an
Attribute from a Method Return Collection

<executables>
 <methodIterator id="findAllServiceRequestIter"
 Binds="findAllServiceRequest.result"
 DataControl="SRPublicFacade" RangeSize="10"
 BeanClass="oracle.srdemo.model.entities.ServiceRequest"/>
</executables>

For information regarding the iterator binding element attributes, see Section A.2.2,
"Oracle ADF Data Binding Files".

JDeveloper also creates an action binding for the findAllServiceRequest method
used to return the collection. Note that this action binding is created as a binding
element and not an executable element. Example 6–2 shows the action binding created
when you drop an attribute of the ServiceRequest collection for the
findAllServiceRequest() method.

Example 6–2 Page Definition code for an Action Binding Used by the Iterator

 <bindings>
 <methodAction id="findAllServiceRequest"
 InstanceName=""SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade"
 MethodName="findAllServiceRequest" RequiresUpdateModel="true"
 Action="999"
 ReturnName="SRPublicFacade.methodResults.SRPublicFacade_
 dataProvider_findAllServiceRequest_result"/>

This metadata allows the ADF binding container to access the attribute by allowing
the iterator to access the result property on the associated method binding. Because the
iterator is an executable, it is created when the page is loaded, and thus causes the
method referenced in the method binding to execute.

 In Example 6–1, the iterator is bound to the result property of the
findAllServiceRequest method binding. This means that the iterator will manage
all the returned service requests, including determining the current service request or
range of service requests.

For information regarding the action binding element attributes, see Section A.2.2,
"Oracle ADF Data Binding Files".

6.2.2.2 Creating and Using Value Bindings
When you drop an attribute from the Data Control Palette, JDeveloper creates an
attribute binding that is used to bind the UI component to the attribute’s value. This
type of binding presents the value of an attribute for a single object in the current row
in the collection. Value bindings can be used to both display and collect attribute
values.

For example, if you drop the problemDescription attribute under the
ServiceRequest collection for the findAllServiceRequest() method as an
ADF Output Text w/Label widget onto the SREdit page, JDeveloper creates an
attribute binding for the problemDescription attribute. Note that the attribute
value references the findAllServiceRequestIter iterator. This allows the binding
to access the attribute value of the current record. Example 6–3 shows the attribute
binding for problemDescription created when you drop the attribute from the
ServiceRequest collection for the findAllServiceRequest() method.

Using Attributes to Create Text Fields

Creating a Basic Page 6-5

Example 6–3 Page Definition Code for an Attribute Binding

 <bindings>
 ...
 <attributeValues id="ServiceRequestproblemDescription"
 IterBinding="findAllServiceRequestIter">
 <AttrNames>
 <Item Value="problemDescription"/>
 </AttrNames>
 </attributeValues>
 </bindings>

For information regarding the attribute binding element attributes, see Section A.2.2,
"Oracle ADF Data Binding Files".

6.2.2.3 Using EL Expressions to Bind UI Components
When you create a text field by dropping an attribute from the Data Control Palette,
JDeveloper creates the UI component associated with the widget dropped by writing
the corresponding code to the JSF page.

For example, when you drop the ProblemDescription attribute as an Output Text
w/Label widget, JDeveloper creates an EL expression that binds the
panelLabelAndMessage label’s attribute to the label property of the
ProblemDescription binding. It creates another expression that binds the
panelLabelAndMessage value attribute to the inputValue property of the
ProblemDescription binding, which in turn is the value of the
ProblemDescription attribute. For more information about binding object
properties, see Section A.2.2, "Oracle ADF Data Binding Files".

Example 6–4 shows the code generated on the JSF page when you drop an attribute as
an Output Text w/Label widget.

Example 6–4 JSF Page Code for an Attribute Dropped as an Output Text w/Label

<af:panelLabelAndMessage
 label="#{bindings.ServiceRequestproblemDescription.label}">
 <af:outputText
 value="#{bindings.problemDescription.inputValue}"/>
</af:panelLabelAndMessage>
If instead you drop the problemDescription attribute as an Input Text w/Label
widget, JDeveloper creates an inputText component. As Example 6–5 shows, similar
to the output text component, the value is bound to the inputValue property of the
problemDescription binding. Additionally, the following properties are also set:

■ label: bound to the binding’s label property.

■ required: bound to the binding’s mandatory property. See Section 12.3,
"Adding Validation" for more information about this property.

■ columns: bound to the displayWidth property. This determines how wide the
text box will be.

Example 6–5 JSF Page Code for an Attribute Dropped as an Input Text w/Label

<af:inputText value="#{bindings.problemDescription.inputValue}"
 label="#{bindings.problemDescription.label}"
 required="#{bindings.problemDescription.mandatory}"
 columns="#{bindings.problemDescription.displayWidth}">
 <af:validator binding="#{bindings.problemDescription.validator}"/>
</af:inputText>

Using Attributes to Create Text Fields

6-6 Oracle Application Development Framework Developer’s Guide

For more information about the properties, see Appendix B, "Reference ADF Binding
Properties".

6.2.3 What Happens at Runtime: The JSF and ADF Lifecycles
When a page is submitted and a new page requested, the application invokes both the
JSF lifecycle and the ADF lifecycle. The JSF lifecycle handles the components at the
view layer, while the ADF lifecycle handles the data at the model layer.

Specifically, the JSF lifecycle handles the submission of values on the page, validation
for components, navigation, and displaying the components on the resulting page and
saving and restoring state. The JSF lifecycle phases use a UI component tree to manage
the display of the faces components. This tree is a runtime representation of a JSF page:
each UI component tag in a page corresponds to a UI Component instance in the tree.
The FacesServlet object manages the request processing lifecycle in JSF
applications. FacesServlet creates an object called FacesContext, which contains
the information necessary for request processing, and invokes an object that executes
the lifecycle.

The ADF lifecycle handles preparing and updating the data model, validating the data
at the model layer, and executing methods on the business layer. The ADF lifecycle
uses the binding container to make data available for easy referencing by the page
during the current page request.

The lifecycles are divided into phases. For the two lifecycles to work together, the ADF
lifecycle phases are integrated with the JSF lifecycle phases using the JSF event listener
mechanism. The ADF lifecycle listens for phase events using the ADF phase listener,
which allows the appropriate ADF phases to be executed before or after the
appropriate JSF phases.

When an ADF Faces component bound to an ADF data control is inserted into a JSF
page for the first time, JDeveloper adds the ADF PhaseListener to
faces-config.xml. Example 6–6 shows the ADF PhaseListener configuration in
faces-config.xml.

Example 6–6 Registering the ADF PhaseListener in faces-config.xml

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
<lifecycle>
 <phase-listener>
 oracle.adf.controller.faces.lifecycle.ADFPhaseListener
 </phase-listener>
</lifecycle>
 ...
</faces-config>

Using Attributes to Create Text Fields

Creating a Basic Page 6-7

Figure 6–2 shows how the JSF and ADF phases integrate in the lifecycle.

Figure 6–2 The Lifecycle of a Page Request in an ADF Application Using ADF Faces
Components

In a JSF application that uses the ADF Model layer, the lifecycle is as follows:

■ Restore View: The URL for the requested page is passed to the bindingContext,
which finds the page definition that matches the URL. The component tree of the
requested page is newly built or restored. All the component tags, event handlers,
converters, and validators on the submitted page have access to the
FacesContext instance. If it's a new empty tree (that is, there is no data from the
submitted page), the lifecycle proceeds directly to the Render Response phase.
Otherwise, the Restore View phase issues an event which the Initialize Context
phase of the ADF Model layer lifecycle listens for and then executes.

For example, for a page that contains an inputText UI component bound to the
ProblemDescription attribute of a ServiceRequest returned collection,
when the URL is passed in, the page definition is exposed. The UI component is
then built. If data is to be displayed, the Initialize Context phase executes.
Otherwise, the lifecycle jumps to the Render Response phase.

■ Initialize Context: The page definition file is used to create the
bindingContainer object, which is the runtime representation of the page
definition for the requested page. The LifecycleContext class used to persist
information throughout the ADF lifecycle phases is instantiated and initialized.

■ Prepare Model: The binding container is refreshed, which sets any page
parameters contained in the page definition. Any entries in the executables section
of the page definition are refreshed, depending on the value of the Refresh and
RefreshCondition attributes.

The Refresh and RefreshCondition attributes are used to determine when
and whether to invoke an executable. For example, there maybe an executable that
should only be invoked under certain conditions. Refresh determines the phase in
which to invoke the executable, while the refresh condition determines whether
the condition has been met. Set the Refresh attribute to prepareModel when
your bindings are dependent on the outcome from the operation.

Using Attributes to Create Text Fields

6-8 Oracle Application Development Framework Developer’s Guide

If Refresh is set to prepareModel, or if no value is supplied (meaning it uses
the default, ifneeded), then the RefreshCondition attribute value is
evaluated. If no RefreshCondition value exists, the executable is invoked. If a
value for RefreshCondition exists, then that value is evaluated, and if the
return value of the evaluation is true, then the executable is invoked. If the value
evaluates to false, the executable is not invoked. The default value always enforces
execution. If the incoming request contains no POST data or query parameters,
then the lifecycle forwards to the Render Response phase.

For more information, see Section 10.5.5.1, "Correctly Configuring the Refresh
Property of Iterator Bindings". For details about the refresh attribute, see
Section A.7.1, "PageDef.xml Syntax".

In the problem description example, the bindingContainer invokes the
findAllServiceRequestIter method iterator, which in turn invokes the
findAllServiceRequest method that returns the ServiceRequest
collection. The iterator then iterates over the data and makes the data for the first
found record available to the UI component by placing it in the binding container.
Because there is a binding for the problemDescription attribute in the page
definition that can access the value from the iterator (see Example 6–3), and since
the UI component is bound to the problemDescription binding using an EL
expression (#{bindings.problemDescription.inputValue}), that data is
displayed by that component.

■ Apply Request Values: Each component in the tree extracts new values from the
request parameters (using its decode method) and stores it locally. Most associated
events are queued for later processing. If a component has its immediate
attribute set to true, then the validation, conversion, and events associated with
the component are processed during this phase. For more information about
validation and conversion, see Chapter 12, "Using Validation and Conversion".

For example, if a user enters a new value into the inputText component, that
value is stored locally using the setSubmittedValue method on the
inputText component.

■ Process Validations: Local values of components are converted and validated. If
there are errors, the lifecycle jumps to the Render Response phase. At the end of
this phase, new component values are set, any validation or conversion error
messages and events are queued on FacesContext, and any value change events
are delivered.

For a detailed explanation of this and the next two phases of the lifecycle, see
Chapter 12, "Using Validation and Conversion".

■ Update Model Values: The component’s validated local values are moved to the
model and the local copies are discarded.

■ Validate Model Updates: The updated model is now validated against any
validation routines set on the model.

■ Invoke Application: Any action bindings for command components or events are
invoked. For a detailed explanation of this and the next two phases of the lifecycle,
see Section 9.4, "Using Dynamic Navigation". For a description of action bindings
used to invoke business logic, see Section 6.4, "Incorporating Range Navigation
into Forms".

■ Metadata Commit: Changes to runtime metadata are committed. This phase is not
used in this release, but will be used in future releases.

■ Initialize Context (only if navigation occurred in the Invoke Application lifecycle):
The page definition for the next page is initialized.

Creating a Basic Form

Creating a Basic Page 6-9

■ Prepare Model (only if navigation occurred in the Invoke Application lifecycle):
Any page parameters contained in the next page’s definition are set. Any entries in
the executables section of the page definition are used to invoke the corresponding
methods in the order they appear.

■ Prepare Render: The binding container is refreshed to allow for any changes that
may have occurred in the Apply Request Values or Validation phases. The
prepareRender event is sent to all registered listeners.

You should set the Refresh attribute of an executable to renderModel when the
refreshCondition is dependent on the model. For example, if you want to use
the #{adfFacesContext.postback} expression in a RefreshCondition of
an executable, you must set the Refresh property to either renderModel or
renderModelIfNeeded, which will cause the method to be executed during the
prepareRender phase. For more information, see Section 10.5.5.1, "Correctly
Configuring the Refresh Property of Iterator Bindings".

■ Render Response: The components in the tree are rendered as the J2EE web
container traverses the tags in the page. State information is saved for subsequent
requests and the Restore View phase.

6.3 Creating a Basic Form
Instead of dropping individual attributes to create a form, JDeveloper allows you to
drop a complete form that displays or collects data for all the attributes on an object.
For example, the SREdit page was created by dropping the return from the
findServiceRequestById method, which contains all the attributes necessary to
edit a given service request.

This section provides information on creating a form that returns data to be viewed or
edited. You can also use a constructor or the method itself to create a form used to
populate data instead of return data. For more information about creating that type of
form, see Section 10.7, "Creating an Input Form for a New Record".

6.3.1 How to Use the Data Control Palette to Create a Form
To create a form using a data control, you bind the UI components to the attributes on
the corresponding object in the data control. JDeveloper allows you to do this
declaratively by dragging and dropping a collection or a structured attribute from the
Data Control Palette.

These procedures are for creating a form that displays all objects from a collection
returned by a method that takes no parameters. If you want to use a collection
returned from a method that takes parameters, you need to have those parameters set
in order for the form to display the proper records. For procedures and information
about setting parameters, see Section 10.6.1, "How to Create a Form or Table Using a
Method That Takes Parameters".

Note: Instead of displaying prepareRender as a valid phase for a
selection, JDeveloper displays renderModel, which represents the
refresh(RENDER_MODEL) method called on the binding container.

Creating a Basic Form

6-10 Oracle Application Development Framework Developer’s Guide

To create a form that allows a user to create a new record, you need to use a method
that creates the new instance, given some values for that instance. If your data control
was configured to support updates, then it will include constructors, which are objects
you can use to create a form that creates a new object, populating values for all
attributes on the object. For more information, see Section 10.7, "Creating an Input
Form for a New Record".

Whether you use a collection, a constructor, or a method to create a form, you may also
want to add a command button that invokes a method to, for example, insert the data
into the data source or update the data. For procedures and more information, see
Section 10.3, "Creating Command Components to Execute Methods".

To create a basic form:
1. From the Data Control Palette, select a collection that is a return of a findAll

method.

To display the value of existing attributes, drop the returned collection from a
method used to find records. Figure 6–3 shows the ServiceRequest collection
for the findAllServiceRequest() method from the SRDemo application. This
method creates a form with data already populated in the input text fields.

Figure 6–3 Attributes Associated with a Returned Collection in the Data Control Palette

2. Drag the collection onto the page, and from the context menu choose the type of
form to display or collect data for the object. For a form, you are given the
following choices:

– ADF Form: Launches the Edit Form Fields dialog that allows you to select
individual attributes instead of creating a field for every attribute by default. It
also allows you to select the label and UI component used for each attribute.
By default, ADF inputText components are used, except for dates, which
use the selectInputDate component. Each inputText component
contains a validator tag that allows you to set up validation for the attribute.
For more information, see Section 12.3, "Adding Validation".

You can elect to include navigational controls that allow users to navigate
through all the data objects in the collection. For more information, see
Section 6.4, "Incorporating Range Navigation into Forms". You can also elect to
include a Submit button used to submit the form. This button submits the
HTML form and applies the data in the form to the bindings as part of the
JSF/ADF page lifecycle. For additional help in using the dialog, click Help. All
UI components are placed inside a panelForm component.

– ADF Read-Only Form: Same as the ADF Form, but by default, outputText
components are used. Since the form is meant to display data, no validator
tags are added. The label attribute is populated for each component.
Attributes of type Date also use the outputText component. All
components are placed inside panelLabelAndMessage components, which
are in turn placed inside a panelForm component.

Creating a Basic Form

Creating a Basic Page 6-11

– ADF Creation Form: Not to be used when using TopLink Java objects and an
EJB session bean. Use constructors or custom methods instead. For more
information, see Section 10.7, "Creating an Input Form for a New Record".

3. If you are building a form that allows users to update data, you now need to drag
and drop a method that will perform the update. For more information, see
Section 10.3, "Creating Command Components to Execute Methods".

6.3.2 What Happens When You Use the Data Control Palette to Create a Form
Dropping an object as a form from the Data Control Palette has the same effect as
dropping a single attribute, except that multiple attribute bindings and associated UI
components are created. The attributes on the UI components (such as value) are
bound to properties on that attribute’s binding object (such as inputValue).
Example 6–7 shows the code generated on the JSF page when you drop the
ServiceRequest collection for the findAllServiceRequest() method as a
default ADF Form.

Example 6–7 Code on a JSF Page for an Input Form

<af:panelForm>
 <af:inputText value="#{bindings.svrId.inputValue}"
 label="#{bindings.svrId.label}"
 required="#{bindings.svrId.mandatory}"
 columns="#{bindings.svrId.displayWidth}">
 <af:validator binding="#{bindings.svrId.validator}"/>
 <f:convertNumber groupingUsed="false"
 pattern="#{bindings.svrId.format}"/>
 </af:inputText>
 <af:inputText value="#{bindings.status.inputValue}"
 label="#{bindings.status.label}"
 required="#{bindings.status.mandatory}"
 columns="#{bindings.status.displayWidth}">
 <af:validator binding="#{bindings.status.validator}"/>
 </af:inputText>
 <af:selectInputDate value="#{bindings.requestDate.inputValue}"
 label="#{bindings.requestDate.label}"
 required="#{bindings.requestDate.mandatory}">
 <af:validator binding="#{bindings.requestDate.validator}"/>
 <f:convertDateTime pattern="#{bindings.requestDate.format}"/>
 </af:selectInputDate>
 <af:inputText value="#{bindings.problemDescription.inputValue}"
 label="#{bindings.problemDescription.label}"
 required="#{bindings.problemDescription.mandatory}"
 columns="#{bindings.problemDescription.displayWidth}">
 <af:validator binding="#{bindings.problemDescription.validator}"/>
 </af:inputText>
 <af:selectInputDate value="#{bindings.assignedDate.inputValue}"
 label="#{bindings.assignedDate.label}"
 required="#{bindings.assignedDate.mandatory}">
 <af:validator binding="#{bindings.assignedDate.validator}"/>
 <f:convertDateTime pattern="#{bindings.assignedDate.format}"/>
 </af:selectInputDate>
 <f:facet name="footer">
 <af:commandButton text="Submit"/>
 </f:facet>
</af:panelForm>

Creating a Basic Form

6-12 Oracle Application Development Framework Developer’s Guide

6.3.2.1 Using Facets
JSF components use facet tags to hold other components that require a special
relationship with the parent component, for example, headers and footers for columns
within a table, or the footer facet for the panelForm component. When you use the
Data Control Palette to drop a widget, any preferred facets are included.

Many components use facets, and when you use widgets to create complex
components (such as panelForm), output tags are often automatically created and
inserted into the facets. You can manually edit these components or add other
components to facets.

When you choose to include a Submit button when you drop a collection as an input
form, a command button is added to the panelForm’s footer facet. This command
button causes the form that holds the panelForm to be submitted. By default, the text
is Submit. Figure 6–4 shows the command button in the panelForm’s footer facet.

Figure 6–4 Footer Facet for the Panel Form

Example 6–8 shows the corresponding code in the JSF page.

Example 6–8 Facet in a JSF Page

<af:panelForm>
...
 <f:facet name="footer">
 <af:commandButton text="Submit"/>
 </f:facet>
</af:panelForm>

Each facet can hold only one component. If you need a facet to hold more than one
component, then you need to nest those components in a container component, which
can then be nested in the facet. For an example of how the panelGroup and
panelButtonBar components are used to group all buttons in the footer facet of a
form, see Section 6.4.2.3, "Using EL Expressions to Bind to Navigation Operations".

Also note that JDeveloper displays all facets available to the component in the
Structure window. However, only those that contain UI components appear activated.
Any empty facets are "grayed" out. Figure 6–5 shows both full and empty facets for a
panelPage component

Note: For information regarding the validator and converter tag, see
Chapter 12, "Using Validation and Conversion".

Incorporating Range Navigation into Forms

Creating a Basic Page 6-13

Figure 6–5 Empty and Full Facet Folders in the Structure Window

6.4 Incorporating Range Navigation into Forms
When you choose to add navigation when you use the Data Control Palette to create
an input form, JDeveloper includes ADF Faces command components bound to
existing navigational logic on the data control. This built-in logic allows the user to
navigate through the data objects in the collection. Figure 6–6 shows a form that
contains navigation buttons.

Figure 6–6 Navigation in a Form

6.4.1 How to Insert Navigation Controls into a Form
By default, when you choose to include navigation when creating a form using the
Data Control Palette, JDeveloper creates First, Last, Previous, and Next buttons that
allow the user to navigate within the collection.

You can also add navigation buttons to an existing form manually.

To manually add navigation buttons:
1. From the Data Control Palette, select the operation associated with the collection

of objects on which you wish the operation to execute, and drag it onto the JSF
page.

For example, if you want to navigate through service requests, you would drag the
Next operation associated with the ServiceRequest collection of the
findAllServiceRequest() method. Figure 6–7 shows the navigation
operations associated with a collection.

Incorporating Range Navigation into Forms

6-14 Oracle Application Development Framework Developer’s Guide

Figure 6–7 Navigation Operations Associated With a Collection

2. Choose either Command Button or Command Link from the context menu.

6.4.2 What Happens When Command Buttons Are Created Using the Data Control
Palette

When you drop any operation as a command component, JDeveloper:

■ Defines an action binding in the page definition file for the associated operations

■ Inserts code in the JSF page for the command components

6.4.2.1 Using Action Bindings for Built-in Navigation Operations
Action bindings execute business logic. Action bindings can invoke methods on a
business service (for example, the method action binding for a method used by an
iterator to access a collection) or as in the case of navigation controls, they can invoke
built-in methods on the action binding object. These built-in methods operate on the
iterator or on the data control itself, and are represented as operations in the Data
Control Palette. JDeveloper provides navigation operations that allow users to
navigate forward, backwards, to the last object in the collection, and to the first object.

Like value bindings, action bindings for navigation operations must also contain a
reference to the iterator binding, as it is used to determine the current object and can
therefore determine the correct object to display when each of the navigation buttons
is clicked. Example 6–9 shows the action bindings for the navigation operations.

Note: For more information about using methods to add, remove, or
update data, see Chapter 10.3, "Creating Command Components to
Execute Methods".

Tip: The numerical values of the Action attribute in the <action>
tags (as shown in Figure 6–9) are defined in the
oracle.adf.model.meta.OperationDefinition class.
However, when you use the ADF Model layer’s action binding editor,
you never need to set the numerical code by hand.

Incorporating Range Navigation into Forms

Creating a Basic Page 6-15

Example 6–9 Page Definition Code for an Operation Action Binding

 <action id="First" RequiresUpdateModel="true" Action="12"
 IterBinding="findAllServiceRequestIterator"/>
 <action id="Previous" RequiresUpdateModel="true" Action="11"
 IterBinding="findAllServiceRequestIterator"/>
 <action id="Next" RequiresUpdateModel="true" Action="10"
 IterBinding="findAllServiceRequestIterator"/>
 <action id="Last" RequiresUpdateModel="true" Action="13"
 IterBinding="findAllServiceRequestIterator"/>

6.4.2.2 Iterator RangeSize Attribute
Iterator bindings have a rangeSize attribute used to determine the number of data
objects to return for each iteration. This attribute helps in situations when the number
of objects in the data source is quite large. Instead of returning all objects, only a set
number are returned and accessible by the other bindings. Once the iterator reaches
the end of the range, it accesses another set, creating a new range. Example 6–10 shows
the range size for the findAllServiceRequestIter iterator.

Example 6–10 RangeSize Attribute for an Iterator

<executables>
 <methodIterator id="findAllServiceRequestIter"
 Binds="findAllServiceRequest.result"
 DataControl="SRPublicFacade" RangeSize="10"
 BeanClass="oracle.srdemo.model.entities.ServiceRequest"/>
</executables>

By default, the rangeSize attribute is set to 10. This means that a user can view 10
objects, navigating back and forth between them, without needing to access the data
source. The iterator keeps track of the current object. Once a user clicks a button that
requires a new range (for example, clicking the Next button on object number 10), the
binding object executes its associated method against the iterator, and the iterator
retrieves another set of 10 records. The bindings then work with that set. You can
change this setting as needed. You can set it to -1 to have the full record set returned.
The default is -1 for iterator bindings that furnish a list of valid choices for list
bindings.

Table 6–1 shows the built-in navigation operations provided on data controls, along
with the action attribute value set in the page definition, and the result of invoking the
operation or executing an event bound to the operation. For more information about
action events, see Section 6.4.3, "What Happens at Runtime: About Action Events and
Action Listeners".

Note: This rangeSize attribute is not the same as the row attribute
on a table component. For more information, see Table 7–1, " ADF
Faces Table Attributes and Populated Values".

Tip: You can also set a range of records directly in the query you
write on your business service. However, doing so means every page
that uses the query will return the same range size. By setting the
range size on the iterator, you can control the size per page.

Incorporating Range Navigation into Forms

6-16 Oracle Application Development Framework Developer’s Guide

Every action binding for an operation has an enabled boolean property that the ADF
framework sets to false when the operation should not be invoked. You can then
bind the UI component to this value to determine whether or not the component
should be enabled. For more information about the enabled property, see
Appendix B, "Reference ADF Binding Properties".

6.4.2.3 Using EL Expressions to Bind to Navigation Operations
When you create command components using navigation operations, the components
are placed in a panelButtonBar component. JDeveloper creates an EL expression
that binds a navigational command button’s actionListener attribute to the
execute property of the action binding for the given operation. This expression
causes the binding’s operation to be invoked on the iterator when a user clicks the
button.

For more information about the command button’s actionListener attribute, see
Section 6.4.3, "What Happens at Runtime: About Action Events and Action Listeners".
For example, the First command button’s actionListener attribute is bound to the
execute method on the First action binding.

The disabled attribute is used to determine if the button should be inactivated. For
example, if the user is currently displaying the first record, the First button should not
be able to be clicked. The code uses an EL expression that evaluates to the enabled
property on the action binding. If the property value is not true (for example, if the
current record is the first record, the First operation should not be enabled), then the
button is disabled. Example 6–11 shows the code generated on the JSF page for
navigation operation buttons.

Table 6–1 Built-in Navigation Operations

Operation

Action
Attribute
Value When invoked, the associated iterator binding will...

Next 10 Move its current pointer to the next object in the result set. If this
object is outside the current range, the range is scrolled forward a
number of objects equal to the range size.

Previous 11 Move its current pointer to the preceding object in the result set. If
this object is outside the current range, the range is scrolled
backward a number of objects equal to the range size.

First 12 Move its current pointer to the beginning of the result set.

Last 13 Move its current pointer to the end of the result set.

Next Set 14 Move the range forward a number of objects equal to the range
size attribute.

Previous Set 15 Move the range backward a number of objects equal to the range
size attribute.

SetCurrentRow
WithKey

96 Set the row key as a String converted from the value specified by
the input field. The row key is used to set the currency of the data
object in the bound data collection. For an example of when this is
used, see Section 7.7.1, "How to Manually Set the Current Row".

SetCurrentRow
WithKeyValue

98 Set the current object on the iterator, given a key’s value.

Incorporating Range Navigation into Forms

Creating a Basic Page 6-17

Example 6–11 JSF Code for Navigation Buttons Bound to ADF Operations

<f:facet name="footer">
 <af:panelButtonBar>
 <af:commandButton actionListener="#{bindings.First.execute}"
 text="First"
 disabled="#{!bindings.First.enabled}"/>
 <af:commandButton actionListener="#{bindings.Previous.execute}"
 text="Previous"
 disabled="#{!bindings.Previous.enabled}"/>
 <af:commandButton actionListener="#{bindings.Next.execute}"
 text="Next"
 disabled="#{!bindings.Next.enabled}"/>
 <af:commandButton actionListener="#{bindings.Last.execute}"
 text="Last"
 disabled="#{!bindings.Last.enabled}"/>
 </af:panelButtonBar>
 <af:commandButton text="Submit"/>
 </f:facet>

6.4.3 What Happens at Runtime: About Action Events and Action Listeners
An action event occurs when a command component is activated. For example, when
a user clicks a button, the form the component is enclosed in is submitted, and
subsequently an action event is fired. Action events might affect only the user interface
(for example, a link to change the locale, causing different field prompts to display), or
they might involve some logic processing in the back end (for example, a button to
navigate to the next record).

An action listener is a class that wants to be notified when a command component
fires an action event. An action listener contains an action listener method that
processes the action event object passed to it by the command component.

In the case of the navigation operations, when a user clicks, for example, the Next
button, an action event is fired. This event stores currency information about the
current data object, taken from the iterator. Because the component’s
actionListener attribute is bound to the execute method of the Next action
binding, the Next operation is invoked. This method takes the currency information
passed in the event object to determine what the next data object should be.

6.4.4 What You May Need to Know About the Browser Back Button
When a user clicks the navigation buttons, the iterator determines the next data object
to display. However, when the user clicks the browser’s Back button, the action
and/or event is not shared outside the browser, and the iterator is bypassed.
Therefore, when a user clicks a browser’s Back button instead of using navigation
buttons on the page, the iterator becomes out of sync with the page displayed, causing
unexpected results.

For example, say a user browses to object 103, and then uses the browser’s Back
button. Because the browser shows the page last visited, object 102 is shown. However,
the iterator still thinks the current object is 103 because the iterator was bypassed. If
the user were to then to click the Next button, object 104 would display because that is
what the iterator believes to be the next object, and not 103 as the user would expect.

Because the iterator and the page are out of sync, problems can arise when a user edits
records. For example, if the user were to have edited object 102 after clicking the
browser’s Back button, the changes would have actually been posted to 103, because
this is what the iterator thought was the current object.

Modifying the UI Components and Bindings on a Form

6-18 Oracle Application Development Framework Developer’s Guide

To prevent a user making changes to the wrong object instances, you can use token
validation. When you enable token validation for a page, that page is annotated with
the current object for all the iterators used to render that page. This annotation is
encoded onto the HTML payload rendered to the browser and is submitted to the
server along with any data. At that point, the current object of the iterator is compared
with the annotation. If they are different, an exception is thrown.

For example, in the earlier scenario, when the user starts at 103 but then clicks the
browser’s Back button to go to 102, as before, the previous page is displayed.
However, that page was (and still is) annotated with 102. Therefore, when the user
clicks the Next button to submit the page and navigate forward, the annotation (102)
does not match the iterator (which is still at 103), an exception is thrown, and the Next
operation is not executed. The page renders with 103, which is the object the iterator
believed to be current. An error displays on the page stating that 102 was expected,
since the server expected 102 based on the annotation submitted with the data. Since
103 is now displayed, both the annotation and the iterator are now at 103, and are back
in sync.

Token validation is set on the page definition for a JSF page. By default, token
validation is on.

To set token validation:
1. Open the page definition file for the page.

2. In the Structure window, select the root node for the page definition itself.

3. In the Property Inspector, use the dropdown list for the
EnableTokenValidation attribute to set validation to true to turn on token
validation, or false to turn off token validation.

Example 6–12 shows a page definition file after token validation was set to true.

Example 6–12 Enable Token Validation in the Page Definition File

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.35.29" id="createProductPageDef"
 Package="oracle.srdemo.view.pageDefs"
 EnableTokenValidation="true">

6.5 Modifying the UI Components and Bindings on a Form
Once you use the Data Control Palette to create a form, you can then delete attributes,
change the order in which they are displayed, change the component used to display
them, and change the attribute to which they are bound.

6.5.1 How to Modify the UI Components and Bindings
You can modify certain aspects of the default components dropped from the Data
Control Palette. You can use the Structure window to change the order in which
components are displayed, to add new components or change existing components, or
to delete components. You can use the Property Inspector to change or delete bindings,
or to change the label displayed for a component.

Modifying the UI Components and Bindings on a Form

Creating a Basic Page 6-19

To modify default components and bindings:
1. Use the Structure window to do the following:

■ Change the order of the UI components by dragging them up or down the
tree. A black line with an arrowhead denotes where the UI component will be
placed.

■ Add a UI component for a new attribute. Right-click an existing UI component
in the Structure window and choose to place the new component before, after,
or inside the selected component. You then choose from a list of UI
components.

To bind the new component to an attribute, you need to use the Property
Inspector. See the first bullet point in step 2 for details.

■ Delete a UI component. Right-click the component and choose Delete. If you
wish to keep the component, but delete just the binding, you need to use the
Property Inspector. See the second bullet point in step 2.

2. With the UI component selected in the Structure window, you can then do the
following in the Property Inspector:

■ Add a binding for the UI component. Enter an EL expression in the Value
field, or click the ellipsis (...) button in the Value field to open the EL
Expression Builder. To select a binding available from the data control, select
the ADF Bindings > Bindings node. This node shows the operations,
iterators, and attributes available from the collection currently bound, as well
as the binding properties. For more information about using EL expressions,
see Section 5.6, "Creating ADF Data Binding EL Expressions".

■ Delete a binding for the UI component by deleting the EL expression.

■ Change the binding. You can rebind the component to any other attribute, or
any property on another attribute. For procedures, see Section 6.5.1.1,
"Changing the Value Binding for a UI Component".

■ Change the label for the UI component. By default, the label is bound to the
binding’s label property (for more information about this property, see
Appendix B, "Reference ADF Binding Properties".

You can also change the label just for the current page. To do so, select the
Label attribute. You can enter text or an EL expression to bind the label value
to something else, for example, a key in a properties or resource file.

For example, the inputText component used to enter the status of a service
request would have the following for its Label attribute:

#{bindings.status.label}

In this expression, status is the ID for the attribute binding in the page
definition file.

However, you could change the expression to instead bind to a key in a
properties file, for example:

#{srproperties[’sr.status’]}

In this example, srproperties is a variable defined in the JSF page used to
load a properties file. The SREdit page uses a variable named res. The label
for the cancel button has the following value:

#{res['srdemo.cancel']}

Modifying the UI Components and Bindings on a Form

6-20 Oracle Application Development Framework Developer’s Guide

For more information about using resource bundles, see Section 14.4,
"Internationalizing Your Application".

6.5.1.1 Changing the Value Binding for a UI Component
Instead of modifying a binding, you can completely change the object to which the UI
component in a form is bound.

To rebind a UI component:
1. From the Data Control palette, drag the collection or attribute that you now want

the component to be bound to, and drop it on the component.

OR

Right-click the UI component in the Structure window and choose Edit Binding.
Either the Attribute, Table, or List Binding Editor launches, depending on the UI
component for which you are changing the binding.

2. In the context menu, select Bind existing <component name>.

6.5.1.2 Changing the Action Binding for a UI Component
When a component is bound to a built-in operation, you can change the action using
the Action Binding Editor.

To rebind a UI Command component:
1. Right-click the command component in the Structure window and choose Edit

Binding, which launches the Action Binding Editor.

2. In the editor, use the dropdown menu to select a different action.

6.5.2 What Happens When You Modify Attributes and Bindings
When you modify how an attribute is displayed by moving the UI component or
changing the UI component, JDeveloper changes the corresponding code on the JSF
page. When you use the binding editors to add or change a binding, JDeveloper adds
the code to the JSF page, and also adds the appropriate elements to the page definition
file.

Adding Tables 7-1

7
Adding Tables

This chapter describes how to use the Data Control Palette to create databound tables
using ADF Faces components.

This chapter includes the following sections:

■ Section 7.1, "Introduction to Adding Tables"

■ Section 7.2, "Creating a Basic Table"

■ Section 7.3, "Incorporating Range Navigation into Tables"

■ Section 7.4, "Modifying the Attributes Displayed in the Table"

■ Section 7.5, "Adding Hidden Capabilities to a Table"

■ Section 7.6, "Enabling Row Selection in a Table"

■ Section 7.7, "Setting the Current Object Using a Command Component"

7.1 Introduction to Adding Tables
Unlike forms, tables allow you to display more than one data object from a collection
at a time. Figure 7–1 shows the SRList page in the SRDemo application, which uses a
browse table to display the current service requests for a logged in user.

Figure 7–1 The Service Request Table

Once you drop a collection as a table, you can then add selection components that
allow users to select a specific row. When you add command buttons bound to
methods, users can then click those buttons to execute some business logic on the
selected row. For more information, see Section 10.3, "Creating Command Components
to Execute Methods". You can also modify the default components to suit your needs.

Creating a Basic Table

7-2 Oracle Application Development Framework Developer’s Guide

Read this chapter to understand:

■ How to create a basic table

■ How to add navigation between sets of returned objects

■ How to modify the default table once it’s created

■ How to add components that allow users to show or hide data

■ How to include a column that allows users to select one, or one or more, rows in
the table

■ How to manually set the current row in the table

7.2 Creating a Basic Table
Unlike with forms, where you bind the individual UI components that make up a form
to the individual attributes on the collection, with a table you bind the ADF Faces
table component to the complete collection or to a range of N data objects at a time
from the collection. The individual columns in the table are then bound to the
attributes. The iterator binding handles displaying the correct data for each object,
while the table component handles displaying each object in a row. JDeveloper
allows you to do this declaratively, so that you don’t need to write any code.

7.2.1 How to Create a Basic Table
To create a table using a data control, you must bind to a method on the data control
that returns a collection. JDeveloper allows you to do this declaratively by dragging
and dropping a collection from the Data Control Palette.

To create a databound table:
1. From the Data Control Palette, select a method return that returns a collection.

For example, to create the SRList table in the SRDemo application, you drag the
ServiceRequest collection that the findServiceRequest(Integer, String)
method returns. This method takes an Integer parameter value that represents
the user ID of the current user and a String value that represents the status of
open, and returns all open requests for that user. Figure 7–2 shows the
ServiceRequests collection in the Data Control Palette. For more information
about how the parameters are set to determine the records to display, see
Section 10.6.1, "How to Create a Form or Table Using a Method That Takes
Parameters".

Figure 7–2 Collection Returned for a Method

Creating a Basic Table

Adding Tables 7-3

2. Drag the method return onto a JSF page, and from the context menu, choose the
appropriate table.

When you drag the collection, you can choose from the following types of tables:

■ ADF Table: Allows you to select the specific attributes you wish your editable
table columns to display, and what UI components to use to display the data.
By default, each attribute on the collection object is displayed in an
inputText component, thus enabling the table to be editable.

■ ADF Read-Only Table: Same as the ADF Table; however, each attribute is
displayed in an outputText component.

■ ADF Read-Only Dynamic Table: The attributes returned and displayed are
determined dynamically. This component is helpful when the attributes for
the corresponding object are not known until runtime, or you do not wish to
hardcode the column names in the JSF page. For example, if you have a
method that returns a polymorphic collection (i.e. getAnimals() can return
a collection of mammals or a collection of birds), the dynamic table can
display the different attributes accordingly.

3. From the ensuing Edit Table Columns dialog, you can do the following:

■ Change the display label for a column. By default, the label is bound to the
label property of the table binding. For more information about this
property, see Section B, "Reference ADF Binding Properties". This binding to
the property allows you to change the value of the label text once and have it
appear the same on all pages that display the label. In this dialog, you can
instead enter text or an EL expression to bind the label value to something
else, for example, a key in a resource file.

For example, the headings for the status columns in the table on the SRList
page are bound to the label property of the status attribute binding:

#{bindings.findServiceRequests1.labels.status}

However, you could change the headings to instead be bound to a key in a
properties file, for example:

#{srlist[’sr.status’]}

In this example, srlist would be a variable defined in the JSF page used to
load a properties file. For more information about using resource bundles, see
Section 14.4, "Internationalizing Your Application".

■ Change the attribute binding for a column.

For example, you can change the status column to instead be bound to the
requestDate attribute. Note the following:

– If you change the binding, the label for the column also changes.

– If you change the binding to an attribute currently bound to another
column, the UI component changes to a component different from that
used for the column currently bound to that attribute.

Note: You can also drop a collection as an ADF Master Table, Inline
Detail Table. For more information, see Section 8.6, "Using an Inline
Table to Display Detail Data in a Master Table".

Creating a Basic Table

7-4 Oracle Application Development Framework Developer’s Guide

If you simply want to rearrange the columns, you should use the order
buttons. See the fourth bullet point below for more information.

■ Change the UI component used to display an attribute. The UI components
are either inputText or outputText and are set based on the table you
selected when you dropped the collection onto the page. You can change to
the other component using the dropdown menu. If you want to use a different
component, such as a command link or button, you need to use this dialog to
select the outputText component, and then in the Structure window, add
that other UI component (such as a command link) as a parent to this
component.

■ Change the order of the columns using the order buttons. Top moves the
column to the first column at the left of the table. Up moves the column one
column to the left. Down moves the column one to the right. Bottom moves
the column to the very right.

■ Add a column using the New button. Doing so adds a new column at the
bottom of the dialog and populates it by default with values from the next
sequential attribute in the collection. You then need to edit the values. You can
only select an attribute associated with the object to which the table is bound.

■ Delete a column using the Delete button. Doing so deletes the column from
the table.

■ Add a tableSelectOne component to the table’s selection facet by
selecting Enable selection. For more information, see Section 7.6, "Enabling
Row Selection in a Table".

■ Allow sorting for all columns by selecting Enable sorting.

7.2.2 What Happens When You Use the Data Control Palette to Create a Table
Dropping a table from the Data Control Palette has the same effect as dropping a text
field or form. For more information, see Section 6.2.2, "What Happens When You Use
the Data Control Palette to Create a Text Field". Briefly, JDeveloper does the following:

■ Creates the bindings for the table and adds the bindings to the page definition file.

■ Adds the necessary code for the UI components to the JSF page.

7.2.2.1 Iterator and Value Bindings for Tables
When you drop a table from a the Data Control Palette, a table value binding is
created. Like an attribute binding used in forms, the table value binding references the
iterator binding. However, instead of creating a separate binding for each attribute,
only the table binding is created. This table binding has a child attribute name element
for each attribute. Example 7–1 shows the table binding for the table created when you
drop the ServiceRequest collection.

Example 7–1 Value Binding Entries for a Table in the Page Definition File

<table id="findServiceRequest1" IterBinding="findServiceRequestsIter">
 <AttrNames>
 <Item Value="svrId"/>
 <Item Value="status"/>

Note: If you choose to enable sorting, the table can only sort through
the number of objects returned by the iterator, as determined by the
iterators rangeSize attribute.

Creating a Basic Table

Adding Tables 7-5

 <Item Value="requestDate"/>
 <Item Value="problemDescription"/>
 <Item Value="assignedDate"/>
 </AttrNames>
</table>

Only the table value binding is needed because only the table UI component needs
access to the data. The table columns derive their information from the table binding.

7.2.2.2 Code on the JSF Page for an ADF Faces Table
When you use the Data Control Palette to drop a table onto a JSF page, JDeveloper
creates a table that contains a column for each attribute on the object to which it is
bound. To do this, JDeveloper inserts an ADF Faces table component. This
component contains an ADF Faces column component for each attribute named in the
table binding. Each column then contains either an input or outputText component
bound to the attribute’s value. Each column’s heading attribute is bound to the label
property for each attribute on the table binding. Example 7–2 shows a simplified code
excerpt from the table on the SRList page.

Example 7–2 Simple Example of JSF Code for an ADF Faces Table

<af:table var="row"
 value="#{bindings.findServiceRequests1.collectionModel}
 <af:column headerText="#{bindings.findServiceRequests1.labels.svrId}"
 <af:outputText value="#{row.svrId}"/>
 </af:column>
 <af:column headerText="#{bindings.findServiceRequests1.labels.status}"
 <af:outputText value="#{row.status}"/>
 </af:column>
 ...
</af:table>

An ADF Faces table itself iterates over the data accessed by the iterator binding. In
order to do this, the table wraps the result set from the iterator binding in an
oracle.adf.view.faces.model.CollectionModel object. As the table
iterates, it makes each item in the collection available within the table component
using the var attribute.

In the example above, the table iterates over the collection from the
findServiceRequests1 table binding, which in turn references the
findServiceRequestsIter iterator binding. The iterator binding is what
determines the current data object. When you set the var attribute on the table to row,
each column then accesses the current data object for the current row presented to the
table tag using the row variable, as shown for the value of the outputText tag:

<af:outputText value="#{row.status}"/>

Table 7–1 shows the other attributes defined by default for ADF Faces tables created
using the Data Control Palette.

Incorporating Range Navigation into Tables

7-6 Oracle Application Development Framework Developer’s Guide

Additionally, a table may also have a selection facet, and selection and
selectionListener attributes if you chose to enable selection when you created
your table. For more information, see Section 7.6, "Enabling Row Selection in a Table".

7.3 Incorporating Range Navigation into Tables
Instead of using built-in operations to perform navigation as forms do, ADF Faces
tables provide built-in navigation using the selectRangeChoiceBar component
that is automatically included with table components. The
selectRangeChoiceBar component renders a dropdown menu and Previous and
Next links for selecting a range of records to display in the current page. Figure 7–3
shows an example of how the selectRangeChoiceBar component might look like
in a table.

Table 7–1 ADF Faces Table Attributes and Populated Values

Attribute Description Default Value

rows Determines how
may rows to
display at one time.

An EL expression that evaluates to the rangeSize
property of the associated iterator binding. For more
information on this attribute, see Section 7.3,
"Incorporating Range Navigation into Tables". Note
that the value of the rows attribute is equal to or less
than the corresponding iterator’s rangeSize value.

first Index of the first
row in a range
(based on 0).

An EL expression that evaluates to the rangeStart
property of the associated iterator binding. For more
information on this attribute, see Section 7.3,
"Incorporating Range Navigation into Tables".

emptyText Text to display
when there are no
rows to return.

An EL expression that evaluates to the viewable
property on the iterator. If the table is viewable,
displays No rows yet when no objects are returned. If
the table is not viewable (for example if there are
authorization restrictions set against the table),
displays Access Denied.

Column
Attributes

sortProperty Determines the
property on which
to sort the column.

Set to the columns corresponding attribute binding
value.

sortable Determines
whether a column
can be sorted

Set to false. When set to true, the table will sort
only the rows returned by the iterator.

Incorporating Range Navigation into Tables

Adding Tables 7-7

Figure 7–3 SelectRangeChoiceBar in a Table

7.3.1 How to Use Navigation Controls in a Table
The rows attribute on a table component determines the maximum number of rows
to display in a range. When you use the Data Control Palette to create a table, by
default JDeveloper sets the table to display a range of rows equal to the iterator’s
rangeSize value, as shown in the following code snippet for the rows attribute on
the SRList table:

#{bindings.findServiceRequests1.rangeSize}

You can modify the rows attribute to display a different range size. For example, you
may want the iterator to return 50 records, but you want the table to display only 5 at a
time. However, if you plan on displaying the same amount you are retrieving, instead
of changing the table’s range size, you should keep this attribute bound to the
iterator’s range size, and then change the iterator. For more information, see
Section 6.4.2.2, "Iterator RangeSize Attribute".

To change the table’s range size:
1. Select the table in the Structure window.

2. In the Property Inspector, for the rows attribute, enter a value for the number of
rows to display at a time.

Alternatively, you can manually set the rows attribute in the JSF code:

<af:table rows="5">

7.3.2 What Happens When You Use Navigation Controls in a Table
The selectRangeChoiceBar component provides navigational links that allow a
user to select the next and previous range of objects in the collection. If the total size of
the collection is known, the component provides a dropdown menu that lets the user
navigate directly to a particular range set in the collection (as illustrated in Figure 7–3).

WARNING: The value of the rows attribute must be equal to or less
than the corresponding iterator’s rangeSize value.

Incorporating Range Navigation into Tables

7-8 Oracle Application Development Framework Developer’s Guide

When you change the RangeSize attribute on the iterator, the
selectRangeChoiceBar component automatically changes to show the new range
sets.

You use the rows attribute on a table component in conjunction with the first
attribute to set the ranges. The first attribute determines the current range to
display. This attribute is an index (based at zero) of each row in the list. By default, the
rows attribute uses an EL expression that binds its value to the value of the
rangeSize attribute of the associated iterator. The first attribute uses an EL
expression that binds its value to the value of the iterator’s rangeStart attribute. For
example, the rows and first attribute on the table on the SRList page have the
following values:

<af:table rows="#{bindings.findServiceRequests1.rangeSize}"
 first="#{bindings.findServiceRequests1.rangeStart}"

Each range starts with the row identified by first, and contains only as many rows
as indicated by the rows attribute.

7.3.3 What Happens at Runtime
When the total number of data objects in the collection exceeds the value of the rows
attribute, the table displays the selectRangeChoiceBar component, which allows
the user to navigate through the row sets.

Unlike navigation operations which rely on logic in an action binding to provide
navigation, the selectRangeChoiceBar component sends a RangeChangeEvent
event. When a user navigates to a different range by selecting one of the navigation
links provided by the selectRangeChoiceBar component, (such as Previous or
Next), the table generates a RangeChangeEvent event. This event includes the index
of the object that should now be at the top of the range. The table responds to this
event by changing the value of the first attribute to this new index.

The RangeChangeEvent event has an associated listener. You can bind the
RangeChangeListener attribute on the table to a method on a managed bean. This
method will then be invoked in response to the RangeChangeEvent event, in other
words whenever the table has changed the first attribute in response to the user
changing a range on the table. This binding can be helpful when some complementary
action needs to happen in response to user navigation, for example, if you need to
release cached data created for a previous range. For information about adding logic
before or after built-in operations, see Section 10.5, "Overriding Declarative Methods".

7.3.4 What You May Need to Know About the Browser Back Button
Note that using the browser Back button has the same issues as described in
Chapter 6. For more information, see Section 6.4.4, "What You May Need to Know
About the Browser Back Button". Because the iterator keeps track of the current object,
when a user clicks a browser’s Back button instead of using navigation buttons on the
page, the iterator becomes out of sync with the page displayed because the iterator has
been bypassed. Like in forms, in tables the current row (or range or rows) displayed in
the page you see when you use the browser Back button may no longer correspond
with the iterator binding’s notion of the current row and range.

For example, in the SRList page shown in Figure 7–1, if you select the service request
with the ID of 4 and then navigate off the page using either the ID’s link or the View
or Edit buttons, the iterator is set to the object that represents service request 4.

Modifying the Attributes Displayed in the Table

Adding Tables 7-9

If you set EnableTokenValidation to be true (as described in the procedure in
Section 6.4.4, "What You May Need to Know About the Browser Back Button"), then
the page’s token is also set to 4. When you use the browser’s Back button, everything
seems to be fine, the same range is displayed. However, if you click another button, an
error indicating that the current row is out of sync is shown. This is because the page
displayed is the previous page, whose token was set to 0, while the iterator is at 4.

7.4 Modifying the Attributes Displayed in the Table
Once you use the Data Control Palette to create a table, you can then delete attributes,
change the order in which they are displayed, change the component used to display
them, and change the attribute binding for the component. You can also add new
attributes. Before you add new attributes, make sure the table binding includes the
attribute you want to display in the table.

7.4.1 How to Modify the Displayed Attributes
You can modify the following aspects of a table that was created using the Data
Control Palette.

■ Change the binding for the label of a column

■ Change the attribute to which a UI component is bound

■ Change the UI component bound to an attribute

■ Reorder the columns in the table

■ Delete a column in the table

■ Add a column to the table

To change the attributes for a table:
1. In the Structure window, right-click af:table and choose Edit Columns.

2. In the Edit Columns dialog, you can do the following:

■ Change the label for the column. By default, the label is bound to the label
property of the table binding. For more information about this property, see
Appendix B, "Reference ADF Binding Properties". This binding allows you to
change the label once and have it appear the same on all pages that display the
label. In this dialog, you can instead enter text or an EL expression to bind the
label value to something else, for example, a key in a resource file.

For example, the headings for the status columns in the table on the SRList
page are bound to the label property of the status attribute binding:

#{bindings.findServiceRequests1.labels.status}

However, you could change it to instead be bound to a key in a properties file,
for example:

#{srlist[’sr.status’]}

In this example, srlist would be a variable defined in the JSF page used to
load a properties file. For more information about using resource bundles, see
Section 14.4, "Internationalizing Your Application".

■ Change the attribute binding for the column.

Modifying the Attributes Displayed in the Table

7-10 Oracle Application Development Framework Developer’s Guide

For example, you can change the status column to instead be bound to the
requestDate attribute. Note the following:

– If you change the binding, the label for the column also changes.

– If you change the binding to an attribute currently bound to another
column, the UI component changes to a component different from that
used for the column currently bound to that attribute.

If you simply want to rearrange the columns, you should use the order
buttons, as described later in the section.

■ Change the UI component used to display the attribute. The UI components
are either inputText or outputText and are set based on the widget you
selected when you dropped the collection onto the page. You can change to
the other component using the dropdown menu. If you want to use a different
component, such as a command link or button, you need to use this dialog to
change to an outputText component, and then in the Structure window, add
that other UI component (such as a command link) as a parent to this
component.

■ Change the order of the columns using the order buttons. Top moves the
column to the first column at the left of the table. Up moves the column one
column to the left. Down moves the column one to the right. Bottom moves
the column to the very right.

■ Add a column using the New button. Doing so adds a new column at the
bottom of the dialog and populates it by default with values from the next
sequential attribute in the collection. You then need to edit the values. You can
only select an attribute associated with the object to which the table is bound.

■ Delete a column using the Delete button. Doing so deletes the column from
the table.

■ Add a tableSelectOne component to the table’s selection facet by
selecting Enable selection. For more information, see Section 7.6, "Enabling
Row Selection in a Table".

■ Add sorting capabilities by selecting Enable sorting.

Tip: You can use the following UI components in a table with the
noted caveats:

■ The selectBooleanCheckbox component can be used inside a
table if it is only handling boolean or java.lang.Beoolean
types.

■ The selectOneList/Choice/Radio components can be used
inside the table if you manually add the list of choices as an
enumeration. If instead you want to use a list binding, then the
selectOne UI component cannot be used inside a table. For
more information on list bindings, see Section 11.7, "Creating
Databound Dropdown Lists".

Note: If you choose to enable sorting, the table can only sort through
the number of objects returned by the iterator, as determined by the
iterators rangeSize attribute.

Adding Hidden Capabilities to a Table

Adding Tables 7-11

7.4.2 How to Change the Binding for a Table
Instead of modifying a binding, you can completely change the object to which the
table is bound.

To rebind a table:
1. Right-click the table in the Structure window and choose Edit Binding to launch

the Table Binding Editor.

2. In the editor, select the new collection to which you want to bind the table. Note
that changing the binding for the table will also change the binding for all the
columns. You can then use the procedures in Section 7.4.1, "How to Modify the
Displayed Attributes" to modify those bindings.

7.4.3 What Happens When You Modify Bindings or Displayed Attributes
When you simply modify how an attribute is displayed, by moving the UI component
or changing the UI component, JDeveloper changes the corresponding code on the JSF
page. When you use the binding editors to add or change a binding, JDeveloper adds
the code to the JSF page, and also adds the appropriate elements to the page definition
file.

7.5 Adding Hidden Capabilities to a Table
You can use the detailStamp facet in a table to include data that can be displayed or
hidden. When you add a component to this facet, the table displays an additional
column labeled Details with a toggle. When the user activates the toggle, the
component added to the facet is shown. When the user clicks on the toggle again, the
component is hidden. For more information about facets in general, see Section 6.3.2.1,
"Using Facets". Figure 7–4 shows how the description of a service request in an
outputText component can be hidden or shown in the table (note that this
functionality does not currently exist in the SRDemo application).

Figure 7–4 Table with an Output UI Component in the DetailStamp Facet

Adding Hidden Capabilities to a Table

7-12 Oracle Application Development Framework Developer’s Guide

If you wish to show details of another object that has a master-detail relationship (for
example, if you wanted to show the details of the person to whom the service request
is assigned), you could use the Master Table-Inline Detail composite
component. For more information about master-detail relationships and the use of the
master-detail composite component, see Section 8.6, "Using an Inline Table to Display
Detail Data in a Master Table".

7.5.1 How to Use the DetailStamp Facet
To use the detailStamp facet, you insert a component that is bound to the data to be
displayed or hidden into the facet. You can also set an attribute on the table that
creates a link that allows a user to show or hide all details at once.

To use the detailStamp facet:
1. Drag the attribute to be displayed in the facet from the Data Control Palette onto

the detailStamp facet folder. Figure 7–5 shows how the detailStamp facet folder
appears in the Structure window.

Figure 7–5 The detailStamp Facet Folder in the Structure Window

2. From the ensuing context menu, choose the UI component to display the attribute.

3. If you want a link to allow users to hide or show all details at once, select the table
in the Structure window. Then in the Property Inspector, set the
allDetailsEnabled attribute to true.

4. If the attribute to be displayed is specific to a current record, then you need to
replace the JSF code (which simply binds the component to the attribute), so that it
uses the table’s variable to display the data for the current record.

For example, when you drag an attribute, JDeveloper inserts the following code:

<f:facet name="detailStamp">
 <af:outputText value="#{bindings.<attributename>.inputValue}"/>
</f:facet>

Adding Hidden Capabilities to a Table

Adding Tables 7-13

You need to change it to the following:

<f:facet name="detailStamp">
 <af:outputText value="#{row.<attributename>}"/>
</f:facet>

7.5.2 What Happens When You Use the DetailStamp Facet
When you drag an attribute in the detailStamp facet folder, JDeveloper adds the
attribute value binding to the page definition file if it did not already exist, and it also
adds the code for facet to the JSF Page.

For example, say on the SRList page you want the user to be able to optionally hide
the service request description as shown in Figure 7–4. Since the table was created
using the findServiceRequest(Integer, String) method, you can drag the
problemDescription attribute and drop it inside the detailStamp facet folder in the
Structure window.

Example 7–3 shows the code JDeveloper then adds to the JSF page.

Example 7–3 JSF Code for a detailStamp Facet

<f:facet name="detailStamp">
 <af:outputText value="#{bindings.problemDescription.inputValue}"
 id="outputText7"/>
</f:facet>

You then need to change the code so that the component uses the table’s variable to
access the correct problem description for each row. Example 7–4 shows how the code
should appear after using the row variable.

Example 7–4 Modified JSF Code for a detailStamp Facet

<f:facet name="detailStamp">
 <af:outputText value="#{row.problemDescription}"
 id="outputText7"/>
</f:facet>

7.5.3 What Happens at Runtime
When the user hides or shows the details of a row, the table generates a
DisclosureEvent event (or a DisclosureAllEvent event when the
allDetailsEnabled attribute on the table is set to true). The event tells the table to
toggle the details (that is, either expand or collapse).

The DisclosureEvent event has an associated listener. You can bind the
DisclosureListener attribute on the table to a method on a managed bean. This
method will then be invoked in response to the DisclosureEvent event to execute
any needed post-processing.

Enabling Row Selection in a Table

7-14 Oracle Application Development Framework Developer’s Guide

7.6 Enabling Row Selection in a Table
When the tableSelectOne component or the tableSelectMany component is
added to the table’s selection facet, the table displays a Select column that allows a
user to select one row, or one or more rows, and then take some action on those rows
via command buttons.

The tableSelectOne component allows the user to select just one row. This
component provides a radio button for each row in the Select column, as shown in
Figure 7–6. For example, the table in the SRList page has a tableSelectOne
component that allows a user to select a row, and then click either the View or Edit
command button to view or edit the details for the selected service request.

Figure 7–6 The SRList Table Uses the TableSelectOne Component

The tableSelectMany component displays a checkbox for each row in the Select
column, allowing the user to select one or more rows. When you use the
tableSelectMany component, text links are also added that allow the user to select
all or none of the rows, as shown in Figure 7–7. For example, the table on the SRMain
page has a tableSelectMany component that allows a user to select multiple
records, and then click the Delete Service History Record command button to delete
the selected records.

Figure 7–7 The Service History Table Uses the TableSelectMany Component

Enabling Row Selection in a Table

Adding Tables 7-15

Both table row selection components have a text attribute whose value can be
instructions for the user. The table row selection components also usually have
command button or command links as children, which are used to perform some
action on the selected rows. For example, the table on the SRList page has command
buttons that allows a user to view or edit the selected service request.

You can set the required attribute on both the tableSelectOne and the
tableSelectMany components to true. This value will cause an error to be thrown
if the user does not select a row. However, if you set the required attribute, you must
also set the summary attribute on the table in order for the required input error
message to display correctly. For more information about the required attribute, see
Section 12.3.1.1.1, "Using Validation Attributes".

You can also set the autoSubmit attribute on the tableSelectOne and the
tableSelectMany components. When the autoSubmit attribute is set to true, the
form that holds the table automatically submits when the user makes a selection. For
more information, see Section 4.6, "Best Practices for ADF Faces".

The procedures for using the tableSelectOne and tableSelectMany are quite
different. In ADF applications, operations (such as methods) work on the current data
object, which the iterator keeps track of. The tableSelectOne component is able to
show the current data object as being selected, and is also able to set a newly selected
row to the current object on the iterator. If the same iterator is used on a subsequent
page (for example, if the user selects a row and then clicks the command button to
navigate to a page where the object can be edited), the selected object will be
displayed. This works because the iterator and the component are working with a
single object; the notion of the current row is the same because the different iterator
bindings in different binding containers are bound to the same row set iterator.

However, with the tableSelectMany component, there are multiple selected objects.
The ADF Model layer has no notion of "selected" as opposed to "current." You must
add logic to the model layer that loops through each of the selected objects, making
each in turn current, so that the operation can be executed against that object.

Instead of using the selection facet components to set the current object and then
providing a commandButton to navigate to the next page, you can use a
commandLink component that allows the user to click a link to both perform an
operation on a selection and navigate to another page, which saves the user the step of
having to first select a row and then click the command button to perform the action
and navigate. However, you must then manually set the current object on the iterator
binding. For more information about manually setting the current object, see
Section 7.7, "Setting the Current Object Using a Command Component".

Tip: If the subsequent page does not use the same iterator, you will
most likely have to set the parameter that represents the selected row
for the subsequent page manually. For example, in the SRDemo
application, the form on the SREdit page is created using the
findServiceRequestById(Integer) method. An Integer that
represents the ID for the selected row must be passed to that method
in order for the form to properly display. If the parameter is not set,
the form displays the first row in the iterator. For more information,
see Section 10.4, "Setting Parameter Values Using a Command
Component".

Enabling Row Selection in a Table

7-16 Oracle Application Development Framework Developer’s Guide

7.6.1 How to Use the TableSelectOne Component in the Selection Facet
When you drop a collection from the Data Control Palette as a table, you have the
choice to include the selection facet. If you select Enable selection, a
tableSelectOne component is inserted into the selection facet, along with a
Submit commandButton component as a child of tableSelectOne.

If you wish to have the Submit button bound to a method, you need to rebind the
commandButton component to the method or operation of your choice. For rebinding
procedures, see Section 13.6, "Adding ADF Bindings to Actions".

You can also manually add a tableSelectOne component to a selection facet.

To manually use the selection facet:
1. In the Structure window, select af:table and choose Edit Columns from the context

menu.

2. In the Edit Table Columns dialog, select Enable selection and click OK.

JDeveloper adds the tableSelectOne component to the selection facet folder
(plus the needed listener and attribute that work with selection on the table
component).

3. In the Structure window, expand the table’s selection facet folder and select
af:tableSelectOne.

4. In the Property Inspector for the new component, enter a value for the text
attribute that will provide instructions for using any command buttons or links
used to process the selection.

5. (Optional): Rebind the Submit command button to a method or operation of your
choice from the Data Control Palette. For rebinding procedures, see Section 13.6,
"Adding ADF Bindings to Actions". For more information about using methods to
create command buttons, see Section 10.3, "Creating Command Components to
Execute Methods".

Note: You cannot insert a tableSelectMany component when you
create a table using the Data Control Palette. You need to manually
add it after creating the table. Note however, that you must create
additional code in order to use multi-select processing in an ADF
application. For more information, see Section 7.6.4, "How to Use the
TableSelectMany Component in the Selection Facet".

Note: Until you add a command component to the facet, the value
for the text attribute will not display.

Enabling Row Selection in a Table

Adding Tables 7-17

7.6.2 What Happens When You Use the TableSelectOne Component
As Example 7–5 shows, when you elect to enable selection as you first create or later
edit a table, the tableSelectOne component is inserted into the selection facet
with Select and as the value for the text attribute. A Submit command button is
also included as a child.

Example 7–5 Selection Facet Code

<f:facet name="selection">
 <af:tableSelectOne text="Select and">
 <af:commandButton text="Submit"/>
</af:tableSelectOne>

As Example 7–6 shows, the table’s selectionState attribute’s value is an EL
expression that evaluates to the selected row on the collection model created from the
iterator. The selectionListener attribute’s value evaluates to the makeCurrent
method on the collection model. This value is what allows the component to set the
selected row as the current object on the iterator.

Example 7–6 Table Selection Attributes

<af:table rows="#{bindings.findServiceRequests1.rangeSize}"
 first="#{bindings.findServiceRequests1.rangeStart}"
 var="row"
 selectionState="#{bindings.findServiceRequests1.collectionModel.selectedRow}"
 selectionListener="#{bindings.findServiceRequests1.collectionModel.makeCurrent}"
 id="table2">

7.6.3 What Happens at Runtime
Once the user makes a selection and clicks the associated command button, the
tableSelectOne component updates the RowKeySet obtained by calling the
getSelectionState() method on the table. Since the selection state evaluates to
the selected row on the collection model, that row is marked as selected. This selection
is done prior to calling the ActionListener associated with the command button.

For a tableSelectOne component, because the current row is selected before the
ActionListener is invoked, you can bind the ActionListener on the command
button to a method on a managed bean that provides the corresponding processing on
the data in the row. Or you can simply add the logic to the declarative method. For
more information, see Section 10.5, "Overriding Declarative Methods".

The tableSelectOne component triggers a SelectionEvent event when the
selection state of the table is changed. The SelectionEvent reports which rows were
selected and deselected. Because the SelectionListener attribute is bound to the
makeCurrent method on the collection model, this method is invoked when the
event occurs, and sets the iterator to the new current row.

Enabling Row Selection in a Table

7-18 Oracle Application Development Framework Developer’s Guide

7.6.4 How to Use the TableSelectMany Component in the Selection Facet
When you add the tableSelectMany component to a table that uses an ADF table
binding, you must also add code that sets each selected row in turn to the current
object so that the operation can be performed against that object.

To use the tableSelectMany component in an ADF application:
1. Create the table as shown in Section 7.2.1, "How to Create a Basic Table" but do not

select Enable selection.

2. In the Structure window, expand the Table facets folder, right-click the selection
facet folder, and choose Insert inside selection > TableSelectMany.

3. In the Structure window, select the af:table node and in the Property Inspector,
delete the values for the SelectionState and SelectionListener attributes, if
necessary. Doing so will keep the component from setting one of the selected rows
to the current object, as you need this logic to be handled through the code you
create.

4. From the Data Control Palette, drag the method that will operate on the selected
object on top of the af:tableSelectMany node. From the ensuing context menu,
choose Methods > Command Button. Doing so drops the method as a command
button. You now need to set the parameter value (if needed) for the method. For
those procedures, see Section 10.3.1, "How to Create a Command Component
Bound to a Service Method".

For example, if you were working in the SRDemo application and wanted the user
to be able to delete the selected rows, you would drag the
removeEntity(Object) method onto the af:tableSelectMany node.

You must now add logic to the method that allows the method to operate against a
set of rows, making each row current in turn. To add the logic, you need to
override the declarative method created when dropping the command button. For
those procedures, see Section 10.5, "Overriding Declarative Methods".

This code allows you to override the removeEntity(Object) method and add
the needed logic.

5. Add logic to the declarative method that does the following:

■ Accesses the table component

■ Obtains a list of all selected rows

■ Gets the objects in turn and performs the original method on each. To do this,
the logic must loop through the list of selected rows as follows:

– Get a row in the loop

– Get the key for the row

– Set it as the current object in the ADF binding

– Delete the object by calling the declarative method

Once that is done, logic should be added that refreshes the iterator, so that it
displays the correct set of objects. For a code example, see Example 7–10.

Enabling Row Selection in a Table

Adding Tables 7-19

7.6.5 What Happens When You Use the TableSelectMany Component
When you insert the tableSelectMany component into a table, and then add a
command button bound to a service method, JDeveloper does the following:

■ Adds the tableSelectMany and commandButton components to the
selection facet on the table component

■ Creates a method binding for the bound method in the page definition file,
including a NamedData element to hold the value of the parameter needed for the
method (if any), determined when you dropped the method as a button

You then need to override the method and add logic that accesses each selected row in
the table and executes the method on that current row.

For example, say you create a table that shows all products using the
findAllProduct() method. You then add a tableSelectMany component so that
a user can select the products to delete using the removeEntity(Object) method.
Example 7–7 shows the code on the JSF page.

Example 7–7 JSF Code for a Table That Uses the tableSelectManyComponent

<af:table value="#{bindings.findAllProducts1.collectionModel}"
 var="row" rows="#{bindings.findAllProducts1.rangeSize}"
 first="#{bindings.findAllProducts1.rangeStart}"
 id="table1">
 <af:column>
 ...
 </af:column>
 <f:facet name="selection">
 <af:tableSelectMany text="Select items and ..."
 id="tableSelectMany1">
 <af:commandButton text="removeEntity"
 disabled="#{!bindings.removeEntity.enabled}"
 id="commandButton1"
 action="#{backing_MultiDelete.commandButton1_action}"/>
 </af:tableSelectMany>
 </f:facet>
</af:table>

JDeveloper adds code to the page definition that binds the parameter value for the
object in the removeEntity(Object) method to the current row of the table, as
shown in Example 7–8.

Example 7–8 Method Action Binding for a Method whose Parameter is the Current Row
in a Table Binding

<methodAction id="removeEntity" InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" MethodName="removeEntity"
 RequiresUpdateModel="true" Action="999">
 <NamedData NDName="entity"
 NDValue="${bindings.findAllProducts1.currentRow.dataProvider}"
 NDType="java.lang.Object"/>
</methodAction>
<table id="findAllProducts1" IterBinding="findAllProductsIter">
 <AttrNames>
 ...
 </AttrNames>
</table>

Enabling Row Selection in a Table

7-20 Oracle Application Development Framework Developer’s Guide

To add logic to a declarative method, you double-click the button in the visual editor,
and JDeveloper adds code to the associated backing bean that can access the method
logic.

For example, if you drop the removeEntity(Object) method from the SRDemo
application into the facet, and then double-click the removeEntity button in the visual
editor, JDeveloper adds the code shown in Example 7–9 to the associated backing
bean.

Example 7–9 Backing Bean Code for a Declarative Method

public String commandButton1_action() {
 BindingContainer bindings = getBindings();
 OperationBinding operationBinding =
 bindings.getOperationBinding("removeEntity");
 Object result = operationBinding.execute();
 if (!operationBinding.getErrors().isEmpty())
 return null;
 return null;
}

You then add code that accesses each selected row before the generated code. You use
the generated code to execute the method on the object for that row. You then add code
after the generated code to reexecute the query and refresh the page.

For example, say you want to allow users to delete rows of products by selecting the
products and then deleting them using a command button bound to the
removeEntity(Object) method. You would add the declarative code to a backing
bean by double-clicking the button. You would then add code shown in bold in
Example 7–10 to delete the objects. Code not in bold font is the code generated by
JDeveloper, as shown in Example 7–9.

Example 7–10 Complete Backing Bean Code to Allow tableSelectMany

public String commandButton1_action() {

 //Access the tableSelectMany1 table. Note that the table name
 //is taken from the id of the table in the JSF page.
 CoreTable table = this.getTable1();

 //Obtain a list of all selected rows from the table
 Set rowSet = table.getSelectionState().getKeySet();
 Iterator rowSetIter = rowSet.iterator();

 //Use the declarative method to get the ADF bindings
 BindingContainer bindings = getBindings();

 //Get the object to delete. To do this, you must get the
 //iterator binding for the Products in the page definition file,
 //and cast it to DCIteratorBinding for further processing
 DCIteratorBinding pr_dcib = (DCIteratorBinding)
 bindings.get ("findAllProductsIter");

 //Loop through the set of selected row numbers and delete the
 //equivalent object from the Products collection.
 while (rowSetIter.hasNext()){
 //get the table row
 Key key = (Key) rowSetIter.next();

Enabling Row Selection in a Table

Adding Tables 7-21

 //set the current row in the ADF binding to the same row
 pr_dcib.setCurrentRowWithKey(key.toStringFormat(true));

 //Obtain the Products object to delete
 RowImpl prRow = (RowImpl) pr_dcib.getCurrentRow();

 //Delete the object by first accessing the data and then
 //using the generated code to execute the declarative method
 Products prObjectToDelete = (Products) prRow.getDataProvider();
 OperationBinding operationBinding =
 bindings.getOperationBinding("removeEntity");

 //You don't need to set the parameter, as this was done
 //declaritively when you dropped the button on the page
 Object result = operationBinding.execute();
 if (!operationBinding.getErrors().isEmpty())
 return null;
 }

//Re-execute the query to refresh the screen
OperationBinding requery = bindings.getOperationBinding("findAllProducts");
requery.execute();

//Stay on the same page, so no returned outcome needed
return];

}

7.6.6 What Happens at Runtime
When the user selects multiple rows and then clicks the command button, the
application accesses the table to determine each of the selected rows, and creates a
rowset for those rows. The application then accesses the binding container, and from
that container, accesses the iterator used to manage the complete collection and casts it
to a generic iterator binding that can manage the rowset of selected rows.

That iterator then goes through each row, and for each row:

■ Sets a key

■ Uses that key to set the row to the current row in the iterator, using the
setCurrentRowWithKey operation, as described in Table 6–1, " Built-in
Navigation Operations"

■ Uses the current row to create the object against which the method will be
executed

■ Accesses the associated data for the object

■ Executes the method

Once that is complete, and there are no more rows in the rowset, the application
accesses the iterator in the binding container and reexecutes the query to refresh the
set of rows displayed in the table.

Setting the Current Object Using a Command Component

7-22 Oracle Application Development Framework Developer’s Guide

7.7 Setting the Current Object Using a Command Component
There may be cases where you need to programmatically set the current row for an
object on an iterator. For example, the SRList page in the SRDemo application uses
command links in the second column, as shown in Figure 7–8, which the user can click
to directly edit a service request, without needing to first select the row.

Figure 7–8 Command Links Used in a Table on the SRList Page

While using command links saves a step for the user, command links do not offer the
same functionality as the selection facet, in that they can neither determine nor set
the current row on the iterator. Therefore, you must manually set the current row.

7.7.1 How to Manually Set the Current Row
You use the setCurrentRowWithKey or setCurrentRowWithKeyValue built-in
operations to set the current row. These operations are built-in methods on any iterator
for a collection. The setCurrentRowWithKey operation allows you to set the current
row given "stringified" key. The setCurrentRowWithKeyValue operation allows
you to set the current row given the a primary key’s value. For more information
about the current row operations, see Section 10.5.6, "Understanding the Difference
Between setCurrentRowWithKey and setCurrentRowWithKeyValue".

While you can drop these operations as any type of command component, the
commandLink component is most usually used in this situation. The following
procedure explains how to use this component with the setCurrentRowWithKey
and setCurrentRowWithKeyValue operations.

To set the current row:
1. From the Data Control Palette, drag the setCurrentRowWithKey or

setCurrentRowWithKeyValue operation.

2. From the context menu, choose Operations > ADF Command Link.

3. In the Action Binding Editor, you need to set the value for the rowKey parameter.
By default, it is set to ${bindings.setCurrentRowWithKey_rowKey}. The
actual value should be something that can be used to determine the current row.

For example, the command link in Figure 7–8 needs to set the current row to the
same row as the link being clicked. To access the "stringified" key of the row for
the setCurrentRowWithKey operation, you can use the rowKeyStr property
on the binding, or #{row.rowKeyStr}.

Setting the Current Object Using a Command Component

Adding Tables 7-23

Alternatively, if you use the setCurrentRowWithKeyValue operation, you
might set the rowKey to the value of the current row, or #{row.svrId}

For more information about the variable used to set the current row on a table (in
this case, row), see Section 7.2.2.2, "Code on the JSF Page for an ADF Faces Table".

7.7.2 What Happens When You Set the Current Row
When you use the setCurrentRowWithKey operation as a command component,
JDeveloper creates an action binding for that operation. Because this operation takes a
parameter (rowKey) to determine the current row, it has a NamedData element used
to set that value (for more information about parameters and the NamedData element,
see Section 10.3, "Creating Command Components to Execute Methods").

Example 7–11 shows the code on the page definition file created when you drop the
setCurrentRowWithKey operation and set #{row.svrId} as the value for the
rowKey parameter.

Example 7–11 Page Definition Code for the setCurrentRowWithKey Operation

<action id="setCurrentRowWithKey" IterBinding="findServiceRequestsIter"
 InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" RequiresUpdateModel="false"
 Action="96">
 <NamedData NDName="rowKey" NDValue="${row.rowKeyStr}"
 NDType="java.lang.String"/>
</action>

7.7.3 What Happens At Runtime
When a user clicks the command link, the setCurrentRowWithKey operation is
executed on the iterator, using the rowKey parameter to determine the current row. As
with the tableSelectOne component, if you use the same iterator to display the
current record, the correct data will display.

Tip: For functionality similar to that in the SRDemo application, you
may need your command link to pass a parameter value that
represents the current row. This value might be used by the method
used to create the ensuing form. For more information and
procedures, see Section 10.4, "Setting Parameter Values Using a
Command Component".

Setting the Current Object Using a Command Component

7-24 Oracle Application Development Framework Developer’s Guide

Displaying Master-Detail Data 8-1

8
Displaying Master-Detail Data

This chapter describes how to create various types of pages that display master-detail
related data.

This chapter includes the following sections:

■ Section 8.1, "Introduction to Displaying Master-Detail Data"

■ Section 8.2, "Identifying Master-Detail Objects on the Data Control Palette"

■ Section 8.3, "Using Tables and Forms to Display Master-Detail Objects"

■ Section 8.4, "Using Trees to Display Master-Detail Objects"

■ Section 8.5, "Using Tree Tables to Display Master-Detail Objects"

■ Section 8.6, "Using an Inline Table to Display Detail Data in a Master Table"

For information about using a selection list to populate a collection with a key value
from a related master or detail collection, see Section 11.7, "Creating Databound
Dropdown Lists".

8.1 Introduction to Displaying Master-Detail Data
In ADF, a master-detail relationship refers to two data objects in the data control
hierarchy that are logically related in such a way that an instance of one object
automatically contains a related instance of the other object. For example, in the
SRDemo application, when a data control method returns a collection of service
requests, each service-request object contains a list of related service-history objects.
The service-history objects are returned by an accessor that is a child of the parent
method in the data control hierarchy. Usually, a master-detail relationship in the data
control is established by one or more unique attributes that both objects share or by an
object hierarchy. For example, in the SRDemo application the serviceRequest
collection and the serviceHistoryCollection have a master-detail relationship,
because both collections contain the svrId attribute (the service request number). You
can also have master-detail relationships between collections and single objects. For
example, each object in a collection of service requests could contain a single user
object to which that service request is assigned.

When objects have a master-detail relationship, you can declaratively create pages that
display the data from both objects simultaneously. For example, the SRDemo
application has a page that displays a service request in a form at the top of the page
and its related service history in a table at the bottom of the page.

Tip: In TopLink and traditional relational databases master-detail
relationships are called foreign-key relationships.

Identifying Master-Detail Objects on the Data Control Palette

8-2 Oracle Application Development Framework Developer’s Guide

This is possible because the service request and service history objects have a
master-detail relationship. In this example, the service request is the master object and
the service history is the detail object. The ADF iterators automatically manage the
synchronization of the detail data objects displayed for a selected master data object.

Read this chapter to understand:

■ Master-detail relationships in ADF

■ How to identify master-detail objects on the Data Control Palette

■ How to display master-detail objects in tables, forms, trees, tree tables, and inline
tables

■ How to display master-detail objects on different pages that are connected by a
navigation component

■ How ADF iterators manage the concurrency of master and detail objects

■ The binding objects created when you use the Data Control Palette to create a
master-detail UI component

8.2 Identifying Master-Detail Objects on the Data Control Palette
JDeveloper enables you to declaratively create master-detail pages using the Data
Control Palette. The Data Control Palette displays master-detail related objects in a
hierarchy, where the detail object is displayed as an accessor return under the master
object. In the data control, accessor returns are always detail objects in a master-detail
relationship.

Figure 8–1 shows the Data Control Palette for the SRDemo application. Because the
serviceHistory and ServiceRequest objects have a master-detail relationship,
the accessor return serviceHistoryCollection appears under the
ServiceRequest method return. In this case, the accessor return is a collection of
service history objects related to a service request object. Method returns are always
collections, but accessor returns can be either collections or single objects.

Tip: By default, when data controls are created from TopLink POJOs
(or session beans over POJOs), the names of accessor returns that are
collections end in Collection. For example,
serviceHistoryCollection.

Identifying Master-Detail Objects on the Data Control Palette

Displaying Master-Detail Data 8-3

Figure 8–1 Master-Detail Objects on the Data Control Palette

When creating a page that displays master-detail objects, be sure to correctly identify
which object is the master and which is the detail for your particular purposes.
Otherwise, you may not display the desired data on the page.

For example, if you want to display a user and all the related expertise areas to which
the user is assigned, then User would be the master object. However, if you wanted to
display an expertise area and all the users is assigned to it, then expertiseArea
would be the master object. The detail objects displayed on a page depend on which
object is the master.

For more information about the icons displayed on the Data Control Palette, see
Section 5.2.1, "How to Understand the Items on the Data Control Palette".

Tip: The master-detail hierarchy displayed in the Data Control
Palette does not reflect the cardinality of the relationship (for example,
one-to-many, one-to-one, many-to-many). The hierarchy simply shows
which collection (the master) is being use to retrieve one or more
objects from another collection (the detail).

Tip: In the Data Control Palette, the attributes shared by both the
master and detail objects appear under only one of the objects, not
both. For example, in the SRDemo application Data Control Palette,
the srvId attribute appears under the ServiceRequest master
node, but not the serviceHistoryCollection detail node.

Also, in some cases, the master collection appears as an accessor
return under a detail collection. For example, in Figure 8–1,
ServiceRequest, which is a master collection, appears as an
accessor return under the serviceHistoryCollection node,
which is a detail collection. In this case, the common attribute shared
by these collections creates a recursive relationship in the data control.
In most cases, you would never use the accessor return that appears as
a result of such a recursion to create a UI component.

Using Tables and Forms to Display Master-Detail Objects

8-4 Oracle Application Development Framework Developer’s Guide

8.3 Using Tables and Forms to Display Master-Detail Objects
JDeveloper enables you to create a master-detail browse page in a single declarative
action using the Data Control Palette—you do not need to write any extra code, even
the navigation is included. The Data Control Palette provides pre-built master-detail
widgets that display both the master and detail objects on the same page as any
combination of read-only tables and forms. All you have to do is drop the detail
collection on the page and choose the type of widget you want to use.

The pre-built master-detail widgets available from the Data Control Palette include
range navigation that enables the user to scroll through the data objects in collections.
The the table provided by the pre-built master-detail widgets includes a selection facet
and Submit command button. By default, all attributes of the master and detail objects
are included in the master-detail widgets as text fields (in forms) or columns (in
tables). You can delete unwanted attributes by removing the text field or column from
the page.

When you add master-detail components to a page, the iterator bindings are
responsible for exposing data to the components on the page. The iterator bindings
bind to the underlying rowset iterators. The rowset iterator for the detail object is
responsible for exposing the correct detail data when a specific master object is
displayed or selected on the page.

Figure 8–2 shows an example of a pre-built master-detail widget, which display a
service request in a form at the top of the page and all the related service history in a
table at the bottom of the page. When the user scrolls through the master data, the
page automatically displays the related detail data.

Figure 8–2 Pre-Built Data Control Palette Master-Detail Widget

Tip: If you do not want to use the pre-built master-detail widgets,
you can drag and drop the master and detail objects individually as
tables and forms on a single page or on separate pages. For more
information about creating individual forms and tables, see Chapter 6,
"Creating a Basic Page" or Chapter 7, "Adding Tables".

Using Tables and Forms to Display Master-Detail Objects

Displaying Master-Detail Data 8-5

8.3.1 How to Display Master-Detail Objects in Tables and Forms
The Data Control Palette enables you to create both the master and detail widgets on
one page with a single declarative action using pre-built master-detail forms and
tables. For information about displaying master and detail data on separate pages, see
Section 8.3.4, "What You May Need to Know About Master-Detail on Separate Pages".

To create a master-detail page using the pre-built ADF master-detail forms and
tables:
1. From the Data Control Palette, locate the detail object, as was previously described

in Section 8.2, "Identifying Master-Detail Objects on the Data Control Palette".

2. Drag and drop the detail object onto the JSF page.

3. In the context menu, choose one of the following Master-Details widgets:

■ ADF Master Table, Detail Form: Displays the master objects in a table and the
detail objects in a read-only form under the table.

When a specific data object is selected in the master table, the first related
detail data object is displayed in the form below it. The user must use the form
navigation to scroll through each subsequent detail data objects.

■ ADF Master Form, Detail Table: Displays the master objects in a read-only
form and the detail objects in a read-only table under the form.

When a specific master data object is displayed in the form, the related detail
data objects are displayed in a table below it.

This widget is available only when both the master and detail objects are
collections.

■ ADF Master Form, Detail Form: Displays the master and detail objects in
separate forms.

When a specific master data object is displayed in the top form, the first
related detail data object is displayed in the form below it. The user must use
the form navigation to scroll through each subsequent detail data object.

■ ADF Master Table, Detail Table: Displays the master and detail objects in
separate tables.

When a specific master data object is selected in the top table, the first set of
related detail data objects are displayed in the table below it.

This widget is available only when both the master and detail objects are
collections.

If you want to modify the default forms or tables, see Chapter 6, "Creating a Basic
Page" or Chapter 7, "Adding Tables".

Note: If an object is not a collection, but rather just a single data item,
JDeveloper automatically excludes the range navigation from the
default widget.

Also, accessor returns can be collections or single objects. Single
objects can be displayed only in forms. Consequently, the
master-detail widgets available from the Data Control Palette context
menu differ depending on whether the accessor return is a collection
or a single object.

Using Tables and Forms to Display Master-Detail Objects

8-6 Oracle Application Development Framework Developer’s Guide

8.3.2 What Happens When You Create Master-Detail Tables and Forms
When you drag and drop from the Data Control Palette, JDeveloper does many things
for you, including adding code to the JSF page and corresponding entries in the page
definition file. For a full description of what happens and what is created when you
use the Data Control Palette, see Section 5.2.3, "What Happens When You Use the Data
Control Palette".

8.3.2.1 Code Generated in the JSF Page
The JSF code generated for a pre-built master-detail widget is basically the same as the
JSF code generated when you use the Data Control Palette to create a basic read-only
table or form. For more information, see Chapter 6, "Creating a Basic Page" and
Chapter 7, "Adding Tables". If you are building your own master-detail widgets, you
might want to consider including similar components that are automatically included
in the pre-built master-detail tables and forms.

The tables and forms in the pre-built master-detail widgets include a panelHeader
tag that contains the fully qualified name of the data object populating the form or
table. You can change this label as needed using a string or an EL expression that binds
to a resource bundle.

If there is more than one data object in a collection, a form in a pre-built master-detail
widget includes four commandButton tags for range navigation: First, Previous,
Next, and Last. These range navigation buttons enable the user to scroll through the
data objects in the collection. The actionListener of each button is bound to a data
control operation, which performs the navigation. The execute property used in the
actionListener binding, invokes the operation when the button is clicked. (If the
form displays a single data object, JDeveloper would automatically omit the range
navigation components.) For more information about range navigation, see Section 6.4,
"Incorporating Range Navigation into Forms".

By default, tables in a pre-built master-detail widget include a tableSelectOne
selection facet and a Submit button that enables the user to select a specific object in
the collection. The default button is not automatically bound to a method or operation.
So to get the selection facet to work, you would need to add an action binding to the
button. For example, you could bind the button to a method that enables the user to
edit the selected data object, as was done in the SRMain page of the SRDemo
application. For more information about selection facets, see Section 10.3, "Creating
Command Components to Execute Methods".

Tip: If you drop an ADF Master Table, Detail Form or ADF Master
Table, Detail Table widget on the page, the parent tag of the detail
component (for example, panelForm tag or table tag) automatically
has the partialTriggers attribute set to the id of the master
component. At runtime, the partialTriggers attribute causes only
the detail component to be re-rendered when the user makes a
selection in the master component, which is called partial rendering.
When the master component is a table, ADF uses partial rendering,
because the table does not need to be re-rendered when the user
simply makes a selection in the facet: only the detail component needs
to be re-rendered to display the new data. For more information about
partial rendering, see Section 11.4, "Enabling Partial Page Rendering".

Using Tables and Forms to Display Master-Detail Objects

Displaying Master-Detail Data 8-7

8.3.2.2 Binding Objects Defined in the Page Definition File
Example 8–1 shows the page definition file created for a master-detail page that was
created by dropping the serviceHistoryCollection accessor return, which is a
detail collection under the ServiceRequest method return, on the page as an ADF
Master Form, Detail Table.

The executables element defines a method iterator for the service requests (which is
the master object) and an accessor iterator for the service history (which is the detail
object). The accessor iterator contains a MasterBinding attribute, which references
the method iterator for the master object. This reference to the master iterator enables
the detail iterator to expose the correct detail data for the current master object (for
more information, see Section 8.3.3, "What Happens at Runtime").

The bindings element defines a methodAction object, which invokes the method
iterator for the master collection, and the value bindings for the form and the table.
The attribute bindings that populate the text fields in the form are defined in the
attributeValues elements. The id attribute of the attributeValues element
contains the name of each data attribute, and the IterBinding attribute references an
iterator binding to display data from the master object in the text fields.

The attribute bindings that populate the text fields in the form are defined in the
attributeValues elements. The id attribute of the attributeValues element
contains the name of each data attribute, and the IterBinding attribute references an
iterator binding to display data from the master object in the text fields.

The range navigation buttons in the form are bound to the action bindings defined in
the action elements. As in the attribute bindings, the IterBinding attribute of the
action binding references the iterator binding for the master object.

The table, which displays the detail data, is bound to the table binding object defined
in the table element. The IterBinding attribute references the iterator binding for
the detail object.

For more information about the elements and attributes of the page definition file, see
Section A.7, "<pageName>PageDef.xml".

Example 8–1 Binding Objects Defined in the Page Definition for a Master-Detail Page

<executables>
 <methodIterator id="findAllServiceRequestIter"
 Binds="findAllServiceRequest.result"
 DataControl="SRPublicFacade" RangeSize="10"
 BeanClass="oracle.srdemo.model.ServiceRequest"/>
 <accessorIterator id="serviceHistoryCollectionIterator" RangeSize="10"
 Binds="serviceHistoryCollection"
 DataControl="SRPublicFacade"
 BeanClass="oracle.srdemo.model.ServiceHistory"
 MasterBinding="findAllServiceRequestIter"/>
</executables>
<bindings>
 <methodAction id="findAllServiceRequest"
 InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade"
 MethodName="findAllServiceRequest" RequiresUpdateModel="true"
 Action="999"
 ReturnName="SRPublicFacade.methodResults.SRPublicFacade_

dataProvider_findAllServiceRequest_result"/>
 ...

Using Tables and Forms to Display Master-Detail Objects

8-8 Oracle Application Development Framework Developer’s Guide

 <attributeValues id="assignedDate" IterBinding="findAllServiceRequestIter">
 <AttrNames>
 <Item Value="assignedDate"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="problemDescription"
 IterBinding="findAllServiceRequestIter">
 <AttrNames>
 <Item Value="problemDescription"/>
 </AttrNames>
 </attributeValues>
 <action id="First" RequiresUpdateModel="true" Action="12"
 IterBinding="findAllServiceRequestIter"/>
 <action id="Previous" RequiresUpdateModel="true" Action="11"
 IterBinding="findAllServiceRequestIter"/>
 <action id="Next" RequiresUpdateModel="true" Action="10"
 IterBinding="findAllServiceRequestIter"/>
 <action id="Last" RequiresUpdateModel="true" Action="13"
 IterBinding="findAllServiceRequestIter"/>
 <table id="ServiceRequestserviceHistoryCollection"
 IterBinding="serviceHistoryCollectionIterator">
 <AttrNames>
 <Item Value="lineNo"/>
 <Item Value="nextLineItem"/>
 ...
 </AttrNames>
 </table>
</bindings>

8.3.3 What Happens at Runtime
As was previously mentioned in Section 5.5.2.2, "Binding Objects Defined in the
executables Element", ADF iterators are associated with underlying
RowSetIterator objects, which manage which data objects, or rows, are currently
displayed on a page. At runtime, the rowset iterators manage the data displayed in the
master and detail components.

Both the master and detail rowset iterators listen to rowset navigation events, such as
the user selecting a specific row or clicking the range navigation buttons, and display
the appropriate rows in the UI. In the case of the default master-detail components, the
rowset navigation events are the command buttons on a form (First, Previous, Next,
Last) or the selection facet and Submit button on a table.

The rowset iterator for the detail collection manages the synchronization of the detail
data with the master data. It listens to the row navigation events in both the master
and detail collections. The MasterBinding attribute on the detail iterator definition
in the page definition file tells the detail rowset iterator which master iterator to listen
to. If a rowset navigation event occurs in the master collection, the detail rowset
iterator automatically executes and returns the detail rows related to the current
master row.

8.3.4 What You May Need to Know About Master-Detail on Separate Pages
The default master-detail components display the master-detail data on a single page.
However, using the master and detail objects on the Data Control Palette, you can also
display the collections on separate pages, and still have the binding iterators manage
the synchronization of the master and detail objects.

Using Trees to Display Master-Detail Objects

Displaying Master-Detail Data 8-9

For example, in the SRDemo application the service requests and service history are
displayed on the SRMain page. However, the page could display the service request
only, and instead of showing the service history, it could provide a button called
Details. If the user clicks the Details button, the application would navigate to a new
page that displays all the related service history in a table. A button on the service
history page would enable the user to return to the service request page.

To display master-detail objects on separate pages, create two pages, one for the
master object and one for the detail object, using the individual tables or forms
available from the Data Control Palette. (For information about using the forms or
tables, see Chapter 6, "Creating a Basic Page" or Chapter 7, "Adding Tables".)
Remember that the detail object iterator manages the synchronization of the master
and detail data. So, be sure to drag the appropriate detail object from the Data Control
Palette when you create the page to display the detail data (see Section 8.2,
"Identifying Master-Detail Objects on the Data Control Palette").

To handle the page navigation, add command buttons or links to each page, or use the
default Submit button available when you create a form or table using the Data
Control Palette. Each button must specify a navigation rule outcome value in the
action attribute. In the faces-config.xml file, add a navigation rule from the
master data page to the detail data page, and another rule to return from the detail
data page to the master data page. The from-outcome value in the navigation rules
must match the outcome value specified in the action attribute of the buttons. For
information about adding navigation between pages, see Chapter 9, "Adding Page
Navigation".

8.4 Using Trees to Display Master-Detail Objects
In addition to tables and forms, you can also display master-detail data in hierarchical
trees. The ADF Faces tree component, available from the Data Control Palette, can
display multiple root nodes that are populated by a binding on a master object. Each
root node in the tree may have any number of branches, which are populated by
bindings on detail objects. A tree can have multiple levels of nodes, each representing
a detail object of the parent node. Each node in the tree is indented to show its level in
the hierarchy.

The tree component includes mechanisms for expanding and collapsing the tree
nodes; however, it does not have focusing capability. If you need to use focusing,
consider using the ADF Faces TreeTable component (for more information, see
Section 8.5, "Using Tree Tables to Display Master-Detail Objects"). By default, the icon
for each node in the tree is a folder; however, you can use your own icons for each
level of nodes in the hierarchy.

Figure 8–3 shows an example of a tree from the SRManage page of the SRDemo
application. The tree displays two levels of nodes: staff members and service requests
assigned to them. The root nodes display staff members. The branch nodes display
open or pending service requests assigned to each staff member.

Using Trees to Display Master-Detail Objects

8-10 Oracle Application Development Framework Developer’s Guide

Figure 8–3 Databound ADF Faces Tree

8.4.1 How to Display Master-Detail Objects in Trees
A tree consists of a hierarchy of nodes, where each subnode is a branch off a higher
level node. Each node level in a databound ADF Faces tree is populated by a
different data collection. In JDeveloper, you define a databound tree using the Tree
Binding Editor, which enables you to define the rules for populating each node level in
the tree. There must be one rule for each node level in the hierarchy. Each rule defines
the following node level properties:

■ The data collection that populates that node level

■ The attributes from the data collection that are displayed at that node level

■ An accessor method that returns a detail object to be displayed as a branch of the
current node level

To display master-detail objects in a tree:
1. Drag the master object from the Data Control Palette, and drop it onto the page.

This should be the master data that will represent the root level of the tree.

2. In the context menu, choose Trees > ADF Tree.

JDeveloper displays the Tree Binding Editor, as shown in Figure 8–4.

Note: The root node must be a collection represented by a method
return or accessor return. You cannot use a single-object accessor
return as the root node of a tree.

Using Trees to Display Master-Detail Objects

Displaying Master-Detail Data 8-11

Figure 8–4 Tree Binding Editor, Edit Rule Tab

3. In the Edit Rule page of the Tree Binding Editor, define a rule for each node level
that you want to appear in the tree. To define a rule you must select the following
items:

■ Data Collection Definition: Select the data collection that will populate the
node level you are defining.

The first rule defines the root node level. So, for the first rule, select the same
collection that you dragged from the Data Control Palette to create the tree,
which was a master collection.

To create a branch node, select the appropriate detail collection. For example,
to create a root node of users, you would select the User collection for the first
(root node) rule; to create a branch that displays services requests, you would
select the ServiceRequest collection in the branch rule.

■ Display Attribute: Select one or more attributes to display at each node level.
For example, for a node of users, you might select both the FirstName and
LastName attributes.

■ Branch Rule Accessor: Select the accessor method that returns the detail
collection that you want to appear as a branch under the node level you are
defining. The list displays only the accessor methods that return the detail
collections for the master collection you selected for the rule. If you choose
<none>, the node will not expand to display any detail collections, thus
ending the branch. For example, if you are defining the User node level and
you want to add a branch to the service requests for each user, you would
select the accessor method that returns the service request collection. Then,
you must define a new rule for the serviceRequest node level.

Using Trees to Display Master-Detail Objects

8-12 Oracle Application Development Framework Developer’s Guide

■ Polymorphic Restriction: Optionally, you can define a node-populating rule
for an attribute whose value you want to make a discriminator. The rule will
be polymorphic because you can define as many node-populating rules as
desired for the same attribute, as long as each rule specifies a unique
discriminator value. The tree will display a separate branch for each
polymorphic rule, with the node equal to the discriminator value of the
attribute.

4. Use the Show Rules page of the Tree Binding Editor, shown in Figure 8–5, to:

■ Change the order of the rules

The order of the rules should reflect the hierarchy that you want the tree to
display.

■ Delete rules

The first rule listed in the Show Rules page of the Tree Binding Editor, populates
the root node level of the tree. So, be sure that the first rule populates the logical
root node for the tree, depending on the structure of your data model.

For example, in the sample tree previously shown in Figure 8–3, the first rule
would be the one that populates the user nodes. The order of the remaining rules
should follow the hierarchy of the nodes you want to display in the tree.

Figure 8–5 Tree Binding Editor, Show Rule Tab

Tip: Be sure to click Add New Rule after you define each rule. If you
click OK instead, the last rule you defined will not be saved. When
you click Add New Rule, JDeveloper displays the Show Rules tab of
the Tree Binding Editor, where you can verify the rules you have
created.

Note: You cannot change the icon displayed in an ADF Faces or JSF
tree component.

Using Trees to Display Master-Detail Objects

Displaying Master-Detail Data 8-13

8.4.2 What Happens When You Create ADF Databound Trees
When you drag and drop from the Data Control Palette, JDeveloper does many things
for you. For a full description of what happens and what is created when you use the
Data Control Palette, see Section 5.2.3, "What Happens When You Use the Data
Control Palette".

When you create a databound tree using the Data Control Palette, JDeveloper adds
binding objects to the page definition file, and it also adds the tree tag to the JSF Page.
The resulting UI component is fully functional and does not require any further
modification.

8.4.2.1 Code Generated in the JSF Page
Example 8–2 shows the code generated in a JSF page when you use the Data Control
Palette to create a tree. This sample tree displays two levels of nodes: users and service
requests. The User collection is the root node and is returned by the findAllStaff
method.

Example 8–2 Code Generated in the JSF Page for a Databound Tree

<h:form>
 <af:tree value="#{bindings.findAllStaff1.treeModel}" var="node">
 <f:facet name="nodeStamp">
 <af:outputText value="#{node}"/>
 </f:facet>
 </af:tree>
</h:form>

By default, the af:tree tag is created inside a form. The value attribute of the tree
tag contains an EL expression that binds the tree component to the findAllStaff1
tree binding object in the page definition file. The treeModel property refers to an
ADF class that defines how the tree hierarchy is displayed, based on the underlying
data model. The var attribute provides access to the current node.

In the f:facet tag, the nodeStamp facet is used to display the data for each node.
Instead of having a component for each node, the tree repeatedly renders the
nodeStamp facet, similar to the way rows are rendered for the ADF Faces table
component.

The ADF Faces tree component uses an instance of the
oracle.adf.view.faces.model.PathSet class to display expanded nodes. This
instance is stored as the treeState attribute on the component. You may use this
instance to programmatically control the expanded or collapsed state of an element in
the hierarchy. Any element contained by the PathSet instance is deemed expanded.
All other elements are collapsed.

8.4.2.2 Binding Objects Defined in the Page Definition File
Example 8–3 shows the binding objects defined in the page definition file for the ADF
databound tree.

Using Trees to Display Master-Detail Objects

8-14 Oracle Application Development Framework Developer’s Guide

Example 8–3 Binding Objects Defined the Page Definition File for a Databound Tree

<executables>
 <methodIterator id="findAllStaffIter" Binds="findAllStaff.result"
 DataControl="SRPublicFacade" RangeSize="10"
 BeanClass="oracle.srdemo.model.entities.User"/>
</executables>
<bindings>
 <methodAction id="findAllStaff" InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" MethodName="findAllStaff"
 RequiresUpdateModel="true" Action="999"
 ReturnName="SRPublicFacade.methodResults.

SRPublicFacade_dataProvider_findAllStaff_result"/>
 <tree id="findAllStaff1" IterBinding="findAllStaffIter">
 <AttrNames>
 <Item Value="city"/>
 <Item Value="countryId"/>
 <Item Value="email"/>
 <Item Value="firstName"/>
 <Item Value="lastName"/>
 <Item Value="postalCode"/>
 <Item Value="stateProvince"/>
 <Item Value="streetAddress"/>
 <Item Value="userId"/>
 <Item Value="userRole"/>
 </AttrNames>
 <nodeDefinition DefName="oracle.srdemo.model.entities.User" id="UserNode">
 <AttrNames>
 <Item Value="firstName"/>
 <Item Value="lastName"/>
 </AttrNames>
 <Accessors>
 <Item Value="assignedToCollection"/>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition DefName="oracle.srdemo.model.entities.ServiceRequest"
 id="ServiceRequestNode">
 <AttrNames>
 <Item Value="problemDescription"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

The page definition file contains the rule information defined in the Tree Binding
Editor. In the executables element, notice that although the tree displays two levels
of nodes, only one iterator binding object is needed. This iterator iterates over the
master collection, which populates the root nodes of the tree. The accessor you
specified in the node rules return the detail data for each branch node.

In the example, the iterator happens to be a method iterator because a method return
was dragged from the Data Control Palette and dropped on the page as an ADF tree. If
an accessor return had been dragged from the Data Control Palette, this would be an
accessor iterator instead of a method iterator. Because a method iterator is used in this
example, a corresponding methodAction is defined in the bindings element. The
methodAction encapsulates the details about how to invoke the method, which
returns the data collection.

Using Tree Tables to Display Master-Detail Objects

Displaying Master-Detail Data 8-15

The tree element is the value binding for all the attributes displayed in the tree. The
iterBinding attribute of the tree element references the iterator binding that
populates the data in the tree. The AttrNames element within the tree element
defines binding objects for all the attributes in the master collection. However, the
attributes that you select to appear in the tree are defined in the AttrNames elements
within the nodeDefinition elements.

The nodeDefinition elements define the rules for populating the nodes of the tree.
There is one nodeDefinition element for each node, and each one contains the
following attributes and subelements:

■ DefName: An attribute that contains the fully qualified name of the data collection
that will be used to populate the node.

■ id: An attribute that defines the name of the node.

■ AttrNames: A subelement that defines the attributes that will be displayed in the
node at runtime.

■ Accessors: A subelement that defines the accessor method that returns the next
branch of the tree.

The order of the nodeDefintion elements within the page definition file defines the
order or level of the nodes in the tree, were the first nodeDefinition element
defines the root node. Each subsequent nodeDefinition element defines a sub-node
of the one before it.

For more information about the elements and attributes of the page definition file, see
Section A.7, "<pageName>PageDef.xml".

8.4.3 What Happens at Runtime
Tree components use oracle.adf.view.faces.model.TreeModel to access data.
This class extends CollectionModel, which is used by the ADF Faces table
component to access data. For more information about the TreeModel class, refer to
the ADF Faces Javadoc.

When a page with a tree is displayed, the iterator binding on the tree populates the
root nodes. When a user collapses or expands a node to display or hide its branches, a
DisclosureEvent event is sent. The isExpanded method on this event determines
whether the user is expanding or collapsing the node. The DisclosureEvent event
has an associated listener.

The DisclosureListener attribute on the tree is bound to the accessor method
specified in the node rule defined in the page definition file. This accessor method is
invoked in response to the DisclosureEvent event; in other words, whenever a user
expands the node the accessor method populates the branch nodes.

8.5 Using Tree Tables to Display Master-Detail Objects
Use the ADF Faces treeTable component to display a hierarchy of master-detail
collections in a table. The advantage of using a treeTable component rather than a
tree component is that the treeTable component provides a mechanism that
enables users to focus the view on a particular node in the tree.

Figure 8–6 shows an example of a tree table that displays three levels of nodes: users,
service requests, and service history. Each root node represents an individual user. The
branches off the root nodes display the service requests associated with that user. Each
service request node branches to display the service history for each service request.

Using Tree Tables to Display Master-Detail Objects

8-16 Oracle Application Development Framework Developer’s Guide

Figure 8–6 Databound ADF Faces Tree Table

A databound ADF Faces treeTable displays one root node at a time, but provides
navigation for scrolling through the different root nodes. Each root node can display
any number of branch nodes. Every node is displayed in a separate row of the table,
and each row provides a focusing mechanism in the leftmost column.

The ADF Faces treeTable component includes the following built-in functionality:

■ Range navigation: The user can click the Previous and Next navigation buttons to
scroll through the root nodes.

■ List navigation: The list navigation, which is located between the Previous and
Next buttons, enables the user to navigate to a specific root node in the data
collection using a selection list.

■ Node expanding and collapsing mechanism: The user can open or close each node
individually or use the Expand All or Collapse All command links. By default,
the icon for opening closing the individual nodes is an arrowhead with a plus or
minus sign. You can also use a custom icon of your choosing.

■ Focusing mechanism: When the user clicks on the focusing icon (which is
displayed in the leftmost column) next to a node, the page is redisplayed showing
only that node and its branches. A navigation link is provided to enable the user to
return to the parent node.

8.5.1 How to Display Master-Detail Objects in Tree Tables
The steps for creating an ADF Faces databound tree table are exactly the same as those
for creating an ADF Faces databound tree, except that you drop the data collection as
an ADF Tree Table instead of an ADF Tree. For more information, see Section 8.4.1,
"How to Display Master-Detail Objects in Trees".

8.5.2 What Happens When You Create a Databound Tree Table
When you drag and drop from the Data Control Palette, JDeveloper does many things
for you. For a full description of what happens and what is created when you use the
Data Control Palette, see Section 5.2.3, "What Happens When You Use the Data
Control Palette".

When you create a databound tree table using the Data Control Palette, JDeveloper
adds binding objects to the page definition file, and it also adds the treeTable tag to
the JSF Page. The resulting UI component is fully functional and does not require any
further modification.

Using Tree Tables to Display Master-Detail Objects

Displaying Master-Detail Data 8-17

8.5.2.1 Code Generated in the JSF Page
Example 8–4 shows the code generated in a JSF page when you use the Data Control
Palette to create a tree table. This sample tree table displays three levels of nodes:
users, service requests, and service history.

By default, the treeTable tag is created inside a form. The value attribute of the tree
table tag contains an EL expression that binds the tree component to the binding object
that will populate it with data, which in the example is the findAllStaff1 tree
binding object. The treeModel property refers to an ADF class that defines how the
tree hierarchy is displayed, based on the underlying data model. The var attribute
provides access to the current node.

Example 8–4 Code Generated in the JSF Page for a Databound ADF Faces Tree Table

<h:form>
 <af:treeTable value="#{bindings.findAllStaff1.treeModel}" var="node">
 <f:facet name="nodeStamp">
 <af:column>
 <af:outputText value="#{node}"/>
 </af:column>
 </f:facet>
 <f:facet name="pathStamp">
 <af:outputText value="#{node}"/>
 </f:facet>
 </af:treeTable>
</h:form>

In the facet tag, the nodeStamp facet is used to display the data for each node.
Instead of having a component for each node, the tree repeatedly renders the
nodeStamp facet, similar to the way rows are rendered for the ADF Faces table
component. The pathStamp facet renders the column and the path links above the
table that enable the user to return to the parent node after focusing on a detail node.

8.5.2.2 Binding Objects Defined in the Page Definition File
The binding objects created in the page definition file for a tree table are exactly the
same as those created for a tree. For more information about tree binding objects, see
Section 8.4.2.2, "Binding Objects Defined in the Page Definition File".

8.5.3 What Happens at Runtime
Tree components use oracle.adf.view.faces.model.TreeModel to access data.
This class extends CollectionModel, which is used by the ADF Faces table
component to access data. For more information about the TreeModel class, refer to
the ADF Faces Javadoc.

When a page with a tree table is displayed, the iterator binding on the treeTable
component populates the root node and listens for a row navigation event (such as the
user clicking the Next or Previous buttons or selecting a row from the range
navigator). When the user initiates a row navigation event, the iterator displays the
appropriate row.

If the user changes the view focus (by clicking on the component’s focus icon), the
treeTable component generates a focus event (FocusEvent). The node to which
the user wants to change focus is made the current node before the event is delivered.
The treeTable component then modifies the focusPath property accordingly. You
can bind the FocusListener attribute on the tree to a method on a managed bean.
This method will then be invoked in response to the focus event.

Using an Inline Table to Display Detail Data in a Master Table

8-18 Oracle Application Development Framework Developer’s Guide

When a user collapses or expands a node, a disclosure event (DisclosureEvent) is
sent. The isExpanded method on the disclosure event determines whether the user is
expanding or collapsing the node. The disclosure event has an associated listener,
DisclosureListener. The DisclosureListener attribute on the tree table is
bound to the accessor method specified in the node rule defined in the page definition
file. This accessor method is invoked in response to a disclosure event (for example,
the user expands a node) and returns the collection that populates that node.

The treeTable component includes Expand All and Collapse All links. When a user
clicks one of these links, the treeTable sends a DisclosureAllEvent event. The
isExpandAll method on this event determines whether the user is expanding or
collapsing all the nodes. The table then expands or collapses the nodes that are
children of the root node currently in focus. In large trees, the expand all command
will not expand nodes beyond the immediate children. The ADF Faces treeTable
component uses an instance of the oracle.adf.view.faces.model.PathSet
class to determine expanded nodes. This instance is stored as the treeState attribute
on the component. You can use this instance to programmatically control the
expanded or collapsed state of a node in the hierarchy. Any node contained by the
PathSet instance is deemed expanded. All other nodes are collapsed. This class also
supports operations like addAll() and removeAll().

Like the ADF Faces table component, a treeTable component provides for range
navigation. However, instead of using the rows attribute, the treeTable component
uses a rowsByDepth attribute whose value is a space-separated list of non-negative
numbers. Each number defines the range size for a node level on the tree. The first
number is the root node of the tree, and the last number is for the branch nodes. If
there are more branches in the tree than numbers in the rowsByDepth attribute, the
tree uses the last number in the list for the remaining branches. Each number defines
the limit on the number items displayed at one time in each branch. If you want to
display all items in a branch, specify 0 in that position of the list.

For example, if the rowsByDepth attribute is set to 0 0 3, all root nodes will be
displayed, all direct children of the root nodes will be displayed, but only three nodes
will display per branch after that. The treeTable component includes links to
navigate to additional nodes, enabling the user to display the additional nodes.

For more information about the ADF Faces TreeTable component, refer to the
oracle.adf.view.faces.component.core.data.CoreTreeTable class in the
ADF Faces Javadoc.

8.6 Using an Inline Table to Display Detail Data in a Master Table
As you may recall from Section 7.5, "Adding Hidden Capabilities to a Table", you can
use the detailStamp facet in a table to hide or show additional information about a
specific data object displayed in the table. When you add a component to this facet, the
table displays an additional column labeled Details, which displays the additional
information. It includes a toggle mechanism that enables the user to hide or show the
information displayed in the Details column in a manner similar to the mechanism in
an ADF Faces tree or treeTable component. In the case described in Section 7.5,
"Adding Hidden Capabilities to a Table", the additional information was a single
attribute from the same data collection that populates the table.

Using master-detail collections on the Data Control Palette, you can declaratively add
an inline table to the detailStamp facet that displays additional information from a
detail collection. A master collection is used to populate the main table and a detail
collection is used to populate the inline table.

Using an Inline Table to Display Detail Data in a Master Table

Displaying Master-Detail Data 8-19

Figure 8–7 shows how an inline table of service requests can be embedded in a table of
service request staff. If the user clicks the Show link in the Details column, which is
built into the table facet, an inline table of service requests is displayed under the
selected row of the table. The main table is populated by a master collection of users
and displays the user’s first and last name. The inline table is populated by a detail
collection of service requests and displays the service request problem description and
status.

Figure 8–7 Inline Table Displaying Information from a Detail Collection

8.6.1 How to Display Detail Data Using an Inline Table
Using the Data Control Palette, you can create both the main table and the inline table
in a single declarative action. Since an inline table is similar to a tree table, you use the
Tree Binding Editor to define the rules that populate the main table and the inline
detail table. There must be one rule for the main table and one rule for the inline detail
table. Each rule defines the following properties:

■ The data collection that populates the table

■ The attributes from the data collection that are displayed in the table

The rule for the main table must also specify an accessor method that returns the detail
collection that will populate the inline table.

To create a master table with an inline detail table:
1. Drag a master data object from the Data Control Palette, and drop it on the page.

This should be the master object that you want to populate the main table.

2. In the context menu, choose Tables > ADF Master Table, Inline Detail Table.

JDeveloper displays the Tree Binding Editor (previously shown in Figure 8–4).

3. In the Edit Rule page of the Tree Binding Editor, define a rule for populating the
main table and another rule for populating the inline table. To define a rule you
must select the following items:

■ Data Collection Definition: Select the data collection that will populate the
table you are defining. The first rule defines the main table. So, for the first
rule, select the same data collection that you dragged from the Data Control
Palette (the master collection). When defining the rule for the inline table,

Note: You cannot use a single-object accessor return to create a table.

Using an Inline Table to Display Detail Data in a Master Table

8-20 Oracle Application Development Framework Developer’s Guide

select the appropriate detail collection. For example, to create a main table of
users, you would select the User collection for the first rule; to create an inline
table that displays service requests related to a user, you would select the
ServiceRequest collection in the branch rule.

■ Display Attribute: Select one or more attributes to display in the table you are
defining. Each attribute is a column in the table. For example, if the main table
is displaying users, you might select both the firstName and lastName
attributes.

■ Branch Rule Accessor: If you are defining the rule for the main table, select
the accessor method that returns the detail collection that you want to appear
in the inline detail table. The list displays only the accessor methods that
return the detail collections for the master collection you selected for the rule.
If you are defining the rule for the inline table, select <none>, because you
cannot embed a table inside the inline table.

4. Use the Show Rules page of the Tree Binding Editor, shown in Figure 8–5, to:

■ Change the order of the rules

The rule that populates the main table must be first in the list

■ Identify the icons you want displayed for the expand and collapse mechanism

Only the main table uses the icons, so if you want to use an icon other than the
default, specify it in the rule for the main table.

The default open icon is a solid down arrow with a minus sign, while the
default closed icon is a solid right arrow with a plus sign

■ Delete rules

8.6.2 What Happens When You Create an Inline Detail Table
When you drag and drop from the Data Control Palette, JDeveloper does many things
for you. For a full description of what happens and what is created when you use the
Data Control Palette, see Section 5.2.3, "What Happens When You Use the Data
Control Palette".

8.6.2.1 Code Generated in the JSF Page
When you create a master table and an inline detail table using the Data Control
Palette, JDeveloper adds binding objects to the page definition file, and it also adds the
table and facet to the JSF page. The resulting UI components are fully functional and
do not require any further modification.

Example 8–5 shows the code generated in the JSF page. This sample displays users in
the main table and service requests in the inline detail table. The User collection is
returned by the findAllStaff method. The main table is defined the same as any
other ADF databound table. It is bound to the findAllStaff1 binding object in the
page definition file, which is a tree binding object. The columns in the main table
display the user’s first name and last name. The table includes a detailStamp facet
in which the detail table is defined. The detail table is also bound to the

Tip: Be sure to click the Add New Rule button after you define each
rule. If you click the OK button instead, the last rule you defined will
not be saved. When you click Add New Rule, JDeveloper displays the
Show Rules tab of the Tree Binding Editor, where you can verify the
rules you have created.

Using an Inline Table to Display Detail Data in a Master Table

Displaying Master-Detail Data 8-21

findAllStaff1 tree binding object, and the columns are set up to display the data
from the service request collection. As with tree components, the page definition file
defines the accessor method that returns the detail collection.

Example 8–5 JSF Code Created for the Master Table with an Inline Detail Table

<af:table rows="#{bindings.findAllStaff1.rangeSize}"
 emptyText="#{bindings.findAllStaff1.viewable ? \'No rows yet.\' :
 \'Access Denied.\'}"
 var="row" value="#{bindings.findAllStaff1.treeModel}">
 <af:column headerText="#{bindings.findAllStaff1.labels.firstName}"
 sortable="false" sortProperty="firstName">
 <af:outputText value="#{row.firstName}"/>
 </af:column>
 <af:column headerText="#{bindings.findAllStaff1.labels.lastName}"
 sortable="false" sortProperty="lastName">
 <af:outputText value="#{row.lastName}"/>
 </af:column>
 <f:facet name="detailStamp">
 <af:table rows="#{bindings.findAllStaff1.rangeSize}"
 emptyText="No rows yet." var="detailRow"
 value="#{row.children}">
 <af:column headerText="#{row.children[0].labels.problemDescription}"
 sortable="false" sortProperty="problemDescription">
 <af:outputText value="#{detailRow.problemDescription}"/>
 </af:column>
 <af:column headerText="#{row.children[0].labels.status}"
 sortable="false" sortProperty="status">
 <af:outputText value="#{detailRow.status}"/>
 </af:column>
 </af:table>
 </f:facet>
</af:table>

8.6.2.2 Binding Objects Defined in the Page Definition File
Example 8–6 shows the binding objects added to the page definition file for a master
table with an inline detail table. The executables element defines the
findAllStaffIter iterator binding object, which iterates over the User collection
that populates the main table. No iterator is needed for the detail collection, because
the accessor method referenced in the tree binding object returns the detail data that is
related to the currently selected master data.

In the bindings element, the methodAction binding object invokes the method that
returns the User collection. The tree binding object populates the data in the master
and detail tables. The nodeDefintion elements define the attributes that are
displayed in the columns of the master and detail tables. The first nodeDefinition
element defines the data in the master table, and the second one defines the data in the
inline detail table. For more information about tree binding objects, see Section 8.4.2,
"What Happens When You Create ADF Databound Trees".

Using an Inline Table to Display Detail Data in a Master Table

8-22 Oracle Application Development Framework Developer’s Guide

Example 8–6 Binding Objects Added to the Page Definition File for a Master Table with
an Inline Detail Table

<executables>
 <methodIterator id="findAllStaffIter" Binds="findAllStaff.result"
 DataControl="SRPublicFacade" RangeSize="10"
 BeanClass="oracle.srdemo.model.entities.User"/>
</executables>
<bindings>
 <methodAction id="findAllStaff" InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" MethodName="findAllStaff"
 RequiresUpdateModel="true" Action="999"
 ReturnName="SRPublicFacade.methodResults.
 SRPublicFacade_dataProvider_findAllStaff_result"/>
 <tree id="findAllStaff1" IterBinding="findAllStaffIter">
 <AttrNames>
 <Item Value="city"/>
 <Item Value="countryId"/>
 <Item Value="email"/>
 <Item Value="firstName"/>
 <Item Value="lastName"/>
 <Item Value="postalCode"/>
 <Item Value="stateProvince"/>
 <Item Value="streetAddress"/>
 <Item Value="userId"/>
 <Item Value="userRole"/>
 </AttrNames>
 <nodeDefinition DefName="oracle.srdemo.model.entities.User" id="UserNode">
 <AttrNames>
 <Item Value="firstName"/>
 <Item Value="lastName"/>
 </AttrNames>
 <Accessors>
 <Item Value="assignedToCollection"/>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition DefName="oracle.srdemo.model.entities.ServiceRequest"
 id="ServiceRequestNode">
 <AttrNames>
 <Item Value="problemDescription"/>
 <Item Value="status"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

8.6.3 What Happens at Runtime
When the user hides or shows the details of a row (by clicking the Hide or Show
links), the table generates a DisclosureEvent event, which expands or collapses the
inline detail table. The isExpanded method on this event determines whether the
user is showing or hiding the detail table.

The DisclosureEvent event has an associated listener. The DisclosureListener
attribute on the table is implicitly bound to the accessor method specified in the node
rule defined in the page definition file. This accessor method is invoked in response to
a DisclosureEvent event. For example, if the user clicks on the Show link, the
accessor method is invoked to populate the data in the inline table.

Adding Page Navigation 9-1

9
Adding Page Navigation

This chapter describes how to create navigation rules and cases, and how to create
basic navigation components, such as buttons and links, that trigger navigation rules
using outcomes.

This chapter includes the following sections:

■ Section 9.1, "Introduction to Page Navigation"

■ Section 9.2, "Creating Navigation Rules"

■ Section 9.3, "Using Static Navigation"

■ Section 9.4, "Using Dynamic Navigation"

For information about how to create dynamic navigation menus, see Chapter 11,
"Using Complex UI Components".

9.1 Introduction to Page Navigation
Navigation through a JSF application is defined by navigation rules. These rules
determine, based on outcomes specified by UI components, which page is displayed
next when the UI component is clicked.

Defining page navigation for an application is a two-step process:

■ First, you create navigation rules for all the pages in your application.

In most cases, you define one rule for each page in your application. However, you
can also define pattern-based rules that affect groups of pages or global rules that
affect all pages.

■ Next, in each navigation component on the pages, such as a command button or
link, you specify either a static or dynamic outcome value in the action attribute.

 Static outcome values are an explicit reference to a specific outcome defined in a
navigation rule. Dynamic outcome values are derived from a binding on a backing
bean method that returns an outcome value. In either case, the outcome value
specified in the action attribute must match an outcome defined in the
navigation rules or be handled by a default navigation rule for navigation to occur.

While you can create simple hand-coded navigation links between pages, using
outcomes and navigation rules makes defining and changing application navigation
much easier.

Creating Navigation Rules

9-2 Oracle Application Development Framework Developer’s Guide

Read this chapter to understand:

■ What navigation rules and cases are and how to create them

■ How to create global, pattern-based, and default rules

■ How to create UI components that use static outcome values

■ How to bind navigation components to backing beans that return dynamic
outcomes

9.2 Creating Navigation Rules
With JavaServer Faces, navigation between application pages is defined by a set of
rules. Navigation rules determine the next page to display when a user clicks a
navigation component, such as a button or a hyperlink.

A navigation rule defines the navigation from one page to one or more other pages.
Each navigation rule can have one or more cases, which define where a user can go
from that page. For example, if a page has links to several other pages in the
application, you can create a single navigation rule for that page and one navigation
case for each link to the different pages. The rule itself can define the navigation from:

■ A specific JSF page

■ All pages whose paths match a specified pattern, such as all the pages in one
directory, which is called a pattern-based rule

■ All pages in an application, which is called a global navigation rule

9.2.1 How to Create Page Navigation Rules
Navigation rule definitions are stored in the JSF configuration file
(faces-config.xml). You can define the rules directly in the configuration file, or
you can use the JSF Navigation Modeler and the JSF Configuration Editor in
JDeveloper. Oracle recommends that you use the navigation modeler and the
configuration editor, because these tools:

■ Provide a GUI environment for modeling and editing the navigation between
application pages

■ Enable you to map out your application navigation using a visual diagram of
pages and navigation links

■ Update the faces-config.xml file for you automatically

Use the navigation modeler to initially create navigation rules from specific pages to
one or more other pages in the application. Use the configuration editor to create
global or pattern-based rules for multiple pages, create default navigation cases, and
edit navigation rules.

9.2.1.1 About Navigation Rule Elements
Understanding the elements that define a navigation rule in the faces-config.xml
file helps when creating rules using the navigation modeler and the configuration
editor, or directly in the configuration file. The general syntax of a JSF navigation rule
element in the faces-config.xml file is shown in Example 9–1.

Creating Navigation Rules

Adding Page Navigation 9-3

Example 9–1 JSF Navigation Rule Syntax in the faces-config.xml File

<navigation-rule>
 <from-view-id>page-or-pattern</from-view-id>
 <navigation-case>
 <from-action>action-method</from-action>
 <from-outcome>outcome</from-outcome>
 <to-view-id>destination-page</to-view-id>

<redirect/>
 </navigation-case>
 <navigation-case>
 ...
 </navigation-case>
</navigation-rule>

A navigation rule can consist of the following elements:

■ navigation-rule: A mandatory wrapper element for navigation case elements.

■ from-view-id: An optional element that contains either a complete page
identifier (the context sensitive relative path to the page) or a page identifier prefix
ending with the asterisk (*) wildcard character. If you use the wildcard character,
the rule applies to all pages that match the wildcard pattern. To make a global rule
that applies to all pages, leave this element blank.

■ navigation-case: A mandatory wrapper element for each case in the
navigation rule. Each case defines the different navigation paths from the same
page. A navigation rule must have at least one navigation case.

■ from-action: An optional element that limits the application of the rule only to
outcomes from the specified action method. The action method is specified as an
EL binding expression. For example, #{backing_SRCreate.cancelButton_
action}.

■ from-outcome: A mandatory element that contains an outcome value that is
matched against values specified in the action attribute of UI components. Later
you will see how the outcome value is referenced in a UI component either
explicitly or dynamically through an action method return.

■ to-view-id: A mandatory element that contains the complete page identifier of
the page to which the navigation is routed when the rule is implemented.

■ redirect: An optional element that indicates that the new view is to be
requested through a redirect response instead of being rendering as the response
to the current request. This element requires no value. (For more information, see
Section 9.2.2, "What Happens When You Create a Navigation Rule".)

9.2.1.2 Using the Navigation Modeler to Define Navigation Rules
As a starting point for creating navigation rules, use JDeveloper’s JSF Navigation
Modeler. The navigation modeler is a visual modeling tool for creating application
pages and navigation cases for those pages.

After creating the basic navigation rules using the navigation modeler, you can edit the
rules in the JSF Configuration Editor or directly in the navigation modeler. There is
one navigation modeler diagram for each JSF configuration file that you create.

Creating Navigation Rules

9-4 Oracle Application Development Framework Developer’s Guide

To define a navigation rule using the JSF Navigation Modeler:
1. In the Application Navigator, double-click the faces-config.xml file located in

the WEB-INF directory to display the configuration file in the visual editor.

2. In the visual editor, click the Diagram tab to display the navigation modeler, as
shown in Figure 9–1.

Notice that the Component Palette automatically displays the JSF Navigation
Modeler components.

Figure 9–1 Navigation Modeler

3. Add application pages to the diagram using one of the following techniques:

■ To create a new page, drag JSF Page from the Component Palette onto the
diagram. Double-click the page icon on the diagram to display the Create JSF
JSP wizard where you can name and define the page characteristics.

■ To add an existing page to the diagram, drag the page from the Application
Navigator onto the diagram.

Tip: You can view a thumbnail of the entire diagram by clicking the
Thumbnail tab in the Structure window.

Creating Navigation Rules

Adding Page Navigation 9-5

4. Create the navigation cases between the pages using the following technique:

a. In the Component Palette, select JSF Navigation Case to activate it.

b. On the diagram, click the icon for the source page, then click the icon for the
destination page.

JDeveloper draws the navigation case on the diagram as a solid line ending
with an arrow between the two pages, as shown in Figure 9–2.

Figure 9–2 Navigation Case

The arrow indicates the direction of the navigation case. A default
from-outcome value is shown as the label on the arrow. JDeveloper
automatically creates the navigation rule for the source page and adds a
default navigation case that references the destination page. If a page is the
source for multiple navigation cases (for example, a page that provides links to
several other pages), JDeveloper creates one rule for the source pages and
adds the multiple cases to that rule.

5. In the diagram, double-click the arrow representing the navigation case to display
the navigation-case Properties dialog, shown in Figure 9–3.

Figure 9–3 The navigation-case Properties Dialog

6. Use the navigation-case Properties dialog to define the elements in the navigation
case. For a description of each element, see Section 9.2.1.1, "About Navigation Rule
Elements".

9.2.1.3 Using the JSF Configuration Editor
Once you have defined your basic navigation between specific pages, you can use the
JSF Configuration Editor to:

■ Define pattern-based navigation rules for a group of pages.

For example, if a group of pages in your application have a set of common links,
such as the links from a menu bar, you can create a pattern-based rule that applies
to all the pages. You identify the pages affected by the rule using a wildcard
pattern, where the wildcard character (*) must be the last item in the pattern. A
typical use of patterns in JSF navigation rules is to identify all the pages in a
certain directory.

Creating Navigation Rules

9-6 Oracle Application Development Framework Developer’s Guide

Example 9–2 shows a sample of a pattern-based navigation rule. Notice that the
from-view-id element contains a pattern instead of a specific page name. This
pattern would cause the rule to apply to all pages in the management directory
whose names start with SR.

Example 9–2 Pattern-Based Navigation Rule

<navigation-rule>
 <from-view-id>/app/management/SR*</from-view-id>
 ...
</navigation-rule>

■ Define global navigation rules that apply to all pages.

For example, an application could define one rule that applies to all pages and
returns users to the application's home page. When you create a global rule, you
exclude the from-view-id element, which causes the rule to apply to all pages.
You can optionally include a from-outcome element, if you want to apply the
rule whenever a UI component on any page returns a specific outcome.
Example 9–3 shows a sample global navigation rule. It causes the home page to be
displayed when any component on any page returns the value gohome.

Example 9–3 Global Navigation Rule

<navigation-rule>
 <navigation-case>
 <to-view-id>home.jsp</to-view-id>

<from-outcome>gohome</from-outcome>
 </navigation-case>
</navigation-rule>

■ Define default navigation cases in which no outcome is specified.

For example, if a navigation component is defined using a dynamic outcome
(where the outcome could be one of multiple values), you may want to create a
navigation case for one or two specific outcomes and a default case for all other
possible outcomes. This way, if a navigation component returns an unexpected
outcome, the page navigates to a specific page. Example 9–4 shows a sample
default navigation rule. It displays the home page whenever any component on
any page returns an outcome that is not handled by any other navigation case.

Example 9–4 Default Navigation Rule

<navigation-rule>
 <navigation-case>
 <to-view-id>home.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

■ Edit existing rules and cases.

Tip: Default navigation cases do not apply if a component specifies a
null value in the action attribute. In this case, no navigation occurs;
instead, the same page is redisplayed.

Creating Navigation Rules

Adding Page Navigation 9-7

To create a navigation rule using the JSF Configuration Editor:
1. In the Application Navigator, double-click the faces-config.xml file located in

the WEB-INF directory to display the configuration file in the visual editor.

2. In the visual editor, click the Overview tab to display the configuration editor.

3. From the element list (in the left corner), select Navigation Rules, as shown in
Figure 9–4.

Figure 9–4 Configuration Editor

4. Define the navigation rule using the following technique:

a. Click the New button to the right of the Navigation Rules box to display the
Create Navigation Rule dialog.

b. Use the Create Navigation Rule dialog to specify the from-view-id element
of the navigation rule using one of the following techniques:

– To create a rule for a single page, enter a fully qualified page name or
select a page from the dropdown list.

– To create a pattern-based rule that applies to a group of pages whose
names match the pattern, enter a pattern that uses the asterisk (*) wildcard
character.

You must use the wildcard character at the end of the pattern. For exam-
ple, the pattern /app/management/SR* would cause the rule to apply to
all pages in the management directory whose names start with SR. A typi-
cal use of patterns in JSF navigation rules is to identify all the pages in a
certain directory.

Creating Navigation Rules

9-8 Oracle Application Development Framework Developer’s Guide

– To create a global navigation rule that applies to all pages in the
application, select <Global Navigation Rule> from the dropdown list.

When you create a global navigation rule, the from-view-id element to
be excluded from the faces-config.xml file.

When you finish, the new navigation rule appears in the navigation rules in
the configuration editor.

5. Define the navigation cases using the following technique:

a. In the list of navigation rules, select the rule to which you want to define
navigation cases.

b. Click the New button to the right of the Navigation Cases box to display the
Create Navigation Case dialog.

c. Use the Create Navigation Case dialog to specify the elements of the
navigation case, which were previously described in Section 9.2.1.1, "About
Navigation Rule Elements".

You must supply a to-view-id value, to identify the destination of the
navigation case, but can leave either or both the from-action and
from-outcome elements empty. If you leave the from-action element
empty, the case applies to the specified outcome regardless of how the
outcome is returned. If you leave the from-outcome element empty, the case
applies to all outcomes from the specified action method, thus creating a
default navigation case for that method. If you leave both the from-action
and the from-outcome elements empty, the case applies to all outcomes not
identified in any other rules defined for the page, thus creating a default case
for the entire page.

9.2.2 What Happens When You Create a Navigation Rule
When you create a navigation rule using the JSF Navigation Modeler or the JSF
Configuration Editor, JDeveloper automatically adds the navigation rule elements to
the faces-config.xml file for you.

When JDeveloper first creates an empty faces-config.xml file, it also creates a
diagram file (faces.config.oxd_faces) to hold diagram details such as layout
and annotations. JDeveloper always maintains this diagram file alongside the
faces-config.xml file, which holds all the settings needed by your application.
This means that if you are using versioning or source control, the diagram file is
included as well as the faces-config.xml file it represents.

Tip: When defining a global navigation rule, you can exclude the
from-view-id element. However, for the sake of clarity in the
faces-config.xml file, you may want to specify the value as either
<from-view-id>* </from-view-id> or
<from-view-id>/*</from-view-id>. All of these styles produce the
same result—the rule is applied to all pages in the application.

Tip: If you have already defined the outcome values in the
navigation components on the page, make sure you enter the
from-outcome value exactly the same way, including lowercase and
uppercase letters.

Creating Navigation Rules

Adding Page Navigation 9-9

Example 9–5 shows a navigation rule with two cases defined in the
faces-config.xml file for the SRCreate page in the SRDemo application. The first
case navigates to the SRCreateConfirm page when the outcome specified in the
action attribute of an activated navigation component is Continue. The second case
navigates to the SRFaq page when the action attribute of an activated navigation
component is dialog:FAQ. The dialog: outcome prefix causes the page in the
to-view-id element to be launched as a dialog. For more information about creating
dialogs, see Section 11.3, "Using Popup Dialogs".

Example 9–5 Navigation Rule for a Specific Page

<navigation-rule>
 <from-view-id>/app/SRCreate.jspx</from-view-id>
 <navigation-case>
 <from-outcome>Continue</from-outcome>
 <to-view-id>/app/SRCreateConfirm.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>dialog:FAQ</from-outcome>
 <to-view-id>/app/SRFaq.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

Example 9–6 shows a global navigation rule defined in the SRDemo application. The
rule uses the wildcard character in the from-view-id element, which causes the rule
to apply to all pages in the application. The cases defined in this global rule handle the
navigation from the standard menu displayed on all of the pages.

Some of the cases use the redirect element, which causes JSF to send a redirect
response that asks the browser to request the new page. When the browser requests
the new page, the URL shown in the browser’s address field is adjusted to show the
actual URL for the new page. If a navigation case does not use the redirect element,
the new page is rendered as a response to the current request, which means that the
URL in the browser’s address field does not change and that it will contain the address
of the previous page. Direct rendering can be faster than redirection.

Any navigation case can be defined as a redirect. To decide whether to define a
navigation case as a redirect, consider the following factors:

■ If you do not use redirect rendering, when a user bookmarks a page, the
bookmark will not contain the URL of the current page; instead, it will contain the
the address of the previous page.

■ If a user reloads a page, problems may arise if the URL is not refreshed to the new
view. For example, if the page submits orders, reloading the page may submit the
same order again. If any harm might result from not refreshing the URL to the new
view, define the navigation case using the redirect element.

Creating Navigation Rules

9-10 Oracle Application Development Framework Developer’s Guide

Example 9–6 Navigation Rule Defined with Redirect Rendering

<navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>GlobalHome</from-outcome>
 <to-view-id>/app/SRList.jspx</to-view-id>
 <redirect/>
 </navigation-case>
 ...
 <navigation-case>
 <from-outcome>GlobalLogout</from-outcome>
 <to-view-id>/app/SRLogout.jspx</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>dialog:GlobalContact</from-outcome>
 <to-view-id>/app/SRContact.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

9.2.3 What Happens at Runtime
The Sun JSF Reference Implementation reads the navigation rules in the
faces-config.xml file and calls the NavigationHandler class, which evaluates
the navigation rules and determines which page to display. Knowing how the
navigation rules are evaluated can help in debugging navigation issues.

When evaluating which navigation rules to execute, the navigation handler looks at
three things:

■ The ID of the current page

■ The action method used to handle the link

■ The outcome string value of the action attribute, or the string returned by the
action method

The navigation handler evaluates navigation outcomes and rules in the following
manner:

1. If the outcome returned by an action method is null, it returns immediately and
redisplays the current page.

2. It merges all navigation rules with the same from-view-id value.

3. If a rule exists whose from-view-id value matches the view ID exactly, it uses
that rule.

4. It evaluates all pattern-based navigation rules, and determines whether the prefix
(the section before the wildcard character) is identical to the corresponding prefix
of the ID of the current view.

5. If there are matching rules, it uses the rule whose matching prefix is longest. If
there is a rule without a from-view-id element, it uses that rule.

6. If there is no match at all, it redisplays the current page.

Because the navigation handler merges navigation rules with matching
from-view-id values, there may be several navigation cases from which to choose.
After determining the correct navigation rule, the navigation handler evaluates which
case to use based on a prioritized set of criteria.

Creating Navigation Rules

Adding Page Navigation 9-11

If no case meets one criteria, the next criteria is applied until either a case is found or
all criteria have been evaluated. The case evaluation criteria is as follows (shown in
order of priority):

1. If both the from-outcome and from-action values of a case match the current
action method and action value, it uses that case.

2. If a case has no from-action element, but the from-outcome value matches the
current action value, it uses that case.

3. If a case has no from-outcome element, but the from-action value matches the
current action method, it uses that case.

4. If there is a case with neither a from-outcome element nor a from-action
element, it uses that case.

5. If no case meets any of the criteria, it redisplays the current page.

9.2.4 What You May Need to Know About Navigation Rules and Cases
In addition to the basic navigation rules that have been discussed, you can define
navigation rules in more than one JSF configuration file or define rules that overlap.
You can also define overlapping navigation cases and cases that are split among
different rules.

9.2.4.1 Defining Rules in Multiple Configuration Files
In a large application, you might want to define the navigation rules for pages in
specific areas of the application in separate JSF configuration files. However, it is
possible to specify rules in any of the JSF configuration files to apply to any pages in
the application. In particular, each JSF configuration file may define rules for some
general navigation features, such as returning to the home page or displaying help
information. In such a scenario, when a navigation event arises at runtime, the rules
from all the JSF configuration files are considered together. In JDeveloper, there is one
navigation modeler diagram for each separate JSF configuration file.

If your application uses more than one JSF configuration file, JSF finds and loads your
application's configuration settings in a predefined order. (For a description of how the
configuration settings are evaluated, see Chapter 4, "Getting Started with ADF Faces".)

9.2.4.2 Overlapping Rules
Through the use of global or pattern-based rules, it is possible to define a hierarchy of
overlapping rules.

Defining a hierarchy of rules ensures that particular navigation cases are directed to
specific pages, and that general cases, such as clicking a Home button or a Help
button, are handled in the same way across the whole application.

Tip: When you are using Oracle ADF bindings in a page’s UI
components, the rowset iterators keep track of the current row. If a
user clicks the browser’s Back button instead of using the page’s
navigation buttons, the iterator becomes out of sync with the page
displayed because the iterator has been bypassed. For more
information about what happens when a user clicks the browser back
button, see Section 6.4.4, "What You May Need to Know About the
Browser Back Button".

Creating Navigation Rules

9-12 Oracle Application Development Framework Developer’s Guide

For example, you could create a hierarchy of rules by defining the from-view-id
values as follows:

■ /products/select.jsp to apply a rule to one page only

■ /product/* to apply a rule to all pages in the product directory, including the
page covered by the first rule

■ /* to apply to all pages, including the ones covered by the previous two rules

Overlapping rules can be defined in a single rule or in multiple rules. When a user
clicks a link, the more specific case is considered first, then the more general case.

9.2.4.3 Conflicting Navigation Rules
Because you can define several navigation rules for the same page, it is possible to
define rules that conflict with one another. Also, because navigation rules can be
defined in more than one JSF configuration file, similar rules may be defined in
different files. Example 9–7 shows an example of conflicting rules in the same
configuration file.

If there is a conflict in which two or more cases have the same from-view-id,
from-action, and from-outcome values, the last case (as they are listed in the
faces-config.xml) is used. If the conflict is among rules defined in different
configuration files, the rule in the last configuration file to be loaded is used.
Configuration files are loaded in the order they appear in the web.xml file.

Example 9–7 Conflicting Navigation Cases

<navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>globalhelp</from-outcome>
 <to-view-id>/menu/generalHelp.html</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

<navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>globalhelp</from-outcome>
 <to-view-id>/menu/help.html</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

9.2.4.4 Splitting Navigation Cases Over Multiple Rules
You can split the navigation cases for the links on one page among different navigation
rules. For example, if your application provides users with a common set of controls
for navigating to particular parts of the application, one rule could define the
navigation cases for all the common controls, while other navigation rules would
define the navigation from other controls.

To define navigation split over multiple rules, you must create separate navigation
rules that would together define all the navigation cases, as shown in Example 9–8.
When these rules are evaluated, the more specific navigation cases are used first, then
the more general case.

Creating Navigation Rules

Adding Page Navigation 9-13

Example 9–8 Navigation Cases Split Over Multiple Rules

<navigation-rule>
 <from-view-id>/order.jsp</from-view-id>
 <navigation-case>
 <from-action>#{backing_home.submit}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/summary.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-action>#{backing_home.check}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/check.jsp</to-view-id>
 </navigation-case></navigation-case>
</navigation-rule>
<navigation-rule>
 <from-view-id>/order.jsp</from-view-id>
 <to-view-id>/again.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

9.2.5 What You May Need to Know About the Navigation Modeler
When using the navigation modeler to create and maintain page navigation, be aware
of the following features:

■ Changes to navigation rules made directly in the faces-config.xml file using
the XML editor or made in the configuration editor usually refresh the navigation
modeler. Each JSF configuration file has its own navigation modeler diagram. If
the information in a navigation diagram does not match the information in its
faces-config.xml file, you can manually refresh the diagram by right-clicking
on the diagram and choosing Diagram > Refresh diagram from faces-config.

■ When you delete a navigation case on the diagram, the associated
navigation-case element is removed from the faces-config.xml file. If you
remove all the cases in a rule, the navigation-rule element remains in the
faces-config.xml file. You can remove the rule directly in the
faces-config.xml file.

■ When you edit the label for the navigation case on the diagram, the associated
navigation-case element is updated in the faces-config.xml file. You
cannot change the destination of the navigation case in the diagram. You can,
however, change the destination of a navigation case in the JSF Configuration
Editor or directly in the faces-config.xml file itself.

■ When you delete a page icon from the navigation diagram, the associated page file
is not deleted the from the Web Content folder in the ViewController project in the
Application Navigator.

■ When you edit pages manually, JDeveloper does not automatically update the
navigation diagram or the associated faces-config.xml file. Conversely, when
you make changes to a page flow that affect the behavior of an existing page,
JDeveloper does not automatically update the code in the page. To coordinate the
navigation diagram with web page changes, right-click on the page in the
navigation diagram and choose Diagram > Refresh Diagram from All Pages.

Using Static Navigation

9-14 Oracle Application Development Framework Developer’s Guide

■ The navigation modeler diagram is the default editor for the faces-config.xml
file. If you have a large or complex application, loading the diagram may be slow,
because the file may be large. If you do not want JSF diagram files to be created for
your JSF configuration files, use the Tools > Preferences > File Types > Default
Editor > JSF Configuration File option to change the default editor. If you change
the default editor before opening the faces-config.xml file for the first time,
no diagram file is created unless you specifically request one.

9.3 Using Static Navigation
When a component is defined using static navigation, the outcome value in the
action attribute is a constant value that always triggers the same navigation case.
When a user clicks a component that is using static navigation, a specific JSF page is
displayed—there are no alternative navigation paths.

To use static navigation, you create the navigation case using a from-outcome value,
but not a from-action value. In the action attribute of the navigation button or
link you specify a constant outcome value that matches the value you entered in the
from-outcome element of the navigation case.

For example, if you create a navigation case with a from-outcome value of Confirm,
as shown in Example 9–9, you would create a button or link on the page that specifies
Confirm as a static value of the action attribute, as shown in Example 9–10. In this
case, when the user clicks the button, the navigation case causes the ConfirmAction
page to be displayed.

Example 9–9 Navigation Case Defined in the faces-config.xml File

<navigation-case>
 <from-outcome>Confirm</from-outcome>
 <to-view-id>/app/ConfirmAction.jspx</to-view-id>
</navigation-case>

Example 9–10 Static Navigation Button Defined in a JSF Page

<af:commandButton text="Continue" action="Confirm"/>

9.3.1 How to Create Static Navigation
To create a navigation component that uses a static outcome, you can create the
component using the Component Palette or the Data Control Palette. If you use the
Data Control Palette, the actionListener attribute of the component will be bound
to a data control operation or method. Once you have created the component, you can
then specify the outcome value in the action attribute. When the user clicks the
component, the application navigates to the page determined by the outcome value
and navigation case. However, if the component is bound to a data control, first the
operation or method is invoked, and then the navigation is performed.

For more information about command components that are bound to data control
methods, see Section 10.3, "Creating Command Components to Execute Methods".

Using Static Navigation

Adding Page Navigation 9-15

To create a navigation component that uses a static outcome:
1. Create a navigation component using one of the following techniques:

■ From the ADF Faces Core page of the Component Palette, drag a
CommandButton or a CommandLink component onto the page.

■ From the Data Control Palette, drag and drop an operation or a method onto
the page and choose ADF Command Button or an ADF Command Link from
the context menu.

If you drag and drop a method that takes parameters, the ADF command
button and command link components appear under Method in the context
menu. JDeveloper displays the Action Binding Editor where you can define
any parameter values you want to pass to the method. For more information
about passing parameters to methods, see Section 10.4, "Setting Parameter
Values Using a Command Component".

2. In the Structure window, select the navigation component and open the Property
Inspector.

3. In the Action field displayed in the Property Inspector, enter the outcome value.

The value must be a constant or an EL expression that evaluates to a string. To
view a list of outcomes already defined in the page’s navigation cases, click the
dropdown in the Action field of the Property Inspector.

9.3.2 What Happens When You Create Static Navigation
When you create a navigation component with static outcomes, JDeveloper adds the
component to the JSF page. If you have not already done so, you will then need to add
a navigation case to the faces-config.xml file to handle the navigation outcome
specified in the component.

Example 9–11 shows a simple navigation component that was created using the ADF
Faces commandLink component, which is available from the Component Palette. This
command link appears on many of the SRDemo application’s pages; it navigates to the
SRAbout page, which displays information about the application.

Since there is only one possible navigation path, the command link is defined with a
static outcome in the action attribute. The outcome value is GlobalAbout, which
matches the from-outcome value of the navigation case shown in Example 9–12. The
navigation case belongs to a global navigation rule that applies to all pages in the
application.

Tip: You can also use the JSF commandButton or commandLink
components.

Tip: The shortcut for opening the Property Inspector is Ctrl+Shift-I.

Tip: If you want to trigger a specific navigation case, the outcome
value you enter in the action attribute must exactly match the
outcome value in the navigation case, including uppercase and
lowercase. If the outcome specified by an action does not match any
outcome in a navigation case, the navigation will be handled by a
default navigation rule (if one exists), or no navigation will occur.

Also, the action attribute must be either an outcome value or an EL
expression that evaluates to an outcome value. You cannot enter a
page URL in the action attribute.

Using Dynamic Navigation

9-16 Oracle Application Development Framework Developer’s Guide

Example 9–11 Navigation Component That Specifies a Static Outcome Value

<af:commandLink text="#{res['srdemo.about']}" action="GlobalAbout"
 immediate="true"/>

Example 9–12 Navigation Rule Referenced by a Static Outcome Value

<navigation-rule>
<from-view-id>*</from-view-id>
...

 <navigation-case>
 <from-outcome>GlobalAbout</from-outcome>
 <to-view-id>/app/SRAbout.jspx</to-view-id>
 </navigation-case>

...
</navigation-rule>

9.4 Using Dynamic Navigation
Instead of explicitly specifying a static outcome value in a navigation component, you
can dynamically determine the outcome by binding the action attribute of a
navigation component to an action method. An action method is a method in a
backing bean (also known as a managed bean) that can perform an action (such as
saving user input, for example) and return an outcome value. The outcome value
determines the next page that should be displayed after the method performs an
action. For example, an action method that verifies user input on a page might return
one outcome if the input is valid and return another outcome if the input is invalid.
Each of these different outcomes could trigger different navigation cases, causing the
application to navigate to one of two possible target pages. As with static outcomes, a
dynamic outcome triggers a navigation case that contains a matching from-outcome
value or a default navigation case.

The method bound to a navigation component must be a public method with no
parameters, and it must return a string representing the outcome of the action. An
action method can return one of multiple outcomes depending on the processing it
carries out. In other words, you can define conditional outcomes in the method logic.
The outcome returned by the method must be defined in one of the cases in the page’s
navigation rules (unless you are using default rules, which handle all outcomes not
specified in any navigation case).

Tip: If you enabled auto-binding by choosing the Automatically
Expose UI Components in a New Managed Bean option when you
created the page, any navigation component you create will
automatically contain a binding to the managed bean (also known as a
backing bean) defined for the page, even if the binding is not used. In a
simple navigation component that has a static outcome, you may want
to remove the unused binding from the component.

Using Dynamic Navigation

Adding Page Navigation 9-17

9.4.1 How to Create Dynamic Navigation
If you want the outcome of a navigation component to be determined dynamically,
you can bind the component to a method on a backing bean. The backing bean can
execute some application logic and, depending on the results, return an outcome. The
returned outcome will determine the navigation rule that is implemented. For
information about creating backing beans, see Section 4.5, "Creating and Using a
Backing Bean for a Web Page".

To create a navigation component that binds to a backing bean:
1. From the ADF Faces Core page of the Component Palette, drag a

CommandButton or a CommandLink onto the page.

2. In the visual editor double-click the UI component to display the Bind Action
Property dialog, as shown in Figure 9–5.

Figure 9–5 Bind Action Property Dialog

Tip: In ADF applications, most processing of data objects is handled
by the data control. Therefore, if a navigation component that uses
dynamic outcomes needs to perform some processing on a data object
(for example, creating, editing, deleting), it should be bound to a
backing bean method that injects the ADF binding container. When a
backing bean injects the ADF binding container, it calls the specified
data control method to handle the processing of the data and then,
based on the results, returns a navigation outcome to the UI
component. For more information about injecting the binding
container into a backing bean, see Section 10.5, "Overriding
Declarative Methods".

Note: If you enabled auto-binding by choosing the Automatically
Expose UI Components in a New Managed Bean or the
Automatically Expose UI Components in an Existing Managed Bean
options when you created the page, any navigation component you
create will automatically contain a binding to the managed bean (also
known as a backing bean) defined for the page.

Tip: You can also use the JSF commandButton and commandLink
components.

Using Dynamic Navigation

9-18 Oracle Application Development Framework Developer’s Guide

The Bind Action Property dialog enables you to identify the backing bean and
method to which you want to bind the component. If you enabled auto-binding
when you created the page, the Bind Action Property dialog does not display the
option for specifying a static outcome.

3. In the Bind Action Property dialog, identify the backing bean and the method to
which you want to bind the component using one of the following techniques:

■ Click New to create a new backing bean. The Create Managed Bean dialog is
displayed. Use this dialog to name the bean and the class.

■ Select an existing backing bean and method from the dropdown lists.

4. After identifying the backing bean and method, click OK on the Bind Action
Property dialog.

JDeveloper displays the source editor. If it is a new method, the source editor
displays a stub method, as shown in Example 9–13. If it is an existing method, the
source editor displays that method, instead of the stub method.

Example 9–13 Stub Method Created in the Backing Bean

public String commandButton1_action() {
 // Add event code here...
 return null;
}

5. Add any required processing logic to the method.

6. Change the return values of the method to the appropriate outcome strings.

You may want to write conditional logic to return one of multiple outcomes
depending on certain criteria. For example, you might want to return null if there
is an error in the processing, or another outcome value if the processing was
successful. A return value of null causes the navigation handler to forgo
evaluating navigation cases and to immediately redisplay the current page.

9.4.2 What Happens When You Create Dynamic Navigation
When you create a navigation component that specifies a dynamic outcome,
JDeveloper adds an EL expression to the action attribute of the component tag. The
EL expression references the backing bean method that will perform some application
processing, such as saving user input, and return an outcome value.

Example 9–14 shows a button on the SRCreateConfirm page of the SRDemo
application that uses a dynamic outcome value. The button was created using the ADF
Faces commandButton component, which is available from the Data Control Palette
context menu. The user clicks the button to create a new service request.

Tip: To trigger a specific navigation case, the outcome value you
enter in the action attribute must exactly match the outcome value
in the navigation rule, including uppercase and lowercase letters.

Using Dynamic Navigation

Adding Page Navigation 9-19

Example 9–14 Navigation Component That Uses Dynamic Outcomes

<af:commandButton text="#{res['srcreate.submit.button']}"
 partialSubmit="false"
 action="#{backing_SRCreateConfirm.createSRButton_action}"
 id="createSRButton"/>

The button’s action attribute is bound to the createSRButton_action method on
the SRCreateConfirm backing bean, which is shown in Example 9–15.

Example 9–15 Backing Bean Method That Returns a Dynamic Outcome

 public String createSRButton_action() {
 BindingContainer bindings = getBindings();

 //Before we proceed check that the user has entered a description
 Object description =
 ADFUtils.getBoundAttributeValue(bindings, "SRCreatePageDef",
 "problemDescription");
 if (description == null) {
 FacesContext ctx = FacesContext.getCurrentInstance();
 ctx.addMessage(null,
 JSFUtils.getMessageFromBundle("srcreate.

missingDescription",FacesMessage.SEVERITY_ERROR));

 return "Back";
 } else {
 //now find the facade method binding
 OperationBinding operationBinding =
 bindings.getOperationBinding("createServiceRequest");
 ServiceRequest result = (ServiceRequest)operationBinding.execute();

 //Put the number of the created service ID onto the request as an
 // example of passing data in that way
 Integer svrId = result.getSvrId();
 ExternalContext ectx =
 FacesContext.getCurrentInstance().getExternalContext();
 HttpServletRequest request = (HttpServletRequest)ectx.getRequest();
 request.setAttribute("SRDEMO_CREATED_SVRID", svrId);

 //Force a requery on the next visit to the SRList page
 UserSystemState.refreshNeeded();
 return "Complete";
 }
 }

The backing bean method starts by validating the user input. If the user did not enter a
problem description for the service request, the method returns an outcome value of
Back. If the user did enter a problem description, the method creates the service
request and returns an outcome value of Complete. To create the service request, the
backing bean method overrides the declarative method createServiceRequest,
which was used to initially create the button. When a method overrides a declarative
method, the JSF runtime injects the binding container for the current page using the
managed property called bindings.The backing been method calls the
getBindings() property getter, which accesses the current binding container, then it
executes the method action binding for the createServiceRequest method in the
SRService data control. For more information about overriding declarative methods,
see Section 10.5, "Overriding Declarative Methods".)

Using Dynamic Navigation

9-20 Oracle Application Development Framework Developer’s Guide

Example 9–16 shows the navigation rule that handles the two possible outcomes
returned by the backing bean.

Example 9–16 Navigation Rule Referenced by a Dynamic Outcome

<navigation-rule>
 <from-view-id>/app/SRCreateConfirm.jspx</from-view-id>
 <navigation-case>
 <from-outcome>Back</from-outcome>
 <to-view-id>/app/SRCreate.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>Complete</from-outcome>
 <to-view-id>/app/SRCreateDone.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

9.4.3 What Happens at Runtime
When a user clicks a navigation component that has a dynamic outcome, the action
method on the backing bean is executed. The method usually processes some user
input and then returns an outcome value to the page. The JSF navigation handler
evaluates the outcome returned by the action method and matches it to a navigation
case that has the same value defined in the from-outcome element. The matching
rule is then implemented and the page defined in the rule’s to-view-id element is
displayed. If the method does not return an outcome or if the outcome does not match
any of the navigation cases, the user remains on the current page.

When using an action method to handle navigation in an application, you don't need
to implement an action listener interface to invoke the method because JSF uses a
default action listener to invoke action methods for page navigation: the method's
logical outcome value is used to tell the JSF navigation handler what page to use for
the render response.

9.4.4 What You May Need to Know About Using Default Cases
If an action method returns different outcomes depending on the processing logic, you
may want to define a default navigation case to prevent having the method return an
outcome that is not covered by any specific navigation case.

Default navigation cases catch all the outcomes not specifically covered in other
navigation cases. To define a default navigation case, you can exclude the
from-outcome element, which tells the navigation handler that the case should apply
to any outcome not handled by another case.

For example, suppose you are using an action method to handle a Submit command
button. You can handle the success case by displaying a particular page for that
outcome. For all other outcomes, you can display a page explaining that the user
cannot continue. Example 9–17 shows the navigation cases for this scenario.

Using Dynamic Navigation

Adding Page Navigation 9-21

Example 9–17 Navigation Rule with a Default Navigation Case

<navigation-rule>
 <from-view-id>/order.jsp</from-view-id>
 <navigation-case>
 <from-action>#{backing_home.submit}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/summary.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-action>#{backing_home.submit}</from-action>
 <to-view-id>/again.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

In the example, the first navigation case is a dynamic navigation case, where an action
method is determining the outcome. If the outcome is success, the user navigates to
the /summary.jsp page.

The second navigation case is a default navigation case that catches all other outcomes
returned by the action method and displays the /again.jsp for all outcomes. Notice
that the default case does not specify a from-outcome value, which causes this case
to be implemented if the outcome returned by the action method does not match any
of the other cases.

9.4.5 What You May Need to Know About Action Listener Methods
You can use action listener methods in a navigation component when you have an
action that needs information about the user interface. Suppose you have a button that
uses an image of the state of California, and you want a user to be able to select a
county and display information about that county. You could implement an action
listener method that determines which county is selected by storing an outcome for
each county, and an action method that uses the outcome value to navigate to the
correct county page.

To use an action method and action listener method on a component, you would
reference them as shown in Example 9–18.

Example 9–18 Navigation Button with Action Listener and Action Methods

<h:commandButton image="californiastate.jpg"
 actionListener="#{someBean.someListenmethod}"
 action="#{someBean.someActionmethod}"/>

9.4.6 What You May Need to Know About Data Control Method Outcome Returns
Instead of binding an action attribute to a backing bean, you can bind it to a data
control method that returns a navigation outcome. To bind the action attribute to a
data control method you must enter the ADF binding expression manually and use the
outcome binding property, as shown in Example 9–19.

Using Dynamic Navigation

9-22 Oracle Application Development Framework Developer’s Guide

Example 9–19 Navigation Component Bound to a Data Control Method

<af:commandButton
 text="Delete Service History Notes"
 action="#{bindings.deleteServiceHistoryNotes.outcome}"/>

The outcome property invokes the outcome() method in the
FacesCtrlActionBinding class, which executes the data control method by calling
the execute method of that same class. When the data control method returns a
value, the outcome() method converts it to a string (if necessary) and returns it to the
action attribute.

Creating More Complex Pages 10-1

10
Creating More Complex Pages

This chapter describes how to add more complex bindings to your pages, such as
using methods that take parameters to create forms and command components.

This chapter includes the following sections:

■ Section 10.1, "Introduction to More Complex Pages"

■ Section 10.2, "Using a Managed Bean to Store Information"

■ Section 10.3, "Creating Command Components to Execute Methods"

■ Section 10.4, "Setting Parameter Values Using a Command Component"

■ Section 10.5, "Overriding Declarative Methods"

■ Section 10.6, "Creating a Form or Table Using a Method that Takes Parameters"

■ Section 10.7, "Creating an Input Form for a New Record"

■ Section 10.8, "Creating Search Pages"

■ Section 10.9, "Conditionally Displaying the Results Table on a Search Page"

10.1 Introduction to More Complex Pages
Once you create a basic page and add navigation capabilities, you may want to add
more complex features to your pages, such as the ability to pass parameter values from
one page to another, or the ability to search for and return certain records. ADF
provides many features that allow you to add this complex functionality using very
little actual code.

For example, you can create command components, such as buttons, that directly
execute methods on your service bean. You only need to drag the method from the
data control and drop it as a command button.You can also use command components
to pass parameter values to another page.

In addition to creating basic forms that display information from a data store, you can
also create forms that display only certain records (determined by parameter values),
forms that allow you to create new records, and forms that search through and return
objects based on a user’s input.

Using a Managed Bean to Store Information

10-2 Oracle Application Development Framework Developer’s Guide

Read this chapter to understand:

■ How to create an use a managed bean to store parameter values or flags

■ How to create command components bound to methods

■ How to set parameter values

■ How to add logic to a method bound to a command component

■ How to create forms and tables that display only certain records

■ How to create forms that allow users to create new records

■ How to create search forms with result tables

10.2 Using a Managed Bean to Store Information
Often, pages require information from other pages in order to display correct
information. Instead of setting this information directly on a page (for example, by
setting the parameter value on the page’s page definition file), which essentially
hardcodes the information, you can store this information on a managed bean. As long
as the bean is stored in a scope that is accessible, any value for an attribute on the bean
can be accessed using an EL expression.

For example, the SREdit page requires the value of the svrId attribute for the row
selected by the user on the previous page. This value provides the parameter value for
the findServiceRequestById(Integer) method used to display the form.
Additionally, the method bound to the Cancel button needs to return an outcome
allowing the user to return to the correct page (the SREdit page can be accessed from
three different pages). The SRDemo application has a managed bean that holds this
information, allowing the sending page to set the information, and the SREdit page to
use the information in order to determine where to navigate for the Cancel action. This
information is stored as a hash map in the bean.

Managed beans are Java classes that you register with the application using the
faces-config.xml file. When the JSF application starts up, it parses this
configuration file and the beans are made available and can be referenced in an EL
expression, allowing access to the beans’ properties and methods. Whenever a
managed bean is referenced for the first time and it does not already exist, the
Managed Bean Creation Facility instantiates the bean by calling the default constructor
method on the bean. If any properties are also declared, they are populated with the
declared default values.

10.2.1 How to Use a Managed Bean to Store Information
Using the JSF Configuration Editor in JDeveloper, you can create a managed bean and
register it with the JSF application at the same time.

To create a managed bean:
1. Open the faces-config.xml file. This file is stored in the <project_

name>/WEB-INF directory.

2. At the bottom of the window, select the Overview tab.

3. In the element list on the left, select Managed Beans. Figure 10–1 shows the JSF
Configuration Editor for the faces-config.xml file.

Using a Managed Bean to Store Information

Creating More Complex Pages 10-3

Figure 10–1 The JSF Configuration Editor

4. Click the New button to open the Create Managed Bean dialog, as shown in
Figure 10–2. Enter the name and fully qualified class path for the bean. Select a
scope, select the Generate Java File checkbox, and click OK.

Figure 10–2 The Create Managed Bean Dialog

5. You can optionally use the arrow to the left of the Managed Properties bar to
display the properties for the bean. Click New to create any properties. Press F1
for additional help with the configuration editor.

10.2.2 What Happens When You Create a Managed Bean
When you use the configuration editor to create a managed bean, and elect to generate
the Java file, JDeveloper creates a stub class with the given name and a default
constructor. Example 10–1 shows the code added to the MyBean class stored in the
view package.

Tip: If the managed bean will be used by multiple pages in the
application, you should set the scope to Session. However, then the
bean cannot contain any reference to the binding container, as the data
on the binding object is on the request scope, and therefore cannot
"live" beyond a request. For examples of when you may need to
reference the binding container, see Section 10.5, "Overriding
Declarative Methods".

Note: While you can declare managed properties using the
configuration editor, the corresponding code is not generated on the
Java class. You will need to add that code by creating private member
fields of the appropriate type and then using the Generate
Accessors... menu item on the context menu of the code editor to
generate the corresponding getter and setter methods for these bean
properties.

Creating Command Components to Execute Methods

10-4 Oracle Application Development Framework Developer’s Guide

Example 10–1 Generated Code for a Managed Bean

package view;

public class MyBean {
 public MyBean() {
 }
}

JDeveloper also adds a managed-bean element to the faces-config.xml file. This
declaration allows you to easily access any logic on the bean using an EL expression
that refers to the given name. Example 10–2 shows the managed-bean element
created for the MyBean class.

Example 10–2 Managed Bean Configuration on the faces-config.xml File

<managed-bean>
 <managed-bean-name>my_bean</managed-bean-name>
 <managed-bean-class>view.MyBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

You now need to add the logic required by your pages and methods in your
application. You can then refer to that logic using an EL expression that refers to the
managed-bean-name given to the managed bean. For example, to access the myInfo
property on the bean, the EL expression would be:

#{my_bean.myInfo}

The following sections of this chapter provide examples of using the SRDemo
application’s userState managed bean (view.UserSystemState.java) to hold
or get information. Please see those sections for more detailed examples of using a
managed bean to hold information.

■ Section 10.4, "Setting Parameter Values Using a Command Component"

■ Section 10.5, "Overriding Declarative Methods"

■ Section 10.6, "Creating a Form or Table Using a Method that Takes Parameters"

■ Section 10.9, "Conditionally Displaying the Results Table on a Search Page"

10.3 Creating Command Components to Execute Methods
When you create a UI component by dragging and dropping a collection that is a
return of a method, that method is executed when the page is rendered, so that it can
return the collection. However, you can also drag the method itself (or any other type
of method) and drop it as a command component to directly invoke the method.

In addition to custom methods, your data control may contain built-in methods that
perform some standard business logic, such as updating or deleting objects. You can
use these methods in conjunction with a collection. For example, the SRDemo
application contains the mergeEntity(Object) method on the SRPublicFacade
bean that can be used to update any object and merge it in the data source.

Tip: You can also drop the method as a parameter form. For more
information, see Section 10.7.3, "How to Use a Custom Method to
Create an Input Form" and Section 10.8, "Creating Search Pages".

Creating Command Components to Execute Methods

Creating More Complex Pages 10-5

When you drag this method from the Data Control Palette and drop it as command
button, the button is automatically bound to the method, and so that method will
execute whenever the button is clicked. Figure 10–3 shows some of the methods in the
Data Control Palette for the SRDemo application.

Figure 10–3 Methods in the Data Control Palette

Whether using a custom method or a built-in method, you can create a command
button that executes the associated business logic on your service bean by binding the
button to that method. When you use the Data Control Palette to create the button,
JDeveloper creates the binding for you. You need only to set the values for any
parameters needed by the method.

10.3.1 How to Create a Command Component Bound to a Service Method
In order to perform the required business logic, many methods require a value for the
method’s parameter or parameters. That means when you create a button bound to the
method, you need to specify from where the value for the parameter(s) can be
retrieved.

For example, if you use the mergeEntity(Object) method, you need to specify the
object to be updated.

To add a button bound to a method:
1. From the Data Control Palette, drag the method onto the page.

2. From the context menu, choose Methods > ADF Command Button.

3. If the method takes parameters, the Action Binding dialog opens. In the Action
Binding Editor, click the ellipses (...) button in the Value column of Parameters to
launch the EL Expression Builder. You use the builder to set the value of the
method’s parameter.

For example, to set the value for the Object parameter of the
mergeEntity(Object) method used to update a collection, you would:

1. In the EL Expression Builder, expand the ADF Bindings node and then
expand the bindings node.

All the bindings in the JSF page’s page definition file are displayed.

2. Expand the node for the iterator that works with the object you want to merge.

Tip: If you are dropping a button for a method that needs to work
with data in a table or form, that button must be dropped inside the
table or form.

Creating Command Components to Execute Methods

10-6 Oracle Application Development Framework Developer’s Guide

3. Expand the currentRow node. This node represents the current row in the
iterator.

4. Select the dataProvider property and click the right-arrow button. Doing so
creates an EL expression that evaluates to the data for the object in the current
row of the iterator. Click OK to close the EL Expression Builder and populate
the value with the EL expression. Click OK again to bind the button to the
method.

10.3.2 What Happens When You Create Command Components Using a Method
When you drop a method as a command button, JDeveloper:

■ Defines a method action binding for the method. If the method takes any
parameters, JDeveloper creates NamedData elements that hold the parameter
values.

■ Inserts code in the JSF page for the ADF Faces command component. This code is
the same as code for any other command button, as described in Section 6.4.2.3,
"Using EL Expressions to Bind to Navigation Operations". However, instead of
being bound to the execute method of the action binding for a built-in operation,
the button is bound to the execute method of the method action binding for the
method that was dropped.

10.3.2.1 Using Parameters in a Method
As when you drop a collection that is a return of a method, when you drop a method
that takes parameters onto a JSF page, JDeveloper creates a method action binding (for
details, see Section 6.2.2.1, "Creating and Using Iterator Bindings"). However, when the
method requires parameters to run, JDeveloper also creates NamedData elements for
each parameter. These elements represent the parameters of the method.

For example, the mergeEntity(Object) method action binding contains a
NamedData element for the Object parameter. This element is bound to the value
specified when you created the action binding. Example 10–3 shows the method action
binding created when you dropped the mergeEntity(Object) method, and bound
the Object parameter (named entity) to the data for the current row in the
findServiceRequestByIdIter iterator.

Tip: Consider criteria such as the following when determining what
to select for the parameter value:

■ If you want the method to operate on a row in a table, you would
set the parameter to be the current row in the table binding, and
not the current object in the iterator.

■ If you want to be able to update multiple rows that represent
detail objects in a master-detail relationship, you can set the
parameter to be the master list object.

■ If the value is stored in a scope or on a managed bean, you would
select the corresponding attribute in that scope or on that
managed bean. However, this value must be available when this
method is executed. For more information, see Section 10.4,
"Setting Parameter Values Using a Command Component".

Creating Command Components to Execute Methods

Creating More Complex Pages 10-7

Example 10–3 Method Action Binding for a Parameter Method

<methodAction id="mergeEntity" InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" MethodName="mergeEntity"
 RequiresUpdateModel="true" Action="999"
 ReturnName="SRPublicFacade.methodResults.SRPublicFacade
 _dataProvider_mergeEntity_result">
 <NamedData NDName="entity"
 NDValue="${bindings.findServiceRequestByIdIter.
 currentRow.dataProvider}"
 NDType="java.lang.Object"/>
</methodAction>

10.3.2.2 Using EL Expressions to Bind to Methods
Like creating command buttons using navigation operations, when you create a
command button using a method, JDeveloper binds the button to the method using
the actionListener attribute. The button is bound to the execute property of the
action binding for the given method. This binding causes the binding’s method to be
invoked on the business service. For more information about the command button’s
actionListener attribute, see Section 6.4.3, "What Happens at Runtime: About
Action Events and Action Listeners".

Like navigation operations, the disabled property on the button uses an EL
expression to determine whether or not to display the button. Example 10–4 shows the
EL expression used to bind the command button to the mergeEntity(Object)
method.

Example 10–4 JSF Code to Bind a Command Button to a Method

<af:commandButton actionListener="#{bindings.mergeEntity.execute}"
 text="mergeEntity"
 disabled="#{!bindings.mergeEntity.enabled}"/>

Tip: Instead of binding a button to the execute method on the
action binding, you can bind the button to method in a backing bean
that overrides the execute method. Doing so allows you to add logic
before or after the original method runs. For more information, see
Section 10.5, "Overriding Declarative Methods".

Tip: When you drop a UI component onto the page, JDeveloper
automatically gives it an ID based on the number of that component
previously dropped, for example, commandButton1,
commandButton2. You may want to change the ID to something
more descriptive, especially if you will need to refer to it in a backing
bean that contains methods for multiple UI components on the page.
Note that if you do change the ID, you must manually update any
references to it in EL expressions in the page.

Setting Parameter Values Using a Command Component

10-8 Oracle Application Development Framework Developer’s Guide

10.3.3 What Happens at Runtime
When the user clicks the button, the method binding causes the associated method to
be invoked, passing in the value bound to the NamedData element as the parameter.
For example, if a user clicks a button bound to the mergeEntity(Object) method,
the method takes the value of the current record and updates the data source
accordingly.

10.4 Setting Parameter Values Using a Command Component
There may be cases where an action on one page needs to set the parameters, for
example, for a method used to display data on another page. As Figure 10–4 shows,
the SRList page in the SRDemo application uses command links, which the user can
click in order to directly edit a service request.

Figure 10–4 Command Links Used in a Table

The commandLink component is used to both navigate to the SREdit page and to set
the needed parameter for the findServiceRequestById(Integer) method used
to create the form that displays the data on the SREdit page. You can use the ADF
Faces setActionListener component to set parameters.

10.4.1 How to Set Parameters Using Command Components
You can use the setActionListener component to set values on other objects. This
component must be a child to a command component.

To use the setActionListener component:
1. Create a command component using either the Data Control Palette or the

Component Palette.

2. From the Component Palette, drag a setActionListener component and drop
it as a child to the command component.

3. In the Insert ActionListener dialog, set From to be the parameter value.

4. Set To to be where you want to set the parameter value.

Tip: The SRDemo application does not use the
setActionListener component for this page. Instead, this same
functionality is provided by methods on a managed bean, as more
than one page needs the same logic to set this parameter for the
SREdit page. When logic needed for one page is also needed by other
pages, it might be beneficial to place that logic on a managed bean.
For more information about using managed beans, see Section 10.2,
"Using a Managed Bean to Store Information".

Setting Parameter Values Using a Command Component

Creating More Complex Pages 10-9

5. If the parameter value is required by a method used to create a parameterized
form on another page, when you create the form, set the parameter to the value of
the To attribute in step 4. For more information, see Section 10.6, "Creating a Form
or Table Using a Method that Takes Parameters".

10.4.2 What Happens When You Set Parameters
The setActionListener component lets the command component set a value
before navigating. When you set the From attribute to the source of the value you need
to pass, the component will be able to access that value. When you set the To attribute
to a target, the command component is able to set the value on the target.
Example 10–5 shows the code on the JSF page for a command link that accesses the
data for the current row as the from value and sets that as the value of an attribute on
a managed bean using the To attribute.

Example 10–5 JSF Page Code for a Command Link Using a setActionListener
Component

<af:commandLink actionListener="#{bindings.setCurrentRowWithKey.execute}"
 action="edit"
 text="#{row.svrId}"
 disabled="#{!bindings.setCurrentRowWithKey.enabled}"
 id="commandLink1">
 <af:setActionListener from="#{row.svrId}"
 to="#{userState.currentSvrId}"/>
</af:commandLink>

10.4.3 What Happens at Runtime
When a user clicks the command component, before navigation occurs, the
setActionListener component sets the parameter value. In Example 10–5, the
setActionListener gets the current row’s svrId attribute value and sets it as the
value for the currentSvrId attribute on the userState managed bean. Now, any
method that needs this page’s current row’s svrId can access it using the EL
expression #{userState.currentSvrId}.

For example, when dropping the findServiceRequestById(Integer) method to
create the form for the SREdit page, you would enter
#{userState.currentSvrId} as the value for the Integer parameter. For more
information, see Section 10.6, "Creating a Form or Table Using a Method that Takes
Parameters".

Tip: Consider storing the parameter value on a managed bean or in
scope instead of setting it directly on the resulting page’s page
definition file. By setting it directly on the next page, you lose the
ability to easily change navigation in the future. For more information,
see Section 10.2, "Using a Managed Bean to Store Information".
Additionally, the data in a binding container is valid only during the
request in which the container was prepared. Therefore, the data may
change between the time you set it and the time the next page is
rendered

Overriding Declarative Methods

10-10 Oracle Application Development Framework Developer’s Guide

10.5 Overriding Declarative Methods
When you drop a method as a command button, JDeveloper binds the button to the
execute method on the associated binding object. This binding allows you to create
the JSF page declaratively, without needing to write the associated binding code.
However, there may be occasions when you need to add logic before or after the
method executes. For example, in order to delete multiple selected rows in a table, you
must add code before the delete method executes that accesses each row and makes it
current. For more information, see Section 7.6.4, "How to Use the TableSelectMany
Component in the Selection Facet".

JDeveloper allows you to add logic to a declarative method by creating a new method
and property on a managed bean that provide access to the associated action binding.
By default, this generated code executes the method of the corresponding binding. You
can then add logic before or after this code. JDeveloper automatically binds the
command component to this new method instead of the execute property on the
binding. Now when the user clicks the button, the new method is executed.

Following are some of the instances in the SRDemo application where backing beans
contain methods that inject the binding container and then add logic before or after the
declarative method is executed:

■ SRCreateConfirm.java: The createSR_action method overrides the
createServiceRequest method to add validation logic before the method is
executed, and sets a parameter value after the method is executed.

■ SRMain.java: The deleteSR_action method overrides the
removeServiceRequest method to check whether a service request has
associated histories before deleting. The srDelete_action method overrides the
removeServiceHistory method in order to delete multiple rows in the Service
History table.

10.5.1 How to Override a Declarative Method
In order to override a declarative method, you must have a managed bean to hold the
new method to which the command component will be bound. If your page has a
backing bean associated with it, JDeveloper adds the code needed to access the
binding object to this backing bean. If your page does not have a backing bean,
JDeveloper asks you to create one.

To override a declarative method:
1. Drag the method to be overridden onto the JSF page and drop it as a UI command

component.

Doing so creates the component and binds it to the associated binding object in the
ADF Model layer using the ActionListener attribute on the component.

For more information about creating command components using methods on the
Data Control Palette, see Section 10.3, "Creating Command Components to
Execute Methods".

Note: You cannot use the following procedure if the command
component currently has an EL expression as its value for the Action
attribute, as JDeveloper will not overwrite an EL expression. You must
remove this value before continuing.

Overriding Declarative Methods

Creating More Complex Pages 10-11

2. On the JSF page, double-click on the component.

In the Bind Action Property dialog, identify the backing bean and the method to
which you want to bind the component using one of the following techniques:

■ If auto-binding has been enabled on the page, the backing bean is already
selected for you, as shown in Figure 10–5.

Figure 10–5 Bind Action Property Dialog for a Page with Auto-Binding Enabled

– To create a new method, enter a name for the method in the Method field,
which initially displays a default name.

 OR

– To use an existing method, select a method from the dropdown list in the
Method field.

– Select Generate ADF Binding Code.

■ If the page is not using auto-binding, you can select from an existing backing
bean or create a new one, as shown in Figure 10–6. For more information
about auto-binding, see Section 4.5.4, "How to Use the Automatic Component
Binding Feature".

Figure 10–6 Bind Action Property Dialog for a Page with Auto-Binding Disabled

– Click New to create a new backing bean. The Create Managed Bean dialog
is displayed. Use this dialog to name the bean and the class, and set the
bean’s scope.

OR

– Select an existing backing bean and method from the dropdown lists.

Overriding Declarative Methods

10-12 Oracle Application Development Framework Developer’s Guide

3. After identifying the backing bean and method, click OK in the Bind Action
Property dialog

JDeveloper opens the managed bean in the source editor. Example 10–6 shows the
code inserted into the bean. In this example, a command button is bound to the
mergeEntity method.

Example 10–6 Generated Code in a Backing Bean to Access the Binding Object

 public BindingContainer getBindings() {

 return this.bindings;
 }

 public void setBindings(BindingContainer bindings) {
 this.bindings = bindings;
 }

 public String commandButton_action1() {
 BindingContainer bindings = getBindings();
 OperationBinding operationBinding =
 bindings.getOperationBinding("mergeEntity");
 Object result = operationBinding.execute();
 if (!operationBinding.getErrors().isEmpty()) {
 return null;
 }
 return null;
 }

4. You can now add logic either before or after the binding object is accessed.

Example 10–7 Accessing the Result of an EL Expression in a Managed Bean

FacesContext fc = FacesContext.getCurrentInstance();
 ValueBinding expr =
 fc.getApplication().
 createValueBinding("#{bindings.SomeAttrBinding.inputValue}");
DCIteratorBinding ib = (DCIteratorBinding)
 expr.getValue(fc);

Note: If you are creating a new managed bean, then you must set the
scope of the bean to request. Setting the scope to request is
required because the data in the binding container object that will be
referenced by the generated code is on the request scope, and
therefore cannot "live" beyond a request.

Additionally, JDeveloper understands that the button is bound to the
execute property of a binding whenever there is a value for the
ActionListener attribute on the command component. Therefore,
if you have removed that binding, you will not be given the choice to
generate the ADF binding code. You need to either inject the code
manually, or to set a dummy value for the ActionListener before
double-clicking on the command component.

Tip: To get the result of an EL expression, you need to use the
ValueBinding class, as shown in Example 10–7

Overriding Declarative Methods

Creating More Complex Pages 10-13

In addition to any processing logic, you may also want to write conditional logic
to return one of multiple outcomes depending on certain criteria. For example,
you might want to return null if there is an error in the processing, or another
outcome value if the processing was successful. A return value of null causes the
navigation handler to forgo evaluating navigation cases and to immediately
redisplay the current page.

 The command button is now bound to this new method using the Action
attribute instead of the ActionListener attribute. If a value had previously
existed for the Action attribute (such as an outcome string), that value is added
as the return for the new method. If there was no value, the return is kept as null.

10.5.2 What Happens When You Override a Declarative Method
When you ovrerride a declarative method, JDeveloper adds a managed property to
your backing bean with the managed property value of #{bindings} (the reference
to the binding container), and it adds a strongly-typed bean property to your class of
the BindingContainer type which the JSF runtime will then set with the value of
the managed property expression #{bindings}. JDeveloper also adds logic to the UI
command action method. This logic includes the strongly-typed getBindings()
method used to access the current binding container.

Example 10–8 shows the code that JDeveloper adds to the chosen managed bean.
Notice that the return String "back" was automatically added to the method.

Example 10–8 Generated Code in a Backing Bean to Access the Binding Object

private BindingContainer bindings;
...
public String commandButton1_action() {
 BindingContainer bindings = getBindings();
 OperationBinding operationBinding =
 bindings.getOperationBinding("mergeEntity");
 Object result = operationBinding.execute();
 if (!operationBinding.getErrors().isEmpty()) {
 return null;
 }

 return "back";
}

JDeveloper automatically rebinds the UI command component to the new method
using the Action attribute, instead of the ActionListener attribute. For example,
Example 10–9 shows the code on a JSF page for a command button created by
dropping the mergeEntity method. Notice that the actionListener attribute is
bound to the mergeEntity method, and the action attribute has a String outcome
of back. If the user were to click the button, the method would simply execute, and
navigate to the page defined as the toViewId for this navigation case.

Tip: To trigger a specific navigation case, the outcome value returned
by the method must exactly match the outcome value in the
navigation rule in a case-sensitive way.

Creating a Form or Table Using a Method that Takes Parameters

10-14 Oracle Application Development Framework Developer’s Guide

Example 10–9 JSF Page Code for a Command Button Bound to a Declarative Method

<af:commandButton actionListener="#{bindings.mergeEntity.execute}"
 text="persistEntity"
 disabled="#{!bindings.persistEntity.enabled}"
 id="commandButton1"
 action="back"/>

Example 10–10 shows the code after overriding the method on the page’s backing
bean. Note that the action attribute is now bound to the backing bean’s method.

Example 10–10 JSF Page Code for a Command Button Bound to an Overridden Method

<af:commandButton text="persistEntity"
 disabled="#{!bindings.mergeEntity.enabled}"
 binding="#{backing_create.commandButton1}"
 id="commandButton1"
 action="#{backing_create.commandButton1_action}"/>

This code does the following:

■ Accesses the binding container

■ Finds the binding for the associated method, and executes it

■ Adds a return for the method that can be used for navigation. By default the
return is null, or if an outcome string had previously existed for the button’s
Action attribute, that attribute is used as the return value. You can change this
code as needed. For more information about using return outcomes, see
Section 9.4, "Using Dynamic Navigation".

10.6 Creating a Form or Table Using a Method that Takes Parameters
There may be cases where a form or table needs information before it can display
content. For these types of pages, you create the form or table using a returned
collection from a method that takes parameters. The parameter values will have been
set by another page or method.

For example, the form on the SREdit page is created using the returned collection from
the findServiceRequestsById(Integer) method. Instead of returning all
service requests, it returns only the service request the user selected on the previous
page. The command link on the previous page sets the parameter (Integer), which
provides the service request’s ID. For more information about using a command
component to set a parameter value, see Section 10.4, "Setting Parameter Values Using
a Command Component".

Tip: If when you click the button that uses the overridden method,
you receive this error:

SEVERE: Managed bean main_bean could not be created
The scope of the referenced object: '#{bindings}' is
shorter than the referring object

it is because the managed bean that contains the overriding method
has a scope that is greater than request, (that is, either session or
application). Because the data in the binding container referenced
in the method has a scope of request, the scope of this managed
bean must be set to request scope or a lesser scope.

Creating a Form or Table Using a Method that Takes Parameters

Creating More Complex Pages 10-15

10.6.1 How to Create a Form or Table Using a Method That Takes Parameters
To create forms or tables that require parameters, you must be able to access the values
for the parameters in order to determine the record(s) to return. For example, before
creating the your form or table, you may need to add logic to a command button on
another page that will set the parameter value on some object that the method can
then access. For more information, see Section 10.4, "Setting Parameter Values Using a
Command Component". Once that is done, you can set the parameter value for the
form or table.

To create a form or table that uses parameters:
1. From the Data Control Palette, drag a collection that is a return of a method that

takes a parameter or parameters and drop it as any type of form or table.

2. In the Edit Form Fields dialog or Edit Table Columns dialog, configure the form or
table as needed and click OK.

For help in using the dialogs, click Help.

Because the method takes parameters, the Action Binding Editor opens, asking
you to set the value of the parameters.

3. In the Action Binding Editor, enter the value for each parameter by clicking the
ellipses (...) button in the Value field to open the EL Expression Builder. Select the
node that represents the value for the parameter.

For example, Example 10–5, "JSF Page Code for a Command Link Using a
setActionListener Component" shows a setActionListenerComponent setting
the svrId parameter value on the userState bean as the currentSvrId
attribute. To access that value, you would use #{userState.currentSvrId} as
the value for the parameter.

This editor uses the value to create the NamedData element that will represent the
parameter when the method is executed. Since you are dropping a collection that
is a return of the method (unlike a method bound to a command button), this
method will be run when the associated iterator is executed as the page is loaded.
You want the parameter value to be set before the page is rendered. This means
the NamedData element needs to get this value from wherever the sending page
has set it.

10.6.2 What Happens When You Create a Form Using a Method that Takes Parameters
When you use a return of a method that takes parameters to create a form, JDeveloper:

■ Creates an action binding for the method, a method iterator binding for the result
of the method, and attribute bindings for each of the attributes of the object, or in
the case of a table a table binding. It also creates NamedData elements for each
parameter needed by the method.

■ Inserts code in the JSF page for the form using ADF Faces components.

Example 10–11 shows the action method binding created when you dropped the
findServiceRequestsById(Integer) method, where the value for the
findSvrId was set to the currentSvrId attribute of the UserState managed
bean.

Creating an Input Form for a New Record

10-16 Oracle Application Development Framework Developer’s Guide

Example 10–11 Method Action Binding for a Method Return

<bindings>
 <methodAction id="findServiceHistoryById"
 InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade"
 MethodName="findServiceHistoryById" RequiresUpdateModel="true"
 Action="999"
 ReturnName="SRPublicFacade.methodResults.SRPublicFacade_
 dataProvider_findServiceHistoryById_result">
 <NamedData NDName="svrIdParam" NDValue="${userState.currentSvrId}"
 NDType="java.lang.Integer"/>
 </methodAction>
...
</bindings>

Note that the NamedData element will evaluate to the current service request ID on
the userState bean, as set by any requesting page.

10.6.3 What Happens at Runtime
Unlike a method executed when a user clicks a command button, a method used to
create a form is executed as the page is loaded. When the method is executed in order
to return the data for the page, the method evaluates the EL expression for the
NamedData element and uses that value as its parameter. It is then able to return the
correct data. If the method takes more than one parameter, each is evaluated in turn to
set the parameters for the method.

For example, when the SREdit page loads, it takes the value of the currentSvrId
field on the userState managed bean, and sets it as the value of the parameter
needed by the findServiceRequestsById(Integer) method. Once that method
executes, it returns only the record that matches the value of the parameter. Because
you dropped the return of the method to create the form, that return is the service
request that is displayed.

10.7 Creating an Input Form for a New Record
You can create a form that allows a user to enter information for a new record and then
commit that record into the data source. When the session bean for your data control is
created, by default, constructor methods are created for objects on the data control. For
example, the SRPublicFacade session bean in the SRDemo application has constructor
methods for products, expertise areas, service histories, users, and service requests.
The constructors provide an easy way to declaratively create an object that can be
passed to a method. For example, by default, session beans have a
persistEntity(Object) CRUD method that can be used to persist new records to
the database (for more information about the default session bean methods, see
Section 3.2.1.2, "Generating Session Facade Methods"). When you use the constructor
method to create an input form, that method is called to create the object and initialize
the object’s variables to the entered values. You can then easily pass the constructor’s
results to the persistEntity method, which will create the new record in the data
source.

There may be instances, however, when you need more control over how the new
object is created. For example, you may want certain attributes to be populated
programmatically. In this case, you might create a custom method to handle the
creation of objects.

Creating an Input Form for a New Record

Creating More Complex Pages 10-17

To use a custom method to create an input form, instead of dropping the collection
returned from a method, you drop the method itself as a parameter form. JDeveloper
automatically adds a command button bound to the method, so that the custom create
method will execute when the user clicks the button.

For example, the SRDemo application’s SRPublicFacade data control contains the
createServiceRequest(String, Integer, Integer) method. String
represents the value for the problem description, the first Integer represents the
product ID, and the second Integer represents the ID of the user who created the
request. This method creates a new instance of a ServiceRequest object using the
values of the parameters to populate the attributes on the object; however, the product
ID and the ID of the user are set by the method instead of by the user.

10.7.1 How to Use Constructors to Create an Input Form
Constructors for a data control are located in its Constructor folder. These access the
default methods on the data control used to create an object (for more information, see
Section 3.2.1.2, "Generating Session Facade Methods"). Figure 10–7 shows the
constructors for the SRPublicFacade data control.

Figure 10–7 Constructors in the Data Control Palette

To create an input form using a constructor:
1. From the Data Control Palette, drag the appropriate constructor onto the JSF page.

Constructors can only be dropped as a form, so no context menu displays.

2. In the Edit Form Fields dialog, set the labels, bindings, and UI components. Do not
select Include Submit Button.

3. From the Data Control Palette, drag the persistEntity(Object) method. This
method persists the object created by the constructor to the database.

4. In the context menu, choose Methods > ADF Command Button.

5. In the Action Binding Editor, enter the value for the entity parameter by clicking
the ellipses (...) button in the Value field to launch the EL Expression Builder. Since
you want the entity parameter to be the result of the constructor, select the result
under the action binding for the constructor, as shown in Figure 10–8.

Creating an Input Form for a New Record

10-18 Oracle Application Development Framework Developer’s Guide

Figure 10–8 Result from the Product Constructor

10.7.2 What Happens When You Use a Constructor
When you use a constructor to create an input form, JDeveloper:

■ Creates an action binding for the constructor method, a method iterator binding
for the result of constructor method, and attribute bindings for each of the
attributes of the object. It also creates an invoke action in the executables that
causes the constructor method to execute during the Render Model phase.

■ Inserts code in the JSF page for the form using ADF Faces inputText
components.

For example, to create a simple input form for products in the SRDemo application,
you might drop the product constructor method from the Data Control Palette as a
parameter form, and then drop the persistEntity method as a button below the
form, as shown in Figure 10–9.

Tip: If you will be navigating to this page from another page that
should display the newly created object when you return to it, you
must set the cacheResults attribute on the iterator for the first page
to false.

For example, say you have a page that lists all products, and a user
can navigate from that page to another page to create a product. A
button on this page both creates the product and navigates back to the
list page. In order for the user to see the product just created, you
must set the iterator binding for the product list to
cacheResults=false. Doing so forces the iterator to reexecute
when returning to the page and display the newly created product.

Note: This page is an example only and does not exist in the
SRDemo application.

Creating an Input Form for a New Record

Creating More Complex Pages 10-19

Figure 10–9 A Simple Create Product Form

Example 10–12 shows the page definition file for this input form. When the invoke
action binding executes, the constructor method is called using the action binding. The
result of that constructor method is then bound to the iterator. When you drop the
persistEntity(Object) method as a command button, that method can access the
result of the constructer through the iterator.

Example 10–12 Page Definition Code for a Constructor

<executables>
 <invokeAction Binds="Product" id="invokeProduct" Refresh="renderModel"
 RefreshCondition="${!adfFacesContext.postback and empty
 bindings.exceptionsList}"/>
 <methodIterator DataControl="SRPublicFacade"
 BeanClass="oracle.srdemo.model.entities.Product"
 Binds="Product.result" id="ProductIter"
 Refresh="renderModel"
 RefreshCondition="${!adfFacesContext.postback and empty
 bindings.exceptionsList}"/>
</executables>
<bindings>
 <methodAction DataControl="SRPublicFacade" id="Product" MethodName="Product"
 RequiresUpdateModel="true" Action="999"
 ReturnName="SRPublicFacade.methodResults.SRPublicFacade_
 Product_result"
 ClassName="oracle.srdemo.model.entities.Product"/>
 <attributeValues id="description" IterBinding="ProductIter">
 <AttrNames>
 <Item Value="description"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="image" IterBinding="ProductIter">
 <AttrNames>
 <Item Value="image"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="name" IterBinding="ProductIter">
 <AttrNames>
 <Item Value="name"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="prodId" IterBinding="ProductIter">
 <AttrNames>
 <Item Value="prodId"/>
 </AttrNames>
 </attributeValues>

Creating an Input Form for a New Record

10-20 Oracle Application Development Framework Developer’s Guide

 <methodAction id="persistEntity" InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" MethodName="persistEntity"
 RequiresUpdateModel="true" Action="999"
 ReturnName="SRPublicFacade.methodResults.SRPublicFacade_
 dataProvider_persistEntity_result">
 <NamedData NDName="entity" NDValue="${bindings.Product.result}"
 NDType="java.lang.Object"/>
 </methodAction>
</bindings>

Anytime the constructor method is invoked, an object is created. However, since data
is cached, (which allows the method to do a postback to the server), the constructor
method will create the same object again when the user revisits the page, perhaps to
create another object. Additionally, if errors occur, when the page is rerendered with
the error message, the object would again be created.

To prevent duplicates, the invoke action’s refreshCondition property is set so that
the constructor will only be invoked whenever there has been no postback to the
server and as long as there are no error messages. See Example 10–12 for the EL
expression.

The iterator has the same refresh condition. This setting prevents the iterator from
displaying the cached data used in the postback, and instead allows the form to
display without any data when the user revisits the page.

10.7.3 How to Use a Custom Method to Create an Input Form
When you use a custom method to create an input form, you drag the method that can
take the data populated by the user and drop it as a parameter form. In this case, since
you need to create an object, you cannot drop a return. You drop the method itself.

To create an input form using a custom method:
1. From the Data Control Palette, drag the appropriate method onto the JSF page.

2. From the context menu select Parameters > ADF Parameter Form.

The Edit Form Fields dialog opens, which allows you to customize the labels,
bindings, and UI components before creating the form. JDeveloper automatically
adds a command button bound to the method.

10.7.4 What Happens When You Use Methods to Create a Parameter Form
When you drop a method as a parameter form, JDeveloper:

■ Defines variables to hold the data values, a method binding for the method, and
the attribute bindings for the associated attributes in the page definition file.

■ Inserts code in the JSF page for the form using ADF Faces inputText
components and an ADF Faces command button component. This code is the
same as code for any other input form or command button.

10.7.4.1 Using Variables and Parameters
Just as when you drop a collection that is a return of a method that takes parameters,
when you drop the method itself onto a JSF page, JDeveloper creates NamedData
elements for each parameter. However, since the user will provide the parameter
values (instead of another page providing the values, as described in Section 10.6,
"Creating a Form or Table Using a Method that Takes Parameters"), each NamedData
element is bound to the attribute binding for the corresponding attribute.

Creating an Input Form for a New Record

Creating More Complex Pages 10-21

This binding allows the method to access the correct attribute’s value for the
parameter on execution.

For example, the createServiceRequest method action binding contains a
NamedData element for each of the parameters it takes. The NamedData elements are
then bound to a corresponding attribute binding using an EL expression.
Example 10–13 shows the method action binding and some of the attribute bindings
created when you drop the createServiceRequest method.

Example 10–13 Method Action Binding in the Page Definition File

<bindings>
 <methodAction id="createServiceRequest" MethodName="createServiceRequest"
 RequiresUpdateModel="true" Action="999"
 DataControl="SRPublicFacade"
 InstanceName="SRPublicFacade.dataProvider"
 ReturnName="SRPublicFacade.methodResults.SRPublicFacade_
 dataProvider_createServiceRequest_result">
 <NamedData NDName="problemDescription" NDType="java.lang.String"
 NDValue="${bindings.createServiceRequest_problemDescription}"/>
 <NamedData NDName="productId" NDType="java.lang.Integer"
 NDValue="${bindings.createServiceRequest_productId}"/>
 <NamedData NDName="createdBy" NDType="java.lang.Integer"
 NDValue="${bindings.createServiceRequest_createdBy}"/>
 </methodAction>
 <attributeValues id="problemDescription" IterBinding="variables">
 <AttrNames>
 <Item Value="createServiceRequest_problemDescription"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="productId" IterBinding="variables">
 <AttrNames>
 <Item Value="createServiceRequest_productId"/>
 </AttrNames>
 ...
 </attributeValues>
</bindings>

Note that like the attributes for a collection, attributes for a method also reference an
iterator. However, instead of referencing a method iterator that accesses and iterates
over the collection that the associated method returns, attributes for a creation-type
method access and iterate over variables. Because this type of method has not returned
an object, there is nothing to hold the values entered on the page. Variables act as the
data holders.

JDeveloper creates a variable for each parameter the method takes. The variables are
declared as children to the variable iterator, and are local, meaning they "live" only as
long as the associated binding context. Example 10–14 shows the variable iterator and
variables created when you use the createServiceRequest(String, Integer,
Integer) method.

Creating an Input Form for a New Record

10-22 Oracle Application Development Framework Developer’s Guide

Example 10–14 Variable Iterator and Variables in the Page Definition File

<executables>
 <variableIterator id="variables">
 <variable Type="java.lang.String"
 Name="createServiceRequest_problemDescription"
 IsQueriable="false"/>
 <variable Type="java.lang.Integer" Name="createServiceRequest_productId"
 IsQueriable="false"/>
 <variable Type="java.lang.Integer" Name="createServiceRequest_createdBy"
 IsQueriable="false"/>
 </variableIterator>
</executables>

10.7.5 What Happens at Runtime
When the user enters data and submits the form, the variables are populated and the
attribute binding can then provide the value for the method’s parameters using the EL
expression for the value of the NamedData element.

The service request creation process in the SRDemo application uses a process train,
which causes the actual creation of the request to be spread out over three steps (for
more information, see Section 11.5, "Creating a Multipage Process"). For the purposes
of this explanation, assume the process is contained on one page. When the user enters
a description in the corresponding inputText component and clicks the Create
Product button, the following happens:

■ The problemDescriptionVar variable is populated with the value the user
entered.

■ Because the problemDescription attribute binding refers to the variable
iterator, and to the problemDescriptionVar variable specifically as its Item
value, the attribute binding can get the description:

<attributeValues id="problemDescription" IterBinding="variables">
 <AttrNames>
 <Item Value="createServiceRequest_problemDescription"/>
 </AttrNames>
</attributeValues>

■ Because the Name NamedData element has an EL expression that evaluates to the
item value of the problemDescription attribute binding, it can also access the
value:

<NamedData NDName="problemDescription" NDType="java.lang.String"
 NDValue="${bindings.createServiceRequest_problemDescription}"/>

■ The createServiceRequest method is executed with each parameter taking its
value from the corresponding NamedData element.

Creating Search Pages

Creating More Complex Pages 10-23

10.8 Creating Search Pages
You can create a search form using a method that finds records by taking parameters.
The results can then be displayed in a table. In this type of search form, users must
enter information for each parameter. Figure 10–10 shows the SRSearch search form
used to find all service requests, given an ID, status, and a problem description.

Figure 10–10 The SRSearch Form

10.8.1 How to Create a Search Form
You create search form by dropping an existing method that contains the logic to find
and return the records based on parameters. This method must already exist on the
data control. Figure 10–11 shows the findServiceRequestSearch(Integer,
String, String) method used to create the search form shown in Figure 10–10.
This method finds and returns all service requests given an ID, status, and description.

Figure 10–11 A Search Method That Takes Parameters in the Data Control Palette

To create the search form, you drop the method as a parameter form. You then drop
the returned collection as a table to display the results. The SRSearch page hides the
results table if it is the first time in a session that the user visits the page. For
procedures for conditionally hiding the results table, see Section 10.9, "Conditionally
Displaying the Results Table on a Search Page".

To create a search form and results table:
1. From the Data Control Palette, drag a find method that takes parameters.

2. From the context menu, choose Parameters > ADF Parameter Form.

3. From the Data Control Palette, drag the return of that method and drop it as any
type of table.

Creating Search Pages

10-24 Oracle Application Development Framework Developer’s Guide

10.8.2 What Happens When You Use Parameter Methods
When you drop a method as a parameter form, JDeveloper:

■ Defines the following in the page definition file: variables to hold the data values,
a method binding for the method, and the attribute bindings for the associated
attributes.

■ Inserts code in the JSF page for the form using ADF Faces inputText
components and an ADF Faces commandButton component. This code is the
same as code for any other input form or command button.

Just as when you drop a collection that is a return of a method, when you drop a
method that takes parameters onto a JSF page, JDeveloper creates a method action
binding. However, because the method requires parameters to run, JDeveloper also
creates NamedData elements for each parameter. These represent the parameters of
the method. Each is bound to a value binding for the corresponding attribute. These
bindings allow the method to access the correct attribute’s value for the parameter on
execution.

For example, the findServiceRequestSearch method action binding contains a
NamedData element for each of the parameters it takes. The statusParam
NamedData element is bound to the findServiceRequestSearch_statusParam
attribute binding using an EL expression. Example 10–13 shows the method action
binding and some of the attribute bindings created when you drop the
findServiceRequestSearch method as a parameter form.

Example 10–15 Method Action Binding in the Page Definition File

<bindings>
 <methodAction id="findServiceRequestSearch"
 MethodName="findServiceRequestSearch"
 RequiresUpdateModel="true" Action="999"
 DataControl="SRPublicFacade"
 InstanceName="SRPublicFacade.dataProvider"
 ReturnName="SRPublicFacade.methodResults.SRPublicFacade_
 dataProvider_findServiceRequestSearch_result">
 <NamedData NDName="svrIdParam" NDType="java.lang.Integer"
 NDValue="${bindings.findServiceRequestSearch_svrIdParam}"/>
 <NamedData NDName="statusParam" NDType="java.lang.String"
 NDValue="${bindings.findServiceRequestSearch_statusParam}"/>
 <NamedData NDName="problemParam" NDType="java.lang.String"
 NDValue="${bindings.findServiceRequestSearch_problemParam}"/>
 </methodAction>
...
 <attributeValues id="svrIdParam" IterBinding="variables">
 <AttrNames>
 <Item Value="findServiceRequestSearch_svrIdParam"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="problemParam" IterBinding="variables">
 <AttrNames>
 <Item Value="findServiceRequestSearch_problemParam"/>
 </AttrNames>
 </attributeValues>
...
</bindings>

Creating Search Pages

Creating More Complex Pages 10-25

Because you dropped the method and not the return, the attributes reference a variable
iterator that accesses and iterates over variables instead of a method iterator that
accesses and iterates over a collection. This is because the method (unlike the returned
collection) does not need to access an instance of an object; therefore, there is nothing
to hold the values entered on the page. Variables act as these data holders.

JDeveloper creates a variable for each method parameter. The variables are declared as
children to the variable iterator, and are local, meaning they "live" only as long as the
associated binding context. Example 10–16 shows the variable iterator and variables
created when using the findServiceRequestSearch method. The variable iterator
is used both by the form and by the button.

Example 10–16 Variable Iterator and Variables in the Page Definition File

<executables>
 <variableIterator id="variables">
 <variable Type="java.lang.Integer"
 Name="findServiceRequestSearch_svrIdParam" IsQueriable="false"/>
 <variable Type="java.lang.String"
 Name="findServiceRequestSearch_statusParam"
 IsQueriable="false"/>
 <variable Type="java.lang.String"
 Name="findServiceRequestSearch_problemParam"
 IsQueriable="false"/>
 </variableIterator>
...
</executables>

When you then drop the returned collection for the results table, JDeveloper adds a
method iterator that iterates over the returned collection. Since the results are in a
table, a table binding is also created. Example 10–17 shows the code generated for the
method iterator and table binding.

Example 10–17 Page Definition Code for a Returned Collection

<executables>
 <variableIterator id="variables">
...
 </variableIterator>
 <methodIterator id="findServiceRequestSearchIter"
 Binds="findServiceRequestSearch.result"
 DataControl="SRPublicFacade" RangeSize="10"
 BeanClass="oracle.srdemo.model.entities.ServiceRequest"/>
</executables>
<bindings>
...
 <table id="findAllServiceRequest1" IterBinding="resultsIterator">
 <AttrNames>
 <Item Value="assignedDate"/>
 <Item Value="problemDescription"/>
 <Item Value="requestDate"/>
 <Item Value="status"/>
 <Item Value="svrId"/>
 </AttrNames>
 </table>
...
</bindings>

Conditionally Displaying the Results Table on a Search Page

10-26 Oracle Application Development Framework Developer’s Guide

Note that because the same method is used, when you drop the table, a new method
binding is not created. For more information, see Section 7.2.2, "What Happens When
You Use the Data Control Palette to Create a Table".

10.8.3 What Happens at Runtime
When the user enters data and submits the form, the variables are populated and the
attribute binding can then provide the value for the method’s parameters using the EL
expression for the value of the NamedDataElement.

When the user enters Closed as the status in the corresponding inputText
component, and clicks the command button, the following happens:

■ The findServiceRequestSearch_status variable is populated with the
value Closed.

■ Because the attribute binding refers to the variable iterator, the attribute binding
can get the value for status:

 <attributeValues id="status" IterBinding="variables">
 <AttrNames>
 <Item Value="findServiceRequestSearch_statusParam"/>
 </AttrNames>
 </attributeValues>

■ Because the NamedData element has an EL expression that evaluates to the item
value of the attribute binding, the parameter can also access the value:

<NamedData NDName="status" NDType="java.lang.String"
 NDValue="${bindings.findServiceRequests_statusParam}"/>

■ The findServiceRequestSearch method is executed with the parameters
taking their values from the NamedData elements.

■ The findServiceRequestSearch method returns a collection of records that
match the parameter values.

■ The findServiceRequestSearchIter iterator iterates over the collection,
allowing the table to display the results. For more information about tables at
runtime, see Section 7.2.2, "What Happens When You Use the Data Control Palette
to Create a Table".

10.9 Conditionally Displaying the Results Table on a Search Page
When the search form and results table are on the same page, the first time a user
accesses the page, the table displays all records from the iterator. You can make it so
that the results table does not display until the user actually executes the search.
Figure 10–12 shows the SRSearch page as it displays the first time a user accesses it.

Tip: When the search form and results table are on the same page,
the first time a user accesses the page, the table displays all records
from the iterator. You can make it so that the results table does not
display until the user actually executes the search. For procedures, see
Section 10.9, "Conditionally Displaying the Results Table on a Search
Page".

Conditionally Displaying the Results Table on a Search Page

Creating More Complex Pages 10-27

Figure 10–12 Hidden Results Table for a Search Page

Once the user executes a search, the results table displays, as shown in Figure 10–13.

Figure 10–13 Results Table Displayed for a Search Page

10.9.1 How to Add Conditional Display Capabilities
To conditionally display the results table, you must enter an EL expression on the UI
component (either the table itself or another component that holds the table
component), that evaluates to whether this is the first time the user has accessed the
search page. A field on a managed bean holds the value used in the expression.

To conditionally display the results table:
1. Create a search form and results table on the same page. For procedures, see

Section 10.8, "Creating Search Pages".

2. Create a flag on a managed bean that will be set when the user accesses the page
for the first time. For example, the userState managed bean in the SRDemo

Conditionally Displaying the Results Table on a Search Page

10-28 Oracle Application Development Framework Developer’s Guide

application contains the SEARCH_FIRSTTIME_FLAG parameter. An EL expression
on the page needs to know the value of this parameter to determine whether or
not to render the page (see step 4). When the bean is instantiated for the EL
expression, the isSearchFirstTime method then checks that field. If it is null,
it sets the value to True. For information about creating managed beans, see
Section 10.2, "Using a Managed Bean to Store Information"

3. On the JSF page, insert a setActionListener component into the command
component used to execute this search. Set the from attribute to #{false}. Set
the to attribute to the field on the managed bean created in step two. This will set
that field to false whenever the button is clicked. For more information about
using the setActionListener component, see Section 10.4, "Setting Parameter
Values Using a Command Component".

Example 10–18 shows the code for the Search button on the SRSearch page.

Conditionally Displaying the Results Table on a Search Page

Creating More Complex Pages 10-29

Example 10–18 Using a setActionListener Component to Set a Value

<af:commandButton actionListener="#{bindings.findServiceRequestSearch.execute}"
 text="#{res['srsearch.searchLabel']}">
 <af:setActionListener from="#{false}"
 to="#{userState.searchFirstTime}"/>
</af:commandButton>

4. On the JSF page, use an EL expression as the value of the Rendered attribute so
that the UI component (the table or the UI component holding the table) only
renders when the variable is a certain value.

Example 10–19 shows the EL expression used for the value for the Rendered
attribute of the panelGroup component on the SRSearch page.

Example 10–19 JSF Code to Conditionally Display the Search Results Table

<af:panelGroup rendered="#{!userState.searchFirstTime}">

This EL expression causes the panelGroup component to render only if the
searchFirstTime flag has a value of False.

10.9.2 What Happens When you Conditionally Display the Results Table
When you use a managed bean to hold a value, other objects can both set the value
and access the value. For example, similar to passing parameter values, you can use
the setActionListener component to set values on a managed bean that can then
be accessed by an EL expression on the rendered attribute of a component.

For example, when a user accesses the SRSearch page for the first time, the following
happens:

■ Because the panelGroup component that holds the table contains an EL
expression for it’s rendered attribute, and the EL expression references the
userState bean, that bean is instantiated.

■ Because the user has not accessed page, the SEARCH_FIRSTTIME_FLAG field on
the userState bean has not yet been set, and therefore has a value of null

■ Because the value is null, the isSearchFirstTime method on that bean sets
the value to true.

■ The EL expression is evaluated, and because he SEARCH_FIRSTTIME_FLAG field
is true, the SRSearch page displays without rendering the panel group, including
the nested table.

■ When the user enters search criteria and clicks the Search button, the associated
setActionListener component sets the searchFirstTime value on the
userState bean to false.

■ Because there is no outcome defined for the command button, the user stays on
the same page.

■ Because the searchFirstTime value is now set to false, when the page
rerenders with the results, the panelGroup component displays the table with the
result.

Conditionally Displaying the Results Table on a Search Page

10-30 Oracle Application Development Framework Developer’s Guide

Using Complex UI Components 11-1

11
Using Complex UI Components

This chapter describes how to use ADF Faces components to create some of the
functionality in the SRDemo application.

This chapter includes the following sections:

■ Section 11.1, "Introduction to Complex UI Components"

■ Section 11.2, "Using Dynamic Menus for Navigation"

■ Section 11.3, "Using Popup Dialogs"

■ Section 11.4, "Enabling Partial Page Rendering"

■ Section 11.5, "Creating a Multipage Process"

■ Section 11.6, "Providing File Upload Capability"

■ Section 11.7, "Creating Databound Dropdown Lists"

■ Section 11.8, "Creating a Databound Shuttle"

11.1 Introduction to Complex UI Components
ADF Faces components simplify user interaction. For example, inputFile enables
file uploading, and selectInputText has built-in dialog support for navigating to a
popup window and returning to the initial page with the selected value. While most of
the ADF Faces components can be used out-of-the-box with minimal Java coding,
some of them require extra coding in backing beans and configuring in
faces-config.xml.

While the SRDemo pages use a custom skin, the descriptions of the rendered UI
components and the illustrations in this chapter follow the default Oracle skin.

Read this chapter to understand:

■ How to create dynamic navigation menus using a menu model

■ How to create popup dialogs using command components

■ How to enable partial page rendering explicitly using partial triggers and events

■ How to create a multipage process using a process train model

■ How to provide file upload support

■ How to create lists with static and dynamic list of values, and navigation list
binding

■ How to create a shuttle for displaying and moving list items

Using Dynamic Menus for Navigation

11-2 Oracle Application Development Framework Developer’s Guide

11.2 Using Dynamic Menus for Navigation
The SRDemo pages use a panelPage component to lay out the page with a
hierarchical menu system for page navigation. Figure 11–1 shows the Management
page with the available menu choices from the SRDemo application’s menu hierarchy.
Typically, a menu hierarchy consists of global buttons, menu tabs, and a menu bar
beneath the menu tabs.

Figure 11–1 Dynamic Navigation Menus in the SRDemo Application

There are two ways to create a menu hierarchy, namely:

■ Manually by inserting individual menu item components into each menu
component, and marking the current menu items as "selected" on each page

■ Declaratively by binding each menu component to a menu model object and using
the menu model display the appropriate menu items, including setting the current
items as "selected"

For most of the pages you see in the SRDemo application, the declarative technique is
employed—using a menu model and managed beans—to dynamically generate the
menu hierarchy.

The panelPage component supports menu1 and menu2 facets for creating the
hierarchical, navigation menus that enable a user to go quickly to related pages in the
application.

The menu1 facet takes a menuTabs component, which lays out a series of menu items
rendered as menu tabs. Similarly, the menu2 facet takes a menuBar component that
renders menu items in a bar beneath the menu tabs.

Global buttons are buttons that are always available from any page in the application,
such as a Help button. The menuGlobal facet on panelPage takes a menuButtons
component that lays out a series of buttons.

11.2.1 How to Create Dynamic Navigation Menus
To display hierarchical menus dynamically, you build a menu model and bind the
menu components (such as menuTabs and menuBar) to the menu model. At runtime,
the menu model generates the hierarchical menu choices for the pages.

Note: The global buttons in the SRDemo application are not
generated dynamically, instead they are hard-coded into each page. In
some pages, cacheable fragments are used to contain the menuTabs and
menuBar components. For purposes of explaining how to create
dynamic menus in this chapter, global buttons are included and
caching is excluded in the descriptions and code samples. For
information about caching, see Chapter 15, "Optimizing Application
Performance with Caching".

Using Dynamic Menus for Navigation

Using Complex UI Components 11-3

To create dynamic navigation menus:
1. Create a menu model. (See Section 11.2.1.1, "Creating a Menu Model")

2. Create a JSF page for each menu choice or item in the menu hierarchy. (See
Section 11.2.1.2, "Creating the JSF Page for Each Menu Item")

3. Create one global navigation rule that has navigation cases for each menu item.
(See Section 11.2.1.3, "Creating the JSF Navigation Rules")

11.2.1.1 Creating a Menu Model
Use the oracle.adf.view.faces.model.MenuModel,
oracle.adf.view.faces.model.ChildPropertyTreeModel, and
oracle.adf.view.faces.model.ViewIdPropertyMenuModel classes to create
a menu model that dynamically generates a menu hierarchy.

To create a menu model:
1. Create a class that can get and set the properties for each item in the menu

hierarchy or tree.

For example, each item in the tree needs to have a label, a viewId, and an
outcome property. If items have children (for example, a menu tab item can have
children menu bar items), you need to define a property to represent the list of
children (for example, children property). To determine whether items are
shown or not shown on a page depending on security roles, define a boolean
property (for example, shown property). Example 11–1 shows the MenuItem class
used in the SRDemo application.

Example 11–1 MenuItem.java for All Menu Items

package oracle.srdemo.view.menu;
import java.util.List;
import oracle.adf.view.faces.component.core.nav.CoreCommandMenuItem;
public class MenuItem {
 private String _label = null;
 private String _outcome = null;
 private String _viewId = null;
 private String _destination = null;
 private String _icon = null;
 private String _type = CoreCommandMenuItem.TYPE_DEFAULT;
 private List _children = null;
 //extended security attributes
 private boolean _readOnly = false;
 private boolean _shown = true;
 public void setLabel(String label) {
 this._label = label;
 }
 public String getLabel() {
 return _label;
 }
 // getter and setter methods for remaining attributes omitted
}

Note: The type property defines a menu item as global or
nonglobal. Global items can be accessed from any page in the
application. For example, a Help button on a page is a global item.

Using Dynamic Menus for Navigation

11-4 Oracle Application Development Framework Developer’s Guide

2. Configure a managed bean for each menu item or page in the hierarchy, with
values for the properties that require setting at instantiation.

Each bean should be an instance of the menu item class you create in step 1.
Example 11–2 shows the managed bean code for all the menu items in the
SRDemo application. If an item has children items, the list entries are the children
managed beans listed in the order you desire. For example, the Management
menu tab item has two children.

Typically each bean should have none as its bean scope. The SRDemo application,
however, uses session scoped managed beans for the menu items because
security attributes are assigned to the menu items when they are created
dynamically, and the SRDemo application uses a session scoped UserInfo
bean to hold the user role information for the user currently logged in. The user
role information is used to determine which menu items a user sees when logged
in. For example, only users with the user role of ’manager’ see the Management
menu tab. JSF doesn’t let you reference a session scoped managed bean from a
none scoped bean; therefore, the SRDemo application uses all session scoped
managed beans for the menu system.

Example 11–2 Managed Beans for Menu Items in the faces-config.xml File

<!-- If you were to use dynamically generated global buttons -->
<!-- Root pages: Two global button menu items -->
<managed-bean>
 <managed-bean-name>menuItem_GlobalLogout</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.logout']}</value>
 </managed-property>
 <managed-property>
 <property-name>icon</property-name>
 <value>/images/logout.gif</value>
 </managed-property>
 <managed-property>
 <property-name>type</property-name>
 <value>global</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/SRLogout.jsp</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalLogout</value>
 </managed-property>
</managed-bean>

Using Dynamic Menus for Navigation

Using Complex UI Components 11-5

<managed-bean>
 <managed-bean-name>menuItem_GlobalHelp</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.help']}</value>
 </managed-property>
 <managed-property>
 <property-name>icon</property-name>
 <value>/images/help.gif</value>
 </managed-property>
 <managed-property>
 <property-name>type</property-name>
 <value>global</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/SRHelp.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalHelp</value>
 </managed-property>
</managed-bean>

<!-- Root pages: Four menu tabs -->
<!-- 1. My Service Requests menu tab item -->
<managed-bean>
 <managed-bean-name>menuItem_MyServiceRequests</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.my']}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/SRList.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalHome</value>
 </managed-property>
</managed-bean>

<!-- 2. Advanced Search menu tab item -->
<managed-bean>
 <managed-bean-name>menuItem_AdvancedSearch</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.advanced']}</value>
 </managed-property>
 <managed-property>
 <property-name>shown</property-name>
 <value>#{userInfo.staff}</value>
 </managed-property>

Using Dynamic Menus for Navigation

11-6 Oracle Application Development Framework Developer’s Guide

 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/staff/SRSearch.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalSearch</value>
 </managed-property>
</managed-bean>

<!-- 3. New Service Request menu tab item -->
<managed-bean>
 <managed-bean-name>menuItem_New</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.new']}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/SRCreate.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalCreate</value>
 </managed-property>
</managed-bean>

<!-- 4. Management menu tab item -->
<!-- This managed bean uses managed bean chaining for children menu items -->
<managed-bean>
 <managed-bean-name>menuItem_Manage</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.manage']}</value>
 </managed-property>
 <managed-property>
 <property-name>shown</property-name>
 <value>#{userInfo.manager}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/management/SRManage.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalManage</value>
 </managed-property>
 <managed-property>
 <property-name>children</property-name>
 <list-entries>
 <value-class>oracle.srdemo.view.menu.MenuItem</value-class>
 <value>#{subMenuItem_Manage_Reporting}</value>
 <value>#{subMenuItem_Manage_ProdEx}</value>
 </list-entries>
 </managed-property>
</managed-bean>

Using Dynamic Menus for Navigation

Using Complex UI Components 11-7

<!-- Children menu bar items for Management tab -->
<managed-bean>
 <managed-bean-name>subMenuItem_Manage_Reporting</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.manage.reporting']}</value>
 </managed-property>
 <managed-property>
 <property-name>shown</property-name>
 <value>#{userInfo.manager}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/management/SRManage.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalManage</value>
 </managed-property>
</managed-bean>
<managed-bean>
 <managed-bean-name>subMenuItem_Manage_ProdEx</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.manage.prodEx']}</value>
 </managed-property>
 <managed-property>
 <property-name>shown</property-name>
 <value>#{userInfo.manager}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/management/SRSkills.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>Skills</value>
 </managed-property>
</managed-bean>

Note: As you see in Figure 11–1, the Management menu tab has a
menu bar with two items: Overview and Technician Skills. As each
menu item has its own page or managed bean, so the two items are
represented by these managed beans, respectively: subMenuItem_
Manage_Reporting and subMenuItem_Manage_ProdEx. The
Management menu tab is represented by the menuItem_Manage
managed bean, which uses value binding expressions (such as
#{subMenuItem_Manage_ProdEx}) inside the list value elements
to reference the children managed beans.

Using Dynamic Menus for Navigation

11-8 Oracle Application Development Framework Developer’s Guide

3. Create a class that constructs a ChildPropertyTreeModel instance. The
instance represents the entire tree hierarchy of the menu system, which is later
injected into a menu model. Example 11–3 shows the MenuTreeModelAdapter
class used in the SRDemo application.

Example 11–3 MenuTreeModelAdapter.java for Holding the Menu Tree Hierarchy

package oracle.srdemo.view.menu;
import java.beans.IntrospectionException;
import java.util.List;
import oracle.adf.view.faces.model.ChildPropertyTreeModel;
import oracle.adf.view.faces.model.TreeModel;

public class MenuTreeModelAdapter {
 private String _propertyName = null;
 private Object _instance = null;
 private transient TreeModel _model = null;

 public TreeModel getModel() throws IntrospectionException
 {
 if (_model == null)
 {
 _model = new ChildPropertyTreeModel(getInstance(), getChildProperty());
 }
 return _model;
 }

 public String getChildProperty()
 {
 return _propertyName;
 }
 /**
 * Sets the property to use to get at child lists
 * @param propertyName
 */
 public void setChildProperty(String propertyName)
 {
 _propertyName = propertyName;
 _model = null;
 }

 public Object getInstance()
 {
 return _instance;
 }
 /**
 * Sets the root list for this tree.
 * @param instance must be something that can be converted into a List
 */
 public void setInstance(Object instance)
 {
 _instance = instance;
 _model = null;
 }

Using Dynamic Menus for Navigation

Using Complex UI Components 11-9

 /**
 * Sets the root list for this tree.
 * This is needed for passing a List when using the managed bean list
 * creation facility, which requires the parameter type of List.
 * @param instance the list of root nodes
 */
 public void setListInstance(List instance)
 {
 setInstance(instance);
 }
}

4. Configure a managed bean to reference the menu tree model class in step 3. The
bean should be instantiated with a childProperty value that is the same as the
property value that represents the list of children as created on the bean in step 1.

The bean should also be instantiated with a list of root pages (listed in the order
you desire) as the value for the listInstance property. The root pages are the
global button menu items and the first-level menu tab items, as shown in
Example 11–2. Example 11–4 shows the managed bean for creating the menu tree
model.

Example 11–4 Managed Bean for Menu Tree Model in the faces-config.xml File

<managed-bean>
 <managed-bean-name>menuTreeModel</managed-bean-name>
 <managed-bean-class>
 oracle.srdemo.view.menu.MenuTreeModelAdapter
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>childProperty</property-name>
 <value>children</value>
 </managed-property>
 <managed-property>
 <property-name>listInstance</property-name>
 <list-entries>
 <value-class>oracle.srdemo.view.menu.MenuItem</value-class>
 <value>#{menuItem_GlobalLogout}</value>
 <value>#{menuItem_GlobalHelp}</value>
 <value>#{menuItem_MyServiceRequests}</value>
 <value>#{menuItem_AdvancedSearch}</value>
 <value>#{menuItem_New}</value>
 <value>#{menuItem_Manage}</value>
 </list-entries>
 </managed-property>
</managed-bean>

5. Create a class that constructs a ViewIdPropertyMenuModel instance. The
instance creates a menu model from the menu tree model. Example 11–5 shows the
MenuModelAdapter class used in the SRDemo application.

Example 11–5 MenuModelAdapter.java

package oracle.srdemo.view.menu;
import java.beans.IntrospectionException;
import java.io.Serializable;
import java.util.List;
import oracle.adf.view.faces.model.MenuModel;
import oracle.adf.view.faces.model.ViewIdPropertyMenuModel;

Using Dynamic Menus for Navigation

11-10 Oracle Application Development Framework Developer’s Guide

public class MenuModelAdapter implements Serializable {
 private String _propertyName = null;
 private Object _instance = null;
 private transient MenuModel _model = null;
 private List _aliasList = null;

 public MenuModel getModel() throws IntrospectionException
 {
 if (_model == null)
 {
 ViewIdPropertyMenuModel model =
 new ViewIdPropertyMenuModel(getInstance(),
 getViewIdProperty());

 if(_aliasList != null && !_aliasList.isEmpty())
 {
 int size = _aliasList.size();
 if (size % 2 == 1)
 size = size - 1;

 for (int i = 0; i < size; i=i+2)
 {
 model.addViewId(_aliasList.get(i).toString(),
 _aliasList.get(i+1).toString());
 }
 }

 _model = model;
 }
 return _model;
 }

 public String getViewIdProperty()
 {
 return _propertyName;
 }
 /**
 * Sets the property to use to get at view id
 * @param propertyName
 */
 public void setViewIdProperty(String propertyName)
 {
 _propertyName = propertyName;
 _model = null;
 }

 public Object getInstance()
 {
 return _instance;
 }
 /**
 * Sets the treeModel
 * @param instance must be something that can be converted into a TreeModel
 */
 public void setInstance(Object instance)
 {
 _instance = instance;
 _model = null;
 }

Using Dynamic Menus for Navigation

Using Complex UI Components 11-11

 public List getAliasList()
 {
 return _aliasList;
 }
 public void setAliasList(List aliasList)
 {
 _aliasList = aliasList;
 }
}

6. Configure a managed bean to reference the menu model class in step 5. This is the
bean to which all the menu components on a page are bound.

The bean should be instantiated with the instance property value set to the
model property of the menu tree model bean configured in step 4. The
instantiated bean should also have the viewIdProperty value set to the viewId
property on the bean created in step 1. Example 11–6 shows the managed bean
code for creating the menu model.

Example 11–6 Managed Bean for Menu Model in the faces-config.xml File

<!-- create the main menu menuModel -->
<managed-bean>
 <managed-bean-name>menuModel</managed-bean-name>
 <managed-bean-class>
 oracle.srdemo.view.menu.MenuModelAdapter</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>viewIdProperty</property-name>
 <value>viewId</value>
 </managed-property>
 <managed-property>
 <property-name>instance</property-name>
 <value>#{menuTreeModel.model}</value>
 </managed-property>
</managed-bean>

11.2.1.1.1 What You May Need to Know About Chaining Managed Beans

By using value binding expressions to chain managed bean definitions, you can create
a tree-like menu system instead of a flat structure. The order of the individual
managed bean definitions in faces-config.xml does not matter, but the order of
the children list-entries in a parent bean should be in the order you want the
menu choices to appear.

When you chain managed bean definitions together, the bean scopes must be
compatible. Table 11–1 lists the compatible bean scopes.

Table 11–1 Combinations of Managed Bean Scopes Allowed

A bean of this scope... Can chain with beans of these scopes

none none

application none, application

session none, application, session

request none, application, session, request

Using Dynamic Menus for Navigation

11-12 Oracle Application Development Framework Developer’s Guide

11.2.1.1.2 What You May Need to Know About Accessing Resource Bundle Strings

The String resources for all labels in the SRDemo application are contained in a
resource bundle. This resource bundle is configured in faces-config.xml. As
described earlier, each menu item is defined as a session scoped managed bean, and
the various attributes of a menu item (such as its type and label) are defined through
managed bean properties. For the menu item managed bean to access the label to use
from the resource bundle, you need to configure a managed bean that provides the
access to the bundle.

In the SRDemo application, the ResourceAdapter class exposes the resource bundle
within EL expressions via the resources managed bean. Example 11–7 shows the
ResourceAdapter class, and the JSFUtils.getStringFromBundle() method
that retrieves a String from the bundle.

Example 11–7 Part of ResourceAdapter.java and Part of JSFUtils.java

package oracle.srdemo.view.resources;
import oracle.srdemo.view.util.JSFUtils;
/**
 * Utility class that allows us to expose the specified resource bundle within
 * general EL
 */
public class ResourceAdapter implements Map {

 public Object get(Object resourceKey) {
 return JSFUtils.getStringFromBundle((String)resourceKey);
 }
 // Rest of file omitted from here
}
...
/** From JSFUtils.java */
package oracle.srdemo.view.util;
import java.util.MissingResourceException;
import java.util.ResourceBundle;
...
public class JSFUtils {
 private static final String NO_RESOURCE_FOUND = "Missing resource: ";
 /**
 * Pulls a String resource from the property bundle that
 * is defined under the application’s message-bundle element in
 * faces-config.xml. Respects Locale.
 * @param key
 * @return Resource value or placeholder error String
 */
 public static String getStringFromBundle(String key) {
 ResourceBundle bundle = getBundle();
 return getStringSafely(bundle, key, null);
 }

Using Dynamic Menus for Navigation

Using Complex UI Components 11-13

 /*
 * Internal method to proxy for resource keys that don't exist
 */
 private static String getStringSafely(ResourceBundle bundle, String key,
 String defaultValue) {
 String resource = null;
 try {
 resource = bundle.getString(key);
 } catch (MissingResourceException mrex) {
 if (defaultValue != null) {
 resource = defaultValue;
 } else {
 resource = NO_RESOURCE_FOUND + key;
 }
 }
 return resource;
 }
//Rest of file omitted from here
}

Example 11–8 shows the resources managed bean code that provides the access for
other managed beans to the String resources.

Example 11–8 Managed Bean for Accessing the Resource Bundle Strings

<!-- Resource bundle -->
<application>
 <message-bundle>oracle.srdemo.view.resources.UIResources</message-bundle>
 ...
</application>

<!-- Managed bean for ResourceAdapater class -->
<managed-bean>
 <managed-bean-name>resources</managed-bean-name>
 <managed-bean-class>
 oracle.srdemo.view.resources.ResourceAdapter</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
</managed-bean>

The resources managed bean defines a Map interface onto the resource bundle that
is defined in faces-config.xml. The menu item labels automatically pick up the
correct language strings.

11.2.1.2 Creating the JSF Page for Each Menu Item
Each menu item (whether it is a menu tab item, menu bar item, or global button) has
its own page. To display the available menu choices on a page, bind the menu
components (such as menuTabs, menuBar, or menuButtons) to the menu model.
Example 11–9 shows the menuTabs component code that binds the component to a
menu model.

Tip: The menu model is built when it is first referenced. This means
it is not rebuilt if the browser language is changed within a single
session.

Using Dynamic Menus for Navigation

11-14 Oracle Application Development Framework Developer’s Guide

Example 11–9 MenuTabs Component Bound to a Menu Model

<af:panelPage title="#{res['srmanage.pageTitle']}"
 binding="#{backing_SRManage.panelPage1}"
 id="panelPage1">
 <f:facet name="menu1">
 <af:menuTabs value="#{menuModel.model}"...>
 ...
 </af:menuTabs>
 </f:facet>
 ...
</af:panelPage>

Each menu component has a nodeStamp facet, which takes one commandMenuItem
component, as shown in Example 11–10. By using a variable and binding the menu
component to the model, you need only one commandMenuItem component to
display all items in a menu, which is accomplished by using an EL expression similar
to #{var.label} for the text value, and #{var.getOutcome} for the action
value on the commandMenuItem component. It is the commandMenuItem component
that provides the actual label you see on a menu item, and the navigation outcome
when the menu item is activated.

Example 11–10 NodeStamp Facet and CommandMenuItem Component

<af:panelPage title="#{res['srmanage.pageTitle']}"
 binding="#{backing_SRManage.panelPage1}"
 id="panelPage1">
 <f:facet name="menu1">
 <af:menuTabs var="menuTab"
 value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuTab.label}"
 action="#{menuTab.getOutcome}"
 .../>
 </f:facet>
 </af:menuTabs>
 </f:facet>
 ...
</af:panelPage>

Whether a menu item renders on a page is determined by the security role of the
current user logged in. For example, only users with the manager role see the
Management menu tab. The rendered and disabled attributes on a
commandMenuItem component determine whether a menu item should be rendered
or disabled.

Following along with the MenuItem class in Example 11–1: For global items, bind the
rendered attribute to the variable's type property and set it to global. For
nonglobal items, bind the rendered attribute to the variable's shown property and
the type property, and set the type property to default. For nonglobal items, bind
also the disabled attribute to the variable’s readOnly property. Example 11–11
shows how this is done for menuTabs (a nonglobal component) and menuButtons (a
global component).

Using Dynamic Menus for Navigation

Using Complex UI Components 11-15

Example 11–11 Rendered and Disabled Menu Item Components

<af:menuTabs var="menuTab" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuTab.label}"
 action="#{menuTab.getOutcome}"
 rendered="#{menuTab.shown and
 menuTab.type=='default'}"
 disabled="#{menuTab.readOnly}"/>
 </f:facet>
</af:menuTabs>
...
<af:menuButtons var="menuOption" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuOption.label}"
 action="#{menuOption.getOutcome}"
 rendered="#{menuOption.type=='global'}"
 icon="#{menuOption.icon}"/>
 </f:facet>
</af:menuButtons>

You can use any combination of menus you desire in an application. For example, you
could use only menu bars, without any menu tabs. To let ADF Faces know the start
level of your menu hierarchy, you set the startDepth attribute on the menu
component. Based on a zero-based index, the possible values of startDepth are 0, 1,
and 2, assuming three levels of menus are used. If startDepth is not specified, it
defaults to zero (0).

If an application uses global menu buttons, menu tabs, and menu bars: A global
menuButtons component always has a startDepth of zero. Since menu tabs are the
first level, the startDepth for menuTabs is zero as well. The menuBar component
then has a startDepth value of 1. Example 11–12 shows part of the menu code for a
panelPage component.

Example 11–12 PanelPage Component with Menu Facets

<af:panelPage title="#{res['srmanage.pageTitle']}">
 <f:facet name="menu1">
 <af:menuTabs var="menuTab" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuTab.label}"
 action="#{menuTab.getOutcome}"
 rendered="#{menuTab.shown and
 menuTab.type=='default'}"
 disabled="#{menuTab.readOnly}"/>
 </f:facet>
 </af:menuTabs>
 </f:facet>
 <f:facet name="menu2">
 <af:menuBar var="menuSubTab" startDepth="1"
 value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuSubTab.label}"
 action="#{menuSubTab.getOutcome}"
 rendered="#{menuSubTab.shown and
 menuSubTab.type=='default'}"
 disabled="#{menuSubTab.readOnly}"/>
 </f:facet>
 </af:menuBar>
 </f:facet>

Using Dynamic Menus for Navigation

11-16 Oracle Application Development Framework Developer’s Guide

 <f:facet name="menuGlobal">
 <af:menuButtons var="menuOption" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuOption.label}"
 action="#{menuOption.getOutcome}"
 rendered="#{menuOption.type=='global'}"
 icon="#{menuOption.icon}"/>
 </f:facet>
 </af:menuButtons>
 </f:facet>
 ...
</af:panelPage>

11.2.1.2.1 What You May Need to Know About the PanelPage and Page Components

Instead of using a panelPage component and binding each menu component on the
page to a menu model object, you can use the page component with a menu model.
By value binding the page component to a menu model, as shown in the following
code snippet, you can take advantage of the more flexible rendering capabilities of the
page component. For example, you can easily change the look and feel of menu
components by creating a new renderer for the page component. If you use the
panelPage component, you need to change the renderer for each of the menu
components.

<af:page title="Title 1" var="node" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{node.label}"
 action="#{node.getOutcome}"
 type="#{node.type}"/>
 </f:facet>
</af:page>

Because a menu model dynamically determines the hierarchy (that is, the links that
appear in each menu component) and also sets the current items in the focus path as
"selected," you can use practically the same code on each page.

11.2.1.3 Creating the JSF Navigation Rules
Create one global navigation rule that has navigation cases for each first-level and
global menu item. Children menu items are not included in the global navigation rule.
For menu items that have children menu items (for example, the Management menu
tab has children menu bar items), create a navigation rule with all the navigation cases
that are possible from the parent item, as shown in Example 11–13.

Tip: If your menu system uses menu bars as the first level, then the
startDepth on menuBar should be set to zero, and so on.

Using Dynamic Menus for Navigation

Using Complex UI Components 11-17

Example 11–13 Navigation Rules for a Menu System in the faces-config.xml File

<navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>GlobalHome</from-outcome>
 <to-view-id>/app/SRList.jspx</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>GlobalSearch</from-outcome>
 <to-view-id>/app/staff/SRSearch.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>GlobalCreate</from-outcome>
 <to-view-id>/app/SRCreate.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>GlobalManage</from-outcome>
 <to-view-id>/app/management/SRManage.jspx</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>GlobalLogout</from-outcome>
 <to-view-id>/app/SRLogout.jspx</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>GlobalAbout</from-outcome>
 <to-view-id>/app/SRAbout.jspx</to-view-id>
 </navigation-case>
</navigation-rule>
<!-- Navigation rule for Management menu tab with children items -->
<navigation-rule>
 <from-view-id>/app/management/SRManage.jspx</from-view-id>
 <navigation-case>
 <from-outcome>Skills</from-outcome>
 <to-view-id>/app/management/SRSkills.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

11.2.2 What Happens at Runtime
MenuModelAdapter constructs the menu model, which is a
ViewIdPropertyMenuModel instance, via the menuModel managed bean. When the
menuTreeModel bean is requested, this automatically triggers the creation of the
chained beans menuItem_GlobalLogout, menuItem_GlobalHelp, menuItem_
MyServiceRequests, and so on. The tree of menu items is injected into the menu
model. The menu model provides the model that correctly highlights and enables the
items on the menus as you navigate through the menu system.

The individual menu item managed beans (for example, menuItem_
MyServiceRequests) are instantiated with values for label, viewId, and
outcome that are used by the menu model to dynamically generate the menu items.
The default JSF actionListener mechanism uses the outcome values to handle the
page navigation.

Each menu component has a nodeStamp facet, which is used to stamp the different
menu items in the menu model. The commandMenuItem component housed within
the nodeStamp facet provides the text and action for each menu item.

Using Dynamic Menus for Navigation

11-18 Oracle Application Development Framework Developer’s Guide

Each time nodeStamp is stamped, the data for the current menu item is copied into an
EL reachable property. The name of this property is defined by the var attribute on the
menu component that houses the nodeStamp facet. Once the menu has completed
rendering, this property is removed (or reverted back to its previous value). In
Example 11–14, the data for each menu bar item is placed under the EL property
menuSubTab. The nodeStamp displays the data for each item by getting further
properties from the menuSubTab property.

Example 11–14 MenuBar Component Bound to a Menu Model

<af:menuBar var="menuSubTab" startDepth="1"
 value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuSubTab.label}"
 action="#{menuSubTab.getOutcome}"
 rendered="#{menuSubTab.shown and
 menuSubTab.type=='default'}"
 disabled="#{menuSubTab.readOnly}"/>
 </f:facet>
</af:menuBar>

By binding a menu component to a menu model and using a variable to represent a
menu item, you need only one commandMenuItem component to display all menu
items at that hierarchy level, allowing for more code reuse between pages, and is much
less error prone than manually inserting a commandMenuItem component for each
item. For example, if menu is the variable, then EL expressions such as
#{menu.label} and #{menu.getOutcome} specify the text and action values
for a commandMenuItem component.

The menu model in conjunction with nodeStamp controls whether a menu item is
rendered as selected. As described earlier, a menu model is created from a tree model,
which contains viewId information for each node. ViewIdPropertyMenuModel,
which is an instance of MenuModel, uses the viewId of a node to determine the focus
rowKey. Each item in the menu model is stamped based on the current rowKey. As
the user navigates and the current viewId changes, the focus path of the model also
changes and a new set of items is accessed. MenuModel has a method
getFocusRowKey() that determines which page has focus, and automatically
renders a node as selected if the node is on the focus path.

11.2.3 What You May Need to Know About Menus
Sometimes you might want to create menus manually instead of using a menu model.

The first-level menu tab My Service Requests has one second-level menu bar with
several items, as illustrated in Figure 11–2. From My Service Requests, you can view
open, pending, closed, or all service requests, represented by the first, second, third,
and fourth menu bar item from the left, respectively. Each view is actually generated
from the SRList.jspx page.

Figure 11–2 Menu Bar Items on My Service Requests Page (SRList.jspx)

Using Popup Dialogs

Using Complex UI Components 11-19

In the SRList.jspx page, instead of binding the menuBar component to a menu
model and using a nodeStamp to generate the menu items, you use individual
children commandMenuItem components to display the menu items because the
command components require a value to determine the type of requests to navigate to
(for example, open, pending, closed, or all service requests). Example 11–15 shows part
of the code for the menuBar component used in the SRList.jspx page.

Example 11–15 MenuBar Component with Children CommandMenuItem Components

<af:menuBar>
 <af:commandMenuItem text="#{res['srlist.menubar.openLink']}"
 disabled="#{!bindings.findServiceRequests.enabled}"
 selected="#{userState.listModeOpen}"
 actionListener="#{bindings.findServiceRequests.execute}">
 <af:setActionListener from="#{'Open'}"
 to="#{userState.listMode}"/>
 </af:commandMenuItem>
 <af:commandMenuItem text="#{res['srlist.menubar.pendingLink']}"
 disabled="#{!bindings.findServiceRequests.enabled}"
 selected="#{userState.listModePending}"
 actionListener="#{bindings.findServiceRequests.execute}"
 <af:setActionListener from="#{'Pending'}"
 to="#{userState.listMode}"/>
 </af:commandMenuItem>
 ...
 <af:commandMenuItem text="#{res['srlist.menubar.allRequests']}"
 selected="#{userState.listModeAll}"
 disabled="#{!bindings.findServiceRequests.enabled}"
 actionListener="#{bindings.findServiceRequests.execute}">
 <af:setActionListener from="#{'%'}"
 to="#{userState.listMode}"/>
 </af:commandMenuItem>
 ...
</af:menuBar>

The af:setActionListener tag, which declaratively sets a value on an
ActionSource component before navigation, passes the correct list mode value to
the userState managed bean. The session scoped userState managed bean
stores the current list mode of the page.

When the commandMenuItem component is activated, the findServiceRequests
method executes with the list mode value, and returns a collection that matches the
value. The commandMenuItem components also use convenience functions in the
userSystemState bean to evaluate whether the menu item should be marked as
selected or not.

11.3 Using Popup Dialogs
Sometimes you might want to display a new page in a separate popup dialog instead
of displaying it in the same window containing the current page. In the popup dialog,
you might let the user enter or select information, and then return to the original page
to use that information. Ordinarily, you would need to use JavaScript to launch the
popup dialog and manage the process, and create code for managing cases where
popup dialogs are not supported on certain client devices such as a PDA. With the
dialog framework, ADF Faces has made it easy to launch and manage popup dialogs
and processes without using JavaScript.

Using Popup Dialogs

11-20 Oracle Application Development Framework Developer’s Guide

Consider a simple application that requires users to log in to see their orders.
Figure 11–3 shows the page flow for the application, which consists of five
pages—login.jspx, orders.jspx, new_account.jspx, account_
details.jspx, and error.jspx.

Figure 11–3 Page Flow of a Dialog Sample Application

When an existing user logs in successfully, the application displays the Orders page,
which shows the user's orders, if there are any. When a user does not log in
successfully, the Error page displays in a popup dialog, as shown in Figure 11–4.

Figure 11–4 Error Page in a Popup Dialog

On the Error page there is a Cancel button. When the user clicks Cancel, the popup
dialog closes and the application returns to the Login page, as shown in Figure 11–5.

Figure 11–5 Login Page

Using Popup Dialogs

Using Complex UI Components 11-21

When a new user clicks the New User link on the Login page, the New Account page
displays in a popup dialog, as shown in Figure 11–6.

Figure 11–6 New Account Page in a Popup Dialog

After entering information such as first name and last name, the user then clicks the
Details button to display the Account Details page in the same popup dialog, as
shown in Figure 11–7. In the Account Details page, the user enters other information
and confirms a password for the new login account. There are two buttons on the
Account Details page—Cancel and Done.

Figure 11–7 Account Details Page in a Popup Dialog

If the new user decides not to proceed with creating a new login account and clicks
Cancel, the popup dialog closes and the application returns to the Login page. If the
new user clicks Done, the popup dialog closes and the application returns to the Login
page where the Username field is now populated with the user’s first name, as shown
in Figure 11–8. The new user can then proceed to enter the new password and log in
successfully.

Figure 11–8 Login Page With the Username Field Populated

Using Popup Dialogs

11-22 Oracle Application Development Framework Developer’s Guide

11.3.1 How to Create Popup Dialogs
To make it easy to support popup dialogs in your application, ADF Faces has built in
the dialog functionality to components that implement ActionSource (such as
commandButton and commandLink). For ADF Faces to know whether to launch a
page in a popup dialog from an ActionSource component, four conditions must
exist:

■ There must be a JSF navigation rule with an outcome that begins with "dialog:".

■ The command component’s action outcome must begin with "dialog:".

■ The useWindow attribute on the command component must be "true".

■ The client device must support popup dialogs.

The page that displays in a popup dialog is an ordinary JSF page. But for purposes of
explaining how to implement popup dialogs in this chapter, a page that displays in a
popup dialog is called the dialog page, and a page from which the popup dialog is
launched is called the originating page. A dialog process starts when the originating page
launches a dialog (which can contain one dialog page or a series of dialog pages), and
ends when the user dismisses the dialog and is returned to the originating page.

The tasks for supporting popup dialogs in an application are:

1. Define a JSF navigation rule for launching a dialog.

2. Create the JSF page from which a dialog is launched.

3. Create the dialog page and return a dialog value.

4. Handle the return value.

5. Pass a value into a dialog.

The tasks can be performed in any order.

11.3.1.1 Defining a JSF Navigation Rule for Launching a Dialog
You manage the navigation into a popup dialog by defining a standard JSF navigation
rule with a special dialog: outcome. Using the dialog sample application shown in
Figure 11–3, three navigation outcomes are possible from the Login page:

■ Show the Orders page in the same window (successful login)

■ Show the Error dialog page in a popup dialog (login failure)

■ Show the New Account dialog page in a popup dialog (new user)

Example 11–16 shows the navigation rule for the three navigation cases from the Login
page (login.jspx).

Note: If useWindow is false or if the client device doesn’t support
popup dialogs, ADF Faces automatically shows the page in the
current window instead of using a popup—code changes are not
needed to facilitate this.

Using Popup Dialogs

Using Complex UI Components 11-23

Example 11–16 Dialog Navigation Rules in the faces-config.xml File

<navigation-rule>

 <!-- Originating JSF page -->
 <from-view-id>/login.jspx</from-view-id>

 <!-- Navigation case for the New Account dialog page (new user)-->
 <navigation-case>
 <from-outcome>dialog:newAccount</from-outcome>
 <to-view-id>/new_account.jspx</to-view-id>
 </navigation-case>

 <!-- Navigation case for the Error dialog page (upon login failure) -->
 </navigation-case>
 <from-outcome>dialog:error</from-outcome>
 <to-view-id>/error.jspx</to-view-id>
 </navigation-case>

 <!-- Navigation case for the Orders page (upon login success) -->
 </navigation-case>
 <from-outcome>orders</from-outcome>
 <to-view-id>/orders.jspx</to-view-id>
 </navigation-case>

</navigation-rule>

11.3.1.1.1 What Happens at Runtime

The dialog navigation rules on their own simply show the specified pages in the main
window. But when used with command components with dialog: action outcomes
and with useWindow attributes set to true, ADF Faces knows to launch the pages in
popup dialogs. This is described in the next step.

11.3.1.2 Creating the JSF Page That Launches a Dialog
In the originating page from which a popup dialog is launched, you can use either an
action method or a static action outcome on the ActionSource component. Whether
you specify a static action outcome or use an action method that returns an action
outcome, this action outcome must begin with dialog:.

The sample application uses an action method binding on the commandButton
component to determine programmatically whether to navigate to the Orders page or
the Error dialog page, and a static action outcome on the commandLink component to
navigate directly to the New Account dialog page. Both command components are on
the Login page. Example 11–17 shows the code for the Login commandButton
component.

Example 11–17 Login Button on the Login Page

af:commandButton id="cmdBtn"
 text="Login"
 action="#{backing_login.commandButton_action}"
 useWindow="true"
 windowHeight="200"
 windowWidth="500"
 partialSubmit="true"/>

Using Popup Dialogs

11-24 Oracle Application Development Framework Developer’s Guide

The attributes useWindow, windowHeight, and windowWidth are used in launching
pages in popup dialogs. These attributes are ignored if the client device doesn’t
support popup dialogs.

When useWindow="true" ADF Faces knows to launch the dialog page in a new
popup dialog. The windowHeight and windowWidth attributes specify the size of
the popup dialog.

The action attribute on commandButton specifies a reference to an action method in
the page’s backing bean, Login.java. The action method must return an outcome
string, which JSF uses to determine the next page to display by comparing the
outcome string to the outcomes in the navigation cases defined in
faces-config.xml. The code for this action method is shown in Example 11–18.

Example 11–18 Action Method Code for the Login Button

public String commandButton_action()
{
 String retValue;
 retValue = "orders";
 _cust = getListCustomer();
 if (_cust == null || !password.equals(_cust.getPassword()))
 {
 retValue = "dialog:error";
 }

 return retValue;
}

Example 11–19 shows the code for the New User commandLink component that uses
a static action outcome.

Example 11–19 New User Command Link on the Login Page

<af:commandLink id="cmdLink"
 text="New User?"
 action="dialog:newAccount"
 useWindow="true"
 partialSubmit="true"
 windowHeight="200"
 windowWidth="500" />

Instead of referencing an action method, the action attribute value is simply a static
outcome string that begins with dialog:.

11.3.1.2.1 What Happens at Runtime

ADF Faces uses the attribute useWindow="true" in conjunction with an action
outcome that begins with dialog: to determine whether to start a dialog process and
launch a page in a popup dialog (assuming dialog: navigation rules have been
defined in faces-config.xml).

Tip: Set the partialSubmit attribute on the commandButton
component to true. This prevents the originating page from
refreshing (and hence flashing momentarily) when the popup dialog
displays.

Using Popup Dialogs

Using Complex UI Components 11-25

If the action outcome does not begin with dialog:, ADF Faces does not start a
process or launch a popup dialog even when useWindow="true". Conversely, if the
action outcome begins with dialog:, ADF Faces does not launch a popup dialog if
useWindow="false" or if useWindow is not set, but ADF Faces does start a new
process.

If the client device does not support popup dialogs, ADF Faces shows the dialog page
in the current window after preserving all the state of the current page—you don’t
have to write any code to facilitate this.

When a command component is about to launch a dialog, it delivers a launch event
(LaunchEvent). The launch event stores information about the component that is
responsible for launching a popup dialog, and the root of the component tree to
display when the dialog process starts. A launch event can also pass a map of
parameters into the dialog. For more information, see Section 11.3.1.5, "Passing a Value
into a Dialog".

11.3.1.3 Creating the Dialog Page and Returning a Dialog Value
The dialog pages in our sample application are the Error page, the New Account page,
and the Account Details page. The dialog process for a new user actually contains two
pages: the New Account page and the Account Details page. The dialog process for a
user login failure contains just the Error page.

A dialog page is just like any other JSF page, with one exception. In a dialog page you
must provide a way to tell ADF Faces when the dialog process finishes, that is, when
the user dismisses the dialog. Generally, you do this programmatically or declaratively
via a command component. Example 11–20 shows how to accomplish this
programmatically via a Cancel button on the Error page.

Example 11–20 Cancel Button on the Error Page

<af:commandButton text="Cancel"
 actionListener="#{backing_error.cancel}" />

The actionListener attribute on commandButton specifies a reference to an action
listener method in the page’s backing bean, Error.java. The action listener method
processes the action event that is generated when the Cancel button is clicked. You call
the AdfFacesContext.returnFromDialog() method in this action listener
method, as shown in Example 11–21.

Example 11–21 Action Listener Method for the Cancel Button in a Backing Bean

public void cancel(ActionEvent actionEvent)
{
 AdfFacesContext.getCurrentInstance().returnFromDialog(null, null);
}

To accomplish the same declaratively on the Account Details dialog page, attach a
af:returnActionListener tag to the Cancel button component, as shown in
Example 11–22. The af:returnActionListener tag calls the returnFromDialog
method on the AdfFacesContext—no backing bean code is needed.

Note: The AdfFacesContext.returnFromDialog() method
returns null. This is all that is needed in the backing bean to handle
the Cancel action event.

Using Popup Dialogs

11-26 Oracle Application Development Framework Developer’s Guide

Example 11–22 Cancel Button on the Account Details Page

<af_commandButton text="Cancel" immediate="true">
 <af:returnActionListener/>
</af:commandButton>

No attributes are used with the af:returnActionListener tag. The immediate
attribute on commandButton is set to true: if the user clicks Cancel without entering
values in the required Password and Confirm Password fields, the default JSF
ActionListener can execute during the Apply Request Values phase instead of the
Invoke Application phase, thus bypassing input validation.

The New Account page and Account Details page belong in the same dialog process.
A dialog process can have as many pages as you desire, but you only need to call
AdfFacesContext.returnFromDialog() once.

The same af:returnActionListener tag or
AdfFacesContext.returnFromDialog() method can also be used to end a
process and return a value from the dialog. For example, when the user clicks Done on
the Account Details page, the process ends and returns the user input values.
Example 11–23 shows the code for the Done button.

Example 11–23 Done Button on the Account Details Page

<af:commandButton text="Done"
 actionListener="#{backing_new_account.done}" />

The actionListener attribute on commandButton specifies a reference to an action
listener method in the page’s backing bean, New_account.java. The action listener
method processes the action event that is generated when the Done button is clicked.
Example 11–24 shows the code for the action listener method, where the return value
is retrieved, and then returned via the AdfFacesContext.returnFromDialog()
method.

Example 11–24 Action Listener Method for the Done Button in a Backing Bean

public void done(ActionEvent e)
{
 AdfFacesContext afContext = AdfFacesContext.getCurrentInstance();
 String firstname = afContext.getProcessScope().get("firstname").toString();
 String lastname = afContext.getProcessScope().get("lastname").toString();
 String street = afContext.getProcessScope().get("street").toString();
 String zipCode = afContext.getProcessScope().get("zipCode").toString();
 String country = afContext.getProcessScope().get("country").toString();
 String password = afContext.getProcessScope().get("password").toString();
 String confirmPassword =
 afContext.getProcessScope().get("confirmPassword").toString();
 if (!password.equals(confirmPassword))
 {
 FacesMessage fm = new FacesMessage();
 fm.setSummary("Confirm Password");
 fm.setDetail("You've entered an incorrect password. Please verify that you've
 entered a correct password!");
 FacesContext.getCurrentInstance().addMessage(null, fm);
 }
 else
 {

Using Popup Dialogs

Using Complex UI Components 11-27

 //Get the return value
 Customer cst = new Customer();
 cst.setFirstName(firstname);
 cst.setLastName(lastname);
 cst.setStreet(street);
 cst.setPostalCode(zipCode);
 cst.setCountry(country);
 cst.setPassword(password);
 // And return it
 afContext.getCurrentInstance().returnFromDialog(cst, null);
 afContext.getProcessScope().clear();
 }
}

The AdfFacesContext.returnFromDialog() method lets you send back a return
value in the form of a java.lang.Object or a java.util.Map of parameters. You
don’t have to know where you’re returning the value to—ADF Faces automatically
takes care of it.

11.3.1.3.1 What Happens at Runtime

The AdfFacesContext.returnFromDialog() method tells ADF Faces when the
user dismisses the dialog. This method can be called whether the dialog page is shown
in a popup dialog or in the main window. If a popup dialog is used, ADF Faces
automatically closes it.

In the sample application, when the user clicks the Cancel button on the Error page or
Account Details page, ADF Faces calls AdfFacesContext.returnFromDialog(),
(which returns null), closes the popup dialog, and returns to the originating page.

The first page in the new user dialog process is the New Account page. When the
Details button on the New Account page is clicked, the application shows the Account
Details dialog page in the same popup dialog (because useWindow="false"), after
preserving the state of the New Account page.

When the Done button on the Account Details page is clicked, ADF Faces closes the
popup dialog and AdfFacesContext.returnFromDialog() returns cst to the
originating page.

When the dialog is dismissed, ADF Faces generates a return event (ReturnEvent).
The AdfFacesContext.returnFromDialog() method sends a return value as a
property of the return event. The return event is delivered to the return listener
(ReturnListener) that is registered on the command component that launched the
dialog (which would be the New User commandLink on the Login page). How you
would handle the return value is described in Section 11.3.1.4, "Handling the Return
Value".

Using Popup Dialogs

11-28 Oracle Application Development Framework Developer’s Guide

11.3.1.4 Handling the Return Value
To handle a return value, you register a return listener on the command component
that launched the dialog, which would be the New User link component on the Login
page in the sample application. Example 11–25 shows the code for the New User link
component.

Example 11–25 New User Command Link on the Login Page

<af:commandLink id="cmdLink" text="New User?"
 action="dialog:newAccount"
 useWindow="true" partialSubmit="true"
 returnListener="#{backing_login.handleReturn}"
 windowHeight="200" windowWidth="500" />

The returnListener attribute on commandLink specifies a reference to a return
listener method in the page’s backing bean, Login.java. The return listener method
processes the return event that is generated when the dialog is dismissed.
Example 11–26 shows the code for the return listener method that handles the return
value.

Example 11–26 Return Listener Method for the New User Link in a Backing Bean

public void handleReturn(ReturnEvent event)
{
 if (event.getReturnValue() != null)
 {
 Customer cst;
 String name;
 String psw;
 cst = (Customer)event.getReturnValue();
 name = cst.getFirstName();
 psw = cst.getPassword();
 CustomerList.getCustomers().add(cst);
 inputText1.setSubmittedValue(null);
 inputText1.setValue(name);
 inputText2.setSubmittedValue(null);
 inputText2.setValue(psw);
 }
}

You use the getReturnValue() method to retrieve the return value, because the
return value is automatically added as a property of the ReturnEvent.

11.3.1.4.1 What Happens at Runtime

In the sample application, when ADF Faces delivers a return event to the return
listener registered on the commandLink component, the handleReturn() method is
called and the return value is processed accordingly. The new user is added to a
customer list, and as a convenience to the user any previously submitted values in the
Login page are cleared and the input fields are populated with the new information.

Using Popup Dialogs

Using Complex UI Components 11-29

11.3.1.5 Passing a Value into a Dialog
The AdfFacesContext.returnFromDialog() method lets you send a return
value back from a dialog. Sometimes you might want to pass a value into a dialog. To
pass a value into a dialog, you use a launch listener (LaunchListener).

In the sample application, a new user can enter a name in the Username field on the
Login page, and then click the New User link. When the New Account dialog page
displays in a popup dialog, the First Name input field is automatically populated with
the name that was entered in the Login page. To accomplish this, you register a launch
listener on the command component that launched the dialog (which would be
commandLink). Example 11–27 shows the code for the commandLink component.

Example 11–27 Input Field and New User Command Link on the Login Page

<af:inputText label="Username" value="#{backing_login.username}"/>
<af:commandLink id="cmdLink" text="New User?"
 action="dialog:newAccount"
 useWindow="true" partialSubmit="true"
 launchListener="#{backing_login.handleLaunch}"
 returnListener="#{backing_login.handleReturn}"
 windowHeight="200" windowWidth="500" />

The LaunchListener attribute on commandLink specifies a reference to a launch
listener method in the page’s backing bean, Login.java. In the launch listener
method you use the getDialogParameters() method to add a parameter to a Map
using a key-value pair. Example 11–28 shows the code for the launch listener method.

Example 11–28 Launch Listener Method for the New User Command Link in a Backing
Bean

public void handleLaunch(LaunchEvent event)
{
 //Pass the current value of the field into the dialog
 Object usr = username;
 event.getDialogParameters().put("firstname", usr);
}
// Use by inputText value binding
public String username;
public String getUsername()
{
 return username;
}
public void setUsername(String username)
{
 this.username = username;
}

To show the parameter value in the New Account dialog page, use the ADF Faces
processScope to retrieve the key and value via a special EL expression in the format
#{processScope.someKey}, as shown in Example 11–29.

Example 11–29 Input Field on the New Account Page

<af:inputText label="First name" value="#{processScope.firstname}"/>

Note: You can use processScope with all JSF components, not only
with ADF Faces components.

Using Popup Dialogs

11-30 Oracle Application Development Framework Developer’s Guide

11.3.1.5.1 What Happens at Runtime

When a command component is about to launch a dialog (assuming all conditions
have been met), ADF Faces queues a launch event. This event stores information about
the component that is responsible for launching a dialog, and the root of the
component tree to display when the dialog process starts. Associated with a launch
event is a launch listener, which takes the launch event as a single argument and
processes the event as needed.

In the sample application, when ADF Faces delivers the launch event to the launch
listener registered on the commandLink component, the handleLaunch() method is
called and the event processed accordingly.

In ADF Faces, a process always gets a copy of all the values that are in the
processScope of the page from which a dialog is launched. When the
getDialogParameters() method has added parameters to a Map, those parameters
also become available in processScope, and any page in the dialog process can get
the values out of processScope by referring to the processScope objects via EL
expressions.

Unlike sessionScope, processScope values are visible only in the current "page
flow" or process. If the user opens a new window and starts navigating, that series of
windows has its own process; values stored in each window remain independent.
Clicking on the browser's Back button automatically resets processScope to its
original state. When you return from a process the processScope is back to the way
it was before the process started. To pass values out of a process you would use
AdfFacesContext.returnFromDialog(), sessionScope or
applicationScope.

11.3.2 How the SRDemo Popup Dialogs Are Created
The SRDemo application uses a popup dialog to:

■ Display a list of frequently asked questions (FAQ).

■ Select and assign a technician to an open service request.

In the Create New Service Request page (see Figure 11–13), when the user clicks the
Frequently Asked Questions link, the application displays a popup dialog showing
the FAQ list.

In the Edit Service Request page, when the user clicks the flashlight icon next to the
Assigned to label (see Figure 11–12), the application displays the Search for Staff
popup dialog. In the dialog (as shown in Figure 11–9), the user first makes a search
based on user role. Then in the results section, the user clicks the radio button next to a
name and clicks Select.

Using Popup Dialogs

Using Complex UI Components 11-31

Figure 11–9 Search for Staff Popup Dialog (SRStaffSearch.jspx)

After making a selection, the popup dialog closes and the application returns to the
Edit Service Request page where the Assigned to display-only fields are now updated
with the selected technician’s first name and last name, as shown in Figure 11–10.

Figure 11–10 Edit Service Request Page (SREdit.jspx) With an Assigned Request

To reiterate, the tasks for supporting a popup dialog are (not listed in any particular
order):

1. Create the JSF navigation rules with dialog: outcomes.

2. Create the page that launches the dialog via a dialog: action outcome.

3. Create the dialog page and return a value.

Using Popup Dialogs

11-32 Oracle Application Development Framework Developer’s Guide

4. Handle the return value.

Firstly, the JSF navigation rules for launching dialogs are shown in Example 11–30. The
navigation case for showing the dialog page SRStaffSearch.jspx is defined by the
dialog:StaffSearch outcome; the navigation case for showing the SRFaq.jspx
dialog page is defined by the dialog:FAQ outcome.

Example 11–30 Dialog Navigation Rules in the faces-config.xml File

<navigation-rule>
 <from-view-id>/app/staff/SREdit.jspx</from-view-id>
 ...
 <navigation-case>
 <from-outcome>dialog:StaffSearch</from-outcome>
 <to-view-id>/app/staff/SRStaffSearch.jspx</to-view-id>
 </navigation-case>
</navigation-rule>
<navigation-rule>
 <from-view-id>/app/SRCreate.jspx</from-view-id>
 <navigation-case>
 <from-outcome>dialog:FAQ</from-outcome>
 <to-view-id>/app/SRFaq.jspx</to-view-id>
 </navigation-case>
 ...
</navigation-rule>

Secondly, the pages that launch popup dialogs are SREdit.jspx and
SRCreate.jspx. In both pages the useWindow attribute on the commandLink
component is set to true, which is a precondition for ADF Faces to know that it has to
launch a popup dialog.

Example 11–31 shows the commandLink component on the page that launches the
SRStaffSearch.jspx dialog page. The commandLink component has the static
action outcome dialog:StaffSearch.

Example 11–31 CommandLink Component for Launching the SRStaffSearch Dialog
Page

<af:commandLink id="staffLOVLink" action="dialog:StaffSearch"
 useWindow="true" immediate="true"
 partialSubmit="true"
 returnListener="#{backing_SREdit.handleStaffLOVReturn}"..>
 <af:objectImage height="24" width="24"
 source="/images/searchicon_enabled.gif"/>
</af:commandLink>

Example 11–32 shows the commandLink component on the page that launches the
SRFaq.jspx dialog page. The commandLink component has the static action
outcome dialog:SRFaq.

Using Popup Dialogs

Using Complex UI Components 11-33

Example 11–32 CommandLink Component for Launching the SRFaq Dialog Page

<af:commandLink action="dialog:FAQ"
 text="#{res['srcreate.faqLink']}"
 useWindow="true"
 immediate="true"
 partialSubmit="true"/>

Thirdly, the dialog pages SRStaffSearch.jspx and SRFaq.jspx have to call the
AdfFacesContext.returnFromDialog() method to let ADF Faces know when
the user dismisses the dialogs. In SRStaffSearch.jspx, which uses a table
component with a tableSelectOne component to display the names for selection,
the AdfFacesContext.returnFromDialog() method is called when the user
clicks the Select commandButton component after selecting the radio button for a
technician in the table. The action attribute on commandButton is bound to the
selectButton_action action method in the page’s backing bean
(SRStaffSearch.java); the action method retrieves the selected row data from the
table, extracts the User object, and then returns the object via the
AdfFacesContext.returnFromDialog() method. Example 11–33 shows the code
snippets for the Select button component and its action method.

Example 11–33 Action Method for the Select Command Button

<af:tableSelectOne>
 <af:commandButton text="#{res['srstaffsearch.button.select']}"
 action="#{backing_SRStaffSearch.selectButton_action}"/>
</af:tableSelectOne>

...

...
public String selectButton_action() {

 //get row data from table
 JUCtrlValueBindingRef selectedRowData =
 (JUCtrlValueBindingRef)this.getResultsTable().getSelectedRowData();
 RowImpl row = (RowImpl)selectedRowData.getRow();
 User staffMember = (User)row.getDataProvider();

 // And return it
 AdfFacesContext.getCurrentInstance().returnFromDialog(staffMember, null);
 // no navigation to another page and thus null is returned
 return null;
}

Similarly in SRFaq.jspx, a commandLink component is used to close the dialog and
call the AdfFacesContext.returnFromDialog() method. The
af:returnActionListener tag calls the returnFromDialog method on the
AdfFacesContext—backing bean code is not needed. Example 11–34 shows the
code snippet for the commandLink. When the user dismisses the SRFaq.jspx popup
dialog, ADF Faces simply closes the dialog. No dialog return value is sent, so there’s
no need to handle a return value.

Example 11–34 CommandLink Component for Closing the SRFaq Popup Dialog

<af:commandLink text="#{res['srdemo.close']}">
 <af:returnActionListener/>
</af:commandLink>

Using Popup Dialogs

11-34 Oracle Application Development Framework Developer’s Guide

When the SRStaffSearch.jspx popup dialog is dismissed, a dialog return value
(that is, the selected row data) is sent as a property of the return event
(ReturnEvent). The return event is delivered to the return listener registered on the
commandLink component of the originating page SREdit.jspx, as shown in
Example 11–35. The returnListener attribute on commandLink is bound to the
handleStaffLOVReturn listener method in the page’s backing bean
(SREdit.java). The return listener method handles the return value from the
dismissed dialog. Example 11–35 also shows the code snippet for the
handleStaffLOVReturn listener method.

Example 11–35 Return Listener Method for Handling the Return Value

<af:commandLink id="staffLOVLink" action="dialog:StaffSearch"
 useWindow="true" immediate="true"
 partialSubmit="true"
 returnListener="#{backing_SREdit.handleStaffLOVReturn}"..>
 <af:objectImage height="24" width="24"
 source="/images/searchicon_enabled.gif"/>
</af:commandLink>
...
...
 public void handleStaffLOVReturn(ReturnEvent event) {
 //Get the return value from the pop up
 User returnedStaffMember = (User)event.getReturnValue();

 if (returnedStaffMember != null) {
 DCBindingContainer bc = (DCBindingContainer)getBindings();

 // Get the handle to the Service Request we are editing
 DCControlBinding thisSRId =
 (DCControlBinding)bc.getControlBinding("svrId");
 RowImpl srRowImpl = (RowImpl)thisSRId.getCurrentRow();
 ServiceRequest thisSR = (ServiceRequest)srRowImpl.getDataProvider();

 //See if a different user has been selected?
 User oldUser = thisSR.getAssignedTo();
 if ((oldUser == null) || (!oldUser.equals(returnedStaffMember))) {

 //Set the returned Staff member from the LOV
 thisSR.setAssignedTo(returnedStaffMember);

 //now re-execute the iterator to refresh the screen
 DCControlBinding accessorData =
 (DCControlBinding)bc.getControlBinding("assignedToFirstName");
 accessorData.getDCIteratorBinding().executeQuery();

 //Now reset the Assigned date
 ADFUtils.setPageBoundAttributeValue(getBindings(), "assignedDate",
 new Timestamp(System.currentTimeMillis()));

 //And get the data field to update with the new bound value
 this.getAssignedDate().resetValue();

 }
 }
 }

Enabling Partial Page Rendering

Using Complex UI Components 11-35

11.3.3 What You May Need to Know About ADF Faces Dialogs
The ADF Faces dialog framework has these known limitations:

■ Does not support the use of </redirect> in navigation rules that may launch
dialog pages in new popup dialogs. You can, however, use </redirect> in
navigation rules that launch dialog pages within the same window.

■ Cannot detect popup blockers. If you use popup dialogs in your web application,
tell your users to disable popup blocking for your site.

11.3.4 Other Information
The ADF Faces select input components (such as selectInputText and
selectInputDate) also have built-in dialog support. These components
automatically handle launching a page in a popup dialog, and receiving the return
event. For example, when you use selectInputText to launch a dialog, all you
have to do is to set the action attribute to a dialog: outcome, and specify the width
and height of the dialog. When the user dismisses the dialog, the return value from the
dialog is automatically used as the new value of the input component. You would still
need to define a JSF navigation rule with the dialog: outcome, create the dialog
page, and create the dialog page’s backing bean to handle the action events.

Besides being able to launch popup dialogs from action events, you can also launch
popup dialogs from value change events and poll events. For example, you can
programmatically launch a dialog (without a JSF navigation rule) by using the
AdfFacesContext.launchDialog() method in a value change listener method or
poll listener method.

If you’re a framework or component developer you can enable a custom renderer to
launch a dialog and handle a return value, or add LaunchEvent and ReturnEvent
events support to your custom ActionSource components. For details about the
DialogService API that you can use to implement dialogs, see the ADF Faces
Javadoc for oracle.adf.view.faces.context.DialogService. See also the
ADF Faces Developer’s Guide for further information about supporting dialogs in
custom components and renderers.

11.4 Enabling Partial Page Rendering
ADF Faces components use partial page rendering (PPR), which allows small areas of
a page to be refreshed without the need to redraw the entire page. PPR is the same as
AJAX-style browser user interfaces that update just parts of the page for a more
interactive experience. PPR is currently supported on the following browsers:

■ Internet Explorer 5.5 and above (Windows)

■ Mozilla 1.0/Netscape 7.0

On all other platforms, ADF Faces automatically uses full page rendering You don’t
need to disable PPR or write code to support both cases.

Most of the time you don’t have to do anything to enable PPR because ADF Faces
components have built-in support for PPR. For example, in the SRSearch.jspx page,
the Results section of the page uses a showOneTab component with two
showDetailItem components to let the user display either a summary view or detail
view of the search results. Figure 11–11 shows the Results section with the Summary
View selected. When the user clicks Detail View, only the portion of the page that is
below the Results title will refresh.

Enabling Partial Page Rendering

11-36 Oracle Application Development Framework Developer’s Guide

Figure 11–11 Search Page (SRSearch.jspx) with the Summary Result View Selected

At times you want to explicitly refresh parts of a page yourself. For example, you may
want an output component to display what a user has chosen or entered in an input
component, or you may want a command link or button to update another
component. Three main component attributes can be used to enable partial page
rendering:

■ autoSubmit: When the autoSubmit attribute of an input component (such as
inputText and selectOneChoice) or a table select component (such as
tableSelectOne) is set to true, and an appropriate action takes place (such as a
value change), the component automatically submits the form it is enclosed in. For
PPR, you might use this in conjunction with a listener attribute bound to a method
that performs some logic when an event based on the submit is launched.

■ partialSubmit: When the partialSubmit attribute of a command component
is set to true, the page partially submits when the button or link is clicked. You
might use this in conjunction with an actionListener method that performs
some logic when the button or link is clicked.

■ partialTriggers: All rendered components support the partialTriggers
attribute. The value of this attribute is one or more IDs of other trigger
components. When those trigger components are updated (for example through
an automatic submit or a partial submit), the target component is also updated.

11.4.1 How to Enable PPR
The SREdit.jspx page of the SRDemo application uses partial page submits and
partial triggers to support PPR.

Figure 11–12 shows the SREdit.jspx page with an unassigned service request. When
the user clicks the flashlight icon (which is a commandLink component with an
objectImage component), a popup dialog displays to allow the user to search and
select a name. After selecting a name, the popup dialog closes and the Assigned to
display-only fields (outputText components) and the date field below Status
(selectInputDate component) are refreshed with the appropriate values; other
parts of the edit page are not refreshed.

Enabling Partial Page Rendering

Using Complex UI Components 11-37

Figure 11–12 Edit Service Request Page (SREdit.jspx) with an Unassigned Request

To enable a command component to partially refresh another component:
1. On the trigger command component, set the id attribute to a unique value, and

set the partialSubmit attribute to true.

2. On the target component that you want to partially refresh when the trigger
command component is activated, set the partialTriggers attribute to the id
of the command component.

Example 11–36 shows the code snippets for the command and read-only output
components used in the SREdit.jspx page to illustrate PPR.

Example 11–36 Code for Enabling Partial Page Rendering Through a Partial Submit

<af:panelLabelAndMessage label="#{res['sredit.assignedTo.label']}">
 <af:panelHorizontal>
 <af:outputText value="#{bindings.assignedToFirstName.inputValue}"
 partialTriggers="staffLOVLink"/>
 <af:outputText value="#{bindings.assignedToLastName.inputValue}"
 partialTriggers="staffLOVLink"/>
 <af:commandLink id="staffLOVLink" action="dialog:StaffSearch"
 useWindow="true" immediate="true"
 partialSubmit="true"
 returnListener="#{backing_SREdit.handleStaffLOVReturn}"
 partialTriggers="status"
 disabled="#{bindings.ServiceRequeststatus.inputValue==2}">
 <af:objectImage height="24" width="24"
 source="/images/searchicon_enabled.gif"/>
 </af:commandLink>
 <f:facet name="separator">
 <af:objectSpacer width="4" height="10"/>
 </f:facet>
 </af:panelHorizontal>
</af:panelLabelAndMessage>

Tip: A component’s unique ID must be a valid XML name, that is,
you cannot use leading numeric values or spaces in the ID. JSF also
does not permit colons (:) in the ID.

Tip: The partialTriggers attribute on a target component can
contain the id of one or more trigger components. Use spaces to
separate multiple ids.

Creating a Multipage Process

11-38 Oracle Application Development Framework Developer’s Guide

11.4.2 What Happens at Runtime
ADF Faces command buttons and links can generate partial events. The
partialSubmit attribute on commandButton or commandLink determines
whether a partial page submit is used to perform an action or not. When
partialSubmit is true, ADF Faces performs the action through a partial page
submit. Thus you can use a command button or link to update a portion of a page,
without having to redraw the entire page upon a submit. By default the value of
partialSubmit is false, which means full page rendering is used in response to a
partial event. Full page rendering is also automatically used when partial page
rendering is not supported in the client browser or platform or when navigating to
another page.

In the example, the partialTriggers attributes on the Assigned to display-only
outputText components are set to the id of the commandLink component. When the
commandLink component fires a partial event, the output components (which are
listening for partial events from commandLink) know to refresh their values via
partial page rendering.

11.4.3 What You May Need to Know About PPR and Screen Readers
Screen readers do not reread the full page in a partial page request. PPR causes the
screen reader to read the page starting from the component that fired the partial
action. Hence, you should place the target components after the component that fires
the partial request; otherwise the screen reader would not read the updated targets.

11.5 Creating a Multipage Process
If you have a set of pages that should be visited in a particular order, consider using
the processTrain and processChoiceBar components to show the multipage
process. In the SRDemo application, the SRCreate.jspx and
SRCreateConfirm.jspx pages use a processTrain and processChoiceBar
component to let a user create a new service request.

When rendered, the processTrain component shows the total number of pages in
the process as well as the page where the user is currently at, and allows the user to
navigate between those pages. For example, Figure 11–13 shows the first page in the
create service request process, where the user selects one appliance from a listbox and
enters a description of the problem in a textbox. The number of nodes (circles) in the
train indicates the total number of predefined pages in the process; the solid node
indicates that the user is currently working on that page in the process. To go to the
next page in the process, the user clicks the active text link below the node.

Creating a Multipage Process

Using Complex UI Components 11-39

Figure 11–13 First Page of the Create New Service Request Process (SRCreate.jspx)

Note that the illustrations in this chapter use the Oracle skin and not the SRDemo skin.

The processChoiceBar component renders a dropdown menu for selecting a page
in the process, and where applicable, one or more buttons for navigating forward and
backward in the process.

On the first page in the create service request process, when the user clicks the
Confirm text link or the Continue button, or selects Confirm from the dropdown
menu, the application displays the second page of the process, as shown in
Figure 11–14.

Figure 11–14 Second Page of the Create New Service Request Process
(SRCreateConfirm.jspx)

From the second page, the user can return to the problem description page by clicking
Basic Problem Details in the train or clicking the Back button, or by selecting Basic
Problem Details from the dropdown menu.

Creating a Multipage Process

11-40 Oracle Application Development Framework Developer’s Guide

If done the user clicks Submit Request, and the application displays the Request
Submitted page, as shown in Figure 11–15.

Figure 11–15 Request Submitted Page (SRCreateDone.jspx)

11.5.1 How to Create a Process Train
To display a process train on each page, you bind the processTrain component to a
process train model. At runtime the train model dynamically creates the train for each
page in the process.

To create and use a process train:
1. Create a process train model. (See Section 11.5.1.1, "Creating a Process Train

Model")

2. Create the JSF page for each node in the train. (See Section 11.5.1.2, "Creating the
JSF Page for Each Train Node")

3. Create a navigation rule that has navigation cases for each node. (See
Section 11.5.1.3, "Creating the JSF Navigation Rules")

11.5.1.1 Creating a Process Train Model
Use the oracle.adf.view.faces.model.MenuModel class and the
oracle.adf.view.faces.model.ProcessMenuModel class to create a process
train model that dynamically generates a process train. The MenuModel class is the
same menu model mechanism that is used for creating menu tabs and menu bars, as
described in Section 11.2.1, "How to Create Dynamic Navigation Menus".

Creating a Multipage Process

Using Complex UI Components 11-41

To create a process train model:
1. Create a class that can get and set the properties for each node in the process train.

Each node in the train needs to have a label, a viewId and an outcome
property. Example 11–37 shows part of the MenuItem class used in the SRDemo
application.

Example 11–37 MenuItem.java for Process Train Nodes

package oracle.srdemo.view.menu;
public class MenuItem {
 private String _label = null;
 private String _outcome = null;
 private String _viewId = null;
 ...
 //extended security attributes
 private boolean _readOnly = false;
 private boolean _shown = true;
 public void setLabel(String label) {
 this._label = label;
 }

 public String getLabel() {
 return _label;
 }

// getter and setter methods for remaining attributes omitted
}

2. Configure a managed bean for each node in the train, with values for the
properties that require setting at instantiation.

Each bean should be an instance of the class you create in step 1. Example 11–38
shows the managed bean code for the process train nodes in
faces-config.xml.

Example 11–38 Managed Beans for Process Train Nodes in the faces-config.xml File

<!--First train node -->
<managed-bean>
 <managed-bean-name>createTrain_Step1</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srcreate.train.step1']}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/SRCreate.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalCreate</value>
 </managed-property>
</managed-bean>

Creating a Multipage Process

11-42 Oracle Application Development Framework Developer’s Guide

<!-- Second train node-->
<managed-bean>
 <managed-bean-name>createTrain_Step2</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srcreate.train.step2']}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/SRCreateConfirm.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>Continue</value>
 </managed-property>
</managed-bean>

3. Configure a managed bean that is an instance of a list with application as its
scope.

The list entries are the train node managed beans you create in step 2, listed in the
order that they should appear on the train. Example 11–39 shows the managed
bean code for creating the process train list.

Example 11–39 Managed Bean for Process Train List in the faces-config.xml File

<!-- create the list to pass to the train model -->
<managed-bean>
 <managed-bean-name>createTrainNodes</managed-bean-name>
 <managed-bean-class>java.util.ArrayList</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 <list-entries>
 <value-class>oracle.srdemo.view.menu.MenuItem</value-class>
 <value>#{createTrain_Step1}</value>
 <value>#{createTrain_Step2}</value>
 </list-entries>
</managed-bean>
4. Create a class to facilitate the construction of a ProcessMenuModel instance. This

class must have at least two properties, viewIdProperty and instance.

Example 11–40 shows the TrainModelAdapter class used in the SRDemo
application.

Creating a Multipage Process

Using Complex UI Components 11-43

Example 11–40 TrainModelAdapter.java for Holding the Process Train Nodes

package oracle.srdemo.view.menu;
import oracle.adf.view.faces.model.MenuModel;
import oracle.adf.view.faces.model.ProcessMenuModel;
...
public class TrainModelAdapter implements Serializable {
 private String _propertyName = null;
 private Object _instance = null;
 private transient MenuModel _model = null;
 private Object _maxPathKey = null;
 public MenuModel getModel() throws IntrospectionException {
 if (_model == null)
 {
 _model = new ProcessMenuModel(getInstance(),
 getViewIdProperty(),
 getMaxPathKey());
 }
 return _model;
 }
 public String getViewIdProperty() {
 return _propertyName;
 }
 /**
 * Sets the property to use to get at view id
 * @param propertyName
 */
 public void setViewIdProperty(String propertyName) {
 _propertyName = propertyName;
 _model = null;
 }
 public Object getInstance() {
 return _instance;
 }
 /**
 * Sets the treeModel
 * @param instance must be something that can be converted into a TreeModel
 */
 public void setInstance(Object instance) {
 _instance = instance;
 _model = null;
 }
 public Object getMaxPathKey()
 {
 return _maxPathKey;
 }
 public void setMaxPathKey(Object maxPathKey)
 {
 _maxPathKey = maxPathKey;
 }
}

If you wish to write your own menu model instead of using ProcessMenuModel,
you can use ProcessUtils to implement the PlusOne or MaxVisited behavior
for controlling page access. For information about how to control page access
using those process behaviors, see Section 11.5.1.1.1, "What You May Need to
Know About Controlling Page Access".

Creating a Multipage Process

11-44 Oracle Application Development Framework Developer’s Guide

5. Configure a managed bean to reference the class you create in step 4. This is the
bean to which the processTrain component is bound.

The bean should be instantiated to have the instance property value set to the
managed bean that creates the train list (as configured in step 3). The instantiated
bean should also have the viewIdProperty value set to the viewId property on
the bean created in step 1. Example 11–41 shows the managed bean code for
creating the process train model.

Example 11–41 Managed Bean for Process Train Model in the faces-config.xml File

<!-- create the train menu model -->
<managed-bean>
 <managed-bean-name>createTrainMenuModel</managed-bean-name>
 <managed-bean-class>
 oracle.srdemo.view.menu.TrainModelAdapter</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 <managed-property>
 <property-name>viewIdProperty</property-name>
 <value>viewId</value>
 </managed-property>
 <managed-property>
 <property-name>instance</property-name>
 <value>#{createTrainNodes}</value>
 </managed-property>
</managed-bean>

11.5.1.1.1 What You May Need to Know About Controlling Page Access

When you want to control the pages users can access based on the page they are
currently on, you can use one of two process scenarios provided by ADF Faces,
namely Max Visited or Plus One.

Suppose there are five pages or nodes in a process train, and the user has navigated
from page 1 to page 4 sequentially. At page 4 the user jumps back to page 2. Where the
user can go next depends on which process scenario is used.

In the Max Visited process, from the current page 2 the user can go back to page 1, go
ahead to page 3, or jump ahead to page 4. That is, the Max Visited process allows the
user to return to a previous page or advance to any page up to the furthest page
already visited. The user cannot jump ahead to page 5 from page 2 because page 5 has
not yet been visited.

Given the same situation, in the Plus One process the user can only go ahead to page 3
or go back to page 1. That is, the Plus One process allows the user to return to a
previous page or to advance one node in the train further than they are on currently.
The user cannot jump ahead to page 4 even though page 4 has already been visited.

If you were to use the Max Visited process, you would add code similar to the next
code snippet, for the createTrainMenuModel managed bean (see Example 11–41) in
faces-config.xml:

<managed-property>
 <property-name>maxPathKey</property-name>
 <value>TRAIN_DEMO_MAX_PATH_KEY</value>
</managed-property>

ADF Faces knows to use the Max Visited process because a maxPathKey value is
passed into the ProcessMenuModel (see Example 11–40).

Creating a Multipage Process

Using Complex UI Components 11-45

The Create New Service Request process uses the Plus One process because
faces-config.xml doesn’t have the maxPathKey managed-property setting, thus
null is passed for maxPathKey. When null is passed, ADF Faces knows to use the
PlusOne process.

The process scenarios also affect the immediate and readOnly attributes of the
command component used within a processTrain component. For information, see
Section 11.5.1.2.1, "What You May Need to Know About the Immediate and ReadOnly
Attributes".

11.5.1.2 Creating the JSF Page for Each Train Node
Each train node has its own page. To display the process train, on each page bind the
processTrain component to the process train model, as shown in Example 11–42.

A processTrain component is usually inserted in the location facet of a
panelPage or page component. Like a menu component, a processTrain
component has a nodeStamp facet that accepts one commandMenuItem component.
It is the commandMenuItem component that provides the actual label you see below a
train node, and the navigation outcome when the label is activated.

Example 11–42 ProcessTrain Component in the SRCreate.jspx File

<af:panelPage..>
 ...
 <f:facet name="location">
 <af:processTrain var="train"
 value="#{createTrainMenuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{train.label}"
 action="#{train.getOutcome}"
 readOnly="#{createTrainMenuModel.model.readOnly}"
 immediate="false"/>
 </f:facet>
 </af:processTrain>
 </f:facet>
 ...
</af:panelPage>

Typically, you use a processTrain component with a processChoiceBar
component. The processChoiceBar component, which is also bound to the same
process train model, gives the user additional navigation choices for stepping through
the multipage process. Example 11–43 shows the code for the processChoiceBar
component in the SRCreate.jspx page. A processChoiceBar component is
usually inserted in the actions facet of a panelPage or page component.

Note: You can use the same code for the process train on each page
because the process train model dynamically determines the train
node links, the order of the nodes, and whether the nodes are enabled,
disabled, or selected.

Creating a Multipage Process

11-46 Oracle Application Development Framework Developer’s Guide

Example 11–43 ProcessChoiceBar Component in the SRCreate.jspx File

<af:panelPage ..>
 <f:facet name="actions">
 <af:panelButtonBar>
 <af:commandButton text="#{res['srdemo.cancel']}"
 action="#{backing_SRCreate.cancelButton_action}"
 immediate="true"/>
 <af:processChoiceBar var="choice"
 value="#{createTrainMenuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{choice.label}"
 action="#{choice.getOutcome}"
 readOnly="#{createTrainMenuModel.model.readOnly}"
 immediate="false"/>
 </f:facet>
 </af:processChoiceBar>
 </af:panelButtonBar>
 </f:facet>
 ...
</af:panelPage>

As illustrated in Figure 11–13 and Figure 11–14, the processChoiceBar component
automatically provides a Continue button and a Back button for navigating forward
and backward in the process. You don’t have to write any code for these buttons. If
you want to provide additional buttons (such as the Cancel and Submit Request
buttons in Figure 11–14), use a panelButtonBar to lay out the button components
and the processChoiceBar component.

11.5.1.2.1 What You May Need to Know About the Immediate and ReadOnly Attributes

The two process scenarios provided by ADF Faces and described in Section 11.5.1.1.1,
"What You May Need to Know About Controlling Page Access" have an effect on both
the immediate and readOnly attributes of the commandMenuItem component used
within processTrain. When binding processTrain to a process train model, you
can bind the node's immediate or readOnly attribute to the model's immediate or
readOnly attribute. The ProcessMenuModel class then uses logic to determine the
value of the immediate or readOnly attribute.

When the data on the current page does not need to be validated, the immediate
attribute should be set to true. For example, in the Plus One scenario described in
Section 11.5.1.1.1, if the user is on page 4 and goes back to page 2, the user has to come
back to page 4 again later, so that data does not need to be validated when going to
page 1 or 3, but should be validated when going ahead to page 5.

The ProcessMenuModel class uses the following logic to determine the value of the
immediate attribute:

Note: If your multipage process has only two pages, ADF Faces uses
Continue as the label for the button that navigates forward. If there is
more than two pages in the process, the forward button label is Next.

Creating a Multipage Process

Using Complex UI Components 11-47

■ Plus One: immediate is set to true for any previous step, and false otherwise.

■ Max Visited: When the current page and the maximum page visited are the same,
the behavior is the same as the Plus One scenario. If the current page is before the
maximum page visited, then immediate is set to false.

The readOnly attribute should be set to true only if that page of the process cannot
be reached from the current page. The ProcessMenuModel class uses the following
logic to determine the value of the readOnly attribute:

■ Plus One: readOnly will be true for any page past the next available page.

■ Max Visited: When the current step and the maximum page visited are the same,
the behavior is the same as the Plus One scenario. If the current page is before the
maximum page visited, then readOnly is set to true for any page past the
maximum page visited.

11.5.1.3 Creating the JSF Navigation Rules
The <from-outcome> and <to-view-id> values in the navigation cases must
match the properties set in the process train model.

In the SRDemo application, a global navigation rule is used for the first page of the
Create New Service Request process because the SRCreate.jspx page is accessible
from any page in the application. The second page of the process,
SRCreateConfirm.jspx, is not included in the global navigation rule because it is
only accessible from the SRCreate.jspx page. Example 11–44 shows the navigation
rules and cases for the process.

Example 11–44 Navigation Rules for Process Train Nodes in the faces.config.xml File

<navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>GlobalCreate</from-outcome>
 <to-view-id>/app/SRCreate.jspx</to-view-id>
 </navigation-case>
 ...
</navigation-rule>
<navigation-rule>
 <from-view-id>/app/SRCreate.jspx</from-view-id>
 <navigation-case>
 <from-outcome>Continue</from-outcome>
 <to-view-id>/app/SRCreateConfirm.jspx</to-view-id>
 </navigation-case>
 ...
</navigation-rule>
<navigation-rule>
 <from-view-id>/app/SRCreateConfirm.jspx</from-view-id>
 <navigation-case>
 <from-outcome>Back</from-outcome>
 <to-view-id>/app/SRCreate.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>Complete</from-outcome>
 <to-view-id>/app/SRCreateDone.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

Creating a Multipage Process

11-48 Oracle Application Development Framework Developer’s Guide

11.5.2 What Happens at Runtime
Java automatically adds a no-arg constructor to TrainModelAdapter because the
TrainModelAdapter class is used as a managed bean. TrainModelAdapter
constructs the process train model, which is a ProcessMenuModel instance, via the
createTrainMenuModel managed bean. The createTrainNodes managed bean
creates and injects the train node list into the train model. The train model provides
the model that correctly highlights and enables the nodes on the train as you step
through the process.

The individual train node managed beans (for example, createTrain_Step1) are
instantiated with values for label, viewId, and outcome that are used by the train
model to dynamically generate the train nodes. The default JSF actionListener
mechanism uses the outcome values to handle the page navigation.

In the SRDemo application, the individual train node managed beans access String
resources in the resource bundle via the resources managed bean, so that the correct
node label is dynamically retrieved and display at runtime.

At runtime if maxPathKey has a value (set in faces-config.xml), ADF Faces
knows to use the Max Visited process scenario. If maxPathKey is null (as in the
SRDemo application), ADF Faces uses the Plus One process to control page access
from the current page.

Like the menuTab component, the processTrain and processChoiceBar
components have a nodeStamp facet, which takes one commandMenuItem
component. By using train as the variable and binding the processTrain
component to the process train model, you need only one commandMenuItem
component to display all train node items using #{train.label} as the text value
and #{train.getOutcome} as the action value on the command component.
Similarly, by using choice as the variable and binding the processChoiceBar
component to the process train model, you need only one commandMenuItem
component to display all items as menu options using #{choice.label} as the
text value and #{choice.getOutcome} as the action value.

The enabling and disabling of a node is not controlled by the MenuItem class, but by
the process train model based on the current view using the EL expression
#{createTrainMenuModel.model.readOnly} on the readOnly attribute of the
processTrain or processChoiceBar component.

11.5.3 What You May Need to Know About Process Trains and Menus
The ProcessMenuModel class extends the ViewIdPropertyMenuModel class,
which is used to create dynamic menus, as described in Section 11.2, "Using Dynamic
Menus for Navigation". Like menus and menu items, each node on a train is defined
as a menu item. But unlike menus where the menu items are gathered into the
intermediate menu tree object (MenuTreeModelAdapter), the complete list of train
nodes is gathered into an ArrayList that is then injected into the
TrainModelAdapter class. Note, however, that both ViewIdPropertyMenuModel
and ProcessMenuModel can always take a List and turn it into a tree internally.

In the SRDemo application, the nodes on the train are not secured by user role as any
user can create a new service request, which means that the train model can be stored
as an application scoped managed bean and shared by all users.

Tip: Disabled menu choices are not rendered on browsers that don’t
support disabled items in a dropdown menu. On browsers that
support disabled items in a dropdown menu, the unreachable items
will look disabled.

Providing File Upload Capability

Using Complex UI Components 11-49

The menu model is stored as a session scoped managed bean because the menu tab
items are secured by user role, as some tabs are not available to some user roles.

To add a new page to a process train, configure a new managed bean for the page
(Example 11–38), add the new managed bean to the train list (Example 11–39), and add
the navigation case for the new page (Example 11–44).

11.6 Providing File Upload Capability
File uploading is a capability that is required in many web applications. Standard J2EE
technologies such as Servlets and JSP, and JSF 1.1.x, do not directly support file
uploading. The ADF Faces framework, however, has integrated file uploading support
at the component level via the inputFile component.

During file uploading, ADF Faces temporarily stores incoming files either in memory
or on disk. You can set a default directory storage location, and default values for the
amount of disk space and memory that can be used in any one file upload request.

Figure 11–16 shows the SRMain.jspx page of the SRDemo application, where users
can upload files for a particular service request.

Figure 11–16 File Upload Button on the SRMain Page

When the user clicks Upload document, the upload form displays in a popup dialog,
as shown in Figure 11–17.

Figure 11–17 File Upload Form in the SRDemo Application

Providing File Upload Capability

11-50 Oracle Application Development Framework Developer’s Guide

The user can enter the full pathname of the file for uploading or click Browse to locate
and select the file. When Begin Upload is clicked, ADF Faces automatically uploads
the selected file. Upon a successful upload, ADF Faces displays some information
about the uploaded file, as shown in Figure 11–18. If uploading is unsuccessful for
some reason, the application displays the error stack trace in the same popup dialog.

Figure 11–18 File Upload Success Information

11.6.1 How to Support File Uploading on a Page
Use the following tasks to provide file uploading support in a JSF application.

To provide file uploading support:
1. Make sure the ADF Faces filter has been installed.

The ADF Faces filter is a servlet filter that ensures ADF Faces is properly
initialized by establishing an AdfFacesContext object. JDeveloper automatically
installs the filter for you in web.xml when you insert an ADF Faces component
into a JSF page for the first time. Example 11–45 shows the ADF Faces filter and
mapping configuration setting in web.xml.

Example 11–45 ADF Faces Filter in the web.xml File

<!-- Installs the ADF Faces Filter -- >
<filter>
 <filter-name>adfFaces</filter-name>
 <filter-class>oracle.adf.view.faces.webapp.AdfFacesFilter</filter-class>
</filter>

<!-- Adds the mapping to ADF Faces Filter -- >
<filter-mapping>
 <filter-name>adfFaces</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
</filter-mapping>

2. In web.xml set a context initialization parameter for the storage location of
uploaded files. It’s up to you where you want to save the uploaded files.
Example 11–46 shows the context parameter used in the SRDemo application for
uploaded files.

Providing File Upload Capability

Using Complex UI Components 11-51

Example 11–46 Uploaded File Storage Location in the web.xml File

<context-param>
 <description>Parent directory location of SRDemo fileuploads</description>
 <param-name>SRDemo.FILE_UPLOADS_DIR</param-name>
 <param-value>/tmp/srdemo_fileuploads</param-value>
</context-param>

3. Create a backing bean for handling uploaded files. Example 11–47 shows the
managed bean code in faces-config.xml for the SRDemo file upload page.

Example 11–47 Managed Bean for the SRFileUpload Page in the faces.config.xml File

<managed-bean>
 <managed-bean-name>backing_SRFileUpload</managed-bean-name>
 <managed-bean-class>
 oracle.srdemo.view.backing.SRFileUpload</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 ...
</managed-bean>

4. In the JSF page you can use either af:form or h:form for file uploading. Make
sure you set the enclosing form to support file uploads, as shown in the next code
snippet:

<af:form usesUpload="true"/>
..
<h:form enctype="multipart/form-data"/>

5. Use the inputFile component to provide a standard input field with a label, and
a Browse button, as shown in Figure 11–17.

The inputFile component delivers standard value change events as files are
uploaded, and manages the processing of the uploaded contents for you. It is up to
you how you want to handle the contents.

To process file uploading, you could either implement a value change listener
method in the backing bean to handle the event, or bind the value attribute of
inputFile directly to a managed bean property of type
oracle.adf.view.faces.model.UploadedFile. Either way you have to
write your own Java code in the backing bean for handling the uploaded files.

The following code snippet shows the code for an inputFile component if you
were to bind the component to a managed bean property of type
oracle.adf.view.faces.model.UploadedFile.

<af:inputFile value="#{myuploadBean.myuploadedFile}".../>

The SRDemo file upload form uses a value change listener method. Example 11–48
shows the code for the method binding expression in the
valueChangeListener attribute of the inputFile component.

Providing File Upload Capability

11-52 Oracle Application Development Framework Developer’s Guide

Example 11–48 InputFile Component in the SRFileUpload.jspx File

<af:inputFile label="#{res['srfileupload.uploadlabel']}"
 valueChangeListener="#{backing_SRFileUpload.fileUploaded}"
 binding="#{backing_SRFileUpload.srInputFile}"
 columns="40"/>

6. In the page’s backing bean, write the code for handling the uploaded contents. For
example, you could write the contents to a local directory in the file system.
Example 11–49 shows the value change listener method that handles the value
change event for file uploading in the SRDemo application.

Example 11–49 Value Change Listener Method for Handling a File Upload Event

public void fileUploaded(ValueChangeEvent event) {

 InputStream in;
 FileOutputStream out;

 // Set fileUPloadLoc to "SRDemo.FILE_UPLOADS_DIR" context init parameter
 String fileUploadLoc =
FacesContext.getCurrentInstance().getExternalContext().getInitParameter("SRDemo.FI
LE_UPLOADS_DIR");

 if (fileUploadLoc == null) {
 // Backup value if context init parameter not set.
 fileUploadLoc = "/tmp/srdemo_fileuploads";
 }

 //get svrId and append to file upload location
 Integer svrId =
(Integer)JSFUtils.getManagedBeanValue("userState.currentSvrId");
 fileUploadLoc += "/sr_" + svrId + "_uploadedfiles";

 // Create upload directory if it does not exists.
 boolean exists = (new File(fileUploadLoc)).exists();
 if (!exists) {
 (new File(fileUploadLoc)).mkdirs();
 }

 UploadedFile file = (UploadedFile)event.getNewValue();

 if (file != null && file.getLength()>0) {
 FacesContext context = FacesContext.getCurrentInstance();
 FacesMessage message =
 new
FacesMessage(JSFUtils.getStringFromBundle("srmain.srfileupload.success")+" "+
 file.getFilename() + " (" +
 file.getLength() +
 " bytes)");
 context.addMessage(event.getComponent().getClientId(context),
 message);

Providing File Upload Capability

Using Complex UI Components 11-53

 try {
 out =
 new FileOutputStream(fileUploadLoc + "/" + file.getFilename());
 in = file.getInputStream();

 for (int bytes = 0; bytes < file.getLength(); bytes++) {
 out.write(in.read());
 }

 in.close();
 out.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 else {
 // need to check for null value here as otherwise closing
 // the dialog after a failed upload attempt will lead to
 // a nullpointer exception
 String filename = file != null ? file.getFilename() : null;
 String byteLength = file !=null ? "" + file.getLength() : "0";

 FacesContext context = FacesContext.getCurrentInstance();
 FacesMessage message =
 new FacesMessage(FacesMessage.SEVERITY_WARN,
JSFUtils.getStringFromBundle("srmain.srfileupload.error") + " " +
 filename + " (" + byteLength + " bytes)", null);
 context.addMessage(event.getComponent().getClientId(context),message);
 }
}

7. Use a commandButton component to submit the form. Example 11–50 shows the
commandButton code in the SRDemo file upload form, and also the action
method code in the page’s backing bean.

Example 11–50 Code for the Command Button and Action Method

<af:commandButton text="#{res['srfileupload.uploadbutton']}"
 action="#{backing_SRFileUpload.UploadButton_action}"/>

...

...
public String UploadButton_action() {
 if (this.getSrInputFile().getValue() == null){
 FacesContext context = FacesContext.getCurrentInstance();
 FacesMessage message =
 new FacesMessage(FacesMessage.SEVERITY_WARN,
JSFUtils.getStringFromBundle("srmain.srfileupload.emptyfielderror"), null);
 context.addMessage(this.getSrInputFile().getId(), message);

 }

 return null;
}

8. If using a popup dialog, add a commandLink component to let the user close the
dialog. For more information about closing a popup dialog, see Section 11.3.1.3,
"Creating the Dialog Page and Returning a Dialog Value". Example 11–51 shows
the code for the commandLink component and the action method in the page’s
backing bean.

Providing File Upload Capability

11-54 Oracle Application Development Framework Developer’s Guide

Example 11–51 Code for the Command Link and Action Method

<af:commandLink action="#{backing_SRFileUpload.closeFileUpload_action}"../>
..
public String closeFileUpload_action() {
 AdfFacesContext.getCurrentInstance().returnFromDialog(null, null);
 return null;
}

11.6.2 What Happens at Runtime
The SRDemo application creates a directory such as C:\tmp\srdemo_fileuploads
to store uploaded files. Uploaded files for a service request are placed in a
subdirectory prefixed with the service request id, for example C:\tmp\srdemo_
fileuploads\sr_103_uploadedfiles.

The oracle.adf.view.faces.webapp.UploadedFileProcessor API is
responsible for processing file uploads. Each application has a single
UploadedFileProcessor instance, which is accessible from AdfFacesContext.

The UploadedFileProcessor processes each uploaded file as it comes from the
incoming request, converting the incoming stream into an
oracle.adf.view.faces.model.UploadedFile instance, and making the
contents available for the duration of the current request. In other words, the value
attribute of the inputFile component is automatically set to an instance of
UploadedFile. If the inputFile component's value is bound to a managed bean
property of type oracle.adf.view.faces.model.UploadedFile, ADF Faces
sets an UploadedFile object on the model.

The oracle.adf.view.faces.model.UploadedFile API describes the contents
of a single file. It lets you get at the actual byte stream of the file, as well as the file's
name, its MIME type, and its size. The UploadedFile might be stored as a file in the
file system, or it might be stored in memory; the API hides that difference.

ADF Faces limits the size of acceptable incoming requests to avoid denial-of-service
attacks that might attempt to fill a hard drive or flood memory with uploaded files. By
default, only the first 100 kilobytes in any one request are stored in memory. Once that
has been filled, disk space is used. Again, by default, that is limited to 2,000 kilobytes
of disk storage for any one request for all files combined. The AdfFacesFilter
throws an EOFException once the default disk storage and memory limits are
reached. To change the default values, see Section 11.6.4, "Configuring File Uploading
Initialization Parameters".

11.6.3 What You May Need to Know About ADF Faces File Upload
Consider the following if you’re using ADF Faces file upload:

■ Most applications don't need to replace the default UploadedFileProcessor
instance, but if your application needs to support uploading of very large files,
you may wish to replace the default processor with a custom
UploadedFileProcessor implementation. For more information see
Section 11.6.5, "Configuring a Custom Uploaded File Processor".

■ The ADF Faces Filter ensures that the UploadedFile content is cleaned up after
the request is complete. Thus, you cannot cache UploadedFile objects across
requests. If you need to keep a file, you must copy it into persistent storage before
the request finishes.

Providing File Upload Capability

Using Complex UI Components 11-55

11.6.4 Configuring File Uploading Initialization Parameters
During file uploading, ADF Faces temporarily stores incoming files either on disk or in
memory. ADF Faces defaults to the application server's temporary directory, as
provided by the javax.servlet.context.tempdir property. If that property is
not set, the system java.io.tempdir property is used.

If you wish you can set a default temporary storage location, and default values for the
amount of disk space and memory that can be used in any one file upload request. You
can specify the following file upload context parameters in web.xml:

■ oracle.adf.view.faces.UPLOAD_TEMP_DIR—Specifies the directory where
temporary files are to be stored during file uploading. Default is the user's
temporary directory.

■ oracle.adf.view.faces.UPLOAD_MAX_DISK_SPACE—Specifies the
maximum amount of disk space that can be used in a single request to store
uploaded files. Default is 2000K.

■ oracle.adf.view.faces.UPLOAD_MAX_MEMORY—Specifies the maximum
amount of memory that can be used in a single request to store uploaded files.
Default is 100K.

Example 11–52 shows the context initialization parameters for file uploading that you
use in web.xml.

Example 11–52 Context Parameters for File Uploading in the web.xml File

<context-param>
 <param-name>oracle.adf.view.faces.UPLOAD_TEMP_DIR</param-name>
 <param-value>/tmp/Adfuploads</param-value>
</context-param>

<context-param>
 <param-name>oracle.adf.view.faces.UPLOAD_MAX_DISK_SPACE</param-name>
 <param-value>10240000</param-value>
</context-param>

<context-param>
 <param-name>oracle.adf.view.faces.UPLOAD_MAX_MEMORY</param-name>
 <param-value>5120000</param-value>
</context-param>

11.6.5 Configuring a Custom Uploaded File Processor
Most applications don't need to replace the default UploadedFileProcessor
instance provided by ADF Faces, but if your application needs to support uploading of
very large files or rely heavily on file uploads, you may wish to replace the default
processor with a custom UploadedFileProcessor implementation. For example,
you could improve performance by using an implementation that immediately stores
files in their final destination, instead of requiring ADF Faces to handle temporary
storage during the request.

Note: The file upload initialization parameters are processed by the
default UploadedFileProcessor only. If you replace the default
processor with a custom UploadedFileProcessor implementation,
the parameters are not processed.

Creating Databound Dropdown Lists

11-56 Oracle Application Development Framework Developer’s Guide

To replace the default processor, specify the custom implementation using the
<uploaded-file-processor> element in adf-faces-config.xml.
Example 11–53 shows the code for registering a custom UploadedFileProcessor
implementation.

Example 11–53 Registering a Custom Uploaded File Processor in the
adf-faces-config.xml File

<adf-faces-config xmlns="http://xmlns.oracle.com/adf/view/faces/config">
...
 <!-- Use my UploadFileProcessor class -->
 <uploaded-file-processor>
 com.mycompany.faces.myUploadedFileProcessor
 </uploaded-file-processor>
...
</adf-faces-config>

11.7 Creating Databound Dropdown Lists
ADF Faces selection list components include selectOneChoice and
selectOneListbox, which work in the same way as standard JSF list components.
ADF Faces list components, however, provide extra functionality such as support for
label and message display, automatic form submission, and partial page rendering.

In the SRDemo application, the SRSearch page uses a selectOneChoice component
to let users pick the type of service requests to perform a search on. With the
selectOneChoice component, you can provide a static list of items for selection, or
you can create a list that is populated dynamically. In either case, you use a
f:selectItems tag to provide the items for display and selection.

11.7.1 How to Create a Dropdown List with a Fixed List of Values
The SRSearch page uses a selectOneChoice component to let users pick the type of
service request to perform a search on. For example, instead of searching on all service
requests, the user can refine the search on requests that have the status of open,
pending, or closed. Figure 11–19 shows the search form in the SRDemo application
where a selectOneChoice component is used.

Figure 11–19 SelectOneChoice Component for Selecting a Service Request Status

Tip: Any file uploading initialization parameters specified in
web.xml are processed by the default UploadedFileProcessor
only. If you replace the default processor with a custom
UploadedFileProcessor implementation, the file uploading
parameters are not processed.

Creating Databound Dropdown Lists

Using Complex UI Components 11-57

The search form is created using a method that takes parameters. For information
about how to create a search form using parameters, see Section 10.8, "Creating Search
Pages". The following procedure describes, without using parameters, how to create a
dropdown list that is bound to a fixed list of values.

To create a dropdown list bound to a fixed list of values using the Data Control
Palette:
1. From the Data Control Palette, expand a business service method, and then

expand a method return that returns a data collection. Drag and drop the data
collection attribute you desire onto the page, and then choose Create > Single
Selections > ADF Select One Choice from the context menu. The List Binding
Editor displays, as illustrated in Figure 11–20.

Using the service request status example, you would expand
findAllServiceRequest(), then expand ServiceRequest, and drag and drop the
status attribute. Because you want users to be able to search on a service request
type, therefore you use the status attribute on the ServiceRequest data collection,
which is a collection of all requests returned by the findAllServiceRequest()
method.

Figure 11–20 List Binding Editor with the Fixed List Option Selected

2. In the List Binding Editor, select Fixed List. Then select the status attribute from
the Base Data Source Attribute dropdown list.

The Fixed List option lets users choose a value from a predefined list, which is
useful when you want to update a data object attribute with values that you code
yourself, rather than getting the values from another data collection.

When a value is selected from the list, Base Data Source Attribute is the attribute
of the bound data collection that is to be updated to the selected value.

Creating Databound Dropdown Lists

11-58 Oracle Application Development Framework Developer’s Guide

3. Enter the following in the Set of Values box, pressing Enter to set a value before
typing the next value:

■ Open

■ Pending

■ Closed

The order in which you enter the values is the order in which the items are
displayed in the selectOneChoice control at runtime.

4. In the List Items section, select Include Labeled Item from the "No Selection"
Item dropdown list. Then enter Any Status in the box next to it.

The selectOneChoice component supports a null value, that is, if the user has
not selected an item, the label of the item is shown as blank, and the value of the
component defaults to an empty string. Instead of using blank or an empty string,
you can specify a string to represent the null value. By default, the new string
appears at the top of the list of values that is defined in step 3.

11.7.2 What Happens When You Create a Dropdown List Bound to a Fixed List
When you drag and drop from the Data Control Palette, JDeveloper does many things
for you. For a full description of what happens and what is created when you use the
Data Control Palette, see Section 5.2.3, "What Happens When You Use the Data
Control Palette".

Example 11–54 shows the code for the selectOneChoice component after you’ve
completed the List Binding Editor.

Example 11–54 SelectOneChoice Component After You Complete Binding

<af:selectOneChoice value="#{bindings.ServiceRequeststatus.inputValue}"
 label="#{bindings.ServiceRequeststatus.label}: ">
 <f:selectItems value="#{bindings.ServiceRequeststatus.items}"/>
</af:selectOneChoice>

The f:selectItems tag, which provides the list of items for selection, is bound to
the items property on the ServiceRequeststatus list binding object in the
binding container.

In the page definition file (for example, SRSearchPageDef.xml), JDeveloper adds
the list binding object definition in the bindings element, as shown in
Example 11–55.

Tip: In the SRDemo application, the
findServiceRequestSearch(Integer, String, String)
method contains the logic to find and return service records based on
three parameters, one of which is statusParam. Each method
parameter has an associated variable. For information about variable
iterators and variables, see Section 10.8.2, "What Happens When You
Use Parameter Methods".

If you created the search form using the method with parameters (as
described in Section 10.8.1, "How to Create a Search Form"), delete the
inputText component created for the Status field, and replace it
with a selectOneChoice component by dragging and dropping
statusParam from the Data Control Palette. In the List Binding Editor,
for the Base Data Source Attribute, select the variable name
findServiceRequestSearch_statusParam.

Creating Databound Dropdown Lists

Using Complex UI Components 11-59

Example 11–55 List Binding Object for the Fixed Dropdown List in the Page Definition
File

<bindings>
 ...
 <list id="ServiceRequeststatus" IterBinding="findAllServiceRequestIter"
 ListOperMode="0" StaticList="true" NullValueFlag="1">
 <AttrNames>
 <Item Value="status"/>
 </AttrNames>
 <ValueList>
 <Item Value="Any Status"/>
 <Item Value="Open"/>
 <Item Value="Pending"/>
 <Item Value="Closed"/>
 </ValueList>
 </list>
 ...
</bindings>

The id attribute specifies the name of the list binding object. The IterBinding
attribute specifies the iterator binding object, which exposes and iterates over the
collection returned by the findAllServiceRequest() method. The AttrNames element
defines the attribute returned by the iterator. The ValueList element specifies the
fixed list of values to be displayed for selection at runtime.

For more information about the page definition file and ADF data binding
expressions, see Section 5.5, "Working with Page Definition Files" and Section 5.6,
"Creating ADF Data Binding EL Expressions".

11.7.3 How to Create a Dropdown List with a Dynamic List of Values
Instead of getting values from a static list, you can populate a selectOneChoice
component with values dynamically at runtime. The steps for creating a dropdown list
bound to a dynamic list are almost the same as those for creating a dropdown list
bound to a fixed list, with the exception that you define two data sources—one for the
list data collection that provides the dynamic list of values, and the other for the base
data collection that is to be updated based on the user’s selection.

To create a dropdown list bound to a dynamic list of values using the Data
Control Palette:
1. From the Data Control Palette, expand a business service method, and then

expand a method return that returns a data collection. Next, expand an accessor
return that returns a detail collection. Drag and drop the attribute you desire onto
the page, and then choose Create > Single Selections > ADF Select One Choice
from the context menu. The List Binding Editor displays, as illustrated in
Figure 11–21.

For example, if users want to be able to pick a product before searching on service
requests, you might expand findAllServiceRequest(), followed by
ServiceRequest, and product. Then drag and drop the name attribute. Because
you want users to be able to search service requests based on a product name,
therefore you use the name attribute on the Product detail collection.

Note: The list and base data collections do not have to form a
master-detail relationship, but the items in the list data collection must
be the same type as the base data collection attribute.

Creating Databound Dropdown Lists

11-60 Oracle Application Development Framework Developer’s Guide

Figure 11–21 List Binding Editor with the Dynamic List Option Selected

2. In the List Binding Editor, select Dynamic List.

3. In the Base Data Source dropdown list, select the data collection that is to be
updated with the list value selected by a user. For example, ServiceRequest:
SRPublicFacade.findAllServiceRequest.product.

4. In the List Data Source dropdown list, select the data collection that provides the
list of values dynamically. For example, Product: SRPublicFacade findAllProduct.

5. In the mapping area, select name from Base Data Source Attribute, and name
from List Data Source Attribute. This maps the list source attribute to the base
source attribute you want to update.

6. In the List Items section, select name from the Display Attribute dropdown list.
This populates the values users see in the list.

11.7.4 What Happens When You Create a Dropdown List Bound to a Dynamic List
When you drag and drop from the Data Control Palette, JDeveloper does many things
for you. For a full description of what happens and what is created when you use the
Data Control Palette, see Section 5.2.3, "What Happens When You Use the Data
Control Palette".

Example 11–56 shows the code for the selectOneChoice component after you’ve
completed the List Binding Editor.

Example 11–56 SelectOneChoice Component After You Complete Binding

<af:selectOneChoice value="#{bindings.Productname.inputValue}"
 label="#{bindings.Productname.label}">
 <f:selectItems value="#{bindings.Productname.items}"/>
</af:selectOneChoice>

The f:selectItems tag, which provides the list of items for selection, is bound to
the items property on the Productname list binding object in the binding container.

Creating Databound Dropdown Lists

Using Complex UI Components 11-61

For further descriptions about ADF data binding expressions, see Section 5.6,
"Creating ADF Data Binding EL Expressions".

In the page definition file (for example, SRDemopage.xml), JDeveloper adds the list
binding object definition into the bindings element, as shown in Example 11–57.

Example 11–57 List Binding Object for the Dynamic Dropdown List in the Page
Definition File

<bindings>
 ...
 <list id="Productname" IterBinding="productIterator" StaticList="false"
 ListOperMode="0" ListIter="findAllProductIter"..>
 <AttrNames>
 <Item Value="name"/>
 </AttrNames>
 <ListAttrNames>
 <Item Value="name"/>
 </ListAttrNames>
 <ListDisplayAttrNames>
 <Item Value="name"/>
 </ListDisplayAttrNames>
 </list>
 ...
</bindings>

The id attribute specifies the name of the list binding object. The IterBinding
attribute specifies the iterator binding object, which exposes and iterates over the
collection returned by the findAllProduct() method. The AttrNames element defines
the base data source attribute returned by the iterator. The ListAttrNames element
defines the list data source attribute that is mapped to the base data source attribute
returned by the iterator. The ListDisplayAttrNames element defines the list data
source attribute that populates the values users see in the list.

For complete information about page definition files, see Section 5.5, "Working with
Page Definition Files".

11.7.5 How to Use Variables with Dropdown Lists
Sometimes you might want to use a variable with a selectOneChoice component to
hold the value of the item selected by a user. On the SRSkills page (as shown later in
Figure 11–25), a manager selects a staff member name from the dropdown list to
display the member’s assigned product skills in the shuttle component. The
selectOneChoice component in the SRSkills page populates a variable in the page
definition file when the user makes a selection.

The following procedure shows how to manually add a variable to a page definition
file.

To create a variable iterator and variable in a page definition file:
1. Open the page definition file (for example, <pageName>PageDef.xml) for the

JSF page in which a selectOneChoice component will be used.

2. In the Structure window, right-click the topmost node and choose Insert inside
<pageName>PageDef > executables to add the executables node, if not added
already.

3. In the Structure window, right-click executables and choose Insert inside
executables > variableIterator to add the variables node, if not added already.

Creating a Databound Shuttle

11-62 Oracle Application Development Framework Developer’s Guide

4. In the Structure window, right-click variables and choose Insert inside variables
> variable.

5. In the Insert Variable dialog, enter a name and type for the variable. For example,
you might enter someStaffIdVar for the name, and java.lang.Integer for
the type, if you want the variable to hold data about the selected staff member.

Example 11–58 shows the page definition file after you’ve created a variable.

Example 11–58 Variable Iterator and Variable in the Page Definition File

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.36.61" id="app_management_untitled4PageDef"
 Package="oracle.srdemo.view.pageDefs">
 <executables>
 <variableIterator id="variables">
 <variable Name="someStaffIdVar" Type="java.lang.Integer"/>
 </variableIterator>
 </executables>
</pageDefinition>

For more information about variable iterators and variables, see Section 5.5.2.2,
"Binding Objects Defined in the executables Element".

The next procedure shows how to use the variable to create a dropdown list that lets
users select a staff member’s name from a dynamic list.

To create a dynamic dropdown list:
1. Open the JSF page in which you want to add a selectOneChoice component.

2. From the Data Control Palette, expand findAllStaff() > User. Drag and drop the
userId attribute to the page, and then choose Create > Single Selections > ADF
Select One Choice from the context menu.

3. In the List Binding Editor, select variables from the Base Data Source dropdown
list.

4. Select Dynamic List.

5. From the List Data Source dropdown list, select User:
SRPublicFacade:findAllStaff.

6. In the mapping area, select someStaffIdVar from the Base Data Source Attribute
dropdown list, and userId from the List Data Source Attribute dropdown list.

7. In the List Items section, from the Display Attribute dropdown list, select Select
Multiple, and add firstName and lastName to the Attributes to Display list in the
Select Multiple Display Attributes dialog.

8. From the "No Selection" Item dropdown list, select Include Labeled Item.

11.8 Creating a Databound Shuttle
The selectManyShuttle and selectOrderShuttle components render two list
boxes, and buttons that allow the user to select multiple items from the leading (or
"available") list box and move or shuttle the items over to the trailing (or "selected") list
box, and vice versa. Figure 11–22 shows an example of a rendered
selectManyShuttle component. You can specify any text you want for the headers
that display above the list boxes.

Creating a Databound Shuttle

Using Complex UI Components 11-63

Figure 11–22 Shuttle (SelectManyShuttle) Component

The only difference between selectManyShuttle and selectOrderShuttle is
that in the selectOrderShuttle component, the user can reorder the items in the
trailing list box by using the up and down arrow buttons on the side, as shown in
Figure 11–23.

Figure 11–23 Shuttle Component (SelectOrderShuttle) with Reorder Buttons

11.8.1 How to Create a Databound Shuttle
In the SRDemo application, the SRSkills page uses a selectManyShuttle
component to let managers assign product skills to a technician. Figure 11–24 shows
the SRSkills page created for the sample application. The leading list box on the left
displays products such as washing machines and dryers; the trailing list box on the
right displays the products that a technician is skilled at servicing.

Note: In addition to using the supplied Move and Remove buttons
to shuttle items from one list to the other, you can also double-click an
item in either list. Double-clicking an item in one list moves the item
to the other list. For example, if you double-click an item in the
leading list, the item is automatically moved to the trailing list, and
vice versa.

Creating a Databound Shuttle

11-64 Oracle Application Development Framework Developer’s Guide

Figure 11–24 SelectManyShuttle Component on the SRSkills Page

To review and change product skill assignments, a manager first selects a technician’s
name from the dropdown list above the shuttle component. The application then
displays the technician’s existing skill assignments in the trailing list, as shown in
Figure 11–25.

Figure 11–25 Shuttle Component with the Trailing List Populated

Below the leading and trailing lists are optional boxes for displaying a description of a
product. To view a description of a product, the manager can select an item from either
list box, and the application displays the product’s description in the box below the
list.

 To add new skill assignments, the manager selects the products from the leading list
(Available Products) and then clicks the Move button.

Creating a Databound Shuttle

Using Complex UI Components 11-65

To remove skills from the Assigned Skills list, the manager selects the products from
the trailing list and then clicks the Remove button.

Like other ADF Faces selection list components, the selectManyShuttle
component can use the f:selectItems tag to provide the list of items available for
display and selection in the leading list.

Before you can bind the f:selectItems tag, create a class that maintains a list of the
valid products (skills) for the shuttle, and the indexes of the products that are assigned
to (selected for) a technician. The class should use the page’s binding container to get
the product master list for populating the shuttle’s leading list. Example 11–59 shows
the SkillsHelper class that is created to manage the population and selection state
of the shuttle component on the SRSkills page.

Example 11–59 SkillsHelper Class

package oracle.srdemo.view;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
...
public class SkillsHelper {
 private BindingContainer bindings;
 private List<Product> productMasterList;
 private List <SelectItem> allProducts;
 private HashMap productLookUp;
 private int[] selectedProducts;
 private int skillsFor;
 private boolean skillsChanged = false;
 public List<SelectItem> getAllProducts() {
 if (allProducts == null) {
 OperationBinding oper =
getBindings().getOperationBinding("findAllProduct");
 productMasterList = (List<Product>)oper.execute();
 int cap = productMasterList.size();
 allProducts = new ArrayList(cap);
 productLookUp = new HashMap(cap);
 //for(Product prod: products) {
 for (int i=0;i<cap;i++){
 Product prod = productMasterList.get(i);
 SelectItem item = new SelectItem(i,
prod.getName(),prod.getDescription());
 allProducts.add(item);
 productLookUp.put(prod.getProdId(), i);
 }
 }

 return allProducts;
 }

Creating a Databound Shuttle

11-66 Oracle Application Development Framework Developer’s Guide

 public void setAllProducts(List<SelectItem> allProducts) {
 this.allProducts = allProducts;
 }

 public void setSelectedProducts(int[] selectedProducts) {
 skillsChanged = true;
 this.selectedProducts = selectedProducts;
 }

 public int[] getSelectedProducts() {
 Integer currentTechnician =
(Integer)ADFUtils.getBoundAttributeValue(getBindings(),"currentTechnician");
 if (currentTechnician != null){
 if (skillsFor != currentTechnician.intValue()){
 skillsFor = currentTechnician.intValue();
 skillsChanged = false;
 OperationBinding getAssignedSkillsOp =
getBindings().getOperationBinding("findExpertiseByUserId");
 List<ExpertiseArea> skills =
(List<ExpertiseArea>)getAssignedSkillsOp.execute();
 selectedProducts = new int[skills.size()];
 for (int i=0;i<skills.size();i++){
 Integer lookup =
(Integer)productLookUp.get(skills.get(i).getProdId());
 selectedProducts[i] = lookup.intValue();
 }
 }
 }

 return selectedProducts;
 }

 public List<Integer> getSelectedProductIds(){
 ArrayList prodIdList = new ArrayList(selectedProducts.length);
 for (int i:selectedProducts){
 prodIdList.add(productMasterList.get(i).getProdId());
 }
 return prodIdList;
 }
 public void setBindings(BindingContainer bindings) {
 this.bindings = bindings;
 }

 public BindingContainer getBindings() {
 return bindings;
 }

 public void setSkillsChanged(boolean skillsChanged) {
 this.skillsChanged = skillsChanged;
 }

 public boolean isSkillsChanged() {
 return skillsChanged;
 }
}

The methods of interest in the SkillsHelper class are getAllProducts() and
getSelectedProducts().

Creating a Databound Shuttle

Using Complex UI Components 11-67

The getAllProducts() method is the method that populates the shuttle’s leading
list. The first time this method is called, the findAllProduct() method on the
SRPublicFacade session bean is invoked, and the list of products is cached in an
array list of SelectItem objects. The getAllProducts() method also maintains a
hashmap that enables reverse lookup of the list item index number based on the
product ID.

The getSelectedProducts() method returns an array of int values, defining the
list of items that appear on the shuttle’s trailing list. This method also checks whether
the currently selected technician (from the dropdown list above the shuttle) has
changed. If the currently selected technician has changed, the
findExpertiseByUserId() method on the SRAdminFacade session bean is
invoked, and the new current technician’s list of skills is retrieved and displayed in the
trailing list of the shuttle.

The SkillsHelper class is maintained as a session scoped managed bean named
skillsHelper. Example 11–60 shows the managed beans configured for working
with the shuttle component in the SRDemo application.

Example 11–60 Managed Beans for the Shuttle Component in the faces-config.xml File

<managed-bean>
 <managed-bean-name>skillsHelper</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.SkillsHelper</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>bindings</property-name>
 <value>#{data.SRSkillsPageDef}</value>
 </managed-property>
</managed-bean>
<managed-bean>
 <managed-bean-name>backing_SRSkills</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.backing.SRSkills</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

All the bindings of the SRSkills page are defined in the file app_management_
SRSkillsPageDef.xml, a reference of which is injected into the SkillsHelper
class. Example 11–61 shows the page definition file for the SRSkills page.

Example 11–61 Page Definition File for the SRSkills Page

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.36.2" id="SRSkillsPageDef"
 Package="oracle.srdemo.view.pageDefs"..>
 <executables>
 <methodIterator id="findAllStaffIter" Binds="findAllStaff.result"
 DataControl="SRPublicFacade" RangeSize="-1"
 BeanClass="oracle.srdemo.model.entities.User"/>
 <methodIterator id="findAllProductIter" Binds="findAllProduct.result"
 DataControl="SRPublicFacade" RangeSize="-1"
 BeanClass="oracle.srdemo.model.entities.Product"/>
 <variableIterator id="variables">
 <variable Name="selectedStaffIdVar" Type="java.lang.Integer"/>
 </variableIterator>
 </executables>

Creating a Databound Shuttle

11-68 Oracle Application Development Framework Developer’s Guide

 <bindings>
 <methodAction id="findAllStaff" InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" MethodName="findAllStaff"
 RequiresUpdateModel="true" Action="999"
 ReturnName="SRPublicFacade.methodResults.SRPublicFacade_
dataProvider_findAllStaff_result"/>
 <methodAction id="findAllProduct" InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" MethodName="findAllProduct"
 RequiresUpdateModel="true" Action="999"
 ReturnName="SRPublicFacade.methodResults.SRPublicFacade_
dataProvider_findAllProduct_result"/>
 <attributeValues IterBinding="variables" id="currentTechnician">
 <AttrNames>
 <Item Value="selectedStaffIdVar"/>
 </AttrNames>
 </attributeValues>
 <methodAction id="findExpertiseByUserId"
 InstanceName="SRAdminFacade.dataProvider"
 DataControl="SRAdminFacade" MethodName="findExpertiseByUserId"
 RequiresUpdateModel="true" Action="999"
 ReturnName="SRAdminFacade.methodResults.SRAdminFacade_
dataProvider_findExpertiseByUserId_result">
 <NamedData NDName="userIdParam"
 NDType="java.lang.Integer"
 NDValue="#{bindings.currentTechnician.inputValue}"/>
 </methodAction>
 <list id="findAllStaffList" StaticList="false" ListOperMode="0"
 IterBinding="variables" ListIter="findAllStaffIter"
 NullValueFlag="1" NullValueId="findAllStaffList_null">
 <AttrNames>
 <Item Value="selectedStaffIdVar"/>
 </AttrNames>
 <ListAttrNames>
 <Item Value="userId"/>
 </ListAttrNames>
 <ListDisplayAttrNames>
 <Item Value="firstName"/>
 <Item Value="lastName"/>
 </ListDisplayAttrNames>
 </list>
 <methodAction id="updateStaffSkills"
 InstanceName="SRAdminFacade.dataProvider"
 DataControl="SRAdminFacade" MethodName="updateStaffSkills"
 RequiresUpdateModel="true" Action="999">
 <NamedData NDName="userId"
 NDValue="${bindings.currentTechnician.inputValue}"
 NDType="java.lang.Integer"/>
 <NamedData NDName="prodIds" NDValue="${skillsHelper.selectedProductIds}"
 NDType="java.util.List"/>
 </methodAction>
 </bindings>
</pageDefinition>

The next procedure assumes you’ve already created the relevant bindings, a class
similar to the SkillsHelper class in Example 11–59, and configured the required
managed beans in faces-config.xml, as shown in Example 11–60.

Creating a Databound Shuttle

Using Complex UI Components 11-69

To create a shuttle component:
1. From the ADF Faces Core page of the Component Palette, drag and drop

SelectManyShuttle onto the page. JDeveloper displays the Insert
SelectManyShuttle dialog, as illustrated in Figure 11–26.

Figure 11–26 Insert SelectManyShuttle Dialog

2. Select Bind to list (select items) and click Bind... to open the Expression Builder.

3. In the Expression Builder, expand JSF Managed Beans > skills. Double-click
allProducts to build the expression #{skillsHelper.allProducts}. Click
OK.

This binds the f:selectItems tag to the getAllProducts() method that
populates the shuttle’s leading list.

4. In the Insert SelectManyShuttle dialog, click Common Properties. Click Bind...
next to the Value field to open the Expression Builder again.

5. In the Expression Builder, expand JSF Managed Beans > skills. Double-click
selectedProducts to build the expression
#{skillsHelper.selectedProducts}. Click OK.

This binds the value attribute of the selectManyShuttle component to the
getSelectedProducts() method that returns an array of int values, defining
the list items on the shuttle’s trailing list.

Example 11–62 shows the code for the selectManyShuttle component after you
complete the Insert SelectManyShutle dialog.

Creating a Databound Shuttle

11-70 Oracle Application Development Framework Developer’s Guide

Example 11–62 SelectManyShuttle Component in the SRSkills.jspx File

<af:selectManyShuttle value="#{skillsHelper.selectedProducts}"
 ...
 <f:selectItems value="#{skillsHelper.allProducts}"/>
</af:selectManyShuttle>

For more information about using the shuttle component, see the ADF Faces Core tags
at

http://www.oracle.com/technology/products/jdev/htdocs/partners/a
ddins/exchange/jsf/doc/tagdoc/core/index.html

11.8.2 What Happens at Runtime
When the SRSkills page is first accessed, the variable iterator executes and instantiates
its variable, selectedStaffIdVar. At this point, the variable does not contain a
value. When the manager selects a name from the dropdown list, the variable is
populated and the attribute binding can then provide the value for the
findExpertiseByUserId() method’s parameter userIdParam, using the EL
expression for the value of the NamedData Element.

When the Save skill changes command button (see Figure 11–24) is clicked, the
current technician’s user ID and the associated array of product IDs (assigned skills)
are retrieved and sent to the updateStaffSkills() method on the
SRAdminFacade bean.

Example 11–63 shows the code for the commandButton component on the
SRSkills.jspx page.

Example 11–63 CommandButton Component in the SRSkills.jspx File

<af:commandButton action="#{backing_SRSkills.saveSkillChanges_action}"
 actionListener="#{bindings.updateStaffSkills.execute}"../>

http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/core/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/core/index.html

Using Validation and Conversion 12-1

12
Using Validation and Conversion

This chapter describes how to add validation and conversion capabilities to your
application. It also describes how to handle and display any errors, including those not
caused by validation.

This chapter includes the following sections:

■ Section 12.1, "Introduction to Validation and Conversion"

■ Section 12.3, "Adding Validation"

■ Section 12.4, "Creating Custom JSF Validation"

■ Section 12.5, "Adding Conversion"

■ Section 12.6, "Creating Custom JSF Converters"

■ Section 12.7, "Displaying Error Messages"

■ Section 12.8, "Handling and Displaying Exceptions in an ADF Application"

12.1 Introduction to Validation and Conversion
ADF Faces input components have built-in validation capabilities. You set validation
on a component either by setting the required attribute or by using one of the
prebuilt ADF Faces validators. ADF applications also have validation capabilities at
the model layer, allowing you to set validation on a binding to an attribute. In
addition, you can create your own ADF Faces validators to suit your business needs.

ADF Faces input components also have built-in conversion capabilities, which allow
users to enter information as Strings, and which the application can automatically
convert to another data type, such as Date. Conversely, data stored as something
other than a String can be converted to a String for display and updating.

Many components, such as selectInputDate, automatically provide this
capability. Other components, such as inputText, automatically add a built-in ADF
Faces or JSF reference implementation converter when you drag and drop from the
Data Control Palette an attribute that is of a type for which a converter exists.

When validators or converters fail, associated error messages can be displayed to the
user. These messages can be displayed in popup dialogs for client-side validation, or
they can be displayed on the page itself next to the component whose validation or
conversion failed.

Validation, Conversion, and the Application Lifecycle

12-2 Oracle Application Development Framework Developer’s Guide

Read this chapter to understand:

■ The different types of validation and how to add the capability to your application

■ The ADF Faces converters and how to use them in an application

■ The different ways you can display error messages

■ How errors are handled by the ADF Model and displayed by ADF Faces error
message components

■ How exceptions thrown by the ADF application are handled, and how to
customize the error handling process

12.2 Validation, Conversion, and the Application Lifecycle
Figure 12–1 shows how validation and conversion work in the integrated JSF and ADF
lifecycle.

Figure 12–1 Validation and Conversion in the Lifecycle

When a form with data is submitted, the browser sends a request value to the server
for each UI component whose value attribute is bound. The request value is first
stored in an instance of the component in the JSF Apply Request Values phase. If the
value requires conversion (for example, if it is displayed as a String but stored as a
DateTime object), the data is converted to the correct type. Then, if you set ADF Faces
validation for any of the components that hold the data, the value is validated against
the defined rules during the Process Validations phase, before the value is applied to
the model.

If validation or conversion fails, the lifecycle proceeds to the Render Response phase
and a corresponding error message is displayed on the page. If validation and
conversion are successful, then the UpdateModel phase starts and the validated and
converted values are used to update the model.

Adding Validation

Using Validation and Conversion 12-3

At this point, if there are any ADF Model validation rules, the values are validated
against those rules in the ADF Validate Model Updates phase. As with ADF Faces
validation, if validation fails, the lifecycle proceeds to the Render Response phase. See
Section 6.2.3, "What Happens at Runtime: The JSF and ADF Lifecycles" for more
information.

When a validation or conversion error occurs, the component (in the case of JSF
validation or conversion) or attribute (in the case of ADF Model validation) whose
validation or conversion failed places an associated error message in the queue and
invalidates itself. The current page is then redisplayed with an error message. Both
ADF Faces components and the ADF Model provide a way of declaratively setting
these messages. For information about how other errors are handled by an ADF
application, see Section 12.8, "Handling and Displaying Exceptions in an ADF
Application".

12.3 Adding Validation
You can add validation so that when a user edits or enters data in a field and submits
the form, the data is validated against any set rules and conditions. If validation fails,
the application displays an error message.

Those rules and conditions can be set at one of the following layers:

■ View layer: You can use ADF Faces validation when you need client-side
validation. Many ADF Faces components have attributes that provide validation.
For information, see Section 12.3.1.1.1, "Using Validation Attributes". In addition,
ADF Faces provides separate validation classes that can be run on both the client
and the server. For details, see Section 12.3.1.1.2, "Using JSF and ADF Faces
Validators". You can also create your own validators. For information about
custom validators, see Section 12.4.3, "How to Create a Custom JSF Validator".

■ Model layer: By default, when you use the Data Control Palette to create input text
components, the components contain the af:validator tag that is bound to the
validator property on the attribute’s binding. This binding allows a JSF
application to run ADF Model validation during the JSF Process Validations phase.
To set ADF Model validation, you declaratively set validation rules on bindings to
attributes of a collection. For more information, see Section 12.3.1.2, "Adding ADF
Model Validation".

■ Business layer: You can also set validation on objects in the business layer. An
advantage to this type of validation is that it can be reused when that attribute’s
value is accessed by any page. However, it requires that the application accesses
the business component in order for validation to be run. For the purposes of this
chapter, only the view and model layer validation will be discussed.

12.3.1 How to Add Validation
You set ADF Faces validation on the JSF page and you set ADF Model validation on
the page definition file. Message display for both is handled on the JSF page. For more
information about displaying messages created by validation errors, see Section 12.7,
"Displaying Error Messages".

12.3.1.1 Adding ADF Faces Validation
By default, ADF Faces validation occurs on both the client and server side. Although
both syntactic and semantic validation are performed on the client side and server
side, the client side performs only a subset of the validation performed by the server

Adding Validation

12-4 Oracle Application Development Framework Developer’s Guide

side. Client-side validation allows validators to catch and display data without
requiring a round-trip to the server.

To set ADF Faces to not run client-side validation, add the
<client-validation-disabled> element in adf-faces-config.xml and set it
to true.

ADF Faces provides the following types of validation:

■ UI component attributes: ADF Faces input components provide attributes that can
be used to validate data. For example, you can supply simple validation using the
required attribute on ADF Faces input components to specify whether a value
must be supplied. When set to true, the component must have a value. Otherwise
the application displays an error message. For more information, see
Section 12.3.1.1.1, "Using Validation Attributes".

■ Default ADF Faces validators: The validators supplied by ADF Faces and the JSF
reference implementation provide common validation checks, such as validating
date ranges and validating the length of entered data. For more information, see
Section 12.3.1.1.2, "Using JSF and ADF Faces Validators".

■ Custom ADF Faces validators: You can create your own validators and then select
them to be used in conjunction with UI components. For more information, see
Section 12.4, "Creating Custom JSF Validation".

12.3.1.1.1 Using Validation Attributes

Many ADF Faces UI components have attributes that provide simple validation.
Table 12–1 shows these attributes, along with a description of the validation logic they
provide and the UI components that contain them.

Note: If the JavaScript form.submit() function is called on a JSF
page, the ADF Faces support for client-side validation is bypassed.
ADF Faces provides a submitForm() method that you can use
instead, or you could use the autoSubmit attribute on ADF Faces
input components.

Table 12–1 ADF Faces Validation Attributes

Attribute Description Available on

MaxValue The maximum value allowed for the Date value. chooseDate

MinValue The minimum value allowed for the Date value. chooseDate

Required When set to true (or set to an EL expression that
evaluates to true), the component must have a
non-null value or a String value of at least one
character.

For table selection components (see Section 7.6,
"Enabling Row Selection in a Table"), if the required
attribute is set to true, then at least one row in the
table must be selected.

All input
components,
all select
components,
tableSelectMany,
tableSelectOne

MaximumLength The maximum number of characters that can be
entered. Note that this value is independent of the
value set for the columns attribute. See also
ByteLengthValidator in Table 12–3, " ADF Faces
Validators".

inputText

Adding Validation

Using Validation and Conversion 12-5

When you use the Data Control Palette to create input components, the required
attribute is bound to the mandatory property of its associated binding, as shown in
the following EL expression:

<af:inputText required="#{bindings.problemDescription.mandatory}"

The EL expression evaluates to whether or not the attribute on the object to which it is
bound can be null. You can choose to keep the expression as is, or you can manually
set the required attribute to "true" or "false".

To use UI component attributes that provide validation:
1. In the Structure window, select the UI component.

2. In the Property Inspector, enter a value for the validation attribute. See Table 12–1
for a list of validation attributes you could use.

3. (Optional) Set the tip attribute to display text that will guide the user to entering
correct data (for example, a valid range for numbers). This text will display under
the component.

4. (Optional) If you set the required attribute to true (or if you used an EL
expression that can evaluate to true), you can also enter a value for the
RequiredMessageDetail attribute. Instead of displaying a default message,
ADF Faces will display this message, if validation fails.

For tables with a selection component set to required, you must place the error
message in the summary attribute of the table in order for the error message to
display.

Messages can include optional placeholders (such as {0}, {1}, and so on) for
parameters. At runtime, the placeholders are replaced with the appropriate
parameter values. The order of parameters is:

■ Component label input value (if present)

■ Minimum value (if present)

■ Maximum value (if present)

■ Pattern value (if present)

Example 12–1 shows a RequiredMessageDetail attribute that uses parameters.

Example 12–1 Parameters in a RequiredMessageDetail Attribute

<af:inputText value="#{bindings.productId.inputValue}"
 label="Product ID"
 requiredMessageDetail="You must enter a {0}."
 required="true"
</af:inputText>

This message evaluates to You must enter a Product ID.

Tip: The object to which the UI component is bound varies
depending on how the input component was created. For example, if
a form was created using a method to create a parameter form, then
the input components are usually bound to variables, since the
attribute values do not yet exist. You need to set the isNotNull
property on the variable if you wish to use the default EL expression.
If a form was created using a collection returned by a method, then
the input component is probably bound to an attribute on an entity
object, and you need to set that object’s isNotNull property.

Adding Validation

12-6 Oracle Application Development Framework Developer’s Guide

For additional help with UI component attributes, in the Property Inspector,
right-click the attribute name and choose Help.

12.3.1.1.2 Using JSF and ADF Faces Validators

JSF and ADF Faces validators provide more complex validation routines. Table 12–2
describes the JSF reference implementation validators and Table 12–3 describes the
built-in ADF Faces validators.

Table 12–2 JSF Reference Implementation Validators

Validator Tag Name Description

DoubleRangeValidator f:validateDoubleRange Validates that a component value
is within a specified range. The
value must be convertible to
floating-point type or a
floating-point.

LengthValidator f:validateLength Validates that the length of a
component value is within a
specified range. The value must be
of type java.lang.String

LongRangeValidator f:validateLongRange Validates that a component value
is within a specified range. The
value must be any numeric type
or String that can be converted
to a long

Table 12–3 ADF Faces Validators

Validator Tag Name Description

ByteLengthValidator af:validateByteLength Validates the number of
bytes in a String when
Java encoding is used.
For example, six English
characters do not use the
same byte storage as 6
Japanese characters. You
specify the encoding to
use as an attribute of the
validator.

In cases where the server
must limit the number of
bytes required to store a
string, use this validator
instead of specifying the
maximumLength
attribute on an input
component.

DateTimeRangeValidator af:validateDateTimeRange Validates that the entered
date is within a given
range. You specify the
range as attributes of the
validator.

RegExpValidator af:validateRegExp Validates the data using
Java regular expression
syntax.

Adding Validation

Using Validation and Conversion 12-7

To add ADF Faces validators:
1. In the Structure window, right-click the component for which you’d like to add a

validator.

2. In the context menu, choose Insert inside <UI component> > ADF Faces Core to
insert an ADF Faces validator. (To insert a JSF reference implementation validator,
choose Insert inside <UI component> > JSF Core.)

3. Choose a validator tag (for example, ValidateDateTimeRange).

4. In the Property Inspector, set values for the attributes, including any messages for
validation errors. For additional help, right-click any of the attributes and choose
Help.

ADF Faces lets you customize the detail portion of a validation error message. By
setting a value for an XxxMessageDetail attribute, where Xxx is the validation
error type (for example, maximumMessageDetail), ADF Faces displays the
custom message instead of a default message, if validation fails.

12.3.1.2 Adding ADF Model Validation
Table 12–4 describes the ADF Model validation rules that you can configure for an
attribute.

To create an ADF Model validation rule:
1. Open the page definition that contains the attribute for which you want to create a

rule.

2. In the Structure window, select the attribute, list, or table binding.

Note: ADF Faces also provides the af:validator tag, which you
can use to register a custom validator on a component. For
information about using custom validators, see Section 12.4, "Creating
Custom JSF Validation".

By default, whenever you drop an attribute from the Data Control
Palette as an input text component, JDeveloper automatically adds the
af:validator tag to the component, and binds it to the validator
property on the associated binding. The binding allows access to ADF
Model validation for processing on the client side. For more
information, see Section 12.3.2, "What Happens When You Create
Input Fields Using the Data Control Palette". For information about
ADF Model validation, see Section 12.3.1.2, "Adding ADF Model
Validation".

Table 12–4 ADF Model Validation Rules

Validator Rule Name Description

Compare Compares the attribute’s value with a literal value

List Validates whether or not the value is in or is not in a list of
values

Range Validates whether or not the value is within a range of values

Length Validates the value’s character or byte size against a size and
operand (such as greater than or equal to)

Regular Expression Validates the data using Java regular expression syntax

Adding Validation

12-8 Oracle Application Development Framework Developer’s Guide

3. In the Property Inspector, select the Edit Validation Rule link.

4. In the Validation Rules Editor, select the attribute name and click New.

5. In the Add Validation Rule dialog, select a validation rule and configure the rule
accordingly. For additional help on creating the different types of rules, click Help.

12.3.2 What Happens When You Create Input Fields Using the Data Control Palette
When you use the Data Control Palette to create input text fields (for example, by
dropping an attribute from the Data Control Palette as an inputText component),
JDeveloper automatically provides ADF Faces validation code on the JSF page by:

■ Adding an af:messages tag as a child of the afh:body tag.

By default the globalOnly attribute is set to false, and the message and text
attributes are not set. For more information, see Section 12.7, "Displaying Error
Messages".

■ Binding the required attribute for input fields to the mandatory property of the
associated attribute binding, as shown in the following EL expression:

<af:inputText required="#{bindings.problemDescription.mandatory}"

The expression evaluates to whether or not a null value is allowed based on the
attribute of the associated business object. By default, all components whose
required attribute evaluates to true will display an asterisk.

■ Adding an af:validator tag as a child of the input component, and binding the
tag to the validator property of the associated binding, as shown below:

<af:inputText value="#{bindings.someAttribute.inputValue}"...>
 <af:validator binding="#{bindings.someAttribute.validator}"/>
</af:inputText>

The binding allows the JSF lifecycle to access, on the client side, any ADF Model
validation that you may have set for the associated attribute. If you don’t wish to
use ADF Model validation, then you can delete the af:validator tag and insert
the validation tag of your choice, or if you don’t want to use any validation, you
can simply delete the tag. If you do want to use only ADF Model validation, you
must keep the tag as is.

To create a simple input form for products in the SRDemo application, for example,
you might drop the product constructor method from the Data Control Palette as a
parameter form. Example 12–2 shows the JSF code created by JDeveloper.

Example 12–2 JSF Code for a Create Product Page

<afh:body>
 <af:messages/>
 <h:form>
 <af:panelForm>
 <af:inputText value="#{bindings.productId.inputValue}"
 label="#{bindings.productId.label}"
 required="#{bindings.productId.mandatory}"
 columns="#{bindings.productId.displayWidth}">

Tip: If you delete the af:validator tag and its binding, and want to add
ADF Model validation at a later point, you must add the tag back into the code
with the binding attribute bound to the associated attribute’s validator
property.

Adding Validation

Using Validation and Conversion 12-9

 <af:validator binding="#{bindings.productId.validator}"/>
 <f:convertNumber groupingUsed="false"
 pattern="#{bindings.productId.format}"/>
 </af:inputText>
 <af:inputText value="#{bindings.name.inputValue}"
 label="#{bindings.name.label}"
 required="#{bindings.name.mandatory}"
 columns="#{bindings.name.displayWidth}">
 <af:validator binding="#{bindings.name.validator}"/>
 </af:inputText>
 <af:inputText value="#{bindings.image.inputValue}"
 label="#{bindings.image.label}"
 required="#{bindings.image.mandatory}"
 columns="#{bindings.image.displayWidth}">
 <af:validator binding="#{bindings.image.validator}"/>
 </af:inputText>
 <af:inputText value="#{bindings.description.inputValue}"
 label="#{bindings.description.label}"
 required="#{bindings.description.mandatory}"
 columns="#{bindings.description.displayWidth}">
 <af:validator binding="#{bindings.description.validator}"/>
 </af:inputText>
 </af:panelForm>
 <af:commandButton actionListener="#{bindings.createProducts.execute}"
 text="createProducts"
 disabled="#{!bindings.createProducts.enabled}"/>
 </h:form>
</afh:body>

Note that each inputText component’s required attribute is bound to the
mandatory property of its associated binding. The EL expression evaluates to
whether or not the attribute on the object to which it is bound can be null.

When you create an ADF Model validation rule for an attribute, JDeveloper adds the
validation rule to the attribute binding, which in turn references the associated
validation bean and provides the needed property values for the validation to run.
Example 12–3 shows the page definition code created if you add a Length validation
rule to the productDescription attribute setting the maximum size for the
attribute to 20.

Example 12–3 Page Definition Validation Rule

<attributeValues id="description" IterBinding="variables"
 ApplyValidation="true">
 <LengthValidationBean xmlns="http://xmlns.oracle.com/adfm/validation"
 OnAttribute="createProducts_description"
 DataType="CHARACTER" CompareType="LESSTHAN"
 ResId="description_Rule_0" Inverse="false"
 CompareLength="20"/>
 <AttrNames>
 <Item Value="createProducts_description"/>
 </AttrNames>
</attributeValues>

Adding Validation

12-10 Oracle Application Development Framework Developer’s Guide

12.3.3 What Happens at Runtime
When the user submits the page, the ADF Faces validate() method first checks for
a submitted value if the required attribute of a component is true. If the value is
null or a zero-length string, the component is invalidated. At this point, what
happens depends on whether or not client-side validation is enabled.

If client-side validation is enabled, an error message is placed in the queue. If there are
other validators registered on the component, they are not called at all, and the current
page is redisplayed with a dialog displaying the error message.

In Example 12–2, the image attribute is not required. However, all other columns are
required, as set by the mandatory property. This is denoted in the web page by
asterisk icons. Figure 12–2 shows the error message displayed if no data is entered for
the product ID, and if client-side validation is enabled.

Figure 12–2 Client-Side Error for a Required Value

If the submitted value is a non-null value or a string value of at least one character, the
validation process continues and all validators on the component are called one at a
time. Because the af:validator tag on the component is bound to the validator
property on the binding, any validation routines set on the model are also accessed
and executed at this time.

The process then continues to the next component. If all validations are successful, the
Update Model Values phase starts and a local value is used to update the model. If any
validation fails, the current page is redisplayed along with the error dialog.

When client-side validation is disabled, all validations are done on the server. First, the
ADF Faces validation is performed during the Process Validations phase. If any errors
are encountered, the values are invalidated and the associated messages are added to
the queue in FacesContext. Once all validation is run on the components, control
passes to the model layer, which runs the Validate Model Updates phase. As with the
Process Validations phase, if any errors are encountered, the values are invalidated
and the associated messages are added to the queue in FacesContext (for
information on how errors other than validation or conversion are handled, see
Section 12.8, "Handling and Displaying Exceptions in an ADF Application").

Note: JSF reference implementation validators are not run on the
client side.

Creating Custom JSF Validation

Using Validation and Conversion 12-11

The lifecycle then jumps to the Render Response phase and redisplays the current
page. ADF Faces automatically displays an error icon next to the label of any input
component that generated an error, and it displays the associated messages below the
input field. If there is a tip associated with the field, the error message displays below
the tip. Figure 12–3 shows a server-side validation error.

Figure 12–3 Server-Side Validation Error

12.3.4 What You May Need to Know
You can both set the required attribute and use validators on a component.
However, if you set the required attribute to true and the value is null or a
zero-length string, the component is invalidated and any other validators registered on
the component are not called.

This combination might be an issue if there is a valid case for the component to be
empty. For example, if the page contains a Cancel button, the user should be able to
click that button and navigate off the page without entering any data. To handle this
case, you set the immediate attribute on the Cancel button’s component to true.
This attribute allows the action to be executed during the Apply Request Values phase,
thus bypassing the validation whenever the action is executed.

12.4 Creating Custom JSF Validation
You can add your own validation logic to meet your specific business needs. If you
need custom validation logic for a component on a single page, you can create a
validation method on the page’s backing bean. Creating the validation method on a
backing bean is also useful when you need validation to access other fields on the
page. For example, if you have separate date fields (month, day, year) and each has its
own validator, users will not get an error if they enter February 30, 2005. Instead, a
backing bean for the page can contain a validation method that validates the entire
date.

If you need to create logic that will be reused by various pages within the application,
or if you want the validation to be able to run on the client side, you should create a
JSF validator class. You can then create an ADF Faces version, which will allow the
validator to run on the client.

Creating Custom JSF Validation

12-12 Oracle Application Development Framework Developer’s Guide

12.4.1 How to Create a Backing Bean Validation Method
When you need custom validation for a component on a single page, you can create a
method that provides the needed validation on a backing bean.

To add a backing bean validation method:
1. Insert the component that will require validation into the JSF page.

2. In the visual editor, double-click the component to launch the Bind Validator
Property dialog.

3. In the Bind Validator Property dialog, enter or select the managed bean that will
hold the validation method, or click New to create a new managed bean. Use the
default method signature provided or select an existing method if the logic already
exists.

When you click OK in the dialog, JDeveloper adds a skeleton method to the code
and opens the bean in the source editor.

4. Add the needed validation logic. This logic should use
javax.faces.validator.ValidatorException to throw the appropriate
exceptions and javax.faces.application.FacesMessage to generate the
corresponding error messages. For more information about the Validator
interface and FacesMessage, see the Javadoc for
javax.faces.validator.Validator and
javax.faces.application.FacesMessage, or visit
http://java.sun.com/.

12.4.2 What Happens When You Create a Backing Bean Validation Method
When you create a validation method, JDeveloper adds a skeleton method to the
managed bean you selected. Example 12–4 shows the code JDeveloper generates.

Example 12–4 Managed Bean Code for a Validation Method

public void inputText_validator(FacesContext facesContext,
 UIComponent uiComponent, Object object) {
 // Add event code here...
}

The SREdit page in the SRDemo application uses a validation method to ensure that
the new date entered is not earlier than the original date. Example 12–5 shows the
validation method on that page’s backing bean.

http://java.sun.com/

Creating Custom JSF Validation

Using Validation and Conversion 12-13

Example 12–5 SREdit Date Validation Method

public void assignedDateValidator(FacesContext facesContext,
 UIComponent uiComponent,
 Object newValue) {
 //The new value is passed into us
 Timestamp newAssignedDate = (Timestamp)newValue;

 //Get the start date for the SR which is already bound on this screen
 Timestamp requestDate =
 (Timestamp)ADFUtils.getBoundAttributeValue(getBindings(),
 "requestDate");
 // Now compare and raise an error if the rule is broken
 if (newAssignedDate.compareTo(requestDate) < 0)
 {
 throw new ValidatorException(JSFUtils.getMessageFromBundle
 ("sredit.error.assignedBeforeStart", FacesMessage.SEVERITY_ERROR));
 }

 }

JDeveloper binds the validator attribute of the component to the backing bean’s
validation method using an EL expression. Example 12–6 shows the code JDeveloper
adds to the SREdit page.

Example 12–6 JSF Code for a Custom Validation Method

<af:selectInputDate value="#{bindings.assignedDate.inputValue}"
 label="#{bindngs.assignedDate.label}"
 ...
 validator="#{backing_SREdit.assignedDateValidator}">

When the form containing the input component is submitted, the method to which the
validator attribute is bound is executed.

12.4.3 How to Create a Custom JSF Validator
Creating a custom validator requires writing the business logic for the validation by
creating a Validator implementation that contains a method overriding the
validate method of the Validator interface, and then registering the custom
validator with the application. You can also create a tag for the validator, or you can
use the af:validator tag and nest the custom validator as a property of that tag.

You can then create a client-side version of the validator. ADF Faces client-side
validation works in the same way that standard validation works on the server, except
that JavaScript is used on the client: JavaScript validator objects can throw
ValidatorExceptions, and they support the validate() method.

Tip: JDeveloper also adds an af:validator tag that is bound to
the validator property of the associated binding. This allows the
JSF lifecycle to access any ADF Model validation you may have set for
the associated attribute. If you do not set any ADF Model validation,
you may remove this binding.

Creating Custom JSF Validation

12-14 Oracle Application Development Framework Developer’s Guide

To create a custom JSF validator:
1. Create a Java class that implements the javax.faces.validator.Validator

interface. The implementation must contain a public no-args constructor, a set of
accessor methods for any attributes, and a validate method that overrides the
validate method of the Validator interface.

Alternatively, you can implement the javax.faces.FormatValidator
interface, which has accessor methods for setting the formatPatterns attribute.
This attribute specifies the acceptable patterns for the data entered into the input
component. For example, if you want to validate the pattern of a credit card
number, you create a formatPatterns attribute for the allowed patterns. The
implementation must contain a constructor, a set of accessor methods for any
attributes, and a validate method that overrides the validate method on the
Validator interface.

For both interfaces, the validate method takes the FacesContext instance, the
UI component, and the data to be validated. For example:

public void validate(FacesContext facesContext,
 UIComponent uiComponent,
 Object object) {
..
}
For more information about these classes, refer to the Javadoc or visit
http://java.sun.com/.

2. Add the needed validation logic. This logic should use
javax.faces.validator.ValidatorException to throw the appropriate
exceptions and javax.faces.application.FacesMessage to generate the
corresponding error messages. For more information about the Validator
interface and FacesMessage, see the Javadoc for
javax.faces.validator.Validator and
javax.faces.application.FacesMessage, or visit http://java.sun.com/.

3. If your application saves state on the client, make your custom validator
implementation implement the Serializable interface, or implement the
StateHolder interface, and the saveState(FacesContext) and
restoreState(FacesContext, Object) methods of StateHolder. For
more information, see the Javadoc for the StateHolder interface of the
javax.faces.component package.

Note: If the JavaScript form.submit() function is called, the ADF
Faces support for client-side validation is bypassed. ADF Faces
provides a submitForm() method that you can use instead, or you
can use the autoSubmit attribute on ADF Faces input components.

Note: To allow the page author to configure the attributes from the
page, you need to create a tag for the validator. See step 5 for more
information. If you don’t want the attributes configured on the page,
then you must configure them in this implementation class.

http://java.sun.com/
http://java.sun.com/

Creating Custom JSF Validation

Using Validation and Conversion 12-15

4. Register the validator in the faces-config.xml file.

■ Open the faces-config.xml file and select the Overview tab in the editor
window. The faces-config.xml file is located in the <View_
Project>/WEB-INF directory.

■ In the window, select Validators and click New. Click Help or press F1 for
additional help in registering the validator.

5. Optionally create a tag for the validator that sets the attributes for the class. You
create a tag by adding an entry for the tag in the application’s tag library definition
file (TLD). To do so:

■ Open or create a TLD for the application. For more information about creating
a TLD, visit http://java.sun.com/.

■ Define the validator ID and class as registered in the faces-config.xml file.

■ Define any properties or attributes as registered in that configuration file.

To create a client-side version of the validator:
1. Write a JavaScript version of the validator, passing relevant information to a

constructor.

2. Implement the interface
oracle.adf.view.faces.validator.ClientValidator, which has two
methods. The first method is getClientScript(), which returns an
implementation of the JavaScript Validator object. The second method is
getClientValidation(), which returns a JavaScript constructor that is used to
instantiate an instance of the validator.

For a complete example of how to add client-side validation to a validator
implementation, see "Client-Side Converters and Validators" in Development Guidelines
for Oracle ADF Faces Applications.

To use a custom validator on a JSF page:
■ To use a custom validator that has a tag on a JSF page, you need to manually nest

it inside the component’s tag.

Example 12–7 shows a custom validator nested inside an inputText component.
Note that the tag attributes are used to provide the values for the validator’s
properties that were declared in the faces-config.xml file.

Example 12–7 A Custom Validator Tag on a JSF Page

<h:inputText id="empnumber" required="true">
 <hdemo:emValidator emPatterns="9999|9 9 9 9|9-9-9-9" />
</h:inputText>

Note: If you do not create a tag for the validator, you must configure
any attributes in the Validator implementation.

http://java.sun.com/

Adding Conversion

12-16 Oracle Application Development Framework Developer’s Guide

To use a custom validator without a custom tag:
To use a custom validator without a custom tag, you must nest the validator’s ID (as
configured in faces-config.xml file) inside the af:validator tag.

1. From the Structure window, right-click the input component for which you want
to add validation, and choose Insert inside <component> > ADF Faces Core >
Validator.

2. Select the validator’s ID from the dropdown list and click OK.

JDeveloper inserts code on the JSF page that makes the validator ID a property of
the validator tag.

Example 12–8 shows the code on a JSF page for a validator using the af:validator
tag.

Example 12–8 A Custom Validator Nested Within a Component on a JSF Page

<af:inputText id="empnumber" required="true">
 <af:validator validatorID="emValidator"/>
</af:inputText>

12.4.4 What Happens When You Use a Custom JSF Validator
When you use a custom JSF validator, the application accesses the validator class
referenced in either the custom tag or the af:validator tag and executes the
validate method. This method accesses the data from the component in the current
FacesContext and executes logic against it to determine if it is valid. If the validator
has attributes, those attributes are also accessed and used in the validation routine.
Like standard validators, if the custom validation fails, associated messages are placed
in the message queue in FacesContext.

12.5 Adding Conversion
A web application can store data of many types (such as int, long, date) in the
model layer. When viewed in a client browser, however, the user interface has to
present the data in a manner that can be read or modified by the user. For example, a
date field in a form might represent a java.util.Date object as a text string in the
format pattern mm/dd/yyyy. When a user edits a date field and submits the form, the
string must be converted back to the type that is required by the application. Then the
data is validated against any rules and conditions.

When you create an inputText component by dropping an attribute that is of a type
for which there is a converter, JDeveloper automatically adds that converter’s tag as a
child of the input component. This tag invokes the converter, which will convert the
String entered by the user back into the type expected by the object.

Adding Conversion

Using Validation and Conversion 12-17

The JSF standard converters, which handle conversion between Strings and simple
data types, implement the javax.faces.convert.Converter interface. The
supplied JSF standard converter classes are:

■ BigDecimalConverter

■ BigIntegerConverter

■ BooleanConverter

■ ByteConverter

■ CharacterConverter

■ DateTimeConverter

■ DoubleConverter

■ FloatConverter

■ IntegerConverter

■ LongConverter

■ NumberConverter

■ ShortConverter

Table 12–5 shows the converters provided by ADF Faces.

As with validators, the ADF Faces converters are also run on the client side unless
client-side validation is explicitly disabled in the adf-faces-config.xml file.

Table 12–5 ADF Faces Converters

Converter Tag Name Description

ColorConverter af:convertColor Converts java.lang.String
objects to java.awt.Color objects.
You specify a set of color patterns as
an attribute of the converter.

DateTimeConverter af:convertDateTime Converts java.lang.String
objects to java.util.Date objects.
You specify the pattern and style of
the date as attributes of the converter.

NumberConverter af:convertNumber Converts java.lang.String
objects to java.lang.Number
objects. You specify the pattern and
type of the number as attributes of
the converter.

Note: JSF reference implementation converters are not run on the
client-side

Adding Conversion

12-18 Oracle Application Development Framework Developer’s Guide

In addition to JavaScript-enabled converters for color, date, and number, ADF Faces
also provides JavaScript-enabled converters for input text fields that are bound to any
of these Java types:

■ java.lang.Integer

■ java.lang.Long

■ java.lang.Short

■ java.lang.Byte

■ java.lang.Float

■ java.lang.Double

Unlike the converters listed in Table 12–5, the JavaScript-enabled converters are
automatically used whenever needed. They do not have associated tags that can be
nested in the component.

12.5.1 How to Use Converters
Whenever you drop an attribute from the Data Control Palette for which there is an
ADF Faces converter, JDeveloper automatically adds the converter to the input
component. You can also manually insert a converter.

To add ADF Faces converters that have a tag:
1. In the Structure window, right-click the component for which you’d like to add a

converter.

2. In the context menu, choose Insert inside <UI component> > ADF Faces Core to
insert an ADF Faces converter or JSF Core to insert a JSF converter.

3. Choose a converter tag (for example, ConvertDateTime).

4. In the Property Inspector, set values for the attributes, including any messages for
conversion errors. For additional help, right-click any of the attributes and choose
Help.

ADF Faces lets you customize the detail portion of a conversion error message. By
setting a value for an XxxMessageDetail attribute, where Xxx is the conversion
error type (for example, convertDateMessageDetail), ADF Faces displays the
custom message instead of a default message, if conversion fails.

12.5.2 What Happens When You Create Input Fields Using the Data Control Palette
When you use the Data Control Palette to create input fields that are of a type
supported by a converter, JDeveloper automatically provides ADF Faces conversion
code on the JSF page by:

■ Adding an af:messages tag as a child of the body tag. By default the
globalOnly attribute is set to false, and the message and text attributes are not
set. For more information, see Section 12.7, "Displaying Error Messages".

■ Adding a converter tag as a child of the input component.

By default, the pattern attribute is bound to the format property of the
associated binding. The format property determines how the String is
formatted. For example, for the convertNumber converter, it might determine
whether decimals are used. This binding evaluates to the format property as it is
set on the data control itself.

Creating Custom JSF Converters

Using Validation and Conversion 12-19

For example, if you drop the prodId attribute from the findAllProducts method
as an inputText component, JDeveloper automatically adds the convertNumber
converter as a child of the input component, as shown in Example 12–9.

Example 12–9 Converter Tag in a JSF Page

<af:inputText value="#{bindings.productId.inputValue}"
 label="#{bindings.productId.label}"
 required="#{bindings.productId.mandatory}"
 columns="#{bindings.productId.displayWidth}">
 <af:validator binding="#{bindings.productId.validator}"/>
 <f:convertNumber groupingUsed="false"
 pattern="#{bindings.productId.format}"/>
</af:inputText>

12.5.3 What Happens at Runtime
When the user submits the page containing converters, the ADF Faces validate()
method calls the converter's getAsObject() method to convert the string value to
the required object type. When there isn't an attached converter and if the component
is bound to a bean property in the model, then JSF automatically uses the converter
that has the same data type as the bean property. If conversion fails, the submitted
value is marked as invalid and JSF adds an error message to a queue that is
maintained by FacesContext. If conversion is successful and there are no validators
attached to the component, the converted value is stored as a local value that is later
used to update the model.

12.6 Creating Custom JSF Converters
You can create your own converters to meet your specific business needs. As with
creating custom JSF validators, you can create custom JSF converters that run on the
server side, and then also create a JavaScript version that can run on the client side.
However, unlike creating custom validators, you can create only converter classes. You
cannot add a method to a backing bean to provide conversion.

12.6.1 How to Create a Custom JSF Converter
Creating a custom converter requires writing the business logic for the conversion by
creating an implementation of the Converter interface that contains methods
overriding the getAsObject and getAsString methods of the Converter
interface, and then registering the custom converter with the application. You then use
the f:converter tag and nest the custom converter as a property of that tag, or you
can use the converter attribute on the input component to bind to that converter.

You can also create a client-side version of the converter. ADF Faces client-side
converters work in the same way standard JSF conversion works on the server, except
that JavaScript is used on the client: JavaScript converter objects can throw
ConverterExceptions, and they support the getAsObject and getAsString
methods.

Note: If the JavaScript form.submit() function is called, the ADF
Faces support for client-side conversion is bypassed. ADF Faces
provides a submitForm() method that you can use instead, or you
can use the autoSubmit attribute on ADF Faces input components.

Creating Custom JSF Converters

12-20 Oracle Application Development Framework Developer’s Guide

To create a custom JSF converter:
1. Create a Java class that implements the javax.faces.converter.Converter

interface. The implementation must contain a public no-args constructor, a set of
accessor methods for any attributes, and getAsObject and getAsString
methods, which override the same methods of the Converter interface.

The getAsObject method takes the FacesContext instance, the UI component,
and the String to be converted to a specified object. For example:

public Object getAsObject(FacesContext context,
 UIComponent component,
 java.lang.String value){
..
}

The getAsString method takes the FacesContext instance, the UI component,
and the object to be converted to a String. For example:

public String getAsString(FacesContext context,
 UIComponent component,
 Object value){
..
}

For more information about these classes, refer to the Javadoc or visit
http://java.sun.com/.

2. Add the needed conversion logic. This logic should use
javax.faces.converter.ConverterException to throw the appropriate
exceptions and javax.faces.application.FacesMessage to generate the
corresponding error messages. For more information about the Converter
interface and FacesMessage, see the Javadoc for
javax.faces.converter.Converter and
javax.faces.application.FacesMessage, or visit http://java.sun.com/.

3. If your application saves state on the client, make your custom converter
implementation implement the Serializable interface, or implement the
StateHolder interface, and the saveState(FacesContext) and
restoreState(FacesContext, Object) methods of StateHolder. For
more information, see the Javadoc for the StateHolder interface of
javax.faces.component package.

4. Register the converter in the faces-config.xml file.

■ Open the faces-config.xml file and select the Overview tab in the editor
window. The faces-config.xml file is located in the <View_
Project>/WEB-INF directory.

■ In the window, select Converters and click New. Click Help or press F1 for
additional help in registering the converter.

http://java.sun.com/
http://java.sun.com/

Creating Custom JSF Converters

Using Validation and Conversion 12-21

To create a client-side version of the converter:
1. Write a JavaScript version of the converter, passing relevant information to a

constructor.

2. Implement the interface
oracle.adf.view.faces.converter.ClientConverter, which has two
methods. The first method is getClientScript(), which returns an
implementation of the JavaScript Converter object. The second method is
getClientConversion(), which returns a JavaScript constructor that is used to
instantiate an instance of the converter.

For a complete example of how to add client-side conversion to a converter
implementation, see "Client-Side Converters and Validators" in Development Guidelines
for Oracle ADF Faces Applications.

To use a custom converter on a JSF page:
■ Bind your converter class to the converter attribute of the input component.

Example 12–10 shows a custom converter referenced by the converter attribute of
an inputText component.

Example 12–10 A Custom Converter on a JSF Page

<af:inputText value="#{bindings.name.inputValue}"
 label="#{bindings.name.label}"
 required="#{bindings.name.mandatory}"
 columns="#{bindings.name.displayWidth}"

converter="srdemo.MyConverter">
</af:inputText>

12.6.2 What Happens When You Use a Custom Converter
When you use a custom converter, the application accesses the converter class
referenced in the converter attribute, and executes the getAsObject or
getAsString method as appropriate. These methods access the data from the
component in the current FacesContext and execute the conversion logic.

Note: If a custom converter is registered in an application under a
class for a specific data type, whenever a component's value
references a value binding that has the same type as the custom
converter object, JSF will automatically use the converter of that class
to convert the data. In that case, you don't need to use the converter
attribute to register the custom converter on a component, as shown in
the following code snippet:

<h:inputText value="#{myBean.myProperty}"/>

 where myProperty has the same type as the custom converter.

Displaying Error Messages

12-22 Oracle Application Development Framework Developer’s Guide

12.7 Displaying Error Messages
By default, ADF Faces validation and conversion run on the client side. When a
component’s data fails validation, an alert dialog displays an error message for the
component. You do not need to do any additional work to have client-side error
messages display in this way. Figure 12–4 shows the message displayed when data is
not entered for an input component that has a required attribute set to true.

Figure 12–4 A Client-Side Error Message

ADF Faces provides default text for messages displayed when validation or
conversion fails. You can replace the default messages with your own messages by
setting the text on the xxxMessageDetail attributes of the validator or converter
(such as convertDateMessageDetail or notInRangeDetailMessage), or by
binding those attributes to a resource bundle using an EL expression. For more
information about using resource bundles, see Section 14.4.1, "How to Internationalize
an Application".

When you use the Data Control Palette to create input components, JDeveloper inserts
the af:messages tag at the top of the page. This tag can display all error messages in
the queue for any validation that occurs on the server side, in a box offset by color. If
you choose to turn off client-side validation for ADF Faces, those error messages are
displayed along with any ADF Model error messages. ADF Model messages are
shown first. Messages are shown both within the af:messages tag and with the
associated components.

Figure 12–5 shows the error message for an ADF Model validation rule, which states
that the description is too long, along with an error message for an ADF Faces
component required attribute violation.

Figure 12–5 Displaying Server-Side Error Messages With the ADF Faces Messages Tag

Handling and Displaying Exceptions in an ADF Application

Using Validation and Conversion 12-23

12.7.1 How to Display Server-Side Error Messages on a Page
You can display server-side error messages in a box at the top of a page using the
af:messages tag. When you drop any item from the Data Control Palette onto a
page as an input component, JDeveloper automatically adds this tag for you.

To display error messages in an error box:
1. In the Structure window, select the af:messages tag.

This tag is created automatically whenever you drop an input widget from the
Data Control Palette. However, if you need to insert the tag, simply insert the
following code within the afh:body tag:

<afh:body>
 <af:messages globalOnly="false" />
 ...
</afh:body>

2. In the Property Inspector set the following attributes:

■ globalOnly: By default ADF Faces displays global messages (i.e., messages
that are not associated with components) followed by individual component
messages. If you wish to display only global messages in the box, set this
attribute to true. Component messages will continue to display with the
associated component.

■ message: The main message text that displays just below the message box
title, above the list of individual messages.

■ text: The text that overrides the default title of the message box.

3. Ensure that client-side validation has been disabled. If you do not disable
client-side validation, the alert dialog will display if there are any ADF Faces
validation errors, as the server-side validation will not have taken place.

12.7.2 What Happens When You Choose to Display Error Messages
When a conversion or validation error occurs on an ADF Faces input component, the
component creates a FacesMessage object and adds it to a message queue on the
FacesContext instance. During the Render Response phase, the message associated
with the validator or converter is displayed using the built-in message display
attribute for the ADF Faces input component. This attribute displays the detail error
message next to the component. The message is also displayed by the optional
af:messages tag, which displays all summary messages in a message box.

12.8 Handling and Displaying Exceptions in an ADF Application
Exceptions thrown by any part of an ADF application are also handled and displayed
on the JSF page. By default, all exceptions thrown in the application are caught by the
binding container. When an exception is encountered, the binding container routes the
exception to the application’s active error handler, which by default is the
DCErrorHandlerImpl class. The reportException(BindingContainer,
Exception) method on this class passes the exception to the binding container to
process. The binding container then processes the exception by placing it on the
exception list in a cache.

Tip: To disable client-side validation, add the
<client-validation-disabled> element in
adf-faces-config.xml and set it to true.

Handling and Displaying Exceptions in an ADF Application

12-24 Oracle Application Development Framework Developer’s Guide

If exceptions are encountered on the page during the page lifecycle, (for example,
during validation), they are also caught by the binding container and cached, and are
additionally added to FacesContext.

During the Prepare Render phase, the ADF lifecycle executes the
reportErrors(context) method. This method is implemented differently for
each view technology. By default, the reportErrors method on the
FacesPageLifecycle class:

■ Accesses the exception list from the binding container.

■ Calls the addError helper method, which creates and adds the messages to the
FacesContext. By default, messages display the JBO exception number and
exception text.

■ Clears the exceptions list in the binding container.

You can customize this default framework behavior. For example, you can create a
custom error handler for exceptions, or you can change how the lifecycle reports
exceptions. You can also customize how a single page handles exceptions.

12.8.1 How to Change Exception Handling
You can change the default exception handling by extending the default error handler,
DCErrorHandlerImpl. Doing so also requires that you create a custom ADF lifecycle
class that will call the new error handler during the Prepare Model phase.

You can also create a custom ADF lifecycle class to change how the lifecycle reports
errors by overriding the reportErrors method.

If you only want to change how exceptions are created for a single page, you can
create a lifecycle class just for that page.

To create a custom error handler:
1. Create a class that extends the DCErrorHandlerImpl class.

2. In the new class, override the
public void reportException(DCBindingContainer, Exception)
method.

Example 12–11 shows the SRDemoErrorHandler Class that the SRDemo
application uses to handle errors.

Example 12–11 SRDemoErrorHandler Class

public class SRDemoErrorHandler extends DCErrorHandlerImpl{
 /**
 * Constructor for custom error handler.
 *
 * @param setToThrow should exceptions throw or not
 */
 public SRDemoErrorHandler(boolean setToThrow) {
 super(setToThrow);
 }
 public void reportException(DCBindingContainer bc, Exception ex) {
 //Force JboException's reported to the binding layer to avoid
 //printing out the JBO-XXXXX product prefix and code.
 disableAppendCodes(ex);
 super.reportException(bc, ex);
 }

Handling and Displaying Exceptions in an ADF Application

Using Validation and Conversion 12-25

 private void disableAppendCodes(Exception ex) {
 if (ex instanceof JboException) {
 JboException jboEx = (JboException) ex;
 jboEx.setAppendCodes(false);
 Object[] detailExceptions = jboEx.getDetails();
 if ((detailExceptions != null) && (detailExceptions.length > 0)) {
 for (int z = 0, numEx = detailExceptions.length; z < numEx; z++) {
 disableAppendCodes((Exception) detailExceptions[z]);
 }
 }
 }
 }
}

3. Globally override the error handler. To do this, you must create a custom page
lifecycle class that extends FacesPageLifecycle. In this class, you override the
public void prepareModel(LifecycleContext) method, which sets the
error handler. To have it set the error handler to the custom handler, have the
method check whether or not the custom error handler is the current one in the
binding context. If it is not, set it to be. (Because by default the
ADFBindingFilter always sets the error handler to be DCErrorHandlerImpl,
your method must set it back to the custom error handler.) You must then call
super.prepareModel.

Example 12–12 shows the prepareModel method from the
frameworkExt.SRDemoPageLifecycle class that extends the
FacesPageLifecycle class. Note that the method checks whether or not the
error handler is an instance of the SRDemoErrorHandler, and if it is not, it sets it
to the new error handler.

Example 12–12 PrepareModel Method

public void prepareModel(LifecycleContext ctx) {
 if (!(ctx.getBindingContext().getErrorHandler() instanceof
 SRDemoErrorHandler)) {
 ctx.getBindingContext().setErrorHandler(new SRDemoErrorHandler(true));
 }
 super.prepareModel(ctx);
}

4. You now must create a new Phase Listener that will return the custom lifecycle.
See the procedure "To create a new phase listener:" later in the section.

To customize how the lifecycle reports errors:
1. Create a custom page lifecycle class that extends FacesPageLifecycle.

2. Override the public void reportErrors(PageLifecycleContext)
method to customize the display of error messages.

Example 12–13 shows the reportErrors method and associated methods in the
frameworkExt.SRDemoPageLifecycle class that extends the
FacesPageLifecycle class to change how the errors are reported.

Handling and Displaying Exceptions in an ADF Application

12-26 Oracle Application Development Framework Developer’s Guide

Example 12–13 ReportErrors Method in the SRDemoPageLifecycle Class

public void reportErrors(PageLifecycleContext ctx) {
 DCBindingContainer bc = (DCBindingContainer)ctx.getBindingContainer();
 if (bc != null) {
 List<Exception> exceptions = bc.getExceptionsList();
 if (exceptions != null) {
 Locale userLocale =
 ctx.getBindingContext().getLocaleContext().getLocale();
 /*
 * Iterate over the top-level exceptions in the exceptions list and
 * call addError() to add each one to the Faces errors list
 * in an appropriate way.
 */
 for (Exception exception: exceptions) {
 try {
 translateExceptionToFacesErrors(exception, userLocale,
 bc);
 } catch (KnowErrorStopException stop) {
 FacesContext fctx = FacesContext.getCurrentInstance();
 fctx.addMessage(null,
 JSFUtils.getMessageFromBundle
 (stop.getMessage(),
 FacesMessage.SEVERITY_FATAL));
 break;
 }
 }
 }
 }
}

protected void translateExceptionToFacesErrors(Exception ex, Locale locale,
 BindingContainer bc) throws
 KnowErrorStopException {
 List globalErrors = new ArrayList();
 Map attributeErrors = new HashMap();
 processException(ex, globalErrors, attributeErrors, null, locale);
 int numGlob = globalErrors.size();
 int numAttr = attributeErrors.size();
 if (numGlob > 0) {
 for (int z = 0; z < numGlob; z++) {
 String msg = (String)globalErrors.get(z);
 if (msg != null) {
 JSFUtils.addFacesErrorMessage(msg);
 }
 }
 }
 if (numAttr > 0) {
 Iterator i = attributeErrors.keySet().iterator();
 while (i.hasNext()) {
 String attrNameKey = (String)i.next();

Handling and Displaying Exceptions in an ADF Application

Using Validation and Conversion 12-27

 /*
 * Only add the error to show to the user if it was related
 * to a field they can see on the screen. We accomplish this
 * by checking whether there is a control binding in the current
 * binding container by the same name as the attribute with
 * the related exception that was reported.
 */
 ControlBinding cb =
 ADFUtils.findControlBinding(bc, attrNameKey);
 if (cb != null) {
 String msg = (String)attributeErrors.get(attrNameKey);
 if (cb instanceof JUCtrlAttrsBinding) {
 attrNameKey = ((JUCtrlAttrsBinding)cb).getLabel();
 }
 JSFUtils.addFacesErrorMessage(attrNameKey, msg);
 }
 }
 }
}

/**
* Populate the list of global errors and attribute errors by
* processing the exception passed in, and recursively processing
* the detail exceptions wrapped inside of any oracle.jbo.JboException
* instances.
*
* If the error is an attribute-level validation error, we can tell
* because it should be an instanceof oracle.jbo.AttrValException
* For each attribute-level error, we retrieve the name of the attribute
* in error by calling an appropriate getter method on the exception
* object which exposes this information to us. Since attribute-level
* errors could be wrapping other more specific attribute-level errors
* that were the real cause (especially due to Bundled Exception Mode).
* We continue to recurse the detail exceptions and we only consider
* relevant to report the exception that is the most deeply nested, since
* it will have the most specific error message for the user. If multiple
* exceptions are reported for the same attribute, we simplify the error
* reporting by only reporting the first one and ignoring the others.
* An example of this might be that the user has provided a key value
* that is a duplicate of an existing value, but also since the attribute
* set failed due to that reason, a subsequent check for mandatory attribute
* ALSO raised an error about the attribute's still being null.
*
* If it's not an attribute-level error, we consider it a global error
* and report each one.
*
* @param ex the exception to be analyzed
* @param globalErrs list of global errors to populate
* @param attrErrs map of attrib-level errors to populate, keyed by attr name
* @param attrName attribute name of wrapping exception (if any)
* @param locale the user's preferred locale as determined by the browser
*/
private void processException(Exception ex, List globalErrs, Map attrErrs,
 String attrName,
 Locale locale) throws KnowErrorStopException {
 /*
 * Process the exceptions
 * Start with some special cases that are known bad situations where we
 * need to format some useful advice rather than just parroting the
 * exception text

Handling and Displaying Exceptions in an ADF Application

12-28 Oracle Application Development Framework Developer’s Guide

 */
 if (ex instanceof EJBException) {
 String msg = ex.getLocalizedMessage();
 if (msg == null) {
 msg = firstLineOfStackTrace(ex, true);
 }
 Exception causeEx = ((EJBException)ex).getCausedByException();
 if (causeEx instanceof TopLinkException) {
 int toplinkErrorCode =
 ((TopLinkException)causeEx).getErrorCode();
 switch (toplinkErrorCode) {
 case 7060:
 {
 throw new KnowErrorStopException("srdemo.topLinkError.7060");
 }
 case 4002:
 {
 throw new KnowErrorStopException("srdemo.topLinkError.4002");
 }
 }
 }
 globalErrs.add(msg);
 } else if (ex instanceof AdapterException){
 AdapterException causeEx = ((AdapterException)ex);

 int err = Integer.parseInt(causeEx.getErrorCode());
 switch (err){
 case 40010:{
 throw new KnowErrorStopException("srdemo.urlDCError.40010");
 }
 case 29000:{
 throw new KnowErrorStopException("srdemo.urlDCError.29000");
 }
 default:{
 throw new KnowErrorStopException("srdemo.urlDCError.other");
 }
 }

 } else if (!(ex instanceof JboException)) {
 String msg = ex.getLocalizedMessage();
 if (msg == null) {
 msg = firstLineOfStackTrace(ex, true);
 }
 globalErrs.add(msg);
 /*
 * If this was an unexpected error, print out stack trace
 */
 reportUnexpectedException(ex);
 return;
 }
 if (ex instanceof AttrValException) {
 AttrValException ave = (AttrValException)ex;
 attrName = ave.getAttrName();
 Object obj = attrErrs.get(attrName);

Handling and Displaying Exceptions in an ADF Application

Using Validation and Conversion 12-29

 /*
 * If we haven't already recorded an error for this attribute
 * and if it's a leaf detail, then log it as the first error for
 * this attribute. If there are details, then we'll recurse
 * into the details below. But, in the meantime we've recorded
 * What attribute had the validation error in the attrName
 */
 Object[] details = ave.getDetails();
 if (obj != null) {
 /*
 * We've already logged an attribute-validation error for this
 * attribute, so ignore subsequent attribute-level errors
 * for the same attribute. Note that this is not ignoring
 * NESTED errors of an attribute-level exception, just the
 * second and subsequent PEER errors of the first attribute-level
 * error. This means the user might receive errors on several
 * different attributes, but for each attribute we're choosing
 * to tell them about just the first problem to fix.
 */
 return;
 } else {
 /*
 * If there aren't any further, nested details, then log first error
 */
 if ((details == null) || (details.length == 0)) {
 attrErrs.put(attrName, ave.getLocalizedMessage(locale));
 }
 }
 }
 JboException jboex = (JboException)ex;
 /*
 * It is a JboException so recurse into the exception tree
 */
 Object[] details = jboex.getDetails();
 /*
 * We only want to report Errors for the "leaf" exceptions
 * So if there are details, then don't add an errors to the lists
 */
 if ((details != null) && (details.length > 0)) {
 for (int j = 0, count = details.length; j < count; j++) {
 processException((Exception)details[j], globalErrs, attrErrs,
 attrName, locale);
 }
 } else {
 /*
 * Add a new Error to the collection
 */
 if (attrName == null) {
 String errorCode = jboex.getErrorCode();
 globalErrs.add(jboex.getLocalizedMessage(locale));
 } else {
 attrErrs.put(attrName, jboex.getLocalizedMessage(locale));
 }
 if (!(jboex instanceof ValidationException)) {
 reportUnexpectedException(jboex);
 }
 }
}

Handling and Displaying Exceptions in an ADF Application

12-30 Oracle Application Development Framework Developer’s Guide

/**
* Prints the stack trace for an unexpected exception to standard out.
*
* @param ex The unexpected exception to report.
*/
protected void reportUnexpectedException(Exception ex) {
 ex.printStackTrace();
}
/**
* Picks off the exception name and the first line of information
* from the stack trace about where the exception occurred and
* returns that as a single string.
*/
private String firstLineOfStackTrace(Exception ex, boolean logToError) {
 if (logToError) {
 ex.printStackTrace(System.err);
 }
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw);
 ex.printStackTrace(pw);
 LineNumberReader lnr =
 new LineNumberReader(new StringReader(sw.toString()));
 try {
 String lineOne = lnr.readLine();
 String lineTwo = lnr.readLine();
 return lineOne + " " + lineTwo;
 } catch (IOException e) {
 return null;
 }
}

3. You now must create a new phase listener that will return the custom lifecycle.

To create a new phase listener:
1. Extend the ADFPhaseListener class.

2. Override the protected PageLifecycle createPageLifecycle ()
method to return a new custom lifecycle.

Example 12–14 shows the createPageLifecycle method in the
frameworkExt.SRDemoADFPhaseListener class.

Example 12–14 CreatePageLifecycle Method in SRDemoADFPhaseListener

public class SRDemoADFPhaseListener extends ADFPhaseListener {
 protected PageLifecycle createPageLifecycle() {
 return new SRDemoPageLifecycle();
 }
}

3. Register the phase listener in the faces-config.xml file.

■ Open the faces-config.xml file and select the Overview tab in the editor
window. The faces-config.xml file is located in the <View_
Project>/WEB-INF directory.

■ In the window, select Life Cycle and click New. Click Help or press F1 for
additional help in registering the converter.

Handling and Displaying Exceptions in an ADF Application

Using Validation and Conversion 12-31

To override exception handling for a single page:
1. Create a custom page lifecycle class that extends the FacesPageLifecycle class.

2. Override the public void reportErrors(PageLifecycleContext)
method to customize the display of error messages. For an example of overriding
this method, see the procedure "To customize how the lifecycle reports errors:"
earlier in this section.

3. Open the page definition for the page. In the Structure window, select the page
definition node. In the Property Inspector, enter the new class as the value for the
ControllerClass attribute.

12.8.2 What Happens When You Change the Default Error Handling
When you create your own error handler, the application uses that class instead of the
DCErrorHandler class. Because you created and registered a new lifecycle, that
lifecycle is used for the application. This new lifecycle instantiates your custom error
handler.

When an error is subsequently encountered, the binding container routes the error to
the custom error handler. The reportException(BindingContainer,
Exception) method then executes.

If you’ve overridden the reportErrors method in the custom lifecycle class, then
during the Prepare Render phase, the lifecycle executes the new
reportErrors(context) method.

Handling and Displaying Exceptions in an ADF Application

12-32 Oracle Application Development Framework Developer’s Guide

Adding ADF Bindings to Existing Pages 13-1

13
Adding ADF Bindings to Existing Pages

This chapter describes how to use the Data Control Palette to add ADF bindings to
existing UI components. Instead of using the Data Control Palette to design your
application pages, you can design the UI first using other tools, such as the
Component Palette, and add the ADF bindings later.

This chapter includes the following sections:

■ Section 13.1, "Introduction to Adding ADF Bindings to Existing Pages"

■ Section 13.2, "Designing Pages for ADF Bindings"

■ Section 13.3, "Using the Data Control Palette to Bind Existing Components"

■ Section 13.4, "Adding ADF Bindings to Text Fields"

■ Section 13.5, "Adding ADF Bindings to Tables"

■ Section 13.6, "Adding ADF Bindings to Actions"

■ Section 13.7, "Adding ADF Bindings to Selection Lists"

■ Section 13.8, "Adding ADF Bindings to Trees and Tree Tables"

13.1 Introduction to Adding ADF Bindings to Existing Pages
While the Data Control Palette enables you to design and create bound components in
a single drag and drop action, in some cases, it may be preferable to create the basic UI
components first and add the bindings later. For example, if a development team
includes UI designers, the designers can create the basic pages using JDeveloper tools,
such as the Component Palette, and the developers can add the page functionality
afterwards, including the ADF bindings.

Read this chapter to understand:

■ How to design a page for easy insertion of ADF bindings

■ Which UI components you can add ADF bindings to

■ How to use the Data Control Palette to add ADF bindings to existing page
components

■ What happens to your components when ADF bindings are added

Designing Pages for ADF Bindings

13-2 Oracle Application Development Framework Developer’s Guide

13.2 Designing Pages for ADF Bindings
When designing and creating a web page that will have ADF bindings added later, use
the JDeveloper wizards, visual editors, and design tools (such as the Component
Palette).

You can design your pages using any tags that you want; however, if you plan to add
ADF bindings to certain components, you may want to design those components
using tags that work with ADF bindings. Otherwise, the components will have to be
entirely replaced when the bindings are added later.

When you add ADF bindings to an existing component, ADF preserves as much of the
original component’s properties as possible. However, the binding may overwrite such
things as labels, column headings, and range navigation.

If a label value contains a static text string, the ADF binding overwrites the value with
an EL expression that binds to an attribute name in the data control. However, if you
define your UI labels using EL expressions that reference managed beans (for example,
a standard binding on a resource bundle), that label is preserved when you add the
ADF binding to that component. In many cases, it is preferable to design your basic UI
components using labels that are bound to resource bundles, especially if you will be
localizing your pages. For more information about resource bundles, see Section 14.4,
"Internationalizing Your Application".

Range navigation is another property that is overwritten by the ADF binding, because
the iterator referenced by the binding manages the current rowset. Later sections in
this chapter discuss how to add ADF bindings to specific UI components and how
those specific components are affected by the ADF bindings.

13.2.1 Creating the Page
When you use the Create JSF JSP wizard to create a page to which you intend to add
ADF bindings, be sure to do the following actions to make future binding easier:

■ Choose the Do not Automatically Expose UI Components in a Managed Bean
option.

This option turns off JDeveloper’s auto-binding feature, which automatically
associates every UI component in the page to a corresponding property in the
backing bean for eventual programmatic manipulation. If you intend to add ADF
bindings to a page, Oracle recommends that you do not use the auto-binding
feature. If you use the auto-binding feature, you will have to remove the managed
bean bindings later, after you have added the ADF bindings. The managed bean
UI component property bindings do not affect the ADF bindings, but their
presence may be confusing in the JSF code. For information about managed beans,
see Section 4.5, "Creating and Using a Backing Bean for a Web Page".

■ Add the ADF Faces tag libraries.

While you can add ADF bindings to JSF components, the ADF Faces components
provide greater functionality, especially when combined with ADF bindings.

■ Add the desired page-level physical attributes such as background color, style
sheets, or skins.

The ADF bindings do not affect your page-level attributes. For information about
using ADF Faces skins, see Section 14.3, "Using Skins to Change the Look and
Feel".

Designing Pages for ADF Bindings

Adding ADF Bindings to Existing Pages 13-3

13.2.2 Adding Components to the Page
When designing web pages, keep in mind that ADF bindings can be added only to
certain ADF Faces tags or their equivalent JSF HTML tags. Table 13–1 lists the ADF
Faces and JSF tags to which you can later add ADF bindings. On the Component
Palette, the ADF Faces tags are available on the ADF Faces Core page, and the JSF tags
are available on the JSF HTML page.

Tip: To enable the use of JSF Reference Implementation UI
component tags with ADF bindings, you must choose the Include JSF
HTML Widgets for JSF Databinding option in the ADF View
Settings of the project properties. However, using ADF Faces tags,
especially with ADF bindings, provides greater functionality than
does using the reference implementation JSF tags.

Table 13–1 Tags That Can Be Used for ADF Bindings

ADF Faces Tags Used in ADF Bindings Equivalent JSF HTML Tags

Text Fields

af:·inputText h:inputText

af:outputText h:outputText

af:outputLabel h:outputLabel

Tables

af:table h:dataTable

Actions

af:commandButton h:commandButton

af:commandLink h:commandLink

Selection Lists

af:selectOneChoice h:selectOneMenu

af:selectOneListbox h:selectOneListbox

af:selecOneRadio h:selectOneRadio

af:selectBooleanRadio h:selectBooleanCheckbox

Trees

af:tree n/a

af:treeTable n/a

Designing Pages for ADF Bindings

13-4 Oracle Application Development Framework Developer’s Guide

13.2.3 Other Design Considerations
When designing pages using the JDeveloper wizards and editors to which you will
later add ADF bindings, you can either:

■ Choose options that enable you to bind later and, instead, enter static labels and
values. This approach enables you to design your UI using placeholder labels and
values that will be replaced later by the values and labels returned by the ADF
bindings.

OR

■ Bind labels to resource bundles, which contain the actual text to be displayed in
the label. When you later add an ADF binding to a component, ADF retains any
existing label bindings on resource bundles (or managed beans). For information
about using resource bundles, see Section 14.4, "Internationalizing Your
Application".

For information about creating JSF and ADF Faces components, see Section 4.4.1,
"How to Add UI Components to a JSF Page".

13.2.3.1 Creating Text Fields in Forms
For text field labels, you can either enter static placeholder values or bind to resource
bundles. If you are not binding labels to resource bundles, then use the Property
Inspector or source editor to add or modify placeholder labels and values in text fields.
Use placeholder labels and values that make it easier for the developer, who will later
add the bindings, to determine the intent of the field. Static placeholder values will be
replaced by the ADF bindings. However, as mentioned previously, any bindings to
resource bundles will be retained.

For example, if you are creating a form that displays user information, you might use
User First Name, User Last Name, and User Address as placeholder text field
labels. The developer who adds the ADF bindings would then match the placeholder
labels to actual attributes in a data source on the data control.

13.2.3.2 Creating Tables
When you drag a table component from the Component Palette and drop it on a page,
JDeveloper displays a table wizard to help you define the table. Choose the Bind Later
option in the ADF Faces Table wizard (or, for JSF tables, the Number of Columns
option in the Create Data Table wizard), which enables you to specify the number of
columns needed in the table instead of binding to a data source. If you are unsure of
the total number of columns needed, enter an estimate. Later, when the bindings are
added, the number of columns can easily be adjusted.

As with text fields, use placeholder labels or bindings on resource bundles in the
column headings. If you are using the ADF table component, you can specify the
column headings in the Header Text field on the Column Details page of the ADF
Faces Table wizard. For JSF tables, you can enter the column headings directly in the
table displayed in the visual editor.

13.2.3.3 Creating Buttons and Links
For the button or link label, use the Property Inspector or the source editor to add a
static placeholder or a binding on a resource bundle. If the button or link will perform
page navigation, you can specify an outcome value in the action attribute, to enable
page navigation in your initial pages. However, when the ADF bindings are added,
the action attribute is overwritten, and the action will have to be re-entered.

Using the Data Control Palette to Bind Existing Components

Adding ADF Bindings to Existing Pages 13-5

13.2.3.4 Creating Lists
When you drag a selection list from the Component Palette and drop it on a page,
JDeveloper displays the Insert dialog to help you define the list. Use the Create List
option on the Insert dialog to define the list. Only enter item labels or values if you
will ultimately create a static list. If you intend to populate the list from a binding on a
data collection, leave the item labels and values blank. For the list label, use the
Property Inspector to enter a static placeholder or a binding on a resource bundle. For
example, if you are creating a dropdown list of products, you might enter Products
as the label for the list. Later, when the binding is added, static placeholder labels are
replaced by an ADF binding expression.

13.2.3.5 Creating Trees or Tree Tables
When creating trees, use the value attribute to identify the root node and the var
value to identify the branch node. When creating a tree table, choose the Bind Later
option in the ADF Faces Tree Table wizard. You can specify a number of columns, but
when the ADF binding is added all data is displayed in a single column.

13.3 Using the Data Control Palette to Bind Existing Components
To bind existing components to ADF data controls, you must add ADF binding
expressions to the component tags. While you could manually add ADF binding
expressions to existing tags, it is easier to use the Data Control Palette. Using the Data
Control Palette ensures that all the necessary binding objects and references are
automatically created for you. (For more information see, Section 13.3.2, "What
Happens When You Use the Data Control Palette to Add ADF Bindings".)

13.3.1 How to Add ADF Bindings Using the Data Control Palette
The following procedure is a general description of how to use the Data Control
Palette and the Structure window to add ADF bindings to existing components. Later
sections in this chapter describe how to add ADF bindings to specific types of
components.

To add ADF bindings using the Data Control Palette and Structure Window:
1. With your page displayed in the Design page of the visual editor, open the

Structure window.

2. In the Design page of the visual editor, select the UI component to which you want
to add ADF bindings.

The component must be one of the tags listed in Table 13–1. When you select a
component in the visual editor, JDeveloper simultaneously selects that component
tag in the Structure window, as shown in Figure 13–1. Use the Structure window
to verify that you have selected the correct component. If the incorrect component
is selected, make the adjustment in the Structure window.

Tip: You can drop the data control object on the component
displayed in the Design page of the visual editor, but using the
Structure window provides greater accuracy and precision. For
example, if you try dropping a data control object on a component in
the visual editor and do not get the Bind Existing <component name>
option in the context menu, this means you did not drop the data
control on the correct tag in the visual editor. In this case, try using the
Structure window where each tag is clearly delineated.

Using the Data Control Palette to Bind Existing Components

13-6 Oracle Application Development Framework Developer’s Guide

Figure 13–1 Structure Window with Tag Selected

3. Drag the appropriate data control object from the Data Control Palette to the
Structure window and drop it on the selected UI component. (For information
about the nodes on the Data Control Palette, see Section 5.2.1, "How to
Understand the Items on the Data Control Palette".)

Figure 13–2 Dropping a Data Control Object on a UI Component in the Structure Window

4. From the Data Control Palette context menu, choose the Bind Existing
<component name> option, where <component name> is the name of the
component, such as text field or table, as shown in Figure 13–3.

Tip: As you position the data control object over the UI component
in the Structure window, a horizontal line with an embedded up or
down arrow appears at the top or bottom of the component, as shown
in Figure 13–2. Whenever either of these lines appears, you can drop
the data control object: in this case, it does not matter which direction
the arrow is pointing.

Tip: If the context menu does not display a Bind Existing
<component name> option, you have not dropped the data control
object on the correct tag in the Structure window. You can add
bindings only to the tags shown in Table 13–1.

Adding ADF Bindings to Text Fields

Adding ADF Bindings to Existing Pages 13-7

Figure 13–3 Context Menu for Binding to an Existing Component

13.3.2 What Happens When You Use the Data Control Palette to Add ADF Bindings
When you use the Data Control Palette all of the required ADF objects are
automatically created for you:

■ The DataBindings.cpx file is created and a corresponding entry for the page is
added to it.

■ The ADF binding filter is registered in the web.xml file.

■ The ADF phase listener is registered in the faces-config.xml file.

■ A page definition file is created and configured with the binding object definitions
for component on the page.

All of these objects are required for a component with ADF bindings to be rendered
correctly on a page. If you do not use the Data Control Palette, you will have to create
these things manually. For more information about these objects, see Chapter 5,
"Displaying Data on a Page".

13.4 Adding ADF Bindings to Text Fields
You bind forms or other container components by binding the individual text fields
that comprise the component: you cannot bind an entire form at one time. You bind a
text field to an attribute in a collection.

13.4.1 How to Add ADF Bindings to Text Fields
To add ADF bindings to a text field, you drag an attribute from the Data Control
Palette and drop it on the text field component displayed in the Structure window. For
general tips about dropping items from the Data Control Palette onto the Structure
window, see Section 13.3.1, "How to Add ADF Bindings Using the Data Control
Palette".

To add ADF bindings to a text field:
1. With the page displayed in the Design page of the visual editor, open the Structure

window.

2. In Design page of the visual editor, select the text field.

This simultaneously selects the tag in the Structure window. The text field tag
must be one of the tags listed previously in Table 13–1. If the incorrect tag is
selected, make the adjustment in the Structure window.

3. From the Data Control Palette, drag an attribute to the Structure window and drop
it on the selected text field.

Adding ADF Bindings to Tables

13-8 Oracle Application Development Framework Developer’s Guide

4. On the Data Control Palette context menu, choose Bind Existing Input Text.

The binding is added to the text field.

13.4.2 What Happens When You Add ADF Bindings to a Text Field
Example 13–1 displays an input text field component before the ADF bindings are
added. The example is a simple inputText tag with a static label value of First
Name.

Example 13–1 Text Field Component Before ADF Bindings

<af:inputText label="First Name"/>

Example 13–2 displays the same text field after the firstName attribute of the User
data collection from the SRDemo data control was dropped on it. The User collection
is returned by the findAllStaff method. Notice that the label was replaced with a
binding expression. To modify the label displayed by an ADF binding, you can use
control hints. Other tag attributes have been added with bindings on different
properties on the FirstName attribute. For a description of each binding property, see
Appendix B, "Reference ADF Binding Properties".

Example 13–2 Text Field Component After ADF Bindings Are Added

<af:inputText label="#{bindings.FirstName.label}"
 value="#{bindings.FirstName.inputValue}"
 required="#{bindings.FirstName.mandatory}"
 columns="#{bindings.FirstName.displayWidth}">
 <af:validator binding="#{bindings.FirstName.validator}"/>
</af:inputText>

In addition to adding the bindings to the text field, JDeveloper automatically adds
entries for the databound text field to the page definition file. The page definition
entries include an iterator binding object defined in the executables element and a
a value binding defined in the bindings element. For more information about
databound text fields and forms, see Chapter 6, "Creating a Basic Page".

13.5 Adding ADF Bindings to Tables
You can add ADF bindings to an entire table at one time. In fact, it is recommended to
bind the entire table instead of the individual components that comprise the table.
When you add a binding to a table, you can drag an entire collection from the Data
Control Palette onto the table. You can bind an individual column, but only if the table
is already bound to an iterator.

13.5.1 How to Add ADF Bindings to Tables
To add ADF bindings to a table, you drag a data collection from the Data Control
Palette and drop it on the table tag displayed in the Structure window. For general tips
about dropping items from the Data Control Palette onto the Structure window, see
Section 13.3.1, "How to Add ADF Bindings Using the Data Control Palette".

Adding ADF Bindings to Tables

Adding ADF Bindings to Existing Pages 13-9

To add ADF bindings to a table:
1. With the page displayed in the Design page of the visual editor, open the Structure

window.

2. In the Design page of the visual editor, select the table.

The tag selected in the Structure window must be one of the tags listed previously
in Table 13–1. JDeveloper simultaneously selects the corresponding tag in the
Structure window. If the incorrect tag is selected, make the adjustment in the
Structure window. For example, if a column tag is selected, select the table tag
instead.

3. From the Data Control Palette, drag a collection to the Structure window and drop
it on the selected table tag.

4. On the Data Control Palette context menu, choose Bind Existing ADF Table or
Bind Existing ADF Read-only Table. The Edit Table Column dialog appears, as
shown in Figure 13–4.

Figure 13–4 Edit Table Column Dialog

The Display Label column in the dialog displays the placeholder column
headings entered when the table was created. In the example, the placeholder
column headings are First Name, Last Name, Email, and User ID. The Value
Binding column displays the attributes from the data collection. The Component
to Use column displays the types of components each table column will contain.

5. In the Edit Table Columns dialog, use the dropdowns in the Value Binding fields
to choose the attributes from the data collection to be bound to each column in the
table, as shown in Figure 13–5. If placeholder column headings were entered when
the table was created, match the attributes to the appropriate column headings.
For example, if a column heading is First Name, you would choose the
firstName attribute from the Value Binding dropdown next to that column
heading.

Adding ADF Bindings to Tables

13-10 Oracle Application Development Framework Developer’s Guide

Figure 13–5 Value Binding Dropdown in the Edit Table Columns Dialog

For more information about tables, see Chapter 7, "Adding Tables".

13.5.2 What Happens When You Add ADF Bindings to a Table
Example 13–3 displays a table before the ADF bindings are added. The table defines
four columns and uses static placeholder values as column headings: First Name,
Last Name, Email, and User ID. The table also defines a range navigation of 15
rows, table banding, and a selection facet.

Example 13–3 ADF Faces Table Before ADF Bindings

<af:table emptyText="No items were found" rows="15" banding="none"
 bandingInterval="1">
 <f:facet name="selection">
 <af:tableSelectOne/>
 </f:facet>
 <af:column sortable="false" headerText="First Name">
 <af:outputText value="#{row.col1}"/>
 </af:column>
 <af:column sortable="false" headerText="Last Name">
 <af:outputText value="#{row.col2}"/>
 </af:column>
</af:table>

Example 13–4 displays the same table after the User data collection returned by the
findAllStaff method from the SRDemo data control was dropped on it. Notice that
since the placeholder column headings were static values, they have been replaced
with a binding on the findAllStaff1 iterator. However, the selection facet and
banding from the original table remain intact. The selectionState and
selectionListener attributes have been added with bindings on the binding
object.

The range navigation value is replaced by a binding on the iterator, which manages
the current row. The rangeSize binding property, which defines the number of rows
can be set in the page definition file. For a description of each binding property, see
Appendix B, "Reference ADF Binding Properties".

Tip: If you need to add additional columns to the table, click New.

Adding ADF Bindings to Actions

Adding ADF Bindings to Existing Pages 13-11

Example 13–4 ADF Faces Table After ADF Bindings Are Added

<af:table emptyText="#{bindings.findAllStaff1.viewable ? 'No rows yet.' : 'Access
Denied.'}"

 rows="#{bindings.findAllStaff1.rangeSize}" banding="none"
 bandingInterval="1"
 value="#{bindings.findAllStaff1.collectionModel}" var="row"
 first="#{bindings.findAllStaff1.rangeStart}"
 selectionState="#{bindings.findAllStaff1.collectionModel.
 selectedRow}"
 selectionListener="#{bindings.findAllStaff1.collectionModel.

makeCurrent}">
 <f:facet name="selection">
 <af:tableSelectOne/>
 </f:facet>
 <af:column sortable="false"
 headerText="#{bindings.findAllStaff1.labels.firstName}"
 sortProperty="firstName">
 <af:outputText value="#{row.firstName}"/>
 </af:column>
 <af:column sortable="false"
 headerText="#{bindings.findAllStaff1.labels.lastName}"
 sortProperty="lastName">
 <af:outputText value="#{row.lastName}"/>
 </af:column>
</af:table>

In addition to adding the bindings to the table, JDeveloper automatically adds entries
for the databound table to the page definition file. The page definition entries include
an iterator binding object defined in the executables element and the value
bindings for the table in the bindings element. By default, the RangeSize property
on the iterator binding is set to 10. This value is now bound to the range navigation in
the table and overrides the original range navigation value set in the table before the
bindings were added. In the example, the original table set the range navigation value
at 15. If necessary, you can change the RangeSize value in the page definition to
match the original value defined in the table.

The bindings element contains a methodAction, which encapsulates information
about how to invoke the method iterator, and value bindings for the attributes
available to the table. The value bindings include all the attributes of the returned
collection, even if the table itself is displaying only a subset of those attributes.

13.6 Adding ADF Bindings to Actions
You can add ADF bindings to buttons or links. When you add a binding to a button or
link, you use a method or operation from the data control. When a user clicks the
button or link, the method or operation is invoked.

If you want the button or link to perform page navigation, after adding the ADF
binding you must bind the action attribute of the component tag to a backing bean,
which will handle the navigation. The backing bean must inject the ADF binding
container and return an outcome value. For information about creating navigation
rules and binding navigation components to backing beans, see Chapter 9, "Adding
Page Navigation".

Adding ADF Bindings to Actions

13-12 Oracle Application Development Framework Developer’s Guide

13.6.1 How to Add ADF Bindings to Actions
To add ADF bindings to a button or link, you drag a method or operation from the
Data Control Palette and drop it on the button or link tag displayed in the Structure
window. For general tips about dropping items from the Data Control Palette onto the
Structure window, see Section 13.3.1, "How to Add ADF Bindings Using the Data
Control Palette".

To add ADF bindings to a button or link:
1. With the page displayed in the Design page of the visual editor, open the Structure

window.

2. In the Design page of the visual editor, select the button or link.

The tag selected in the Structure window must be one of the tags listed previously
in Table 13–1. JDeveloper simultaneously selects the corresponding tag in the
Structure window. If the incorrect tag is selected, make the adjustment in the
Structure window.

3. From the Data Control Palette, drag a method or operation to the Structure
window and drop it on the selected button or link tag.

4. On the Data Control Palette context menu, choose Bind Existing CommandButton
or Bind Existing CommandLink.

5. If the method requires a parameter, the Action Binding Editor appears where you
define the parameter values to pass to the method. (For more information about
passing parameters to methods, see Chapter 10, "Creating More Complex Pages".)

13.6.2 What Happens When You Add ADF Bindings to an Action
Example 13–5 displays a command button before the ADF bindings are added.

Example 13–5 ADF Faces Command Button Before ADF Bindings

<af:commandButton text="Display User"/>

Example 13–6 displays the same button after the findAllStaff() method from the
SRDemo data control was dropped on it. The findAllStaff method returns the
User collection. Since the original label was a static value, the binding replaced it with
the name of the method; you can change the button label using the Property Inspector.
An actionListener attribute was added with a binding on the findAllStaff
method. The actionListener detects when the user clicks the button and executes
the method as a result. If you want the button to navigate to another page, you can
bind to a backing bean or add an action value. For more information, see Chapter 9,
"Adding Page Navigation".

Example 13–6 ADF Faces Command Button After ADF Bindings Are Added

<af:commandButton text="findAllStaff"
 actionListener="#{bindings.findAllStaff.execute}"
 disabled="#{!bindings.findAllStaff.enabled}"/>

In addition to adding the bindings to the button, JDeveloper automatically adds a
methodAction binding object to the page definition file.

For more information about databound buttons and links, see Chapter 6, "Creating a
Basic Page".

Adding ADF Bindings to Selection Lists

Adding ADF Bindings to Existing Pages 13-13

13.7 Adding ADF Bindings to Selection Lists
You can add ADF bindings to any of the selection lists previously shown in Table 13–1.
A databound selection list displays values from a data control collection or a static list
and updates an attribute in another collection or a method parameter based on the
user’s selection. When adding a binding to a list, you use an attribute from the data
control that will be populated by the selected value in the list.

13.7.1 How to Add ADF Bindings to Selection Lists
To add ADF bindings to a selection list, you drag an attribute from the Data Control
Palette and drop it on the selection list tag displayed in the Structure window. For
general tips about dropping items from the Data Control Palette onto the Structure
window, see Section 13.3.1, "How to Add ADF Bindings Using the Data Control
Palette".

To add ADF bindings to a selection list component:
1. With the page displayed in the Design page of the visual editor, open the Structure

window.

2. In the Design page of the visual editor, select the selection list component.

The tag selected in the Structure window must be one of the tags listed previously
in Table 13–1. JDeveloper simultaneously selects the corresponding tag in the
Structure window. If the incorrect tag is selected, make the adjustment in the
Structure window.

3. From the Data Control Palette, drag an attribute to the Structure window and drop
it on the selected selection list tag. Use the attribute in the data collection that you
want to populate when the user selects an item from the list.

4. On the Data Control Palette context menu, choose Bind Existing <component
name>.

5. In the List Binding Editor, define the data collection that will be updated by the
list (Base Data Source), the data collection that will populate the list (List Data
Source), and the attributes that will be displayed in the list. For information about
using the List Binding Editor to define lists, see Section 11.7, "Creating Databound
Dropdown Lists".

13.7.2 What Happens When You Add ADF Bindings to a Selection List
Example 13–7 displays a single-selection dropdown list before the ADF bindings are
added. Notice that the component defines a label for the list, but that it does not define
static list item labels and values. The item labels and values will be populated by the
bindings.

Example 13–7 ADF Faces Single-Selection Dropdown Before ADF Bindings

<af:selectOneChoice label="Product:"/>

Example 13–8 displays the same list after the prodID attribute in the Product
collection from the SRDemo data control was dropped on it. Because the original list
label was a static value, the binding replaced it with a binding on the
ProductprodId attribute, which was the attribute that was dragged from the Data
Control Palette and dropped on the dropdown list component.

Adding ADF Bindings to Trees and Tree Tables

13-14 Oracle Application Development Framework Developer’s Guide

You can change the label using control hints. The list values are also bound to the same
attribute. Notice that no display values or labels are defined in the component by the
binding. Instead, the display values are defined in the page definition file.

Example 13–8 ADF Faces Single-Selection Dropdown After ADF Bindings Are Added

<af:selectOneChoice label="#{bindings.ProductprodId.label}"
 value="#{bindings.ProductprodId.inputValue}">
 <f:selectItems value="#{bindings.ProductprodId.items}"/>
</af:selectOneChoice>

In addition to adding the bindings to the list, JDeveloper automatically adds several
binding objects for the list to the page definition file. The executables element
defines the iterator binding for the collection that populates the list, and the iterator
binding for the target collection.

The bindings element contains two method action binding objects, which
encapsulate the information needed to invoke the methods that populate the list and
update the data collection. The list binding includes a ListDisplayAttrNames
element, which defines the data collection attributes that populate the values the user
sees in the list. This element is added only if the list is a dynamic list, meaning that the
list items are populated by a binding on the data collection. If the list is a static list, a
ValueList element is added instead with the static values that will appear in the list.

For more information about databound lists, see Section 11.7, "Creating Databound
Dropdown Lists".

13.8 Adding ADF Bindings to Trees and Tree Tables
You can add ADF bindings to ADF Faces tree and tree table components. The ADF
Faces tree component displays a hierarchy of master-detail related data collections in
a tree format. A databound ADF Faces tree displays multiple root nodes that are
populated by a binding on a master data collection. Each node in the tree may have
any number of branches, which are populated by bindings on detail data collections.
Each node in the tree is indented to show its level in the hierarchy. The ADF tree
component includes mechanisms for expanding and collapsing the tree. By default, the
icon for each node in the tree is a folder; however, you can use your own icons for each
level of nodes in the hierarchy. The ADF Faces tree table components display a
hierarchy of master-detail collections in a table. For more information about
master-detail relationships and trees, see Chapter 8, "Displaying Master-Detail Data".

Tip: Any static item labels and values defined in the original
selection list are not replaced by the ADF bindings. If you add static
item labels and values to the original selection list, and then add a
dynamic list with a binding on the data collection, the list will display
both the values populated by the binding and the static values defined
in the component itself. In most cases, you would not want this.
Therefore, you must either design the initial component without using
static item labels and values, or remove them after the bindings are
added.

Adding ADF Bindings to Trees and Tree Tables

Adding ADF Bindings to Existing Pages 13-15

13.8.1 How to Add ADF Bindings to Trees and Tree Tables
To add ADF bindings to a tree or tree table, you drag a master data collection from the
Data Control Palette and drop it on the tree tag displayed in the Structure window. For
general tips about dropping items from the Data Control Palette onto the Structure
window, see Section 13.3.1, "How to Add ADF Bindings Using the Data Control
Palette".

To add ADF bindings to a tree component:
1. With the page displayed in the Design page of the visual editor, open the Structure

window.

2. In the Design page of the visual editor, select the tree tag.

JDeveloper simultaneously selects the corresponding tag in the Structure window.
If the incorrect tag is selected, make the adjustment in the Structure window.

3. From the Data Control Palette, drag a data collection to the Structure window and
drop it on the selected tree tag. The data collection you select should be the master
collection, which will populate the root node of the tree.

4. On the Data Control Palette context menu, choose Bind Existing Tree.

5. Use the Tree Binding Editor to define the root and branch nodes of the tree. For
information, see Section 8.4, "Using Trees to Display Master-Detail Objects".

13.8.2 What Happens When You Add ADF Bindings to a Tree or Tree Table
Example 13–9 displays a tree before the ADF bindings are added. Notice that the value
attribute specifies the root node as users, and the var attribute specifies the first
branch as service requests.

Example 13–9 ADF Faces Tree Before ADF Bindings

<af:tree value="users" var="service requests">
 <f:facet name="nodeStamp">
 <h:outputText/>
 </f:facet>
</af:tree>

Example 13–10 displays the same tree after the User data collection from the SRDemo
data control was dropped on it. The User collection is returned by the
findAllStaff method. The User data collection will populate the root node, and
the serviceRequests collection was defined as a branch off the root nodes. The
binding replaced the value attribute with a binding on the findAllStaff1 binding
object. The var attribute now contains a value of node, which provides access to the
current node. The nodes themselves are defined in the page definition file.

Example 13–10 ADF Faces Tree After ADF Bindings Are Added

<af:tree value="#{bindings.findAllStaff1.treeModel}" var="node">
 <f:facet name="nodeStamp">
 <af:outputText value="#{node}"/>
 </f:facet>
</af:tree>

In addition to adding the bindings to the tree, JDeveloper automatically adds several
binding objects for the tree to the page definition file. The executables element
defines the iterator binding for the collection that populates the root node.

Adding ADF Bindings to Trees and Tree Tables

13-16 Oracle Application Development Framework Developer’s Guide

The bindings element contains a methodAction binding object, which encapsulates
the information needed to invoke the method that populates the root node. In the
value bindings, the tree is bound to the findAllStaffIter iterator. Each attribute
returned by the iterator is listed in the AttrNames element, but only the attributes in
the nodeDefinition element are displayed in the tree. The Accesssors element
defines the accessor methods that will be used to retrieve the data that will populate
the branches in the node. In the example, the User node, which is the root node,
defines serviceRequestCollectionAssignedTo as the accessor method. This
method returns the service requests for each user node.

For more information about trees and tree tables, see Chapter 8, "Displaying
Master-Detail Data".

Changing the Appearance of Your Application 14-1

14
Changing the Appearance of Your

Application

This chapter describes how to change the default appearance of your application by
changing style properties, using ADF skins, and internationalizing the application.

This chapter includes the following sections:

■ Section 14.1, "Introduction to Changing ADF Faces Components"

■ Section 14.2, "Changing the Style Properties of a Component"

■ Section 14.3, "Using Skins to Change the Look and Feel"

■ Section 14.4, "Internationalizing Your Application"

14.1 Introduction to Changing ADF Faces Components
ADF Faces components delegate the functionality of the component to a component
class, and the display of the component to a renderer. Renderers determine the
different ways a component can be displayed on a client, or how to display the
component on different clients. The component’s tag used on a page determines the
unique combination of a component class and a renderer. By default, all tags for ADF
Faces combine the associated component class with an HTML renderer, and are part of
the HTML render kit. For example, the command button and the command link
components are both UICommand components; however, they use different renderers.
You can create your own custom renderers; it is beyond the scope of this document to
explain how to create JSF renderers or custom components.

You cannot customize the ADF Faces renderers. However, you can customize how
components display using skins. By default, applications created using ADF Faces
components use the Oracle skin. However, the SRDemo sample application uses a
custom skin. Skins are an easy way to globally style an application. You can create
your own skin to change the colors, fonts, and even the location of portions of ADF
Faces components, by setting styles for components in one CSS file. You then configure
the application to use the skin when displaying the application. Included with ADF
Faces are HTML render kits for display on both desktop and PDA.

If you don’t wish to change the entire look of an application, you can choose to change
the inline styles for a component on a page. You can also programatically set styles
conditionally. For example, you may want to display text red, only under certain
conditions.

In addition to changing the appearance of your application, you can also
internationalize your application, allowing users in different locales to view text
strings in the language to which their browser is set.

Changing the Style Properties of a Component

14-2 Oracle Application Development Framework Developer’s Guide

Many ADF Faces components include text strings, and the components handle the
translation of those strings for you automatically. Any text that is part of the
component displays in the language of the user’s browser.

You need to translate only the text you add to the application. You can also change
other locale-specific properties, such as text direction and currency code.

Read this chapter to understand:

■ How to use inline styles to change a component’s appearance

■ How to conditionally set a style property on a component

■ How to create a custom skin

■ How to internationalize your application

14.2 Changing the Style Properties of a Component
ADF Faces components use the CSS style properties, based on the Cascading Style
Sheet specification. Cascading style sheets contain rules, composed of selectors and
declarations that define how styles will be applied. These are then interpreted by the
browser and override the browser’s default settings. It is beyond the scope of this
document to explain the concepts of CSS. Visit the W3C web site
(http://www.w3c.org/) for extensive information on style sheets, including the
official specification.

You can change a style property to alter a component’s appearance. ADF Faces
components use both inline style properties that can set individual attributes (such as
font-size and font-color), as well as style classes used to group a set of inline
styles. For example, the style class .AFFieldText sets all properties for the text
displayed in an inputText component.

14.2.1 How to Set a Component’s Style Attributes
You can set inline styles or you can declare a style class for an ADF Faces component
on a page.

To set the style:
1. In the Structure window, select the component you wish to style.

2. In the Property Inspector, expand the Core node. This node contains all the
attributes related to how the component displays.

3. To set a style class for the component, click in the StyleClass field and click the
ellipses (...) button. In the StyleClass dialog, enter a style class for use on this
component. For additional help in using the dialog, click Help.

4. To set an inline attribute, expand the InlineStyle node. Click in the field for the
attribute to set, and use the dropdown menu to choose a value.

You can also use EL expressions for the InlineStyle attribute itself to
conditionally set inline style attributes. For example, in the SRSearch page of the
SRDemo application, the date in the Assigned Date column displays red if a
service request has not yet been assigned. Example 14–1 shows the code on the JSF
page for the outputText component.

http://www.w3c.org/

Using Skins to Change the Look and Feel

Changing the Appearance of Your Application 14-3

Example 14–1 EL Expression Used to Set a Style Attribute

<af:outputText value="#{row.assignedDate eq
 null?res['srsearch.highlightUnassigned']:row.assignedDate}"
 inlineStyle="#{row.assignedDate eq null?'color:rgb(255,0,0);':''}"/>

14.2.2 What Happens When You Format Text
As Example 14–1 shows, when you use the Property Inspector to set a style,
JDeveloper adds the corresponding code for the component to the JSF page.

14.3 Using Skins to Change the Look and Feel
Skins allow you to globally change the appearance of ADF Faces components within
an application. A skin is a global style sheet that only needs to be set in one place for
the entire application. Instead of having to style each component, or having to insert a
style sheet on each page, you can create one skin for the entire application. Every
component will automatically use the styles as described by the skin. The application
developer does not need to add any code, and any changes to the skin will be picked
up at runtime, no change to code is needed.

Skins are also based on the Cascading Style Sheet specification. By default, ADF Faces
applications use the Oracle skin. Components in the visual editor as well as in the web
page display using the settings for this skin. Figure 14–1 shows the SRList page with
the Oracle skin applied.

Figure 14–1 The SRList Page Using the Oracle Skin

ADF Faces also provides two other skins. The Minimal skin provides some formatting,
as shown in Figure 14–2. Notice that almost everything except the graphic for the page
has changed, including the colors, the shapes of the buttons, and where the copyright
information displays.

Note: The syntax in a skin style sheet is based on the CSS3
specification. However, many browsers do not yet adhere to this
version. At runtime, ADF Faces converts the CSS to the CSS2
specification.

Using Skins to Change the Look and Feel

14-4 Oracle Application Development Framework Developer’s Guide

Figure 14–2 The SRList Page Using the Minimal Skin

The third skin provided by ADF Faces is the Simple skin. This skin contains almost no
special formatting, as shown in Figure 14–3.

Figure 14–3 The SRList Page Using the Simple Skin

The SRDemo application uses a custom skin created just for that application, as shown
in Figure 14–4.

Using Skins to Change the Look and Feel

Changing the Appearance of Your Application 14-5

Figure 14–4 The SRList Page Using the Custom SRDemo Skin

In addition to using a CSS file to determine the styles, skins also use a resource bundle
to determine the text within a component. For example, the word "Select" in the
selection column shown in Figure 14–4 is determined using the skin’s resource bundle.
All the included skins use the same resource bundle.

14.3.1 How to Use Skins
Custom skins extend the Simple skin. To create a custom skin, you declare selectors in
a style sheet that override the selectors in the Simple skin’s style sheet. Any selectors
that you choose not to override will continue to use the style as defined in the Simple
skin. Once you create your skin’s style sheet, you need to register it as a valid skin in
the application, and then configure the application to use the skin.

The selectors used by the simple skin are listed in the "Selectors for Skinning ADF
Faces Components" topic in JDeveloper’s online help. It is located in the Reference >
Oracle ADF Faces book. This document shows selectors broken down into three
sections: global selectors, button selectors, and component-level selectors. Global
selectors determine the style properties for multiple components. Examples include
the default font family and background colors. Button selectors are used to style all
buttons in the application.

Component selectors determine the styles for specific components or portions of a
component. Icon selectors denote where the icon can be found.

Within each section are the selectors that can be styled. There are three types of
selectors: standard selectors, selectors with pseudo elements, and selectors that use the
alias pseudo classes. Standard selectors are those that directly represent an element
that can have styles applied to it. For example af|body represents the af:body
component. You can set CSS styles, properties, and icons for this type of element.

Note: Button selectors style all buttons in the application. You cannot
define separate selectors for different buttons. For example, the
af:commandButton and af:goButton components will display the
same.

Using Skins to Change the Look and Feel

14-6 Oracle Application Development Framework Developer’s Guide

Pseudo elements are used to denote a specific area of component that can have styles
applied. Pseudo elements are denoted by a double colon followed by the portion of the
component the selector represents. For example, af|column::cell-text provides
the styles and properties for the text in a cell of a column.

The alias pseudo class is used for a selector that sets styles for more than one
component or more than one portion of a component. For example, the
.AFMenuBarItem:alias selector defines skin properties that are shared by all
af:menuBar items. Any properties defined in this alias are included in the
af|menuBar::enabled and af|menuBar::selected style classes. If you change
the .AFMenuBarItem:alias style, you will affect the af|menuBar::enabled and
af|menuBar::selected selectors. You can also create your own pseudo classes for
inclusion in other selectors.

You can create multiple skins. For example, you might create one skin for the version
of an application for the web, and another for when the application runs on a PDA. Or
you can change the skin based on the locale set on the current user’s browser.
Additionally, you can configure a component, for example a selectOneChoice
component, to allow a user to switch between skins.

The text used in a skin is defined in a resource bundle. As with the selectors for the
Simple skin, you can override the text by creating a custom resource bundle and
declaring only the text you want to change. The keys for the text that you can override
are documented in the "Reference: Keys for Resource Bundle Used by Skins" topic of
the JDeveloper online help. Once you create your custom resource bundle, you register
it with the skin.

14.3.1.1 Creating a Custom Skin
You create a custom skin by extending the Simple skin and overriding the selectors.
You then need to register the skin with the application.

To create a custom skin:
1. Review your pages using the Simple skin to determine what you would like to

change. For procedures on changing the skin, see Section 14.3.1.2, "Configuring an
Application to Use a Skin".

2. In JDeveloper, create a CSS file:

a. Right-click the project that contains the code for the user interface and choose
New to open the New Gallery.

b. In the New Gallery, expand the Web Tier node and select HTML.

c. Double-click CSS File.

d. Complete the Create Cascading Style Sheet dialog. Click Help for help
regarding this dialog.

Note: ADF Faces components provide automatic translation. The
resource bundle used for the components’ skin is translated into 28
languages. If a user sets the browser to use the German (Germany)
language, any text contained within the components will
automatically display in German. For this reason, if you create a
resource bundle for a custom skin, you must also create localized
versions of that bundle for any other languages the application
supports. For more information about Internationalization, see
Section 14.4, "Internationalizing Your Application".

Using Skins to Change the Look and Feel

Changing the Appearance of Your Application 14-7

3. Refer to the "Selectors for Skinning ADF Faces Components" topic in JDeveloper’s
online help. It is located in the Reference > Oracle ADF Faces book. Add any
selectors that you wish to override to your CSS file and set the properties as
needed. You can set any properties as specified by the CSS specification.

If you are overriding a selector for an icon, use a content relative path for the URL
to the icon image (that is, start with a leading forward slash), and do not use
quotes. Also, you must include the width and the height for the icon.
Example 14–2 shows a selector for an icon.

Example 14–2 Selector for an Icon

.AFButtonDisabledStartIcon:alias
 {
 content:url(/skins/srdemo/images/btnDisabledStart.gif);
 width:7px; height:18px
 }

Icons and buttons can both use the rtl pseudo class. This defines an icon or
button for use when the application displays in right-to-left mode. Example 14–3
shows the rtl psuedo class used for an icon.

Example 14–3 Icon Selector Using the rtl Psuedo Class

.AFButtonDisabledStartIcon:alias:rtl
 {
 content:url(/skins/srdemo/images/btnDisabledStartRtl.gif);
 width:7px; height:18px
 }

4. You can create your own alias classes that you can then include on other selectors.
To do so:

a. Create a selector class for the alias. For example, the SRDemo skin has an alias
used to set the color of a link when a cursor hovers over it:

.MyLinkHoverColor:alias {color: #CC6633;}

b. To include the alias in another selector, add a pseudo element to an existing
selector to create a new selector, and then reference the alias using the
-ora-rule-ref:selector property.

For example, the SRDemo skin created a new selector for the
af|menuBar::enabled-link selector in order to style the hover color, and
then referenced the custom alias, as shown in Example 14–4.

Tip: Overriding an alias will likely change the appearance of more
than one component. Be sure to carefully read the reference document
so that you understand what you may be changing.

Using Skins to Change the Look and Feel

14-8 Oracle Application Development Framework Developer’s Guide

Example 14–4 Referencing a Custom Alias in a New Selector

af|menuBar::enabled-link:hover
{
 -ora-rule-ref:selector(".MyLinkHoverColor:alias");
}

5. Save the file to a directory.

Once you’ve created the CSS, you need to register the skin and then configure the
application to use the skin.

To create a custom bundle for the skin:
1. Review the "Reference: Keys for Resource Bundle Used by Skins" topic of the

JDeveloper online help and your pages using the Simple skin to determine what
text you would like to change. For procedures on changing the skin to the Simple
skin, see Section 14.3.1.2, "Configuring an Application to Use a Skin".

2. In JDeveloper, create a resource bundle. It must be of type
java.util.ResourceBundle. For detailed instructions, see Section 14.4.1,
"How to Internationalize an Application".

3. Add any keys to your bundle that you wish to override and set the text as needed.

To register a custom skin and bundle:
1. If one does not yet exist, create an adf-faces-skins.xml file (the file is located

in the <view_project_name>/WEB-INF directory). This file will be used to
declare each skin accessible to the application.

a. Right-click your view project and choose New to open the New Gallery.

The New Gallery launches. The file launches in the Source editor.

b. In the Categories tree on the left, select XML. If XML is not displayed, use the
Filter By dropdown list at the top to select All Technologies.

c. In the Items list, select XML Document and click OK.

d. Name the file adf-faces-skins.xml, place it in the <view_project_
name>/WEB-INF directory, and click OK.

e. Replace the generated code with the code shown in Example 14–5.

Example 14–5 Default Code for an adf-faces-skins.xml File

<?xml version="1.0" encoding="ISO-8859-1"?>
<skins xmlns="http://xmlns.oracle.com/adf/view/faces/skin">

 <skin>

 </skin>

</skins>

Tip: If you internationalize your application, you must also create
localized versions of this resource bundle. For more information and
procedures, see Section 14.4.1, "How to Internationalize an
Application".

Using Skins to Change the Look and Feel

Changing the Appearance of Your Application 14-9

2. Register the new skin by defining the following for the skin element:

■ <id>: This value will be used if you want to reference your skin in an EL
expression. For example, if you want to have different skins for different
locales, you can create an EL expression that will select the correct skin based
on its ID.

■ <family>: You configure an application to use a particular family of skins.
Doing so allows you to group skins together for an application, based on the
render kit used.

■ <render-kit-id>: This value determines which render kit to use for the
skin. You can enter one of the following:

– oracle.adf.desktop: The skin will automatically be used when the
application is rendered on a desktop.

– oracle.adf.pda: The skin will be used when rendered on a PDA.

■ <style-sheet-name>: This is the fully qualified path to the custom CSS file.

■ <bundle-name>: The resource bundle created for the skin. If you did not
create a custom bundle, then you do not need to declare this element.

Example 14–6 shows the entry in the adf-faces-skins.xml file for the
SRDemo skin.

Example 14–6 Skins Entry for the SRDemo Skin in the adf-faces-skins.xml File

<skin>
 <id>
 srdemo.desktop
 </id>
 <family>
 srdemo
 </family>
 <render-kit-id>
 oracle.adf.desktop
 </render-kit-id>
 <style-sheet-name>
 skins/srdemo/srdemo.css
 </style-sheet-name>
</skin>

Note: If you have created localized versions of the resource bundle,
you only need to register the base resource bundle.

Using Skins to Change the Look and Feel

14-10 Oracle Application Development Framework Developer’s Guide

14.3.1.2 Configuring an Application to Use a Skin
You set an element in the adf-faces-config.xml file that determines which skin
to use, and if necessary, under what conditions.

To configure an application to use a skin:
1. Open the adf-faces-config.xml file.

2. Replace the <skin-family> value with the family name for the skin you wish to
use. Example 14–7 shows the configuration to use the srdemo skin family.

Example 14–7 Configuration to Use a Skin Family

<adf-faces-config xmlns="http://xmlns.oracle.com/adf/view/faces/config">
 <skin-family>srdemo</skin-family>
</adf-faces-config>

3. To conditionally set the value, enter an EL expression that can be evaluated to
determine the skin to display.

For example, if you want to use the German skin when the user’s browser is set to
the German locale, and use the English skin otherwise, you would have the
following entry in the adf-faces-config.xml file:

<skin-family>#{facesContext.viewRoot.locale.language=='de' ? 'german' :
'english'}</skin-family>

4. To configure a component to dynamically change the skin, you must first
configure the component on the JSF page to set a value in scope that can later be
evaluated by the configuration file. You then configure the skin family in the
adf-faces-config file to be dynamically set by that value.

1. Open the JSF page that contains the component that will be used to set the
skin family.

2. Configure the component to set the skin family in sessionScope.
Example 14–8 shows a selectOneChoice component that takes its selected
value, and sets it as the value for the skinFamily attribute in
sessionScope.

Example 14–8 Using a Component to Set the Skin Family

<af:selectOneChoice label="Select Skin"
 value="#{sessionScope.skinFamily}"
 onchange="form.submit();">
 <af:selectItem label="Simple" value="simple"/>
 <af:selectItem label="Minimal" value="minimal"/>
 <af:selectItem label="Oracle" value="oracle"/>
 <af:selectItem label="SRDemo" value="srdemo"/>
</af:selectOneChoice>

The onchange event handler will perform a form POST when ever a skin is
selected in the selectOneChoice component. Alternative you can add a
command button to the page that will re-submit the page. Every time there is a
POST the EL expression will be evaluated, and if there is a new value redraw
the page with the new skin.

Internationalizing Your Application

Changing the Appearance of Your Application 14-11

3. In the adf-faces-config file, use an EL expression to dynamically evaluate
the skin family:

<skin-family>#{sessionScope.skinFamily}</skin-family>

14.4 Internationalizing Your Application
When your application will be viewed by users in more than one country, you can
configure your application to use different locales so that it displays the correct
language for the language setting of a user’s browser. For example, if you know your
application will be viewed in Germany, you can localize your application so that when
a user’s browser is set to use the German language, text strings in the application will
appear in German.

ADF Faces components provide automatic translation. The resource bundle used for
the components’ skin (which determines look and feel, as well as the text within the
component) is translated into 28 languages. If a user sets the browser to use the
German (Germany) language, any text contained within the components will
automatically display in German. For more information on skins and this resource
bundle, see Section 14.3.1, "How to Use Skins". For a complete list of all text included
in ADF Faces components, see the "Reference: Keys for Resource Bundle Used by
Skins" topic of the JDeveloper online help.

For any text you add to the application, you need to provide a resource bundle that
holds the actual text, and you need to load that bundle into the page using the JSF
loadBundle tag. Then, instead of directly entering the text on the JSF page or
entering the text as a value for the Text attribute of a component, you bind that
attribute to a key in the resource bundle. You then create a version of the resource
bundle for each locale.

Figure 14–5 shows the SRList page from the SRDemo application in a browser set to
use the English (United States) language.

Figure 14–5 The SRList Page in English

Note: Any text retrieved from the database is not translated. This
document covers how to localize static text, not text that is stored in
the database.

Internationalizing Your Application

14-12 Oracle Application Development Framework Developer’s Guide

Although the title of this page is "My Service Requests," instead of having "My Service
Requests" as the value for the title attribute of the PanelPage component, the
value is bound to a key in the UIResources resource bundle. The UIResources
resource bundle is loaded into the page using the loadBundle tag, as shown in
Example 14–9. The resource bundle is given a variable name (in this case res) that can
then be used in EL expressions. The title attribute of the panelPage component is
then bound to the srlist.pageTitle key in that resource bundle.

Example 14–9 Resource Bundles Used in a JSF Page

<f:view>
 <f:loadBundle basename="oracle.srdemo.view.resources.UIResources"
 var="res"/>
 <af:document title="#{res['srdemo.browserTitle']}"
 initialFocusId="viewButton">
 <af:form>
 <af:panelPage title="#{res['srlist.pageTitle']}">

The UIResources resource bundle has an entry in the English language for all static
text displayed on each page in the SRDemo application, as well as text for messages
and global text, such as generic labels. Example 14–10 shows the keys for the SRList
page.

Example 14–10 Resource Bundle Keys for the SRList Page Displayed in English

#SRList Screen
srlist.pageTitle=My Service Requests
srlist.menubar.openLink=Open Requests
srlist.menubar.pendingLink=Requests Awaiting Customer
srlist.menubar.closedLink=Closed Requests
srlist.menubar.allRequests=All Requests
srlist.menubar.newLink=Create New Service Request
srlist.selectAnd=Select and
srlist.buttonbar.view=View
srlist.buttonbar.edit=Edit

Figure 14–6 also shows the SRList page, but with the browser set to use the German
(Germany) locale.

Figure 14–6 The SRList Page in German

Internationalizing Your Application

Changing the Appearance of Your Application 14-13

Example 14–11 shows the resource bundle version for the German (Germany)
language, UIResource_de. Note that there is not an entry for the selection facet’s
title, yet it was translated from "Select" to "Auswahlen" automatically. That is because
this text is part of the ADF Faces table component’s selection facet.

Example 14–11 Resource Bundle Keys for the SRList Page Displayed in German

#SRList Screen
srlist.pageTitle=Meine Service Anfragen
srlist.menubar.openLink=Offene Anfragen
srlist.menubar.pendingLink=Anfrage wartet auf Kunden
srlist.menubar.closedLink=Geschlossene Anfragen
srlist.menubar.allRequests=Alle Anfragen
srlist.menubar.newLink=Erstelle neue Service Anfrage
srlist.selectAnd=Kommentare wählen und
srlist.buttonbar.view=Ansich

The resource bundles for the application can be either Java classes or property files.
The abstract class ResourceBundle has two subclasses:
PropertyResourceBundle and ListResourceBundle. A
PropertyResourceBundle is stored in a property file, which is a plain-text file
containing translatable text. Property files can contain values only for String objects.
If you need to store other types of objects, you must use a ListResourceBundle
instead. The contents of a property file must be encoded as ISO 8859-1. Any characters
not in that character set must be stored as escaped Unicode.

To add support for an additional locale, you simply replace the values for the keys
with localized values and save the property file appending a language code
(mandatory), and an optional country code and variant as identifiers to the name, for
example, UIResources_de.properties. The SRDemo application uses property
files.

The ListResourceBundle class manages resources in a name, value array. Each
ListResourceBundle class is contained within a Java class file. You can store any
locale-specific object in a ListResourceBundle class. To add support for an
additional locale, you subclass the base class, save it to a file with an locale / language
extension, translate it, and compile it into a class file.

The ResourceBundle class is flexible. If you first put your locale-specific String
objects in a PropertyResourceBundle file, you can still move them to a

Note: The column headings were not translated because the values
are bound to the label property of the binding object. This value is set
as a control hint in the entities structure XML file. Whenever any
values are set for the label, a resource bundle is automatically created.
To translate these, you must create localized versions of these resource
bundles.

Note: Property files must contain characters in the IS0 8859-1
character set. If you need to use other characters, use a
ListResourceBundle class instead.

All non-8859-1 character sets must be converted to escaped UTF-8
characters, or they will not display correctly.

Internationalizing Your Application

14-14 Oracle Application Development Framework Developer’s Guide

ListResourceBundle class later. There is no impact on your code, since any call to
find your key will look in both the ListResourceBundle class as well as the
PropertyResourceBundle file.

The precedence order is class before properties. So if a key exists for the same language
in both a class file and in a property file, the value in the class file will be the value
presented to the user. Additionally, the search algorithm for determining which bundle
to load is as follows:

1. (baseclass)+(specific language)+(specific country)+(specific variant)

2. (baseclass)+(specific language)+(specific country)

3. (baseclass)+(specific language)

4. (baseclass)+(default language)+(default country)+(default variant)

5. (baseclass)+(default language)+(default country)

6. (baseclass)+(default language)

For example, if a user’s browser is set to the German (Germany) locale and the default
locale of the application is US English, the application will attempt to find the closest
match, looking in the following order:

1. de_Germany

2. de

3. en_US

4. en

5. The base class bundle

14.4.1 How to Internationalize an Application
To internationalize your application, you need to do the following:

1. Create a base resource bundle that contains all the text strings that are not part of
the components themselves. This bundle should be in the default language of the
application.

Tip: The getBundle method used to load the bundle looks for the
default locale classes before it returns the base class bundle. If it fails
to find a match, it throws a MissingResourceException error. A
base class with no suffixes should always exist in order to avoid
throwing this exception

Tip: These procedures will allow the application to display the
correct language based on the browser settings of the user. You may
also want to create your application in a way that allows the user to
manually set the locale they wish to use. The current locale is stored in
the viewRoot of FacesContext.

Internationalizing Your Application

Changing the Appearance of Your Application 14-15

2. Use the base resource bundle on the JSF pages by loading the bundle and then
binding component attributes to keys in the bundle.

3. Create a localized resource bundle for each locale supported by the application.

4. Register the locales with the application.

5. Register the bundle used for application messages.

 Detailed procedures for each step follow.

To create a resource bundle as a property file:
1. In JDeveloper, create a new simple file.

1. In the Application Navigator, right-click where you want the file to be placed
and choose New to open the New Gallery.

2. In the Categories tree, select Simple Files, and in the Items list, select File.

3. Enter a name for the file, using the extension.properties.

Tips:

■ Instead of creating one resource bundle for the entire application,
you can create multiple resource bundles. For example, in a JSF
application, you must register the resource bundle that holds error
messages with the application in the faces-config.xml file.
For this reason, you may want to create a separate bundle for
messages.

■ Create your resource bundle as a Java class instead of a property
file if you need to include values for objects other than Strings, or
if you need slightly enhanced performance.

■ The getBundle method used to load the bundle looks for the
default locale classes before it returns the base class bundle.
However if it fails to find a match, it throws a
MissingResourceException error. A base class with no
suffixes should always exist in order to avoid throwing this
exception

Note: If you use a custom skin and have created a custom resource
bundle for the skin, you must also create localized versions of that
resource bundle. Similarly if your application uses control hints to set
any text, you must create localized versions of the generated resource
bundles for that text.

Note: If you are creating a localized version of the base resource
bundle, save the file to the same directory as the base file.

Internationalizing Your Application

14-16 Oracle Application Development Framework Developer’s Guide

2. Create a key and value for each string of static text for this bundle. The key is a
unique identifier for the string. The value is the string of text in the language for
the bundle. If you are creating a localized version of the base resource bundle, any
key not found in this version will inherit the values from the base class.

For example the key and value for the title of the SRList page is:

srlist.pageTitle=My Service Requests

To create a resource bundle as a Java Class:
1. In JDeveloper, create a new simple Java class:

■ In the Application Navigator, right-click where you want the file to be placed
and choose New to open the New Gallery.

■ In the Categories tree, select Simple Files, and in the Items list, select Java
Class.

■ Enter a name and package for the class. The class must extend
java.util.ListResourceBundle.

Note: If you are creating a localized version of a base resource
bundle, you must append the ISO 639 lowercase language code to the
name of the file. For example, the German version of the
UIResources bundle is UIResources_de.properties. You can
add the ISO 3166 uppercase country code (for example de_DE) if one
language is used by more than one country. You can also add an
optional non standard variant (for example, to provide platform or
region information).

If you are creating the base resource bundle, no codes should be
appended.

Note: All non-ASCII characters must be either UNICODE escaped or
the encoding must be explicitly specified when compiling, for
example:

javac -encoding ISO8859_5 UIResources_de.java

Note: All non-8859-1 character sets must be converted to escaped
UTF-8 characters, or they will not display correctly.

Note: If you are creating a localized version of the base resource
bundle, this must reside in the same directory as the base file.

Internationalizing Your Application

Changing the Appearance of Your Application 14-17

2. Implement the getContents() method, which simply returns an array of
key-value pairs. Create the array of keys for the bundle with the appropriate
values. Example 14–12 shows a sample base resource bundle java class.

Example 14–12 Base Resource Bundle Java Class

package sample;

import java.util.ListResourceBundle;

public class MyResources extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }
 static final Object[][] contents = {
 {"button_Search", "Search"},
 {"button_Reset", "Reset"},
 };
}

To use a base resource bundle on a page:
You need to load only the base resource bundle on the page. The application will
automatically use the correct version based on the user’s locale setting in their
browser.

1. Set your page encoding and response encoding to be a superset of all supported
languages. If no encoding is set, the page encoding defaults to the value of the
response encoding set using the contentType attribute of the page directive.
Example 14–13 shows the encoding for the SRList page.

Note: If you are creating a localized version of a base resource
bundle, you must append the ISO 639 lowercase language code to the
name of the class. For example, the German version of the
UIResources bundle might be UIResources_de.java. You can
add the ISO 3166 uppercase country code (for example de_DE) if one
language is used by more than one country. You can also add an
optional non standard variant (for example, to provide platform or
region information).

If you are creating the base resource bundle, no codes should be
appended.

Note: Keys must be Strings. If you are creating a localized version
of the base resource bundle, any key not found in this version will
inherit the values from the base class.

Internationalizing Your Application

14-18 Oracle Application Development Framework Developer’s Guide

Example 14–13 Page and Response Encoding

<?xml version='1.0' encoding='windows-1252'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces"
 xmlns:afc="http://xmlns.oracle.com/adf/faces/webcache">
 <jsp:output omit-xml-declaration="true" doctype-root-element="HTML"
 doctype-system="http://www.w3.org/TR/html4/loose.dtd"
 doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"/>
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>

2. Load the base resource bundle onto the page using the loadBundle tag, as shown
in Example 14–14. The basename attribute specifies the fully qualified name of
the resource bundle to be loaded. This resource bundle should be the one created
for the default language of the application. The var attribute specifies the name of
a request scope attribute under which the resource bundle will be exposed as a
Map, and will be used in the EL expressions that bind component attributes to a
key in the resource bundle.

Example 14–14 The loadBundle Tag

<f:loadBundle basename="oracle.srdemo.view.resources.UIResources"
 var="res"/>

3. Bind all attributes that represent strings of static text displayed on the page to the
appropriate key in the resource bundle, using the variable created in the previous
step. Example 14–15 shows the code for the View button on the SRList page.

Example 14–15 Binding to a Resource Bundle

<af:commandButton text="#{res['srlist.buttonbar.view']}"
 . . . />

To register locales:
1. Open the faces-config.xml file and select the Overview tab in the editor

window. The faces-config.xml file is located in the <View_
Project>/WEB-INF directory.

2. In the JSF Configuration Editor, select Application.

3. If not already displayed, click the Local Config’s triangle to display the Default
Locale and Supported Locales fields.

4. For Default Locale, enter the ISO locale identifier for the default language to be
used by the application. This identifier should represent the language used in the
base resource bundle.

Tip: By default JDeveloper sets the page encoding to
windows-1252. To set the default to a different page encoding:

1. From the menu, choose Tools > Preferences.

2. In the left-hand pane, select Environment if it is not already selected.

3. Set Encoding to the preferred default.

Internationalizing Your Application

Changing the Appearance of Your Application 14-19

5. Add additional supported locales by clicking New. Click Help or press F1 for
additional help in registering the locales.

To register the message bundle:
1. Open the faces-config.xml file and click on the Overview tab in the editor

window. The faces-config.xml file is located in the <View_
Project>/WEB-INF directory.

2. In the window, select Application.

3. For Message Bundle, enter the fully qualified name of the base bundle that
contains messages to be used by the application.

14.4.2 How to Configure Optional Localization Properties for ADF Faces
Along with providing text translation, ADF Faces also automatically provides other
types of translation, such as text direction and currency codes. The application will
automatically display appropriately based on the user’s selected locale. However, you
can also manually set the following localization settings for an application in the
adf-faces-config.xml file.

■ <currency-code>: Defines the default ISO 4217 currency code used by
oracle.adf.view.faces.converter.NumberConverter to format
currency fields that do not specify a currency code in their own converter.

■ <number-grouping-separator>: Defines the separator used for groups of
numbers (for example, a comma). ADF Faces automatically derives the separator
from the current locale, but you can override this default by specifying a value in
this element. If set, this value is used by
oracle.adf.view.faces.converter.NumberConverter while it parses
and formats.

■ <decimal-separator>: Defines the separator (for example, a period or a
comma) used for the decimal point. ADF Faces automatically derives the separator
from the current locale, but you can override this default by specifying a value in
this element. If set, this value is used by
oracle.adf.view.faces.converter.NumberConverter while it parses
and formats.

■ <right-to-left>: ADF Faces automatically derives the rendering direction
from the current locale, but you can explicitly set the default page rendering
direction by using the values true or false.

■ <time-zone>: ADF Faces automatically uses the time zone used by the client
browser. This value is used by
oracle.adf.view.faces.converter.DateTimeConverter while it
converts Strings to Date.

To configure optional localization properties:
1. Open the adf-faces-config.xml file. The file is located in the <View_

Project>/WEB-INF directory.

2. From the Component Palette, drag the element you wish to add to the file into the
Structure window. An empty element is added to the page.

3. Enter the desired value.

Example 14–16 shows a sample adf-faces-config.xml file with all the optional
localization elements set.

Internationalizing Your Application

14-20 Oracle Application Development Framework Developer’s Guide

Example 14–16 Configuring Currency Code and Separators for Numbers and Decimal
Point

<!-- Set the currency code to US dollars. -->
<currency-code>USD</currency-code>

<!-- Set the number grouping separator to period for German -->
<!-- and comma for all other languages -->
<number-grouping-separator>
 #{view.locale.language=='de' ? '.' : ','}
</number-grouping-separator>

<!-- Set the decimal separator to comma for German -->
<!-- and period for all other languages -->
<decimal-separator>
 #{view.locale.language=='de' ? ',' : '.'}
</decimal-separator>

<!-- Render the page right-to-left for Arabic -->
<!-- and left-to-right for all other languages -->
<right-to-left>
 #{view.locale.language=='ar' ? 'true' : 'false'}
</right-to-left>

<!-- Set the time zone to Pacific Daylight Savings Time -->
<time-zone>PDT</time-zone>

Optimizing Application Performance with Caching 15-1

15
Optimizing Application Performance with

Caching

This chapter describes how to add caching support to existing application pages.

This chapter includes the following sections:

■ Section 15.1, "About Caching"

■ Section 15.2, "Using ADF Faces Cache to Cache Content"

15.1 About Caching
For most Web-based applications, a large percentage of requests are made for identical
or similar content. These repeated requests for both dynamic and static contents place
a significant strain on application infrastructure.

Caching stores all or parts of a web page in memory for use in future responses. It
significantly reduces response time to client requests by reusing cached content for
future requests without executing the code that created it.

Oracle ADF Faces Cache provides a simple way for you to cache portions of a
response generated by a request. You simply wrap the fragment content you want to
cache with a beginning <afc:cache> and ending </afc:cache> tag. By caching
both dynamic and static content, you can increase throughput and shorten response
times.

You can add the <afc:cache> tag to cache the following fragment types:

■ Page fragment—You make the <afc:cache> tag a direct child of the <f:view>
tag, and enclose the page's content within it.

■ Fragment within a page—You enclose only the fragment portion within the
<afc:cache> tag. Caching fragments is useful when sections of a page must be
created for each request.

■ Included fragment that exists in its own subpage—You make the <afc:cache>
tag a direct child of the <f:subview> tag, and enclose the fragment's content
within it.

You can use the ADF Faces Cache library with any application developed with
JavaServer Faces (JSF).

Using ADF Faces Cache to Cache Content

15-2 Oracle Application Development Framework Developer’s Guide

15.2 Using ADF Faces Cache to Cache Content
Consider using the <afc:cache> tag for the following types of content:

■ Resource Intensive

If rendering a particular JSF or ADF component requires resource-intensive
operations like making database or network queries, caching can help to reduce
the rendering cost by retrieving content from the cache as opposed to regenerating
it.

■ Shareable

The cache can serve the same object to multiple users or sessions.

The degree of sharing can be application wide or limited by certain properties,
such as a bean property, user cookie, or request header.

■ Changes infrequently

Infrequently changing content is ideal to cache, because the cache can serve the
content for a long period of time. The ADF Faces Cache expiration and
invalidation mechanisms help to invalidate content in the cache. Use expiration
when you can accurately predict when the source of the content will change; use
invalidation for content that changes from a request.

Because frequently changing content requires constant cache updates, this content
is not ideal to cache.

Several of the pages in the SRDemo application use the Cache component to cache
fragments. By analyzing how caching support was added to SRCreate.jspx and
SRFaq.jspx, you can better understand how to cache fragments in your applications.

Figure 15–1 shows the SRCreate.jspx page. It contains these cacheable fragments:

■ The first fragment contains content at the start of the page, including the text and
link to the Frequently Asked Questions, the prompt to enter a basic description of
your problem, and the objectSeparator component.

This content is generic to all users.

■ The second fragment contains the panelForm component for selecting an
appliance, requiring a database query.

This content varies by the user. The content is valid across all sessions for the same
user.

■ The third fragment contains the tabs, including the New Service Request tab.

This content varies by the user. The content is valid across all sessions for the same
user.

■ The forth fragment contains the Logout and Help menu item at the top of the
page.

This content is generic to all users.

Because these fragments are shareable by a given user across sessions or across all
users, they are good caching candidates.

Using ADF Faces Cache to Cache Content

Optimizing Application Performance with Caching 15-3

Figure 15–1 Create New Service Request Page in the SRDemo Application

Example 15–1 shows the code for the first fragment, the start of the page content.

Example 15–1 Start Page Content Fragment

<!--Page Content Start-->
<afc:cache duration="864000">
 <af:objectSpacer width="10" height="10"/>
 <af:panelHorizontal>
 <f:facet name="separator">
 <af:objectSpacer width="4" height="10"/>
 </f:facet>
 <af:outputText value="#{res['srcreate.faqText']}"/>
 <af:commandLink text=" #{res['srcreate.faqLink']}"
 action="dialog:FAQ" useWindow="true"
 immediate="true" partialSubmit="true"/>
 </af:panelHorizontal>
 <af:objectSpacer width="10" height="10"/>
 <af:outputFormatted value="#{res['srcreate.explainText']}"/>
 <af:objectSeparator/>
</afc:cache>

The attributes for the <afc:cache> tag specify the following:

■ The duration attributes specifies 86,400 seconds before the fragment expires.
When a fragment expires and client requests it, it is removed from the cache and
then refreshed with new content.

Example 15–2 shows the code for the second fragment, the panelForm component for
selecting your appliance.

Using ADF Faces Cache to Cache Content

15-4 Oracle Application Development Framework Developer’s Guide

Example 15–2 Appliance Selection Fragment

<af:panelForm>
 <afc:cache duration="86400"
 varyBy="userInfo.userId">
 <af:panelLabelAndMessage valign="top"
 label="#{res['srcreate.info.1']}">
 <af:selectOneListbox id="navList1" autoSubmit="false"
 value="#{bindings.findAllProduct1.inputValue}"
 size="6" required="true">
 <f:selectItems value="#{bindings.findAllProduct1.items}"/>
 </af:selectOneListbox>
 </af:panelLabelAndMessage>
 </afc:cache>

The attributes for the <afc:cache> tag specify the following:

■ The duration attributes specifies 86,400 seconds before the fragment expires.

■ The varyBy attribute specifies which version of the fragment to display based on
the userInfo bean. This attribute specifies to cache a version of the fragment for
each user. The content is valid across sessions for the same user.

Example 15–3 shows the code for the third fragment, the tabs across the top of the
page.

Example 15–3 Menu Tabs Fragment

<f:facet name="menu1">
 <afc:cache duration="864000"
 varyBy="userInfo.userId">
 <af:menuTabs var="menuTab" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuTab.label}"
 action="#{menuTab.getOutcome}"
 rendered="#{menuTab.shown and
menuTab.type=='default'}"
 disabled="#{menuTab.readOnly}"/>
 </f:facet>
 </af:menuTabs>
 </afc:cache>
</f:facet>

The attributes for the <afc:cache> tag specify the following:

■ The duration attribute specifies 86,400 seconds before the fragment expires.

■ The varyBy attribute specifies which version of the fragment to display based on
the userInfo bean.

Example 15–4 shows the code for the last fragment, the Logout and Help menu items.

Using ADF Faces Cache to Cache Content

Optimizing Application Performance with Caching 15-5

Example 15–4 Logout and Help Menu Fragment

<f:facet name="menuGlobal">
 <afc:cache duration="86400">
 <af:menuButtons>
 <af:commandMenuItem text="#{res['srdemo.menu.logout']}"
 action="GlobalLogout"
 immediate="true"
 icon="/images/logout.gif"/>
 <af:commandMenuItem text="#{res['srdemo.menu.help']}"
 action="GlobalHelp"
 immediate="true"
 icon="/images/help.gif"/>
 </af:menuButtons>
 </afc:cache>
</f:facet>

Figure 15–2 shows the SRFaq.jspx page. Its content is shareable among all users.

Figure 15–2 Frequently Asked Questions Dialog in the SRDemo Application

Example 15–5 shows the code for this page fragment.

Using ADF Faces Cache to Cache Content

15-6 Oracle Application Development Framework Developer’s Guide

Example 15–5 FAQ Fragment

<f:view>
 <afc:cache duration="86400"
 searchKeys="FAQ"
...FAQ Page Content...
 </afc:cache>
</f:view>

The attributes for the <afc:cache> tag specify the following:

■ The duration attribute specifies 86,400 seconds before the fragment expires.

■ The searchKeys attribute assigns this page fragment a search string of FAQ. You
can invalidate this fragment using this search key.

You use search keys to organize web pages and fragments into different groups.
You can assign all the pages in a particular group with the same search key. For
example, you can assign the search key new_request to all the pages that have
something to do with creating a new service requests. To invalidate a group of
objects, you submit an invalidation request that specifies the search key associated
with that particular group. For example, if the invalidation request specifies the
search key new_request, all the pages assigned the new_request search key
will be invalidated. In the SRDemo application, the SRFaq.jspx page is the only
page assigned a search key.

When objects are marked as invalid and a client requests them, they are removed
and then refreshed with new content.

15.2.1 How to Add Support for ADF Faces Cache
To use the Cache component, you add the ADF Faces Cache library to an application’s
project and apply the library to the specific JSP page.

To add the ADF Faces Cache library:
1. In the Application Navigator, select the project that you want to use the Cache

component.

2. From the context menu, choose Project Properties.

The Project Properties dialog opens.

3. Select the Libraries node.

4. On the Libraries page, click Add Library.

5. Locate the ADF Faces Cache library in the selection tree and click OK.

6. On the Libraries page, click OK.

7. For each JSP document or page, you plan to apply the <afc:cache> tag, add the
following library syntax to the <jsp:root> tag:

xmlns:afc="http://xmlns.oracle.com/adf/faces/webcache"

You can now insert the Cache component from the Component Palette or use
Code Insight to insert the <afc:cache> tag.

Using ADF Faces Cache to Cache Content

Optimizing Application Performance with Caching 15-7

15.2.2 What Happens When You Cache Fragments
When you run an application containing the <afc:cache> tag, the content is not
cached until there is an initial browser request for it. After the content is cached, the
content is served from the cache. You can see when content is inserted into the cache
and how many cache hits and misses result from fragment requests using a
combination of the following tools:

■ Logging

■ AFC Statistics Servlet

■ Visual Diagnostics

15.2.2.1 Logging
ADF Faces Cache leverages the Java Logging API (java.util.logging.Logger) to log
events and error messages. These messages show the sequence of how objects are
inserted and served from the cache.

Depending on the logging configuration specified in the j2ee-logging.xml file,
logging information can display in the Log Window of JDeveloper and write to the
log.xml file. The j2ee-logging.xml file specifies the directory path information
for log.xml.

Example 15–6 shows log excerpts in which fragment SRCreate.jspx is initially
requested and found not to be in the cache (cache miss) and inserted into the cache
(insert). SRCreate.jspx is requested again, and served from the cache (cache
hit).

Example 15–6 Log Sample

fragment is SRCreate.jspx:_id13
fragment (SRCreate.jspx:_id13) fetch: cache miss
fragment (SRCreate.jspx:_id13) insert: cached for 86400 secs
...
fragment is SRCreate.jspx:_id19
fragment (SRCreate.jspx:_id19) fetch: cache hit
...

15.2.2.2 AFC Statistics Servlet
The AFC Statistics servlet, shown in Figure 15–3, displays the following cache
statistics. These statistics can help to provide an overall picture of cache throughput:

■ Number of objects in cache–The number of objects stored in the cache.

■ Number of cache hits–The number of requests served by objects in the cache.

■ Number of cache misses–The number of cacheable requests that were not served
by the cache. This number represents initial requests and requests for invalidated
or expired objects that have been refreshed.

■ Number of invalidation requests–The number of invalidation requests serviced
by the cache.

■ Number of documents invalidated–The total number of objects invalidated by the
cache.

See Also: Section A.9 for further information about the
j2ee-logging.xml file

Using ADF Faces Cache to Cache Content

15-8 Oracle Application Development Framework Developer’s Guide

The Number of invalidation requests and the Number of documents invalidated
may not be the same. This difference can occur because one search key may apply
to more than one object.

The Click here to Reset Stats link, shown in Figure 15–3, resets these statistics, except
for Number of objects in cache.

Figure 15–3 AFC Statistics Servlet

To enable the servlet:
1. Create the following entry in the web.xml file in the /WEB-INF directory of the

application:

<servlet>
 <servlet-name>AFCStatsServlet</servlet-name>
 <servlet-class>oracle.webcache.adf.servlet.AFCStatsServlet</servlet-class>
</servlet>

2. Point your browser to the following URL:

http://application_host:application_
port/application-context-root/servlet/AFCStatsServlet

15.2.2.3 Visual Diagnostics
The visual diagnostics feature enables you to visually display whether fragments are
cache hits or cache misses. This feature demarcates fragment output with the HTML
 tag, using a class appropriate for its cache hit or cache miss status. By setting a
distinct class style, you can visually determine whether fragments are stored in the
cache.

While the SRDemo application does not use the visual diagnostics feature, you may
find it useful for testing your applications.

See Also: Topic "Viewing Cache Performance Statistics" in the
JDeveloper online help for further information about the AFC
Statistics servlet

See Also: Topic "Using Visual Diagnostics" in the JDeveloper online
help for further information

Using ADF Faces Cache to Cache Content

Optimizing Application Performance with Caching 15-9

15.2.3 What You May Need to Know
When you use AFC Statistics servlet, you may encounter the following problems:

■ HTTP 404 Page Not Found error code

If you receive this error when accessing the servlet, it is most likely the result of a
configuration issue.

To resolve this problem, ensure the following lines are present in the web.xml file:

<servlet>
 <servlet-name>AFCStatsServlet</servlet-name>
 <servlet-class>oracle.webcache.adf.servlet.AFCStatsServlet</servlet-class>
</servlet>

■ Cache instance is not running error

This error occurs because the servlet has not started to monitor the cache. The
servlet only starts to monitor the cache after the first object has been inserted into
the cache and the cache instance is created.

To workaround this error, select Click here to Reset Stats.

Using ADF Faces Cache to Cache Content

15-10 Oracle Application Development Framework Developer’s Guide

Testing and Debugging Web Applications 16-1

16
Testing and Debugging Web Applications

This chapter describes the process of debugging your user interface project. It also
supplies information about methods of the Oracle ADF Model API, which you can use
to set breakpoints for debugging.

This chapter includes the following sections:

■ Section 16.1, "Getting Started with Oracle ADF Model Debugging"

■ Section 16.2, "Correcting Simple Oracle ADF Compilation Errors"

■ Section 16.3, "Correcting Simple Oracle ADF Runtime Errors"

■ Section 16.4, "Understanding a Typical Oracle ADF Model Debugging Session"

■ Section 16.5, "Debugging the Oracle ADF Model Layer"

■ Section 16.6, "Tracing EL Expressions"

16.1 Getting Started with Oracle ADF Model Debugging
Like any debugging task, debugging the web application’s interaction with Oracle
ADF is a process of isolating specific contributing factors. However, in the case of web
applications, generally, this process does not involve compiling Java source code. Your
web pages contain no Java source code, as such, to compile. In fact, you may not
realize that a problem exists until you run and attempt to use the application. For
example, these failures are only visible at runtime:

■ Page not found servlet error

■ Page is found but the components display without data

■ Page fails to display data after executing a method call or built-in operation (like
Next or Previous)

■ Page displays but a method call or built-in operation fails to execute at all

■ Page displays but unexpected validation errors occur

The failure to display data or to execute a method call arises from the interaction
between the web page’s components and the Oracle ADF Model layer. When a
runtime failure is observed during ADF lifecycle processing, the sequence of preparing
the model, updating the values, invoking the actions, and, finally, rendering the data
failed to complete.

Fortunately, most failures in the web application’s interaction with Oracle ADF result
from simple and easy-to-fix errors in the declarative information that the application
defines or in the EL expressions that access the runtime objects of the page’s Oracle
ADF binding container.

Correcting Simple Oracle ADF Compilation Errors

16-2 Oracle Application Development Framework Developer’s Guide

Therefore, in your Oracle ADF databound application, you should examine the
declarative information and EL expressions as likely contributing factors when
runtime failures are observed. Read the following sections to understand editing the
declarative files:

■ Section 16.2, "Correcting Simple Oracle ADF Compilation Errors"

■ Section 16.3, "Correcting Simple Oracle ADF Runtime Errors"

The most useful diagnostic tool (short of starting a full debugging session) that you
can use when running your application is the ADF Logger. You use this J2EE logging
mechanism in JDeveloper to capture runtime traces messages from the Oracle ADF
Model layer API. With ADF logging enabled, JDeveloper displays the application trace
in the Message Log window. The trace includes runtime messages that may help you
to quickly identify the origin of an application error. Read Section 16.4,
"Understanding a Typical Oracle ADF Model Debugging Session" to configure the
ADF Logger to display detailed trace messages.

If the error cannot be easily identified, you can utilize the debugging tools in
JDeveloper to step through the execution of the application and the various phases of
the Oracle ADF page lifecycle. This process will help you to isolate exactly where the
error occurred. By using the debugging tools, you will be able to pause execution of
the application on specific methods in the Oracle ADF API, examine the data that the
Oracle ADF binding container has to work with, and compare it to what you expect
the data to be. Read Section 16.5, "Debugging the Oracle ADF Model Layer" to
understand debugging the Oracle ADF Model layer.

Occasionally, you may need help debugging EL expressions. While EL is not
well-supported with a large number of useful exceptions, you can enable JSF trace
messages to examine variable resolution. Read Section 16.6, "Tracing EL Expressions"
to work with JSF trace messages.

16.2 Correcting Simple Oracle ADF Compilation Errors
When you create web pages and work with the ADF data controls to create the ADF
binding definitions in JDeveloper, the Oracle ADF declarative files you edit must
conform to the XML schema defined by Oracle ADF. When an XML syntax error
occurs, the JDeveloper XML compiler immediately displays the error in the Structure
window. Choose Structure from the JDeveloper View menu to open the Structure
window for any Oracle ADF file you edit in the XML editor.

Currently a limitation of the JDeveloper compiler is the ability to resolve EL
expressions. EL expressions in your web pages interact directly with various runtime
objects in the web environment, including the web page’s Oracle ADF binding
container. At present, errors in EL expressions can be observed only at runtime. Thus,
the presence of a single typing error in an object-access expression will not be detected
by the compiler, but will manifest at runtime as a failure to interact with the binding
container and a failure to display data in the page. For information about debugging
runtime errors, see Section 16.3, "Correcting Simple Oracle ADF Runtime Errors".

Tip: The JDeveloper Expression Builder is a dialog that helps you
build EL expressions by providing lists of objects, managed beans,
and properties. It is particularly useful when creating or editing ADF
databound EL expressions because it provides a hierarchical list of
ADF binding objects and their valid properties from which you can
select the ones you want to use in an expression. Oracle recommends
using the Expression Builder to avoid introducing typing errors. For
details, see Section 5.6.2, "How to Use the Expression Builder".

Correcting Simple Oracle ADF Compilation Errors

Testing and Debugging Web Applications 16-3

Example 16–1 illustrates simple compilation errors contained in the page definition
file: "fase" instead of "false" and "IsQueriable="false"/" instead of
"IsQueriable="false"/>" (missing a closing angle bracket).

Example 16–1 Sample Page Definition File with Two Errors

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.35.62" id="browseusersPageDef"
 Package="oracle.srdemo.view.pageDefs"
 EnableTokenValidation="fase"
 ...>
 <parameters/>
 <executables>
 <variableIterator id="variables">
 <variable Type="java.lang.String" Name="findUsersByName_name"
 IsQueriable="false"/

The Structure window for the above errors would display as shown in Figure 16–1.

Figure 16–1 Structure Window Displays XML Error

If you were to attempt to compile the application, the Compiler window would also
display similar errors, as shown in Figure 16–2.

Figure 16–2 Compiler Window Displays XML Compile Error

To correct schema validation errors, in either the Structure window or the Compiler
window, double-click the error to open the file. The file will open in the XML editor
with the responsible line highlighted for you to fix.

After you correct the error, the Structure window will immediately remove the error
from the window. Optionally, you may recompile the project using the make operation
to recompile the changed file and view the empty Compiler window.

Correcting Simple Oracle ADF Runtime Errors

16-4 Oracle Application Development Framework Developer’s Guide

16.3 Correcting Simple Oracle ADF Runtime Errors
Failures of the Oracle ADF Model layer cannot be detected by the JDeveloper
compiler, in part, because the page’s data-display and method-execution behavior
relies on the declarative Oracle ADF page definition files. The Oracle ADF Model layer
utilizes those declarative files at runtime to create the objects of the Oracle ADF
binding container.

To go beyond simple schema validation, you will want to routinely run and test your
web pages to ensure that one of the following conditions does not exist:

■ The project dependency between the data model project and the user interface
project becomes disabled.

By default, the dependency between projects is enabled whenever you create a
web page that accesses a data control in the data model project. However, if the
dependency is disabled and remains disabled when you attempt to run the
application, an internal servlet error will be generated at runtime:

oracle.jbo.NoDefException: JBO-25002: Definition
model.DataControls.dcx of type null not found

To correct the error, right-click the user interface project, choose Project Properties,
and select Dependencies in the dialog. Make sure that the
<ModelProjectName>.jpr option appears selected in the panel.

■ The DataBindings.cpx file location changed but the web.xml file still
references the original path for the file.

By default, JDeveloper adds the DataBindings.cpx file to the package for your
user interface project. If a change to the location of the file is made (for example,
due to refactoring the application), an internal servlet error will be generated at
runtime:

oracle.jbo.NoXMLFileException: JBO-26001: XML File not found
for the Container /oracle/<path>/DataBinding.cpx

To correct the error, open the web.xml file and edit the path that appears in the
<context-param> element CpxFileName.

■ Page definition files have been renamed but the DataBindings.cpx file still
references the original page definition filenames.

While JDeveloper does not permit these files to be renamed within the IDE, if a
page definition file is renamed outside of JDeveloper and the references in the
DataBindings.cpx file are not also updated, an internal servlet error will be
generated at runtime:

oracle.jbo.NoDefException: JBO-25002: Definition
oracle.<path>.pageDefs.<pagedefinitionName> of type Form
Binding Definition not found

To correct the error, open the DataBindings.cpx file and edit the page
definition filenames that appear in the <pageMap> and
<pageDefinitionUsages> elements.

■ The web page file (.jsp or.jspx) has been renamed but the
DataBindings.cpx file still references the original filename of the same web
page.

Correcting Simple Oracle ADF Runtime Errors

Testing and Debugging Web Applications 16-5

The page controller uses the page’s URL to determine the correct page definition
to use to create the ADF binding container for the web page. If the page’s name
from the URL does not match the <pageMap> element of the
DataBindings.cpx file, an internal servlet error will be generated at runtime:

javax.faces.el.PropertyNotFoundException: Error testing
property <propertyname>

To correct the error, open the DataBindings.cpx file and edit the web page
filenames that appear in the <pageMap> element.

■ Bindings have been renamed in the web page EL expressions but the page
definition file still references the original binding object names.

The web page may fail to display information that you expect to see. To correct the
error, compare the binding names in the page definition file and the EL expression
responsible for displaying the missing part of the page. Most likely the mismatch
will occur on a value binding, with the consequence that the component will
appear but without data. Should the mismatch occur on an iterator binding name,
the error may be more subtle and may require deep debugging to isolate the
source of the mismatch.

■ Bindings in the page definition file have been renamed or deleted and the EL
expressions still reference the original binding object names.

Because the default error-handling mechanism will catch some runtime errors
from the ADF binding container, this type of error can be very easy to find. For
example, if an iterator binding (named findUsersByNameIter) was renamed in
the page definition file, yet the page still refers to the original name, this error will
display in the web page:

JBO-25005: Object name findUsersByNameIter for type Iterator
Binding Definition is invalid

To correct the error, right-click the name in the web page and choose Go to Page
Definition to locate the correct binding name to use in the EL expression.

■ EL expressions were written manually instead of using the Expression Picker
dialog and invalid object names or property names were introduced.

This error may not be easy to find. Depending on which EL expression contains
the error, you may or may not see a servlet error message. For example, if the error
occurs in a binding property with no runtime consequence, such as displaying a
label name, the page will function normally but the label will not be displayed.
However, if the error occurs in a binding that executes a method, an internal
servlet error javax.faces.el.MethodNotFoundException: <methodname>
will display. Or, in the case of an incorrectly typed property name on the method
expression, the servlet error
javax.faces.el.PropertyNotFoundException: <propertyname> will
display. For information about displaying JSF trace messages to help debug these
exception, see Section 16.6, "Tracing EL Expressions".

If the above list of typical errors does not help you to find and fix a runtime error, you
can initiate debugging within JDeveloper in order to isolate the contributing factor.
This process involves pausing the execution of the application as it proceeds through
the phases of the Oracle ADF page lifecycle, examining the data received by the
lifecycle, and determining whether that data is expected or not. To inspect the data of
your application, you will work with source code breakpoints and Data window, as
described in Section 16.4, "Understanding a Typical Oracle ADF Model Debugging
Session".

Understanding a Typical Oracle ADF Model Debugging Session

16-6 Oracle Application Development Framework Developer’s Guide

16.4 Understanding a Typical Oracle ADF Model Debugging Session
If you are not able to easily find the error in your web page or its corresponding page
definition file, you can use the JDeveloper debugging tools to investigate where your
application failure occurs. Specifically, the goal for debugging the interaction between
the web page and the Oracle ADF Model layer is to pause the application by setting
breakpoints on the execution of the Oracle ADF page lifecycle and to examine the data
loaded at runtime. When the objects of the Oracle ADF Model layer do not contain the
data that you expect to see, this observation will help you to identify the probable
contributing factor.

Generally, the process for debugging proceeds like this:

1. Run the application and look for missing or incomplete data, actions and methods
that are ignored or incorrectly executed, or other unexpected results.

2. Create a debugging configuration that will enable the ADF Log and send Oracle
ADF Model messages to the JDeveloper Log window. For more information, see
Section 16.4.2, "Creating an Oracle ADF Debugging Configuration".

3. Choose Go to Java Class from the Navigate menu (or press Ctrl + -) and use the
dialog to locate the Oracle ADF class that represents the entry point for the
processing failure.

4. Open the class file in the Java editor and find the Oracle ADF method call that will
enable you to step into the statements of the method.

5. Set a breakpoint on the desired method and run the debugger.

6. When the application stops on the breakpoint, use the Data window to examine
the local variables and arguments of the current context.

Once you have set breakpoints to pause the application at key points, you can proceed
to view data in the JDeveloper Data window. To effectively debug your web page’s
interaction with the Oracle ADF Model layer, you need to understand:

■ The Oracle ADF page lifecycle and the method calls that get invoked

■ The local variables and arguments that the Oracle ADF Model layer should
contain during the course of application processing

Awareness of Oracle ADF processing, as described in Section 16.5, "Debugging the
Oracle ADF Model Layer", will give you the means to selectively set breakpoints,
examine the data loaded by the application, and isolate the contributing factors.

Tip: JDeveloper will locate the class from the user interface project
that has the current focus in the Application Navigator. If your
workspace contains more than one user interface project, be sure the
one with the current focus is the one that you want to debug.

Note: JSF web pages may also use backing beans to manage the
interaction between the page’s components and the data. Debug
backing beans by setting breakpoints as you would any other Java
class file.

Understanding a Typical Oracle ADF Model Debugging Session

Testing and Debugging Web Applications 16-7

16.4.1 Turning on Diagnostic Logging
Even before you use the actual debugger, running with framework diagnostics logging
turned on can be helpful to see what happened when the problem occurs. To turn on
diagnostic logging set the Java System property named jbo.debugoutput to the
value console. Additionally, the value ADFLogger lets you route diagnostics
through the standard J2SE Logger implementation, which can be controlled in a
standard way through the OC4J j2ee-logging.xml file.

The easiest way to set this system property while running your application inside
JDeveloper is to edit your project properties and in the Run/Debug panel, select a run
configuration and click Edit to edit it. Then add the string
-Djbo.debugoutput=console to the Java Options field.

16.4.2 Creating an Oracle ADF Debugging Configuration
ADF Faces leverages the Java Logging API (java.util.logging.Logger) to
provide logging functionality when you run a debugging session. Java Logging is a
standard API that is available in the Java Platform, starting with JDK 1.4. For the key
elements, see the section "Java Logging Overview" at
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.
html.

Because standard Java Logging is used, you can edit the j2ee-logging.xml file to
control the level of diagnostics you receive in the Log window:

■ When you conduct a debugging session within JDeveloper, you will use
JDeveloper embedded-OC4J and will want to modify the file in your JDeveloper
install here:

<JDev_
Install>/jdev/system/oracle.j2ee.10.1.3.xx.xx/embedded-oc4j/c
onfig

■ Similarly, when you want to conduct a remote debugging session on Oracle
Application Server, you can modify the file here:

<OAS_Home>/j2ee/<OC4J_INSTANCE>/config

■ Or, when you want to conduct a remote debugging session on standalone OC4J,
you can modify the file here:

<OC4J_Home>/j2ee/home/config

To edit ADF package-level logging in the j2ee-logging.xml file:
If you want to change the logging level for Oracle ADF, you can edit the <logger>
elements of the configuration file.

For the packages oracle.adf.view.faces and
oracle.adfinternal.view.faces, edit:

<logger name="oracle.adf" level="INFO"/>
<logger name="oracle.adfinternal" level="INFO"/>

Note: By default the level is set to INFO for all packages of Oracle
ADF. However, Oracle recommends level="FINE" for detailed
logging diagnostics.

Understanding a Typical Oracle ADF Model Debugging Session

16-8 Oracle Application Development Framework Developer’s Guide

For the Oracle ADF Model layer packages, edit these elements:

<logger name="oracle.adf" level="INFO"/>
<logger name="oracle.jbo" level="INFO"/>

Alternatively, you can create a debug configuration in JDeveloper that you can choose
when you start a debugging session.

To create an Oracle ADF Model debugging configuration:
1. In the Application Navigator, double-click the user interface project.

2. In the Project Properties dialog, click Run/Debug and create a new run
configuration, for example, named ADF debugging.

3. Double-click the new run configuration to edit the properties.

4. In the Edit Run Configuration dialog, for Launch Settings, enter the following
Java Options for the default ojvm virtual machine:

-Djbo.debugoutput=adflogger -Djbo.adflogger.level=FINE

Oracle recommends the level=FINE for detailed diagnostic messages.

16.4.3 Understanding the Different Kinds of Breakpoints
You first need to understand the different kinds of breakpoints and where to create
them.

To see the Debugger Breakpoints window, use the View | Debugger > Breakpoints
menu choice from the main JDeveloper menu, or optionally the key accelerator for
this: [Ctrl]+[Shift]+[R].

You can create a new breakpoint by selecting the New Breakpoint menu choice from
the right-mouse menu anywhere in the breakpoints window. The Breakpoint Type
dropdown list controls what kind of breakpoint you will create. The valid choices are:

■ Exception — break whenever an exception of this class (or a subclass) is thrown.

This is great when you don't know where the exception occurs, but you know
what kind of exception it is (e.g. java.lang.NullPointerException,
java.lang.ArrayIndexOutOfBoundsException,
oracle.jbo.JboException, etc.) The checkbox options allow you to control
whether to break on caught or uncaught exceptions of this class. The (Browse...)
button helps you find the fully-qualified class name of the exception. The
Exception Class combobox remembers most recently used exception breakpoint
classes. Note that this is the default breakpoint type when you create a breakpoint
in the breakpoints window.

■ Source — break whenever a particular source line in a particular class in a
particular package is run.

You rarely create a source breakpoint in the New Breakpoint window. This is
because it's much easier to create it by first using the Navigate | Go to Class menu
(accelerator [Ctrl]+[Shift]+[Minus]), then scrolling to the line number you
want -- or using Navigate | Go to Line (accelerator [Ctrl]+[G]) -- and finally
clicking in the breakpoint margin at the left of the line you want to break on. This
is equivalent to creating a new source breakpoint, but it means you don't have to
type in the package, class, and line number by hand.

Understanding a Typical Oracle ADF Model Debugging Session

Testing and Debugging Web Applications 16-9

■ Method — break whenever a method in a given class is invoked.

This is handy to set breakpoints on a particular method you might have seen in
the call stack while debugging a problem. Of course, if you have the source you
can set a source breakpoint wherever you want in that class, but this kind of
breakpoint lets you stop in the debugger even when you don't have source for a
class.

■ Class — break whenever any method in a given class is invoked.

This can be handy when you might only know the class involved in the problem,
but not the exact method you want to stop on. Again, this kind of breakpoint does
not require source. The Browse button helps you quickly find the fully-qualified
class name you want to break on.

■ Watchpoint — break whenever a given field is accessed or modified.

This can be super helpful to find a problem if the code inside a class modifies a
member field directly from several different places (instead of going through setter
or getter methods each time). You can stop the debugger in its tracks when any
field is modified. You can create a breakpoint of this type by using the Toggle
Watchpoint menu item on the right-mouse menu when pointing at a member field
in your class' source.

16.4.4 Editing Breakpoints to Improve Control
After creating a breakpoint you can edit the breakpoint in the breakpoints window by
selecting Edit in the context menu on the desired breakpoint.

Some really interesting features you can use by editing your breakpoint are:

■ Associate a logical "breakpoint group" name to group this breakpoint with others
having the same breakpoint group name. Breakpoint groups make it easy to
enable/disable an entire set of breakpoints in one operation.

■ Associate a debugger action to occur when the breakpoint is hit. The default action
is to just stop the debugger so you can inspect things, but you can add a beep,
write something to a log file, and enable or disable group of breakpoints.

■ Associate a conditional expression with the breakpoint so that it the debugger only
stops when that condition is met. In 10.1.3, the expressions can be virtually any
boolean expression, including:

■ expr ==value

■ expr.equals("value")

■ expr instanceoffully.qualified.ClassName

16.4.5 Filtering Your View of Class Members
An excellent but often overlooked feature of the JDeveloper debugger is the ability to
filter the members you want to see in the debugger window for any class. In the
debugger's Data window, pointing at any item and selecting Object Preferences from
the right-mouse context menu brings up a dialog that lets you customize which
members appear in the debugger and (more importantly sometimes) which members
don't appear.

Note: Use the debugger watch window to evaluate the expression
first to make sure its valid.

Debugging the Oracle ADF Model Layer

16-10 Oracle Application Development Framework Developer’s Guide

These preferences are set by class type and can really simplify the amount of scrolling
you need to do in the debugger data window. This is especially useful while
debugging when you might only be interested in a handful of a class' members.

16.4.6 Communicating Stack Trace Information to Someone Else
If you are unable to determine what the problem is and resolve it yourself, typically
your next step is to ask someone else for assistance. Whether you post a question in
the OTN JDeveloper Discussion Forum or open a Service Request on Metalink,
including the stack trace information in your posting is extremely useful to anyone
who will need to assist you further to understand exactly where the problem is
occurring.

JDeveloper's Stack window makes communicating this information easy. Whenever
the debugger is paused, you can view the Stack window to see the program flow as a
stack of method calls that got you to the current line. Using the right-mouse
Preferences menu on the Stack window background, you can set the Stack window
preference to include the Line number information as well as the class and method
name that will be there by default. Finally, the other useful context menu option
Export lets you save the current stack information to an external text file whose
contents you can then post or send to whomever might need to help you diagnose the
problem.

16.5 Debugging the Oracle ADF Model Layer
The processing of your JSF page in combination with Oracle ADF Model is controlled
by two classes:

■ oracle.adf.controller.faces.lifecycle.FacesPageLifecycle class

■ oracle.adf.controller.v2.lifecycle.PageLifecycleImpl class

FacesPageLifecycle implements certain methods of PageLifecycleImpl to
provide customized error-handling behavior for ADF Faces applications. Generally,
however, you will set breakpoints on PageLifecycleImpl, as this class provides the
starting point for creating the objects of the Oracle ADF binding context.

The successful interaction between the web page and these objects of the Oracle ADF
binding context ensures that the page’s components display with correct and complete
data, that methods and actions produce the desired result, and that the page renders
properly with the appropriate validation errors.

Tip: The FacesPageLifecycle class provides the default
implementation of the phase of the ADF Lifecycle. A good place to set
a breakpoint is on the prepareModel() method, as it initiates the
first phase of the ADF lifecycle. For details about the Oracle ADF
lifecycle, see Section 6.2.3, "What Happens at Runtime: The JSF and
ADF Lifecycles".

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 16-11

16.5.1 Correcting Failures to Display Pages
At runtime, several things must happen before the ADF lifecycle can prepare the
model and display the web page. When the first request for an ADF databound web
page occurs, the servlet registers the Oracle ADF servlet filter ADFBindingFilter,
named in the web.xml file. The method ADFBindingFilter.doFilter() sets up
the ADF processing state, and the method
ADFBindingFilter.initializeBindingContext() creates an instance of
oracle.adf.model.BindingContext by reading the CpxFileName init
parameter from the web.xml file.

16.5.1.1 Fixing Binding Context Creation Errors
Immediately after ADFBindingFilter.initializeBindingContext() is called,
BindingContext is an empty container object that will define a hierarchy of the
Oracle ADF Model layer objects. However, as the container object, BindingContext
must exist in order for the page’s binding to be created. If it does not, an internal
servlet error for the Container /oracle/<path>/DataBinding.cpx will be
thrown:

oracle.jbo.NoXMLFileException: JBO-26001: XML File not found

To debug creating the binding context for the web application:
1. In the oracle.adf.model.servlet.ADFBindingFilter class, set a break on

chain.doFilter() and step into this method.

2. Set another break on ctx.get(BindingContext.IS_INITIALIZED) and step
into this method.

3. In the oracle.jbo.uicli.mom.JUMetaObjectManager class, set a break on
chain.getClientProjectExtension() and step into this method.

Debugging the Oracle ADF Model Layer

16-12 Oracle Application Development Framework Developer’s Guide

4. When processing pauses, look in slot0 for a file with the expected package name in
the Data window.

If the DataBindings.cpx file is not found, then check that the servlet context
parameter element correctly defines the fully qualified name for the .cpx file and
verify that the file exists in your project in the location specified by the qualified name
path. Example 16–2 shows the context parameter for the SRDemo application.

Example 16–2 Sample web.xml Servlet Context Parameter

<context-param>
 <param-name>CpxFileName</param-name>
 <param-value>oracle.srdemo.view.DataBindings</param-value>
</context-param>

16.5.1.2 Fixing Binding Container Creation Errors
After BindingContext is created by ADFBindingFilter, the method
PageLifeCycle.xXX() passes the request’s web page URL to the method
BindingContext.findBindingContainer() to find a page definition from the
<pageMap> element in the DataBindings.cpx file that matches the web page. This
becomes the BindingContainer. This BindingContainer object is the runtime
instance object with all bindings created on it. If page definition file is not found, an
internal servlet error will be thrown:

oracle.jbo.NoDefException: JBO-25002: Definition
oracle.<path>.pageDefs.<pagedefinitionName> of type Form Binding
Definition not found

Tip: The name specified in the param-value element of the context
parameter must be the fully qualified name of the .cpx file.

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 16-13

To debug creating the binding container for the web page:
1. In the oracle.adf.model.BindingContext class, set a break on

findBindingContainerIdByPath() and step into this method.

2. Look for the name of the databound web page associated with the binding
container in the Data window.

3. In the Smart Data window, look for a matching entry for the expected databound
web page file name.

Debugging the Oracle ADF Model Layer

16-14 Oracle Application Development Framework Developer’s Guide

4. In the Data window, there should be a matching page definition entry for the
databound web page.

If the <pagename>PageDef.xml file is not found, then check that the <pageMap>
element in the DataBindings.cpx file specifies the correct name and path to the
web page in your project. Example 16–3 shows a sample DataBindings.cpx file for
the SRDemo application. Notice that the <pageMap> element maps the JSF page to its
page definition file

Example 16–3 Sample Databinding.cpx Page Definitions

<?xml version="1.0" encoding="UTF-8" ?>
<Application xmlns="http://xmlns.oracle.com/adfm/application"
 version="10.1.3.34.12" id="DataBindings" SeparateXMLFiles="false"
 Package="oracle.srdemo.view" ClientType="Generic">
 <pageMap>
 <page path="/app/SRList.jspx" usageId="app_SRListPageDef"/>
 ...>
 </pageMap>
 <pageDefinitionUsages>
 <page id="SRListPageDef" path="oracle.srdemo.view.pageDefs.
 app_SRListPageDef"/>
 ...
 </pageDefinitionUsages>
 <dataControlUsages>
 <dc id="SRDemoFAQ" path="oracle.srdemo.faq.SRDemoFAQ"/>
 <dc id="SRAdminFacade" path="oracle.srdemo.model.SRAdminFacade"/>
 <dc id="SRPublicFacade" path="oracle.srdemo.model.SRPublicFacade"/>
 </dataControlUsages>
</Application>

CAUTION: If you change the name of a JSF page or a page definition
file, the .cpx file is not automatically refactored. You must manually
update the page mapping in the .cpx to reflect the new page name.

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 16-15

16.5.2 Correcting Failures to Display Data
After BindingContainer is created by BindingContext, the ADF lifecycle
initiates the Prepare Model and the Render Model phases before data can be displayed
in the web page. Several things must happen before the bindings are resolved and data
can appear in the web page:

■ Page parameters must be set.

■ Iterator and Method executables must be get refreshed by executing named service
methods and ADF iterator bindings.

16.5.2.1 Fixing Executable Errors
The ADF lifecycle enters the Prepare Model phase by calling
BindingContainer.refresh(PREPARE_MODEL). During the Prepare Model
phase, BindingContainer page parameters get prepared and then evaluated. Next,
BindingContainer executables get refreshed based on the order of entry in the
pagedef.xml file’s <executables> section and on the evaluation of their Refresh
and RefreshCondition properties (if present). When an executable leads to an
iterator binding refresh, the corresponding data control will be executed, and that
leads to execution of one or more collections in the service objects. If an iterator
binding fails to refresh, a JBO exception will be thrown and the data will not be
available to display.

To debug all executables for the binding container:
1. In the oracle.adf.model.binding.DCBindingContainer class, set a break

on internalRefreshControl(int, boolean) as the entry point to debug
the executables.

Tip: In the DCBindingContainer.internalRefreshControl() method,
you can determine whether the executable will be refreshed by checking the
outcome of the condition if (/*execute ||*/ execDef == null ||
execDef.isRefreshable(this, iterObj, refreshFlag)). If the
condition evaluates to true, then the executable is refreshed and processing will
continue to initSourceRSI().

2. In the oracle.adf.model.binding.DCIteratorBinding class, set a break
on callInitSourceRSI() to halt processing and step into the method.

Debugging the Oracle ADF Model Layer

16-16 Oracle Application Development Framework Developer’s Guide

3. When processing pauses, look for callInitSourceRSI() in the Stack window.
The result displayed in the Smart Data window should show the result that you
expect.

When your web page fails to display data from a method iterator binding, you can
drill down to the entry point in JUMethodIteratorDef.java and its nested class
JUMethodIteratorBinding to debug its execution.

To debug the method iterator executable for the binding container:
1. In the oracle.jbo.uicli.binding.JUMethodIteratorDef class, set a

break on initSourceRSI() as the entry point to debug a method iterator
binding executable.

2. Set a break on invokeMethodAction() to halt processing and step into the
method.

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 16-17

3. When initSourceRSI() returns a rowset iterator, pause processing and look for
mProvider in the Smart Data window. The mProvider variable is the datasource
fetched for this rowset iterator. If the method returned successfully, it should show
a collection bound to an iterator or a bean.

When your web page fails to display the detail data from an accessor binding, you can
drill down to the entry point in JUAccessorIteratorDef.java to debug its
execution.

To debug only the accessor binding executable for the binding container:
1. In the oracle.jbo.uicli.binding.JUAccessorIteratorDef class, set a

break in initSourceRSI() as the entry point to debug an accessor executable.

Debugging the Oracle ADF Model Layer

16-18 Oracle Application Development Framework Developer’s Guide

2. In the oracle.adf.model.generic.DCGenericDataControl class, set a
break in fetchProperty(RowImpl row, String propName) to halt
processing before looking into the Data window. Check if the method returns any
property that is a collection, iterator, or a bean.

3. When initSourceRSI() returns a rowset iterator, pause processing and look for
callInitSourceRSI() in the Smart Data window. The result should show the
collection that you expect.

Tip: If the debugger does not reach a breakpoint that you set on an
executable in the binding container, then the error is most likely a
result of the way the executable’s Refresh and RefreshCondition
attribute was defined. Examine the attribute definition. For details
about the Refresh and RefreshCondition attribute values, see
Section A.7.1, "PageDef.xml Syntax".

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 16-19

When the executable that produced the exception is identified, check that the
<executables> element in the pagedef.xml file specifies the correct attribute
settings.

Whether the executable is refreshed during the Prepare Model phase, depends on the
value of Refresh and RefreshCondition (if they exist). If Refresh is set to
prepareModel, or if no value is supplied (meaning it uses the default, ifneeded),
then the RefreshCondition attribute value is evaluated. If no RefreshCondition
value exists, the executable is invoked. If a value for RefreshCondition exists, then
that value is evaluated, and if the return value of the evaluation is true, then the
executable is invoked. If the value evaluates to false, the executable is not invoked.
The default value always enforces execution.

Example 16–4 shows a sample pagedef.xml file from the SRDemo application.
Notice that the <executables> element lists the executables in the order in which
they should be executed, with the accessor iterator positioned after its master binding
iterator.

Example 16–4 Sample Page Definition Master and Detail Executables

<executables>
 <methodIterator id="findAllServiceRequestIter"
 Binds="findAllServiceRequest.result"
 DataControl="SRPublicFacade" RangeSize="10"
 BeanClass="oracle.srdemo.model.ServiceRequest"/>
 <accessorIterator id="serviceHistoryCollectionIterator" RangeSize="10"
 Binds="serviceHistoryCollection"
 DataControl="SRPublicFacade"
 BeanClass="oracle.srdemo.model.ServiceHistory"
 MasterBinding="findAllServiceRequestIter"/>
</executables>

16.5.2.2 Fixing Render Value Errors Before Submit
During the prepareRender phase of the ADF lifecycle, the bindings determine the data
to display, and properties on the bindings determine the conditions in which to
display the data. When the web page is rendered the first time, each EL expression that
points to a binding gets resolved by the BindingContainer instance for that page.
Based on the expression appropriate values like format, isEnabled, and
isViewable, the data value for a binding is returned from BindingContainer. If
the binding is unable to return the data, a JBO exception is thrown.

Debugging the Oracle ADF Model Layer

16-20 Oracle Application Development Framework Developer’s Guide

To debug the binding resolution for the binding container:
1. In the oracle.jbo.uicli.binding.JUCtrlValueBinding class, set a break

in getInputValue() and step into the method.

2. If getInputValue() returns an error, pause processing and look for the binding
name in the Data window.

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 16-21

3. Continue stepping into getInputValue(), and look for a return value in the
Data window that you expect for the current row that this binding represents.

When the binding that produced the exception is identified, check that the
<bindings> element in the pagedef.xml file specifies the correct attribute settings.
Example 16–5 shows a sample pagedef.xml file for the SRDemo application.

Debugging the Oracle ADF Model Layer

16-22 Oracle Application Development Framework Developer’s Guide

Example 16–5 Sample Page Definition Value Bindings

<bindings>
 ...
 <attributeValues id="name" IterBinding="variables">
 <AttrNames>
 <Item Value="findUsersByName_name"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="email" IterBinding="findUsersByNameIter">
 <AttrNames>
 <Item Value="email"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="lastName" IterBinding="findUsersByNameIter">
 <AttrNames>
 <Item Value="lastName"/>
 </AttrNames>
 </attributeValues>
 <table id="UserexpertiseAreas" IterBinding="expertiseAreasIterator">
 <AttrNames>
 <Item Value="expertiseLevel"/>
 <Item Value="product"/>
 </AttrNames>
 </table>
</bindings>

In case of submit, again, the lifecycle first looks up and prepares the
BindingContainer instance. If the lifecycle finds a state token that was persisted for
this BindingContainer, it asks the BindingContainer to process this state token.
Processing the state token restores the variable values that were saved out in previous
the render. If you need to debug processing the state token, break in
DCIteratorBinding.processFormToken() and
DCIteratorBinding.buildFormToken().

After this, all posts are applied to the bindings through setInputValue() on the
value bindings.

16.5.3 Correcting Failures to Invoke Actions and Methods
When the executables are refreshed, actions and custom methods may be invoked on
the page. At this stage, the corresponding action or method binding is refreshed. If an
executable or its target binding is not executed, the action will be ignored.

The entry point for action and method execution is the
DCDataControl.invokeOperation() method. Although
JUCtrlActionBinding.invoke() is another potential entry point, method iterator
bindings also use it to invoke methods implicitly. Instead, debugging on
DCDataControl.invokeOperation() allows you to work with the same method
that the data control uses to invoke the method. This is preferred because some
adapter data controls can interpret the method name in a custom way rather than
leave it to ADF to call the method.

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 16-23

To debug the action or method invocation for the binding container:
1. In the oracle.adf.model.binding.DCDataControl class, set a break on

invokeOperation() as the entry point to debug an action or method
invocation.

2. When processing pauses, step though the method to verify instanceName in the
Data window shows the method being invoked is the intended method on the
desired object.

3. Verify args in the Data window shows the parameter value for each parameter
being passed into your method is as expected. The parameter value below shows
null.

Debugging the Oracle ADF Model Layer

16-24 Oracle Application Development Framework Developer’s Guide

To debug a custom method invocation for the binding container:
1. In your class, set a breakpoint on the desired custom method.

2. In oracle.adf.model.generic.DCGenericDataControl class, set a break
on invokeMethod() to halt processing before looking into the Data window.

3. When processing pauses, step though the method to verify instanceName in the
Data window shows the method being invoked is the intended method on the
desired object.

4. Verify args in the Data window shows the parameter value for each parameter
being passed into your method is as expected. The parameter value below shows
null.

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 16-25

When the ignored action or custom method is identified, check that the
<invokeAction> definitions in <executables> element and their corresponding
<action> and <methodAction> definitions in the <bindings> element of the
pagedef.xml file specifies the correct attribute settings.

Whether the <invokeAction> executable is refreshed during the Prepare Model
phase, depends on the value of Refresh and RefreshCondition (if they exist). If
Refresh is set to prepareModel, or if no value is supplied (meaning it uses the
default, ifneeded), then the RefreshCondition attribute value is evaluated. If no
RefreshCondition value exists, the executable is invoked. If a value for
RefreshCondition exists, then that value is evaluated, and if the return value of the
evaluation is true, then the executable is invoked. If the value evaluates to false, the
executable is not invoked. The default value always enforces execution.

Example 16–6 shows a sample of the action and custom method binding definition in
the pagedef.xml file for the SRDemo application.

Example 16–6 Sample Page Definition Executables and Action Bindings

<executables>
 ...
 <invokeAction Binds="findServiceRequests" id="tableRefresh"
 Refresh="ifNeeded"
 RefreshCondition="${(userState.refresh) and
 (!adfFacesContext.postback)}"/>
 ...
</executables>
<bindings>
 <methodAction id="findServiceRequests"
 InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade"
 MethodName="findServiceRequests" RequiresUpdateModel="true"
 Action="999"
 ReturnName="SRPublicFacade.methodResults.SRPublicFacade_
 dataProvider_findServiceRequests_result">
 <NamedData NDName="userIdParam" NDValue="#{userInfo.userId}"
 NDType="java.lang.Integer"/>
 <NamedData NDName="statusParam" NDValue="#{userState.listMode}"
 NDType="java.lang.String"/>
 </methodAction>
 ...
</bindings>

16.5.4 Correcting Page Validation Failures
The method validate() on the BindingContainer gets called, which calls
validateInputValue() on each of the bindings referred to in this
BindingContainer. If the validation set on an input field fails to behave as
expected, then no validation error message will be displayed in the web page.

Tip: If the debugger does not reach a breakpoint that you set on an
action in the binding container, then the error is most likely a result of
the way the executable’s Refresh and RefreshCondition attribute
was defined. Examine the attribute definition. For details about the
Refresh and RefreshCondition attribute values, see
Section A.7.1, "PageDef.xml Syntax".

Debugging the Oracle ADF Model Layer

16-26 Oracle Application Development Framework Developer’s Guide

To debug validation-checking failures for the binding container:
1. In oracle.jbo.uicli.binding.JUCtrlValueBinding class, set a break in

validateInputValue(Object value) to halt processing before looking into
the Data window.

2. When processing pauses, look for slot1 in the Data window and confirm that the
validation is performed. The value not shown below indicates validation was not
performed.

When the validation that failed is identified, check that the validation rule for the
value binding is correctly defined and that the input field component’s
<af:validator> tag is bound to the same attribute defined by the value binding.
Example 16–7 shows a sample validation rule in the pagedef.xml file for the
SRDemo application.

Notice that the ADF Model validation rule should appear on the attribute binding. For
details about working with validation rules, see Section 12.3, "Adding Validation".

Tip: To process ADF Model layer validation, the Faces validator tag must be
bound to the associated attribute’s validator property. For example:

<af:validator binding="#{bindings.<someattribute>.validator}"/>

where <someattribute> would be createProducts_description to
work with the sample validation rule shown in Example 16–7.

Tracing EL Expressions

Testing and Debugging Web Applications 16-27

Example 16–7 Reference to Validation Rule in Page Definition File

<attributeValues id="description" IterBinding="variables" ApplyValidation="true">
 <LengthValidationBean xmlns="http://xmlns.oracle.com/adfm/validation"
 OnAttribute="createProducts_description"
 DataType="CHARACTER" CompareType="LESSTHAN"
 ResId="description_Rule_0" Inverse="false"
 CompareLength="20"/>
 <AttrNames>
 <Item Value="createProducts_description"/>
 </AttrNames>
</attributeValues>

16.6 Tracing EL Expressions
EL is not well supported with exceptions to inform you of specific failures. However,
Example 16–8 shows one common exception you are likely to see when the resolver is
unable to completely evaluate the expression.

Example 16–8 Expression Evaluation PropertyNotFound Exception

javax.faces.el.PropertyNotFoundException:
 Error setting property 'resultsTable' in bean of type null
at com.sun.faces.el.PropertyResolverImpl.setValue
 (PropertyResolverImpl.java:153)

You can check your web page’s source code for problems in the expression, such as
mistyped property names. When no obvious error is found, you will want to configure
the logging.properties file in the <JDeveloper_Install>/jre/lib directory
to display messages from the EL resolver.

To trace EL expression variables:
1. Open <JDeveloper_Install>/jre/lib/logging.properties in your text

editor.

2. Set java.util.logging.ConsoleHandler.level=FINE.

3. Add the line:

com.sun.faces.level=FINE

4. Run your application and view the variable resolution in the JDeveloper Log
window.

For example, the SRDemo application defines a backing bean backing_
SRSearch.java. Example 16–9 shows the SRSearch.jspx page, which relies on the
ADF table binding resultsTable to create a databound table component.

Tracing EL Expressions

16-28 Oracle Application Development Framework Developer’s Guide

Example 16–9 Reference to Backing Bean in Table Binding

<af:table rows="#{bindings.findAllServiceRequests1.rangeSize}"
 ...
 binding="#{backing_SRSearch.resultsTable}"
 id="resultsTable"
 width="100%"
 rendered="#{(bindings.hideResultsParam!='true') and
 (bindings.findAllServiceRequests1.estimatedRowCount >0)}">

Example 16–10 shows the messages that appear in the JDeveloper Log window when
you run the application with EL trace messages enabled. In this case, the resolver is
not able to resolve the value binding resultsTable from the backing bean and the
PropertyNotFound exception will appear in the browser.

Example 16–10 JDeveloper Log with EL Trace Enabled

02-Dec-2005 09:41:28 com.sun.faces.el.ValueBindingImpl getValue
FINE: getValue(ref=backing_SRSearch.resultsTable)
02-Dec-2005 09:41:28 com.sun.faces.application.ApplicationAssociate
 createAndMaybeStoreManagedBeans
FINE: Couldn't find a factory for backing_SRSearch
02-Dec-2005 09:41:28 com.sun.faces.el.VariableResolverImpl resolveVariable
FINE: resolveVariable: Resolved variable:null
02-Dec-2005 09:41:28 com.sun.faces.el.ValueBindingImpl getValue
FINE: getValue Result:null
02-Dec-2005 09:41:28 com.sun.faces.application.ApplicationAssociate
 createAndMaybeStoreManagedBeans
FINE: Couldn't find a factory for backing_SRSearch
02-Dec-2005 09:41:28 com.sun.faces.el.VariableResolverImpl resolveVariable
FINE: resolveVariable: Resolved variable:null
02-Dec-2005 09:41:28 com.sun.faces.el.ValueBindingImpl setValue
FINE: setValue Evaluation threw exception:
javax.faces.el.PropertyNotFoundException

The message FINE: Couldn't find a factory for backing_SRSearch
indicates that the backing bean was never created. To fix the error, check the
faces-config.xml file and make sure that the backing bean is listed. Example 16–11
shows the correct listing for the file.

Example 16–11 faces-config.xml Managed Bean Description

 <!-- Page backing beans -->
 <managed-bean>
 <managed-bean-name>backing_SRSearch</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.backing.SRSearch</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <!--oracle-jdev-comment:managed-bean-jsp-link:1SRSearch.jspx-->
 </managed-bean>

In summary, when you encounter a PropertyNotFound exception and the property
is one that appears in an EL expression, you may check the syntax of your web page
for simple errors. Then, rerun the application with the JSF trace messages enabled and
examine the variable resolution messages for clues.

Part III
Implementing Projects With Oracle ADF

Part III contains the following chapters:

■ Chapter 17, "Working Productively in Teams"

■ Chapter 18, "Adding Security to an Application"

■ Chapter 19, "Advanced TopLink Topics"

■ Chapter 20, "Creating Data Control Adapters"

■ Chapter 21, "Working with Web Services"

■ Chapter 22, "Deploying ADF Applications"

Working Productively in Teams 17-1

17
Working Productively in Teams

The source control system used for the SRDemo application was CVS. This chapter
contains advice for using CVS with ADF projects, and general advice for using CVS
with JDeveloper.

This chapter includes the following sections:

■ Section 17.1, "Using CVS with an ADF Project"

■ Section 17.2, "General Advice for Using CVS with JDeveloper"

17.1 Using CVS with an ADF Project
This section contains advice specifically for using CVS with an ADF project, for
example the SRDemo application.

17.1.1 Choice of Internal or External CVS Client
A CVS client lets you import your work into CVS or check it out from CVS control.
The CVS client can be a standalone program, or it can be integrated into an IDE, as it is
with JDeveloper. The SRDemo application was created using the JDeveloper internal
CVS client.

17.1.2 Preference Settings
You set up JDeveloper to use CVS by ensuring that Support for CVS n.n is checked on
the Extensions preferences page (Tools > Preferences |Extensions | Versioning
Support n.n | Configure) and that CVS is selected from the dropdown list on the
Versioning preferences page (Tools > Preferences | Versioning).

Preferences for using CVS are set by selecting Tools > Preferences |Extensions |
Versioning | CVS and its subpages.

The SRDemo application was created using the default preferences for CVS, although
you may want to consider setting the timeout to ten minutes (Operation Timeout on
the General subpage), especially if you have a slow connection to a remote server.

17.1.3 File Dependencies
JDeveloper will work with the CVS version control system to keep files within a
multi-file component synchronized, for example, by automatically checking out all the
files that are dependent on a file that you expressly check out. However, when
working with Oracle ADF-base JSP pages, you should be conscious of the
dependencies between the various, related artifacts.

Using CVS with an ADF Project

17-2 Oracle Application Development Framework Developer’s Guide

For example, when you commit a JSP page like SomeName.jsp, if changes you made
in JDeveloper have caused the associated SomeNamePageDef.xml file to be modified,
it will also appear in the Outgoing page of the Pending Changes window. On the
other hand, if SomeName.jsp is a new JSP page on which you’ve dropped some
databound controls, its associated SomeNamePageDef.xml file will also appear in the
Candidates page of the Pending Changes window, and the DataBindings.cpx file
will appear as a modified file in the Outgoing page. By understanding these
relationships, you can better decide which files need to be committed together as part
of the same CVS transaction to ensure that other developers who update their project
from the source control server receive a consistent set of related files.

17.1.4 Use Consistent Connection Definition Names
Most JDeveloper and ADF objects will be created only once per project and will by
definition have the same name regardless of who sees or uses them. However, some
objects like database connections could theoretically be left to the creativity of each
team member in their own JDeveloper environment, even though they map to the
same connection details. Avoid such naming differences for otherwise common
connection definitions when working with ADF under version control since the
discrepancy will cause unnecessary differences in your data-sources.xml files.
Team members should agree up front on a common, case-sensitive connection name
and that should be used by every member of the team.

17.1.5 General Advice for Committing ADF Work to CVS
In general, you should commit your work after it has been tested and are satisfied that
it is working. The longer you work on a set of components without testing the changes
and checking them in, the greater the chances that other developers will have modified
them too, resulting in merge conflicts and the need to resolve them.

17.1.5.1 Other Version Control Tips and Techniques
Make sure to have an active CVS connection open in the CVS navigator when you are
performing any kind of renaming or refactoring operations. If you do so, these will be
automatically handled as appropriate file deletes and adds in the source control
system. If you are not in the context of a CVS connection when you make these kinds
of changes, then the next time you connect to source control, your renamed files may
inadvertently show up as new files.

When renaming files (for example, through refactoring), you should commit the files
as soon as practicable after you have renamed them. This is because renaming a file
through JDeveloper involves a CVS delete operation and a CVS add operation, and an
added file needs to be committed to make it available to other developers. However,
you should still test the changes before committing them. A typical scenario would be
to refactor the files, then rerun the unit tests, then commit the files.

When developing new features, you may have to depart from the normal rule of unit
testing files before committing them, if other members of the team need to work on the
files in order to complete the unit of work that is to be tested. In this case, the files will
need to be committed before testing so that other members of the team can obtain
them from the CVS repository.

When committing work to CVS, always add comments describing the changes you
have made. You add comments in the Comments box of the Commit to CVS dialog
(Versioning > Commit).

General Advice for Using CVS with JDeveloper

Working Productively in Teams 17-3

17.1.6 Check Out or Update from the CVS Repository
It is preferable to perform, at regular intervals, a clean checkout from the CVS
repository to a fresh directory (using Versioning > Check Out Module). Simply
updating your working copy from the repository (using Versioning > Update) can
hide problems such as incomplete commits.

You could use Apache Ant, which is integrated into JDeveloper, to create a script that
will automatically check out the full source and build it. If the build completes
successfully, this will be confirmation that everyone has committed all the changes
required to make the system perform correctly. Otherwise, the build will break and
problems will be signalled. To find out how to use Apache Ant to create build scripts,
search for "About Ant Integration in JDeveloper" in the JDeveloper online help.

17.1.7 Special Consideration when Manually Adding Navigation Rules to the
faces-config.xml File

If you manually add navigation rules to the faces-config.xml file (using the XML
view or the Overview screen), you must switch to the visual diagram view of
faces-config before checking in the faces-config.xml file. Doing so will cause
the diagram file (faces-config.oxd_faces) to register the metadata change and
force it to reflect the rule change. It also ensures that the faces-config.oxd_faces
file is marked for commit and that the two files will not get out of synchronization.

If you don't do this, the diagram file will no longer be in step with the XML metadata
and will give errors. If this happens, the solution is to manually delete the diagram file
and let JDeveloper re-create it when it next attempts to open the file. That file is
\model\public_html\WEB-INF\faces-config.oxd_faces under the
userinterface/viewcontroller project.

17.2 General Advice for Using CVS with JDeveloper
This section contains advice for using CVS with JDeveloper generally.

17.2.1 Team-Level Activities
Divide the development work between several projects.

Consider using a code formatter, possibly as part of an Apache Ant build script.
JDeveloper’s code formatter is available from the Code Style page of the Preferences
dialog (Tools > Preferences | Code Style). You can use this to create and export a
standard format that all team members can import, thus allowing them to share the
same built-in code formatting rules.

Build the code before checking it into CVS and before doing a CVS update.

Consider running a continuous integration tool. The tool should rebuild the whole
project whenever someone commits changes to the CVS repository and should notify
developers when code they have committed breaks the build by requesting that the
code be fixed. Running a continuous integration tool will improve confidence in the
quality of the code in the CVS repository, encourage developers to update more often,
and lead to smaller updates and fewer conflicts. An example of a continuous
integration tool is Apache Gump (http://gump.apache.org/).

Before importing modules, configure the CVS repository to import binary file types as
binary (rather than as text), to prevent them from being corrupted.

General Advice for Using CVS with JDeveloper

17-4 Oracle Application Development Framework Developer’s Guide

17.2.2 Developer-Level Activities
This section contains advice for developers working with files under CVS control.

17.2.2.1 Typical Workflow When Checking Your Work Into CVS
Always perform an update (Versioning > Update) or module checkout (Versioning >
Check Out Module) before you start editing files to make sure that you are working
with the most recent versions.

While you can commit your work one file at a time using the Versioning > Commit
menu option, Oracle recommends using the Pending Changes window. To show this
window, choose Versioning > Pending Changes from JDeveloper’s main menu. When
working in a team, before committing the files you’ve been working on, you will
typically use the Pending Changes window in the following sequence:

■ Use the Outgoing Page to add new files to source control.

First, use the Outgoing page to see all of the new files you’ve created in the
current workspace. To be sure the list is as up to date as possible, click the Refresh
icon in the page toolbar. Decide which of the new files should be added to source
control, and select all of these. Finally, use the Add option on the context menu to
add the selected files to source control. The longer you work on a set of
components without testing the changes and checking them in, the greater the
chances that other developers will have modified them too thereby resulting in
merge conflicts and the need to resolve them.

■ Use the Incoming Page to update workspace files from other team members.

Second, use the Incoming panel to review whether any changes made by other
developers on your team might affect the work you’re about to check in. If other
team members may have created files in new directories that you do not yet have
in your copy of the project, use the Update Project Folders option on the context
menu of the workspace or on an individual project to ensure your local working
area reflects those new directories. Again, you should click the Refresh button to
ensure that you’re seeing the most up-to-date list of incoming files. If team
members have changed files unrelated to your work, you can choose to update
your copies of those files if useful to you for testing. If they have changed files that
are the same as ones you have modified, then JDeveloper will show the incoming
status as conflicts on merge. You need to update the files and address any merge
conflicts before the CVS server will allow you to check in.

■ Resolve any merge conflicts if necessary.

After performing an update that encountered merge conflicts, JDeveloper displays
an exclamation point next to each conflicting file in the Application Navigator.
Also, in the Pending Changes window’s Outgoing page the outgoing status will
be shown as conflicts. You can resolve the conflicts using JDeveloper’s built-in
merge tool. Right-click the file and choose Resolve Conflicts from the context
menu. Three versions of the file will be shown: on the left will be the version in the
CVS repository, on the right will be the current local version, and in the middle
will be an editable version that represents the result of the merge. Symbols in the
margin between the three panels indicate the suggested action for resolving each
conflict.

Tip: Do not commit the WEB-INF\temp directory because this is a
directory containing cached images that ADF Faces generates once on
demand at runtime.

General Advice for Using CVS with JDeveloper

Working Productively in Teams 17-5

By selecting an appropriate icon in the margin and using the context menu, you
can insert changes from the file on the left side or the right side after the adjacent
difference.

Tooltips explain the suggested action of each conflict. You can accept the suggested
actions or edit the text directly. To complete the merge, you must save the changes
that have been made, using the Save button in the merge window’s toolbar. If this
is not enabled, you may need to use the Mark as Resolved or Mark All As
Resolved options in the context menu. Once you’ve saved the merged version of
the file, the merge tool window becomes blank and JDeveloper removes the
conflict symbol from the navigator icon and you will be able to commit the
merged file to the CVS repository. You can close the merge tool window and
proceed to the next conflict, if any.

■ Use the Outgoing Page to commit your changes.

Finally, use the Outgoing page of the Pending Changes window to commit your
changes to source control. There may be some files that are modified but which
you don’t want to commit. For example, each time you run your application on
the embedded OC4J server, JDeveloper may refresh the contents of your project’s
data-sources.xml and/or jazn-data.xml file. You may not want to keep
checking in modified versions of these each time. In addition, there may be files
you modified, but whose changes you don’t wish to keep. As you can do at any
time, you can choose Versioning > Undo Changes from the context menu for such
a file in the Application Navigator. This will revert the file to the latest checked-in
version in source control. Finally, select the files you want to check in, and choose
Commit on the context menu.

17.2.2.2 Handling CVS Repository Configuration Files
To prevent accidental corruption of the CVS repository, do not change repository
configuration files manually. If you need to change a CVS configuration file, check out
CVSROOT as a module, modify the specific configuration file locally, and then commit
it to the repository.

Tip: Be aware that the Commit All button on the toolbar of the
Pending Changes window will commit all files in the Outgoing list.
Use the technique described above to commit selected files.

General Advice for Using CVS with JDeveloper

17-6 Oracle Application Development Framework Developer’s Guide

Adding Security to an Application 18-1

18
Adding Security to an Application

This chapter describes how to use Oracle ADF Security in your web application to
handle authentication and authorization on the Oracle Application Server. It also
describes how to bypass Oracle ADF Security when you want to work strictly with
container-managed security.

This chapter includes the following sections:

■ Section 18.1, "Introduction to Security in Oracle ADF Web Applications"

■ Section 18.2, "Specifying the JAZN Resource Provider"

■ Section 18.3, "Configuring Authentication Within the web.xml File"

■ Section 18.4, "Creating a Login Page"

■ Section 18.5, "Creating a Logout Page"

■ Section 18.6, "Implementing Authorization Using Oracle ADF Security"

■ Section 18.7, "Implementing Authorization Programmatically"

18.1 Introduction to Security in Oracle ADF Web Applications
Web application security can be provided by Oracle ADF Security. The Oracle ADF
Security implementation is built upon a pluggable architecture that implements the
Oracle Application Server Java Authentication and Authorization (JAAS) Provider for
authentication and authorization:

■ Authentication provides a way to determine who the current user is. Oracle ADF
Security can authenticate users against data within various resource providers.

■ Authorization provides a way to restrict access to the application or parts of the
application (called resources) based on the user attempting to access the resource.
Oracle ADF Security allows you to set authorization on ADF Model layer objects.

First, you must configure the application to use a resource provider. The user data
against which the login and passwords are authenticated is stored within a resource
provider, such as a database or LDAP director. By editing the jazn.xml file, you
choose an identity management provider for the OracleAS JAAS Provider. Read the
following section to understand editing the jazn.xml file:

■ Section 18.2, "Specifying the JAZN Resource Provider"

Then, you can configure the application's container to use Oracle ADF Security. This
will allow you to use Oracle ADF Security for authentication and authorization.
Alternatively, you can bypass Oracle ADF Security and use container-managed
security.

Specifying the JAZN Resource Provider

18-2 Oracle Application Development Framework Developer’s Guide

Read the following sections to understand how to configure authentication and create
login and logout pages:

■ Section 18.3, "Configuring Authentication Within the web.xml File"

■ Section 18.4, "Creating a Login Page"

■ Section 18.5, "Creating a Logout Page"

When you want to assign resources to particular users, you can work with Oracle ADF
Model layer to enable authorization. If you choose not to use ADF authorization, you
can still work with ADF authentication. Alternatively, you can integrate standard J2EE
authorization with the Oracle ADF Model layer to restrict resources. The SRDemo
application uses the latter approach. Read the following section to understand both
approaches to implementing authorization:

■ Section 18.6, "Implementing Authorization Using Oracle ADF Security"

■ Section 18.7, "Implementing Authorization Programmatically"

18.2 Specifying the JAZN Resource Provider
If you wish to use the JAZN realm from either the lightweight XML resource provider
(system-jazn-data.xml) or through the Oracle Internet Directory, you need to edit
the jazn.xml file to select one of those providers.

Note: If you are working with another JAAS-compliant security provider, see your
security provider's documentation.

18.2.1 How To Specify the Resource Provider
To use the JAZN realm from either the lightweight XML resource provider
(system-jazn-data.xml) or through the Oracle Internet Directory (LDAP
provider), you need to specify which provider you want your application to work
with.

To specify the resource provider, you edit the provider environment descriptor in
jazn.xml, located in the following directories.

■ For JDeveloper’s embedded OC4J:

<JDEV_
HOME>/jdev/system/oracle.j2ee.10.1.3/embedded-oc4j/config
directory

■ For JDeveloper’s standalone OC4J:

<JDEV_HOME>/j2ee/home/config directory

■ For Oracle Application Server:

<OC4J_HOME>/j2ee/<instance_name>/config directory

Note: When you want to understand the security features of OC4J,
see the Oracle Containers for J2EE Security Guide in the Oracle
Application Server documentation library. For example, the "Standard
Security Concepts" chapter provides a useful overview of the JAAS
security model.

Specifying the JAZN Resource Provider

Adding Security to an Application 18-3

To work with the XML-based provider, comment out the environment descriptor
for LDAP:
<jazn xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/jazn-10_0.xsd"
 schema-major-version="10"
 schema-minor-version="0"
 provider="XML"
 location="./system-jazn-data.xml"
 default-realm="jazn.com"
/>

<!--
<jazn
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/jazn-10_0.xsd"
 schema-major-version="10"
 schema-minor-version="0"
 provider="LDAP"
 location="ldap://myoid.us.oracle.com:389"
/>
-->

To work with the LDAP provider, comment out the environment descriptor for
XML:
<!--
<jazn
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/jazn-10_0.xsd"
 schema-major-version="10"
 schema-minor-version="0"
 provider="XML"
 location="./system-jazn-data.xml"
 default-realm="jazn.com"
/>
-->

<jazn
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/jazn-10_0.xsd"
 schema-major-version="10"
 schema-minor-version="0"
 provider="LDAP"
 location="ldap://myoid.us.oracle.com:389"
/>

18.2.2 What You May Need to Know About Oracle ADF Security and Resource
Providers

Because Oracle ADF Security uses OracleAS JAAS, it relies on the LoginContext to
provide the basic methods for authentication. LoginContext uses Login Modules,
which are pluggable bits of code that handle the actual authentication. Oracle ADF
Security also uses OracleAS JAAS Provider RealmLoginModule login module to
perform standard user name/password type of authentication.

Configuring Authentication Within the web.xml File

18-4 Oracle Application Development Framework Developer’s Guide

Oracle ADF Security can authenticate users against a given resource provider. The
resource provider, such as a database or LDAP directory, contains the data against
which the login and passwords are authenticated.

Specifically, Oracle ADF Security supports the use of Oracle Single Sign-On and Oracle
Internet Directory (OID) to provide authentication. You should use OID (the
LDAP-based provider) to provide identity management in production environments
where scalability and manageability are important. In this case, you will need to
administer the users through the LDAP administration tools provided with Oracle
Containers for J2EE.

For more information on using OID, see the Oracle Identify Management Guide to
Delegated Administration from the Oracle Application Server documentation library.

In addition, JDeveloper provides an XML-based resource provider
(system-jazn-data.xml) that can be used for small scale applications or for
development and testing purposes. This provider contains user, role, grant, and login
module configurations.

18.3 Configuring Authentication Within the web.xml File
In many web-based applications, there may be a link to "protected" areas of the site
that require knowing who the originator of the request is; in other words, access to the
linked area requires an authenticated user. This can be accomplished dynamically with
the adfAuthentication servlet or without ADF, using only J2EE container-managed
authentication provided by OC4J. Either way, by configuring the container with
security constraints, you prevent access to the server without an authenticated session.

Once the user is authenticated, the application can determine whether that user has
privileges to access the resource as defined by any authorization constraint. You
configure this constraint and set up users or roles for you application to recognize in
the web.xml file.

For example, in the SRDemo application, three roles determine who gets access to
perform what type of functions. Each user must be classified with one of the three
roles: user, technician or manager. All of these criterion are implemented using
container managed Form-based authentication supported by Oracle Application
Server.

18.3.1 How to Enable J2EE Container-Managed Authentication
If your application contains pages that require a user to be authenticated against a data
store in order to be accessed, you must declare the following in the web.xml
configuration file:

■ <security-role> defines valid roles in the security context.

■ <login-config> defines the protocol for authentication, for example
form-based or HTTPS.

■ <security-constraint> defines the resources specified by URL patterns and
HTTP methods that can be accessed only by authorized users or roles.

Note: The SRDemo application currently does not demonstrate
Oracle ADF Security at the ADF Model layer. To understand how the
SRDemo application handles authentication, see Section 18.3.1, "How
to Enable J2EE Container-Managed Authentication".

Configuring Authentication Within the web.xml File

Adding Security to an Application 18-5

■ <servlet> defines the servlet that provides authentication.

■ <servlet-mapping> maps the servlet to a URL pattern. The

■ <filter> defines the filter used to transform the content of the authentication
request.

■ <filter-mapping> maps the filter to the file extensions used by the application.
For details about the ADF binding filter, see Configuring the ADF Binding Filter.

The security roles that you define in the web.xml file identify the logical names of
groups of users that your application recognizes. You will create security constraints in
order to restrict access to particular web pages based on whether the authenticated
user belongs to the authorized role or not.

To specify security roles for J2EE container-managed security:
1. In the Navigator, expand your JSP project, right-click the web.xml file and choose

Properties. The web.xml file resides in the WEB-INF folder of your project.

2. To add the security role definition, select Security Roles on the left panel of the
Web Application Deployment Descriptor editor and click Add.

The roles you enter here must match roles from your data store. For example, if
you are using the XML-based provider (as defined with
system-jazn-data.xml), you would enter the value of <name> for any of the
defined <roles> that need to be authenticated. Additionally, if you configure
OC4J to use security role mapping, the role names must also match the roles
defined in the <security-role-mapping> element of the orion-web.xml
configuration file.

3. Save all changes and proceed to create the login configuration, as described below.

Figure 18–1 shows the web.xml editor with the Security Roles definition displayed. In
the SRDemo application, three security roles are defined.

Note: When you insert an ADF Faces component into a JSF page for
the first time, JDeveloper updates the web.xml file to define the ADF
Faces servlet filter and ADF Faces resources servlet. For more details
about the these servlet settings, see What Happens When You First
Insert an ADF Faces Component.

Configuring Authentication Within the web.xml File

18-6 Oracle Application Development Framework Developer’s Guide

Figure 18–1 Web Application Deployment Descriptor Dialog, Security Roles Panel

Before configuring the login configuration, you should already have created a login
web page and the optional login error page. For details, see Section 18.4, "Creating a
Login Page".

To create a login configuration for J2EE container-managed security:
1. In the Navigator, expand your JSP project, right-click the web.xml file and choose

Properties. The web.xml file resides in the WEB-INF folder of your project.

2. To create a login configuration, select Login Configuration on the left panel of the
editor. For example, to use form-based authentication, you would select
Form-Based Authentication, and enter the name of the file used to render the
login and login error page, for example login.jspx and loginerror.jspx.
For further details, see Section 18.4.1, "Wiring the Login and Error Pages".

3. Save all changes and close the Web Application Deployment Descriptor editor.

Figure 18–2 shows the web.xml editor with the Login Configuration definition
displayed.

Configuring Authentication Within the web.xml File

Adding Security to an Application 18-7

Figure 18–2 Web Application Deployment Descriptor Dialog, Login Configuration Panel

To create security constraints for J2EE container-managed security:
1. In the Navigator, expand your JSP project, right-click the web.xml file and choose

Properties. The web.xml file resides in the WEB-INF folder of your project.

2. To add the security constraint definition, select Security Constraints on the left
panel of the editor, and at the bottom of the panel click New.

3. To add a new Web Resource, on the Constraints page, click Add.

Tip: Because the security constraint is specified as a URL, the web resource name
you supply can be based on your application's database connection name. For
example, if your database connection is MyConnection, then you might type
jdbc/MyConnection for the web resource name.

4. To specify the URL pattern of your client requests, click the web resource name
you just specified, select URL Patterns, and click Add. Type a forward slash (/) to
reference a JSP login page located at the top level relative to the web application
folder.

5. To specify authorized security roles, select the Authorization tab. Select the
security roles that require authentication. The roles available are the roles you
configured in step 2.

6. To specify transport guarantee, select the User Data tab. Select the type of
guarantee to use.

7. Save all changes and close the Web Application Deployment Descriptor editor.

Figure 18–3 shows the web.xml editor with a Security Constraint definition
displayed.

Configuring Authentication Within the web.xml File

18-8 Oracle Application Development Framework Developer’s Guide

Figure 18–3 Web Application Deployment Descriptor Dialog, Security Constraints Panel

18.3.2 What Happens When You Use Security Constraints without Oracle ADF Security
Example 18–1 shows sample definitions similar to the ones that your web.xml file
should contain when you have finished configuring J2EE container-managed security.

Example 18–1 J2EE Security Enabled in the SRDemo Application web.xml File

<security-constraint>
 <web-resource-collection>
 <web-resource-name>ALL Manager</web-resource-name>
 <url-pattern>faces/app/management/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>manager</role-name>
 </auth-constraint>
</security-constraint>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>AllStaff</web-resource-name>
 <url-pattern>faces/app/staff/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>technician</role-name>
 <role-name>manager</role-name>
 </auth-constraint>
</security-constraint>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>SRDemo Sample</web-resource-name>
 <url-pattern>faces/app/*</url-pattern>
 </web-resource-collection>

Configuring Authentication Within the web.xml File

Adding Security to an Application 18-9

 <auth-constraint>
 <role-name>user</role-name>
 <role-name>technician</role-name>
 <role-name>manager</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>infrastructure/SRLogin.jspx</form-login-page>
 <form-error-page>infrastructure/SRLogin.jspx</form-error-page>
 </form-login-config>
 </login-config>
 <security-role>
 <description>Customers of ACME corp</description>
 <role-name>user</role-name>
 </security-role>
 <security-role>
 <description>Employees of ACME corp</description>
 <role-name>technician</role-name>
 </security-role>
 <security-role>
 <description>The boss</description>
 <role-name>manager</role-name>
 </security-role>

When the user clicks a link to a protected page, if they are not authenticated (that is,
the authenticated user principal is not currently in SecurityContext), the OC4J security
servlet is called and the web container invokes the login page defined by the
deployment descriptor <form-login-config> element.

Once a user submits their user name and password, that data is compared against the
data in a resource provider where user information is stored, and if a match is found,
the originator of the request (the user) is authenticated. The user name is then stored in
SecurityContext, where it can be accessed to obtain other security related information
(such as the group the user belongs to) in order to determine authorization rights.

The web.xml deployment descriptor supports declarative security through
<security-constraints> that specify the resources available to the authenticated
users of the application. Whether or not the user is permitted to access a web page
depends on its membership in a role identified in the <auth_constraint> element.
The application calls the servlet method isUserInRole() to determine if a particular
user is in a given security role. The <security-role> element defines a logical
name of the roles based on the same names defined by the JAZN realm in the
system-jazn-data.xml file.

18.3.3 How to Enable Oracle ADF Authentication
For web-based applications, you can configure a security constraint against the
adfAuthentication servlet within the web.xml file. This constraint prevents access to
the servlet without an authenticated session. As long as the link to the protected area
contains the URL pattern defined in the constraint, the web container will invoke the
login page if the user is not authenticated.

Configuring Authentication Within the web.xml File

18-10 Oracle Application Development Framework Developer’s Guide

To configure web.xml for Oracle ADF Security:
1. In the Navigator, expand your JSP project, right-click the web.xml file and choose

Properties. The web.xml file resides in the WEB-INF folder of your project.

2. Define Security Roles, Login Configuration, and Security Constraints as you
normally would. (See above procedures.)

3. To create the <servlet> element for the ADF authentication servlet, select
Servlets/JSP on the left panel of the editor and click New. Enter the following:

Servlet Name: adfAuthentication

Servlet Class:
oracle.adf.share.security.authentication.AuthenticationServle
t

To add an initialization parameter that contains the URL for the resulting page if
authentication succeeds, select Initialization Parameters and click Add. If you do
not enter a URL, the user will return to the current page.

4. To create a servlet mapping, select Servlet Mapping on the left panel of the editor,
and click Add. Enter the following:

URL Pattern: /adfAuthentication/*

Servlet Name: adfAuthentication

5. Save all changes and close the Web Application Deployment Descriptor editor.

Figure 18–4 shows the web.xml editor with the Servlet Mapping definition displayed
for the adfAuthentication servlet.

Note: The adfAuthentication servlet is optional and allows dynamic
authentication, that is, if the user has not yet logged in and the page
being accessed needs authorization, then the user will be prompted to
log in. The servlet take an optional parameter success_url. If
success_url is specified, then after successfully logging in, the user
is directed to the requested page. If success_url is not specified,
then after successful login, the servlet directs the user back to the page
from which the login was initiated.

Configuring Authentication Within the web.xml File

Adding Security to an Application 18-11

Figure 18–4 Web Application Deployment Descriptor Dialog, Servlet Mapping Panel

18.3.4 What Happens When You Use Security Constraints with Oracle ADF
Example 18–2 shows sample definitions similar to the ones that your web.xml file
should contain.

Example 18–2 Oracle ADF Security Enabled in a Sample web.xml File

<servlet>
 <servlet-name>adfAuthentication</servlet-name>
<servlet-class>oracle.adf.share.security.authentication.
 AuthenticationServlet</servlet-class>
 <init-param>
 <param-name>sucess_url</param-name>
 <param-value>inputForm.jsp</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>adfAuthentication</servlet-name>
 <url-pattern>/adfAuthentication/*</url-pattern>
</servlet-mapping>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>adfAuthentication</web-resource-name>
 <url-pattern>/adfAuthentication</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
</security-constraint>

Creating a Login Page

18-12 Oracle Application Development Framework Developer’s Guide

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>login.jspx</form-login-page>
 <form-error-page>login.jspx</form-error-page>
 </form-login-config>
</login-config>
<security-role>
 <role-name>user</role-name>
</security-role>

When the user clicks a link to a protected page, if they are not authenticated (that is,
the authenticated user principal is not currently in SecurityContext), the Oracle ADF
Security Login Servlet is called and the web container invokes the login page.

Once a user submits their user name and password, that data is compared against the
data in a resource provider where user information is stored, and if a match is found,
the originator of the request (the user) is authenticated. The user name is then stored in
SecurityContext, where it can be accessed to obtain other security related information
(such as the group the user belongs to) in order to determine authorization rights.

Because Oracle ADF Security implements OracleAS JAAS, authentication also results
in the creation of a JAAS Subject, which also represents the originator of the request.

18.4 Creating a Login Page
The login page for a web application should use the J2EE security container login
method j_security_check as a method that the form posts. Figure 18–5 shows a
sample login page from the SRDemo application.

Figure 18–5 Sample Login Page from the SRDemo Application

Creating a Login Page

Adding Security to an Application 18-13

To create a web page for the login form:
1. With the user interface project selected, open the New Gallery and select JSP from

the Web Tier - JSP category. Do NOT select the Web Tier - JSF category to create a
JSPX document as a login form.

2. In the Create JSP wizard, choose JSPX Document type for the JSP file type. The
wizard lets you create a JSPX document without using managed beans.

3. On the Tag Libraries page of the wizard, select All Libraries and add JSTL Format
1.1 and JSTL Core 1.1 to the Selected Libraries list.

4. Click Finish to complete the wizard and add the JSPX file to the user interface
project.

5. In the Component Palette, select the JSTL 1.1 FMT page, and drag SetBundle into
the Structure window for the JSPX document so it appears above the title element.

6. In the Insert SetBundle dialog, set BaseName to the package that contains the
resource bundle for the page. For example, in the SRDemo application, it is
oracle.srdemo.view.resources.UIResources.

7. Optionally, drag Message onto the title element displayed in the Structure
window. Double-click the Message element and set the key property to the
resource bundle’s page title key. For example, in the SRDemo application, the key
is srlogin.pageTitle. Delete the string title leftover from the page creation.

8. In the Component Palette, select the HTML Forms page and drag Form inside the
page body. In the Insert Form dialog, set the action to j_security_check and
set the method to post.

9. Drag Text Field for the user name into the form and set the name to j_username.

10. Drag Password Field into the form and name it j_password.

11. Drag Submit Button into the form with label set to Sign On.

12. In the Component Palette, again select the JSTL 1.1 FMT page, and drag two
Message tags into the form so they appear beside the input fields. Set their key
properties. For example, in the SRDemo application, the resource keys are
srlogin.password and srlogin.username.

Example 18–3 shows the source code from the SRDemo application’s login page. This
JSPX document uses only HTML elements and JSTL tags to avoid conflicts with the
security container when working with JSF components. The security check method
appears on the <form> element and the form contains input fields to accept the user
name and password. These fields assign the values to the container’s login bean
attributes j_username and j_password, respectively.

CAUTION: When you create the login page, you may use JSP
elements and JSTL tags. Your page can be formatted as a JSFX
document, but due to a limitation in relation to JSF and container
security, JSF components cannot be used.

Creating a Login Page

18-14 Oracle Application Development Framework Developer’s Guide

Example 18–3 Sample Source from SRLogin.jspx

<html>
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=windows-1252"/>
 <fmt:setBundle basename="oracle.srdemo.view.resources.UIResources"/>
 <title>
 <fmt:message key="srdemo.login"/>
 </title>
 </head>
 <body>
 ... omitting the "number of attempts" checking logic ...
 <form action="j_security_check" method="post">
 <table cellspacing="3" cellpadding="2" border="0" width="100%">
 <tr>
 <td colspan="3">
 <img height="69" width="340"
 src="/SRDemo/faces/images/SRBranding.gif"
 alt="SRDemo Logo"/>
 <hr/>
 </td>
 </tr>
 <tr>
 <td colspan="3">
 <h1>
 <fmt:message key="srlogin.pageTitle"/>
 </h1>
 </td>
 </tr>
 <tr>
 <td colspan="3">
 <c:if test="${sessionScope.loginAttempts >0}">
 <h3><fmt:message key="srdemo.badLogin"/></h3>
 </c:if>
 </td>
 </tr>
 <tr>
 <td>&nbsp;</td>
 <td> </td>
 <td rowspan="7">
 <table border="1" cellpadding="5">
 <tr>
 <td>
 <fmt:message key="srlogin.info"/>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>&nbsp;</td>
 </tr>
 <tr>
 <td width="120">
 <fmt:message key="srlogin.username"/>
 </td>
 <td>
 <input type="text" name="j_username"/>
 </td>
 </tr>

Creating a Login Page

Adding Security to an Application 18-15

 <tr>
 <td width="120">
 <fmt:message key="srlogin.password"/>
 </td>
 <td>
 <input type="password" name="j_password"/
 </td>
 </tr>
 <tr>
 <td> </td>
 <td>
 <input type="submit" name="logon" value="Sign On"/>
 </td>
 </tr>
 <tr>
 </tr>
 <td>&nbsp;</td>
 <tr>
 <td>&nbsp;</td>
 </tr>
 <tr>
 <td>&nbsp;</td>
 </tr>
 <tr>
 <td colspan="3">
 <hr/>
 </td>
 </tr>
 </table>
 </form>
 </c:if>
 </body>
</html>

18.4.1 Wiring the Login and Error Pages
To allow the web container to perform authentication, the web.xml file must contain
the login configuration information that specifies the page to display for log in and
another page to display when log in fails because the user could not be authenticated.

To configure how login is to be handled:
1. In the Application Navigator, locate web.xml in the WEB-INF folder.

2. Right-click web.xml and choose Properties.

3. In the Web Application Deployment Descriptor dialog, select Login
Configuration.

4. Choose Form-Based Authentication and enter the path name for both the login
and error page. The path specified for the login page and error page is relative to
the document root that will be used to authenticate the user. For example, in the
SRDemo application, the path infrastructure/SRLogin.jspx is used for
both the login and error page.

Figure 18–6 shows the web.xml editor with the Login Configuration definition
displayed.

Creating a Login Page

18-16 Oracle Application Development Framework Developer’s Guide

Figure 18–6 Web Application Deployment Descriptor Dialog, Login Configuration Panel

18.4.2 What Happens When You Wire the Login and Error Pages
When you define the web.xml login configuration information, JDeveloper creates
these definitions:

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>infrastructure/SRLogin.jspx</form-login-page>
 <form-error-page>infrastructure/SRLogin.jspx</form-error-page>
 </form-login-config>
 </login-config>

Because you selected Form-based authentication, to specify user-written HTML Form
for authentication, the page servlet will look for the JSP page you specified to
authenticate the user. The JSP page must return an HTML page containing a Form that
conforms to a specific naming convention. Similarly, when authentication fails, the
servlet will look for a page to display. In the SRDemo application, the same page
appears for both cases, though you could have defined different pages.

Example 18–3 shows the conventions of that permit the HTML Form to invoke the
authentication servlet. Specifically, the form must specify three pieces of information:

1. <form action="j_security_check" method="post"> to invoke the
security check method j_security_check on the container’s login bean.

2. <input type="text" name="j_username"/> to assign the username value
to the container’s login bean attribute j_username.

3. <input type="password" name="j_password"/> to assign the password
value to the container’s login bean attribute j_password.

Creating a Logout Page

Adding Security to an Application 18-17

Please note that the value of the login bean attributes must be retuned by the HTML
Form with the exact names shown. In a JSF JSP page, a JSF form does not guarantee
this. Therefore, Oracle recommends that you use a JSP document page in order to use
the HTML Form to preserve the login bean attribute names.

18.5 Creating a Logout Page
The logout page may be called from the global logout button that appears on any page
that includes the global menu page. The purpose of the logout page is to provide a
prompt for the user to confirm that they want to quit. If the user chooses to log out,
their session is invalidated and then they are redirected back to the application’s
welcome page. They will have to log in again to continue the application. Figure 18–7
shows the logout page from the SRDemo application.

Figure 18–7 Sample Logout Page from SRDemo Application

To create the logout page:
1. With the user interface project selected, open the New Gallery and select JSF JSP

from the Web Tier - JSF category. In this case, it is acceptable to use JSF
components.

2. In the Create JSF JSP wizard, choose JSP Document type for the JSF JSP file type.
In this case, you want to create a JSPX document that will use JSF components.

3. On the Component Binding page, do not create a managed bean.

4. On the Tag Libraries page of the wizard, add ADF Faces Components and ADF
Faces HTML to the Selected Libraries list.

5. Click Finish to complete the wizard and add the JSPX file to the user interface
project.

6. In the Component Palette, select the ADF Faces Core page, and drag the
components Document, Form, and PanelPage so that PanelPage appears nested
inside Form, and Form appears nested inside Document.

Creating a Logout Page

18-18 Oracle Application Development Framework Developer’s Guide

7. Next construct the PanelPage container for the command buttons by dragging the
components PanelBox, PanelHeader, PanelButtonBar so that PanelButtonBar
appears nested inside PanelHeader, and PanelHeader appears nested inside
PanelBox. All should be nested inside PanelPage.

8. To create the buttons that give the user the choice whether to logout or not, drag
two CommandButton components inside the PanelButtonBar.

9. The first button should provide the logout function. You can wire it separately by
creating a managed bean. For details, see Section 18.5.1, "Wiring the Logout
Action".

10. The second button should invoke an action GlobalHome to direct the user to the
desired page. This action will be defined in the faces-config.xml file with a
navigation rule.

Example 18–4 shows the source code from the SRDemo application’s logout page. This
JSPX document has no restriction on using JSF components because the page has no
interaction with the security container. The action to invoke the logout function
appears on the <af:commandButton> with the logout label.

Example 18–4 Sample Source from SRLogout.jspx

<af:form>
 <af:panelPage title="#{res['srlogout.pageTitle']}">
 <!--Page Content Start-->
 <af:panelBox>
 <af:panelHeader text="#{res['srlogout.subTitle']}"
 messageType="warning">
 <af:outputText value="#{res['srlogout.text']}"/>
 <af:panelButtonBar>
 <af:commandButton text="#{res['srlogout.logout.label']}"
 action="#{backing_SRLogout.logoutButton_action}"/>
 <af:commandButton text="#{res['srlogout.goBack.label']}"
 action="GlobalHome"/>
 </af:panelButtonBar>
 </af:panelHeader>
 </af:panelBox>
 <!-- Page Content End -->
 ... omitting facets related to the visual design of the page ...
 </af:panelPage>
</af:form>

18.5.1 Wiring the Logout Action
To handle the logout action, the JSPX document can use a managed bean with
properties that correspond to the logout page’s logout command button.

To handle the logout action:
1. In the open logout page, double-click the command button that you reserved for

the logout action.

2. In the Action property dialog, leave Method Binding selected and click New to
define the Managed Bean class.

3. In the Create Managed Bean dialog, specify the new class file name for the
managed bean and enter the name of the managed bean to register with the
faces-config.xml file.

Creating a Logout Page

Adding Security to an Application 18-19

4. In the Action property dialog, click New to name the method that you will
implement in the managed bean class to return a string that sets the component’s
outcome value.

Figure 18–8 shows the Action property dialog with the managed bean backing_
SRLogout and the method logoutButton_action() entered.

Figure 18–8 Action Binding Dialog for Logout CommandButton

5. In the generated .java file, implement the method handler for the command
button that will redirect the user back to an appropriate page. See Example 18–5
for a sample.

Example 18–5 shows the method handler from the SRDemo application logout page’s
managed bean. The logoutButton_action() method invalidates the session and
redirects to the home page. The security container will prompt the user to
reauthenticate automatically.

Example 18–5 Sample Source from SRLogout.java

 public String logoutButton_action() throws IOException{
 ExternalContext ectx = FacesContext.getCurrentInstance().getExternalContext();
 HttpServletResponse response = (HttpServletResponse)ectx.getResponse();
 HttpSession session = (HttpSession)ectx.getSession(false);
 session.invalidate();

 response.sendRedirect("SRWelcome.jspx");
 return null;
 }

Warning: If your application calls the invalidate() method on
the HTTP Session to terminate the current session at logoff time, you
must use a "Redirect" to navigate back to a home page to require
accessing an ADF Model binding container. The redirect to a
databound page ensures that the ADF Binding Context gets created
again after invalidating the HTTP Session.

Implementing Authorization Using Oracle ADF Security

18-20 Oracle Application Development Framework Developer’s Guide

18.5.2 What Happens When You Wire the Logout Action
When you define the action property for the command button, JDeveloper updates
the Logout.jspx page source code with the name of the managed bean and bean
method to invoke:

<af:commandButton text="#{res['srlogout.logout.label']}"
action="#{backing_SRLogout.logoutButton_action}"/>

and, JDeveloper updates the faces-config.xml file to define the managed bean:

<managed-bean>
<managed-bean-name>backing_SRLogout</managed-bean-name>
<managed-bean-class>oracle.srdemo.view.backing.SRLogout</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

</managed-bean>

Once a user clicks the logout button, the JSF controller identifies the corresponding
class file from the Faces configuration file and passes the name of the action handler
method to the managed bean. In turn, the action handler, shown previously in
Example 18–5, invalidates the session and redirects to the home page.

18.6 Implementing Authorization Using Oracle ADF Security
Authorization provides a way to restrict access to a resource based on the user
attempting access. Oracle ADF Security implements OracleAS JAAS for authorization
of security-aware resources.

 Oracle ADF Security provides another level of granularity, allowing object instance
access control based on Java Permissions using JAAS. Specifically, certain Oracle ADF
Model layer objects are "security-aware," meaning that there are pre-defined
component-specific permissions that a developer can grant for a given resource.

The following Oracle ADF objects are security-aware as defined by the page definition
file associated with each databound web page:

■ Binding container

■ Iterator binding

■ Attribute binding

■ MethodAction binding

You set grants on these objects by defining which authenticated users or roles have
permission to perform a given action on the object (called a resource). Grantees, which
are roles, users, or groups defined as principals are mapped to permissions.
Permissions are permission to execute a specific action against a resource, as defined
by Oracle ADF Security classes (see the Oracle ADF Javadoc for details). Grants are
aggregated. That is if a group's role is granted permissions, and a user is a member of
that group, then the user also has those permissions. If no grant is made, then access
by the role, user, or group is denied.

Note: The SRDemo application currently does not demonstrate
Oracle ADF Security at the ADF Model layer. To understand how the
SRDemo application handles authorization, see Section 18.7,
"Implementing Authorization Programmatically".

Implementing Authorization Using Oracle ADF Security

Adding Security to an Application 18-21

Table 18–1 shows permissions you can grant on binding containers, iterator bindings,
attribute-level bindings (for example, table, list, boolean, and attribute-value
bindings), and method bindings. You use the Authorization Editor to grant
permissions for users on the Oracle ADF objects created at runtime from the page
definition file.

Before you can implement Oracle ADF authorization, you must first:

■ Configure authentication for the ADF Authentication servlet. For details, see
Section 18.3.3, "How to Enable Oracle ADF Authentication".

■ Configure your application to use Oracle ADF Security authorization. For details,
see Section 18.6.1, "Configuring the Application to Use Oracle ADF Security
Authorization".

Table 18–1 Oracle ADF Security Authorization Permissions

ADF Model Object Defined Actions Affect on Components in the User Interface

Binding Container for a web
page

grant - can administer the
permissions on the page

On pages that allow runtime customization, any link
or button configured to set access controls will be
disabled for users not granted this permission.

edit - can edit content on
the page

If a user is granted permission for the view action, but
not for the edit action, then any data in input text
boxes will display as read only.

personalize - allows the
user customization of the
page

On pages that allow runtime customization, any link
or button configured to put the page into
personalization mode will be disabled for users not
granted this permission.

view - can view the page A user not granted this permission will be shown an
authorization error.

Iterator Binding read - can read the
returned rows

All rows of data will be returned. However, you can
limit what can be displayed or updated by placing
grants on the individual attribute bindings.

update - can update data
in a row

If the Commit operation is dropped as a command
button from the Data Control Palette, the button will
be disabled for users who were not granted this
permission. Instead of limiting updates to an entire
row, you can instead limit the ability to update
individual attributes.

create - can create a new
row

If the Create operation is dropped as a command
button from the Data Control Palette, the button will
be disabled for any users that were not granted this
permission.

delete - can delete a row If the Delete operation is dropped as a command
button from the Data Control Palette, the button will
be disabled for any users that were not granted this
permission.

Method Action Binding invoke - the method can
execute

If the method is bound to a command button, that
button will be disabled for any users that were not
granted this permission. If the method is invoked
implicitly, the method will only execute for users
granted this permission.

Attribute-level Bindings read - can read the
attribute's value

The value for the attributes will be displayed.

update - can update the
attribute 's value

Any data in input text boxes will display as read only
for users who were not granted this permission.

Implementing Authorization Using Oracle ADF Security

18-22 Oracle Application Development Framework Developer’s Guide

18.6.1 Configuring the Application to Use Oracle ADF Security Authorization
You must first configure the application to use Oracle ADF Security before you can
work with ADF authorization in your application.

18.6.1.1 How to Configure Oracle ADF Security Authorization
To enable Oracle ADF Security authorization, you create a configuration file named
adf-config.xml that sets the application's container to use Oracle ADF Security.
The file initializes the ADFContext and SecurityContext.

To configure an application to use Oracle ADF Security:
1. Right-click on the project for which security is needed and choose New.

2. In the New Gallery, select the XML category.

If XML is not displayed, use the Filter By list at the top to select All Technologies.

3. In the Items list, select XML Document and click OK.

4. Name the file adf-config.xml, save it in the <application_
name>/.adf/META-INF directory, and click OK.

The file opens in the source editor.

5. Replace the generated code with the following:

<?xml version="1.0" encoding="windows-1252" ?>
<adf-config xmlns:xsi=" http://www.w3.org/2001/XMLSchema-instance "
 xsi:schemaLocation=" http://xmlns.oracle.com/adf/config
 ../../../../../bc4jrt/src/oracle/adf/share/config/schema/config.xsd"
 xmlns=" http://xmlns.oracle.com/adf/config "
 xmlns:sec=" http://xmlns.oracle.com/adf/security/config ">
 <sec:adf-config-child xmlns=" http://xmlns.oracle.com/adf/security/config ">
 <JaasSecurityContext
 initialContextFactoryClass="oracle.adf.share.security.
 JAASInitialContextFactory"
 authorizationEnforce="true"
 jaasProviderClass="oracle.adf.share.security.providers.jazn.
 JAZNSecurity Context" >
 </JaasSecurityContext>
 </sec:adf-config-child>
</adf-config>

6. Save and close the file.

18.6.1.2 What Happens When You Configure An Application to Use Oracle ADF
Security
The authorizationEnforce parameter in the <JaasSecurityContext> element
set to true will allow the authenticated user principals to be placed into ADF
SecurityContext once the user is authenticated.

Tip: If you want to run the application without using Oracle ADF
Security, simply set the authorizationEnforce parameter to false.

Implementing Authorization Using Oracle ADF Security

Adding Security to an Application 18-23

18.6.1.3 What You May Need to Know About the Authorization Property
Because security can be turned on and off, it is recommended that an application
should determine this property setting before invoking an authorization check. The
application can check if Oracle ADF Security is enabled by checking the authorization
property setting. This is exposed through the isAuthorizationEnabled() method
of the SecurityContext under the ADFContext. For example:

if (ADFContext.getCurrent().getSecurityContext().isAuthorizationEnabled())
 {
 Permission p = new RegionPermission("view.pageDefs.page1PageDef", "Edit");
 AccessController.checkPermission(p);
 // do the protected action
 } catch (AccessControlException ace) {
 // do whatever’s appropriate on an access denied
}

18.6.2 Setting Authorization on ADF Binding Containers
You use the Authorization Editor to grant permissions for users on the binding
container as it is defined by the entire page definition. See Table 18–1 for details about
available Oracle ADF permissions.

To grant permissions on the binding container using the Authorization Editor:
1. Create your web page. From the Visual Editor, right-click the page and choose Go

to Page Definition.

2. In the Structure window, right-click the root node, PageDef, and choose Edit
Authorization.

3. The Authorization Editor shows the pre-defined permissions for the binding
container, along with the principals (roles and users) as defined by your resource
provider.

Click Help or press F1 for more help on using this dialog.

18.6.3 Setting Authorization on ADF Iterator Bindings
You use the Authorization Editor to grant permissions for users on iterator bindings.
See Table 18–1 for details about available Oracle ADF permissions.

To grant permissions on iterators using the Authorization Editor:
1. Create your web page. From the Visual Editor, right-click the page and choose Go

to Page Definition.

2. In the Structure window, expand the executables node.

3. Right-click on the iterator you wish to grant a permission for and choose Edit
Authorization.

4. The Authorization Editor shows the pre-defined permissions for the iterator, along
with the principals (roles and users) as defined by your resource provider.

Click Help or press F1 for more help on using this dialog.

Implementing Authorization Using Oracle ADF Security

18-24 Oracle Application Development Framework Developer’s Guide

18.6.4 Setting Authorization on ADF Attribute and MethodAction Bindings
You use the Authorization Editor to grant permissions for users on attribute and
method action bindings.

Note that permissions granted on an attribute reflect the ability to execute operations
such as Create, Delete, and Commit. Therefore, do not set authorization on the
operations, but instead on the attribute or iterator. See Table 18–1 for details about
Oracle ADF permissions.

To grant permissions on attribute and method bindings using the Authorization
Editor:
1. Create your web page. From the Visual Editor, right-click the page and choose Go

to Page Definition.

2. In the Structure window, expand the bindings node.

3. Right-click on the attribute or method action binding you wish to grant a
permission for and choose Edit Authorization.

4. The Authorization Editor shows the pre-defined permissions for the attribute or
method action binding, along with the principals (roles and users) as defined by
your resource provider.

Click Help or press F1 for more help on using this dialog.

18.6.5 What Happens When Oracle ADF Security Handles Authorization
When a user attempts to execute an action against a resource which has a defined
grant, Oracle ADF Security checks to see if the user is a principal defined in the grant.
If the user is not yet authenticated, the application displays the login page or form. If
the user has been authenticated, and does not have permission, a security error is
displayed.

Example 18–6 shows grants for the attribute binding and method binding if you are
using the Oracle JAZN lightweight XML provider, these grants are written in the
system-jazn-data.xml file. Note that in these grants, the role users has been
granted a MethodPermission to invoke the deleteDepartments() method, and
also an AttributePermission to read the DepartmentID attribute value.

Example 18–6 Sample system-jazn-data.xml File Oracle ADF Permissions

<grant>
 <grantee>
 <principals>
 <principal>
 <realm-name>jazn.com</realm-name>
 <type>role</type>
 <class>oracle.security.jazn.spi.xml.XMLRealmRole</class>
 <name>jazn.com/users</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.share.security.authorization.MethodPermission</class>
 <name>SessionEJB.dataProvider.deleteDepartments</name>
 <actions>invoke</actions>
 </permission>

Implementing Authorization Programmatically

Adding Security to an Application 18-25

 <permission>
 <class>oracle.adf.share.security.authorization.AttributePermission</class>
 <name>EmployeesView1.DepartmentId</name>
 <actions>read</actions>
 </permission>
 </permissions>
</grant>

Users or roles are those already defined in your resource provider.

18.7 Implementing Authorization Programmatically
You can set authorization policies against resources and users. For example, you can
allow only certain groups of users the ability to view, create, or change certain data or
invoke certain methods. Or, you can prevent components from rendering based on the
group a user belongs to. Because the user has been authenticated, the application can
determine whether or not to allow that user access to any object that has an
authorization restraint configured against it.

The application can reference roles programmatically to determine whether a specific
user belongs to a role. In the SRDemo application this is accomplished using the
method isUserInRole() defined by the FacesContext interface (and also
available from the HttpServletRequest interface).

The SRDemo application uses three core roles to determine who will have access to
perform specific functions. Each user is classified with by the roles: user, technician, or
manager. The remoteUser value (obtained from the Faces Context through the
userid property) matches the email address in the SRDemo application’s USERS
table. These criteria are implemented using container-managed, Form-based
authentication provided by Oracle Application Server as described in Section 18.3.1,
"How to Enable J2EE Container-Managed Authentication".

18.7.1 Making User Information EL Accessible
Once the security container is set up, performing authorization is a task of:

■ Reading the container security attributes the first time the application references it

■ Making the key security information available in a form that can be accessed
through the expression language

To accomplish this, the JSF web application can make use of a managed bean that is
registered with session scope. The managed beans are Java classes that you register
with the application using the faces-config.xml file. When the application starts,
it parses this configuration file and the beans are made available and can be referenced
in an EL expression, allowing access by the web pages to the bean’s content.

For detailed information about working with managed beans, see Section 10.2, "Using
a Managed Bean to Store Information".

This sample from SRList.jspx controls whether the web page will display a button
that the manager uses to display an edit page.

<af:commandButton text="#{res['srlist.buttonbar.edit']}"
 action="#{backing_SRList.editButton_action}"
 rendered="#{userInfo.manager}"/>

Implementing Authorization Programmatically

18-26 Oracle Application Development Framework Developer’s Guide

This sample from SRCreateConfirm.jspx controls whether the web page will
display a user name based on the user’s authentication status.

<f:facet name="infoUser">
 <!-- Show the Logged in user -->
 <h:outputFormat value="#{res['srdemo.connectedUser']}"
 rendered="#{userInfo.authenticated}" escape="false">
 <f:param value="#{userInfo.userName}"/>
 </h:outputFormat>
</f:facet>

18.7.1.1 Creating a Class to Manage Roles
The managed bean’s properties allow you to invoke methods in a class that contains
the code needed to validate users and to determine the available roles. This class
should be created before you create the managed bean so you know the property
names to use when you define the managed bean.

To create the Java class:
1. In the New Gallery select the General category and the Java Class item.

2. In the Create Java Class dialog, enter the name of the class and accept the defaults
to create a public class with a default constructor.

Example 18–7 shows the key methods that the SRDemo application implements:

Example 18–7 SRDemo Application UserInfo.java Sample

/**
 * Constructor
 */
public UserInfo() {

 FacesContext ctx = FacesContext.getCurrentInstance();
 ExternalContext ectx = ctx.getExternalContext();

 //Only allow Development mode functions if security is not active
 _devMode = (ectx.getAuthType() == null);

 //Ask the container who the user logged in as
 _userName = ectx.getRemoteUser();

 //Default the value if not authenticated
 if (_userName == null || _userName.length()==0) {
 _userName = "Not Authenticated";
 }

 //Set the user role flag...
 //Watch out for a tricky bug here:
 //We have to evaluate the roles Most > Least restrictive
 //because the manager role is assigned to the technician and user roles
 //thus checking if a manager is in "user" will succeed and we'll stop
 //there at the lower level of priviledge
 for (int i=(ROLE_NAMES.length-1);i>0;i--) {
 if (ectx.isUserInRole(ROLE_NAMES[i])){
 _userRole = i;
 break;
 }
 }
 }

Implementing Authorization Programmatically

Adding Security to an Application 18-27

 /*
 * Function to take the login name from the container and match that
 * against the email id in the USERs table.
 * Note this is NOT an authentication step, the user is already
 * authenticated at this stage by container security. The binding
 * container is injected from faces-config.xml and refers to a special
 * pageDef "headless_UserInfoPageDef.xml" which only contains the definition
 * of this method call,
 */
 private Integer lookupUserId(String userName) {
 if (getBindings() != null) {
 OperationBinding oper =
 (OperationBinding)getBindings().getOperationBinding("findUserByEmail");
 //now set the argument to the function with the username we want
 Map params = oper.getParamsMap();
 params.put("emailParam",userName);
 // And execute
 User user = (User)oper.execute();
 setUserobject(user);
 //It is possible that the data in the database has changed and
 //there is no match in the table for this ID - return an appropriate
 //Error in that case
 if (user != null){
 return user.getUserId();
 }
 else{
 FacesContext ctx = FacesContext.getCurrentInstance();
 ctx.addMessage(null,JSFUtils.getMessageFromBundle
 ("srdemo.dataError.userEmailMatch",FacesMessage.SEVERITY_FATAL));
 return -1;
 }
 }
 else {
 //This can happen if the ADF filter is missing from the web.xml
 FacesContext ctx = FacesContext.getCurrentInstance();
 ctx.addMessage(null,JSFUtils.getMessageFromBundle
 ("srdemo.setupError.missingFilter",FacesMessage.SEVERITY_FATAL));
 return -1;
 }
 }

 /**
 * @return the String role name
 */
 public String getUserRole() {
 return ROLE_NAMES[_userRole];
 }

 /**
 * Get the security container user name of the current user.
 * As an additional precaution make it clear when we are running in
 * Dev mode
 * @return users login name which in this case is also their email id
 */
 public String getUserName() {
 StringBuffer name = new StringBuffer(_userName);
 if (_devMode) {
 name.append(" (Development Mode)");
 }
 return name.toString();

Implementing Authorization Programmatically

18-28 Oracle Application Development Framework Developer’s Guide

 }

 /**
 * Function designed to be used from Expression Language
 * for swiching UI Features based on role.
 * @return boolean
 */
 public boolean isCustomer() {
 return (_userRole==USER_ROLE);
 }

 /**
 * Function designed to be used from Expression Language
 * for switching UI Features based on role.
 * @return boolean
 */
 public boolean isTechnician() {
 return (_userRole==TECHNICIAN_ROLE);
 }

 /**
 * Function designed to be used from Expression Language
 * for switching UI Features based on role.
 * @return boolean
 */
 public boolean isManager() {
 return (_userRole==MANAGER_ROLE);
 }

 /**
 * Function designed to be used from Expression Language
 * for switching UI Features based on role.
 * This particular function indicates if the user is either
 * a technician or manager
 * @return boolean
 */
 public boolean isStaff() {
 return (_userRole>USER_ROLE);
 }

 /**
 * Function designed to be used from Expression Language
 * for switching UI Features based on role.
 * This particular function indicates if the session is actually authenticated
 * @return boolean
 */
 public boolean isAuthenticated() {
 return (_userRole>NOT_AUTHENTICATED);
 }
}

18.7.1.2 Creating a Managed Bean for the Security Information
The UserInfo bean is registered as a managed bean named userInfo in the JSF
faces-config.xml file. The managed bean uses expressions for managed properties
which the UserInfo.java class implements.

Implementing Authorization Programmatically

Adding Security to an Application 18-29

For example, in the SRDemo application the following expressions appear in the
UserInfo managed bean:

■ #{userInfo.userName} either returns the login Id or the String "Not
Authenticated"

■ #{userInfo.userRole} returns the current user’s role in its String value, for
example, manager

■ #{userInfo.staff} returns true if the user is a technician or manager

■ #{userInfo.customer} returns true if the user belongs to the role user

■ #{userInfo.manager} returns true if the user is a manager

To define the managed bean properties and expressions:
1. In the Application Navigator, open the faces-config.xml file in the user

interface WEB-INF folder.

2. In the window, select the Overview tab.

3. In the element list on the left, select Managed Beans and click New.

4. In the Create Managed Bean dialog specify the class information for the managed
bean. If you have not created the class, see Section 18.7.1.1, "Creating a Class to
Manage Roles".

5. To permit the security information defined by the managed bean to accessible by
multiple web pages, set Scope to Session. For example, the SRDemo application
defines the managed bean name userInfo, corresponding to the
UserInfo.java class.

6. In the Overview window, click the arrow to the left of the Managed Properties bar
(appears below the managed bean list) to display properties of the bean.

7. Click New to create a unique managed bean property bindings with the value
#{data.<ManagedBeanName+PageDefID}. In the Oracle ADF model, the
variable bindings makes the binding objects accessible to EL expressions. In the
SRDemo application defines the bindings property as UserInfoPageDef. The
importance of this expression is described in Section 18.7.2.3, "Create a Page
Definition to Make the Method an EL Accessible Object".

8. Optionally, click New to create the security properties that your application will
access. For example, the SRDemo application defines the userName and userRole
properties as Strings. Figure 18–9 shows the managed bean overview created for
the SRDemo application.

Implementing Authorization Programmatically

18-30 Oracle Application Development Framework Developer’s Guide

Figure 18–9 Overview of userInfo Managed Bean in the Faces Configuration File

Example 18–8 shows the portion of the faces-config.xml file that defines the
managed bean userInfo to hold security information for the SRDemo application.
Note that the managed bean also defines the managed property bindings. Note that
the values shown for managed property userName and userRole are ignored by the
SRDemo application and were included for test purposes only.

Example 18–8 Managed Beans in the SRDemo faces-config.xml File

<!-- The managed bean used to hold security information -->
 <managed-bean>
 <managed-bean-name>userInfo</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.UserInfo</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>bindings</property-name>
 <value>#{data.UserInfoPageDef}</value>
 </managed-property>
 <!-- Test Data ignored if real security is in use-->
 <managed-property>
 <property-name>userName</property-name>
 <property-class>java.lang.String</property-class>
 <value>sking</value>
 </managed-property>
 <managed-property>
 <property-name>userRole</property-name>
 <property-class>java.lang.String</property-class>
 <value>manager</value>
 </managed-property>
 <!-- End Test Data -->
</managed-bean>

Implementing Authorization Programmatically

Adding Security to an Application 18-31

18.7.2 Integrating the Managed Bean with Oracle ADF Model
The managed bean does have some interaction with the Oracle ADF Model layer. Once
the user logs in and the logon ID is obtained, the application needs to translate the
login ID into the unique userid that permits the application to identify the user. This
information can then be used throughout the application to determine what menus
and functionality to display. For instance, in the SRDemo application, the SRList page
will only display the Edit button when the user logged in belongs to the manager role.
The same authorization restraints is applied to the SRCreate page.

To obtain a unique userid that databound web pages can use to perform authorization:

■ Create a TopLink named query that will return a user object for a particular id
(which is the value obtained from the container security).

■ Create a method on the session bean facade that wraps this lookup method up.

■ Create an ADF page definition file for the managed bean to describe its use of this
lookup method on the session bean.

■ Inject the binding information into the UserInfo bean to provide access to the ADF
Model layer to invoke the method on the session bean.

■ Execute the custom method from the UserInfo bean the first time the particular id
is required for authorization.

18.7.2.1 Creating a TopLink Named Query To Return a User Object
You can identify the user who logs into the application through a named query. This
query will return a user object for a unique identifier, such as a particular email id,
received from the container security. The query is read-only and takes a String
parameter containing the identifier.

To create a named query, use the descriptor of the TopLink SRMap file that
corresponds to the USERS table. The query in SRDemo application is based on the
email id and receives its value from the security container.

For more information about TopLink named queries, see Section 3.8, "Creating and
Modifying Objects with a Unit of Work".

To create a named query for the User entity:
1. In the Application Navigator, expand the data model project and open SRMap to

display the Mapping editor.

2. In the Structure window, expand the entities package.

3. In the Mapping editor, select the descriptor User and click Add to define a new
TopLink named query. For example, SRDemo application uses
findUserByEmail.

4. Use the General panel to add a parameter that identifies the unique attribute. For
example, the SRDemo application uses emailParam of type
java.lang.String.

5. Use the Format panel to define an expression for the named query. For example,
the SRDemo application uses email EQUAL emailParam.

6. Save the query.

Implementing Authorization Programmatically

18-32 Oracle Application Development Framework Developer’s Guide

18.7.2.2 Create a Session Facade Method to Wrap the Named Query
Oracle recommends that you use a session facade to access entities and methods in
order to expose services to clients. The session bean that implements the session facade
design pattern, becomes your application’s entry point for the Oracle ADF data
control. Chapter three describes how to expose services with ADF data controls. Like
other methods to be invoked at application runtime, the finder method for the named
query must be registered with the Oracle ADF EJB data control in your project. This
step begins the process of allowing the ADF Model layer to access the user security
information for a uniquely identified user.

If you have not already created a session facade to wrap the TopLink queries, see
Section 3, "Building and Using Application Services".

To add a finder method to an existing the session facade:
1. Expand the data model package that contains the session bean for which you

created the ADF EJB data control.

2. Double-click the session bean .java file to open it in the source editor.

3. Add the new method. Example 18–9 shows the session facade finder method
implemented in the SRDemo application.

4. In the Application Navigator, right-click the session bean and choose Edit Session
Facade.

5. In the Application Navigator, add the new method to the remote interface.

6. Save the .java file and recompile.

7. In the Application Navigator, right-click the session bean and choose Create Data
Control. The new method will appear on the Data Control Palette.

Example 18–9 SRDemo SRPublicFacadeBean.java Finder Method to Expose Unique ID

public User findUserByEmail(String emailParam) {
 Session session = getSessionFactory().acquireSession();
 Vector params = new Vector(1);
 params.add(emailParam);
 User result =
 (User)session.executeQuery("findUserByEmail", User.class, params);
 session.release();

 return result;
}

18.7.2.3 Create a Page Definition to Make the Method an EL Accessible Object
After the finder method used to return a unique id for the user has been registered
with the ADF data control, the next step in exposing the finder methods to the Oracle
ADF Model layer is to provide a page definition description, where it will be defined
as a method action binding. Once the binding is exposed by the Oracle ADF Model, it
can be used throughout the application pages.

Typically, each web page maps to a single page definition file. However, when the
action binding is to be accessible throughout the application, the binding definition
must belong to its own page definition—one that is "headless"—without a
corresponding web page.

Implementing Authorization Programmatically

Adding Security to an Application 18-33

To create a headless page definition file for the user interface project:
1. In the Application Navigator, expand the user interface package that contains the

page definition files.

2. Right-click the pageDefs package node and choose New.

3. In the New Gallery, create an XML document from the General - XML category.

4. In the Create XML File dialog, name the file for the managed bean that defines the
security properties and append PageDef. For example, in the SRDemo
application, the headless page definition is named headless_
UserInfoPageDef.xml.

5. Open the XML file in the source editor and add the method binding definition.
Example 18–10 shows the binding definition created for the SRDemo application.

6. Save the file.

The value 999 (or CUSTOM) set on the action property of the methodBinding specifies
the method to be invoked is a custom method defined by the application service.

Example 18–10 SRDemo headless_UserInfoPageDef.xml Page Definition File

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.35.65" id="UserInfoPageDef"
 Package="oracle.srdemo.view.pageDefs">
 <bindings>
 <methodAction id="findUserByEmail"
 InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade"
 MethodName="findUserByEmail" RequiresUpdateModel="true"
 Action="999"
 ReturnName="SRPublicFacade.methodResults.
 SRPublicFacade_dataProvider_findUserByEmail_result">
 <NamedData NDName="emailParam" NDType="java.lang.String"/>
 </methodAction>
 </bindings>
</pageDefinition>
The ADF Model layer loads the page definition from the path reference that appears in
the DataBinding.cpx file. The new page definition file needs to have this reference
to id "UserInfoPageDef" within DataBindings.cpx. This can be done from the
Structure window for the CPX file.

To create a headless page definition file for the user interface project:
1. In the Application Navigator, expand the root user interface package and locate

the DataBindings.cpx file. The packages appear in the Application Sources
folder.

2. Double-click DataBindings.cpx and open the Structure window.

3. In the Structure window, select the pageDefinitionUsages node and choose Insert
Inside pageDefinitionUsages > page.

4. Set Id to the name you specified for your headless page definition file (contains
the single methodAction binding). For example, the SRDemo application uses
UserInfoPageDef.

5. Set path to package that where you added the page definition file. For example, in
the SRDemo application, the path is
oracle.srdemo.view.pageDefs.userInfo.

Implementing Authorization Programmatically

18-34 Oracle Application Development Framework Developer’s Guide

At runtime, a reference to data.<Headless_PageDefID> will now resolve to this
binding definition. Example 18–11 shows the id specified for the headless page
definition file in the SRDemo application.

Example 18–11 SRDemo DataBindings.cpx Page Definition Reference

<?xml version="1.0" encoding="UTF-8" ?>
<Application xmlns="http://xmlns.oracle.com/adfm/application" ...
 <pageDefinitionUsages>
 <page id="SRListPageDef"
 path="oracle.srdemo.view.pageDefs.app_SRListPageDef"/>
 <page id="UserInfoPageDef"
 path="oracle.srdemo.view.pageDefs.headless_UserInfoPageDef"/>
 ...
</Application>

18.7.2.4 Executing the Session Facade Method from the UserInfo Bean
In the managed bean definition userInfo, you may have already defined a managed
property bindings that has the value #{data.UserInfoPageDef}. For details, see
Section 18.7.1.2, "Creating a Managed Bean for the Security Information".

To compliment the expression, the class that implements the security methods
(UseInfo.java) requires a corresponding getter and setter method for the
bindings property:

public void setBindings(BindingContainer bindings) {
 this._bindings = bindings;
 }

public BindingContainer getBindings() {
 return _bindings;
}
The first time the application requires the UserId, the session bean method is called.
This is done using the getUserId() method in UserInfo.java. The getUserId()
method checks to see if the UserId is currently populated. If not, it makes a call to a
private method lookupUserId() that actually calls the session facade method:

public Integer getUserId() {
 if (_userId == null){
 _userId = lookupUserId(_userName);
 }
 return _userId;
}
The lookupUserId() method is responsible for invoking the methodAction binding
which calls the session facade method defined to get the user ID:

private Integer lookupUserId(String userName) {
 if (getBindings() != null) {
 OperationBinding oper = (OperationBinding)getBindings().
 getOperationBinding("findUserByEmail");
 //now set the argument to the function with the username we
 //are interested in
 Map params = oper.getParamsMap();
 params.put("emailParam",userName);
 // And execute
 User user = (User)oper.execute();
 setUserobject(user);
 return user.getUserId();
 }
}

Implementing Authorization Programmatically

Adding Security to an Application 18-35

The method uses getBindings() to get the injected binding container from the
Faces configuration. Once the binding container is obtained, the method looks up the
methodAction binding responsible for coordinating with the session facade method.
For details about the session facade method, see Section 18.7.2.4, "Executing the
Session Facade Method from the UserInfo Bean".

Implementing Authorization Programmatically

18-36 Oracle Application Development Framework Developer’s Guide

Advanced TopLink Topics 19-1

19
Advanced TopLink Topics

This chapter describes how to use the advanced TopLink functions in the Mapping
editor.

This chapter includes the following sections:

■ Section 19.1, "Introduction to Advanced TopLink Topics"

■ Section 19.2, "Using Advanced Parameters (databindings.cpx)"

■ Section 19.3, "Configuring Method Access for Relationship"

■ Section 19.4, "Using sessions.xml with a TopLink Data Control"

■ Section 19.5, "Using Multiple Maps with a TopLink Data Control"

■ Section 19.6, "Compiling TopLink Classes with Specific JDK Versions"

19.1 Introduction to Advanced TopLink Topics
The TopLink mappings (introduced in Chapter 3, "Building and Using Application
Services") allow you to map Java objects to your database. When creating TopLink
mappings, there are some functions that are not available from the Mapping editor.
You will need to implement these functions in your Java code. Refer to the Oracle
TopLink Developer’s Guide for additional information.

19.2 Using Advanced Parameters (databindings.cpx)
You can use the databindings.cpx file to override or modify the default TopLink
data control behavior. This section includes information on the following options:

■ Performing Deletes First

■ Specifying the TopLink Session File

■ Specifying the Sequencing

Refer to Appendix A, "Reference ADF XML Files" for additional information on
parameters in the databindings.cpx file.

Use the TopLinkDefinitions Properties dialog (see Figure 19–1) define these
parameters on the data control.

Using Advanced Parameters (databindings.cpx)

19-2 Oracle Application Development Framework Developer’s Guide

Figure 19–1 TopLinkDefinition Properties Dialog

19.2.1 Performing Deletes First
By default, the TopLink unit of work (see Section 3.8, "Creating and Modifying Objects
with a Unit of Work") performs insert operations before delete operations. However,
there may be instances in which you must perform the delete operation first.

For example, removing a row with a primary key of 1 and then creating a new row
with the same primary key within the same transaction will result in a SQL exception
indicating that the row already exists.

To eliminate this problem, use the TopLinkShouldPerformDeletesFirst parameter in
the databindings.cpx file to force the unit of work to perform the delete operation
first.

Example 19–1 Specifying the TopLinkShouldPerformDeletesFirst Option

...
<Parameter

name="TopLinkShouldPerformDeletesFirst"
value="True"

</Parameter
...

19.2.2 Specifying the TopLink Session File
By default, the TopLink session configuration file is named sessions.xml. You can
create this file by using the Mapping editor in Oracle JDeveloper (refer to the Oracle
JDeveloper online help for more information).

To specify a different sessions configuration file, use the
TopLinkSessionsXMLFileName parameter in the databindings.cpx file.

Example 19–2 Specifying the TopLinkSessionsXMLFileName Option

...
<Parameter

name="TopLinkSessionsXMLFileName"
value="META-INF/sessions.xml"

</Parameter
...

Configuring Method Access for Relationship

Advanced TopLink Topics 19-3

19.2.3 Specifying the Sequencing
By default, the TopLink unit of work (see Section 3.8, "Creating and Modifying Objects
with a Unit of Work") assigns sequence numbers during the commit operation.
However, there may be instances in which the sequence number must be displayed in
the user interface before the commit operation.

For example, if the sequence number is used as the value of an ID field in a form
displayed to the user, you must have the sequence number before committing the
transaction.

To eliminate this problem, use the TopLinkSequenceOnCreate parameter in the
databindings.cpx file to disable the assigning of the sequence number during the
commit operation of a create transaction

Example 19–3 Specifying the ToplinkSequenceOnCreate Option

...
<Parameter

name="TopLinkSequenceOnCreate"
value="False"

</Parameter
...

19.3 Configuring Method Access for Relationship
By default, TopLink mappings use direct access to access public attributes.
Alternatively, you can use getter and setter methods to access object attributes when
writing the attributes of the object to the database, or reading the attributes of the
object from the database. This is known as method access.

Figure 19–2 shows a TopLink mapped attribute that uses method accessing.

To configure method accessing for a relationship:
1. Select a relationship mapping from a TopLink descriptor in the Structure window.

2. On the mapping’s General tab, select the Use Method Accessing option.

Figure 19–2 General Tab of TopLink Mapping Editor

3. Select the specific getter and setter methods for the relationship.

Using sessions.xml with a TopLink Data Control

19-4 Oracle Application Development Framework Developer’s Guide

19.4 Using sessions.xml with a TopLink Data Control
You can create a data control from a TopLink sessions configuration file
(sessions.xml), similarly to creating a data control from a TopLink map (see
Section 19.5, "Using Multiple Maps with a TopLink Data Control").

Use the TopLink Data Control dialog (as shown in Figure 19–3), select TopLink
Sessions Configuration, and then select the specific sessions configuration file
(sessions.xml) and session.

To create a TopLink data control from a sessions configuration file
(sessions.xml):
1. Right-click the sessions.xml file in the Navigator window and select Create

Data Control.

2. On the TopLink Data Control dialog, select the TopLink Sessions Configuration
option.

Figure 19–3 Creating a TopLink Data Control (from a Sessions Configuration)

3. Select the specific sessions configuration file (or create a new configuration) and
session. You can create a data control for any mapped classes.

Using Multiple Maps with a TopLink Data Control

Advanced TopLink Topics 19-5

19.5 Using Multiple Maps with a TopLink Data Control
You can create multiple TopLink maps for use with each project. Each map can be
associated with a specific database and connection, as shown inFigure 19–4.

Figure 19–4 Create Object Relational Map Dialog

You can create a data control from a TopLink map, similarly to creating a data control
from a sessions.xml file (see Section 19.4, "Using sessions.xml with a TopLink Data
Control").

Use the TopLink Data Control dialog (as shown in Figure 19–5), select TopLink Map,
and then select the specific map.

To create a TopLink data control from a TopLink map:
1. Right-click the sessions.xml file in the Navigator window and select Create

Data Control.

2. On the TopLink Data Control dialog, select the TopLink Map option.

Using Multiple Maps with a TopLink Data Control

19-6 Oracle Application Development Framework Developer’s Guide

Figure 19–5 Creating a TopLink Data Control (from a TopLink Map)

3. Select the specific TopLink map.

4. Select the specific sessions configuration file (or create a new configuration) and
session. You can create a data control for any mapped classes.

Compiling TopLink Classes with Specific JDK Versions

Advanced TopLink Topics 19-7

19.6 Compiling TopLink Classes with Specific JDK Versions
By default, when compiling TopLink classes, JDeveloper uses JDK 1.5 generic
collection types for relationships. This will causes errors if you compile your project
using a different JDK version (such as 1.4).

Before generating TopLink mappings you must change the default JSEE library for
your project. In the Default Project Properties Dialog – Libraries page, click Change to
select a new J2SE definition for the project. On the Manage Libraries Dialog – Edit J2SE
Definitions Page (see Figure 19–6), select a (or create a new) J2SE definition to use.

Figure 19–6 Edit J2SE Definition Page

Compiling TopLink Classes with Specific JDK Versions

19-8 Oracle Application Development Framework Developer’s Guide

Creating Data Control Adapters 20-1

20
Creating Data Control Adapters

If you need data controls beyond those that are provided by JDeveloper, you can
create your own. ADF supports two main ways to create data controls:

■ Create a JavaBean to represent the data source.

■ Create a data control adapter for the data source type.

This chapter describes the second option: creating a data control adapter. For
information about data controls, see Chapter 1, "Introduction to Oracle ADF
Applications".

This chapter contains the following topics:

■ Section 20.1, "Introduction to the Simple CSV Data Control Adapter"

■ Section 20.2, "Overview of Steps to Create a Data Control Adapter"

■ Section 20.3, "Implement the Abstract Adapter Class"

■ Section 20.4, "Implement the Data Control Definition Class"

■ Section 20.5, "Implement the Data Control Class"

■ Section 20.6, "Create any Necessary Supporting Classes"

■ Section 20.7, "Create an XML File to Define Your Adapter"

■ Section 20.8, "Build Your Adapter"

■ Section 20.9, "Package and Deploy Your Adapter to JDeveloper"

■ Section 20.10, "Location of Javadoc Information"

20.1 Introduction to the Simple CSV Data Control Adapter
This chapter shows a simple CSV data control adapter as an example of a custom data
control adapter. This adapter is a simplified version of the CSV data control adapter
that ships with JDeveloper.

The chapter describes what the simple CSV data control adapter does and the classes
that make up the adapter.

The simple CSV data control adapter retrieves comma-separated values from a file and
displays them on a page. To use the adapter in JDeveloper, you can do one of the
following:

■ right-click a node that represents a CSV file and choose "Create Data Control" from
the context menu

■ drag and drop a node on the Data Control Palette

Overview of Steps to Create a Data Control Adapter

20-2 Oracle Application Development Framework Developer’s Guide

In either case, the node must map to a CSV text file, and the name of the file must have
a .csv extension. You do not have to enter any metadata because the simple CSV data
control adapter extracts the metadata from the node.

After you create a data control using the simple CSV adapter, the data control appears
in the Data Control Palette. You can then drag and drop it onto a view page.

To simplify some details, the simple CSV adapter hardcodes the following items:

■ The fields in the CSV file are comma-separated.

■ The delimiter character is the double-quote character.

■ The CSV file uses UTF-8 encoding.

■ The first line in the file specifies column names.

■ The name of the CSV file must have a .csv extension.

(The CSV adapter that ships with JDeveloper enables you to set these values.)

When you create a data control adapter, you create it so that it represents a source
type, not a source instance. In the case of the CSV adapter, the source type is CSV files.
To specify a specific data instance, for example, a particular CSV file, the user creates a
data control with the help of the data control adapter and associates the instance with
metadata. The metadata specifies the data for the instance. In the case of the simple
CSV adapter, the metadata includes the path to a specific CSV file.

The responsibilities of a data control adapter include:

■ Providing metadata for the data control instance

■ Creating a data control instance using the stored metadata during runtime

Data control adapters run within the adapter framework. The adapter framework takes
care of storing the metadata, integrating the data control adapter with the ADF
lifecycle, and integrating with JDeveloper during design time.

20.2 Overview of Steps to Create a Data Control Adapter
To create data control adapters:

1. Create classes to extend abstract classes and implement interfaces in the adapter
framework. These classes are used during design time and runtime. You have to
create three classes as described in these sections:

■ Section 20.3, "Implement the Abstract Adapter Class"

■ Section 20.4, "Implement the Data Control Definition Class"

■ Section 20.5, "Implement the Data Control Class"

You can also create additional classes as required by your adapter. For the simple
CSV adapter, it includes two additional classes: CSVHandler and CSVParser.
These classes are shown in Section 20.6, "Create any Necessary Supporting
Classes".

2. Create a definition file, adapter-definition.xml, to register your adapter
with ADF. This file contains the class name of your adapter implementation and
references the libraries that your adapter needs to run. See Section 20.7, "Create an
XML File to Define Your Adapter".

3. Install your data control adapter in JDeveloper by packaging your class files and
the definition file in a JAR file and placing the JAR file in JDeveloper’s classpath.
See Section 20.9, "Package and Deploy Your Adapter to JDeveloper".

Implement the Abstract Adapter Class

Creating Data Control Adapters 20-3

Invoking Your Adapter
After installing your data control adapter in JDeveloper, you can invoke it by
right-clicking a node in JDeveloper that your data control adapter supports and
selecting "Create Data Control" from the context menu. The data control adapter
declares the node types that it supports in its adapter-definition.xml
configuration file (described in Section 20.7, "Create an XML File to Define Your
Adapter").

For example, if your adapter supports database connection nodes, when you
right-click on a database connection, then you can select Create Data Control from the
context menu to invoke your adapter.

Note that this chapter does not cover how to create a wizard, or how to pass values
from a wizard to your adapter.

20.3 Implement the Abstract Adapter Class
Implementing the AbstractAdapter class is optional. It is required only if you want
to enable the user to create a data control by dragging and dropping a node onto the
Data Control Palette. In this case, the dropped node represents the data source
associated with the data control that you are creating. If you do not want this feature,
you do not have to implement this class. For example, the CSV data control adapter
that ships with JDeveloper does not implement this class because it does not support
the drag-and-drop operation. Instead, this adapter displays a wizard to collect
information from the user.

The simple CSV adapter implements the AbstractAdapter. When the user drags
and drops a node onto the Data Control Palette, JDeveloper checks to see which
adapter can handle the type of node that was dropped. You specify the node types that
your adapter can handle in the adapter-definition.xml file. This file is used to
register your adapter with JDeveloper. See Section 20.7, "Create an XML File to Define
Your Adapter" for details about this file.

In your class, you have to implement some methods in the AbstractAdapter class,
as described in these sections:

■ Section 20.3.4, "Implementing the initialize Method"

■ Section 20.3.5, "Implementing the invokeUI Method"

■ Section 20.3.6, "Implementing the getDefinition Method"

20.3.1 Location of JAR Files
The abstract class oracle.adf.model.adapter.AbstractAdapter is located in
the JDEV_HOME/bc4j/lib/adfm.jar file.

Implement the Abstract Adapter Class

20-4 Oracle Application Development Framework Developer’s Guide

20.3.2 Abstract Adapter Class Outline
Example 20–1 shows an outline of a class that implements the AbstractAdapter
class.

Example 20–1 Outline for Class That Implements AbstractAdapter

import oracle.adf.model.adapter.AbstractAdapter;
import oracle.adf.model.adapter.DTContext;
import oracle.adf.model.adapter.AbstractDefinition;

public class MyAdapter extends AbstractAdapter
{

public void initialize(Object sourceObj, DTContext ctx)
{

// you need to implement this method.
// see Section 20.3.4, "Implementing the initialize Method".

}

public boolean invokeUI()
{

// you need to implement this method.
// see Section 20.3.5, "Implementing the invokeUI Method".

}

public AbstractDefinition getDefinition()
{

// you need to implement this method.
// see Section 20.3.6, "Implementing the getDefinition Method".

}
}

20.3.3 Complete Source for the SampleDCAdapter Class
Example 20–2 shows the complete source for the SampleDCAdapter class. This is the
class that implements AbstractAdapter for the simple CSV adapter. Subsequent
sections describe the methods in this class.

Example 20–2 Complete Source for SampleDCAdapter

package oracle.adfinternal.model.adapter.sample;

import java.net.URL;

import oracle.adf.model.adapter.AbstractAdapter;
import oracle.adf.model.adapter.AbstractDefinition;
import oracle.adf.model.adapter.DTContext;

import oracle.ide.Context;

public class SampleDCAdapter extends AbstractAdapter
{

// JDev Context
private Context mJdevCtx = null;

// Source object of data
private Object mSrc = null;
// Source Location
private String mSrcLoc = null;

Implement the Abstract Adapter Class

Creating Data Control Adapters 20-5

// data control name
private String mDCName = null;
// data control definition
private AbstractDefinition mDefinition = null;

public SampleDCAdapter()
{
}

/**
 * Initializes the adapter from a source object.
 * <p>
 * The source object can be different thing depending on the context of the
 * design time that the adapter is used in. For JDeveloper, the object will
 * be a JDeveloper node.
 * </p>
 * <p>
 * Adapter implementations will check the <code>"ctx"</code> parameter to
 * get the current design time context. The source object will be used to
 * extract the information for the data source.
 * </p>
 * @param sourceObj Object that contains information about the data source
 * that will be used to define the data control.
 * @param ctx Current design time context.
 */
public void initialize(Object sourceObj, DTContext ctx)
{

mSrc = sourceObj;
mJdevCtx = (Context) ctx.get(DTContext.JDEV_CONTEXT);

}

/**
 * Invlokes the UI at the design time.
 * <p>
 * This method is a call back from the JDeveloper design time environment to
 * the adapters to bring up any UI if required to gather information about
 * the data source they represent.
 * </p>
 *
 * @return false if the user cancels the operation. The default retrun value
 * is true.
 */
public boolean invokeUI()
{

// First check if this is a JDev environment.
if (mJdevCtx != null && mSrc != null)
{

if (extractDataSourceInfo(mSrc))
{

SampleDCDef def = new SampleDCDef(mSrcLoc,mDCName);
mDefinition = def;
return true;

}
return false;

}
return false;

}

 /**
 * <p>

Implement the Abstract Adapter Class

20-6 Oracle Application Development Framework Developer’s Guide

 * The Definition instance obtained can be used by the ADF design time to
 * capture the data control metadata.
 *</p>
 *
 * @return The definition instance describing the data control design time.
 */
public AbstractDefinition getDefinition()
{

return mDefinition;
}

/**
 * @param source the data source object.
 * @return false if data type is unknown.
 */
public boolean canCreateDataControl(Object source)
{

return extractDataSourceInfo(source);
}

/**
 * Extracts information from a data source. This method extracts name
 * from the object.
 * @param obj the data source object.
 */
private boolean extractDataSourceInfo(Object obj)
{

mDCName = "SampleDC";

// See if the node dropped is a text node of CSV type.
// We will assume that the CSV data file must end with .csv
if (obj instanceof oracle.ide.model.TextNode)
{

oracle.ide.model.TextNode tn = (oracle.ide.model.TextNode) obj;
URL url = tn.getURL();
String loc = url.getFile();
// Check if the file has a matching extension
if (loc.endsWith(".csv"))
{

mSrcLoc = loc;
String path = url.getPath();
int index = path.lastIndexOf('/');

if (index != -1)
{

String fileName = path.substring(index+1);
int dotIndex = fileName.lastIndexOf('.');
mDCName = fileName.substring(0,dotIndex);

}
return true;

}
}
return false;

}

}

Implement the Abstract Adapter Class

Creating Data Control Adapters 20-7

20.3.4 Implementing the initialize Method
The framework calls the initialize method when the user drags and drops a node
onto the Data Control Palette. The method has the following signature:

Example 20–3 initialize Signature

public abstract void initialize(Object sourceObj, DTContext ctx);

The sourceObj parameter specifies the node that was dropped. You can check this to
ensure that the node type is something your adapter can handle.

The ctx parameter specifies the design time context. The package path for DTContext
is oracle.adf.model.adapter.DTContext.

In the initialize method, you should perform these tasks:

■ check if the source node is something that you support

■ if you support the node, then extract all the information that you need to create a
data control instance from the source node. If the information is not sufficient to
create a data control instance, you can display some UI in the invokeUI method
to get the user to enter the required information.

For the simple CSV adapter, the initialize method simply sets some class
variables. These class variables are checked later in the invokeUI method.

Example 20–4 initialize Method

public void initialize(Object sourceObj, DTContext ctx)
{

mSrc = sourceObj;
mJdevCtx = (Context) ctx.get(DTContext.JDEV_CONTEXT);

}

20.3.5 Implementing the invokeUI Method
This method enables you to display any UI to collect information from the user about
the dropped data source. The method has the following signature in the
AbstractAdapter:

Example 20–5 invokeUI Signature

public boolean invokeUI()
{

return true;
}

The method should return false if the user cancels the operation in the UI. This
means that the data control is not created.

The method should return true (which is the default implementation) if the UI was
run to collect the information.

The simple CSV adapter uses the initialize method to call
extractDataSourceInfo, which performs the following:

■ checks that the node right-clicked by the user represents a text file and that the
filename has a .csv extension

■ gets the filename of the CSV file

Implement the Abstract Adapter Class

20-8 Oracle Application Development Framework Developer’s Guide

■ sets the mSrcLoc and mDCName class variables. mSrcLoc points to the location of
the CSV file, and mDCName is the name used for the data control. In this case, it is
just the name of the CSV file without the .csv extension.

These variables are used by invokeUI to instantiate a SampleDCDef object. The
SampleDCDef object, which is another class you have to implement, is described
in Section 20.4, "Implement the Data Control Definition Class".

Example 20–6 shows the invokeUI method:

Example 20–6 invokeUI

public boolean invokeUI()
{

// First check if this is a JDev environment.
if (mJdevCtx != null && mSrc != null)
{

if (extractDataSourceInfo(mSrc))
{

SampleDCDef def = new SampleDCDef(mSrcLoc,mDCName);
mDefinition = def;
return true;

}
return false;

}
return false;

}

20.3.6 Implementing the getDefinition Method
This method returns the definition of the data control that was created from
information gathered from the dropped source node. The method has the following
signature:

Example 20–7 getDefinition Signature

public abstract AbstractDefinition getDefinition();

The AbstractDefinition class is the data control definition class that you created.
See Section 20.4, "Implement the Data Control Definition Class".

In the simple CSV adapter, the getDefinition method returns the value of the
mDefinition class variable, which was set in the invokeUI method. mDefinition
refers to the data control definition class that you created (SampleDCDef in the case of
the simple CSV adapter).

Example 20–8 getDefinition

public AbstractDefinition getDefinition()
{

return mDefinition;
}

Implement the Data Control Definition Class

Creating Data Control Adapters 20-9

20.4 Implement the Data Control Definition Class
This class needs to provide all the information that the framework needs to instantiate
a data control during design time and runtime. This class is responsible for performing
these operations:

■ creating a default constructor. See Section 20.4.4, "Creating a Default Constructor".

■ collecting metadata from the user about the data source. See Section 20.4.5,
"Collecting Metadata from the User".

■ defining the structure of the output. The structure defines what the user sees when
the user expands the data control in the Data Control Palette. The user can then
drag elements from the data control entry in the Data Control Palette to a page to
create a view component. See Section 20.4.6, "Defining the Structure of the Data
Control".

■ creating an instance of the data control class using that metadata. The data control
class is a class that you implement. See Section 20.4.7, "Creating an Instance of the
Data Control".

■ enabling the framework to load the metadata from the DCX file. See Section 20.4.8,
"Setting the Metadata for Runtime".

■ setting a name for your data control. See Section 20.4.9, "Setting the Name for the
Data Control".

20.4.1 Location of JAR Files
The data control definition class needs to extend the abstract class
oracle.adf.model.adapter.AbstractDefinition. This class is located in the
JDEV_HOME/bc4j/lib/adfm.jar file.

20.4.2 Data Control Definition Class Outline
Example 20–9 is an outline showing the methods you have to implement when you
create a data control definition class. The sample is taken from SampleDCDef, which
is the data control definition class for the simple CSV data control adapter.

Example 20–9 Outline for the Data Control Definition Class

import oracle.adf.model.adapter.AbstractDefinition;
import org.w3c.dom.Node;
import oracle.binding.meta.StructureDefinition;
import oracle.binding.DataControl;
import java.util.Map;

public class SampleDCDef extends AbstractDefinition
{

// default constructor
public SampleDCDef ()
{

// you need a default constructor.
// see Section 20.4.4, "Creating a Default Constructor".

}

public Node getMetadata()
{

// you need to implement this method.
// see Section 20.4.5, "Collecting Metadata from the User".

}

Implement the Data Control Definition Class

20-10 Oracle Application Development Framework Developer’s Guide

public StructureDefinition getStructure()
{

// you need to implement this method.
// see Section 20.4.6, "Defining the Structure of the Data Control".

}

public DataControl createDataControl()
{

// you need to implement this method.
// see Section 20.4.7, "Creating an Instance of the Data Control".

}

public void loadFromMetadata(Node node, Map params)
{

// you need to implement this method.
// see Section 20.4.8, "Setting the Metadata for Runtime".

}

public String getDCName()
{

// you need to implement this method.
// see Section 20.4.9, "Setting the Name for the Data Control".

}
}

20.4.3 Complete Source for the SampleDCDef Class
Example 20–10 shows the complete source for the SampleDCDef class:

Example 20–10 Complete Source for the SampleDCDef Class

package oracle.adfinternal.model.adapter.sample;

import java.io.InputStream;

import java.util.Map;
import oracle.binding.DataControl;
import oracle.binding.meta.StructureDefinition;

import oracle.adf.model.adapter.AbstractDefinition;

import oracle.adf.model.adapter.AdapterDCService;
import oracle.adf.model.adapter.AdapterException;
import oracle.adf.model.adapter.dataformat.AccessorDef;
import oracle.adf.model.adapter.dataformat.StructureDef;
import oracle.adf.model.adapter.utils.NodeAttributeHelper;

import oracle.adf.model.utils.SimpleStringBuffer;

import oracle.adfinternal.model.adapter.sample.CSVHandler;
import oracle.adfinternal.model.adapter.sample.SampleDataControl;
import oracle.adfinternal.model.adapter.url.SmartURL;

import oracle.xml.parser.v2.XMLDocument;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

Implement the Data Control Definition Class

Creating Data Control Adapters 20-11

public class SampleDCDef extends AbstractDefinition
{

// Name of the root accessor for a definition
public static final String RESULT_ACC_NAME = "Result";

// Namespace for the metadata definition.
public static final String SAMPLEDC_NS =

"http://xmlns.oracle.com/adfm/adapter/sampledc";

// Definition tag as the root
public static final String DEFINITION = "Definition";

// Attribute to contain the source URL
public static final String SOURCE_LOC = "SourceLocation";

// Name of the data control
private String mName = "SampleDC";

// the structure definition
private StructureDef mStructDef = null;

// URL for this definition.
private String mCSVUrl = null;

public SampleDCDef()
{
}

public SampleDCDef(String csvURL,String dcName)
{

mCSVUrl = csvURL;
mName = dcName;

}

public Node getMetadata()
{

XMLDocument xDoc = new XMLDocument();
Element metadata = xDoc.createElementNS(SAMPLEDC_NS, DEFINITION);
metadata.setAttribute(SOURCE_LOC, mCSVUrl.toString());
return metadata;

}

public StructureDefinition getStructure()
{

if (mStructDef == null)
{

// create an empty StructureDefinition
mStructDef = new StructureDef(getName());
SmartURL su = new SmartURL(mCSVUrl.toString());
InputStream isData = su.openStream();
CSVHandler csvHandler = new CSVHandler(isData, true, "UTF-8", ",", "\"");

// Name of the accessor or the method structure to hold the attributes
String opName = new SimpleStringBuffer(50).append(getDCName())

.append("_")

.append(RESULT_ACC_NAME)

.toString();

StructureDef def = (StructureDef)csvHandler.getStructure(opName, null);

Implement the Data Control Definition Class

20-12 Oracle Application Development Framework Developer’s Guide

// Create the accessor definition
AccessorDef accDef =

new AccessorDef(RESULT_ACC_NAME, mStructDef, def, true);
def.setParentType(StructureDef.TYPE_ACCESSOR);
accDef.setBindPath(new SimpleStringBuffer(50)

.append(mStructDef.getFullName())

.append(".")

.append(AdapterDCService.DC_ROOT_ACC_NAME)

.toString());
mStructDef.addAccessor(accDef);

}
return mStructDef;

}

public void loadFromMetadata(Node node, Map params)
{

try
{

// Get the information from the definition
NodeList listChld = node.getChildNodes();
int cnt = listChld.getLength();
Node chld;

for (int i = 0; i < cnt; i++)
{

chld = listChld.item(i);
// System.out.println("Tag: " + chld.getNodeName());
if (DEFINITION.equalsIgnoreCase(chld.getNodeName()))
{

// Load the required attributes
NodeAttributeHelper attribs =
new NodeAttributeHelper(chld.getAttributes());
mCSVUrl = attribs.getValue(SOURCE_LOC);

}
}

}
catch (AdapterException ae)
{

throw ae;
}
catch (Exception e)
{

throw new AdapterException(e);
}

}

public DataControl createDataControl()
{

SampleDataControl dcDataControl = new SampleDataControl(mCSVUrl);
return dcDataControl;

}

public String getDCName()
{

return mName;
}

Implement the Data Control Definition Class

Creating Data Control Adapters 20-13

public String getAdapterType()
{
return "oracle.adfm.adapter.SampleDataControl";
}

}

20.4.4 Creating a Default Constructor
You need to create a default constructor for the data control definition class. The
simple CSV adapter has an empty default constructor:

Example 20–11 SampleDCDef Default Constructor

public SampleDCDef()
{
}

The default constructor is used only during runtime. It is not used during design time.

20.4.5 Collecting Metadata from the User
Metadata in a data control adapter provides information on the data source. The data
control definition class uses the metadata to create a data control. Examples of
metadata for the full-featured CSV data control adapter include the URL to the CSV
file, the field separator character, and the quote character. For the simple CSV adapter,
the metadata consists of only the location of the CSV file.

A data control adapter can collect metadata in different ways. Examples:

■ The CSV data control adapter that comes with JDeveloper uses a wizard to collect
metadata from the user.

■ The web service data control adapter also uses a wizard to collect metadata.
Alternatively, users can drag a web service connection node and drop it on the
Data Control Palette. The web service adapter extracts metadata from the node
instead of launching the wizard.

When the user drags and drops a node onto the Data Control Palette, the adapter
framework looks for an adapter that can handle the type of node that was
dropped by searching the registered data control adapters. Data control adapters
declare which node types they support. The nodes are JDeveloper nodes that
represent specific source types. When the framework finds an adapter that
supports the type of node that was dropped, it invokes the data control adapter,
which then extracts the required information from the node.

■ The simple CSV adapter extracts metadata from a node when the user right-clicks
a node and selects "Create Data Control" from the context menu.

Regardless of how a data control adapter retrieves the metadata, you must implement
the getMetadata method in your data control definition class. The framework calls
the method to get the metadata.

This method returns the metadata in the form of a Node object. The getMetadata
method has the following signature:

Implement the Data Control Definition Class

20-14 Oracle Application Development Framework Developer’s Guide

Example 20–12 getMetadata Signature

public org.w3c.dom.Node getMetadata();

In the simple CSV adapter, the getMetadata method retrieves the metadata from the
mCSVUrl class variable and inserts the value in an Element object.

Example 20–13 getMetadata Method

public Node getMetadata()
{

XMLDocument xDoc = new XMLDocument();
Element metadata = xDoc.createElementNS(SAMPLEDC_NS, DEFINITION);
metadata.setAttribute(SOURCE_LOC, mCSVUrl.toString());
return metadata;

}

The framework extracts the information from getMetadata’s return value (the Node
object) and writes the information to the DataControls.dcx file. For example, after
the user has created a CSV data control, the file looks like the following:

Example 20–14 DataControls.dcx File

<?xml version="1.0" encoding="UTF-8" ?>
<DataControlConfigs xmlns="http://xmlns.oracle.com/adfm/configuration"

version="10.1.3.36.45" Package="view" id="DataControls">

<AdapterDataControl id="testdata"
FactoryClass="oracle.adf.model.adapter.DataControlFactoryImpl"
ImplDef="oracle.adfinternal.model.adapter.sample.SampleDCDef"
SupportsTransactions="false"
SupportsSortCollection="false" SupportsResetState="false"
SupportsRangesize="false" SupportsFindMode="false"
SupportsUpdates="false" Definition="testdata"
BeanClass="testdata"
xmlns="http://xmlns.oracle.com/adfm/datacontrol">

<Source>
<Definition

SourceLocation="/C:/Application1/ViewController/public_
html/testdata.csv"/>

</Source>
</AdapterDataControl>

</DataControlConfigs>

The value of the id attribute of the AdapterDataControl tag ("testdata") is
extracted from the name of the CSV file. The other attributes in the
AdapterDataControl tag contain information about the simple CSV adapter itself.
In the Definition element, the framework writes the metadata provided by the
node; the SourceLocation attribute specifies the location of the CSV file.

Implement the Data Control Definition Class

Creating Data Control Adapters 20-15

20.4.6 Defining the Structure of the Data Control
Structure in a data control definition describes the items that appear when the user
expands the data control in the Data Control Palette. Items that can appear include
methods, accessors, and attributes of the underlying service that are available to the
user to invoke or display. The user can drag these items onto a view page.

In your data control definition class, you need to implement the getStructure
method. The framework calls this method when the user expands the data control in
the Data Control Palette.

The getStructure method has the following signature:

Example 20–15 getStructure Signature

public oracle.binding.meta.StructureDefinition getStructure();

StructureDefinition is an interface. You can find more information about this
interface in the online help in JDeveloper, under Reference > Oracle ADF Model API
Reference.

Example 20–16 getStructure Method

public StructureDefinition getStructure()
{

if (mStructDef == null)
{

// create an empty StructureDefinition
mStructDef = new StructureDef(getName());
SmartURL su = new SmartURL(mCSVUrl.toString());
InputStream isData = su.openStream();
CSVHandler csvHandler = new CSVHandler(isData, true, "UTF-8", ",", "\"");

// Name of the accessor or the method structure to hold the attributes
String opName = new SimpleStringBuffer(50).append(getDCName())

.append("_")

.append(RESULT_ACC_NAME)

.toString();

StructureDef def = (StructureDef)csvHandler.getStructure(opName, null);
// Create the accessor definition
AccessorDef accDef =

new AccessorDef(RESULT_ACC_NAME, mStructDef, def, true);
def.setParentType(StructureDef.TYPE_ACCESSOR);
accDef.setBindPath(new SimpleStringBuffer(50)

.append(mStructDef.getFullName())

.append(".")

.append(AdapterDCService.DC_ROOT_ACC_NAME)

.toString());
mStructDef.addAccessor(accDef);

}
return mStructDef;

}

Implement the Data Control Definition Class

20-16 Oracle Application Development Framework Developer’s Guide

20.4.7 Creating an Instance of the Data Control
The framework calls the createDataControl method in the data control definition
class to create a data control instance. The createDataControl method has the
following signature:

Example 20–17 createDataControl Signature

public oracle.binding.DataControl createDataControl();

The DataControl object returned by the method is an instance of the data control
class that you create. Section 20.5, "Implement the Data Control Class" describes this
class.

In the data control definition for the simple CSV adapter, the createDataControl
method looks like the following:

Example 20–18 createDataControl Method

public DataControl createDataControl()
{

SampleDataControl dcDataControl = new SampleDataControl(mCSVUrl);
return dcDataControl;

}

The SampleDataControl class is described in more detail in Section 20.5,
"Implement the Data Control Class".

20.4.8 Setting the Metadata for Runtime
When the user runs the view page that references your data control, the framework
reads the metadata from the DCX file and invokes the loadFromMetadata method in
the data control definition class to load the data control with the metadata saved
during design time.

Recall that the framework wrote the metadata to the DCX file in the getMetadata
method. See Section 20.4.5, "Collecting Metadata from the User".

The loadFromMetadata method has the following signature:

Example 20–19 loadFromMetadata Signature

public void loadFromMetadata(org.w3c.dom.Node node, java.util.Map params);

The node parameter contains the metadata. In the simple CSV adapter, the method
looks like the following:

Example 20–20 loadFromMetadata Method

public void loadFromMetadata(Node node, Map params)
{

try
{

// Get the information from the definition
NodeList listChld = node.getChildNodes();
int cnt = listChld.getLength();
Node chld;

for (int i = 0; i < cnt; i++)
{

chld = listChld.item(i);

Implement the Data Control Class

Creating Data Control Adapters 20-17

// System.out.println("Tag: " + chld.getNodeName());
if (DEFINITION.equalsIgnoreCase(chld.getNodeName()))
{

// Load the required attributes
NodeAttributeHelper attribs =
new NodeAttributeHelper(chld.getAttributes());
mCSVUrl = attribs.getValue(SOURCE_LOC);

}
}

}
catch (AdapterException ae)
{

throw ae;
}
catch (Exception e)
{

throw new AdapterException(e);
}

}

20.4.9 Setting the Name for the Data Control
You need to implement the getDCName method to return a string that is used to
identify the data control instance in the Data Control Palette. getDCName has the
following signature:

Example 20–21 getDCName Signature

public String getDCName();

In the simple CSV adapter, the method just returns the value of the mName class
variable, which was set by the SampleDCDef(String csvURL, String dcName)
constructor. This constructor was called in the SampleDCAdapter class. mName is the
name of the CSV file without the .csv extension.

Example 20–22 getDCName Method

public String getDCName()
{

return mName;
}

Note that each data control instance must have a unique name within an application.
For example, if you have two CSV data controls in an application, you can name them
"CSV1" and "CSV2". For the CSV data control adapter that is shipped with JDeveloper,
the user can enter the name in the wizard. For the simple CSV adapter, the name is the
name of the CSV file without the .csv extension.

20.5 Implement the Data Control Class
The data control class must be able to access the data source based on the metadata
that was saved during design time. This class is instantiated by the
createDataControl method in the data control definition class (see Section 20.4.7,
"Creating an Instance of the Data Control").

Implement the Data Control Class

20-18 Oracle Application Development Framework Developer’s Guide

This class needs to:

■ Extend the abstract class oracle.adf.model.AbstractImpl.

■ Implement one of the following data control interfaces:

20.5.1 Location of JAR Files
The abstract class oracle.adf.model.AbstractImpl is located in the JDEV_
HOME/bc4j/lib/adfm.jar file.

The data control interfaces are located in the JDEV_
HOME/bc4j/lib/adfbinding.jar file.

20.5.2 Data Control Class Outline
The following class outline for a data control class shows the methods you have to
implement:

Example 20–23 Outline for a Data Control Class

import oracle.adf.model.adapter.AbstractImpl;
import oracle.binding.DataControl;
import java.util.HashMap;

public class SampleDataControl extends AbstractImpl implements ManagedDataControl
{

public boolean invokeOperation(java.util.Map map,
oracle.binding.OperationBinding action)

{
// you need to implement this method.
// see Section 20.5.4, "Implementing the invokeOperation Method".

}

public String getName()
{

// you need to implement this method.
// see Section 20.5.5, "Implementing the getName Method".

}

Table 20–1 Data Control Interfaces

Interface When to Use

oracle.binding.DataControl Implement this interface if you do not need to demarcate
the start and end of a request and if you do not need
transactional support.

oracle.binding.ManagedDataControl Implement this interface if you need to demarcate the start
and end of a request. This interface extends DataControl,
which means that you have to implement the methods in
DataControl as well.

oracle.binding.TransactionalDataControl Implement this interface if you need transactional support.
The interface requires you to implement the
rollbackTransaction and commitTransaction
methods, in addition to the methods in the DataControl
interface. (TransactionalDataControl extends the
DataControl interface.)

Implement the Data Control Class

Creating Data Control Adapters 20-19

public void release(int flags)
{

// you need to implement this method.
// see Section 20.5.6, "Implementing the release Method".

}

public Object getDataProvider()
{

// you need to implement this method.
// see Section 20.5.7, "Implementing the getDataProvider Method".

}
}

20.5.3 Complete Source for the SampleDataControl Class
Example 20–24 shows the complete source for the SampleDataControl class.

Example 20–24 Complete Source for the SampleDataControl Class

package oracle.adfinternal.model.adapter.sample;

import java.io.InputStream;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;

import javax.naming.Context;

import oracle.binding.ManagedDataControl;
import oracle.binding.OperationInfo;

import oracle.adf.model.adapter.AdapterException;
import oracle.adf.model.adapter.AbstractImpl;
import oracle.adf.model.adapter.dataformat.CSVHandler;

import oracle.adfinternal.model.adapter.url.SmartURL;

// Data control that represents a URL data source with CSV data format.
public class SampleDataControl extends AbstractImpl

implements ManagedDataControl
{

//URL to access the data source
private String mCSVUrl = null;

public SampleDataControl()
{
}

public SampleDataControl(String csvUrl)
{

mCSVUrl = csvUrl;
}

Implement the Data Control Class

20-20 Oracle Application Development Framework Developer’s Guide

public boolean invokeOperation(java.util.Map map,
oracle.binding.OperationBinding action)

{
Context ctx = null;
try
{

// We are interested of method action binding only.
if (action == null)
{

return false;
}

OperationInfo method = action.getOperationInfo();
// No method defined, we are not interested.
if (method == null)
{

return false;
}

// Execute only when the adapter execute is invoked
if (METHOD_EXECUTE.equals(method.getOperationName()))
{

Object retVal = null;
if (mCSVUrl != null)
{

SmartURL su = new SmartURL(mCSVUrl);
InputStream isData = su.openStream();
CSVHandler csvHandler =

new CSVHandler(isData,true,"UTF-8",",","\"");
Map properties = new HashMap();
retVal = csvHandler.getResult(properties);

}

Map rootDataRow = new java.util.HashMap(2);
rootDataRow.put(SampleDCDef.RESULT_ACC_NAME, retVal);
ArrayList aRes = new ArrayList(2);
aRes.add(rootDataRow);

processResult(aRes.iterator(), map, action);
return true;

}
}
catch (AdapterException ae)
{

throw ae;
}
catch (Exception e)
{

throw new AdapterException(e);
}
return false;

}

/**
* Perform request level initialization of the DataControl.
* @param requestCtx a HashMap representing request context.
*/

Implement the Data Control Class

Creating Data Control Adapters 20-21

public void beginRequest(HashMap requestCtx)
{
}

/**
* perform request level cleanup of the DataControl.
* @param requestCtx a HashMap representing request context.
*/
public void endRequest(HashMap requestCtx)
{
}

/**
* return false as resetState was deferred to endRequest processing
*/
public boolean resetState()
{

return false;
}

/**
* returns the name of the data control.
*/
public String getName()
{

return mName;
}

/**
* releases all references to the objects in the data provider layer
*/
public void release(int flags)
{
}

/**
* Return the Business Service Object that this datacontrol is associated with.
*/
public Object getDataProvider()
{

return null;
}

}

20.5.4 Implementing the invokeOperation Method
You must implement the invokeOperation method in your data control class. The
framework invokes this method when the user runs the view page.

This method is declared in the DataControl interface. The method has the following
signature:

Implement the Data Control Class

20-22 Oracle Application Development Framework Developer’s Guide

Example 20–25 invokeOperation Signature

public boolean invokeOperation(java.util.Map bindingContext,
 oracle.binding.OperationBinding action);

The bindingContext parameter contains the return values fetched from the data
source. The keys for retrieving the values are generated by the framework. Typically
you do not need to process the values unless you need to filter or transform them.

The action parameter specifies the method that generated the values. The method
could be a method supported by the underlying service, as in the case of a web service.
The framework calls the data control even for some built-in actions if the data control
wants to override the default behavior. You can check this parameter to determine if
you need to process the action or not. For data controls that represent data sources that
do not expose methods, the framework creates an action AbstractImpl.METHOD_
EXECUTE to the execute the query for a data control.

The method should return false if it does not handle an action.

In the simple CSV adapter, the invokeOperation method checks that the method is
METHOD_EXECUTE before fetching the data. It invokes the CSVHandler class,
which invokes the CSVParser class, to get the data from the CSV file.

Example 20–26 invokeOperation Method

public boolean invokeOperation(java.util.Map map,
oracle.binding.OperationBinding action)

{
Context ctx = null;
try
{

// We are interested in method action binding only.
if (action == null)
{

return false;
}

OperationInfo method = action.getOperationInfo();
// No method defined, we are not interested.
if (method == null)
{

return false;
}

// Execute only when the adapter execute is invoked
if (METHOD_EXECUTE.equals(method.getOperationName()))
{

Object retVal = null;
if (mCSVUrl != null)
{

SmartURL su = new SmartURL(mCSVUrl);
InputStream isData = su.openStream();
CSVHandler csvHandler =

new CSVHandler(isData, true, "UTF-8", ",", "\"");
Map properties = new HashMap();
retVal = csvHandler.getResult(properties);

}

Implement the Data Control Class

Creating Data Control Adapters 20-23

Map rootDataRow = new java.util.HashMap(2);
rootDataRow.put(SampleDCDef.RESULT_ACC_NAME, retVal);
ArrayList aRes = new ArrayList(2);
aRes.add(rootDataRow);

processResult(aRes.iterator(), map, action);
return true;

}
}
catch (AdapterException ae)
{

throw ae;
}
catch (Exception e)
{

throw new AdapterException(e);
}
return false;

}

Note that invokeOperation calls the processResult method after fetching the
data. See the next section for details.

20.5.4.1 About Calling processResult
invokeOperation should call processResult to provide updated values to the
framework. The method puts the result into the binding context for the framework to
pick up. The method has the following syntax:

Example 20–27 processResult Syntax

public void processResult(Object result,
Map bindingContext,
oracle.binding.OperationBinding action)

In the result parameter, specify the updated values.

In the bindingContext parameter, specify the binding context. This is typically the
same binding context passed into the invokeOperation method.

In the action parameter, specify the operation. This is typically the same action value
passed into the invokeOperation method.

20.5.4.2 Return Value for invokeOperation
Return true from invokeOperation if you handled the action in the method.
Return false if the action should be handled by the framework.

20.5.5 Implementing the getName Method
Implement the getName method to return the name of the data control as used in a
binding context.

This method is declared in the DataControl interface. It has the following signature:

Create any Necessary Supporting Classes

20-24 Oracle Application Development Framework Developer’s Guide

Example 20–28 getName Signature

public String getName();

In the simple CSV adapter, the method simply returns mName, which is a variable
defined in the AbstractImpl class.

Example 20–29 getName Method

public String getName()
{

return mName;
}

20.5.6 Implementing the release Method
The framework calls the release method to release all references to the objects in the
data provide layer.

This method is declared in the DataControl interface. It has the following signature:

Example 20–30 release Signature

public void release(int flags);

The flags parameter indicate which references should be released:

■ REL_ALL_REFS: The data control should release all references to the view and
model objects.

■ REL_DATA_REFS: The data control should release references to data provider
objects.

■ REL_VIEW_REFS: The data control should release all references to view or UI
layer objects.

In the simple CSV data control adapter, the release method is empty. However, if
your data control uses a connection, it should close and release the connection in this
method.

20.5.7 Implementing the getDataProvider Method
This method returns the business service object associated with this data control.

This method is declared in the DataControl interface. It has the following signature:

Example 20–31 getDataProvider Signature

public Object getDataProvider();

In the simple CSV data control adapter, this method just returns null.

20.6 Create any Necessary Supporting Classes
In addition to the required classes, which implement ADF interfaces, you can create
any supporting classes for your adapter, if necessary. The simple CSV adapter includes
two supporting classes: CSVHandler and CSVParser. These classes read and parse
the CSV files into rows and fields. See Section 20.11, "Contents of Supporting Files" for
complete source listing for these classes.

Create an XML File to Define Your Adapter

Creating Data Control Adapters 20-25

20.7 Create an XML File to Define Your Adapter
To define your adapter for JDeveloper, create a file called
adapter-definition.xml and place it in a directory called meta-inf. Note that
the file and directory names are case-sensitive.

A typical adapter-definition.xml file contains the following entries:

Example 20–32 Description of adapter-definition.xml File

<AdapterDefinition>
<Adapter Name="unique name for the adapter"

ClassName="full name of class that implements AbstractAdapter">

<Schema Namespace="name of schema that defines the data control metadata for
this adapter"

Location="location of schema definition file"/>

<Source>
<Type Name="name of source type that the adapter can handle to create a

data control"
JDevNode="full class name of supported node"/>

</Source>

<JDevContextHook Class="full name of class that provides the JDeveloper
context hook, if any"/>

<Dependencies>
<Library Path="full path name of the JAR file that the adapter needs in

order to run"/>
</Dependencies>

</Adapter>
</AdapterDefinition>

The AdapterDefinition tag is the container tag for all adapters.

Each Adapter tag describes an adapter. It has the following attributes:

■ Name specifies a unique name for the adapter. The framework uses this name to
identify the adapter.

■ ClassName specifies the full Java class that implements the AbstractAdapter.

The Schema tag defines the namespace and the schema definition for the adapter
metadata. JDeveloper registers the schema so that the metadata can be validated at
design time. You can define all the namespaces and schemas supported by the
adapters. This is optional.

The Source tag specifies the node (or data source) types that the adapter supports. It
has the following attributes:

■ JDevNode specifies the Java class for the supported node type. This node type can
appear in JDeveloper’s Connection Navigator.

■ Name: any string

The JDevContextHook tag specifies additions to the context menu (the menu that
appears when the user right clicks on the metadata node for the data control instance
in the Structure Pane).

Build Your Adapter

20-26 Oracle Application Development Framework Developer’s Guide

The Dependencies tag lists the library files that your adapter requires during
runtime. The framework adds the library files to the project when the user uses a data
control based on your adapter.

The adapter-definition.xml file for the simple CSV data control adapter looks
like the following:

Example 20–33 adapter-definition.xml File for the Simple CSV Adapter

<AdapterDefinition>
<Adapter Name="oracle.adfm.adapter.SampleDataControl"

ClassName="oracle.adfinternal.model.adapter.sample.SampleDCAdapter">
<Schema Namespace="http://xmlns.oracle.com/adfm/adapter/sample"

Location="/oracle/adfinternal/model/adapter/sample/sampleDC.xsd"/>
<Source>

<Type Name="csvNode" JDevNode="oracle.ide.model.TextNode"/>
</Source>
<Dependencies>

<Library Path="${oracle.home}/jlib/sampledc.jar"/>
</Dependencies>

</Adapter>
</AdapterDefinition>

The sampleDC.xsd file is shown in Section 20.11.1, "sampleDC.xsd".

20.8 Build Your Adapter
You need to add the following libraries to your project in order to build your adapter:

1. In the Project Properties dialog in JDeveloper, select Libraries on the left side.

2. Click Add Library on the right side and add the following libraries:

■ JSR-227 API

■ ADF Model Generic Runtime

■ Oracle XML Parser v2

3. Click Add Jar/Directory on the right side and add the following libraries:

■ JDEV_HOME/ide/lib/ide.jar

■ JDEV_HOME/ide/lib/javatools.jar

■ JDEV_HOME/bc4j/jlib/dc-adapter.jar

20.9 Package and Deploy Your Adapter to JDeveloper
Perform these steps to deploy your adapter to JDeveloper:

1. Create an extension.xml file in the meta-inf directory (the same directory
that contains the adapter-definition.xml file).

You need to do this because you are deploying the adapter as a JDeveloper
extension. You use the extension.xml to add your JAR files to JDeveloper’s
classpath.

The extension.xml file contains the following lines:

Package and Deploy Your Adapter to JDeveloper

Creating Data Control Adapters 20-27

Example 20–34 extension.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<extension xmlns="http://jcp.org/jsr/198/extension-manifest"

id="oracle.adfm.sample-adapters"
version="10.1.3.36.45"
esdk-version="1.0">

<name>ADFm Sample Adapter</name>
<owner>Oracle Corporation</owner>
<dependencies>

<import>oracle.BC4J</import>
<import>oracle.j2ee</import>

</dependencies>
<classpaths>

<classpath>../../BC4J/jlib/dc-adapters.jar</classpath>
<classpath>../../jlib/sampledc.jar</classpath>

</classpaths>

<hooks>
<!-- Adapter-specific data control library definitions -->
<libraries xmlns="http://xmlns.oracle.com/jdeveloper/1013/jdev-libraries">

<library name="Sample Data Control" deployed="true">
<classpath>../../jlib/sampledc.jar</classpath>

</library>
</libraries>

</hooks>
</extension>

For details on the tags in the extension.xml file, see the file JDEV_
HOME/jdev/doc/extension/ide-extension-packaging.html.

2. Create a JAR file that contains the class files for your adapter, the
adapter-definition.xml file, and the extension.xml file. The XML files
must be in a meta-inf directory.

For the simple CSV adapter, the JAR file is called sampledc.jar, and it contains the
following files:

Example 20–35 sampledc.jar

connections.xml
extension/meta-inf/extension.xml
meta-inf/adapter-definition.xml
meta-inf/Manifest.mf
oracle/adfinternal/model/adapter/sample/CSVHandler$1.class
oracle/adfinternal/model/adapter/sample/CSVHandler.class
oracle/adfinternal/model/adapter/sample/CSVParser.class
oracle/adfinternal/model/adapter/sample/SampleDataControl.class
oracle/adfinternal/model/adapter/sample/SampleDCAdapter.class
oracle/adfinternal/model/adapter/sample/SampleDCDef.class

3. Copy the JAR file to the JDEV_HOME/jlib directory.

4. Create another JAR file to contain only the extension.xml file and the manifest file
in the meta-inf directory. For the simple CSV adapter, the JAR file is called
oracle.adfm.sampledc.10.1.3.jar, and it contains the following files:

Location of Javadoc Information

20-28 Oracle Application Development Framework Developer’s Guide

Example 20–36 oracle.adfm.sampledc.10.1.3.jar

meta-inf/extension.xml
meta-inf/Manifest.mf

5. Copy the second JAR file (for example, oracle.adfm.sampledc.10.1.3.jar)
to the JDEV_HOME/jdev/extensions directory.

6. Stop JDeveloper, if it is running.

7. Start JDeveloper. When you right-click on a node type that your adapter supports,
you should see the "Create Data Control" menu item.

If you want more information on JDeveloper extensions, you can download the
Extension SDK:

1. In JDeveloper, choose Help | Check for Updates. This starts the Check for
Updates wizard.

2. On the Welcome page of the wizard, click Next.

3. On the Source page, select Search Update Centers, and select all the locations
listed in that section. Click Next.

4. On the Updates page, select Extension SDK. Click Next to download and install
the extension SDK.

5. On the Summary page, click Finish. You will need to restart JDeveloper so that it
can access the Extension SDK files.

For help on the Extension SDK, open the JDeveloper’s online help, and navigate to
Extending JDeveloper > Extending JDeveloper with the Extension SDK.

20.10 Location of Javadoc Information
The JDeveloper online help provides reference information for the classes described in
this chapter in Javadoc format.

Table 20–2 Location of Javadoc

Class / Interface Location of Javadoc in the Online Help

AbstractDefinition

AbstractImpl

AbstractAdapter

Reference > Oracle ADF Model API Reference > Packages >
oracle.adf.model.adapter > Class Summary

StructureDefinition Reference > Oracle ADF Model API Reference > Packages >
oracle.binding.meta > Interface Summary

DataControl

ManagedDataControl

TransactionalDataControl

Reference > Oracle ADF Model API Reference > Packages > oracle.binding
> Interface Summary

Contents of Supporting Files

Creating Data Control Adapters 20-29

20.11 Contents of Supporting Files
This section shows the contents of the following files:

■ Section 20.11.1, "sampleDC.xsd"

■ Section 20.11.2, "CSVHandler Class"

■ Section 20.11.3, "CSVParser"

20.11.1 sampleDC.xsd
Example 20–37 shows the contents of the sampleDC.xsd file.

Example 20–37 sampleDC.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/adfm/adapter/test"
 xmlns="http://xmlns.oracle.com/adfm/adapter/test"
 elementFormDefault="qualified">
 <xsd:element name="Definition">
 <xsd:complexType>
 <xsd:attribute name="SourceLocation" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

20.11.2 CSVHandler Class
Example 20–38 shows the contents of the CSVHandler class.

Example 20–38 CSVHandler

package oracle.adfinternal.model.adapter.sample;

import java.io.InputStream;

import java.util.Iterator;
import java.util.List;
import java.util.Map;

import oracle.binding.meta.DefinitionContext;
import oracle.binding.meta.StructureDefinition;

import oracle.adf.model.utils.SimpleStringBuffer;

import oracle.adf.model.adapter.AdapterException;
import oracle.adf.model.adapter.dataformat.AttributeDef;
import oracle.adf.model.adapter.dataformat.StructureDef;
import oracle.adfinternal.model.adapter.sample.CSVParser;
import oracle.adf.model.adapter.utils.Utility;

Contents of Supporting Files

20-30 Oracle Application Development Framework Developer’s Guide

/**
 * Format handler for character separated values.
 * <p>
 * This class generates structures according to the JSR 227 specification from
 * a CSV data stream by parsing the data. The data types are guessed from the
 * value of the first data line. It can extract values from a CSV data stream
 * as well.
 * <p>
 * Data controls that deals with CSV data can use this class to generate data
 * and structure.
 *
 * @version 1.0
 * @since 10.1.3
 */
public class CSVHandler
{
 // stream containing the data.
 private InputStream mDataStream;

 // if the first row contains the names
 private boolean mIsFirstRowNames = false;

 // Encoding styles
 private String mEncStyle;

 // Character value separator
 private String mDelimiter;

 // Character used to quote a multi-word string
 private String mQuoteChar;

 // Column names
 private List mColNames = null;

 ////////////////////////////// Constructors //////////////////////////////////

 /**
 * Creats a CSV format handler object.
 *
 * @param is input stream that contains the CSV data.
 * @param isFirstRowNames flag to indicate if the first row of the CSV data
 * can be treated as column names.
 * @param encodingStyle encoding style of the data.
 * @param delim character value separators.
 * @param quoteChar value that can be treated as quote.
 */
 public CSVHandler(
 InputStream is,
 boolean isFirstRowNames,
 String encodingStyle,
 String delim,
 String quoteChar)
 {
 mDataStream = is;
 mIsFirstRowNames = isFirstRowNames;
 mEncStyle = encodingStyle;
 mDelimiter = delim;
 mQuoteChar = quoteChar;
}

Contents of Supporting Files

Creating Data Control Adapters 20-31

 ///////////////////// Impl of FormatHandler //////////////////////////////////

 /**
 * Returns the structure definition extracted for the data format.
 * <p>
 *
 * @param name name of the root structure.
 * @param ctx definition context information.
 * @return the structure information extracted.
 */
 public StructureDefinition getStructure(String name, DefinitionContext ctx)
 {
 StructureDef attrParent = null;
 try
 {
 CSVParser parser;

 if (mEncStyle == null)
 {
 parser = new CSVParser(mDataStream);
 }
 else
 {
 parser = new CSVParser(mDataStream, mEncStyle);
 }

 parser.setSeparators(mDelimiter.toCharArray());
 if (mQuoteChar != null && mQuoteChar.length() != 0)
 {
 parser.setQuoteChar(mQuoteChar.charAt(0));
 }

 // Get the column names
 Iterator colNames = getColNames(parser).iterator();

 // Create the structure definition
 attrParent = new StructureDef(name);

 // Parse the data to get the attributes
 if (mIsFirstRowNames)
 {
 parser.nextLine();
 }

 String[] vals = parser.getLineValues();
 if (vals != null)
 {
 int i = 0;
 while (colNames.hasNext())
 {
 String type = "java.lang.String";
 if (i < vals.length)
 {
 type = checkType(vals[i]);
 ++i;
 }

Contents of Supporting Files

20-32 Oracle Application Development Framework Developer’s Guide

 AttributeDef attr =
 new AttributeDef((String) colNames.next(), attrParent, type);
 attrParent.addAttribute(attr);
 }
 }
 else
 {
 while (colNames.hasNext())
 {
 AttributeDef attr =
 new AttributeDef((String) colNames.next(),
 attrParent, "java.lang.String");
 attrParent.addAttribute(attr);
 }
 }
 }
 catch (Exception e)
 {
 throw new AdapterException(e);
 }
 return attrParent;

 }

 /**
 * Returns the resulting data extracted from the input.
 * @param params parameters passed containig the context information.
 * @return <code>Iterator</code> of <code>Map</code> objects for the result.
 * If no data found it can return null. The <code>Map</code>
 * contains the value of attributes as defined in the data structure.
 * For complex data, <code>Map</code>s can contain other iterator of
 * <code>Map</code>s as well.
 */
 public Iterator getResult(Map params)
 {
 try
 {
 final CSVParser parser;
 if (mEncStyle == null)
 {
 parser = new CSVParser(mDataStream);
 }
 else
 {
 parser = new CSVParser(mDataStream, mEncStyle);
 }

 parser.setSeparators(mDelimiter.toCharArray());
 if (mQuoteChar != null && mQuoteChar.length() != 0)
 {
 parser.setQuoteChar(mQuoteChar.charAt(0));
 }

 final List cols = getColNames(parser);
 final boolean bEndOfData = (mIsFirstRowNames) ? !parser.nextLine() : false;

Contents of Supporting Files

Creating Data Control Adapters 20-33

 //return the data iterator
 return new Iterator()
 {
 CSVParser _parser = parser;
 Iterator _colNames = cols.iterator();
 boolean _eof = bEndOfData;

 public void remove()
 {
 }

 public boolean hasNext()
 {
 return !_eof;
 }

 public Object next()
 {
 try
 {
 if (_eof)
 {
 return null;
 }

 java.util.HashMap map = new java.util.HashMap(5);

 // Create the current row as Map
 String[] data = _parser.getLineValues();
 int i = 0;
 while (_colNames.hasNext())
 {
 String val = null;
 if (i < data.length)
 {
 val = data[i];
 }

 map.put(_colNames.next(), val);
 i++;
 }

 // get the next data line.
 _eof = !_parser.nextLine();

 return map;
 }
 catch (Exception e)
 {
 throw new AdapterException(e);
 }
 }

 };

 }

Contents of Supporting Files

20-34 Oracle Application Development Framework Developer’s Guide

 catch (AdapterException ae)
 {
 throw ae;
 }
 catch (Exception e)
 {
 throw new AdapterException(e);
 }
 }

 //==
 // Class Helper Methods
 //==

 /**
 * Attempts to obtain the Java type from the string value.
 * @param data String value whose datatype has to be guessed.
 * @return Java type name.
 */
 private String checkType(String data)
 {
 try
 {
 // We first try to convert the value into a long number.
 // If successful, we will use long; if it throws NumberFormatException,
 // we will attempt to convert it to float. If this too fails, we return
 // string.
 if (data != null)
 {
 try
 {
 // Try to conver the value into an integer number.
 long numTest = Long.parseLong(data);
 return "java.lang.Long"; //NOTRANS
 }
 catch (NumberFormatException nfe)
 {
 // Try to convert the value into float number.
 float numTest = Float.parseFloat(data);
 return "java.lang.Float"; //NOTRANS
 }
 }
 else
 {
 return "java.lang.String"; //NOTRANS
 }
 }
 catch (NumberFormatException nfe)
 {
 // If conversion failed, we assume this is a string.
 return "java.lang.String";
 }
 }

Contents of Supporting Files

Creating Data Control Adapters 20-35

 /**
 * Gets the column names.
 */
 /**
 * Gets the column names.
 */
 private List getColNames(CSVParser parser)
 {
 try
 {
 if (mColNames == null)
 {
 // Get the first row. If the first row is NOT the column names, we need
 // to generate column names for them.

 if (!parser.nextLine())
 {
 // No data found.
 // ToDo: resource
 new Exception("No data");
 }

 mColNames = new java.util.ArrayList(10);

 String[] cols = parser.getLineValues();
 if (mIsFirstRowNames)
 {
 makeValidColumnNames(cols);
 for (int i = 0; i < cols.length; i++)
 {
 mColNames.add(cols[i]);
 }
 }
 else
 {
 for (int i = 0; i < cols.length; i++)
 {
 String colName =
 new SimpleStringBuffer(20).append("Column").append(i).toString();
 mColNames.add(colName);
 }
 }
 }

 return mColNames;
 }
 catch (Exception e)
 {
 throw new AdapterException(e);
 }
 }

Contents of Supporting Files

20-36 Oracle Application Development Framework Developer’s Guide

 /**
 * Make valid column names for all columns in CSV data source.
 *
 * This method applies the following rules to translate the given string
 * to a valid column name which can be accepted by EL:
 *
 * 1. If the first character of the string is digit,
 * prefix the string with '_'.
 * 2. Translate any characters other than letter, digit, or '_' to '_'.
 *
 *
 */
 private String[] makeValidColumnNames(String[] cols)
 {
 for (int i = 0; i <cols.length; i++)
 {
 // Trim out leading or ending white spaces
 if (cols[i] != null && cols[i].length() > 0)
 {
 cols[i] = cols[i].trim();
 }

 if (cols[i] == null || cols[i].length() == 0)
 {
 // Default as "column1", "column2", ... if column name null
 cols[i] = new SimpleStringBuffer("column").append(i+1).toString();
 }
 else
 {
 // Check special characters
 try
 {
 cols[i] = Utility.normalizeString(cols[i]);
 }
 catch (Exception e)
 {
 // On error, simply default to "columnX".
 cols[i] = new SimpleStringBuffer("column").append(i+1).toString();
 }
 }
 }
 return cols;
 }

}

Contents of Supporting Files

Creating Data Control Adapters 20-37

20.11.3 CSVParser
Example 20–39 shows the contents of the CSVParser class.

Example 20–39 CSVParser

package oracle.adfinternal.model.adapter.sample;

import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.LineNumberReader;
import java.util.ArrayList;

import oracle.adf.model.utils.SimpleStringBuffer;

public final class CSVParser
{
 /////////////////////////////// Constants ////////////////////////////////////

 /** UTF8 encoding, used for hadling data in different languages. */
 public static final String UTF8_ENCODING = "UTF8";

 /** Quote character */
 private static char CHAR_QUOTE = '"';

 /** Comma (seperator) character */
 private static char CHAR_COMMA = ',';

 /////////////////////////////// Class Variables //////////////////////////////

 /**
 * CSV stream reader
 */
 private LineNumberReader mReader;

 /** Buffer to store one line of values. */
 private ArrayList mValueArrayList = new ArrayList();

 /** Buffer to store one string value. */
 private SimpleStringBuffer mValueBuffer = new SimpleStringBuffer(256);

 /** Current processed line. */
 private String mLine = null;

 /** Current character position in the current line. */
 private int mLinePosition = -1;

 /** Length of current line. */
 private int mLineLength = 0;

 /** If last character is comma. */
 private boolean mLastCharIsComma = false;

 /** Value separator character set. The separator can be one of these values.*/
 private char[] mSepCharSet = {CHAR_COMMA};

 /** Quote character. */
 private char mQuoteChar = CHAR_QUOTE;

Contents of Supporting Files

20-38 Oracle Application Development Framework Developer’s Guide

 ////////////////////////////// Constructors //////////////////////////////////

 /**
 * Constructor
 *
 * @param pInputStream CSV input stream
 * @throws Exception any error occurred
 */
 public CSVParser(InputStream pInputStream) throws Exception
 {
 // If no encoding is passed in, use "UTF-8" encoding
 this(pInputStream, UTF8_ENCODING);
 }

 /**
 * Constructor
 *
 * @param pInputStream CSV input stream
 * @param pEnc character encoding
 * @throws Exception any error occurred
 */
 public CSVParser(InputStream pInputStream, String pEnc) throws Exception
 {
 if (pInputStream == null)
 {
 throw new Exception("Null Input Stream."); //TODO: Resource
 }

 mReader = new LineNumberReader(new InputStreamReader(pInputStream, pEnc));
 }

 ///////////////////////////// Public Methods /////////////////////////////////

 /**
 * Sets the separator characters as a list of possible separators for the
 * data. CSV data may have more than one separators. By default this parser
 * considers comma (,) as the data separator.
 * @param seps Array of separator charactors.
 */
 public void setSeparators(char[] seps)
 {
 if ((seps != null) && (seps.length > 0))
 {
 mSepCharSet = seps;
 }
 }

 /**
 * Sets the quote character.
 * @param ch Quote character.
 */
 public void setQuoteChar(char ch)
 {
 mQuoteChar = ch;
 }

Contents of Supporting Files

Creating Data Control Adapters 20-39

 /**
 * Moves to the next line of the data.
 * @return returns false if the end of data reached.
 * @throws Exception any error occurred
 */
 public boolean nextLine() throws Exception
 {
 setLine(mReader.readLine());
 if (mLine == null)
 {
 // End of file
 mValueArrayList.clear();
 return false;
 }

 parseLine();

 return true;
 }

 /**
 * Gets values of next line.
 * @return next line elements from input stream. If end of data reached,
 * it returns null.
 * @throws Exception any error occurred
 */
 public String[] getLineValues() throws Exception
 {
 if (mValueArrayList.size() > 0)
 {
 String[] ret = new String[mValueArrayList.size()];
 return (String[]) mValueArrayList.toArray(ret);
 }

 return null;
 }

 //////////////////////////// Class Helpers ///////////////////////////////////

 /**
 * Checks if the character is a valid separator.
 */
 private boolean isSeparator(char ch)
 {
 for (int i = 0; i < mSepCharSet.length; i++)
 {
 if (ch == mSepCharSet[i])
 {
 return true;
 }
 }

 return false;
 }

 /**
 * Tests if end of line has reached.
 * @return true if end of line.

Contents of Supporting Files

20-40 Oracle Application Development Framework Developer’s Guide

 */
 public boolean isEndOfLine()
 {
 // If last char is comma, must return at least one more value
 return (mLinePosition >= mLineLength) && (!mLastCharIsComma);
 }

 /**
 * Sets current line to be processed
 *
 * @param line the line to be processed
 */
 private void setLine(String line)
 {
 mLine = line;

 if (line != null)
 {
 mLineLength = line.length();
 mLinePosition = 0;
 }

 }

 /**
 * If next character is quote character
 *
 * @return true if next character is quote
 */
 private boolean isNextCharQuote()
 {
 if ((mLinePosition + 1) >= mLineLength)
 {
 // no more char in the line
 return false;
 }
 else
 {
 char ch = mLine.charAt(mLinePosition + 1);
 if (ch == mQuoteChar)
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 }

Contents of Supporting Files

Creating Data Control Adapters 20-41

 /**
 * Parse one line.
 *
 * @return values of the line
 * @throws Exception any error occurred
 */
 private void parseLine() throws Exception
 {
 mValueArrayList.clear();

 String[] values = null;
 String value = null;

 while (!isEndOfLine())
 {
 value = getNextValue();
 mValueArrayList.add(value);
 }
 }

 /**
 * Gets next value from current line.
 * @return next data value.
 */
 private String getNextValue() throws Exception
 {
 mLastCharIsComma = false;

 // Clean up value buffer first
 if (mValueBuffer.length() > 0)
 {
 mValueBuffer.setLength(0);
 }

 boolean insideQuote = false;
 boolean firstChar = true;
 boolean endValue = false;

 // Scan char by char
 while ((mLinePosition < mLineLength) && !endValue)
 {
 boolean copyChar = true;
 char ch = mLine.charAt(mLinePosition);

 // If first char
 if (firstChar)
 {
 // Only check quote at first char
 if (ch == mQuoteChar)
 {
 insideQuote = true;
 copyChar = false;
 }

Contents of Supporting Files

20-42 Oracle Application Development Framework Developer’s Guide

 // Also need to check comma at first char
 else if (isSeparator(ch))
 {
 copyChar = false;
 endValue = true;
 mLastCharIsComma = true;
 }

 firstChar = false;
 }
 // Not first char but inside quote
 else if (insideQuote)
 {
 // Check end quote
 if (ch == mQuoteChar)
 {
 copyChar = false;
 // Two sucesstive quote chars inside quote means quote char itself
 if (isNextCharQuote())
 {
 mLinePosition++;
 }
 // Otherwise it is ending quote
 else
 {
 insideQuote= false;
 }
 }
 }
 // Not first char and outside quote
 else
 {
 // Check comma
 if (isSeparator(ch))
 {
 copyChar = false;
 endValue = true;
 mLastCharIsComma = true;
 }
 }

 if (copyChar)
 {
 mValueBuffer.append(ch);
 }

 mLinePosition++;
 }

 if (mValueBuffer.length() > 0)
 {
 return mValueBuffer.toString();
 }
 else
 {
 return null;
 }
 }

}

Working with Web Services 21-1

21
Working with Web Services

This chapter contains advice for using web services with ADF projects, and general
advice for creating and using web services in JDeveloper

This chapter includes the following sections:

■ Section 21.1, "What are Web Services"

■ Section 21.2, "Creating Web Service Data Controls"

■ Section 21.3, "Securing Web Service Data Controls"

21.1 What are Web Services
Web services is the term for a technology that consists of a set of messaging protocols
and programming standards that expose business functions over the Internet using
open XML-based standards, and an individual web service is a discrete, reusable
software component that is accessed programmatically over the Internet, using HTTP
or sometimes SMTP, to return a response.

Web services allow enterprises to expose business functionality irrespective of the
platform or language of the originating application because the business functionality
is exposed in such a way that it is abstracted to a message composed of standard XML
constructs that can be recognized and used by other applications.

Oracle ADF has built in support to use web services as business service providers in
applications. For example, an application could:

■ Use some functionality in an application run by another company and exposed as
a web service to provide business-to-business e-commerce.

■ Use web service made available through a site such as Xmethods.com to provide
some standard functionality.

■ Find a web service that provides the specified functionality in a UDDI registry and
use it at runtime.

You can use Oracle ADF to build applications that target one or all of the tiers in the
J2EE platform using your choice of implementation technologies. Using ADF to
implement your business services, you gain the additional flexibility to be able to
expose parts of your application as web services at any time without code changes.

What are Web Services

21-2 Oracle Application Development Framework Developer’s Guide

Factors influencing the decision to deploy a component as a web service are:

■ Web services separate the application from the underlying architecture.

■ Web services are lightweight, which can result in improved performance across
the Internet or an intranet.

■ Web services technology is designed to use the Web infrastructure, including
HTTP.

It is useful to describe the XML standards on which web services are based.

21.1.1 SOAP
The Simple Object Access Protocol (SOAP) is a lightweight XML-based protocol that is
used for the sending and receiving over messages of a transport protocol, usually
HTTP or SMTP. The SOAP specification, which you can see at web site of the World
Wide Web Consortium, provides a standard way to encode requests and responses. It
describes the structure and data types of message payloads using XML Schema.

A SOAP message is constructed of the following components:

■ A SOAP envelope that contains the SOAP body, the important part of the SOAP
message, and optionally a SOAP header.

■ A protocol binding that specifies how the SOAP envelope is sent, that in the case
of web services generated in JDeveloper, is via HTTP.

Web services use SOAP, the XML protocol for expressing data as XML and
transporting it across the Internet using HTTP, and SOAP allows for more than one
way of converting data to XML and back again. JDeveloper supports SOAP RPC
encoding, SOAP RPC-literal style, and document-literal style (also known as message
style).

The web services you create in JDeveloper can be either for deployment on Oracle
SOAP, which is based on Apache SOAP 2.2 and is part of the Oracle Application
Server, or to the SOAP server, which is one of the OC4J containers in Oracle
Application Server.

21.1.2 WSDL
The Web Services Description Language (WSDL) is an XML language used to describe
the syntax of web service interfaces and their locations. You can see the WSDL v1.1
specification at the web site of the World Wide Web Consortium. Each web service has
a WSDL document that contains all the information needed to use the service, the
location of the service, its name, and information about the methods that the web
service exposes. When you use one of JDeveloper's web service publishing wizards to
produce your web service, the WSDL document for your service is automatically
generated.

21.1.3 UDDI
Universal Description, Discovery and Integration (UDDI) provide a standards-based
way of locating web services either by name, or by industry category. UDDI registries
can be public, for example the public UDDI registries that are automatically available
from JDeveloper, or private, such as a UDDI registry used within an organization. This
version of JDeveloper only supports web service discovery using UDDI, however
future versions will provide full support for UDDI registration. You can see the UDDI
v2 specification at http://www.uddi.org/.

http://www.uddi.org/

What are Web Services

Working with Web Services 21-3

JDeveloper's UDDI browser, in the Connections Navigator, stores information about a
UDDI registry and allows you to search a UDDI registry using search criteria that you
specify to find web services that are described by WSDLs.

You can create your own registry connections to another public UDDI registry, or to a
private UDDI registry within your organization. This creates a connection descriptor
properties file that contains the enquiry endpoint and the business keys of the registry.
You can find this file at <JDEV_INSTALL>/system<release_and_build_
number>/uddiconnections.xml, where <JDEV_INSTALL> is the root directory in
which JDeveloper is installed.

JDeveloper's Find Web Service wizard browses UDDI registries to find web services by
either name or category. You must have an appropriate connection from your machine
so that JDeveloper can make a connection to the UDDI registry you select, for example,
a connection to the internet if you want to search a public UDDI registry, and you can
only generate a stub to a web service that has a tick in the Is WSDL? column that
identifies the registry entry as being defined by a WSDL document.

When you use UDDI registries a term you will come across, and that you may be
unfamiliar with, is tModel, short for Technical Model. This represents the technical
specification of a web service, and when you search for a web service using the Find
Web Service wizard, the wizard also displays other web services that are compatible
with the same tModel.

The data structure types used in UDDI are:

■ Service Details This section gives information about the service, including the
name.

■ Business Entity This is the top-level data structure called businessEntity that
contains information about the business providing the web service.

■ Service Bindings contains the bindingTemplate, that contains information about
the service access point, and the tModel that gives the technical specification of the
web service.

When the Find Web Services wizard finds a web service, it lists all web services that
are compatible with the same tModel.

21.1.4 Web Services Interoperability
A key issue facing web services is how interoperable web services actually are. The
key feature of web services is that they use common standards to avoid the problems
that earlier solutions to getting different applications to be able to use each other's
components, for example CORBA, had. However the standards themselves have been
being written at the same time as the organizations have been starting to write, deploy
and use web services. This has led to interoperability issues such as web services being
written using different standards, for example, not using WSDL to provide web
service information.

The Web Services-Interoperability Organization (WS-I) was formed by Oracle and
other industry leaders to address these issues of interoperability, and to provide tools
so that web services can be tested to see how well they interoperate. JDeveloper helps
you to test the interoperability of web services by analyzing a web service for
conformity to the WS-I Basic Profile 1.0. First you have to download a WS-I compliant
analyzer. There are a number of these available from independent vendors, and one
from the WS-I web site. A set of test assertions is used to find out how well a web
service conforms to the basic profile, and information is recorded for the following
artifacts:

Creating Web Service Data Controls

21-4 Oracle Application Development Framework Developer’s Guide

■ Discovery when a web service has been found using a UDDI registry. If the service
has not been found using the Find Web Services wizard, this section of the report
returns errors in the Missing Input section.

■ Description of a web service's WSDL document, where the different elements of
the document are examined and non-conformities are reported. An example of a
failure in this section is a failure of assertion WSI2703, that gives the message
"WSDL definition does not conform to the schema located at
http://schemas.xmlsoap.org/wsdl/soap/2003-02-11.xsd for some
element using the WSDL-SOAP binding namespace, or does not
conform to the schema located at
http://schemas.xmlsoap.org/wsdl/2003-02-11.xsd for some
element using the WSDL namespace."

■ Message that tests the request and response messages when the connection is
made to the web service and it sends its reply.

For more information about WS-I including the specification, see the web site of The
Web Services-Interoperability Organization (WS-I) at ws-i.org.

21.2 Creating Web Service Data Controls
The most common way of using web services in an application developed using
Oracle ADF is to create a data control for an external web service, and a usual reason
for this is to add functionality that is readily available as a web service but which
would be time consuming to develop with the application, or to access an application
that runs on a different architecture.

Also, you can re-use components created by Oracle ADF to make them available as
web services for other applications to access.

21.2.1 How to Create a Web Service Data Control
JDeveloper allows you to create a data control for an existing web service using just
the WSDL for the service. You can browse to a WSDL on the local file system, locate
one in a UDDI registry, or enter the WSDL URL directly.

To create a web service data control:
1. In the Application Navigator, right-click an application and choose New.

2. In the New Gallery, expand Business Tier in the Categories tree, and select Web
Services.

3. In the Items list, double-click Web Service Data Control.

4. Follow the wizard instructions to complete creating the data control.

Alternatively, you can right-click on the WSDL node in the navigator and choose
Create Data Control from the context menu.

Note:

If you are working behind a firewall and you want to use a web
service that is outside the firewall, you must configure the
Web/Browser Proxy settings in JDeveloper. Refer to the JDeveloper
online help for more information.

Securing Web Service Data Controls

Working with Web Services 21-5

21.3 Securing Web Service Data Controls
Web services allow applications to exchange data and information through defined
application programming interfaces. SSL (Secure Sockets Layer) provides secure data
transfer over unreliable networks, but SSL only works point to point. Once the data
reaches the other end, the SSL security is removed and the data becomes accessible in
its raw format. A complex web service transaction can have data multiple messages
being sent to different systems, and SSL cannot provide the end-to-end security that
would keep the data invulnerable to eavesdropping.

Any form of security for web services has to address the following issues:

■ The authenticity and integrity of data

■ Data privacy and confidentiality

■ Authentication and authorization

■ Non-repudiation

■ Denial of service attacks

21.3.1 WS-Security Specification
The WS-Security specification unifies multiple security technologies to make secure
web services interoperable between systems and platforms. The specification can be
viewed at
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-mes
sage-security-1.0.pdf.

WS-Security addresses the following aspects of web services security issues:

■ Authentication and Authorization

The identity of the sender of the data is verified, and the security system ensures
that the sender has privileges to perform the data transaction.

The type of authentication can be a basic username password pair transmitted in
plain text, or trusted X509 certificate chains. SAML assertion tokens can also be
used to allow the client to authenticate against the service, or allow it to participate
in a federated SSO environment, where in authenticated details are be shared
between domains in a vendor independent manner

■ Data Authenticity, Integrity and Non-Repudation

XML digital signatures, which use industry standard messages, digest algorithms
to digitally sign the SOAP message.

■ Data Privacy

XML encryption that uses industry standard encryption algorithms to encrypt the
message.

■ Denial of Service Attacks

Defines XML structures to time stamp the SOAP message. The server uses the time
stamp to invalidate the SOAP message after a defined interval.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Securing Web Service Data Controls

21-6 Oracle Application Development Framework Developer’s Guide

Throughout this section the "client" is the web service data control, which sends SOAP
messages to a deployed web service. The deployed web service may be:

■ a web service deployed on OC4J for testing purposes.

■ web service running on Oracle Application Server.

■ A web service running anywhere in the world that is accessible through the
Internet

21.3.2 Creating and Using Keystores
An ADF 10.1.3 Web Services data control can be configured for message level security
using either Java Key Store (JKS), or the Oracle Wallet. For information on setting up
and using Oracle Wallet, see the Oracle Technology Network at
www.oracle.com/technology.

This section describes:

■ Creating a keystore using the J2SE 1.4 Keytool utility

■ Building a keystore private/public key pairs, which are used for encryption and
signing.

■ How to obtain a Certificate to issue digital signatures from a root certificating
authority.

■ How to import the Certificate into the keystore.

■ How to export the Certificate with the public key for encryption.

This is illustrated by creating two keystores, one to be configured on the server side,
and the other on the client side (the data control side).

21.3.2.1 How to Create a Keystore
To create a public private key pair that can be used by the client for encryption and
signing, at the command prompt run the following:

Example 21–1 Command to Create a Keystore

keytool -genkey -alias clientenckey clientsignkey -keyalg RSA -sigalg SHA1withRSA
-keystore client.jks

The keystore utility will prompt you for the keystore password, and then asks
questions to determine the distinguished name (DN), which is a unique identifier and
consists of the following components:

■ CN= common name. This must be a single name without spaces or special
characters.

■ OU=organizational unit

■ O=organization name

Note: The steps outlined in this section for requesting digital
certificates is for test purposes only. Deployments intending to use
Web Services data control with digital signatures enabled must ensure
that trusted certificates are generated compliant to the security
policies of the deployment environment.

Securing Web Service Data Controls

Working with Web Services 21-7

■ L=locality name

■ S=state name

■ C=country, a two letter country code

After you answer the questions, the Keytool utility will prompt you for the key
password. If the key password is the same as the keystore password, press Enter
without entering a value. Otherwise, enter the key password. After you enter the key
password, the keystore file client.jks is created in the current directory. It contains a
single key pair with the alias clientenckey which can be used to encrypt the SOAP
requests from the data control.

Next, create a key pair for digitally signing the SOAP requests made by the data
control. At the command prompt run the command again, but use clientsignkey for
the alias of the signing key pair.

To list the key entries in the keystore, run the following:

Example 21–2 Command to List Key Pairs in the Keystore

keytool -list -keystore client.jks

The Keytool utility will prompt you for the store password. Enter the password that
was used to create the keystore. Repeat the commands to create a keystore for the
server side, and use serverenckey for the encryption key pair, and serversignkey for
the signing key pair.

21.3.2.2 How to Request a Certificate
The keytool, by default, generates a self-signed certificate, that is a certificate whose
issuer is the same as the generator of the key.

If your public key is to be distributed to the outside world, to allow verification of the
digital signatures you have issued, then a trusted Certificate Authority (CA) must
issue a certificate vouching your identity on your public key. To do this, create a
Certificate request file for the signature key pair you have created and submit the
request file to a CA.

At the command prompt, run the following:

Example 21–3 Command to Create a Certificate Request File

keytool -certreq -file clientsign.csr -alias clientsignkey -keystore client.jks

The Keytool utility will prompt you for the store and key passwords. After you enter
the passwords, a certificate request is generated in a file called clientsign.csr for the
public key aliased by clientsignkey.

When you are developing your application, you can use a CA such as Verisign to
request trial certificates. Go to www.verisign.com, navigate to Free SSL Trial Certificate
and create a request. You must enter the same DN information you used when you
created the keystore. Verisign's certificate generation tool will ask you to paste the
contents of the certificate request file generated by the keytool (in this case,
clientsign.csr). Once all the information is correctly provided, the certificate will be
sent to the email ID you have provided, and you have to import it into the keystore.

Open the contents of the certificate in a text editor, and save the file as
clientsign.cer.

You also have to import the root certificate issued by Verisign into the keystore. The
root certificate is needed to complete the certificate chain up to the issuer.

Securing Web Service Data Controls

21-8 Oracle Application Development Framework Developer’s Guide

The root certificate vouches the identity of the issuer. Follow the instructions in the
email you received from Verisign to access the root certificate, and paste the contents
of the root certificate into a text file called root.cer.

Once you have the root.cer and clientsign.cer files created, run the following command
to import the certificates into your keystore:

Example 21–4 Importing the Root Certificate

keytool -import -file root.cer -keystore client.jks

The Keytool utility will prompt you for the store password. Next you must import
your public key certificate.

Import your public key certificate next.

Example 21–5 Importing the Public Key Certificate

keytool -import -file clientsign.cer -alias clientsignkey -keystore client.jks

The Keytool utility will prompt you for the store and key password. After entering the
passwords, execute the same commands to set up the trusted certificate chain in the
server keystore.

Perform the same commands steps to set up the trusted certificate chain in the server
keystore.

Once the certificate chains are set up, the client and sever are ready to issue digitally
signed SOAP requests.

21.3.2.3 How to Export a Public Key Certificate
The server must export its public key to the client so the client can encrypt the data it
sends to the server. The server can then use its corresponding private key to decrypt
the data. The server’s public key certificate is imported into the client keystore.

At the command prompt, run the following:

Example 21–6 Command to Export the Server’s Public Key Certificate

keytool -export -file serverencpublic.cer -alias serverenckey -keystore server.jks

The Keytool utility will prompt you for the store password.

In this example, clientencpublic.cer contains the public key certificate of the
client's encryption key. To import this certificate in the server's keystore, run the
following:

Example 21–7 Command to Import Client’s Encription Key

keytool -import -file serverencpublic.cer -alias serverencpublic -keystore
client.jks

The Keystore utility will prompt you for the store password.

Note:

Trusted certificates are mandatory when issuing digital signatures on
the SOAP message. You cannot issue digital signatures with
self-signed/untrusted certificates in your keystore.

Securing Web Service Data Controls

Working with Web Services 21-9

Similarly, the client must export its public key so that it can be imported into the
server’s keystore.

Example 21–8 Command to Export the Client’s Public Key Certificate

keytool -export -file clientencpublic.cer -alias clientenckey -keystore client.jks

The Keytool utility will prompt you for the store password.

Example 21–9 Command to Import the Public Key Certificate

keytool -import -file clientencpublic.cer -alias clientencpublic -keystore
server.jks

The server and client keystores are now ready to be used to configure security for the
web service data control.

The Keytool utility will prompt you for the keystore password.

21.3.3 Defining Web Service Data Control Security
Once you have a web services data control in a JDeveloper project, you can define
security using the Data Control Security wizard.

To invoke the data control security wizard:
1. Select the web service data control in the Application Navigator.

2. In the Structure window, right-click the web service data control, and choose
Define Web Service Security.

3. Consult the following sections for more information, or click F1 or Help in the
wizard for detailed information about a page of the wizard.

Figure 21–1 Invoking the Data Control Security Wizard

Securing Web Service Data Controls

21-10 Oracle Application Development Framework Developer’s Guide

21.3.3.1 How to Set Authentication
WS-Security allows for service level authentication by using either username tokens or
binary tokens. In addition to these, the web service client can issue SAML assertion
tokens that can be used for server side authentication, or for participation in a
federated SSO environment.

Figure 21–2 Select the Type of Authentication

21.3.3.1.1 Testing Authenticated Web Service Data Controls on OC4J

Oracle's WS-Security implementation is integrated with JAZN (JAAS) to achieve the
authentication. How authentication using a certificate is done depends on the
implementation and integration with the platform security system. This section
discusses configuring OC4J as the server where the application is deployed.

For Username Token authentication, username/password pair must be a trusted user
entry in the JAZN repository.

For X509 Token authentication, the CN (Common Name) on whom the Certificate is
issued must be a trusted user in the JAZN repository.

For SAML authentication, the user must be a valid user in the JAZN repository.

To edit the JAZN repository:
■ Open <JDEV_INSTALL>/J2EE/home/system-jazn-data.xml and enter the

authentication details. For example, for X509 authentication, make an entry under
the <users> section similar to:

Note: When the application is deployed to Oracle Application
Server, the administrator should use the security editing tool to add
users to the security system, grouping them in the appropriate role
and granting appropriate privileges. This example of manually editing
system-jazn-data.xml is just for testing, and not recommended
for working applications.

Securing Web Service Data Controls

Working with Web Services 21-11

<user>
 <name>King</name>
 <display-name>OC4J Administrator</display-name>
 <description>OC4J Administrator</description>
 <credentials>{903}/LptVQLDeA5sgZFLL5TKlr/qjVFPxB42</credentials>
</user>

21.3.3.1.2 Username Tokens

Username tokens provide basic authentication of a username/password pair. The
passwords can be transmitted as plain text or digest.

Oracle's WS-Security implementation is integrated with JAZN (JAAS) to achieve the
authentication. The username/password pair must be a trusted user entry in the JAZN
repository.

To use username tokens for authentication:
1. In the Authentication page of the wizard, under Available Operations, select one

or more ports or operations to apply the authentication to.

2. Select the authentication type as the Username Token.

3. Enter the remaining information required for username authentication.

21.3.3.1.3 X509 Certificate Authentication

An X509 certificate issued by a trusted CA is a binary security token which can be
used to authenticate the client. The client sends its X509 certificate with a digital
signature, which is used by the server for authentication. The X509 certificate chain
associated with signature key is used for authentication.

You must have the keystore file, with the root certificate of the CA, installed on the
server.

To use X509 certificate authentication:
1. In the Authentication page of the wizard, select the authentication type as the

X509 Token.

2. In the Keystore page of the wizard, and specify the location of the keystore file,
and enter the signature key alias and password.

21.3.3.1.4 SAML Assertion Tokens

SAML assertion tokens can be used to allow client to authenticate against the web
service, or allow the client to participate in a federated SSO environment, where

Note: This is not the same as HTTP basic or digest authentication.
The concept is similar, but it differs in that the recipient of HTTP
authentication is the HTTP server, whereas for the web service data
control, the username tokens are passed with the message, and the
recipient is the target web service.

Note: An X509 certificate can only be configured at port level, unlike
the other authentication types that can be configured at port or
operation level.

Securing Web Service Data Controls

21-12 Oracle Application Development Framework Developer’s Guide

authenticated details can be shared between domains in a vendor independent
manner.

To use SAML authentication:
1. In the Authentication page of the wizard, select the authentication type as the

SAML Token.

2. The Subject Name is the username name against which the SAML Assertions will
be issued.

3. You can choose Confirmation method as SENDER-VOUCHES or
SENDER-VOUCHES-UNSIGNED:

■ ISENDER-VOUCHES (default). The SAML tokens must be digitally signed.
This is the preferred method to issue SAML tokens. If you choose this
confirmation technique, then you must configure a keystore and enter
keystore and signature key information on the Keystore page of the wizard.

■ SENDER-VOUCHES-UNSIGNED. The SAML tokens are transmitted without
any digital signatures. If you choose this confirmation technique, then you
need not configure a keystore and signature key.

21.3.3.2 How to Set Digital Signatures
You can configure digital signatures on the outgoing SOAP messages, and verify
digital signatures on the incoming message from the web service your application is
contacting. You can also enforce an expiration window for the digital signatures.

Figure 21–3 Set a Digital Signature

Note: SAML Assertions will not be issued if the user identity cannot
be established by JAZN.

Securing Web Service Data Controls

Working with Web Services 21-13

You can set a digital signature on the outgoing SOAP message at port or operation
level in the Message Integrity page of the wizard, and verify the digital signatures
from the incoming message of the web service.

To sign the SOAP request, and verify the signature of the SOAP response:
1. In the Message Integrity page of the wizard, select the appropriate options.

2. In the Keystore page of the wizard, and specify the location of the keystore file,
and enter the signature key alias and password.

21.3.3.3 How to Set Encryption and Decryption
When you create a web service in JDeveloper, you can set security options in the Web
Services Editor. These are then applied at the server side once the web service is
deployed. Refer to the JDeveloper online help for complete information.

Before deploying the web service, run the editor and configure encryption and
decryption details on the web service. Ensure that you have specified the client's (that
is, the data control's) public key to be used for encryption.

Figure 21–4 Set Encryption and Decryption

You can encrypt and outgoing SOAP message at port or operation level in the Message
Confidentiality page of the wizard, and decrypt the incoming message from the web
service.

To encrypt the SOAP request, and decrypt the SOAP response:
1. In the Message Confidentiality page of the wizard, select the appropriate options.

The encryption algorithm you select must be the same as that configured on the
server side when the web service was deployed.

2. Enter the server’s public key alias to allow the data control to encrypt the key
details using the server's public key. In this example, serverencpublic is the
server's public key certificate that imported in the key store configuration.

Securing Web Service Data Controls

21-14 Oracle Application Development Framework Developer’s Guide

3. If the web service uses incoming message encryption, select Decrypt Incoming
SOAP Response.

4. In the Keystore page of the wizard, and specify the location of the keystore file,
and enter the encryption key alias and password.

21.3.3.4 How to Use a Key Store
Section 21.3.2.1, "How to Create a Keystore" described setting up keystores for the
client (the web service data control) and for the server (a deployed web service). In the
Configure Key Store page of the Data Control Security wizard you enter the
information needed for the keystore to be used for data control security.

Figure 21–5 Set Key Store Information

The final stage of configuring WS-Security for a data control based on a web service is
to specify the keystore details. Enter the information to access the client keystore here,
and when the wizard is finished the keys configured in the store will be available for
signatures and encryption for all requests generated by the data control and all
responses processed by the data control.

To set key store access information:
■ In the Configure Key Store page of the wizard, enter the appropriate values.

Deploying ADF Applications 22-1

22
Deploying ADF Applications

This chapter describes how to deploy applications that use ADF to Oracle Application
Server as well as to third-party application servers such as JBoss, WebLogic, and
WebSphere.

This chapter includes the following sections:

■ Section 22.1, "Introduction to Deploying ADF Applications"

■ Section 22.2, "Deployment Steps"

■ Section 22.3, "Deployment Techniques"

■ Section 22.4, "Deploying Applications Using Ant"

■ Section 22.5, "Deploying the SRDemo Application"

■ Section 22.6, "Deploying to Oracle Application Server"

■ Section 22.7, "Deploying to JBoss"

■ Section 22.8, "Deploying to WebLogic"

■ Section 22.9, "Deploying to WebSphere"

■ Section 22.10, "Deploying to Tomcat"

■ Section 22.11, "Deploying to Application Servers That Support JDK 1.4"

■ Section 22.12, "Installing ADF Runtime Library on Third-Party Application
Servers"

■ Section 22.13, "Verifying Deployment and Troubleshooting"

22.1 Introduction to Deploying ADF Applications
Deployment is the process through which application files are packaged as an archive
file and transferred to the target application server. Deploying ADF applications is
only slightly different from deploying standard J2EE applications.

JDeveloper supports the following deployment options:

■ Deploying to an application server.

■ Deploying to an archive file: Applications can be deployed indirectly by choosing
an archive file as the deployment target. You can then use tools provided by the
application server vendor to deploy the archive file. Information on deploying to
selected other application servers is available on the Oracle Technology Network
(http://www.oracle.com/technology).

■ Deploying for testing: JDeveloper supports two options for testing applications:

Deployment Steps

22-2 Oracle Application Development Framework Developer’s Guide

Embedded OC4J Server: You can test applications, without deploying them, by
running them on JDeveloper’s embedded Oracle Containers for J2EE (OC4J)
server. OC4J is the J2EE component of Oracle Application Server.

Standalone OC4J: In a development environment, you can deploy and run
applications on a standalone version of OC4J prior to deploying them to Oracle
Application Server. Standalone OC4J is included with JDeveloper.

Connection to Data Source
You need to configure in JDeveloper a data source that refers to the data source (such
as a database) used in your application.

ADF Runtime Library
If you are deploying to third-party application servers (such as JBoss, WebLogic, and
WebSphere), you have to install the ADF runtime library on the servers. See
Section 22.12, "Installing ADF Runtime Library on Third-Party Application Servers"
for details.

For Oracle Application Server, the ADF runtime libraries are already installed.

Standard Packaging
After you have all the necessary files, you package the files for the application for
deployment in the standard manner. This gives you an EAR file, a WAR file, or a JAR
file.

When you are ready to deploy your application, you can deploy using a variety of
tools. You can deploy to most application servers from JDeveloper. You can also use
tools provided by the application server vendor. Tools are described in the specific
application server sections later in the chapter.

Incompatibilities
When deploying applications to application servers, make sure that features used in
the applications are supported by the target application servers. For example, when
deploying applications that use EJB 3.0, which is in "early draft review" status at the
time this book is written, you need to check that the target application server supports
the EJB 3.0 features used in the applications.

22.2 Deployment Steps
To deploy an application, you perform these steps:

Step 1: Install the ADF Runtime Library on the Target Application Server

Step 2: Create a Connection to the Target Application Server

Step 3: Create a Deployment Profile for the JDeveloper Project

Step 4: Create Deployment Descriptors

Step 5: Perform Additional Configuration Tasks Needed for ADF

Step 6: Perform Application Server-Specific Configuration

Step 7: Deploy the Application

Step 1 Install the ADF Runtime Library on the Target Application Server
This step is required if you are deploying ADF applications to third-party application
servers, and optional if you are deploying on Oracle Application Server or standalone

Deployment Steps

Deploying ADF Applications 22-3

OC4J. See Section 22.12, "Installing ADF Runtime Library on Third-Party Application
Servers" for installation steps.

JSF applications that contain ADF Faces components have a few additional
deployment requirements:

■ ADF Faces require Sun’s JSF Reference Implementation 1.1_01 (or later) and
MyFaces 1.0.8 (or later).

■ ADF Faces applications cannot run on an application server that only supports JSF
1.0.

Step 2 Create a Connection to the Target Application Server
In JDeveloper, create a connection to the application server where you want to deploy
your application. Note that if your target application server is WebSphere, you can
skip this step because JDeveloper cannot create a connection to WebSphere. For
WebSphere, you deploy applications using the WebSphere console. See Section 22.9,
"Deploying to WebSphere" for details.

To create a connection to an application server:

1. In the Connections Navigator, right click Application Server and choose New
Application Server Connection. The Create Application Server Connection
wizard opens.

2. Click Next to proceed to the Type page.

3. On the Type page:

■ Provide a name for the connection.

■ In the Connection Type list box, select the application server type. You can
deploy ADF applications on these application servers:

– Standalone OC4J 10.1.3

– Oracle Application Server (10.1.2 or 10.1.3)

– WebLogic Server (8.x or 9.x)

– JBoss 4.0.x

– Tomcat 5.x

■ Click Next.

4. If you selected Tomcat as the application server, the Tomcat Directory page
appears. Enter the Tomcat’s "webapps" directory as requested and click Next. This
is the last screen for configuring a Tomcat server.

5. If you selected JBoss as the application server, the JBoss Directory page appears.
Enter the JBoss’s "deploy" directory as requested and click Next. This is the last
screen for configuring a JBoss server.

6. On the Authentication page enter a user name and password that corresponds to
the administrative user for the application server. Click Next.

7. On the Connection page, identify the server instance and configure the connection.
Click Next.

8. On the Test page, test the connection. If not successful, return to the previous
pages of the wizard to fix the configuration.

If you are using WebLogic, you may see this error when testing the connection:

Deployment Steps

22-4 Oracle Application Development Framework Developer’s Guide

Class Not Found Exception -
weblogic.jndi.WLInitialContextFactory

This exception occurs when weblogic.jar is not in JDeveloper’s classpath. You
may ignore this exception and continue with the deployment.

9. Click Finish.

Step 3 Create a Deployment Profile for the JDeveloper Project
Deployment profiles are project components that govern the deployment of a project
or application. A deployment profile specifies the format and contents of the archive
file that will be created.

To create a deployment profile:

1. In the Applications Navigator, select the project for which you want to create a
profile.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand General and select Deployment Profiles.

4. In the Items list, select a profile type. For ADF applications, you should select one
of the following from the Items list:

■ WAR File

■ EAR File

■ EJB JAR File

If the desired item is not found or enabled, make sure you selected the correct
project, and select All Technologies in the Filter By dropdown list.

Click OK.

5. In the Create Deployment Profile dialog provide a name and location for the
deployment profile, and click OK.

The profile, <name>.deploy, will be added to the project, and its Deployment
Profile Properties dialog will open.

6. Select items in the left pane to open dialog pages in the right pane. Configure the
profile by setting property values in the pages of the dialog.

Typically you can accept the default settings. One of the settings that you might
want to change is the J2EE context root (select General on the left pane). By
default, this is set to the project name. You need to change this if you want users to
use a different name to access the application. Note that if you are using custom
JAAS LoginModules for authentication with JAZN, the context root name also
defines the application name that is used to look up the JAAS LoginModule.

7. Click OK to close the dialog.

8. Save the file to keep all changes.

To view or edit a deployment profile, right-click it in the Navigator, and choose
Properties, or double-click the profile in the Navigator. This opens the Deployment
Profile Properties dialog.

Step 4 Create Deployment Descriptors
Deployment descriptors are server configuration files used to define the configuration
of an application for deployment and are deployed with the J2EE application as
needed. The deployment descriptors a project requires depend on the technologies the

Deployment Steps

Deploying ADF Applications 22-5

project uses, and on the type of the target application server. Deployment descriptors
are XML files that can be created and edited as source files, but for most descriptor
types JDeveloper provides dialogs that you can use to view and set properties.

In addition to the standard J2EE deployment descriptors (for example:
application.xml, ejb-jar.xml, and web.xml), you can also have deployment
descriptors that are specific to your target application server. For example, if you are
deploying on Oracle Application Server, you can also have
orion-application.xml, orion-web.xml, and orion-ejb-jar.xml.

To create a deployment descriptor:

1. In the Applications Navigator, select the project for which you want to create a
descriptor.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand General and select Deployment Descriptors.

4. In the Items list, select a descriptor type, and click OK.

If the desired item is not found, make sure you selected the correct project, and
select All Technologies in the Filter By dropdown list. If the desired item is not
enabled, check to make sure the project does not already have a descriptor of that
type. A project may have only one instance of a descriptor.

JDeveloper starts the Create Deployment Descriptor wizard or opens the file in the
editor pane, depending on the type of deployment descriptor you selected.

To view or change deployment descriptor properties:

1. In the Applications Navigator, right-click the deployment descriptor and choose
Properties. If the context menu does not have a Properties item, then the
descriptor must be edited as a source file. Choose Open from the context menu to
open the profile in an XML editor window.

2. Select items in the left pane to open dialog pages in the right pane. Configure the
descriptor by setting property values in the pages of the dialog.

3. Click OK when you are done.

To edit a deployment descriptor as an XML file:

■ In the Applications Navigator, right-click the deployment descriptor and choose
Open. The file opens in an XML editor.

Step 5 Perform Additional Configuration Tasks Needed for ADF
If your application uses ADF Faces components, ensure that the standard J2EE
deployment descriptors contain entries for ADF Faces, and that you include the ADF
and JSF configuration files in your archive file (typically a WAR file). When you create
ADF Faces components in your application, JDeveloper automatically creates and
configures the files for you.

Note: For EAR files, do not create more than one deployment
descriptor per application or workspace. These files are assigned to
projects, but have workspace scope. If multiple projects in an
application or workspace have the same deployment descriptor, the
one belonging to the launched project will supersede the others. This
restriction applies to application.xml, data-sources.xml,
jazn-data.xml, and orion-application.xml.

Deployment Steps

22-6 Oracle Application Development Framework Developer’s Guide

Check that the WAR file includes the following configuration and library files:

■ web.xml—See Section 4.4.2.1, "More About the web.xml File" for ADF and JSF
entries in this file.

■ faces-config.xml and adf-faces-config.xml files. See Section 4.4.2.2,
"More About the faces-config.xml File" and Section 4.4.2.3, "Starter
adf-faces-config.xml File" for details.

■ JAR files used by JSF and ADF Faces:

– commons-beanutils.jar

– commons-collections.jar

– commons-digester.jar

– commons-logging.jar

– jsf-api.jar and jsf-impl.jar—These JAR files are the JSF reference
implementation that JDeveloper includes by default.

– jstl.jar and standard.jar—These are the libraries for the JavaServer
Pages Standard Tag Library (JSTL).

– adf-faces-api.jar—Located in the ADF Faces runtime library, this JAR
contains all public ADF Faces APIs and is included in the WAR by default.

– adf-faces-impl.jar—Located in the ADF Faces runtime library, this JAR
contains all private ADF Faces APIs and is included in the WAR by default.

– adfshare.jar—Located in the ADF Common runtime library, this JAR
contains ADF Faces logging utilities.

If you have installed the ADF runtime libraries, adfshare.jar is included in
the WAR by default. Otherwise, you must manually include adfshare.jar
in WEB-INF/lib when creating the WAR deployment profile.

If you are using ADF databound UI components as described in Section 5.2, "Using the
Data Control Palette", check that you have the DataBindings.cpx file. For
information about the file, see Section 5.3, "Working with the DataBindings.cpx File".

A typical WAR directory structure for a JSF application has the following layout:

MyApplication/
 JSF pages
 WEB-INF/
 configuration files (web.xml, faces-config.xml etc)
 tag library descriptors (optional)
 classes/
 application class files
 Properties files
 lib/
 commons-beanutils.jar
 commons-collections.jar
 commons-digester.jar
 commons-logging.jar

Note: If you are using another JSF implementation (such as
MyFaces), you must include the JAR files for those libraries when you
create the deployment profile and remove the JSF JAR files
(jsf-api.jar and jsf-impl.jar) from the WAR file; otherwise,
your application will not run correctly.

Deployment Techniques

Deploying ADF Applications 22-7

 jsf-api.jar
 jsf-impl.jar
 jstl.jar
 standard.jar

Step 6 Perform Application Server-Specific Configuration
Before you can deploy the application to your target application server, you may need
to perform some vendor-specific configuration. See the specific application server
sections later in this chapter.

Step 7 Deploy the Application

To deploy to the target application server from JDeveloper:

■ Right-click the deployment profile, choose Deploy to from the context menu, then
select the application server connection that you created earlier (in step 2 on
page 22-3).

You can also use the deployment profile to create the archive file (EAR, WAR, or JAR
file) only. You can then deploy the archive file using tools provided by the target
application server. To create an archive file:

■ Right-click the deployment profile and choose Deploy to WAR file (or Deploy to
EAR file) from the context menu.

Step 8 Test the Application
Once you've deployed the application, you can test it from the application server. To
test run your application, open a browser window and enter a URL of the following
type:

■ For Oracle Application Server: http://<host>:port/<context root>/<page>

■ For Faces pages: http://<host>:port/<context root>/faces/<page>

22.3 Deployment Techniques
Table 22–1 describes some common deployment techniques that you can use during
the application development and deployment cycle. The table lists the deployment
techniques in order from deploying on development environments to deploying on
production environments. It is likely that in the production environment, the system
administrators deploy applications using scripting tools.

Note: If you are running WebLogic 8.1, see Section 22.8.3, "WebLogic
8.1 Deployment Notes".

Note: The reason why /faces has to be in the URL for Faces pages
is because JDeveloper configures your web.xml file to use the URL
pattern of /faces to be associated with the Faces Servlet. The Faces
Servlet does its per-request processing, strips out the /faces part in the
URL, then forwards to the JSP. If you do not include the /faces in the
URL, then the Faces Servlet is not engaged (since the URL pattern
doesn't match) and so your JSP is run without the necessary JSF
per-request processing.

Deploying Applications Using Ant

22-8 Oracle Application Development Framework Developer’s Guide

22.4 Deploying Applications Using Ant
You can also use Ant to package and deploy applications. The build.xml file, which
contains the deployment commands for Ant, may vary depending on the target
application server.

For deployment to Oracle Application Server using Ant, see the chapter "Deploying
with the OC4J Ant Tasks" in the Oracle Containers for J2EE Deployment Guide. This
chapter provides complete details on how to use Ant to deploy to Oracle Application
Server. Oracle provides Ant tasks that are specific to Oracle Application Server.

For deployment to other application servers, see the application server’s
documentation. If your application server does not provide specific Ant tasks, you
may be able to use generic Ant tasks. For example, the generic ear task creates an
EAR file for you.

For information about Ant, see http://ant.apache.org.

22.5 Deploying the SRDemo Application
The SRDemo application includes a project called BuildAndDeploy, which contains
EAR and WAR deployment profiles as well as Ant scripts that you can use to build the
application. The deployment profiles pull in the appropriate files from the projects in
the application workspace to build the EAR and WAR files. You can deploy the EAR or
WAR file on your target application server. (You can also deploy directly to your
application server from JDeveloper if you have created a connection to your
application server.)

To view the properties of a deployment profile, right-click the deployment profile and
choose Properties from the context menu.

The SRDemo application also includes the
UserInterface/src/META-INF/SRDemo-jazn-data.xml file. The file contains
some usernames and passwords so that the application can work out of the box
running on the embedded OC4J server. Note that this file is not distributed in the EAR

Table 22–1 Deployment Techniques

Deployment Technique When to Use

Deploy directly from JDeveloper This technique is typically used when you are developing your
application.

When you are developing the application, you may want to deploy it
quickly for testing. You want deployment to be quick because you will
be repeating the editing and deploying process many times.

JDeveloper comes with an embedded OC4J server, on which you can
run and test your application. You should also deploy your application
to an external application server to test it.

Deploy to EAR file, then use the target
application server’s tools for
deployment

This technique is typically used when you are ready to deploy and test
your application on an application server in a test environment. On the
test server, you can test features (such as LDAP and OracleAS Single
Sign-On) that are not available on the development server.

You can also use the test environment to develop your deployment
scripts. The scripts may involve Ant.

Use a script to deploy applications This technique is typically used on test and production environments.
On production environments, system administrators usually run scripts
to deploy applications.

Deploying to Oracle Application Server

Deploying ADF Applications 22-9

file. If you deploy the application to an external application server, you have to set up
the relevant credential store on the target application server.

If you want to deploy the application to different application servers, you can create a
separate deployment profile for each target application server. This enables you to
configure the properties for each target separately.

22.6 Deploying to Oracle Application Server
This section describes deployment details specific to Oracle Application Server:

■ Section 22.6.1, "Oracle Application Server Versions Supported"

■ Section 22.6.2, "Oracle Application Server Release 2 (10.1.2) Deployment Notes"

■ Section 22.6.3, "Oracle Application Server Deployment Methods"

■ Section 22.6.4, "Oracle Application Server Deployment to Test Environments
("Automatic Deployment")"

■ Section 22.6.5, "Oracle Application Server Deployment to Clustered Topologies"

22.6.1 Oracle Application Server Versions Supported
Table 22–2 shows the supported versions of Oracle Application Server:

22.6.2 Oracle Application Server Release 2 (10.1.2) Deployment Notes
If you are deploying to Oracle Application Server Release 2 (10.1.2), you have to
perform some additional steps before you can run your ADF applications:

■ This version of Oracle Application Server supports JDK 1.4. This means that you
need to configure JDeveloper to build your applications with JDK 1.4 instead of
JDK 1.5. See Section 22.11, "Deploying to Application Servers That Support JDK
1.4" for details.

■ You need to install the ADF runtime libraries on the application server. This is
because the ADF runtime libraries that were shipped with Release 2 (10.1.2) need
to be updated. To install the ADF runtime libraries, see Section 22.12.1, "Installing
the ADF Runtime Libraries from JDeveloper".

■ Note that Oracle Application Server Release 2 (10.1.2) supports J2EE 1.3, while
JDeveloper 10.1.3 supports J2EE 1.4. This means that if you are using J2EE 1.3
components (such as EJB 2.0), you have to ensure that JDeveloper creates the
appropriate configuration files for that version. Configuration files for J2EE 1.3
and 1.4 are different.

Note: The SRDemo sample application uses EJB 3.0 features. As a
result, it may not run on all application servers. Currently, it has been
tested against Oracle Application Server 10.1.3 and OC4J standalone
10.1.3.

Table 22–2 Support Matrix for Oracle Application Server

Oracle Application Server Version JDK Version J2EE Version

Release 3 (10.1.3) 1.5_05 1.4

Release 2 (10.1.2) 1.4 1.3

Deploying to Oracle Application Server

22-10 Oracle Application Development Framework Developer’s Guide

Table 22–3 lists the configuration files that need to be J2EE 1.3-compliant, and how
to configure JDeveloper to generate the appropriate version of the files.

22.6.3 Oracle Application Server Deployment Methods
Instead of deploying applications directly from JDeveloper, you can use JDeveloper to
create the archive file, and then deploy the archive file using these methods:

■ Using Application Server Control Console. For details, see the "Deploying with
Application Server Control Console" chapter in the Oracle Containers for J2EE
Deployment Guide.

■ Using admin_client.jar. For details, see the "Deploying with the admin_
client.jar Utility" chapter in the Oracle Containers for J2EE Deployment Guide.

You can access the Oracle Containers for J2EE Deployment Guide from the Oracle
Application Server documentation library.

22.6.4 Oracle Application Server Deployment to Test Environments ("Automatic
Deployment")

If you are deploying to a standalone OC4J environment that is not a production
environment, you can configure OC4J to automatically deploy your application. This
method is not recommended for production environments.

For details, see the "Automatic Deployment in OC4J" chapter in the Oracle Containers
for J2EE Deployment Guide.

Table 22–3 Configuring JDeveloper to Generate Configuration Files That Are J2EE 1.3-Compliant

Configuration File How to Configure JDeveloper to Generate Appropriate Version of the File

application.xml

web.xml

1. Select the project in the Applications Navigator.

2. Select File > New to display the New Gallery.

3. In Categories, expand General and select Deployment Descriptors.

4. In Items, select J2EE Deployment Descriptor Wizard and click OK.

5. Click Next in the wizard to display the Select Descriptor page.

6. On the Select Descriptor page, select application.xml (or web.xml) and
click Next.

7. On the Select Version page, select 1.3 (2.3 if you are configuring web.xml)
and click Next.

8. On the Summary page, click Finish.

orion-application.xml

data-sources.xml

oc4j-connectors.xml

1. Select the project in the Applications Navigator.

2. Select File > New to display the New Gallery.

3. In Categories, expand General and select Deployment Descriptors.

4. In Items, select OC4J Deployment Descriptor Wizard and click OK.

5. Click Next in the wizard to display the Select Descriptor page.

6. On the Select Descriptor page, select the file you want to configure and
click Next.

7. On the Select Version page, select the appropriate version and click Next.

For orion-application.xml, select 1.2.

For data-sources.xml, select 1.0.

For oc4j-connectors.xml, select 10.0.

8. On the Summary page, click Finish.

Deploying to JBoss

Deploying ADF Applications 22-11

22.6.5 Oracle Application Server Deployment to Clustered Topologies
To deploy to clustered topologies, you can use any of the following methods:

■ In JDeveloper, you can deploy to a "group" of Oracle Application Server instances.
To do this, ensure that the connection to the Oracle Application Server is set to
"group" instead of "single instance".

■ You can use the admin_client.jar command-line utility. This utility enables
you to deploy the application to all nodes in a cluster using a single command.
admin_client.jar is shipped with Oracle Application Server 10.1.3.

For details, see the "Deploying with the admin_client.jar Utility" chapter in the
Oracle Containers for J2EE Deployment Guide.

22.7 Deploying to JBoss
This section describes deployment details that are specific to JBoss.

■ Section 22.7.1, "JBoss Versions Supported"

■ Section 22.7.2, "JBoss Deployment Notes"

■ Section 22.7.3, "JBoss Deployment Methods"

22.7.1 JBoss Versions Supported
Table 22–4 shows the supported versions of JBoss:

22.7.2 JBoss Deployment Notes
■ Before deploying applications that use ADF to JBoss, you need to install the ADF

runtime libraries on JBoss. See Section 22.12, "Installing ADF Runtime Library on
Third-Party Application Servers" for details.

■ If you are running JBoss version 4.0.3, you need to delete the following directories
from the JBoss home. This is to facilitate running JSP and ADF Faces components.

– deploy/jbossweb-tomcat55.sar/jsf-lib/

– tmp, log, and data directories (located at the same level as the deploy
directory)

After removing the directories, restart JBoss.

If you do not remove these directories, you may get the following exception
during runtime:

org.apache.jasper.JasperException
org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:370)
org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:314)
org.apache.jasper.servlet.JspServlet.service(JspServlet.java:264)
javax.servlet.http.HttpServlet.service(HttpServlet.java:810)
com.sun.faces.context.ExternalContextImpl.dispatch(ExternalContextImpl.java:322
)
com.sun.faces.application.ViewHandlerImpl.renderView(ViewHandlerImpl.java:130)

Table 22–4 Support Matrix for JBoss

JBoss version JDK version J2EE version

4.0.2 1.5_04 1.4

4.0.3 1.5_04 1.4

Deploying to JBoss

22-12 Oracle Application Development Framework Developer’s Guide

com.sun.faces.lifecycle.RenderResponsePhase.execute(RenderResponsePhase.java:87
)
com.sun.faces.lifecycle.LifecycleImpl.phase(LifecycleImpl.java:200)
com.sun.faces.lifecycle.LifecycleImpl.render(LifecycleImpl.java:117)
javax.faces.webapp.FacesServlet.service(FacesServlet.java:198)
org.jboss.web.tomcat.filters.ReplyHeaderFilter.doFilter(ReplyHeaderFilter.java:
81)

root cause

java.lang.NullPointerException
javax.faces.webapp.UIComponentTag.setupResponseWriter(UIComponentTag.java:615)
javax.faces.webapp.UIComponentTag.doStartTag(UIComponentTag.java:217)
org.apache.myfaces.taglib.core.ViewTag.doStartTag(ViewTag.java:71)
org.apache.jsp.untitled1_jsp._jspx_meth_f_view_0(org.apache.jsp.untitled1_
jsp:84)
org.apache.jsp.untitled1_jsp._jspService(org.apache.jsp.untitled1_jsp:60)
org.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java:97)
javax.servlet.http.HttpServlet.service(HttpServlet.java:810)
org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:322)
org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:314)
org.apache.jasper.servlet.JspServlet.service(JspServlet.java:264)
javax.servlet.http.HttpServlet.service(HttpServlet.java:810)
com.sun.faces.context.ExternalContextImpl.dispatch(ExternalContextImpl.java:322
)
com.sun.faces.application.ViewHandlerImpl.renderView(ViewHandlerImpl.java:130)
com.sun.faces.lifecycle.RenderResponsePhase.execute(RenderResponsePhase.java:87
)
com.sun.faces.lifecycle.LifecycleImpl.phase(LifecycleImpl.java:200)
com.sun.faces.lifecycle.LifecycleImpl.render(LifecycleImpl.java:117)
javax.faces.webapp.FacesServlet.service(FacesServlet.java:198)
org.jboss.web.tomcat.filters.ReplyHeaderFilter.doFilter(ReplyHeaderFilter.java:
81)

■ To deploy applications directly from JDeveloper to JBoss, the directory where the
target JBoss application server is installed must be accessible from JDeveloper.
This means you need to run JDeveloper and JBoss on the same machine, or you
need to map a network drive on the JDeveloper machine to the JBoss machine.

This is required because JDeveloper needs to copy the EAR file to the JBOSS_
HOME\server\default\deploy directory in the JBoss installation directory.

■ For EJB applications, add a jboss.xml deployment descriptor file if you want to
support JBoss-specific configuration options for the EJBs. For more information on
this file, see http://www.jboss.org.

■ In the Business Components Project Wizard, set the SQL Flavor to SQL92, and the
Type Map to Java. This is necessary because ADF uses the emulated XA
datasource implementation when the Business Components application is
deployed as an EJB session bean.

■ To test an EJB deployed to JBoss, create a library in JDeveloper for the JBoss
client-side libraries. The JBoss client-side libraries are located in the JBOSS_
HOME/client directory.

■ For business components JSP applications, choose Deploy to EAR file from the
context menu to deploy it as an EAR file. You must deploy this application to an
EAR file and not a WAR file because JBoss does not add EJB references under the
java:comp/env/ JNDI namespace for a WAR file. If you have set up a
connection in JDeveloper to your JBoss server, you can deploy the EAR file
directly to the server.

Deploying to WebLogic

Deploying ADF Applications 22-13

22.7.3 JBoss Deployment Methods
You can deploy to JBoss directly if you have set up a connection in JDeveloper to your
JBoss server. When you deploy from JDeveloper, it copies the EAR file to the JBOSS_
HOME\server\default\deploy directory. JBoss deploys the EAR files that it finds
in that directory. You do not have to restart JBoss in order to access the application.

22.8 Deploying to WebLogic
This section describes deployment details that are specific to WebLogic.

■ Section 22.8.1, "WebLogic Versions Supported"

■ Section 22.8.2, "WebLogic Versions 8.1 and 9.0 Deployment Notes"

■ Section 22.8.3, "WebLogic 8.1 Deployment Notes"

■ Section 22.8.5, "WebLogic Deployment Methods"

22.8.1 WebLogic Versions Supported
Table 22–5 shows the supported versions of WebLogic:

22.8.2 WebLogic Versions 8.1 and 9.0 Deployment Notes
■ Before deploying applications that use ADF to WebLogic, you need to install the

ADF runtime libraries on WebLogic. See Section 22.12, "Installing ADF Runtime
Library on Third-Party Application Servers" for details.

■ When you click Test Connection in the Create Application Server Connection
wizard, you may get the following exception:

Class Not Found Exception -
weblogic.jndi.WLInitialContextFactory

This exception occurs when weblogic.jar is not in JDeveloper’s classpath. You
may ignore this exception and continue with the deployment.

■ You may get an exception in JDeveloper when trying to deploy large EAR files.
The workaround is to deploy the application using the server console.

22.8.3 WebLogic 8.1 Deployment Notes
■ This version of WebLogic supports JDK 1.4. This means that you need to configure

JDeveloper to build your applications with JDK 1.4 (such as the JDK provided by
WebLogic) instead of JDK 1.5. See Section 22.11, "Deploying to Application Servers
That Support JDK 1.4" for details.

■ WebLogic 8.1 is only J2EE 1.3 compliant. This means that you need to create an
application.xml file that complies with J2EE 1.3. To create this file in
JDeveloper, make the following selections:

Table 22–5 Support Matrix for WebLogic

WebLogic version JDK version J2EE version

8.1 SP4 1.4

ADF applications have been
certified against the Sun JDK,
but not the JRockit JDK.

1.3

9.0 1.5 1.4

Deploying to WebSphere

22-14 Oracle Application Development Framework Developer’s Guide

1. Select the project in the Applications Navigator.

2. Select File > New to display the New Gallery.

3. In Categories, expand General and select Deployment Descriptors.

4. In Items, select J2EE Deployment Descriptor Wizard and click OK.

5. Click Next in the wizard to display the Select Descriptor page.

6. On the Select Descriptor page, select application.xml and click Next.

7. On the Select Version page, select 1.3 and click Next.

8. On the Summary page, click Finish.

■ Similarly, your web.xml needs to be compliant with J2EE 1.3 (which corresponds
to servlet 2.3 and JSP 1.2). To create this file in JDeveloper, follow the steps as
shown above, except that you select web.xml in the Select Descriptor page, and 2.3
in the Select Version page.

■ If you are using Struts in your application, you need to create the web.xml file at
version 2.3 first, then create any required Struts configuration files. If you reverse
the order (create Struts configuration files first), this will not work because
creating a Struts configuration file also creates a web.xml file if one does not
already exist, but this web.xml is for J2EE 1.4, which will not work with WebLogic
8.1.

22.8.4 WebLogic 9.0 Deployment Notes
■ When you are deploying to WebLogic 9.0 from JDeveloper, ensure that the HTTP

Tunneling property is enabled in the WebLogic console. This property is located
under Servers > ServerName > Protocols. ServerName refers to the name of your
WebLogic server.

22.8.5 WebLogic Deployment Methods
You can deploy directly to WebLogic if you have set up a connection in JDeveloper to
your WebLogic server.

You can also deploy using the WebLogic console (for example: http://<weblogic_
host:port>/console/).

22.9 Deploying to WebSphere
This section describes deployment details that are specific to WebSphere.

■ Section 22.9.1, "WebSphere Versions Supported"

■ Section 22.9.2, "WebSphere Deployment Notes"

■ Section 22.9.3, "WebSphere Deployment Methods"

22.9.1 WebSphere Versions Supported
Table 22–6 shows the supported versions of WebSphere:

Table 22–6 Support Matrix for WebSphere

WebSphere version JDK version J2EE version

6.0.1 1.4.2 1.4

Deploying to Tomcat

Deploying ADF Applications 22-15

22.9.2 WebSphere Deployment Notes
■ This version of WebSphere supports JDK 1.4. This means that you need to

configure JDeveloper to build your applications with JDK 1.4 instead of JDK 1.5.
See Section 22.11, "Deploying to Application Servers That Support JDK 1.4" for
details.

■ Before you can deploy applications that use ADF to WebSphere, you need to
install the ADF runtime libraries on WebSphere. See Section 22.12.2, "Configuring
WebSphere 6.0.1 to Run ADF Applications" for details. Note that JDeveloper
cannot connect to WebSphere application servers. This means you have to use the
manual method of installing the ADF runtime libraries.

■ Check that you have the following lines in the web.xml file for the ADF
application you want to deploy:

<servlet>
<servlet-name>jsp</servlet-name>
<servlet-class>com.ibm.ws.webcontainer.jsp.servlet.JspServlet</servlet-class>

</servlet>

■ You may need to configure data sources and other variables for deployment. Use
the correct DataSource name, JNDI name, URLs, etc, that were used when creating
the application.

■ After deploying the application, you need to add the appropriate shared library
reference for the ADF application, depending on your application’s SQL flavor
and type map. You created the shared library in step 5 on page 22-20.

22.9.3 WebSphere Deployment Methods
You can deploy using the WebSphere console (for example: http://<websphere_
host:port>/ibm/console/).

22.10 Deploying to Tomcat
This section describes deployment details that are specific to Tomcat.

22.10.1 Tomcat Versions Supported
Table 22–7 shows the supported versions of Tomcat:

22.10.2 Tomcat Deployment Notes
■ Before deploying applications that use ADF to Tomcat, you need to install the ADF

runtime libraries on Tomcat. See Section 22.12, "Installing ADF Runtime Library on
Third-Party Application Servers" for details.

■ After you install the ADF runtime libraries, rename the file TOMCAT_
HOME/common/jlib/bc4jdomgnrc to bc4jdomgnrc.jar (that is, add the
.jar extension to the filename). This file is required for users who are using the
Java type mappings.

Table 22–7 Support Matrix for Tomcat

Tomcat version JDK version J2EE version

5.5.9 1.5 1.4

Deploying to Application Servers That Support JDK 1.4

22-16 Oracle Application Development Framework Developer’s Guide

■ You can deploy applications to Tomcat from JDeveloper (if you have set up a
connection to your Tomcat server), or you can also deploy applications using the
Tomcat console.

22.11 Deploying to Application Servers That Support JDK 1.4
If you are deploying to an application server that uses JDK 1.4, you need to configure
JDeveloper to build your applications using JDK 1.4. By default, JDeveloper 10.1.3 uses
JDK 1.5. If you build an application with JDK 1.5 and run it on an application server
that supports JDK 1.4, you may get "unsupported class version" errors.

Application servers that support JDK 1.4 include Oracle Application Server Release 2
(10.1.2), WebLogic 8.1, and WebSphere.

To configure JDeveloper to build projects with JDK 1.4:
1. Install J2SE 1.4 on the machine running JDeveloper.

2. Configure JDeveloper with the J2SE 1.4 that you installed:

a. In JDeveloper, choose Tools > Manage Libraries. This displays the Manage
Libraries dialog.

b. In the Manage Libraries dialog, choose the J2SE Definitions tab.

c. On the right-hand side, click the Browse button for the J2SE Executable field
and navigate to the J2SE_1.4/bin/java.exe file, where J2SE_1.4 refers
to the directory where you installed J2SE 1.4.

d. Click OK.

3. Configure your project to use J2SE 1.4:

a. In the Project Properties dialog for your project, select Libraries on the
left-hand side.

b. On the right-hand side, click the Change button for the J2SE Version field.
This displays the Edit J2SE Definition dialog.

c. In the Edit J2SE Definition dialog, on the left-hand side, select 1.4 under User.

d. Click OK in the Edit J2SE Definition dialog.

e. Click OK in the Project Properties dialog.

22.11.1 Switching Embedded OC4J to JDK 1.4
When you run an Oracle JDeveloper 10.1.3 application using the Embedded OC4J
server, the application is configured for JDK 1.5. If you then try to switch to JDK 1.4,
you will see JSP compile failures. To remedy this you need to force the application files
to be re-compiled when OC4J is restarted with JDK 1.4. To configure Embedded OC4J
to JDK 1.4:

1. Configure JDeveloper 10.1.3.4 according to the steps above.

2. Stop the embedded OC4J server instance.

3. Delete the following directory:

ORACLE_HOME/j2ee/instance/application-deployments

4. Start the embedded server again.

Installing ADF Runtime Library on Third-Party Application Servers

Deploying ADF Applications 22-17

22.12 Installing ADF Runtime Library on Third-Party Application Servers
Before you can deploy applications that use ADF on third-party application servers,
you need to install the ADF runtime libraries on those application servers. You can
perform the installation using a wizard or you can do it manually:

■ For WebLogic, JBoss, and Tomcat, you can install the ADF runtime libraries from
JDeveloper using the ADF Runtime Installer wizard. See Section 22.12.1,
"Installing the ADF Runtime Libraries from JDeveloper".

■ For WebSphere, you have to install the ADF runtime libraries manually. See
Section 22.12.2, "Configuring WebSphere 6.0.1 to Run ADF Applications".

■ For all application servers, you can install the ADF runtime libraries manually. See
Section 22.12.3, "Installing the ADF Runtime Libraries Manually".

22.12.1 Installing the ADF Runtime Libraries from JDeveloper
You can install the ADF runtime libraries from JDeveloper on selected application
servers. The supported application servers are listed in the Tools > ADF Runtime
Installer submenu.

Note that for WebSphere, you need to install the libraries manually. See Section 22.12.2,
"Configuring WebSphere 6.0.1 to Run ADF Applications".

To install the ADF Runtime Libraries from JDeveloper:
1. Stop all instances of the target application server.

2. (WebLogic only) Create a new WebLogic domain, if you do not already have one.
You will install the ADF runtime libraries in the domain.

Steps for creating a domain in WebLogic are provided here for your convenience.

Steps for Creating Domains in WebLogic 8.1:

a. From the Start menu, choose Programs > BEA WebLogic Platform 8.1 >
Configuration Wizard. This starts up the Configuration wizard.

b. On the Create or Extend a Configuration page, select Create a new WebLogic
Configuration. Click Next.

c. On the Select a Configuration Template page, select Basic WebLogic Server
Domain. Click Next.

d. On the Choose Express or Custom Configuration page, select Express. Click
Next.

e. On the Configure Administrative Username and Password page, enter a
username and password. Click Next.

f. On the Configure Server Start Mode and Java SDK page, make sure you select
Sun’s JDK. Click Next.

g. On the Create WebLogic Configuration page, you can change the domain
name. For example, you might want to change it to jdevdomain.

Steps for Creating Domains in WebLogic 9.0:

Note: The domain must be configured to use Sun’s JDK.

Installing ADF Runtime Library on Third-Party Application Servers

22-18 Oracle Application Development Framework Developer’s Guide

a. From the Start menu, choose Programs > BEA Products > Tools >
Configuration Wizard. This starts up the Configuration wizard.

b. On the Welcome page, select Create a new WebLogic Domain. Click Next.

c. On the Select a Domain Source page, select Generate a domain configured
automatically to support the following BEA products. Click Next.

d. On the Configure Administrator Username and Password page, enter a
username and password. Click Next.

e. On the Configure Server Start Mode and JDK page, make sure you select Sun’s
JDK. Click Next.

f. On the Customize Environment and Services Settings page, select No. Click
Next.

g. On the Create WebLogic Domain page, set the domain name. For example,
you might want to set it to jdevdomain. Click Create.

3. Start the ADF Runtime Installer wizard by choosing Tools > ADF Runtime
Installer > Application_Server_Type. Application_Server_Type is the type of the target
application server (for example, Oracle Application Server, WebLogic, JBoss, or
standalone OC4J).

4. Proceed through the pages in the wizard. For detailed instructions for any page in
the wizard, click Help. You need to enter the following information in the wizard:

■ On the Home Directory page, select the home or root directory of the target
application server.

■ (WebLogic only) On the Domain Directory page, select the home directory of
the WebLogic domain where you want to install the ADF libraries. You created
this domain in step 2 on page 22-17.

■ On the Installation Options page, choose Install the ADF Runtime Libraries.

■ On the Summary page, check the details and click Finish.

5. (WebLogic only) Edit WebLogic startup files so that WebLogic includes the ADF
runtime library when it starts up.

Steps for WebLogic 8.1:

a. Make a backup copy of the WEBLOGIC_HOME\user_
projects\domains\jdevdomain\startWebLogic.cmd (or
startWebLogic.sh) file because you will be editing it in the next step.
"jdevdomain" is the name of the domain that you created earlier in step 2 on
page 22-17.

b. In the startWebLogic.cmd (or startWebLogic.sh) file, add the "call
"setupadf.cmd"" line (for Windows) before the "set CLASSPATH" line:

call "setupadf.cmd"
set CLASSPATH=%WEBLOGIC_CLASSPATH%;%POINTBASE_CLASSPATH%;

%JAVA_HOME%\jre\lib\rt.jar;%WL_HOME%\server\lib\webservices.jar;
%CLASSPATH%

The setupadf.cmd script was installed by the ADF Runtime Installer wizard
in the WEBLOGIC_HOME\user_projects\domains\jdevdomain directory.

c. To start WebLogic, change directory to the jdevdomain directory and run
startWebLogic.cmd:

> cd WEBLOGIC_HOME\user_projects\domains\jdevdomain

Installing ADF Runtime Library on Third-Party Application Servers

Deploying ADF Applications 22-19

> startWebLogic.cmd

Steps for WebLogic 9.0:

a. Make a backup copy of the %DOMAIN_HOME%\bin\setDomainEnv.cmd file
because you will be editing it in the next step.

%DOMAIN_HOME% is specified in the startWebLogic.cmd (or
startWebLogic.sh) file. For example, if you named your domain
jdevdomain, then %DOMAIN_HOME% would be BEA_HOME\user_
projects\domains\jdevdomain. You created the domain earlier in step 2
on page 22-17.

b. In the %DOMAIN_HOME%\bin\setDomainEnv.cmd file, add the "call
"%DOMAIN_HOME%\setupadf.cmd"" line before the "set CLASSPATH" line:

call "%DOMAIN_HOME%\setupadf.cmd"
set CLASSPATH=%PRE_CLASSPATH%;%WEBLOGIC_CLASSPATH%;%POST_CLASSPATH%;

%WLP_POST_CLASSPATH%;%WL_HOME%\integration\lib\util.jar;%CLASSPATH%

c. If the "set CLASSPATH" line does not have %CLASSPATH%, then add it to the
line, as shown above.

d. To start WebLogic, change directory to %DOMAIN_HOME% and run
startWebLogic.cmd:

> cd %DOMAIN_HOME%
> startWebLogic.cmd

6. (WebLogic only) Before you run JDeveloper, configure JDeveloper to include the
WebLogic client in its class path.

a. Make a backup copy of the JDEVELOPER_HOME\jdev\bin\jdev.conf file
because you will be editing it in the next step.

b. Add the following line to the jdev.conf file:

AddJavaLibFile <WEBLOGIC_HOME>\server\lib\weblogic.jar

Replace <WEBLOGIC_HOME> with the fullpath to the directory where you
installed WebLogic.

7. Restart the target application server. If you are running WebLogic, you may have
already started up the server.

Managing Multiple Versions of the ADF Runtime Library
Application servers may contain different versions of the ADF runtime libraries, but at
any time only one version (the active version) is accessible to deployed applications.
The other versions are archived.

You can use the ADF Runtime Installer wizard to make a different version the active
version. On the Installation Options page in the wizard, choose the Restore option.

Installing ADF Runtime Library on Third-Party Application Servers

22-20 Oracle Application Development Framework Developer’s Guide

22.12.2 Configuring WebSphere 6.0.1 to Run ADF Applications
Before you can run ADF applications on WebSphere 6.0.1, you have to perform these
steps:

1. Create the install_adflibs_1013.sh (or .cmd on Windows) script, as
follows:

If you are running on UNIX:

a. Copy the source shown in Section 22.12.2.1, "Source for install_adflibs_1013.sh
Script" and paste it to a file. Save the file as install_adflibs_1013.sh.

b. Enable execute permission on install_adflibs_1013.sh.

> chmod a+x install_adflibs_1013.sh

If you are running on Windows, copy the source shown in Section 22.12.2.2,
"Source for install_adflibs_1013.cmd Script" and paste it to a file. Save the file as
install_adflibs_1013.cmd.

You will run the script later, in step 3.

2. Stop the WebSphere processes.

3. Run the install_adflibs_1013.sh (.cmd on Windows) script to install the
ADF libraries, as follows:

a. Set the ORACLE_HOME environment variable to point to the JDeveloper
installation.

b. Set the WAS_ADF_LIB environment variable to point to the location where
you want to install the ADF library files. Typically this is the WebSphere home
directory. The library files are installed in the WAS_ADF_LIB/lib and WAS_
ADF_LIB/jlib directories.

c. Run the script. <script_dir> refers to the directory where you created the
script.

> cd <script_dir>
> install_adflib_1013.sh // if on Windows, use the .cmd extension

4. Start WebSphere processes.

5. Use the WebSphere administration tools to create a new shared library. Depending
on your application, you create one of the shared libraries below.

■ For applications that use Oracle SQL flavor and type map, create the
ADF10.1.3-Oracle shared library:

Set the name of the shared library to ADF10.1.3-Oracle.

Set the classpath to include all the JAR files in WAS_ADF_LIB\lib and WAS_
ADF_LIB\jlib except for WAS_ADF_LIB\jlib\bc4jdomgnrc.jar. This
JAR file is used for generic type mappings.

WAS_ADF_LIB refers to the directory that will be used as a library defined in
the WebSphere console. WAS_ADF_LIB contains the ADF library files.

Installing ADF Runtime Library on Third-Party Application Servers

Deploying ADF Applications 22-21

■ For applications that use non-Oracle SQL flavor and type map, create the
ADF10.1.3-Generic shared library:

Set the name of the shared library to ADF10.1.3-Generic.

Set the classpath to include WAS_ADF_LIB\jlib\bc4jdomgnrc.jar and all
the JAR files in WAS_ADF_LIB\lib except for bc4jdomorcl.jar. WAS_
ADF_LIB refers to the directory that will be used as a library defined in the
WebSphere console. WAS_ADF_LIB contains the ADF library files.

6. Add the following parameter in the Java command for starting up WebSphere.

-Djavax.xml.transform.TransformerFactory=org.apache.xalan.pro
cessor.TransformerFactoryImpl

7. Shut down and restart WebSphere so that it uses the new parameter.

22.12.2.1 Source for install_adflibs_1013.sh Script
Example 22–1 shows the source for the install_adflibs_1013.sh script. Instead
of copying the ADF runtime library files manually to your WebSphere environment,
you can use this script. See Section 22.12.2, "Configuring WebSphere 6.0.1 to Run ADF
Applications" for details.

The install_adflibs_1013.sh script is for use on UNIX environments. If you are
running on Windows, see Section 22.12.2.2, "Source for install_adflibs_1013.cmd
Script".

Example 22–1 install_adflibs_1013.sh

#!/bin/sh

EXIT=0
if ["$ORACLE_HOME" = ""]
 then
 echo "Error: The ORACLE_HOME environment variable must be set before executing
this script."
 echo "This should point to your JDeveloper installation directory"
 EXIT=1
fi
if ["$WAS_ADF_LIB" = ""];
 then
 echo "Error: The WAS_ADF_LIB environment variable must be set before executing
this script."
 echo "This should point to the location where you would like the ADF jars to
be copied."
 EXIT=1
fi

if ["$EXIT" -eq 0]
then

if [! -d $WAS_ADF_LIB]; then
 mkdir $WAS_ADF_LIB
fi
if [! -d $WAS_ADF_LIB/lib]; then
 mkdir $WAS_ADF_LIB/lib
fi
if [! -d $WAS_ADF_LIB/jlib]; then
 mkdir $WAS_ADF_LIB/jlib
fi

Installing ADF Runtime Library on Third-Party Application Servers

22-22 Oracle Application Development Framework Developer’s Guide

Core BC4J runtime
cp $ORACLE_HOME/BC4J/lib/adfcm.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/adfm.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/adfmweb.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/adfshare.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/bc4jct.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/bc4jctejb.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/bc4jdomorcl.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/bc4jimdomains.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/bc4jmt.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/bc4jmtejb.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/jlib/dc-adapters.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/jlib/adf-connections.jar $WAS_ADF_LIB/lib/

Core BC4J jlib runtime
cp $ORACLE_HOME/BC4J/jlib/bc4jdomgnrc.jar $WAS_ADF_LIB/jlib/
cp $ORACLE_HOME/BC4J/jlib/adfui.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/jlib/adfmtl.jar $WAS_ADF_LIB/lib/

Oracle Home jlib runtime
cp $ORACLE_HOME/jlib/jdev-cm.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/jlib/jsp-el-api.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/jlib/oracle-el.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/jlib/commons-el.jar $WAS_ADF_LIB/lib/

Oracle MDS runtime
cp $ORACLE_HOME/jlib/commons-cli-1.0.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/jlib/xmlef.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/mds/lib/mdsrt.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/mds/lib/concurrent.jar $WAS_ADF_LIB/lib/

Oracle Diagnostic
cp %ORACLE_HOME%/diagnostics/lib/commons-cli-1.0.jar $WAS_ADF_LIB/lib/

SQLJ Runtime
cp $ORACLE_HOME/sqlj/lib/translator.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/sqlj/lib/runtime12.jar $WAS_ADF_LIB/lib/

Intermedia Runtime
cp $ORACLE_HOME/ord/jlib/ordhttp.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/ord/jlib/ordim.jar $WAS_ADF_LIB/lib/

Toplink
cp $ORACLE_HOME/toplink/jlib/toplink.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/toplink/jlib/antlr.jar $WAS_ADF_LIB/lib/

OJMisc
cp $ORACLE_HOME/jlib/ojmisc.jar $WAS_ADF_LIB/lib/

XML Parser
cp $ORACLE_HOME/lib/xmlparserv2.jar $WAS_ADF_LIB/lib/

JDBC
cp $ORACLE_HOME/jdbc/lib/ojdbc14.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/jdbc/lib/ojdbc14dms.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/lib/dms.jar $WAS_ADF_LIB/lib/

XSQL Runtime
cp $ORACLE_HOME/lib/xsqlserializers.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/lib/xsu12.jar $WAS_ADF_LIB/lib/

Installing ADF Runtime Library on Third-Party Application Servers

Deploying ADF Applications 22-23

cp $ORACLE_HOME/lib/xml.jar $WAS_ADF_LIB/lib/

fi

22.12.2.2 Source for install_adflibs_1013.cmd Script
Example 22–2 shows the source for the install_adflibs_1013.cmd script. Instead
of copying the ADF runtime library files manually to your WebSphere environment,
you can use this script. See Section 22.12.2, "Configuring WebSphere 6.0.1 to Run ADF
Applications" for details.

The install_adflibs_1013.cmd script is for use on Windows environments. If
you are running on UNIX, see Section 22.12.2.1, "Source for install_adflibs_1013.sh
Script".

Example 22–2 install_adflibs_1013.cmd

@echo off
if {%ORACLE_HOME%} =={} goto :oracle_home

if {%WAS_ADF_LIB%} =={} goto :was_adf_lib

mkdir %WAS_ADF_LIB%
mkdir %WAS_ADF_LIB%\lib
mkdir %WAS_ADF_LIB%\jlib

@REM Core BC4J runtime
copy %ORACLE_HOME%\BC4J\lib\adfcm.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\adfm.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\adfmweb.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\adfshare.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\bc4jct.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\bc4jctejb.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\bc4jdomorcl.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\bc4jimdomains.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\bc4jmt.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\bc4jmtejb.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\collections.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\adfbinding.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\jlib\dc-adapters.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\jlib\adf-connections.jar %WAS_ADF_LIB%\lib\

@REM Core BC4J jlib runtime
copy %ORACLE_HOME%\BC4J\jlib\bc4jdomgnrc.jar %WAS_ADF_LIB%\jlib\
copy %ORACLE_HOME%\BC4J\jlib\adfui.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\jlib\adfmtl.jar %WAS_ADF_LIB%\lib\

@REM Oracle Home jlib runtime
copy %ORACLE_HOME%\jlib\jdev-cm.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\jlib\jsp-el-api.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\jlib\oracle-el.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\jlib\commons-el.jar %WAS_ADF_LIB%\lib\

@REM Oracle MDS runtime
copy %ORACLE_HOME%\jlib\commons-cli-1.0.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\jlib\xmlef.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\mds\lib\mdsrt.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\mds\lib\concurrent.jar %WAS_ADF_LIB%\lib\

Installing ADF Runtime Library on Third-Party Application Servers

22-24 Oracle Application Development Framework Developer’s Guide

@REM Oracle Diagnostic
copy %ORACLE_HOME%\diagnostics\lib\ojdl.jar %WAS_ADF_LIB%\lib\

@REM SQLJ Runtime
copy %ORACLE_HOME%\sqlj\lib\translator.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\sqlj\lib\runtime12.jar %WAS_ADF_LIB%\lib\

@REM Intermedia Runtime
copy %ORACLE_HOME%\ord\jlib\ordhttp.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\ord\jlib\ordim.jar %WAS_ADF_LIB%\lib\

@REM Toplink
copy %ORACLE_HOME%\toplink\jlib\toplink.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\toplink\jlib\antlr.jar %WAS_ADF_LIB%\lib\

@REM OJMisc
copy %ORACLE_HOME%\jlib\ojmisc.jar %WAS_ADF_LIB%\lib\

@REM XML Parser
copy %ORACLE_HOME%\lib\xmlparserv2.jar %WAS_ADF_LIB%\lib\

@REM JDBC
copy %ORACLE_HOME%\jdbc\lib\ojdbc14.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\jdbc\lib\ojdbc14dms.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\lib\dms.jar %WAS_ADF_LIB%\lib\

@REM XSQL Runtime
copy %ORACLE_HOME%\lib\xsqlserializers.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\lib\xsu12.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\lib\xml.jar %WAS_ADF_LIB%\lib\

goto :end

:oracle_home
@echo Set the ORACLE_HOME pointing to the directory of your 10.1.3 JDeveloper
installation.

:was_adf_lib
if {%WAS_ADF_LIB%} =={} @echo Set the WAS_ADF_LIB environment variable pointing to
the directory where you would like to install ADF libraries.

:end

22.12.3 Installing the ADF Runtime Libraries Manually
Instead of using the ADF Runtime Installer wizard in JDeveloper to install the
libraries, you can also install the libraries manually on your target application server.

Table 22–8 lists the files that you must copy to your application server before you
deploy any ADF applications. In the table, JDEV_INSTALL refers to the directory
where you installed JDeveloper.

■ For JBoss, the destination directory is JBOSS_HOME/server/default/lib.

■ For WebLogic, the destination directory is WEBLOGIC_HOME/ADF/lib. You have
to create the ADF directory, and under it, the lib and jlib directories.

■ For Tomcat, the destination directory is TOMCAT_HOME/common/lib.

Installing ADF Runtime Library on Third-Party Application Servers

Deploying ADF Applications 22-25

Table 22–8 ADF Runtime Library Files to Copy

Copy These Files: Notes

From JDEV_INSTALL/BC4J/lib:

■ adfcm.jar

■ adfm.jar

■ adfmweb.jar

■ adfshare.jar

■ bc4jct.jar

■ bc4jctejb.jar

■ bc4jdomorcl.jar or bc4jdomgnrc.jar

Note: Only one of these files is required, depending
on which mapping type you used to build your
application. If you are using the Oracle type
mappings, copy bc4jdomorcl.jar. If the
application was built using "Java" type mappings,
copy bc4jdomgnrc.jar instead.
bc4jdomgnrc.jar is located in JDEV_
INSTALL/BC4J/jlib.

■ bc4jimdomains.jar

■ bc4jmt.jar

■ bc4jmtejb.jar

■ collections.jar

■ adfbinding.jar

These are the ADF runtime library files.

From JDEV_INSTALL/BC4J/jlib:

■ adfmtl.jar

■ bc4jdomgnrc.jar (see the note above)

■ adfui.jar

These are the ADF runtime library files.

From JDEV_INSTALL/jlib:

■ jdev-cm.jar

■ commons-el.jar

■ oracle-el.jar

■ jsp-el-api.jar

These are the JDeveloper runtime library files.

From JDEV_INSTALL/jlib:

■ commons-cli-1.0.jar

■ xmlef.jar

From JDEV_INSTALL/mds/lib:

■ mdsrt.jar

■ concurrent.jar

These are the Oracle MDS files.

From JDEV_INSTALL/diagnostics/lib:

■ ojdl.jar

These are the Oracle diagnostics files.

From JDEV_INSTALL/jlib:

■ ojmisc.jar

These are the OJMisc runtime files.

From JDEV_INSTALL/lib:

■ xmlparserv2.jar

This file is for XML support.

Installing ADF Runtime Library on Third-Party Application Servers

22-26 Oracle Application Development Framework Developer’s Guide

The destination directory (the directory to which you copy these files) depends on
your application server:

22.12.3.1 Installing the ADF Runtime Libraries from a Zip File
You can also install the ADF runtime libraries by downloading adfinstaller.zip
from OTN and following the directions below.

To install the ADF Runtime Libraries:

1. To initiate the download, go to the JDeveloper Download page on OTN, here:

http://www.oracle.com/technology/software/products/jdev/index
.html

Unzip adfinstaller.zip to the target directory.

2. Set the DesHome variable in the adfinstaller.properties file to specify the
home directory of the destination application server:

For example:

Oracle AS: DesHome=c:\\oas1013

From JDEV_INSTALL/toplink/jlib:

■ toplink.jar

■ antlr.jar

These are the TopLink library files.

From JDEV_INSTALL/lib:

■ xml.jar

■ xsqlserializers.jar

■ xsu12.jar

These are the XSQL library files.

From JDEV_INSTALL/ord/jlib:

■ ordhttp.jar

■ ordim.jar

These files are for interMedia Text support. interMedia
Text is a feature for storing, retrieving, and manipulating
audio, document, image, and video data in an Oracle
database.

From JDEV_INSTALL/sqlj/lib:

■ runtime12.jar

■ translator.jar

These are the SQLJ runtime library files.

From JDEV_INSTALL/jdbc/lib:

■ ojdbc14.jar

■ ojdbc14dms.jar

From JDEV_INSTALL/lib:

■ dms.jar

These are the JDBC runtime library files.

From JDEV_INSTALL/javacache/lib:

■ cache.jar

These are the Java Cache runtime library files.

From JDEV_INSTALL/BC4J/redist:

■ webapp.war or bc4j.ear

This file is for Business Components web application
image and cascading style sheet support.

If you are running Tomcat, copy the webapp.war file to
the TOMCAT_HOME/webapps directory.

If you are running JBoss, copy the bc4j.ear file to the
JBOSS_HOME/server/default/deploy directory.

Table 22–8 (Cont.) ADF Runtime Library Files to Copy

Copy These Files: Notes

Verifying Deployment and Troubleshooting

Deploying ADF Applications 22-27

OC4J: DesHome=c:\\oc4j

JBoss: DesHome=c:\\jboss-4.0.3

Tomcat: DesHome=c:\\jakarta-tomcat-5.5.9

WebLogic: DesHome=c:\\bea\weblogic90 (note server home directory is in
weblogic subdirectory)

3. Set the type variable in the adfinstaller.properties file to specify the
platform for the application server where the ADF libraries are to be installed. The
choices are OC4J/AS/TOMCAT/JBOSS/WEBLOGIC.

For example:

type=AS

4. Set the UserHome variable in the adfinstaller.properties file to specify the
WebLogic domain for which ADF is being configured. This setting is only used for
WebLogic, and ignored for all other platforms. For example:

UserHome= c:\\bea\weblogic90\\user_
projects\\domains\\adfdomain

5. Shut down all instances of the application server running on the target platform.

6. Run the following command if you only wish to see the version of the ADF
Installer:

java -jar runinstaller.jar –version

7. Run the following command on the command line prompt:

java -jar runinstaller.jar adfinstaller.properties

22.12.4 Deleting the ADF Runtime Library
If you used the wizard to install the ADF runtime library, you should use the wizard to
delete the library. On the Installation Options page in the wizard, choose the Delete
option.

If you installed the ADF runtime library manually, you can just manually delete the
files from your application server.

22.13 Verifying Deployment and Troubleshooting
After you deploy your application, test it to ensure that it runs correctly on the target
application server. This section provides some common troubleshooting tips.

■ Section 22.13.1, "How to Test Run Your Application"

■ Section 22.13.2, ""Class Not Found" or "Method Not Found" Errors"

■ Section 22.13.3, "Application Is Not Using data-sources.xml File on Target
Application Server"

■ Section 22.13.4, "Using jazn-data.xml with the Embedded OC4J Server"

Verifying Deployment and Troubleshooting

22-28 Oracle Application Development Framework Developer’s Guide

22.13.1 How to Test Run Your Application
Once you've deployed the application, you can run it from the application server. To
test run your application, open a browser window and enter a URL of the following
type:

■ For Oracle Application Server: http://<host>:port/<context root>/<page>

■ For Faces pages: http://<host>:port/<context root>/faces/<page>

22.13.2 "Class Not Found" or "Method Not Found" Errors

Problem
You get "Class Not Found" or "Method Not Found" errors during runtime.

Solution
Check that ADF runtime libraries are installed on the target application server, and
that the libraries are at the correct version.

You can use the ADF Runtime Installer wizard in JDeveloper to check the version of
the ADF runtime libraries. To launch the wizard, choose Tools > ADF Runtime
Installer > Application_Server_Type. Application_Server_Type is the type of the target
application server (for example, WebLogic, JBoss, or standalone OC4J).

22.13.3 Application Is Not Using data-sources.xml File on Target Application Server

Problem
After deploying and running your application, you find that your application is using
the data-sources.xml file that is packaged in the application’s EAR file, instead of
using the data-sources.xml file on the target application server. You want the
application to use the data-sources.xml file on the target application server.

Solution
When you create your EAR file in JDeveloper, choose not to include the
data-sources.xml file. To do this:

1. Choose Tools > Preferences to display the Preferences dialog.

2. Select Deployment on the left side.

3. Deselect Bundle Default data-sources.xml During Deployment.

4. Click OK.

5. Re-create the EAR file.

Before redeploying your application, undeploy your old application and ensure that
the data-sources.xml file on the target application server contains the appropriate
entries needed by your application.

22.13.4 Using jazn-data.xml with the Embedded OC4J Server
If your application uses jazn-data.xml, you should be aware of how the embedded
OC4J server uses this file: If the embedded OC4J server finds a jazn-data.xml file in
the application’s META-INF directory, then the embedded OC4J server will use it. The
embedded OC4J server will also set the <workspace>-oc4j-app.xml file to point

Verifying Deployment and Troubleshooting

Deploying ADF Applications 22-29

to this jazn-data.xml file. This enables you to edit the jazn-data.xml file using
the Embedded OC4J Server Preferences dialog.

If there is no jazn-data.xml file in META-INF, the embedded OC4J server will
create a <workspace>-jazn-data.xml file in the workspace root. You would then
have to go and edit that file (or use the Embedded OC4J Server Preferences dialog to
do so).

Verifying Deployment and Troubleshooting

22-30 Oracle Application Development Framework Developer’s Guide

Part IV
Appendices

Part IV contains the following appendices:

■ Appendix A, "Reference ADF XML Files"

■ Appendix B, "Reference ADF Binding Properties"

Reference ADF XML Files A-1

A
Reference ADF XML Files

This appendix provides reference for the Oracle ADF metadata files that you create in
your data model and user interface projects. You may use this information when you
want to edit the contents of the metadata these files define.

This appendix includes the following sections:

■ Appendix A.1, "About the ADF Metadata Files"

■ Appendix A.2, "ADF File Overview Diagram"

■ Appendix A.3, "ADF File Syntax Diagram"

■ Appendix A.4, "DataControls.dcx"

■ Appendix A.5, "Structure Definition Files"

■ Appendix A.6, "DataBindings.cpx"

■ Appendix A.7, "<pageName>PageDef.xml"

■ Appendix A.8, "web.xml"

■ Appendix A.9, "j2ee-logging.xml"

■ Appendix A.10, "faces-config.xml"

■ Appendix A.11, "adf-faces-config.xml"

■ Appendix A.12, "adf-faces-skins.xml"

A.1 About the ADF Metadata Files
Metadata files in the Oracle ADF application are structured XML files used by the
application to:

■ Specify the parameters, methods, and return values available to your application’s
Oracle ADF data control usages.

■ Create objects in the Oracle ADF binding context and to define the runtime
behavior of those objects.

■ Define configuration information about the UI components in JSF and Oracle ADF
Faces.

■ Define application configuration information for the J2EE application server.

In the case of ADF bindings, you can use the binding-specific editors to customize the
runtime properties of the binding objects. You can open a binding’s editor when you
display the Structure window for a page definition file and choose Properties from the
context menu.

ADF File Overview Diagram

A-2 Oracle Application Development Framework Developer’s Guide

Additionally, you can view and edit the contents of any metadata file in JDeveloper’s
XML editor. The easiest way to work with these file is through the Structure window
and Property Inspector. In the Structure window, you can select an element and in the
Property Inspector, you can define attribute values for the element, often by choosing
among dropdown menu choices. Use this reference to learn the choices you can select
in the case of the Oracle ADF-specific elements.

A.2 ADF File Overview Diagram
The relationship between the Oracle ADF metadata files defines dependencies
between the model data and the user interface projects. The dependencies are defined
as file references within XML elements of the files.

Figure A–1 illustrates the hierarchical relationship of the XML metadata files that you
may work with in the Oracle ADF application that uses an EJB session bean as a
service interface to JavaBeans and JSF web pages.

Figure A–1 Oracle ADF File Hierarchy Overview for an EJB-based Web Application

Oracle ADF Data
Control Files

Oracle ADF Data
Binding Files

Oracle ADF Faces &
Web Configuration Files

User Interface
Project

Data Model
Project

DataControls.dcx

<sessionbeanname>.xml

<beanname>.xml

DataBindings.cpx

<pagename>PageDef.xml

web.xml

faces-config.xml

adf-faces-config.xml

adf-faces-skins.xml

ADF File Overview Diagram

Reference ADF XML Files A-3

A.2.1 Oracle ADF Data Control Files
These XML configuration files required in an Oracle ADF application appear in the
data model project:

■ DataControls.dcx is the registry for the data controls in the application. It
contains information about the type of data control needed to work with a
particular service (e.g. EJB, JavaBean, XML, web service, etc.) and how to construct
the data control at runtime.

For details about what you can configure in the DataControls.dcx file, see
Section A.4.

■ Structure definition files are the structure definition XML files for each business
service type in the application. It contains information about the type of data
control needed to work with a particular service (e.g. EJB, JavaBean, XML, web
service, etc.) and how to construct the data control at runtime. For example, in the
SRDemo application, which uses an EJB session bean as a service interface to
JavaBeans, these files appear in the data model project:

■ <sessionbeanname>.xml—This is the structure definition XML file for each
data type involved in the service interface. The name matches the name of that
data type. For an EJB service interface, there is one structure definition file for
the service class itself.

■ <beanname>.xml—This is the structure definition XML file for each
JavaBean that appears as method return values or method arguments in the
service interface.

For details about what you can configure in the structure definition files, see
Section A.5.

■ adfm.xml is the registry for the data controls in the JDeveloper design time. The
Data Control Palette uses the file to locate the DataControls.dcx file that appears in
the data model project. For a sample of the adfm.xml file, see Section A.4.3.

A.2.2 Oracle ADF Data Binding Files
These standard XML configuration files for an Oracle ADF application appear in your
user interface project:

■ DataBindings.cpx— This file contains the pageMap, page definitions
references, and data control references. The file is created the first time you create a
data binding for a UI component (either from the Structure window or from the
Data Control Palette). The DataBindings.cpx file defines the Oracle ADF
binding context for the entire application. The binding context provides access to
the bindings across the entire application. The DataBindings.cpx file also
contains references to the <pagename>PageDef.xml files that define the
metadata for the Oracle ADF bindings in each web page.

See Appendix A.6, "DataBindings.cpx" for details about what you can configure in
the DataBindings.cpx file.

■ <pagename>PageDef.xml—This is the page definition XML file. This file is
created each time you design a new web page using the Data Control Palette or
Structure window. These XML files contain the metadata used to create the
bindings that populate the data in the web page’s UI components. For every web
page that refers to an ADF binding, there must be a corresponding page definition
file with binding definitions.

ADF File Syntax Diagram

A-4 Oracle Application Development Framework Developer’s Guide

See Appendix A.7, "<pageName>PageDef.xml" for details about what you can
configure in the <pagename>PageDef.xml file.

A.2.3 Oracle ADF Faces and Web Configuration Files
These XML configuration files required in a JSF application appear in your user
interface project:

■ web.xml—Part of the application's configuration is determined by the contents of
its J2EE application deployment descriptor, web.xml. The web.xml file defines
everything about your application that a server needs to know. The file plays a
role in configuring the Oracle ADF data binding by setting up the
ADFBindingFilter. Additional runtime settings include servlet runtime and
initialization parameters, custom tag library location, and security settings.

For details about ADF data binding and JSF configuration options, see
Appendix A.8, "web.xml".

■ faces-config.xml—This JSF configuration file lets you register a JSF
application's resources, such as validators, converters, managed beans, and
navigation rules. While an application can have more than one configuration
resource file, and that file can have any name, typically the filename is
faces-config.xml.

For details about JSF configuration options, see Appendix A.10, "faces-config.xml".

■ adf-faces-config.xml—This ADF Faces configuration file lets you configure
ADF Faces-specific user interface features such as accessibility levels, custom
skins, enhanced debugging, and right-to-left page rendering.

For details about ADF Faces configuration options, see Appendix A.11,
"adf-faces-config.xml".

A.3 ADF File Syntax Diagram
Figure A–2 illustrates the hierarchical relationship of the XML metadata files that you
may work with in the web application that uses an EJB session bean as a service
interface to JavaBeans. At runtime, the objects created from these files interact in this
sequence:

1. When the first request for an ADF databound web page occurs, the servlet
registers the Oracle ADF servlet filter ADFBindingFilter named in the
web.xml file.

2. The binding filter creates a binding context by reading the CpxFileName init
param from the web.xml file.

3. The binding context creates the binding container by loading the
<pagename>PageDef.xml file as referenced by the <pagemap> element from
the DataBindings.cpx file.

4. The binding container's prepareModel phase prepares/refreshes all the
executables.

5. An iterator binding gets executed by referencing the named method on the session
bean facade specified by the data control factory named in the
DataControls.dcx file.

6. The binding container also creates the bindings defined in the <bindings>
section of the <pagename>PageDef.xml file for the mapped web page.

ADF File Syntax Diagram

Reference ADF XML Files A-5

7. The web page references to ADF bindings through EL using the expression
#{bindings} get resolved by accessing the binding container of the page.

8. The page pulls the available data from the bindings on the binding container.

ADF File Syntax Diagram

A-6 Oracle Application Development Framework Developer’s Guide

Figure A–2 Oracle ADF File Hierarchy and Syntax Diagram for an EJB-based Web Application

Presentation layer

EJB Session Bean Facade and
Oracle ADF Model layer

Solid lines indicates
hierarchy of metadata

Dotted lines indicate references
to objects in the ADF binding

Denotes multiple files of
this type may exist in the project*

web.xml

DataBindings.cpx

<pagename>PageDef.xml*

<sessionbeanname>.xml

<beanname>.xml*

DataControls.dcx

<pagename>.jspx*
...

 <context-param>
 <paramname>
 CpxFileName
 </paramname>
 <param-value>
 <pkgname>.DataBindings
 </param-value>
 </context-param>

...

<Application>
 ...

 <pageDefinitionUsages>
 <page id="<pagename>PageDef"
 path="<pkgname>"/> ...
 </pageDefinitionUsages>

 <dataControlUsages>
 <dc id="<servicebeanname> "
 path="<pkgname>"/> ...
 </dataControlUsages>

</Application>

<pageDefinition>
...

 <executables >
 <methodIteratorid="find<beanname>Iter"
 Binds="find<beanname>.result".../>
 ...
 </executables>

 <bindings>
 <...
 IterBinding="find<beanname>Iter">...
 />...
 </bindings>

</pageDefinition>

Invokes methods on
domain classes
mapped with TopLink
(Data Source)

<JavaBean >

 <AccessorAttribute ...
 BeanClass="<pkgname><beanname>" >
 ...
 </AccessorAttribute>...

 <MethodAccessor ...
 BeanClass="<pkgname><beanname>"
 id="find<beanname>" >
 ...
 </MethodAccessor>...

 ...
</JavaBean>

<JavaBean >

 <AccessorAttribute...
 BeanClass="<pkgname><beanname>" >
 ...
 </AccessorAttribute>...

 <MethodAccessor...
 BeanClass="<pkgname><beanname>" >
 ...
 </MethodAccessor>...

 ...
</JavaBean>

<DataControlConfigs>

 <AdapterDataControl
 ...
 Definition="<pkgname>.<sessionbeanname>"
 BeanClass="<pkgname>. sessionbeanname
 ...
 </AdapterDataControl> ...

</DataControlConfigs>

...
<af:xxx>
 ...

 rows="#{bindings.find<beanname>.rangeSize}"

 first="#{bindings.find<beanname>.rangeStart}"

 value="#{bindings.find<beanname>.collectionModel}"

 ...
</af:xxx>
...

DataControls.dcx

Reference ADF XML Files A-7

A.4 DataControls.dcx
The DataControls.dcx file is created in the /src/package directory of the data model
project folder when you create data controls on the business services. There can be one
.dcx file for each model project. The .dcx file identifies the Oracle ADF model layer
data control classes that facilitate the interaction between the client and the available
business service. There will be one data control definition for each data control type
used in the project.

The JDeveloper design time maintains path information for the DataControls.dcx file
in the adfm.xml registry file located in the model project’s META-INF folder. When
you create a data control, JDeveloper will automatically update this file.

In the case of EJB, web services, and bean-based data controls, you can edit this file in
the Property Inspector to alter data control settings. For example, you can use the .dcx
file to customize the global properties of each data control, such as whether to turn
on/off sorting. See Table A–1 for details about the attributes.

The Application Navigator displays the .dcx file in the default package of the
Application Sources folder. When you double-click the file node, the data control
description appears in the XML Source Editor. To edit the data control attributes, use
the Property Inspector and select the desired attribute in the Structure window.

A.4.1 Syntax of the DataControls.dcx File
The toplevel element of the DataControls.dcx file is <DataControlConfigs>:

<DataControlConfigs xmlns="http://xmlns.oracle.com/adfm/configuration"
 version="10.1.3.35.65" Package="oracle.srdemo.model"
 id="DataControls">
where the XML namespace attribute (xmlns) specifies the URI to which the data
controls bind at runtime. Only the package name is editable; all other attributes should
have the values shown.

Figure A–3 displays the toplevel <DataControlConfigs> element. Note that the
BaseDataControl element is a placeholder for the concrete data control types. In the
SRDemo application, the data control type is the AdapterDataControl.

Figure A–3 Schema Overview for DataControl.dcx

Figure A–4 displays the <AdapterDataControl> element that substitutes for the
placeholder <BaseDataControlType> element. Note that each business service for
which you have created a data control, will have its own <AdapterDataControl>
definition.

DataControls.dcx

A-8 Oracle Application Development Framework Developer’s Guide

Figure A–4 Schema Overview for Adapter Data Control in DataControl.dcx

The child elements have the following usages:

■ <AdapterDataControl> created by the Adapter Data Control to define properties
of the data control. The properties of the data control definition varies with the
business service for which the data control is created.

■ <CreatableTypes> defines types from which a constructor method may be called.
For example, a type may be an EJB, TopLink object, JavaBean, or web service.
Contains one or more child elements <TypeInfo>.

■ <Source> defines the service for which the data control is created. Used only in the
case of adapter-based data controls, such as EJB session facade data controls. In the
case of the EJB session facade, contains the child element <ejb-definition>.

Table A–1 describes the attributes of the DataControls.dcx elements.

Table A–1 DataControls.dcx File Metadata

Element Syntax Attributes Attribute Description

<AdapterDataControl> BeanClass Fully qualified package name. Identifies the class for
which the data control is created. In the case of the EJB
session facade, this the session bean

Definition Identifies the class for which the data control is
created. This is used for backward compatibility.

FactoryClass Fully qualified package name. Identifies the ADF
runtime factory class that creates an instance of the
data control.

id Unique identifier. Referenced by the DataBindings.cpx
file.

ImplDef Internal.

SupportsFindMode Determines whether the data control supports
preparing queries with user supplied criteria when
preparing ADF iterator binding objects. Default is false
for EJB session facade beans. Set to false if you want to
globally prevent all iterator-bound web pages in the
application from operating in find mode.

SupportsRangeSize Determines whether the data control supports
returning a user-defined number of data objects when
preparing ADF iterator binding objects. Default is false
for EJB session facade beans.

DataControls.dcx

Reference ADF XML Files A-9

A.4.2 Sample of the DataControls.dcx File
Example A–1 shows the syntax for a sample data control definition file. Notice that
there are two session beans identified by the AdapterDataControl: SRPublicFacade
and SRAdminFacade.

Example A–1 DataControls.dcx Sample File

<?xml version="1.0" encoding="UTF-8" ?>
<DataControlConfigs xmlns="http://xmlns.oracle.com/adfm/configuration"
 version="10.1.3.35.65" Package="oracle.srdemo.model"
 id="DataControls">

SupportsResetState This attribute is deprecated. Determines whether the
data control supports resetting the state. Default is
false for EJB session facade beans; not supported.

SupportsSortCollection Determines whether the data control supports data
object sorting on the service collection. Default is false
for EJB session facade beans; not supported for
collections exposed by EJB session facade finder
methods.

SupportsTransaction Determines whether the data control supports create,
edit, and delete operations on the business service.
Default is false for EJB session facade beans.

SupportsUpdates Determines whether the data control supports write
operations. Default is true for EJB session facade beans.

xmlns URI used to identify the data control configuration
namespace. At runtime, the data control object locates
the runtime factory responsible for creating the
definition objects for elements in its namespace.

<CreateableTypes>
 <TypeInfo />
</CreateableTypes>

FullName Identifies the full type name of the Createable type.
This element is defined only for those types that have
constructors that appear in the Constructors folder of
the Data Control Palette

<Source>
 <ejb-definition />
</Source>

ejb-business-interface The Remote or Local interface that will be used to
communicate with this Session bean

ejb-interface-type Either local or remote.

ejb-name The EJB's name.

ejb-type The EJB’s type, currently only Session is supported.

ejb-version Either 3.0, 2.1, or 2.0.

xmlns This is for internal use only and refers to the schema
namespace; this cannot be updated.

Table A–1 (Cont.) DataControls.dcx File Metadata

Element Syntax Attributes Attribute Description

DataControls.dcx

A-10 Oracle Application Development Framework Developer’s Guide

 <AdapterDataControl id="SRPublicFacade"
 FactoryClass="oracle.adf.model.adapter.DataControlFactoryImpl"
 ImplDef="oracle.adfinternal.model.adapter.ejb.EjbDefinition"
 SupportsTransactions="true" SupportsSortCollection="false"
 SupportsResetState="false" SupportsRangesize="false"
 SupportsFindMode="true"
 Definition="oracle.srdemo.model.SRPublicFacade"
 BeanClass="oracle.srdemo.model.SRPublicFacade"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol"
 SupportsUpdates="true">
 <CreatableTypes>
 <TypeInfo FullName="oracle.srdemo.model.entities.Product"/>
 <TypeInfo FullName="oracle.srdemo.model.entities.ExpertiseArea"/>
 <TypeInfo FullName="oracle.srdemo.model.entities.ServiceHistory"/>
 <TypeInfo FullName="oracle.srdemo.model.entities.User"/>
 <TypeInfo FullName="oracle.srdemo.model.entities.ServiceRequest"/>
 </CreatableTypes>
 <Source>
 <ejb-definition ejb-version="3.0" ejb-name="SRPublicFacade"
 ejb-type="Session" ejb-interface-type="local"
 ejb-business-interface="oracle.srdemo.model.SRPublicFacade"
 xmlns="http://xmlns.oracle.com/adfm/adapter/ejb"/>
 </Source>
 </AdapterDataControl>
 <AdapterDataControl id="SRAdminFacade"
 FactoryClass="oracle.adf.model.adapter.DataControlFactoryImpl"
 ImplDef="oracle.adfinternal.model.adapter.ejb.EjbDefinition"
 SupportsTransactions="true" SupportsSortCollection="false"
 SupportsResetState="false" SupportsRangesize="false"
 SupportsFindMode="true"
 Definition="oracle.srdemo.model.SRAdminFacade"
 BeanClass="oracle.srdemo.model.SRAdminFacade"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol"
 SupportsUpdates="true">
 <CreatableTypes>
 <TypeInfo FullName="oracle.srdemo.model.entities.ServiceHistory"/>
 <TypeInfo FullName="oracle.srdemo.model.entities.User"/>
 <TypeInfo FullName="oracle.srdemo.model.entities.ServiceRequest"/>
 <TypeInfo FullName="oracle.srdemo.model.entities.Product"/>
 <TypeInfo FullName="oracle.srdemo.model.entities.ExpertiseArea"/>
 </CreatableTypes>
 <Source>
 <ejb-definition ejb-version="3.0" ejb-name="SRAdminFacade"
 ejb-type="Session" ejb-interface-type="local"
 ejb-business-interface="oracle.srdemo.model.SRAdminFacade"
 xmlns="http://xmlns.oracle.com/adfm/adapter/ejb"/>
 </Source>
 </AdapterDataControl>
</DataControlConfigs>

Structure Definition Files

Reference ADF XML Files A-11

A.4.3 Sample of the adfm.xml File
The adfm.xml file is the registry for the data controls in the JDeveloper design time.
For instance, the Data Control Palette uses the supplied path to facilitate locating the
data controls used in the model project. When you create a data control, JDeveloper
will automatically update this file located in the META-INF folder of the data model
project.

Example A–2 shows the data control registry syntax.

Example A–2 Data Control Registry Syntax

<MetadataDirectory xmlns="http://xmlns.oracle.com/adfm/metainf"
 version="10.1.3.xx.xx">
 <DataControlRegistry path="test/model/DataControls.dcx"/>
</MetadataDirectory>

A.5 Structure Definition Files
Structure definition files are created to support a data control’s structure, and the
structure of read-only and updateable attributes and collections.

When you register a session bean as an Oracle ADF data control, an XML definition
file is created in the Model project for every session bean. The structure definition file
has the same name as the session bean, but has a .xml extension. A structure definition
is also created for each EJB entity and TopLink POJO.

Figure A–5 shows the toplevel definition for the JavaBean structure definition.

Figure A–5 Schema Root for the Structure Definition of a JavaBean

Structure Definition Files

A-12 Oracle Application Development Framework Developer’s Guide

A.5.1 Syntax for the Structure Definition for a JavaBean
The toplevel element of the structure definition is <JavaBean>:

<JavaBean xmlns="http://xmlns.oracle.com/adfm/beanmodel" version="10.1.3.35.83"
 id="<beanname>" BeanClass="oracle.srdemo.model.entities.<beanname>"
 Package="oracle.srdemo.model.entities" isJavaBased="true">
where the XML namespace attribute (xmlns) specifies the URI to which the structure
definition binds at runtime. Only the package name is editable; all other attributes
should have the values shown.

Figure A–6 displays the <Attribute> child element of the <JavaBean> element. It
defines the structure definition of a bean attribute.

Figure A–6 Schema for Attribute

Figure A–7 displays the <AccessorMethod> child element of the <JavaBean> element.
It defines the structure information for an attribute that returns an object.

Figure A–7 Schema for AccessorAttribute

Figure A–8 displays the <MethodAccessor> child element of the <JavaBean> element.
It defines the structure information for a method that returns an object or collection.
Note that unlike attribute accessors, method accessors can define parameters.

Structure Definition Files

Reference ADF XML Files A-13

Figure A–8 Schema for MethodAccessor

Table A–2 describes the attributes of the structure definition of the bean. Note that
each attribute or method specified by the bean, will have its own <Attribute>,
<AccessorAttribute>, and <MethodAccessor> definition and each method parameter
will have its own <ParameterInfo> definition.

Table A–2 Attributes of the Structure Definition for a Bean

Element Syntax Attributes Attribute Description

<Attribute> AttrLoad Internal

DefaultValue This field is used only in case of variables and ADF
Business Components datacontrol. For beans, since the
beans themselves create a new bean instance, it is
assumed that all properties are appropriately defaulted
in the new instance.

DiscrColumn Internal.

IsNotNull Determines if the attribute is mandatory.

IsPersistent Determines if an attribute is persistent or transient

IsQueriable Determines if this attribute can participate in a
WHERE clause

IsUnique Determines if the attribute is unique, and will have a
UNIQUE constraint generated in the database.

IsUpdateable Determines if the attribute is always updateable, only
updateable while new, or never updateable.

IsVisible .Determines if the attribute is visible or hidden.

Name The attributes name.

PrecisionRule Determines whether precision should be applied. If
true, the precision rule is applied.

Structure Definition Files

A-14 Oracle Application Development Framework Developer’s Guide

A.5.2 Sample Structure Definition for the <sessionbeanname>.xml File
Example A–3 shows the sample SRAdminFacade.xml file from the SRDemo
application. Notice that the SRAdminFacade.xml file lists attributes, accessors, and
operations. Notice that operations may have parameters which reference other
structure definitions (which are in turn composed of attributes, accessors, and
operations).

PrimaryKey .Determines the attributes that participate in a primary
key.

<AttributeAccessor> ArrayElementType This is only used for ADF Business Components
domains, to define the array type.

BeanClass Fully qualified package name. Identifies the full path
to the type’s structure definition.

CollectionBeanClass Fully qualified package name. Identifies the full path
to the method accessor’s structure definition. In the
case of a session bean that accesses an entity that is a
collection, this value will be either ReadOnlyCollection
or UpdateableCollection.

id Unique identifier. Same as the method name that
appears in the bean class.

IsCollection Identifies whether the method accessor returns a
collection. Set to true when the entity accessed is a
collection and specify the CollectionBeanClass
attribute value.

SourceName The name of the property on the source of this bean.

BeanClass Fully qualified package name. Identifies the full path
to the type’s structure definition.

CollectionBeanClass Fully qualified package name. Identifies the full path
to the method accessor’s structure definition. In the
case of a session bean that accesses an entity that is a
collection, this value will be either ReadOnlyCollection
or UpdateableCollection.

id Unique identifier. Same as the method name that
appears in the bean class.

IsCollection Identifies whether the method accessor returns a
collection. Set to true when the entity accessed is a
collection and specify the CollectionBeanClass
attribute value.

ReturnNodeName Unique identifier. Name used in the Data Control
Palette to display the return node.

<MethodAccessor>
 <ParameterInfo />
</MethodAccessor>

id Unique identifier. Same as the method parameter name
that appears in the method signature of the session
bean class

Type Specifies the data type of the parameter

Table A–2 (Cont.) Attributes of the Structure Definition for a Bean

Element Syntax Attributes Attribute Description

Structure Definition Files

Reference ADF XML Files A-15

Example A–3 Structure Definition of SRAdminFacade.xml

<?xml version="1.0" encoding="UTF-8" ?>
<JavaBean xmlns="http://xmlns.oracle.com/adfm/beanmodel" version="10.1.3.35.83"
 id="SRAdminFacade" BeanClass="oracle.srdemo.model.SRAdminFacade"
 Package="oracle.srdemo.model" isJavaBased="true">
 <MethodAccessor IsCollection="false"
 Type="oracle.srdemo.model.entities.ExpertiseArea"
 BeanClass="oracle.srdemo.model.entities.ExpertiseArea"
 id="createExpertiseArea"
 ReturnNodeName="oracle.srdemo.model.entities.ExpertiseArea">
 <ParameterInfo id="product" Type="oracle.srdemo.model.entities.Product"
 isStructured="true"/>
 <ParameterInfo id="user" Type="oracle.srdemo.model.entities.User"
 isStructured="true"/>
 <ParameterInfo id="prodId" Type="java.lang.Integer" isStructured="false"/>
 <ParameterInfo id="userId" Type="java.lang.Integer" isStructured="false"/>
 <ParameterInfo id="expertiseLevel" Type="java.lang.String"
 isStructured="false"/>
 <ParameterInfo id="notes" Type="java.lang.String" isStructured="false"/>
 </MethodAccessor>
 <MethodAccessor IsCollection="false"
 Type="oracle.srdemo.model.entities.Product"
 BeanClass="oracle.srdemo.model.entities.Product"
 id="createProduct"
 ReturnNodeName="oracle.srdemo.model.entities.Product">
 <ParameterInfo id="prodId" Type="java.lang.Integer" isStructured="false"/>
 <ParameterInfo id="name" Type="java.lang.String" isStructured="false"/>
 <ParameterInfo id="image" Type="java.lang.String" isStructured="false"/>
 <ParameterInfo id="description" Type="java.lang.String"
 isStructured="false"/>
 </MethodAccessor>
 <MethodAccessor IsCollection="false" Type="oracle.srdemo.model.entities.User"
 BeanClass="oracle.srdemo.model.entities.User" id="createUser"
 ReturnNodeName="oracle.srdemo.model.entities.User">
 <ParameterInfo id="userId" Type="java.lang.Integer" isStructured="false"/>
 <ParameterInfo id="userRole" Type="java.lang.String" isStructured="false"/>
 <ParameterInfo id="email" Type="java.lang.String" isStructured="false"/>
 <ParameterInfo id="firstName" Type="java.lang.String" isStructured="false"/>
 <ParameterInfo id="lastName" Type="java.lang.String" isStructured="false"/>
 <ParameterInfo id="streetAddress" Type="java.lang.String"
 isStructured="false"/>
 <ParameterInfo id="city" Type="java.lang.String" isStructured="false"/>
 <ParameterInfo id="stateProvince" Type="java.lang.String"
 isStructured="false"/>
 <ParameterInfo id="postalCode" Type="java.lang.String"
 isStructured="false"/>
 <ParameterInfo id="countryId" Type="java.lang.String" isStructured="false"/>
 </MethodAccessor>
 <MethodAccessor IsCollection="true" Type="oracle.srdemo.model.entities.User"
 BeanClass="oracle.srdemo.model.entities.User"
 id="findAllStaffWithOpenAssignments"
 ReturnNodeName="oracle.srdemo.model.entities.User"
 CollectionBeanClass="UpdateableCollection"/>

Structure Definition Files

A-16 Oracle Application Development Framework Developer’s Guide

 <MethodAccessor IsCollection="true"
 Type="oracle.srdemo.model.entities.ExpertiseArea"
 BeanClass="oracle.srdemo.model.entities.ExpertiseArea"
 id="findExpertiseByUserId"
 ReturnNodeName="oracle.srdemo.model.entities.ExpertiseArea"
 CollectionBeanClass="UpdateableCollection">
 <ParameterInfo id="userIdParam" Type="java.lang.Integer"
 isStructured="false"/>
 </MethodAccessor>
 <MethodAccessor IsCollection="false" Type="java.lang.Object" id="mergeEntity"
 ReturnNodeName="Return">
 <ParameterInfo id="entity" Type="java.lang.Object" isStructured="false"/>
 </MethodAccessor>
 <MethodAccessor IsCollection="false" Type="java.lang.Object"
 id="persistEntity" ReturnNodeName="Return">
 <ParameterInfo id="entity" Type="java.lang.Object" isStructured="false"/>
 </MethodAccessor>
 <MethodAccessor IsCollection="false" Type="java.lang.Object"
 id="refreshEntity" ReturnNodeName="Return">
 <ParameterInfo id="entity" Type="java.lang.Object" isStructured="false"/>
 </MethodAccessor>
 <MethodAccessor IsCollection="false" Type="void" id="removeEntity"
 ReturnNodeName="Return">
 <ParameterInfo id="entity" Type="java.lang.Object" isStructured="false"/>
 </MethodAccessor>
</JavaBean>

A.5.3 Sample Structure Definition for the <entitybeanname>.xml File
The XML files that get created for a TopLink POJO, EJB entity or a Java bean are very
similar, as the constructs listed in each case are generic ADF metadata. The following
syntax shows a TopLink entity XML file.

Example A–4 shows the sample Product.xml file from the SRDemo application. Notice
the structure of the file, that it is broken up into attributes, accessors, and operations
(methods).

Example A–4 Structure Definition of Product.xml

<?xml version="1.0" encoding="UTF-8" ?>
<JavaBean xmlns="http://xmlns.oracle.com/adfm/beanmodel" version="10.1.3.35.65"
 id="Product" BeanClass="oracle.srdemo.model.entities.Product"
 Package="oracle.srdemo.model.entities" isJavaBased="true">
 <Attribute Name="description" Type="java.lang.String"/>
 <Attribute Name="image" Type="java.lang.String"/>
 <Attribute Name="name" Type="java.lang.String"/>
 <Attribute Name="prodId" Type="java.lang.Integer"/>
 <AccessorAttribute id="expertiseAreaCollection" IsCollection="true"
 BeanClass="oracle.srdemo.model.entities.ExpertiseArea"
 CollectionBeanClass="UpdateableCollection"/>
 <AccessorAttribute id="serviceRequestCollection" IsCollection="true"
 BeanClass="oracle.srdemo.model.entities.ServiceRequest"
 CollectionBeanClass="UpdateableCollection"/>
 <MethodAccessor IsCollection="false" Type="void" id="addExpertiseArea"
 ReturnNodeName="Return">
 <ParameterInfo id="anExpertiseArea"
 Type="oracle.srdemo.model.entities.ExpertiseArea"
 isStructured="true"/>
 </MethodAccessor>

Structure Definition Files

Reference ADF XML Files A-17

 <MethodAccessor IsCollection="false" Type="void" id="addExpertiseArea"
 ReturnNodeName="Return">
 <ParameterInfo id="index" Type="int" isStructured="false"/>
 <ParameterInfo id="anExpertiseArea"
 Type="oracle.srdemo.model.entities.ExpertiseArea"
 isStructured="true"/>
 </MethodAccessor>
 <MethodAccessor IsCollection="false" Type="void" id="addServiceRequest"
 ReturnNodeName="Return">
 <ParameterInfo id="aServiceRequest"
 Type="oracle.srdemo.model.entities.ServiceRequest"
 isStructured="true"/>
 </MethodAccessor>
 <MethodAccessor IsCollection="false" Type="void" id="addServiceRequest"
 ReturnNodeName="Return">
 <ParameterInfo id="index" Type="int" isStructured="false"/>
 <ParameterInfo id="aServiceRequest"
 Type="oracle.srdemo.model.entities.ServiceRequest"
 isStructured="true"/>
 </MethodAccessor>
 <MethodAccessor IsCollection="false" Type="void" id="removeExpertiseArea"
 ReturnNodeName="Return">
 <ParameterInfo id="anExpertiseArea"
 Type="oracle.srdemo.model.entities.ExpertiseArea"
 isStructured="true"/>
 </MethodAccessor>
 <MethodAccessor IsCollection="false" Type="void" id="removeServiceRequest"
 ReturnNodeName="Return">
 <ParameterInfo id="aServiceRequest"
 Type="oracle.srdemo.model.entities.ServiceRequest"
 isStructured="true"/>
 </MethodAccessor>
 <ConstructorMethod IsCollection="false" Type="void" id="Product"/>
</JavaBean>

A.5.4 Collection and SingleValue Sample Files
Four additional files are also generated:

■ ReadOnlyCollection.xml

■ ReadOnlySingleValue.xml

■ UpdateableCollection.xml

■ UpdateableSingleValue.xml

These files support the Data Control Palette in JDeveloper. The files are used only at
design time to specify the list of operations that the Data Control Palette may display
for a given accessor. These files are referenced by the accessor’s CollectionBeanClass
attribute. Typically you do not edit these files, but if you wanted to remove an
operation from the Palette, you could remove an item on this list.

Example A–2 shows a read-only collection. The syntax for all four design-time XML
files is similar.

DataBindings.cpx

A-18 Oracle Application Development Framework Developer’s Guide

Example A–5 Read-only Collection Syntax

<?xml version="1.0" encoding="UTF-8" ?>
<JavaBean xmlns="http://xmlns.oracle.com/adfm/beanmodel" version="10.1.3.35.65"
 id="ReadOnlyCollection" BeanClass="ReadOnlyCollection"
 isJavaBased="false">
 <BuiltinOperation id="IteratorExecute"/>
 <BuiltinOperation id="Find"/>
 <BuiltinOperation id="First"/>
 <BuiltinOperation id="Last"/>
 <BuiltinOperation id="Next"/>
 <BuiltinOperation id="Previous"/>
 <BuiltinOperation id="NextSet"/>
 <BuiltinOperation id="PreviousSet"/>
 <BuiltinOperation id="setCurrentRowWithKey"/>
 <BuiltinOperation id="setCurrentRowWithKeyValue"/>
</JavaBean>

A.6 DataBindings.cpx
The DataBindings.cpx file is created in the user interface project the first time you
drop a data control usage onto a web page in the HTML Visual Editor. The .cpx file
defines the Oracle ADF binding context for the entire application and provides the
metadata from which the Oracle ADF binding objects are created at runtime. When
you insert a databound UI component into your document, the page will contain
binding expressions that access the Oracle ADF binding objects at runtime.

If you are familiar with building ADF applications in earlier releases of JDeveloper,
you’ll notice that the .cpx file no longer contains all the information copied from the
DataControls.dcx file, but only a reference to it. Therefore, if you need to make
changes to the .cpx file, you must edit the DataControls.dcx file.

The DataBindings.cpx file appears in the /src directory of the user interface
project folder. When you double-click the file node, the binding context description
appears in the XML Source Editor. (To edit the binding context parameters, use the
Property Inspector and select the desired parameter in the Structure window.)

A.6.1 DataBindings.cpx Syntax
The toplevel element of the DataBindings.cpx file is <DataControlConfigs>:

<DataControlConfigs xmlns="http://xmlns.oracle.com/adfm/configuration"
 version="10.1.3.35.65" Package="oracle.srdemo.model"
 id="DataControls">

where the XML namespace attribute (xmlns) specifies the URI to which the data
controls bind at runtime. Only the package name is editable; all other attributes should
have the values shown.

Figure A–9 displays the child element hierarchy of the <DataControlConfigs> element.
Note that each business service for which you have created a data control, will have its
own <dataControlUsages> definition.

DataBindings.cpx

Reference ADF XML Files A-19

Figure A–9 Schema for the Structure Definition of the DataBindings.cpx File

The child elements have the following usages:

■ <pageMap> element maps all user interface URLs and the corresponding
pageDefinitionUsage name. This map is used at runtime to map an URL to its
pageDefinition.

■ <pageDefinitionUsages> element maps a PageDefinition Usage (BindingContainer
instance) name to the corresponding pageDefinition definition. The id attribute
represents the usage id. The path attribute represents the full path to the page
definition.

■ <dataControlUsages> element declares a list of datacontrol (shortnames) and
corresponding path to the datacontrol definition entries in the dcx or xcfg file.

Table A–3 describes the attributes of the DataBindings.cpx elements.

Table A–3 Attributes of the DataBindings.cpx File Elements

Element Syntax Attributes Attribute Description

<pageMap>
 <page />
</pageMap>

path The full directory path. Identifies the location of the
user interface page.

usageId A unique qualifier. Names the page definition id that
appears in the ADF page definition file. The ADF
binding servlet looks at the incoming URL requests
and checks that the bindings variable is pointing to
the ADF page definition associated with the URL of
the incoming HTTP request.

<pageDefinitionUsages>
 <page/>
</pageDefinitionUsages>

id A unique qualifier. References the page definition id
that appears in the ADF page definition file.

path The fully qualified package name. Identifies the
location of the user interface page’s ADF page
definition file.

<dataControlUsages>
 <dc ... />
</dataControlUsages>

id A unique qualifier. Identifies the data control usage as
is defined in the DataControls.dcx file.

path The fully qualified package name. Identifies the
location of the data control

DataBindings.cpx

A-20 Oracle Application Development Framework Developer’s Guide

A.6.2 DataBindings.cpx Sample
Example A–6 shows the syntax for the DataBindings.cpx file in the SR Demo
application. It uses two session facades data controls and a URL data control. In the
following code, notice the references to the data controls within the DCX. For example,
<dc id="SRDemoFAQ" path="oracle.srdemo.faq.SRDemoFAQ"/> finds "SRDemoFAQ"
via the data control id within DataControls.dcx.

Example A–6 DataBindings.cpx Sample

<?xml version="1.0" encoding="UTF-8" ?>
<Application xmlns="http://xmlns.oracle.com/adfm/application"
 version="10.1.3.35.65" id="DataBindings" SeparateXMLFiles="false"
 Package="oracle.srdemo.view" ClientType="Generic">
 <pageMap>
 <page path="/app/SRList.jspx" usageId="SRListPageDef"/>
 <page path="/app/SRCreate.jspx" usageId="SRCreatePageDef"/>
 <page path="/app/SRCreateConfirm.jspx" usageId="SRCreateConfirmPageDef"/>
 <page path="/app/staff/SREdit.jspx" usageId="SREditPageDef"/>
 <page path="/app/staff/SRStaffSearch.jspx" usageId="SRStaffSearchPageDef"/>
 <page path="/app/staff/SRSearch.jspx" usageId="SRSearchPageDef"/>
 <page path="/app/SRMain.jspx" usageId="SRMainPageDef"/>
 <page path="/app/management/SRManage.jspx" usageId="SRManagePageDef"/>
 <page path="/app/SRFaq.jspx" usageId="SRFaqPageDef"/>
 </pageMap>
 <pageDefinitionUsages>
 <page id="SRListPageDef"
 path="oracle.srdemo.view.pageDefs.app_SRListPageDef"/>
 <page id="UserInfoPageDef"
 path="oracle.srdemo.view.pageDefs.headless_UserInfoPageDef"/>
 <page id="SRCreatePageDef"
 path="oracle.srdemo.view.pageDefs.app_SRCreatePageDef"/>
 <page id="SRCreateConfirmPageDef"
 path="oracle.srdemo.view.pageDefs.app_SRCreateConfirmPageDef"/>
 <page id="SREditPageDef"
 path="oracle.srdemo.view.pageDefs.app_staff_SREditPageDef"/>
 <page id="SRStaffSearchPageDef"
 path="oracle.srdemo.view.pageDefs.app_staff_SRStaffSearchPageDef"/>
 <page id="SRSearchPageDef"
 path="oracle.srdemo.view.pageDefs.app_staff_SRSearchPageDef"/>
 <page id="SRMainPageDef"
 path="oracle.srdemo.view.pageDefs.app_SRMainPageDef"/>
 <page id="SRManagePageDef"
 path="oracle.srdemo.view.pageDefs.app_management_SRManagePageDef"/>
 <page id="SRFaqPageDef"
 path="oracle.srdemo.view.pageDefs.app_SRFaqPageDef"/>
 </pageDefinitionUsages>
 <dataControlUsages>
 <dc id="SRDemoFAQ" path="oracle.srdemo.faq.SRDemoFAQ"/>
 <dc id="SRAdminFacade" path="oracle.srdemo.model.SRAdminFacade"/>
 <dc id="SRPublicFacade"
 path="oracle.srdemo.model.SRPublicFacade"/>
 </dataControlUsages>
</Application>

<pageName>PageDef.xml

Reference ADF XML Files A-21

A.7 <pageName>PageDef.xml
The <pageName>PageDef.xml files are created each time you insert a databound
component into a web page using the Data Control Palette or Structure window. These
XML files define the Oracle ADF binding container for each web page in the
application. The binding container provides access to the bindings within the page.
Therefore, you will have one XML file for each databound web page.

The PageDef.xml file appears in the /src/view directory of the ViewController project
folder. The Application Navigator displays the file in the view package of the
Application Sources folder. When you double-click the file node, the page description
appears in the XML Source Editor. To edit the page description parameters, use the
Property Inspector and select the desired parameter in the Structure window.

There are important differences in how the PageDefs are generated for methods that
return a single-value and a collection, so these are listed separately below.

A.7.1 PageDef.xml Syntax
The toplevel element of the PageDef.xml file is <pageDefinition>:

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.35.83" id="<pagename>PageDef"
 Package="oracle.srdemo.view.pageDefs">

where the XML namespace attribute (xmlns) specifies the URI to which the ADF
binding container binds at runtime. Only the package name is editable; all other
attributes should have the values shown.

Example A–7 displays the child element hierarchy of the <pageDefinition> element.
Note that each business service for which you have created a data control, will have its
own <AdapterDataControl> definition.

Example A–7 PageDef.xml Element Hierarchy

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition>
 <parameters>
 ...
 </parameters>
 <executables>
 ...
 </executables>
 <bindings>
 ...
 </bindings>
</pageDefinition>

Note: You cannot rename the <pageName>PageDef.xml file in
JDeveloper, but you can rename the file outside of JDeveloper in your
MyWork/ViewController/src/view folder. If you do rename the
<pageName>PageDef.xml file, you must also update the
DataBindings.cpx file references for the id and path attributes in the
<pageDefinitionUsages> element.

<pageName>PageDef.xml

A-22 Oracle Application Development Framework Developer’s Guide

The child elements have the following usages:

■ <parameters> defines page-level parameters that are EL accessible. These
parameters store information local to the web page request and may be accessed in
the binding expressions.

■ <executables> defines the list of items (methods and accessors) to execute during
the prepareModel phase of the ADF page lifecycle. Methods to be executed are
defined by <methodIterator>. The lifecycle performs the execute in the sequence
listed in the <executables> section. Whether or not the method or operation is
executed depends on it’s refresh or refreshCondition attribute value. Built-in
operations on the data control are defined by:

<page> - definition for a nested page definition (binding container)

<iterator> - definition to a named collection in DataControls

<accessorIterator> - definition to get an accessor in a data control hierarchy

<methodIterator> - definition to get to an iterator returned by an invoked method
defined by a methodAction in the same file

<variableIterator> - internal iterator that contains variables declared for the
binding container

<invokeAction> - definition of which method to invoke as an executable

■ <bindings> refers to an entry in <executables> to get to the collection from which
bindings extract/submit attribute level data.

Table A–4 describes the attributes of the toplevel <pageDefinition> element.

Table A–5 describes the attributes of the child element of <parameters>.

Table A–4 Attributes of the PageDef.xml File <pageDefinition> Element

Element Syntax Attributes Attribute Description

<pageDefinition> ControllerClass Fully qualified classname to create when controller
requests a PageController object for this
bindingContainer

EnableTokenValidation Enables currency validation for this bindingContainer
when a postback occurs. This is to confirm that the
web tier state matches the state that particular page
was rendered with.

FindMode This is for legacy (10.1.2) use only and indicates if this
bindingContainer should start out in findMode when
initially prepared.

MsgBundleClass Fully qualified package name. Identifies the class
which contains translation strings for any bindings

Viewable An EL expression that should resolve at runtime to
whether this binding and the associated component
should be rendered or not.

<pageName>PageDef.xml

Reference ADF XML Files A-23

Table A–6 describes the attributes of the PageDef.xml <executables> elements.

Table A–5 Attributes of the PageDef.xml File <parameters> Element

Element Syntax Attributes Attribute Description

<parameter> id Unique identifier. May be referenced by ADF bindings

option Indicates the usage of the variable within the binding
container:

■ Final indicates that this parameter cannot be
passed in by a usage of this binding container, it
must use the default value in the definition.

■ Optional indicates the variable value need not be
provided.

■ Mandatory indicates the variable value must be
provided or a binding container exception will be
thrown.

readonly Indicates whether the parameter value may be
modified or not. Set to true when you do not want the
application to modify the parameter value.

value A default value, this can be an EL expression.

Table A–6 Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

<accessorIterator> BeanClass Identifies the Java type of beans in the associated
iterator/collection.

CacheResults If true, manage the data collection between requests.

DataControl The data control which interprets/returns the
collection referred to by this iterator binding.

id Unique identifier. May be referenced by any ADF
value binding.

MasterBinding Reference to the methodIterator (or iterator) that
binds the data collection that serves as the master to
the accessor iterator’s detail collection.

ObjectType This is used for ADF Business Components only. A
boolean value determines if the collection is an object
type or not.

RangeSize Specifies the number of data objects in a range to fetch
from the bound collection. The range defines a
window you can use to access a subset of the data
objects in the collection. By default, the range size is
set to a range that fetches just ten data objects. Use
RangeSize when you want to work with an entire set
or when you want to limit the number of data objects
to display in the page. Note that the values -1 and 0
have specific meaning: the value -1 returns all
available objects from the collection, while the value 0
will return the same number of objects as the
collection uses to retrieve from its data source.

<pageName>PageDef.xml

A-24 Oracle Application Development Framework Developer’s Guide

Refresh Determines when and whether the executable should
be invoked. Set one of the following properties as
required:

■ always - causes the executable to be invoked each
time the binding container is prepared. This will
occur when the page is displayed and when the
user submits changes, or when the application
posts back to the page.

■ deferred - refresh occurs when another binding
requires/refers to this executable.Since refreshing
an executable may be a performance concern,
you can set the refresh to only occur if it's used in
a binding that is being rendered.

■ ifNeeded - (default) whenever the framework
needs to refresh the executable because it has not
been refreshed to this point. For example, when
you have an accessor hierarchy such that a detail
is listed first in the page definition, the master
could be refreshed twice (once for the detail and
again for the master’s iterator). Using ifNeeded
gives the mean to avoid duplicate refreshes. This
is the default behavior for executables.

■ never - When the application itself will call
refresh on the executable during one of the
controller phases and does not want the
framework to refresh it at all.

■ prepareModel - causes the executable to be
invoked each time the page’s binding container is
prepared.

■ prepareModelIfNeeded - causes the executable to
be invoked during the prepareModel phase if this
executable has not been refreshed to this point.
See also ifNeeded above.

■ renderModel - causes the executable to be
invoked each time the page is rendered.

■ renderModelIfNeeded - causes the executable to
be invoked during the page’s renderModel phase
on the condition that it is needed. See also
ifNeeded above.

RefreshCondition An EL expression that when resolved, determines
when and whether the executable should be invoked.
For example,
${!bindings.findAllServiceRequestIter.findMode}
resolves the value of the findMode on the iterator in
the ADF binding context AllServiceRequest. Hint: Use
the Property Inspector to create expressions from the
available objects of the binding context (bindings
namespace) or binding context (data namespace), JSF
managed beans, and JSP objects.

Table A–6 (Cont.) Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

<pageName>PageDef.xml

Reference ADF XML Files A-25

<invokeAction> Binds Determines the action to invoke. This may be on any
actionBinding. Additionally, in the case, of the EJB
session facade data control, you may bind to the
finder method exposed by the data control. Built-in
actions supported by the EJB session facade data
control include:

■ Execute executes the bound action defined by the
data collection.

■ Find retrieves a data object from a collection.

■ First navigates to the first data object in the data
collection range.

■ Last navigates to the first data object in the data
collection range.

■ Next navigates to the first data object in the data
collection range. If the current range position is
already on the last data object, then no action is
performed.

■ Previous navigates to the first data object in the
data collection range. If the current position is
already on the first data object, then no action is
performed.

■ setCurrentRowWithKey passes the row key as a
String converted from the value specified by the
input field. The row key is used to set the
currency of the data object in the bound data
collection. When passing the key, the URL for the
form will not display the row key value. You may
use this operation when the data collection
defines a multipart attribute key.

■ setCurrentRowWithKeyValue is used as above,
but when you want to use a primary key value
instead of the stringified key.

id Unique identifier. May be referenced by any ADF
action binding

Refresh see Refresh above.

RefreshCondition see RefreshCondition above.

<iterator> and
<methodIterator>

BeanClass Identifies the Java type of beans in the associated
iterator/collection

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

Binds see Binds above.

CacheResults see CacheResults above

DataControl Name of the DataControl usage in the bindingContext
(.cpx) which this iterator is associated with.

DefClass Used internally for testing.

id Unique identifier. May be referenced by any ADF
value binding.

ObjectType Not used by EJB session facade data control (used by
ADF Business Components only).

Table A–6 (Cont.) Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

<pageName>PageDef.xml

A-26 Oracle Application Development Framework Developer’s Guide

Table A–7 describes the attributes of the PageDef.xml <bindings> element.

RangeSize see RangeSize above

Refresh see Refresh above

RefreshCondition see RefreshCondition above

<page> and
<variableIterator>

id Unique identifier. In the case of <page>, refers to
nested page/region that is included in this page. In
the case of the <variableIterator> executable, the
identifier may be referenced by any ADF value
binding

path Used by <page> executable only. Advanced, a fully
qualified path that may reference another page’s
binding container.

Refresh see Refresh above

RefreshCondition see RefreshCondition above

Table A–7 Attributes of the PageDef.xml File <bindings> Elements

Element Syntax Attributes Attribute Description

<action> Action Fully qualified package name. Identifies the class for
which the data control is created. In the case of the EJB
session facade, this the session bean

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

DataControl Name of the DataControl usage in the bindingContext
(.cpx) which this iteratorBinding or actionBinding is
associated with.

<attributeValues> ApplyValidation Set to True by default. When true, controlBinding
executes validators defined on the binding. You can
set to False in the case of ADF Business Components,
when running in local mode and the same validators
are already defined on the corresponding attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

ControlClass Used internally for testing purposes.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

DefClass Used internally for testing.

id Unique identifier. May be referenced by any ADF
action binding

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

Table A–6 (Cont.) Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

<pageName>PageDef.xml

Reference ADF XML Files A-27

<button> ApplyValidation Set to True by default. When true, controlBinding
executes validators defined on the binding. You can
set to False in the case of ADF Business Components,
when running in local mode and the same validators
are already defined on the corresponding attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

BoolVal Identifies whether the value at the zero index in the
static value list in this boolean list binding represents
true or false.

ControlClass Used internally for testing purposes.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

DefClass Used internally for testing.

id Unique identifier. May be referenced by any ADF
action binding

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

ListIter Refers to the iteratorBinding that is associated with
the source list of this listBinding.

ListOperMode Determines if this list binding is for navigation,
contains a static list of values or is a LOV type list.

NullValueFlag Describes whether this list binding has a null value
and if so, whether it should be displayed at the
beginning of the list or the end.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

<graph> ApplyValidation Set to True by default. When true, controlBinding
executes validators defined on the binding. You can
set to False in the case of ADF Business Components,
when running in local mode and the same validators
are already defined on the corresponding attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

BoolVal Identifies whether the value at the zero index in the
static value list in this boolean list binding represents
true or false.

ChildAccessorName The name of the accessor to invoke to get the next
level of nodes for a given Hierarchical Node Type in a
tree.

ControlClass Used internally for testing purposes.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

Table A–7 (Cont.) Attributes of the PageDef.xml File <bindings> Elements

Element Syntax Attributes Attribute Description

<pageName>PageDef.xml

A-28 Oracle Application Development Framework Developer’s Guide

DefClass Used internally for testing.

id Unique identifier. May be referenced by any ADF
action binding

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

<list> ApplyValidation Set to True by default. When true, controlBinding
executes validators defined on the binding. You can
set to False in the case of ADF Business Components,
when running in local mode and the same validators
are already defined on the corresponding attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

ControlClass Used internally for testing purposes.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

DefClass Used internally for testing.

id Unique identifier. May be referenced by any ADF
action binding

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

ListIter Refers to the iteratorBinding that is associated with
the source list of this listBinding.

ListOperMode Determines if this list binding is for navigation,
contains a static list of values or is a LOV type list.

NullValueFlag Describes whether this list binding has a null value
and if so, whether it should be displayed at the
beginning of the list or the end.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

StaticList Defines a static list of values that will be rendered in
the bound list component.

<methodAction> Action Fully qualified package name. Identifies the class for
which the data control is created. In the case of the EJB
session facade, this the session bean

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

ClassName This is the class to which the method being invoked
belongs.

Table A–7 (Cont.) Attributes of the PageDef.xml File <bindings> Elements

Element Syntax Attributes Attribute Description

<pageName>PageDef.xml

Reference ADF XML Files A-29

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

DataControl Name of the DataControl usage in the bindingContext
(.cpx) which this iteratorBinding or actionBinding is
associated with.

DefClass Used internally for testing.

id Unique identifier. May be referenced by any ADF
action binding

InstanceName A dot-separated EL path to a Java object instance on
which the associated method is to be invoked.

IsLocalObjectReference Set to True if the instanceName contains an EL path
relative to this bindingContainer.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

MethodName Indicates the name of the operation on the given
instance/class that needs to be invoked for this
methodActionBinding.

RequiresUpdateModel Whether this action requires that the model be
updated before the action is to be invoked.

ReturnName The EL path of the result returned by the associated
method.

<table> and <tree> ApplyValidation Set to True by default. When true, controlBinding
executes validators defined on the binding. You can
set to False in the case of ADF Business Components,
when running in local mode and the same validators
are already defined on the corresponding attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

ControlClass Used internally for testing purposes.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

DefClass Used internally for testing.

DiscrValue Indicates the discriminator value for a hierarchical
type binding (type definition for a tree node). This
value is used to determine if a given row in a
collection being rendered in a polymorphic tree
binding should be rendered using the containing
hierarchical type binding.

id Unique identifier. May be referenced by any ADF
action binding

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

Table A–7 (Cont.) Attributes of the PageDef.xml File <bindings> Elements

Element Syntax Attributes Attribute Description

<pageName>PageDef.xml

A-30 Oracle Application Development Framework Developer’s Guide

A.7.2 PageDef.xml Sample for a Method That Returns a String
This is the page definition file that’s created when you drop the method return User
from the method findUserByEmail() from the Data Control Palette, SRPublicFacade
node, into your open JSP page.

Example A–8 PageDef for findUserByEmail()

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.36.7" id="untitled1PageDef"
 Package="project1.pageDefs">
 <parameters/>
 <executables>
 <variableIterator id="variables"/>
 <methodIterator id="findUserByEmailIter" Binds="findUserByEmail.result"
 DataControl="SRPublicFacade" RangeSize="10"
 BeanClass="oracle.srdemo.model.entities.User"/>
 </executables>
 <bindings>
 <methodAction id="findUserByEmail"
 InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" MethodName="findUserByEmail"
 RequiresUpdateModel="true" Action="999"
 ReturnName="SRPublicFacade.methodResults.SRPublicFacade_
dataProvider_findUserByEmail_result">
 <NamedData NDName="emailParam" NDValue="mkorf@oracle.com"
 NDType="java.lang.String"/>
 </methodAction>
 <table id="findUserByEmail1" IterBinding="findUserByEmailIter">
 <AttrNames>
 <Item Value="city"/>
 <Item Value="countryId"/>
 <Item Value="email"/>
 <Item Value="firstName"/>
 <Item Value="lastName"/>
 <Item Value="postalCode"/>
 <Item Value="stateProvince"/>
 <Item Value="streetAddress"/>
 <Item Value="userId"/>
 <Item Value="userRole"/>
 </AttrNames>
 </table>
 </bindings>
</pageDefinition>

A.7.3 PageDef.xml Sample for a Method that Returns a Collection
This is the page definition file that’s created when you drop the User node from the
findAllStaff() method in the Data Control Palette, SRPublicFacade node, into your
open JSP page. This one is a collection.

Example A–9 PageDef for Method that Returns a Collection

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.36.7" id="untitled2PageDef"
 Package="project1.pageDefs">
 <parameters/>

web.xml

Reference ADF XML Files A-31

 <executables>
 <methodIterator id="findAllStaffIter" Binds="findAllStaff.result"
 DataControl="SRPublicFacade" RangeSize="10"
 BeanClass="oracle.srdemo.model.entities.User"/>
 </executables>
 <bindings>
 <methodAction id="findAllStaff" InstanceName="SRPublicFacade.dataProvider"
 DataControl="SRPublicFacade" MethodName="findAllStaff"
 RequiresUpdateModel="true" Action="999"
 ReturnName="SRPublicFacade.methodResults.SRPublicFacade_
dataProvider_findAllStaff_result"/>
 <table id="findAllStaff1" IterBinding="findAllStaffIter">
 <AttrNames>
 <Item Value="city"/>
 <Item Value="countryId"/>
 <Item Value="email"/>
 <Item Value="firstName"/>
 <Item Value="lastName"/>
 <Item Value="postalCode"/>
 <Item Value="stateProvince"/>
 <Item Value="streetAddress"/>
 <Item Value="userId"/>
 <Item Value="userRole"/>
 </AttrNames>
 </table>
 </bindings>
</pageDefinition>

A.8 web.xml
This section describes Oracle ADF configuration settings specific to the standard
web.xml deployment descriptor file.

In JDeveloper when you create a project that uses JSF technology, a starter web.xml
file with default settings is created for you in /WEB-INF. To edit the file, double-click
web.xml in the Application Navigator to open it in the XML editor.

The following must be configured in web.xml for all applications that use JSF and
ADF Faces:

■ JSF servlet and mapping—The servlet javax.faces.webapp.FacesServlet
that manages the request processing lifecycle for web applications utilizing JSF to
construct the user interface.

■ ADF Faces filter and mapping—A servlet filter to ensure that ADF Faces is
properly initialized by establishing a AdfFacesContext object. This filter also
processes file uploads.

■ ADF resource servlet and mapping—A servlet to serve up web application
resources (images, style sheets, JavaScript libraries) by delegating to a
ResourceLoader.

The JSF servlet and mapping configuration settings are automatically added to the
starter web.xml file when you first create a JSF project. When you insert an ADF Faces
component into a JSF page for the first time, JDeveloper automatically inserts the
configuration settings for ADF Faces filter and mapping, and resource servlet and
mapping.

web.xml

A-32 Oracle Application Development Framework Developer’s Guide

Example A–10 Configuring web.xml for ADF Faces and JSF

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee">
 <description>Empty web.xml file for Web Application</description>

 <!-- Installs the ADF Faces Filter -- >
 <filter>
 <filter-name>adfFaces</filter-name>
 <filter-class>oracle.adf.view.faces.webapp.AdfFacesFilter</filter-class>
 </filter>

 <!-- Adds the mapping to ADF Faces Filter -- >
 <filter-mapping>
 <filter-name>adfFaces</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 </filter-mapping>

 <!-- Maps the JSF servlet to a symbolic name -->
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <!-- Maps ADF Faces ResourceServlet to a symbolic name -- >
 <servlet>
 <servlet-name>resources</servlet-name>
 <servlet-class>oracle.adf.view.faces.webapp.ResourceServlet</servlet-class>
 </servlet>

 <!-- Maps URL pattern to the JSF servlet's symbolic name -->
 <!-- You can use either a path prefix or extension suffix pattern -->
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>

 <!-- Maps URL pattern to the ResourceServlet's symbolic name -->
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/adf/*</url-pattern>
 </servlet-mapping>
...
</web-app>

Appendix A.8.1.1, "Configuring for State Saving" through Appendix A.8.1.7, "What
You May Need to Know" detail the context parameters you could use in web.xml
when you work with JSF and ADF Faces.

web.xml

Reference ADF XML Files A-33

A.8.1 Tasks Supported by the web.xml File
The following JSF and ADF Faces tasks are supported by the web.xml file.

A.8.1.1 Configuring for State Saving
You can specify the following state-saving context parameters:

■ javax.faces.STATE_SAVING_METHOD—Specifies where to store the
application’s view state. By default this value is server, which stores the
application's view state on the server. If you wish to store the view state on the
browser client, set this value to client. JDeveloper then automatically uses
token-based client-side state saving (see oracle.adf.view.faces.CLIENT_
STATE_METHOD below). You can specify the number of tokens to use instead of
using the default number of 15 (see oracle.adf.view.faces.CLIENT_
STATE_MAX_TOKENS below).

■ oracle.adf.view.faces.CLIENT_STATE_METHOD—Specifies the type of
client-side state saving to be used when client-side state saving is enabled. The
values are:

– token—(Default) Stores the page state in the session, but persists a token to
the client. The simple token, which identifies a block of state stored back on
the HttpSession, is stored on the client. This enables ADF Faces
to disambiguate multiple appearances of the same page. Failover
HttpSession is supported. This matches the default server-side behavior
that will be provided in JSF 1.2.

– all—Stores all state on the client in a (potentially large) hidden form field.
This matches the client-side state saving behavior in JSF 1.1, but it is useful for
developers who do not want to use HttpSession.

■ oracle.adf.view.faces.CLIENT_STATE_MAX_TOKENS—Specifies how
many tokens should be stored at any one time per user. The default is 15. When
this value is exceeded, the state is lost for the least recently viewed pages, which
affects users who actively use the Back button or who have multiple windows
opened at the same time. If you're building HTML applications that rely heavily
on frames, you would want to increase this value.

Example A–11 shows part of a web.xml file that contains state-saving parameters.

Example A–11 Context Parameters for State Saving in web.xml

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
</context-param>

<context-param>
 <param-name>oracle.adf.view.faces.CLIENT_STATE_MAX_TOKENS</param-name>
 <param-value>20</param-value>
</context-param>

web.xml

A-34 Oracle Application Development Framework Developer’s Guide

A.8.1.2 Configuring for Application View Caching
You can specify the following application view caching context parameter:

■ oracle.adf.view.faces.USE_APPLICATION_VIEW_CACHE—Specifies
whether to enable the application view caching feature. When application view
caching is enabled, the first time a page is viewed by any user, ADF Faces caches
the initial page state at an application level. Subsequently, all users can reuse the
page's cached state coming and going, significantly improving application
performance. Default is false.

Example A–12 shows part of a web.xml file that contains the application view caching
parameter.

Example A–12 Context Parameters for Application View Caching in web.xml

<context-param>
 <param-name>oracle.adf.view.faces.USE_APPLICATION_VIEW_CACHE</param-name>
 <param-value>true</param-value>
</context-param>

A.8.1.3 Configuring for Debugging
You can specify the following debugging context parameters:

■ oracle.adf.view.faces.DEBUG_JAVASCRIPT—ADF Faces by default
obfuscates the JavaScript it delivers to the client, as well as strip comments and
whitespace. This dramatically reduces the size of the ADF Faces JavaScript
download, but also makes it tricky to debug the JavaScript. Set to true to turn off
the obfuscation during application development. Set to false for application
deployment.

■ oracle.adf.view.faces.CHECK_FILE_MODIFICATION—By default this
parameter is false. If it is set to true, ADF Faces will automatically check the
modification date of your JSPs, and discard saved state when they change. When
set to true, this makes development easier, but adds overhead that should be
avoided when your application is deployed. Set to false for application
deployment.

For testing and debugging in JDeveloper’s embedded OC4J, you don’t need to
explicitly set this parameter to true because ADF Faces automatically detects the
embedded OC4J and runs with the file modification checks enabled.

Example A–13 shows part of a web.xml file that contains debugging parameters.

Example A–13 Context Parameters for Debugging in web.xml

<context-param>
 <param-name>oracle.adf.view.faces.DEBUG_JAVASCRIPT</param-name>
 <param-value>true</param-value>
</context-param>

<context-param>
 <param-name>oracle.adf.view.faces.CHECK_FILE_MODIFICATION</param-name>
 <param-value>true</param-value>
</context-param>

web.xml

Reference ADF XML Files A-35

A.8.1.4 Configuring for File Uploading
You can specify the following file upload context parameters:

■ oracle.adf.view.faces.UPLOAD_TEMP_DIR—Specifies the directory where
temporary files are to be stored during file uploading. The default is the user's
temporary directory.

■ oracle.adf.view.faces.UPLOAD_MAX_DISK_SPACE—Specifies the
maximum amount of disk space that can be used in a single request to store
uploaded files. The default is 2000K.

■ oracle.adf.view.faces.UPLOAD_MAX_MEMORY—Specifies the maximum
amount of memory that can be used in a single request to store uploaded files. The
default is 100K.

Example A–14 shows part of a web.xml file that contains file upload parameters.

Example A–14 Context Parameters for File Uploading in web.xml

<context-param>
 <param-name>oracle.adf.view.faces.UPLOAD_TEMP_DIR</param-name>
 <param-value>/tmp/Adfuploads</param-value>
</context-param>

<context-param>
 <param-name>oracle.adf.view.faces.UPLOAD_MAX_DISK_SPACE</param-name>
 <param-value>5120000</param-value>
</context-param>

<context-param>
 <param-name>oracle.adf.view.faces.UPLOAD_MAX_MEMORY</param-name>
 <param-value>512000</param-value>
</context-param>

For information about file uploading, see Section 11.6, "Providing File Upload
Capability".

A.8.1.5 Configuring for ADF Model Binding
When you use ADF data controls to build web pages, the following must be
configured in web.xml:

■ ADF binding filter—A servlet filter to create the ADFContext, which contains
context information about ADF, including the security context and the
environment class that contains the request and response object. ADF applications
use this filter to preprocess any HTTP requests that may require access to the
binding context.

■ Servlet context parameter for the application binding container—Specifies which
CPX file the filter reads at runtime to define the application binding context. For
information about CPX files, see Section 5.3, "Working with the DataBindings.cpx
File".

Note: The file upload initialization parameters are processed by the
default UploadedFileProcessor only. If you replace the default
processor with a custom UploadedFileProcessor implementation,
the parameters are not processed.

web.xml

A-36 Oracle Application Development Framework Developer’s Guide

In JDeveloper when you first use the Data Control Palette to build your databound JSF
page, the ADF data binding configuration settings are automatically added to the
web.xml file.

Example A–15 shows part of a web.xml file that contains ADF Model binding
settings. For more information about the Data Control Palette and binding objects, see
Chapter 5, "Displaying Data on a Page".

Example A–15 ADF Model Binding Configuration Settings in web.xml

<context-param>
 <param-name>CpxFileName</param-name>
 <param-value>view.DataBindings</param-value>
</context-param>

<filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>oracle.adf.model.servlet.ADFBindingFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>adfBindings</filter-name>
 <url-pattern>*.jsp</url-pattern>
</filter-mapping>

<filter-mapping>
 <filter-name>adfBindings</filter-name>
 <url-pattern>*.jspx</url-pattern>
</filter-mapping>

A.8.1.6 Other Context Configuration Parameters for JSF
Other optional, application-wide parameters for JSF are:

■ javax.faces.CONFIG_FILES—Specifies paths to JSF application configuration
resource files. Use a comma-separated list of application-context relative paths for
the value (see Example A–16). You need to set this parameter if you use more than
one JSF configuration file in your application, as described in Appendix A.10.1,
"Tasks Supported by the faces-config.xml".

■ javax.faces.DEFAULT_SUFFIX—Specifies a file extension (suffix) for JSP
pages that contain JSF components. The default value is .jsp.

■ javax.faces.LIFECYCLE_ID—Specifies a lifecycle identifier other than the
default set by the javax.faces.lifecycle.LifecycleFactory.DEFAULT_
LIFECYCLE constant.

Example A–16 Configuring for Multiple JSF Configuration Files in web.xml

<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/faces-config1.xml,/WEB-INF/faces-config2.xml</param-value>
</context-param>

A.8.1.7 What You May Need to Know
If you have multiple filters for your application, make sure they are listed in web.xml
in the order in which you want to run them. At runtime, the filters are called in the
sequence listed in that file.

j2ee-logging.xml

Reference ADF XML Files A-37

A.9 j2ee-logging.xml
ADF Faces leverages the Java Logging API (java.util.logging.Logger) to
provide logging functionality when you run a debugging session. Java Logging is a
standard API that is available in the Java Platform, starting with JDK 1.4. For the key
elements, see the section "Java Logging Overview" at
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.
html.

Typically you would want to configure the following in j2ee-logging.xml:

■ Change the logging level for Oracle ADF packages. See Section A.9.1.1.

■ Redirect the log output to a location, like a file, in addition to the default Log
window in JDeveloper. See Section A.9.1.2.

■ Change the directory path that determines where your log file resides. See
Section A.9.1.3.

A.9.1 Tasks Supported by the j2ee-logging.xml
The following JSF tasks are supported by the j2ee-logging.xml file.

A.9.1.1 Change the Logging Level for Oracle ADF Packages
When you want to change the logging level of individual Oracle ADF packages, edit
<logger> in the <loggers> element of j2ee-logging.xml (see Example A–17).
The default level of logging is INFO. Oracle recommends level="FINE" for detailed
log messages. Note that package names are hierarchically inclusive. For instance, if
you change the level of oracle.adf, the level specified will also apply to all classes
that begin with the path oracle.adf. To change the level of specific classes, supply
the full path; for instance, a level set for the package name
oracle.adf.controller will not apply to other branches of the oracle.adf
package.

For details about setting logging when debugging ADF applications, see Section 16.4.2,
"Creating an Oracle ADF Debugging Configuration".

Example A–17 Changing the Logging Level in j2ee-logging.xml

<loggers>
 <logger name="oracle.adf" level="FINE" />
 ...
</loggers>

A.9.1.2 Redirect the Log Output
The default logger (name="oracle") is associated with two handlers: one for file
output and another for console output (JDeveloper Log window). By default log
messages are output to both locations at the same time. When you want to redirect the
output for the log messages, edit <handler> in the <logger> element of
j2ee-logging.xml (see Example A–18). For example, you can comment out the
<handler name="oc4j-handler"/> when you want the output to only go to the
JDeveloper Log window.

faces-config.xml

A-38 Oracle Application Development Framework Developer’s Guide

Example A–18 Changing the Logger Handler in j2ee-logging.xml

<loggers>
 <logger name="oracle" level="NOTIFICATION:1" useParentHandlers="false">
 <handler name="oc4j-handler"/>
 <handler name="console-handler"/>
 </logger>
 ...
</loggers>

A.9.1.3 Change the Location of the Log File
When you want to change where the log files reside, edit <log_handler> in the
<log_handlers> element of j2ee-logging.xml (see Example A–19). The default
directory for the log file is ../log/oc4j.

Example A–19 Changing the Location of the Log File in j2ee-logging.xml

<log_handler name="oc4j-handler"
 class="oracle.core.ojdl.loggin.ODLHandlerFactory">
 <property name="path" value="C:/temp/adf-log"/>
 <property name-"maxFileSize" value="10485760"/>

A.10 faces-config.xml
You register a JSF application's resources—such as validators, converters, managed
beans, and the application navigation rules—in the application's configuration file.
Typically you have one configuration file named faces-config.xml.

In JDeveloper, when you create a project that uses JSF technology, an empty
faces-config.xml file is created for you in /WEB-INF.

Typically you would want to configure the following in faces-config.xml:

■ Application resources such as default render kit, message bundles, and supported
locales. Refer to Section A.10.1.1, Section A.10.1.3. and Section A.10.1.4.

■ Page-to-page navigation rules. See Section A.10.1.5.

■ Custom validators and converters. See Section A.10.1.6.

■ Managed beans for holding and processing data, handling UI events, and
performing business logic.

If you use ADF data controls to build databound web pages, you also need to register
the ADF phase listener in faces-config.xml. Refer to Section A.10.1.2.

A.10.1 Tasks Supported by the faces-config.xml
The following JSF tasks are supported by the faces-config.xml file.

Note: A JSF application can have more than one JSF configuration
file. For example if you need individual JSF configuration files for
separate areas of your application, or if you choose to package
libraries containing custom components or renderers, you can create a
separate JSF configuration file for each area or library. For details see,
Section 4.2.3, "What You May Need to Know About Multiple JSF
Configuration Files".

faces-config.xml

Reference ADF XML Files A-39

A.10.1.1 Registering a Render Kit for ADF Faces Components
When you use ADF Faces components in your application, you must add the ADF
default render kit in the <application> element of faces-config.xml. As
mentioned earlier, JDeveloper creates one empty faces-config.xml file for you
when you create a new project that uses JSF technology. When you insert an ADF
Faces component into a JSF page for the first time, JDeveloper automatically inserts the
default render kit for ADF components into faces-config.xml (see Example A–20).

Example A–20 Configuring faces-config.xml for ADF Faces Components

<?xml version="1.0" encoding="windows-1252"?>
<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_1.dtd">
<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <!-- Default render kit for ADF components -->
 <application>
 <default-render-kit-id>oracle.adf.core</default-render-kit-id>
 </application>
 ...
</faces-config>

A.10.1.2 Registering a Phase Listener for ADF Binding
The ADF phase listener is used to execute the ADF page lifecycle. When you use ADF
data binding, you need to specify a phase listener for ADF lifecycle phases. In
JDeveloper when an ADF data control is inserted into a JSF page for the first time, a
standard ADF phase listener is added to faces-config.xml in the <lifecycle>
element.

The ADF phase listener listens for all the JSF phases before which and after which it
needs to execute its own phases concerned with preparing the model, validating
model updates, and preparing pages to be rendered. See Section 6.2.3, "What Happens
at Runtime: The JSF and ADF Lifecycles", for more information about how the ADF
lifecycle phases integrate with the JSF lifecycle phases. Example A–21 shows part of a
faces-config.xml that contains the ADF phase listener.

You may want to subclass the standard ADF phase listener when custom behavior,
such as error handling, is desired. See Section 12.8, "Handling and Displaying
Exceptions in an ADF Application" for details about subclassing the ADF phase
listener. JDeveloper will not read the standard phase listener to faces-config.xml
if it detects a subclass.

Example A–21 Registering the ADF Phase Listener in faces-config.xml

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
<lifecycle>
 <phase-listener>
 oracle.adf.controller.faces.lifecycle.ADFPhaseListener
 </phase-listener>
</lifecycle>
 ...
</faces-config>

faces-config.xml

A-40 Oracle Application Development Framework Developer’s Guide

A.10.1.3 Registering a Message Resource Bundle
When you use a resource bundle for localized labels and messages, add the resource as
a <message-bundle> in the <application> element of faces-config.xml (see
Example A–22). The SRDemo application uses a resource properties file to hold the
strings for the UI.

Example A–22 Registering a Message Bundle in faces-config.xml

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <application>
 ...
 <message-bundle>oracle.srdemo.view.resources.UIResources</message-bundle>
 ...
 </application>
 ...
</faces-config>

To reference a message bundle in a page, see Section 14.4, "Internationalizing Your
Application".

A.10.1.4 Configuring for Supported Locales
Register the default and all supported locales for your application in the
<application> element of faces-config.xml (see Example A–23).

Example A–23 Registering Default and Supported Locales in faces-config.xml

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <application>
 ...
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en-US</supported-locale>
 <supported-locale>es</supported-locale>
 <supported-locale>fr</supported-locale>
 </locale-config>
 </application>
 ...
</faces-config>

A.10.1.4.1 What You May Need to Know

JSF allows more than one <application> element in a single faces-config.xml
file. The JSF Configuration Editor only allows you to edit the first instance in the file.
You'll need to edit the file directly using the XML editor for any other
<application> elements.

A.10.1.5 Creating Navigation Rules and Cases
While you can enter navigation rules and cases directly in the faces-config.xml
file, Oracle recommends you use the JSF Navigation Modeler. The Navigation Modeler
enables you to lay out the pages in your JSF application and add navigation between
the pages in the form of a diagram. To open the Navigation Modeler, double-click the
faces-config.xml file in the Application Navigator. In the visual editor, activate
the Diagram tab to display the Navigation Modeler.

faces-config.xml

Reference ADF XML Files A-41

When JDeveloper first creates an empty faces-config.xml, it also creates a
diagram file to hold diagram details such as layout and annotations. JDeveloper
always maintains this diagram file alongside the faces-config.xml file, which
holds all the settings needed by your application. This means that if you are using
versioning or source control, the diagram file is included along with the
faces-config.xml file it represents.

The navigation cases you add to the diagram are reflected in faces-config.xml,
without your needing to edit the file directly.

A navigation rule defines one or more cases that specify an outcome value. A
navigation component in a web page specifies an outcome value in its action
attribute, which triggers a specific navigation case when a user clicks that component.
For example, in the SRList page of the sample application, when the user clicks the
View button, the application displays the SRMain page. The action attribute on the
View button has the string value View (see Example A–24). The corresponding code
for the navigation case within the navigation rule for the SRList page is shown in
Example A–25.

Example A–24 Action Outcome String Defined on View Button

<af:commandButton text="#{res['srlist.buttonbar.view']}"
 action="View"/>

Example A–25 Creating Static Navigation Cases in faces-config.xml

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <navigation-rule>
 <from-view-id>/SRList.jspx</from-view-id>

 <navigation-case>
 <from-outcome>Edit</from-outcome>
 <to-view-id>/SREdit.jspx</to-view-id>
 </navigation-case>

 <navigation-case>
 <from-outcome>View</from-outcome>
 <to-view-id>/SRMain.jspx</to-view-id>
 </navigation-case>

 <navigation-case>
 <from-outcome>Search</from-outcome>
 <to-view-id>/SRSearch.jspx</to-view-id>
 </navigation-case>

 <navigation-case>
 <from-outcome>Create</from-outcome>
 <to-view-id>/SRCreate.jspx</to-view-id>
 </navigation-case>
 </navigation-rule>
 ...
</faces-config>

For information about creating JSF navigation rules and cases, as well as creating
navigation components, see Chapter 9, "Adding Page Navigation".

faces-config.xml

A-42 Oracle Application Development Framework Developer’s Guide

A.10.1.6 Registering Custom Validators and Converters
JSF and ADF Faces standard validators and converters provide common validation
checks for numeric ranges and string lengths, and the most common datatype
conversions. If you need more complex validation rules and checks, or if you need to
convert a component's data to a type other than a standard type, you can create your
own custom validator or converter.

The custom validator or converter must implement the
javax.faces.validator.Validator or javax.faces.convert.Converter
interface, respectively. To make use of your custom validator or converter in an
application, you have to register it in faces-config.xml using the <validator>
or <converter> element (see Example A–26). For a custom validator, you can
register it under an identifier (ID); for a custom converter you can register it under an
ID or a fully qualified class name for a specific datatype.

Example A–26 Registering Custom Validators and Converters in faces-config.xml

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <validator>
 <validator-id>oracle.srdemo.core.CreditCard</validator-id>
 <validator-class>oracle.srdemo.core.CreditCardValidator</validator-class>
 </validator>
 <converter>
 <converter-id>oracle.srdemo.core.CreditCard</validator-id>
 <converter-class>oracle.srdemo.core.CreditCardConverter</converter-class>
 </converter>
 ...
</faces-config>

A.10.1.7 Registering Managed Beans
In JSF, managed beans are the JavaBeans used to manage data between the web tier
and the business tier of the application (similar to a data transfer object). At runtime,
whenever the bean is referenced in a page through a value or method binding
expression, the JSF implementation instantiates a bean, populates it with any declared,
default values, and places it in the managed bean scope as defined in the
faces-config.xml.

To register a managed bean in faces-config.xml, use the <managed-bean>
element (see Example A–27). You have to specify the following for a managed bean:

■ Name—Determines how the bean will be referred to within the application using
EL expressions, instead of using the bean's fully qualified class name.

■ Class—This is the JavaBean that contains the properties that hold the data, along
with the corresponding accessor methods and/or any other methods (such as
navigation or validation) used by the bean. This can be an existing class (such as a
data transfer class), or it can be a class specific to the page (such as a backing
bean).

faces-config.xml

Reference ADF XML Files A-43

■ Scope—This determines the scope within which the bean is stored. The valid
scopes are:

■ application—The bean is available for the duration of the web application.
This is helpful for global beans such as LDAP directories.

■ request—The bean is available from the time it is instantiated until a
response is sent back to the client. This is usually the life of the current page.

■ session—The bean is available to the client throughout the client's session.

■ none—The bean is instantiated each time it is referenced.

Managed properties are any properties of the bean that you would like populated with
a value when the bean is instantiated. The set method for each declared property is
run once the bean is constructed. To initialize a managed bean's properties with set
values, including those for a bean's map or list property, use the
<managed-property> element. When you configure a managed property for a
managed bean, you declare the property name, its class type, and its default value.

Managed beans and managed bean properties can be initialized as lists or maps,
provided that the bean or property type is a List or Map, or implements
java.util.Map or java.util.List. The default for the values within a list or map
is java.lang.String.

Example A–27 Registering Managed Beans in faces-config.xml

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <!-- This managed bean uses application scope -->
 <managed-bean>
 <managed-bean-name>resources</managed-bean-name>
 <managed-bean-class>
 oracle.srdemo.view.resources.ResourceAdapter
 </managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 </managed-bean>

 <!-- Page backing beans typically use request scope-->
 <managed-bean>
 <managed-bean-name>backing_SRCreate</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.backing.SRCreate</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <!--oracle-jdev-comment:managed-bean-jsp-link:1app/SRCreate.jspx-->
 <managed-property>
 <property-name>bindings</property-name>
 <value>#{bindings}</value>
 </managed-property>
 </managed-bean>

 <managed-bean>
 <managed-bean-name>backing_SRManage</managed-bean-name>
 <managed-bean-class>
 oracle.srdemo.view.backing.management.SRManage
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <!--oracle-jdev-comment:managed-bean-jsp-link:1app/management/SRManage.jspx-->
 <managed-property>
 <property-name>bindings</property-name>
 <value>#{bindings}</value>
 </managed-property>
 </managed-bean>

adf-faces-config.xml

A-44 Oracle Application Development Framework Developer’s Guide

 <!-- This managed bean uses session scope -->
 <managed-bean>
 <managed-bean-name>userState</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.UserSystemState</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
 ...
</faces-config>

A.11 adf-faces-config.xml
When you create a JSF application using ADF Faces components, besides configuring
elements in faces-config.xml you can configure ADF Faces-specific features in the
adf-faces-config.xml file. The adf-faces-config.xml file has a simple XML
structure that enables you to define element properties using the JSF expression
language (EL) or static values.

In JDeveloper when you insert an ADF Faces component into a JSF page for the first
time, a starter adf-faces-config.xml file is automatically created for you in the
/WEB-INF directory of your ViewController project. Example A–28 shows the starter
adf-faces-config.xml file.

Typically you would want to configure the following in adf-faces-config.xml:

■ Page accessibility levels

■ Skin family

■ Time zone

■ Enhanced debugging

■ Oracle Help for the Web (OHW) URL

Example A–28 Starter adf-faces-config.xml Created by JDeveloper

<?xml version="1.0" encoding="windows-1252"?>
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/view/faces/config">

 <skin-family>oracle</skin-family>

</adf-faces-config>

A.11.1 Tasks Supported by adf-faces-config.xml
The following JSF tasks are supported by the adf-faces-config.xml file.

adf-faces-config.xml

Reference ADF XML Files A-45

A.11.1.1 Configuring Accessibility Levels
To define the level of accessibility support in an application, use
<accessibility-mode>. The supported values are:

■ default—Output supports accessibility features.

■ inaccessible—Accessibility-specific constructs are removed to optimize output
size.

■ screenReader—Accessibility-specific constructs are added to improve behavior
under a screen reader (but may have a negative affect on other users. For example
access keys are not displayed if the accessibility mode is set to screen reader
mode).

Example A–29 Configuring an Accessibility Level

<!-- Set the accessibility mode to screenReader -->
<accessibility-mode>screenReader</accessibility-mode>

A.11.1.2 Configuring Currency Code and Separators for Number Groups and
Decimals
To set the currency code to use for formatting currency fields, and define the separator
to use for groups of numbers and the decimal point, use the following elements:

■ <currency-code>—Defines the default ISO 4217 currency code used by
oracle.adf.view.faces.converter.NumberConverter to format
currency fields that do not specify a currency code in their own converter.

■ <number-grouping-separator>—Defines the separator used for groups of
numbers (for example, a comma). ADF Faces automatically derives the separator
from the current locale, but you can override this default by specifying a value in
this element. If set, this value is used by
oracle.adf.view.faces.converter.NumberConverter while parsing and
formatting.

■ <decimal-separator>—Defines the separator (e.g., a period or a comma) used
for the decimal point. ADF Faces automatically derives the separator from the
current locale, but you can override this default by specifying a value in this
element. If set, this value is used by
oracle.adf.view.faces.converter.NumberConverter while parsing and
formatting.

Example A–30 Configuring Currency Code and Separators For Numbers and Decimal
Point

<!-- Set the currency code to US dollars. -->
<currency-code>USD</currency-code>

<!-- Set the number grouping separator to period for German -->
<!-- and comma for all other languages -->
<number-grouping-separator>
 #{view.locale.language=='de' ? '.' : ','}
</number-grouping-separator>

<!-- Set the decimal separator to comma for German -->
<!-- and period for all other languages -->
<decimal-separator>
 #{view.locale.language=='de' ? ',' : '.'}
</decimal-separator>

adf-faces-config.xml

A-46 Oracle Application Development Framework Developer’s Guide

A.11.1.3 Configuring For Enhanced Debugging Output
ADF Faces enhances debugging output when you set <debug-output> to "true". The
following features are then added to debug output:

■ Automatic indenting.

■ Comments identifying which component was responsible for a block of HTML.

■ Detection of unbalanced elements, repeated use of the same attribute in a single
element, or other malformed markup problems.

■ Detection of common HTML errors (for example, <form> tags inside other
<form> tags or <tr> or <td> tags used in illegal locations).

Example A–31 Enabling Enhanced Debugging

<!-- Activate the ADF Faces enhanced debugging features -->
<debug-output>true</debug-output>

A.11.1.4 Configuring for Client-Side Validation and Conversion
ADF Faces validators and converters support client-side validation and conversion as
well as server-side validation and conversion. ADF Faces client-side validators and
converters work the same way as the server-side validators and converters, except that
JavaScript is used on the client. ADF Faces JavaScript-enabled validators and
converters run on the client when the form is submitted; thus errors can be caught
without a server round trip. You can, however, turn off client-side conversion and
validation in your ADF Faces application by setting
<client-validation-disabled> to "true".

Example A–32 Turning Off Client-Side Validation and Conversion

<!-- Disable client validation -->
<client-validation-disabled>true</client-validation-disabled>

A.11.1.5 Configuring the Language Reading Direction
By default, ADF Faces page rendering direction is based on the language being used
by the browser. However, you can explicitly set the default page rendering direction in
the <right-to-left> element by using "true" or "false".

Example A–33 Configuring For Right-to-Left Page Rendering

<!-- Render the page right-to-left for Arabic -->
<!-- and left-to-right for all other languages -->
<right-to-left>
 #{view.locale.language=='ar' ? 'true' : 'false'}
</right-to-left>

adf-faces-config.xml

Reference ADF XML Files A-47

A.11.1.6 Configuring the Skin Family
By default, ADF Faces uses the Oracle <skin-family> for all pages. You can change
this to specify a custom <skin-family>. See also Section A.12.1, "Tasks Supported
by adf-faces-skins.xml".

For information about creating custom skins, see Section 14.3, "Using Skins to Change
the Look and Feel".

Example A–34 Configuring a Skin to be Used For All Pages

<!-- Specify custom skin instead of Oracle skin -->
<skin-family>srdemo<skin-family>

A.11.1.7 Configuring the Output Mode
To change the output mode ADF Faces uses, set the <output-mode> element, using
one of these values:

■ default—The default page output mode (usually display).

■ printable—An output mode suitable for printable pages.

■ email—An output mode suitable for e-mailing a page's content.

Example A–35 Configuring an Output Mode

<!-- Set the output mode to printable -->
<output-mode>printable</output-mode>

A.11.1.8 Configuring the Number of Active ProcessScope Instances
By default ADF Faces sets the maximum number of active processScope instances
at 15. Use the <process-scope-lifetime> element to change the number. A static
value must be used.

Example A–36 Configuring the Number of Active ProcessScope Instances

<!-- Set the maximum number of processScope instances to 10 -->
<process-scope-lifetime>10</process-scope-lifetime>

A.11.1.9 Configuring the Time Zone and Year Offset
To set the time zone used for processing and displaying dates, and the year offset that
should be used for parsing years with only two digits, use the following elements:

■ <time-zone>—ADF Faces defaults to the time zone used by the client browser.
This value is used by
oracle.adf.view.faces.converter.DateTimeConverter while
converting strings to Date.

■ <two-digit-year-start>—Defaults to the year 1950 if no value is set. This
value is used by
oracle.adf.view.faces.converter.DateTimeConverter to convert
strings to Date.

Example A–37 Configuring the Time Zone and Year Offset

<!-- Set the time zone to Pacific Daylight Savings Time -->
<time-zone>PDT</time-zone>

<!-- Set the year offset to 2000 -->
<two-digit-year-start>2000</two-digit-year-start>

adf-faces-config.xml

A-48 Oracle Application Development Framework Developer’s Guide

A.11.1.10 Configuring a Custom Uploaded File Processor
Most applications don't need to replace the default UploadedFileProcessor
instance provided by ADF Faces, but if your application needs to support uploading of
very large files or rely heavily on file uploads, you may wish to replace the default
processor with a custom UploadedFileProcessor implementation. For example
you could improve performance by using an implementation that immediately stores
files in their final destination, instead of requiring ADF Faces to handle temporary
storage during the request. To replace the default processor, specify a custom
implementation using the <uploaded-file-processor> element.

Example A–38 Configuring a Custom Uploaded File Processor

<!-- Use my UploadFileProcessor class -->
<uploaded-file-processor>
 com.mycompany.faces.myUploadedFileProcessor
</uploaded-file-processor>

A.11.1.11 Configuring the Help Site URL
If you use Oracle Help for the Web (OHW) to provide help in your application, you
can attach help content to any JSF tag that accepts a URL. Before you can do this, you
must configure your help site URL by using the <oracle-help-servlet-url>
element. ADF Faces supports OHW Version 2.0 as well as earlier versions

Use the adfFacesContext.helpTopic EL object to attach help content to the JSF
tag. For example:

<h:outputLink value="#{adfFacesContext.helpTopic.someTopicID}">
 <h:outputText value="Help!"/>
</h:outputLink>

Example A–39 Configuring the Help Site URL

<!-- Set the help site URL -->
<oracle-help-servlet-url>mywebsite.com/project_one/help</oracle-help-servlet-url>

A.11.1.12 Retrieving Configuration Property Values From adf-faces-config.xml
Once you have configured elements in the adf-faces-config.xml file, you can
retrieve property values using one of the following approaches:

■ Programmatically using the AdfFacesContext class.

The AdfFacesContext class is a context class for all per-request and per-webapp
information required by ADF Faces. One instance of the AdfFacesContext class
exists per request. Although it is similar to the JSF FacesContext class, the
AdfFacesContext class does not extend FacesContext.

To retrieve an ADF Faces configuration property programmatically, first call the
static getCurrentInstance() method to get an instance of the
AdfFacesContext object, then call the method that retrieves the desired
property, as shown in the following example:

adf-faces-skins.xml

Reference ADF XML Files A-49

// Get an instance of the AdfFacesContext object
AdfFacesContext context = AdfFacesContext.getCurrentInstance();

// Get the time-zone property
TimeZone zone = context.getTimeZone();

// Get the right-to-left property
if (context.isRightToLeft())
{
 ...
}

For the list of methods to retrieve ADF Faces configuration properties, refer to the
Javadoc for oracle.adf.view.faces.context.AdfFacesContext.

■ Using a JSF EL expression to bind a component attribute value to one of the
properties of the ADF Faces implicit object (adfFacesContext).

The AdfFacesContext class contains an EL implicit variable, called
adfFacesContext, that exposes the context object properties for use in JSF EL
expressions. Using a JSF EL expression, you can bind a component attribute value
to one of the properties of the adfFacesContext object. For example in the EL
expression below, the <currency-code> property is bound to the
currencyCode attribute value of the JSF ConvertNumber component:

<af:outputText>
 <f:convertNumber currencyCode="#{adfFacesContext.currencyCode}"/>
</af:outputText>

A.12 adf-faces-skins.xml
The adf-faces-skins.xml file is optional; you need this file only if you are using a
custom skin for your application. To create the file, simply use a text editor; store the
file in /WEB-INF.

You can specify one or more custom skins in adf-faces-skins.xml.

Example A–40 Adf-faces-skins.xml

<?xml version="1.0" encoding="windows-1252"?>
<skins xmlns="http://xmlns.oracle.com/adf/view/faces/skin">
 <skin>
 <id>purple.desktop</id>
 <family>purple</family>
 <render-kit-id>oracle.adf.desktop</render-kit-id>
 <style-sheet-name>skins/purple/purpleSkin.css</style-sheet-name>
 <bundle-name>oracle.adfdemo.view.faces.resource.SkinBundle</bundle-name>
 </skin>
</skins>

A.12.1 Tasks Supported by adf-faces-skins.xml
The value of <family> is what you would specify in adf-faces-config.xml for
the <skin-family> element when you wish to configure your application to use a
custom skin. See Section A.11.1.6, "Configuring the Skin Family".

For information about creating custom skins, see Section 14.3, "Using Skins to Change
the Look and Feel".

adf-faces-skins.xml

A-50 Oracle Application Development Framework Developer’s Guide

Reference ADF Binding Properties B-1

B
Reference ADF Binding Properties

This appendix provides a reference for the properties of the ADF bindings.

B.1 EL Properties of Oracle ADF Bindings
Table B–1 shows the properties that you can use in EL expressions to access values of
the ADF binding objects at runtime. The properties appear in alphabetical order.

Note: When you use the EL Expression Builder dialog in JDeveloper,
you may see properties listed below the ADF bindings and ADF data
variables that do not appear in this appendix. Properties that do not
appear in this appendix will become deprecated in a future release.
For the full list of deprecated binding properties, please refer to the
JDeveloper Release Notes.

Table B–1 EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action
Attribut
e Button List Table Tree

actionEnabled Use operationEnabled
instead.

n/a yes n/a n/a n/a n/a n/a

allRowsInRange Returns an array of current set
of rows from the associated
collection. Calls
getAllRowsInRange() on
the RowSetIterator.

yes n/a n/a n/a n/a n/a n/a

attributeDef Returns the attribute definition
for the first attribute to which
the binding is associated.

n/a n/a yes yes yes n/a n/a

attributeDefs Returns the attribute definitions
for all the attributes to which
the binding is associated.

n/a n/a yes yes yes n/a n/a

attributeValue Returns an unformatted and
typed (appropriate Java type)
value in the current row, for the
attribute to which the control
binding is bound. Note this
property is not visible in the EL
expression builder dialog.

n/a n/a yes yes yes n/a n/a

EL Properties of Oracle ADF Bindings

B-2 Oracle Application Development Framework Developer’s Guide

attributeValues Returns the value of all the
attributes to which the binding
is associated in an ordered
array.Returns an array of an
unformatted and typed
(appropriate Java type) values
in the current row for all the
attributes to which the control
binding is bound. Note this
property is not visible in the EL
expression builder dialog.

n/a n/a yes yes yes n/a n/a

children Returns the child nodes of a
tree node binding.

n/a n/a n/a n/a n/a n/a yes

currentRow Returns the current row on an
action binding bound to an
iterator (for example, built-in
navigation actions).

n/a yes n/a n/a n/a n/a n/a

dataControl Returns the iterator’s
associated data provider.

yes n/a n/a n/a n/a n/a n/a

displayData Returns a list of map elements.
Each map entry contains the
following elements:

■ selected: A boolean
true if current entry
should be selected.

■ index: The index value of
the current entry.

■ prompt: A string value
that may be used to render
the entry in the UI.

■ displayValues: An
ordered list of display
attribute values for all
display attributes in the list
binding.

Note this property is not visible
in the EL expression builder
dialog.

n/a n/a n/a n/a yes n/a n/a

displayHint Returns the display hint for the
first attribute to which the
binding is associated. The hint
identifies whether the attribute
should be displayed or not. For
more information, see
oracle.jbo.AttributeHin
ts.displayHint. Note this
property is not visible in the EL
expression builder dialog.

n/a n/a n/a n/a yes n/a n/a

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action
Attribut
e Button List Table Tree

EL Properties of Oracle ADF Bindings

Reference ADF Binding Properties B-3

displayHints Returns a list of name-value
pairs for UI hints for all display
attributes to which the binding
is associated. The map contains
the following elements:

■ label: The label to
display for the current
attribute.

■ tooltip: The tooltip to
display for the current
attribute.

■ displayHint: The
display hint for the current
attribute.

■ displayHeight: The
height in lines for the
current attribute.

■ displayWidth: The
width in characters for the
current attribute.

■ controlType: The control
type hint for the current
attribute.

■ format: The format to be
used for the current
attribute.

Note this property is not visible
in the EL expression builder
dialog.

n/a n/a n/a yes yes n/a n/a

enabled Use operationEnabled. n/a n/a n/a n/a n/a n/a n/a

enabledString Returns disabled if the action
binding is not ready to be
invoked. Otherwise, returns "".

n/a yes n/a n/a n/a n/a n/a

error Returns any exception that was
cached while updating the
associated attribute value for a
a value binding or when
invoking an operation bound
by an operation binding.

yes yes yes yes yes yes yes

estimatedRowCount Returns the maximum row
count of the rows in the
collection with which this
iterator binding is associated

yes n/a n/a n/a n/a yes yes

findMode Return true if the iterator is
currently operating in find
mode. Otherwise, returns
false.

yes n/a n/a n/a n/a n/a n/a

fullName Returns the fully qualified
name of the binding object in
the Oracle ADF binding
context.

yes yes yes yes yes yes yes

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action
Attribut
e Button List Table Tree

EL Properties of Oracle ADF Bindings

B-4 Oracle Application Development Framework Developer’s Guide

inputValue Returns the value of the first
attribute to which the binding
is associated. If the binding was
used to set the value on the
attribute and the set operation
failed, this method returns the
invalid value that was being
set.

n/a n/a yes yes yes yes yes

iteratorBinding Returns the iterator binding
that provides access to the data
collection.

n/a yes yes yes yes yes yes

label Returns the label (if supplied
by Control Hints) for the first
attribute of the binding.

n/a n/a yes yes yes n/a n/a

labels Returns a map of labels (if
supplied by Control Hints)
keyed by attribute name for all
attributes to which the binding
is associated. Note this
property is not visible in the EL
expression builder dialog.

n/a n/a yes yes yes yes n/a

labelSet Returns an ordered set of labels
for all the attributes to which
the binding is associated. Note
this property is not visible in
the EL expression builder
dialog.

n/a n/a yes yes yes yes n/a

mandatory Returns whether the first
attribute to which the binding
is associated is required.

n/a n/a yes yes yes n/a n/a

name Returns the name of the
binding object in the context of
the binding container to which
it is registered. Note this
property is not visible in the EL
expression builder dialog.

yes yes yes yes yes yes yes

operationEnabled Returns true or false
depending on the state of the
action binding. For example,
the action binding may be
enabled (true) or disabled
(false) based on the currency
(as determined, for example,
when the user clicks the First,
Next, Previous, Last navigation
buttons.

n/a yes n/a n/a n/a n/a n/a

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action
Attribut
e Button List Table Tree

EL Properties of Oracle ADF Bindings

Reference ADF Binding Properties B-5

rangeSet Returns a list of map elements
over the range of rows from the
associated iterator binding. The
elements in this list are wrapper
objects over the indexed row in
the range that restricts access to
only the attributes to which the
binding is bound. The
properties returned on the
reference object are:

■ index — The range index
of the row this reference is
pointing to.

■ key — The key of the row
this reference is pointing
to.

■ keyStr — The String
format of the key of the
row this reference is
pointing to.

■ currencyString — The
current indexed row as a
String. Returns "*" if the
current entry belongs to
the current row; otherwise,
returns " ". This property is
useful in JSP applications
to display the current row.

■ attributeValues — The
array of applicable
attribute values from the
row.

And you may also access an
attribute value by name on a
range set like
rangeSet.dname if dname is
a bound attribute in the range
binding.

n/a n/a n/a n/a n/a yes yes

rangeSize Returns the range size of the
ADF iterator binding’s row set.
This allows you to determine
the number or data objects to
bind from the data source.

yes n/a n/a n/a n/a yes yes

rangeStart Returns the absolute index in a
collection of the first row in
range. See javadoc for
oracle.jbo.RowSetIterat
or.getRangeStart().

yes n/a n/a n/a n/a yes yes

result Returns the result of a method
that is bound and invoked by a
method action binding.

n/a yes n/a n/a n/a n/a n/a

rootNodeBinding Returns the root node of a tree
binding.

n/a n/a n/a n/a n/a n/a yes

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action
Attribut
e Button List Table Tree

EL Properties of Oracle ADF Bindings

B-6 Oracle Application Development Framework Developer’s Guide

selectedValue Returns the value
corresponding to the current
selected index in the list or
button binding.

n/a n/a n/a yes yes n/a n/a

tooltip Returns the tooltip hint for the
first attribute to which the
binding is associated.

n/a n/a yes yes yes n/a n/a

updateable Returns true if the first
attribute to which the binding
is associated is updateable.
Otherwise, returns false.

n/a n/a yes yes yes n/a n/a

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action
Attribut
e Button List Table Tree

Index-1

Index

A
access keys, 4-37
access method, specifying, 19-3
accessibility support levels, 4-36
accessor iterators, 5-15
accessor returns, 5-4
accessorIterator element, A-23
Accessors element, 8-15
acquiring a unit of work, 3-19
Action Binding Editor, 10-5, 10-15
action bindings

about, 5-18
debugging, 16-22
disabled attribute, 5-25, 6-16
enabled property, 5-25, 6-16
for iterator bindings, 6-4
for methods, 10-20
for operations, 6-14
for page navigation, 9-17

action element, A-26
action events, 6-17
action listeners

in navigation operations, 6-17
in page navigation components, 9-20, 9-21

action methods, in page navigation
components, 9-16

actionEnabled binding property, B-1
actionListener attribute

command buttons for methods, 10-7
navigation operations, 6-17
See also action listeners

actions
adding ADF bindings to existing, 13-11
in page navigation, 9-14

actions facet, 11-45
AdapterDataControl element, A-8
ADF

Declarative Development with JavaServer
Faces, 1-3

overview, 1-1
Supported Business Services Technologies, 1-2
Supported Technologies, 1-1

Controller Layer, 1-2
View Layer, 1-2

ADF binding context. See binding context

ADF binding filter. See binding filter
ADF bindings. See bindings
ADF Command Button. See command buttons
ADF Controller library, 5-7
ADF Faces

accessibility support levels, 4-36
configuration files, A-4
converters, 12-17
dependencies and libraries, 4-13
enhanced debugging output, 4-36
file uploading, 11-49
filter and mapping configuration settings, 4-17
internationalization, 14-11
partial page rendering, 11-35
resource servlet and mapping configuration

settings, 4-17
skins, 14-3
supported platforms, 4-2
tag libraries for, 4-13
validation, 12-3
validators, 12-6

ADF Faces Cache
AFC Statistics servlet, 15-7
logging, 15-7
types of content to cache, 15-2
visual diagnostics, 15-8

ADF Faces components
access keys for, 4-37
adding bindings to existing, 13-3
adding to JSF pages, 4-14
changing appearance, 14-3
creating

commandButton components, 10-5, 10-7
commandButton components for page

navigation, 9-15, 9-17
commandButton components, for navigation

operations, 6-13
commandLink components for page

navigation, 9-15, 9-17
commandLink components, for navigation

operations, 6-13
inputText components, 6-2
outputText components, 6-2
selectManyShuttle components, 11-62
selectOneChoice components, 11-56
selectRangeChoiceBar components, 7-6

Index-2

setActionListener components, 10-8
table components, 7-3
tableSelectMany components, 7-18
tableSelectOne components, 7-4
tree components, 8-9
treeTable components, 8-15

creating from the Data Control Palette, 5-5
layout and panel components, 4-27
skinning, 14-3
style properties, changing, 14-2
translating, 14-11
See also UI components

ADF Faces Core tag library, 4-13
ADF Faces HTML tag library, 4-13
ADF Faces lifecycle, overriding, 12-25
ADF Form. See forms
ADF Input Text. See text fields
ADF Input Text with a Label. See text fields
ADF Label. See text fields
ADF Logger, 16-7
ADF Master Form, Detail Form. See master-detail

objects
ADF Master Form, Detail Table. See master-detail

objects
ADF Master Table, Detail Form. See master-detail

objects
ADF Master Table, Detail Table. See master-detail

objects
ADF Master Table, Inline Detail Table. See

master-detail objects
ADF Model layer

exception handling, 12-23
lifecycle, 6-6
validation, 12-7

ADF Model Runtime library, 5-7
ADF Output Text. See text fields
ADF Output Text with a Label. See text fields
ADF Parameter Form. See forms
ADF phase listener, 6-6

creating custom, 12-30
registering in the web.xml file, 5-7

ADF Read-Only Dynamic Table. See dynamic tables
ADF Read-Only Form. See forms
ADF Read-Only Table. See tables
ADF runtime libraries

active versions, 22-19
ADF Controller library, 5-7
ADF Model Runtime library, 5-7
adf-controller.jar file, 5-7
ADFm.jar file, 5-7
deleting, 22-27
in the project properties, 5-7
installing

from JDeveloper, 22-17
manually, 22-24

list of files, 22-24
ADF Table. See tables
ADF Tree. See tree components
ADF Tree Table. See treeTable components
ADFBindingFilter class, 5-10, 5-11

adf-config.xml file, 18-22
ADFContext object, 5-12
adf-controller.jar file, 5-7
ADFDG3002|Implementing Services with EJB Session

Beans, 3-2
ADFDG4003|Creating a Web Page, 4-9
ADFDG503|Working with the DataBindings.cpx

File, 5-9
adf-faces-config.xml file

about, A-4, A-44
accessibility, A-45
client-side validation, 12-4, A-46
client-validation-disabled element, 12-4
conversion, 12-17
currency, numbers, and decimals, A-45
currency-code element, 14-19
custom upload file processor, A-48
decimal-separator element, 14-19
editing, 4-19
enhanced debugging output, A-46
example of, 4-18
help site URL, A-48
language reading direction, A-46
localization properties, 14-19
number-grouping-separator element, 14-19
output mode, A-47
ProcessScope instances, A-47
retrieving property values, A-48
right-to-left element, 14-19
skin family, A-47
skin-family element, 14-10
supported tasks, A-44
time zone and year offset, A-47
time-zone element, 14-19

adf-faces-skins.xml file, 14-8
about, A-49
bundle-name element, 14-9
family element, 14-9
id element, 14-9
render-kit-id element, 14-9
skins element, 14-9
style-sheet-name element, 14-9
supported tasks, A-49

adfm.jar file, 5-7
adfm.xml element, A-11
AFC Statistics servlet, 15-7
aggregate collection mappings, 3-14
aggregate object mappings, 3-14
allDetailsEnabled attribute, 7-12
allRowsInRange binding property, B-1
amendment methods for TopLink descriptors, 3-10
application templates, 4-3
application view caching, 4-37
Apply Request Values phase, 6-8
attribute bindings

about, 5-17, 6-4
EL expressions for, 6-5
setting ADF authorization grants, 18-24

Attribute element, A-13
AttributeAccessor element, A-14

Index-3

attributeDef binding property, B-1
attributeDefs binding property, B-1
attributes

about, 5-5
binding to text fields, 6-2
on the Data Control Palette, 5-5

attributeValue binding property, B-1
attributeValues bindings property, B-2
attributeValues element, A-26
AttrNames element, 5-19, 8-15
authentication

enabling ADF Security, 18-9
enabling J2EE security, 18-4

authorization
ADF Security permissions, 18-21
enabling for ADF Security, 18-20

authorizationEnforce property, 18-22
automatic component binding, 4-31, 9-16, 9-17
automatic form submission, 4-36
autoSubmit attribute

for table row selection components, 7-15
use of, 4-36

B
Back button, issues

in forms, 6-17
in page navigation, 9-11
in tables, 7-8

backing beans
ADF data controls and, 4-34
automatic component binding and, 4-31
binding attribute and, 4-31
overriding declarative methods in, 10-10
referencing in JSF pages, 4-30
registering in faces-config.xml, 4-29
uses of, 4-28
using for validation method, 12-11
using in page navigation components, 9-16

Bind Action Property dialog, 9-17, 10-11
Bind Existing ADF Read-Only Table. See binding to

existing components
Bind Existing ADF Table. See binding to existing

components
Bind Existing CommandButton. See binding to

existing components
Bind Existing CommandLink. See binding to existing

components
Bind Existing Input Text. See binding to existing

components
Bind Existing Tree. See binding to existing

components
Bind Validator Property dialog, 12-12
binding attribute, 4-31
binding containers

about, 5-19
accessing from other pages, 5-27
debugging, 16-15
overriding declarative methods, 10-14
runtime usage, 5-19

scope, 5-19
setting ADF authorization grants, 18-23

binding context
about, 5-8
initializing using the ADF binding filter, 5-12

binding context, debugging, 16-11
binding features, 1-7

design-time support, 1-8
Binding Metadata Code Insight, 1-8
Data Control Palette, 1-8
data control wizards, 1-8
Page Definition Editor, 1-8

binding filter, 5-7, 5-10
binding objects

action, 1-6, 5-18
attribute, 1-6, 5-17
defined in page definition files, 5-13
EL properties of, B-1
invokeAction, 5-15
iterator, 1-6, 5-15
list, 5-17
lists, 11-58, 11-61
method action, 5-18
referencing in EL expressions, 5-20
runtime properties, 5-27
scope, 5-19, 5-28
table, 5-17
tree, 5-17
value, 5-17

binding properties
accessing in the Expression Builder, 5-21
configuring, 1-18
EL reference, B-1
hiding and showing groups of components, 1-19
in EL expressions, 5-20

binding to existing components
commandButton components, 13-12
commandLink components, 13-12
inputText components, 13-8
outputText components, 13-7
selection lists, 13-13
table components, 13-9
tree components, 13-15

bindings
action, 6-4
action for methods, 10-20
action for operations, 6-14
adding to existing components, 13-1
adding to UI components, 6-19
attribute, 6-4
changing, 6-20
changing for tables, 7-9
deleting for UI components, 6-19
iterator, about, 6-3
rebinding tables, 7-11
rebinding UI components, 6-20
required objects for ADF, 5-7
table, 7-4
text fields, 6-2
value, 6-4

Index-4

bindings element, 5-17
bindings variable, 5-20
breakpoints

types of, 16-8
bundle-name element, 14-9
business services

web services, 21-1
button element, A-27
buttons, command. See command buttons

C
cacheResults attribute, 10-18
caching with ADF Faces Cache, 15-1 to 15-9
change policy for unit of work, 3-22
character encoding, in the ADF binding filter, 5-12
children binding property, B-2
classes

persistent, 3-8
representing tables, 3-8

client-side state saving, 4-35
client-side validation

creating custom JSF, 12-15
using custom JSF, 12-15

client-validation-disabled element, 12-4
CollectionModel class, 7-5
collections, about, 5-3
columns

attributes for, 7-6
column tag, 7-5

command buttons
adding ADF bindings to existing, 13-11
binding to backing beans, 9-16
binding to methods, 10-7
creating using a method, 10-5
in navigation operations, 6-13
in page navigation, 9-15, 9-17

command components
executing methods with, 10-4
ID for, 10-7
passing parameter values with, 10-8

command links
in page navigation, 9-15, 9-17
navigation operations, 6-13
setting current row with, 7-22

commandButton components. See command buttons
commandLink components. See command links
components. See UI components
conditionally displaying components, 10-32
configuration files for JSF

creating page navigation rules in, 9-2
editing, 4-6
starter file in JDeveloper, 4-6
using multiple, 4-8
wizard for creating, 4-8
See also faces-config.xml file

constructors
about, 10-16
create methods, about, 5-4
procedures for using, 10-17

refresh condition, 10-20
Context class, 6-7
conversion

about, 12-16
in an application, 12-2
lifecycle, 12-2

converters
ADF Faces, 12-17
creating custom, 12-20
creating custom JSF, 12-19
using, 12-18

.cpx file. See DataBindings.cpx file
CreatableTypes element, A-8, A-9
Create Application dialog, 4-3
Create Cascading Style Sheet dialog, 14-6
Create Java Objects from Tables wizard, 3-8
Create JSF JSP wizard, 4-9
Create Managed Bean dialog, 4-29, 10-3
create methods, about, 5-4
Create Web Service Data Control wizard, 21-4
createPageLifecycle method, 12-30
CRUD methods, 3-2
CSS style properties, 14-2
currency-code element, 14-19
current row, setting programmatically, 7-22
currentRow binding property, B-2
CVS

client, 17-1
commit comments, 17-2
preferences, 17-1

D
data binding files

about, A-3
data control files

about, 3-27, A-3
Data Control Palette

about, 5-2
accessor returns, 5-4
attributes, 5-5
constructors, 5-4
context menu, 5-5
create methods, 5-4
data control, 5-4
default UI component features, 5-6
displaying, 5-2
icons defined, 5-3
identifying master-detail objects, 8-2
method returns, 5-4
objects created, 5-7
operations, 5-5
parameters, 5-5
using to create UI components, 5-5

data control registry, A-11
Data Control Security wizard, 21-9
data control security, defining for web services, 21-9
data controls

about, 3-27
creating, 3-26

Index-5

displayed on the Data Control Palette, 5-3
from sessions.xml file, 19-4
from TopLink Map, 19-5
from web services, 21-4
using to create UI components, 5-1

data variable, 5-27
database tables, representing as classes, 3-8
DataBindings.cpx file, A-3

about, 5-7, 5-9, A-18
changing a page definition filename, 5-13
dataControlUsages element, A-19
elements, A-19
elements, defined, 5-10
PageDefinitionUsages element, A-19
pageMap element, A-19
runtime usage, 5-19
sample, A-20
syntax, A-18

dataControl binding property, B-2
DataControlConfigs element, A-7
DataControls.dcx file, 3-27, A-7

elements, A-8
sample file, A-9
syntax, A-7

dataControlUsages element, 5-10, A-19
data-sources.xml file, not including in

deployment, 22-28
debugging

ADF binding context, 16-11
ADF Model in JDeveloper, 16-6
ADF Model layer, 16-10
binding container, 16-15
runtime errors, 16-4

decimal-separator element, 14-19
default page navigation cases, 9-6
defName attribute, 8-15
deleteAllObjects method, 3-22
deleteObject method, 3-22
deletes, performing before inserts, 19-2
deploying ADF applications, 22-1

for testing purposes, 22-1
from JDeveloper, 22-8
overview, 22-1
steps for, 22-2
techniques for, 22-7
to EAR file, 22-8
to JBoss, 22-11
to Oracle Application Server, 22-9
to Tomcat, 22-15
to WebLogic, 22-13
to WebSphere, 22-14
troubleshooting, 22-27
using Ant, 22-8
using scripts, 22-8

deploying SRDemo application, 22-8
descriptors, TopLink, 3-8
detailStamp facet

about, 7-11
DisclosureEvent event, 7-13
used to display inline detail table, 8-18

using, 7-12
dialog navigation rules, 11-22
digital signatures, setting for web services, 21-12
direct collection mappings, 3-14
direct mappings

creating, 3-12, 3-15
types of, 3-12

direct-to-field mappings, 3-12
disabled attribute

about, 5-25, 6-16
enabled property, 5-25, 6-16

DisclosureAllEvent event, 8-18
DisclosureEvent event

detailStamp facet, 7-13
in tree components, 8-15
in treeTable components, 8-18

disclosureListener attribute
detailStamp facet, 7-13
in tree components, 8-15
in treeTable components, 8-18

displayData binding property, B-2
displayHint binding property, B-2
displayHints binding property, B-3
dropdown lists

adding ADF bindings to existing, 13-13
dynamic list of values, 11-59
fixed list of values, 11-56
List Binding Editor, 11-57, 11-59, 13-13
list binding object, 11-58, 11-61

dynamic menus. See menus
dynamic outcomes. See outcomes
dynamic tables, 7-3

E
Edit Form Fields dialog, 6-10
Edit Table Columns dialog, 7-3, 7-9, 7-16
ejb-definition element, A-9
EL expressions

accessing results in a managed bean, 10-12
accessing security properties, 18-25
ADF binding properties, 5-20, 5-27
binding attributes with, 6-5
binding object properties reference, B-1
bindings variable, 5-20
creating, 5-19, 5-20
data variable, 5-27
editing, 5-20
examples of ADF binding expressions, 5-23
Expression Builder, using to create, 5-21
navigation operations, 6-16
referencing binding objects, 5-20
syntax for ADF binding expressions, 5-20
tracing in JDeveloper, 16-27
using to bind to ADF data control objects, 5-19

embedded OC4J server, deploying for testing, 22-2
enabled binding property, B-3
enabled property, 5-25, 6-16
enabledString binding property, B-3
entity definition file, 3-27

Index-6

error binding property, B-3
error messages

about, 12-22
disabling client-side, 12-23
displaying server-side, 12-23
parameters in, 12-5

estimatedRowCount binding property, B-3
evaluating page navigation rules, 9-10
events

action, 6-17
DisclosureAllEvent event, 8-18
DisclosureEvent event, 7-13, 8-15, 8-18
FocusEvent event, 8-17
LaunchEvent event, 11-25
PrepareRender event, 6-9
RangeChangeEvent event, 7-8
ReturnEvent event, 11-27
SelectionEvent event, 7-17

examples
stored procedure call, 3-25

exception handling
about, 12-23
changing, 12-24
custom handler, 12-24
customizing the lifecycle, 12-25
single page, overriding for, 12-31

executables element, 5-15
execute property, 6-16
existing components. See binding to existing

components
Expression Builder

about, 5-21
about the object list, 5-23
icons used, 5-23
using, 5-22

expression language. See EL expressions
external transaction controller, 3-18

F
faces-config.oxd_faces file, 4-11, 9-8
faces-config.xml file

about, A-4, A-38
configuring for ADF Faces, 4-18
converters, 12-20
custom validators and converters, A-42
editing, 4-6
example of, 4-6
from-action element, 9-3
from-outcome element, 9-3
from-view-id element, 9-3
locales, 14-18
managed bean configuration, 10-2, 10-4
managed beans, A-42
managed-bean element, 10-4
message resource bundle, A-40
navigation rules and classes, A-40
navigation-case element, 9-3
page navigation rule elements, 9-3

phase listener
default, 6-6
registering new, 12-30

phase listener for ADF Binding, A-39
redirect element, 9-3
render kit for ADF Faces, A-39
required elements for ADF, 5-7
supported locales, A-40
supported tasks, A-38
to-view-id element, 9-3
using to define page navigation rules, 9-2
validation, 12-15
wizard for creating, 4-8

FacesContext class, 6-6
FacesServlet class, 6-6
facets

about, 6-12
actions facet, 11-45
adding or removing, 4-25
detailStamp facet, 7-11, 8-18
footer facet, 6-12
in panelPage components, 4-24
in tree components, 8-13
in tree table components, 8-17
location facet, 11-45
menu, 11-2
nodeStamp facet, 8-13, 8-17, 11-14
pathStamp facet, 8-17
selection facet, 7-14

family element, 14-9
file dependencies, A-2
file uploading

context parameters for, 11-55
custom file processor for, 11-55
disk space and memory for, 11-55
inputFile component, 11-51
storage location for files, 11-50
supporting, 11-50

filter mappings, 5-11
filter-class element, 5-11
filter-name element, 5-11
findAll() method, 3-7
findByPrimaryKey, 3-17
finding objects by primary key, 3-17
findMode binding property, B-3
FocusEvent event, 8-17
FocusListener listener, 8-17
footer facet, 6-12
foreign-key relationships, 8-1
forms

adding UI components, 6-19
changing order of UI components, 6-19
creating basic, 6-9
creating input, 10-16
creating search, 10-23
creating using parameters, 10-14, 10-15
deleting UI components, 6-19
footer facet, 6-12
modifying the default, 6-18
navigation operations, 6-13

Index-7

parameter forms, 10-20
using the Data Control Palette to create, 6-11
using to display master-detail objects, 8-4
widgets for basic, 6-10

from-action element, 9-3
from-outcome element, 9-3
from-view-id element, 9-3
fullName binding property, B-3

G
getAsObject method, 12-19
getAsString method, 12-19
getBundle method, 14-14, 14-15
getClientConversion() method, 12-21
getClientScript() method, 12-15, 12-21
getClientValidation() method, 12-15
getContents() method, 14-17
global buttons, 11-2
global page navigation rules, 9-6
graph element, A-27

H
hierarchical menus. See menus

I
id attribute, 5-13
id element, 14-9
immediate attribute, 6-8
Initialize Context phase, 6-7, 6-8
init-param element, 5-12
inline tables, 8-18
input forms

about, 10-16
constructors versus custom methods, 10-16

input parameter in stored procedures, 3-23, 3-25
inputFile components, use of, 11-51
inputText components. See text fields; forms
inputValue binding property, B-4
Insert ActionListener dialog, 10-8
Insert SelectManyShuttle dialog, 11-69
inserts, performing after deletes, 19-2
internationalization

about, 14-11
procedures for, 14-14
See also localizing

Invoke Application phase, 6-8
invokeAction bindings, 5-15
invokeAction element, A-25
isExpanded method, 8-15
iterator bindings

about, 5-15, 6-3
method, 6-3
range, 5-16
rangeSize attribute, 6-15
setting ADF authorization grants, 18-23
tables, 7-4

iterator element, A-25
iteratorBinding binding property, B-4

iterators
about, 5-15
accessor, 5-15
method, 5-15
RowSetIterator object, 5-16
variable, 5-15

iterBinding attribute, 5-18

J
j_security_check login method, 18-12
j2ee-logging.xml file, A-37
Java classes

creating from database tables, 3-8
mapping to database tables, 3-11

javax.faces.CONFIG_FILES context
parameter, 4-8

javax.faces.STATE_SAVING_METHOD context
parameter, 4-35

jazn-data.xml file, 22-28
jazn-data.xml, with web services, 21-10
JBoss, deploying applications to, 22-11
JSF

basic application architecture, 1-5
features offered, 1-4

JSF components
creating from the Data Control Palette, 5-5
See also UI components

JSF Configuration Editor
launching, 4-6
using to create managed beans, 10-2
using to define page navigation rules, 9-2, 9-5, 9-7

JSF Core tag library, 4-13
JSF HTML tag library, 4-13
JSF lifecycle, with ADF, 6-6
JSF Navigation Case, 9-5
JSF navigation diagrams

deleting JSF pages on, 4-12
faces-config.oxd_faces files for, 4-11
opening, 4-10
renaming JSF pages on, 4-12
using to define page navigation rules, 9-2
See also JSF Navigation Modeler

JSF Navigation Modeler
deleting pages, 9-13
refreshing, 9-13
using to define page navigation rules, 9-3, 9-13

JSF Page Flow & Configuration wizard, 4-8
JSF pages

automatic component binding in, 4-31
backing beans for, 4-28
creating from the JSF navigation diagram, 4-10
designing for ADF bindings, 13-2
editing, 4-14
effects of name change, 5-9
example in XML, 4-11
inserting UI components, 4-14
laying out, 4-22 to 4-28
loading a resource bundle, 14-17
referencing backing beans in, 4-30

Index-8

ways to create, 4-9
JSF servlet and mapping configuration settings, 4-5
JSF tag libraries, 4-13
JSP documents, 4-9
JTA unit of work, 3-18
JUnit extension, installing, 2-10

K
keystores

creating, 21-6
exporting public key, 21-8
requesting certificates, 21-7
using with web services data controls, 21-6

L
label attribute, 6-19, 7-3
label binding property, B-4
label property, table columns, 7-5
labels binding property, B-4
labels, changing for UI components, 6-19
labelSet binding property, B-4
LaunchEvent event, 11-25
LaunchListener listener, 11-29
libraries

ADF Controller, 5-7
ADF Model Runtime, 5-7
ADF runtime, 5-7
adf-controller.jar file, 5-7
adfm.jar, 5-7

lifecycle
error handling, 12-2
JSF and ADF, 6-6
phases in an ADF application, 6-7

lifecycle phases.See names of individual phases
links, command. See command links
List Binding Editor, 11-57, 11-59, 13-13
list bindings, 5-17
list components, creating, 11-56
list element, A-28
list of values

adding ADF bindings to existing, 13-13
dynamic list, 11-59
fixed list, 11-56
List Binding Editor, 11-57, 11-59, 13-13
list binding object, 11-58, 11-61

listeners
DisclosureListener listener, 8-15
FocusListener listener, 8-17
LaunchListener listener, 11-29
ReturnListener listener, 11-27

ListResourceBundle
about, 14-13
creating, 14-16

loadBundle tag
about, 14-12
using, 14-17

local interface, 3-2
locales, registering, 14-18

localizing
about, 14-11
ListResourceBundle, 14-13
property files, requirements, 14-13
See also internationalization

location facet, 11-45
logging, A-37

changing logging level for ADF packages, A-37
log file location, A-38
redirecting output, A-37

login page, 18-12
logout page, 18-17

M
managed beans

accessing EL expression results, 10-12
automatic component binding and, 4-32
chaining, 11-11
compatible scopes, 11-11
configuring for menus, 11-4, 11-9, 11-11
configuring for process trains, 11-41, 11-42, 11-44
configuring in faces-config.xml, 4-29, 10-2
creation at runtime, 10-2
managed properties in, 4-33
multiple page usage, 10-3
multiple pages, 10-8
overriding declarative methods in, 10-10
scope for backing beans with method

overrides, 10-12
scope types, 4-29
setting parameters on, 10-9
storing information on, 10-2, 10-33
using in page navigation components, 9-16
validation method, 12-12
value binding expressions for chaining, 11-7

managed-bean element, 10-4
mandatory binding property, B-4
mandatory property, 12-5, 12-8
many-to-many mappings, 3-14
mappings

ADF binding filter, 5-11
direct mappings, 3-12
object-relational, 3-12
object-relational mappings, 3-14
relational, 3-12
relationship mappings, 3-14

mappings, TopLink, 3-11
Master Form, Detail Form. See master-detail objects
Master Form, Detail Table. See master-detail objects
Master Table, Detail Form. See master-detail objects
Master Table, Detail Table. See master-detail objects
Master Table, Inline Detail. See master-detail objects
masterBinding attribute, 8-7
master-detail objects

about, 8-1
displaying in

detailStamp facet, 8-18
forms, 8-4
separate pages, 8-8

Index-9

tables, 8-4
tree components, 8-9
treeTable components, 8-15

example of, 8-4
in the Data Control Palette, 8-2
managing row currency, 8-8
managing synchronization of data, 8-8
masterBinding attribute, 8-7
MasterTable, Inline Detail widget, 8-19
RowSetIterator objects, 8-8
treeTable components, 8-16
widgets, 8-5

Master-Details widgets, 8-5
MenuModel class, 11-3
menus

components for, 11-13
facets for, 11-2
managed beans for, 11-4, 11-9, 11-11
menu model creation, 11-3 to 11-11
menu tree model, 11-8
navigation rules for, 11-16
nodeStamp facet, 11-14
startDepth attribute, 11-15
ViewIdPropertyMenuModel instance, 11-9
ways to create, 11-2

messages tag, 12-8, 12-22
messages, error

about, 12-22
disabling client-side, 12-23
displaying server-side, 12-23
parameters in, 12-5

Metadata Commit phase, 6-8
metadata files

about, A-1
metadata in TopLink, 3-8
method accessing, 19-3
method action binding objects, 5-18
method action bindings

setting ADF authorization grants, 18-24
method iterator bindings, 6-3
method iterators, 5-15
method returns, 5-4
methodAction element, A-28
methodIterator element, A-25
methods

adding logic to, 10-10, 10-13
binding to command components, 10-4, 10-5
create, 5-4
creating input forms with, 10-20
creating search forms with, 10-23
CRUD, 3-2
findAll(), 3-7
in page navigation components, 9-14
overriding declarative, 10-10, 10-13
populating parameters at runtime, 10-22, 10-26
providing parameters when binding, 10-5

.mwp file, 3-8

N
name binding property, B-4
NamedData element

about, 10-20
creating, 10-15

navigation menus. See menus
navigation modeler. See JSF Navigation Modeler
navigation operations

action events, 6-17
Back button, issues, 6-17
EL expressions for, 6-16
inserting, 6-13
types, 6-16

navigation rules, page
about, 9-2
conflicts, 9-12
creating, 9-2
default cases, 9-6
deleting, 9-13
dialogs, for launching, 11-22
evaluating at runtime, 9-10
examples of, 9-9
global, 9-2, 9-6
in multiple configuration files, 9-11
menus, for, 11-16
overlapping, 9-11
pattern-based, 9-2
splitting, 9-12

navigation, page
about, 9-1
binding to a backing bean, 9-17
binding to a data control method, 9-17
default cases, 9-20
dialogs, for launching, 11-22
dynamic outcomes, 9-1, 9-16
from-action element, 9-3
from-outcome element, 9-3
from-view-id element, 9-3
global rules, 9-2
menus, for, 11-16
navigation-case element, 9-3
NavigationHandler handler, 9-10
navigation-rule element, 9-3
pattern-based rules, 9-2
redirect element, 9-3
rules

about, 9-2
conflicts, 9-12
creating, 9-2
default cases, 9-6
deleting, 9-13
evaluating at runtime, 9-10
examples of, 9-9
global, 9-2, 9-6
in multiple configuration files, 9-11
overlapping, 9-11
pattern-based, 9-2, 9-5
using the JSF Configuration Editor, 9-7
using the JSF Navigation Modeler, 9-3

Index-10

static outcomes, 9-1, 9-14
to-view-id element, 9-3
using action listeners, 9-21
using outcomes, 9-1
using the JSF Navigation Modeler, 9-13

navigation, range
forms, 6-13
row attribute, 7-7
tables, 7-6

navigation-case element, 9-3
navigation-case Properties dialog, 9-5
NavigationHandler handler, 9-10
navigation-rule element, 9-3
nested unit of work, 3-23
nodeDefinition element, 8-15
nodeStamp facet, 8-13, 8-17, 11-14
number-grouping-separator element, 14-19

O
object hierarchies, 8-1
object type mappings, 3-12
object-relational mappings, 3-12, 3-14
one-to-many mappings, 3-14
one-to-one mappings, 3-14
operationEnabled binding property, B-4
operations

accessing from the Data Control Palette, 5-5
action events for navigation, 6-17
EL expressions for navigation, 6-16
in page navigation components, 9-14
navigation, 6-13, 6-14, 6-16

Oracle ADF
debugging the Model layer, 16-10
file syntax, A-4
security features, 18-1

Oracle Wallet, 21-6
oracle.adf.view.faces.CHECK_FILE_

MODIFICATION context parameter, 4-35
oracle.adf.view.faces.DEBUG_JAVASCRIPT

context parameter, 4-36
oracle.adf.view.faces.USE_APPLICATION_

VIEW_CACHE context parameter, 4-37
outcomes

dynamic, 9-1, 9-16
page navigation, 9-1
static, 9-1, 9-14

output parameter
in stored procedures, 3-24
length in stored procedures, 3-25

output parameter event in stored procedures, 3-25
output parameter in stored procedures, 3-25
outputText components. See text fields; forms

P
page controllers, 4-7
page definition files

about, 5-7, 5-12, A-3, A-21
action bindings, 5-18
at runtime, 5-19
attribute bindings, 5-17
AttrNames element, 5-19
binding containers, 5-19
binding objects, 5-13
bindings element, 5-17
creating, 5-12
effects of name change, 5-9, 5-12
elements, 5-13, A-22
executables element, 5-15
id attribute, 5-13
invokeAction bindings, 5-15
iterator bindings, 5-15
iterBinding attribute, 5-18
list bindings, 5-17
location, 5-12
mapped in the DataBindings.cpx file, 5-13
masterBinding attribute, 8-7
method bindings, 5-18
naming, 5-12
nodeDefinition element, 8-15
parameters, 5-14
parameters element, 5-14
rangeSize attribute, 5-17
refresh attribute, 5-16, 5-17
refreshCondition attribute, 5-16
renaming, A-21
sample, A-30
syntax, A-21
table bindings, 5-17
tree bindings, 5-17, 8-13
value bindings, 5-17

page element, A-26
page layouts, 4-22 to 4-28
page navigation. See navigation, page
Page Properties dialog, 4-31
pageDefinition element, A-22
pageDefinitionUsages element, 5-10, A-19
PageDef.xml file. See page definition files
pageMap element, 5-10, A-19
panelButtonBar components, 6-16
panelPage components

facets in, 4-24
inserting into pages, 4-14
uses of, 4-13

parallel unit of work, 3-23
parameter element, A-23
parameter forms

at runtime, 10-22, 10-26
creating, 10-20

parameter methods
creating forms with, 10-14
creating input forms with, 10-20
creating search forms with, 10-23
passing values to, 10-8

Index-11

ParameterInfo element, A-14
parameters

accessing values, 10-5, 10-6
Apply Request Values phase, 6-8
bindings for, 10-6
creating forms with, 10-14, 10-15
creating input forms with, 10-20
creating search forms with, 10-23
defined in page definition file, 5-14
for messages, 12-5
for methods, 10-6
NamedData element, 10-6
on the Data Control Palette, 5-5
passing values for, 10-8
Prepare Model phase, 6-7, 6-9
providing for methods, 10-5
setting for methods, 10-5
setting on setActionListener

components, 10-8
parameters element, 5-14
param-name element, 5-11
partial page rendering

attributes for enabling, 11-36
autoSubmit attribute and, 4-36
command components and, 11-37
panelPartialRoot tag and, 4-21

partialSubmit attribute, 11-24
partialTriggers attribute, 11-36
pathStamp facet, 8-17
pattern attribute, 12-18
pattern-based page navigation rules, 9-5
permission grants for ADF Security, 18-21
persistent classes, 3-8
phase listeners

creating custom, 12-30
registering in the web.xml file, 5-7

phase-listener element, 5-7
popup dialogs

closing and returning from, 11-25
components with built-in support for, 11-35
conditions for supporting, 11-22
creating, 11-22 to 11-28
launch event, 11-25
launch listener, 11-29
launching from command components, 11-23
navigation rules for launching, 11-22
passing values into, 11-29
return event and return listener, 11-27
return value handling, 11-28
tasks for supporting, 11-22

postback property, using in refreshCondition
attribute, 6-9

PPR. See partial page rendering
Prepare Model phase

about, 6-7
when navigating, 6-9

Prepare Render phase
about, 6-9
exception handling, 12-24
overriding, 12-25

prepareModel method, 12-25
PrepareRender event, 6-9
primary key, finding objects by, 3-17
process trains

page access control, 11-44
processChoiceBar components, binding to train

models, 11-45
processTrain components, binding to train

models, 11-45
train model creation, 11-41 to 11-44

Process Validations phase, 6-8
processChoiceBar components, binding to train

models, 11-45
ProcessMenuModel class, 11-40, 11-42
processScope scope, 11-29
processTrain components, binding to train

models, 11-45
Project Properties dialog, 4-8
projects

creating from WAR files, 4-3
dependencies on, 4-8
JSF technology in, 4-4
properties of, 4-4, 4-11
renaming, 4-3
view or user interface, 4-7

property files
creating for resource bundles, 14-15
requirements for resource bundles, 14-13

pseudo class, 14-6
creating, 14-7
referencing, 14-7

pseudo elements, 14-6

Q
queries, TopLink Named Query, 3-17
query sequencing, 3-26

R
range navigation. See navigation, range
range, iterator, 5-16
RangeChangeEvent event, 7-8
rangeSize attribute, 5-17, 6-15, 7-7
rangeSize binding property, B-5
rangeStart binding property, B-5
ReadOnlyCollection.xml file, 3-27, A-17
ReadOnlySingleValue.xml file, 3-27, A-17
rebinding

input components, 6-20
tables, 7-11

redirect element, 9-3
refresh attribute, 5-16, 5-17

about, 6-7
refreshCondition attribute, 5-16

about, 6-7
registerObject method, 3-19
relational mappings, 3-12
relationship mappings, 3-14
remote interface, 3-2

Index-12

Render Response phase, 6-9
render-kit-id element, 14-9
reportErrors method, 12-24 to 12-25, 12-31
reportException method, 12-24, 12-31
required attribute

table row selection components, 7-15
validation, 12-4, 12-8

resetRange binding property, B-5
resource bundles

creating as a property file, 14-15
creating as Java classes, 14-16
for skins

creating, 14-8
registering, 14-8
using, 14-6

ListResourceBundle, 14-13
loading onto a JSF page, 14-17
property files, 14-13
property files versus Java classes, 14-13

Restore View phase, 6-7
restoreState method, 12-14
result binding property, B-5
returnActionListener tag, 11-25
ReturnEvent event, 11-27
ReturnListener listener, 11-27
right-to-left element, 14-19
rootNodeBinding binding property, B-5
row, 5-3
row currency

on master-detail objects, 8-8
setting programmatically, 7-22

rows attribute
about, 7-7
binding to rangeSize attribute, 7-7
first attribute, 7-7
setting, 7-7

rowsByDepth attribute, 8-18
rowset, 5-3
RowSetIterator objects

about, 5-16
scope, 5-19
used to manage master-detail objects, 8-8

rules, page navigation
about, 9-2
conflicts, 9-12
creating, 9-2
default cases, 9-6
deleting, 9-13
dialogs, for launching, 11-22
evaluating at runtime, 9-10
examples of, 9-9
global, 9-2, 9-6
in multiple configuration files, 9-11
menus, for, 11-16
pattern-based, 9-2

S
SAML assertion tokens, for web services, 21-11
saveState method, 12-14
scope, binding containers and objects, 5-19
search forms

about, 10-23
conditionally displaying results table, 10-32
creating, 10-23

security
for ADF web applications, 18-1
for web service data controls, 21-5

selectBooleanCheckbox components, in a
table, 7-10

selectedValue binding property, B-6
selection facet, 7-14, 7-17
selection list components

adding ADF bindings to existing, 13-13
creating, 11-56

SelectionEvent event, 7-17
selectionState attribute, 7-17
selectItems tag, 11-58
selectManyShuttle components, creating, 11-62
selectOneChoice components

creating, 11-56
in a table, 7-10

selectOneListbox components, in a table, 7-10
selectOneRadio components, in a table, 7-10
selectors, 14-5
selectRangeChoiceBar components

about, 7-6
at runtime, 7-7
RangeChangeEvent event, 7-8

sequencing
displaying before commit operations, 19-3
stored procedures, 3-26
TopLink queries, 3-26

serialized object mappings, 3-12
services, building with TopLink, 3-1
servlet context parameter, 5-11
session beans, 3-2

bean class example, 3-4
creating, 3-2
EJB version, 3-2
interface example, 3-3
interface types, 3-2
updating, 3-8

session facades, 3-2
generating methods, 3-2
updating, 3-8

sessions, specifying sessions.xml file, 19-2
sessions.xml file

specifying, 19-2
using with data control, 19-4

setActionListener components
about, 10-8
search pages, conditionally displaying

results, 10-33
setting, 10-8

setActionListener tag, 11-19

Index-13

setCurrentRowWithKey operation
setting programmatically, 7-22
setting programmatically for tableSelectMany

components, 7-20
setSubmittedValue method, 6-8
skin element, 14-9
skin-family element, 14-10
skins

about, 14-3
alias pseudo class, 14-6
configuring an application to use, 14-10
creating, 14-6
creating a resource bundle for, 14-8
icons, for, 14-7
minimal, 14-3
Oracle, 14-3
pseudo class

about, 14-6
creating, 14-7

pseudo elements, 14-6
registering, 14-8
resource bundles

about, 14-6
creating, 14-8
registering, 14-8

rtl pseudo class, 14-7
selectors, 14-5
simple, 14-4
using, 14-5

SOAP, and web services, 21-2
Source element, A-8
SRDemo application

functionality, 2-11
installing, 2-4
JUnit tests, running, 2-9
overview, 2-1
requirements, 2-2
schema, 2-2

stack trace, reporting information in, 16-10
standalone OC4J, deploying for testing, 22-2
startDepth attribute, 11-15
state saving, 4-35
StateHolder interface, 12-14
static outcomes. See outcomes
stored procedure call example, 3-24
stored procedures

input parameter, 3-23, 3-25
output parameter, 3-24, 3-25
output parameter event, 3-25
output parameter length, 3-25
sequencing with, 3-26
TopLink with, 3-23
using StoredFunctionCall method, 3-25

StoredFunctionCall method, 3-25
StoredProcedureCall method, 3-23
structure definition

Attribute element, A-13
AttributeAccessor element, A-14
entity example, A-16
ParameterInfo element, A-14

schema, A-11
session bean example, A-14

structure definition file, 3-27
style properties, changing, 14-2
StyleClass dialog, 14-2
style-sheet-name element, 14-9
submitForm method, 12-4

T
table binding objects, 5-17
table element, A-29
table tag, 7-5
tables

about, 7-2
adding ADF bindings to existing, 13-8
attributes for, 7-6
Back button, using, 7-8
bindings for, 7-4
changing default, 7-9
conditionally displaying on search page, 10-32
creating, 7-2
detailStamp facet

about, 7-11
using, 7-12

dynamic tables, 7-3
master table with inline detail table, 8-18
master-detail objects, displaying in, 8-4
read-only, 7-3
rebinding, 7-11
rows attribute, setting, 7-7
selection facet, 7-14
selectRangeChoiceBar components, 7-6

about, 7-6
table tag, 7-5
var attribute, 7-5
versus forms, 7-2
widgets for, 7-3

tableSelectMany components
about, 7-14
autoSubmit attribute, 7-15
required attribute, 7-15
text attribute, 7-15
using, 7-18

tableSelectOne components
about, 7-14
adding to a table, 7-4, 7-10
autoSubmit attribute, 7-15
required attribute, 7-15
text attribute, 7-15
using, 7-16

tag libraries for JSF and ADF Faces, 4-13
text attribute, 7-15

Index-14

text fields
adding ADF bindings to existing, 13-7
binding, 6-2
creating for attributes, 6-2
input text widgets, 6-2
label widgets, 6-2
output text widgets, 6-2
using the Data Control Palette to create, 6-3

time-zone element, 14-19
token validation

forms, 6-17
setting, 6-17
tables, 7-8

Tomcat, deploying applications to, 22-15
tooltip binding property, B-6
TopLink

building services, 3-1
descriptors, 3-8

TopLink map
about, 3-8
in Mapping Editor, 3-12
using multiple, 19-5

TopLink mappings. See mappings
TopLink Named Query, 3-17
to-view-id element, 9-3
transactions

overview, 3-18
see also unit of work

transformation mappings, 3-12
Tree Binding Editor, 8-10, 8-19
tree components

about, 8-9
Accessors element, 8-15
adding ADF bindings to existing, 13-14
AttrNames element, 8-15
binding objects created for, 8-13
defName attribute, 8-15
DisclosureEvent event, 8-15
disclosureListener attribute, 8-15
example of, 8-9
facet tag, 8-13
FocusEvent event, 8-17
FocusListener listener, 8-17
isExpanded method, 8-15
nodeDefinition tag, 8-15
nodeStamp facet, 8-13
Tree Binding Editor, 8-10
treeModel property, 8-13
using to display master-detail objects, 8-9
var attribute, 8-13

tree element, A-29
TreeModel class, 8-17
treeModel property, 8-13, 8-17
treeState attribute, 8-18
treeTable components

about, 8-15
Accessors element, 8-15
adding ADF bindings to existing, 13-14
AttrNames element, 8-15
creating from Data Control Palette, 8-16

defName attribute, 8-15
DisclosureAllEvent event, 8-18
DisclosureEvent event, 8-18
disclosureListener attribute, 8-18
displaying master-detail objects, 8-15
example of, 8-15
facet tag, 8-17
nodeStamp facet, 8-17
pathStamp facet, 8-17
rowsByDepth attribute, 8-18
TreeModel class, 8-17
treeModel property, 8-17
treeState attribute, 8-18
var attribute, 8-17

type conversion mappings, 3-12

U
UDDI, and web services, 21-2
UI components

adding ADF bindings to existing, 13-3
adding binding for, 6-19
adding to a form, 6-19
binding instances of, 4-31
changing labels for, 6-19
changing the display order on forms, 6-19
conditionally displaying, 10-32
creating with the Data Control Palette, 5-1, 5-5,

5-6
default ADF features, 5-6
deleting bindings for, 6-19
deleting from a form, 6-19
editing for tables, 7-9
inserting into JSF pages, 4-14
modifying, 6-18
rebinding, 6-18, 6-20
skins, 14-3
style properties, 14-2
See also ADF Faces components
See also JSF components

unit of work
about, 3-18
acquiring, 3-19
change policy, 3-22
creating, 3-19
creating objects, 3-19
deleting objects, 3-22
deleting objects from database, 3-22
example, 3-20
lifecycle, 3-20
modifying objects, 3-21
nested, 3-23
parallel, 3-23

Update Model Values phase, 6-8
updateable binding property, B-6
UpdateableCollection.xml file, 3-27, A-17
UpdateableSingleValue.xml file, A-17
username token authentication, for web

services, 21-11

Index-15

V
validate method, 12-10, 12-14, 12-16
Validate Model Updates phase, 6-8
validation

ADF Faces, 12-3
ADF Faces attributes, 12-4
ADF Faces validators, 12-6
ADF Model validation rules

adding, 12-7
types of, 12-7

client-side custom JSF validators
creating, 12-15
using, 12-15

custom JSF validators
about, 12-11
creating, 12-13

debugging in ADF Model layer, 16-25
lifecycle, 12-2
method, overriding, 12-12
parameters in messages, 12-5
required attribute, 12-4
runtime, 12-10
working in an application, 12-2

Validation Rules Editor dialog, 12-8
Validator interface, 12-12
validator tag, 12-8
validators

ADF Faces, 12-6
custom JSF, creating, 12-14

value bindings
about, 5-17, 6-4
changing, 6-20
table, 7-4

var attribute
tables, 7-5
tree tables, 8-17
trees, 8-13

variable iterators
about, 5-15
using, 10-21

variable one-to-one mappings, 3-14
variableIterator element, A-26
variables

about, 10-21
at runtime, 10-22, 10-26
input forms, 10-21

versioning
committing ADF work to CVS, 17-2
developer-level activities, 17-4
name consistency, 17-2
team-level activities, 17-3

view caching, 4-37
view.PageDefs package, 5-12

W
web configuration files, A-4
web pages. See JSF pages
web services

about, 21-1
authentication, 21-13
creating data controls, 21-4
defining data control security, 21-9
encrypting and decrypting, 21-13
JAZN, 21-10
keystores, 21-6, 21-13
SAML assertion tokens, 21-11
securing data controls, 21-5
setting authentication, 21-9
setting digital signatures, 21-12
SOAP, 21-2
testing authentication, 21-10
UDDI, 21-2
username token authentication, 21-11
WSDL, 21-2
WS-Security, 21-5
X509 authentication, 21-11

WebLogic, deploying applications to, 22-13
WebSphere

configuring to run ADF applications, 22-20
deploying applications to, 22-14

web.xml file, 5-7, A-4, A-31
ADF filter mappings, 5-11
ADF model binding, A-35
application view caching, A-34
configuring for ADF Faces, 4-17
debugging, A-34
editing, 4-6
example of, 4-5
JSF parameters, A-36
registering the ADF binding filter, 5-10
saving state, A-33
servlet context parameter, defining, 5-11
tasks supported by, A-33
uploading, A-35

WSDL, and web services, 21-2
WS-Security, about, 21-5

X
X509 authentication, for web services, 21-11

Index-16

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Getting Started with Oracle ADF Applications
	1 Introduction to Oracle ADF Applications
	1.1 Overview of Oracle Application Development Framework
	1.1.1 Framework Architecture and Supported Technologies
	1.1.1.1 View Layer Technologies Supported
	1.1.1.2 Controller Layer Technologies Supported
	1.1.1.3 Business Services Technologies Supported by ADF Model
	1.1.1.4 Recommended Technologies for J2EE Enterprise Developers

	1.1.2 Declarative Development with Oracle ADF and JavaServer Faces
	1.1.2.1 Declarative J2EE Technologies You May Have Already Used
	1.1.2.2 JSF Offers Dependency Injection, Page Handling, EL and More
	1.1.2.3 Oracle ADF Further Raises the Level of Declarative Development for JSF

	1.1.3 Key ADF Binding Features for JSF Development
	1.1.3.1 Comprehensive JDeveloper Design-Time Support
	1.1.3.2 More Sophisticated UI Functionality Without Coding
	1.1.3.3 Centralize Common Functionality in Layered Model Metadata
	1.1.3.4 Simplified Control Over Page Lifecycle

	1.2 Development Process with Oracle ADF and JavaServer Faces
	1.2.1 Overview of the Steps for Building an Application
	1.2.1.1 Starting by Creating a New Application
	1.2.1.2 Building the Business Service in the Model Project
	1.2.1.3 Creating a Data Control for Your Service to Enable Data Binding
	1.2.1.4 Dragging and Dropping Data to Create a New JSF Page
	1.2.1.5 Examining the Binding Metadata Files Involved
	1.2.1.6 Understanding How Components Reference Bindings via EL
	1.2.1.7 Configuring Binding Properties If Needed
	1.2.1.8 Understanding How Bindings Are Created at Runtime

	1.2.2 Making the Display More Data-Driven
	1.2.2.1 Hiding and Showing Groups of Components Based on Binding Properties
	1.2.2.2 Toggling Between Alternative Sets of Components Based on Binding Properties

	2 Oracle ADF Service Request Demo Overview
	2.1 Introduction to the Oracle ADF Service Request Demo
	2.1.1 Requirements for Oracle ADF Service Request Application
	2.1.2 Overview of the Schema

	2.2 Setting Up the Oracle ADF Service Request Demo
	2.2.1 Downloading and Installing the Oracle ADF Service Request Application
	2.2.2 Installing the Oracle ADF Service Request Schema
	2.2.3 Creating the Oracle JDeveloper Database Connection
	2.2.4 Running the Oracle ADF Service Request Demo in JDeveloper
	2.2.5 Running the Oracle ADF Service Request Demo Unit Tests in JDeveloper

	2.3 Quick Tour of the Oracle ADF Service Request Demo
	2.3.1 Customer Logs In and Reviews Existing Service Requests
	2.3.2 Customer Creates a Service Request
	2.3.3 Manager Logs In and Assigns a Service Request
	2.3.4 Manager Views Reports and Updates Technician Skills
	2.3.5 Technician Logs In and Updates a Service Request

	3 Building and Using Application Services
	3.1 Introduction to Business Services
	3.2 Implementing Services with EJB Session Beans
	3.2.1 How to Create a Session Bean
	3.2.1.1 Remote and Local Interfaces
	3.2.1.2 Generating Session Facade Methods

	3.2.2 What Happens When You Create a Session Bean
	3.2.3 What You May Need to Know When Creating a Session Bean
	3.2.4 How to Update an Existing Session Bean With New Entities

	3.3 Creating Classes to Map to Database Tables
	3.3.1 How to Create Classes
	3.3.2 What Happens when you Create a Class
	3.3.3 What You May Need to Know
	3.3.3.1 Associating Descriptors with Different Database Tables
	3.3.3.2 Using Amendment Methods
	3.3.3.3 Modifying the Generated Code

	3.4 Mapping Classes to Tables
	3.4.1 Types of Mappings
	3.4.2 Direct Mappings
	3.4.3 How to Create Direct Mappings
	3.4.4 What Happens when you Create a Direct Mapping
	3.4.5 What You May Need to Know

	3.5 Mapping Related Classes with Relationships
	3.5.1 How to Create Relationship Mappings
	3.5.2 What Happens when you Create a Relationship
	3.5.3 What You May Need to Know

	3.6 Finding Objects by Primary Key
	3.7 Querying Objects
	3.7.1 How to Create a Query
	3.7.2 What You May Need to Know
	3.7.2.1 Using a Query By Example
	3.7.2.2 Sorting Query Results

	3.8 Creating and Modifying Objects with a Unit of Work
	3.8.1 How to Create a Unit of Work
	3.8.1.1 Creating Objects with Unit of Work
	3.8.1.2 Typical Unit of Work Usage

	3.8.2 What Happens when you Modify a Unit of Work
	3.8.2.1 Deleting Objects
	3.8.2.1.1 Explicitly Deleting Objects from the Database

	3.8.3 What You May Need to Know
	3.8.3.1 Unit of Work and Change Policy
	3.8.3.2 Nested and Parallel Units of Work
	3.8.3.2.1 Nested Unit of Work
	3.8.3.2.2 Parallel Unit of Work

	3.9 Interacting with Stored Procedures
	3.9.1 Specifying an Input Parameter
	3.9.2 Specifying an Output Parameter
	3.9.3 Specifying an Input / Output Parameter
	3.9.4 Using an Output Parameter Event
	3.9.5 Using a StoredFunctionCall
	3.9.6 Query Sequencing

	3.10 Exposing Services with ADF Data Controls
	3.10.1 How to Create ADF Data Controls
	3.10.2 Understanding the Data Control Files
	3.10.2.1 About the DataControls.dcx File
	3.10.2.2 About the Structure Definition Files
	3.10.2.3 About the Entity XML Files
	3.10.2.4 About the Design-time XML Files

	3.10.3 Understanding the Data Control Palette
	3.10.3.1 Overview of the Data Control Business Objects
	3.10.3.2 Refreshing ADF Data Controls After Modifying Business Services
	3.10.3.2.1 Viewing modified data controls in the Data Control Palette:
	3.10.3.2.2 Refreshing a data control definition for business services you have modified
	3.10.3.2.3 Removing a data control definition for business services that have been removed:
	3.10.3.2.4 Updating a data control after renaming or moving a business services

	Part II Building the Web Interface
	4 Getting Started with ADF Faces
	4.1 Introduction to ADF Faces
	4.2 Setting Up a Workspace and Project
	4.2.1 What Happens When You Use an Application Template to Create a Workspace
	4.2.1.1 Starter web.xml File
	4.2.1.2 Starter faces-config.xml File

	4.2.2 What You May Need to Know About the ViewController Project
	4.2.3 What You May Need to Know About Multiple JSF Configuration Files

	4.3 Creating a Web Page
	4.3.1 How to Add a JSF Page
	4.3.2 What Happens When You Create a JSF Page
	4.3.3 What You May Need to Know About Using the JSF Navigation Diagram
	4.3.4 What You May Need to Know About ADF Faces Dependencies and Libraries

	4.4 Laying Out a Web Page
	4.4.1 How to Add UI Components to a JSF Page
	4.4.2 What Happens When You First Insert an ADF Faces Component
	4.4.2.1 More About the web.xml File
	4.4.2.2 More About the faces-config.xml File
	4.4.2.3 Starter adf-faces-config.xml File

	4.4.3 What You May Need to Know About Creating JSF Pages
	4.4.3.1 Editing in the Structure Window
	4.4.3.2 Displaying Errors

	4.4.4 Using the PanelPage Component
	4.4.4.1 PanelPage Facets
	4.4.4.2 Page Body Contents

	4.5 Creating and Using a Backing Bean for a Web Page
	4.5.1 How to Create and Configure a Backing Bean
	4.5.2 What Happens When You Create and Configure a Backing Bean
	4.5.3 How to Use a Backing Bean in a JSF Page
	4.5.4 How to Use the Automatic Component Binding Feature
	4.5.5 What Happens When You Use Automatic Component Binding in JDeveloper
	4.5.6 What You May Need to Know About Backing Beans and Managed Beans
	4.5.7 Using ADF Data Controls and Backing Beans

	4.6 Best Practices for ADF Faces

	5 Displaying Data on a Page
	5.1 Introduction to Displaying Data on a Page
	5.2 Using the Data Control Palette
	5.2.1 How to Understand the Items on the Data Control Palette
	5.2.2 How to Use the Data Control Palette
	5.2.3 What Happens When You Use the Data Control Palette
	5.2.4 What Happens at Runtime

	5.3 Working with the DataBindings.cpx File
	5.3.1 How to Create a DataBindings.cpx File
	5.3.2 What Happens When You Create a DataBindings.cpx File

	5.4 Configuring the ADF Binding Filter
	5.4.1 How to Configure the ADF Binding Filter
	5.4.2 What Happens When You Configure an ADF Binding Filter
	5.4.3 What Happens at Runtime

	5.5 Working with Page Definition Files
	5.5.1 How to Create a Page Definition File
	5.5.2 What Happens When You Create a Page Definition File
	5.5.2.1 Binding Objects Defined in the parameters Element
	5.5.2.2 Binding Objects Defined in the executables Element
	5.5.2.3 Binding Objects Defined in the bindings Element

	5.5.3 What Happens at Runtime
	5.5.4 What You May Need to Know About Binding Container Scope

	5.6 Creating ADF Data Binding EL Expressions
	5.6.1 How to Create an ADF Data Binding EL Expression
	5.6.2 How to Use the Expression Builder
	5.6.3 What Happens When You Create ADF Data Binding Expressions
	5.6.3.1 EL Expressions That Reference Attribute Binding Objects
	5.6.3.2 EL Expressions That Reference Table Binding Objects
	5.6.3.3 EL Expressions That Reference Action Binding Objects

	5.6.4 What You May Need to Know About ADF Binding Properties
	5.6.5 What You May Need to Know About Binding to Values in Other Pages

	6 Creating a Basic Page
	6.1 Introduction to Creating a Basic Page
	6.2 Using Attributes to Create Text Fields
	6.2.1 How to Use the Data Control Palette to Create a Text Field
	6.2.2 What Happens When You Use the Data Control Palette to Create a Text Field
	6.2.2.1 Creating and Using Iterator Bindings
	6.2.2.2 Creating and Using Value Bindings
	6.2.2.3 Using EL Expressions to Bind UI Components

	6.2.3 What Happens at Runtime: The JSF and ADF Lifecycles

	6.3 Creating a Basic Form
	6.3.1 How to Use the Data Control Palette to Create a Form
	6.3.2 What Happens When You Use the Data Control Palette to Create a Form
	6.3.2.1 Using Facets

	6.4 Incorporating Range Navigation into Forms
	6.4.1 How to Insert Navigation Controls into a Form
	6.4.2 What Happens When Command Buttons Are Created Using the Data Control Palette
	6.4.2.1 Using Action Bindings for Built-in Navigation Operations
	6.4.2.2 Iterator RangeSize Attribute
	6.4.2.3 Using EL Expressions to Bind to Navigation Operations

	6.4.3 What Happens at Runtime: About Action Events and Action Listeners
	6.4.4 What You May Need to Know About the Browser Back Button

	6.5 Modifying the UI Components and Bindings on a Form
	6.5.1 How to Modify the UI Components and Bindings
	6.5.1.1 Changing the Value Binding for a UI Component
	6.5.1.2 Changing the Action Binding for a UI Component

	6.5.2 What Happens When You Modify Attributes and Bindings

	7 Adding Tables
	7.1 Introduction to Adding Tables
	7.2 Creating a Basic Table
	7.2.1 How to Create a Basic Table
	7.2.2 What Happens When You Use the Data Control Palette to Create a Table
	7.2.2.1 Iterator and Value Bindings for Tables
	7.2.2.2 Code on the JSF Page for an ADF Faces Table

	7.3 Incorporating Range Navigation into Tables
	7.3.1 How to Use Navigation Controls in a Table
	7.3.2 What Happens When You Use Navigation Controls in a Table
	7.3.3 What Happens at Runtime
	7.3.4 What You May Need to Know About the Browser Back Button

	7.4 Modifying the Attributes Displayed in the Table
	7.4.1 How to Modify the Displayed Attributes
	7.4.2 How to Change the Binding for a Table
	7.4.3 What Happens When You Modify Bindings or Displayed Attributes

	7.5 Adding Hidden Capabilities to a Table
	7.5.1 How to Use the DetailStamp Facet
	7.5.2 What Happens When You Use the DetailStamp Facet
	7.5.3 What Happens at Runtime

	7.6 Enabling Row Selection in a Table
	7.6.1 How to Use the TableSelectOne Component in the Selection Facet
	7.6.2 What Happens When You Use the TableSelectOne Component
	7.6.3 What Happens at Runtime
	7.6.4 How to Use the TableSelectMany Component in the Selection Facet
	7.6.5 What Happens When You Use the TableSelectMany Component
	7.6.6 What Happens at Runtime

	7.7 Setting the Current Object Using a Command Component
	7.7.1 How to Manually Set the Current Row
	7.7.2 What Happens When You Set the Current Row
	7.7.3 What Happens At Runtime

	8 Displaying Master-Detail Data
	8.1 Introduction to Displaying Master-Detail Data
	8.2 Identifying Master-Detail Objects on the Data Control Palette
	8.3 Using Tables and Forms to Display Master-Detail Objects
	8.3.1 How to Display Master-Detail Objects in Tables and Forms
	8.3.2 What Happens When You Create Master-Detail Tables and Forms
	8.3.2.1 Code Generated in the JSF Page
	8.3.2.2 Binding Objects Defined in the Page Definition File

	8.3.3 What Happens at Runtime
	8.3.4 What You May Need to Know About Master-Detail on Separate Pages

	8.4 Using Trees to Display Master-Detail Objects
	8.4.1 How to Display Master-Detail Objects in Trees
	8.4.2 What Happens When You Create ADF Databound Trees
	8.4.2.1 Code Generated in the JSF Page
	8.4.2.2 Binding Objects Defined in the Page Definition File

	8.4.3 What Happens at Runtime

	8.5 Using Tree Tables to Display Master-Detail Objects
	8.5.1 How to Display Master-Detail Objects in Tree Tables
	8.5.2 What Happens When You Create a Databound Tree Table
	8.5.2.1 Code Generated in the JSF Page
	8.5.2.2 Binding Objects Defined in the Page Definition File

	8.5.3 What Happens at Runtime

	8.6 Using an Inline Table to Display Detail Data in a Master Table
	8.6.1 How to Display Detail Data Using an Inline Table
	8.6.2 What Happens When You Create an Inline Detail Table
	8.6.2.1 Code Generated in the JSF Page
	8.6.2.2 Binding Objects Defined in the Page Definition File

	8.6.3 What Happens at Runtime

	9 Adding Page Navigation
	9.1 Introduction to Page Navigation
	9.2 Creating Navigation Rules
	9.2.1 How to Create Page Navigation Rules
	9.2.1.1 About Navigation Rule Elements
	9.2.1.2 Using the Navigation Modeler to Define Navigation Rules
	9.2.1.3 Using the JSF Configuration Editor

	9.2.2 What Happens When You Create a Navigation Rule
	9.2.3 What Happens at Runtime
	9.2.4 What You May Need to Know About Navigation Rules and Cases
	9.2.4.1 Defining Rules in Multiple Configuration Files
	9.2.4.2 Overlapping Rules
	9.2.4.3 Conflicting Navigation Rules
	9.2.4.4 Splitting Navigation Cases Over Multiple Rules

	9.2.5 What You May Need to Know About the Navigation Modeler

	9.3 Using Static Navigation
	9.3.1 How to Create Static Navigation
	9.3.2 What Happens When You Create Static Navigation

	9.4 Using Dynamic Navigation
	9.4.1 How to Create Dynamic Navigation
	9.4.2 What Happens When You Create Dynamic Navigation
	9.4.3 What Happens at Runtime
	9.4.4 What You May Need to Know About Using Default Cases
	9.4.5 What You May Need to Know About Action Listener Methods
	9.4.6 What You May Need to Know About Data Control Method Outcome Returns

	10 Creating More Complex Pages
	10.1 Introduction to More Complex Pages
	10.2 Using a Managed Bean to Store Information
	10.2.1 How to Use a Managed Bean to Store Information
	10.2.2 What Happens When You Create a Managed Bean

	10.3 Creating Command Components to Execute Methods
	10.3.1 How to Create a Command Component Bound to a Service Method
	10.3.2 What Happens When You Create Command Components Using a Method
	10.3.2.1 Using Parameters in a Method
	10.3.2.2 Using EL Expressions to Bind to Methods

	10.3.3 What Happens at Runtime

	10.4 Setting Parameter Values Using a Command Component
	10.4.1 How to Set Parameters Using Command Components
	10.4.2 What Happens When You Set Parameters
	10.4.3 What Happens at Runtime

	10.5 Overriding Declarative Methods
	10.5.1 How to Override a Declarative Method
	10.5.2 What Happens When You Override a Declarative Method

	10.6 Creating a Form or Table Using a Method that Takes Parameters
	10.6.1 How to Create a Form or Table Using a Method That Takes Parameters
	10.6.2 What Happens When You Create a Form Using a Method that Takes Parameters
	10.6.3 What Happens at Runtime

	10.7 Creating an Input Form for a New Record
	10.7.1 How to Use Constructors to Create an Input Form
	10.7.2 What Happens When You Use a Constructor
	10.7.3 How to Use a Custom Method to Create an Input Form
	10.7.4 What Happens When You Use Methods to Create a Parameter Form
	10.7.4.1 Using Variables and Parameters

	10.7.5 What Happens at Runtime

	10.8 Creating Search Pages
	10.8.1 How to Create a Search Form
	10.8.2 What Happens When You Use Parameter Methods
	10.8.3 What Happens at Runtime

	10.9 Conditionally Displaying the Results Table on a Search Page
	10.9.1 How to Add Conditional Display Capabilities
	10.9.2 What Happens When you Conditionally Display the Results Table

	11 Using Complex UI Components
	11.1 Introduction to Complex UI Components
	11.2 Using Dynamic Menus for Navigation
	11.2.1 How to Create Dynamic Navigation Menus
	11.2.1.1 Creating a Menu Model
	11.2.1.1.1 What You May Need to Know About Chaining Managed Beans
	11.2.1.1.2 What You May Need to Know About Accessing Resource Bundle Strings

	11.2.1.2 Creating the JSF Page for Each Menu Item
	11.2.1.2.1 What You May Need to Know About the PanelPage and Page Components

	11.2.1.3 Creating the JSF Navigation Rules

	11.2.2 What Happens at Runtime
	11.2.3 What You May Need to Know About Menus

	11.3 Using Popup Dialogs
	11.3.1 How to Create Popup Dialogs
	11.3.1.1 Defining a JSF Navigation Rule for Launching a Dialog
	11.3.1.1.1 What Happens at Runtime

	11.3.1.2 Creating the JSF Page That Launches a Dialog
	11.3.1.2.1 What Happens at Runtime

	11.3.1.3 Creating the Dialog Page and Returning a Dialog Value
	11.3.1.3.1 What Happens at Runtime

	11.3.1.4 Handling the Return Value
	11.3.1.4.1 What Happens at Runtime

	11.3.1.5 Passing a Value into a Dialog
	11.3.1.5.1 What Happens at Runtime

	11.3.2 How the SRDemo Popup Dialogs Are Created
	11.3.3 What You May Need to Know About ADF Faces Dialogs
	11.3.4 Other Information

	11.4 Enabling Partial Page Rendering
	11.4.1 How to Enable PPR
	11.4.2 What Happens at Runtime
	11.4.3 What You May Need to Know About PPR and Screen Readers

	11.5 Creating a Multipage Process
	11.5.1 How to Create a Process Train
	11.5.1.1 Creating a Process Train Model
	11.5.1.1.1 What You May Need to Know About Controlling Page Access

	11.5.1.2 Creating the JSF Page for Each Train Node
	11.5.1.2.1 What You May Need to Know About the Immediate and ReadOnly Attributes

	11.5.1.3 Creating the JSF Navigation Rules

	11.5.2 What Happens at Runtime
	11.5.3 What You May Need to Know About Process Trains and Menus

	11.6 Providing File Upload Capability
	11.6.1 How to Support File Uploading on a Page
	11.6.2 What Happens at Runtime
	11.6.3 What You May Need to Know About ADF Faces File Upload
	11.6.4 Configuring File Uploading Initialization Parameters
	11.6.5 Configuring a Custom Uploaded File Processor

	11.7 Creating Databound Dropdown Lists
	11.7.1 How to Create a Dropdown List with a Fixed List of Values
	11.7.2 What Happens When You Create a Dropdown List Bound to a Fixed List
	11.7.3 How to Create a Dropdown List with a Dynamic List of Values
	11.7.4 What Happens When You Create a Dropdown List Bound to a Dynamic List
	11.7.5 How to Use Variables with Dropdown Lists

	11.8 Creating a Databound Shuttle
	11.8.1 How to Create a Databound Shuttle
	11.8.2 What Happens at Runtime

	12 Using Validation and Conversion
	12.1 Introduction to Validation and Conversion
	12.2 Validation, Conversion, and the Application Lifecycle
	12.3 Adding Validation
	12.3.1 How to Add Validation
	12.3.1.1 Adding ADF Faces Validation
	12.3.1.1.1 Using Validation Attributes
	12.3.1.1.2 Using JSF and ADF Faces Validators

	12.3.1.2 Adding ADF Model Validation

	12.3.2 What Happens When You Create Input Fields Using the Data Control Palette
	12.3.3 What Happens at Runtime
	12.3.4 What You May Need to Know

	12.4 Creating Custom JSF Validation
	12.4.1 How to Create a Backing Bean Validation Method
	12.4.2 What Happens When You Create a Backing Bean Validation Method
	12.4.3 How to Create a Custom JSF Validator
	12.4.4 What Happens When You Use a Custom JSF Validator

	12.5 Adding Conversion
	12.5.1 How to Use Converters
	12.5.2 What Happens When You Create Input Fields Using the Data Control Palette
	12.5.3 What Happens at Runtime

	12.6 Creating Custom JSF Converters
	12.6.1 How to Create a Custom JSF Converter
	12.6.2 What Happens When You Use a Custom Converter

	12.7 Displaying Error Messages
	12.7.1 How to Display Server-Side Error Messages on a Page
	12.7.2 What Happens When You Choose to Display Error Messages

	12.8 Handling and Displaying Exceptions in an ADF Application
	12.8.1 How to Change Exception Handling
	12.8.2 What Happens When You Change the Default Error Handling

	13 Adding ADF Bindings to Existing Pages
	13.1 Introduction to Adding ADF Bindings to Existing Pages
	13.2 Designing Pages for ADF Bindings
	13.2.1 Creating the Page
	13.2.2 Adding Components to the Page
	13.2.3 Other Design Considerations
	13.2.3.1 Creating Text Fields in Forms
	13.2.3.2 Creating Tables
	13.2.3.3 Creating Buttons and Links
	13.2.3.4 Creating Lists
	13.2.3.5 Creating Trees or Tree Tables

	13.3 Using the Data Control Palette to Bind Existing Components
	13.3.1 How to Add ADF Bindings Using the Data Control Palette
	13.3.2 What Happens When You Use the Data Control Palette to Add ADF Bindings

	13.4 Adding ADF Bindings to Text Fields
	13.4.1 How to Add ADF Bindings to Text Fields
	13.4.2 What Happens When You Add ADF Bindings to a Text Field

	13.5 Adding ADF Bindings to Tables
	13.5.1 How to Add ADF Bindings to Tables
	13.5.2 What Happens When You Add ADF Bindings to a Table

	13.6 Adding ADF Bindings to Actions
	13.6.1 How to Add ADF Bindings to Actions
	13.6.2 What Happens When You Add ADF Bindings to an Action

	13.7 Adding ADF Bindings to Selection Lists
	13.7.1 How to Add ADF Bindings to Selection Lists
	13.7.2 What Happens When You Add ADF Bindings to a Selection List

	13.8 Adding ADF Bindings to Trees and Tree Tables
	13.8.1 How to Add ADF Bindings to Trees and Tree Tables
	13.8.2 What Happens When You Add ADF Bindings to a Tree or Tree Table

	14 Changing the Appearance of Your Application
	14.1 Introduction to Changing ADF Faces Components
	14.2 Changing the Style Properties of a Component
	14.2.1 How to Set a Component’s Style Attributes
	14.2.2 What Happens When You Format Text

	14.3 Using Skins to Change the Look and Feel
	14.3.1 How to Use Skins
	14.3.1.1 Creating a Custom Skin
	14.3.1.2 Configuring an Application to Use a Skin

	14.4 Internationalizing Your Application
	14.4.1 How to Internationalize an Application
	14.4.2 How to Configure Optional Localization Properties for ADF Faces

	15 Optimizing Application Performance with Caching
	15.1 About Caching
	15.2 Using ADF Faces Cache to Cache Content
	15.2.1 How to Add Support for ADF Faces Cache
	15.2.2 What Happens When You Cache Fragments
	15.2.2.1 Logging
	15.2.2.2 AFC Statistics Servlet
	15.2.2.3 Visual Diagnostics

	15.2.3 What You May Need to Know

	16 Testing and Debugging Web Applications
	16.1 Getting Started with Oracle ADF Model Debugging
	16.2 Correcting Simple Oracle ADF Compilation Errors
	16.3 Correcting Simple Oracle ADF Runtime Errors
	16.4 Understanding a Typical Oracle ADF Model Debugging Session
	16.4.1 Turning on Diagnostic Logging
	16.4.2 Creating an Oracle ADF Debugging Configuration
	16.4.3 Understanding the Different Kinds of Breakpoints
	16.4.4 Editing Breakpoints to Improve Control
	16.4.5 Filtering Your View of Class Members
	16.4.6 Communicating Stack Trace Information to Someone Else

	16.5 Debugging the Oracle ADF Model Layer
	16.5.1 Correcting Failures to Display Pages
	16.5.1.1 Fixing Binding Context Creation Errors
	16.5.1.2 Fixing Binding Container Creation Errors

	16.5.2 Correcting Failures to Display Data
	16.5.2.1 Fixing Executable Errors
	16.5.2.2 Fixing Render Value Errors Before Submit

	16.5.3 Correcting Failures to Invoke Actions and Methods
	16.5.4 Correcting Page Validation Failures

	16.6 Tracing EL Expressions

	Part III Implementing Projects With Oracle ADF
	17 Working Productively in Teams
	17.1 Using CVS with an ADF Project
	17.1.1 Choice of Internal or External CVS Client
	17.1.2 Preference Settings
	17.1.3 File Dependencies
	17.1.4 Use Consistent Connection Definition Names
	17.1.5 General Advice for Committing ADF Work to CVS
	17.1.5.1 Other Version Control Tips and Techniques

	17.1.6 Check Out or Update from the CVS Repository
	17.1.7 Special Consideration when Manually Adding Navigation Rules to the faces-config.xml File

	17.2 General Advice for Using CVS with JDeveloper
	17.2.1 Team-Level Activities
	17.2.2 Developer-Level Activities
	17.2.2.1 Typical Workflow When Checking Your Work Into CVS
	17.2.2.2 Handling CVS Repository Configuration Files

	18 Adding Security to an Application
	18.1 Introduction to Security in Oracle ADF Web Applications
	18.2 Specifying the JAZN Resource Provider
	18.2.1 How To Specify the Resource Provider
	18.2.2 What You May Need to Know About Oracle ADF Security and Resource Providers

	18.3 Configuring Authentication Within the web.xml File
	18.3.1 How to Enable J2EE Container-Managed Authentication
	18.3.2 What Happens When You Use Security Constraints without Oracle ADF Security
	18.3.3 How to Enable Oracle ADF Authentication
	18.3.4 What Happens When You Use Security Constraints with Oracle ADF

	18.4 Creating a Login Page
	18.4.1 Wiring the Login and Error Pages
	18.4.2 What Happens When You Wire the Login and Error Pages

	18.5 Creating a Logout Page
	18.5.1 Wiring the Logout Action
	18.5.2 What Happens When You Wire the Logout Action

	18.6 Implementing Authorization Using Oracle ADF Security
	18.6.1 Configuring the Application to Use Oracle ADF Security Authorization
	18.6.1.1 How to Configure Oracle ADF Security Authorization
	18.6.1.2 What Happens When You Configure An Application to Use Oracle ADF Security
	18.6.1.3 What You May Need to Know About the Authorization Property

	18.6.2 Setting Authorization on ADF Binding Containers
	18.6.3 Setting Authorization on ADF Iterator Bindings
	18.6.4 Setting Authorization on ADF Attribute and MethodAction Bindings
	18.6.5 What Happens When Oracle ADF Security Handles Authorization

	18.7 Implementing Authorization Programmatically
	18.7.1 Making User Information EL Accessible
	18.7.1.1 Creating a Class to Manage Roles
	18.7.1.2 Creating a Managed Bean for the Security Information

	18.7.2 Integrating the Managed Bean with Oracle ADF Model
	18.7.2.1 Creating a TopLink Named Query To Return a User Object
	18.7.2.2 Create a Session Facade Method to Wrap the Named Query
	18.7.2.3 Create a Page Definition to Make the Method an EL Accessible Object
	18.7.2.4 Executing the Session Facade Method from the UserInfo Bean

	19 Advanced TopLink Topics
	19.1 Introduction to Advanced TopLink Topics
	19.2 Using Advanced Parameters (databindings.cpx)
	19.2.1 Performing Deletes First
	19.2.2 Specifying the TopLink Session File
	19.2.3 Specifying the Sequencing

	19.3 Configuring Method Access for Relationship
	19.4 Using sessions.xml with a TopLink Data Control
	19.5 Using Multiple Maps with a TopLink Data Control
	19.6 Compiling TopLink Classes with Specific JDK Versions

	20 Creating Data Control Adapters
	20.1 Introduction to the Simple CSV Data Control Adapter
	20.2 Overview of Steps to Create a Data Control Adapter
	20.3 Implement the Abstract Adapter Class
	20.3.1 Location of JAR Files
	20.3.2 Abstract Adapter Class Outline
	20.3.3 Complete Source for the SampleDCAdapter Class
	20.3.4 Implementing the initialize Method
	20.3.5 Implementing the invokeUI Method
	20.3.6 Implementing the getDefinition Method

	20.4 Implement the Data Control Definition Class
	20.4.1 Location of JAR Files
	20.4.2 Data Control Definition Class Outline
	20.4.3 Complete Source for the SampleDCDef Class
	20.4.4 Creating a Default Constructor
	20.4.5 Collecting Metadata from the User
	20.4.6 Defining the Structure of the Data Control
	20.4.7 Creating an Instance of the Data Control
	20.4.8 Setting the Metadata for Runtime
	20.4.9 Setting the Name for the Data Control

	20.5 Implement the Data Control Class
	20.5.1 Location of JAR Files
	20.5.2 Data Control Class Outline
	20.5.3 Complete Source for the SampleDataControl Class
	20.5.4 Implementing the invokeOperation Method
	20.5.4.1 About Calling processResult
	20.5.4.2 Return Value for invokeOperation

	20.5.5 Implementing the getName Method
	20.5.6 Implementing the release Method
	20.5.7 Implementing the getDataProvider Method

	20.6 Create any Necessary Supporting Classes
	20.7 Create an XML File to Define Your Adapter
	20.8 Build Your Adapter
	20.9 Package and Deploy Your Adapter to JDeveloper
	20.10 Location of Javadoc Information
	20.11 Contents of Supporting Files
	20.11.1 sampleDC.xsd
	20.11.2 CSVHandler Class
	20.11.3 CSVParser

	21 Working with Web Services
	21.1 What are Web Services
	21.1.1 SOAP
	21.1.2 WSDL
	21.1.3 UDDI
	21.1.4 Web Services Interoperability

	21.2 Creating Web Service Data Controls
	21.2.1 How to Create a Web Service Data Control

	21.3 Securing Web Service Data Controls
	21.3.1 WS-Security Specification
	21.3.2 Creating and Using Keystores
	21.3.2.1 How to Create a Keystore
	21.3.2.2 How to Request a Certificate
	21.3.2.3 How to Export a Public Key Certificate

	21.3.3 Defining Web Service Data Control Security
	21.3.3.1 How to Set Authentication
	21.3.3.1.1 Testing Authenticated Web Service Data Controls on OC4J
	21.3.3.1.2 Username Tokens
	21.3.3.1.3 X509 Certificate Authentication
	21.3.3.1.4 SAML Assertion Tokens

	21.3.3.2 How to Set Digital Signatures
	21.3.3.3 How to Set Encryption and Decryption
	21.3.3.4 How to Use a Key Store

	22 Deploying ADF Applications
	22.1 Introduction to Deploying ADF Applications
	22.2 Deployment Steps
	22.3 Deployment Techniques
	22.4 Deploying Applications Using Ant
	22.5 Deploying the SRDemo Application
	22.6 Deploying to Oracle Application Server
	22.6.1 Oracle Application Server Versions Supported
	22.6.2 Oracle Application Server Release 2 (10.1.2) Deployment Notes
	22.6.3 Oracle Application Server Deployment Methods
	22.6.4 Oracle Application Server Deployment to Test Environments ("Automatic Deployment")
	22.6.5 Oracle Application Server Deployment to Clustered Topologies

	22.7 Deploying to JBoss
	22.7.1 JBoss Versions Supported
	22.7.2 JBoss Deployment Notes
	22.7.3 JBoss Deployment Methods

	22.8 Deploying to WebLogic
	22.8.1 WebLogic Versions Supported
	22.8.2 WebLogic Versions 8.1 and 9.0 Deployment Notes
	22.8.3 WebLogic 8.1 Deployment Notes
	22.8.4 WebLogic 9.0 Deployment Notes
	22.8.5 WebLogic Deployment Methods

	22.9 Deploying to WebSphere
	22.9.1 WebSphere Versions Supported
	22.9.2 WebSphere Deployment Notes
	22.9.3 WebSphere Deployment Methods

	22.10 Deploying to Tomcat
	22.10.1 Tomcat Versions Supported
	22.10.2 Tomcat Deployment Notes

	22.11 Deploying to Application Servers That Support JDK 1.4
	22.11.1 Switching Embedded OC4J to JDK 1.4

	22.12 Installing ADF Runtime Library on Third-Party Application Servers
	22.12.1 Installing the ADF Runtime Libraries from JDeveloper
	22.12.2 Configuring WebSphere 6.0.1 to Run ADF Applications
	22.12.2.1 Source for install_adflibs_1013.sh Script
	22.12.2.2 Source for install_adflibs_1013.cmd Script

	22.12.3 Installing the ADF Runtime Libraries Manually
	22.12.3.1 Installing the ADF Runtime Libraries from a Zip File

	22.12.4 Deleting the ADF Runtime Library

	22.13 Verifying Deployment and Troubleshooting
	22.13.1 How to Test Run Your Application
	22.13.2 "Class Not Found" or "Method Not Found" Errors
	22.13.3 Application Is Not Using data-sources.xml File on Target Application Server
	22.13.4 Using jazn-data.xml with the Embedded OC4J Server

	Part IV Appendices
	A Reference ADF XML Files
	A.1 About the ADF Metadata Files
	A.2 ADF File Overview Diagram
	A.2.1 Oracle ADF Data Control Files
	A.2.2 Oracle ADF Data Binding Files
	A.2.3 Oracle ADF Faces and Web Configuration Files

	A.3 ADF File Syntax Diagram
	A.4 DataControls.dcx
	A.4.1 Syntax of the DataControls.dcx File
	A.4.2 Sample of the DataControls.dcx File
	A.4.3 Sample of the adfm.xml File

	A.5 Structure Definition Files
	A.5.1 Syntax for the Structure Definition for a JavaBean
	A.5.2 Sample Structure Definition for the <sessionbeanname>.xml File
	A.5.3 Sample Structure Definition for the <entitybeanname>.xml File
	A.5.4 Collection and SingleValue Sample Files

	A.6 DataBindings.cpx
	A.6.1 DataBindings.cpx Syntax
	A.6.2 DataBindings.cpx Sample

	A.7 <pageName>PageDef.xml
	A.7.1 PageDef.xml Syntax
	A.7.2 PageDef.xml Sample for a Method That Returns a String
	A.7.3 PageDef.xml Sample for a Method that Returns a Collection

	A.8 web.xml
	A.8.1 Tasks Supported by the web.xml File
	A.8.1.1 Configuring for State Saving
	A.8.1.2 Configuring for Application View Caching
	A.8.1.3 Configuring for Debugging
	A.8.1.4 Configuring for File Uploading
	A.8.1.5 Configuring for ADF Model Binding
	A.8.1.6 Other Context Configuration Parameters for JSF
	A.8.1.7 What You May Need to Know

	A.9 j2ee-logging.xml
	A.9.1 Tasks Supported by the j2ee-logging.xml
	A.9.1.1 Change the Logging Level for Oracle ADF Packages
	A.9.1.2 Redirect the Log Output
	A.9.1.3 Change the Location of the Log File

	A.10 faces-config.xml
	A.10.1 Tasks Supported by the faces-config.xml
	A.10.1.1 Registering a Render Kit for ADF Faces Components
	A.10.1.2 Registering a Phase Listener for ADF Binding
	A.10.1.3 Registering a Message Resource Bundle
	A.10.1.4 Configuring for Supported Locales
	A.10.1.4.1 What You May Need to Know

	A.10.1.5 Creating Navigation Rules and Cases
	A.10.1.6 Registering Custom Validators and Converters
	A.10.1.7 Registering Managed Beans

	A.11 adf-faces-config.xml
	A.11.1 Tasks Supported by adf-faces-config.xml
	A.11.1.1 Configuring Accessibility Levels
	A.11.1.2 Configuring Currency Code and Separators for Number Groups and Decimals
	A.11.1.3 Configuring For Enhanced Debugging Output
	A.11.1.4 Configuring for Client-Side Validation and Conversion
	A.11.1.5 Configuring the Language Reading Direction
	A.11.1.6 Configuring the Skin Family
	A.11.1.7 Configuring the Output Mode
	A.11.1.8 Configuring the Number of Active ProcessScope Instances
	A.11.1.9 Configuring the Time Zone and Year Offset
	A.11.1.10 Configuring a Custom Uploaded File Processor
	A.11.1.11 Configuring the Help Site URL
	A.11.1.12 Retrieving Configuration Property Values From adf-faces-config.xml

	A.12 adf-faces-skins.xml
	A.12.1 Tasks Supported by adf-faces-skins.xml

	B Reference ADF Binding Properties
	B.1 EL Properties of Oracle ADF Bindings

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

